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ABSTRACT

Polymer melts exhibit sorne degree of viscoelasticity in rnost industrial fonning

operations, and elasticity is particularly important in flows involving an abrupt

contraction or expansion in the flow direction. However, the incorporation of a

viscoelastic constitutive equation into computer models for polymer processing poses

many problems, and for this reason inelastic models have been used aImost exclusively to

represent rheological behavior for flow simulation in the plastics industry.

In order to explore the limits..of v:ïscoelastic flow simulations, we used two nonlinear

viscoelastic models (Leonov and Phan-ThienfTanner) to simulate axisymmetric and

planar contraction tlows and extrudate swell. Their predictions were compared with

those obtained using a strictly viscous model (Carreau-Yasuda) and with experimental

results. The models are implemented in a modified Elastic Viscous Split Stress (EVSS)

mixed finite element formulation. The viscoelastic constitutive equations are calculated

using the Lesaint-Raviart method,. and the divergence-free Stokes problem is solved

applying Uzawa's algorithme The decoupled iterative scheme is used as a preconditioner

for the Generalized Minimal Residual (GMRES) method. Numerical instability was

observed starting at quite low elasticity levels. For the converging flows, the predicted

flow patterns were in fair agreement with experimental results, but there was a large

discrepancy in the entrance pressur~ drop. In the case of extrudate swell, the agreement

with observation was poor, and c<>nvergence was impossible except at the Lowest flow

rate.

After exploring the limits of simaLations using viscoelastic models, we conclude that

there are serious barriers to progress in the simulàtion of viscoelastic flows of industrial

importance. The ultimate source C)f the problem is the melt elasticity, and traditional

numerical methods and rheologjcal modeIs do not provide a suitable basis for simulating

practical flows. A new approach is required, and we propose that a rule-based expert

system be used.
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RÉsUMÉ

Les polymères fondus présentent généralement un caractère viscoélastique lors des

procédés de transformation industriels. L'élasticité devient particulièrement importante

dans les géométries comportant une contraction ou une expansion abrupte en direction de

l'écoulement. Toutefois, Pincorporation de lois de comportement viscoélastique pour la

modélisation des procédés de transformation des polymères s'avère difficile, et de ce fait

des modèles inélastiques ont presque exclusivement été utilisés lors des simulations

.d'éc?ulements d'importance industrielle.

Afin d'explorer les limites des simulations d'écoulements viscoélastiques, nous avons

utilisé deux modèles viscoélastiques non linéaires (Leonov et Phan-Thienffanner) afin de

simuler les écoulements dans des contractions plane et axisymmétrique ainsi que le

gonflement d'extrudat. Les prédictions des deux modèles ont été comparées à celles

obtenues à l'aide d'un modèle strictement visqueux (Carreau-Yasuda) et à des mesures

expérimentales. Les lois de comportement sont incorporées à une fonnulation mixte

d'éléments finis de type "Elastic Viscous Split Stress" (EVSS) modifiée. La méthode de

Lesaint-Raviart sert à la résolution des modèles viscoélastique, et le calcul du problème

de Stokes est effectué à l'aide de l'algorithme d'Uzawa. Une approche découplée basée

sur l'algorithme "Generalized Minimal Residual" (GMRES) est utilisée pour traiter la

non linéarité du problème.

Lors des simulations, des instabilités numériques ont été observées à faible niveaux

d'élasticité. Pour les géométries convergentes, les écoulements prédits ont montré un

accord satisfaisant avec les données expérimentales, sauf les pertes de pression en entrée

qui sont largement sous-estimées. Dans le cas du gonflement d'extrudat, la convergence

numérique n'a été possible qu'au plus faible débit et le gonflement prédit est largement

sous-estimé.



•

•

•

Suite à l'exploration des limites des simulations à l'aide de lois de comportement

viscoélastiques, nous concluons qu'il existe toujours de sérieux obstacles au progrès de la

simulation d'écoulements d'importance industrielle. La source ultime du problème

réside dans l'élasticité du polymère fondu, et les méthodes numériques traditionnelles de

même que les modèles rhéologiques existants ne comportent pas la solution au succès des

simulations d'écoulements d'intérêt pratique. Une nouvelle approche est requise, et nous

suggérons l'utilisation d'un système expert afin de guider l'évolution des calculs

numériques.
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• 1. Introduction

•

The broadening of the range of application of plastic parts requires improved final

product quality, in terms of both mechanical properties and exterior appearance.

Standards for product quality have been raised, while increased competitiveness requires

reductions in produet development time and unit cost. However, plastic processing

continues to involve long product development cycles, high tooling costs, low process

yields and product inconsistencies. Numerical simulation can reduce the time required to

develop new processes and machines and can aid process optimization by:

1. extrapolation or scale-up ofdesigns,

2. exploration ofthe effects of individual variables,

3. sensitivity and stability analysis,

aIl this being achieved at a lower cost than ifcarried out experimentally.

An important issue in polymer processing is melt rheology, which deals with the

relationship between stress and strain in defonnable mat~rials. Polymeric liquids are

rheologically complex, since they exhibit both viscous resistance to deformation and

elasticity. An understanding oftheir rheological behavior is essential in the development,

production and processing of polymerie materials. However, flow phenomena arising

from viscoelasticity are very complex, and these cause severa! problems in the

mathematical modeling of certain forming processes. Inelastic models May be adequate

to simulate flows in which shear stresses are predominant, but if elongational effects are

aIso important, the viscoelastic nature ofpolymerie materials can not be ignored.

Plastics can be molded, extruded, formed, machined and joined into various shapes. In

severa! processing operations such as fiber spinning, thermoforming and injection and

blow molding, the polymer undergoes bath shear and elongation. Viscoelasticity not_ ..._- ,.)

ooly affects melt flow but aIso plays a major role in the development of the

microstructure and physicaI properties of the final plastic part. However, since the



incorporation of a viscoelastic constitutive equation into a computer model for polymer

processing poses many problems, inelastic modeIs have been used aImost exclusively to

represent rheological behavior for flow simulation in the plastics industry.
•
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•

Moreover, aIl previous attempts to find a general viscoelastic fluid model applicable to aIl

classes of flow and capable of realistic predictions have failed. The motivation for this

research was first to det~~ thelimita~o~dmodels for the

numerical simulation of the flow of viscoelasti~teriaIs:--Thé-second objective was to

establish the cause of these limitations and sJlggest methods for overcoming them. To
/

achieve these objectives, two complex flo~s'were subjected to both numerical simulation
/

and experimental observation. //

////

/

In the next chapter, the state-of-the-art ofnumerical simulation ofthe f10w ofviscoelastic

materials is r~vi~w~g. In"Coopter 3, we present the plan of the research and the----- • ----..:..

co~ve eQ.~tions s~i~ Chapter 4 describes the materials used for the-_-=-:.::..=.:::==:::=:::-------
experimental study and presents their rheological properties, while Chapter 5 gives the

method used to determine the various model parameters. In Chapter 6 we describe the

numerical procedure used in the simulations. Experimental methods and results are

presented in Coopter 7 for the planar abrupt contraction flow, and in Chapter 8 for the

axisymmetric entrance tlow and extrudate swell. Chapter 9 presents alternatives to full

viscoelastic simulations and proposes a rule-based system for flow simulation. FinaIly,

conclusions, original contributions to knowledge and recommendations for future work

are given in Coopter 10.



•

••

2. Numerical Simulation of Viscoelastic Flow:
State-of-the-Art

2.1 Constitutive Equations for Polymer Melts

Polymer melts behave very differently from purely viscous materials, because in addition

to viscous resistance to deformation, they exhibit elasticity. The reason why polymerie

liquids are non-Newtonian is related to their molecular structurel. Polymer molecules

can he represented by long chains with many joints allowing relative rotation of adjacent

links, and -the presence of this large number of joints allows many different

configurations and makes the molecule flexible. At rest, there will he a unique average

value ofthe end-to-end distance, R, for the molecules of a given polymer. When the melt

is deformed, this average length is altered, and when the deformation is stopped,

Brownian motion will tend to retum R ta its equilibrium value. This is the molecular

origin of the elastic and relaxation phenomena that occur in polymeric liquids, which are

said to have a "fading memoryfl .

In this section, we will describe briefly sorne flow phenomena associated with

viscoelasticity and present several constitutive equations that have heen developed for

polymerie fluids.

2.1.1 Viscoelastic Flow Phenomena

A number of phenomena encountered in the flow ofpolymers cannot be explained on the

basis of purely viscous behavior. We describe a few of these phenomena, and a more

thorough discussion on the subject can be found in references 2, 3 and 4.

Weissenberg Effect

This effect, aIso called rod climbing, was reported by Weissenberg in 1947s• It is the

tendency of an elastic liquid to rise up around a rotating shaft partially immersed in il.

This is very different from the behavior of a Newtonian fluid, which will flow towards



the walls due to inertia forces. In the absence of inertial effects, the free surface of a

Newtonian fluid would remain tlat. Weissenberg deduced that the phenomenon was

caused by an elastic normal stress acting along the circular streamlines. This normal

stress exists in aIl shear flows ofpolymerie liquids except at very low shear rates. Dealy

and Vu studied rod climbing in molten polymers6
•

•
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Extrudate Swell

Extrudate swell is defined as the increase in the diameter ofa stream as it exits a die. For

a Newtonian fluid at low Reynolds number (Re), axisymmetric extrudate swell at the exit

of a capillary is of the order of 12-13%, and it decreases as Re increases, even becoming

negative. For a viscoelastic liquid, this extrudate swell ean be as high as 200-300%. This

phenomenon is related to normal stress differences and inereases with inereasing flow

rate. Due te the fluid' s memory, the swell depends on the flow at the entrance to the

capillary, but for a sufficiently long capillary, this effect beeomes negligible because it is

a "fading memory".

Tubeless Siphon

In 1908, Fano7 reported a remarkable manifestation offluid elasticity. In an experiment

where he immersed the tip of a capillary tube in a beaker filled with a biological

macromolecular fluid, he began withdrawing liquid from the beaker through the tube.

However, even after the fluid level in the beaker dropped below the tip of the capillary t
tube, the tluid continued to flow upwards to the tip of the no-Ionger-submerged capillary.

This phenomenon is known as a tubeless siphon and results from the large tensile stress

that the fluid can support due to its elasticit)?

Other flow phenomena such as vortex formation in contraction flows are aIso related to

the elasticity ofpolymerie fluids.

Simple Flows

For a Newtonian fluid, the viscosity " is independent of shear rate, but for a polymerie

fluid " decreases with increasing shear rate; Le. these fluids are "shear tbinning". But



shear tbinning alone does not imply that a fluid is viscoelastic. A stronger indication of

viscoelasticity is the existence of normal stress differences in shearing deformations,

which give rise, for example, ta the Weissenberg effect
•
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Another manifestation ofviscoelasticity is stress relaxation. Stresses will persist in these

materials after deformation has ceased, and the duration ofthe time during which stresses

persist is called the relaxation rime of the material. Recoil, the reverse defonnation that

occurs when the tluid is suddenly relieved of an extemally imposed stress, is anotber

manifestation of viscoelasticity_ A realistic viscoelastic constitutive equation must be

able to predict all the phenomena mentioned above.

2.1.2 Definitions ofTensors and Material Functions

We present here definitions ofthe tensors and rheological material functions that are used

throughout this thesis. The reader is referred to Dealy and Wissbrun1 for a thorough

discussion ofthese quantities.

Tensors

The strain rate or rate ofdefonnation tensor D is given by:

Eqn.2-1

where Mis the velocity vector.

The extra stress or viscous stress tensor ~ is defined as follows:

Eqn.2-2

•
wherep is the pressure, cr is the Cauchy stress tensor and [ is the unit tensor.

Useful measures of strain in polymer rheology are the Cauchy tensor Cif Ctl,t2) and the

Finger tensor Bif (t1,t2 ). The Finger tensor is the inverse of the Cauchy tensor and can



aIso be written ci;t (t1'(2). The first, second and third invariants of the Finger tensor are

defined as follows:•
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Eqn.2-3

Eqn.2-4

Eqn. 2-5

Material Functions

In steady shear, the following materiaI functions (the ''viscometric'' functions) are defined

(D12 == y):

Eqn.2-6

Eqn.2-7

Eqn.2-8

(,,;) _ ~12
7lv =-.-

r
(viscosity)

(fust nonnal stress difference)

(second normal stress difference)

Sometimes the normal stress coefficients are used:

Eqn.2-9

Eqn.2-10

\fi = Ni
1 - .2r

(fust nonnal stress coefficient)

(second normal stress coefficient)

Start-up and cessation ofshear flow is denoted by a plus or minus sign, respectively:

•
Eqn.2-11 (start-up flow)
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• Eqn.2-12 (cessation oftlow)

7

In simple uniaxial elongation, we defined a principal stretching stress crE:

Eqn.2-13

The elongational viscosity is defined as follows for steady uniaxial elongational tlow:

Eqn.2-14 (
') (JETJE & =-.-

e

For start-up ofelongational f1ow, we have the tensile stress growth coefficient:

Eqn.2-15
(j(t,ë)

ë

•

2.1.3 Generalized Newtonian Fluid Models

The fust requirement of a constitutive equation to be used for flow simulation is that it

describes adequately the rheological behavior that govem the flow of interest. For certain

restricted flows, there are general constitutive equations that relate the stress tensor to the

deformation history in terms of a few material parameters or functions. For example,

viscometric flows are flows that, from the point of view of a material element, cannot be

distinguished from simple shea1. Although the shear rate may vary from particle to

particle, the defonnation history of each tluid element is constant as it flows along a

streamline.

The extra stress tensor for viscometric flows is described by the Criminale-Ericksen

Filbey (CEF) equation4
•8. If it is fonnulated using the upper-convected derivative of the

v
rate ofdeformation tensor D, it can be written as follows:

Eqn.2-16



where the viscosity and first and second normal stress coefficients are functions of IID,

the second invariant ofthe rate ofdeformation tensor D:•
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Eqn.2..17

Ifone is primarily interested in the shearing component of the stress tensor, assuming that

normal stresses do not affect the pressure gradient, then Eqn. 2-16 can he simplified to:

Eqn.2-18

A material that behaves in this manner is called a "generalized Newtonian fluid".

It is appropriate to use this equation in the conservation of momentum equation to

compute the pressure drop and viscous dissipation in a tube or channel with constant

cross-section. Eqn. 2-18 has the tensorial character of a Newtonian fluid but can exhibit

shear tbinning. It is regarded as a purely viscous constitutive equation, since it does not

predict normal stress differences, which are manifestations ofelasticity.

A popular form for the viscosity as a function of IID is the Carreau-y asuda equation9
:

Eqn.2-19

•

which bas Newtonian behavior with viscosity 110 at low shear rates and power-law

behavior at high shear rates. Eqn. 2-18 is often used in complex polymeric flows for

which it is not valid for polymerie liquids, but more realistie constitutive equations

almost invariably lead ta difficult numerieal problems2
• This will be discussed in more

detail in section 2.2.1.

2.1.4 Viscoelastic Models

Sïnee the viseometrie tlow simplification is not always approprlate, a truly viscoelastic

model must often he used. Viscoelastie behavior may be linear or nonlinear. Linear

viscoelastic behavior is observed ooly when the deformation is very small or slow, and is



therefore not directly relevant ta the behavior of molten polymers in processîng

operations where deformations are always large and rapide Linear viscoelastic behavior

is independent of the kinematics of the deformation and the magnitude of past strains.

These simplifications make possible the addition of the effects of successive

deformations. The Boltzmann superposition principle (Eqn. 2-20) describes weIl the

linear viscoelastic response ofa material to an arbitrary strain history:

•
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Eqn.2-20
t

~(t) = 2 fG(t-t')D(t')dt'

•

where ~ is the extra stress tensor, G(t-t') is the relaxation modulus, and D(t') is the rate of

deformation tensor at time t'.

Conversely, in the nonlinear regime the response to an imposed defonnation depends on

the sïze, the rate and the kinematics of the deformation. Therefore, it is not possible to

measure a response in one type of deformation and use the result to predict the response

in another type of deformation, unless the rate, magnitude and kinematics of the

deformation are all the same in both cases1
•

Two approaches have been used to fonnulate nonlinear viscoelastic constitutive

equations. The:first one is based on the derivation of molecular theories for melts and

dilute solutions together with the use of statistical mechanics, but this approach does not

always yield closed fOIm constitutive models. Because of the mathematical complexity

involved, many simplifying assm.'nptions must be made, and this limits the practical value

ofthe molecular approach. Examples of such theories include the Rouse model for dilute

solutions10, and the Doi_Edwardsll•12.13 without the independent alignment assumption

and Curtiss-Bird modelsl4
,15 for entangled melts, the last two being based on the reptation

concept.

The second method is an empirical approach based on continuum mechanics concept1
•

Complications in building the model arise from the involvement of tensor-valued

quantities and the fact that the response of the material depends on strains imposed at



previous times. These complications make it difficult to establish an acceptable form. of

nonlinear constitutive equation. Larson2 has presented an exhaustive review of closed

form continuum models.
•
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At the present time, there is no universal theory that describes nonlinear rheological

phenomena. Nevertheless, severa! models have been used in numerical simulations, and

these are either differential or integral constitutive equations. These are reviewed in the

following sub-sections. Recent numerical approaches called micro-macro formulations

are based on kinetic theories rather than closed form constitutive models16.17.18.19,20,21.

These are dèscribed in section 2.5.2.

2.1.4.1 Differentiai Viscoelastic Models

Many differential modeIs can be written in the following general form:

Eqn.2-21

Here, Â. is a relaxation time and Tl=ÂG is a viscosity. The symboll:: represents a model

dependent tensor function, and the operator E9 stands for the convected Gordon

Schowalter derivative22
, which is a combination of the upper V and lower Il convected

derivatives:

Eqn.2-22

Eqn.2-23

Eqn.2-24

v Dr T
~ = ~-Vu .~-~.Vu
= Dt. - = = -

â Dr.. T
~=~+T·VU+VU .~

Dt=- -=

•
where D IDt is the material time derivative and T indicates the transpose.



In order to obtain a more realistic representation of the behavior of polymer liquids, Eqn.

2-21 can be modified to include a discrete spectrum ofrelaxation times Â.b where Nis the

number ofmodes:
•
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Eqo.2-25

Eqo.2-26

N
'r"=~'r".= ~ 1

i=l=

The simplest differential model is the upper-convected Maxwell model, with Li;-1, ; 2

and constant Tl. The addition of a Newtonian viscosity Tls yields the Oldroyd-B mode!.

However, these constitutive equations do not provide a realistic description of polymerie

fluids. More complex models, such as those of Giesekus23
, LeonoV24 and Phan

Thien/Tanne~ (PT!) have been proposed to give better agreement with data, but

identifying the correct model and the suitable parameters remains a difficult task.

2.1.4.2 Integral Viscoelastic Models

For the purpose of expressing integraj constitutive equations, deformations are measured

relative to the fluid configuration at the present time t. Single integral constitutive

equations give the extra stress at a fluid particle as a time integral of the defonnation

history, as shown by Eqn. 2-27:

Eqo.2-27

Eqo.2-28

l

~(t) = Jm(t-t')F(~)dt'

( ') dG(t-t') ~Gi (-Ct-t')]m t - t = = LJ - exp ---.,;;---.;...
dt' i=1 ;Li Âi

•
where we consider a time integral taken along the particle path parameterized by the time

t '. The factor m(t-t? is the time dependent memory function that incorporates the

concept of fading memory. This means that the defonnation experienced by a fluid



element in the recent past contributes more to the current stress than earlier

deformations26
• Again, the extra stress can he expressed as a SUffi of individual

contributions (Eqn. 2-25). Fis a model-dependent tensor that describes the defonnation

ofthe fluide

•
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One of the simplest nonlinear integral constitutive equations is the Lodge rubberlike

liquid modet27
, in which F=lb where B is the Finger tensor. This madel is equivalent to

the upper-convected Maxwell differential model with N=-l. Other madels of the integral

type that have been found to give a better fit ta data are of the K-BKZ type28
,29. In these

models, the memory function depends on the strain as weIl as on time. The strain

dependence ofthe memory function is called the damping function, h(1} ,12). In this case,

the memory function is said ta he "separable" or factorable:

Eqn.2-29 M[(t -t'),11, [2] = met - t')h(/l '/2)

•

One of the K-BKZ model with a particu1ar form of damping function was proposed by

Papanastasiou et al.30 and fitted weil experimental data for simple shear and simple

elongational flows.

