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Abstract

Traditionally, the diffusional growth of a cloud droplet population is calculated

using values of the environrnental conditions that represent averages over large vol

umes, the sa called 'macroscopic conditions (Srivastava 1989). However. it is apparent

that the growth rate of an indiviclual droplet is a function of the temperature and the

vapor pressure in its immediate environment. These quantities vary from droplet ta

droplet and with time in a turbulent medium snch as a cumulus cloud. In nlost the

oretical and numerical studies of doucis, the hypothesis is made that these variations

are unimportant when calculating the growth of an ensemble of droplets. The objec

tive of this work is ta deternlÎne the validity of this hypothesis. [n arder ta do sa we

llse a :30 turbulence model coupled with a clouci droplet growth mode! which salves

for the trajectories and growth of several tens of thollsands of indi vidnal droplets as

a function of their local conditions (microscopie approach).

A series of experiments with various initial size distributions were conducted us

ing no turbulent fiow conditions or one of three turbulent flows with increasing eddy

dissipation rate. The results show that in the absence of any turbulent flow or sedi

mentation of droplets , the non-uniform distribution of cloud droplets in space results

in significant variance of the distribution of the supersaturation perturbation over

aIl droplets (DSP) and the distribution of the degree of growth( 0 DG), defined as

the Lagrangian integral of the supersaturation perturbation along each droplet's tra

jectory. The variance of the DOC is directly responsible for the broadening of the

microscop'ic size distribution relative ta the macroscopic size distribution. However.

in the presence of turbulence and sedimentation of droplets, the variance of the OSP

is significantly reduced. Furthermore, the average, over aIl droplets, of the decorre

lation time of the supersaturation perturbation decreases as a function of increasing

level of turbulence. Cansequently. the variance of the DDG is significantly reduced

compared ta the no turbulence and no sedimentation experiments and furthermore,
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it decreases as a function of increasing level of turbulence.

vVe have found that for the typical levels of turbulence round in adiabatic cloud

cores, the spatial distribution of the larger cloud droplets can significantly deviate

from a Poisson distribution. The increasing preferential concentration as a function

of increasing level of turbulence does contribllte ta an increase in the OSP as a

function of increasing level of turbulence. However. the DOG decreases as a function

of increasing level of turbulence.

These results are at odds with those in the idealized studies of Pinsky et al. (UJ96)

and Shaw et al. (1998). These authors specified and nlaintained very significant

preferential concentration artificially rather than obtaining' it by solving explici tly

the trajectories of the droplets.

Comparison of our results with the observations of Brenguier and Chaumat (1996)

made in adiabatic cloud cores lead us to the conclusion that the microscopie approach:

even under the most favorable condition of no turbulence. produces too little broad

ening to explain the observations.
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Résumé

Traditionnellement, la croissance par diffusion de vapeur d'eau d'une population

de gouttelettes se calcule en utilisant les valeurs de~ variables environnementales,

que l'on nomme conditions macroscopiques (Srivastava 1989) et qui représentent

des moyennes mesurées à partir d'importants volumes. Cependant. il appert que

le taux de croissance de chaque gouttelette prise individuellenlent est fonction de la

température et de la pression de vapeur dans son environnenlent immédiat. Ces fac

teurs -:arient d'une gouttelette à l'autre ainsi qu'en fonction du tenlps dans un nlilieu

turbulent comme un cumulus. Dans la plupart des études théoriques et numériques

des nuages on émet l'hypothèse que ces variations ne sont pas importantes dans le

calcul de la croissance d'un ensemble de gouttelettes. Ce travail a pour objectif de

vérifier la validité de cette hypothèse. Pour ce faire. nous avons utilisé un modèle

de turbulence en trois dimensions jumelé à un modèle de croissance de gouttelettes

qui tient compte des trajectoires et de la croissance de plusieurs dizaines de mil

liers de gouttelettes individuelles, en fonction de leurs conditions environnenlentales

immédiates.

Nous avons mené une série d'expériences, comportant des distributions initiales

de taille de gouttelette variées. en utilisant soit des conditions sans turbulence ou soit

un de trois niveaux de turbulence. Les résultats nous montrent qu'en l'absence de

toute turbulence ou de sédimentation de gouttelettes, la distribution non uniforme

des gouttelettes dans l'espace se traduit par llne val'Ïance significative dans la dis

tribution (sur l'ensemble des gouttelettes) de la perturbation ~ursaturée (0PS) et la

distribution du degré de croissance (DOC). Cette dernière distribution est le résultat

de l'intégrale lagrangienne de la perturbation sursaturée le long de la trajectoire de

chaque gouttelette. L'élargissement de la distribution de la taille par rapport à la dis

tribution de la taille dans un cadre macroscopique est directelnent dépendante de la

variance du DDC. Cependant, en présence de la turbulence et de la sédimentation des
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gouttelettes, la variance du OPS diminue de façon significative. De plus, sur toutes les

gouttelettes, le temps moyen de décorrelation de la perturbation sursaturée décroît en

fonction de l'augmentation du niveau de turbulence. En conséquence~ la variance du

oOC diminue sensiblement en comparaison cles expériences sans turbulence et sans

sédimentation et, qui plus est. elle diminue aussi en fonction de l'augmentation du

niveau de turbulence.

Nous avons découvert que~ pour des niveaux types de turbulence mesurés au

centre adiabatique des nuages, la distribution spatiale des plus grosses gouttelettes

peut dévier sensiblement d\lne distribution de POÎsson. Le fait que la concentration

préférentielle augmente en fonction de l'augmentation du niveau de turbulence accroît

le OPS mais n'accroît pas le DOC.

Nos résultats contredisent ceux de Pinsky et al. (L9~6) et Shaw et al. (L998).

Dans ces études, un forte concentration préférentielle est imposée et maintenue arti

ficiellement, tandis que dans notre approche la concentration préférentielle résulte du

calcul explicite des trajectoires des gant telet tes.

En comparant nos résultats avec les observations de Brenguier et Chaumat ( L996)

réalisées au centre adiabatique de nuages . nous parvenons à la conclusion que

l'approche microscopique. même sous les conditions les plus favorables en l'absence

de turbulence et de sédimentation, produit trop peu d'élargissement pour expliquer

leurs observations.
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Statement of originality

The fol1owing points describe the unique and original aspects of this work.

1. A direct numerical simulation approach (D NS) is used in the context of cloud

droplet growth.

2. Clustering (preferential concentration) is explicitly estinlated. for sedirnent

ing and non-sedimenting particles with Stokes llllnlbers characteristic of cloud

droplets in cumulus douds with low ta nloderate turbulence. vVe found that:

• significant clustering can occur for cloud draplets

• sedimentation of the cloud droplets significantly reduces the magnitude of

the clustering

:3. A microscopie model to calculate the growth and trajectories of a la.rge number

of cloud droplets as a function of conditions in their individual arnbient envi

l'onments is eleveloped. The microscopie approach ta cloud droplet growth is

explicitly tested. vVe found that:

• preferential concentration of drop lets and the cooling term due to the vari

ability in vertical velocity have a positive effect on spectral broaelening

• sedimentation of droplets has a negative effect on spectral broadening

• the decorrelation time for Lagrangian supersatllration perturbation IS

shown to decrease as a function of increasing level of turbulence.

• only when turbulence and seelinlentation is absent can the microscopie ap

proach lead to non-negligible differences in terms of spectral broadening

relative to themacroscopic approach.
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• even in the absence of turbulence and sedimentation the maximum spectral

broadening obtained in our numerical experiments is significantly smaller

than the broadening observed in adiabatic cloud cores (Brenguier and

Chaumat 1996) .
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Chapter 1

Introduction

In the past 40 years, much research has been clirected toward determining the in1

portant processes in the evolution of the microphysical properties of douds. :-\ lûng

standing problen1, prompted especially by the observations of \Varner ( L969). is that

the observed size distributions of cloud droplets in cumulus clouds are relatively hraad

and often multimodal. In contrast. simple calculations of the diffusional growth of

cloud droplets yield narrow and nearly monoclispersed distributions. In the~e calcula

tions, it is generally assumed that cloud droplets are embedded in an air parce! with

uniform properties and it rises with a constant updraft speed. Thus aIl droplets are

submitted ta the same supersaturation. Since the rate of growth of the radius of a

drop let varies inversely with its radius, the size distribution becomes nalTO\Ver \Vith

time. This discrepancy between the observed size distributions and those resuJting

l'rom simple parcel calculations implies that in real clouds aIl droplets are nat submit

ted to the same supersaturation. J\ilore precisely, aIl droplets do not have the same

Lagrangian integral of supersaturation.

l\tlanton (1979) and Cooper (1989) developed a statistieal approach to prediet the

evolution of the size distribution of cloud droplets from a knowledge of the variance

of the Lagrangian integral of the supersaturation averaged over an ensemble of cloud

1
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droplets. 8y approximating the supersaturation by the quasi-stationary supersatu

ration. they were able ta express the variance as a function of the variability of the

integral radius and the correlation between the integral radius and the vertical \Vind.

Politovich (199:3) tested this approach and found that the predicted and observed

dispersions in the size spectra agreed weil in diluteci regions of the doucis. However.

it should be pointed out that the relaxation time scale for qllasi-steady sllpersatura

tian is of the arder of a few seconds with corresponding spatial scales on the order

of a few tens of centimeters in a turbulent mediurll (Cooper L~J8!-J). The approach of

i\Ianton and Cooper therefore neglects the contribution of scales smaller than a. few

tens of centimeters to the variability of the supersaturation. Despite this wcakness.

the evidence 50 far accumulated suggests strongly that in dillltcd regio:1s of cumulus

doucIs, mixing between cloudy and non-cloudy air can explain the cornpiex nature of

the observed size distri butions (Cooper L99 L).

However. observations have aisa shown that C\'en in adiabatic doud regions which

have not been affected by mixing. the size distribution are also broader than expected.

In partîcular. Brenguier and Chaumat (L996) analyzed rneasurements made by a

high resolution Fast Forward Scattering Spectrometer Probe (8renguier et al. l ~J98)

in acliabatic cloud cores and showed that even the narro\vest spectra (neasured are

still broader than those obtained frmu simple diffusional growth caiculations. By

comparing the narrowest spectra sampled at various altitudes against a reference

level spectrum, they were able to infer the probability distribution of the Lagrangian

integral of the supersaturation necessary to explain the evolution of the observed

spectra. Thus it is dear that mixing is not sufficient ta explain aIl observed size

distributions and other processes cantributing ta the variability in supersatl1ration

must be in operation.

Srivastava (1989) suggested one possible mechanism. He hypothesizecl that both

the random spatial distribution of droplets and the variations in the vertical air
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velocity could cause non-negligible deviation of the supersaturation experienced by

individual droplets (microscopie supersaturation) from the supersaturation calculated

for cloud parcels containing a large number of droplets ( macroscopic supersat ura

tion). He pointed out that in most theoretical and nuolerical stlldies of doucis. it is

implicitly assllmed that droplet ta droplet variability is not ilnportant in calculating

the growth of an ensemble of droplets. Srivastava vie\ved this assurnption justifiable

only if it can be shawn that rnolecular diffusion or sonle other processes can result

in negligible differences between the microscopie and Tll(lcroscopic supersaturations.

By assuming that the spatial distribution of the droplets is describecl by the Poisson

distribution, he derived analytical estinlates for the variance in the micro....copic Sllper

saturation and concluded that the variance can contribute significantly ta the width

of the clroplet size distributions. Howevcr. his conclusion must be viewed as tentative

because two important effects. that of turbulence and that of sedinlentation. w(.>re not

taken into account.

The importance of turbulence and sedimentation arises fro01 the fact that sorne

what surprisingly. the average distance between cloud droplets is of the san1e order of

magnitude as the Kolmogorov length scale. Thus the behavior of the droplets would

he affected by the fine scale structure associatecl with turbulence in the range of the

Kolmogorov length scale. Furthermore. as will be shown later. the eddy turnover

time associated with the Kolmogorov length scale is of the same order of rnagnitucle

as the sedimentation time scale of the droplets traversing the Kolmogorov length

scale. Therefore, dynamics and sedimentation effects are expected to play a critical

role in affecting the behavior of the drops and in influencing the ambient conditions

within which individual droplets grow.

Another process which has not been taken into consideration is the inertia effect.

Recent numerical simulations and laboratory experiments in mechanical engineering

indicated that particles in a turbulent fluid, because of their finite inertia, tend to
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diverge from regions of high vorticity (coherent 'v·ortices for example) and converge

preferentially in regions of low vorticity. As a result. regions with much higher and

lower concentrations than predicted from a random Poisson spatial distribution can

develop. As this process can affect the local concentration of cloud droplets. its

possible l'ole in affecting the size distribution of doud droplets should be explored.

The focus of this thesis is to provide answer to the fol1owing question:

Can non-uniformity in the spatial distribution of the size and position of

droplets and/or variable vertical velocity in a. turbulent nledium contribute

to the broadening of the droplet size distri butions"?

Sinee it is extremely difficult ta resol ve t his CI uestion êlIlal'y·tically or froni ob

servations, a numerical mode! will be llsed. The strategy is the following. \Ve si~

multaneously solve two sets of equations. The macro..,copic eqllations and the micro

scopic equations. The macroscopic set of equations correspond ta a simple LagraIlgian

parcel experiment in which aIl droplets are exposed ta the same supersatllracion. The

microscopie set of equations explicitly salves for the growth and trajectory of each

individual droplet as a function of the conditions in their individual an1bient environ

ments. In the microscopie approach each droplet is therefore exposed to a different

supersaturation. There are several factors responsible for dropIet to droplet variations

in supersaturation. Among them are the spatial distribution of the position and the

size of the droplets, the spatial variability in the scalar fields caused by the growing

droplets. molecular diffusion and by turbulence and the sedimentation of the droplets

through these fields. The l'ole of these various factors in causing differences between

the microscopie andmacroscopic approaches in terms of sizes of individual droplets

and in terms of the width of the size distribution wonlel be examined. Ta simulate the

turbulent flow we use a direct numerical simulation (DNS) approach. Since our inter

est is in the growth of cloud droplets in the size range from .5 ta ~ 251t'm. growth by

collision-coalescence, as weIl as the solute and curvature effects can aIl be neglected.
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The thesis is structured in the following manner. In Chapter :2 we first reVlew

pertinent theoretical aspects of turbulent flows. Using these concepts. we characterize

the observed turbulence in cumulus clouds. vVe then analyze the problem of the two

way interaction between cloud droplets and turbulent flows characteristic of cumulus

clouds.

In Chapter :3 we perform a scale analysis of droplet growth by condensation in a

turbulent flow. This scale analysis serves ta justify the set of equations solved in this

thesis as well as to shed light on the limitation of our simplifications. Furtherrnore.

it guides us in the choice of appropriate experimental conditions. For example. we

conclude from the scale analysis that in order that the gricipoint values of temperature

and water vapor mixing ratio represent the ambient conditions of individual droplets.

the size of the grid ceUs mllst be ~ .lC1/!. Fllrthermore. this gridsize is also necessary

ta resolve the turbulent flow. C'onsequently the size of the cornplltational donlain is

of the order of iDem and it contains several tens of thollsands of droplets.

In Chapter 4 we describe the two sets of equations solved in this work. the mi

croscopie and macroscopic equations. In Chapter .1 we describe the complltational

framework and the numerical methods used to solve the equations. vVe a.lsa present

a formalism which will be usee! in the analysis of the reslllts.

[n Chapter 6 we present resllits from simple experiments with no turbulent flow.

This frarnework is useful because it offers a simple context ta interpret the effect

of sedimentation and the sensitivity of spectral broadening ta various initial condi

tions. These results are compareci to the analytical estimates of Srivastava (1989). In

Chapter 7 we first describe the three turbulent flows with varying eddy dissipation

rates used for the experiments with cloud droplets. vVe then explore the subject of

preferential concentration and its link to vorticity. Finally we present the resllits for

the full experiments of cloud droplet growth in a turbulent flow and compare these

results with the observations of Brenguier and Chaumat (1996) .
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In Chapter 8 we summarize the main results and present an answer ta the central

question posed in this thesis.
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Chapter 2

Turbulent flow in cumulus clouds

Convection in cumulus clouds is farced by buoyancy. The convective updrafts may be

influenced by the temperature stratification in the environnlent and by turbulence in

regions where thermal gradients and/or shear render the tlow unstable. The objective

of this chapter is first to summarize the observations on the turbulent characteristics

of cumulus douds. This will be followed by a discussion of the scales at which in-doud

turbulence is compatible with the Kolmogorov theory of isotropie turbulence. Finally.

we will explore the question of at what scales stratification nlay be an important factor

in modifying the flow.

Contrary ta most work in cloud physics. we are concernee! here with the evolution

of individual cloud droplets. From this perspective. the large body of work done on

particle-laden turbulent flows in mechanical engineering becomes relevant. vVe will

pay special attention on how droplets 11lay influence the flow and how the flow may

influence the spatial distribution of the droplets .

7
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Turbulence develops in rotational flows. It arises from diffusion and stretching of

vorticity whlch can be created in the flow by variolls rneans relating ta either shear or

thermal gradients. A turbulent flow. which exhibits complex chaotic spatial and tem

poral behaviour, cau he uescribeu él::! a. weakly correlated randorn field with strongly

correlated yet highly localized structures that are largely responsible for intermittent

effects (She et al. 1990. 1991). Gaussian statistics are assoeiated with the randonl

nature of turbulence while non-Gaussian intermittent behavionr (higher probabil

ity for high amplitude events in vortieity for exanlple) is a signature of coherenc<_'.

Kolmogorov (1941) proposed a phenomenological theory of the universal statistical

properties of small scale turbulence in high Reynolds nUlnber llows. Even though

this theory fails to descri be intermi ttent effeets. it gi ves a very good approxinlatioll

to the turbulent energy spectrum in the inertial range. The energy spectrllrn (called

Kolmogorov's spectrum) takes on the form:

(:2.1 )

•

where Cf{ is a universal constant callecl the Kolmogorov constant. Numerolls obser

vations in the atmosphere (Chan1pagne et al. 19(7) . the ocean (Gargett et al. 198,1)

and in laboratory experirnents (Gagne 1987) have shown that the structure of flows

in the "smalP' scales agrees well with Kolmogorov's spectrum when the Reynolds

number is sufficiently high.

Kolmogorov's spectrum is obtained l'rom dimensional analysis by assuming that

the energy spectrum, at wavenumbers greater than that at which the flow is forced

and smaller than that at which viscous dissipation dominates the flow ~ depends only

on €, the eddy dissipation rate, and the wavenumber k. The parameter t contraIs

the energy flux in the inertial subrange, i.e. l'rom the forcing scales down to kd the

Kolmogorov wavenumber, where viscous dissipation becomes important. The inverse
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of kd is the Kolmogorov length scale and is given by:

(
V3) I/-I

'1 = 
f

Using this definition and the Kolmogorov spectrum it 15 possible to fincl a velocity

scale and a time scale associated with this length scale:

u" = (t"V)I/-l _ ('~) li'!.
TI) - •

[
(2.:3 )

Let us recall the definition of son1e other characteristic quantities \vhich will he

llsed ta describe the simulated flows. The integral scale. the length scale chal'acteristic

of the energy containing eddies. is clefined as:

where Ua is the root mean square velocity. ET is the total kinetic energy and D

corresponds to the enstrophy 'Jvhich is the variance of the vorticity. Front titis length

scale. the large-eddy turnover tinle scale can b(' defined as:

lu
Ta =-

llrms

The Taylor microscale. the length scale characteristic of the nlean spatial extension

of the velocity gradients is defined as:

(:2.6 )

•

\Vith these quantities one can define two Reynolds nunlbers: the integral-scale

Reynolds number Ri = louai v and the Taylor microscale Reynolds number R.\ =

>"uo/v.

There is no simple universal theory of the dynamics of coherent structures in three

dimensions (3D). Numerical simulations have shawn that these structures appear

as regions of high intensity of vorticity organized in long tube-like structures that
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generate velocity fields that spiral around them. Theil' width is typically of the

order of the Kolmogorov length scale and they are sparsely distributed in space.

Very little is known about their temporal evolution but by definition they are called

coherent structures if their associated time scale is longer than the eddy turnover time

associated \Vith their width. These structures were Hrst noticed in direct numerical

simulations by Siggia (1981) at R.\ ~ 100. and were further studieci by others such

as Kerr (198.5), She et al. (1990) and Vincent and ?vleneguzzi (1991) for R.\ ~ -bS.90.

and 1.50 respectively.

2.2 Observations in cumulus clouds

vVe now consider the observed turbulent characteristics of cumulus douds. Turbulence

in doucis is thought to originate from the boundary layer and fronl instanilities that

develop at the cloud-environment interface (Grabowski and Clark UHJ:3). vVe will

investigate to what degree and at which scale Koln10gorov's theory applies ta the

description of turbulence in douds. Our investigation will guide us in choosing the

parameters for our simulations of turbulent fiows.

The most complete set of observations on the turbulent characteristics of cunlltlus

doucis can be found in ~[acPherson and Isaac(19ïï). ;\IacPherson( 1979) and \Veil et

al. (199:3). They reported that for most of the measurements. the -.5(3 pO\'v'cr law

appears to be valid for scales up ta about 100m for the three components of the wind

velocity. Between 100 and 400rn. the energy spectra for the vertical cornponent of

the velocity shows a steeper slope. These authors speculate that the release of latent

heat during condensation may produce turbulent eddies that l'aH preferentially within

this wavelength range.

