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ABSTRACT

Polymer melts exhibit some degree of viscoelasticity in most industrial forming
operations, and elasticity is particularly important in flows involving an abrupt
contraction or expansion in the flow direction. However, the incorporation of a
viscoelastic constitutive equation ¥nto computer models for polymer processing poses
many problems, and for this reason inelastic models have been used almost exclusively to

represent rheological behavior for flow simulation in the plastics industry.

In order to explore the limits of wiscoelastic flow simulations, we used two nonlinear
viscoelastic models (Leonov and Phan-Thien/Tanner) to simulate axisymmetric and
pI;mar contraction flows and extriadate swell. Their predictions were compared with
those obtained using a strictly viscous model (Carreau-Yasuda) and with experimental
results. The models are implemented in a modified Elastic Viscous Split Stress (EVSS)
mixed finite element formulation. The viscoelastic constitutive equations are calculated
using the Lesaint-Raviart method, and the divergence-free Stokes problem is solved
applying Uzawa’s algorithm. The decoupled iterative scheme is used as a preconditioner
for the Generalized Minimal Residual (GMRES) method. Numerical instability was
observed starting at quite low elasticity levels. For the converging flows, the predicted
flow patterns were in fair agreement with experimental results, but there was a large
discrepancy in the entrance pressure drop. In the case of extrudate swell, the agreement
with observation was poor, @d convergence was impossible except at the lowest flow

rate.

After exploring the limits of simulations using viscoelastic models, we conclude that
there are serious barriers to progress in the simulation of viscoelastic flows of industrial
importance. The ultimate source ©f the problem is the melt elasticity, and traditional
numerical methods and rheological models do not provide a suitable basis for simulating
practical flows. A new approach is required, and we propose that a rule-based expert

system be used.
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RESUME

Les polyméres fondus présentent généralement un caractére viscoélastique lors des
procédés de transformation industriels. L’élasticité devient particuliérement importante
dans les géométries comportant une contraction ou une expansion abrupte en direction de
I’écoulement. Toutefois, I’incorporation de lois de comportement viscoélastique pour la
modélisation des procédés de transformation des polymeéres s’avere difficile, et de ce fait
des modeles inélastiques ont presque exclusivement été utilisés lors des simulations

.d’écoulements d’importance industrielle.

Afin d’explorer les limites des simulations d’écoulements viscoélastiques, nous avons
utilisé deux modéles viscoélastiques non lin€aires (Leonov et Phan-Thien/Tanner) afin de
simuler les écoulements dans des contractions plane et axisymmétrique ainsi que le
gonflement d’extrudat. Les prédictions des deux mode¢les ont été comparées a celles
obtenues a ’aide d’un modéle strictement visqueux (Carreau-Yasuda) et a des mesures
expérimentales. Les lois de comportement sont incorporées a une formulation mixte
d’éléments finis de type "Elastic Viscous Split Stress" (EVSS) modifiée. La méthode de
Lesaint-Raviart sert 2 la résolution des mode¢les viscoélastique, et le calcul du probléme
de Stokes est effectué a 1’aide de 1’algorithme d’Uzawa. Une approche découplée basée
sur I’algorithme "Generalized Minimal Residual” (GMRES) est utilisée pour traiter la

non linéarité du probléme.

Lors des simulations, des instabilités numériques ont €té observées a faible niveaux
d’élasticité. Pour les géométries convergentes, les écoulements prédits ont montré un
accord satisfaisant avec les données expérimentales, sauf les pertes de pression en entrée
qui sont largement sous-estimées. Dans le cas du gonflement d’extrudat, la convergence
numérique n’a été possible qu’au plus faible débit et le gonflement prédit est largement

sous-estimé.



Suite a ’exploration des limites des simulations a 1’aide de lois de comportement
viscoélastiques, nous concluons qu’il existe toujours de sérieux obstacles au progreés de la
simulation d’écoulements d’importance industrielle. La source ultime du probléme
réside dans 1’¢lasticité du polymeére fondu, et les méthodes numeériques traditionnelles de
méme que les modéles rhéologiques existants ne comportent pas la solution au succés des
simulations d’écoulements d’intérét pratique. Une nouvelle approche est requise, et nous

suggérons [’'utilisation d’un systéme expert afin de guider I’évolution des calculs

numériques.
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1. Introduction

The broadening of the range of application of plastic parts requires improved final
product quality, in terms of both mechanical properties and exterior appearance.
Standards for product quality have been raised, while increased competitiveness requires
reductions in product development time and unit cost. However, plastic processing
continues to involve long product development cycles, high tooling costs, low process
yields and product inconsistencies. Numerical simulation can reduce the time required to
develop new processes and machines and can aid process optimization by:

1. extrapolation or scale-up of designs,

2. exploration of the effects of individual variables,

3. sensitivity and stability analysis,
all this being achieved at a lower cost than if carried out experimentally.

An important issue in polymer processing is melt rheology, which deals with the
relationship between stress and strain in deformable materials. Polymeric liquids are
rheologically complex, since they exhibit both viscous resistance to deformation and
elasticity. An understanding of their rheological behavior is essential in the development,
production and processing of polymeric materials. However, flow phenomena arising
from viscoelasticity are very complex, and these cause several problems in the
mathematical modeling of certain forming processes. Inelastic models may be adequate
to simulate flows in which shear stresses are predominant, but if elongational effects are

also important, the Vlscoelasuc nature of polymenc materials can not be ignored.

Plastics can be molded, extruded, formed, machined and joined into various shapes. In
several processing operations such as fiber spinning, thermoforming and injection and
blow molding, the polymer undergoes both shear and elongation. Viscoelasticity not
only affects melt flow but also plays a major role in the development of the
microstructure and physical properties of the final plastic part. However, since the
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incorporation of a viscoelastic constitutive equation into a computer model for polymer
processing poses many problems, inelastic models have been used almost exclusively to

represent rheological behavior for flow simulation in the plastics industry.

Moreover, all previous attempts to find a general viscoelastic fluid model applicable to all
classes of flow and capable of realistic predictions have failed. The motivation for this

research was first to determine the limitations™of present methods gnd models for the

—

numerical simulation of the flow of viscoelastic materials.” The second objective was to
establish the cause of these limitations and suggest methods for overcoming them. To
achieve these objectives, two complex ﬂoyvs/were subjected to both numerical simulation
and experimental observation. yd g

/

In the next chapter, the state-of-the-art of numerical simulation of the flow of viscoelastic

——

conﬁlu;i}ge > _equations sele Chapter 4 describes the materials used for the

experimental study and presents their rheological properties, while Chapter 5 gives the
method used to determine the various model parameters. In Chapter 6 we describe the
numerical procedure used in the simulations. Experimental methods and results are
presented in Chapter 7 for the planar abrupt contraction flow, and in Chapter 8 for the
axisymmetric entrance flow and extrudate swell. Chapter 9 presents alternatives to full
viscoelastic simulations and proposes a rule-based system for flow simulation. Finally,
conclusions, original contributions to knowledge and recommendations for future work

are given in Chapter 10.



2. Numerical Simulation of Viscoelastic Flow:
State-of-the-Art

2.1 Constitutive Equations for Polymer Melts

Polymer melts behave very differently from purely viscous materials, because in addition
to viscous resistance to deformation, they exhibit elasticity. The reason why polymeric
liquids are non-Newtonian is related to their molecular structure!. Polymer molecules
can be represented by long chains with many joints allowing relative rotation of adjacent
links, and ‘the presence of this large number of joints allows many different
configurations and makes the molecule flexible. At rest, there will be a unique average
value of the end-to-end distance, R, for the molecules of a given polymer. When the melt
is deformed, this average length is altered, and when the deformation is stopped,
Brownian motion will tend to return R to its equilibrium value. This is the molecular
origin of the elastic and relaxation phenomena that occur in polymeric liquids, which are

said to have a "fading memory".
In this section, we will describe briefly some flow phenomena associated with

viscoelasticity and present several constitutive equations that have been developed for

polymeric fluids.

2.1.1 Viscoelastic Flow Phenomena

A number of phenomena encountered in the flow of polymers cannot be explained on the
basis of purely viscous behavior. We describe a few of these phenomena, and a more

thorough discussion on the subject can be found in references 2, 3 and 4.

Weissenberg Effect

This effect, also called rod climbing, was reported by Weissenberg in 1947°. It is the
tendency of an elastic liquid to rise up around a rotating shaft partially immersed in it.
This is very different from the behavior of a Newtonian fluid, which will flow towards
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the walls due to inertia forces. In the absence of inertial effects, the free surface of a
Newtonian fluid would remain flat. Weissenberg deduced that the phenomenon was
caused by an elastic normal stress acting along the circular streamlines. This normal
stress exists in all shear flows of polymeric liquids except at very low shear rates. Dealy -
and Vu studied rod climbing in molten polymers®. ’ {ig
L /(/ |
Extrudate Swell )
Extrudate swell is defined as the increase in the diameter of a stream as it exits a die. For
a Newtonian fluid at low Reynolds number (Re), axisymmetric extrudate swell at the exit
of a capillary is of the order of 12-13%, and it decreases as Re increases, even becoming
negative. For a viscoelastic liquid, this extrudate swell can be as high as 200-300%. This
phenomenon is related to normal stress differences and increases with increasing flow
rate. Due to the fluid’s memory, the swell depends on the flow at the entrance to the
capillary, but for a sufficiently long capillary, this effect becomes negligible because it is

a "fading memory".

Tubeless Siphon

In 1908, Fano’ reported a remarkable manifestation of fluid elasticity. In an experiment
where he immersed the tip of a capillary tube in a beaker filled with a biological
macromolecular fluid, he began withdrawing liquid from the beaker through the tube.
However, even after the fluid level in the beaker dropped below the tip of the capillary l
tube, the fluid continued to flow upwards to the tip of the no-longer-submerged capillary.
This phenomenon is known as a tubeless siphon and results from the large tensile stress

that the fluid can support due to its elasticity”.

Other flow phenomena such as vortex formation in contraction flows are also related to

the elasticity of polymeric fluids.

Simple Flows

For a Newtonian fluid, the viscosity n is independent of shear rate, but for a polymeric

fluid n decreases with increasing shear rate; i.e. these fluids are “shear thinning”. But
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shear thinning alone does not imply that a fluid is viscoelastic. A stronger indication of
viscoelasticity is the existence of normal stress differences in shearing deformations,

which give rise, for example, to the Weissenberg effect.

Another manifestation of viscoelasticity is stress relaxation. Stresses will persist in these
materials after deformation has ceased, and the duration of the time during which stresses
persist is called the relaxation time of the material. Recoil, the reverse deformation that
occurs when the fluid is suddenly relieved of an externally imposed stress, is another
manifestation of viscoelasticity. A realistic viscoelastic constitutive equation must be

able to predict all the phenomena mentioned above.

2.1.2 Definitions of Tensors and Material Functions

We present here definitions of the tensors and rheological material functions that are used
throughout this thesis. The reader is referred to Dealy and Wissbrun' for a thorough

discussion of these quantities.

Tensors

The strain rate or rate of deformation tensor D is given by:
1 T
Eqn. 2-1 D= E(Vg +(V)T)

where u is the velocity vector.

The extra stress or viscous stress tensor T is defined as follows:
Eqn. 2-2 t=g+pl

where p is the pressure, g is the Cauchy stress tensor and [ is the unit tensor.

Useful measures of strain in polymer rheology are the Cauchy tensor C;(#,%,)and the

Finger tensor Bj;(f,;). The Finger tensor is the inverse of the Cauchy tensor and can
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also be written C,)TI (t;,1,). The first, second and third invariants of the Finger tensor are

defined as follows:

Eqn. 2-5 I, =det(B) =1

Material Functions .
In steady shear, the following material functions (the “viscometric” functions) are defined

Dy =7):

Eqn. 2-6 n(p) =32 (viscosity)

14
Eqn. 2-7 Ny=o,, -0y (first normal stress difference)
Eqn. 2-8 Ny=0, —033 (second normal stress difference)

Sometimes the normal stress coefficients are used:

Egn. 2-9 ¥ = -]—v-% (first normal stress coefficient)
4
Nz -
Eqn. 2-10 Y, =—+ (second normal stress coefficient)
Y

Start-up and cessation of shear flow is denoted by a plus or minus sign, respectively:

T8, 7)

Egn. 2-11 nt(t,y)= (start-up flow)
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T (t,7)

Eqn. 2-12 7 ()= (cessation of flow)

In simple uniaxial elongation, we defined a principal stretching stress og:

Egn. 2-13 Cp =0 —Cyp =0 — 033

The elongational viscosity is defined as follows for steady uniaxial elongational flow:
Equ. 2-14 ne(€) = 5:—

For start-up of elongational flow, we have the tensile stress growth coefficient:

Eqn. 2-15 O el U]

2.1.3 Generalized Newtonian Fluid Models

The first requirement of a constitutive equation to be used for flow simulation is that it

describes adequately the rheological behavior that govern the flow of interest. For certain

restricted flows, there are general constitutive equations that relate the stress tensor to the

deformation history in terms of a few material parameters or functions. For example,

viscometric flows are flows that, from the point of view of a material element, cannot be
distinguished from simple shear”. Although the shear rate may vary from particle to
particle, the deformation history of each fluid element is constant as it flows along a

streamline.

The extra stress tensor for viscometric flows is described by the Criminale-Ericksen-

Filbey (CEF) equation*®. If it is formulated using the upper-convected derivative of the

v
rate of deformation tensor D, it can be written as follows:

v
Eqn. 2-16 r=2nD-¥, D+4¥,D’
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where the viscosity and first and second normal stress coefficients are functions of IIp,

the second invariant of the rate of deformation tensor D:

Eqn. 2-17 I, =2D:D

If one is primarily interested in the shearing component of the stress tensor, assuming that
normal stresses do not affect the pressure gradient, then Eqn. 2-16 can be simplified to:

Eqn. 2-18 T=2n(lp)D

A material that behaves in this manner is called a “generalized Newtonian fluid”.

It is appropriate to use this equation in the conservation of momentum equation to
compute the pressure drop and viscous dissipation in a tube or channel with constant
cross-section. Eqn. 2-18 has the tensorial character of a Newtonian fluid but can exhibit
shear thinning. It is regarded as a purely viscous constitutive equation, since it does not

predict normal stress differences, which are manifestations of elasticity.

A popular form for the viscosity as a function of I7p is the Carreau-Yasuda equation’:

m-1

Eqn. 2-19 I p)=n, (1 + (A1, )72) )

which has Newtonian behavior with viscosity mo at low shear rates and power-law
behavior at high shear rates. Eqn. 2-18 is often used in complex polymeric flows for
which it is not valid for polymeric liquids, but more realistic constitutive equations
almost invariably lead to difficult numerical problems®. This will be discussed in more
detail in section 2.2.1.

2.1.4 Viscoelastic Models

Since the viscometric flow simplification is not always appropriate, a truly viscoelastic
model must often be used. Viscoelastic behavior may be linear or nonlinear. Linear

viscoelastic behavior is observed only when the deformation is very small or slow, and is
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therefore not directly relevant to the behavior of molten polymers in processing
operations where deformations are always large and rapid. Linear viscoelastic behavior
is independent of the kinematics of the deformation and the magnitude of past strains.
These simplifications make possible the addition of the effects of successive
deformations. The Boltzmann superposition principle (Eqn. 2-20) describes well the

linear viscoelastic response of a material to an arbitrary strain history:
t
Eqn. 2-20 (1) =2 [G@—1')D(')dr'

where T is the extra stress tensor, G(#-t) is the relaxation modulus, and D(#’) is the rate of

deformation tensor at time ¢’.

Conversely, in the nonlinear regime the response to an imposed deformation depends on
the size, the rate and the kinematics of the deformation. Therefore, it is not possible to
measure a response in one type of deformation and use the result to predict the response
in another type of deformation, uniess the rate, magnitude and kinematics of the

deformation are all the same in both cases'.

Two approaches have been used to formulate nonlinear viscoelastic constitutive
equations. The first one is based on the derivation of molecular theories for melts and
dilute solutions together with the use of statistical mechanics, but this approach does not
always yield closed form constitutive models. Because of the mathematical complexity
involved, many simplifying assuraptions must be made, and this limits the practical value
of the molecular approach. Examples of such theories include the Rouse model for dilute
solutions!®, and the Doi-Edwards'""'>!* without the independent alignment assumption
and Curtiss-Bird models'®,'® for entangled melts, the last two being based on the reptation

concept.

The second method is an empirical approach based on continuum mechanics concept’.
Complications in building the model arise from the involvement of tensor-valued

quantities and the fact that the response of the material depends on strains imposed at



Chapter 2. Numerical Simulation of Viscoelastic Flow: State-of-the-Art 10

previous times. These complications make it difficult to establish an acceptable form of
nonlinear constitutive equation. Larson’ has presented an exhaustive review of closed

form continuum models.

At the present time, there is no universal theory that describes nonlinear rheological
phenomena. Nevertheless, several models have been used in numerical simulations, and
these are either differential or integral constitutive equations. These are reviewed in the
following sub-sections. Recent numerical approaches called micro-macro formulations
are based on kinetic theories rather than closed form constitutive models!6-17-18:1920-21

These are described in section 2.5.2.

2.14.1 Differential Viscoelastic Models

Many differential models can be written in the following general form:

(It~
)]

+
N
N &
I
N
Q)
)

Eqgn. 2-21

Here, A is a relaxation time and n=AG is a viscosity. The symbol L represents a model-
dependent tensor function, and the operator @ stands for the convected Gordon-

Schowalter derivative?2, which is a combination of the upper V and lower A convected

derivatives:
® v A
Eqn. 2-22 T= s T+ (l - —5—) T
v D
Eqn. 2-23 r="% Vu-z—7-Vu'
A T T
Eqn. 2-24 T=—=+z-Vu+Vu -z

D¢

where D /Dt is the material time derivative and ” indicates the transpose.
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In order to obtain a more realistic representation of the behavior of polymer liquids, Eqn.
2-21 can be modified to include a discrete spectrum of relaxation times A;, where N is the

number of modes:
N
Eqn. 2-25§5 = Z :
=1
®
Eqgn. 2-26 é(ﬁ) T+ /15 =2n.D

The simplest differential model is the upper-convected Maxwell model, with L;=1, E=2
and constant ;. The addition of a Newtonian viscosity 1 yields the Oldroyd-B model.
However, these constitutive equations do not provide a realistic description of polymeric
fluids. More complex models, such as those of Giesekus”, Leonov?** and Phan-
Thien/Tanner” (PTT) have been proposed to give better agreement with data, but
identifying the correct model and the suitable parameters remains a difficult task.

2.14.2 Integral Viscoelastic Models

For the purpose of expressing integral constitutive equations, deformations are measured
relative to the fluid configuration at the present time ¢ Single integral constitutive
equations give the extra stress at a fluid particle as a time integral of the deformation
history, as shown by Eqn. 2-27:

Eqn. 2-27 () = ]m(t—t')i(g)dt’
. _po96e-t) G [==t)
Eqn. 2-28 m(t—1t')= - = ; % exp( 11 J

where we consider a time integral taken along the particle path parameterized by the time
t’. The factor m(t-t’) is the time dependent memory function that incorporates the
concept of fading memory. This means that the deformation experienced by a fluid
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element in the recent past contributes more to the current stress than earlier
deformations®®. Again, the extra stress can be expressed as a sum of individual
contributions (Eqn. 2-25). F is a model-dependent tensor that describes the deformation

of the fluid.

One of the simplest nonlinear integral constitutive equations is the Lodge rubberlike
liquid model”’, in which F=B, where B is the Finger tensor. This model is equivalent to
the upper-convected Maxwell differential model with ¥=1. Other models of the integral
type that have been found to give a better fit to data are of the K-BKZ type?®?. In these
models, the memory function depends on the strain as well as on time. The strain
dependence of the memory function is called the damping function, /(/;,5). In this case,

the memory function is said to be “separable” or factorable:

Eqn. 2-29 Ml -),1,I,|=m(—t)n(l,1,)

One of the K-BKZ model with a particular form of damping function was proposed by
Papanastasiou et al.’ and fitted well experimental data for simple shear and simple
elongational flows.

2.2 Mathematical Treatment of Viscoelastic Flow

2.2.1 Set of Equations to Solve and Inherent Difficulties

The simulation of the flow of viscoelastic materials involves the solution of a set of
coupled partial differential (or integral-differential) equations: conservation of mass,
conservation of momentum and a rheological equation. If the flow is compressible or
non-isothermal, conservation of energy and an equation of state for density are also
required. For simplicity, we assume that the flow is isothermal and incompressible. We
present the governing equations using a one-mode differential viscoelastic model, since

the majority of the numerical methods have been developed for differential models. For
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incompressible, isothermal flows the conservation equations for mass and momentum

are:
Eqn. 2-30 V-u=0
qul.2-31 p%:—Vp-{-V.g.*.i

where p denotes a constant density, p is the pressure, 1 is the extra stress tensor and fis a
body force. For a Newtonian fluid and in the absence of inertia forces, this set of

equations is referred to as the “ Stokes problem ” (Eqn. 2-30 and Eqn. 2-31).

