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Abstract

General Form of the String Effective Action in Four Dimensions: We
study the cffective action that governs heterotic string theory compactified on
a four-dimensional, N = 1 supersymmetric background. A scaling symmetry of
the four-dimensional field T' that represents the breathing mode on of internal
manifold is introduced. This symmetry, being valid at each order in both per-
turbative series of the theory (string-loop and sigma model expansions), is used
to find restrictions on the terms that can correct the truncated supersymmetric
functions entering the effective action. We derive the general form of these cor-
rections and show that, ccntrary to earlier conjectures in the literature, loops
are not a priori counted by the ratio T'/S, in which T and S represent the stan-
dard four-dimensional breathing mode and dilaton fields. Some other symmetry
considecrations allow us to restrict even more the corrections to the truncated
results. Our conclusions are extended to the cases with matter fields, and more
than onc moduli for the internal manifold.

Some regularization techniques for problems related to those encountered in

the quantization of string theories are also presented in an appendix.
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Résumé

Forme générale de P’action effective des cordes en quatre dimensions
Nous étudions P'action effective, N = 1-supersymétrique, qui gouverne les cordes
hétérotiques compactifiées dans un espace-temps a quatre dimensions. Nous
introduisons une symétrie de changement d’échelle pour le champs T, qui est
défini sur 'espace & quatre dimensions et qui représente le rayon typique de la
variété interne. Cette symétrie, étant valide pour tous les ordres perturbatifs
des deux expansions de la théorie (expansion des boucles de corde et du moddéle
sigma), nous permet de poser des restrictions sur les termes qui sont susceptibles
de orriger les functions supersymétriques tronquées se retrouvant dans action
effective. 1Tous identifions la forme générale que ces corrections peuvent prendre
et montrons que, contrairement a ce qui a été conjecturé auparavant, les boucles
ne sont pas a priort comptées par le ratio T/S, ou T et § représentent. les
champs quadri-dimensionnels décrivant respectivement le rayon typique de la
variété interne et le dilaton. D’autres symétries nous permettent de restreindre
encore plus la forme des termes correctifs. Nos conclusions sont appliquées au
cas avec des champs de matiére et avec plus d’un module.

Des techniques de régularisation s’appliquant & des problemcs rencontrés

dans la quantification des cordes sont aussi développées en appendice.




En guise de préambule!

L’apparance des bateauz qui arrivent 4 bon port aprés un long périple, ne raconte
que quelques bribes des multiples embiches, tempétes el jours sans wvent, mu-
tineries et maladies, qu’il aura fallu surmonter pour iriompher aujourd’hui. La
foule qui s’amasse le long des quais sous les fanions et les drapeauz, assourdie
par les coups de canons, acclame les braves matelots. La foule n'est pas s1 béte,
et scs cris de jore sont le reflet de son admairation pour ces gens qui ont souffert
elle le sast.

J'achéve ausst mon périple. Et, comme pour les navires, mon gréement
ne semble pas trop magané. Pourtant, ce mémoire représente deuz annés de
labeur qui a laissé ses marques. Regardez bien! Vous verrez une écorchure
z€brant le grand-mat. Approchez-vous et voyez combien il manque de poulies et
de cordages, adintrez ces planches cassées et ces voiles rapiécées! Ne frissonnez-
vous point en découvrant ce grand trou noir d méme la coque?

Aussi ardu que puisse étre ces voyages, les matelots se retrouvent toujours
la semaine ou le mois suivant préts a reprendre la mer. Pourquor donc? Pour
I’ amour de Thalassa le Belle, la Grande, tout simplement.

Jours sombres et nuits de découvvertes €blouissante, frustrations et joies en-

If you don’t read French, I'm very sad for you! However, what’s contained 1n this little
non-formal introduction isn't crucial for the understanding of the thesis. In any case, I'd like
to thank here my supervisor who's susceptible to be unable to understand the following. I
am very grateful for all the knowledge he made me acquire and for the fantastic experience of

working with him, Thanz Cliff!
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nivrantes, ont rempli une partie de ces deuz années. Je sarss la présente oc-
casion pour avouer que, comme les marins, 3'ar souffert. Mais, pareal d cur, ye
replongerar trés bientét par amour pour cette quéte wnfinie cé combren pussion-
nante.

Je veuz dédier ce travail & me nouvelle ¢pouse Corinne Le Quéré qui, par
son emour et par la merveilleuse prcuve qu’elle m’'en donne awourd'hu, m’e
soutenue tout le long de ces deur ans.

A mon pére Gilles, qut m’enseigna, alors je n'avars pas encore ey ans,
la différence entre masse et poids, et qui est donc le premier responsable de la
passion de tout connaitre qui me dévore,

A ma mére Louse Lavoie, dont je suis redevable pour (presque) tout le reste
qui m’offre un merveilleuz ezemple de force morale et de paiz intéricure.

\

A Clifford Burgess, mon directeur de thése,

\
A tous mes amis et collégues... Merci! ?

“Il y a un spectacle plus grand que la mer: c’est le cicl;
Il y a un spectacle plus grand que le cicl: ¢’est 'intéricur de I'ame.”

Victor Hugo, Les misérables.

2Cette recherche a été rendue possible grice a une Bourse en Science et Génie 1967 du
Conseil de Recherche en Sciences Naturelles et Génie (C.R.S.N.G ) du Cunada Je lii suis
grandement reconnaissant de I’aide inestimable ainsi accordée.
Je remercie de méme ’auteur de la référence [1], ouvrage de base qui m’a été essentiel tout

au long de mon écriture.
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Chapter 1

Introduction

Superstring theory (2, 3, 4] has emerged as the most promising candidate to unify
into one theoretical framework the two fundamental theories of modern physies:
quantum ficld theory and general relativity. This would solve an outstanding
problem that has been puzzling the physics community for more than fifty years,
From the phenomenological point of view, the theoty of heterotic strings [5],
which include explicit Yang-Mills ficlds, is the theory that secms the closer to a
complete description of all the known interactions.

The most pressing problem facing heterotic string theory is the question of
breaking a ten-dimensional theory down to a realistic four-dimensional theory
Until such a dimensional reduction can be made, the theory licks any real con-
tact with physically measurable quantities. Unfortunately, a completely satis-
factory mechanism for spontaneous dimensional breaking to a four dimensional
theory is yet te be found.

The best that can be done in the present knowledge, is to study pertur-
batively various classical vacua of the theory and scc whether reasonable phe-
nomernology can be extracted from them. With relatively mild assumptious on

compactification {e.g. preservation of an N = 1 supersymmetry [6]), it is possi-




ble to obtain reasonable phenomenological predictions. But the number of such
theories is huge: many thousands of Calabi-Yau spaces are possible vacual

The cffective Lagrangian contains massless and very massive fields. The
low-cnergy four-dimensional Lagrangian should not be sensitive dircctly to the
massive ficlds: they must be integrated out. This integration is unfortunately
very diffienlt to perform rigorously. However, if we set the massive ficlds to zero
in the ten-dimensional effective action [7, 8, 9], then we can obtain an effective
four-dimensional theory that approximates compactification on a Calabi-Yau
space in a quite satisfactory manner. In this work, it is made very explicit how
this approximation is in fact quite precise.

As onc would expect, this effective theory is expressibleby a D=4, N =1
supergravity action. The approach of this paper is to find the general form
that corrections to this action can take, using symmetry considerations. The
work done in reference [9] indicates some symmetries that restrict the form of the
corrections at lowest-order in the string-loop expansion and in the o'-expansion.

We identify a symmetry of the full ten-dimensional supergravity action that
is valid at any finite order in both perturbative series. We then exploit it to
specify the general form that is allowed for terms entering the effective action
governing heterotic strings in a four-dimensional, N = 1 supersymmetric back-
ground. The study of this symmetry has some important consequences for the
cffective theory.

In particular, it has been conjectured [10] that the two expansions of string
theory were counted only by one parameter S/T, where § and T represent,
respectively, the dilaton and the scalar field associated with the first breathing
mode of the internal manifold. This conjecture is shown to be false by of our
more general analysis.

To the best of our knowledge, this is the first time that this symmetry Has
been presented in this context, and that its implication for the four-dimensional

string action are discussed.
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The rest of this paper is divided as follows: chapter 2 presents a review
of bosonic and heterotic string theory, including massless fields defined on the
D-dimensional background spacetime (D = 26 or 10). We present a derivation
of the ten-dimensional effective action for heterotic strings, following reference
[11]. Our original work is presented in chapter 3. In the first scction, a non-
renormalization theorem for the effective theory in ten dimensions is presented.
Focussing our attention on the four-dimensional theory, we first give the trun-
cated Lagrangian [7, 8, 9], and then present our symmetry. The rest of the
caapter is devoted to a discussion of its implications on the form that can take
the corrections to the truncated action. We also include other symmetry consid-
eratious, in order to be as complete as possible. The conclusions are surnmarized
in chapter 4.

You will also find an appendix at :1e end of the paper. The work presented
in it is not directly related to the main body of the thesis. Nevertheless, it
is included because it contains solutions to some regularization problemns that
arise in string theory. Some of these results are not restricted to two-dimensional

theories and are valid in general.




Chapter 2

String Theory with
Background Fields

In order to achieve the goal of unification of all the phenomena of nature into the
structure of string theory, we must know how to include in the theory a descrip-
tion of the behavior of a string in a curved spacetime. For example, spacetime
in string theories must always have a large number of dimensions (10 and 26,
for the theories of, respectively, superstrings and bosonic strings). In order to
recover the only four macroscopically observable dimensions of spacetime, we
neced to compactify the others. Typically such a compactification involves back-
grounds with non-trivial curvatures. This example illustrates the importance of
the understanding of string theory in the presence of background fields.

This chapter introduces string theory and the massless string fields whose
background values are important at low energies. We first describe bosonic
string theory in a flat background and its quantization. We then treat bosonic
strings propagating in a curved spacetime, and describe the derivation of its
effective action in the critical spacetime dimension D. The last section of this

chapter repeats the discussion for the superstring. We choose to work in the

N
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framework of heterotic string theory, since this is the thecory which scems to

have the most promising phenomenology at low-energy.

2.1 Introduction to String Theory

2.1.1 Basic Ingredients

Our approach to string theory is a first-quantized path-integral formalism, i.e. a
quantum theory for one-dimensional extended objects (for an introduction, sce
references [2, 3, 4]). This has the advantage of making manifest many of the
symmetries of the theory, as was first introduced for strings by Polyakov in the
early 1980s [12].

The ingredients that are used in this functional framework arc the world-
sheet, the target space, a mapping XM (o) between these two spaces and a
string action. We adopt the convention to always work with manifolds whose
metric has Euclidean signature. As is usually the case for quantum ficld theory
(first-quantized string theory can be considered as a two-dimensional QFT, with
the worldsheet as a base space), the physical conclusions may be obtained by
continuing to Minkowski signature at the end of a culculation. In this paper,
the explicit calculations of appendix A are done in Euclidcan space, hut the
rest of the discussion is not sensitive to the signature of the mectric.

The above ingredients are defined as follows:

o The physical meaning of the worldsheet is best expressed with Minkow-
skian convention; the worldsheet is then the two-dimensional mauifold,

denoted by M, that is swept out by the string as it evolves in time.

For our purpose, the study of the partition function, i.c. vacuum-to-
vacuum amplitudes, suffices. According to our convention to work with
metric with Euclidean signature, the manifold is, in this case, compact

and orientable, since we are always concerned about closed and oriented




strings. We introduce the metric hog(o) to describe it with respect to the

coordinates (o?,0?).

o The target space (also called the background space) is the ordinary real
spacetime through which the string propagates. In bosonic string theory,
the target spacetime seems to necessarily have D = 26 dimensions. This
is imposed by the necessity to preserve Weyl invariance on the worldsheet
even after quantization. Weyl invariance is a scaling property of the action
about which more will be said later (see equation (2.4)). For heterotic
strings (see section 2.3), the analogous critical dimension of the target

space is D = 10.

o We represent the embedding of the worldsheet into the D-dimensional
target space by a set of D functions called 2 (o). We use capital letters
taken from the middle of the Latin alphabet (e.g. M, N, P) to indicate
the indices of the D-dimensional tangent space. These functions defined
on the worldsheet are the coordinates of the points of the worldsheet in
spacctime. In the case of heterotic strings (see section 2.3), there exist
fermionic two-dimensional fields also: left-handed superpartners AM (o)
of target space coordinates ¥ (o), and right-handed spinors %*(¢) that

couple to the Yang-Mills background field.

o The siring action I[x, h] is a functional of the two-dimensional fields, like
aM (o) and hap(o), defined by an integration over the worldsheet. It
enters in the theory for the computations of amplitudes, or the S-matrix

(see below equation (2.1)).

2.1.2 Bosonic Strings in Flat Target Space

Polyakov’s idea for string quantization is to consider the metric of the world-
sheet hag(0), s well as the other string field 2™ (o), as dynamical variables

of a two-dimensional field theory [12]. Within the framework of path-integral
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quantization, every amplitude is expressed as a functional integral. The S-
matrix elements for n scattering (string) particles, with momenta pM in D-space
and quantum numbers j,, are given by (this more modern point of view than

Polyakov’s is presented in [13, 14, 15]):

Slpro it ipmin) = 30 [ B 1,

y==0
xvl[:v’h;Pla.il] Vo [I h: PnyJ:t] (‘)1

Here the functional integration over the worldsheet metric [[dh]/§2 can be
gauged away and replaced by a Jacobian and an integration over a finite number
of moduli [16]. The definition of the functional measure [dz] is discussed in the
appendix. I[z,h] is the bosonic string action as will be described below (sce
equation (2.5)); and Vi[z, h;p,j] is the vertez function, a functional of +™(q)
and hys(0) that also depends on p™ and j. There is a vertex function associated
with every scattering string state (see references [2, 14)).

The infinite sum in equation (2.1) is a sum over the genii, v, of the different
worldsheets. The consiants C are proportional to AXM) “where A is the string
coupling constant, and x(M) is the Euler characteristic of the surface M. This
latter quantity is related to the genus v of the surface by the relation y(M) =
2 — 2.

The string coupling constant A that appears above and the Regge slope o,
that is presented below, are the two paramecters of string theory. We consider
that the string coupling constant, which is dimensionless, is small cnough so
that the perturbation series in powers of A will give asymptotical value for the
S-matrix. This expansion is the string loop ezpansion for which cach order in
labelled by the genus 7 of the corresponding worldshect.

In the same way, we expand the S-matrix in powers of &'. This expansion is
not really a perturbation series in o' alone, since this parameter is dimension-
1—1/2

ful. Rather it is based on the assumption that the parameter a is large

compared to the other dimensionful parameters entering the thcory, such as



the momenta pM. For heterotic string theory in curved space, we form small
dimensionless parameters using o' together with r2 and rZ, the typical radii of,
respectively, our four-dimensional spacetime and the six-dimensional internal
manifold of compactified dimensions.