In general, the observations cited above indicate that at least for scales between
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15'm (minimum wavelength at which measurements were n1ade) and 10Q-m the mea

sured turbulence appears to he described weIl by Kolmogorov's theory. \Nhen ail the

scales, up to the size of the whole cloud. are considered. it was found that the vari

ance of the vertical velocity is generally about .50% greater than the variance of the

horizontal velocities. This finding is not too surprising sinee douds are driven mainly

by buoyancy forces and the cloud circulation as a whole is therefore not isotropie.

Eddy dissipation rates can be obtained by integrating ( 2.1) over the range of

scales obeying the -.j/:J power law (i\lacPherson and Isaac 1977: ~IaePherson 19ï9)

or from measured pressure fluctuations (vVeil et al. l!J9:3). The above sources reported

that é may be quite variable in::iide a cloud. \Vith the highest values generally round

near the cloud top. The measured extreme values are:::::: Land lOOOcrnl.~-:3. The nle

dian ecldy dissipation rate associated with measurenlents mostly nlade near the cloud

top in these tllfee papers are respectively :28ScTn28-:~ . 1{j;Jcrn2 ... -:3 and 1:JOern2s-:3.

NlacPherson and Isaac( 1977) did obtain sorne measuretnents at the cloud base and

a few hundred meters below the cloud base. In these locations. the value for t was

smaller. The measured olaxirnum is 90cm, 2s-:l at the cloud base and the values range

From 10 to 40cm2s-3 below the cloud base. vVith regard to the cloud core. there is

little data in the reported literature on the eddy dissipation rate. However. the core

regions are located away from the cloud top and far removed t'rom turbulence source

regions like the cloud boundaries. It is reasonable to assume that the ecldy dissipation

rate should be much smaller than the averages round near the doud top level and

closer to values at or below the cloud base. Definitely more systematic observations

are needed to validate this assumption.

For the observed range of eddy dissipation rate in cumulus clouds~ we calculated

the Kolmogorov length, time, and the velocity scales according to (2.2) and (2.3).

The results are displayed in Table 2.1. The Kolmogorov length scale is of the arder of

millimeters, the velocity at that scale is of the order of cms- L while the associated time
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scale (eddy turnover time) varies over two order of magnitudes from one hundredth

of a second to one second for the highest and lowest values of eddy dissipation rates.

These characteristic scales will be useful for the scale analysis in the next chapter.

Energy dissipation Kolmogorov Kolnl0gorov 1 [~olmogorov

rate length time l ,"elûcitv
é( an 2s-3 ) ,,(cm) Tri ("t c) L' ri ( enl S - L )

.1 .-L5 l.:2.1
1

.:3.1
1 .2.5 ..1 .6:3

10 .1-1 .1:3 LI
100 .08 .0-1 2.0

1000 .0·1.j .01 :Lj

Table 2.1: Characteristic Koln10gorov scales for eddy dissipation rates observed in
cumul us douds

2.3 Effects of stratification

ft is known that density stratification influences the structure of turbulent fiows.

Stable stratification introduces wave-like characteristics (gravity waves) inta the flow

field. ft aiso tends ta enhance the growth of horizontal scales while inhibiting the

growth of the vertical scales (Riley et al. 1981). The question arises as to what scales

may he affected. As mentioned earlier. observations indicate that at least for the

scales between L5m and lOOm. turbulence in cumulus doucls appears to be isotropie.

For srnaller scaIes, it is appropriate ta examine the Osn1idov scale (Lesieur 1990~

page :340) defined as the scaie at which the Froude Dunlber equals one. The Froude

number measures the relative importance of inertial effects over stratification effects.

The Osmidov scale is given by:

(
t ) 1/2

lB = 1'13 '
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where LV is the Brunt-Vaisala frequency. For scales l « lB stratification has a negli

gible effect on turbulence. Using a typical value of iV of 1.2 x LO- 2 S-1 (Rogers and

Yau 1989, page :32) and the range of observed values of é. this scale turns out ta vary

from ï to 200m. Hence for the scales considerecl in this work. namely a few tens of

centimeters, it can reasonably be assumed that stratification does not significantly

modify the three dimensional nature of the flow. Our analysis is consistent with direct

numerical simulation results of thermals rising in a stably stratified environment by

Grabowski and Clark( 199:3). They showed that the perturbations which developed

on the thermal interface evolved toward a flow structure possessing characteristics

typically found in homogeneous isotropie turbulence.

2.4 Effects of the presence of droplets

We are concerned here with the possible modification of the properties of turbulence

by the presence of droplets and the effect turbulence rnay have on the spatial dis

tribution of droplets. Recent relevant work on these subjects regarding particles in

turbulent flow in mechanical engineering are reviewed in Stock (1996). ~IcLaughlin

(1994) and Eaton and FessIer (1994).

2.4.1 Effects of particles on the flow

Particles like cloud droplets (size much smaller than the Kolnl0gorov length scale)

may influence the flow either through the drag force (mechanical coupling) or through

thermodynamic effect in the form of sources or sinks of latent heat and water vapor. In

cloud models, these effects are generally inc1uded in the vertical momentllm equation

in the form of a buoyancy force which takes into account bath thermal blloyancy and

the liquid water mass loading.

We first concentrate on mechanical coupling. In douds. cloud droplets interact
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\Vith the flow through relative velocity which arises because droplets l'aU undel' the

influence of gravity and because droplets possess inertia so that they do not l'esponel

to the flow instantaneously. The following four dimensionless parameters are relevant

for the study of the mechanical effect of an individual particle or the overall effect of

a group of particles on the turbulent flow.

• The ratio of partic1e diameter (cl) to a characteristic lengt h scale (l) of the flo\v

(either the Kolmogorov length scale or the integral scale)

• The Stokes number which is the ratio between the particlc's rcsponse time

(defined in Section 4.1.:2) and a characteristic tirne scale of the flow (either the

time scale associated with the Kolnl0gorov length scale or with the integrai

scale). The partic1e's response tirne. aiso calleel the particlc's relaxation tinle

scale or the Stokes time scale. is a characteristic tirne the particle takes to react

to changes in the fiow.

• The particle's Reynolds number. Rep = CRI v. \vhere C is the relative velocity

between the flow and the pat·tide. v is the kinenlatic viscosity of the fluid. and

R is the radius of the particle.

• The mass loaeling, given by the liquid water mixing ratio.

The first three parameters govern the type of interaction that can be expected

between the partides and the flow. For dl' :::::: l. the diameter of the particles is

comparable to the Kolmogorov length scale. and the particles will exert a direct

influence on the structures of the flow on that scale. Particles with a large Stokes

number will react very slowly to the changes in the fiow while particles with a small

Stokes number behaves essentially like a tracer because its reaction to any change in

the flow is almost instantaneous. ft is expected that there is maximum interaction

between the flow and the particles when the Stokes number is close to one. The
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Reynolds number is important because particles with large Reynolds number influence

directly the turbulent kinetic energy through vortex shedding.

Table 2.2 shows the possible range for the radii of douJ droplets. their associated

terminal velocity, Reynolds number and the Stokes nun1ber for different eddy dissi

pation rates. vVe note that the typical size of cloud droplets is n1uch smaller than

the typical Kolmogorov length scale found in douds (see Section 2.2). Thu~ cloud

droplets are not expected to exert a direct influence on the structure of the flow. The

Stokes number approaches L only for the largest cloud droplets in a cloud ...vith very

active turbulence (é ~ LOOOcm2..,-3). Hence under rnost conditions. it is anticipated

that the relative veloeity between the How and the droplets is n10stly associated \Vith

sedimentation. Cloud draplets are also unlikely to affect the flo\\' by vortex shedding

beeause their Reynolds nllmber is « L"

vVe turn IlOW to the effeet of mass loading. This paran1eter l'an be llsed ta infer

the overall effect of aIl the particles in a certain \"Oll101e on the turbulent flow. \Yhen

the mass loading is smalL the overall effeet of particles can be neglected. \VIH'n the

mass loading is appreciable~ experimental data show that the presence of partides

may either increase or decrease the turbulent kinetic energy of the carrier tluid. de

pending on the magnitude of other pararneters defined abovc. Unfortunatdy. tl1ere

is no clear llnderstanding of the underlying mechanism (Elghobashi and Truesclell

199:3). Furthermore, there is no consensus as ta the precise range of the above four

parameters which would effect an increase or a decrease in turbulent energy. T\vo

examples will serve to illustrate this point. [n the first example. \ve note that Hestroni

(1989) suggested that when Rep < 400. a decrease in turbulence energy ShOllld be

expected while for larger Rep turbulence should be enhanced clue to vortex shedding.

However, other experimental evidence (Hardalupas et al. 1989) demonstrated an in

erease in turbulence energy for small Rep. As a second example of this controversy,

we note that Gore and Crowe (1989), based on various experimental results. proposed
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that the relevant parameter should be dl!, the ratio between the partide diameter

and the integral scale of the turbulent fiow. The critical value is dl! ~ 0.1. The

turbulence intensity increased above this critical value and it decreased belo\v this

value. However, the numerical results of Elghobashi and Truesdell (199:3) show an

increase in turbulence intensity for dl! ~ 10-.1 and Rep < l.

Squires and Eaton (1990) conductecl a series of nunlerical experirrlents on the inter

action between a turbulent flow and non-sedimenting pal'ticles. The Stokes nun1ber in

their experiments was around .5 and the mass loading varied between .1 and 1. They

round that for a mass loading of 1.. over .ïO% of the total dissipation was caused by

the drag of the particles and this percentage clecreased to ~ 10% for a rnass loading of

.1. Eighobashi and Truesdell ( 199:3) conclucted sinlilar Ilurllerical experinlcnts in the

context of a decaying turbulent flow field for both sedimenting and non·sedirnenting

particles. Theil' Stokes number was about 1 and their nlass loading varied frool .:2

to .9. They found a similar decrease in the effcct of the particles on the fiow as the

mass loading decreased. Hawever. they also round that sedirnenting droplets with

small Reynolds number can be a net source of turbulent kinetic energy for the tlow

even though vortex shedding is not expected ta occur. ~('vertheless. these t\VO stud~

ies showed that for a constant mass loading, the effect of the partic1es on the flow

decreases with a decrease in Stokes nllmber.

The typical mass loading round in douds is in the range .001 - .01 (1 to 10g/..;g-l

of liquid water content). These values are one or t\VO orclers of magnitude snlaller

than the typical mass loading examined in the above studies. In the experiments

that we will describe in the fol1owing chapters. the mass loading is close to .00 land

the Stokes number of the cloud droplets does not exceed .16. It is therefore expected

that the effect of cloud droplets on the turbulent flow is negligible. Unpublished work

by S. Elghobashi and his team at such small mass loadings confirm this assumption
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(persona! communication). Furthermore. this conjecture is confirmed in simple nu

merical experiments presented in Section i.4. Based on our scaling arguments and

the numerical results. we will neglect any mechanical effect of the particles on the

flow in most of our experiments discussed in subsequent chapters.

Radius Terminal Reynolds Particle Stokes for Stokes for Stokes for 1

velocity number response time ( = LOc1n 2 ..,-3 c= LUUcm:.!..,-:J ( = lO()()cm:!,-;-:1

R(J1TTl ) vr(ans- 1 ) Rep rp(sec) rp/r" Tp/r" Tp!r,/

5 0.3 ,9 x 10- 3 .3 x 10 ·3 .:l :< LO - .8 :< 1O-:.! .:~ x lQ-1

10 1.2 .ï x 10-2 .1 x 10- 2 .8 X 10-2
.;~ x LO- 1 .1

15 2.7 .2xLO- 1 .:3 x LO-:! ,2 X 10- 1
,~ ;< 10- 1 .:l

20 4.8 .Ô x 10- 1 .5 X 10- 2 ,-1 x LO- L .L ,5
2.5 ï.5 .1 .8 x 10- 2 ,() :< lO- L .1 .8

Table 2.2: Characteristic scales of cloud dropiets

vVe comment briefiy on the thermodynan1ic effect exerted by the particlcs in the

l'orm of sources or sinks of latent heat and water vapor exchange when the droplets

grow and evaporate. These exchanges can cause fluctuations in tenlperature and

water vapor which may influence the dynamics of the turbulent How through the

buoyancy term. vVe performed sensitivity experiments in Section 7A by inclllding

and excluding the thermodynamic effect and round that the difference in the resllits

for our small scale turbulent How is small. In the sanIe section we also present a

simple scale analysis to explain this result. Therefore. the therrnodynamic effect will

also be neglectecl in most of our experiments in subsequent chapters.

2.4.2 Effects of turbulent flow on spatial distribution of par

ticles

Studies on the dispersion of particles in homogeneous flows are relevant ta our \'lork.

Numericalsimulations by Squires and Eaton(1990;1991) and vVang and l\;Iaxey (199:3)
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showed that~ due to their inertia~ particles tend to diverge from regions of high vortic

ity and converge preferentially in regions of Iow vorticity and high strain rate (saddle

or stagnation points). As a resuit. their spatial distribution is not random and does

not follow a Poisson distribution. This phenomenon of clustering has been confirmed

by FessIer et al. (1994) in experimental work involving particles in a turbulent chan

nel fiow. Further results l'rom numerical simulations by Squires and Eaton( 1990; 1991)

and vVang and ~Ia..'{ey (199:3) indicated that the clustering is a function of the Stokes

number based on the fluid time scale associated \Vith the Kolmogorov length scale.

Clustering occurred for Stokes nUluber between 1 and Lü and \vas lnost important at

Stokes number close ta 1. However. no lower bound on the Stokes number for this

effect has been established. Very light (srnall Stokes nurnber) and very heavy particles

(large Stokes number) show less tendency to cInster because the light ones follow the

fluid elements and the heavy ones are less affected by the turbulence. ~[axey( 1987)

also showed that because of the bias in the particles trajectory towards regions of low

vorticity, the average settling velocity of the particles is inertia dependent and is not

simply gi ven by the sum of the terminal veloci ty of the particIes and the nlean Huicl

velocity. Furthermore. he showed anaLytically that this effect may be important even

for Low values of particle inertia.

It is of interest to enquire whether cIustering n1ay aiso apply to particles like

cloud droplets? As was shawn in Table :2.:2. the Stokes number approaches 1 for the

largest clroplets in moderate to strong turbulence. Under these conditions. significant

clustering of droplets can be expected. However. the time of interaction between the

droplets and the smallest eddies of the flow ('7/ VI' see Table :3.1) decreases as the

Stokes number approaches unity. This is because larger droplets have Larger terminal

velocities and aiso because the Kolmogorov length scale is smaller at higher eddy

dissipation rates. This counteracting effect may impose a limit on the extent of the

clustering.
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In recent years, new instruments and better statistical analysis methods have

allowed the direct observation or the analysis of spatial homogeneity in droplet con

centration clown ta the mm scale. Baker (1992) found inhomogeneities in droplet

concentration at the cm scale that may be real deviations l'rom Poisson (personal

communication). However. by analyzing data taken with the Fast FSSP froITI nlan,Y

cloud passes, J.-L. 8renguier and his team found no clear clcviations l'rom Poisson

down to the scale of a fe\v millimeters. the highest resolution which they can resolve

(personal communication). A new instrument which records t he exact posi tion of

droplets but samples only small cloud volumes is the HODAR (holographie droplet

and aerosol recording systern). Kozikowska et a1. (UJS-t). Bon'mann (l~HJ:3) and lihlig

et al. (1998) analyzed the spatial distribution of cloud droplets in hologranls of cloud

volumes of the order of 10crnJ llsing ground based HODARs. \·Vhile Borrnlann found

no deviations from Poisson statistics. the otiler t\VO stuclies dic!o [n particular. I"hlig

et al. (1998) found that the deviations from Poisson were [nore significant when the

spatial distribution of only the largest droplets (larger Stokes nllmber) in the sarnple

volume were analyzed.

In summary, sorne eviclence exists that clllstering on scales below a few centin1eters

may aceur for cloud droplets in natural cloucls. The clustering can lcad ta a non

random spatial distribution of cloud droplets and rnay have potentially important

effect on cloud droplet growth by condensation. Pinsky et al. (1996) and Sha\v et

al. (1998) studied the broadening of the size distribution by artificially imposing

drastic variations in concentration on the scale of a few cn18. Not surprisingly. they

found important broadening. However. these studies are not conclusive because of

the highly idealized way in which variations in concentration of droplets are imposed.

Furthermore, Khain and Pinsky (1995) has suggested that drop inertia in a tur

bulent flow may even accelerate the coalescence process. In Chapter 7 we explore the

clustering of sedimenting and non-sedimenting cloud droplets at three different levels
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of turbulence. vVe then examine whether this clustering may affect the width of the

size distributions .
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Chapter 3

Scale analysis of droplet growth

by condensation

\}le deal with an ensemble of cloud droplets ranging in size l'rom several ta tens of

microns. The droplets are distributed non-uniforrnly in space and are rnoving in Ct

turbulent flow field. They are growing by diffusion of water vapor fronl the anlbient

environment onto their surface. Ta properly calculate the growth of the droplets

by condensation, we have to solve the convective-cliffusive equations for water vapar

and heat, bath inside and outside the draplets. subject ta the appropriate bounelary

conditions at the surface of ail the clroplets. Kinetic corrections have ta be macle for

those drop lets whose Knudsen number (ra.tio of the molecular Inean free path of the

gas to the radius of the drop) is not too small compared ta unity. However. for rnany

droplets in constant motion, this direct approach becomes impractical. Ta make the

problem tractable but physically realistic. we shaH perform a scale analysis on the

time and spatial scales ta obtain a simplified set of equations for the growth of cloud

droplets. We shaH show that a scale separation exists between the time and spatial

scales related to the modification of the scalar fields by turbulence and that related to

the growth of the cloud droplets. Our analysis would also shed light on the limitation

21
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of our simplifications.

3.1 Time and spatial scales associated with the

ambient conditions

The concept of ambient environment or ambient conditions for a dl'oplet is irnportant

but does not have a strict definition. [t refers to environmental conditions (tenlper

ature and water vapol' density) sufficiently far away l'rom a droplet snch that the

presence of the droplet exerts negligible influence on the gradients in these C[uantities.

As will be shawn in the next section. this far away distance is typically of the order

of several tens of droplet radii.

Droplets distributecl non-I.lniformly create structures in the temperature and watel'

vapor fields which are nl0dified by turbulence. Furthermore. because of scdirncnta

tion. the dl'oplets faIl thl'ough these structures. The droplets are therefore subject to a

variable ambient environment. vVe will evaluate the spatial and tinle scales associated

with these sources of variability.

The typical scale of the smallest significant spatial structure in a turbulent flow

is the Kolmogorov length scale 1]. This scale is. strictly speaking. only valid for kine

matic fields. However. the coefficients of viscosity of air. therrnal diffusion and watel'

vapor diffusion are aIl of the same arder of magnitude. Therefore the Kolmogorov

length scale can also be applied ta scalal' fields where it is sometimes known as the

Batchelor scale. The Kolnl0gorov length scale and the a~sociated time and ve[oeity

scales relevant to douds are discussed in the previous chapter and the values were

summarized in Table 2.1.

There are two time scales which are related to the changes in ambient conditions

associated with these small turbulent structures. The first is the eddy turnover time

characteristic of the lifetime of these structures. The second is the time it takes for a
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droplet ta sediment a distance '7. Table :3.1 lists these two time scales for various eddy

dissipation rates and droplet radii. Note that the time scales are generally of the same

order of magnitude except for large Rand small values of the ecldy dissipation rate.

The fastest time scale~ corresponding ta the largest values of '7 and R considered. is

.006sec.

'7/ V,r( sec) for
Radius R(I-lm) t = 1C11Z l S-:3 é = 10cTn2s-3 é = 10Ocrn2s-J t = lOOOcrn 2..,-3

.5 0.8 0.5 0.:3 .15
10 0.:2 0.1 .Oï O.O·l
1.5 0.1 0.0.5 0.0:3 O.O~

:20 0.05 0.0:3 0.02 .009
:25 0.0:3 0.0:2 0.0 l .006

Eddy turnover time T17 (8éC)

A .1:3 .O-l .0 l

Table :l.l: Time scales associated \vith arnbient conditions

3.2 Time and spatial scales associated with diffu-

sional growth

The growth of cloud droplets in the size range considered involves several processes.

Water vapor is transported from the environment ta the droplet-air interface by molec

ular diffusion and by convective transport (ventilation effect). The latent heat releasecl

at the droplet-air interface is transported both to the environment and inside the liq

uid droplet by the same processes. These processes can be calculated explicitly by

solving a set of three convective-diffusive equations for water-vapor, heat outside

the droplet and heat inside the droplet. Sedunov (1974) analyzed the typical Peclet

(ratio of convective over diffusive transport of water vapor) and Reynolds numbers
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associated with the flow inside and outside growing droplets and conduded that the

convective transport (ventilation effect) can be neglected for clroplets with a radius

smaller than 30,Lun. The convective-diffusive equations can thên be simplified to the

pure diffusion equations of the form:

where.\" refers ta either water vapor density or heat and D is the appropriate diffusion

coefficient.

In the classical solution for the diffusional growth of a cloud droplet. the arnbient

water vapor density and heat are assurned to be in a steady state relative ta the

adjustment of these fields dose ta the droplet-air interface. Since our objective in this

work is ta explicitly solve for the growth of individllal droplets growing by diffusion in

a turbulent flow. the validity of the steady state assllnlption for water vapor density

and heat in the ambient environment is nat obvious and has ta be re-evaluatecl.