The extra stress tensor is sometimes split into viscous and viscoelastic contributions, for
example in the Oldroyd-B fluid:

N
Eqn. 2-32 7=2n,D+ Z Tve,i
i=1

where ve represents the viscoelastic character, and 1; is a constant viscosity that can be a
solvent viscosity for a polymer solution or a fraction of the zero-shear viscosity for a

polymer melt:

N
Eqn. 2-33 o =15+ 2 10;

i=]

This splitting is often arbitrary but it has a strong stabilizing effect on most numerical
schemes. The last equation is the rheological model, an example of which is the upper-

convected Maxwell model:
\"4
Eqn. 2-34 z+Az-2nD(w) =0
The mathematical type of a system of equations can be described in terms of

characteristics®". Ellipticity is represented by complex characteristics, while
hyperbolicity is represented by real characteristics. Ellipticity and hyperbolicity are the
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mathematical concepts associated with diffusion and propagation. Ellipticity has a
regularizing effect on a singularity while hyperbolicity propagates it. For example, long
distance effects controlled by an elliptic set of equations depend only on averaged
quantities, whereas phenomena controlled by a hyperbolic system of equations, like
shocks or singularities, are transported. The set of equations for a purely viscous fluid is
elliptic, but a viscoelastic constitutive equation like Egn. 2-34 is hyperbolic. The
combination of ellipticity and hyperbolicity complicates the simulation of viscoelastic
flows. For example, the introduction of a geometrical singularity, such as an abrupt
contraction, induces a stress singularity and results in both mathematical and numerical
difficulties, since the rheological equation transports the effect of the singularity and
pollutes the velocity field®!. In the next section, we will look at several numerical
approaches that have been proposed to overcome these difficulties.

2.2.2 Numerical Approaches to Viscoelastic Simulations

The solution of viscoelastic flow problems presents several numerical challenges in the
case of both differential and integral constitutive models. However, certain similarities
exist between the two cases, for example the nonlinear character of the governing
equations brought about by the constitutive equation for the viscoelastic stresses. Many
discretization techniques have been used to solve the conservation and constitutive
equations, and these include finite element, boundary element, finite difference and
spectral methods. The majority of published simulations have been carried out using
finite element methods for both differential and integral constitutive equations. This is
due to the advantages of the finite element methods in discretizing arbitrary geometries

and imposing simply and accurately a variety of complex boundary conditions®2.

If we assume an Eulerian framework, the upper-convected Maxwell model (Eqn. 2-34)

can be expressed as follows:

Eqn. 2-35 }L(-aa—%+g-V£—Vg-£—£-Vng+£—2772(y_)=0
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The convective term Vu-t brings the complication of having to solve a partial

differential equation rather than an ordinary differential equation, as would be the case in
a Lagrangian framework. Two fundamentally different approaches are used to solve the
set of partial differential equations®. In the first approach, a mixed formulation is
adopted, where the velocity, pressure and extra stress are treated as unknowns, and each
of the equations are multiplied independently by a weighting function and transformed
into a weighted residual form>*. In the second approach, the constitutive equation is
transformed into an ordinary differential equation either by using a Lagrangian
formulation for unsteady flows™ or by integration along streamlines. Many integral
‘models cannot be expressed in differential form, so either a Lagrangian or streamline
formulation must be adopted. -Details of these computations have been described by Luo
and Tanner*®, Hulsen and van der Zanden®’, Goublomme et al.*® and Rajagopalan et al. .

“® introduced a control volume approach to solve integral viscoelastic models.

Luo
Recently, Rasmussen*' presented a new technique to solve time-dependent three-
dimensional viscoelastic flow with integral models, based on a Lagrangian kinematic
description of the fluid flow. In this work, we will discuss more thoroughly mixed finite
element formulations designed for differential constitutive equations in an Eulerian

framework.

2.2.3 Boundary Conditions

In order to complete the mathematical description of a viscoelastic flow, appropriate
boundary conditions must be specified. The nature of these boundary conditions is
intimately related to the mathematical nature of the governing equations. In the case of
elliptic systems with complex characteristics, the problem is well-posed for boundary
conditions of the Dirichlet type and for conditions of the Neumann type when the net flux
(Green’s theorem) is zero, while for hyperbolic systems with real characteristics, it is

well-posed for conditions of the Cauchy type on the entrance boundary.

Coupled equations of a mixed elliptic-hyperbolic type have both real and complex

characteristics. To date, there is no complete mathematical theory that guides the
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selection of boundary conditions for the flow of viscoelastic materials***>. The general
approach is to use the same boundary conditions as for purely viscous fluids: no-slip at
solid walls and specification of the velocity components at the entrance and exit of the
flow boundaries. Because of the memory effect, the extra stresses must also be specified
at the inflow boundary to reflect the flow history. In practice, conditions that result from
a fully developed velocity profile are usually applied at the inlet boundary. However, for
extra stress this boundary condition is sometimes as complex as the solution of the flow
itself, because of the lack of analytical solutions for the more complex models. It is then
common practice to specify inlet extra stresses and known kinematics for the upper-
convected Maxwell fluid (Eqn. 2-34). These approximate boundary conditions resultin a
rearrangement of the velocity and stresses at the inflow and outflow, and this
rearrangement is sometimes important enough to restrain numerical convergence in

simulations. It is then highly desirable to improve the quality of the boundary conditions.

In summary, the issue of appropriate boundary conditions for viscoelastic computations is
still an open question*”. The approach adopted may make it possible to proceed
numerically but not be completely supported by either mathematical or experimental
results. For example, it is known that the no-slip boundary condition does not apply in all
situations for polymeric fluids. Also, the imposition of proper boundary conditions at

geometric singularities, such as capillary exit, is still a subject of discussion.

2.3 Algorithm Development

2.3.1 Failure of Traditional Numerical Methods

Numerical analysts have been interested in simulating viscoelastic flows for many years.
As mentioned above, the numerical computation of viscoelastic flows involves strongly
nonlinear, coupled equations of a mixed elliptic-hyperbolic type. The use of
conventional numerical techniques has proven unsuccessful due to a loss of convergence,
even at low levels of melt elasticity. It took almost ten years to identify what is called the
“ high Deborah number problem ”. The Deborah number (De) is a dimensionless group
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that indicates the degree of elasticity of the flow. Classical finite element techniques
based on the application of the Galerkin method to the mixed formulation failed at
relatively low De, and it was unknown at the time if these limits were intrinsically related
to the continuous problem or to inadequate numerical schemes. It is now understood and
accepted that the computational difficulties are numerical in nature and are due to the
hyperbolic nature of the constitutive equations, the existence of stress singularities, and
the method of resolution of the coupled equations. Debbaut and Crochet* were able to
increase the De limit for an abrupt 4:1 contraction by imposing more strongly the
incompressibility constraint. For the same problem Keunings*’ concluded, after a critical
examination of the numerical solutions and an intensive mesh refinement study, that the
limiting values of De were numerical artifacts caused by excessive approximation errors.
From then on, it was suggested®’ that efforts be focused on complex flows with
singularities or boundary layers in order to test algorithms robustness, since strong

gradients have a tendency to increase numerical imprecision.

2.3.2 First Successful Approach

Most of the early work on viscoelastic flow analysis was based on the three-field mixed
finite element formulation***’*®. The momentum, continuity and constitutive equations
are expressed in a weighted residual form, and this leads to an approximation of the
Stokes problem (Eqn. 2-30 and Eqn. 2-31) when applied to a Newtonian flow. For an
Oldroyd-B fluid with one-mode, and neglecting body forces, the equations in the weak
formulation are:

Find (% p, ) € V'x O x § such that:

Eqn. 2-36 (V)T 2nsD+7)-(V-v, p)=0 VveV

Eqn. 2-37 (¢.V-u)=0 VgeQ
v

Eqn. 2-38 (g At+z~ 21]2] =0 Vses§

where s, v and g are weighting functions, and (...,...) is the appropriate inner product.
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In 1987, based on this formulation, Marchal and Crochet*® proposed a new method that
showed good numerical behavior. First, they introduced a new computational element
for the stress components composed of 16 sub-elements (4 x 4), in order to have a
discrete representation of the extra stresses that would satisfy the equivalence
compatibility condition. The polynomial approximations of the three variables need to be
carefully selected with respect to each other to satisfy the so-called generalized inf-sup
(Brezzi-Babuska) compatibility condition®®. When this condition is satisfied, the mixed
formulation including extra stresses provides a convergent approximation for the
different variables. The velocity is approximated by biquadratic polynomials, while the
pressure is bilinear and continuous. Since the approximation for the stress is also
continuous, the inf-sup condition is satisfied by using a sufficient number of interior
nodes in each element, such as the 4 x 4 sub-elements used by Marchal and Crochet*, as

proven later by Fortin and Pierre®'.

Once the compatibility of spatial discretization was settled, Marchal and Crochet*® used
two methods to account for the convective term in the constitutive equation: the
Streamline Upwind Petrov Galerkin (SUPG) method, and the Streamline Upwind (SU)
method:

' v
Eqn. 2-39 SUPG: s+ou-Vs,At+1 — ZnQJ =0
\
_ v
Eqn. 2-40 suU: g,k‘c=+t=—2r]2)+@g-vi,z_z-v;)=0
\

Those are examples of finite element methods in which the weighting functions differ
from the basis functions. In both methods, artificial diffusion is introduced in the flow
direction by the upwind term cx-Vs in order to stabilize the convection-dominated
transport. Over the years, several variations of the parameter o have been proposed, but

are all of the form>>:
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Eqn. 2-41 .
U

where 4 is a characteristic length of the geometry and U a characteristic velocity of the

flow.

The SU method, where the upwind term is applied only to the convective term of the
constitutive equation, showed an increased robustness compared to SUPG, which
produced oscillatory stress fields at steep stress boundary layers or near singularities.
However, the SU formulation is an inconsistent substitution of the exact solution, since
the second term of Eqn. 2-40 remains as a residual, and even if it converges well it is not

always toward the correct solution®> .

The relative success of this approach showed that a combination of compatible
discretization spaces with a discretization technique adapted to the rheological equation
could eliminate the loss of convergence at high De. Unfortunately, the new element was

rapidly shown to be too costly in memory space for practical use.

2.3.3 Economical Storage Techniques

Marchal and Crochet’s element could only be used for single mode simulations,
considering the large memory space needed to solve viscoelastic flow problems, but it
became possible to do multimode calculations when Fortin and Fortin®* introduced their
economical storage technique. Fortin and Fortin® presented a discontinuous Galerkin
(DG) method to handie the constitutive equation, based on ideas of Lesaint and Raviart™.
Upwinding is introduced in this method by the jump of discontinuous variables at the

interfaces of elements:

Eqn. 2-42 GD: [£,22+£-2772J—i Iﬁ:g-g(ﬁ—z""ﬂdl‘:()
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where n is the outward unit normal on the boundary of element e, '™ is the part of

e
element e boundary whereu-n <0, and t™” the extra stress tensor in the neighboring

upwind element™.

The equivalence compatibility condition was also satisfied in their method by the
respective discretizations, but this time the solution was decoupled; velocity, pressure and
extra stresses were not solved simultaneously. By use of the DG technique, the solution
for the stresses did not imply the ‘inversion of large linear systems but only local
calculations on elementary systems. However, the method was found to be insufficiently
robust because of the fixed-point algorithm used to couple the Stokes problem and the
viscoelastic equation. Later, Fortin and Fortin®® used a quasi-Newton iterative solver
(GMRES, for “ Generalized Minimal Residual ") for the solution of the linear system.
This increased the algorithm robustness but did not -achieve the performance of Marchal
and Crochet’s method* due to oscillatory behavior produced by the DG formulation near
singularities. However, the economical storage technique was a major contribution to the
simulation of viscoelastic flows; the only large system to store is the one related to the
Stokes problem, for which a LU factorization is done. The DG method allows the
solution of the constitutive equation on an element by element basis, resulting in very
efficient solvers and greatly reducing the memory space needed to solve flow problems
using differential multimode models. Later, the robustness of GMRES was tested with

more success by Guénette and Fortin®’.

2.3.4 Projection Technique

The major contribution of Rajagopalan et al.’® was the introduction of a fourth field in the
mixed finite element formulation of viscoelastic flow, opening the door to all the
projection techniques that are now used to introduce compatibility of discretized spaces.
Rajagopalan et al. implemented the EVSS method (Elastic Viscous Split Stress) which is
a projection technique based on the splitting of the extra-stress tensor into viscous and

elastic parts as shown in Eqn. 2-43:
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Eqgn. 2-43 E=t-2nD

A change of variable is performed in the momentum and the constitutive equations
yielding a set of equations involving the velocity u, the pressure p and the new variable E.
Moreover, the rate of deformation tensor D is introduced as an additional unknown, d,
leading to a four-field (x.p,£, d) problem. In summary, the EVSS method based on the
four-field formulation can be formulated as follows:

Find (up,E, d) € V'x O x Sx C such that:

Eqn. 244 (V)7 2a15 + m)D@) + £)-(V -2, p) =0 VyeV

Eqn. 2-45 (¢.V-u)=0 VgeQ
v v

Eqn. 2-46 (g AE+E+274 Q(g)) =0 VseS

Eqn. 2-47 (c.d-D=0) veeC

where ¢ is a suitable weighting function.

This method is remarkably stable. However, it requires the convected derivative of the
rate of deformation tensor (in Eqn. 2-46), and the change of variable of Eqn. 2-43 does

not yield a closed expression for all constitutive equations.

These disadvantages were corrected by Guénette and Fortin®’ who recently proposed a
modification of the EVSS formulation, in which the main difference lies in the
introduction of a stabilizing elliptic operator in the discrete version of the momentum

equation:

Eqn. 2-48 ((Vz)r,z(ns +a)D(u)-ad + g)-(V -v,p)=0
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The parameter o is positive and a priori arbitrary, but if properly chosen it improves the
overall convergence of the algorithm. In the discrete approximation (Eqn. 2-48), the
difference in the discretization of the a terms combined with the inf-sup condition has a
stabilization effect on the discretization. Their method is not restricted to a particular
class of constitutive equations and is easier to implement than the original EVSS method.
It was tested in conjunction with the non-consistent (SU) streamline upwind method on
the 4:1 contraction and stick-slip problems. The algorithm seems robust, and no limiting
De number was reached when using the one-mode PTT model for the stick-slip

problem®’.

Recently, Fan et al.>”® introduced another stabilized formulation, based on the
incompressibility residual of the finite element discretization and the SUPG technique.
They claim that the new method has the same level of stability and robustness of the
modified EVSS method®’ and is superior to the EVSS techniquess, since it does not

require the solution of the convected derivative of the rate of deformation tensor.

2.3.5 Influence of Theoretical Work

Fortin and Pierre’’ made a mathematical analysis of the Stokes problem for the three-

field formulation used by Marchal and Crochet®. They confirmed that the success of the

method was dependent, among others, on the compatibility between discretized spaces.

They showed that in the absence of a purely viscous contribution (ns=0) and using a

regular Lagrangian interpolation, three conditions must hold™”.

1. The velocity-pressure interpolation in the Stokes problem must satisfy the Brezzi-
Babuska condition to prevent spurious oscillation phenomena.

2. 'If a discontinuous interpolation of the viscoelastic stress z is used (as in the DG
technique), the space of the strain rate tensor D(u) obtained after differentiation of the
velocity field ¥ must be in the same discretization space as 1.

3. If a continuous interpolation of the extra stress t is used (as in the SUPG or SU
techniques), the number of internal nodes must be larger than the number of nodes on

' the side of the element used for the velocity interpolation.
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The compatibility between discretized spaces also contributes to the success of the four-
field modified EVSS technique®’, as later proven by Fortin et al.%* based on a generalized
theory of mixed problems. . However, the influence of the discretization of the

constitutive equation near a singularity remains unexplained.

2.4 Comparisons with Experiments

With the improved performance of numerical methods for viscoelastic flow simulations,
direct comparison of the numerical results with the experimental data became
“increasingly feasible and necessary. Actual comparison may be based on global flow
features such as die swell or-pressure drop measurements or on local flow kinematics

measured by streakline photography, laser Doppler velocimetry (LDV) or birefringence.

2.4.1 First Comparisons: Boger Fluids

The first comparisons between numerical simulations and experimental data were made
using the upper-convected Maxwell (UCM) and Oldroyd-B models, which can not
capture the full nonlinear behavior of polymer fluids. To narrow the gap between
experimental observation and prediction, the so-called Boger fluids were developed®'.
These elastic fluids are specially prepared solutions of high molecular weight polymers in
viscous solvents and are thought to be nearly free of shear thinning®. They are also
characterized by a first normal stress difference proportional to the square of the shear
rate, a zero second normal stress difference and an elongational viscosity that increases
with elongation rate. Boger fluids are reasonably well described up to high frequency in
dynamic shear experiments by a two-mode version of the UCM equation®>. At low and
moderate frequencies, the faster of these modes can be collapsed into a retardation term,
and a single-mode Oldroyd-B equation is then a sufficient rheological description®.
Experimental elongational data for Boger fluids have compared favorably with numerical
simulations using the Oldroyd-B equation§3. Debbaut et al.**, Luo and Tanner® and
Coates et al.  also tried to reproduce numerically the flow kinematics measured by

streakline photography of a Boger fluid in abrupt 4:1 and 8:1 contractions®’. Most of the
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results were in qualitative but not quantitative agreement with the measurements. Recent
sources of disagreement between experiments and simulaticns appear to indicate that
Boger fluids are not accurately represented by the Oldroyd-B mode! and that improved
agreement is obtained by using a single-mode finitely extensible nonlinear elastic
(FENE-P) dumbbell model'>%8-%°

However, Boger fluids do not reflect the viscoelastic behavior of polymer melts. With
the development of new and more realistic constitutive models, further investigation of
Boger fluids is now of less interest. In the following sections, we present a short review
“on studies that compare experimental data for polymer melts to simulations of complex

flows with more realistic rheological models.

2.4.2 Rheological Models Frequently Used in Simulations

Simulations of flows of molten polymers under typical processing conditions require the
use of suitable rheological constitutive equations. Before looking at complex viscoelastic
flow phenomena like rod-climbing, extrudate swell and vortex formation in contraction
ﬂc.>ws, the constitutive equation must be able to describe the simplest “rheometric” flows,
i.e. flows used to establish rheological parameters. The model should predict shear
thinning, normal stress differences in shear, stress relaxation, recoil and sensitivity to
kinematics. Some of the models that have been proposed for polymers have been
mentioned earlier: these include the Giesekus, Leonov, Phan-Thien/Tanner (PTT) and K-
BKZ models. Their superiority has also been shown in providing numerical solutions for
viscoelastic flows with geometric singularities, such as occur at sharp corners in
contraction or expansion flows. These flows are notoriously difficult to simulate, in

particular for the UCM and Oldroyd-B models.

A significant portion of the work on the numerical analysis of viscoelastic flow of
polymer melts is based on streamline integration methods, employing K-BKZ type
constitutive models and the damping functions proposed by Papanastasiou et al.>* (PSM)
or Wagner”’. The popularity of the PSM damping function arises from the possibility of
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fitting shear and elongational data independently. Of the differential type models, PTT
and Giesekus are the ones most often used, which is surprising considering that the
simple Leonov model gives more realistic values of limiting extensional viscosities than
Giesekus? and contains no nonlinear parameters. The Giesekus model has one parameter
that controls nonlinearity, whereas the PTT model has two. The latter has the ability to
fit shear and extensional properties independently. However it gives spurious oscillations
during start-up of shear flow’'. Therefore, none of the existing constitutive models are

entirely suitable for the simulation of complex flows.

2.4.3 Determination of Model Parameters

It was pointed above that the use of a viscoelastic constitutive equation in simulations
requires the determination of several parameters. Linear viscoelastic data, usually the
storage and loss moduli (G’, G”), which are easy to measure, are used to determine a
discrete relaxation spectrum [G;, A;]. Very long, entangled polymer chains have many
modes of motion and thus of relaxation, and these can not be described in terms of a
single relaxation time. Usually, between five and ten modes are necessary to provide a

good fit of the relaxation modulus'.