2.2 Mathematical Treatment of Viscoelastic Flow

2.2.1 Set ofEquations to Solve and Inherent Difficulties

The simulation of the flow of viscoelastic materials involves the solution of a set of

coupled partial differential (or integral-differential) equatians: conservation of mass,

conservation of momentum and a rheological equation. If the flow is compressible or

non-isothermal, conservation of energy and an equation of state for density are aIso

required. For sïmplicity, we assume that the f10w is isothermal and incompressible. We

present the goveming equations using a one-mode differential viscoelastic model, since

the majority of the numerical methods have been developed for differential models. For



incompressible, isothermal flows the conservation equations for mass and momentum

are:•
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Eqn.2-30

Eqn.2-31
Du

p-==-Vp+V·r+f
Dt = -

where p denotes a constant density, p is the pressure, ~ is the extra stress tensor andfis a

body force. For a Newtonian fluid and in the absence of inertia forces, this set of

equations is referred to as the " Stokes problem" (Eqn. 2-30 and Eqn. 2-31).

The extra stress tensor is sometimes split into viscous and viscoelastic contributions, for

example in the Oldroyd-B fluid:

Eqn.2-32
N

~ == 2TJsD + L 'r've.i
i=l=

where ve represents the viscoelastic character, and 115 is a constant viscosity that can he a

solvent viscosity for a polymer solution or a fraction of the zero-shear viscosity for a

polymer melt:

Eqn.2-33
N

7]0 =TJs + LTJi
i=1

This splitting is often arbitrary but it bas a strong stabilizing effect on most numerical

schemes. The last equation is the rheological model, an example of which is the upper

convected Maxwell model:

Eqn.2-34
'il

'!::+Â'!::-271DVD =0

•
The mathematical type of a system of equations can be described in terms of

characteristics31• Ellipticity is represented by complex characteristics, while

hyperbolicity is represented by real characteristics. Ellipticity and hyperbolicity are the



mathematical concepts associated with diffusion and propagation. Ellipticity bas a

regularizing effect on a singularity while hyperbolicity propagates it. For example, long

distance effects controlled by an elliptic set of equations depend only on averaged

quantities, whereas phenomena controlled by a hyperbolic system of equations, like

shocks or singularities, are transported. The set of equations for a purely viscous fluid is

elliptic, but a viscoelastic constitutive equation like Eqn. 2-34 is hyperbolic. The

combination of ellipticity and hyperbolicity complicates the simulation of viscoelastic

flows. For example, the introduction of a geometrical singularity, such as an abrupt

contraction, induces a stress singularity and results in both mathematical and numerical

difficulties, since the rheological equation transports the effect of the singularity and

pollutes the velocity field31
• In the next section, we will look at severa! numerical

approaches that have been proposed to overcome these difficulties.

•
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2.2.2 Numerical AJ2Proaches to Viscoelastic Simulations

The solution of viscoelastic flow problems presents severa! numerical challenges in the

case of both differentia! and integral constitutive models. However, certain similarities

exist between the two cases, for example the nonlinear character of the goveming

equations brought about by the constitutive equation for the viscoelastic stresses. Many

discretization techniques have been used ta solve the conservation and constitutive

equations, and these include finite element, boundary element, finite difference and

spectral methods. The majority of published simulations have been carried out using

finite element methods for both differential and integral constitutive equations. This is

due to the advantages of the finite element methods in discretizing arbitrary geometries

and imposing simply and accurately a variety ofcomplex boundary conditions32
•

Ifwe assume an Eulerian framework, the upper-convected Maxwell model (Eqn. 2-34)

can he expressed as follows:

•
Eqn.2-35



The convective term. V~.;,. brings the complication of having to solve a partial

differential equation rather than an ordinary differential equation, as would be the case in

a Lagrangian framework. Two fundamentally different approaches are used to solve the

set of partial differential equations33
• In the first approach, a mixed fonnulation is

adopted, where the velocity, pressure and extra stress are treated as unknowns, and each

of the equations are multiplied independently by a weighting function and transformed

into a weighted residual fOlm34
• In the second approach, the constitutive equation is

transfonned into an ordinary differential equation either by using a Lagrangian

formulation for unsteady flows35 or by integration along streamlines. Many integral

·models cannot be expressed in differential form, so either a Lagrangian or streamIine

formulation must be adopted. ·-Details of these computations have been described by Luo

and Tann~6,HuIsen and van der Zanden37
, Goublomme et al.38 and Rajagopalan et al.39

•

Luo40 introduced a control volume approach to solve integral viscoelastic models.

Recently, Rasmussen41 presented a new technique to solve time-dependent three

dimensional viscoelastic flow with integral models, based on a Lagrangian kinematic

description of the fluid flow. In this work, we will discuss more thoroughly mi.xed finite

element formulations designed for differential constitutive equations in an Eulerian

framework.

•

•
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2.2.3 Boundary Conditions

In order ta complete the mathematical description of a viscoelastic f1ow, appropriate

boundary conditions must be specified. The nature of these boundary conditions is

intimately related to the mathematical nature of the governing equations. In the case of

elliptic systems with complex characteristics, the problem is well-posed for boundary

conditions ofthe Dirichlet type and for conditions of the Neumann type when the net flux

(Green's theorem) is zero, while for hyperbolic systems with real characteristics, it is

well-posed for conditions of the Cauchytype on the entrance boundary.

Coupled equations of a mixed elliptic-hyperbolic type have both real and complex

characteristics. To date, there is no complete mathematical theory that guides the



selection of boundary conditions for the fiow of viscoelastic materials42.43. The general

approach is to use the same boundary conditions as for purely viscous fluids: no-slip at

solid walls and specification of the velocity components at the entrance and exit of the

tlow boundaries. Because of the memory effect, the extra stresses must aIso be specified

at the inflow boundary to reflect the fiow history. In practice, conditions that result from

a fully developed velocity profile are usually applied at the inlet boundary. However, for

extra stress this boundary condition is sometimes as complex as the solution of the flow

itseIt: because of the laek of anaIytical solutions for the more complex models. It is then

eommon practiee to specify inlet extra stresses and known kinematics for the upper

convected Maxwell fluid (Eqn. 2-34). These approximate boundary conditions result in a

rearrangement of the velocity and stresses at the inflow and outfiow, and this

rearrangement is sometimes important enough to restrain numericaI convergence in

simulations. It is then highly desirable to improve the quality ofthe boundary conditions.

•
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In summary, the issue ofappropriate boundary conditions for viscoelastie computations is

still an open question42
• The approach adopted may make it possible to proceed

numerically but not be completely supported by either mathematical or experimental

results. For example, it is known that the no-slip boundary condition does not apply in all

situations for polymerie fluids. AIso, the imposition of proper boundary conditions at

geometric singularities, such as capillary exit, is still a subject ofdiscussion.

2.3 A1gorithm Development

2.3.1 Fanure ofTraditional Numerical Methods

NumericaI analysts have been interested in simulating viscoelastic fiows for many years.

As mentioned above, the numerical computation of viscoelastic flows involves strongly

nonlinear, coupled equations of a mixed elliptic-hyperbolic type. The use of

conventional numerical techniques has proven unsuccessful due to a loss ofconvergence,

even at low levels ofmelt elasticity. It took aImost ten years to identify what is ealled the

" high Deborah number problem ". The Deborah number (De) is a dimensionless group



that indicates the degree of elasticity of the flow. Classical finite element techniques

based on the application of the Galerkin method to the mixed formulation failed at

relatively low De, and it was unknown at the time if these limits were intrinsically related

to the continuous problem or to inadequate numerical schemes. It is now understood and

accepted that the computational difficulties are numerical in nature and are due ta the

hyperbolic nature of the constitutive equations, the existence of stress singularities, and

the method of resolution of the coupled equations. Debbaut and Crochet44 were able to

increase the De limit for an abrupt 4:1 contraction by imposing more strongly the

incompressibility constraint. For the same problem Keunings45 concluded, after a critical

exarnjnation of the numerical solutions and an intensive mesh refinement study, that the

limiting values of De were numerical :utifacts caused by excessive approximation errors.

From then on, it was suggested45 !hat efforts be focused on complex flows with

singularities or boundary layers in order to test algorithms robustness, since strong

gradients have a tendency to increase numerical imprecision.

•
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2.3.2 First Successful Approach

Most of the early work on viscoelastic flow analysis was based on the three-field mixed

finite element formulation46
•
47

,48. The momentum, continuity and constitutive equations

are expressed in a weighted residual form, and this leads to an approximation of the

Stokes problem (Eqn. 2-30 and Eqn. 2-31) when applied to a Newtonian flow. For an

Oldroyd-B fluid with one-mode, and neglecting body forces, the equations in the weak

formulation are:

Eqn.2..36

Find eu, p, ~ e V x Q x S such that:

(Vy)T ,2TJs D + ~)- (V .~ p) =0 'ifv eV

where è ~ and q are weighting functions, and (...,...) is the appropriate inner product.•
Eqn.2..37

Eqn.2..38

(q, V· ~)=O 'ifqeQ

'ifseS



In 1987, based on this formulation, Marchal and Crocheé9 proposed a new method that

showed good numerical behavior. First, they introduced a new computational element

for the stress components composed of 16 sub-elements (4 x 4), in order to have a

discrete representation of the extra stresses that would satisfy the equivalence

compatibility condition. The polynomial approximations of the three variables need to be

carefully selected with respect to each other to satisfy the so-called generalized inf-sup

(Brezzi-Babuska) compatibility condition50
• When this condition is satisfied, the mixed

fonnulation including extra stresses provides a convergent approximation for the

different variables. The velocity is approximated by biquadratic polynomials, while the

·pres~e is bilinear and continuous. Since the approximation for the stress is also

continuous, the inf-sup condition js satisfied by using a sufficient number of interior

nodes in each element, such as the 4 x 4 sub-elements used by Marchal and Crochet49
, as

proven later by Fortin and Pierre51
•

•
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•
Once the compatibility of spatial discretization was settled, Marchal and Crochet49 used

two methods to account for the convective term in the constitutive equation: the

Streamline Upwind Petrov Galerkin (SUPG) method, and the Streamline Upwind (SU)

method:

Eqn.2-39

Eqn. '2-40

SUPG:

SU:

•

Those are examples of finite element methods in which the weighting functions differ

from the basis functions. In both methods, artificial diffusion is introduced in the tlow

direction by the upwind term a.!f' \7~ in order to stabilize the convection-dominated

transport. Over the years, several variations of the parameter a. have been proposed, but

are all of the forro33
:
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• Eqn.2-41 h
a=-

U
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where h is a characteristic length of the geometry and U a characteristic velocity of the

flow.

The SU metho~ where the upwind term is applied only to the convective term of the

constitutive equation, showed an increased robustness compared to SUPG, which

produced oscillatory stress fields at steep stress boundary layers or near singularities.

However, the SU formulation is an inconsistent substitution of the exact solution, since

the second term of Eqn. 240 remains as a residual, and even if it converges weil it is not

always toward the correct solutionS
2., S3.

The relative success of this approach showed that a combination of compatible

discretization spaces with a discretization technique adapted to the rheological equation

could eliminate the 10ss of convergence at high De. Unfortunately, the new element was

rapidly shawn ta be too costly in memory space for practical use.

2.3.3 Economical Storage Techniques

Marchal and Crochet's element could only he used for single mode simulations,

considering the large memory space needed to solve viscoelastic flow problems, but it

became possible to do multimode calculations when Fortin and Fortin54 intI'oduced their

economical storage technique. Fortin and Fortin54 presented a discontinuous Galerkin

(DG) method to handle the constitutive equation, based on ideas of Lesaint and Raviart55
•

Upwinding is introduced in this method by the jump of discontinuous variables at the

interfaces ofelements:

•
Eqn.2-42



where !! is the outward unit normal on the boundary of element e, r in
e is the part of

element e boundary where!!· n < 0, and J,.nup the extra stress tensor in the neighboring

upwind elemen~3.
•
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•

The equivalence compatibility condition was also satisfied in their method by the

respective discretizations, but fuis time the solution was decoupled; velocity, pressure and

extra stresses were not solved simultaneously. By use of the DG technique, the solution

for the stresses did not imply the'inversion of large linear systems but only local

calculations on elementary systems. However, the method was found to be insufficiently

robust because of the fixed-point algorithm used ta couple the Stokes problem and the

viscoelastic equation. Later, "Fortin and Fortin56 used a quasi-Newton iterative solver

(GMRES, for .... Generalized Minimal Residual ") for the solution of the linear system.

This increased the algoritbm. robustness but did not -achieve the performance of Marchal

and Crochet's method49 due to oscillatory behavior produced by the DG formulation near

singularities. However, the economical storage technique was a major contribution to the

simulation of viscoelastic flo\vs; the only large system to store is the one related to the

Stokes problem, for which a LU factorization is done. The DG method allows the

solution of the constitutive equation on an element by element basis, resulting in very

efficient solvers and greatly reducing the memory space needed to solve flow problems

using differential multimode models. Later, the robustness of GivIRES was tested with

more success by Guénette and Fortin57
•

2.3.4 Projection Technique

The major contnbution ofRajagopalan et al.58 was the introduction ofa fourth field in the

miXed finite element formulation of viscoelastic fiow, opening the door to all the

projection techniques that are now used to introduce compatibility of discretized spaces.

Rajagopalan et al. implemented the EVSS method (Elastic Viscous Split Stress) which is

a projection technique based on the splitting of the extra-stress tensor into viscous and

elastic parts as shown in Eqn. 2-43:



•
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Eqn.2-43

21

'd'v eVEqn.2-44

A change of variable is performed in the momentum and the constitutive equations

yielding a set ofequations involving the velocity lb the pressure p and the new variable E.

Moreover, the rate of deformation tensor D is introduced as an additional. unknown, g,
leading to a four-field UbP,E,J!) problem. In summary, the EVSS method based on the

four-field formulation can be formulated as follows:

Find Û!,p,E,.Jl) e V x Q x S x C such that:

((V~T;2(77s +1])DÛ!)+~-(V .y,p)= 0

Eqn.2-45 (q, V ·~)=O 'd'qeQ

Eqn.2-46 'd'seS

Eqn.2-47 'd'cee

where g is a suitable weighting function.

This method is remarkably stable. However, it requires the convected derivative of the

rate of deformation tensor Cin Eqn. 2-46), and the change of variable of Eqn. 2-43 does

not yield a closed expression for all constitutive equations.

These disadvantages were corrected by Guénette and Fortin57 who recently proposed a

modification of the EVSS formulation, in which the main difference lies in the

introduction of a stabilizing elliptic operator in the discrete version of the momentum

equation:

•
Eqn.2-48 (CVy)T ,2C77:; +a)D(ID-a~ +~J-(v .y,p)=0



The parameter a. is positive and a priori arbitrary, but ifproperly chosen it improves the

overall convergence of the algorithme In the discrete approximation (Eqn. 2-48), the

difference in the discretization of the a. terms combined with the inf-sup condition has a

stabilization effect on the discretization. Their method is not restricted to a particular

class ofconstitutive equations and is easier to implement than the original EVSS method.

It was tested in conjunction with the non-consistent (SU) streamline upwind method on

the 4:1 contraction and stick-slip problems. The algorithm seems robust, and no limiting

De number was reached when using the one-mode PIT model for the stick-slip

problems1
•

•
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•

Recently, Fan et al.59 introduced another stabilized formulation, based on the

incompressibility residual of the finite element discretization and the SUPG technique.

They claim that the new method has ~e same level of stability and robustness of the

modified EVSS methods1 and is superioF to the EVSS technique58
, since it does not

require the solution ofthe convected derivative ofthe rate ofdeformation tensor.

2.3.5 Influence ofTheoretical Work

Fortin and Pierres1 made a mathematical analysis of the Stokes problem for the three

field formulation used by Marchal and Crochet49
• They confinned that the success of the

method was dependent, among others, on the compatibility between discretized spaces.

They showed that in the ab~ence of a purely viscous contribution (115=0) and using a

regular Lagrangian interpolation, three conditions must hold33
•

1. The velocity-pressure interpolation in the Stokes problem must satisfy the Brezzi

Babuska condition to prevent spurious oscillation phenomena.

2. .If a discontinuous interpolation of the viscoelastic stress ~ is used (as in the DG

technique), the space of the strain rate tensor D.(y) obtained after differentiation of the

velocity field!! must he in the same discretization space as 't.

3. If a continuous interpolation of the extra stress J; is used (as in the SUPG or SU

techniques), the number ofintemal nodes must be larger than the number ofnades on

the side ofthe element used for the velocity interpolation.



The compatibility between discretized spaces also contributes to the success of the four

fielcÏ modified EVSS technique57
, as Iater proven by Fortin et aL60 based on a generalized

theory of mixed problems. However, the influence of the discretization of the

constitutive equation near a singularity remains unexplained.

•
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2.4 Comparisons with Experiments

With the improved performance of numerical methods for viscoelastic flow simulations,

direct comparison of the numerical results with the experimental data became

. increasingly feasihle and necessary. Actual comparison may be based on global flow

features such as die swell or··pressure drop measurements or on local tlow kinematics

measured by streakline photography, laser Doppler velocimetry (LDV) or birefringence.

2.4.1 First Comparisons: Boger Fluids

The first comparisons between numerical simulations and experimental data were made

using the upper-convected Maxwell (UCM) and Oldroyd-B models, which can not

capture the full nonlinear behavior of polymer fluids. To narrow the gap between

experimental observation and prediction, the so-called Boger fluids were developed61
•

These elastic fluids are specially prepared solutions ofhigh molecular weight polymers in

viscous solvents and are thought to be nearly free of shear tbinnin g2
• They are aIso

characterized by. a first nOfID.al stress difference proportional to the square of the shear

rate, a zero second normal stress difference and an elongational viscosity that increases

with elongation rate. Boger tluids are reasonably weIl described up to high frequency in

dynamic shear experiments by a two-mode version of the UCM equation62
• At low and

moderate frequencies, the faster of these modes can be collapsed into a retardation terro,

and a single-mode Oldroyd-B equation is then a sufficient rheological description.!.

Experimental elongational data for Boger fluids have compared favorably with numerical

simulations using the Oldroyd-B equation~3. Debbaut et al.M
, Luo and Tanner65 and

Coates et ai. 66 aIso tried to reproduce numericaIly the tlow kinematics measured by

streakline photography of a Boger tluid in abrupt 4: 1 and 8: 1 contractions67
• Most of the



results were in qualitative but not quantitative agreement with. the measurements. Recent

sources of disagreement between experiments and simulations appear to indicate that

Boger fluids are not accurately represented by the Oldroyd-B model and that improved

agreement is obtained by using a single-mode finitely extensible nonlinear elastic

(FENE-P) dumbbell modeI15.68.69.

•
Chapter 2. Numerical Simulation ofViscoelastic Flow: State-of:.the-Art 24

•

•

However, Boger fluids do nc;>t retlect the viscoelastic behavior of polymer melts. With

the development of new and more realistic constitutive models, further investigation of

Boger fluids is now of less interest. In the following sections, we present a short review

. on studies that compare experimental data for polymer melts to simula~ons of complex

flows with more realistic rheological models.

2.4.2 Rheological Models Frequently Used in Simulations

Simulations of flows of molten polymers under typical processing conditions require the

use of suitable rheological constitutive equations. Before looking at complex viscoelastic

flow phenomena like rod-climbing, extrudate swell and vortex formation in contraction

flows, the constitutive equation must be able to describe the simplest ~~rheometric" flows,

i.e. flows used to establish rheological parameters. The model should predict shear

tb;nn;ng, normal stress differences in shear, stress relaxation, recoil and sensitivity to

kinematics. Sorne of the models that have been proposed for polymers have been

mentioned earlier: these inclu4e the Giesekus, Leonov, Phan-Thien/Tanner (PTT) and K

BKZ rnodels. Their superiority has also been shown in providing numerical solutions for

viscoelastic tlows with geometric singularities, such as occur at sharp corners in

contraction or expansion flows. These flows are notoriously difficult to simulate, in

particular for the UCM and Oldroyd-B models.