Specifical1y. we must demonstrate that the time scale for changes in the arnbient

environment is much longer than other relevant tÎnle scales involved.

vVe begin our evaluation of other relevant tÎnle scales by considering the initial

value problem of radially symmetric diffusion of water vapar onta a still draplet of

radius R. If r is the radial distance measured fl'orn the center of the droplet. and

if the baundary and initial candi tians are Pu (R~ t) = Pu.R = constant and Pu( r. 0) =
Pu,oo = constant for r > R, the solution of the diffusion equation for water vapor then

becomes:

pv(r~t) = Pu.co + (Pv,R - Pu,co) R [1- erf(y)].
r

where pv,oo is the ambient value for the \vater vapor density, y = 2~~t and erf(y) =

j; Jg e-:
2
dz is the error function .
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Figure :3.1: "Vatel' vapor density profile near a droplet-air interface at five different
times

Equation ;3.1 can be used to give a rnore precise view when r['cast in the form:

puer. t) - Pu.,:ç R [1 t'()]= - -el'.lJ
Pu,R - Pl'.''XJ r

•

which yields the fractional approach of Pt.( r.t) ta the ambient value. Figure :3.1 shows

this ratio as a function of r/ R at varions times. It is obviolls that beyond ::::: 20 droplet

raciii, the ambient condition is approached as the variation is negligible. A distance of

about 20 droplet radii therefore delimits the range of direct influence of the droplet.

To obtain the time scales. we calculate the watel' vapor flux. L diffusing to the

droplet as:
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and the steady state form of (3.2) becomes Jo = -l7r RDL.(Pu.R - Pu..x,).

If the characteristic time for vapor diffusion Tu is defined as the time for 1 ta

reach twice the value of la. then Tv = R'2/ 7r Du. Using a similar set of equation.

as weIl as boundary and initial conditions for the diffusion of heat. we can obtain

respectively the characteristic time scales associated \Vith the temperature inside and

outside the droplet as TTi = R2
1';;k'L' and TTu = R}' /7rkt- where k'l and k'L' are the

thermal diffusivities of air and liquid water.

Table 3.2 lists the characteristic time scales for severaI cloud droplet radii of

typicaI sizes. The first thrce columns contain the vapor and teluperature diffusion

time scales defined above. [t is eviclent that the slowest of these three tirnc scales is

that associated with the diffusion of the tcmperature inside the droplet and it varies

between values of .6 x 10-4 and .1 x 10-2 8ec. The other two tirne scales are aImost

two orders of magnitude raster.

Radius Vapor Temp. outside Temp. in Psych l'omet ric
droplet droplet tempo

R( J.DTI) Tu(sec) T'fa( sec) TTd .~ec) TTR("ec)

5 .:3 x 10-ô .:3 x LQ-ti .6 X 10-4 ..5 x 10-:1

10 .1 X 10-.5 .1 x 10-.5 .2 x 10-:3 .1 X 10-2

15 .3 x 10-5 .;3 x 10-.5 ..5 X 10-3 .5 X 10-2

20 .5 X 10-5 .5 X 10-.5 .9 X W-1 .9 X LO-2

2.5 .8 x LO-5 .8 X LQ-5 .1 X 10-2 .1 X lO-l

Table :3.2: Characteristic time scales of cloud droplet c1iffusional growth

There is another time scale which appears \vhen the boundary conditions for wa

ter vapor density and temperature at the surface of the clroplet are not assumed to

be held constant. This is indeed the more realistic situation because as water vapor

diffuses onto the surface of the droplet during the condensation process, latent heat is

released and the surface temperature of the droplet changes. Kinzer and Gunn (19.51)
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and Watts and Farhi (1975) evaluated the relaxation time scale for surface tenlper

ature change by suddenly exposing a droplet to a new ambient condition and then

solving the energy balance equation at the droplet's surface, They calculated the psy

chrometric temperature, the temperature at the surface of the droplet. and obtained

the e-folding time associatecl with the relaxation of the psychrometric telnperature

ta its steacly state value as:

It should be noted that the water vapor density just abo\"e the droplet's surface will

also vary with a similar tirne scale.

This relaxation time scale is listed in the last column of Table :J.:2. It \'anes ln

value between ,.j x 10-3 and, Lx 10- 1 for the droplet raclii consiclerecl and is therefore

the slowest time scale associated \vith the conelensational growth of a droplet. \Ve

will therefare compare this time scale ta the tinle scales re1ated ta changes in arnbient

conditions to determine if the steady state assunlption for \Vater vapor density and

heat in the ambient envil'onment is justifiable in the deri\"ation of the droplet growth

equation.

3.3 Presence of other droplets

Before we can make a comparison of the time scales. there is one adclitional cornpli

cation we have to deal with. It is weil known that droplets do [lot grow in a state of

total isolation but can influence each other. To l'esolve this problen1. we must esti

mate the extent of interaction between droplets or between droplets and the ambient

environment.

vVe can identify two regimes of interaction~ the direct and the indirect. The indi

rect regime occurs when droplets interact only through their common influence on the
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ambient vapor density and temperature fields. As pointed out by Srivastava( 1989).

the steady-state diffusion field with its ~ dependence (see equation 3.1) is a long

range field and even arbitrarily distant regions can make a significant contribution

to the diffusing field at any point. Thus. if steady state diffusion fields are assumed.

the supersaturation in the vieinity of a droplet can be affected by arbitrarily distant

regions. In reality, of course. diffusion occurs at a finite rate and at any given time

only a finite volume of space can affeet a given point.

Direct interaction or competitive growth occurs when the droplets are so dose

that their individual profiles of vapor density and tenlperature overlap. Cal"stens et

al. (19ïO) numerically solved the problenl of two droplets (.5 and lOprn) undergoing

direct interaction. They calculated the growth rate of the surface area of the large

droplet and the small droplet when they are in isolation and \\"hen they arc dose to

each other. It was found that the radius of the snlaller droplet grows l'aster than

that of the larger one. but not as fast as their isolated counterparts. Politovich and

Cooper (1988) estimated that the change in mass flux to a gro\ving droplet \vhen an

identical droplet is placed at a distance LOR l'rom it is about 11 <;(! .

.~\lthough direct interaction can OCClU". a relevant question is what proportion

of the drop lets in a cloud actually undergoes significant interaction. [n a l'andolnly

distributed population of droplets. the average inter-droplet distance can be estirnated

by ..j.5..J:1V- 1/ 3 (Underwood 1970. page 8-1). where ~V is the average concentration. For

example, at concentrations of .iO and 1000cm -3 the average inter-droplet distance

is 1500 and .500/un respectively. Hence the average inter-clroplet distance is greater

than the approximate 10R criterion for significant direct interaction. Carsten et al.

(1970) and Politovich and Cooper (1989) assumed a ranclomly clistributed population

of droplets and evaluated the proportion of droplets close enough ta be under a

direct interaction regime. They found the fraction varies from .001 to .4%. Since this

fraction is small and since droplets move with respect to one another 50 that their time
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of interaction is limited, the authors conduded that the effect of direct interaction

between droplets can be neglected. Based on these results, we will include only

the effect of indirect interaction in the formulation of our model for droplet growth in

Chapter 4. Furthermore, since this simplification is more valid at lower concentrations

of cloud droplets. our simulations will be done with low concentrations of clroplets.

3.4 Scale separation

'vVe are in a position to compare the time scales associated with changes in the ambient

conditions and those associated with droplet growth. Table :3.:3 contains the ratio of

the slowest time scale asso\2iated with the droplets (TTn) and the fastest time seale

associated with the ambient conditions (Table :3.1) for various values of Rand L

Eddy dissipation rates t:(cm'ls-J)

Radius R (f.Lm) .1 1 LO 100 1000

.5 A x 10-3 .1 X 10-2 A X 10-2 .1 X 10- 1 .5 X 10- 1

10 .5 X 10-2 .1 X 10- 1 .2 X 10- 1 .5 X 10- 1 .2
15 .2 x 10- 1 ..5 X 10- 1 .1 .)

.0

20 .9 X 10- 1 .2 .:3 ..1.5 1.
2.5 .2 .:3 ..5 1. 1.6

Table 3.3: Ratio of droplet growth and ambient time seales

This table reveals the conditions under which the assumption of steady state

condensation is valid. For R smaller than 20f.lm and eddy dissipation rates smaller

than 100cm2 8-3 , the ratio between the tirne scales is much less than one and the

assumption is justifiable. The assumption becomes less valid as the size of the droplet

and the eddy dissipation rate increase. For example for droplets larger than 25J.lm

and dissipation rate greater than lOOcm28-3 , it rnay be necessary ta explicitly solve

for the non-steady-state psychrometric temperature. For the droplet growth problem



•

•

:30

considered in this thesis, most of the cloud droplets considered have a radius below

20jlm and the eddy dissipation rates are less than 200cm 2
8-3 . Thus the steady

state assumption for the distribution of water vapor density and temperature in the

diffusional growth of cloud droplets is still justifiable.
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Chapter 4

Model equations

vVe describe in this chapter two sets of equations governing the growth of cloud

droplets. The first set. referred to as the microscopie equations. moclels explicitly

the evolution of the turbulent flow. the scalar fields of temperature and water vapor.

as weIl as the movement of the droplets and their growth by condensation within a

three·dimensional air parce!. The parcel is prescribed ta rise at a constant ascending

rate. The resulting adiabatic cooling contributes to the generation of supersatllra

tion in the air parce!. The space coordinate for aIl microscopie variables are nleasllred

relative to the ascending parce!. The second set of equations. referred ta as the macro

scopie equations, constitutes a simplified version of the microscopie equations in the

sense that the whole air parcel is treated as a single entity. It represents the classical

equations for the growth of a population of cloud droplets in an ascending updraft.

Hence. turbulence is not explicitly resolved. and aIl the droplets are submitted to the

same macroscopic supersaturation have the same growth history.

31
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4.1.1

Microscopie equations

Droplet growth equation and condensation rate

In Chapter :3, we established the validity of the following assunlptions for the growth

of cloud droplets in a turbulent flow:

(a) Convective transport ta the droplet-air interface is negligible relative ta the dif

fusi ve fluxes.

(b) The time scales associated with the diffusive adjllstment of vapot" and ternper

ature fields (insicle and olltside the droplet) art: significantly smaller than the time

scale associatecl with changes in the ambient conditions due ta turbulence and sedi

mentation.

(c) The tinle scale associated with the relaxation to l:iteady state psychrometric tem

perature (steady state condensation) is sllfficiently sn1aller than the tirue scale étl:iSO

ciated with changes in the ambient conditions.

(cl) The droplets can be considered to be growing in isolation and interact indirectly

with the other droplets through their effect on anlbient conditions.

Employing these assumptions. it is possible to parameterize the growth of a droplet

as a function of its ambient conditions. Ta do 50. we calculate the steady state mass

flux onto a droplet using (:3.2) and compute the steady state psychrometric tenlpera

ture at the droplet's surface by solving an energy balance Equation (Pruppacher and

Klett 1978. page 419). Using the Clausius-Clapeyron Equation and the equations of

state for water vapor and dry air, together with the assumption that the water vapor

density at the droplet 's surface equals the saturation vapor density at the psychro

met rie temperature, we obtain the equation for the rate of growth of the radius of a

droplet as:

•
dR

2
= 2J{S,

dt
(4.1 )
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where S the supersaturation IS defined ln terms of the vapor pressure as S ==

eoo / esat(T"JQ) - 1 and

f .- 1 Pru RvT'X. LPw (L )\ == +-- ----1
esc1 t( T:o)D u kl1 Tx, T"XiRu

(·L:2)

(-L:3 )

can be assumed constant over the range of pressure and temperature considered.

The subscript 00 again refers ta ambient conditions. From hereafter we will drop

this subscript for simplicity. Instead of calculating the supersaturation using vapor

density. we shaH use the vapor mixing ratio and cOInpute S' == qult/usal - L. It is

simple ta show that uncler typical conditions. the relative difrerence between the t\VO

definitions for S amounts to less than .1 %.

By summing the rate of increase of nlass of an individual clroplet over the total

population in a unit mass of dry air. \'le obtain the condensation rate [pel' unit rnass]

as
IdA!Liq 1 -t ~ ciRi l ~. ~,

Cd = /'1 d ='1 ~irpw L- -,- == -,-{ ·liipw L- Ri 1\ !::Ji.
• ., Cl t .~ '1 .) i=l (t . ~ '1 [=l

where n is the number of droplets in a volurne of dry air with mass AI(l a.nd use ha::;

aIso been made of (-LI). Note that Si refers ta the supersaturation resuIting from the

ambient conditions of the ?h dropIet.

4.1.2 Equations for the velocity of a droplet and its position

In generaI, three types of forces act on partides moving in a Huid - external forces.

resistance of the medium( drag) and interaction between particles. For our problem.

gravity is the only external force and the concentration and size of particles are

small enough that any interaction (collision) between the particles can be neglected.

Under these conditions the equation of motion for a particle of mass mp~ according

to Newton's law of motion, is:

•
cN(t)

mp----;{t == Fres + mpg. (4.4)
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Ta solve for the particle's trajectory it is necessary to calculate the resistance forces

F Tes' In theory, this can be accomplished by solving the Navier-Stokes equation for the

flow around the particle with appropriate boundary conditions and then integrating

the resulting stress over its surface. The resuLtant integrodifferential equation is ho\v

ever quite complex (e.g. see Nlaxey and Riley 198:3). Fortunately. for our application

simplifications can be made by noting that the cloud droplets under consideration

have low Reynolds number (see Table :2.:2). Therefore. a Stokes drag law may be

assumed, and the resistance force is reduced to Fr".., = 6ii"Rp(U(X(t). t) - V(t))

(Pruppacher and Klett 1978. page 290), \vhere U(X. t) is the undisturbed fiow \'eloc

ity at the partîcle's position. X( t) is the position of the particle and IL is the dynamic

viscosity. Furthermore~ since the density of water is rIluch greatf'r than the densi ty of

air many of the forces in the equation of motion may be neglected (.\[axey and Riley

198:3). The equation of motion for a cloud droplet in a turbulent flow therefore takes

on a simpler l'orm:

dV(t)
mp---;jf = 67rRjl(U(X( t ).t) - V( t)) + rHpg or

dV(t) 1
-d- = -(U(X(l).t) - V(t)) + g

l Tp

where Tp = m p /67r RtL = 2pw R2 /9Jl is the particle response tinle. Equation (-L5) can

be recast in an alternate [orm by introducing the notion of terminal velocity. \Vhen

there is no motion in the fluid. i.e. U(X. t) is zero. (·L.S) can be solved analytically

to yield:

V(l) = Tpg [1 - exp-t/TP]

= VT [t- exp-t/TP]

where VT is the terminal faIl velocity of the droplet. The time Tp therefore appears

as a relaxation time scale. ft is the time for the droplet to reach about 67% of its

terminal velocity.
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Using the definition of VT, (4..5) becomes:

N(t)
Tp-- = U(X(t). t) - V(t) + VT

dt

dX(t) = V(t)
dt

(-L6)

(-L ï)

•

and the particle's position can be obtaincd by solving (4.7).

It is of interest here to discuss briefiy the significance of the inertia ternl (or

acceleration term) in (4.6). The importance of this term depends on the ratio of the

particle response time to the fluid 's fastest time scale (Stokes number). If this ratio

is smalL then the droplet responds almost instantaneously ta ail scales of nlotion

of the fluid. In an isotropie turbulent flow the fastest fluid time scale is the time

scale associated \Vith the Kohnogorov length scale. vVe have shown in Table 2.2 the

Stokes number for various droplet sizes and eddy dissipation ra,tes. Clearly. for eddy

dissipation rates less than lOcrn 1.s-~j. the inertia of the droplets can be neglected.

For larger values of the eddy dissipation rates. inertia can significantly influence the

trajectory of the droplets particularly for the larger sizes. and nlust therefore be

induded in the equation of motion. It is of interest to note that when the partide's

inertia is neglected, (4.6) recluces to

V(t) = U(X(l),t) + VT.

which is simply the statement that the velocity of the particle is the SUffi of the

terminal faH velocity and the flow velocity at the position of the particle. linder this

condition, F res = -mpg, the drag force and the gravitational force are therefore in

balance. Extending this ta a population of droplets in a unit mass of air, the total

drag force becomes qcg, where qc is the liquid water mixing ratio.
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It is assumed that the turbulent flow is governed by the Navier-Stokes equation with

the incorporation of the Boussinesq approximation. \Vith the inclusion of the buoy

ancy of water vapor and the drag force exerted by the cloud droplets, the equation

for the case of constant kinematk viscosity II takes on the farm

âU -1 .)-.- + (U . \7)U = -'7P"" - gB + VY·Uat PIIO

T-
B = là + .60Sq;' - q;

Y·U=o (-LLO)

The starred terms represent the perturbations relati ve to the time dependent domain

average while PaO and Ta are the initial density and temperature of air in the don1ain.

The perturbation pressure terro P- represents the pressure deviation from the hy

drostatic pressure. The terro gB is the buoyancy term whieh includes the effect of

temperature and water vapor perturbations as weU as the drag of the droplets on the

flow. The simplified [orm for the drag force is valid when the inertia of the dl'oplets

is ignored or when the relative velocity between the drops and the flow due to in

ertia beeomes negligible. As discussed in Section 2.-L 1. in most of the experiments

presented in subsequent chapters the buoyancy term will be neglectecl.

By taking the curl of (4.9), the vorticity equation becomes

âw 2al = -V x (w x U) - 'lB x g + vV w.

where w is the vortieity vector.

4.1.4 Scalar equations

(4.11 )

•
Temperature

The evolution equation for temperature is derived from the principle of conservation
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of energy by neglecting the specifie heats of the water 'lapor and the droplets

8T . L .)
âi = -v· (UT) - t,~ rd + Cp Ccl + ~'V-T. (-L12)

where Cp is the specifie heat of dry air, ~ is the coefficient of thermal diffusi'lity .~v

is the vertical velocity, rri. is the dry adiabatie lapse rate and ('(i is defined by (4.:l).

The non-divergent condition (-1.10) \Vas Llsed ta put the advection term in flux l'orm.

Note that we neglected the conversion of turbulent kinetic energy into internaI energy

by viscous dissipation. The rate of temperature change due to this source scales as

f../ cP' A simple calculation shows that this term is more than two arder of nlagnitude

smaller than the other source terms.

Water vapor mixing ratio

The evolution equation for the water 'lapor mixing ratio is

4.2 Macroscopic set of equations

The set of equations that describe the temporal evolution of macroscopic temperatul'e.

watel' vapor mixing ratio, pressure and cloud droplet size in an ascending parcel of

moist air is

•

dT\.[ LL' r L Cf-'- = -vt',H d + - ·dM.
dt cp

dquAI _ Cdt - - dAJ·

dRrAI = .) T.\" '"dt _1' ... M

C l ~ R T.' -. Pw V r." -, R
dlv/ = -.-41rpw L...i Mi 1\ ::'AI = 41r-l 1\ !:JAl M

Afa i=l Pa

dPA! "
--;[[ = -Paglt~lv(

Pa = PaO

(-1. 14)

(4.15 )

(4.16)

(4.17)

(4.18 )

(4.19)
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The pressure is given by the hydrostatic equation. To be consistent with the Boussi

nesq approximation made in the microscopic equations. the density is held constant

as in (4.19).

4.3 Perturbation equations for scalars

Subtracting (4.14) from (..1.1:2) and (4.1.5) l'rom (-1.1:3) yields the perturbation fornl of

the scalar equations

(-L2ü)

(·L:21 )

•

\...·here the perturbation terms T' = T - TM. q~ = l[v - qv.\/ and ~V' = H' - ~V\{

represent the differences in values between the micro:,copic and the tnacro8copù' vari

ables. As will be shawn later. these perturbations are ver\' sruall. i.e Tr'. :k « 1... '/ ..

Hence. for reasons of numerical accuracy. we solve (-L:20) and (-L21) instead of (-1.1:2)

and (4.13). vVhenever necessary. the total fields are obtained by simply adding the

macToscopic variables ta the perturbation fields. Note that we will refer ta the ternI

- ~v'rd as the cooling term.
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Chapter 5

Numerical procedures

The two sets of equations developecl in Chapter .~ are solved nurnerical1y as a rnarching

problem from time step n ta time step n+ 1. The choice of the size of the grid

cells for the microscopie mode! de pends on t\VO factors. first. the grid cell values

of temperature and watel' vapor mixing ratio n111st adequately represent arrlbient

conditions for a cloud droplet situated in that grid cell. This in1poses the conditions

that the dimension of a grid ceU should be >~ '20R (see Section :1.:2) but small enollgh

sllch that , on average. only a fraction of the grid cells contain one or rnore droplets.

The second factor is that the turbulent flow must be properly resolved. [n aIl of

the experiments describecl in this thesis the grid cell size is .12.5cnl.. vVe use droplet

concentrations of :::::: .SOcm-3. Therefore. on average. only one gricl ceIl out of ten

contains a droplet. We will show in Chapter ï that the turbulent flow is well resolved

with such a grid length.