For bosonic string theory in a flat target space (i.e. with metric épn), the
string action Iga [z, k] is completely determined by three symmetries that are
assumed for the theory [13, 14]: D-dimensional Poincaré invariance, worldsheet

general covariance and Weyl invariance.
e Poincaré transformation of the coordinates ¥ is defined as:
M AMzN 4 oM, (2.2)
with AM an arbitrary O(D) matrix (Euclidean space).

e Worldsheet general covariance is just invariance under a general two-

dimensional reparameterization f* : M — M, with:

M — f*aM(o) = 2M(f(o)),
(2.3)

o5 of*

o o (F(0))

ho? o f*hob(o) =

o Finally, Weyl invariance is a symmetry of the action which ensures that
the theory is not dependent on the metric of the worldsheet. Given a fixed

scalar function ¢(o) on the worldsheet, a Weyl transformation is defined

to be the following;:
hap(o) —= explé(a)]hap(), (24)
and leaving the embedding 2™ (o) unchanged.

These three symmetries completely fix the flat bosonic string action to be

given by the following functional:

T oM 9zN
Igat[z, h]) = 5 /dzow/f_;h""3 aa;a aa;ﬂ MmN, (2.5)

8
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where k(o) is the determinant & = det(hag), and T is the string tension, which
can be identified with the classical tension of the string. The Regge slope,
mentioned earlier is related to T' by o' = 1/27T. In the present discussion, we
assume that the worldsheet coordinates {0} are dimensionless and that the D-
dimensional spacetime coordinates tM (o) carry dimensions of Length. In order
for the string action to be dimensionless, the string tension must have dimensions
of (Mass)®. The Regge slope a' carries therefore dimensions of (Length)?. In
order to correctly reproduce Newton's constant for the gravitational action, we
choose a’~1/2 to be of the order of the Planck mass, Mp ~ 10" GeV.

In the framework of string theory, the quantization of this action can be
understood as two-dim<asicnal quantum field theory. The embedding +¥ (o) is,
in this point of view, a set of D operators, or quantum ficlds, on the worldshect.
They are scalars in the two-dimensional space, though 2 (o) is still a vector
with respect to the real D-dimensional background space.

Let us now turn to a description of bosonic string theory which incorporates
the effects of massless background fields, such as gravity, for example, but also

other fields.

2.2 Bosonic Strings with Background Fields

2.2.1 Non-Linear Sigma Model

Background fields are D-dimensional quantum fields that are produced by string
field theory. In our first-quantized language, they appear as external fields in
our action. However, it is possible to compute the mass spectrum corresponding
to these fields (see reference [2]). Perturbing around flat spacetime, we get
full towers of dafferent states having very large masses (of the order of the
Planck mass Mp) and a few massless states, as well as a tackyon, 1.¢e. a particle
of imaginary mass. These masses are background dependent but, for slowly-

varying fields, the masses of the ‘massless’ fields remain very small compared to



Mp, and the ‘tachyon’ remains a tachyon. Throughout this paper, we therefore
call the light background fields, massless fields.

When we allow our theory to have background fields, the string action
that we must consider is a bit more complicated than that of equation (2.5).
The terms involving heavy fields turn out to be nonrenormalizable as two-
dimensional quantum field theory, while the term involving massless background
ficlds and the tachyon are renormalizable. The conditions that are imposed on
the string action become renormalizability and the worldsheet symmetries that
we had Dbefore: invariance under a general coordinate transformation and Weyl
invariance. We can no longer require the D-dimensional Poincaré invariance
since one of the background fields is the curved metric of the D-dimensional
target spacetime. General covariance for the D-dimensional target space is not
required, but it comes as a consequence of the other conditions.

The most general classical bosonic string action satisfying these criteria
(renormalizability, general covariance on the worldsheet and Weyl invariance)
is:

1 ,
16, B = 1 / Po [VikPGun(a) + € Bun(z)] uc™dpa”.  (26)

Here, the Levi-Civita tensor €*#(o) is a tensor density (not a covariant ten-
sor), so we must be aware that while £!? takes the value 1, the tensor density
€ap is proportional to h = det(hqg). Actions of the form (2.6) are called non-
linear sigma models and were originally used to describe the coupling of mesons.
Many of the techniques that have been developed for those theories may be ap-
plicd here [17]. The limit o' — 0 is the semi-classical limit for the o-model; for
that reason, the a’-expansion, in the context of string theory, is often called the
sigma-model expansion.

In the string action (2.6), the fields Gpn(z) and By n(z) are massless fields
of the background spacetime. They are, respectively, the spacetime metric and
the antisymmetric tensor ficld. As we shall see using the effective action, they

correspond to the usual D-dimensional quantum fields, up to some scaling.

10
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Surprisingly enough, this is not the whole story. The action (2.6) has an
anomaly associated with Weyl symmetry, and we add a local term to the action
in such a way that the anomaly is cancelled [18] (this is still not the whole story,
we will study Weyl invariance further in the next section and sece how it relates to
the equations of motion of the background fields). Two moie background fields
are introduced through a string action that is not classically Weyl invariant,
but still renormalizable and generally covariant on the worldsheet. They are
the tachyon ¥(z) and the dilaton ®(z). They appear through the following,

string action:

1,9 = / EoVR[T(z) + Rud()], 2.7)

where Rj, (o) is the 2-dimensional Ricci scalar of the worldsheet manifold, which
is related to its Gaussian curvature k by the relation R, = 2k. Both of the
above ficlds are D-dimensional scalars. We will not discuss any longer the
tachyon term, since it does not appcar in heterotic string theory. It will simply
be omitted, even in our bosonic string discussion.

An important feature of the action (2.7) is that it does not have the factor
a'~! as the other term (2.6) does. The reason for this is that it is a renormal-
ization term that must cancel ‘quantum’ effects (1.e. of order «') of the action
I|G, Bj.

Furthermore, if the dilaton were shifted by a constant, «, then the action

(2.7) acquires an additional term:
;1‘-’7; / #oVh Ry = ax(M), (2.8)

where we used the GauB-Bonnet theorem to relate the worldsheet curvature to
its Euler characteristic. Putting this action into the expression (2.1) for the
S-matrix, we sce that the string coupling constant may be absorbed into the

vacuum expectation value (v.e.v.) of the dilaton field. This can be expressed as:

A=exp < ®(z) >. (2.9)

11
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2.2.2 D-Dimensional Effective Action

The effective action is the integration over D-dimensional space of a Lagrangian
density involving only the background fields (Gpn(z), Bun(z) and ®(z)) and
not the string coordinates. The effective action is meant to produce the same
cquations of motion and scattering amplitudes as the direct string calculations.
We will study later a four-dimensional effective action, i.e. in the same way,
involving only background fields defined on the physical four-dimensional space-
time.

However, it is not possible to compute the full effective action: the best that
can be done is a calculation order by order in &' [19, 20]. This provides an
expression for the D-dimensional effective action at each order. However, this
procedure involves quite lengthy calculations, and another equivalent method
based on beta functions and Weyl invariance was developed [11]. The two
methods are shown to be equivalent in references [21].

Let us present the beta function method in the following. In ordinary quan-
tum field theory, when we have a theory with n coupling constants, we have
n beta functions, one for each coupling constant, giving the dependence of the
coupling as some arbitrary scale, introduced by regularization, is varied. For
instance, the A\¢* theory, with dimensional regularization gives (as presented by

Ramond in reference [22)):

B = lim g, (2.10)
where ) is the coupling constant, p the arbitrary scale and e the dimensional
regularization parameter, s.e. this is computed in 4 — 2¢ dimensions.

Analogously, our action contains, not a finite number of coupling constants,
but a coupling function Gy n(z). Thus, we get a beta functional S[Gpyn(z)] =
B; x (). Other beta functions are also present for the other coupling functions
of our non-linear o-model, namely 8%, 5(z) and 4®(z). In the above analogy,

the arbitrary scale u corresponds to the parameter for Weyl transformations.

12




To have a theory invariant under Weyl scalings, it is sufficient to ask that the
beta functionals vanish [23].
The B-functionals are computed at leading-order in &' in [11]; they are given

by:

1
Biin = Rmn-— ZHMPQHNPQ + 2V M VNS o(a'),
Pun = VpHPyy —2Vp@HP, \ +o(a'), (2.11)
g = D=2 o [ 9,eVME)— 4(00) - R+ LA z
T 4872 1672 M ( + 15 + o(a'?),
where
Hynp(z) = OMBnp + 0pBun + OnBpay, (2.12)

and H? = HynpHMNP | Also, the symbol Vg represents the covariant. detiva-
tive (using Christoffel symbols I'}; () obtained from the metric Gy n(.r)). We
also have 0® = VMV, &. Rpyn and R are, respectively, the Ricci curvature
tensor and the Riemann scalar curvature of D-dimensional spacetime.

It is important to note that the first non-trivial contribution of *(r) when
the spacetime dimension is restricted to its critical value D = 26 is not of the
same order as the corresponding terms in other beta functions. As disenssed in
[11], this comes from the fact that the coefficicnt of the action (2.7), involving
the dilaton, is one order higher in &' than I[G, B] (equation (2.6)).

The conditions for Weyl invariance of the thecory then turns out to be:
BS N = BB N = B® = 0, providing the equations of motion for the massless
fields of the theory. These equations may be interpreted as Euler-Lagrange

equations of the following 26-dimensional effective action:

Sup = —= [ dPz/Ge2® (R +4(Vpr®)? — %5112) . (213)

2K2

where G(z) is the determinant det(Gyn) and & is Newton’s constaut for gravity
in D dimensions. Since string theory contains only one single dimensionful
parameter, we can relate £ and o'. In reference [14], it is shown that the

gravitational coupling must be proportional to the string coupling constant A.
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Dimensional analysis implies then that £ = cAa’(P~2/4, for some constant of
proportionality c.

The non-lincar ®-dependence of the action (2.13) makes explicit the fact that
¢?? is the string-loop expansion parameter and that this effective action is an
approximation coming uniquely from the sphere-term of the genus expansion.
The n-loop contribution is computed on a worldsheet with genus 4 = n and is
proportional to e~ #(F)Xx(M) = ¢2(n—=1)® 45 can be seen from equations (2.7) and
(2.8).

It is important to emphasize that in the sigma-modc] variables, i.e. the very
ones we have been using up to now, the expansion parameters are then uniquely
given by the dilaton and the Regge slope a' (more correctly dimensionless quan-
tities involving o' and, for example, rg, the typical radius of the compactified
manifold). The other ficlds give no indications of the order in the perturbative
cxpansions.

We can however find an Hilbert-like action from (2.13). Let us perform the

following conformal scaling of Garn(z) to its canonical form:
Sn(@) =9 () Gun(z), (2.14)
where, we changed variables for the dilaton field:
¢ = expl[4®/(D - 2)), (2.15)

each string loop term being down by a factor of ¢ ~* with respect to the preceding
onc. This new canonical metric also counts, in part, string loops. We then get

the following equivalent effective action in term of the canonical metric [11]:

St = — [ dP2v/G (R-—-—————(V )2 - L-s0/(D-2p ) (2.16)

2x2 D -2 2
where R is the scalar curvature constructed from the new canonical metric; all
contraction are also performed using it. This action is essentially the bosonic
part of an action involving a graviton, a dilaton field and an antisymmetric

tensor field as was derived with the techniques of supergravity by Chamseddine,
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Chapline and Manton (see references [25] and equation (3.1)). So, using, string,
theory at the lowest order in the o’-expansion and in the string-loop expansion,
we recover the principal features of the bosonic part of supergravity

Notice that, in these variables, it is still possible to see that this action is a
contribution of the sphere: the quantitics Rasv, Var®Vy® and Hypo H Y rQ
are not scaled by the transformation (2.14), while in canonical variables, the
factor VGGMN ~ @~ 4 asymptotically as ¢ — 0. Using the relations (2.9) and
(2.15) between the string coupling constant and the dilaton, this shows that the
Einstein term is a sphere contribution to the effective action.

It is possible to find string-theoretic corrections to the action (2.16), with
higher powers of a’. This is done in references [19]. As an illustiation of this,
let us state the beta functional 8§ 5(x) at the next order in the a'-expansion,

when we set the other background ficlds to zero:

'

Bmn(z) = Run — %’RMPQRRNPQR- (2.17)
This implies a ‘stringy’ correction to general relativity. But if the typical di-
mension of Rarpgr(.r) becomes very small compared with the string tension T,
then this correction is negligible. In other words, this coriection is not impor-
tant when the typical radius of spacetime is a lot larger than the Regge slope
a'l/%, This provides us with an upper limit on the valuc that the parameter af
can take with respect to the other dimensionful quantities of the theory. The
effective Lagrangian, for which (2.17) is an Euler-Lagrange equation, thus ac-
quires an additional stringy term proportional to o' Ry NquM NPQ | compared
with the previous effective action (2.16).

Boscnic string theory could possibly explain very well a wotld of bosons, but
in order to include fermions, the most common matter particles of the universe,
we must enlarge the theory. The usual way to do this uses the very propertices
of supersymmetry, providing in this way, as an additional advantage, theories
without tachyons [2). This gives rise to two new groups of theorics: superstring

and heterotic string theories. We shall treat only the latter.
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2.3 Heterotic Strings with Background Fields

2.3.1 Flat Target Space

Supersymmetry is a symmetry in the action (here, the 2-dimensional one) which
relates bosons to fermions. Essentially, this is done by the addition to the string
coordinates £M (o) of superpartners AM (o) which are Grassmann variables.
The properties of heterotic strings are more casily expressible for a space
with Minkowskian signature, we will therefore express them in this framework.
Heterotic string theory (see references [5]) has an interesting N = % Majorana-
Weyl worldsheet supersymmetry: meaning that only the left-moving bosons
have fermionic superpartners and the supersymmetry of opposite chirality is
absent. Right-moving fermions do exist, but they are used to form a chiral Eg x
Es or Spin(32)/Z; current algebra. By left- or right-moving, we mean that the
ficlds depend only on one of the combinations 7 + o, where (7,0) parameterize
the Minkowskian worldsheet. For fermions, it turns out that the Dirac equation
implies that they are left- or right-handed Majorana-Weyl spinors, respectively.
The worldsheet action for heterotic string in a flat target space is written
in the covariant language as [5] (we do not write the very complic=ted cou-
pling of the gravitino with the right-handed fermions 1?; the gravitino will be
gauged away very soon and we introduce it here only for the completeness of

the argument):

1 . _
he = — d?oVh [R*B0uzMBpa™ + iAM A G AM 4 192y Dye®

+i()2a7°'yﬂ/\M)3p:cM + gravitino terms] . (2.18)

The field content of this equation, zM(c), AM (o), ¥*(0), hap(o) and xq(0), is

cxplained below.

We define the two-dimensional gamma matrices in flat Minkowskian 2-space,
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as in four dimensions, by the requirement that they obey the Clifford algcbra':
{v*,7"} =29, (2.19)

where 7% = diag(1, —1).