However, such a fit may not be adequate for properties that depend in detail on molecular
weight distribution (MWD). For example, the compliance and other manifestations of
melt elasticity, such as normal stress difference and extrudate swell are very sensitive to
MWD!. While the rheological behavior depends strongly on molecular structure,
rheological data have been used to provide information about molecular structure: this
has been called the "inverse problem”. A number of researchers have had significant

72,73,74 by using lineaI

success in the calculation of the viscosity MWD of linear polymers
viscoelastic data. Obviously, important information about the MWD is lost when using a
discrete spectrum of relaxation times, and this might affect the predictions in flow

simulations of phenomena that depend strongly on MWD, i.e. on the spectrum.
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The experimental determination of the nonlinear parameters in the various models is a
more difficult task. Some parameters are related to shear behavior and can be easily
obtained by measuring viscosity, but for parameters related to extensional behavior or
normal stresses, the available experimental data are quite limited. In particular, we lack
reliable data for normal stresses at high shear rates and the response to large, rapid
extensional flows. As a result, important parameters in a viscoelastic constitutive
equation are often determined by fitting the viscosity curve and the few available data for
first normal stress difference in shear or extensional data at low strain rates. Inadequate
parameter evaluation can result in poor predictions if we try to simulate typical
processing conditions, where deformations tend to be complex, large and rapid. In any
event, it appears that no existing model is able to fit the available data for typical

commercial thermoplastics.

In addition, there is no straightforward way to evaluate model parameters for complex
flows where both shear and extensional modes of deformation occur simultaneously, for
example in converging and diverging flows. Nouatin et al.” presented preliminary work
using a numerical procedure to identify rheological parameters of Oldroyd-B and PTT
models by finite element simulation and inverse problem solving. They reported
encouraging results and will carry out future work to identify parameters by use of actual
experimental data.

2.4.4 Planar Abrupt Contraction Flow

Contraction flow has received more attention than any other complex flow. This can be
explained by the simplicity of the geometry and the fact that it has features that arise in
polymer processing. Accelerating flows from a large cross-section via an abrupt or
angular entry into a smaller cross-section, i.e. entry flows, arise in polymer processing
applications such as extrusion and injection molding. Planar contraction flow has also
been chosen as a benchmark problem to evaluate numerical methods and constitutive
equations by comparing numerical predictions with experimental results’®. A detailed

review of comparisons of experiment and simulation for planar abrupt contraction flow
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has been presented by Schoonen’’. In Table 2-1 we summarize numerical simulations of
planar abrupt contraction flows that have been compared with experiments, including the

number of modes used in the calculations.

Table 2-1 Numerical Simulations of Planar Abrupt Contraction Flow

Author(s) Type of Model Number of | Numerical | Material
Model Modes Method
White et al. Differential PTT 1 Penalty FEM PS,
(1988)"87° LDPE
Park et al. Integral K-BKZ 8 Streamline HDPE
(1992)* FEM*
Maders Differential White- 1 Decoupled LLDPE
(1992)% |  Metzer® FEM
Kiriakidis et Integral K-BKZ 8 Streamline LLDPE
al. (1993)% FEM?
Ahmed et al. Integral K-BKZ 8 FEM HDPE,
(1995)% : (Polyflow)* | LDPE
Fiegl and Integral Rivlin- 14 FEM LDPE
Ottinger Sawyers®’
(1996)%¢
Beraudo et al. | Differential PTT 7,8 DG FEM LLDPE,
(1998)% LDPE
Schoonen Differential | PTT, Giesekus 4,8 FEM LDPE
(1998)"7 EVSS DG

FEM: Finite Element Method
DG: Discontinuous Galerkin
EVSS: Elastic Viscous Split Stress

It is obvious from Table 2-1 that the use of integral models makes it possible to use more
relaxation times. This is because in integral models, the contribution from each mode
gets summed up in a single integral, while for differential models the number of

equations to solve for the extra stress is multiplied by the number of modes considered.

Authors of papers frequently fail to mention numerical convergence problems near the
singularities, although White et al.’”®*”® and Schoonen’’ did explain how they
circumvented the problem. The loss of convergence was delayed by White et al.

assuming Newtonian behavior in the elements that were in contact with the re-entrant
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comer, while Schoonen had to use a parameter set for the PTT model that was

inconsistent with uniaxial extensional flow behavior.

Interestingly, two simulations using different constitutive equations for the same material
and same flow gave conflicting results. Comparing their results with the data of
Beauﬁlssg, Maders et al.’! used a one-mode White-Metzner model and reported that the
predicted stresses along the centerline showed a slower decay than the experiments.
Comparing with the same experimental data, the simulations of Kiriakidis et al.®
underestimated the stresses in the downstream channel using a multimode K-BKZ model.

Finally, Ahmed et al.** and Fiegl and 0tl1’nger86 explained some of the discrepancies
between experimental results and simulations in terms of the 2D nature of the simulation
and a 3D component of the experimental flow. Most authors refer to the study of Wales™
who empirically found the effects of confining walls to be negligible for an aspect ratio
exceeding 10 for fully developed shear flow. However, this ratio is mostly used in the
channel (downstream section), whereas quantitative comparisons are also made in the

upstream section where the ratio is rarely larger than 107"

2.4.5 Axisymmetric Abrupt Contraction Flow

Most of the simulations of axisymmetric abrupt contraction flow have been done using
integral models. In Table 2-2, we present a summary of numerical simulations of this

flow that were compared with experimental results.

When comparison was made with experimental entrance pressure drop in these studies,
poor agreement with the simulations was obtained. Fiegl and Ottinger’! reported
reasonable quantitative agreement in terms of vortex growth, but computed values of the
entrance pressure loss were underestimated. Barakos and Mitsoulis®® also reported the
underestimation of entrance pressure loss, measured by Meissner’, by their finite

element simulations.
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Table 2-2 Numerical Simulations of Axisymmetric Abrupt Contraction Flow
Author(s) ~Type of Model Number of| Numerical | Material
| _Model _ Modes Method
Dupont and Integral K-BKZ 8 Streamline LDPE
Crochet FEM
(1988)*
Luo and Integral K-BKZ 8 Streamline LDPE
Mitsoulis FEM>®
(1990)°
Hulsen and Differential Giesekus 8 Streamline LDPE
van der FEM
Zanden
(1991)*7
Fiegl and Integral Rivlin- 9 FEM LDPE
Ottinger Sawyers
(1994)*
Barakos and Integral K-BKZ 8 Streamline LDPE
Mitsoulis FEM*
(1995)°2
Luo (1996)™ Integral K-BKZ 8 Control LDPE
volume
SIMPLE

"FEM: Finite Element Method

SIMPLE: Semi-Implicit Method for Pressure Linked Equations

2.4.6 Axisymmetric Converging Flow

The prediction of entrance pressure.loss in converging axisymmetric flow has been the

subject of several recent studies using both integral and differential models. These are

summarized in Table 2-3.

Most studies report that numerical predictions of entrance pressure drop were

substantially underestimated when compared to experimental data. Mitsoulis et al.%¢

claimed that the entrance pressure loss was insensitive to extensional rheology.

Beraudo®’ and Fiegl and Ottinger®! tried to explain these discrepancies. According to the

authors, the experimental values include die exit effects, and the degree to which these

effects contribute to the experimentally determined entrance pressure loss is unknown.
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However, exit pressure drop is known to be very small®® and would not compensate for

the large difference between experimental and predicted entrance pressure drop.

Table 2-3 Numerical Simulations of Axisymmetric Converging Flow
Author(s) Type of Model Number of | Numerical | Material
Model Modes Method
Beraudo Differential PTT 7 DG FEM LLDPE
(1995)°7
Guillet et al. Integral Wagner " 7,8 Stream-tube | LLDPE,
(1996)” mapping . | LDPE
Hatzikiriakos Integral K-BKZ 6 Streamline LLDPE
and Mitsoulis FEM
(1996)'°! 1
Mitsoulis et al. Integral, K-BKZ, 6,8 Streamline LLDPE
(1998)* differential, |  PTT, FEM,
viscous Carreau'” EVSS-SUPG

FEM: Finite Element Method

DG: Discontinuous Galerkin

EVSS: Elastic Viscous Split Stress

SUPG: Streamline Upwind Petrov Galerkin

2.4.7 Extrudate Swell

24.7.1 Annular Swell

Many attempts have been made to simulate extrudate swell. In Table 2-4, we present a
summary of simulations of annular extrudate swell that were compared with experimental
data. Two independent swell ratios are required to describe annular swell: the diameter
swell and the thickness swell.
annular extrudate swell measurements (Luo and Mitsoulis
the experimental data of Orbey and Dealy105 for three HDPE melts.

Two studies comparing numerical simulations with

103 104

and Tanoue et al.™") used

Convergence problems were reported for the tapered geometries by Luo and Mitsoulis'®?

Some of the results presented were not fully converged
103

and Garcia-Rejon et al.'%.

), and computations failed to converge for diverging
106y,

solutions (Luo and Mitsoulis

angles beyond +30° and for converging angles beyond -30° (Garcia-Rejon et al.




Chapter 2. Numerical Simulation of Viscoelastic Flow: State-of-the-Art 31
Table 2-4 Numerical Simulations of Annular Extrudate Swell
Author(s) Type of Model Number of | Numerical | Material
Model Modes Method
Luo and Integral K-BKZ 8 Streamline | HDPE |
Mitsoulis FEM®®
(1989)'%
Garcia-Rejon Integral K-BKZ 6 FEM HDPE
etal. (1995)'% (Polyflow)*
Otsuki et al. Integral K-BKZ 6 Streamline HDPE
(199717 FEM
Tanoue et al. Differential Giesekus 1 Under HDPE
(1998)!% relaxation
mixed FEM

FEM: Finite Element Method

For the straight annular die, results from Luo and Mitsoulis'® showed reasonable
agreement of prediction and experiment for the diameter swell, but the thickness swell
was not close to the experimental data. Garcia-Rejon!® et al. reported opposite results:
predictions of thickness swell were in reasonably good agreement with experimental data,

but the agreement was poor for diameter swell.

Tanoue et al.'® reported deviations as high as 34 % between simulation and experiment.
According to the authors, the use of a discrete specttum of relaxation times would

improve the predictions.

2472 Capillary Swell

Axisymmetric swell was also the subject of numerous studies. Table 2-5 presents

numerical simulations of axisymmetric extrudate swell that were compared with

experimental results.

Again, most of the studies were done using integral models. Many studies used the data
of Meissner’® to compare with their simulations. The temperature was kept constant in
these swell experiments by extruding into silicone oil at 150°C. The comparisons

between simulations and measured values for a long and a short die are presented in
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Tables 2-6 and 2-7. Model parameters were fitted to shear and elongational rheological

data. The number of modes used in the simulations is given in Table 2-5.

Table 2-5 Numerical Simulations of Axisymmetric Extrudate Swell
Author(s) Type of Model Number of | Numerical | Material
Model Modes Method
Luo and Integral K-BKZ 8 Streamline LDPE
Tanner FEM?S
(19 8 6) 108
Bushwg Differential Leonov 7 BEM LDPE
(1989)
Goublomme Integral K-BKZ 6 FEM HDPE
and Crochet
(1992)*
Goublomme Integral Wagner 6 FEM HDPE
and Crochet
(1993)!"°
Barakos and Integral K-BKZ 8 Streamline LDPE
Mitsoulis FEM?®
(1995)%
Sun et al. Integral K-BKZ 8 Streamline LDPE
(1996)'!! FEM
Beraudo 3}; al. | Differential PTT 7 DG FEM LLDPE
(1998)

FEM: Finite Element Method

BEM: Boundary Element Method

DG: Discontinuous Galerkin

In general, moderate agreement is obtained for the low and medium apparent shear rates,

while swell is largely overestimated at the highest shear rate.

predictions differ considérably from one study to another.

We also see that

Comparing with their own measurements, Beraudo et al. % reported good agreement for a

long die but poor agreement for a short die. The computation largely underpredicted the

experimental value for the short die, and the underestimation was larger at high shear

rates. It is worth mentioning that in their swell experiments, the polymer was extruded

directly into air’’, thus involving sagging due to gravity and non-isothermal effects that

could result in an underestimation of the ultimate swell.
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Finally, Goublomme and Crochet’®!' simulated the extrudate swell of an HDPE melt
that had been measured by Koopmans''2. Extrusion was into a silicone oil bath at 190°C.
Inclusion of a converging upstream conical section in the simulation to match the
experimental set-up resulted in a very high calculated swelling ratio (~ 9 calculated vs.
2.38-2.61 measured)38. With a different Wagner damping function modified to give a
non-zero second normal stress difference, quantitative agreement with experimental
results was obtained. However, the required ratio of second to first normal stress

difference (N2/N; = -0.3)''? was larger than typical reported values.

In conclusion, the simulation of extrudate swell has produced contradictory results,
underestimating or overestimating swell, usually differing considerably from measured

values.

Table 2-6 Comparisons between Predicted and Measured Extrudate Swell (long die)

Reference Model Swell (0.1s™) | Swell (1.0s™) | Swell (10.0s™)
Luo and K-BKZ 31% 51% 82 %
Tanner'%®
Barakos and K-BKZ 30% 69 % 84 %
Mitsoulis®? *
Sun''" ** K-BKZ 30% 62 % 94 %
Bush®™ *** Leonov 37% 33% 77 %
Meissner - **** | Experiments 34 % 52% 56 %
* Mesh M2
**  Mesh M3

*** Special form of Leonov model, results taken from figure
***x Extrapolated values for an infinite long die

Table 2-7 Comparisons between Predicted and Measured Extrudate Swell (orifice)

Reference Model Swell (0.1s™) | Swell (1.0s™) | Swell (10.0s™)
Barakos and K-BKZ 54 % 133 % 195 %
Mitsoulis® *

Sun ' ** K-BKZ 49 % 163 % 223 %

Meis_sner” Experiments 58 % 125% 195 %

* Mesh M2

** Mesh M3
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2.4.8 Other Complex Flows

We provide here a brief summary of other complex polymer flows such as planar flow -
around a cylinder and cross-slot flow. The planar flow around a cylinder has been
proposed as a benchmark problem for numerical techniques''?, but it has received only
limited attention up to now. This flow is of interest because along the centerline, a
material element undergoes various types of deformation: it will be compressed when
approaching the cylinder, then sheared along the cylinder’s surface and finally stretched
in the wake of the cylinder. In cross-slot flow, or planar stagnation, two liquids impinge
to create a steady extensional deformation. At the stagnation point a material element
-expe'riences a very large extensional strain rate, which will produce a high level of

orientation.

Table 2-8 presents recent numerical simulations of planar flow around a cylinder where

predictions were compared with experiments.

Table 2-8 Numerical Simulations of Planar Flow around a Cylinder
Author(s) Type of Model Number of | Numerical | Material
Model Modes Method
Hartt and Differential, PTT, 1 (PTT), FEM LLDPE,
Baird integral Rivlin- 7 (RS) (Polyflow)®® LDPE
(1996)'"* Sawyers
Baaijens et al. | Differential PTT, 4,8 FEM LDPE
199N Giesekus EVSS DG
Schoonen Differential PTT, 4,8 FEM LDPE
(1998)"’ Giesekus EVSS DG

FEM: Finite Element Method
EVSS: Elastic Viscous Split Stress
DG: Discontinuous Galerkin

Baaijens et al.!"® tested two differential constitutive equations, PTT and Giesekus, with
model parameters fitted to shear data including viscosity and first normal stress
difference. For the PTT model, no unique set of parameters could be identified without
the use of elongational data. Three parameter sets were tried, all giﬁng equally good fits

of the shear data. However, comparison with experimentally obtained birefringence
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patterns revealed that neither of the models could predict quantitatively the observed
stress patterns. These results were consistent with those reported by Hartt and Baird'!*
for the same flow of polyethylene melts.

Schoonen’’ did an experimental/numerical study of an LDPE melt in both planar flow
around a cylinder and cross-slot flow. He compared the predictions of the multimode
Giesekus and PTT models with velocities measured using particle tracking velocimetry
and stresses measured by fieldwise flow induced birefringence. Where the PTT model
gave better agreement than the Giesekus model with both velocity and stress data in
planar abrupt contraction flow (section 2.4.4), the Giesekus model performed better for
the cylinder and cross-slot flow. The PTT model, which described rheological properties
best, gave convergence problems. Schoonen had to use a parameter set for the PTT
model that was consistent with shear data but not uniaxial extensional behavior in order

to obtain numerical convergence.

2.5 Conclusions

Major difficulties persist in the simulation of polymer flows, both on the experimental

and the numerical side, and these are summarized below.

2.5.1 Limitations of Numerical Simulations of Viscoelastic Flows

Over the past decade, significant progress has been made in the numerical and
experimental analysis of viscoelastic flows. Within the category of numerical mixed
methods, the modified EVSS technique first introduced by Guénette and F ortin’’, appears
to provide the most robust formulation currently available. To achieve accurate results,
the modified EVSS method should be combined with an upwind scheme like the SUPG
formulation or the discontinuous Galerkin (Lesaint-Raviart) method.

However, despite the improved performance of numerical methods for viscoelastic flow

simulations, serious convergence problems remain. For flow geometries with a
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singularity, such as sharp comers for enclosed flows and discontinuities in boundary
conditions for free-surface flows, a numerical breakdown occurs above a modest
elasticity level or De number. Simulations of these flows are still limited, in general, to
low Deborah numbers, i.e., either to low flow rates or materials with short relaxation

times.

Apart from purely numerical issues, such as convergence problems, the predictive
capability of any numerical analysis is only as good as the input data; i.e., the constitutive
model, material parameters and boundary conditions. Attempts to find a general
viscoelastic fluid model that would be applicable to all classes of flow problems and be
able to give reliable results have so far failed. If good success is obtained in comparison
with experimental data for a particular class of flow problem, poor agreement is usually
observed with another class of flows. Even when convergence is possible, confrontation
with experimental results increasingly reveals the inability of existing constitutive
equations to predict the complicated stress fields of industrial forming operations. This
holds in particular for flow regions with strong elongational components. At the present
time, it is not clear if the poor agreement between simulations and experiments is due to
the inadequacy of the models or to the poor evaluation of the model parameters. We
lack, in particular, reliable data for normal stresses at high shear rates and response to
large, rapid extensional flows to fit the model parameters. And as was mentioned
previously, there is no straightforward way to evaluate model parameters for complex
flows where both shear and extensional modes of deformation are occurring

simultaneously, for example in converging and diverging flows.

2.5.2 Kinetic Theory Models: A Promising Approach?

A relatively recent approach that does not require closed form constitutive models is the
so-called micro-macro formulation based on kinetic theories'®?!. Hua and Schieber'®
recently presented calculations of viscoelastic flow through fibrous media using kinetic
theory models and a combined finite element and Brownian dynamics technique.

Comparisons were made using the same numerical technique with analogous models that
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lead to closed-form constitutive equations, specifically the FENE-P dumbbell, which is
an approximate FENE model, and the Doi-Edwards reptation model with and without the
independent alignment assumption. They reported significant quantitative differences
between the predictions of the approximate and the more realistic models. For example,
the FENE-P dumbbell underestimated the magnitude of the normal stress by as much as
25% compared to FENE model, and reptation with independent alignment
underestimated it by 22% compared to the more realistic reptation model. The use of
kinetic theory models improves considerably the quality of the prediction, but although
no constitutive equation is solved explicitly, problems still arise that prevent convergence
of the flow field at high De number. According to Hua and Schieber'$, a way to avoid
the numerical instability problem might be the use of more accurate finite element
methods, such as the modified EVSS formulation or a higher order technique''. Using
their current method, they had to modify the momentum equation by adding a relaxation

parameter to make the equation more elliptic in order to obtain numerical convergence.

It seems that using more realistic constitutive equations such as kinetic theory models
does not eliminate numerical convergence problems while requiring much larger

computational resources.
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3. Plan of the Research

3.1 Objectives

The objectives of this work were as follows:
1. To determine the limitations of present methods for the numerical simulation of the
flow of viscoelastic materials.

2. To establish the cause of the limitations and suggest methods for overcoming them.

In order to achieve these objectives, we carried out viscoelastic flow simulations using a
numerical procedure described in Chapter 6. For these simulations, we used two
differential viscoelastic constitutive equations and compared their predictions with those

of a strictly viscous model. The models selected are presented in the next section.

We also conducted an experimental study of two complex flows: a planar abrupt 8:1
contraction flow and an axisymmetric entrance flow and extrudate swell. The materials

used for these experiments are described in Chapter 4.

3.2 Models Selected for this Research

3.2.1 Carreau-Yasuda Model

In order to appreciate the added value of using a viscoelastic constitutive equation in flow
simulations, we carried out calculations using a strictly viscous model. We chose the
Carreau-Yasuda' model, a generalized Newtonian model that describes fairly well the
shear dependence of the viscosity of polymer melts. This model was previously

introduced in Chapter 2:
Eqn. 3-1a () =1, (1D

where
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m=1

Eqn. 3-1b 77[[[0 (t)] =1, (1 + (2;{2110 (t))% )T

The scalar viscosity is a function of ZIp, the second invariant of the rate of deformation
tensor. As stated before, normal stress differences in shear and transient stresses in start-

up flows are not predicted by this purely viscous model.