The choice of the number of grid cells depends essentially on computationallimi

tations. AIl experiments without a turbulent flow (Chapter 6) use 1:20 x 120 x L20 grid

ceUs. The dimension of the complltational dornain is therefore l.Sem x 15cm x 1.5cm

and there are :::::: 170000 droplets in the dornain. However. in aIl experiments with

a turbulent flow (Chapter 7) the number of grid ceIls is recluced to 80 x 80 x 80

39
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because these experiments consume more memory and cpu time pel' tinle step. In

the turbulence experiments, the dimension of the computational domain is therefore

10em x iOem x IDem and there are ~ .50000 droplets in the ùomain.

In aU experiments the initial temperature and pressure is Tm = 28:3.1.S[{ and p.\! =

90kPa. The coefficients of thermal diffusivity and diffusion of \vater vapor evaluated

at this temperature and pressure are K =2.22 x 10-5 rn 2s- 1 and Dl! =2..1.j x 10-s TnJ ..,-l.

These coefficients are treated as constants.

5.1 For droplet growth

To solve (·1.1). the value of supersaturation is required. There are three cornmon

methods to calculate supersaturation (Hall 1980). They are the explicit nlethocL the

combined analytical/numerical method and the implicit method. The expiicit method

is the simplest. It involves solving directly the water \"apor rnixing ratio and tenl

perature equations by including only the processes of diffusion and advection. The

supersaturation is then diagnosed l'rom the ratio of the water vapor mixing ratio and

the saturation mixing ratio at the new temperature. The drawback of this method

is that it does not treat simultaneously the conlbined effect of JynanlÎcal and nlicro

physical proeesses which can be of the same order of magnitude (Clark 197:3). The

second method involves solving a linear equation for the tendeney of sllpersaturation

(e.g., Pruppacher and Klett 1978. eq. 1:3-29). The equation can be solved analytically

to yield the average supersaturation over one time step. This supersatllration is then

used in the droplet growth eqllation which can no\\" be integrated with an explicit

method. Chen (1994) developed a non-Ilnear supersaturation equation which is more

accurate particularly in subsaturated regions where evaporation occurs. The equation

cau also be solved analytically.

For reasons of generality and simplicity, the implieit method is employed in this
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thesis. This method, detailed in Hall (l98üL consists in solving the implicit equation

sn+l = q~+l/qusat(Tn+l), where q~+l and Tn+l are calculated l'rom (5.6) and (5.7).

by iteration using the Newton-Raphson method. Once S is determined~ it is applied

to the cloud droplet growth equation (4.1) which is then solved with a simple forward

in time method.

Note that sorne grid celis contain more than one droplet because the droplets are

distributed non-uniformly in space. Hawever. there is only one value of sllpersatura

tion in each grid celL

5.2 For droplet trajectory

To solve (4.6) or (..1:.8) for the velocity of the droplets. the veloeity of the flow a.t the

posi tian of the droplet is required. Since the flow veloci ty is only available at a fixed

grid celi. a tinear interpolation schenle in three spatial directions ('{eung and Pope

1988) is used to obtain the flow velocity between grid celis. This scheme involves only

the 8 nodal values of the interpolation cell. [t approxinlates the dependent \'ariable

within the cell as a linear fllnction in each coordinate. By enforcing the collocation

condition~ the interpolation weights can be determinecl uniquely. Time marching is

done with a simple forward in time method.

Ta obtain accurate solution on the trajectories of the draplets. the time step mllst

be much srnaller than Tp. the partide's response time. Elghobashi and Truesdell

(199:3), using a second order method ta solve for the trajectory of the particles. Llsed

a time step that ranged frorn one half to one thircL of Tp. [n our experiments. we

used a time step D.t < ~Tp. Sensitivity tests with smaller time steps indicated little

difference in the statistics of the spatial distribution of droplets .
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Our objective is to obtain a statistically stationary three dimensional turbulent flow

field. Ideally, we should simulate the whole range of seates including the large energy

containing eddies. and eddies in the internlediate inertial subrange and the small

dissipative scales. For practical purposes. the range of scales has to be limited. It is

conlmon practice to either model the small scales or to model the large scales using an

artificial forcing term. Since our interest lies in the smallest scales. the latter approach

will be adopted. The turbulent flow field will be obtained from direct numerical

simulation (ONS) using the pseudo-spectral technique(Orszag 19ï1) as inlplemented

in Bartello et al. (1994). The DNS method solves directly the Navier-Stokes equation

(moclified by the Boussinesq approximation in our context). rather than the Reynolds

averaged equation. in predicting the evolution of the tlow.

In physical space, the domain is a cube of sicle L with ~V3 gridpoints. The grid

points are located at (ll~x.12~x.l3~.r).where lh l2 and l3 are integers between 0 and

~V - i inclusively and ~x = L/1V. [n Fourier space. there are .V3 discrete wavenum

bers k = (mlko, m'}.ko• m3kO). where ml. rn,!, rn:J. are integers between l - .V/2 and

~V/2 inclusively. The lowest wavenumber ko is equal tü '2rr / L. The nlagnituc1e of the

wavenumber is orten given in non-dimensional form as (1ni + rni + 1n5) 1/'1..

Periodic boundary conditions are assumed in aIl three spatial directions. These

boundary conditions permit the use of Fourier series expansion. The pseudo-spectral

method implies evaluating spatial derivatives in Fourier space, but computing the

non-linear terms in physical space. This procedure is faster than calculating the

generalized convolution product involveel in the calculation of the non-linear term

in Fourier space. The fast Fourier transform( FFT) algorithm is used to evaluate

transforms (denoted with an F) and inverse transforms(F- l
).

In Fourier space the vorticity equation is:
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(.S.l )

where the Fourier coefficients. denoted \Vith a caret. are functions of time and k. the

wave vector. The velocity field is calculated llsing the identity

valid for a non-divergent flow. [n Fourier space this equation sirnply becomes:

ik x .;, = k~Û which yields Û = :' (ik x .:: J.

Time marching is done using the leap-t'rog scheme while the dissipative ternl is

integrated exactly as follows. By mllltiplying ( .1.1) by e.l'pvk
2
(t-t

n, . we obtain

ow vk2 (t-t n
) 1.'2" vk2(t-t rl ) A' vk2 (t-t"lât exp + vtt: loJ.:e.rp = t:.rp "

where Â is the SUffi of the advective term and the buoyancy terrn. This equation can

also be written as

Using the leapfrog time-differencing scheme to Inarch frorr1 time step n - l ta n + l

results in

which after sorne simple algebra yields the following eqllation ta be solved ln the

present model

(.5.:3 )

•
Because the dissipative terms are treated exactly, they do not enter into consid

eration of numerical stability. It should be pointed out that knowledge of stability
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constraints in spectral algorithms is limited. although restriction on the magnitude of

the Courant number is often used to determine the nlaximum time step. [n our case

the Courant number can be defined as: C = mu.r(l~~ul.twl) .:lt. For stability reasons. we

choose our time step to obey C < .:2.5. However. to allow for a uniform time step in

solving both the flow equations and the clroplet equations. the actual time step used

is the lesser of ~t < ~Tp and the ~l necessary ta respect C < .:2.5.

To avoid the separation of numerical solutions. a tirne filter a~ described in Robert

( 1966) and Asselin (19ï2) i5 employed. To start or restart the calculation a second

order predictor-corrector scheme is used.

Using Kolmogorov's energy spectrunl (:2.1). we Rnd that the eddy turnover tinle

associated with a length scale L is TL '"v (L 2 / é) 13. For a ciarnain size of apprOXiITlately

10CI1l and typical values for the ecldy dissipation rate. this tinle scale varies bet\vcen

a few seconds and fractions of a second. Therefore. for a numerical experirnent which

lasts longer than a few seconds. the eddy of size L will lose an appreciable part of

its kinetic energY1 and forcing at the large scales (snlaU wavenumbers) is essential ta

maintain a stationary flow. Ta do 50. the method outlined in Sullivan et al. (L994)

will be used. The forcing scheme maintains the kinetic energy in a wavenurnber band

Ikl < /\.J. At the end of each time step the t.\nergy in this wavenumber band. E'.

is calculated as well as the ratio E/ E' = c'2. where E is the initial energy in the

wavenumber band. Energy is artificially put back into the flow by ITlultiplying aIl

Fourier coefficients of vorticity for 1kl < /{J by c. A statisticaIly stationary state is

achieved after sorne time when the average rate of energy addition is equal ta the

average energy dissipation rate. The mean kinetic energy wiU then oscillate around

a constant value.
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-l.j

(0.6 )

(0. ï)

•

A two step procedure is used to solve the scalar equations. rirst. equations ( -L:2ü)

and (4.21) are marched forward in time by including only advection and diffusional

processes. An intermediate temperature and watel' vapor mixing ratio (starred quan·

titie:;) are obtained ati in (5A) and (,j ..S).

T'* = T,n-l exp-~k22~t - :2~te.rp-~k2~t (~t"'nr'i + ik· F [F-1(TIrt)F-L(Û)]) (.iA)

q~" = q:~-l exp-Duk2 'JAt _ :2.1tE.rp-Duk2~tik. F [F-l((i~:l)F-l(Û)) US..))

The supersaturation is then calculated fronl the interrnediate tenlperature a.nd vapar

mixing ratio using the method described in Section .).1. Finally a ne\v ternperature

and watel' mixing ratio at time step n+ 1 are computed l'rom the intel'mediate values

by including the micl'ophysical processes in (:'5.6) and (5. ï).

T'n+l = T'* + ~t~( ("J( sn+l ) - ('''.\lt S'\i 1
))

cp .

q~l+1 = (l~ - .1t(c.J(sn+l) - C.1.\[(S1{t L
)).

5.5 For macroscopic equations

The maeroseopie supersaturation is ealculated llsing exactly the saIne procedure as for

the microscopie supel'saturation. AIl equations are advanced in time llsing a simple

forward in time numel'ieal seheme.

5.6 Formalism for analysis of spectral modifica-

tions

In the following chapters we will compare the results from themicToscopic model and

the -macroscopic mode!. In addition to examining the perturbations, particlliarly that
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of the supersaturation, in the scalar fields caused by the microscopie approach. we

will analyze the difference in the growth of individual droplets and the difference in

the size distributions between the two approaches. !\Iuch of our analysis will be in

terms of a parameter called the degree of growth. denned in Brenguier (1991) as:

l
t lt") ) r -, )' -,

3- == 0 ~A ~dt =",;..l\. 0 ::Jdt.

where the time integral is taken along a droplet's trajectory. To unc1erstand the

meaning of this parameter. we l'efer to the droplet growth ('quation (.l, 1 or -L 10)

which is:

dR
2

')f' ...& = - \~.

The degree of growth. calculated as the time integral of the supersaturation along

the trajectory of a given droplet. therefore repl'esents the change in the surface area

of the droplet.

vVe will make use of this paranleter in our analysis for two reasons. First. wc

will demonstrate in what follows that it simplifies the interpretation of the evûllltion

of the size distribution. Second. Brenguier and Chaumat (L~96) analyzed observed

cloud droplet size distributions in cloud cores at variOllS altitudes. They calculated

the pl'obability distribution of the degree of growth which is reqllired to explain the

observed spectral evolution in acliabatic cloud cores. \-Ve will conlpare the di~tribu

tians of this parameter in our numerical experiments to those inferred by Brenguier

and Chaumat (1996) to determine if a microscopie approach can explain ~pectral

broadening in adiabatic cloud cores.

The application of the parameter. the degree of growth~ will DOW be clarified.

First, we point out that within the macroscopic approach all droplets are submittecl

ta the same supersaturation S,\[ and therefore possess the same degree of growth pif'

The time integral of (4.16) for the ith droplet in the macroscopic modelleacls to:
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(.5.8)

where the left superscripts t and 0 denote time and Ji! is referred to as the mac'ro

scopie degree of growth. Equation (.5.8) states that ail droplets llndergo the same

change in surface area â~f dllring the time interval t. It is easy ta show (Appf'ndix A)

that (.5.8) implies that the variance of the RX! spectrum is constant. i.e.

(::>.9 )

where the last term on the tight denotes the variance of the initial squared radius in

the microscopie model. From (.5.8). we can calculate J:~I given the initial and final

drop sizes (or the initial and final average of the R~I spectrunl). Alternately. wc can

compute the final drop sizes onced.~l and uR'X, are known.

Turning ta the microscopie approach. the clegree of p.;rowth for the ith drop is:

(:3.10)

where use has been made of Si = S; + SM. lising this result and the droplet growth

equation (4.1). we obtain:

\R2 - tR2 _ 0R2 - 3'2 + J2.....}, i = i i - i . JI'

Subtracting equation(.5.8) from(5.11) we get:

(;j.11 )

('1.12)

•

which expresses the simple but important fact that when the time integral of the

supersaturation perturbation is non-zero. the squared radius of thei th droplet in the

macroscopic approach will be different from that in the microscopie approach. The

term f3'! is referred to as the perturbation degree of growth.

By averaging (5.12) over all droplets, we get R2 = R'tl + pf2. As we will see in the

numerical results, 13'2 is not zero but is negative and « R~l or plI' Consequently~
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the average squared radius of the microscopie and macroscopic size distributions are

practically the same. Furthermore, averaging (.S.11) over aU clroplets we see that the

change in the average squared radius of the microscopie size distribution is ~ Ji/.

The variance of the Rl distribution in the microscopie model can be derived l'rom

(.5.12) and using the identity V(.r+y) = F(.r) + V(y) +2c()('(.L'.y). where V and cot'

denote the variance and the covariance respectively. The l'esuIt is:

Using (.5.9) and the result that cOD(.d'"2. tR1d = cov(,:J'2 • oR},) (..-\ppendix A). (5.1:3) can

be rewritten as:

(:) .1-t )

•

Hence the perturbation degree of growth é~::iociated with the supersaturation per

turbation is responsible for changes in the variance of the R'2 distribution. The Iirst

term on the right, the variance of the perturbation clegree of grawth over ail droplets.

must be positive and therefore contributes to a widening of the R'l. spectrunl. In the

numerical modeling contexL this term can be obtained either by directly comput

ing the time integral of the supersaturation perturbation for ail droplets and then

calculating V(t3 /2
) at the end of the experiment . ..-\lternately. wc can use U5.1~) and

simply compute VCR2 - tRtd. The second term on the right in (.5.1-1) can contribute

to spectral broadening if it is positive or ta spectral narrowing if it is negati ve. \'Vhen

normalized by the product of the standard deviations of p/2 and °R2
• this term is

the correlation between the degree of growth and the initial size of the droplets. ft

should be noted that when this correlation is significantly negative. it implies that the

growth of the droplets initially smaller (larger) than average is more (less) important

in the microscopie approach than in the macroscopic approach (see (.5.12)).

Equation (5.14) gives an estimate of the change in the variance of the squared

radius. The terms on the right of this equation have a simple physical meaning and
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thus facilitate the analysis of spectral changes. vVe are aiso interested in the change

in the variance(or standard deviation) of the radius itself ta gauge if broadening of

the spectra occurs. Nlathematically. V(tR2
) - l/(OR2 ) > 0 does not necessarily imply

that V('R) - VeRM) > O.. Ho\vever. it is possible to prove that when the dispersion

of the size distribution is smal!. the following approxirnatiolls are \'alid

V( R2
) ~ ·tR'2\.'(R)

V(tR2
) - V(OR2

) ~ ·lJ'2\t"(tR) + .ttRXr(1:(t.R) - VeR.\l)).

(:),1'1)

(!j.16)

Equation (5.L6) states that when 3'2 is negative (always the case in our experiments).

an increase in the variance of the squared radius always in1plies an increase in the

variance of the radius itself. Furtherrnore. in ail experin1ents presentee! in the l"ollowing

chapters. the first term on the right of (.5. L6) is always negligible cOlllpared tu the

second term. Hence~ a decrease in the variance of the squared radius also alwél.Ys

implies a decrease in the variance of the radius itself. ~ote that the difference in the

variance of the radius is simply related to the difference in the standard deviation of

the radius by a( R) - a( RAd = (V (R) - ~,,( RM ))1(a( R) + a( RH))' 'Thus. the sign of

the difference in the variance of the radius is necessarily the sarne as the sign of the

difference in the standard deviation.

\Vhen comparing the results from the microscopie rnodel ta those of the macro

scopie model or ta observations we will often make llse of the dispersion of the degree

of growth distribution and the dispersion of the supersaturation distribution over ail

droplets:

d(B2) = aCJ2) d' -') _ O'(S)
',32 ( .) = S' .

Using Si = S: +SM , (5.10) and the fact that pr}o <t::: ,JIE as well as S' « S'M we obtain

the expressions for the dispersion used in subsequent chapters:

•
d(S) ~ a~S').

:::, ,\-1
(5.1i)
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Chapter 6

Experiments with no turbulence

In this chapter we will describe the results of experirnents without turbulence. The

important physical processes acting are molecular diffusion of heat and watel' ,,'apor.

condensational growth of the droplets and adiabatic cooling of an air parcel rising in a

constant updraft. Equations (-Ll-!) ta (-LU)) are solved for the macf'oscopic approach.

For the microscopie approach. the equations sol veel are (·L 1). (,L:n.( ·L:20) and (-L:2 L).

The advection termsare excludecl [rOITl (-L:20) and (-L:!l) as \vell as the cooling term

from (4.20).

As mentioned earlier. the average inter-droplet distance is of the same order of

magnitude as the typical Kolmogorov length scale in clouds. Turbulence is there

fore expected ta be as important as molecular diffusion in determining the ambient

conditions in which an individual droplet grows. Neglecting turbulence would seem

unrealistic unless the flow is near laminar. However. our simplified experiments in

this chapter are still very useful because they offer a much simpler context ta interpret

the effect of sedimentation and the sensitivity of spectral broadening ta various ini

tial conditions. Alsa we can compare directly our results to the analytical estimates

obtained by Srivastava (1989), Finally, as will be shawn in the next chapter. the no

turbulence case sets an upper limit on spectral broadening.

50
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Our models were thoroughly tested to ensure that the microscopie results do

converge to themacroscopic results when the number of grid points approached one.

Furthermore, sensitivity tests on the time steps showed that in the microscopie modeL

the results for spectral change do converge when the time step becomes smaller. In

fact, these tests allowed us to choose an appropriate time step for our integration.

The budgets for water and energy were also checked and they are conserved to within

a fraction of a percent.

Table 6.1 contains the basic paranleters for the ten experiments performed. In

aU experiments. the grid size used is .12.5cnl and the nurnher of grid points is l:203 •

The domain size is therefore 1.5cm x l.Sem x L5cm. For a droplet concentration of

:.::::: .50cm-3 • the total number of droplets is ~ lïOOOO. This implies that. on aver

age, only one grid point in ten contains a droplet. The models are integrated for

200s in each experiment and the domain undergoes adiabatic cooling with a rate

consistent with a constant updraft of :2 ..5nls- L
• The cloud droplets at initial time are

distributed randomly in space except for Experiment NO l. where they are uniformly

distributed. Because sedimentation is not included in Experiments NOL ta N09. the

droplets in these experiments are basically frozen in space throughout the duration

of the integration.

1 Expt # 1 NO l 1 N02 1 N03 1 N04 1 N05 1 NU6 1 NOï 1 NOS 1 N09 1 N10 1

•

# of gridpoints L20~ L20~ 120~ L20J L20~ L20~ L20~ L20~ L20~ L203

.:lJ:(mm) L.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25
At(ms) 10 Lü 10 La 10 10 LO LO La La
duration(s) 200 200 200 200 200 200 200 200 200 200
concentration (cm-3) 51 51 51 51 51 51 5L 51 51 5L
Ofl.(pm) 10 10 10 10 La 10 15 La 5 10
O'(oR)(pm) 2.9 a .15 0.5 1.0 2.9 O. O. .0 2.9
updraft(ms- L) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
sedimentation no no no no no no no no no yes

Table 6.1: Basic parameters of experiments without turbulence
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vVe would explore the effect of a variety of initial size distributions. They include

the very narrow monodispersed distribution, the broader Gaussian distributions with

different widths, and the very broad llniform distribution. The monodispersed spec

trum and the broad uniform spectrum can be regarded as the two extremes while the

Gaussian distributions lie somewhere in between. A llniform deviate random number

generator which generates a real number within a specified interval with unifornl prob

ability is used for the uniform distribution and the initial positions of the droplets. :-\

Gaussian deviate random number generator. which generates a real nllmber according

to a Gaussian probability distribution with a specified nlean and a specified standard

eleviation. is used to yield the Gaussian size spectra.

Experiments NOl and N02 constitute two extreme cases. [a NO 1. the initial size

spectrum is broad. The number density of the drop let sizes is uniform in the interval

between .) to l')ILm in radius. The droplets are placed evenly in space with one

droplet in every 10th grid ceU such that they form a reglllar cubical grid. Experiment

N02 starts with a monodispersed spectrllm. The droplets are distributed randomly

in space but they have the same size which is lOJlnz radius. The mean sizes of the

droplets in NOl and N02 are therefore identical.

Experirnents N03 to N06 are designed to stlldy the effect of varying the initial size

distributions which have the same mean radius but increasing standard deviations.

Gaussian distributions with various widths characterize the initial spectra in the first

three runs while a uniform distribution from .5 to 1.5/l'm in radius is llsed in N06. Even

though very large and very small drops are theoretically possible in the Gaussian

distributions, in practice the finite number of droplets in the domain (~ 170000)

results in a truncated spectrum in N03-NO.5. Specifically, the radius of the smallest

and the largest droplets in pm at initial time for NO:3, N04. and NO.5 are [9.:3.10.7],

[7.7,12.4], and [5.5,14.7] respectively.
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Experiments N07-N09 compare the results for three different monodispersed spec

tra, whose initial radius decreases from 1.5 to 5/J;m. Finally~ NID examines the effect

of sedimentation using the saffie broad initial size distribution as in N06.