For a general curved worldsheet, the procedure is the same as in four-
dimensional curved spacetime (see [26], for example). We define a zweibein
e?(o0), a non-coordinate basis of the tangent space (the latin index refers to the
Euclidean tangent space), which has the following properties of completeness

and orthonormality:
(ea)*(es)?n® = b,

(2.20)
(ea)*(e)P hap = 1as.
The v-matrices in curved space are then defined by:
7%(0) = (€a)*7". (2.21)

They are, as indicated, dependent on their position on the worldsheet

The 2M’s of equation (2.18) are, as before, the embedding of the worldsheet
in the D-dimensional target spacetime, although here, anomaly cancellation for
Weyl transformation obliges us to work in critical dimension D = 10, t.e. M =
0,1,...,9.

The AM’s of equation (2.18) are two-component left-handed Majorana-Weyl
spinors. With a Minkowskian worldsheet, we may choosc to work in the Majo-

rana representation for the two dimensional y-matrices:

o 0 — ’ 0 )
=] o= (2.22)
i 0 1 0
and define
1 0
vp ="y = : (2.23)
0 -1

1The corresponding gamma matrices for a Euclidean two-dimensional space, denoted v*,

will be defined and used thoroughly in appendix A.
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Of course, those Dirac 4-matrices satisfy the Minkowski anticommutation rule
{7*, 7%} = 219, In this representation, the Weyl and the Majorana conditions

for the left-handed spinor AM read, respectively, as follows:
(1-9p)AM =0, (2.24)
(AM)* = M, (2.25)

The ¥*'s are right-handed Majorana-Weyl fermions where s = 1,...,32.
The linearly-realized sigma-model gauge group is either SO(32) for heterotic
strings having the gauge group Spin(32)/Z;, or a SO(16)xSO(16) subgroup
for heterotic strings with gauge group Eg x Eg, depending on the boundary
conditions imposed on the spinor field. xq(¢) in equation (2.18) represents a
two-dimensional spin-2 field; this is what we call in four-dimensional field theory
the gravitino, since it is the superpartner of the zweibein (o).

The theory of heterotic strings has the supersymmetry (‘N = %’):

6zM = gAM,
JAM=' aaa M+ a/\M ,

7°0az™ + XaATle (2.26)
bxa = —2V ¢,

bed = 1E7°%xq-
¢ is the parameter of the symmetry, which has the properties of a Majorana-
Weyl spinor.
The complete heterotic string action (not the equation (2.18)) also has a

super- Weyl snvariance:

Xa = 1Yal (2.27)

Here also 5 is a Majorana-Weyl fermionic parameter. This symmetry leaves
the other string fields invariant. We can fix the worldsheet metric to some
gauge choice using the two bosonic symmetries: reparameterization and Weyl
invariance. Now, these two fermionic symmetries (supersymmetry (2.26) and

super-Weyl (2.27)) can be used locally to set the four components of xo = 0.
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There are some complications with non-trivial solutions that arisc in the process
(super-Teichmiiller parameters and superconformal Killing spinors), but they do
not affect our conclusions. From now on, we will omit the worldsheet gravitino

contribution to the theory.

2.3.2 Gauge Field and Heterotic Effective Action

Heterotic string theory incorporates as a massless bosonic background ficld (be-
sides the graviton, the dilaton and the antisymmetric tensor field, as we en-
countered them in section 2.2), a gauge vector boson A%,(z) for the current
algebra SO(32) or SO(16)xS0O(16). The most general renormalizable action for
the heterotic string in the presence of an arbitrary background fields and satis-
fying general covariance, Weyl inveriance and N = 1 supersymmetry, is derived

in reference [27] (in the gauge where xo = 0):

I[G,B,®, A] = -Z— / d*o h{GMN(x) [Oaz™ N + iAM (D A)N]

af ; _
+5\7_’;BMN(z)6azMapr - ;:;;g HMNP(.I:)/\M")"'/\Naﬂwp

450 [y AN By (2)] + idh*7 00" (2.28)
- 1 -
+ TS [ 43)00Y - LFan(@V Y] |

+-;—/d20\/l—z Rp®(z).

In this equation, as before, indices from the beginning of the Greek alphabet
(e.9. a or B) refer to the worldsheet parameterized by {o*}. Of course, all
the contractions in (2.28) involve the worldsheet metric hag(c), or the zweibein
e2(o) for the gamma matrices. Indices taken from the middle of Latin alphabet
(M, N, P, etc.) refer to the D-dimensional target spacc. Gmn(z) is the metric
of the background space (10 dimensions). Byn(x) is the antisymmetric tensor

field.
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The covariant derivative of the spinors AM is defined by:
(DaA)M = 9o MM + TM p(2)05 2V AP, (2.29)

where, as usual, I'¥(z) represents the Christoffel connection on the ten-dimen-
sional space. T* denotes an arbitrary generator of one of these groups. Finally

A%(z) is the background gauge field with, as usual:
Fi oy = OnAYy — O AY + f2P AR, A4S, (2.30)
Here f2b¢ are the structure constants of the group defined through the relation
[T?, T?] = —ifabeTe, (2.31)

As for the bosonic string, the S-matrix may be represented by a ten-dim-
ensional cffective action. The ten-dimensional action that reproduces the scat-
tering amplitudes obtained from (2.28) at lowest order in o’ has the form of
the Chamseddine-Chapline-Manton supergravity action with matter fields (ref-
crences [25] and equation (3.1)). This time, there are also fermionic matter
ficlds in the effective action. This is derived in references [11, 19].

Two things are to be noticed about the effective action for heterotic strings,
in contrast with the bosonic case. Firstly, we must include Yang-Mills interac-
tions through a term in the effective heterotic string Lagrangian proportional to
a'tr(Fy n FMN)| where the trace is over gauge indices. This term is of the same
order as the R? term, coming from stringy corrections to the effective action for
bosonic strings (see section 2.2.2).

Secondly, interactions of the gauge fields with the antisymmetric tensor field
are introduced by the mean of a redefinition of the field strength Haysnp by a

Chern-Simons completion. In the language of differential forms:
! !
H=dB + -‘-'S—tr(F AA) — %—-tr(R Aw), (2.32)

with w the connection one-form; the Yang-Mills trace is taken in the fundamental
representation (for the adjoint representation, we have to multiply the Yang-

Mills term by a factor & [3]).
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The bosonic part of the effective action keeping only the terms having two

or less derivatives has thus the form of:

Set = L / dDm/E{R— ! (<1>;M)2—T1,;e-8“’/“’-2>y2

20’4 D-2 2

’
—-%e””/(D"Q)tr(F2),} (2.33)

where F? = F&  F*MN the trace is over the gauge index a, and Hyy p is given
by equation (2.32). We also used explicitly the fact that the only dimensionful
constant was a'.

This effective action governs the light background bosons of the heterotic
string theory at low energy. In order to have a more complete description of the
low-energy theory, we must include fermions and cut down the number of space-
time dimensions to four. The fermion content at low cnergy is determined by
supersymmetry. The compactification causes more problems; the next chapter

addresses these issues.
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Chapter 3

Four-Dimensional String

Effective Action

A realistic low-energy effective theory should be written in a language that
we can interpret easily: an effective action of a four-dimensional quantum field
theory. Of course, an unusual property of string theories is the rather large num-
ber of spacetime dimensions. The problem of expressing the low-energy theory
addresses the question of compactification, i.e. the fact that six dimensions of
spacetime are so tightly curled up that we cannot even see them!
Compactification is a difficult problem. In our case, we are only interested
in the light background particles (that we called ‘massless’; light is meant to be
anderstood by comparison with both the Planck mass Mp and the compacti-
fication scale Mc = 1/rg¢). The formal way of obtaining an effective action for
them would be to integrate over all the very massive states of the theory that
can contributes to the scattering amplitudes. It is a lot easier to first approxi-
mate the result by setting every of these massive states to zero. This is what is
called truncation and we shall see that its predictions are very close to the full

theory at the lowest order in the perturbative expansions. This method was first
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that the scaling of the harmonic forms is the following;:

wE S A7twK oL IRk (3.16)
In general, we can do the same thing also for the forms or tensors defined on K
that are eigenstates of the corresponding kinetic operator with non-zero cigen-
value. By this, we mean that for a given form wn,n,-..n,(¥), the transformation

rule will be:

— 2 -
Wayngeng = A" W0 0y o, (3.17)

The antisymmetric covariant tensor émnpgrs /\/7 also scale with the proper factor
A~3, as a consequence of (3.14). This implies that every scalar combination of
such forms and tensors will be invariant under the BM symmetry. An example
of this is given by the Yukawa coupling constants Ay and €41 defined in
equation (3.11) that are indeed invariant.

Being a ten-dimensional field, the dilaton ¢(z) will not scale. Equations
(3.3) and (3.16) then show that the moduli k¥ or k% do not scale cither. The
other fields that transform under the BM symmetry (3.14) arc (following from

equation (3.2) and the normalization of the gauge group generators T77):
A¥ 5 aa¥, Bf - N2BE, CKC o N/ECKE (3.18)

Also, the coefficients d¢¢y are invariant under the BM transformation (3.14), as
may be derived from the equation (3.12).

The complex scalar fields § and T must also get scaled by the BM symmetry
(3.14). The scaling is directly read from their definition (3.7). The dilaton ¢ is
kept invariant, so:

§— A%S, T — AT. (3.19)

It is straightforward to show from the definitions of 8(z) and n(z) (see equation
(3.8)) that this scaling symmetry is consistent for each of the constituent ficlds
of the complex scalars § and T.
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applied to string theory on a toy background by Witten [7]. The full truncation
of the Chamseddine-Chapline-Manton action in the context of heterotic string
was later developed by the authors of reference [9].

The proccdure that we adopt in order to describe the low-energy effective
theory in four dimensions is to work within the framework of a D =4, N =1
supersymmetric theory. The residual supersymmetry is assumed to have sur-
vived the process of compactification. One way that assures that we have such
a theory is to choose the background internal space to be a Calabi-Yau manifold
i.¢. Ricci-flat with SU(3) holonomy [6]. The truncated Lagrangian is naturally
put into the form of such a four-dimensional theory [7]. Qur approach for find-
ing the full low-energy cffective action is then to use symmetry considerations
that allow us to dictate the form that the full low energy action must take.

This chapter is divided as follows: we first derive a nonrenormalization the-
orem for the effective string action in ten dimensions. We proceed to the identi-
fication of the massless modes of the four-dimensional effective theory, and then
use the standard D = 4, N = 1 supergravity action to match the Lagrangian
obtained using these massless fields. We then introduce a symmetry, that we call
breathing mode (BM) symmetry, that is valid at each order in both perturbative
expansions (string loops and sigma model expansion). This BM symmetry is
crucial for our discussion, it allows us to state the general form for the effective
Lagrangian at each order in the perturbative series. We derive it at first in a
special case (no matter field and only one modulus for the internal manifold)
that is generalized at the end. We are then in a position to extract some inter-
esting implications of this property: nonrenormalization theorems and specific

prescriptions.
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i 3.1 Ten-Dimensional Supergravity

The Chamseddine-Chapline-Manton ten-dimensional supergravity action is uni-
que: it is the most general action with two or less derivatives and with the
given field content for supergravity in ten dimensions coupled to Yang-Mills
inter. ctions. We have seen that the bosonic part of the cffective action governing
heterotic string at low-energy was consistent with it (sce section 2.3.2). The
{ effective ten-dimensional fermionic fields of heterotic string thecory match the

fermions of this supergravity theory. The supergravity action is given by [25, 9]:

2 2
SsUGRA = / d\/ﬁ{ R 3 H® 1 (3uy)

W2 4n? 2 K2 2

—4—"61;/72((?)' - %'/;MPMNPDN';L'P - :;"/;FMDM¢
—%tr(/—\l"MDM/\) - ﬁ;!14--('0—11/—2tr(/_\I’MI‘NPFNP) <¢’M + E%/—EPW/’)
+_8__% H}\;MP [‘;QFQMNPRlpR + 6PMTN P — /2hoTMN PTQy
+r(ATMN I ))]
—71_-2-1/;MI‘M1"N¢ (?ﬁ;g) + four-Fermi terms} . (3.1)

The gauge group is here chosen to be Eg x Eg for phenomenological reasons [3].

This action is the one that we take as the lowest-order effective action for
heterotic strings in a ten-dimensional background space. We want to compute
from this action a four-dimensional effective theory. In order to do this, we
must introduce the four-dimensional massless modes that come from the ten-
dimensional fields entering the above action (3.1). It will be done in section
3.1.2, but before, we may illustrate the kind of arguments that we will use in

four dimensions by stating a nonrenormalization theorem.

3.1.1 A Nonrenormalization Theorem in Ten Dimensions

The full effective action governing the heterotic string in an N = 1 supersym-

“r metric ten-dimensional background is an expansion in term of two paramcters
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that were already introduced in chapter 2. They are the string coupling con-
stant A, which can be interpreted as the constant part of the dilaton expectation
value (we have A ~ ¢? according to the equation (2.15)) and the Regge slope
o', that carries dimensions of (Length)2.

We know, from the analysis presented in section 2.3.2, that the action (3.1)
is the ten-dimensional effective action for heterotic string theory at lowest order
in both the siring-loop and the sigma-model ezpansions. This action might
therefore be corrected by higher order effects.

A nonrenormalization theorem is a statement that the action gets no cor-
rection to certain orders of the perturbative expansions. We are in position to

state such a nonrenormalization theorem concerning the ten-dimensional string

cffective theory:

NR Theorem 1 At lowest order in the o'-ezpansion, the effective action ($.1)

does mot get corrected by effects of higher order in the string-loop ezpansion.

The proof goes as follows: take the effective action (2.33) or the bosonic
part of (3.1). Things are arranged in such a way that the only dimensionful
components are derivatives Oar, gauge field A%, and the Regge slope a’. Thus,
the a'-cxpansion is essentially the expansion in the number of derivatives of
the ficlds. The bosonic part of the action (3.1) is the most general D = 10,
N = 1 supersymmetric action with the given field content and with at most two
derivatives and its coefficients are completely fixed by supersymmetry, including
its dependence on the dilaton.

Let us consider now a correction term not of the lowest order in the string-
loop expansion (i.e. not a sphere contribution). If it is at the lowest order in the
o-model expansion, then it must involve at most two derivatives. But, sinceit is
of higher order in the genus expansion, the dilaton ¢(z) must couple differently
to the other field than (3.1). This is forbidden by supersymmetry and this
term cannot exist. It follows that string-loop corrections cannot renormalize

the action (3.1). Let us now truncate the theory to four dimensions.
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3.1.2 Four-Dimensional Massless Modes

If we demand that in four dimensions, an N = 1 supersymmetry survives, we
must compactify the six internal dimensions of heterotic string thcory on a
Ricci-flat manifold, K, of SU(3) holonomy (see [6. 28]).

We expand the ten-dimensional fields in term of the eigenfunctions of the
operator O (or the corresponding kinetic operator) defined on the compact man-
ifold K. The coeflicients multiplying these functions depend on the position in
the four-dimensional spacetime and are the four-dimensional ficlds of the the-
ory. We will express the zero-modes (i.e. eigenstates with cigenvalue zero) in the
language of differential forms; they turn out to correspond to harmonic forms.