A significant portion of the work on· the numerical analysis of viscoelastic tlow of

polymer melts is based on streamline in~egration methods, employing K-BKZ type

constitutive models and the damping functions proposed by Papanastasiou et al.30 (pSM)

or Wagner7
.
O

• The popularity of the PSM damping function arises from the possibility of



fitting shear and elongational data independently. Of the clifferential type models, PTT

and Giesekus are the ones most often used, which is surprising considering that the

simple Leonov model gives more realistic values of limiting extensional viscosities than

Giesekus2 and contains no nonlinear parameters. The Giesekus model has one parameter

that controls nonlinearity, whereas the PTT model bas two. The latter has the ability to

fit shear and extensional properties independently. However it gives spurious oscillations

during start-up of shear flow71. Therefore, none of the existing constitutive models are

entirely suitable for the simulation ofcomplex flows.

•
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2.4.3 Determination ofModel Parameters

It was pointed above that the use of a viscoelastic constitutive equation in simulations

requires the detennination of severa! parameters. Linear viscoelastic data, usually the

storage and 10ss moduli (G', G"), which are easy to measure, are used to determine a

discrete relaxation spectrum [Gi, Âj]. Very long, entangled polymer chains have many

modes of motion and thus of relaxation, and these can not be described in terms of a

single relaxation time. Usually, between five and ten modes are necessary ta provide a

good fit ofthe relaxation modulus l
.

However, such a fit may not be adequate for properties that depend in detail on molecular

weight distribution (MWD). For example, the compliance and other manifestations of

melt elasticity, such as normal stress difference and extrudate swell are very sensitive to

MWD1
• While the rheological behavior depends strongly on molecular structure,

rheological data have been used to provide information about molecular structure: this

bas been called the "inverse problem". A number of researchers have had significant

success in the calculation of the viscosity MWD oflinear polymers72.73.74 by using linear

viscoelastic data. Obviously, important information about the MWD is lost when using a

discrete spectrum. of relaxation times, and this might affect the predictions in tlow

simulations ofphenomena tbat depend strongly on MWD, i.e. on the spectrum.



The experimental determination of the nonlinear parameters in the various models is a

more diificult task. Some parameters are related to shear behavior and can be easily

obtained by measuring viscosity, but for parameters related to extensional behavior or

normal stresses, the available experimental data are quite limited. In particular, we lack

reliable data for normal stresses at high shear rates and the response to large, rapid

extensional flows. As a result, important parameters in a viscoelastic constitutive

equation are often determined by fitting the viscosity curve and the few available data for

fust normal stress difference in shear or extensional data at low strain rates. Inadequate

parameter evaluation can result in poor predictions if we try to simulate typical

processing conditions, where deformations tend to be complex, large and rapide In any

event, it appears that no existing model is able to fit the available data for typical

commercial thermoplastics.

•
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In addition, there is no straightforward way to evaluate model parameters for complex

flows where both shear and extensional modes of deformation occur simultaneously, for

example in converging and diverging flows. Nouatin et al.75 presented preliminary work

using a numerical procedure to identify rheological parameters of Oldroyd-B and PIT

models by finite element simulation and inverse problem solving. They reported

encouraging results and will carry out future work to identify parameters by use of actual

experimental data.

2.4.4 Planar Abrupt Contraction Flow

Contraction flow bas received more attention than any other complex flow. This can be

explained by the simplicity of the geometry and the fact that it has features that arise in

polymer processing. Accelerating flows from a large cross-section via an abrupt or

angular entry into a smaller cross-section, Le. entry flows, arise in polymer processing

applications such as extrusion and injection molding. Planar contraction flow bas also

been chosen as a benchmark problem to eValuate numerical methods and constitutive

equations by comparing numerical predictions with experimental results76. A detailed

review of comparisons of experiment and simulation for planar abrupt contraction flow



has been presented by Schoonen77
• In Table 2-1 we summarize numerical simulations of

planar abrupt contraction flows that have been compared with experiments, including the

number ofmodes used in the caIcuIations.
•
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Table 2-1 Numerical Simulations ofPlanar Abrupt Contraction Flow

•

•

Author(s) Type of Model Numberof Numerical Material
Model Modes Method

White et ai. DifferentiaI PTT 1 PenaltyFEM PS,
(1988)78.79 LOPE
Park et al. Integral K-BKZ 8 Streamline HDPE

. (1992)80 FEM36

Maders Differentiai White- 1 Decoupled LLOPE
(1992)8i Metzner82 FEM

Kiriakidis et Integral K-BKZ 8 Streamline LLOPE
al. (1993)83 FEM36

Ahmed et al. Integral K-BKZ 8 FEM HDPE,
(1995)84 (polyflow)85 LOPE
Fiegl and Integral Rivlin- 14 FEM LOPE
6ttinger Sawyers87

(1996)86

Beraudo et al. DifferentiaI PTT 7,8 DGFEM LLDPE,
(1998)88 LOPE

Schoonen Differential PTT, Giesek:us 4,8 FEM LDPE
(1998f7 EVSSDG

FEM: Finite Element Method
OG: Discontinuous Galerkin
EVSS: Elastic Viscous Split Stress

It is obvious frOID Table 2-1 tllat the use of integral models makes it possible ta use more

relaxation times. This is because in integral models, the contribution from each mode

gets summed up in a single integral, while for differential models the number of

equations ta solve for the extra stress is multiplied by the number ofmodes considered.

Authors of papers frequently fail to m~ntion numerical convergence problems near the

singularities, although White et aI.78
•
79 and Schoonen77 did explain how they

circumvented the problem. The loss of 'convergence was delayed by White et al.

as~uming Newtonian behavior in the elements that were in contact with the re-entrant



corner, while Schoonen had to use a parameter set for the PIT model that was

inconsistent with uniaxial extensional flow behavior.•
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Interestingly, two simulations using different constitutive equations for the same material

and same flow gave conflicting results. Comparing their results with the data of

Beaufils89
, Maders et al.81 used a one-mode White-Metzner model and reported that the

preclicted stresses along the centerline showed a slower decay than the experiments.

Comparing with the same experimental d~ta, the simulations of Kiriakidis et al.83

underestimated the stresses in the downstream channel using a multimode K-BKZ mode!.

Finally, Ahmed et al.84 and Fiegl and Ôttinger86 explained some of the discrepancies

between experimental results and simulations in terms of the 2D nature of the simulation

and a 3D component ofthe experimental flow. Most authors refer to the study of Wales90

who empirically found the effects of confining walls to be negligible for an aspect ratio

exceeding 10 for fully developed shear flow. However, this ratio is mostly used in the

channel (downstream section), whereas quantitative comparisons are also made in the

upstream. section where the ratio is rarely larger than 1077
.

2.4.5 Axisymmetric Abrupt Contraction Flow

Most of the simulations ofaxisymmetric abrupt contraction flow have been done using

integral models. In Table 2-2, we present a summary of numerical simulations of this

flow that were compared with experimental results.

When comparison was made with experimental entrance pressure drop in these studies,

poor agreement with the simulations was obtained. Fiegl and Ôttinge~1 reported

reasonable quantitative agreement in terms of vortex growth, but computed values of the

entrance pressure 10ss were underestimated. Barakos and Mitsoulis92 also reported the

underestimation of entrance pressure loss, measured by Meissner93
, by their finite

element simulations.
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Numerical Simulations ofAxisymmetric Abrupt Contraction FlowTable 2-2
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FEM: FlnIte Element Method
SIMPLE: Semi-Implicit Method for Pressure Linked Equations

Author(s) Type of Model Numberof Numerical Material
Model Modes Method

Dupont and Integral K-BKZ 8 Streamline LDPE
Crochet FEM
(1988)94

Luo and Integral K-BKZ 8 Streamline LDPE
Mitsoulis FEM36

(1990)95

Hulsenand Differential Giesekus 8 Streamline LDPE
van der FEM
Zanden
(1991i7

Fiegl and Integral Rivlin- 9 FEM LDPE
Ôttinger Sawyers
(1994)91

Barakos and Integral K-BKZ 8 Streamline LDPE
Mitsoulis FEM36

(1995)92

Luo (1996rU Integral K-BKZ 8 Control LDPE
volume

SIMPLE. .

•

2.4.6 Axisymmetric Converging Flow

The prediction of entrance pressure.loss in converging axisymmetric f10w bas been the

subject of severa! recent studies using both integral and differential models. These are

Sllrnmarized in Table 2-3.

Most studies report that numerical predictions of entrance pressure drop were

substantially underestimated when compared to experimental data. Mitsoulis et al.96

claimed that the entrance pressure 10ss was insensitive to extensional rheology.

•
Beraud097 and Fiegl and ÔttingerH tried to explain these discrepancies. According to the

authors, the experimental values include die exit effects, and the degree to which these

effects contribute to the experimentally determined entrance pressure 10ss is unknown.



However, exit pressure drop is known to be very sma1l98 and would not compensate for

the large difference between experimental and predicted entrance pressure drop.•
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Table 2-3 Numerical Simulations ofAxisymmetric Converging Flow

•

Author(s) Type of Model Numberof Numerical Material
Madel Modes Method

Beraudo Differential PIT 7 DGFEM LLDPE
(1995)97

Guillet et al. Integral Wagner1UU 7,8 Stream-tube LLDPE,
(1996)99 mapping LDPE

Hatzikiriakos Integral K-BKZ 6 Streamline LLDPE
and·Mitsoulis FEM

(l996)1Ol ."
Mitsoulis et al. Integral, K-BKZ, 6,8 Streamline LLDPE

(1998)96 differential, PIT, FEM,
viscous Carreaul02 EVSS-SUPG

FEM: Finite Element Method
DG: Discontinuous Galerkin
EVSS: Elastic Viscous Split Stress
SUPG: Streaniline Upwind Petrov Galerkin

2.4.7 Extrudate Swell

2.4.7.1 Annular Swell

•

Many attempts have been made ta simulate extrudate swell. In Table 2-4, we present a

summary of simulations ofannular extrudate swell that were compared with experimental

data. Two independent swell ratios are required to describe annular swell: the diameter

swell and the thickness swelL Two studies comparing numerical simulations with

annular extrudate swell measurements (Luo and Mitsoulisl03 and Tanoue et al. l04) used

the experimental data of Orbey and DealylOS for three HDPE melts.

Convergence problems were reported for the tapered geometries by Luo and Mitsoulis103

and Garcia-Rejon et al.L06
• Sorne of th~ results presented were not fully converged

solutions (Luo and MitsoulisL03), and computations failed to converge for diverging

angles beyond +300 and for converging angles beyond -300 (Garcia-Rejon et al. l06).
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Numerical Simulations ofAnnular Extrudate SwellTable 2-4
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FEM: FlDIte Element Method

Author(s) Type of Model Numberof Numerical Material
Model Modes Method

Luo and Integral K-BKZ 8 Streamline HDPE
Mitsoulis FEM36

(1989)103

Garcia-Rejon Integral K-BKZ 6 FEM HDPE
et al. (1995)106 (pOlyflow)85

Otsuki et al. Integral K-BKZ 6 Streamline HDPE
(1997)107 FEM

Tanoue etai. DifferentiaI Giesekus 1 Under HDPE
(1998)104 relaxation

mixedFEM..

•

For the straight annular die, results from Luo and Mitsoulis l03 showed reasonable

agreement of prediction and experiment for the diameter swell, but the thickness swell

was no1: close to the experimental data. Garcia-Rejon106 et al. reported opposite results:

predictions ofthickness swell were in reasonably good agreement with experimental data,

but the agreement was poor for diameter swell.

Tanoue et aI.104 reported deviations as high as 34 % between simulation and experiment.

According to the authors, the use of a discrete spectrum of relaxation times would

improve the predictions.

2.4.7.2 Capillary Swell

Axisymmetric swell was also the subject of numerous studies. Table 2-S presents

numerical simulations ofaxisymmetric extrudate swell that were compared with

experimental results.

•
Again, most of the studies were done using integral models. Many studies used the data

of Meissne~3 to compare with their simulations. The temperature was kept constant in

these swell experiments by extruding into silicone oil at ISOaC. The comparisons

between simulations and measured values for a long and a short die are presented in



Tables 2-6 and 2-7. Model parameters were fitted to shear and elongationai rheologicai

data. The number ofmodes used in the simulations is given in Table 2-5.•
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Table2-S Numerical Simulations ofAxisymmetric Extrudate Swell

FEM: FlDlte Element Method
BEM: Boundary Element Method
DG: Discontinuous Galerkin

Author(s) Type of Model Numberof Numerical Material
Model Modes Method

Luo and Integral K-BKZ 8 Streamline LDPE
Tanner FEM36

(1986)108

Bush Differentiai Leonov 7 BEM LDPE
(1989) 109

Goublomme Integral K-BKZ 6 FEM HDPE
and Crochet

(1992i8

Goublomme Integral Wagner 6 FEM HDPE
and Crochet

(1993)110

Barakos and Integral K-BKZ 8 Streamline LDPE
Mitsoulis FEM36

(1995)92

Sun et al. Integral K-BKZ 8 Streamline LDPE
(1996)111 FEM

Beraudo et al. Differentiai PIT 7 DGFEM LLDPE
(1998)88

. .

In generaI, moderate agreement is obtained for the low and medium apparent shear rates,

while swell is largely overestimated at the highest shear rate. We aIso see that

predictions differ considerably from one study to another.

•

Comparing with their own measurements, Beraudo et aI.88 reported good agreement for a

long die but poor agreem~nt for a short die. The computation largely underpredicted the

experimental value for the short die, and the underestimation was larger at high shear

rates. It is worth mentioning that in their swell experiments, the polymer was extruded

directly into airn , thus involving sagging due to gravity and non-isothermai effects that

couid result in an underestimation ofthe ultimate swell.



Finally, Goublomme and Croche~8.1l0 simulated the extrudate swell of an HOPE melt

thathad been measured by Koopmans1
12. Extrusion was into a silicone oil bath at 190°C.

Inclusion of a converging upstream conical section in the simulation ta match the

experimental set-up resulted in a very high calculated swelling ratio (- 9 calculated vs.

2.38-2.61 measuredi8
• With a difIerent Wagner damping function modified to give a

non-zero second normal stress difference, quantitative agreement with experimental

results was obtained. However~ the required ratio of second ta fust nonnal stress

difference (N21NI = _0.3)110 was larger than typical reported values.
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In conclusion, the simulation of extrudate swell has praduced contradictory results,

underestimating or overestimating swell, usually differing considerably from measured

values.

Table 2-6 Comparisons between Predicted and Measured Extrudate Swell Oong die)

Reference Model Swell (0.1 s-a) Swell (1.0 S-L) Swell (10.0 S-i)

Luo and K-BKZ 31 % 51 % 82%
Tannerlo8

Barakas and K-BKZ 30% 69% 84%
Mitsoulis92 *

Sun
LU ** K-BKZ 30% 62% 94%

Bush1
\r.? *** Leonov 37% 53 % 77%

Meissnei"'" **** Experiments 34% 52% 56%
• MeshM2
•• MeshM3
... Special form ofLeonov model, results taken from figure
•••• Extrapolated values for an inf'mite long die

Table 2-7 Comparisons between Predicted and Measured Extrudate Swell (orifice)

•

Reference Model SweU (0.1 S-I) Swell (1.0 S-I) Swell (10.0 s-I.)

Barakos and K-BKZ 54% 133 % 195%
Mitsoulis92 *

Sun
ll1 ** K-BKZ 49% 163 % 223%

Meissner'" Experiments 58% 125% 195%
• MeshM2
•• MeshM3



We provide here a brief summary of other complex polymer flows such as planar flow .

around a cylinder and cross-siot flow. The planar flow around a cylinder has been

proposed as a benchmark problem for numerical tecbniques1l3
, but it has received orny

limited attention up to now. This flow is of interest because along the centerline, a

material element undergoes various types of deformation: it will be compressed when

approaching the cylinder, then sheared along the cylinder's surface and finally stretched

in the wake of the cylinder. In cross-slot flow, or planar stagnation, two liquids impinge

to create a steady extensionai deformation. At the stagnation point a material element

experiences a very large extensional strain rate, which will produce a high Ievei of

orientation.
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Table 2-8 presents recent numerical simulations of planar flow around a cylinder where

predictions were compared with experiments.

• Table 2-8 Numerical Simulations ofPlanar Flow around a Cylinder

•

Author(s) Type of Modei Numberof Numerical Material
Model Modes Method

Hartt and DifferentiaI, PIT, 1 (pIT), FEM LLDPE,
Baird integral Rivlin- 7 (RS) (POlyflow)85 LDPE

(1996)1I4 Sawyers
Baaijens et aI. Differential PIT, 4,8 FEM LDPE

(1997)115 Giesekus EVSSDG
Schoonen Differential PIT, 4,8 FEM LDPE
(1998)77 Giesekus EVSSDG

FEM: Finite Element Method
EVSS: Elastic Viscous Split Stress
DG: Discontinuous Galerkin

Baaijens et 'al. Ils tested two differential constitutive equations, PTI and Giesekus, with

model parameters fitted to shear data including viscosity and first normal stress

difference. For the PIT model, no unique set ofparameters could be identified without

the use ofelongational data. Three parameter sets were tried, all giving equally good fits

of the shear data. However, comparison with experimentally obtained birefringence



patterns revealed that neither of the models could predict quantitatively the observed

stress patterns. These results were consistent with those reported by Hartt and Baird114

for the same flow ofpolyethylene melts.
•
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Schoonen77 did an experimental/numerical study of an LDPE melt in both planar tlow

around a cylinder and cross-slot flow. He compared the predictions of the multimode

Giesekus and PTT models with velocities measured using particle tracking velocimetry

and stresses measured by fieldwise flow induced birefringence. Where the PTT model

gave better agreement than the Giesekus model witb. both velocity and stress data in

planar abrupt contraction flow (section 2.4.4), the Giesekus model performed better for

the cylinder and cross-siot flow. The PTT model, which described rheological properties

best, gave convergence problems. Schoonen had to use a parameter set for the PTT

model that was consistent with shear data but not uniaxial extensional behavior in order

to obtain numerical convergence.

2.5 Conclusions

Major difficulties persist in the simulation of polymer fiows, both on the experimental

and the numerical side, and these are surnmarized below.

2.5.1 Limitations ofNumerical Simulations ofViscoelastic Flows

Over the past decade, significant progress has been made in the numerical and

experimental analysis of viscoelastic flows. Within the category of numerical mixed

methods, the modified EVSS technique fust introduced by Guénette and Fortin57
, appears

to provide the most robust formulation currently available. To achieve accurate results,

the modified EVSS method should be combined with an upwind scheme like the SUPG

formulation or the discontinuous Galerkin (Lesaint-Raviart) Methode

However, despite the improved performance of numerical methods for viscoelastic flow

simulations, serious convergence problems remain. For flow geometries with a



singularity, such as sharp corners for enclosed flows and discontinuities in boundary

conditions for free-surface flows, a numerical breakdown occurs above a modest

elasticity level or De number. Simulations of these flows are still limited, in general, to

low Deborah numbers, i.e., either ta low flow rates or materials with short relaxation

times.

•
Chapter 2. Numerical Simulation ofViscoelastic Flow: State-of-the-Art 36

•

Apart from purely numerical issues, such as convergence problems, the predictive

capability ofany numerical analysis is only as good as the input data; i.e., the constitutive

model, material parameters and boundary conditions. Attempts to find a general

viscoelastic fluid model that would be applicable to all classes of flow problems and be

able to give reliable results have 50 far failed. If good success is 0 btained in comparison

with experimental data for a particular class of flow problem, poor agreement is usually

observed with another class of flows. Even when convergence is possible, confrontation

with. experimental results Încreasingly reveals the inability of existing constitutive

equations to predict the complicated stress fields of industrial forming operations. This

holds in particular for flow regions with strong elongational components. At the present

time, it is not clear if the poor agreement between simulations and experiments is due to

the inadequacy of the models or ta the poor evaluation of the model parameters. We

lack, in particular, reliable data for normal stresses at high shear rates and response ta

large, rapid extensional flows ta fit the model parameters. And as was mentioned

previously, there is no straightforward way ta evaluate model parameters for complex

flows where both shear and extensional modes of deformation are occurring

simultaneously, for example in converging and diverging flo\vs.

2.5.2 Kinetic Theory Models: A Promising Approach?

A relatively recent approach that does not require closed form constitutive models is the

so-called micro-macro fonnulation based on kinetic theories l
6-21. Hua and Schieber16

recently presented calculations of viscoelastic flow through fibrous media using kinetic

theory models and a combined finite element and Brownian dynamics technique.