Four parameters must be specified in order to use the model: the zero-shear viscosity (1),
which can be estimated using the discrete relaxation spectrum, a characteristic time (A), a
power-law index (m), which is related to the slope of the viscosity curve at high shear
rates, and a second power-law index (s), which controls the transition between the plateau
and the power-law regions. The Carreau-Yasuda model parameters for the two materials

studied are presented in sections 5.1.1 and 5.2.1.

3.2.2 Leonov Model

The first viscoelastic constitutive equation we selected is a modified Leonov model’.
This model was initially chosen because it is the only one that satisfies basic stability
criteria’, Hadamard (thermodynamic) and dissipative stability criteria, while describing
well the material functions usually measured’. The original model proposed by
Leonov*®, which is derived from irreversible thermodynamic principles, is an extension
of the theory of rubber elasticity to viscoelastic liquids. The simple Leonov model,
which uses only the parameters of the discretized linear viscoelastic spectrum, has been
found to provide a good representation of data for shear flows and to be easy to use’.
However, it provided a poor fit to extensional flow data. Recently, a new formulation of
the general class of differential constitutive equations proposed by Leonov was
presented”. This latest version eliminates some of the recognized deficiencies of the
original "simple” model by adding only one or two nonlinear parameters. This
modification makes possible a fairly accurate description of simple flows for polymers
such as low and high density polyethylenes (LDPE and HDPE), polystyrene (PS) and
polyisobutylene (PIB)’.
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For the sake of simplicity, we present here the modified Leonov model for a single
relaxation time and an incompressible fluid. However, the model can easily be extended
to cover the multimode case and compressibility. Derivation of the compressible case for
the simple model is presented in references 7, 8 and 9. A multimode incompressible

version was used in our simulations.

The evolution equations for the Finger tensor B;; and the associated dissipation function D

are*:
v
Eqgn. 3-2 Bi+2By » €4, = 0
Eqgn. 3-3 D =tr(z; - €, (tr(e,»jp) =0)
v
Here, B ; is the upper-convected time derivative of the Finger tensor, e o= (B ) is the

irreversible strain rate tensor, and t; is the extra stress tensor. For incompressible liquids,

the invariants of the Finger tensor are as follows:

I trC,J,

Eqn. 34 I, =B,

y’

I; =detB; =1.

The irreversible rate of deformation tensor, €, > has the following general form:

Eqn. 3-5 ey, = 4’;[3 -B,+ (12311)5y]

Here & is the unit tensor, A is the relaxation time in the linear Maxwell limit, and
b=b(l,,I,) can be thought of as a deformation-history-dependent scaling factor for the
linear relaxation times and is an adjustable parameter. The simplest choice is to let =1,
which is known as the standard Leonov model. It is sufficient that 5(I,,I,) be positive for
the dissipation function to be positive definite, which is required by the Second Law of
thermodynamics. The form of the evolution equation (Eqn. 3-2) becomes:
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L

I,
Eqn. 3-6 21B, +b(1,,12)[3k3,g +B, (——g—l 5,,]:0

In order to relate the extra stress tensor to the elastic Finger tensor during the deformation
history, a functional form for the elastic potential W(I,, I,, T)=p, f must be provided.
Here, p, is the density, and fis the specific Helmholtz free energy. The following general
elastic potential has been suggested’:

v -2ta-al (&) 1] (2)" -]

where G is the linear Hookean elastic modulus, and § and n are numerical parameters.
Eqn. 3-7 yields the Mooney potential for n=0, and the neo-Hookean potential for n=3=0,
which is the case for HDPE and PS®. A constitutive equation with 4=1 and the neo-
Hookean potential (n=B=0) gives back the simple Leonov model in its original form.

Finally, the extra stress tensor can be written in the Finger form as:

Eqn. 3-8 % —2[B,J N _pAY ) Gs,
a, 28}

The functional form of the b function is determined from extensional flow data, and we
present in sections 5.1.2 and 5.2.2 the results for our LLDPE and HDPE. We also
compare the predictions of the modified Leonov model with those obtained using the

simple model.

3.2.3 Phan-Thien Tanner Model

Calculations using the simple Leonov model in numerical flow simulations indicated
serious convergence problems. While a major effort was directed at achieving
satisfactory simulations, it was found that the use of this equation exacerbated the
convergence problems of the numerical analysis and made it impossible to obtain

solutions for most cases.
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In order to achieve the objectives of the research, therefore, a second viscoelastic
constitutive equation was selected for use. A differential model was chosen so that the
existing numerical code could be used. The Phan-Thien/Tanner model'*"' (Eqn. 3-9) bad
shown itself to behave well in numerical simulations, although it did not give as good a
fit of measurable material functions. Fortin' reported having successful results in terms
of numerical convergence with that model. However, even this equation gave

convergence problems, as will be seen in Chapter 8.

Like the Leonov model, the PTT model does not predict a separable relaxation modulus,
although it is derived from network theory. Separability refers to the possibility of
separating time and strain effects in the nonlinear relaxation modulus, as discussed in
section 2.1.4 (Eqn. 2-29).

The PTT model is expressed as follows:

Egn. 3-9 ’12"‘ Y (tr E)ﬁ =2nD

where @ stands for the convected Gordon-Schowalter derivative’, which is a

combination of the upper V and lower A convected derivatives:

® v a
Eqn. 3-10 T =§r+ (l - é] T

where £=2 represents the upper-convected derivative
&=0, the lower-convected derivative

&=1, it is the corotional derivative.

Phan-Thien and Tanner suggested two possibilities for the function ¥ (tr _g):

Eqn. 3-11 Yre)=1+ %ng
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Eqn. 3-12 ¥ltrz)=exp [—f]f trg)
\

With either choice, the PTT model has two nonlinear parameters (§ and €) to be
determined for each material in addition to the discrete spectrum. Nonlinear shear and
extensional data are needed to determine the nonlinear parameters of the model. The
parameter £ controls the level of shear thinning, while € has little influence on shear
properties and serves mainly to blunt the extensional singularity that would otherwise be

present™'%1!,

Larson® pointed out that there are disadvantages to using the Gordon-Schowalter
derivative for melts. These disadvantages are inherited by the PTT model if & # 2.
Primary among these are unphysical oscillations in the shear stress and first normal stress
during start-up of steady shear at large shear rates. Other problems have also been
reported when & = 2; for example a maximum in the flow curve, which is physically
unrealistic®, and the violation of Lodge-Meissner relationship®. Using & = 2 avoids these
problems, but then the model predicts N,=0, which is also unrealistic. Despite these

problems, the PTT model is known to give a moderate to good fit° of shear and

extensional rheological properties of polymer melts using Eqn. 3-12 for Y(trg) and of

polymer solutions with Eqn. 3-11. Egn. 3-12 is suitable for polymer melts, since the
exponential term results in a maximum in the steady-state elongational viscosity and is
thus in better agreement with experimental data. The linear equation for ¥ (Eqn. 3-11)
predicts a plateau value of the elongational viscosity at high strain rates, which is more
suitable for polymer solutions. The PTT model parameters we used for our materials are

presented in sections 5.1.3 and 5.2.3.
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4. Rheological Characterization

4.1 Materials Used

In the original research plan, a single polymer was to be studied in two types of complex
flow. This was intended to make possible the performance evaluation of the constitutive
equations of interest in different flow situations. However, the linear low-density
polyethylene (LLDPE) that was studied in the axisymmetric extrudate swell experiments
proved to be unstable in the extruder used for the planar abrupt contraction flow. It was
not possible to obtain a steady flow rate, and it was necessary to use another material for
these experiments, a high-density polyethylene (HDPE). The LLDPE was Dowlex™
(Dow Chemical Company) 2049A, which is a commercial high stability copolymer made
using a Ziegler-Natta catalyst. It is used primarily in packaging and is processed by
extrusion and film blowing. The HDPE X1010 was an experimental DSM material
polymerized using a catalyst different from the one used to make DSM commercial blow
molding resins and sold as Stamylan™ HD. Some characteristics of the two resins are

presented in Table 4-1.

Table 4-1 Experimental Materials

Resin Density Melt Index Molecular Weight Polydispersity
(g/cm’) (g/10 min.) (M,) (g/mol) M./M,)
LLDPE 0.926 1.0* 119 600 3.82
HDPE 0.957 1.15 ** 195 000 35.0
* 2.16 kg, 190°C (ASTM D1238, Method E)
*+ Test IS

4.2 Experimental Methods

4.2.1 Small Amplitude Oscillatory Shear

The experiment most widely used to determine the linear viscoelastic properties of

polymer melts is small amplitude oscillatory shear. The storage and loss moduli were
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measured using a Rheometrics Dynamic Analyzer II (RDA II), a controlled strain
rheometer. The instrument was operated in a parallel plate configuration (plate
diameter=25 mm), under a nitrogen atmosphere to prevent thermal degradation. Thermal
stability tests were performed to ensure that the resins did not degrade under test
conditions, and strain sweeps were performed to verify that the measurements were
within the linear viscoelastic regime at all frequencies. The nominal frequency range of
the RDA II is from 0.001 to 500 rad/s, but the useful frequency range is resin dependent

and must be determined experimentally.

The molding

temperature and pressure cycle was optimized to produce homogeneous samples without

Samples for dynamic measurements were compression molded.

residual stresses or voids and to minimize thermal degradation. The samples were
prepared at 180°C according to the sequence of times and applied pressures presented in
Table 4.2.

Table 4-2 Compression Molding Procedure at 180°C
Cycle melting | compression | compression | compression | Cooling *
Pressure (MPa) 0 1.2 24 3.6 3.6
Time (min.) 5 5 5 5 ~10

* pressure released when T <40°C

4.2.2 Steady Shear

Capililary Rheometer

The viscosity of the LLDPE was measured on an Instron, piston-driven, constant speed
capillary rheometer. In this instrument, the apparent wall shear rate is calculated from the
piston speed, and the wall shear stress is calculated from the force measured by the load
cell. Accurate control of the temperature in the barrel (£1°C) is achieved through three
independent heating zones with PID controllers and J-type thermocouples'. Circular dies
of 1.4 mm diameter and L/D ratios of 4.75, 9.5 and 19.0 were used to obtain accurate
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values of the Bagley corrections which agreed with values obtained using an orifice die?
(L/D <0.5).

Sliding Plate Rheometer

The sliding plate rheometer shears a melt between two stainless steel plates. The moving
plate, which can produce shear rates up to 500 s, is driven by a servo-hydraulic linear
actuator. The shear stress is measured at the center of the sample by a shear stress
transducer developed at McGill University. All measurements take place in a
temperature-controlled oven. A detailed description can be found in reference 3.

Measurements were made at 200°C for the HDPE resin.

4.2.3 Extensional Flow

Transient elongational experiments were performed using a Meissner® type apparatus, the
Rheometrics Melt Elongational rheometer (RME), by Plastech Engineering AG
laboratory in Zurich. The sample, clamps and leaf springs are installed in a temperature-
controlled oven, which is heated by electrical heater wires embedded in the walls. The
sample is supported by a cushion of inert gas (nitrogen) and stretched homogeneously
between two sets of conveyor belt clamps at a constant Hencky strain rate defined as
follows:

Eqn. 4-1 E= 4(n(2)
dt

where L is the actual sample length.

The strain rate range of the instrument is 0.001 to 3 s™, but the attainable strain rate range
is resin dependent and must be determined experimentally. Measurements were

performed at 150°C for the LLDPE and at 200°C for the HDPE.
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4.3 Linear-Low Density Polyethylene

All rheological measurements for the LLDPE were performed at 150°C, which is the
temperature at which the extrudate swell measurements were conducted. In order to
make sure that the polymer was fully molten at that temperature, we consulted data
previously collected for this material’. Heat capacity measurements carried out in a
differential scanning calorimeter showed 2 melting peak temperature of 126°C. Pressure-
volume-temperature (PVT) data obtained in cooling gave the following crystallization

temperature, T, as a function of pressure:

Eqn. 4-2 T.=113.52+(0.281)P
with P the pressure in MPa. The highest pressure reached in the capillary rheometer was
42 MPa, which gives a crystallization temperature of 125°C. We are therefore confident

that all measurements were performed in the molten state.

4.3.1 Storage and Loss Moduli

The storage (G”) and loss (G”’) moduli were measured for three samples, with a maximum
between-sample variation of 3 %. Measurements were made over a frequency range of

0.02 to 500 rad/s. Results are presented in Fig. 4-1.

The discrete spectrum of relaxation times was determined from the oscillatory shear data
by linear regression as described in reference 6. In that technique we specify N values of
A, distributed around a center time and with a specified distance between times, within the
range of experimental frequencies. The values of G, are then determined by a least-

squares procedure, using M sets of data:

Eqn. 4-3

MIN
G,

!

ui(a 1 @42 Y (& 1 @4 Y
@A) G2
2 (:éa'(w,.)G'H(m,z,.)z 1] +(,-‘f‘lc;"(aaj) T+ @47 J

J
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A minimum of six modes was necessary to obtain a good fit of the experimental moduli.
We determined two discrete spectra: one for all the experimental data available and one
for a truncated set of data where we removed the measurements at the lowest frequencies.
This was done to obtain a smaller longest relaxation time in order to improve the
numerical convergence of the simulations. Both fits are shown in Fig. 4-2. The

parameter sets [G;, A;] are presented in Table 4-3.

1.0E+06

8
1.0E+05 | g® n B

1.0E+04 a

G', G" (Pa)
[+ ]
[ ]

1.0E+03 | = ]

1.0E+02 - "

1.0E+01

0.01 0.1 1 10 100 1000
Frequency (rad/s)

Figure 4-1 Dynamic Moduli of the LLDPE at 150°C.

Table 4-3 Discrete Relaxation Spectra for the LLDPE at 150°C

All Data Truncated Data
Mode G (Pa) A (s) G (Pa) A (s)
1 2.51x10° 1.43x 107 2.38x10° 2.00 x 107
2 2.09x 10° 1.00x 10 1.77 x 10° 1.00 x 10
3 6.38x 10° 7.00x 10 6.25 x 10° 5.00 x 10
4 1.17x10* 490x 10" 2.16x10* 2.50x 10"
5 1.11x10° 3.43x10° 2.00x 10° 1.25x 10°
6 1.10x 10° 24.0x 10° 8.36 x 10° 6.25x 10°




Chapter 4. Rheoiogical Characterization 55

1.0E+06

1.0E+05 -

1.0E+04 -

G', G" (Pa)

1.0E+03 -

1.0E+02 1 - Based on Full Data

= = Based on Truncated Data

1.0E+01

0.01 0.1 1 10 100 1000
Frequency (rad/s)

Figure 4-2  Fits of the Discrete Spectra for the LLDPE at 150°C.

4.3.2 Viscosity

Measurements were made at 150°C, and the results were compared with others’ obtained
at 160°, 200° and 240°C using a master curve at 200°C and an activation energy (£,) of
26.1 kJ/mol. The Bagley corrections were in reasonable agreement with values obtained
by Kim? using an orifice die (L/D < 0.5) (Figure 4-3). With all corrections applied
(Bagley and Rabinowitch), the flow curve compared well with data obtained from the
sliding plate rheometer at the same temperature by Koran’. The flow curve is presented
in Fig. 4-4. Finally, in Fig. 4-5 the viscosity is plotted along with the complex viscosity,
showing that the empirical Cox-Merz rule (Eqn. 4-4) does not apply for this material at
high shear rates, which is unusual for a linear material.

Eqn. 4-4 =p'@)|  @=7
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Figure 4-5 Complex Viscosity and Viscosity of the LLDPE at 150°C.

4.3.3 Tensile Stress Growth Coefficient

Transient elongational experiments were performed at 150°C for nominal strain rates of
0.01, 0.1 and 1.0 s?. Using particle tracking and video images of three zones in the
sample, it was possible to obtain an accurate value of the strain rate. The true strain rates
were found to be 0.01024, 0.09460 and 1.004 s”'. Even if we eliminate the uncertainty in
the strain rate, an important source of error that remains is the uncertainty in the force
measurement. According to the instrument manufacturer, this uncertainty is 0.001 N.
The error on the stress can be determined by performing an error propagation analysis®.
The stress is calculated by the following equation:

_F@_  F@®
Eqn. 4-5 o:()= A0 = 1 exp(—a)
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where F(t) is the force as a function of time and A(t) is the cross sectional area as a
function of time. A, is the cross sectional area of the sample just before the deformation

begins:

2/3
Eqn. 4-6 A, = HprWer [”&J
Prr

The subscripts RT and TT refer to the room and test temperatures, and H and W are the
initial height and width of the sample. The LLDPE melt density at test temperature
(150°C) is 0.785 g/cm®. Neglecting the uncertainty in the cross-sectional area, the error
propagation analysis gives:

Acg| AF _0.001
ce| F F

In Fig. 4-6, we have included the error bars calculated with Eqn. 4-7. We can see that at

Eqn. 4-7

low strain rates, the uncertainty in the force leads to a very large uncertainty in the
rheological properties of interest.
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Figure 4-6  Transient Elongational Stress for the LLDPE at 150°C.
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4.4 High Density Polyethylene

4.4.1 Storage and I oss Moduli

The storage (G’) and loss (G”) moduli were measured on five samples, with 2 maximum
between-sample variation of 4 %. Measurements were made over a frequency range of
0.02 to 500 rad/s. Average values of G’ and G” for the five samples are presented in
Figure 4-7. We determined also for this material two discrete spectra: one for all the
experimental data available, and one for a truncated set of data, where we removed the
data at the lowest frequencies. Again, a minimum of six modes was necessary to obtain a
good fit of the experimental moduli. Both fits are presented in Fig. 4-8. The parameter
sets [G;, A;] are presented in Table 4-4.
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Figure 4-7 Dynamic Moduli of the HDPE at 200°C.
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Figure 4-8  Fits of the Discrete Spectra for the HDPE at 200°C.
Table 4-4 Discrete Relaxation Spectra for the HDPE at 200°C
All Data Truncated Data
Mode G (Pa) A(s) G (Pa) A(s)
1 1.31x 10° 1.43x 107 1.23x10° 2.00x 107
2 1.09x 10° 1.00x 10* 9.29x10* 1.00 x 10*
3 4.81 x 10° 7.00 x 10 421 x10* 5.00x 10*
4 1.66 x 10° 490x10" 2.51x10* 2.50x 10"
5 3.08 x 10° 3.43x 10° 3.54x 10° 1.25 x 10°
6 5.98 x 10* 24.0x 10° 2.95x10° 6.25 x 10°

4.4.2 Viscosity and First Normal Stress Difference
The viscosity of the HDPE was measured using the sliding plate rheometer at 200°C.

Our results were compared with data obtained at DSM using capillary and cone and plate

rheometers at 190°C and shifted to 200°C using an activation energy E, of 27.6 kJ/mol
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which was determined by DSM. Good agreement was found between the three sets of
data (Fig. 4-9). In Fig. 4-10, the viscosity is plotted along with the complex viscosity.
The cone and plate data do not follow the same trend as the measurements in small
amplitude oscillatory flow, which is incorrect since both the complex viscosity and the
viscosity should reach the same plateau-value, n,. If we disregard the cone and plate
data, since it is not possible to evaluate the error involved in these measurements, we

conclude that the empirical Cox-Merz rule is valid for this material.

The first normal stress difference was also measured using the cone and plate rheometer
at 190°C. We present these data, shifted to 200°C, in Fig. 4-11, using the same shift

factor as previously. These data were not used to fit the model parameters.
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Figure 4-9  Flow Curve by Three Rheometers for the HDPE at 200°C.
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4.4.3 Tensile Stress Growth Coefficient

We saw in section 4.3.3 (Fig. 4.6) that a large error is present in the stress at low
extensional rates due to the low forces. On the other hand, artificial strain hardening is
often observed at high rates with the RME rheometer for non-strain hardening materials’.
For the HDPE, we chose a medium rate and had two replicates done in order to verify
reproducibility. Three measurements were done at a rate of 0.5 s at 200°C. Using
particle tracking and video images of three zones, it was possible to obtain an accurate
value of the strain rate. The true strain rates were 0.4845, 0.4959 and 0.4946 s™. (The
HDPE melt density at test temperature is 0.742g/cm®). Excellent agreement was found
between the three sets of data (Fig. 4.12). The error bars are smaller than the size of the

symbols.
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Figure 4-12 Transient Elongational Stress for the HDPE at 200°C.
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5. Determination of Model Parameters

5.1 Linear Low-Density Polyethylene

5.1.1 Viscous Model

The Carreau-Yasuda generalized Newtonian model (Eqn. 5-1) contains four parameters:

the zero-shear viscosity 1), a characteristic time A, and two power-law indexes, 72 and s.

m—1

Egn. 5-1 (I p) =1, (1 + (A1, )%)T

The zero-shear viscosity was calculated from the discrete spectrum based on all the data

presented in Table 4-3, as follows:
N

Eqn. 5-2 7o =2 G;A; =19079 Pa.s
i=1

The other three parameters were determined by a least-squares procedure, using M sets of

data:

2
Eqn.5-3 Amvi[”’"‘“‘f _ﬂ“’“f]

J=1 77meas ;

where 1., represents the experimental viscosity, and n,. the viscosity calculated using
Eqn. 5-1. The parameters determined for the LLDPE are presented in Table 5-1, and the
corresponding fit of the viscosity is shown in Fig. 5-1.