The manifold K possesses a definite number of harmonic forms defined on
it. This space may be parameterized by complex coordinates, and the harmonic
forms are chosen to have a definite number of holomorphic and antiholomorphic
indices (2, ). The number of independent harmonic forms of cach type is given
by the Hodge numbers b,;. In general, these numbers are all obtained from
by 1 > 1 and b, 3, which can be larger or equal to 0.

We express the harmonic (1, 1)-forms w,’fj(y) with K = 1,...,b i, and the
(1,2) forms wf,’jic(y) with L=1,...,b; 3. We write 1r,'3 = e]“w","u, where €, is
the SU(3)-invariant antisymmetric tensor.

Then the four-dimensional massless fields can be derived from the corre-
sponding massless modes of the full ten-dimensional action (3.1). We write
everything in the canonical variables, i.e. using the metric G§fy(z,y) defined

in equation (2.14) for spacetime which produces a canonical Einstein term in

the ten-dimensional Lagrangian. The massless modes are then [9]:

o(z,y) = ¢(z)+ heavy modes,
B,,(z,y) = By(z)+ heavy modes,

Ai(z,y) = A,(z)+ heavy modes,
Bij(z,y) = AK(x) w,-’s-(y) + heavy modes, (3.2)
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A(z,y) = CM)w () Tje + B (=) nhy(v) T + ...,
can e-3a(z)g“y(m) 0

mn(z,y) = +...,
0 ea(z)gmn(f"a y)

where Gmn(Z,Y) = mn(y) + hma(z,y) with g™"(y) hna(z,y) = 0 and

by 5(z,y) = v~ Y(z) k¥ (2) w,{"j(y), K =2,...,bj,

(3.3)
hij(z,y) = ¢ (z) RE(e) 7 55(y), L =1,...,b3

Here the massless fields A,(z) take values in the adjoint representation of
the unbroken gauge group, while the matter fields CX¢ (resp. Bé") transforms
as 27 (resp. 27) of the Eg subgroup of Eg left unbroken by Calabi-Yau compact-
ification. T¢ are the corresponding generators of Eg; they are normalized by
tr (TigTye ) = §i,56¢¢- The fields k¥ (z) and hL(z) are the so-called moduli fields
of the compact manifold. Their expectation values correspond to the moduli
that describe the internal manifold [2].

From now on, we will use the following notations for the coordinates of
spacctime: z# are the coordinates of the four-dimensional observable spacetime
My (= 0,1,2,3.) and y™ describe the six dimensional compact manifold K
(m =1,...,6.). In the complex coordinates for K, we use, as before, the indices
i = 1,2,3 and 7 = 1,2,3 for, respectively, holomorphic and antiholomorphic
coordinates. We denote as gma(z,y) the six-dimensional metric of the internal
space K and the four-dimensional metric is g,.(z), which has a canonical kinetic
term of the Hilbert (or Einstein) form, i.e. £4 ~ \/gR4.

The truncation of string theory, as presented in reference [9], is the expression
of the string action in terms of these massless fields (3.2) and (3.3). Defining
Ly = [ Ly, it gives an approximation for what should be the low-energy
Lagrangian governing heterotic strings in a four-dimensional supersymmetric

background.
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1 3.2 Truncation of the Ten-Dimensional Action

3.2.1 D=4, N=1 Supergravity

We know that Calabi-Yau compactification is supposed to preserve an N =1
supersymmetry for the four-dimensional compactified Lagrangian [6]. A realistic
assumption to be made is thus that the correct Lagrangian in four dimensions
is the D = 4, N = 1 supergravity Lagrangian coupled to Yang-Mills and matter
that has been worked out by Cremmer et al. [29]. 1t is totally described by
only two functions depending on the complex scalars z' of the chiral supeifields

representing matter [30):

¢ A real gauge invariant function G(z, z*), that we call the Kihler function,

written as:

G(z,2*) = K(z, 2*) +log |W{(2)]%, (3.4)

where the real function I'(z, 2*) and the analytic function W (z) are re-
spectively called the Kahler potential and the superpotential. They are
defined completely once it is specified that there is no analytic term in the

Kalher potential.

o And an analytic function f,p(2) with a and b being gauge indices; this is

the gauge coupling function (see the action (3.5) helow).

The bosonic part of this D = 4, N = 1 supergravity cffective action is thus

given by [29]:
1 T *
S = 3o [FoVGR-26.DuzD" +2V[0(z, ")
alR o pouv ialI Fr fhev (3.5
Y e (fab) uv + 2 m (fap) nv ’ -5)

where the potential V is:

gz,' gz;
gz.‘ %

) - %Re (f5! (gz; T?. zj) (gz;T)?l' z;) (3.6)

-
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where ﬁ‘,f,, is the dual ficld strength 1e,,,0 F272, T3. is a gauge group generator
matrixand G, and G 2 denote, respectively, the derivatives G /0z, and 0G/0z.

As a supersymmetric theory, the effective action (3.5) also includes fermionic
ficlds. However, they do not play an important role for our discussion, since
supersymmetry indicates that they do not require the introduction of any new
function to characterize further the theory. Moreover, the symmetry consider-
ations that we look at in the next sections may be extended to fermionic fields

without any complications. We will therefore omit the fermions for the rest of

the discussion.

3.2.2 The Truncated Lagrangian

In the case of the heterotic effective action, there are many scalar fields in the
Kéhler function (3.4) and the gauge coupling function (both entering the action
corresponding to (3.5) for heterotic strings). In fact, their number is related to
the number of harmonic forms defined on the internal manifold (i.e. b, 7 and
by 3). As we can see from equations (3.2) and (3.3), we have: the dilaton field
¢(.r), the breathing mode ¢?(*) (corresponding to the K = 1 modulus) the other
moduli k¥(z) and h*(z) (for respectively K =2,...,4 jand L=1,...,b, 3),
the matter fields C¥€(z) and Bfl’(:c) (for all K and L) and the scalars defined by
the antisymmetric tensor field on the internal space A¥(z). They all combine
to form complex scalar fields of chiral supermultiplet.

We now concentrate on the dilaton and the breathing mode field. In most
of the rest of the discussion, we focus our attention on the case where b;7 =1
and b, 3 = 0. In this case, we omit the index K that should appear, since only
the value ' = 1is present. We will however state results for the other moduli
whenever it is possible.

For this special case, apartfrom the matter fields B and C, the theory in-
volves only two complex scalar fields, S and 7', that are defined as follows in

order to have the standard D = 4, N = 1 supersymmetry transformation rules
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[7, 9):

S = p7le¥ +146,

! xKené 3 N (37)

T = ¢e’ +a (C ¢Ck + BI*,&BL) + 1,
where 6(z) and p(z) are two axion fields arising from By (x,y) as defined
below. 7 is simply given by the relation 5(z) = vV2AX (2), with K = 1. In our
case (where there is just one (1,1)- and no (1, 2)-moduli), we have B, (., y) =
n(z) wmn(y), where wpmy is the unique harmonic form expressed in the real
coordinate basis {y"™}. We define §(z), in the language of differential forms, by

df = *H in four dimensions, with a non-conventional *-dualisation:

1 -
Hyp = "3\/2—g‘(‘Pe 36)2€;ulp,\0’\6- (3.8)

At the truncation level, we know the exact form of hoth the Kihler and
the gauge coupling functions, when we omit to take in consideration the other

moduli fields k% (2) with k£ > 2 and AL(z). They are found in [7, 9]:
Girune = —log(S+ 8*)—3log(T +T*) + log|W(2)|%,
ftruncyab = Sbab. (3.9)
where §,), is the Kronecker delta and the superpotential is given by:
W(z) = 8v2a/3/2 (AJKLdECXCSC&C}f +Eai1d¥BugBicBry).  (3.10)

Here, the couplings are defined by (in the real coordinate basis of I):

—_ 1 1 mnpgqrs, J K L
=5 (Fag) [#r ettt G

and £y is the corresponding expression in term of the harmonic (1,2)-forms
7L (y) instead of the (1,1)-forms wX, (y). The coefficients dgcy are defined
through the following equation:

br (TigTjcThx) = €iskdegx- (3.12)

Notice that A yx1, and € i1, are interesting quantities that look just like ordinary

constants as for the four-dimensional theory, but, in fact, depend on the internal
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space in a very crucial way. The effective theory in four-dimension is full of these
constants that carry informations about the internal space.

The truncated Kahler and gauge coupling functions, as expressed in (3.9)
above, are those that we want to correct at 2ll orders in the two expansion
parameters (@ and a'), with the objective of finding a more complete low-energy
cffective Lagrangian. In order to do this, we introduce in the next section a
symmetry valid at each order of the perturbative expansions that will help us

to give restrictions on the form of the general correction terms.

3.3 Breathing Mode Symmetry

The breathing mode (BM) symmetry relies on the crucial observation that there
is some ambiguity in the definition of the four-dimensional metric as expressed
by (3.2). Indeed, the truncation of the ten-dimensional metric defines the met-
rics of the four- and the six-dimensional spaces, as well as the breathing mode
by the following expression (still in the case where there are no (1,2) and only

onc (1,1) modulus, namely the breathing mode o(z)):

6_3"(’)g“,,($) 0
0 ea(z)gmn(y)

can

mn(z,y) = (3.13)

We therefore see that the four- and six-dimensional metrics are defined up
to an arbitrary constant that can be absorbed into the breathing mode €?. In

effect, we may write the following symmetry:
e’ = Xe?, gy — /\39,,,,, Jmn — /\_1_(7,"", (3.14)

that gives Garny — GuN.

The important thing for the transformation is to keep the ten-dimensional
ficlds invariant, it will then be a symmetry of the ten-dimensional effective
action. Furthermore, since the ten-dimensional fields come directly from the

string action in which they appear as ‘massless’ background fields, the full theory
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will be invariant under the BM symmetry. We can see that no anomaly can ruin
the symmetry because the string functional measures are also constructed with
these invariant background fields (see the appendix). If all the ten-dimensional
fields are kept unaffected by the BM symmetry, then the symmectry should
be respected by the four-dimensional effective action to all order in the two
perturbative series (sigma model and string loop expansions). However, our
knowledge of the genus expansion is very small. And, whilec at the sphere level
every four-dimensional fields will have a simple scaling under the BM symmetry,
loop effects will in general ruin this property and the transformation laws may
become more complicated. Nevertheless the symmetry should remain exact,
since it does not involve any anomaly.

We may then exploit the BM symmetry to give restrictions on the possible
form that the correction terms to the truncated effective Lagrangian can take, in
a very convincing way at the tree-level, and more hypothctically for string-loop
terms. To see that it is possible to arrange the transformation laws of the four-
dimensional fields in such a way that the string massless background fields stay
invariant, we have to notice that we have enough scalar fields in equation (3.2)
to counterbalance every scaling imposed by the transformation rules (3.14). In
what follows, we derive explicitly the scaling rules for all the fields introduced
in equations (3.2) and (3.3).

In the general case of more than one single modulus, this BM symmetry also
scales the harmonic forms wX_ and 7% .. Being eigenstates of the opcrator Og,

their normalization is not fixed and we may choose:

where Qk = [ d°y,/7 is the volume of the manifold K. And similarly for k.
The volume factor transforms under the BM symmetry (3.14) by: Qx — A7%Qk.

The requirement that the above normalization should be invariant implics then
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As one expects, the truncated functions (3.9) have the right behavior under
our symmetry. Assuming that the gauge coupling function f,1, has the form

(3.9), we compute the scaling of the following typical term (see equation (3.5)):

Lyym = -—%\/g Re (fab) g“"g”"F:,,F},’,\ (a"'a /dsy\/ﬁ> . (3.20)
The two inverse metrics cancel the factor A\® coming from the four-dimensional
determinant /g, and the truncated gauge function acquires a scale factor of A\
from the S-field that gets cancelled by the six-dimensional metric determinant
/4. This term of the Lagrangian is therefore invariant as it should be and we
sec that the gauge coupling function f,y, scales in the same way as does the field
S docs under the BM transformation.

To check that the truncated form (3.9) of the Kahler function G(z, 2*) has
the right behavior under the symmetry, we take the part of potential term, which
has the following form (neglecting the part proportional to the derivatives of
G):

Lpot = —3,/ga’ 2K |W|? / d®y\/3. (3.21)
Again, we see that all the A-dependence of this term get cancelled at the trun-
cated level after the BM transformation is ;;erformed. The determinants of the
four- and the six-dimensional metrics carry together a factor A3 which is can-
celled by the factor A~® coming from the Kihler potential e’ and the factor A3
of the superpotential W. The above term is therefore invariant under the BM
symmetry. From this, we see that under the BM transformation, we must have
e — 2369,
In the next section, we start studying the implications of this symmetry to

find correction terms to the truncated Lagrangian.

3.4 Corrections Allowed by BM Symmetry

The upshot of our analysis is the fact that the use of the symmetry (3.14) and
(3.19) allows us to read the possible form that can be taken by the higher-loop
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corrections to the two truncated functions (3.9) defining the supersymmetric
four-dimensional effective action. We define the full supersymmetric functions

to be given by:
g(z, z*) = gtrunc(z, Z*) + log g-(z, z.),
fab(z) = S [6ab+ fan(2)] .

Then, since the truncated term has already the right behavior under the trans-

(3.22)

formation (3.19), then the correction G(z, 2*) must be invariant under BM sym-
metry. The same reasoning shows that the gauge coupling correction f,,(2)
must not scale under the action of the symmetry transformation. In other
words, we get:

G(z,2*) = G(z,2"), fan(2) = fan(2), (3.23)
with respect to the transformation of the fields (3.19) We emphasize that the
transformation rule for the fields z* are different for each scalar, e.g. S and T
do not scale in the same way. Also note that dimensional analysis shows that
G and f,, must be dimensionless.

If the theory were to contain only the four-dimensional fields, then (3.23)
would restrict very much the corrections G and f,,. For instance, it is possible
to evaluate the effective action at the stationary point B = C = 0 (9] (still
omitting the moduli other than the global radius of K), in which case the only
possible corrections must be functions of the unique invariant combination of
the scalar fields, 7%/S. This correction is however incompatible with what is

known of the large S and T limits (see below equation (3.31) and what follows).

3.4.1 Internal Degrees of Freedom

The effective theory in four dimensions depends on the the ficlds defined on the
six-dimensional internal space K. For example, we saw that the terms (3.20)
and (3.21) were proportional to 1/§(y) through the volume of K, Qk. We also
encountered the constants A yx 1 and €k that were constructed out of the har-

monic forms of the compact space. These kinds of constants that are coeflicients
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in the four-dimensional theory have a crucial impact on our understanding of the
theory in four dimensions. Another possibility is that these coefficients involve
six-dimensional curvatures RP,, .(y) or Fy,.(y).

Let us introduce the notation V,(d) for these constants in the four-dimen-
sional theory. The superscript d is the engineering dimension of the constant
(in other words, Vi(d) has dimensions of (Mass)?) and the subscript i is just to
distinguish between various kind of constants that have the same dimension.