Comparisons were made using the same numerical technique with analogous models that



lead to closed-fonn constitutive equations, specifically the FENE-P dumbbell, which is

an approximate PENE model, and the Doi-Edwards reptation model with and without the

independent alignment assumption. They reported significant quantitative differences

between the predictions of the approximate and the more realistic models. For example,

the FENE-P dumbbell underestimated the magnitude of the normal stress by as much as

25% compared to FENE model, and reptation with independent alignment

underestimated it by 22% compared to the more realistic reptation modeL The use of

kinetic theory models improves considerably the quality of the prediction, but although

no constitutive equation is solved explicitly, problems still arise that prevent convergence

of the flow field at high De number. According to Hua and Schieber16
, a way ta avoid

the numerical instability problem might be the use of more accurate finite element

methods, such as the modified EVSS formulation or a higher order technique1
16. Using

their current method, they had to modify the momentum equation by adding a relaxation

parameter ta make the equation more elliptic in order ta obtain numerical convergence.
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It seems that using more realistic constitutive equations such as kinetic theory models

does not eliminate numerical convergence problems while requiring much larger

computational resources.
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• 3. Plan of the Research

3.1 Objectives

The objectives ofthis work were as follows:

1. To determine the limitations of present methods for the numerical simulation of the

flow ofviscoelastic materiaIs.

2. To establish the cause ofthe limitations and suggest methods for overcoming them.

In arder to achieve these objectives, we canied out viscoelastic flow simulations using a

numerical procedure described in Chapter 6. For these simulations, we used two

differential viscoelastic constitutive equations and compared their predictions with. those

ofa strictly viscous model. The models selected are presented in the next section.

We aIso conducted an experimental study of two complex flows: a planar abrupt 8:1

contraction tlow and an axisymmetric entrance flow and extrudate swell. The materials

used for these experiments are described in Chapter 4.

3.2 ModeIs Selected for this Research

3.2.1 Carreau-y asuda Model

In order to appreciate the added value ofusing a viscoelastic constitutive equation in tlow

simulations, we carried out calculations using a strictly viscous model. We chose the

Carreau-Yasuda1 model, a generalized Newtonian model that describes fairly weIl the

shear dependence of the viscosity of polymer melts. This model was previously

introduced in Chapter 2:

•
Eqn.3-1a

where

!Ct) = 77[IID Ct)~Ct)
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Eqn.3-1b

m-I

71[ilD (t)]=710 (1 + CU?ilDCt))~)-s
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•

The scalar viscosity is a function of IID, the second invariant of the rate of deformation

tensor. As stated before, normal stress differences in shear and transient stresses in start

up flows are not predicted by this purely viscous mode!.

Four parameters must he specified in order to use the model: the zero-shear viscosity (110),

which can be estimated using the discrete relaxation spectrum, a characteristic time (À.), a

power-Iaw index (m), which is related to the slope of the viscosity curve at high shear

rates, and a second power-Iaw index (s), which controls the transition between the plateau

and the power-Iaw regions. The Carreau-Yasuda model parameters for the two materials

studied are presented in sections 5.1.1 and 5.2.1.

3.2.2 Leonov Model

The fust viscoelastic constitutive equation we selected is a modified Leonov model2
•

This model was initially chosen because it is the ooly one that satisfies basic stability

criteria3
, Hadamard (thermodynamic) and dissipative stability criteri~ while describing

weIl the material functions usually measured2
• The original model proposed by

Leonov4.5, which is derived from irreversible thermodynamic principles, is an extension

of the theory of rubber elasticity ta viscoelastic liquids. The simple Leonov model,

which uses ooly the parameters of the discretized linear viscoelastic spectrum., has been

found to provide a good representation of data for shear flows and to be easy to use6
•

However, it provided a poor fit to extensional flow data. Recently, a new fonnulation of

the general class of differential constitutive equations proposed by Leonov was

presented2
• This latest version eHminates sorne of the recognized deficiencies of the

original "simple" model by adding ooly one or two nonlinear parameters. This

modification makes possible a fairly accurate description of simple flows for polymers

such as low and high density polyethylenes (LDPE and HOPE), polystyrene (PS) and

polyisobutylene (pmi.



For the sake of simplicity, we present here the modified Leonov model for a single

relaxation time and an incompressible fluide However, the model can easily he extended

to coyer the multimode case and compressibility. Derivation of the compressible case for

the simple model is presented in references 7, 8 and 9. A multimode incompressible

version was used in our simulations.
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The evolution equations for the Finger tensor Bij and the associated dissipation function D

are4
:

Eqn.3-2

Eqn.3-3

v
Bij+ 2Bik • ekjp =0

(tr(e-- ) =0)
Yp

v
Here, B ij is the upper-convected time derivative of the Finger tensor, eijp =eijp (Bij) is the

irreversible strain rate tensor, and 'tjj is the extra stress tensor. For incompressible liquids,

the invariants of the Finger tensor are as fol1ows:

Eqn.3-4 13 =detBij =1.

The irreversible rate ofdeformation tensor, eij , has the following general form:
p

Eqn.3-5 e-- = .!!-[B-- - B_.~l + (12 - Il )8..]
lJ p 42 y y 3 lJ

•

Here Ô ij is the unit tensor, A is the relaxation time in the linear Maxwell limit, and

b=b(IhI0 can be thought of as a deformation-history-dependent scaling factor for the

linear relaxation times and is an adjustable parameter. The simplest choice is to let b=I,

which is known as the standard Leonov mode!. It is sufficient that b{Il,IJ be positive for

the dissipation function ta he positive definite, which is required by the Second Law of

therm.odynamics. The faIm ofthe evolution equation (Eqn. 3-2) becomes:
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Eqn.3-6
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In order to relate the extra stress tensor to the elastic Finger tensor during the defonnation

history, a functional form. for the elastic potential W(I., 12, n=po f must be provided.

Here, Po is the density, andfis the specific Helmholtz free energy. The following general

elastic potential bas been suggested2
:

Eqn.3-7

where G is the linear Hookean elastic modulus, and ~ and n are numerical parameters.

Eqn. 3-7 yields the Mooney potential for n=O, and the neo-Hookean potential for n=J3=O,

which is the case for HDPE and pS2. A constitutive equation with b=1 and the neo

Hookean potential (n=J3=O) gÏves back the simple Leonov model in its original forme

Finally, the extra stress tensor can be written in the Finger form as:

Eqn.3-8 T .. =2(Boo üVV - B..-r 8VVJ - G5..
y Y;r lJ a lJ

(/.1.} 2

•

The functional form. of the b function is determined from extensional flow data, and we

present in sections 5.1.2 and 5.2.2 the results for our LLDPE and HDPE. We aIso

compare the predictions of the modified Leonov model with those obtained using the

simple mode!.

3.2.3 Phan-Thien Tanner Model

Calculations using the simple Leonov model in numerical flow simulations indicated

serious convergence problems. While a major effort was directed at achieving

satisfactory simulations, it was found that the use of this equation exacerbated the

convergence problems of the numerical analysis and made it impossible to obtain

solutions for mast cases.



In order to achieve the objectives of the research, therefore, a second viscoelastic

constitutive equation was selected for use. A differential model was chosen so that the

existing numerical code could be used. The Phan-ThïenfTanner model1o,II (Eqn. 3-9) had

shown itself to behave weIl in numerical simulations, although it did not give as good a

fit of measurable material functions. Fortinl2 reported having successful results in terms

of numerical convergence with that model. However, even this equation gave

convergence problems, as will be seen in Chapter 8.
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Like the Leonov model, the PIT model does not predict a separable relaxation modulus,

although it is derived from network theory. Separability refers ta the possibility of

separating time and strain effects in the nonlinear relaxation modulus, as discussed in

section 2.1.4 (Eqn. 2-29).

The PIT model is expressed as follows:

Eqn.3-9

where E9 stands for the convected Gordon-Schowalter derivative13
, which is a

combination ofthe upper 'V and lower tl convected derivatives:

Eqn.3-10

where ;-2 represents the upper-convected derivative

;=0, the lower-convected derivative

ç=l, it is the corotional derivative.

Phan-Thien and Tanner suggested two possibilities for the function Y(tr~):

•
Eqn.3-11
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Eqn.3-12
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With either choice, the PIT model has two nonlinear parameters (ç and g) to be

determined for each materia! in addition to the discrete spectrum. Nonlinear shear and

extensional data are needed to determine the nonlinear parameters of the mode!. The

parameter ; contraIs the level of shear tbinning, while E bas little influence on shear

properties and serves mainly to biunt the extensional singularity that would otherwise be

present6,lO,ll.

Larson6 pointed out that there are disadvantages to using the Gordon-Schowalter

derivative for melts. These disadvantages are inherited by the PTT model if ; * 2.

Primary among these are unphysical oscillations in the shear stress and first normal stress

during start-up of steady shear at large shear rates. Other problems have aIso been

reported when ç =:1= 2; for example a maximum in the fiow curve, which is physically

unrealistic14
, and the violation ofLodge-Meissner relationshipls. Using ç = 2 avoids these

problems, but then the model predicts N2=O, which is also unrealistic. Despite these

problems, the PTT model is known to give a moderate to good fit6 of shear and

extensional rheological properties of polymer melts using Eqn. 3-12 for Y(tr;;) and of

polymer solutions with Eqn. 3-11. Eqn. 3-12 is suitable for polymer melts, since the

exponentiaI term results in a maximum in the steady-state elongational viscosity and is

thus in better agreement with experimental data. The linear equation for Y (Eqn. 3-11)

predicts a plateau value of the elongational viscosity at high strain rates, which is more

suitable for polymer solutions. The PTT model parameters we used for our materials are

presented in sections 5.1.3 and 5.2.3.
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• 4. Rheological Characterization

4.1 Materials Used

ln the original research plan, a single polymer was to be studied in !Wo types of complex

flow. This was intended to make possible the performance evaluation of the constitutive

equations of interest in different tlow situations. However, the linear low-density

polyethylene (LLDPE) that was studied in the axisymmetric extrudate swell experiments

proved to be unstable in the extruder used for the planar abrupt contraction flow. It was

not possible ta obtain a steady flow rate, and it was necessary ta use another material for

these experiments, a high-density polyethylene (HDPE). The LLDPE was Dowlex™

(Dow Chemical Company) 2049A, which is a commercial high stability copolymer made

using a Ziegler-Natta catalyst. It is used primarily in packaging and is processed by

extrusion and film blowing. The HDPE XI010 was an experimental DSM material

polymerized using a catalyst different from the one used to make DSM commercial blow

molding resins and sold as StamylanTh! lID. Some characteristics of the two resins are

presented in Table 4-1.

Table 4-1 Experimental Materials

•

Resin Density MeltIndex Molecular Weight Polydispersity
(g/cm3

) (g/lO min.) <Mw) (g/mol) (M,jMJ
LLDPE 0.926 1.0 * 119600 3.82
HDPE 0.957 1.15 ** 195000 35.0

• 2.16 lc~ 190°C (ASTM D1238, Method E)
•• Test 15

4.2 Experimental Methods

4.2.1 Smalt Amplitude Oscillatory Shear

The experiment most widely used to determine the linear viscoelastic properties of

polymer melts is small amplitude oscillatory shear. The storage and 10ss moduli were



measured using a Rheometrics Dynamic Analyzer II (RDA II), a controlled strain

rheometer. The instrument was operated in a parallel plate configuration (plate

diameter=25 mm), under a nitrogen atmosphere to prevent thermal degradation. Thermal

stability tests were performed to ensure that the resins did not degrade under test

conditions, and strain sweeps were performed to verify that the measurements were

within the linear viscoelastic regime at aIl frequencies. The nominal frequency range of

the RDA II is from 0.001 to 500 radis, but the useful frequency range is resin dependent

and must be determined experimentally.

•
Chapter 4. Rheological Charaeterization 51

Samples for dynamic measurements were compression molded. The molding

temperature and pressure cycle was optimized to produce homogeneous samples without

residual stresses or voids and to rnjnjmjze thermal degradation. The samples were

prepared at 180°C according to the sequence of times and applied pressures presented in

Table 4.2.

Table 4-2 Compression Molding Procedure at 180°C

•

Cycle melting compression compression compression Cooling *
Pressure (l\1Pa) 0 1.2 2.4 3.6 3.6

Time (min.) 5 5 5 5 -10
• pressure released when T < 40°C

4.2.2 Steady Shear

Capillary Rheometer

The viscosity of the LLDPE was measured on an Instron, piston-driven, constant speed

capillary rheometer. In this instrument, the apparent wall shear rate is calculated from the

piston speed, and the wall shear stress is calculated from the force measured by the load.

cell. Accurate control of the temperature in the barrel (±lOC) is achieved through three

independent heating zones with PID controllers and J-type thermocouples1
• Circular dies

of 1.4 mm diameter and LlO ratios of 4.75, 9.5 and 19.0 were used to obtain accurate



values of the Bagley corrections which agreed with values ob1ained using an orifice die2

(LID <0.5).•
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Siiding Plate Rheometer

The sliding plate rheometer shears a melt between two stainless steel plates. The moving

plate, which can produce shear rates up to 500 S-I, is driven by a servo-hydraulic linear

actuator. The shear stress is measured at the center of the sample by a shear stress

transducer developed at McGill University. AlI measurements take place in a

temperature-controlled oven. A detailed description can be found in reference 3.

Measurements were made at 200°C for the HDPE resin.

4.2.3 Extensional Flow

Transient elongational experiments were performed using a Meissner4 type apparatus, the

Rheometrics Melt Elongational rheometer (RNfE), by Plastech Engineering AG

laboratory in Zurich. The sample, clamps and leaf springs are installed in a temperature

controlled oven, which is heated by electrical heater wires em.bedded in the walls. The

sample is supported by a cushion of inert gas (nitrogen) and stretched homogeneously

between two sets of conveyor belt clamps at a constant Hen.cky strain rate defined as

follows:

Eqn.4-1 è = _d..:.,.(ln.....;:(:--L:...:...))

dt

•

where L is the actual sample length.

The strain rate range of the instrument is 0.001 to 3 S·I, but the attainable strain rate range

is resin dependent and must be determined experimentally. Measurements were

performed at 150°C for the LLDPE and at 200°C for the HDPE_
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4.3 Linear-Low Density Polyethylene
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•

AIl rheological measurements for the LLDPE were performed at 150°C~ which is the

temperature at which the extrudate swell measurements were conducted. In order to

make sure that the polymer was fully molten at that temperature~ we consulted data

previously collected for this materials. Reat capacity measurements carried out in a

differential scanning calorimeter showed a melting peak temperature of 126°C. Pressure

volume-temperature (pVn data obtained in cooling gave the following crystaJUzation

temperature~ Tc~ as a function ofpressure:

Eqn. 4-2 Tc = 113.52 + CO.281)P

with P the pressure in MPa The highest pressure reached in the capillary rheometer was

42 MP~ which gives a crystallization temperature of 125°C. We are therefore confident

that all measurements were perfonned in the molten state.

4.3.1 Storage and Loss Moduli

The storage (G~) and loss CG") moduli were measured for tbree samples~with a maximum

between-sample variation of 3 %. Measurements were made over a frequency range of

0.02 to 500 rad/s. Results are presented in Fig. 4-1.

The discrete spectrum ofrelaxation times was determined from the oscillatory shear data

by linear regression as described in reference 6. In that technique we specify N values of

Âi distributed around a center time and with a specified distance between times, within the

range of experimental frequencies. The values of G i are then determined by a least

squares procedure, using M sets ofdata:

Eqn.4-3

MINf[(f 1 G. (aJj'Â,i)2

Gi j=l i=1 G' Cmj) 1 1+ (aJp.ti )2



A minimum ofsix modes was necessary to obtain a good fit of the experimental moduli.

We determined two discrete spectra: one for all the experimental data available and one

for a truncated set ofdata where we removed the measurements at the lowest frequencies.

This was done to obtain a smaller longest relaxation time in order to improve the

numerical convergence of the simulations. Both fits are shown in Fig. 4-2. The

parameter sets [Gj , Â.J are presented in Table 4-3.
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Figure 4-1 Dynamic Moduli ofthe LLDPE at ISO°C.

Table 4-3 Discrete Relaxation Spectra for the LLDPE at 150°C

••

AllData Truncated Data
Mode G(pa) À (s) G(pa) Â. (s)

1 2.51 x lOS 1.43 X 10-3 2.38 x 105 2.00 X 10-3

2 2.09 x IDs 1.00 x 10-2 1.77 x 105 1.00 X 10-2

3 6.38 X 104 7.00 X 10-2 6.25 X 104 5.00 X 10-2

4 1.17 X 104 4.90 X 10-1 2.16 X 104 2.50 X 10-1

5 1.11 X 103 3.43 x 10u 2.00 x 10-" 1.25 x 100

6 1.10 X 102 24.0 x 100 8.36 X 102 6.25 x 100
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Figure 4-2 Fits ofthe Discrete Spectra for the LLDPE at 150°C.

4.3.2 Viscosity

Measurements were made at 150°C, and the results were compared with others5 obtained

at 1600
, 200° and 240°C using a master curve at 2aaoe and an activation energy (EJ of

26.1 kI/mol. The Bagley corrections were in reasonable agreement with values obtained

by Kim? using an orifice die (L/D < 0.5) (Figure 4-3). With ail corrections applied

(Bagley and Rabinowitch), the flow curve compared weil with data obtained from the

sliding plate rheometer at the same temperature by Koran? The flow curve is presented

in Fig. 4-4. Fina11y, in Fig. 4-5 the viscosity is plotted along with the complex viscosity,

showing that the empirical Cox-Merz rule (Eqn. 4-4) does not apply for this material at

high shear rates, which is unusual for a linear material.

• Eqn.4-4 (0) = y)
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4.3.3 Tensile Stress Growth Coefficient

Transient elongational experiments were performed at ISO°C for nominal strain rates of

0.01, 0.1 and 1.0 S-I. Using particle tracking and video images of three zones in the

sample, it was possible ta obtain an accurate value of the strain rate. The true strain rates

were found ta be 0.01024, 0.09460 and 1.004 S-l. Even ifwe elimjnate the uncertainty in

the strain rate, an important source of errer that remains is the uncertainty in the force

measurement. According to the instrument manufacturer, this uncertainty is 0.001 N.

The error on the stress can be determined by performing an errer propagation analysis8
•

The stress is calculated by the following equatien:

•
Eqn.4-S



where FCt) is the force as a function of time and A(t) is the cross sectional area as a

function of time. Ac is the cross sectional area of the sample just before the deformation

begins:
•
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( J
2I3

Eqn. 4-(j Ao = HRTWRT ;:

The subscripts RT and TI refer to the room and test temperatures, and H and W are the

initial height and width of the sample. The LLDPE melt density at test temperature

(150°C) is 0.785 glcm3
• Neglecting the uncertainty in the cross-sectional are~ the error

propagation analysis gives:

Eqn.4-7
!::.(jE Mi' 0.001
--=-=--
(jE F F

In Fig. 4-6, we have included the error bars calculated with Eqn. 4-7. We can see that at

low strain rates, the uncertainty in the force leads to a very large uncertainty in the

rheological properties ofinterest.
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Figure 4-6 Transient Elongational Stress for the LLDPE at 150°C.
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4.4 High Density Polyethylene
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4.4.1 Storage and Loss Moduli

The storage (G') and 1055 (G'') moduli were measured on five samp1es, with a maximum

between-sample variation of 4 %. Measurements were made over a frequency range of

0.02 to 500 rad/s. Average values of G' and G" for the five samples are presented in

Figure 4-7. We determined aIso for this material two discrete spectra: one for all the

experimental data available, and one for a truncated set of data, where we removed the

data at the lowest frequencies. Again, a minimum of six modes was necessary to obtain a

good fit of the experimental moduli. Both fits are presented in Fig. 4-8. The parameter

sets [Gj, ÂJ are presented in Table 4-4.
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Figure 4-7 Dynamic Moduli ofthe HDPE at 200°C.
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•

Figure 4-8 Fits of the Discrete Spectra for the HDPE at 200oe.

Table 4-4 Discrete Relaxation Spectra for the HDPE at 2000 e

AllData Truncated Data
Mode G(pa) À (s) G(pa) Â. (s)

1 1.31 X 105 1.43 X 10-3 1.23 X 105 2.00 X 10-3

2 1.09 X 105 1.00 X 10-2 9.29 X 104 1.00 X 10-:l
3 4.81 X 104 7.00 X 10-2 4.21 X 104 5.00 X 10-2

4 1.66 X 104 4.90 X 10-1 2.51 X 104 2.50 X 10-1

5 3.08 X 103 3.43 x 100 3.54 X 103 1.25 x 10°
6 5.98 x 102 24.0 x 100 2.95 X 103 6.25 x 10°

4.4.2 Viscosity and FirstNormai Stress Difference

•
The viscosity of the HDPE was measured using the sliding plate rheometer at 200°C.