In the analysis of the results, we are interested in the difference between the mi

croscopie and the macroscopic models. particularly in the rate of growth of individual

droplets and the evolution of the width of the size spectra. In this context. it is impor

tant to bear in minci that supersaturation affects ciirectly the rate of droplet growth.

Furthermore, the parameter 3~2. the perturbation degree of growth (see Section .5.6).

is proportional to the time integral of the supersaturation perturbation for droplet

i. It is a key parameter which determines whether the radius of individual clroplets

would differ in the microscopie and the maeroscop'lC approach.

The evolution of the size distribution in the microscopie model \vith respect ta

that of the macroscopic model is analysed bath in terms of the difference in the

standard deviation, 0"( R) - 0'( R,'v[). and in terms of the difference in the variance of

the squared radius. V(tR2 )_ V(UR'!) (see (5.14)). As discussed in Section .1.6 the sign of

these quantities is the same and thus bath quantities can be llsee! ta diagnose spectral

broadening or narrowing. vVe will pay special attention ta the terms appearing on the

right of (.5.14). These terms have a physical meaning (Section :3.6) which facilitates

the analysis of spectral changes.

We will focus on these parameters in our analysis and make reference ta Table

6.2 which contains a summary of the important results at the end of the experiments

(200 s).

Fig. 6.1 shows the temporal evolution of the difference in standard deviation of the

size distribution between the microscopie and macroscopic models (a( R) - a( RiH )) for

NOl and N02. In NOl (curve A)~ the standard deviation of the size distribution from

the 'm'icroscopic approach is ~ 2% smaller than that from themacroscopic approach
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at 200s. In other words, the microscopie spectrum is narrower than the macro

scopie spectrum when the droplets are not distributed randomly in space. A curve

labeled ~'O" is aIso plotted. It represents the result of a hypothetical experiment where

equal-sized droplets are distributed evenly in space. ('nrve ·,O~~ and curve :-\ showed

that themieroscopie spectrum is always narrower than the macroseopic spectrum for

uniformly spaced droplets. Indeed. the two curves delincate the range fol' spectral

narrowing for drop lets distributed llniformly in space in a non-moving nledium. In

contrast ta NOl. broadening occurs in N02 (curve B) where the standard deviation

a( R) of the spectrum increasecl l'rom O. to .15 ILm.

The difference in the width of the spectrum bet\veen NO L and ~02 is related ta

the temporal evolution of the terms on the right of (.1. L-l) (see Fig. 6.:n. The Cllrves

for V(;3,2) and '2eo'V(}3/2. °R2) are denoted by sluaU and capital letters respectively.

The term VUj'2), which is positive and has a broadening effect on the spectra. is

nluch larger in N02 (curve b) than in ~O 1 (curve a). reaching values of L. ï and

:31.6J.lm"1 respectively at 200 s. The dispersion of the degree of growth is given by

a(p'1.)/,dtr x 100. (see (.5.17) for derivation). The rnacroscopic degree of growth dSr

depends only on the change in the mean sqllared radius of the spectrum (see Section

.5.6), and is approximately 2:J:J /Lm 'l in bath experiments. Using this value for di[. the

dispersion of the degree of growth t urns out to be .5 ï:2% for NO land 2...1 ï% for NO:2.

In contrast to the behavior of the V(,aI2) term, the 2cov(~/'2.°R2 ) term is zero for

N02 (not shown) but is large and negative at aU times for NOl where the correlation

between 13'2 and °R2 reached a value of -.86 at 200 s.

The much larger braadening effect observed in N02 is refiecteci in the probability

distribution of supersaturation perturbations at 200 s (Fig. 6.:3). vVhen cornpared ta

the results of NOl (nat shown), the standard deviation of the probability distribution

for N02 ( .1.56 x 10-3 ) is almost one order of magnitude larger than that in NOl (

.23 x 10-4 ). The dispersion of the supersaturation perturbation at 200 s, calculated
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from u(S')jS.H X 100. (see (.S.li) for derivation) with the macroscopic supersatu

ration SM at about .54 x 10-2 for both experiments. turns out to be 0.434% and

2.89% for NOl and N02 respectively. The maximum and minimum supersaturation

perturbations in N02 correspond to deviations of Il and -l,j'}t, (S'I SM x 100.) l'rom

the macroscopic supersaturation. In contrast, the maximum and minimum super

saturation perturbations in NO l correspond ta deviations of only ± l.:J% fron1 the

macroscopic supersaturation (not shown).

Note that the distribution of S' is not symnletric but rather negatively skewed.

Furthernlore. the probability distributions for temperature and water va.par mixing

ratio (not shawn) are aiso skewed. The skewness is positive for the forn1er and negative

for the latter. These asymmetries are directly related to the fact that the draplets are

randomly distributed and therefore the concentration of droplets follows the Poisson

distribution which is positively skewed (see :\ppendix :\). [n other wards. the tail

of the Poisson distribution towards high concentration of droplets is responsible for

the positive skewness of temperature and the negative skewness of the water '..apor

mixing ratio which resllit in a negative skewness for the supersaturation perturbation.

Sllbseqllently. the distribution of J'2 is also negatively skewed.

The results of NOl and NO:2 showed that non-uniform distribution of the initial

size of droplets and their position lead ta variation in supersaturation. Hawever. the

dispersion of the distribution of supersaturatian pert urbation is much wider in NO:2

than in NOl, indicating that the random position of the droplets provides a larger

forcing for supersaturation perturbation than the initial variability in droplet radius.

vVe will provide an explanation for this in Section 6. L

Returning to the covariance term plotted in Fig. 6.:2. [t \Vas shown that this

term is large and negative for NOl and thus has a dominating narrowing effect on the

spectrum. The correlation between ;3'2 and °R2 is negative. indicating that droplets

initial1y smaller than the average size would tend to grow l'aster (subject to a positive



•

•

.j6

supersaturation perturbation) and droplets initially larger than the average size woulel

grow more slowly (subject ta a negative supersaturation perturbation). Ta clarify this

point, we plotted in Fig. 6.4 the contribution of droplets of various sizes to the total

correlation between ;3'2 and °R'2. 1'0 construct this figure. we first sorted the ~ l ïOOOO

droplets according to sizes in groups of 1000. The correlation is then ca1culated for

each group and plotted with the mean radius of each group along the abscissa . It

is clear that the further the mean radius of the group cleviates t'rom the nlean radius

of the total population (lO~l'fn), the greater lS its contribution ta the total negati ve

correlation.

The reason for this increasing contribution is attributable to the fact that in

the microscopie approach. condensation affects the temperature and water vapor

distribution in the environment of individual droplets. Since the release of latent

heat (with the accompanying decrease in water vapor mixing ratio) is proportional to

the size of the droplet (see equations (4.1:2). (·L1:3) and (-L:3)). a drop which is snlaller

(larger) than the average size would develop in an inlmediatc environment which is

colder (warmer) and moister (drier) than that in the macro8copic approach. This

interpretation is supported by the results of an experiment similar to NO L but wi th

droplets of only two sizes (.5 and 15 Jlm) distributed uniformly in space. Fig. 6..5 shows

the time series of the supersaturation perturbation (top panel). the perturbations for

temperature and water vapor mixing ratio for the large droplet (rniddle panel) and

the small droplet (bottom panel). The temperature perturbation and water vapor

perturbation are respectively positive (negative) and negative (positive) for the large

(small) droplet. The supersaturation perturbation is therefore negative (positive) for

the large (small) droplet.

To examine the effect of the microscopie approach on individual droplets, we

plotted in Fig. 6.6 the probability distribution (in % of total number of droplets) for

tR - tRJII[ at 200s for experiments NOl (top panel) and Nü2 (bottom panel). In NOL
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curve c denotes the probability distribution for aU droplets while curves a and b rep

resent respectively those for the initial1y 10% smallest and 10% largest droplets. It is

obvious that the smallest droplets tend to grow faster than their rnaC'roscopic COllnter

parts (positive tR - tR,\r) while the largest droplets tend to grow slower. The extrema

in tR - tR.~'J are .10 and -.la,am. In N02. the distribution is mllch wider with extrema

of .842 and .56pm. These extrema are upper bounds to how much larger the largest

droplet of the size distribution and how n1uch smaller the snlallest droplet of the

size distribution can be in the microscopie approach relative ta the macro..,copic ap

proach. Contrasting the results for NO 1 and N02. the effect of the non-uniforn1ity in

the spatial distribution of droplets becomes quite clear. .-\lso note that similar to the

instantaneous supersatl1ration perturbation and the perturbation degree of growth.

the distribution for tR - tRI\,{ is again negatively skewed.

Having seen that spectral broadening can occur when droplets are distri buted

randomly in space and spectral narrowing can take place for spatially llniform droplets

whose size distribution is broad. we now explore the sensitivity of the re::;ults ta the

initial widths of the size distribution in experiments .va:} ta ~V06 (see Table 6.1). The

widths of the size distributions increases from ~O:3 to NO.5. They are generated by a

Gaussian random number generator. In NaG, the size distribution is uniform. The

initial mean radius for these distributions remains constant at 10p:m.

Fig. 6. ï shows the temporal evolution of 0'( R) - 0'( RAI) for these four exper

iments. Clearly, whether the microscopie spectrum broadens with respect to the

macroseopic spectrum depends on the width of the initial spectrum and also on time.

Curve C, for a Gaussian size distribution with an initial standard distribution of

.I.5Ilm, shows a spectrum which narrows for a few seconds and then broadens. At the

end of the experiment, 0'( R) is 116% greater than 0'( R,u). Curves D and E indicate

spectra which narrow for the first 30 and 110 seconds respectively and then they

broaden. At the end of N04 and NOS, u(R) is greater than a(RAd by 14 and 2%
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respectively. The widest initial size distribution narrows with respect to the macro

scopie spectrum throughout the duration of the experiment and is 1.4% narrower at

200 s.

Fig. 6.S shows the temporal evolution of the terrrlS appearing in (.1.1-1) for NO:3

N06. Even though a(OR) increases from NO:3-~06. the values for V(J'2) (curves c. cl.

e. f) are similar for these four size distributions with the same initial mean radius.

However, curves C to F clearly indicate that the magnitude of the :ZcovL,Y2. °R'l) ternl

is an increasing function of the initial standard deviation of the size distribution. The

SUffi of the two terms (not shown) shov: that the R']. spectra nrst narrows and then

widens. In particular, the wider an initial distribution the longer it takes the R'l

spectrum to widen beyond its initial variance.

The next three experiments (NOï-0I09) have monodispersed initial size distribu

tions with OR = l5. lü and 5'l1n respectively. Fig. 6.9 shows the temporal evolutions

of the standard deviation . a( R) (top panel). and V(3r2
) (hottorll panel). vVe see that

the increases in the standard cleviation and \/(,3':2) become larger \-vhen the initial

sizes of the droplets becomes smaller. In these simple experiments. where the posi·

tions of the drop lets remain frozen, the variance of the supersaturation perturbations

follows the same trend. However. the macroscopic supersaturation also increases as

a function of decreasing initial size. thus the dispersions of the distributions of Sand

,82 actually decrease slightly. The standard deviations of tR - tRAl for NOï-N09 at

200s are .13•. 15 and .17/Lm respectively. fol1owing the same trend as V(,Jf2).

\;Ve now explore the effect of the sedimentation on spectral evolution. Experin1ent

NI0 has the same initial conditions as N06 except that the sedimentation of droplets

at their terminal faIl speeds is allowed. The initial size of the droplets for NlO vary

from 5 to 15fLm, and the corresponding initial terminal velocities range from .:3 to

2.7cms-1 (see Table 2.2). In previous experiments, the droplets grew in an envi

ronrnent where the concentration of droplets in the immediate surrounding remains
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constant. As a result, the supersaturation perturbations varied slowly and smoothly.

vVben the droplets sediment, this is no longer the case. Fig. 6.10 compares the tem

poral evolution of the supersaturation perturbation for several droplets in N10 and

in N06. Because of sedimentation. the drop lets in N10 grow in a mllch more variable

environment where growth varies rapidly between favorable (positive perturbation)

anclllnfavorable (negative perturbation) conditions.

The average time that a clroplet stays in similar conditions can be estimated

l'rom the decorrelation time. calclliated l'rom the autocorl'elation coefficient of the

sllpersaturation perturbation as a function of lag cime. The decorrelation tin1e can

be loosely def1ned as the time lag at which the autocorrelation coefficient approél.ches

zero. In an experiments without turbulence and sedirnentation. the decorrelation

time of the supersaturation perturbation is very long (arder of n1inlltes). Thel'efol'e.

the probability distribution of the tin1e integral of the sllpersatllration perturbation.

which yields the perturbation degree of growth 3''2. has similar properties as that of

the instantaneous supersatllration at the end of experiments (t'.g. the dispersion and

the maximum and minimum relative to the macroscopic quantity. l'cfer to Table 6.2).

Fig. 6.11 shows the autocorrelation coefficient of S'. averaged over :2000 droplets.

as a function of the lag time. Comparing the two Cllrves. it can be seen that sedimenta

tion substantially reduces the decorrelation time of the sllpersaturation perturbations.

For the particular size distribution in NIO, the droplets will grow in similar condi

tions for an average of 4 -.5 seconds. Fig. 6.12 shows the probability distribution of

100. x 55' every 408 for the same experiment. The distribution changes with time.
fi,[

particularly for the negative tai!. The dispersion of this distribution varies between

.015 and .019 while the extrema vary around -la. and 6.%. These values are::::::: :3.5

to 50.% smaller than those for experiment N06.

The decrease in the dispersion of the supersaturation perturbation distribution in

NID is directly related to the decrease in the standard deviations of temperature and
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water vapor mixing ratio perturbations. The standard cleviation of the temperature

perturbation is reduced from .14 x 10-2 to .87 X 10-3 l\~ while that of the \vater

vapor mixing ratio decreases from ..5 x 10-6 to .:3 X 10-6
• In regions void of droplets

strong negative temperature and positive water \lapor mixing ratio perturbations can

develop (consider (4.20) and (·L21) with Cd = 0) Furthermore. in regions of high

droplet concentrations strong positive temperatul"e and negative water vapor nlixing

ratio perturbations can develop (consider (4.20) and (-1.:21) with Cd > C,l.\!). The

decrease in the standard deviations of the scalar fields can be explained by the fact

while the drop lets faU at their various terminal velocities they sweep the volume

such that no region will stay void of droplets indefinitely and the configuration of

droplets changes such that regions of high droplet concentration also do aot survive

indefinitely.

The evolution of the spectra can be examined from the curves plotted in Fig.

6.1:3. It is apparent that sedimentation has an important inlpact on the variance

of the perturbation degree of growth (V"(,d'2)). reducing it l'ronl :32")ILm-' in Nü6 to

:3.SllTn4 in NiD. The dispersion of Jl is reclllced to .OOS (cornpared to .025 in ~06

J3t2 JI2 •
) and the ratios T and 7 to ---1:. and :3% respectlvely (compared to -12. and

M .H

10% in N06). The other effect of sedimentation is to recluce the in1portance of the

covariance term. The net effect is that a( R) - a( R,\{) is still negative at 200s in ~10

but its magnitude is tess than that in N06. In terms of the distribution of tH - tRM~

the standard deviation was reduced to .051LTn and the extrenla to ±.22Ilm.

Experiment N02 was aiso repeated by including sedimentation. Even though ail

droplets initially faH at the same speed, the final V(,d'2) is still substantially reduced

from a1.61lm4 to 8.1J.lm4 • The final (j( R) also decreased from .1,j to .OSILn1.. Thus the

inclusion of sedimentation brings the microscopic results doser to the macroscop-ic re

sults.

Two experiments similar to N02 but with concentrations of 7.5 and lOOcm-J were
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aiso conducted to study the sensitivity to concentration. The results inciicate a cie

crease in the variance of the perturbation degree of growth as a function of increasing

concentration, indicating that the difference between the microscopie and macro

scopie results becomes smaller when the concentration increases. Experiments with

concentration higher than lOOcm -3 was not attempted because \vith a fiuite grid size.

the problem of adequately resolving the distance between individual droplets worsens

as the concentration becomes progressively larger. Nevertheless. the results sa far ob

tained makes physical sense because when the average distance between the droplets

gets smaller with higher concentration. molecular diffusion becomes more efficient in

reducing the supersaturation perturbations.

1 Expt # ~Ol N02 NO·l ~U5

0"( R)(Jtm)[V( R2)(pm~)] 1.5·l[3259.] . t:>4[31.6] .L77[41.9] .:WV[L29.] .5:55[Ll18.]
0-( RM )(JLm)[V( R~/ )(Jlm4)]) L..57[3:388.] .O[.O} .082[8.V8] .272[99.V} .54:3HU1.]
V U3,2 )(Jlm4 ) 1.75 :3 L.ü :3:L3 a:J. ·l :3:3 ..1
2COV(p/2. °R'2)(J.'m -l) - L:32. O. -.:379 ··l.12 - l(j .-.

0-(;3/2) / P~f (%) .572 2.41 2..1:3 2.-12 2.·l-l
0-(5')/51,,[(%) .434 2.89 2.89 2.aO 2.90

1 Expt. # Nü6 N07 ~ü8 N09 N10

•

0-( R)(pm)[v'( R2)(J.lm'l)] 1.55[:1290.] .1:14[29.9] .1.55[32.4] .169[35..1] 1.55[:3:3l:2.]
0-( RM )(J,m)[V(R~/ )(Jlm-l)]) 1.57[:1:388.] .0[.0] .0[.0] .0[.0] 1.57[:3388.]
V(,a/2 )(Jlm4) 32.6 29.9 :32.4 :35..l :3.76
2cov(;3''2, °R2 )(Jlm4

) ~ 1:30. .0 .0 .0 -79.-l
0-(;3''2)/t3j/(%) 2.47 2.85 2..10 2.07 .84

0-(5')/SM (%) 2.90 :3.17 2.88 2.76 1.86

Table 6.2: Important variables at final time for experin1ents without turbulence
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Comparison with the analytical predictions

of Srivastava (1989)

Srivastava's (1989) analytical approaeh led ta sorne specifie qualitative and quanti

tative predictions for the supersatllration perturbations for a l'l'ozen configuration of

droplets (no sedimentation and no turbulence). He derivecl the following equation for

the ratio of the supersaturation perturbation over the macro..,copic supersatllration:

(6.1 )

•

where l is the cloud water content expressed as a volunle fraction. L' is the "volume

occupied~' by an individual droplet. and 7J is the average vol urne oecupied by each

droplet (given by the reciprocal of the concentration). ft is assumed that the volurnes

are clistributed randomly and obey the Poisson statistics. Se\:eral qualitative results

can be deduced from this equation:

i) for a droplet of average radius. R. occupying an average volume. v. the sllpersatu

ration perturbation is zero

ii) if a droplet occupies the average volume v. its supersaturation perturbation will

be positive (negative) if its size is smaller (larger) than average.

iii) if a droplet of average size R occupying a smaller (larger) volume than average.

it will experience a negative (positive) supersaturation perturbation

vVe can compare Srivastava's results with those t'l'orn our numel'ical experiments

presented in Fig. 6.6 which displays the probability distribution of tR - tRA1 for the

smallest 10% (curve a) and the largest 10% (curve b) of the droplets in expel'iment

NOl. Recall that in this experiment, the dl'oplets are uniformly distributed in space

but the initial size distribution is very broad. It is evident that in agreement with

Srivastava's result (ii)~ the smallest (largest) droplets do~ on the average~ grow faster
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(slower) than their macroscopic counterparts. However. Fig. 6.6 also shows that the

anaiytic results have certain limitations. For instance. results (i) and (iii) listed above

may nat necessariiy be true for an individuai droplet because the supersaturation in

the immediate environment of the droplet does not depend solely on its size but also

on the sizes and positions of the surrounding droplets through the action of n10lecular

diffusion.

As a specifie exampie. we will estimate the dispersion of the distribution of super

saturation perturbation l'rom (6.1 )and compare the analytical and nurnerical results

for two simple situations where the droplets are uniforn1ly distributed in space (NOl)

and where the size distribution is monodispersed (.VO:2). In the fornler case. the

"volume occupied'~ by aIl droplets is the same and eqnals ü. The analytic dispersion

a(S")/SM ~ 12[l/3(j(R)1R. Using (j(R) ~ .09 and 1~ 19/kg at. the end of NOL. the

analytic dispersion in the supersaturation perturbation turns out ta be l.i %. In con

trast. the numerical results obtained was .-1:3% (see Table 6.:2). For the case where the

drop lets are randomly distributed in space and the size distribution is nlorlOdispersed.

Llsing a probability density of L' given by p( v) = (L /v)e.l.'p( - i' IIi). the dispersion of

(6.1) can be shawn to be (j(S")/S;H ~ LïAl l / 3 . Using the values from N02 at :200 s.

the analytic dispersion can be calculated ta be 18%. The numerical result. ho\vever.

is only 2.9% (see Table 6.2).