Table 5-1 Carreau-Yasuda Model Parameters for the LLDPE at 150°C

Parameter Value
M, [Pa.s] 19079
A [s] 0.39
m 0.41
s 0.76
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Figure 5-1  Viscosity Fit of Carreau-Yasuda Equation for the LLDPE at 150°C.

5.1.2 Leonov Model Parameters

Specification of both 5(7,,1,) in the evolution equation (Eqn. 5-4) and the elastic potential

(Eqn. 5-5) are required in order to use the modified Leonov model', which we write as

follows:

y (L - 14,)
Eqn. 5-4 24 B;+b(1},1,)| ByBy + B;

n+l n+l
Ean.s.s e my= 2l (2 i ()

For polyethylene, Simhambhatla and Leonov' suggested using a Neo-Hookean elastic
potential (#=f=0 in Eqn. 5-5). The procedure recommended by the authors' for the
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choice of 5(7,, L) is as follows. First, perform preliminary calculations for various flows
using the simple model (5=1). Then, if there is disagreement with experimental data, a
functional form of & that brings the calculations into qualitative agreement with the data
can be systematically developed. To model the viscoelastic behavior of various polymers
(LDPE, HDPE, PS, and PIB), simple power-law or exponential functions of the
invariants of the Finger tensor with one or two adjustable parameters are usually

sufficient.

We found that the best result for non-strain hardening materials was obtained with an
exponential function of /,, the first invariant of the Finger tensor:

Eqn. 5-6 b(I) =exp|:m[-{l-—l):l

To fit the m parameter, we used the transient elongational data, since this form of the &
function has very little influence on the prediction of viscosity. The best value of the
parameter was determined using an IMSL/Fortran™ subroutine (DUVMIF)?.. This
routine is based on a quadratic interpolation method to find the least value of a function
specified by the user. The value obtained was m=0.02. The complete set of parameters is

presented in Table 5-2.

Table S5-2 Leonov Model Parameters for the LLDPE at 150°C

Parameter Value
n 0
B 0
m 0.02
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5.1.3 Phan-Thien/Tanner Model Parameters

The PTT model’* can be expressed as follows for polymer melts.

v a
Eqn. 5-7 /’L(g- T+ (l - -g-) EJ +z exp(E trg) =2nD
£ £]7L _— =

It has two nonlinear parameters (§ and €) to be determined in addition to the discrete
spectrum. The parameter £ controls the level of shear thinning in shear flows and & the
extensional behavior. We used the IMSL/Fortran™ subroutine described earlier to
determine the parameters. The value of £ was determined by fitting the viscosity curve
and that of € by fitting the transient elongational data. The resulting parameters are
presented in Table 5-3.

Table 5-3 PTT Model Parameters for the LLDPE at 150°C

Parameter Value
£ 1.79
€ 0.16

5.1.4 Viscosity

We already mentioned that the simple and modified Leonov models do not differ in their
shear predictions if Eqn. 5-6 is used, so we show only the results for the modifi=d model.
In Fig. 5-2, we show the fit of the Leonov and PTT models for the viscosity. With one
parameter fitted exclusively to shear data (£), the PTT model reproduces more
realistically the observed behavior. The Leonov model predicts the Cox-Merz rule,
which is not valid for this material at high shear rates (Chapter 4).
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Figure 5-2  Fit of Viscosity with Leonov and PTT models for the LLDPE at 150°C.

It was mentioned in Chapter 3 that one of the problems with the PTT model when £ =2 is
the presence of a maximum in the flow curve, which is physically unrealistic’. Crochet et
al.® showed that it is possible to avoid this problem by using a non-zero viscous
component (n=0). This way, the shear stress becomes a strictly increasing function of

the shear rate if the viscosity ratio fulfills the following condition:

Eqn. 5-8 7,1

, n 8
with
Egn. 5-9 ns+n =1,

However, when a spectrum of relaxation times is used instead of a single mode, this
condition can be relaxed. The use of a multimode spectrum for polymer melts is always
strongly recommended since a single mode can not fit data properly and leads to

numerical problems.



Chapter 5. Determination of Model Parameters 70

Beraudo® used a viscosity ratio (n/v,) of 1/8 in her simulations, although she used a
spectrum of relaxation times. We verified the effect of that ratio on the prediction of the
viscosity for our material, and the result is presented in Fig. 5-3. We found that this
criterion could not be applied blindly in simulations. Instead, we fitted an additional

parameter, o, that governs the viscosity ratio based on shear data.

Eqn. 5-10 a=1s
o

We obtained a=10? for the LLDPE, which shows that the condition given by Eqn. 5-8
can be ignored when using a spectrum of relaxation times. Fig. 5-4 shows the flow curve
with =0, and we can see that there is no maximum in the curve over the range of

experimental data, even without a viscous contribution.
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Figure 5-3  Viscosity Curve of PTT Model with a=1/8 for the LLDPE at 150°C.
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Figure 5-4  Flow Curve Predicted by the PTT Model with a=0.

5.1.5 Tensile Stress Growth Coefficient

In Fig. 5-5, we show the fit of the tensile stress growth coefficient provided by the
Leonov and PTT models. The resulting curves are very similar for the two models.
Good agreement is obtained for the highest strain rate (1.0 s™), but at the lowest rates less
strain hardening is predicted than is seen experimentally. However, considering the large

error involved in the measurements at these rates, we suspect that these data are not

reliable.
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Figure 5-5  Fit of Tensile Stress Growth Coefficient for the LLDPE at 150°C.

5.1.6 Prediction of Normal Stress Differences

We had no data for the LLDPE to compare with the predicted first normal stress

difference, so we used Laun’s’ empirical relation for ¥,:
1

U Fall 2 0.7
Eqn. 5-11 ‘P1(7)=2—G7[1+(i') }
@ G"

This relationship was verified by Laun’ for low and high-density polyethylenes,
polypropylene and polystyrene. The comparison for N, is presented in Fig. 5-6 for the
Leonov and PTT models. The agreement is good with both models at low and moderate

shear rates, but the Leonov model follows more closely Laun’s empirical relation at high

shear rates.
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Figure 5-6  Prediction of First Normal Stress Difference for the LLDPE at 150°C.

For N,/N,, the ratio of the second to first normal stress difference, the Leonov model
predicts a value that varies with shear rate. At low shear rates, N,/N, = -0.25 and
approaches zero at high shear rates (Fig. 5-7). Experimental data for steady simple shear
of a number of materials indicate that N, is negative and has a magnitude about 10 to
30% that of N,®. For N/N,, PTT gives a constant ratio of —0.105 according to Eqn. 5-12.

Ny _2-¢

Eqn. 5-12
N, 2
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Figure 5-7  Ratio of Second to First Normal Stress Difference for the LLDPE at
150°C.

5.1.7 Prediction of Elongational Viscosity

We present in Fig. 5-8 the elongational viscosity predicted by both versions of the
Leonov model and by the PTT model. The modified Leonov and PTT models both
predict a maximum in the elongational viscosity curve, which is more realistic for
polymer melts. We observe that both models agree over the range of strain rates where
the respective parameters were fitted. However, the predictions differ considerably at
higher elongational rates. The simple Leonov model predicts a plateau value of the
elongational viscosity of six times the zero-shear viscosity at high strain rates. The
inaccurate elongational flow behavior is the main deficiency of the simple model since

linear polymers usually exhibit little strain hardening.
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Figure 5-8  Prediction of Elongational Viscosity for the LLDPE at 150°C.

5.2 High-Density Polyethylene

5.2.1 Viscous Model

Using the procedure described in section 5.1.1, we determined the parameters for the
Carreau-Yasuda equation for the HDPE. The zero-shear viscosity is calculated from the
discrete spectrum based on all the data given in Table 4-4. The resulting parameters are
presented in Table 5-4, and the corresponding fit of the viscosity is shown in Fig. 5-9. As
discussed previously in Chapter 4, we see a disagreement with the cone and plate data.

Table 5-4 Carreau-Yasuda Model Parameters for the HDPE at 200°C

Parameter Value
Mo [Pa.s] 37694
A [s] 0.48
m 0.20
s 0.45
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FigureS-9  Viscosity Fit by Carreau-Yasuda Equation for the HDPE at 200°C.

5.2.2 Leonov Model Parameters

The functional form of b(7,,,) given by Eqn. 5-6 was used for the HDPE. The parameters

m, n and B (Eqn. 5-5), determined using the IMSL/Fortran™ subroutine, are shown in

Table 5-5.

Table 5-5 Leonov Model Parameters for the HDPE at 200°C

Parameter Value
n 0
B 0
m 0.3
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5.2.3 Phan-Thien/Tanner Model Parameters

The parameters of the PTT model (Eqn. 5-7) for the HDPE are presented in Table 5-6.
Again, £ was fitted to the viscosity curve and ¢ to the transient elongational data.

Table 5-6 PTT Model Parameters for the HDPE at 200°C

Parameter Value
g 1.82
€ 0.32

5.2.4 Viscosity

In Fig. 5-10, we show the fit of the modified Leonov and PTT models for the viscosity.
We see that none of the models reproduce well the viscosity at high shear rates.
However, at these high rates, flow instabilities can become important, so the reliability of
these data points can be questioned. With the PTT model, we had to use a small viscous
contribution to avoid a maximum in the flow curve (Fig. 5-11). We used a=3.6x10%,
which is still much smaller than the recommended value of n/n=1/8. In Fig. 5-12, we
show what the viscosity curve looks like if a=1/8 is used. This emphasizes that one
should be careful in using the rule suggested by Crochet et al.° (Eqn. 5-8) along with a
spectrum of relaxation times.



Chapter 5. Determination of Model Parameters 78

1.0E+05

1.0E+04 -

T

1.0E+03 |

L}

Viscosity (Pa.s)

O Capiliary Data (shifted at 200°C)
1.0E+02 +-1 A sliding Plate Data

X Cone and Plate Data (shifted at 200°C)
—=Modified Leonov Model
= = PTT Model (alpha=3.6e-4)
1.0E+01 . ; - ; ;

0.001 0.01 0.1 1 10 100 1000 10000 100000

Shear Rate (1/s)

Figure 5-10 Fit of Viscosity by Leonov and PTT Models for the HDPE at 200°C.

1.0E+03
O
m
- O

1.0E+02
~
Q.
x
o
(7]
2 1.0E+01 ;
(7))
=Y
(3]
Q
»

1.0E+00 - A Sliding Plate Data

O Capillary Data (shifted at 200°C)
X Cone and Plate Data (shifted at 200°C)
= PTT Model (alpha=0)
1.0E-01 . . - - . .
0.001 0.01 0.1 1 10 100 1000 10000 100000

Shear Rate (1/s)

Figure 5-11 Flow Curve for the HDPE at 200°C Predicted by the PTT Model without
the Viscous Contribution.
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Figure 5-12 Viscosity Curve of PTT Model with a=1/8 for the HDPE at 200°C.

5.2.5 Tensile Stress Growth Coefficient

In Fig. 5-13, we show the fit of the tensile stress growth coefficient. Both models give
equally good fits, except for data at rate 1, which shows a higher level than the predicted
steady state.
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Figure 5-13 Fit of Tensile Stress Growth Coefficient for the HDPE at 200°C.

5.2.6 Prediction of Normal Stress Differences

We had only a few cone and plate data for the first normal stress difference, so we again
used Laun’s empirical relation to verify the predictions. The comparison for N, is
presented in Fig. 5-14. The agreement is good with both models at low and moderate
shear rates, and again for this material, the Leonov model is closer to Laun’s empirical
relation at high shear rates. The cone and plate data are in fair agreement with the
predictions, except at the lowest shear rate. This is similar to what is seen in the viscosity

curve.

For the ratio of the second to first normal stress difference, the Leonov model predicts
N,/N, = -0.25 at low values of the shear rate. This ratio decreases toward zero with

increasing shear rate (Fig. 5-15). The PTT model gives a constant ratio of —0.09.
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3.2.7 Prediction of Elongational Viscosity

We present in Fig. 5-16 the elongational viscosity predicted by both versions of the
Leonov model and by the PTT model. Again, the modified Leonov and PTT models
predict a maximum in the elongational viscosity curve. We see that both models agree
over a range around the strain rate at which the parameters were fitted (0.5 s™) and at
higher rates. The simple Leonov model always predicts a plateau value of the

elongational viscosity that is six times the zero-shear viscosity at high strain rates.
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Figure 5-16 Prediction of Elongational Viscosity for the HDPE at 200°C.

In conclusion, we can say that both viscoelastic models give similar fits and predictions
of the rheological properties. Also, our resuits showed that for the PTT model the
addition of a viscous contribution to avoid the maximum in the flow curve should be

done with caution.
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6. Numerical Method

6.1 Description of the Problem

6.1.1 Four-Field Mixed Formulation

In Chapter 2, we presented the system of equations that must be solved to simulate the
flow of viscoelastic materials. We recall here that for isothermal flows, neglecting
compressibility and body forces, the conservation equations for mass and momentum can

be written as follows:

Egn. 6-1 V-u=0

Du
Eqgn. 6-2 “=4+Vp~-V-r=0
q P Dr p z

where p denotes a constant density, p is the pressure, and z is the extra stress tensor. For
a Newtonian fluid and neglecting inertia forces, this set of equations constitutes the
“ Stokes problem ”. In the absence of a viscous contribution, and for a2 multimode

representation, the extra stress tensor is expressed as follows:

Eqn. 6-3 = Z::l T;

where N represents the number of modes.

The last equation required to close the above system is the rheological model, which in

our work is the Leonov or the Phan-Thien/Tanner model:

Eqn. 6-4 lé(f_g)*-ﬁ(g )=20.0

where n=A;G;.



Chapter 6. Numerical Method 85

For the Leonov model:
v
Egn. 6-5 é( ,.)= A T;
b 6 +Gi0)

Eqn. 6-6 B( ,-)=~—— r,.-z',--———ﬁ‘r(r,. +G,.5)—G,-2tr[(r_,-+G,-5)'l]]

== 2G; |= = 3 = = = =
For the PTT model:

v a
Eqn. 6-7 :4;(:,-): /‘L{—f_i+(l—§]i)
A&

Eqn. 6-8 B\t |= 7, exp| —1r;

= = n: =

A modified elastic-viscous stress splitting (EVSS) method' is introduced to facilitate the
choice of the discretization spaces. This requires the explicit introduction and

discretization of a tensor variable, 4, which is the gradient of the velocity u:

Eqn. 6-9 d=Vu

Thus, the rate of deformation tensor'g@ can be expressed as:

(g+2£)

Eqn. 6-10

1o

The conservation equation for momentum (Eqn. 6-2) becomes:

d+d’
Eqn. 6-11 ~V-(2aD)+Vp-V-z=-V.| 2a| = =

The parameter a can take any value, but a=n, has been reported to be an optimal choice'.
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6.1.2 Free Surface

In the presence of a free surface, as in extrudate swell, a pseudo-concentration method is

used?, requiring the solution of the additional equation:

Eqgn. 6-12 %+E-VF=O

where the function F represents the pseudo-concentration that describes the interface

between the polymer and another fluid, in this case air:

Eqn. 6-13 Fe 0 .m air (ﬂu.}d 0)
1 inthe polymermelt (fluid1)

This function specifies the material properties appropriate for each region of the
computational domain. For example, the relaxation time A as a function of the pseudo-

concentration is defined as follows:

Eqn. 6-14 AF) = Ay + (A = Ag)F

Since air is not viscoelastic, 2,=0, and Eqn. 6-14 simplifies to:

Eqn. 6-15 A(F)=AF

All the material properties are evaluated using equations similar to Eqn. 6-14.

Preliminary calculations were done using a fictitious fluid instead of air with a viscosity
equal to 10” times the polymer viscosity. Later, the viscosity of this fluid was set equal
to zero, using the same value of o (Egn. 6-11) in the entire flow domain, based on melt

properties, without changing the results of the simulations.



Chapter 6. Numerical Method 87

In summary, the global system of equations to solve is shown below.

(V-u=0

T
_V-(Zag)-i-Vp—V-g:—V'(Za[g;g JJ

Eqn. 6-16 <

6.1.3 Weak Formulation

In order to obtain the weak formulation corresponding to this system, each equation is
multiplied by an associated weighting function and integrated over a domain Q. After
applying the divergence theorem to the Stokes problem, we have the following weighted
residual problem:

Find T € Vx O x ¥ x X such that:

[[gv-udx=0 vgeQ
20 [ D@): DWdx~ [ pV-vdx=-[ (r20d):D(vdz
Eqn. 6-17 vveV
Lhé@ﬂ* 2@]:2@.= 27, [ D@ : ¢ dx Vgex

Lg:y;d;:Lg@:ng Vgez
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where g, v, ¢ and y are suitable weighting functions. The additional equation associated
with the pseudo-concentration has the following weak formulation:

Eqn. 6-18 L(%‘:'—W -VF)Gdgc_:O vGel

6.2 Discretization

Only triangular elements are considered in this work. In order to solve the weighted
residual problem by the finite element method, we need to discretize the variables. This
is a difficult task, since compatibility conditions exist in the four-field Stokes problem for
the discretized variables u,, py, T, and d,. Their respective discretization must therefore
satisfy a generalization of Brezzi’s condition® (the inf-sup condition) valid for the usual
velocity-pressure formulation of the Stokes problem, presented in Chapter 2. The chosen
discrete subspaces are ¥}, 0, Z, and £, and the chosen discretization is illustrated in Fig.
6-1. P," is the quadratic polynomial set defined on element X, to which a cubic “bubble”
function associated with the centroid node is added, and P, is the discontinuous linear
polynomial set defined on element K. We chose identical discretization spaces for the
variables 1 and 4, but it is possible to select another discretization space for d. The

discretized variable F, is approximated by piecewise linear polynomials, as for g, and g,.

By replacing the spaces V, Q and X by their respective subspaces V;, O, and Z, in the
continuous weighted residual problem (Eqn. 6-17), we obtain the following discrete weak

formulation:



Chapter 6. Numerical Method 89

Find (u,p,.T;, d) eV, x Q,x %, x % such that:
LQhV'Eh dx=0 Vg, €0y
2a [ Dws): Dwy) dx—[ psV-v, dx == (z,-20d, ):D(v,) dx

Eqn. 6-19 Yy, eV,

L[lé(;h) * é(ihﬂ zgh dx =2, LQ(K") Zh ax Vgh €2

bey, dx=fpwoy, ax v, <%

where g,, v,, 4 and y; are suitable discretized weighting functions. For the pseudo-
concentration, we have the following additional equation:

Eqn. 6-20 L(%—-{-uh VFh};,, dx=0 VG, €4,

We can see that the variable d, is a projection of D(x,) in the discrete subspace Z;, and as
was mentioned in Chapter 2, there is no equality between d, and D(,) in the discrete

problem.
Figure 6-1 TheP,"-F, - P, - P, elements for variables u,, py,, I, d, (and F)*.

We also note the similarity between the constitutive equation (Eqn. 6-4) and the pseudo-
concentration equation (Eqn. 6-12). Indeed, the upper and lower convected derivatives in

the constitutive equation are defined as follows:
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v Oor r
Eqn. 6-21 £=—j+y_-V=—Vz_¢-£—-£-(Vg_)

A Ot
Eqn. 6-22 £=—5?—+K-V£+(Vz_¢)r-£+g-Vz_z

Both the constitutive equation and the pseudo-concentration equation are suitable for the
discontinuous Galerkin method, which is described in section 6.3.2.