Our results were compared with data obtained at DSM using capillary and cone and plate

rheometers at 190°C and shifted to 200°C using an activation energy Ea of 27.6 kJ/mol



which was determined by DSM. Good agreement was found between the three sets of

data (Fig. 4-9). In Fig. 4-10, the viscosity is plotted along with the complex viscosity.

The cone and plate data do not follow the same trend as the measurements in small

amplitude oscillatory f1ow, which is incorrect since both the complex viscosity and the

viscosity should reach the same plateau-value, Tto. If we disregard the cone and plate

data, since it is not possible to evaluate the error involved in these measurements, we

conclude that the empirical Cox-Merz nùe is valid for this material.

•
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The first normal stress difference was aIso measured using the cone and plate rheometer

at 190°C. We present these data, shifted to 200°C, in Fig. 4-11, using the same shift

factor as previously. These data were not used to fit the model parameters.
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Figure 4-9 Flow Curve by Three Rheometers for the HDPE at 200°C.
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We saw in section 4.3.3 (Fig. 4.6) that a large error is present in the stress at low

extensional rates due to the low forces. On the other hand, artificial strain hardening is

often observed at high rates with the RME rheometer for non-strain hardening materials9
•

For the HDPE, we chose a medium. rate and had two replicates done in arder to verify

reproducibility. Three measurements were done at a rate of 0.5 S-I at 200°C. Using

particle tracking and video images of three zones, it was possible ta obtain an accurate

value of the strain rate. The true strain rates were 0.4845, 0.4959 and 0.4946 5-1
• (The

HDPE melt density at test temperature is 0.742g1cm3
). Excellent agreement was found

between the three sets of data (Fig. 4.12). The error bars are smaller than the size of the

symbols.
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• s. Determination ofModeI Parameters

5.1 Linear Low-Density Polyethylene

5.1.1 Viscous Model

The Carreau-Yasuda generalized Newtonian model (Eqn. 5-1) contains four parameters:

the zero-shear viscosity 110' a characteristic time A., and two power-Iaw indexes, m and s.

Eqo.5-1

The zero-shear viscosity was calculated from the discrete spectrum based on aIl the data

presented in Table 4-3, as follows:

Eqo.5-2
N

770 = LGiÂi =19079 Pa.s
i=1

The other three parameters were determined by a least-squares procedure, using M sets of

data:

Ego. 5-3

where T'lmeas represents the experimental viscosity, and 11calc the viscosity calculated using

Eqn. 5-1. The parameters determined for the LLDPE are presented in Table 5-1, and the

corresponding fit ofthe viscosity is shown in Fig. 5-1.

Table 5-1 Carreau-YasudaModel Parameters for the LLDPE at I50a C

•
Parameter Value

110 [pa.s] 19079
A. [s] 0.39

m 0.41
s 0.76
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Figure 5-1 Viscosity Fit ofCarreau-Yasuda Equation for the LLDPE at 150°C.

5.1.2 Leonov Madel Parameters

Specification of both b(ll,I~ in the evolution equation (Eqn. 5-4) and the elastic potential

(Eqn. 5-5) are required in order to use the modified Leonov model1
, which we write as

follows:

Eqn.5-4

Eqn.5-5

•
For polyethylene, Simbambhatla and Leonov1 suggested using a Neo-Hookean elastic

potential (n=JFO in Eqn. 5-5). The procedure recommended by the authors1 for the



choice of b(Il,I,) is as follows. First, perform preliminary calculations for various tlows

using the simple model (b=l). Then, ifthere is disagreement with experimental data, a

functional form of b that brings the calculations into qualitative agreement with the data

can be systematically developed. To model the viscoelastic behavior of various polymers

(LDPE, HDPE, PS, and pm), simple power-Iaw or exponential functions of the

invariants of the Finger tensor with one or two adjustable parameters are usually

sufficient.

•
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We found that the best result for non-strain hardening materials was obtained with an

exponential function ofIv, the first invariant ofthe Finger tensor:

Eqn.5-6

To fit the m parameter, we used the transient elongational data, since this form of the b

function bas very little influence on the prediction of viscosity. The best value of the

parameter was determined using an IMSLlFortran™ subroutine (DUVMIF)2. This

routine is based on a quadratic interpolation method to find the least value of a function

specified by the user. The value obtained was m=0.02. The complete set ofparameters is

presented in Table 5-2.

Table 5-2 Leonov Model Parameters for the LLDPE at 150°C

•

Parameter Value
n 0

J3 0
m 0.02
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5.1.3 Phan-ThienITanner Model Parameters

The PTT mode13
•
4 can be expressed as follows for polymer melts.

68

Eqn.5-7 ;L(Ç ~+ (1- ~) ~J + !:exp( À.& trrJ = 211D2- 2 - - Tl - -

It bas two nonlinear parameters (ç and E) to be determined in addition to the discrete

spectrum. The parameter ç controis the level of shear tbinning in shear flows and E the

extensional behavior. We used the IMSLIFortranTM subroutine described earlier to

determine the parameters. The value of ç was determined by fitting the viscosity curve

and that of E by fitting the transient elongational data. The resulting parameters are

presented in Table 5-3.

Table 5-3 PTT Model Parameters for the LLDPE at ISOCC

5.1.4 Viscosity

Parameter Value
1.79
0.16

•

We already mentioned that the simple and modified Leonov models do not differ in their

shear predictions ifEqn. 5-6 is used, so we show only the results for the modifil"~dmode!.

In Fig. 5-2, we show the fit of the Leonov and PTT models for the viscosity. With one

parameter fitted exclusively to shear data (ç), the PTT model reproduces more

realistically the observed behavior. The Leonov model predicts the Cox-Merz rule,

which is not valid for this material at high shear rates (Chapter 4).
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It was mentioned in Chapter 3 that one ofthe problems with the PTT model when .; =#= 2 is

the presence ofa maximum. in the flow curve, which is physically unrealistics. Crochet et

al.6 showed that it is possible to avoid this problem by using a non-zero viscous

component (11 s=#=O)' This way, the shear stress becomes a strictly increasing function of

the shear rate ifthe viscosity ratio fulfilIs the following condition:

Eqn.5-8

with

Eqn.5-9 lls+1]=1]o

•
However, when a spectrum of relaxation times is used instead of a single mode, this

condition can. be relaxed. The use of a multimode spectrum for polymer melts is always

strongly recommended since a single mode can not fit data properly and leads to

numerical problems.



BeraudoS used a viscosity ratio CTl/TJo) of 1/8 in her simulations, although she used a

spectrum of relaxation times. We verified. the effect ofthat ratio on the prediction of the

viscosity for our material, and the result is presented in Fig. 5-3. We found that this

criterion could not be applied blindly in simulations. Instead, we fitted an additional

parameter, cx., that govems the viscosity ratio based on shear data.
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Eqn.5-10 a = t'Js
t'Jo

We obtained cx.-lO-5 for the LLDPE, which shows that the condition given by Eqn. 5-8

can be ignored when using a spectrum ofrelaxation times. Fig. 5-4 shows the flow curve

with cx.=O, and we can see that there is no maximum in the curve over the range of

experimental data, even without a viscous contribution.
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5.1.5 Tensile Stress Growth Coefficient

In Fig. 5-5, we show the fit of the tensile stress growth coefficient provided by the

Leonov and PTT models. The re~ting curves are very similar for the two models.

Good agreement is obtained for the highest strain rate (1.0 S·I), but at the lowest rates less

strain hardening is predicted than is seen experimentally. However, considering the large

error involved in the measurements at these rates, we suspect that these data are not

reliable.

•
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5.1.6 Prediction ofNonnal Stress Differences

We had no data for the LLDPE to compare with the predicted fust nonnal stress

difference, so we used Laon's7empirical relation for 'Pl:

Eqn.5-11 [ 2]
0.7

Gr "G'
'1'1ct) =2 (J)2 l+lGu )

•

This relationship was verified by Laun7 for low and high-density polyethylenes,

polypropylene and polystyrene. The comparison for NI is presented in Fig. 5-6 for the

Leonov and PIT models. The agreement is good with both models at low and moderate

shear rates, but the Leonov model follows more closely Laun's empirical relation at high

shear rates.
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•
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Figure 5-6 Prediction ofFirst Normal Stress Difference for the LLDPE at IS0aC.

For NzlNh the ratio of the second to first normal stress difference, the Leonov model

predicts a value that varies with shear rate. At low shear rates, N/Nl = -0.25 and

approaches zero at high shear rates (Fig. 5-7). Experimental data for steady simple shear

of a number of materials indicate that N2 is negative and bas a magnitude about lOto

30% that ofNl
s. ForNJNI' PTT gives a constant ratio of-o.l05 accordingto Eqn. 5-12.

Eqn.5-12
N 2 2-~
-=--
NI 2

•
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5.1.7 Prediction ofElongational Viscosity

•

We present in Fig. 5-8 the elongational viscosity predicted by both versions of the

Leonov model and by the PTT model. The modified Leonov and PTT models both

predict a maximum in the elongational viscosity curve, which is more realistic for

polymer melts. We observe that both. models agree over the range of strain rates where

the respective parameters were fitted. However, the predictions differ considerably at

higher elongational rates. The simple Leonov model predicts a plateau value of the

elongational viscosity of six times the zero-shear viscosity at high strain rates. The

inaccurate elongational flow behavior is the main deficiency of the simple model since

linear polymers usually exhibit little strain hardening.
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5.2 High-Density Polyethylene

5.2.1 Viscous Model

Using the procedure described in section 5.1.1, we determined the parameters for the

Carreau-Yasuda equation for the HDPE. The zero-shear viscosity is calculated from the

discrete spectrum. based on ail the data given in Table 4-4. The resulting parameters are

presented in Table 5-4, and the corresponding fit ofthe viscosity is shown in Fig. 5-9. As

discussed previously in Chapter 4, we see a disagreement with the cone and plate data.

Table 5-4 Carreau-Yasuda Model Parameters for the HDPE at 200°C

•
Parameter Value

t'lo [pa.s] 37694
Â. [s] 0.48

m 0.20
s 0.45
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Figure 5-9 Viscosity Fit by Carreau-Yasuela Equation for the HDPE at 200°C.

5.2.2 Leonov Mode! Parameters

The functional form. ofb(Il'1,) given by Eqn. 5-6 was used for the HDPE. The parameters

m, n and J3 (Eqn. 5-5), determined using the IMSL/Fortran™ subroutine, are shown in

Table 5-5.

Table 5-5 Leonov Model Parameters for the HDPE at 200°C

Par~,meter

n
Value

o
o

m 0.3

•



The parameters of the PTT model (Eqn. 5-7) for the HDPE are presented in Table 5-6.

Again, ç was fitted ta the viscosity curve and s ta the transient elongational data.

•
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5.2.3 Phan-Thien/Tanner Madel Parameters
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Table 5-6 PTT Model Parameters for the HDPE at 200°C

5.2.4 Viscosity

Parameter Value
1.82
0.32

•

In Fig. 5-10, we show the fit of the modified Leonov and PIT models for the viscosity.

We see that none of the models reproduce weIl the viscosity at high shear rates.

However, at these high rates, flow instabilities can become important, sa the reliability of

these data points can be questioned. With the PTT model, we had to use a small viscous

contribution to avoid a maximum in the flow curve (Fig. 5-11). We used a.=3.6xl0"4,

which is still much smaller than the recommended value of "/110=1/8. In Fig. 5-12, we

show what the viscosity curve looks like if 0.=1/8 is used. This emphasizes that one

should be careful in using the rule suggested by Crochet et al.6 (Eqn. 5-8) along with. a

spectrum ofrelaxation times.
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Figure 5-12 Viscosity Curve ofPTI Madel with a=1/8 for the HDPE at 200°C.

5.2.5 Tensile Stress Growth Coefficient

In Fig. 5-13, we show the fit of the tensile stress growtb. coefficient. Bath models give

equally good fits, except for data at rate 1, which shows a higher level than the predicted

steady state.

•
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5.2.6 Prediction ofNormal Stress Differences

We had only a few cone and plate data for the :first normal stress difference, 50 we again

used Laun's empirical relation ta verify the predictions. The comparison for NI is

presented in Fig. 5-14. The agreement is good with both models at low and moderate

shear rates, and again for this material, the Leonov model is closer to Laun's empirical

relation at high shear rates. The cane and plate data are in fair agreement with the

predictions, except at the lowest shear rate. This is similar to what is seen in the viscosity

corvee

•
For the ratio of the second to tirst normal stress difference, the Leonov model predicts

N2/N1 = -0.25 at low values of the shear rate. This ratio decreases toward zero with

increasing shear rate (Fig. 5-15). The PTT model gives a constant ratio of-0.09.
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We present in Fig. 5-16 the elongational viscosity predicted by bath versions of the

Leonov model and by the PIT modeL Agaïn, the modified Leonov and PIT models

predict a maximum in the elongational viscosity curve. We see that both models agree

over a range around the strain rate at which the parameters were fitted (0.5 S-I) and at

higher rates. The simple Leonov model always predicts a plateau value of the

elongational viscosity that is six times the zero-shear viscosity at high strain rates.
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Figure 5-16 Prediction ofElongational Viscosity for the HDPE at 200°C.

•
In conclusion, we can say that both viscoelastic models give similar fits and predictions

of the rheological properties. Also, our results showed that for the PTT model the

addition of a viscous contribution to avoid the maximum in the flow curve should be

done with caution.
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• 6. Numerical Method

6.1 Description of the Problem

6.1.1 Four-Field Mixed Formulation

In Chapter 2, we presented the system of equations that must be solved to simulate the

flow of viscoelastic materials. We recall here that for isothermal flows, neglecting

compressibility and body forces, the conservation equations for mass and momentum. can

be written as follows:

Eqn.6-1

Eqn.6-2
Du

p-=+Vp-V·t"=O
Dt =

where p denotes a constant density,p is the pressure, and ~ is the extra stress tensor. For

a Newtonian fluid and neglecting inertia forces, this set of equations constitutes the

"Stokes problem". In the absence of a viscous contribution, and for a multimode

representation, the extra stress tensor is expressed as follows:

Eqn.6-3 LN
1:= 1:.= ;=1 1

where N represents the number ofmodes.

The last equation required to close the above system is the rheological model, which in

our work is the Leonov or the Phan-ThienITanner model:

Eqn.6-4

•
where t'lz-Â,-Gi•



For the Leonov model:
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• Eqn.6...5

Eqn.6-6

For the PIT model:

Eqn.6-7

Eqn.6-8

A(".)=;'.;.=~ 1 1 1
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A modified elastic-viscous stress splitting (EVSS) methodi is introduced to facilitate the

choice of the discretization spaces. This requires the explicit introduction and

discretization ofa tensor variable, ~ which is the gradient ofthe velocity M:

d=Vu

Thus, the rate ofdeformation tensor"DM can he expressed as:

Eqn.6-10

The conservation equation for momentum (Eqn. 6-2) becomes:

•
The parameter a. can take any value, but a.=t'lo has been reported to be an optimal choice1

•
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6.1.2 Free Surface
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In the presence ofa free surface, as in extrudate swell, a pseudo-concentration method is

used2
, requiring the solution ofthe additional equation:

Eqn.6-12
aF
-+u·VF=O
ôt -

where the function F represents the pseudo-concentration that describes the interface

between the polymer and another fluid, in this case air:

Eqn.6-13 {
o inair

F=
1 in the polymermelt

(fluidO)

(fluid 1)

This function specifies the material properties appropriate for each region of the

computational domaine For example, the relaxation time Â. as a function of the pseudo

concentration is defined as follows:

Eqn.6-14

Since air is not viscoelastic, Ào=O, and Eqn. 6-14 simplifies to:

Eqn.6-15 Â(F) =Â.tF

•

AlI the material properties are evaluated using equations similar to Eqn. 6-14.

Preliminary calculations were done using a fictitious tluid instead of air with a viscosity

equal to 10-3 times the polymer viscosity. Later, the viscosity of this fluid was set equal

to zero, using the same value of ex. (Eqn. 6-11) in the entire flow domain, based on melt

properties, without changing the results of the simulations.
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In snmmary, the global system ofequations to solve is shown below.

v·~=o

-vo(2aQ)+Vp-Vo;;=-v{~~+24TJJ

d=V!f
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Eqn.6-16

aF
-+u·VF=Oar -

6.1.3 WeakFormulation

In order ta obtain the weak fonnulation corresponding to this system, each equation is

multiplied by an associated weighting function and integrated- over a domain Q. After

applying the divergence theorem to the Stokes problem, we have the following weighted

residual problem:

Find fup.'t, dl e Vx 0 x k x L such that:

"iIqeO

Eqn.6-17 "iIye V

•



where q, !, Il and Ji{ are suitable weighting functions. The additional equation associated

with the pseudo-concentration bas the following weak formulation:•
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Eqn.6-18 r[aF +u.VF~dx=O
-bat - j- 'tIGeç

•

6.2 Discretization

ûnly triangular elements are considered in this work. In arder ta solve the weighted

residual problem by the finite element method, we need to discretize the variables. This

is a difficult task, since compatibility conditions exist in the four-field Stokes problem for

the discretized variables !!h, Ph' ~ and gp. Their respective discretization must therefore

satisfy a generalization of Brezzi's condition3 (the inf-sup condition) valid for the usual

velocity-pressure formulation of the Stokes problem, presented in Chapter 2. The ch<>sen

discrete subspaces are Vh, Qh' ~ and ~ and the chosen discretization is illustrated in Fig.

6-1. Pt is the quadratic polynomial set deflned on element K, to which a cubic "bubble"

function associated with the centroid node is added, and Plis the discontinuous linear

polynomial set defined on element K. We chose identical discretization spaces for the

variables ~ and g, but it is possible to select another discretization space for g. The

discretized variable Fh is approximated by piecewise linear polynomials, as for~ and ~.

By replacing the spaces V, Q and ~ by their respective subspaces ~, Qh and ~ in the

continuous weighted residual problem (Eqn. 6-17), we obtain the following discrete weak

formulation:
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such that:
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Eqn.6-19

where qh~ ~, tA and J/4 are suitable discretized weighting functions. For the pseudo

concentratio~we have the folIowing additional equation:

Eqn.6-20

We can see that the variable~ is a projection of DŒJ in the discrete subspace ~~ and as

was mentioned in Chapter 2, there is no equality between ~ and Df16t) in the discrete

problem.

•

Figure 6-1 The P2+ - Pl - Pl - Pl elements for variables llh, Ph' ~ and~ (and F.J 4.

We aIso note the similarity between the constitutive equation (Eqn. 6-4) and the pseudo

concentration equation (Eqn. 6-12). Indeed, the upper and lower convected derivatives in

the constitutive equation are defined as follows:
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Eqn.6-21

Eqn.6-22

v a! T
'Z"=-=+u· V,-Vu "-"(V0
= at - = -==

a a'Z"
'Z"=--=-+U·\7T+(V~T ·,+'Z"·\7u
= at - = = = -
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•

Both the constitutive equation and the pseudo-concentration equation are suitable for the

discontinuous Galerkin method, which is described in section 6.3.2.

6.3 Numerical Solution

The global system presented in Eqn. 6-19 and Eqn. 6-20 can be quite large, especially

when a multimode representation of the extra stress tensor is employed. A coupled

approach to solve this problem would require too much memory space, 50 we use instead

a decoupled approach. We solve separately the following sub-systems:

the Stokes problem for fixed~ and~

the constitutive equation for fixed lib

the projection~ = D(y,J for fixed lib.

The coupling of these sub-systems, along with the treatment of nonlinearity, is done

through GNmES (for .... Generalized Minimal Residual "l a Newton-Krylov iterative

solver. When a free surface is present, the discretized pseudo-concentration Fb is updated

for fixed M& outside GMRES, by a fixed-point algorithme In the following sections, we

describe the solution of each decoupled sub-system and the solution of the global four

field system by GMRES.