The values for (j(S')/S,H. evaluated from the analytic and numericai solutions.

are much larger in N02 than in NOL This resuit is directIy related ta the fact that

(j( R)1R < 1 for NOl and N02. whereas (j( v) Iv = 1 in N02. In fact. comparing the

expressions for the two cases indicates that this result will al ways hoId unless the

dispersion of the size distribution exceeds one. In natllre~ the observed dispersion of

the size distribution of cloud droplets in adiabatic cloud cores is much smaller than

one (e.g., see Jensen et al. 1985). Thus the non-uniformity in the spatial distribution

can be expected ta produce greater variability in the supersaturation perturbation
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than the variability in the initial size distribution of the droplets.

vVe showed in this chapter that Srivastava's (1989) analytical estinlates are qual

itatively consistent with the results from our numerical experinlents. However. the

analytic results, in terms of the dispersion of the supersaturation perturbation. is con

siderably larger than those l'rom the numerical experirnents. Thus the assun1ptions

required to yield the analytic solutions appear ta lead ta significant overestinlates of

the magnitude of the dispersion of the supersaturation perturbation .
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Figure 6.5: Top panel: temporal evolution of supersaturation perturbation for small
droplet (dotted) and large droplet (solid). wIiddle panel: temporal evolution of tem
perature perturbation (solid) and water vapor mixing ratio perturbation (dotted) for
large droplet. Bottom panel: temporal evolution of temperature perturbation (solid)
and water vapor mixing ratio perturbation (dotted) for small droplet. Scale for tem
perature perturbation is on left and scale for water vapor mixing ratio perturbation
is on right.
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Chapter 7

Experiments with a turbulent flow

In this chapter. we will extend the results of Chapter 6 by introduciug a turbulent How

field in a population of droplets. vVe will test three flow configurations which are weil

resolved realizations of statistically stationary. homogeneoLls and isotropie turbulence.

To determine how turbulence affects the spatial distribution of the droplets and the

evolution of the size spectra. we would carry out our investigation in several steps.

First, we neglect the condensational growth of the droplets and exanline the ef[ects of

drop inertia and sedimentation in a turbulent flow. Droplet growth by condensation

is then allowed and the detailed development of the size spectra is studied. Sensitivity

experiments are also conducted ta examine the in1portance of adiabatic cooling due

ta the turbulent fiuctuating vertical velocity (see (~L20)) and the feedhack of latent

heat release on the turbulent flaw field.

7.1 Characteristics of the simlliated flows

Ta save computer time, aU simulations in this chapter are done using a volume with

803 grid points and a grid size of .125cm. The volume is thus 10 x lü X 10cm3 which is

smaller than the 15 x 15 x 15cm3 volume used for the experiments in Chapter 6. The

78
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total number of drop lets in the volume is proportionally reduced to .50000. vVe have

earried out a few runs using 1203 grid points and round that the results are similar ta

those obtained using 803 grid points. The other parameters that must he speeifiec1 are

the momentum viseosity coefficient (1.6 x 10-5 mlS-L). the forcing radius kf which

determines how many modes are forced. and the initial nlean kinetic energy pel' unit

mass.

vVe specified three values of the mean kinetic energy pel' Ulli t mass ta ùbtain three

flow configurations. vVe forced 9 modes in the wa'lenumber range. 0 < Ikl < kJ = L..1.

The initial kinetic energy is distributecl anlong ail the nlodes such that E( Ikl) :x

exp-Ikl. The resulting eddy dissipation rates obtaineci for the thrce flow configurations

are within the range of those measured in doucis. Once the flow simulation is stal'ted.

the time evolution of the energy in all non-forced modes depends solely on molecular

dissipation. the non-lineal' energy cascade. and any local sources or sinks of energy.

The three flow configurations. clesignated as jloLL'.-L flowB and flowC. correspond

to an initial kinetic energy pel' unit mass of ..5 x lO-3 rn.J..,-2kg- 1• 2. x LO-:3 rn 2.s-2kg- l •

and 8. x 10-3 m,2s -2kg- 1 respectively. Ta obtain a statistically stationary. homoge

neous and isotropie flow, we integrated the turbulence nlodel o'ler ~ 20 large eddy

turnover times( ia). Fig. ï. Lshows that artel' several Tu. the How reaches a statistically

stationary regime in the sense that the mean kinetic enel'gy does not ~ysten1atically

increase or decrease with time but rathel' fluctuates about a constant value. Note

that the duration of the integration is different for the three Hows because iu varies

as a function of the mean kinetic energy of the flow. vVe consicler that the flows have

reached a statistically stationary state at the end of the simulations.

To examine whether the flows are isotropie, we follow Bartello et al. (L99--1). by

examining the diagonal elements of the anisotropy tensor:
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Fig. ï.2 depicts the temporal

•

evolution of the diagonal elements bu . 622 , and 633 for flowC. Similar ta the case

for the mean kinetic energy. these components exhibit relatively large amplitudes but

slow time fluctuations. However there is no systematic trend and their time means

al! approach zero, consistent with the behavior of statistically isotropie turbulence.

It is recognized that the amplitude of the fluctuations can be decreased by forcing a

greater number of modes (\Vang and ~[axey 199:3). This was not attempted because

in such a case, more large scale modes are constrained and wouIcl not be free to t'volve

dynamically.

The characteristic parameters for the three flo\v configurations are listed in Table

ï.l. AlI quantities. except the time step. are time averages aver a minirnun1 period

of 20Ta. The entries in the table. from the top ta the bottom. are the time step. the

root mean square velocity( LlO). the eddy dissipation rate( t). the integral scaleUo). the

large eddy turnover time( Ta). the Taylor ITlicroscale( ,\) and the Taylor based Reynolds

number( R.\). The Kolmogorov length scale( '7) and its associated time scale( T'I) and

velocity scale(u1/} are calculated from L These quantities are defined in Section 2.l.

As can be seen in the table or in Fig. Î.1. the eddy dissipation rate is almost two orders

of magnitude higher in jlowC than in jlowA. The Reynolds number also increases fron1

flowA to flowC.

To see whether our grid resolution is adequate. we include t\NO parameters. krna.r'l

and S, in Table 7.1. The product kmar'l. where kma.r = 2~T.r is the maxinlum wave

number and ùx is the grid size. shoulcl be greater than one for the smallest scales of

the flow to be resolved (Eswaran and Pope 1988). The parameter S represents the

velocity derivative skewness defined as:

... < (ôuj8X)3 >
.)=- .

< (ôujôx)2 >3/2

The values of S obtained from laboratory measurements in grid turbulence are of the
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~t(s) .5. x 10-3 2. X 10-3 8. X lO--1

uo(cms- 1
) :3.1 6 - 1.5.2./

t( an2s-3) 1.9 1-L
1

l6l.
lo( cm) :3.1 :2.9 .) -

1

_.:)

To( s) 1.8 -.) .:29./-

,\(cm) .6 .•J .-l
R.\ 1:2. :H. :J.1.
'l( crn) .:2 .1 :3 .Oï
TT/( s) .29 .11 .U:l
v'1( cms- 1

) .ï·~ L.2 2.:l

kmax'l .jA :L2 l.~

:3 .:3:3 .-10 A;j

Table 7.1: Descriptive parameters of the three sirnulated flows

order of .-! (Lesieur HJ90. page 1--1.1). In direct nun1erical sin1ldations. Kerr (198.1)

stated that S should increase or remain constant \Vith increasing H.\. Failure to do

so indicates that small scale truncation and aliasing errors a.re significant. The \'alues

listed in Table 7.1 indicated that the resolution llsed is adequate.

Another useful description of turbulence is the three~dimensionalenergy spectrum

E( k) at a given time. defined as:

The SUffi is over aIl modes whose wave numbers l'aH inta a spherical shell of width

~k = 1. The top panel in Fig. 7.:3 sho\vs E( k) for the three fiow configurations at

t ~ 20To. The bottom panel depicts the product of the energy spectrum and kt. An

inertial range occurs if this product exhibits a zero slope over several wave numbers.

As can be seen, even for our mast energetic case jlowC. the Reynolds number is still

not high enough and the flow is bordering between the inertial subrange and the

dissipation range. Considering that our purpose is ta sinlulate the typical ambient
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conditions in which individual cloud droplets grow and that. as mentioned earlier.

the Kolmogorov length scale and the average inter-droplet distance are of the same

arder of magnitude, such flow conditions are reasonable.

The ftows simulated exhibit complex and intermittent behavior. Sorne indication

of this is found in Fig. 7...l which shows the time averaged (over 20To) histogranl (fre

quency distribution) of gridpoint values of one component of the vorticity for the three

flow configurations. Each curve has been normalized by its tinle averaged standard

deviation, whose values for the three configurations are "2.(flowA). 6.(flowB) and 16.::i- L

(flowC). As expected for isotropie flows. these distributions are approxilTlately sym

metric. However. relative to the Gaussian distribution. there are significant differences

in the tails. indicating the occurrence of regions of very high \'orticity particularly as

the Reynolds number inCl·eases. This behavior can be quantified by the kllrtasis of

the distributions whose time average ranges l'rom ..1 to :3. l'rom flolL'.-l ta flowC. The

increasing deviation from a Gaussian distribution (reference curve denoted \vith .\)

is a signature of the presence of coherent vortices in isotropie t llrbulence (She fit al.

1990). Furthermore. the intermittent nature of the vartices can also be inferred l'l'onl

Fig. 7..5 which depicts the histogram of the gric1point values of one conlponent of

vorticity in jlowC at nine different times samplec1 at an interval of 2To. Evidently. the

tails of the distributions, which denote regions of high vortieity. oscillate in tinle.

Fig. 7.6 shows cross sections of the velocity field (top panels) and the corresponding

sections of the normal component of vorticity (bottom panels) for jlowA(left panels)

and flowC(right panels). The qualitative and quantitative clifference between the two

flows appears c1early. vVhile flowA is relatively smooth. jlowC is lIlliCh more complex

with compact regions of large positive or negative vorticities.

We are satisfied that after integrating the turbulent model for about 20To. the tur

bulent flow fields can be described as stationary, honlogeneous~and isotropie. These

flow configurations, at their final simulation time, will be used as initial conditions
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for subsequent experiments.

7.2 Effect of inertia term

vVe are in a position to examine the effects of inertia and sedinlentation on the spatial

distribution of non-condensing droplets in a turbulent flow. Ta do 50. the equation of

motion (·1.6) or (4.8). with or without the sedimentation term. is time aclvaneed for

aH droplets in conj unction with the flow eq uations. Table ï.:2 lists the six main ex

periments performed. The notation ini.\: indicates that the initial flow field i~ drawn

l'rom flow configuration ..\. The symbols $Ed and nO.';Ed denotc respectively whether

sedimentation is included or exclllded. Thus experinlent iniA no..,ed eonsists of 50000

20Jlm droplets rnoving in jlowA. Expel'iment iniB120sed can be regarded as fOllr sep

arate experiments each with a ditferent size distribution of droplets n10ving in jlomB.

Three of the size distributions are monodispersed. tG. l5 and 20JLm droplets. while

the fourth is a llniform size distribution l'rool LOta 20plH. Experiment iniCnosEli is

similar to iniBnosed except that the initial flow configuration is froln jlowC. Sirnilar

experiments with sedimentation inclllded are iniAsed. iniBsed and iniC'8ed. Starting

from the statisticaHy stationary. homogeneous and isotropie flow configurations dis

cussed in Section Î.l, the experiments are integrated each for a duration of a rninimllnl

of .5ro.

The inertial effect is manifested by the differences between the fluid veloeit.y and

the droplet velocity arising from the droplet's inertia. Figs. ï.ï to i.lü show four

examples of the two-dimensional (2D) projections of the trajectory of 20llnl noo

sedimenting droplets onto the horizontal plane in jlowC for a duration of .8s. The

numbers l ta 10 indicate the successive positions of the droplets every .08s. Two lines

originate from each position. The line that terminates with a circular symbol l'epre

sents the 2D projection of the fluid velocity at that point. The other line denotes the
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droplet velocity. The speed is given by the length of the line with lem corresponcling

to a speed of ~ 10cms-1
• It can be noted that at sorne points. the two lines coincide

(e.g., at 10 in Fig. 7.10 or at 9 and 10 in Fig. 7.7). At other points, particularly those

associated with strong curvature. the difference between the direction of the t\VO lines

can be significant (e.g.. at 2 in Fig. ï. ï or 8 in Fig. 7.8). At certain locations. the

two lines are almost paraHel but their lengths differ. illdicating that either the speed

of the droplet may be less than that of the fluid (e.g.. 6 in Fig. ï. i) or the opposite

is true (e.g., 7 in Fig. 7.7).

Fig. 7.11 offers direct 'lisual evidence that the spatial distribution of the droplets

is affected by the turbulent flow field through the inertial effect. \Ve examine l"esults

of experiment iniCnosed. The top left panel shows a cross section of the Mdcl of the

magnitude of vorticity . The other three panels show the position of f'ach droplet in

the same cross section. either for 20 (top right). 15 (hottorn [eft) or lOpm (bottonl

right) droplets. The correspondence between regions of a high vorticity and low

droplet concentration is evident for the 20llm droplets. In particular. \ve note in the

upper right portion of the top right panel a crescent shaped rcgion void of droplets

(more than l cm across). This region is co-Iocated with the crescent shaped region

of high magnitude of vorticity seen in the top left paneL In the two bottom panels

we can see the decreasing correspondence between high vorticity and low clroplet

concentration as a function of decreasing droplet size.

To assess the effect of inertia on aIl the droplets. we need ta quantify the deviations

of the positions of the droplets from those given by a randonl distribution clescribed

by Poisson statistics. Ta do 50, the clustering index as defined in Appendix A is

calculated as follows. The domain is sllbdivided into sampling volun1es of a given size.

The number of droplets in each of these cubic volumes is counted. A distribution of

the number of cubes containing a specified number of droplets is then constructed.

The index is given numerically by the ratio of the variance of this distribution to
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name flow R(,.1:m) sedimentation duration
iniAnosed flowA :20 no ·J'ro
iniAsed flowA 20 yes .5To
iniBnosed flowB 10-1.5-20-uniform no l-1'ru
iniBsed flowB 10-1.5-:20-uniform yes 1-bTo
iniCnosed flowC L0-L.j-:20-uniform no LiTo
iniCsed flowC 10-L5-20-uniform yes Li'ro

Table 7.2: Description of basic experiments done ta explore the l'ole of inertia

the expected variance if the spatial distribution of the droplets was Poisson (variance

is sinlply equal to the mean) minus one. Obviously. if the droplets are distributed

randomly, the clustering index is zero. 'vVe evaluate the index for several sizes of the

sampling volume.

Fig. i.12 shows the clustering index as a function of the length scale of the sarnpling

cubic volume for experiment ini.~ln()$ed. The index was calculated every .;jTu. frool

t = .570 (curve A.) to t = .5io( curve 1). Twel 'le different sizes of the sampling cubes

were used. The largest cube has sicles equal ta one t'ourth the width of the integration

domain. In Fig. 7.1:2, the sizes of the sampling cubes are given by the horizontal

coordinate of the letters attached ta each curve. The number of sampling cubes in

the integration dornain varies between -t63 for the smallest cube to --13 for the largest

one. Two dashed lines which correspond ta ±J2rV. \vhere ~V is the number of

sampling volumes, are also plotted. As explained in Appendix A. they represent the

expected standard deviation of the statistical error on the clustering index related

to the finite nurnber of sarnpling cubes. Preferential concentration of droplets can

be inferred when the clustering index lies significantly outside this region of erraI'.

For clarity of presentation, the c1uster index corresponding to the twelve sizes of the

sampling cubes are plotted on two panels with different scales.

The first two curves(A and B) lie mostly within the dashed Hnes and therefore
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no preferential concentration can be diagnosed at these times. However, sorne small

degree of preferential concentration can he seen after ::::: 2To when the dustering index

is greater than the error for aU sampling Length scales. It can also he observed that

the clustering index generally increases with an increase in the size of the sampling

cube. The highest index, l.1, is found in curve F at the sampling length scale of

2.Smm. This value implies that the standard deviation of the number distribution in

this experiment (41) is ::::: 1A.5 times greater than that of the Poisson distribution(:28)

with the same mean (ï81.25).

vVe discussed in Section 2..!.2 that particles. clue ta their inertia. tend ta diverge

from regions of high vorticity and converge preferentially in regions of Law vorticity

and high strain rate. Visual Evidence of the Link between preferential concentration

and vorticity was shown in Fig. ï.ll. This link can be described quantitatively by

calculating the correlation between the magnitude of the vorticity and the number

of droplets r(lwl,n) as a function of sampling length scale. Fig. ï.i:~ shows this

correlation for experiment iniAnosed calculated llsing five salnpling length scales.

The times for the nine curves. designated by the letters Cl to i. are the same as those

. F' - 1)ln 19. t. :..

VVe can estimate the statistical significance of the calculated correlation as follows.

Let the magnitude of the calculated correlation be 11'[, the probability of obtaining a

correlation with magnitude> Irl from two uncorrelated distributions (i.e. under the

null hypothesis) is given by (Press et al. 1986):

f (
IrIJN)er c ;;:; ,

v2

where er fc(x) is the complementary error function, and lV is the number of sampling

volumes. Two dashed Hnes are plotted in Fig. 7.13. The top line and the bot tom

line correspond to values of r such that eTJc (Ir~) equal 10-3 and lQ-6 respec

tively. If the correlations have values lying between these two lines, it means that
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the probability that the correlations are the result of correlating two uncorrelated

signaIs is smaller than .1% but larger than .000 1%. As can be seen in the figure. the

correlations have small n1agnitudes but they are generally statistically significant in

the sense that the probability that the same correlation occurs under the nnll hy

pothesis is very smal!. Note that the correlations are always negative confirming the

link between large magnitudes of vorticity and 3n1all concentrations of droplets.

To illustrate the etfect of sedimentation. we plotted the clustering index for experi

ment iniAsed in Fig. 7.14. Contrary to Fig. 7. L:2. the clustering index is generally quite

smaIl and not significantly greater than the error for aIl sarnpling length scales a.t all

times. Preferential concentration is therefore insignificant in tItis flow configuration

when sedimentation is inclllded. vVe further exanline the correlation. r( lio'-'I. Il). for

iniAsed. The correlation (not 5ho\vn) is aiso found ta be insignificant for aIl sarnpling

Iength scales and for aIl times.

Before systematically stuclying the results from the other t-'Xperinlents in Table

;.2. we first analyze iniCsed which clearly indicates preferential concentration for

sedimenting :201Lm droplets. Fig. ï. L·) shows the dustering index (top two panels)

and r(!wl! n) (bottom panel) as a function of the sampling length scale every ..JTu

[rom t = 0 (curve A) ta t = .)Ta (curve f\'). The \,:alues of the clustering index and

the magnitude of the correlation are much higher than in flowA.. The magnitude of

the clustering index increases for aIl sampling length scales up to t = 2Tu and then it

fiuctuates. The correlation reaches statistically significant values within a duration of

.5To. The maximum magnitude of the correlation (A) OCCUfS at l ..jro for a sampling

length scale of 12.5m'm. In generaL the magnitude of the correlation increases with

sampling length scale up to 1:2.5mm. It then decreases to statistically insignificant

values when the sampling length scale reaches 2Ü'm'm (see CUf'.,oes 1 and J).

The existence of preferential concentration when the clustering index is large can

be visualized more directly from the deviation of the frequeney distribution of the
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number of droplets from Poisson statistics. Fig. (.16 c1epicts six distributions of the

fraction of sampling volumes containing a certain number of droplets (curves marked

by stars) for the six sizes of the sampling volumes indicated in the top panel of

Fig. Î.15. The figure also contains the corresponding carves (unmarked) for Poisson

statistics. the mean number of droplets pel' sanlpling volunle. and the clustering index

C for each case. The horizontal lines indicate the Ininimum nleaningful probability

which is given by the reciprocal of the number of sanlpling volumes..-\5 an example.

we describe the distribution at the lower right hand corner. The domain \Vas divided

into 1.j3 sampling volumes containing an average of L-1.8 L droplets. The conlputed

distribution is obviously wider than the Poisson distribution. \Vith rnuch Inore frequent

extreme values. For instance. 18 sanlpling volumes (or .OO.i in fraction) contain

no droplets. One sampling volume( or 1/153 in fraction) contains ·~5 droplets which

amounts to three times the mean. The clustering index C is 1.8~5. which translates

into the variance of the conlputed probability distribution being 2.89.5 tinH~s greater

than the variance of the Poisson distribution. Equivalently. the calculatecl standard

deviation is )2.895, which is l.i cimes larger than that of the Poisson distribution.

vVe now return to examine the other experiments in Table 7.2. For econorny. we

will mostly present results at the final time of the experinlents. :\ summary of the

Stokes number for the various combinat ion of ftow configurations and drop sizes is

given in Table 7.3.