6.3 Numerical Solution

The global system presented in Eqn. 6-19 and Eqn. 6-20 can be quite large, especially
when a multimode representation of the extra stress tensor is employed. A coupled
approach to solve this problem would require too much memory space, so we use instead
a decoupled approach. We solve separately the following sub-systems:

— the Stokes problem for fixed In and d,

— the constitutive equation for fixed
— the projection g, = D(x,) for fixed -

The coupling of these sub-systems, along with the treatment of nonlinearity, is done
through GMRES (for “ Generalized Minimal Residual )’ a Newton-Krylov iterative
solver. When a free surface is present, the discretized pseudo-concentration Fj, is updated
for fixed u, outside GMRES, by a fixed-point algorithm. In the following sections, we
describe the solution of each decoupled sub-system and the solution of the global four-
field system by GMRES.

6.3.1 Stokes Problem

For fixed g, and d,, the discretized Stokes problem is as follows:
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Find (u_,,, g,,_) e V_,, X Q,,_ such that:

Eqn. 6-23 Lq,,V-g,, dx=0 Vg, €0,

2e [ D(wy): D(wy)dx~ [ pyV-v, dx=-[ (z,20rd ):D(v,) dx

Vv, eV,

This discrete problem can be represented by the following matrix problem:

Bu, =0
Eqn. 6-24 T
Au,, + B p, =§.&h,gh

We use Uzawa’s algorithm® to solve this system, allowing a reduction in the size of the
global matrix. Furthermore, four degrees of freedom per element, two in velocity and
two in pressure, are removed according to the condensation technique of Fortin and

Fortin’. The system is finally solved through a direct method by a LU factorization.

6.3.2 Discontinuous Galerkin Method

We will only describe the method for the constitutive equation (Eqn. 6-4), but a similar
treatment is applied to the pseudo-concentration (Eqn. 6-12). In the more general time-
dependent case, a fully implicit second order Gear scheme is used for the time derivative.
For stationary problems, like those studied in this work, the time derivative is simply

dropped.

The discrete weighted residual formulation of the constitutive equation is defined as
follows in the traditional Galerkin method:

Eqn. 6-25 L[Aé(;h)+£(ﬁh)]:¢h dx =27, LQQ,,):Z}, dx  V$ €3,
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If we decompose this formulation into elementary sub-systems, we obtain the following

weak formulation on each element X

Eqn. 6-26

L[l(za VT Ve -T '(Vgh)r)'{'g(ri )]:gh dx=2n, LQ@h)tgh dx

=1 =h

Vg, € A(K)

We use the upper-convected derivative for 4(z;,,) to simplify the last formulation, but a
similar treatment can be applied to the Gordon-Schowalter derivative of Eqn. 6-7.

A discontinuous polynomial approximation (P,) for each variable z; of mode 7 is used on
each element K. The velocity field ¥, is known from the previous iteration. The
discontinuous approximation gives rise to a discontinuity jump at the element interface in
the derivative of z;;, as illustrated in Fig. 6-2. The convective term in Eqn. 6-26
becomes:

Eqgn. 6-27 Lgh-Vihmh dx —> Lz_zh-Vih:qoh dx -i-LK_(yh-g)[rih]:(o ds

where ny is the unit normal vector to the boundary 9K pointing outside X (Fig. 6-2). The
inflow boundary K" with respect to the velocity field is defined as:

Eqn. 6-28 oK™ = f{x e oKlu-ny <0}

[x;] is the jump in the variable t;, and is expressed as:

Eqn. 629 [ri [@=r @- @=timz, Grow)- limz, Grew)
=h =h =h e>0" ==h 0" =h
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Figure 6-2  Discontinuity Jump at the Interface of Two Elements®.

When we replace Eqn. 6-27 in the weighted residual formulation of Eqn. 6-26, and

assume that 1;," = 1;,, we obtain a new formulation:

WA v, ~vem, —a, w7, g, s
- LK_E;, 'E(ih}gh ds=2n; LQ@h)zh dx — LK-E" Q(T—’;jgh ds

g e B(K)

Eqn. 6-30

This is the discrete formulation proposed by Lesaint and Raviart’. It results in a small
nonlinear system on each element X, which is linearized by a Newton method:

Eqn. 6-31 MK(EK,r )z',- =E,<(z_¢,<)+ﬁr,<f,.;< (i=1, N equations)
K =K —_—

i

However, the resolution of this system requires knowledge of the quantity z;,” on
elements adjacent to K so that a particular numbering of the elements is necessary. A
perfect numbering is not always possible. In the presence of recirculation zones, for
example, the best possible numbering is provided and the elements are swept many times

so that the resolution can be seen as a block relaxation (Gauss-Seidel type) method.
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In conclusion, we have to solve for each / mode the nonlinear system given by Eqn. 6-30
of size 9 x 9 for 2D problems and 12 x 12 for axisymmetric problems, on each element.

For the pseudo-concentration, we have to solve a 3 x 3 linear system given by the

following equation:

Eqn. 6-32 [ -VE)Grdx~ | @, -n)FiGyds=—[ (u,-n)FyG,ds
or in matrix form:

Eqn. 6-33 Selup,Fy)Fr =Ly Fx

2.3.3 Gradient Tensor of Velocity
The projection of D(x,) in the discrete subspace %, can be calculated by considering the

following problem for a fixed ,:

Eqn. 6-34 Ld iy dz= LQQ‘-") y dx vy €3,

The projection is achieved on an elementary basis since no continuity is required at the
elements interface for variables 4, and y,. Therefore, we have to consider only these

elementary systems:

=h =

Eqn. 6-35 Ld v d£=L£@h):tKh dx Yy, <P(K)

The last equation can be expressed in matrix form:

Eqn. 6-36 Oxd =W (ug)

The small elementary systems are solved by a direct method with a LU factorization.
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‘ 6.3.4 Resolution of the Global System

Following the presentation of the various sub-systems, the global system, composed of
Eqn. 6-19 and Eqn. 6-20 if a free surface is present, can now be expressed in the

following way.

(Bu, =0

Au, +B' p, =Q(g,,,g,,)
Eqgn. 6-37 $ _

Mx(y_K,r,.K)r,- =EK@K)+HK1',-K (1 =1, N equations)
Eqn. 6-38 Sy(uy,Fy)Fy =LgFg

Eqn. 6-37 is a nonlinear system, so we need to use an iterative method to solve it. A
fixed-point method is not applicable, since it results in a loss of numerical convergence as
viscoelasticity becomes more important. The Newton method is more suitable for this

problem. It generally applies to problems of the form:

Find x such that R(x)=0.
The algorithm of the Newton method is as follows:

1. Given X, an initial guess;
2. Forn=0:

Eqn. 6-39 J, 8 =-R(X,,)

where J, is the Jacobian matrix of R(X};) evaluated in Xj;;
3. Xp+]=Xp+3X;
4. If|6X] < gand [|[R(X ,)| <&, stop.

Otherwise, go back to step 2.

‘ Our specific problem can be expressed as follows:
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Find (u,.p;,T s d) such that R(u, p,, T, d;)=0
where R(u,p;, Ty d,) is given by:

(Bu,

Au, + B p, _Q&h’gh)

R(Zh’ph’gh’gh )= ) ZMK(KK:EK)E —Ex(ug)— HK“' (i=1,N equations)
& =k )Lik

EOKQK —W@K)

The difficulty for this large system is to solve the problem without calculating explicitly
the Jacobian matrix of Eqn. 6-39, which would require too much memory space. To
avoid building this large global matrix at every iteration, we use an approximation based
on a finite central difference:

Eqn. 640 Jd~ R(X +hd)- hR(_ hd)

where X=(u,, p,, T4, dh)T and 4 is small (usually of the order of 10°).

The system to solve is highly nonlinear, and this causes convergence problems. In order

to obtain a better conditioning of the system, we use instead a preconditioned residual
ﬁ(t.lh,p;.,g,,,g,,) L% " defined as E@h:l’m-;,: ) (5y,@,5t Jd)r where Sy, Sp, O

and Sg are determined as follows:

1. Solve the following Stokes problem:
Béu=-Bu,
ASu+B & =—Au, —B'p, +C(z,.d,)
and obtain a solution corrected in velocity, u = u;, + du.

2. Solve the constitutive equation by a Newton method for fixed w, for all X elements:

JK(I_JK, )51K=-MK(3K,2K)2 +EK(_K)+HK2' +HK51'

i=1,N equatlons)
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where Ji is the Jacobian matrix obtained by the linearization due to the Newton
method, w4, being fixed. The residual 3z is made up of all the elementary residuals
dzx. Note that it is possible to ignore the last term of the previous equation and to
perform only one sweep, which accelerates the calculations.

3. Compute the local projections of tensor D(z;,) on all X elements:
The residual 8d is also made of all the elementary residuals 5dy.

The definition of this new residual R is simply the preconditioning of the residual R with

the inverse of a matrix J, which is a block-diagonal matrix built with the respective
Jacobian matrix of the decoupled sub-systems. For the resolution of the coupled system
of Eqn. 6-39, we used the GMRES iterative method. This method has been designed to
solve non-symmetrical linear systems. In the GMRES algorithm, the Jacobian matrix is
only present in matrix-vector products. It is then not necessary to explicitly build the
large global Jacobian matrix. Instead we use the approximation given by Eqn. 6-40,

which reduces considerably the memory space needed.

We tried to incorporate the calculation of the pseudo-concentration (Eqn. 6-38) in the
GMRES method for the calculation of the free surface, but it caused convergence
problems. Instead, the free surface was updated outside GMRES, using a fixed-point
algorithm for fixed ug. The other variables, solved in GMRES, were calculated for a
fixed position of the free surface. More details on the discontinuous Galerkin method

applied to the pseudo-concentration can be found in reference 2.

Finally, for some simulations at low Deborah number it was found useful to do one to
three fixed point iterations as a preconditioner to GMRES. However, this caused
convergence problems at high levels of elasticity and had to be avoided for these flow

conditions.
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7. Planar Abrupt Contraction Flow of High-Density
Polyethylene

7.1 Experimental Methods
7.1.1 Die Geometry

Extrusion experiments were carried out using a slit die with transparent walls made of
Pyrex™. The die is continuously fed by a Kaufmann PK 25 single screw extruder. It
consists of a large reservoir, in which the pressure and the temperature are measured, and
a die land, which can be adjusted to vary the local geometry. Details of the die design are
given in reference 1. We used only one configuration consisting of an abrupt 8:1
contraction. The geometry of the slit die is shown in Fig. 7-1, and the dimensions are
given in Table 7-1. With regard to the aspect ratios W/H of the reservoir and channel we
note that these are smaller than the minimum value? of 10 recommended to ensure 2D
flow, especially in the case of the reservoir. This issue will be discussed when comparing
data with the results of numerical simulations. All the experiments were carried out at
200 + 2°C and at mass flow rates varying between 0.21 and 2.6 kg/h, which correspond
to apparent shear rates in the channel in the range of 4.6 to 56 s'. The transparent glass
walls permit the use of laser-Doppler velocimetry and the measurement of flow-induced

birefringence.

Flow Direction

W -7
] Q ______ R )

Channel

H

I
I
t
i
|
\ 4
Reservoir

Figure 7-1  Geometry of the Planar 8:1 Abrupt Contraction.



Chapter 7. Planar Abrupt Contraction Flow of HDPE 100

Table 7-1 Geometrical Characteristics of the Die

H H L W W/H W/H
(reservoir) (channel) (channel) (reservoir) | (channel)
20 mm 2.5 mm 20 mm 16 mm 0.8 6.4

7.1.2 Laser-Doppler Velocimetry

Due to its high spatial and temporal resolution, laser-Doppler velocimetry (LDV) is a
useful technique for local velocity measurement in translucent fluids, as it does not
disturb the flow. LDV is based on the frequency shift of light that is scattered by small
moving particles. The technique is as follows: a measuring volume is created by the
intersection of two light beams of equal intensity, and the frequency of one beam is
shifted with respect to the other. The frequency shift (Doppler shift) of the scattered light
with respect to the reference dual beams is directly proportional to the velocity of a
moving particle in the fluid passing through the measuring volume. Details of the LDV

method can be found in reference 3.

We used the Flowlite™ dual-beam system of Dantec, controlled by the Flow Velocity
Analyzer™ and operated from a personal computer with the Burstware™ software (Fig.
7-2). A 10 mW He-Ne laser generates the incident light beam (red light: A=632.8 nm).
The beam is divided in two by a prism, and one beam has its frequency shifted (40 MHz)
with respect to the other by a Bragg cell. The two beams are transmitted by optical fibers
to a probe or optical head, where a lens (f = 160 mm) focuses the beams into the
measuring volume. The dimensions of this ellipsoidal measuring volume are 8x = 8y =
108 um and 8z = 913 um®. The scattered light is received by the same probe and
transmitted to the Doppler analyzer, which can perform fast-Fourier transform (FFT)
analysis. The probe is placed on a XY translation table (Dantec Lightweight Traverse)
that is controlled by Burstware™. Displacement along the z-axis is done manually with a
micrometric positioning screw. The x component of the velocity (¥«) was measured at six
fixed x positions (three in the reservoir and three in the channel) as a function of y. In
Table 7-2 and Fig. 7-3 we present the fixed x positions where the velocity profiles were
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measured. Only one half of the geometry is shown, since it is symmetric with respect to

the y axis.

Bragg cell
He-Ne laser -

beam splitter

coupling
devices

photomultiplier

Doppler signal analyzer

Optical Head
Figure 7-2  Experimental Set-Up of LDV Measureme-nts.

Table 7-2 Velocimetry Measurements Locations

Position Reservoir Channel
1 - 14 mm +2.0 mm
2 -6.5mm + 10 mm
3 -3.0mm + 17 mm
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Reservoir

@ @ Channel

Flow Direction

_'

P Q 9

©

AseNRNANRRERIRERARANERD
asesas

(0,0)
Figure 7-3  Positions of the Velocity Profile Measurements.

7.1.3 Flow-Induced Birefringence

Birefringence occurs in an optically anisotropic material in which there are different
velocities of light for different directions of propagation. Anisotropy is a result of the
material structure and can appear in some materials at rest, such as calcite crystals. It can
also be induced in materials that are isotropic at rest, for example by flow in polymer
melts or elastic deformation of solid polymers. In the last two examples, birefringence is
a result of the difference in polarizability of a polymer chain along its backbone and
perpendicular to it. Polarizability is a measure of the strength of the response of the

electrons in a bond between the atoms of the polymer molecule.

The use of birefringence to infer the components of the stress tensor in a flowing or
deformed polymer depends upon the existence and validity of a “stress-optical relation™”.
This relation is given by the semi-empirical stress optical law as a proportionality

between the components of the refractive index and stress tensors:

Eqn. 7-1 n; =Cr;
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where C is the stress optical coefficient. For a flexible polymer, this coefficient is
proportional to the polarizabilities parallel and transverse to the polymer backbone. For a
given polymer, C is essentially independent of the molecular weight and its distribution

and is relatively insensitive to temperature”.

The experimental set-up to measure flow-induced birefringence in polymer melts is
shown in Fig. 7-4. A beam of polarized monochromatic light is directed at the melt
flowing through the transparent slit die and then passes through an analyzer. We used a
diffuse monochromatic light source of sodium (yellow light: A=589.8 nm). The optical
anisotropy of the flowing polymer produces an interference pattern consisting of
isochromatic and isoclinic fringes. The measurement of the isoclinic fringes is generally
inaccurate and tedious®, so we added two quarter-waves plates on each side of the die to

obtain only the isochromatic fringe pattern.

analyzer transparent slit die

polarizer

camera

LAY EALV. .Y,

’l

diffuse monochromatic light
source (sodium)

quarter waves
o plates
Figure 7-4  Experimental Set-Up for the Measurement of Flow-Induced Birefringence.
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7.1.4 Flow Rate-Pressure Curve

Extrusion experiments were carried out at twelve flow rates. In Fig. 7-5, we present the
characteristic curve of flow rate vs. pressure for the extruder and die used, using pressure
transducer data. If we neglect the correction for the entrance pressure drop, we can
convert these data to shear rate vs. viscosity by applying the Rabinowitch correction.
These results are presented in Fig. 7-6, along with rheological data, and they are in

agreement with the viscosity curve measured in the laboratory.

25
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0 0.5 1 1.5 2 25 3

Mass Flow Rate (kg/h)
Figure 7-§  Characteristic Curve of Die-Extruder at 200°C.
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Figure 7-6  Comparison of Extruder Data with Viscosity Curve of HDPE at 200°C.

7.2 Numerical Procedure

*7.2.1 Meshes

Two meshes were used for the 2D simulations in order to verify the mesh independence

of the solutions. Both meshes are composed of triangular elements. One is an
unstructured mesh, while the other is structured. The number of elements for each mesh

is presented in Table 7-3, and the meshes are shown in Figs. 7-7 and 7-8 in the region

near the contraction. The numerical procedure used was described in Chapter 6.

Table 7-3 Mesh Characteristics for 2D Flow Simulations
Mesh Planar_1 Planar 2
Unstructured Structured
Number of Elements 1277 2976
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Figure 7-7 Mesh Planar_1.
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Figure 7-8  Mesh Planar_2.

7.2.2 Viscoelastic Converged Solutions

Numerical convergence is always limited in viscoelastic simulations of fields that contain
flow singularities. The miaximum flow rate for convergence depends on the mesh, the
longest relaxation time of the discrete spectrum, and the constitutive equation. As the
mesh is more refined near the flow singularity or reentrant corner, convergence becomes
more difficult as in the case of mesh Planar 2. Convergence was also more difficult
when using the discrete spectrum based on all data as compared to the spectrum based on
truncated data (Table 4-4), since the longest relaxation time is longer in the former case
(24.0 sec. vs. 6.25 sec.). We will refer to these spectra as the "full" and "truncated"
spectra. We also found that the simple Leonov model gave more convergence problems

than the PTT model, possibly because of stronger nonlinearity in the extra stress. It was
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not possible to determine exactly why this occurred. We did not try simulations with the
modified Leonov model, considering the difficulties encountered using the simple model.
We present a map of the converged solutions for the various cases (Tables 7-4 and 7-5).
Convergence is expressed in terms of the number of flow rates converged, where the
maximum is twelve (12). Note that for the PTT model, the same nonlinear parameters (&,
) were used with the full and the truncated spectra, these parameters giving equally good
fits of the rheological data.

Table 7-4 Converged Solutions with the PTT Model (max=12)

Spectrum Mesh
Planar 1 Planar_2
~ Full 6 0
Truncated 12 12

Table 7-§ Converged Solutions with the Simple Leonov Model (max=12)

Spectrum Mesh
Planar 1 Planar 2
Full 1 0
Truncated 3* 1

* third solution not fully converged

7.3 Total Pressure Drop

For each flow rate we compared the predicted total pressure drop with the one indicated
by the pressure transducer in the reservoir. The predicted pressure drop was evaluated as

follows:
qul. 7-2 AP, cale = P, reservoir — P L=20mm

where Preservoir 1S the pressure in the reservoir at the position of the pressure transducer,
and Pr-20mm is the pressure in the slit die at Z=20mm which corresponds to the die exit.
In Fig. 7-9 the results of both viscoelastic models and the viscous model are compared to
the measured values. Note that only three points were obtained with the simple Leonov
model. The calculated pressures are slightly overestimated by the viscoelastic models,
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while they are underestimated at high shear rates by the viscous model, but in general the
agreement is good. Since the melt is predominantly in shear flow, even the viscous
model can give a good approximation of the total pressure drop. In Fig. 7-10, we
compare the predictions of the PTT model with the full and truncated spectra and we see
that they agree very well. This shows that there is no advantage in using the full
spectrum, which usually gives more convergence problems. Finally, mesh independence
is demonstrated in Fig. 7-11.
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Figure 7-9  Comparison of Predicted Total Pressure Drop with Experimental Values.
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Figure 7-11 Mesh Independence for the Prediction of Total Pressure Drop.
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7.4 Velocity

The velocity profiles were measured for the three lowest flow rates, and the results are
shown in Figs. 7-12 to 7-17 for the six measurement positions shown in Fig. 7-3 and
Table 7-2. The predicted velocity profiles were computed on mesh Planar 1 for all
models using the truncated spectrum for the viscoelastic models. Note that both

viscoelastic models predict the same velocity profiles.

Where the flow is dominated by shear (position 1 in the reservoir and all three positions
in the channel) all models including the viscous model give good predictions of the
velocity profiles. However, where the extensional component of the flow becomes
important, as we get closer to the contraction (positions 2 and 3 in the reservoir), we start
seeing disagreement between the predictions and the measurements. There is also more
dispersion in the experimental results at these positions, since a small difference in Ax or
Ay results in a large difference in velocity. The viscous model most underestimates the
velocity as the extension becomes more important, but the viscoelastic models are also
unable to capture well the behavior of the flow. In Fig. 7-15 the viscous model is seen to
be In better agreement with experimental data where the flow is dominated by shear. It
appears that the flow becomes fully developed faster than predicted by the viscoelastic

models.