6.3.1 Stokes Problem

For fixed~ and~, the discretized Stokes problem is as follows:
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Find (UtJh) E V~ such that:
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Eqn.6-23

1bis discrete problem can be represented by the following matrix problem:

Eqn.6-24

We use Uzawa's algorithm6 to solve this system, allowing a reduction in the size of the

global matrix. Furthermore, four degrees of freedom per element, two in velocity and

two in pressure, are removed according to the condensation technique of Fortin and

Fortin7
• The system is finally solved througb. a direct method by aLU factorization.

6.3.2 Discontinuous Galerkin Method

We will only describe the method for the constitutive equation (Eqn. 6-4), but a similar

treatment is applied to the pseudo-concentration (Eqn. 6-12). In the more general time

dependent case, a fully implicit second order Gear scheme is used for the rime derivative.

For stationary problems, like those studied in this work, the time derivative is simply

dropped.

The discrete weighted residual formulation of the constitutive equation is defined as

follows in the traditional Galerkin method:

•
Eqn.6-25



If we decompose this formulation inta elementary sub-systems, we obtain the following

weak formulation on each element K:•
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Eqo.6-26

We use the upper-convected derivative for A~.J to simplify the last formulation, but a

similar treatment can be applied to the Gordon-Schowalter derivative ofEqn. 6-7.

A discontinuous polynomial approximation cP1) for each variable !ï of mode i is used on

each element K. The velocity field Hh is known from the previous iteration. The

discontinuous approximation gives rise to a discontinuity jump at the element interface in

the derivative of~, as illustrated in Fig. 6-2. The convective terro. in Eqn. 6-26

becomes:

where l1K is the unit normal vector to the boundary 8K pointing outside K (Fig. 6-2). The

inflow boundary 8K: with respect to the velocity field is defined as:

Eqo.6-28

1Jr.J is the jump in the variable !i,h and is expressed as:

•

Eqo.6-29



•
Chapter 6. Numerical Method

u

Figure 6-2 Discontinuity lump at the Interface ofTwo Elements8
•

93

When we replace Eqn. 6-27 in the weighted residual formulation of Eqn. 6-26, and

assume that ~.h+ = ~.h' we obtain a new formulation:

Eqn.6-30

This is the discrete fonnulation proposed by Lesaint and Raviart9 • It results in a small

nonlinear system on each element K, which is linearized by a Newton method:

Eqn.6-31

•

However, the resolution of this system requires knowledge of the quantity ~- on

elements adjacent ta BK: so that a particular numbering of the elements is necessary. A

perfect numbering is not always possible. In the presence of recirculation zones, for

example, the best possible numbering is provided and the elements are swept many times

so that the resolution can be seen as a block relaxation (Gauss-Seidel type) method.



ln conclusion, we have to solve for each i mode the nonlinear system given by Eqn. 6-30

of size 9 x 9 for 2D problems and 12 x 12 for axisymmetric problems, on each element.

For the pseudo-eoncentration, we have to solve a 3 x 3 linear system given by the

following equation:

•
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Eqn.6-32

or in matrix forro:

Eqn.6-33

2.3.3 Gradient Tensor ofVelocity

The projection of D(yJ in the discrete subspace ~ can be calculated by considering the

following problem for a fixed !lb:

Eqn.6-34

The projection is achieved on an elementary basis since no continuity is required at the

elements interface for variables ~ and !I!b. Therefore, we have to consider only these

elementary systems:

Eqn.6-35

The last equation can be expressed in matrix form:

Eqn.6-36

•
The small elementary systems are solved by a direct method with aLU factorization.



Following the presentation of the various sub-systems, the global system, composed of

Eqn. 6-19 and Eqn. 6-20 if a free surface is presen~ can now be expressed in the

following way.

•
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6.3.4 Resolution orthe Global System
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Eqn.6-37

Eqn.6-38

B~h =0

A~h +B
T

Ph =C~h'~h)

M K('!:!.K' 'ri J'ri = EK~K) + H K Ti - Ci = 1, N equations)
=K =K =K

OKdK =W~K)

Eqn. 6-37 is a nonlinear system, so we need ta use an iterative method to solve it. A

fixed-point method is not applicable, since it results in a 10ss ofnumerical convergence as

viscoelasticity becomes more important. The Newton method is more suitable for this

problem. It generally applies to problems ofthe form:

Find x such that RCx)=O.

The algorithm. ofthe Newton method is as follows:

1. Given&, an initial guess;

2. Forn~O:

Eqn.6-39

•

where Jn is the Jacobian matrix ofR(K,z) evaluated in&;

3. &+l=Xn+BX;

4. If IlôXll < & and IIR(Kn )11 < &, stop.

Otherwise, go back to step 2.

Our specifie problem can he expressed as follows:
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~~) snch !hatR(u~.!:,d0=O

where R(utvptv 't bJ dJ is given by:

B~h

A~h +B
T

Ph -C~h,dh)

R~h,Ph''f.._h,dh)= ~M ( ) E ( ) H -
~ K M.K' t"i "i - K ~K - K"iK =K =K =K

LOKdK-W~K)
K

(i = 1, N equations)
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The difficuity for this large system is to solve the problem without calculating explicitly

the Jacobian matrix of Eqn. 6-39, which would require too much memory space. To

avoid building this large global matrix at every iteratio~ we use an approximation based

on a finite central difference:

Eqn.6-40 Jd ~ Rex. +h4)-R(K -h4J
- 2h

•

whereX=(utvptv 't hJ dJT and h is small (usuaIly ofthe order of 10-6).

The system to solve is highly nonlinear, and this causes convergence problems. In order

to obtain a better conditioning of the system, we use instead a preconditioned residual

R&.h,Ph'~h'~h) 1.10, defined as îi&.h,Ph'!:h'~h)=(8!bôp,t5r,,5dr, where Ôlb ôp, ô~

and ôg are determined as follows:

1. Solve the following Stokes problem:

Bt5~= -B1l.h

At5~+BT8p =-A1l.h _BTPh +CC!:h'~h)

and obtain a solution corrected in velocity, y =1k + ôy.

2. Solve the constitutive equation by a Newton method for fixed MK, for all K elements:

J K (!!K' "i )5,,; =-MK(!!K't"i )"i +EK&K)+HK"i - +HK5"i-
=K =K =K =K =K =K

(i =1, N equations)



where JI<. is the Jacobian matrix obtained by the linearization due to the Newton

method,~ being fixed. The residual ô~ is made up of all the elementary residuals

ô!K. Note that it is possible ta ignore the last term of the previous equation and to

perform. only one sweep, which accelerates the calculations.

3. Compute the local projections oftensor DC1lJ on all K elements:

0Kt5dK =-OKd K +WU!K)

The residual ô~ is aIso made ofall the elementary residuals ôgI<..

•
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The definition of this new residual R is simply the preconditioning of the residual R with

the inverse of a matrix J, which is a block-diagonal matrix bullt with the respective

Jacobian matrix of the decoupled sub-systems. For the resolution of the coupled system

ofEqn. 6-39, we used the G:MR.ES iterative method. This method has been designed to

solve non-symmetricallinear systems. In the GMRES algorithm, the Jacobian matrix is

only present in matrix-vector products. It is then not necessary to explicitly build the

large global Jacobian matrix. Instead we use the approximation given by Eqn. 6-40,

which reduces considerably the memory space needed.

We tried ta incorporate the calculation of the pseudo-concentration (Eqn. 6-38) in the

GMRES method for the calculation of the free surface, but it caused convergence

problems. Instead, the free surface was updated outside GIvffiES, using a fixed-point

algorithm. for fixed 1J.K. The other variables, solved in G~S, were calculated for a

fixed position of the free surface. More details on the discontinuous Galerkin method

applied to the pseudo-concentration can be found in reference 2.

Finally, for sorne simulations at low Deborah number it was found useful ta do one to

tbree fixed point iterations as a preconditioner to GMRES. However, this caused

convergence problems at high levels of elasticity and had to be avoided for these flow

conditions.
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• 7. Planar Abrupt Contraction Flow offfigh-Density
Polyethylene

7.1 Experimental Methods

7.1.1 Die Geometry

Extrusion experiments were carried out using a slit die with transparent walls made of

PyrexTM. The die is continuously fed by a Kaufinann PK 25 single screw extruder. It

consists ofa large reservoir, in which the pressure and the temperature are measure~ and

a die land, which can be adjusted to vary the local geometry. Details of the die design are

given in reference 1. We used only one configuration consisting of an abrupt 8:1

contraction. The geometry of the slit die is shown in Fig. 7-1, and the dimensions are

given in Table 7-1. With regard to the aspect ratios W/H of the reservoir and channel we

note that these are smaller than the mjnimum value2 of 10 recommended to ensure 2D

flow, especially in the case ofthe reservoir. This issue will be discussed when comparing

data witb. the results of numerical simulations. AIl the experiments were camed out at

200 ± 2°C and at mass flow rates varying between 0.21 and 2.6 kg/h, which correspond

to apparent shear rates in the channel in the range of 4.6 to 56 S-I. The transparent glass

walls permit the use of laser-Doppler velocimetry and the measurement of flow-induced

birefringence.

Flow Direction

w "

•

H

Channel

Reservoir

Figure 7-1 Geometry of the Planar 8:1 Abrupt Contraction.
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• Table 7-1 Geometrical Characteristics ofthe Die
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7.1.2 Laser-Doppler Velocimetry

Due to its high spatial and temporal resolution, laser-Doppler velocimetry (LDV) is a

useful technique for local velocity measurement in translucent fluids, as it does not

disturb the flow. LDV is based on the frequency shift of Iight that is scattered by small

moving particles. The technique is as follows: a measuring volume is created by the

intersection of two light beams of equal intensity, and the frequency of one beam is

shifted with respect to the other. The frequency shift (Doppler shift) of the scattered light

with respect to the reference dual beams is directIy proportional to the velocity of a

moving particle in the fluid passing through the measuring volume. Details of the LDV

method can be found in reference 3.

We used the Flowlite™ dual-beam system of Dantec, controlled by the Flow Velocity

Analyzer™ and operated from a persona! computer with the Burstware™ software (Fig.

7-2). A 10 mW He-Ne laser generates the incident light beam (red light: Â=632.8 nm).

The beam is divided in two by a prism, and one beam has its frequency shifted (40 MHz)

with respect to the other by a Bragg cell. The two beams are transrnitted by optical fibers

to a probe or optical head, where a lens if = 160 mm) focuses the beams into the

measuring volume. The dimensions of this ellipsoidal measuring volume are ôx = ôy =

108 J.1m and ôz = 913 JllD.4 • The scattered light is received by the same probe and

transmitted to the Doppler analyzer, which can perform fast-Fourier transform (FFT)

analysis. The probe is placed on a XY translation table (Dantec Lightweight Traverse)

that is controlled by Burstware™. Displacement along the z-axis is done manual.ly with a

micrometric positioning screw. The x component ofthe velocity eux) was measured at six

fixed x positions (three in the reservoir and three in the channel) as a function ofy. In

Table 7-2 and Fig. 7-3 we present the fixed x positions where the velocity profiles were



measured. Only one halfof the geometry is shown, since it is symmetric with respect to

the y axis.•
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Doppler signal analyzer

He-Ne laser

beam splitter

-.-- .- ~~~~~.:~

~ ~ =- ," '. :., ~;;..4

photomultiplier

Optical Head

Flow

:::::.....:::::.............................
.:: ::..................................................

•

Figure 7-2 Experimental Set-Up ofLOV Measurements.

Table 7-2 Velocimetry Measurements Locations

Position Reservoir Channel
1 -14mm +2.0 mm
2 - 6.5 mm +10mm
3 - 3.0 mm +17mm
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: : : : :
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Figure 7-3 Positions ofthe Velocity Profile Measurements.

7.1.3 Flow-Induced Birefringence

Birefringence occurs in an optically anisotropic material in which there are different

velocities of light for different directions of propagation. Anisotropy is a result of the

material structure and can appear in sorne materials at rest, such as calcite crystals. It can

aIso be induced in materials that are isotropic at rest, for example by flow in polymer

melts or elastic deformation ofsolid polymers. In the last two examples, birefringence is

a result of the difference in polarizability of a polymer chain along its backbone and

perpendicular to it. Polarizability is a measure of the strength of the response of the

electrons in a bond between the atoms of the polymer molecule.

•

The use of birefringence to infer the components of the stress tensor in a flowing or

defonned polymer depends upon the existence and validity of a "stress-optical relatïon"s.

This relation is given by the semi-empirical stress optical law as a proportionality

between the components ofthe refractive index and stress tensors:

Eqn.7-1



where C is the stress optical coefficient. For a flexible polymer, this coefficient is

proportional to the polarizabilities parallel and transverse to the polymer backbone. For a

given polymer, C is essentially independent of the molecular weight and its distribution

and is relatively insensitive to temperatures.

•
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The experimental set-up to measure flow-induced birefringence in polymer melts is

shown in Fig. 7-4. A beam of polarized monochromatic light is directed at the melt

flowing through the transparent slit die and then passes through an analyzer. We used a

diffuse monochromatic light source of sodium (yellow light: Â.=589.8 nm). The optical

anisotropy of the flowing polymer produces an interference pattern consisting of

isochromatic and isoclinic fringes. The measurement of the isoclinic fringes is generally

inaccurate and tedious6
, 50 we added two quarter-waves plates on each side of the die to

obtain only the isochromatic fringe pattern.

analyzer transparent slit die polarizer

diffuse monochromatic light
source (sodium)1t quarter waves

plates
Experimental Set-Up for the Measurement ofFlow-Induced Birefringence.

camera

Figure 7-4

....~ .

•
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7.1.4 Flow Rate-Pressure Curve

104

Extrusion experiments were carried out at twelve flow rates. In Fig. 7-5, we present the

characteristic curve of flow rate vs. pressure for the extruder and die used, using pressure

transducer data. If we neglect the correction for the entrance pressure drop, we can

convert these data to shear rate vs. viscosity by applying the Rabinowitch correction.

These results are presented in Fig. 7-6, along with rheological data, and they are in

agreement with. the viscosity curve measured in the laboratory.

25

• •
•

20 ••••- •-ns 15J:a •-! •~
enen

10e •Q.

•
5

32.50.5 1 1.5 2
Mass Flow Rate {kg/hl

Figure 7-5 Characteristic Curve ofDie-Extruder at 200°C.
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7.2 Numerical Procedure

. 7.2.1 Meshes

Two meshes were used for the 2D simulations in order to verify the mesh independence

of the solutions. Both meshes are composed of triangular elements. One is an

unstructured mesh, while the other is structured. The number of elements for each mesh

is presented in Table 7-3, and the meshes are shawn in Figs. 7-7 and 7-8 in the region

near the contraction. The numerical procedure used was described in Chapter 6.

Table 7-3 Mesh Characteristics for 2D Flow Simulations

•
Mesh Planar 1 Planar 2

Unstructured Structured
Nomber ofElements 1277 2976
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Figure 7-7 Mesh Planar_l.
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•

Figure 7-8 Mesh Planar_2.

7.2.2 Viscoelastic Converged Solutions

Numerical convergence is always limited in viscoelastic simulations of fields that contain

flow singularities. The maximum tlow rate for convergence depends on the mesh, the

longest relaxation time of the discrete spectrum, and the constitutive equation. As the

mesh is more refined near the flow singularity or reentrant corner, convergence becomes

more difficult as in the case of mesh Planar_2. Convergence was aIso more difficult

when using the discrete spectrum based on all data as compared ta the spectrum based on

truncated data (Table 4-4), since the longest relaxation time is longer in the former case

(24.0 sec. vs. 6.25 sec.). We will refer to these spectra as the "full" and "truncated"

spectra. We aIso found that the simple Leonov model gave more convergence problems

than the PIT model, possibly because of stranger nonlinearity in the extra stress. It was



not possible to determine exactly why this occurred. We did not try simulations with the

modified Leonov model, considering the difficulties encountered using the simple mode!.

We present a map of the converged solutions for the various cases (Tables 7-4 and 7-5).

Convergence is expressed in terms of the number of flow rates converged, where the

maximum is twelve (12). Note that for the PIT model, the same nonlinear parameters (ç,

E) were used with the full and the truncated spectra, these parameters giving equal1y good

fits ofthe rheological data.

•
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Table 7-4 Converged Solutions with the PTT Model (max=12)

Spectrum Mesh
Planar 1 Planar 2

Full 6 0
Truncated 12 12

Table 7-5 Converged Solutions with the Simple Leonov Madel (max=12)

* third solution not fuIly converged

Spectrum Mesh
Planar 1 Planar 2

Full 1 0
Truncated 3* 1

. .

7.3 Total Pressure Drop

For each flow rate we compared the predicted total pressure drop with the one indicated

by the pressure transducer in the reservoir. The predicted pressure drop was evaluated as

follows:

Eqn.7-2 t:J'ca!c =Preservoir - PL=20mm

•
where Preservoir is the pressure in the reservoir at the position of the pressure transducer,

and PL=20mm is the pressure in the slit die at L=20mm which corresponds ta the die exit

In Fig. 7-9 the results ofboth viscoelastic models and the viscous model are compared ta

the measured values. Note that only tbree points were obtained with the simple Leonov

mode!. The calculated pressures are slightly overestimated by the viscoelastic models,



while they are underestimated at high shear rates by the viscous model, but in general the

agreement is good. Since the melt is predominantly in shear flow, even the viscous

model can give a good approximation of the total pressure drop. In Fig. 7-10, we

compare the predictions ofthe PIT model with the full and truncated spectra and we see

that they agree very weIl. This shows that there is no advantage in using the full

spectrum, which usually gives more convergence problems. Finally, mesh independence

is demonstrated in Fig. 7-1 L
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7.4 Velocity
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•

The velocity profiles were measured for the three lowest flow rates, and the results are

shown in Figs. 7-12 to 7-17 for the six measurement positions shown in Fig. 7-3 and

Table 7-2. The predicted velocity profiles were computed on mesh Planar_l for all

models using the truncated spectrum for the viscoelastic models. Note that bath

viscoelastic models predict the same velocity profiles.

Where the flow is dominated by shear (position 1 in the reservoir and all three positions

in the channel) all models including the viscous model give good predictions of the

velocity profiles. However, where the extensional component of the flow becomes

important, as we get closer to the contraction (positions 2 and 3 in the reservoir), we start

seeing disagreement between the predictions and the measurements. There is aIso more

dispersion in the experimental results at these positions, since a small difference in tJx or

8y results in a large difference in velocity. The viscous model mas! underestimates the

velocity as the extension becomes more important, but the viscoelastic models are aIso

unable to capture weil the behavior ofthe flow. In Fig. 7-15 the viscous model is seen to

be in better agreement with experimental data where the flow is dominated by shear. It

appears that the flow becomes fully developed faster than predicted by the viscoelastic

models.

Again mesh independence was verified by comparing the results with mesh Planar_2.

This is shown in Fig. 7-18 using the truncated spectrum for the third tlow rate of position

3 in the reservoir. We aIso verified for the same flow conditions that the use of the full

spectrum did not improve the velocity profile predictions (Fig. 7-19).
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•
Figure 7-12 Velocity Profile

(Reservoir, position 1).
Figure 7-13 Velocity Profile

(Reservoir, Position 2).
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Figure 7-15 Velocity Profile
(Channel, Position 1).
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•
Figure 7-18 Mesh Independence

(Reservoir, Position 3).
Figure 7-19 Influence of Spectrum

(Reservoir, Position 3).

7.5 Birefringence

It was mentioned that the use of birefringence data to infer the components of the stress

tensor in a flowing polymer depends upon the validity ofthe stress-optical relation:

•

where C is the stress optical coefficient. In order to compare the experimental

birefringence with the calculated one, we need to know the value of this coefficient. An

approximate value can be obtained by comparing the maximum. values of the fust

principal stress difference ((ui -(2)calc ) calculated by the finite element simulations

with the corresponding maximum birefringence (6max) measured on the axis of symmetry

for all flow rates. The maximum. birefringence (6max) is obtained by fitting a cubic spline

to the data at each flow rate and finding the maximum from the spline (Fig. 7-20). We

obtained. a linear relation between (u} -(2)calcand Llmax (Fig. 7-21), which implies the

validity of the stress-optical relation. By measuring the slope, we can evaluate the stress

optical coefficient. We obtained a value of 1.47 x 10-9 m2/N, which is lower than the

value reported by Beraudo' for a LLDPE (2.1 x 10-9 m2/N) but equal to that reported by

Schoonen8 (C = 1.47 X 10-9 m2/N) for a low-density polyethylene.
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Figure 7..20 Evaluation of Ô max on the Axis ofSymmetry.