We claim that no matter what six-dimensional fields or forms are hidden in

the expression of V,(d), then its scaling under the BM symmetry (3.14) is the

following;:
VD o a2y, (3.24)

To see this, we must just notice that our fields are defined such that only
derivatives 9y or gauge vector fields A%,(z,y) have dimensions of Mass. The
same will true for the six-dimensional space K. Apart from the coordinates, the
only quantities defined on K that carry dimensions are 9,, and A2 (z,y). Both
of these quantities have one Lorentz index that will need to be contracted with
the inverse metric §™", or with the antisymmetric tensor, or with any of the
forms we need to consider, etc. The engineering dimensions of V,(d) correspond
to the number of indices that have to be contracted using a tensor that scale
by a factor A¥/2, according to equations (3.14), (3.16) and (3.17). In the same
way that we followed for Ajx; and £k, we introduce a factor Qk’l for each
integration over K that we must perform in the expression of V,(d), then these
constants have the claimed scaling under the BM symmetry.

In order to fix ideas, we study explicitly the case of the sphere. Here, we will
always have one integration. We only consider the constants V,(d=2c) that in-
volve six-dimensional curvatures and no other derivatives. Considered as quan-
tum fields, terms in the action are proportional to integrals over K of vacuum
expectation values (v.e.v.) of different combinations of these curvatures. As

before, the subscript ¢ = (ig,%;,...,i.) indicates that there are usually more
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than one possible combination. Then V,( is of the following normalized form

(remember that it is only a special case):
2c) ¢ ¢
Ve = Ts iz d6 / EPyGtn ™ < Tl T, Totrimae >+ (3.25)

In the above expression, T3}, represents either Fj, (y) or R”,, . (y). It is un-
derstood that the gauge indices (a for the Yang-Mills gauge group and, p and ¢
for the Lorentz group) are properly contracted or summed over in such a way
that the v.e.v. is a gauge-invariant Lorentz scalar. Both Fy,, (y) and R?, ., (v)
are invariant under the BM symmetry (3.14). More genrally the tensors T3,
can also represent a pair of derivatives applied either to the curvatures or to
2 (y).

A contraction of ¢ such curvatures necessitates a tensor t:';‘

some part of the contraction tensor ¢;7*"

e

(y) with 2¢
indices, constructed with the covariant tensors guma(y) or (1/,/g)e™"?%"*, which
are the only invariant ones available. But we have:

emnpars mnpgrs

- - - €
9mn — A lgmm '—\/——g__ — A3 \/5

Of course, tensors as wX, or 7L can be used to form the contraction tensor

(3.26)

i1 "™2¢(y), but their scaling laws are indirectly determined by the metric gma
The transformation laws (3.26) show that the power of A in the scaling is
simply given by half the number of upper indices. Hence the transformation law
for the contraction tensor ¢;7'"™2<(y) is a scaling by a factor A°. The behavior
of the v.e.v. V,(ZC) under the BM transformation is therefore (consistently with

(3.24)):
VED o xep (3.27)

since neither F,,,, nor RP,, . scale under the BM symmetry.

It is essential to include these v.e.v.’s since they appear as coupling constants
of the terms in the action that have two or less four-dimensional derivatives,
even when the v.e.v.’s included have a large number of derivatives. They then

contribute to the low-energy effective Lagrangian in four dimensions and are
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responsible for some correction terms that must be include in the functions G
and fap.
The next part of the discussion is devoted to the derivation of the most

general correction term that is allowed by our BM symmetry (3.19).

3.4.2 General Correction Term

For now, we study only the special case where there is one single modulus and
where the matter fields vanish: Be = C¢ = 0. The general case where we allow
the matter fields to take non-zero values is quite similar to the following; it will
not be treated in detail here. We will state the solution in the last section of
this chapter, the discussion can be found in [31]. Some results for the inclusion
of other moduli are also given in the last section and ti: 2 above reference.

Let us investigate the possible correction terms that may be obtained from
these v.e.v.’s, together with the scalar fields S and T'. We define Cfd) to be the
correction term of G(S, 5*; T,T*) (or fan(S,T)) that arise from the coefficients
V,( D Since the fields S and T are indistinguishable from their respective conju-
gates S* and T* from the point of view of their properties under the BM trans-
formation (3.19), we may at first concentrate only on corrections C,(d)(S, T) to
the Kihler function (see however the implication of the axion symmetry (3.37),
presented in scction 3.5). It will be understood that we can replace every field
by its complex conjugate in the case of the Kahler function corrections.

v,“" has dimension of (Mass)?. So, in order to arrive at a dimensionless
factor, we must introduce the Regge slope a'. The correction terms take the

following form:
cS, T o) = 'V T 2 FO(S, T). (3.28)

By construction, we must require that, under the BM scaling S — A\3S
and T — AT, the correction be invariant C§d) — C,(d). The factor T-9/? is

introduced in (3.28) to counterbalance the scaling the v.e.v. under the BM
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symmetry. Hence, the correction is invariant under our symmetry if and only
if the function f,(d) (S,T) is also. In other words, by virtue of our symmetry,
f',(d)( S, T) must be function of the scalar fields only in the invariant ratio T%/S.
A priori, this last function of T3/S is unrestricted. Expanding in powers of
1/S, which is the string coupling constant expansion as we will see (equation

(3.31)), we get:
oo 3\ N
FOsT =Y A% (F) (3.29)

n=0

for some set of arbitrary constants Af:’,z. We will also write:

cln = a2y dren=iig =, (3.30)

for the general correction term, putting the constant .A(,',i,), in the definition of
the coefficient V,("i).

In order to understand the reasons that gives us the range of the parameter n
in equation (3.29), we have to use some of our knowledge of the two perturbative
expansions arising in the theory: (i) the string loop expansion, which is written
in terms of a series in A, the string coupling constant that was assimilated to
the exponential of the v.e.v. of the string dilaton field in chapter 1 (so A ~ ?
according to equation (2.15)) and (1) the sigma model expansion, which is
expanded in term of o' /rZ, where rg, the typical radius of the internal manifold,
is the only dimensionful constant that can be combined with a' in order to give
a parameter without dimension. It will be possible to identify the order of the
correction term (3.30) in these expansion for each d and n.

The scalar fields S and T depend on these parameter and can be used to
replace them. To see this, let us write s = Re (S§) = ¢~ '¢*” and t = Re (T) =

e’ (without the matter fields), then in the sigma model variables:

1 0
Gormed - | #9m . (3.31)
0 tdmn

We know that in these variables, the string loop expansion parameter is ¢* only,
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because the other fields are string background fields which are explicitly written
without any dependence on the string coupling constant (see chapter 1).

Let us take the limit ¢ — 0. According to the above, Gayrn and gmp are
kept constant, so equation (3.31) implies that ¢ also is. Therefore, in this limit,
e~ ~ . This mecans that s~ ~ ¢ is the string-loop expansion parameter.

On the other hand, the o-model variables are very convenient for the o'-
cxpansion since no fields involve any dependence on o' in this case. Also, the
order in o' is then only dimensional analysis, because the Regge slope carries
dimensions. It is possible in ten-dimensional field theory to transform to a set
of variables where the parameter o' is included in the definition of the fields
(e.9. GMN — o' 'Gpn). In this case, we can choose ¢ to be equivalent to the
sigma-model parameter. But, some other fields like s and g, will then acquire
some a'-dependence. We should be careful when we say that the breathing
mode and the Regge slope are equivalent; it is only true in some cases. For this
reason, we prefer not to count a' with ¢, but directly by dimensional analysis.

All the corrections ¢ and fab are normalized in such a way that the term
(1/5)° corresponds to the sphere; a surface of genus v will contribute to cor-
rections of order (1/5)". Since 1/S is the only string-loop counting parameter
in equation (3.28), this explains why we begin the series in equation (3.29) at
n = 0 only.

Secondly, V,(d) is of the order (1/r¢)?, for it depends only on the six-dim-
ensional manifold. We require the sigma model perturbation series to start
with order (a'/r2)? and then continue with terms involving higher power of the
ratio a'/ri. The power series (3.29) of the function f,-(d)(Ta/ S) is therefore
unrestricted for large n, since the power in a’ comes only from the coeflicient
v}“’ . For convenience, we will denote the order in the string-loop expansion by
the genus v, or the letter n, and the order in the sigma model expansion by the
letter ¢ = d/2. This indicates that, in general, d should be an even integer.

This analysis shows that if we restrict ourselves to the case d = 0 and ¢ =0
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then the correction C(®) can only be a constant and cannot depend on the scalar
fields S and T'. This is what we already knew: the truncated Lagrangian is the
lowest-order approximation for the heterotic effective action.

Still in the case where d = 0, i.e. zeroth order in the a’-expansion, the higher-
loop contributions to the Lagrangian are thus seen to be abitrary analytical
function of the invariant 73/S with dimensionless coefficients. At the genus n
level, the correction is of the form: V,(,O,,) 3" /8™,

We will now explicitly treat the very restrictive case that we already talked
about in the preceding section, where all the coefficients V,(d) are interpreted as
v.e.v.’s of curvatures (Yang-Mills and gravitational). Although this is sufficient
to understand the case of string tree level, it need not be general enough to
describe all string-loop effects. It will nonetheless give good insights on the

form of the corrections even in this case.

3.4.3 V.E.V. Corrections

We will study first the cases for small d’s, considering only v.e.v.’s V,('” of the
form (3.25), for which d = 2c. We need not consider the case ¢ = 1 hecause the
compact internal manifold K is supposed to be Ricci-flat, so the viev. < R >
vanishes. Moreover the other possible v.e.v. . <w™"F},, > also vanishes be-
cause F2 . can be chosen to be proportional to traccless generators of the gauge
group. We thus get no correction as function of only one internal curvature.
The first important correction terms arise for ¢ = 2. In this case, there exists
only one possible v.e.v. with an antisymmetric contraction tensor, since the
curvatures satisfy the following condition on a Calabi-Yau space [28]: f,. trRA
R = [ trF A F. However, there is also the term coming from the v.e.v.’s

R™Rmn and F™F,... As we said before all these different possible v.e.v.’s
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are denoted by V,“). We have:

!

vl(4) —_ QEI/dﬁyEmnM"wmn < R™ , Rnlrm’s >,
K

pnq

— Qizl/deemnpqrswmn <Fa F»a (332)
K

V(") = QEI/dSyR"'"Rm,,, etc...
K

We derive the form of the correction terms of the form (3.30) involving these
v.e.v.’s, t.e. still in the case where ¢ = 2. The first term (n = 0) of the power
scries of equation (3.29) is responsible for a correction 05},) ~ o' V,(‘t)/ T?. This
is coming from the sphere, or order (1/5)?, still at the order ¢ = 2 in the sigma-
model expansion. The second term (¢ = 2, n = 1) arises at torus-level in the
string loop expansion, (1/5), and at order (a//r2)? in the o-model expansion.
It corresponds to the axion term that is found by truncating the Green-Schwarz
anomaly cancellation ierm. The next section (3.4.4) is devoted to an explicit
derivation of this term. It is easy to derive the two-loop term: V,(‘i)T4 /S? and
the following for higher loop contributions.

In the case where ¢ = 3, the function f,(zc) (T3/S) gives rise to three dif-
fereut terms for each possible v.e.v. Omitting the a'-dependence that is easily
rccovered by dimensional analysis, we get:

n=0: C,(_%) v o/T®  (sphere)
n=1: €9~ “"/s (torus)

n=2: C(G) V(6)T3/S (2-torus)
etc...

We summarize first v.e.v.correction terms allowed by our symmetry for the
two expansions (string loops and sigma model) in table 1.
In general, we see that there is some v.e.v. correction to the truncated La-

grangian at the each order (v,c) except for ¢ =1 and it is proportional to:

cBNS,T) = aVEIT—e5™, (3.33)
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o First v.e.v. correction terms C,(2,f ) in string loop

and sigma model expansions

C,(:‘:f ) sphere torus 2-torus 3-torus
¥y=0 v=1 =2 ¥y=3
V.(O)TS v(D)TG v(O)TB

(a'[rE)° constant 3 : 52 : 5

(@'/rd)t | (v =0)

v(‘ﬂ (4)T (4)T4 (4) 7
(al/rg )2 Cll2 —:l—:i— al2 vls O”z vns2 012 v'S;;T
y© ® YO V() o
(a'/rg)s al375— al3__:§_ aIS 152 al.’l lq"
8 8 5
@ | el | e L avIT 0T
6 T4 TS S? 53
Table 1.

where n = 7.

This exhibits the failure of the naive a’-counting by 1/T. In fact, this prop-

erty is only true at string tree-level. For higher loops, we must also take in
account the field § which is equivalent to a factor a'3.

The following section is intended to present in details a special case (¢ =
d/2 = 2, n = 1), that has been already studied from a different approach. Qur

results are in complete agreement with the previous one.

3.4.4 Green-Schwarz Axion Term: an Example

Green and Schwarz found that a certain term has to arise as a one-string-loop

counter-term in the 10-dimensional action, in order to cancel all the anoma-

I Sl
* ,ﬂ?
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lies (Yang-Mills and gravitational) [32]. This term is then responsible for a

correction to the gauge coupling function {33]:

Ful8,7) ~ S (3:34)

This would seem to be in contradiction with our BM symmetry because the
only invariant combination of the scalar fields alone as been found to be T3/S.
Nevertheless, as we saw in the above discussion, it is not, because of the v.e.v.’s
of the six-dimensional curvature fields. It is an explicit counter-example which
cxhibits the failure of the naive argument that says that only T counts the

o-model perturbative theory.

In more dectails, let us take the example of one of the anomaly-cancellation

terms of Green and Schwarz (Yang-Mills). It looks like:

-1 _MiM2.. M a a b b
£ct ~ €12 loBMlMRFM3M4FM5M3FM7M3FM9M10' (335)

Upon truncation, we get L4 ~ Va'?y e#***F2 F* in D = 4 where the six-
P n uyv® Ap

dimensional fields F®,,(y) are replaced by their v.e.v. and:
1
V= (1ap) [ £y e < B> (030
T &y y pa(V)Frs(¥) (3.36)

(V was one of the previously called V*) in equation (3.32)). Under our sym-
metry, ¥V — A?V and then the combination VT'/S is invariant. Therefore, the
upshot is that we actually have fon(S,T) ~ a'2(VT/S)ésp.

This behavior as 1/§, according to (3.31), is a clear indication that this
correction is coming from the one-string-loop sector. The fact that it is pro-
portional to T should not surprise us. It does not mean that the term is an
a'~!-contribution in the ¢-model expansion, because in our convention we chose

V ~ 1/rd, so a’?VT/S is a two-loop term in the sigma model expansion.

3.5 Other Symmetry Considerations

In order to restrict even more the form they can take, it convenient to consider

some other known symmetries: the axion symmetries that is valid to all orders
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in @' and the string-loop expansion, and the D = 4, N = 2 supersymmetry,
which applies only at string tree-level and with matter fields B and C sct to

ZCro.