Fig. 7.17 shows the clustering index for experiment iniBnosed. Curves A. ta C

are for the 10,15 and 20p.rn droplets respectively. while Cllfve D is for the uniform

size distribution. It is clear that the spatial distribution of droplets of different sizes

can behave quite differently in the same flow. The clustering index increases sharply

as a function of increasing droplet size. For the 10p.m droplets. the clustering index

lie within or close to one standard deviation of the errol' (dashed lines). This is also

true at other times (not shown), when the c1ustel' index exceeds twice the value of
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the statistical error on only a few occasions. The Stokes number for this particular

droplet size/flow combination is 0.012. tao small for the inertia of the clroplets ta

cause any significant deviation of their spatial distribution [rom randomness. As for

the other droplet sizes, it can be seen that curve D and curve B are close to each

other. indicating that when the mean radius of the droplets is the sanIe. the spatial

distribution of the droplets for the uniform size distribution is sirnilar to that of the

monodispersed distribution. This result is attributable ta the fact that when droplets

of different sizes are present in a flow. the bigger droplets tend ta cluster in areas of

Iow vorticity and their c1ustering index is high. The srnaIler the droplets. the more

they would tend to be distributed randomly and their associated clustering index is

small. The above results are valid for aIl times in this experirllent.

vVhen sedimentation is included in iniBsecl. the clustering index in general cle

creases for bath the 1.5jlm and the "lü/Lm rnonoc1ispersed distributions (cornpare

Fig. 7.18 and Fig. 7.17). The redllction is especially pronounced for the "lü/UrL droplet

(cllrve C) except at the largest sampling length scale of "l5rnrn at the final tirne of

integration. For the lOjlnz droplets. the clustering index always lies within the bounds

of the statistical error, indicating the small effect of sedirnentation for droplets of this

Slze.

Consistent results are also found in the correlation r(II,,~,"I. n) (Fig. 7.19). \Vhen sed

imentation is suppressed (iniBnosed~ bot tom panel). the magnitude of the correlation

increases with droplet size at aU times. However. when droplets sediment (iniBsed.

top panel), the magnitude of the correlations are smaller and the differences bet\veen

the curves become less significant. Furthermore, there is no longer a systematic in

crease of the magnitude of the correlation with the size of the droplets. For example.

the magnitude of the correlation for the 20jlm droplets (curve C) is close to or smaller

than that of the other sizes at several sampling length scales.

To examine how the correlation changes with time, we plotted the correlation
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curves at ten output times (cllrves A to J) for the three monodispersed size distribu

tions in Fig. 7.20. The Cllrves labeled J are the same as those in Fig. 7.19. The top.

middle and bot tom panels depict the results for the lOpm. 1.5pm~ and 'lÜJln1- droplets

respectively. A close inspection of the figure shows that most correlations for the

lO/lm droplets are statistically insignificant. vVith a few exceptions. the magnitude

of the correlations for the 15Jlm droplets are greater than those for the lOpm clroplets.

Similar results are indicated for the 20j.lm droplets except at the time corresponding

ta curve J. However, contrary ta the experiment without sedinwntation. there is no

systematic increase in the magnitude of the correlation when the size changes fronl

1.5 ta :20j.Lm. Thus sedimentation complicates the relationship bet\\'een vorticity and

the number concentration of draplets.

The clllstering index at the end of experiments iniCllo8ed and iniC,.;ul are shawn

ln Figs. 7.:21 and 7.22. The magnitude of the index is significantly greater for ail

size distributions than in the case with JlowB. [n particlliar. clustering also occurs

for the lÜ/Lm droplets. Again the effect of seclimentation is nlore pronounced for the

bigger droplets and it is minimal for the lÜ/lnl droplets. In the case of droplets \Vith

a radius of 1.5Il'm, there is a smaH but systematic clecrease in the clustering index

when sedimentation is included. except for the largest sampling length scale. For the

20j.lm droplets, there Îs a clear systematic decrease of the clustering index because

of sedimentation except at the two largest sampling length scales. C'ontrary ta the

experiments with sedimentation in jlowB, there is a systematic increase of the index

as a function of droplet size for aU sampling length scales.

Fig. ï.23 shows graphs of r(lwl, n) for iniCsed( top panel) and iniCnosed( bot tom

panel). Without sedimentation (bottom panel) there is a clear increase in the mag

nitude of the correlation with droplet size. vVith sedimentation (top panel). there is

still a gap between curve A and the other curves. However. the correlations for the

15 and 2Üj.Lm droplets become close to each other at the end of the experiment and
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E( cm2S-3) R = lOlllTI R = l.)/Lnt R = :201ln2
1.9(fiowA) .004 .01 .01 ï
14 (flowB) .012 .026 .047
161 (flowC) .040 .090 .l6

Table 7.3: Stokes number for experiments with inertia.

at other times. A comparison of the top and botton1 panels indicates that. for the

20llm droplets. sedimentation in general recluces quite significantly the nlagnitude

of the correlation. with sorne exceptions at the largest ::ampling length ::icale. For

the 151Lm droplets. r( Iwl. n.) generally decreases because of sedin1entation for the two

smallest sampling length scales. For the larger ::iampling length scales. the rnagni

tude of the correlation increases with sedimentation at the end of the experiment but

shows a decrease at other times (not shawn). ~0 systematic efi'ect of sedimentation

on the correlation was found for the lOILnL droplets. Finally. for the unifornl size

distribution, the behavior of the clustering index and the correlation for seclimenting

and non-sedimenting droplets are similar ta those of the L5Jlln nlonodispersed size

distribution.

To summarize our results. we present in Table 7.:3 the Stokes nllmber correspond

ing to the various combinat ions of How configuration and size of droplets. vVithout

sedimentation, the clllstering index and the magnitude of the correlation between

vorticity and number density increase with the Stokes number. The 10\"'est Stokes

number at which sorne preferential concentration is present is .017 in experiment ini

Anosed. Using this value as an approximate threshold, it is simple ta calculate that

the smallest size of the droplets for which preferential concentration can be expected

is 20, 12 and 7pern in flowA, flowB and flowC respectively.

The picture becomes more complîcated with sedimentation. Table 7.4 presents a

qualitative summary of its effect on the clustering index (C) and the magnitude of the
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correlation Ir(lwl,n)1 (R). Relative to the no sedimentation runs. the magnitudes for

C and R are in general smaller for the range of flow configurations and droplet sizes

considered. However. they are still statistically significant unless preferential concen

tration is absent or very small in the no sedimentation runs (e.g.. the lOjl111 droplets

in flowB and the 20llm droplets in flowA). In addition. the relation between Stokes

number and preferential concentration is less straightforwarcl. It \Vas found that in

most cases, when € is held fixed. an increase in the size of the droplets (corresponding

to an increase in Stokes number) leads to an increase in the dustering index. But

there are exceptional cases where the magnitude of C re[nains the same or t'ven de

creases when the dropiet size (Stokes number) increases. :\nother interesting result is

that the reduction in the magnitude of C and R relative to the no sedin1entation l'uns

decreases when the level of turbulence increases. as is evident when the reduction of

C in flowB (Figs. 7.17 and 7.18) is compared ta that in jlowC (Figs. 7.:21 and ï.:2:2).

The complicated behavior of C and R in the sedirnentation case can be expiaineci

by recognizing that sedimenting droplets are characterized by a rnean veiocity relative

to the flow. The time of interaction between a droplet and an eddy is therefore

reduced. sa is the possibility of clustering . Sedimentation therefore introc1uces a new

time scale - the time i t takes a droplet to cross an eddy (Eaton and Fessier UJ94)

under its own terminal velocity. Table :3.1 compares this tin1e scale (TV = '1/ VT). for

eddies whose size is given by the Kolmogorov length scale. to the edclies' turnover tin1e

(r71 ) as a function of droplet size and eddy dissipation rate. The relative inlportance

of sedimentation in reducing the time of interaction between a falling clroplet and an

eddy with size equals the Kolmogorov length scale can be estimated by calculating

the ratio TV IT.". Clearly, if this ratio is very sn1all then the droplets and the eddies will

have no time to interact. If this ratio is large. sedimentation does not significantly

reduce the time for the droplets and the eddies ta interact and 50 its effect can be

neglected. Thus, a large ratio indicates a small influence of sedimentation.
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A 20/Lm Eliminates aH significant C and R
B lO,llm Eliminates few significant C
B l.S/Lm Decreases C and R
B 20,ll'm Significant decrease in C and R
8 comparing lO,lL'm In general. increase in Rand C 1

to U5ttm
B comparing 1.5,lLm Small but general increase in C.

to 20lLm No systematic trend of R
C lO,lLm ~o syslematic effect on C or R
C 1.5,lni Decreases C' and R. 1

except at largest sanlpling length scales
C 20,l1m Significant decrease in C and R.

except at largest sampling length scales
C cornparing lÜ/l'm In general. increase in Rand C.

to L.5Jlm exceptions at large sampling length scale
C comparing 1.5,llm, No systematic trend of C or R

to 20/lm

Table 7.4: Qualitative summary of the effect of sedin1cntation on the clustering index
(C) and Ir( Iwl. n)1(R) for the various experiments.

An inspection of Table :3.1 reveals that for a fixed t. the ratio T\' / Try decreases as a

function of increasing droplet size. This explains why the spatial distribution of the

larger droplets is much more affected when sedimentation is included. Furthermore.

for a fixed droplet size, the ratio TV / Tr, increases as iL function of increasing eddy

dissipation rate, consistent with the result that the reduction in the magnitude of C

and R relative ta the no sedimentation l'uns decreases when the level of turbulence

Increases.
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Condensational growth and evolution of spec

tra

•

vVe now present the reslllts of the complete experirnents including the condensational

growth of the droplets. Our objective is to investi~atc how the presence of a turbulent

flow modifies the results in Chapter 6. For each flow configuration. we will exanlÏne

how the non-Poisson spatial distribution of dl'oplets and the variability in \"ertical

velocity affects the size spectrum of the sedirnenting droplets.

vVe shaH investigate systernatically the effect of including the condensational

growth of droplets. Recall that in Chapter 6. we exarnined draplets gro\ving Ily con

densation in an environment without turbulence where the droplets are distributed

randomly in space (e.g. experinlent NOï). As was shawn in the last sectiOIl. the

inertial effect of droplets can result in pl'eferential concentration (spatial distribu

tion deviates from randomness) of droplets in turbulence. Thus as a first step. wc

would perform a no turbulence reference experinlent (Ri). sinlilar in most respects

ta NOT. except that the number of grid cells is ~m:3 and initial spatial distribution

of the monodispersed US/lm droplets is given by that at the end of experirnent iTl

iC'nosed. RI will be run for a duration of 2008. \'Ve will corllpare the results of Ri

with a modified NOë fun with 803 points (hereafter callecl R2) ta ::iee how preferential

concentration affects the growth of droplets.

Turbulence would then be introduced. Table ï ..5 gives a list of the experirnents

performed, including the reference experiments RI and R2. The first let ter in the sym

bols for the experiments denotes the flow configuration. For example..-\a. Bd. and

Ch are the three full experiments for flowA. flowB and jlowC. They inclllde aIl the

relevant effects, inertia (except for Aa where inertial effect is negligible), sedimenta

tion, condensational growth, and perturbation cooling l'rom the fluctuation turbulent

vertical velocity. A number of sensitivity experiments are also performed (namely
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Ab. Ac~ Be~ Bf, Bg, Ci. Cj, and Ck), where one or more effects are suppressed.

To save computer time, the experiments with turbulence in Table 7..5 last for a

duration of ten seconds. As will be mentioned below. a few selected .50s and :.200....

experiments were made and the results are similar to the corresponding lOs l'uns. The

initial size distribution in aU l'uns is monodispersed. and ail droplets have a radius of

1.5jlm. Inertiai effect is neglected in the l'uns involving flolL'.-l because as was sho\\'n

earlier. the spatial distribution of droplets of the size under consideration deviates

little from randomness. For the experiments where inertia is incIuded. the initial flow

field and the spatial distribution of the droplets are given by those at the pnd of

experiments iniBsed. iniBnosEd. iniCsEd or iniCnosEd. depending on the appropriate

floY! configuration and whether sedimentation is includecl or excluded. Because we

neglect aU effects of the droplets on the flo\\' (see Section 2A for justification). the

time evolution of the flow is the same for aIl experilnents involving the same How cou

figuration. which greatly simplified the interpretation of the results. :\lso becéLuse the

initial size of ail the droplets are the same in ail experinlents. the macroscopic reslllts

for ail l'uns are identical. Therefore an)' difference between two experirnents l'an be

attributable to microscopie effects alone.

Table 7.,5 also records sorne statistical results for the different l'uns at a tinle of

lOs. As a reminder, we mention that the terminal velocity for a l.jfln~ droplet is

2.7cms- l . The root mean square velocities for flowA. ]lolOB. flowC' are ;Ll. 6.7. and

1.5.2cms- 1 respecti vely.

Fig. 7.24 shows the temporal evolution of the standard deviation of the size dis

tribution, (j(R) (top panel) and the variance of the perturbation clegree of growth.

V(,8,2) (bottom panel) for RI (curve 1) and R2 (curve :2). Recall that (j(R,\{) == 0

when the initial size distribution is monodispersed. Clearly, for a frozen configuration

of droplets, preferential concentration has an important broadening effect on the size

distribution. The effect on individual droplets is ilIustrated in Fig. 7.25 which depicts
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the distribution of tR - tRA[ at 2008. The standard deviation. the maxinla and min

ima of the distribution are significantly larger in RI. Furthermore, the distribution

is positively skewed rather then negatively skewed as in ail experiments described in

Chapter 6 where the spatial distribution of droplets is Poisson.

Fig. 7.26 compares the temporal evolution of the supersaturation perturbation

for several droplets in ."la. Bd and in Ch. Because of turbulence and sedirnentation.

the droplet's growth rate varies rapidly. Recall that it is the tinl€' integrals of sueh

signaIs that determine whether differences appear in the droplet sizes between the

microscopie and macroscopic approaches. Furthermore. it is the variance. O\'er aU

droplets. of the time integral of the supersatllration perturbation that deternlines

if broadening of the microscopie size distribution relative ta the rnacroscopic size

distribution can occur.

Figs. 7.27 and 7.28 show the tenlporal evolution of the standard deviation of

the size distribution, q(R), and the variance of the perturbation degree of growth.

V(pl2) for the l'est of the experiments in Table 7..S. The full experiments Aa. Bd.

and Ch are compared at the top left panels of each figure. The curves are labeled

by a capital letter which corresponds ta the last letter of the experiments listecl in

Table 7.5. For example, the curve for Bd is labeled D. Comparing the curves A. D

and H in Fig. 7.28. we see clea.rly that V(,3f2) decreases as the level of turbulence

Increases. Since the initial distributions are monoclispersed. a decreasing variance

implies (see( 5.14) and( .5.16)) that spectral broadening also decreases when the level

of turbulence increases (top left panel of Figs. 7.27).

The other panels depicts the resuIts of sensitivity experiments in the three flow

configurations. Note that the scales vary from panel to panel. Obviously neglect

ing sedimentation has a significant positive impact on spectral broadening (compare

curves B to A, E to D and 1 to H), 50 is the inclusion of the cooling term from
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turbulent vertical velocity (compare curves A. ta C. D ta Gand [J ta f{). Further

more. the inertia induced non-Poisson spatial distributions of droplets also contribute

positively to a broadening of the spectrum (compare curves D ta F and fI to .1).

For a more quantitative comparison. we refer to the statistical information at lOs

in Table 7.5. Column 6 cantains the dispersion of the perturbation degree of growth

distribution, a time integrated quantity. Columns ï. 8 and 9 list the instantaneollS

dispersion of the supersaturation perturbation distribution. the standard deviation

of the field of temperature perturbation and the standard deviation of the field of

water vapor mixing ratio perturbation respectively. ~ote that the supersaturation

perturbation distribution is calculated l'roln the perturbation al the grid points wllich

cantain droplets.

It is instructive to compare first the results for experiments Aa. B f and Cj. where

droplet inertia or preferential concentration is neglected. The dispersion of the per

turbation degreeofgrowth (a(dtl)/J:td decreases (fron1 Al 1(Ir to .2.52% to .1;j·~(X) a~

the intensity of turbulence incrcélSes. The sanle is truc for the dispersion in ~llpcrsat

uration perturbation (a(S")j S;\I) and the standard deviation in water vapor pertur

bation (a( q~,)). As will be shawn later. this decrease is attributable to the decrease in

decorrelation time as the turbulence becomes more active. It should be pointed out

that the standard deviation for temperature perturbation (O'( T')) increases slightly

from Aa to B f but then decreases in C'j. This unusual behavior is related to the

presence of the cooling term in the temperature perturbation equation (-1.20). The

contribution of the cooling term to a(T') is directly propol'tional to the l'oot mean

square vertical velocity which increases with the level of turbulence. Consequently

there are two competing processes in changing a(T'), a reduction due ta a decrease in

decorrelation time and an enhancement due to increasing local cooling as turbulence

becomes more active. The relative importance of these two processes determines the

behavior of O'(T') .
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Experiments Bd and Ch differ l'rom Bf and Cj by inclllding the inertiaof droplets

which leads ta preferential concentration. Since preferential concentration increases

with the activity of turbulence. inertia is expected to enhance progressively the disper

sion and standard deviation of various quantities as the level of turbulence increases.

Comparing the results of .-la. Bd and Ch against those from .-la. Bf and Cj. we

see that when inertial effect is incIllded. a( 5/)/S,H. a( T') and a( q~) actually increases

with the intensity of turbulence. \Vhile a{ JI"2)/ JS f still decreases when the level of tur

bulence increases, the nlagnitude of decrease is slnaller than that in the eXperiIllt'nts

without the inertial effect.

Sedimentation can affect the results in two ways. Comparing experiments ..ta and

Ab. we see that when sedimentation is absent. a( T') and 0"( q~) are significantly larger.

Sedimentation also impacts the results through its effect on preferential concentration .

.-\ close examination of Table 7.5 shows that neglecting sedinlentation has a larger

impact on a-(p'2)/J31[ and a(S")/8Af than neglecting the l'ooling term or the inertia

effects in flowA and flowB. Ho\vever. in fiowC the neglect of inertia has the largest

effect. This behavior is consistent with the result obtained in a previous section that

sedimentation of droplets of a given size have a decreasing inlpact on preferential

concentration as the level of turbulence increases.

The effect of turbulence can now be c1arified by comparing the results obtained

so far with those from the reference experiments RI and R'2. Two important ob

servations can be made. First. the presence of turbulence significantly decrea~es the

dispersion of the instantaneous distribution of supersaturation pert llrbation 0'( 8') /5',\-[

(through decreases in the standard deviation of the temperature and water vapor mix

ing ratio perturbations which are of the same magnitude as the eleCl'ease in 0'(8')/Sj"[).

These decreases can be explained in the same manner as the similar decreases found

when studying the effect of sedimentation on the no turbulence experiments in Chap

ter 6. They are due ta the fact that regions void of clroplets and regions of high
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droplet concentration, where significant perturbations in the scalar fields can de\'elop.

will exist only for a short time. Second. turbulence reduces even more significantly

the dispersion in the time integral of the snpersaturation perturbations along the tra

jectory of the drap lets. As a result. (J"{ d''2) / df.l is signi ficantIy smaller than rr{ 8')1S.\!

in a turbulent flow. On the other hand. these two dispersions are almost of the

same magnitude when turbulence is absent. Furthermore. as noted previously. the

difference between these two dispersions increases with the intensity of turbulence.

Fig. 7.30 compares the tenlporal evolutian of (J"( R) for Rland R'2 and for ex

periment /ta extended ta ·200.~. Evidently. (J"( R) is nllich snlaller in Aa at al! tinles.

It is clear that even weak turbulence significantly decreases the difference between

the result,s of themicToscopic and macroscopic approaches that \vere round in the

experiments with no turbulence and no sedimentation.

~Iuch of the effect of turbulence can be traced ta the behavior of the decon'dation

time. Fig. ï .29 shows the autocorrelation coefficient of 8'. averaged ove1' ~ooo ran

domly chosen droplets. as a function of the lag tinlC for ail experinlents in Table ï ..ï

except Ac, B 9 and C k. The curves for .-le. B 9 and C k are \·ery similar ta those for

.4a. Bd and Ch and are excluded for darity of presentat.ion, Conlparing curves .-l. D

and H shows a cIear decrease in decorrelation time as a function of the increasing

level of turbulence. Sedimentation (compare curves B to A. E ta D and 1 ta fI) has a

negative effect on the decorrelation tinle. The importance of sedimentation clecreases

with an increase in turbulence intensity. Inertia seems to have only a snlall effect

on the decorrelation time (compare curves F ta D and J ta FI). Furthermore. it is

round that the decorrelation time in fiowA is more than twice that in jlowC whether

we define the decorrelation time as the time when the autocorrelation decreases ta

a value of 1/e or the time at which it approaches zero. This implies that. over the

duration of the experiments, the time integrals of the supersatl1ratian perturbations

are evaluated over more than twice as many decorrelation times in the experirnents



•

•

100

with jlowC as compared to those with flowA.

Ta ensure that our results do not depend critically on the duration of the exper

iments, we integrated the full experiment Ch to .50s and compared it ta ..-la at .jOs.

The effects for different processes are round to he similar to those in the corresponding

las experiments. Furthermore. we examined the teruporal evolution of the disper

sion of the degree of growth (a( ;3'2)rJ.~d and found that it is a slowiy decreasing

fllnction of time in aIl experiments with turbulence. It reaches values of .:J:J'X, (.17%)

at .SOs( 200s) in Aa and .12% at .50s in Ch. In contrast. the dispersion is a slowly

increasing fllnction of time in the experiments without turbulence and sedirnentation

reaching values of .5 and :3% in R1 and R2 respectively arter :2008.