We can make two types of comparison between the measured and the calculated

birefringence, one qualitative and the other more quantitative. In the qualitative case, we

look at the entire tlow domain and compare the shapes of the calculated birefringence

fringes and their relative positions with experimental data. In the quantitative case, we

compare the birefringence predicted by the various models with the measured

birefringence on the axis of symmetry. In a 2D planar flow domain, the :first principal

stress difference, which is used to calculate birefringence, is given by the following

equation:

Eqn.7-3

•



Chapter 7. Planar Abrupt Contraction Flow ofHDPE 114

• 45

40
0 PTT pO
0 Leonov

- - C =1.47 X 10-9 m2/N 0935
0/

30 0/
0/......

." -y0 25op

Y)(-K
20ca

E

~O<j

15

/60
10

cD
5 /

/

0.350.300.250.200.150.05 0.10
o~-------------------------_......__...
0.00

Figure 7-21 Calculation ofthe Stress Optical Coefficient.

•

In Figs. 7-22 and 7-23 we present the qualitative comparison on the entire flow domain

for the third apparent shear rate (14.4 S-1), which is the highest rate for which we obtained

a converged solution with the Leonov modeL Fig. 7-22 shows the solution obtained for

the Leonov model, while Fig. 7-23 was obtained for the PTT mode!. Both models

represent well the measured birefringence in terms of the shape and position of the

fringes in the reservoir, but the Leonov model is closer to the data in the channeL In Fig.

7-24 we show the calculated birefringence for the highest apparent shear rate (56.4 S-1)

for the PTT model. Agam, good qualitative agreement is obtained.
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•

Figure 7-22 Comparison ofMeasured and Calculated Birefringence (Leonov Model,
ra =14.45-1

).

Figure 7-23 Comparison ofMeasured and Calculated Birefringence (pTT Model,
ra =14.45-1

).
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Figure 7-24 Comparison ofMeasured and Calculated Birefringence (pIT Madel,
ra = 56.4s-1

).

To evaluate more quantitatively the performance of the models, we compare the

calculated andmeasured birefringence on the axis ofsymmetry. In Figs. 7-25 to 7-27, we

show the results of the three models for the three lowest apparent shear rates. The

Carreau-Yasuda model gives clearly the poorest prediction; the normal stresses relax

immediately, going to zero as soon as the streamlines become paraIlel in the channel.

While the predictions of the velocity profiles were similar for the two viscoelastic

models, they now differ considerably; the Leonov model gives a much better

representation of the experimental birefringence, with. the PIT model relaxing too fast in

the channel, as was seen in the quantitative comparison on the entire flow domaine This

fast relaxation is shown again for the highest apparent shear rate where we compare the

predictions ofthe PTT and Carreau-Yasuda models.
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•

We saw previously that there was no difference in the predictions of the pressure drop ()or

the velocity when using the full spectrum vs. the truncated one. For the birefringence on

the axis of symmetry, there is a small difference in the maximum. birefringence ifwe us~

the full spectrum. (Fig. 7-29). This difference amounts ta 1.2 % at an apparent shear rate

of28.7 S-I. Similarly, there is a small difference in the maximum birefringence between

the predictions with the two meshes (Fig. 7-30) of 2.4 %. What is remarkable with th~

structured mesh is the smoothness of the curve and the absence of oscillations in the

stresses.
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Figure 7-29 Influence ofSpectrum on
Birefringence (fa =28.7s-1

).

Figure 7-30 Influence ofMesh on
Birefringence (ra =47.7 S-I).

7.6 Discussion

In general, the results of simulations of planar abrupt contraction flow are disappointing.

The model giving the most realistic representation of the experimental stresses, the

simple Leonov model, is aIso the one posing the most serious numerical convergence

problems. The predictions of total pressure drop by the viscoelastic models are good, but

so are those of the strictly viscous Carreau-Yasuda modeL The viscous model is aIso

able to give an. excellent prediction of the velocity field when there is no strong

elongational component. However, when this component becomes important, even the

viscoelastic models have difficulty in capturing all aspects ofthe behavior ofthe melt.

•

Noting the rapid change in the flow field near the contraction, we did a sensibility study

in this region to evaluate the efIect of a small error in ~ on the velocity profile. We

looked at the predicted velocity fields assuming the position of the measurement was in

errar by ± 0.5 mm in x at positions 2 and 3 in the reservoir. The results of the study are

shown in Figs. 7-31 and 7-32. Surprisingly, the predicted velocity profiles are DOW in

perfect agreement with the measurements. This shows that results of the simulations in

terms of velocity might he hetter than originally thought, and that a small error in the

measurement position where the f10w is changing rapidly can result in a large error in

velocity.
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Figure 7-31 Influence ofLU on
Velocity Profile (reservoir, position 2).

Figure 7-32 Influence of~ on
Velocity Profile (reservoir, position 3).

It was aIso conc1uded that there is little advantage in working with the full spectrum vs.

the truncated. spectrum.. Of course, there is a limitation on the amount of truncation that

can he done before starting to loose information about the material. Our truneation was

sufficient to facilitate numerical convergence without affecting the predictions of the

variables studied.

The faster relaxation of the stresses in the channel predicted by the PTT model in

comparison with the experiments was aIso observed by Beraud07 and Schoonen8
. It is

bard to say why the model behaves in this way. For one thing, the parameter that

controis elongation, E, was determined from uniaxial elongation experiments, while we

applied it to a flow where the elongation is planar. Furthermore, this parameter was

determined at low extension rates, while this rate can become quite large in the actual

fiow situations. For example, at the highest apparent shear rate (56.4 S-I) the extension

rate on the axis ofsymmetry reaches a value of 8 S-1 near the contraction (x=O), as seen in

Fig. 7-33.

•
Finally, the fact that we had a ratio of WIR < 10 neither in the reservoir nor in the

channel may invalidate the assumption of 2D fiow. This could explain the difference

between the shape of the predicted fringes in the reservoir ("butterfly" shape) and the

experimental ones, which are rounde~.
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• 8. Axisymmetric Entrance Flow and Extrudate Swell of
Linear Low-Density Polyethylene

8.1 Experimental Methods

8.1.1 CapiIIaty Extrusion

Extrusion experiments were carried out in a constant speed, piston-driven capillary

rheometer, as described in section 4.2.2. Circular dies with a 90° tapered entrance angle

of 1.4 mm diameter and three LJD ratios were used (4.75,9.5, 19.0). We aIso included in

the study a longer die (L/D=38.0) for the extrudate swell experiments, in arder to ensure

fully developed flow at the exit. A schematic view of the rheometer is shawn in Fig. 8-1.

In this instrument, the apparent wall shear rate is related ta the flow rate, and the wall

shear stress to the force measured by the load cell. AIl the experiments were carried out

at 150 ± 1°C and at apparent shear rates between 2.22 and 88.8 5-
1
• The quantities

measured are the total pressure drop given by the load cell, the entrance pressure drop,

inferred from a Bagley plot or measured directly for an orifice die (see Fig. 4-3), and the

extrudate swell. The experimental set-up for the extrudate swell measurement is

described in the next section.

8.1.2 Extrudate Swell Measurement

The die swell experiments were aIso performed at ISO°C and apparent shear rates from

2.22 ta 88.8 S-I. The ratio measured is the time-dependent extrudate swell B(!}, defined

as:

Eqn.8-1

•

where De is the capillary diameter and De(f) is the diameter of the extrudate, which is a

funetion of time. In addition to the capillary rheometer, the experimental apparatus to

measure die swell consists ofa thermostating chamber, an opticai detection system and a

data acquisition system. For the accurate measurement of the diameter of a soft, delicate,

hot, and moving abject, a non-contacting sensor must be used. In this work an optical



system was used, consisting of a photodiode array and a 2 mW He-Ne laser beam. This

system was designed by Samara1.•
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Figure 8-1 Capillary Rheometer.

A schematie view of the experimental apparatus is shown in Fig. 8-2. To measure die

swell, the resin is extruded from the die into a thermostating chamber. An expanded and

collimated laser beam is used as a back-light source to cast a shadow of the polymerie

extrudate onto a linear photodiode array. An achromatic lens magnifies this shadow.

The electrical signal from the photodiode array is then processed using a specially

designed circuit. The data logger we used was designed to enable real rime acquisition of

data using a microcomputer.

Two problems can arise during extrusion of polymer directly into air. First, extrusion

into ambient air leads to premature freezing and the development of frozen-in stresses.

Second, if the polymer is extruded into a heated oven, it will sag under its own weight.

The use of an oil-filled thermostating chamber elirninates both of these problems. The



thermostating chamber is composed ofa stainless steel container, an outer com~ent,

and two rectangular stainless steel inner compartments. The inner compartments were

equipped with two quartz windows each to allow the laser beam. to pass through. The

chamber was equipped with two plug-screw 300 watt immersion heaters. A tem..]>erature

controller, operating in conjunction with a thermocouple, was used to control and monitor

the temperature in the inner compartments.

•
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Figure 8-2 Experimental Setup for Extrudate Swell Measurements.

•

The outer compartment was filled with 200 centistokes (cS) silicone oil (200~ Fluid

from Dow Corning). The inner compartments contained a mixture of silicone oils,. mainly

2 cS and 5 cS Dow Coming 200® Fluid. The oils were mixed in proportions found by

trial-and-error to achieve a density slightly lower than that of the meIt at Üe test

temperature. We found that a 52 % - 48 % by volume mixture of 2 cS - 5 cS gave the

best results. Vle aIso determined the small amount of swell due to the oil and sul:>traeted

it from the measured swell. This procedure is discussed in section 8.5.1. Note that the

maximum. temperature to which the ails could be heated was 150°C, which expLains the

selection of the operating temperature for the experiments. A complete descripti<>n of the

experimental apparatus and procedure can be found in reference 1.
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8.2 Numerical Procedure

8.2.1 Meshes

125

Simulations of entrance pressure drop and extrudate swell were performed separately.

The boundary conditions of fully developed flow were used for the extrudate swell

simulation so that it could he decoupled from the flow in the reservoir.

Two meshes were used for the axisymmetric entrance flow simulations in order to verify

mesh inde~ndenceof the solutions. Both meshes are composed of triangular elements

and are unstructured. Several meshes were tested for extrudate swell, but it was possible

to obtain numerical convergence at our test conditions on only one ofthem. This mesh is

aIso unstructured and made of triangular elements. The number of elements for each

mesh is presented in Table 8-1, and the meshes are shown in Figs. 8-3, 8-4 and 8-5.

Table 8-1 Mesh Characteristics for Axisymmetric Flow Simulations

•

Mesh An 1 AD 2 SweU 1
Unstructured Unstructured Unstructured

Number of Elements 1611 3402 1822

Figure 8-3 Mesh Axi 1.
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Figure 8-4 Mesh Axi 2.
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•

Figure 8-5 Mesh Swell_l.

8.2.2 Viscoelastic Converged Solutions

Numerical convergence can be easily summarized for the axisymmetric entrance flow

simulations. The PIT model gave converged solutions for all seven experimental flow

rates, on both meshes and with both the full and truncated spectra shown in Table 4-3.

On the other band, it was impossible to obtain a converged solution with the simple

Leonov model for any ofthese conditions at one ofthe experimental flow rates.

For extrudate swell simulations, a pecuIiar behavior was observed with the simple

Leonov model. As we slowly increased the flow rate from Newtonian behavior to

viscoelastic, the ultimate swell (t~C(») started to decrease from its Newtonian value of 13

%. This behavior is shown in Fig. 8-6 (mesh Swell_l, truncated spectrum). A sunHar

observation bas been reported by Rekers2
. However, we lost convergence at a very low

shear rate, and it was not possible to verify if this trend was continuing at higher shear

rates. We present below a map of the converged solutions for the various cases of

entrance flow and extrudate swell. 1t is expressed in tenns of the number of flow rates

converged, where the maximum is seven.



Spectrum Mesh
Axi 1 Axi 2 Swell 1

Full 7 7 0
Truncated 7 7 1
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• Table 8-2 Converged Solutions with the PIT Model (max=7)
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Table 8-3 Converged Solutions with the Simple Leonov Model (max=7)

•

Spectrum Mesh
Axi 1 Axi 2 Swell 1

Full 0 0 0
Truncated 0 0 0

13.5 ....---------------------------.

- 13 0:::..e 0
~

'Ci)
~
fi)

S 0
ftI
E.-
5 12.5

0

12 ......------------.-------------......
0.0001 0.001 0.01 0.1 1

ApparentShear Rate (1/5)

Figure 8-6 Ultimate Swell Predicted by the Simple Leonov Madel.

8.3 Total Pressure Drop

The numerical results presented here were obtained with the PTT and Carreau-Yasuda

models. We compare the calculated and experimental total pressure drop for an LID of



19.0, since the viscosity was thought to be affected by the pressure with the LID of38.0,

and pressure effects are not included in the finite element modeL The predicted total

pressure drop was evaluated as follows:
•
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Eqn.8-2

In Fig. 8-7, the results of both models are e=ompared to measured values. The calculated

pressures are slightly underestimated at high shear rates, especially by the Carreau

Yasuda model, but in general the agreement is good. Since the melt is predominantly in

shear tlow, even the strictly viscous moder.. can give a good approximation of the total

pressure drop. In Fig. 8-8, we compare the predictions of the PTT model with the full

and the truncated spectra, and we see that they agree very weil. Finally, mesh

independence is demonstrated in Fig. 8-9.

25
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6. PTT {full spectrum, axi_1l
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Apparent Shear Rate (1/5)

100

•
Figure 8-7 Comparison ofPredicted Total Pressure Drop with Experimental VaIues.
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o Measured
~ PTT (full spectrum, axi_1)
o PTT (truncated spectrum, axi_1)
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Figure 8-8 Influence ofDiscrete Spectra on Prediction ofTotal Pressure Drop.

25

o Measured
~ PTT (full spectrum, axL1)
o PTT (full spectrum, axi_2)

5

20

-ca 15a.:e ~

-=- Q

'Ci-0- 10Q.
<1

10010

Apparent Shear Rate (1/s)

OL.. ..... ...

1

Figure 8-9 Mesh Independence on Prediction ofTotal Pressure Drop.•
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8.4 Entrance Pressure Drop
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ln the entrance region the melt undergoes both shear and elongation, 50 we expect to see

a difference between the predictions ofthe viscoelastic and the viscous models. Fig. 8-10

shows the measured values of the entrance pressure drop along with the predictions of

both. models. The predicted entrance pressure drop was evaluated as follows:

Eqn.8-3 M'cale = Presen;oir - PLI R=O-S

•

The Carreau-Yasuda model underestimates the entrance pressure drop, as expected

because of the strong elongational component of the flow. For example, at the highest

apparent shear rate (88.8 S-l) the extension rate on the axis of symmetry reaches a value

of22 S-1 near the contraction (x=O), as seen in Fig. 8-11. The oscillations in Ë after the

contraction are typical of results obtained on unstructured meshes when using the

discontinuous Galerkin method3
• However, the PIT model also underestimates the

entrance pressure drop by about 50%. Earller simt!lations of entrance flow have also

produced entrance pressure drops weil below those observed experimentally4.5.6.7.8. In

Fig. 8-12, we compare the predictions of the PIT model with the full and truncated

spec~ and we see again that they agree weIl. Finally, mesh independence is

demonstrated in Fig. 8-13.
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Figure 8-10 Comparison ofPredicted Entrance Pressure Drop with Experiments.
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Figure 8-12 Influence ofDiscrete Spectrum on Prediction ofEntrance Pressure Drop.
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8.5 Extrudate Swell

8.5.1 Experimental Results
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•

The measurements were made with an L/D of38.0 to ensure fully developed flow at the

die exit. Comparisons with swell data for L/D = 19.0 showed that fully developed flow

was not reached in the shorter die since swell was larger. Fig. 8-14 shows the measured

swell as a function oftime for the seven apparent shear rates.

Utracki et al.9,1
0 have found that Dow Coming 200® fluid silicone oils do not swell

polyethylene if medium viscosity grades (50 cS and 100 cS) are used. However, sorne

interaction between the oil and polymer occurs when low viscosity grades are used with

polyethylene. In the present study, a mixture of low viscosity grades of silicone oil was

used (2 cS and 5 cS) in arder to pravide an ail density slightly lower than the polymer

melt density. The swell due to the oil was measured so that it could be subtracted from

the measured swell using a method similar to that of reference 1. The resin was extruded

directly into air at an. apparent wall shear rate of 13.3 S-I. Cut extrudate strips were

annealed far 30 minutes in an oyen at 150°C in a bath of500 cS silicone ail. We verified

that the high viscosity oil was not absorbed by the polymer by weighing the sample

before and after annealing. The annealed samples were placed in the thermostated

chamber, and extrudate swell was measured at 150°C using the apparatus. It seems

reasonable to assume that after annealing, all the stresses are relaxed and the equilibrium

swell is reached. Consequently, any additional swell would be due ta interaction with the

ail. The oil swell curve is shown at the bottom of Fig. 8-14. This swell was subtracted

from all the extrudate swell measured values. This i<; shawn in Fig. 8-15 for the apparent

shear rate of88.8 5-
1
• In this way the net swell without the effect of oil was obtained. We

assumed that the oil absorption effect was the same at all shear rates.

No data are available at short times for the lowest apparent shear rates in Fig. 8-14. The

method used does not allow an accurate capture of the instantaneous swell that occurs in

the first seconds ofextrusion for these rates, because a significant time is required for the



sample to reach the viewing chamber at these shear rates. Finally, the ultimate net swell,

obtained at long times, is shown in Fig. 8-17 as a function ofapparent shear rate.•
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Figure 8-14 Total Swell and Oil Swell as a Function ofTime.
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Figure 8-15 Net Swell as a Function ofTime after Oil Swell Subtraction.

8.5.2 Comparison with Simulations

•

As was mentioned in section 8.2.2, it was not possible to calculate the viscoelastic swell

for most conditions, although the Newtonian swell (13 %) was e~ily calculated on

severa! meshes. The Leonov mode! was discarded early, fust because of its pathological

prediction of decreasing swell, and second because of numerical conv-ergence problems.

With the PIT mode!, which showed aImost no convergence problems in other situations,

we were able to obtain a converged solution only for the lowest apparent shear rate (2.22

S·I) and only on one mesh. In Fig. 8-16, we show the predicted interface calculated on

mesh Swell_l with the truncated spectrum. The ultimate swell (20 %), shawn in Fig. 8

17 along with experimental values, is aImost half of the measured swell for that flow



condition (37 %). The experimental ultimate swell data is presented in the appendix.

Since we could not obtain a converged solution using the full spectrum, it is not possible

to know at this time if the low calculated swell is related to the use of the truncated

spectrum. As mentioned previously in section 2.4.3, extrudate swell depends stronglyon

molecular weight distribution, Le. on the detailed speetrum.

•
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Figure 8-16 Calculated Interface with PIT Model (truncated spectrum, mesh Swell_l).
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8.6 Discussion
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•

In general, the results of simulations ofaxisymmetric entrance flow and extrudate swell

are disappointing. The performance of the simple Leonov model is much worse than in

the planar case, in terms of numerical convergence problems and the prediction of

decreasing swell. The Leonov model gave realistic predictions for planar contraction

flow (see Chapter 7) but was not useful for axisymmetric extrudate sweli.

The PIT model was much easier ta work with in terms ofnumerical convergence for the

prediction of entrance flow but not for the free surface flow. The predictions of total

pressure drop are good, but so are those of the strictly viscous Carreau-Yasuda model.

Predictions of entrance pressure drop are largely underestimated, even with the

viscoelastic PIT model. We also tried using E=Ü in the simulations, which gives the

strongest strain-hardening behavior in elongation, but this ooly increased the prediction

ofthe entrance pressure drop by 6 %. This poor performance is similar to what is seen in

planar flow for velocity fields with a strong elongational component (section 7.4). At this

time, it is difficult to say why this is 50. There are two possibilities: either the models are

inappropriate, or the parameters determined in simple flows can not reproduce the

features of (;omplex flows. However, the models must aIso be correct for the simple

flows. We also note that the elongation rate in the flow simulated can be much larger

than the range of extension rates for which it was possible to fit the viscoelastic model

parameters.