3.5.1 Axion Symmetries

The axion (or Peccei-Quinn) symmetries were exhibited by Witten [28, 34] and
hold for all finite order in both perturbative expansions. It is valid for both
axions of the theory. These symmetry state that the action is invariant under

a shift of the axions by constants:
0—0+a, n—n+ay, (3.37)

where «a; and ay are independent constants. In terms of the scalar fields T and
S (as defined in equation (3.7)), this means that the Kahler potential should
depend on the scalar fields only through their real parts:

s=(S+8%), t=(T+T. (3.38)

This symmetry has the important consequence of restricting even more the
correction terms of table 1. While every substitution of T* (resp. $*) to T
(resp. S) was a prisri possible in the general correction term (3.30), now we
know that we must replace every entry of table 1, and the general term (3.30),
by the corresponding function of s and t, instead of § and T

The same symmetry can be used to state a non-renormalization thcorem
for the gauge coupling function f,,. The axion symmetry indeed requires that
the real part of the gauge coupling function Re (fyp) be function of ¢ and s,
uniquely. However, this holomorphic function can satisfy this condition only if

it linear in T and §. The upshot is then:

NR Theorem 2 The only correction term to the gauge coupling for,(S,T) at
finite order in the perturbative ezpansions is proportional to T and comes from

the (v = 1,k = 1)-level. This is the Green-Schwarz term, as we have seen i,
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which is a one-string-loop term, o(1/S), and of order o' /7% in the sigma model

€IPansion.

The conclusion of this theorem was already taken for granted in the past,
but the ‘proof’ given by Cecotti et al. was based on an incorrect conjecture
formulated by Nilles [10]. The assumption is that, under the transformation
$ — r~125 and T — r'/?T, the n-string-loop effective Lagrangian had the
following scaling property: £, — r"~1/2L,,, being also valid at tree-level (n =
0). This behavior would oblige each correction term to be of the form (T'/S)".
Our general term (3.30) shows that this is only a special case and the next
section will exhibit a term in the effective Lag:angian that has to exist and does
not possess the above property. Our demonstration closes the loophole in the
precedent argument.

Applied to the superpotential, this symmetry also has the virtue of giving
us the possibility of deriving another nonrenormalization theorem. The axion
symmetry acting on the superpotential W{z) restricts its form. As before,
we demand that it should be a function of the real parts of the scalar fields
only, i.e. s and ¢t. The solution to this problem is found in reference [9]. The
superpotential may be of the following form (we include matter fields C and B,

and other moduli G and H; see section 3.6.1):
W(S,T,B,C,G, H) = exp(aS + bT + cx Gk )w(C, B,H), (3.39)

where a, b and ck are some constant to be determined.

Let us neglect the other moduli fields Gx and H; and concentrate on the
S- and T-dependence of the superpotential. The exponent looks like a non-
perturbative effect. It produces a term proportional to a. + bt in the correction
G to the Kahler function.

But, we see from the general form (3.30) of the terms in the expansions that
the exponent of s is always negative: it is not possible to get a power series for

the Kahler function that would be expressed in terms of positive powers of s. If
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the superpotential has some $-dependence, it is therefore not a perturbative one.
On the other hand, once we know that we have no perturbative S-dependence in
the superpotential W, the T-dependence can only arise from the sigma-model
expansion at the sphere level. The series will not involve positive powers of
T as can be seen from (3.30) and cannot contribute to a factor exp(bT'). The

nonrenormalization theorem is thus:

NR Theorem 3 The superpotential W, that is independent of S and T at the
truncated level, will not acquire any dependence on these fields at any order in

the perturbative ezpansions.

The above theorem was proven at string tree-level by Witten [28] and ex-
tended to string loops by Dine and Seiberg [34]. Their proofs arc essentially
repeated here, but we emphasized the fact that since the superpotential appear
through its modulus only, an exponential dependence over the fields S and T
would have been @ priori permitted by the axion symmetrics. It is only our
knowledge of the expansion parameters that allow us to conclude.

The previous considerations now permit us to say that, in the case of the
gauge coupling function f,4(S,T) the only perturbative correction is propor-
tional to V(®T/S. For the Kahler function, however, we know that the general

correction term C,(,d)(s, t) is given by:
C},“)(S,t) = Za:a/zvlg’-i)t3n—d/2s-n’ (3.40)
3

where n = 7. And the superpotential does not get renormalized.

3.5.2 D=4, N =2 Supersymmetry

In the string-loop perturbation series, the terms in the Lagrangian that arc con-
tributions from the sphere have a particular property. Using this, we are able to
show that the terms coming from surfaces of genus 4 = 0 does not get corrected

at any order in the sigma model expansion. This property is the preservation of
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an N = 2 supersymmectry for the sphere-term of the four-dimensional effective
action governing heterotic strings [35], instead of the N = 1 supersymmetry
which has been secn to be an effect of Calabi-Yau compactification and, thus,
to be a general symmetry for all order in both perturbative expansions.

This symmetry implies that the Kahler potential is written as a sum of two
terms K (s,t) = K1(t)+ K2(s). On the sphere, the dilaton part K,(s) cannot be
modified at higher order in the sigma model expansion because the correction
terms of table 1 corresponding to the sphere do not involve the scalar field s.

The (1,1)-moduli part of the Kéhler potential is of the form (see [35, 36]):
K(t) = —logy, (3.41)

where Y (T,T*) is completely determined by a complex holomorphic function
F(T) called prepotential:

" = «_L[dF  (dF\" .
Y(I,T")=F+F - 2 dT+(dT) ](T+T). (3.42)

We can show that, if we require Y(T,T*) to be function of t = T + T*
uniquely to respect the axion symmetry, then the general solution for the pre-

potential F(T') is the following:
F(T) = -2AT? + BT + o, (A,B € Rja € C), (3.43)

giving: Y = At*+2Re a. Notice that the linear term is irrelevant for the Kihler
potential I';(¢t). This implies that the general form of the KKahler potential at

the sphere level is:
K(s,t) = — log(s) — log(A¢* +a) = ~log(s) — 3log(t) ~log (4 + t—‘;-) (3.44)

where a = 2Re a is a constant.
The number of corrections to the truncated Kahler potential is only two.
The constant term A is clearly at lowest order in both expansions, since it does

not depend on s and t. Truncation implies that it is one.
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The other correction that we get is proportional to ¢t~*. Comparing this
with the general form (3.30), we observe that it corresponds to n = 0 (of course,
we are on the sphere!) and d = 6. We know that the order in the sigma-model
expansion is given by ¢ = d/2 = 3. It is an o(a") effect (four loops) and it is

the only correction term coming from higher loops.

NR Theorem 4 The sphere-term of the truncated prepotential docs not get
corrected at the higher levels in the perturbative ezpansion in o'/rE, the four-

loop orders, at order «®. The Kihler potential acquires then corrections at

3

orders o', a'%, etc...

This correction to the Kahler potential is exactly the same as the one found
by Candelas et al. [37] in a special case. It corresponds to the fourth-loop
counter-term to the metric that is found in direct sigma-model calculations [38].
This counterterm 6g,, ~ 8,0, Vo, where V, is a particular case of v.c.v. similar to
equation (3.25) with ¢ = 3. The counter-term, being at four loops, the coustant
V, is an o(a’®) term in the sigma-model expansion, by dimensional analysis. It
comes directly from a counter-term in the prepotential, so this latter term must
be a third-order one. The correction that we have found is thus consistent with

the results found in [38].

3.6 Other Moduli and Matter Fields

We can now extend our analysis to the more general cases where there is more
than one modulus, i.e. some number of (1,1)- and (2,1)-moduli. In addition,
we can treat the cace where the matter fields are not set to zcro. We will not
write the detailed analysis for those cases; they are presented in [31], but the

results go as follows.
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3.6.1 Other Moduh

The inclusion of other moduli is also possible. The corresponding scalar fields
that appear in the D = 4, N = 1 effective Lagrangian are G¥(z) and HZ(z),

which are defined as follows [9]:

HY = AL 4 non-linear terms,

« ‘o 3 K _ (3.45)
GK = kX 4+iv/2Q/ AKX + non-linear terms,

where K =2,...,b, j; we write G¥=! = T,

Then we have HY — H! and G¥ — G (except for I = 1 of course!) under
the BM symmetry (3.14). It is therefore to be expected that this symmetry give
no new information to restrict the appearance of the moduli fields in the effective
action: as far as the BM symmetry is concerned they could appear in arbitrary
manner.

However, since an axion symmetry is also valid for the other (1,1)-moduli,
the ficlds G¥(x) {9), the correct combination to incorporate is (GX + G*K). On
the other, since we do not know the general form of the terms involving G¥,
for &' > 2, then we cannot conclude that the perturbative expansion does not
produce the exponential term in the superpotential of equation (3.39). This
term however would be a tree-level term in the sigma-model expansion, because
G¥! does not count o'. The upshot of the superpotential NR theorem remains:
TV is not renormalized in the oc-model ezpansion.

If we require the Kéahler potential to depend only on the real part of the
(1,1)-moduli, T and GX, the same N = 2 supersymmetric arguments as before,
indicates that the prepotential F(GK) (corresponding to (3.43)) has to be of
the form :

F(T,G¥) = AT* 4+ AxGKT? + AjxG'GET + Ajk1.G'GKGE

+BT + BrGh + a,

(3.46)

for JK,L =2,...,b i. In order for each term of this function to scale consis-

tently under the BM symmetry, we must require that the constants A and B
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transform under the symmetry by a factor A for each their indices. For instance:
A — 4, Ajkr = X¥AyxL, Bk — ABy. (3.47)

This indicates that the constants in equation (3.46) carry a counting of the
Regge slope: e.g. A = o(a”), Ajx = o(a’), etc. The corrections to the
Kahler potential would then be of each order: first, seccond and third. But, the
direct calculations of the counter-term gives only a four-loop contribution to
the metric as do general arguments in [38], so we must have uniquely a third
order correction term in the Kahler potential and Ay, Ay = 0. The Kahler

potential is thus in general:
Ki(t,9") = ~log(A't" + Aycr.979" g" + a), (3.48)

with A’ a constant involving no power of a’, while 4';;., and a are constants of
the type o V,(G) . We also defined g% = G} + G*¥, and we must keep in mind
that J,K,L =2,3,...,b; 1. This shows that, in the argument of the logarithm
of the Kahler potential, completely decouples the breathing mode and the other

(1,1)-moduli completely decouple.

3.6.2 Matter Fields

For the case of the single moduli internal space, the fields C¢ — A'/2C¢ under
our BM symmetry (equation (3.18)), and they carry the dimension of Mass, so
they must be coupled to a’*/?, The dimensionless invariant combination under
the BM symmetry is thus a'/2C%//t or its complex conjugate. These terms
are of order ¢ = 1/2 in the sigma-model expansion. This means that the general
correction term (3.40) can be multiplied by some power of these combinations

arbitrary large.

Cf C!‘
(s t) = Y Ve (W’ 7‘;) : (3.49)
(d) .

where H is an arbitrary function. Moreover, Cy,’ is of order n in the string-loop

expansion, and, depending on the powers of the arguments the function H, the
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order in the o' expansion changes. If we have a power m for the ratio C¢//t
(or with C{), then the order in the sigma model expansion is: §(d 4 m).

This result generalizes with no further complications for the case with many
moduli, with the matter fields C¥¢ and B£L taking the place of C¥.

The truncated Kahler potential exhibit an interesting SL(2,R) symmetry
(sce [39]) that would indicate that the lowest-order corrections need to be func-
tions of C’ng/ ¢t uniquely. This symmetry, however, is not a priori a general
property of all perturbative orders. Moreover, this symmetry scems to be bro-
ken by the inclusion of the other (1,1)-moduli, if they exist. This particular
combination of the fields should not be considered as the most general term

appearing in the effective action.
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Chapter 4

Conclusion

This study was motivated by the question: What are the manifestations of string
theory at low-energy? We answer at least some part of this question. We are
allowed to say that, if we take the framework of an N == 1, D = 4 supcrgravity
coupled with Yang-Mills, the corrections to the well-known lowest-order cffec-
tive Lagrangian are given by corrections to the Kihler potential expressed in
equation (3.40). The exact coefficient of each term is, of course, unknown at this
stage, and moreover, is expected to be function of the topology of the internal
manifold. However, the identification of the terms that are allowed is a step in
the forward direction for the understanding of the low-cnergy manifestations of
heterotic string theory.

Let us summarize the procedure we use to derive this result. Our key-
observation was that the definition of the metrics of four-dimensional spacetime
and six-dimensional internal manifold, hides an ambiguity. We extend this
symmetry to hold for the full effective theory in ten-dimensions, and thercfore
for the four-dimensional action at each order in both perturbative expansions
of the theory.

Our general conclusion is that we need to take in account constants that
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are formed by internal degrees of freedom. They were called V,(ZC) and we saw
that ¢ was at the same time half of the engineering dimension of the coefficients
and the order in the sigma-model perturbative expansion. The level in the
string-loop expansion is given by §~!, as it is known for already some time.
The new information is that once both of these orders are chosen the field T'(z)
must appear to a specific power T3"~¢. The general correction term is given by
cquation (3.30) that we repeat here:

C,(.‘ZC)(S,t) = Zalcvific)t3n-—c8—n, (41)

)
With this and other symmetry considerations, we may state four nonrenor-
malization theorems, plus another one that is derived without the use of the

above formula in section 3.1.1:

1. At lowest order in the a’-expansion, the heterotic string effective action is
the Chamseddine-Chapline-Manton action and it does not get corrected

by effects of higher order in the string-loop expansion.

2. The only correction term to the gauge coupling function f,,(.S,T) at finite
order in the perturbative expansions is proportional to T and comes from

the (y = 1,c = 2)-level. This is an effect of the anomaly cancellation term

of Green and Schwarz.

3. The supcrpotential W, that is independent of S and T at the truncated
level, will not acquire any dependence on these fields at any order in the

perturbative expansions.

4. The prepotential of the sphere-term of the truncated Kahler potential, for
B = C = 0, does not get corrected at the higher levels in the perturbative

expansion in o', except at o(a”®) (four loops in the sigma model).

The extension of the BM symmetry to the other moduli and to the matter

ficlds does not restrict their appearance in the correction terms to which they
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contribute. However, some of the above theorems still apply or are slightly
modified.

The very lowest order term (7 = 0, ¢ = 0) can be renormalized by a function
of the other moduli. The symmetry does not restrict the appearance of these
moduli fields in the gauge coupling function either. The superpotential could
depend on H, but it does not get renormalized at any finite order. Finally,
the NR theorem 4 is not modified by the inclusion of other moduli, but the
counter-term is.

An interesting extension of these conclusions would be to verify that they
hold for orbifolds, a case where the corrections are sometimes explicitly com-
putable. We could then determine the above unknown cocflicients for some of
these special cases. Also, it would be interesting to how these conclusions can
be applied to the case of four-dimensional strings with non-lincar realization of
the worldsheet supersymmetry.

The results that we will find in the following appendix are summarized in

thcir own conclusion at the end of the appendix (section A.6).
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Appendix A

Regularization and String

Theory

This appendix is not closely related with the rest of the thesis! However, the
little history of this research made us focus our attention on that subject in first
place and for some period of time, we thus want to share our experience, here.