In this chapter. we have so far employed an initial spectrurTI which is ITlonodis

persed. The reason is that according ta the finding in Chapter 6. this distribution

wouid Iead ta a maximurn effect in the broadening of the size spectra. For com

pleteness. we have also conducted two (with and \vithout sedinlcntation) 200..... sinlll

lations in flowA using the same broad initial size distribution as in :.YOo· uf C'hapter

6. Recall that for a broad spectrum (see C'hapter G). droplets sn1aller (larger) than

the average size tend to grow faster (~lower) than their mac/"o..;copic counterparts in

an environment without turbulence. Consequently. :ipectra which are initially very

wide become narrower than the macroscopic spectra. Ta verify if this result ~till

holds in the presence of turbulence. we analyzecl these two new experirrlents and

round that the right hand sicle of (.5.1-1) is negati ve 50 that the microscopic spec·

tra is narrower than the macroscopic spectra. However. the difference in standard

deviations( 100. x (j(R;(;L~M)) is <~ -1%.
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name flow inertia sedimentation cooling q(P';J)(o/() ~(%) (j(T')( x 103 ) (j(q~)(x106)~ 0 SM

Aa il no yes yes .411 .848 .50 .19
Ab il no no yes .693 1.22 .74 .26
Ac A no yes no A03 .8:l6 .48 .18
Bd B yes yes yes .3 L1 .902 .59 .19

1

Be B yes no yes .492 L.19 .i6 .27
Br B no yes yes .252 .779 .52 .15
Bg B yes yes no

1

.271 .849 .5 t .19
Ch C yes yes yes .225 .943 .63 .21
Ci C yes no yes .277 1.07 .72 .24
Cj C no yes yes .154 .676 .46 .12
Ck C yes yes no .206 .912 .55 .21
RI no no no no 4.:3ô 5.:34 :1.5 1.:3
R2 no no no no 2.20 2.-12 1.5 .54

Table 7.5: Description of cornparative experiments with condensational growth ùf
cloud droplets.

7.4 Two-way coupling

In Section 2.4 we discussed the possibility that the presence of the draplets may

influence the turbulent flow thraugh the drag force and the thermodynamic effect in

the farm of sources or sinks of latent heat and water vapor. To examine the importance

of this feedback, we conducted three experiments similar ta Aa~ Bd and Ch but

including the effects of the droplets on the flow through the buoyancy term in the

flow equation (4.9). Fig. 7.31 compares the temporal evolution of the kinetic energy

and the eddy dissipation rate for experiment Ch with and without the buoyancy

term. The temporal evolution of these quantities is modified but their time means

change only by a few percent. Fig. ï .:32 shows the temporal evolution of the standard

deviation of the size distribution for the experiments with (smallietters) and without

the buoyancy term (capitalletters). It can be seen that the inclusion of the buoyancy

term has only a small effect on the evolution of the standard deviation of the size

distribution and therefore the neglect of this term in most of our experiments is
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valid. Note that this simplification makes it much easier ta analyze the microphysical

results because we can repeat the experiments with various initial size distributions

with exactly the same flow.

The fact that the temperature and water vapor mixing ratio perturbations at

the scales considered here do not significantly influence the turbulent flow can be

understood with a simple scale analysis of the inertial (U . V)U) and the buoyancy

terro (g[T'/To + .608q~J) in the flow equation (4.9). The inertial acceleration term

scales as U2 / L. Using typical values for the temperature and water vapor n1ixing

ratio perturbations round in Table ; ..5. and the root mean square velocity and the

integral scale of flowA (Table ï.1) as typical velocity and length scales. we find that

the order of magnitude for the buoyancy acceleration and for the inertial acceleration

are respectively l"oJ 2. x 10-3 clns-'~ and l"oJ L C11l,s-2. Hence. even for the lowest level

of turbulence. the inertial acceleration is more than t\\ro arder of magnitude larger

than the buoyancy acceleration for the small scales under consideration.

7.5 Comparison with observations

Brenguier and Chaumat (1996) analyzed n1easurements nlade with the Fast Forward

Scattering Spectrometer Probe (Brenguier et al. 1998) in adiabatic cloud cores. This

data set provides the microphysical data with the highest size and spatial resolution

available at this time. Hy comparing the narrowest spectra sampled at various alti

tudes against a reference level spectrum taken near the cloud base~ they were able to

iufer the probability distribution of the time integral of the supersaturation necessary

to explain the evolution of the ohserved spectra. Theil' procedure consists of inverting

the fol1owing equation:
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where 4> is the droplet diameter. f( rjJ2 - ,82• ';0) is the reference spectrunl at level

=0, g( if;2 , =) is a spectrum measured at level .: andlb(J32) is the probability density

function of the integral of supersaturation.

Fig. 7.33 summarizes Brenguier and Chaumat (1996) findings. [t shows the cal

culated standard deviation of the distribution of the degree of growth as a function of

the calculated average degree of growth for many selected spectra. [n our notation.

0'(13'2 ) = J2O'j2 and d~[ = ,d2 • They round that the broadening of the spectra. as mea

sured by 0'(;312). is proportional to the average degree of growth. :i.~/' Furthernl0re.

for a given dll' the minimum broadening given by a'~~:l) >< LOO. is ~ :H %. Referring

ta Tables 6.2 and 7..5 w€ see that the mininlum broadening inferred by Brenguier and

Chaumat (1996) l'rom their measurements is nluch larger than the nlaximunl broad

ening we found under the mast favorable conditions of no fiow and no sedimentation

(a'Jqrz») is only 4.:36% in RI).
-Al
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Figure 7.1: Temporal evolution of mean kinetic energy per unit mass(K.E. in units of
m 2s-2 kg- 1 ) and mean eddy dissipation rate (c in units of cm2 s-3

) for the three flows
denoted with letters A(top two panels),B and C(bottom two panels) .
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Figure 7.6: Velocity field cross section (top panels) and corresponding vorticity field
cross section (bottom panels) for flowA( left panels) and flowC( right panels). The
legend at the bottom right of each velocity plot indicates the magnitude of the velocity
vector (in ms-1). Negative vorticity tines are drawn with a dashed line pattern. The
vorticity contour intervals are .758- 1 and 10s-1 for flowA and jlowC respectively.
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Figure 7.11: iniCnosed: Top left panel: cross section of field of varticity magnitude.
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Figure ï.24: Time evolution of standard deviation of size distribution (top panel) and
variance of perturbation degree of growth (bottom panel) for two reference experi
ments (RI and R2) with no turbulence. Curve l( RI) uses the spatial distribution of
the 1.5J.lm droplets produced in iniCnosed, while curve 2( R2) results l'rom a random
spatial distribution of droplets
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Figure 7.28: Temporal evolution of the variance of perturbation degree of growth
for aH experiments with turbulence in Table ï ..5. The letters identifying the curves
correspond to the last letters of the name of the experiments. The top right panel
shows experiments with flowA, the bottom left with flo-wB and the bottorn right
panel with flowC. The top left panel compares the results of experiments Aa. Bd and
Ch.Note that the scales are different for the different panels.



• 1:32

1 .0

0.7

c
a

Q)

L 0.4
L
a
u
a

0.1

-.2

0.0 0.4 0.8 1.2
Time lag (sec)

1 .6 2.0

•
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Figure 7.:30: Temporal evolution of the standard deviation of the size distribution for
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experiment Aa extended ta 20U seconds (curve A) .
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Figure 7.:32: Temporal evolution of the standard cleviation of the size distribution for
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Chapter 8

Summary and conclusions

The goal of this thesis is to answer the following question.

Can non-uniformity in the spatial distribution of the 8i:e and position of

droplets and/or variable vertical velocity in a turbulent mediu'm contribule

to the broadening of the droplet si=e distribution '?

Ta answer this question, we adopted a numerical approach ta simulate the growth

and trajectory of several tens of thousands of cloud droplets in an environrnent whose

properties vary from droplet to droplet. Based on a review of turbulence in cumulus

douds (Chapter 2) and a scale analysis of condensational gro\vth of cloud droplets

(Chapter :3), we demonstrated that the time and spatial scales related to the mod

ification of the scalar fields by turbulence and the growth of the cloud droplets by

diffusion of water vapor are sufficiently different. This scale separation permits us to

parameterize the diffusional growth of the doud droplets as a function of their am

bient conditions (temperature and water vapor mixing ratio at a distance ~ 20R).

Using a grid length of ~ Imm and droplet concentrations of:::::: .50cm-3~ we designed

experiments which, on the average, contains only one droplet in every 10 grid celIs .

137
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Under such a condition, the values of the temperature and water vapor mixing ra

tio in each grid ceU represent the microscopie ambient conditions within which an

individual droplet grows. Furthermore, the grid length chosen aUows us to perform

direct numerical simulations(DNS) of turbulent flow at low to n10derate eddy dissi

pation rates which are typical to adiabatic cores of convective douds. This detailed

approach is termed the microscopie model. Results Eronl this model are compared

to the results from the maeroseopie model which corresponds to a sinlple Lagrangian

parcel experiment in which aIl droplets are exposed to the saIne supersatllration.

Our investigation begins with a series of simulations with no turbulent flow in

Chapter 6. The [ocus of this chapter was to test the sensitivity of the microscopie re

sults to the spatial distribution of the droplets as weU as to various initial size distri

butions. vVe found that the random distribution of the position of droplets creates

significant supersaturation perturbations with typical dispersions (100. x a( S')jS.\I)

of :::: 3%. vVhether the supersaturation perturbations result in an increase in the

width of themieroscopic size distribution relative ta the macro8eopie one depends on

the width of the initial size spectrum.

In the microscopie approach we found a negative correlation between the per

turbation degree of growth and the initial squared radius. Contrary ta the macro

seopic appraach, the microscopie approach captures the fact that the release of the

latent heat (or decrease in water vapor mixing ratio) is proportional to the size of

the droplet, a drop which is smaller (larger) than the average size would clevelop in

an immediate environment which is calder (warmer) and mois ter (drier) than that in

themaeroscopic approach. For very wide initial size distributions, we showed that

this effect can lead to a narrowing of themic'roseopic size distribution relative ta the

'maeToscopie spectrum.

Ta examine the effect of the microscopie approach on individual droplets. we

examined the distribution of tR - tR~[ at the end of the experiments (2008). The
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standard deviatien of this distribution is typically ~ . L5/L'm while the extrema are

typically ~ .8 and -.5J.Lm. These extrema represent upper bOllnds which delineate

how much larger the largest clroplet of the size distribution and how mllch smaller

the smallest droplet of the size distribution can vary l'rom the microscopie to the

macroscopic approach. vVhen the initial size distribution is not n10nodispersed. these

upper bounds will decrease on account of the negative correlation discussed above.

In the no turbulence scenario. we performed an experiment including the sedi

mentation of the droplets at their terminal falI speeds. The initial size distribution

for this experiment was uniform from .1 to 1.1/LnL The effect of the sedimentation of

the droplets can be summarized as follows:

i)The droplets now grow in a variable environment where growt h varies rapidly be

tween favorable (positive perturbation) and unfavorable (negative perturbation) con

ditions. The average time that a droplet stays in similar conditions can be estirnated

from the decorrelation time. calculated from the autocorrelation coefficient of the su

persaturation perturbation as a function of lag time. In the absence of sedimentation

(and turbulence) the decorrelation time is very long (n1inutes). whereas when the

droplets sediment this time is reduced to a few seconds.

ii) vVhen droplets falI. their configuration changes. Consequently. reglOns void of

droplets and regions of high droplet concentration. where significant perturbations in

the scalar fields can develop~ will exist only for a short time. This has the effect of

decreasing the standard deviation of the perturbation scalar fields and subsequently

the standard deviation (or dispersion) of the supersaturation perturbation distribu

tion also decreases (by :J.5 te 50%).

As a result of these effects the dispersion of the degree of growth 15 significantly

reduced from .025 to .008 (reduction of ~ 65%).

vVe also compared our numerical results ta the analytic estimates obtained by

Srivastava (1989). The results are in qualitative agreement. However, the analytical
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estimates over-predict the broadening potential of the microscopie approach.

Turbulence is introduced in Chapter 7. Three turbulent flow configurations. with

increasing eddy dissipation rate are first described. They are weIl resolved low

Reynolds number flows representing dissipation range dynamics. and. particularly

for fiowC, exhibit complex and intermittent behavior expected in turbulent flows.

An additional effect occurs when partides move in a turbulent fluid. As discussed

in Section :2A.2, particles tend to diverge from regions of high vorticity and converge

preferentially in regions of low vorticity as a result of their inertia. Thus their spatial

distribution is not random and does not follow a Poisson distribution. As a first step.

we examined the inertia effect in the simpler situation of non-growing~ sedimenting

or non-sedimenting droplets. vVe initialized the experirnents using four different size

distributions, three of which were nl0nodispersed spectra at 10. 1.) and "20flm in ra

dius and the fourth was a uniform size distribution fronl 10 to :!.Olun in radius. Three

turbulent flows with eddy dissipation rates of 1.9. I-b and 161enl2 ,-;-J were llsed. The

corresponding Stokes number vary between .004 and .16. \'Ve calculated the clustering

index (see Appendix A), which represents the degree of deviation in the spatial distri

bution of the droplets from Poisson statistics. as a function of sanlpling length scale.

vVe alsa examined the link between the vorticity of the fluid and the concentration

of the droplets by calculating the correlation between the magnitude of the vorticity

and the number of droplets(r(I(.l..'I, n)), again as a function of sampling length scale.

ft was found that in aU experiments in which the droplets are not allowed to

sediment there is a clear increase of the clustering index and the magnitude of the

correlation hetween vorticity and numher density as a fllnction of increasing Stokes

number for aH sampling length scales. The lowest Stokes number at which sorne pref

erential concentration was found is .017. The corresponding radius of the droplets

for preferential concentration tllrns out ta he approximately 20ltm in flowA, 121Lm

in flowB and 7J.Lm in flowC. At Stokes number higher than .017 we found that the
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deviation of the spatial distribution of the droplets from Poisson is statistically sig

nificant. The magnitude of the vorticity also correlates weIl with the concentration

of droplets. The largest deviation l'rom Poisson occurs in the case of 20f-L'm droplets

in flowC. The Stokes number for this case is .16. the highest Stokes nun1ber achieved

in aIl our experiments.

The situation becomes more complicated when sedimentation of the droplets is

allowed. In general, the sedimentation of droplets has the effect of reducing the

dustering index and the correlation between the nlagnitude of vorticity and nurnber

density. However. these quantities are still statistically significant llnless they were

already borderline in the no sedinlentation experiments. \·Ve also found that the

difference between the results for droplets of different sizcs is redllced and sometirrlt'S

eliminated. Furthermore. we found that the irrlpact of sedimentation on the spatial

distribution of droplets or on the correlation between the magnitucle of vorticity and

number density of droplets decreases as the level of turbulence increases.

The reason for the complicated behavior when sedimentation is inclucled is at~

tributable ta the fact that droplets acquire a rnean velocity relative to the flow and

the time of interaction between a droplet and an eddy' is reduced. Sedirnentation

therefore introduces a new timescale which is the tirne it takes for a droplet to cross

an eddy due to its terminal velocity. By calclllating the ratio TI,: / TT] ~ where T\' is the

time it takes for a droplet to cross an ecldy of size eqllal to the Kolmogorov length

scale and 71/ is the eddy turnover tinle for such edclies. it \vas found that an increase

(decrease) in this ratio indicates a decreasing (increasing) importance of seclirnenta

tion.

We then performed a series of experiments with the full microscopie model in

cluding condensational growth of droplets. Using an initial monodispersecl 1.5Itn~ size

distribution, we examined the spectral changes caused by the 'microscopie approach

by including or excluding one of the fol1owing processes: i) sedimentation of droplets,
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ii) clustering through the inertial term in the equation of motion of the droplets and

iii) local cooling term due to turbulent vertical velocity for a given flow. 'vVe round

that:

• 0'( R) and O'(;3'2)/IJiE increase if sedimentation is neglected.

• 0'( R) and O'(pf2) laiE increase if clustering is present.

• 0'( R) and O'(rlI2 )/dXE increase if the cooling term is present.

However, when only the intensity of turbulence is varied but aIl etfects arc included.

we round:

• 0'( R) decreases as a function of increasing é

• O'(;3rJ.)/a~E decreases as a function of increasing E

• 0'( SI) / SM increases as a function of increasing t

• O'(TI
) increases as a function of increasing t:

• 0'( q~) slightly increases as a function of increasing t

• the decorrelation time of the supersaturation perturbation. averaged over 2000

randomly chosen droplets. decreases as a function of increasing ~

vVe interpreted the above results as a consequence of the decrease in decorrelation

time and an increase in preferential concentration as the level of turbulence increases.

The full l'uns with turbulence were also compared with another run with no tur

bulence but otherwise identical initial conditions (N06 in Chapter 6). \Ve concluded

that the presence of the turbulent ffow significantly decreases the dispersion of the in

stantaneous distribution of supersaturation perturbation 0'( S') / S'j\t{ (through similar

decreases in u(T') and u( q~). The reduction is even more significant in terms of the
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dispersion of the degree of growth. aCan )/ dSr' In the absence of turbulence and sedi

mentation these two dispersions are almost equal in magnitude. while in the presence

of turbulence and/or sedimentation a(p'1.) lai/ is significantly smaller than a( 8') / S,\,f.

The two inferences made earlier concerning the effect of sedimentation of droplets on

the no turbulence results also apply when turbulence is present and the dl'oplet con

figuration constantly changes. Furtherrnore. the difference between the dispersions

a(5')/S'i\4 and aCf3'2)la~r increases as the intensity of turbulence increases. This is

consistent with the decrease in decorrelation tin1e of the supersaturation perturbation

as the intensity of turbulence increases.

Our final task was to compare the values of a(iJ''2)/ JS1 obtained From the nunler

icai experiments in Chapters 6 and ï ta those inferred from observations in adiabatic

cloud cores by Brenguier and Chaumat (1996). They round that the broadening of

the spectra is proportional te the average degree of growth and that a broadening of

1l'~r2) x 100. ::::::: 21% is a minimuIT1. Referring ta Table Î.:j we see that the lninimal
M

dispersion observed is much greater than the dispersions we found when turbulence

and sedimentation are present. Referring to Table 6.2 we see that in the most favor

able and perhaps unrealistic experimental conditions of no flov..- and no sedirnentation

the dispersion obtained is of the same order of nlagnitude but still much smaller than

the observed minimal dispersion.

Based on the results obtained in this thesis. we now answer the central question

posed in the fol1owing way:

The microscopie approaeh. whieh lakes into accounl non-uniformily in

the spatial distribution of the si.:e. and position of droplets and variable

-vertical 'veloeily in a turbulent medium~ does not {ead to a broadening of

the droplet size distribution. Ho'Wever~ in the absence of sedi-mentation

of the droplets and turbulence, the microscopie approach can lead to non

negligible broadening of the drop/et size spectrum.
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A.1

From equation .5.8 we can easily derive the fol1owing equations:

tR'}. '}. °R'l!. + '2 uR'}. J2 + J.I
M .\1 JI

tRtf = oR" + '2 °R2d.~r + d:~f'

Using these two equations in the definition of variance. VeR~!) = tRif - tRi/. leads

to the equality V(tR~d = \l(oR:.?).

A.2

By definition we have COV(J3'2. tRXf) = ,312 tRif - drJ. tRir. Replacing tRif by its defini

tion from equation .5.8 and simpiifying we get:

•

COV(p/1. ~ tR~[) = j3'2(tR2 + 132 ) _ pl2(OR2 + 32 ), l\,[ Jf

_ ;3,2°R2 + j312j3~r - p'2°R2 - j3rJ. ,8~[

_ {311. °R2 - ,812 °R2

= cov(j3/2, °R2)

144
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The Poisson distribution, its moments, its

estimators and how to quantify deviation

from

In situations where the effect of the inertia of droplets on their spatial distribution is

considered negligible. the probability of finding a droplet at a certain position is the

same as finding the droplet at any other position. In that situation the spatial dis

tribution of the droplets can be approximated by the Poisson distribution. Knowing

the average concentration of droplets C. in a sanlpling volume t' we expert ta flnd a

number of droplets given by ..\ = Cu. The probability of actuaUy counting 11. droplets

in that sample volume is given by the Poisson distribution:

(.-\.1)

For an infinite number of sampling volumes, the moments of the distribution of n are

given by:

< n >= ...\

V(n) = ,\

ske-wne.ss = _1_ < (n _ ,\)3 >= ,\ -1/2
a(n)3

kuriosis = _l_)-t < (n - ;\ ri > -:3. = ,\-1
u(n .

(:\.2)

•

\Vhen the number of sampling volumes is fini te, the measured moments( called

estimators) of the distribution of n will deviate from their theoretical values. Only

the average < n > is exact since the total number of droplets is a fixed parameter.

It is possible to estimate by how much the measured variance can be expected ta

deviate from the true value by calculating the variance of the estimator which is
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given by (Barlow, page ïS):

.) \ 2

V(v~)) == ~~ .

where V(n) is the measured variance and .V is the number of sampling volunles.

Note that this equation is only valid when .\ is not tao smalt and ~\j is large enough.

Therefore, we can expect the measured variance ta deviate frOOl the true variance by

~ ±,\/2/1V for 68% of such measurements.

One simple method ta quantify deviations t'rom the Poisson distribution 15 ta

calculate the following ratio:

-\/ (Tl) \/( n)
---l=---L
V(n) ,\. ( :\·:n

•

This ratio is called the relative variance or the clustering index. Ta deternline if

the spatial distribution of droplets does indeed respect Poisson statistics. this ratio

is calculated for various sanlpling volumes (corresponding to variOllS ..\·s). If. for

any ,,\. the ratio significantly cleparts l'rom ± J2/1V. wc can conclude that the spatial

distribution of droplets does not follow a Poisson distribution .
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