Beraudo7 suggested that the most appropriate quantity to be compared with the measured

pressure is the rr component of the Cauchy stress tensor, evaIuated at the wall. Using

this suggestion for the orifice die, we have:

Eqn.8-4

M ca/e = -cr,.,. reser1loir + (j ,.,. LI R=O.S = Preser1loir - PL 1R=O.S + Il,,rr

where â ~rr = ~,.,. LIR=O.s - ~rr l'eser1loir



The contribution of the extra stres:s difference, ~'trr, is negative and decreases the

computed entrance pressure drop bF 3-4 %, thus increasing the discrepancy with the

measured values.
•
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Finally, for the free surface predictio:n, the difficulty was not with the calculation of the

free surface position itself but in t:ryiI::J.g to converge the extra stresses for a fixed position

of the interface. We also tried an alternative to the use of the pseudo-concentration,

where the interface is modeled by a ::function h (for height) calculated from the velocity

profile.

Eqn.8-5

•

But this did not facilitate the convergence of the extra stresses and failed to give a

converged solution for any ofour exp<rimental conditions.
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•

In order to optimize the design. ofplastics processing equipment and the processability of

plastics resins other than by trial and error, it is necessary to have a reasonably accurate

model of the process of interest. However, the numerous difficulties involved in

viscoelastic flow simulation have led to the development of alternative approaches that

avoid the explicit modeling of fluid elasticity. These make use of specifie material

functions, particularly viscosity, normal stress differences and elongational viscosity.

Highly simplified constitutive models are used, which are strictly valid only in steady

simple shear or elongational flows and employ empirical equations fitted to experimental

data.

In this chapter, we describe severa! of these simplified approaches and propose the use of

a rule-based expert system as an alternative to full viscoelastic flow simulations.

9.1 Viscometric Flow

The viscometric flow approximation bas been used successfully by Vlachopoulos et

al. 1.2.3.
4

• This is based on the observation that most polymer processing operations

involve flow in channels where there is a main flow direction such that the streamlines

are almost parallel, therefore justifying the treatment of the flow as locally viscometric.

This approach is based on the CriminaJe-Ericksen-Filbey (CEF) equation (Eqn. 2-16) and

requires a minimum amount of experimental information, i.e. the viscosity and normal

stress differences. It takes into account the effect of normal stresses, which is a

manifestation ofviscoelasticity, but avoids explicit reference to the fluid memory.

In the field ofnumerical simulation, one often talks about the "high Weissenberg number

problem". However, this revea1s an error in terminology. The reference should be to the

"high Deborah number problem", the term introduced in Chapter 2. The Weissenberg

number (We) indicates the degree of nonlinearity or anisotropy that is manifested in a



given flow, while the Deborah number (De) indicates the relative importance of

elasticity.•
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Eqo.9-1

Eqo.9-2

We=Â.Y
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•

The Weissenberg number is the product of a charaeteristic relaxation time ofthe material

and a typical strain rate, while the Deborah number is the characteristic relaxation time of

the fluid Âjluid divided by the characteristic time of the flow Â-jlow. The characteristic time

ofthe flow Âflow is a time reflecting the variation ofthe strain history.

The confusion between the two arises from the fact that in many flows of practical

importance they are directly related to each other. The distinction is particularly

important in flow stability analyses, and those working in this field have been very

careful not to confuse the two expressions. For example, Larsons has properly

distinguished between De and We. Moreo~er, McKinley6 has explained in detail how the

!Wo are related in converging flows and has introduced a "scaling factor" that expresses

this relationship quantitatively.

Fully developed flow in a channel of constant cross section, which is a viscometric flow,

is a flow in which De is zero because of constant-stretch history but in which We

increases with the tlow rate. Vlachopoulos et al., among others, have had considerable

success in the modeling of melt flows in which De is small but We can he quite large.

Examples of forming processes simulated using the viscometric flow approach include

extrusion7
, film blowing8

, thermoformini and calenderinglO for polymer melts and

elastomersll . However, we have to keep in mind that the viscometric approach remains

an approximation, which is similar to the lubrication approximation used to simplify the

momentum equation in certain polymer processes, such as injection molding.



GUpta12 bas also adopted a simplified approach, but this time to simulate the

axisymmetric entrance flow of polymers. Generalized Newtonian models, which have

been successfully used in shear-dominated flows, do not provide an accurate simulation

of applications involving an elongational flow, such as flow at the entrance of an

extrusion die. On the other hand, viscoelastic constitutive equations have not produced

simulations that are in good quantitative agreement with experimental data and are

subject to convergence problems at high Deborah number. Gupta has developed software

for the simulation ofaxisymmetric polymerie flow that requires only knowledge of the

viscosity and the strain-rate dependence of the elongational viscosity of the polymer

(which is not easy to measure). According to the author, bis software can accurately

preclict the velocity and pressure field in applications involving a significant elongational

flow component. However, the constitutive equations employed in the software do not

predict nonnaI stresses in shear flow. Apparently, the incorporation of a first normal

stress difference prediction in the software gives convergence problems13, and the

incorporation of a second normal stress difference bas not been tried yet. Viscosity and

elongational viscosity are modeled using the following equations:

•
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9.2 Power-Law Models for Elongational Viscosity
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Eqn.9-3

Eqn.9-4 T'fe = 3"10 for IID ~ IIDt

•

The strain rate for transition from Newtonian to power-Iaw behavior can be different for

the shear and elongational viscosities.

A more elaborate four-parameter model for the elongational viscosity has aIso been used,

but the author bas not revealed its form13. The parameters are determined by inverse

problem solving; for a given shear rate, the viscosity and the entrance pressure drop are

measured, and the parameters ruling the elongational viscosity are found by trial-and

error fitting. GUpta12 reported that the (elongational viscosity)/(shear viscosity) ratio was

important in deterrninjng the recirculating vortex and the extra pressure 10ss in



axisymmetric entrance flow. Obviously, the predictive capabilities and the versatility of

this approach are limited. Two more references, Gotsis and Odriozolal4 and Schunk: and

Scrîven15, explain how elongational viscosity can be incorporated in simulations without

using a viscoelastic constitutive equation.

•
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9.3 Approximate Prediction of Extr~dateSwell

Seriai et al.16 derived a semi empirical equation to predict the extrudate swell of linear

polymers. The model is based on the rubher-like elasticity theory and on the calculation

·of the elongational strain recovery of a Lodge fluid 17,18. The theoretical extrudate swell

ratio mainly depends on the relaxation modulus, the extension ratio, and the recoverable

shear strain. The main advantage ofthis model is that it provides good accuracy for short

dies over a wide range of shear rates, where other available semi-empirical theories

assume fuIly developed tlow in a long die1.9• In extrusion processes, relatively short dies

are generally used, and transient flow dominates. The strain history of the melt is thus of

central importance and can not be neglected.

Bush20 has also ma~e a simplified simulation of extrudate swelI. He models extrudate

swell as the stratified flow oftwo, Newtonian, isothermal fluids with different viscosities.

By suitable selection of the viscosity ratio, the model can take into account

nonisothermal, shear-thinning and elastic effects. The model provides a means of

simulating complex geometriçal effects in profile extrusion without the burden of a full

viscoelastic model and provides a practical aid for die design. The application to three

dimensional flow problems is also feasible using this method.

9.4 Rule-Based Flow Simulations

The simplified approaches described above have been helpful in certain applications,

such as the design of certain types of die, extruders and injection molds. However, the

predic~ve capabilities and versatility of these approaches remain limited. On the other

hand, no practical method has been developed for dealing with viscoe1astic flow



situations in which there is a strong convergence or divergence of streamlines or a

singularity in the boundary conditions.•
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While there is no question that the rheological mode!s used to date in the numerical

simulation of the flow of polymerie liquids are quite inadequate, the computational

problems encountered in viscoelastic flow simulations occur even when the inaccuracy of

the mode! is unlikely to be the cause. _These problems arise under conditions where the

models are thought to be reasonably reliable, i.e., at low De and when slip or fracture is

not anticipated.

Therefore, it is concluded that J:he s~urce of the problem is the viscoelasti.city ofthe fluid,

i.e.,' the dependence of its state of stress on the past history of the deformation. In

particular, the. notorious convergence problems mentioned above do not occur in the

simulation of flow at small De. This concl~sionis strengthened by the observation that it

has not been possible by elaboration or variation of the numerical method used in the

simulation to eliminate the convergence problem. Neither has it been possible ta

eliminate the problem by the use ofmolecular dynamic models ofrheological behavior.

It is very unlikely that any single, closed fonn constitutive equation will ever be

developed that can describe accurately all aspects of the rheological behavior of highly

entangled molten polymers. Furthermore there are phenomena, such as slip and fracture,

that can not be predicted by a continuum mechanics mode! but that must be taken into

account in the modeling ofmany industrial forming operations.

Obviously, a new approach is needed to deal with such tlows. The most likely approach

appears to be a rule-based expert system that is able to select, from a repertoire of

possible models of rheological and slip behavior, the one that is most appropriate in each

region of the tlow field. A major challenge in the development of snch a system is a

method for matching the solutions at the boundaries of neighboring regions. In this last

section, we provide background information on rule-based expert systems and an

overview ofhow such a system might be used in the simulation ofviscoelastic tlows.



Expert systems, based on techniques developed from artificia1 intelligence research, are

currently used in a number of engineering applications, especially in the manufacturing

and process control domains21
• An excellent review of knowledge-based expert systems

for materia1s processing has heen presented by Lu22
.

•
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9.4.1 Fundamentals ofKnowledge-Based Expert Systems
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An expert system can he distmguished from a conventiona1 computer program in terros of

its three basic components22
, which are shawn in Fig. 9-1 and listed be1ow.

1. A knowledge base - which contains domain knowledge such as rules, facts, and other

mformation that may be useful in formulating a solution.

2. An inference engine - whiêh applies proper domain knowledge and controIs the order

and strategies ofproblem solving.

3. A blackboard - which records the interm.ediate hypotheses and resuIts that the expert

system manipulates.

Knowledge-Based Expert Systems

1 Blackboard (data) I~"-----, Control Inference 1

Knowledge Base

•

Conventional Programs

1... D_a_t_a II.-..-----, P_r_o_g_ra_m 1

Figure 9-1 Expert Systems vs. Conventiona1 Programs22
•



A conventional program contains ooly two parts, the program and the data, as shown in

Fig. 9-1, and all the required control and domain knowledge is coded into the program.

that manipulates data in a sequential manner with many conditional branches. During

execution, the status of the problem is represented by the current values of the variables

in the program.

•
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In an expert system, the knowledge base is treated as a separate entity rather than

appearing ooly implicitly as part of the program. It contains facts and mIes that are used

as the basis for decision-making. The knowiedge related to the control of decision

'making is collected in the inference engine, which is physically separate from the

knowledge base. The inference engine has an interpreter that decides how to select and

apply the mIes from the knowledge base to infer new information, and a scheduler that

determines th~ order in which the selected rules should be applied. The blackboard is a

separate entity that serves as a working memory for the system. It can be viewed as a

global database for keeping track of the current problem status and other relevant

information during problem. solving. The separation of the task-level knowledge (stored

in the knowledge base) from the control knowledge (stored in the inference engine), and

the addition of a separate working mem.ory (the blackboard), gives expert systems greater

tleJC'ibility in both the implementation and execution stages, Many applications can

benefit from the use ofsuch a system.

9.4.2 Application ta Viscoelastic Flow Simulations

One way to approach effectively viscoelastic flow simulations is through computational

domain decomposition23. For example, the Schur complement method is based on a

domain decomposition that leads to a decoupling of the system on a sub-domain basis

rather than on a component basis. The advantage of this technique is that all the

unknowns in an element (stress, velocity and pressure) exhibit strong local coupling,

which makes a decoupling on a component basis less attractive23
•



Another strong advantage of this technique is that it enables the use of the most

appropriate rheological model in each region of the flow field or sub-domain. However,

the size and boundaries·of these sub-domains are not known a priori, and they should be

allowed to established themselves according to flow conditions through an automated

process. This is where knowledge-based expert system based on m.1e representation

become attractive. An expert system would be able to select from a bank of rheological

equations the most appropriate model according ta the flow conditions calculated in a

"start-up element" ta get the cycle going22
• The mIes for model selection could be

based, for example, on the examination of the velocity gradient. Two main difficulties

. would have ta be overcome: fust, the matching of the solutions at the boundaries of

neighboring regions, and second the achievement ofconvergence towards a unique model

in each sub-domain, 50 it would not change from one iteration to the nexr4
.

•
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The use of a rule-based expert system would enable many simplifications, such as the

viscometric approach in flow regions far frOID flow singularities or in shear-dominated

zones. More complete calculations would be done only in complex flow zones, allowing

a solution for a small system with a full Newton method, which would facilitate

numerical convergence due ta its larger radius ofconvergence.

Sorne issues have to be explored systematically to develop the expert system. For

example, a procedure to determine the number of modes needed, based on the material

and the nature of flow. This number could also vary depending on the location of the

sub-domain. AIso, a method is needed to determine the best approach for use near a

singularity. Three possibilities are:

1. The use of a Newtonian model to ensure flow convergence, which is the simplest

. approach, but would not be valid for extrudate swell.

2. A boundary layer simplification, similar to the boundary layer theory of cIassical

fluid mechanics. An example of such equations are those derived by Renardy25 for

the PIT and Giesekus models for encI.osed flows, but they have not been tested in

large finite element codes.



3. A coupled macroscopic description of the conservation laws with a kinetic theory of

the polymer dynamics, along with. a full Newton method to allow convergence. This

approach would provide a more realistic description of the flow in these small

regions, but would require more computational resources.

•
Chapter 9. Alternative Approaches 148

•

•

The use of a more realistic description would lead to an improvement of the simplified

approach by adding to our understanding ofmaterial behavio~6.

.9.4.~ Incorporation ofOilier Phenomena

Another advantage of the expert system approach for polymer processing is the

possibility of incorporating other phenomena such as slip or fracture that cau not be

predicted by a continuum mechanics model, but that must be taken into account in the

modeling of many industrial forming operations. Since reliable models of these

phenomena are not yet available, they could be incorporated into the expert system by

means of fuzzy logic27
• Fuzzy logic or possibility theo~ is especially suitable for

complex, ill-defined, nonlinear phenomena, where human experience is superior to

mathematical models28
• Fuzzy logic represents a mathematical way of looking at

vagueness in a form that a computer can deal with. ft might be possible in this way to

model phenomena such as the wall slip and fracture of moiten polymers for which

explicit models are not available. The advantage of this approach is that a fuzzy expert

system is sunilar to a conven~onal rule-based expert system, except that it contains mIes

with ÏInprecise relationships29. Fuzzy-logic could be easily incorporated to the computer

program architecture presented earlier.

The essential elements of a possible rule-based expert system for viscoelastic flow

simulation are presented in Fig. 9-2. The fust calculation might be carried out for a

Newtonian fluid in order to insert a start-up solution in the working memory (DATA) to

get the cycle of"reasoningn (CONTROL) going.



DATA CONTROL

-mesh information -FEMcode

-boundary conditions
, ,

-decision making:

-material parameters -order of actions

-storage of intermediate -establishment of sub-domains
solutions boundaries

-selection of rheological models

KNOWLEDGE -selection of slip and fracture models
(fuzzy logic reasoning)

-rules on order of actions
-selection of boumdary conditions

. -mies on selection of:. , -matching of solutions at boundaries
-sub-domains boundaries

-convergence verification:
-rheological models

-towards single modeI in each zone
-slip models

-numerical convergence
-fracture models

-boundary conditions

-roles on matching of solutions
at boundaries

•
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Figure 9-2 Essential'Elements ofa Possible Rule-Based Expert System for
Viscoelastic Flow Simulation.
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10. Conclusions and Recommendations

10.1 Conclusions

The Iack of success in the simulation of viscoelastic flows in which there is a strong

convergence or divergence ofstreamIines, or a singularity in the boundary conditions, bas

been thought ta arise from the following sources:

- The inadequacy ofthe rheological model for the material.

- The presence ofthe f10w singularity.

- The elasticity, i.e., history dependence, ofthe material.

It is concluded here that the principal source ofthe problem is the elasticity ofthe fluid in

combination with flow singularities. Numerical difficulties are aIso encountered with

Newtonian fluids in the presence offlow singularities, but since they have no memory the

effect ofthe stress overshoot is not carried into the rest of the flow field. Viscoelasticity,

as described by multiple relaxation times, sorne ofwhich may be quite long, renders even

the most aclvanced numerical methods incapable of modeling industriaI flows of melts of

typical molten plastics in which elasticity plays an important raIe.

One ofthe difficulties encountered in this project was the lack offlexibility ta change the

numeric-al aIgorithms in arder ta improve convergence. The amount of work involved ta

change the finite element Fortran code restrained us from trying more powerful (but

costly) solvers like the Newton method. For faster progress in the future, new

programming methods must be developed to eliminate this restriction.

With regard ta the inadequacy of existing rheological models, and in particular the

Leonov and PTT models, it is concluded that:

1. With the best constitutive equation from a rheological point of view (Leonov model),

solutions for situations of practical importance are impossible, even when one of the

most advanced numerical procedure is used. The model aIso gives conflicting results,
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with realistic predictions in planar flow but not in axisymmetric flow. The incorrect

prediction ofdecreasing swell confums the findings ofRekers 1
•

2. Even a mode! that is thought ta be one of the best with regard ta convergence (pIT

model) is very limited in its capability.

1t now seems quite probable that no model expressed solely in terms of continuum

mechanics variables will ever be able ta provide a universal description of the flow

behavior ofpolymeric liquids, and this observation bas given rise ta a relatively new area,

molecular dynamics simulation. However, it bas not been possible up to now ta

elirninate tlie problem ofnumerical convergence by the use ofmolecular dynamic models

even with sorne ofthe most advanced numerical methods.

The major conclusions ofthis work are as follows:

1. The barriers that have arisen in trying ta use numerical methods ta simulate complex

flows ofviscoelastic fluids cannot be e1irnjnated using the constitutive equations and

numerical techniques that have been applied to date.

2. It is likely that even if more realistic rheological models were available, the basic

problem would persist, as it arises from the history dependence of the material. This

history dependence leads ta an intrinsic instability in numerical solutions.

3. An entirely new approach is needed for the modeling of complex flows. This might

be based on a rule-based expert system approach to the problem. By use of such a

technique, one could guide the direction of the computation in the neighborhood of

singularities, thus ensuring convergence. Such an approach could also readily

incorporate models for slip and fracture phenomena.

10.2 Original Contributions to Knowledge

The original contributions ta knowledge resulting from this work are derived from the

objectives presented in Chapter 3:

1. The determination of the limitations in present numerical methods for the simulation

ofthe flow ofviscoelastic materials.



•

•

•

Chapter 10. Conclusions and Recommendations 154---"-----------------------------------.:

2. The con:fi.rmation of the inadequaey of the Leonov model in axisymmetrie extrudate

swell.

3. The establishment of the cause of these limitations, i.e. the history dependence of the

materiaIs.

4. The proposaI that a rule-based expert system shows promise for overcoming existing

limitations.

10.3 Recommendations for Future Work

·Future work should be aimed at developing the new approaeh described in Chapter 9, a

rule-based expert syst~ able to, select, from a repertoire of possible models of

rheologieaI and slip behavior, the one that is most appropriate in each region of the flow

field. The development of an expert system should be the foeus of future work in this

field rather than continuing the futile effort to elaborate a single model that will be

adequate over the entire field ofa complex flow.

The use of a multimode spectrum., truncated or not, for nonlinear viscoelastic models is

strongly recommended since a single mode can not fit data properly and leads ta

numericaI problems.

FinaIly, we need not only more efficient numerical methods but aIso more efficient

programming tools that will I?rovide more flexibility for trying various algorithms. An

example of such a tool is the program MEF++2 (Méthode d'Eléments Finis) wrÏ.tten in the

programming language C++. This code facilitates changes in the mesh, .mesh

adaptativity, solvers, and upwinding methods in order to improve numerical convergence.

1 Rekers G., H Numerical Simulation ofUnsteady Viscoelastic Flow ofPolymers", Ph.D. Thesis,
University of Twente, Twente, The Netherlands (l995)
2 GIREF (Groupe Interdisciplinaire de Recherche en Elements Finis), Université Laval, Québec,
Canada
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APPENDIX: Ultimate Extrudate Swell ofLLDPE at 150°C

Apparent Shear Rate (s-I.) UItimate Extrudate SweD
2.22 1.369 ± 0.019
4.44 1.419 ± 0.018
8.88 1.488 + 0.017
13.3 1.538 ± 0.017
22.2 1.602 ± 0.016
44.4 1.664 ± 0.016
88.8 1.736 ± 0.015
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