As it is expressed by the first section of this appendix, the functional mea-
sures, [dr], [d)\] and [dy], that enter the Polyakov’s framework for quantization
of strings contains many ambiguous expressions: functional determinants or in-
finite products over a constant. One may be, with reason, bothered by them.
This appendix is intended to make explicit these ambiguities. The key tool
that we use here is regularization. This concept is relatively new in physics
(fifty years) and it appears with the infinities that are involved in perturbative
language and in functional analysis framework. It is related to the well-known
mathematical study of analytical continuation of holomorphic functions in the
framework of classical complex analysis.

We have included the following discussion within this paper, for at least

two more reasons: first, some of these regularization schemes are very general
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and can be applied to various cases, not restricted to string thcory and two-
dimensional physics. Next, we investigate several methods for regularizing the
same quantities and we feel that the comparison between them, that perfectly
agree, is worthwhile.

The structure of the discussion is the following: we begin by motivate the
study of partial measures for our two-dimensional fields, that do not involve the
string tension T !. This leads us to the study of ratios of determinants and
anomalies for the partial measures. We compute these, both in general and in
particular cases, using different methods (Weyl anomaly, Gilkey procedure and
explicit computations), showing some relation between zeta function of opera-
tors that involve zero-modes and those for which they are removed. Finally, we
conclude by a small section where the regularized valucs of those expressions

are stated.

A.1 String Field Measures

First, let us recall a result of standard differential geometry on finite-dimensional
manifolds. It is possible to define the measure on a manifold K by the measure
on the tangent bundle TK. This is because a set of coordinates {¢'} of K defines
a natural set of coordinates {p'} on the tangent space T,K. They are explicitly
given by the parameterization: v = p'(8/9q*), for any v € T,K. If we have
another set ¢' on K, then we get p* as new coordinates of the tangent space,

with Jacobian
99" 94"
op’ dg?

This shows that J(q) depends indeed only on the position q on the manifold

= det
g

J(g) = det (A.1)

and not on where we are on T,K. A volume form w = f(q)d¢' ---dq™ on K

IImportant notice: through all this appendix, we use the string tension T, instead of
the Regge slope. This is not to be confused with the breathing mode scalar field 7" in the four

dimensional effective action (see chapter 2)
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thus induces an @ = f(¢q)dp! ---dp™ on T,K which transforms with the same
Jacobian J(q). If for some reasons, it is more convenient to work on TK, we
can turn this argument around and define on the tangent bundle the measure
of K and its transformation law under a change of variables.

There is nothing that forbids us to extend this argument to our case of
an infinite-dimensional manifold. The measures of the worldsheet metric [dh]
and of the gravitino [dy] are formally defined this way [16]. But we can use
worldsheet symmetries (general covariance, supersymmetry, Weyl and super-
Weyl scalings) to gauge away all the freedom contain in the functional measures.
There remain, then, a Jacobian and a integration over a finite number of super-
moduli (or super-Teichmiiller parameters). The measures of the metric and the
gravitino are completely independent of the ten-dimensional fields and of the
string tension. We will use the above remark to define the string field measures

[dz], [d)\] and [d¥] that do depend on the background field and/or the Regge

slope.

A.1.1 Functional Measure for ¥ (o)

The measure for zM (o) is much easier to define than that for the worldsheet
metric (see references [16]). We define the norm of an element §z¥ (o) of the
tangent space, TE of the space of embeddings, £&. We ask that it must be
invariant under worldsheet reparameterization, and ultra-local, meaning that
we do not couple different locations on the worldsheet in the definition of the
norm (the metric over TE must be proportional to §(c — ¢') [40]). If moreover,
we want this expression to be generally covariant with respect to background

spacetime, then we are forced to define this norm as follows:
|6z |2= AT / PovVh Gun(z)6z™ 62V, (A.2)

where the constant A is unphysical and arbitrarily fixed; in fact, we will neglect

it! The subscript T is included to emphasize the dependence of the norm on
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string tension.

The dependence on T in equation (A.2) is crucial for our purpose. It comes
in as a consequence cf the requirement that the norm be dimensionless, since we
implicitly define the x-measure in the exponential of a Gaussian integral. Let

us note the following:

/ I] dsa"(@)) | e1=13/2 = Det™2(TGrp(a(a))élo — o). (AD)
oM

We require that the measure [dz]r satisfies 1 = [[dz] exp(— || 8z ||} /2), just

as previously. This condition and equation (A.3) imply that the z-measure is:
[dx)p = Det'?[TGyn(x(0))6(c — o')) H daM (o). (A.4)

oM

The expression Det[TGyn(z(c))8(o — ¢')] is a functional determinant. It
results in the introduction within the measure [dz]r of the following factor:
I1, det'/2[Gamn(2(0))], as well as some T-dependence requiring some kind of
regularization. The former factor is essential in order to assure the general
covariance of the partition function (see [41]), and it remains to be interpreted.
A finite dimension example could perhaps be more clear for the in:plications

of the T-dependence of the measure [dz]r. We choose for simplicity a flat
background metric and we take the variable of integration to be y*, where ¢ =
1,2,...,n. Then, according to (A.4), the measure is [dy] = T"/2d"y, implying

that:

Z= / dyle= 59" My = det(M), (A.5)

and not det(T'M), as we could have thought. This is consistent with the re-
quirement that the partition function be dimensionless, as can be deduced from

the S-matrix expression (2.1}

A.1.2 Polyakov Measure for Fermions

The usual way to treat fermions in a path-integral formalism is to use Grassmann

variables. The integration over these anti-commuting variables is quite peculiar.
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As an illustration of this strange behavior, let us derive the Jacobian of the
transformation n — 6 = an, which will be of some importance to us (here, a

is some fixed real or complex number). We know that Grassmann integration

implics

/ 406 =1 / o1 =0. (A.6)

Defining J(a) to be the Jacobian, we trivially see that s‘a) = 1/a; it is precisely
the inverse of the ordinary result for commuting real var:ables.

This rule has one important consequence: when we define the norm of some
spinor field to be ||6¢||2.= G,,69 6, where i and j represent all the indices of
the spinor (gauge or target spacetime index, position on the worldsheet, etc.),
the measure is then given by Det~'/%(G;;) []; dy*. This is to be compared with
the Riemann rule in which the square root of the determinant appears in the
numerator.

Once this is noted, we may set the spinor norms as before, demanding that
they be ultra-local, dimensionless, invariant under worldsheet reparameteriza-
tion and generally covariant with respect to background ten-dimensional space-
time. We know the dimensionality of AM and 1 from the action (2.28), so the

measures are given by:

6Al2=T / d*ovVh Gpn(z)6AM 6NN,
(A7)

1681=T [ #ovh usvsy.
Note that T-dependence is required to make the norms dimensionless. The

fermionic measures are then implicitly defined by the usual Gaussian integrals.

The result is therefore very similar to the previous one for ¥ (), except that
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one gets the inverse power, since the integrations are over Grassmann variables.

[d\r = Det™*[TGumn(2(0))8(c —o")] [] d(6AM (o)),
oM (A.8)
[dlr = [T /*d(6¢°(0))}
0,8
The latter infinite product over a constant may cause some problems in the
integration, but as we will see, it is not the case. Regularization techniques

applicable in this case will also be developed in the following sections.

A.2 Jacobians for the DS Transformation

In the previous section, equations (A.4) and (A.8), we introduced the functional
determinant: Det[TGumn(2(0))6(0 — 0')] and the infinite product [], , T'/2.
These two expressions are basically the same thing, for the determinant is also
an infinite product. In order to interpret these quantities, we need to know how
to regularize them.

For the moment, we will be more interested in their T-dependence. This
leads us naturally to introduce a norm for the fields independent of the string,
tension in order to single out this dependence. For example, in the casc of p*( ),
which is simpler because the part of the action (2.28) involving 1 is quadratic
in this field, and the definition of its norm does not involve Gy py. Similarly to

(A.7), the ¥-norn is defined as:
1692 = / PaREy 5. (A.9)

Consistently with the previous notation, the subscript 1 in (A.9) indicates that
the norm is independent of T. We will write as [d]; the corresponding measure

verifying;:

1= / [dip)re—NE¥Ii/2, (A.10)
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This measure cannot be taken as the full measure for 1*(o) for partition function
cvaluation, because it is equivalent to (see equation (A.8)):

[dy]r = [ 7" (dy):. (A.11)

8,0
Clearly, [dy]; has dimensions and is not equivalent to [di]T.
Let us introduce a dimensionful scaling (DS) transformation: we define 7 =
T—1A2. Then, the transformation is:
Gun =1"'Gun
Buy =1"'Byn | = I(T)=I(A%). (A.12)
B =g
This transformation cannot have an anomaly since it is equivalent to dimensional
analysis: each tensor of type (r,s) then carries a dimension of (Mass)™™*.
However, the norm defined in equation (A.9) has not the right behavior
under a DS transformation (A.12). The net result of such a transformation is
to scale the norm by a factor of 7. It is then to be expected that the measure
[d¢]: acquire some Jacobian Jy(7) under the DS transformation (A.12). If the
transformation has no anomaly, then this Jacobian will cancel exactly the factor
coming from the infinite product, namely [], , 12,

We can compute this Jacobian Jy(7) noticing that
NlDetln(Azﬂ) = /[d¢v~]1 e—Tu[¥:A%]
E— J¢(T) ‘/[d’w]l e_I'P[w’T]
= NiJy(r) Det'/2(T P). (A.13)

where N is some numerical constant. In (A.13), we denoted I, the part of the

heterotic string action (2.28) involving %*(¢) and we let:

L TPl =5 [ EaVh by, (A14)
Hence, the Jacobian Jy(7) is given by the formula:
Det!/?(A2P)
= —— 1
J'J’(T) Detllz(Tﬁ) (A 5)
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Obviously, this can be also applied to the other two-dimensional fields ¥
and AM. In the same way, we define the norms || 6x || and || 6A||? that arc
independent of string tension T, and then we set the measures [dz]; and [d)];
using the same condition as before. We then get:

_ Det'[Gun(2(0))6( — o))
[d:l‘]T - Detlﬂ[TGMN(T(U))fs(U - o")]

[dr]s. (A.16)

And similarly for [dA], apart that the relation is inverse due to the spinorial
nature of this field. Such a ratio of determinant is something we would like to
interpret.

Again, the knowledge of the fact that there is no anomaly for the full mea-
sures [dz]r and [d)]r allows us to relate this with some Jacobians in the same
way as before. For example, working with bosonic strings in flat Euclidean
background spacetime the Jacobian J;(7) for the DS transformation (A.12) on
the measure [dz]; is given by:

Det™'/2(~A%D)

Js = - , A7

(1) Der-12(_T0) (A7)
0 = §pnDo, and Oy is defined by:
1

D = _'aa J}—lhaﬂa . A.].S

0 \/’_l ( ﬂ) ( )

The Jacobian of the measure [d)\]; is given by some expression more similar
to Jy(7) (equation (A.15)). Those Jacobians should cancel exactly the scaling
coming from the ratio of functional determinants.

This kind of ratios of functional determinants is what we will be interested
to compute in the next sections using several methods. This problem can be
generally stated as the regularization of an expression like: Det(1A)/Det(A),
where the determinant is an functional one, 7 is some parameter (usually the
one defined in equation (A.12)) and A some (at most quadratic) operator. In
the finite case, A is a n X n matrix and the above expression is equal to 7", but
as n — oo, some regularization is needed. This is what we will do in the next

sections using different methods.
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A.3 Weyl Anomaly

The first of our methods uses the fact the effect of the DS symmetry on the
norm defined without the string tension in them is very similar to the action
of a Weyl transformation. We can then exploit this in order to compute the
Jacobians for each of the partial measures [dr];, [d¢]; and [dA];.

As we already mentioned several times, it happens that, when an action I
is invariant under some symmetry transformation of the fields, the partition
function is not. This is due to the fact that the functional measures of the fields
arc not always invariant under the symmetry themselves. Weyl transformation,
for example, induces an anomaly, that has been a central issue in string theory
ever its debut. It was first computed using functional methods by Polyakov [12].

A Weyl scaling of the worldsheet metric, hag — £hqaps also makes the norm
(A.9) scale by some power of £. So, it will not notice the difference between
those two transformations (DS and Weyl) provided that we choose £ to be the
required power of 7.

For convenience, we will also denote £ = ¢ so that the Weyl scaling of
the worldshect metric will be equivalently written as éhag(0o) = €ehapg(o), for
infinitesimal variation. In the same way, we will write 7 = e“ and the DS trans-
formation law (A.12) becomes for the metric of target spacetime: §Gyn(z) =
wGMN(x), where w is also small.

We know that the zweibein is such that: (e4)*(e®)? = h*P. So under a Weyl
transformation, 6(eq)* = —£(e,)®. Now if the action is to be Weyl invariant,

then the fields must transform as follow:

bxM =0,
AM = _sAM, (A.19)
6y* = "i"ﬁaa

On the other hand, the effect of the DS transformation (A.12) is the same
for all norms || 6z ||?, || 6¢ ||? and || 6A}|2. It consists simply in the scaling of

those norms by a factor cf 7.
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We will symbolically write W(£) for the Weyl transformation (A.19) with
parameter £ = e and S(7) for the transformation (A.12) with paramcter 7.
Comparing the effect of those two transformations of the ficlds on the measures

defined with the T-independent norms, we find that, even for finite change:

for [dz]:: S(r) < W(r),
for [dA];: S(r) &= W(r?), (A.20)
for [dy]y: S(r) <= W(r?).

The symbol ‘<=’ in the above expression do not mecan that the cffects of cach
of the above field transformations on the full measures are equivalent, but only
the changes of the T-independent norms of the fields arc.

The author of [42] computes the effect of a Weyl transformation on the
measures for superstrings (using implicitly the heat-kernel procedure that is the

subject of the next section). Under a Weyl scaling W(e¢) they change as follow:

§[dz); = —e (Z% /dza\/szh) [dz], = —e%x(M}[d.r],, (A.21)
and
8[dA]) = —e¢ (191;7r /dza\/—R;.) [d\1 = —efsx(M)[d/\]l, (A.22)

where, using Gauf-Bonnet theorem, we made explicit the dependence over
x(M), which is the topological Euler characteristic of the worldsheet M.

The effect on the A-measure of the Weyl transformation in equation (A.22)
differs from the result in [42] by a factor one half. This is due to the fact
that we are here dealing with Majorana-Weyl! fermions, while, in the paper,
the fermions had only to verify Majorana condition. Hence, the trace over spin
indices contributes to a factor half less.

For 1)-spinors, we have a similar action, thus a similar result. The only

change is in the number of fermions, here Nr = 32 instead of D:

Sld]: = - (192 / d’a\/_R;.) (dgh = —eSEXM)ldg]s. (A23)
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We thus get the Jacobians that we were looking for:

Jo(r) = 77 OxM/12 Ja(r) = r~Dx(M)/24 Jy(r) = 7~ NFx(M)/24
(A.24)
In the next section, we will examine a way to compute exactly the [di];-
anomaly. This way is more direct than the previous one and makes use of the
explicit change in ¢ under the transformation (A.12). Also, this procedure will
allow us to do the regularizations that we need. This is what we call the Gilkey

heat-kernel procedure.