Again mesh independence was verified by comparing the results with mesh Planar 2.
This is shown in Fig. 7-18 using the truncated spectrum for the third flow rate of position
3 in the reservoir. We also verified for the same flow conditions that the use of the full

spectrum did not improve the velocity profile predictions (Fig. 7-19).
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7.5 Birefringence

It was mentioned that the use of birefringence data to infer the components of the stress
tensor in a flowing polymer depends upon the validity of the stress-optical relation:
n; =C Ty

where C is the stress optical coefficient. In order to compare the experimental
birefringence with the calculated one, we need to know the value of this coefficient. An
approximate value can be obtained by comparing the maximum values of the first
principal stress difference ((o; —03) .. ) calculated by the finite element simulations
with the corresponding maximum birefringence (Amax) measured on the axis of symmetry
for all flow rates. The maximum birefringence (Amax) is obtained by fitting a cubic spline
to the data at each flow rate and finding the maximum from the spline (Fig. 7-20). We
obtained a linear relation between (o ~0,) - and Amax (Fig. 7-21), which implies the
validity of the stress-optical relation. By measuring the slope, we can evaluate the stress
optical coefficient. We obtained a value of 1.47 x 10° m?/N, which is lower than the

value reported by Beraudo’ for a LLDPE (2.1 x 10 m%*/N) but equal to that reported by
Schoonen® (C=1.47x10" m?/N) for a low-density polyethylene.
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Figure 7-20 Evaluation of Apax on the Axis of Symmetry.

We can make two types of comparison between the measured and the calculated
birefringence, one qualitative and the other more quantitative. In the qualitative case, we
look at the entire flow domain and compare the shapes of the calculated birefringence
fringes and their relative positions-with experimental data. In the quantitative case, we
compare the birefringence predicted by the various models with the measured
birefringence on the axis of symmetry. In a 2D planar flow domain, the first principal
stress difference, which is used to calculate birefringence, is given by the following

equation:

Eqn. 7-3 0y ~0y =|N? —4},
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Figure 7-21 Calculation of the Stress Optical Coefficient.

In Figs. 7-22 and 7-23 we present the qualitative comparison on the entire flow domain
for the third apparent shear rate (14.4 s™), which is the highest rate for which we obtained
a converged solution with the Leonov model. Fig. 7-22 shows the solution obtained for
the Leonov model, while Fig. 7-23 was obtained for the PTT model. Both models
represent well the measured birefringence in terms of the shape and position of the
fringes in the reservoir, but the Leonov model is closer to the data in the channel. In Fig.
7-24 we show the calculated birefringence for the highest apparent shear rate (56.4 s™)
for the PTT model. Again, good qualitative agreement is obtained.



Chapter 7. Planar Abrupt Contraction Flow of HDPE 115

Figure 7-22 Comparison of Measured and Calculated Birefringence (Leonov Model,
7, =14.4sM).

Figure 7-23 Comparison of Measured and Calculated Birefringence (PTT Model,
¥, =14.4s1).



Chapter 7. Planar Abrupt Contraction Flow of HDPE 116

f((@r?——? =

Figure 7-24 Comparison of Measured and Calculated Birefringence (PTT Model,
y, =56.4s").

To evaluate more quantitatively the performance of the models, we compare the
calculated and measured birefringence on the axis of symmetry. In Figs. 7-25 to 7-27, we
show the results of the three models for the three lowest apparent shear rates. The
Carreau-Yasuda model gives clearly the poorest prediction; the normal stresses relax
immediately, going to zero as soon as the streamlines become parallel in the channel.
While the predictions of the velocity profiles were similar for the two viscoelastic
models, they now differ considerably; the Leonov model gives a much better
representation of the experimental birefringence, with the PTT model relaxing too fast in
the channel, as was seen in the quantitative comparison on the entire flow domain. This
fast relaxation is shown again for the highest apparent shear rate where we compare the
predictions of the PTT and Carreau-Yasuda models.
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We saw previously that there was no difference in the predictions of the pressure drop or
the velocity when using the full spectrum vs. the truncated one. For the birefringence om
the axis of symmetry, there is a small difference in the maximum birefringence if we use
the full spectrum (Fig. 7-29). This difference amounts to 1.2 % at an apparent shear rate
of 28.7 5. Similarly, there is a small difference in the maximum birefringence betweem
the predictions with the two meshes (Fig. 7-30) of 2;4 %. What is remarkable with the
structured mesh is the smoothness of the curve and the absence of oscillations in the

stresses.
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7.6 Discussion

In general, the results of simulations of planar abrupt contraction flow are disappointing.
The model giving the most realistic representation of the experimental stresses, the
simple Leonov :hodel, is also the one posing the most serious numerical convergence
problems. The predictions of total pressure drop by the viscoelastic models are good, but
so are those of the strictly viscous Carreau-Yasuda model. The viscous model is also
able to give an excellent prediction of the velocity field when there is no strong
elongational component. However, when this component becomes important, even the

viscoelastic models have difficulty in capturing all aspects of the behavior of the melt.

Noting the rapid change in the flow field near the contraction, we did a sensibility study
in this region to evaluate the effect of a small error in Ax on the velocity profile. We
looked at the predicted velocity fields assuming the position of the measurement was in
error by + 0.5 mm in x at positions 2 and 3 in the reservoir. The results of the study are
shown in Figs. 7-31 and 7-32. Surprisingly, the predicted velocity profiles are now in
perfect agreement with the measurements. This shows that results of the simulations in
terms of velocity might be better than originally thought, and that a small error in the
measurement position where the flow is changing rapidly can result in a large error in

velocity.



Chapter 7. Planar Abrupt Contraction Flow of HDPE 119

1.8 4
A 14481
©  Posltion of Messurement 38
bl | Bt iy
_ - 3
£ £ 2s
E E
2 0.9 2 2
F
g os ;; 15
1
03 1 o5
o4 04
Q 2 4 [ 3 ] 10 ] 2 £ [ 8 10
Position y (mm) Position y (mm}
Figure 7-31 Influence of Axon Figure 7-32 Influence of Ax on
Velocity Profile (reservoir, position 2). Velocity Profile (reservoir, position 3).

It was also concluded that there is little advantage in working with the full specttum vs.
the truncated spectrum. Of course, there is a limitation on the amount of truncation that
can be done before starting to loose information about the material. Our truncation was
sufficient to facilitate numerical convergence without affecting the predictions of the
variables studied.

The faster relaxation of the stresses in the channel predicted by the PTT model in
comparison with the experiments was also observed by Beraudo’ and Schoonen®. [t is
hard to say why the model behaves in this way. For one thing, the parameter that
controls elongation, £, was determined from uniaxial elongation experiments, while we
applied it to a flow where the elongation is planar. Furthermore, this parameter was
determined at low extension rates, while this rate can become quite large in the actual
flow situations. For example, at the highest apparent shear rate (56.4 s™') the extension
rate on the axis of symmetry reaches a value of 8 s™' near the contraction (x=0), as seen in

Fig. 7-33.

Finally, the fact that we had a ratio of W/H < 10 neither in the reservoir nor in the
channel may invalidate the assumption of 2D flow. This could explain the difference
between the shape of the predicted fringes in the reservoir ("butterfly" shape) and the

experimental ones, which are rounder’.
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8. Axisymmetric Entrance Flow and Extrudate Swell of
Linear Low-Density Polyethylene

8.1 Experimental Methods

8.1.1 Capillary Extrusion

Extrusion experiments were carried out in a constant speed, piston-driven capillary
rheometer, as described in section 4.2.2. Circular dies with a 90° tapered entrance angle
of 1.4 mm diameter and three L/D ratios were used (4.75, 9.5, 19.0). We also included in
the study a longer die (L/D=38.0) for the extrudate swell experiments, in order to ensure
fully developed flow at the exit. A schematic view of the rheometer is shown in Fig. 8-1.
In this instrument, the apparent wall shear rate is related to the flow rate, and the wall
shear stress to the force measured by the load cell. All the experiments were carried out
at 150 = 1°C and at apparent shear rates between 2.22 and 88.8 s. The quantities
measured are the total pressure drop given by the load cell, the entrance pressure drop,
inferred from a Bagley plot or measured directly for an orifice die (see Fig. 4-3), and the
extrudate swell. The experimental set-up for the extrudate swell measurement is

described in the next section.

8.1.2 Extrudate Swell Measurement

The die swell experiments were also performed at 150°C and apparent shear rates from
2.22 to 88.8 s”. The ratio measured is the time-dependent extrudate swell B(?), defined

as:
Eqn. 8-1 B()=D,(#)/D,

where D, is the capillary diameter and D.(?) is the diameter of the extrudate, which is a
function of time. In addition to the capillary rheometer, the experimental apparatus to
measure die swell consists of a thermostating chamber, an optical detection system and a
data acquisition system. For the accurate measurement of the diameter of a soft, delicate,

hot, and moving object, a non-contacting sensor must be used. In this work an optical
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system was used, consisting of a photodiode array and a 2 mW He-Ne laser beam. This
system was designed by Samara'.

Reservoir
—x $ Piston
A P entrance
A P total Capillary
Y
Extrudate

Swell 4 J@—

Figure 8-1  Capillary Rheometer.

A schematic view of the experimental apparatus is shown in Fig. 8-2. To measure die
swell, the resin is extruded from the die into a thermostating chamber. An expanded and
collimated laser beam is used as a back-light source to cast a shadow of the polymeric
extrudate onto a linear photodiode array. An achromatic lens magnifies this shadow.
The electrical signal from the photodiode array is then processed using a specially
designed circuit. The data logger we used was designed to enable real time acquisition of

data using a microcomputer.

Two problems can arise during extrusion of polymer directly into air. First, extrusion
into ambient air leads to premature freezing and the development of frozen-in stresses.
Second, if the pdlymer is extruded into a heated oven, it will sag under its own weight.
The use of an oil-filled thermostating chamber eliminates both of these problems. The
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thermostating chamber is composed of a stainless steel container, an outer comp-artment,
and two rectangular stainless steel inner compartments. The inner compartments were
equipped with two quartz windows each to allow the laser beam to pass through. The
chamber was equipped with two plug-screw 300 watt immersion heaters. A tem-perature
controller, operating in conjunction with a thermocouple, was used to control and monitor

the temperature in the inner compartments.

magnifying lens

oscilloscope

------------

He-Ne laser

signal conversion and
data acquisition unit

thermostating

chamber
photodiode array compputer

Figure 8-2  Experimental Setup for Extrudate Swell Measurements.

The outer compartment was filled with 200 centistokes (cS) silicone oil (200® Fluid
from Dow Corning). The inner compartments contained a mixture of silicone oils,. mainly
2 ¢S and S ¢S Dow Corning 200® Fluid. The oils were mixed in proportions found by
trial-and-error to achieve a density slightly lower than that of the melt at the test
temperature. We found that a 52 % - 48 % by volume mixture of 2 ¢S - 5 ¢S gave the
best results. We also determined the small amount of swell due to the oil and sulbtracted
it from the measured swell. This procedure is discussed in section 8.5.1. Note that the
maximum temperature to which the oils could be heated was 150°C, which explains the
selection of the operating temperature for the experiments. A complete description of the

experimental apparatus and procedure can be found in reference 1.
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8.2 Numerical Procedure

8.2.1 Meshes N

Simulations of entrance pressure drop and extrudate swell were performed separately.
The boundary conditions of fully developed flow were used for the extrudate swell

simulation so that it could be decoupled from the flow in the reservoir.

Two meshes were used for the axisymmetric entrance flow simulations in order to verify
mesh independence of the solutions. Both meshes are composed of triangular elements
and are unstructured. Several meshes were tested for extrudate swell, but it was possible
to obtain numerical convergence at our test conditions on only one of them. This mesh is
also unstructured and made of triangular elements. The number of elements for each

mesh is presented in Table 8-1, and the meshes are shown in Figs. 8-3, 8-4 and 8-5.

Table 8-1 Mesh Characteristics for Axisymmetric Flow Simulations

Mesh A§= 1 Axi_2 Swell 1
Unstructured Unstructured Unstructured
Number of Elements 1611 3402 1822
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Figure 8-5 Mesh Swell_1.

8.2.2 Viscoelastic Converged Solutions

Numerical convergence can be easily summarized for the axisymmetric entrance flow
simulations. The PTT model gave converged solutions for all seven experimental flow
rates, on both meshes and with both the full and truncated spectra shown in Table 4-3.
On the other hand, it was impossibie to obtain a converged solution with the simple

Leonov model for any of these conditions at one of the experimental flow rates.

For extrudate swell simulations, a peculiar behavior was observed with the simple
Leonov model. As we slowly increased the flow rate from Newtonian behavior to
viscoelastic, the ultimate swell (t—<0) started to decrease from its Newtonian value of 13
%. This behavior is shown in Fig. 8-6 (mesh Swell_1, truncated spectrum). A similar
observation has been reported by Rekers®.. However, we lost convergence at a very low
shear rate, and it was not possible to verify if this trend was continuing at higher shear
rates. We present below a map of the converged solutions for the various cases of
entrance flow and extrudate swell. It is expressed in terms of the number of flow rates

converged, where the maximum is seven.
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Table8-2  Converged Solutions with the PTT Model (max=7)
Spectrum Mesh
Axi_1 Axi 2 Swell 1
Full 7 7 0
Truncated 7 7 1
Table 8-3 Converged Solutions with the Simple Leonov Model (max=7)
Spectrum Mesh
Axi 1 Axi 2 Swell_1
___Full 0 0 0
Truncated 0 0 0
13.5
= 134 m] m]
=
(7]
o
% (m
E
S 125
a
12 . . .
0.0001 0.001 0.01 0.1
Apparent Shear Rate (1/s)
Figure 8-6  Ultimate Swell Predicted by the Simple Leonov Model.

8.3 Total Pressure Drop

The numerical results presented here were obtained with the PTT and Carreau-Yasuda
models. We compare the calculated and experimental total pressure drop for an L/D of
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19.0, since the viscosity was thought to be affected by the pressure with the L/D of 38.0,
and pressure effects are not included in thee finite element model. The predicted total

pressure drop was evaluated as follows:

Eqn. 8-2 AP i =P cemveoir — Prip=19

In Fig. 8-7, the results of both models are compared to measured values. The calculated
pressures are slightly underestimated at high shear rates, especially by the Carreau-
Yasuda model, but in general the agreement is good. Since the melt is predominantly in
shear flow, even the strictly viscous model can give a good approximation of the total
pressure drop. In Fig. 8-8, we compare the predictions of the PTT model with the full
and the truncated spectra, and we see that they agree very well. Finally, mesh
independence is demonstrated in Fig. 8-9.
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Figure 8-7 Comparison of Predicted Total Pressure Drop with Experimental Values.
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Figure 8-8 Influence of Discrete Spectra on Prediction of Total Pressure Drop.

25
o Measured
o PTT (full spectrum, axi_1)
20 L o PTT (full spectrum, axi_2) &
a
©
a 15}
o3
= a
s
2 10
a L
o &
&
s L ]
8
.|
o ]
1 10 100

Apparent Shear Rate (1/s)
Figure 8-9  Mesh Independence on Prediction of Total Pressure Drop.
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8.4 Entrance Pressure Drop

In the entrance region the melt undergoes both shear and elongation, so we expect to see
a difference between the predictions of the viscoelastic and the viscous models. Fig. 8-10
shows the measured values of the entrance pressure drop along with the predictions of

both models. The predicted entrance pressure drop was evaluated as follows:

Eqn. 8-3 AP oie = P pcervoir —~ Prir=0s

The Carreau-Yasuda model underestimates the entrance pressure drop, as expected
because of the strong elongational component of the flow. For example, at the highest
apparent shear rate (88.8 s1) the extension rate on the axis of symmetry reaches a value
of 22 s™ near the contraction (x=0), as seen in Fig. 8-11. The oscillations in & after the
contraction are typical of results obtained on unstructured meshes when using the
discontinuous Galerkin method’. However, the PTT model also underestimates the
entrance pressure drop by about 50%. Earlier simulations of entrance fiow have also
produced entrance pressure drops well below those observed experimentally*>%%. In
Fig. 8-12, we compare the predictions of the PTT model with the full and truncated
spectra, and we see again that they agree well. Finally, mesh independence is

demonstrated in Fig. 8-13.
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Figure 8-12 Influence of Discrete Spectrum on Prediction of Entrance Pressure Drop.
3
o Measured (orifice die)
A PTT (full spectrum, axi_1)
o PTT (full spectrum, axi_2)
g | t
A
o
[+
c
S
= 3 a
o
a 1L
<
z ]
3 e
$ a 2
o g 0 1
1 10 100

Figure 8-13 Mesh Independence on Prediction of Entrance Pressure Drop.

Apparent Shear Rate (1/s)



Chapter 8. Axisymmetric Flow and Extrudate Swell of LLDPE 133

8.5 Extrudate Swell

8.5.1 Experimental Results

The measurements were made with an L/D of 38.0 to ensure fully developed flow at the
die exit. Comparisons with swell data for L/D = 19.0 showed that fully developed flow
was not reached in the shorter die since swell was larger. Fig. 8-14 shows the measured

swell as a function of time for the seven apparent shear rates.

Utracki et al.>!? have found that Dow Corning 200® fluid silicone oils do not swell
polyethylene if medium viscosity grades (50 ¢S and 100 cS) are used. However, some
interaction between the oil and polymer occurs when low viscosity grades are used with
polyethylene. In the present study, a mixture of low viscosity grades of silicone oil was
used (2 ¢S and 5 ¢S) in order to provide an oil density slightly lower than the polymer
melt density. The swell due to the oil was measured so that it could be subtracted from
the measured swell using a method similar to that of reference 1. The resin was extruded
directly into air at an apparent wall shear rate of 13.3 s”. Cut extrudate strips were
annealed for 30 minutes in an oven at 150°C in a bath of 500 cS silicone oil. We verified
that the high viscosity oil was not absorbed by the polymer by weighing the sample
before and after annealing. The annealed samples were placed in the thermostated
chamber, and extrudate swell was measured at 150°C using the apparatus. It seems
reasonable to assume that after annealing, all the stresses are relaxed and the equilibrium
swell is reached. Consequently, any additional swell would be due to interaction with the
oil. The oil swell curve is shown at the bottom of Fig. 8-14. This swell was subtracted
from all the extrudate swell measured values. This is shown in Fig. 8-15 for the apparent
shear rate of 88.8 s™. In this way the net swell without the effect of oil was obtained. We

assumed that the oil absorption effect was the same at all shear rates.

No data are available at short times for the lowest apparent shear rates in Fig. 8-14. The
method used does not allow an accurate capture of the instantaneous swell that occurs in

the first seconds of extrusion for these rates, because a significant time is required for the
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. sample to reach the viewing chamber at these shear rates. Finally, the ultimate net swell,
obtained at long times, is shown in Fig. 8-17 as a function of apparent shear rate.
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Figure 8-14 Total Swell and Oil Swell as a Function of Time.



Chapter 8. Axisymmetric Flow and Extrudate Swell of LLDPE 135

2.0 LN R S0 (L ENAL RN S B (LN N S R NN LS S S N SN SRS R SN NN S A A [N R R S

® ! -
tl;) I o  Oil Swell )
14 | O Total Swell (88.8 1/s) | -

- A NetSwell (88.81/s) | -

s .

1.2 | i

0 200 400 600 800 1000 1200 1400
Time (s)
Figure 8-15 Net Swell as a Function of Time after Oil Swell Subtraction.

8.5.2 Comparison with Simulations

As was mentioned in section 8.2.2, it was not possible to calculate the viscoelastic swell
for most conditions, although the Newtonian swell (13 %) was easily calculated on
several meshes. The Leonov model was discarded early, first because of its pathological
prediction of decreasing swell, and second because of numerical conv-ergence problems.
With the PTT model, which showed almost no convergence problems in other situations,
we were able to obtain a converged solution only for the lowest apparent shear rate (2.22
s') and only on one mesh. In Fig. 8-16, we show the predicted interface calculated on
mesh Swell_1 with the truncated spectrum. The ultimate swell (20 %), shown in Fig. 8-
17 along with experimental values, is almost half of the measured swell for that flow
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condition (37 %). The experimental ultimate swell data is presented in the appendix.
Since we could not obtain a converged solution using the full spectrum, it is not possible
to know at this time if the low calculated swell is related to the use of the truncated
spectrum. As mentioned previously in section 2.4.3, extrudate swell depends strongly on
molecular weight distribution, i.e. on the detailed spectrum.

Figure 8-16 Calculated Interface with PTT Model (truncated spectrum, mesh Swell_1).
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Figure 8-17 Measured and Predicted Ultimate Swell.
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8.6 Discussion

In general, the results of simulations of axisymmetric entrance flow and extrudate swell
are disappointing. The performance of the simple Leonov model is much worse than in
the planar case, in terms of numerical convergence problems and the prediction of
decreasing swell. The Leonov model gave realistic predictions for planar contraction

flow (see Chapter 7) but was not useful for axisymmetric extrudate swell.

The PTT model was much easier to work with in terms of numerical convergence for the
prediction of entrance flow but not for the free surface flow. The predictions of total
pressure drop are good, but so are those of the strictly viscous Carreau-Yasuda model.
Predictions of entrance pressure drop are largely underestimated, even with the
viscoelastic PTT model. We also tried using €=0 in the simulations, which gives the
strongest strain-hardening behavior in elongation, but this only increased the prediction
of the entrance pressure drop by 6 %. This poor performance is similar to what is seen in
planar flow for velocity fields with a strong elongational component (section 7.4). At this
time, it is difficult to say why this is so. There are two possibilities: either the models are
inappropriate, or the parameters determined in simple flows can not reproduce the
features of complex flows. However, the models must also be correct for the simple
flows. We also note that the elongation rate in the flow simulated can be much larger
than the range of extension rates for which it was possible to fit the viscoelastic model

parameters.

Beraudo’ suggested that the most appropriate quantity to be compared with the measured
pressure is the rr component of the Cauchy stress tensor, evaluated at the wall. Using

this suggestion for the orifice die, we have:

Eqgn. 8-4

= — Pp,pe0s T AT,

AP ote =~ rrreservoir T CrrLiR=05 reservoir

rT reservoir
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The contribution of the extra stress difference, At,, is negative and decreases the
computed entrance pressure drop by 3-4 %, thus increasing the discrepancy with the

measured values.

Finally, for the free surface predictiom, the difficulty was not with the calculation of the
free surface position itself but in trying to converge the extra stresses for a fixed position
of the interface. We also tried an alternative to the use of the pseudo-concentration,
where the interface is modeled by a function # (for height) calculated from the velocity
profile.

oh oh
Eqn. 8-5 — 4 U, —=u
qn ot 1 e 2

But this did not facilitate the convergence of the extra stresses and failed to give a

converged solution for any of our exp-erimental conditions.
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9. Alternative Approaches

In order to optimize the design of plastics processing equipment and the processability of
plastics resins other than by trial and error, it is necessary to have a reasonably accurate
model of the process of interest. However, the numerous difficulties involved in
viscoelastic flow simulation have led to the development of alternative approaches that
avoid the explicit modeling of fluid elasticity. These make use of specific material
functions, particularly viscosity, normal stress differences and elongational viscosity.
Highly simplified constitutive models are used, which are strictly valid only in steady
simple shear or elongational flows and employ empirical equations fitted to experimental
data.

In this chapter, we describe several of these simplified approaches and propose the use of
a rule-based expert system as an alternative to full viscoelastic flow simulations.

9.1 Viscometric Flow

The viscometric flow approximation has been used successfully by Vlachopoulos et
al.'">**  This is based on the observation that most polymer processing operations
involve flow in channels where there is a main flow direction such that the streamlines
are almost parallel, therefore justifying the treatment of the flow as locally viscometric.
This approach is based on the Criminale-Ericksen-Filbey (CEF) equation (Eqn. 2-16) and
requires a minimum amount of experimental information, i.e. the viscosity and normal
stress differences. It takes into account the effect of normal stresses, which is a

manifestation of viscoelasticity, but avoids explicit reference to the fluid memory.

In the field of numerical simulation, one often talks about the “high Weissenberg number
problem”. However, this reveals an error in terminology. The reference should be to the
“high Deborah number problem”, the term introduced in Chapter 2. The Weissenberg
number (We) indicates the degree of nonlinearity or anisotropy that is manifested in a
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given flow, while the Deborah number (De) indicates the relative importance of
elasticity.

Eqn. 9-1 We = Ay
y
Egn. 9-2 De = 2L
lﬂow

The Weissenberg number is the product of a characteristic relaxation time of the material
and a typical strain rate, while the Deborah number is the characteristic relaxation time of
the fluid Az divided by the characteristic time of the flow Ag,,. The characteristic time
of the flow Az, is a time reflecting the variation of the strain history.

The confusion between the two arises from the fact that in many flows of practical
importance they are directly related to each other. The distinction is particularly
important in flow stability analyses, and those working in this field have been very
careful not to confuse the two expressions. For example, Larson’ has properly
distinguished between De and We. Moreovér, McKinley® has explained in detail how the
two are related in converging flows and has introduced a “scaling factor” that expresses

this relationship quantitatively.

Fully developed flow in a channel of constant cross section, which is a viscometric flow,
is a flow in which De is zero because of constant-stretch history but in which We
increases with the flow rate. Vlachopoulos et al., among others, have had considerable
success in the modeling of melt flows in which De is small but We can be quite large.
Examples of forming processes simulated using the viscometric flow approach include
extrusion’, film blowing®, thermoforming® and calendering'® for polymer melts and
elastomers''. However, we have to keep in mind that the viscometric approach remains
an approximation, which is similar to the lubrication approximation used to simplify the

momentum equation in certain polymer processes, such as injection molding.
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9.2 Power-Law Models for Elongational Viscosity

Gupta'? has also adopted a simplified approach, but this time to simulate the
axisymmetric entrance flow of polymers. Generalized Newtonian models, which have
been successfully used in shear-dominated flows, do not provide an accurate simulation
of applications involving an elongational flow, such as flow at the entrance of an
extrusion die. On the other hand, viscoelastic constitutive equations have not produced
simulations that are in good quantitative agreement with experimental data and are
subject to convergence probiems at high Deborah number. Gupta has developed software
for the simulation of axisymmetric polymeric flow that requires only knowledge of the
viscosity and the strain-rate dependence of the elongational viscosity of the polymer
(which is not easy to measure). According to the author, his software can accurately
predict the velocity and pressure field in applications involving a significant elongational
flow component. However, the constitutive equations employed in the software do not
predict normal stresses in shear flow. Apparently, the incorporation of a first normal
stress difference prediction in the software gives convergence problems'®, and the
incorporation of a second normal stress difference has not been tried yet. Viscosity and

elongational viscosity are modeled using the following equations:

(——n—l
Eqn. 9-3 ns=4 ap fOIIID>IID°, Ms = fOI'LI'DSLTD‘)
-1
Eqn. 94 n,=B HD'" forlI, > I, M, =3, for I p <IIp,

The strain rate for transition from Newtonian to power-law behavior can be different for

the shear and elongational viscosities.

A more elaborate four-parameter model for the elongational viscosity has also been used,

but the author has not revealed its form'3.

The parameters are determined by inverse
problem solving; for a given shear rate, the viscosity and the entrance pressure drop are
measured, and the parameters ruling the elongational viscosity are found by trial-and-
error fitting. Guptal" reported that the (elongational viscosity)/(shear viscosity) ratio was

important in determining the recirculating vortex and the extra pressure loss in
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axisymmetric entrance flow. Obviously, the predictive capabilities and the versatility of
this approach are limited. Two more references, Gotsis and Odriozola'* and Schunk and
Scriven'®, explain how elongational viscosity can be incorporated in simulations without

using a viscoelastic constitutive equation.

9.3 Approximate Prediction of Extrudate Swell

Seriai et al.!® derived a semi empirical equation to predict the extrudate swell of linear
polymers. The model is based on the rubber-like elasticity theory and on the calculation
-of the elongational strain recovery of a Lodge fluid'"'8. The theoretical extrudate swell
ratio mainly depends on the relaxation modulus, the extension ratio, and the recoverable
shear strain. The main advantage of this model is that it provides good accuracy for short
dies over a wide range of shear rates, where other available semi-empirical theories
assume fully developed flow in a lbng die'®. In extrusion processes, relatively short dies
are generally used, and transient flow dominates. The strain history of the melt is thus of

central importance and can not be neglected.

Bush® has also made a simplified simulation of extrudate swell. He models extrudate
swell as the stratified flow of two, Newtonian, isothermal fluids with different viscosities.
By suitable selection of the viscosity ratio, the model can take into account
nonisothermal, shear-thinning and elastic effects. The model provides a means of
simulating complex geometrical effects in profile extrusion without the burden of a full
viscoelastic model and provides a practical aid for die design. The application to three-

dimensional flow problems is also feasible using this method.

9.4 Rule-Based Flow Simulations

The simplified approaches described above have been helpful in certain applications,
such as the design of certain types of die, extruders and injection molds. However, the
predictive capabilities and versatility of these approaches remain limited. On the other

hand, no practical method has been developed for dealing with viscoelastic flow
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situations in which there is a strong convergence or divergence of streamlines or a

singularity in the boundary conditions.

While there is no question that the rheological models used to date in the numerical
simulation of the flow of polymeric liquids are quite ihadequate, the computational
problems encountered in viscoelastic flow simulations occur even when the inaccuracy of
the model is unlikely to be the cause. These problems arise under conditions where the
models are thought to be reasonably reliable, i.e., at low De and when slip or fracture is

not anticipated.

Therefore, it is concluded that the source of the problem is the viscoelasticity of the fluid,
i.e., the dependence of its state of stress on the past history of the deformation. In
particular, the notorious convergence problems mentioned above do not occur in the
simulation of ﬁow at small De. This conclusion is strengthened by the observation that it
has not been possible by elaboration or variation of the numerical method used in the
simulation to eliminate the convergence problem. Neither has it been possible to

eliminate the problem by the use of molecular dynamic models of rheological behavior.

It is very unlikely that any single, closed form constitutive equation will ever be
developed that can describe accurately all aspects of the rheological behavior of highly
entangled molten polymers. Furthermore there are phenomena, such as slip and fracture,
that can not be predicted by a continuum mechanics model but that must be taken into

account in the modeling of many industrial forming operations.

Obviously, a new approach is needed to deal with such flows. The most likely approach
appears to be a rule-based expert system that is able to select, from a repertoire of
possible models of rheological and slip behavior, the one that is most appropriate in each
region of the flow field. A major challenge in the development of such a system is a
method for matching the solutions at the boundaries of neighboring regions. In this last
section, we provide background information on rule-based expert systems and an

overview of how such a system might be used in the simulation of viscoelastic flows.



Chapter 9. Alternative Approaches : 145

9.4.1 Fundamentals of Knowledge-Based Expert Systems

Expert systems, based on techniques developed from artificial intelligence research, are
currently used in a number of engineering applications, especially in the manufacturing
and process control domains®'. An excellent review of knowledge-based expert systems

for materials processing has been presented by Lu®.

An expert system can be distinguished from a conventional computer program in terms of
its three basic components?, which are shown in Fig. 9-1 and listed below.
1. A knowledge base - which contains domain knowledge such as rules, facts, and other
" information that may be useful in formulating a solution.
2. An inference engine - which applies proper domain knowledge and controls the order
and strategies of problem solving.
3. A blackboard - which records the intermediate hypotheses and results that the expert

system manipulates.

Knowledge-Based Expert Systems

Blackboard (data) [¢ ] Control Inference

Knowledge Base

Conventional Programs

Data il P Program

Figure 9-1  Expert Systems vs. Conventional Programs®.
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A conventional program contains only two parts, the program and the data, as shown in
Fig. 9-1, and all the required control and domain knowledge is coded into the program
that manipulates data in a sequential manner with many conditional branches. During

execution, the status of the problem is represented by the current values of the variables

in the program.

In an expert system, the knowledge base is treated as a separate entity rather than
appearing only implicitly as part of the program. It contains facts and rules that are used
as the basis for decision-making. The knowledge related to the control of decision-
‘making is collected in the inference engine, which is physically separate from the
knowledge base. The inference engine has an interpreter that decides how to select and
apply the rules from the knowledge base to infer new information, and a scheduler that
determines the order in which the selected rules should be applied. The blackboard is a
separate entity that serves as a working memory for the system. It can be viewed as a
global database for keeping track of the current problem status and other relevant
information during problem solving. The separation of the task-level knowledge (stored
in the knowledge base) from the control knowledge (stored in the inference engine), and
the addition of a separate working memory (the blackboard), gives expert systems greater
flexibility in both the implementation and execution stages. Many applications can

benefit from the use of such a system.

9.4.2 Application to Viscbelastic Flow Simulations

One way to approach effectively viscoelastic flow simulations is through computational
domain decomposition™. For example, the Schur complement method is based on a
domain decomposition that leads to a decoupling of the system on a sub-domain basis
rather than on a component basis. The advantage of this technique is that all the
unknowns in an element (stress, velocity and pressure) exhibit strong local coupling,

which makes a decoupling on a component basis less attractive®.
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Another strong advantage of this technique is that it enables the use of the most
appropriate rheological model in each region of the flow field or sub-domain. However,
the size and boundaries. of these sub-domains are not known a priori, and they should be
allowed to established themselves according to flow conditions through an automated
process. This is where knowledge-.based expert system based on rule representation
become attractive. An expert system would be able to select from a bank of rheological
equations the most appropriate model according to the flow conditions calculated in a
“ start-up element” to get the cycle going”. The rules for model selection could be
based, for example, on the examination of the velocity gradient. Two main difficulties
"would have to be overcome: first, the matching of the solutions at the boundaries of
neighboring regior:s, and second the achievement of convergence towards a unique model

in each sub-domain, so it would not change from one iteration to the next**.

The use of a rule-based expert system would enable many simplifications, such as the
viscometric approach in flow regions far from flow singularities or in shear-dominated
zones. More complete calculations would be done only in complex flow zones, allowing
a solution for a small system with a full Newton method, which would facilitate

numerical convergence due to its larger radius of convergence.

Some issues have to be explored systematically to develop the expert system. For

example, a procedure to determine the number of modes needed, based on the material

and the nature of flow. This number could also vary depending on the location of the

sub-domain. Also, a method is needed to determine the best approach for use near a

singularity. Three possibilities are: '

1. The use of a Newtonian model to ensure flow convergence, which is the simplest
" approach, but would not be valid for extrudate swell.

2. A boundary layer simplification, similar to the boundary layer theory of classical
fluid mechanics. An example of such equations are those derived by Renardy® for
the PTT and Giesekus models for enciosed flows, but they have not been tested in

large finite element codes.
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3. A coupled macroscopic description of the conservation laws with a kinetic theory of
the polymer dynamics, along with a full Newton method to allow convergence. This
approach would provide a more realistic description of the flow in these small

regions, but would require more computational resources.

The use of a more realistic description would lead to an improvement of the simplified

approach by adding to our understanding of material behavior®®.

9.4.3 Incorporation of Other Phenomena

Another advantage of the expert system approach for polymer processing is the
possibility of incorporating other phenomena such as slip or fracture that can not be
predicted by a continuum mechanics model, but that must be taken into account in the
modeling of many industrial forming operations. Since reliable models of these
phenomena are not yet available, they could be incorporated into the expert system by
means of fuzzy logic®’. Fuzzy logic or possibility theory™ is especially suitable for
complex, ill-defined, nonlinear phenomena, where human experience is superior to
mathematical models®. Fuzzy logic represents a mathematical way of looking at
vagueness in a form that a computer can deal with. It might be possible in this way to
model phenomena such as the wall slip and fracture of molten polymers for which
explicit models are not available. The advantage of this approach is that a fuzzy expert
system is similar to a conventional rule-based expert system, except that it contains rules
with imprecise relationships®. Fuzzy-logic could be easily incorporated to the computer

program architecture presented earlier.

The essential elements of a possible rule-based expert system for viscoelastic flow
simulation are presented in Fig. 9-2. The first calculation might be carried out for a
Newtonian fluid in order to insert a start-up solution in the working memory (DATA) to
get the cycle of “reasoning” (CONTROL) going.
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solutions boundaries

—selection of rheological models

—selection of slip and fracture models
(fuzzy logic reasoning)
—selection of boundary conditions

KNOWLEDGE
erules on order of actions

| sxules on selection of: »

matching of solutions at boundaries

—sub-domains boundaries . .
- sconvergence verification:

—rheological models .
—towards single model in each zone

~slip models

—numerical convergence

—fracture models
—boundary conditions

srules on matching of solutions
at boundaries

Figure 9-2  Essential Elements of a Possible Rule-Based Expert System for
Viscoelastic Flow Simulation.
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10. Conclusibns and Recommendations

10.1 Conclusions

The lack of success in the simulation of viscoelastic flows in which there is a strong
convergence or divergence of streamlines, or a singularity in the boundary conditions, has
been thought to arise from the following sources:

- The inadequacy of the rheological model for the material.

- The presence of the flow singularity.

- The elasticity, i.e., history dependence, of the material.

It is concluded here that the principal source of the problem is the elasticity of the fluid in
combination with flow singularities. Numerical difficulties are also encountered with
Newtonian fluids in the presence of flow singularities, but since they have no memory the
effect of the stress overshoot is not carried into the rest of the flow field. Viscoelasticity,
as described by multiple relaxation times, some of which may be quite long, renders even
the most advanced numerical methods incapable of modeling industrial flows of melts of
typical molten plastics in which elasticity plays an important role.

One of the difficulties encountered in this project was the lack of flexibility to change the
numerical algorithms in order to improve convergence. The amount of work involved to
change the finiic element Fortran code restrained us from trying more powerful (but
costly) solvers like the Newton method. For faster progress in the future, new
programming methods must be developed to eliminate this restriction.

With regard to the inadequacy of existing rheological models, and in particular the
Leonov and PTT models, it is concluded that:

1. With the best constitutive equation from a rheological point of view (Leonov model),
solutions for situations of practical importance are impossible, even when one of the

most advanced numerical procedure is used. The model also gives conflicting results,
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with realistic predictions in planar flow but not in axisymmetric flow. The incorrect
prediction of decreasing swell confirms the findings of Rekers'.

2. Even a model that is thought to be one of the best with regard to convergence (PTT
model) is very limited in its capability.

It now seems quite probable that no model expressed solely in terms of continuum
mechanics variables will ever be able to provide a universal description of the flow
behavior of polymeric liquids, and this observation has given rise to a relatively new area,
molecular dynamics simulation. However, it has not been possible up to now to
eliminate the problem of numerical convergence by the use of molecular dynamic models

even with some of the most advanced numerical methods.

The major conclusions of this work are as follows:

1. The barriers that have arisen in trying to use numerical methods to simulate complex
flows of viscoelastic fluids cannot be eliminated using the constitutive equations and
numerical techniques that have been applied to date.

2. It is likely that even if more realistic rheological models were available, the basic
problem would persist, as it arises from the history dependence of the material. This
history dependence leads to an intrinsic instability in numerical solutions.

3. An entirely new approach is needed for the modeling of complex flows. This might
be based on a rule-based expert system approach to the problem. By use of such a
technique, one could guide the direction of the computation in the neighborhood of
singularities, thus ensuring convergence. Such an approach could also readily

incorporate models for slip and fracture phenomena.

10.2 Original Contributions to Knowledge

The original contributions to knowledge resulting from this work are derived from the
objectives presented in Chapter 3:
1. The determination of the limitations in present numerical methods for the simulation

of the flow of viscoelastic materials.
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2. The confirmation of the inadequacy of the Leonov model in axisj'mmetric extrudate
swell.

3. The establishment of the cause of these limitations, i.e. the history dependence of the
materials.

4. The proposal that a rule-based expert system shows promise for overcoming existing

limitations.

10.3 Recommendations for Future Work

Future work should be aimed at developing the new approach described in Chapter 9, a
rule-based expert system able to select, from a repertoire of possible models of
rheological and slip behavior, the one that is most appropriate in each region of the flow
field. The development of an expert system should be the focus of future work in this
field rather than continuing the futile effort to elaborate a single model that will be

adequate over the entire field of a complex flow.

The use of a multimode spectrum, truncated or not, for nonlinear viscoelastic models is
strongly recommended since a single mode can not fit data properly and leads to

numerical problems.

Finally, we need not only more efficient numerical methods but also more efficient
programming tools that will provide more flexibility for trying various algorithms. An
example of such a tool is the program MEF++> (Méthode d’Eléments Finis) written in the
programming language C++. This code facilitates changes in the mesh, mesh

adaptativity, solvers, and upwinding methods in order to improve numerical convergence.

! Rekers G., “ Numerical Simulation of Unsteady Viscoelastic Flow of Polymers », Ph.D. Thesis,
University of Twente, Twente, The Netherlands (1995)

2 GIREF {Groupe Interdisciplinaire de Recherche en Elements Finis), Université Laval, Québec,
Canada
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Apparent Shear Rate (s™) Ultimate Extrudate Swell
222 1.369 +0.019
4.44 1.419+0.018
8.88 1.488 £0.017
13.3 1.538 £0.017
222 1.602 £0.016
444 1.664 £ 0.016
88.8 1.736 £0.0135