A.4 Gilkey Heat-Kernel Procedure

A.4.1 Zeta Function

We will use the (-function trick to regularize the ratio of functional determinants
that gives the above Jacobians. If we define u, to be the eigenvalues of the
operator A, then we say that the functional determinant of A is the product
over all pu,’s. However, there could be difficulties in evaluating this infinite
product, so the regularization process goes as follows. First let the function
Ca($) be defined by:

()= Y = (4.25)

n Han

for all s contained in the region of the complex plane where the series converge.

The (-function is then analytically continued to s = 0 and we obtain that:

Det(A) = e~ 9¢/d2 (A.26)

=0

But the essential property to remark for our purpose is that we may now

cxpress {ra(s) in term of (A (s), for any constant A. This is done as follows:

Gals) =Y (Apa)™ = A7%¢a(s)- (A.27)
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Differentiating the two sides of the last equality, we get:

Cia(s) = =2~ log(A)Ca(s) + A™*CA(s). (A.28)

Now, evaluating the last equation at s = 0, using the definition (A.26) for
determinants and, say, the expression (A.15) that we have got for Ju(7) (for
which A is P, we are in position to write, in term of the function (a(s), the

Jacobian that we are looking for. This gives:

Jo(r) = (C§CA(0)1°8A’—§CL(0)) (e—gcA(onogﬂ%c:,w))’
, (A.29)
= TQCA(O)’

remembering that we defined 7 = T~1A2. Therefore, the only important quan-
tity to regularize this kind of ratio of functional determinants is (a(0). Gilkey

heat-kernel procedure allows us to do exactly this.

A 4.2 Gilkey coefficients

In this section, we will adopt the convention to simply write ((s) for (a(s).
Now let us turn to Gilkey’s method, that will allow us to compute ¢(0). It is in
fact a general procedure to obtain the (-function of a second order differential
operator. Let us explain how it is done.
For u, and 1,(0), respectively eigenvalues and eigenfunctions of the operator
A, let us define the heat-kernel function K(o,0';1) to be the following:
K(o,0';t)= Y ey (0)ph(o"). (A.30)

n

Then we can show that:
1 o0
((s) = f‘-(s-)/ dtt*! /dzo trk(o,0;t). (A.31)
0

The trace is to be taken over all indices (spin, gauge, ctc.) of the cigenstates
¥n(0o). Then, Gilkey has shown that it is possible to evaluate the ¢-function of

an operator written in the form:

A =m? — k*?9,03 — P*(0)0s — Q(a), (A.32)

67




where, as we can sce, Q(o) does not involve the regularization factor m2. For
a operator of the above form, we can explicitly compute the Gilkey coefficients
ax(o) which are defined by the coincidence limit of the heat-kernel function?:
1 .
K(a,0;t) = \:— -m ';ak(a)t‘, (A.33)
where, as before, h = det(hag) is the determinant of the worldsheet metric.
Gilkey’s results for the coefficients ag(¢) can be found in [43]. For our
purpose, as we arc about to see, the knowledge of the second coefficient a;(0)

is sufficient. Following Gilkey, we first define:

K® =

(P> +¢°Tg.) (A.34)

N —

and

€=Q-0°Ky— K*Ko + ¢°'T§, K. (A.35)
with P? and @ as in equation (A.32). Then Gilkey has shown that:

a1 (o) = %(R;. +6¢), (A.36)

where Ry, is the Riemann scalar curvature or the worldsheet M.
Let us see how we get that the (-function, as expressed in (A.31), reduces
to the only k = 1 term of the heat-kernel expansion (A.33), when we evaluate

it at s = 0. For convenience, we introduce the following functions:

Ck(s) — / dt ta+k—2e-—m2t
0
= m?=*-PrG 4 k-1). (A.37)

Using this definition, it is easy to rewrite our zeta function as:

o0

(@) = 575 2

) c;(s)/dza-—— trjag(o)] (A.38)

2In the following, all the calculations are in general explicitly done for a two-dimensional
manifold (the worldsheet), but Gilkey’s procedure applies equally well for operators defined

in a space of arbitrary dimension.
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In this expression, all the dependence over s is in the ratio pi(s) = cx(s)/T(s).
What is important to us is the behavior of this ratio pi(s) in the limit s — 0.
As z — 0, the Euler gamma function I'(z) has a simple pole. But it also has
a simple pole for every negative integer z = —n. From this, we clearly sce that,
I'(s + k — 1) also gets a pole when s — 0, but only for the values k =0 or 1. In

fact, the Laurent series of I'(z) near any of these poles is well known.

1
k=0: T(s—1)=—=4(y-1)+o(s),
T (A.39)
k=1: I(s)= ;—7+o(s),
4 = 0.5772... being the Euler-Mascheroni constant. The limit of the ratios
pr(s) as s — 0 thus vanishes for all &, except for the two values & = 0 and 1.

Their value are given by the following limits:

po(0) = lim(scy) = -m?,
s—0 (A.40)

p1(0) = lim(se;) = 1,

s—0
showing that the k = 0 contribution to the {-function evaluated at zero vanishes
in the limit m — 0. Finally, the expression for ((0) only involves the Gilkey
coefficient a,(0):
1

€)= yy /d2a\/l; trfa;(o))]. (A.41)

With this, we have restricted our problem to the finding of the Gilkey cocfficient

a, (o) for the two operators that we have considcred, namely P and O.

A.4.3 Jacobian for [dy)];

Let us first define very explicitly what is meant by . To be the most gen-
eral as possible, we will work in a reparameterization invariant language. The
covariant derivative D,(x, ) acting on the i-field thus involves a general co-
variant derivative V,, plus a gauge connection a,(z,A) coming from the gauge
group,i.e. we have set Dy = V4 + aq.

All of those operators will be expressed explicitly in a moment, but, before,

we need to define J, to be spin-% representation of the generator Jy of the
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Lorentz group (or rather of SO(2), since we are working in Euclidean space),

then:
1
Jab = Z[?aa ‘7”] (A42)

Hcre, 4* is the notation for the «y-matrices defined in flat Euclidean space.
They differ from the gamma matrices of equation (2.22) only by: 3! = —iy!
and 42 = 4%, We also define yp = ~i5'49% = qp, as we can see in equation
(2.23). Notice that they are then simply given by the corresponding Pauli
matrices, yp being the third one. Since in two dimensions, only four matrices
are independent, namely, I, 4!, 3% and 7p, the spin-% representation of the

group generator J,p can be written in term of those, as:

Jab = %Gab’yp- (A.43)

Once this is settled, we may express precisely what we meant by the covariant

derivative D, in equation (A.14). First, let us precise that P is a short-hand

notation for ¥*D,. Now, the general covariant derivative on the worldsheet V,
is given by:

Va=0a+ R (+F2ﬂ as necessary ) , (A.44)

Q. being the spin connection defined by:

i

i
2w,‘;bJab = -weu7p. (A.45)

Qo = 2

The quantities w2%(o) are a connection that can be computed from the require-
ment that the covariant derivative of the zweibein vanishes, i.e. Vaeg = 0.
Solving this equation, and writing everything in term of the zweibein, we get

[2]:

1 1 1
wat = 5eﬂ“(an,e';, — Oged) — §.sf"'(ac.e"ﬂ — 9ged) — 5eﬂ”eﬂ"(c’aﬁe,,,. — Dyepe)e,
(A.46)
Finally, since equation (A.14) is the y-part of the action (2.28) for heterotic

string theory, it is clear that the previously introduced gauge connection a, is
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the following;:
(@a)st(z,A) = T?, | A%, (2)Paz™ - %F;, N@ANFAM (A.47)

Before going any further, we must be careful with the zero-modes of P. A
zero-mode of an operator is an eigenstate of this operator that has eigenvalue
zero. This, in a Grassmannian integration, causes obviously some troubles,
since, when integrating the zero-mode part of the exponential, we are, in fact,
integrating a constant over a Grassmann measure. And it vanishes, as it is well
known. In order to get rid of them, we introduce a small ‘mass’ term m that we
will take to zero at the end. Do not worry about the justification of this step
since we will need to come back to this in sections A.5 and A.6. Explicitly. we
define A,, = P 4+ m, and we suppose then that A,, has no zero-modes at all.

However, in order to be able to use Gilkey’s results [43] to compute the value
of the (-function, we need to find a way to relate A,, to a second order operator

(see equation (A.32)). In order to achieve this, it is uscful to remank that:

A B 1 BD™? A-BD'C 0 1 0
= , (A.48)
¢ D 0 1 0 D D¢ 1
)
;
A B -1
Det = det{A — BD7'C) detD. (A.49)
¢ D
Similarly, we can get:
A B
Det = detA det(D — CA™'D). (A.50)
¢ D
Therefore we see that:
t(Am) = det[m?—-D,.D_]|,
Det(Am) et [m* = D+D-] (A.51)

= det [m2 - D_D+] N

where we defined Dy = D; £+ :D, with D being the covariant derivative defined
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in equation (A.14). On the other hand, we can easily sce that:

Al=m?-p?= m? - D-Dx 0 : (A.52)
B 0 m2 — DyD_

This has the obvious consequence that we can compute the determinant of
A in term of the one of A2, explicitly we get: Det(A) = Det'/%(A?). Using the
definition (A.26) for determinants, this shows that (% ,(0) = 2¢4(0). And it is

not hard to see that it comes from the fact that:
Ca2(s) = Ca(2s), (A.53)

since the eigenvalues of A? are the square of those of A,,. This means that we

arc in position to compute the Jacobian Jy(7) with the following expression:

Jy(r) = lim 7462200, (A.54)

m—0

At this point, the last step is to put the operator A? in the desired form
(A.32) and to computc the cocfficient @;(c). Remember that we defined A2, in
cquation (A.52) to be given by: A2 = m? — P2. Let us express P? = (7 - D)?

in a diffcrent form:
_ 1 o 1 o
(7 : D)2 = '2'{7057/9}DaD,3 + '2'7 B[Da’Dﬂ]’ (A55)

with 428 = %[?“,"75]. We then write these terms in a very explicit way. The

first of thesc is given by:
h*’D, Dy =0+ 2a%04 +2a°Qe — h"ﬂr‘zﬂa., + 3%, + a2, (A.56)

where O = h*#V, V4 (equivalent to the previous definition in two dimensions)

which can be rewritten as:
O = h"%8,05 + (20" — BT§,) 0o — KT 50, + 3°Qu + Q2. (A.5T)

The sccond term of equation (A.55), involving the commutator, requires

the knowledge of the commutator [V4, Vg] of the general covariant derivatives.
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Remember that it is a very common statement in differential gcometry and in
general rclativity that this last commutator, when applied to a vector field v,
takes the value:

[Va, Vﬁ]vﬂy = R6 'U&, (A.58)

afy

where, R® g~ is the Riemann curvature tensor on the worldshect. In order to

N
express the commutator [V, V], we find the equivalent of equation (A.58) for
an arbitrary group representation. When we notice that the representation of
the SO(2) generator (Jap)cd is simply 6ac0pa — 62485 for a vector field, we find
that an obvious generalization of the formula (A.58) for an arbitrary spin field
is:

[Va, V] = %Ra,,"”.z,,,, (A.59)
giving [V, Vg] = %Ra ﬁabeuﬁp, when appliedon a spin—% spinor ficld, as we can
find it from equation (A.43). This enables us to derive the whole commutator

[Da, Dg). Before, let us define the field strength tensor fos(x,)) of the gauge

connection aq(z, A) to be the following:
fap =Vaag —Vgag + [aa,ag). (A.60)

And then we get:
1. ab
[DOHDﬁ] = ZRO‘ﬂ beab’YP + fas. (A.61)

Here, we introduce specific properties of the two-dimensional worldsheet
that make the above expression (A.61) simpler. First, let us us remark that
in a two-dimensional space, like our worldshect, Riemann tensor has only one
independent component, namely the scalar curvature R;.

Ry

Rapys = 5~ (havhps — hashpy). (A.62)

With this and the fact that ¢,3e®® = 2 in two-dimension, we get:

1 R 1. o
Eﬁaﬁf[pa,Dﬂ] = —4’1 +57pe ? fup- (A.63)
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Therefore, putting all together the results of equations (A.56), (A.57) and
(A.63), we finally get the desired form (A.32) for the operator A?, where P*(o)
and Q(o) read explicitly as follows:

P?(0) = +2a* + 2Q° — KT},
Qo) = +2a"Qe — KT ) gay + 8%an +a® — R*PT7 ;0 + 0°Q + Q°
Rp

T4 1Pe®” fag. (A.64)

Remark that this and equation (A.57) show that:

Ry,
y?=o-2t (A.65)

Using equations (A.34) and (A.35), all this, fortunately, reduces to very

simple expressions: K* = a® + %, and
€= —— — —7pe*Pf 5. (A.66)

Thercfore, we finally get the value of the Gilkey coeflicient a, (o).

ufar(o)) = —tr (T + 5706 fon ) (A.67)

Here the trace is over spin and gauge indices. We know that the field strength
fap is proportional to the generator TM. We know that we can choose a repre-
sentation in which all the matrices TM are traceless, so this term drops out of
the expression. The spin trace will not have any effect on our answer because,
dcaling with Weyl spinors, we are summing over only one index. Thus, the final

expression for the (-function will be:
- / PoVRRy =~ Ex(M). (A.68)

Therefore, according to equation (A.54), the change in the product part
[dy]) of the measure of ¥ due to the action of the DS transformation (A.12)
will be given by the Jacobian Jy(7).

Jy(r) = v~ Nex(MD/24, (A.69)
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Explicitly, that means that under the DS transformation (A.12), the change
in the product part of the functional measure of the spinor ficld '(¢) is the

following:

8ld#] = ~w 55 x(M) ], (A.70)

where, as before, w = log 7. We see that this result agrees with the one obtained

previously (see equation (A.23) and (A.24)),

A.4.4 Jacobian for [dz];

When we want to apply the above heat-kerncl procedure to the other fields of
the heterotic string action (2.28), the things are not as clear as before, since
the fields 2M(¢) and AM (&) involve operator which are much more complicated
than a Dirac operator like P (equation (A.14)). In fact, the terms involving the
embedding (o) are not quadratic, and not even a priors defined.

However, the Gilkey procedure apply for the bosonic case in some approx-
imation. It is possible to expand the coordinates M(o) around some fixed
point M that does not depend on the position on the worldsheet 0. Writing
tM(g) = zM(0) — M, we can expand the target space metric as follows, =

being reparameterized in Gaussian coordinates:
— l =\ P eQ 3
Gun(z) = Gun — 3RMPNQ($)6 E% +0(€°), (A.71)

where we have introduced the notation Gpny = Gar N (7).

We will consider the case when we can neglect all corrections and asstume
that the metric of the target space is simply G pn. Then, we may integrate by
part one of the derivatives 8,zM and get the action of bosnnic string theory in a
curved background spacetime (see equation (2.6) or the first term of the heterotic
string action (2.28)) in a quadratic form I, = ~Gpn(z,D0z"), where ( , )
represents the scalar product between worldsheet scalars (an integration over

the worldsheet M).
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This action, since it is the first term of the heterotic string action (2.28),
is clearly scen to classically obey the transformation rule (A.12) under a DS
transformation of the background metric. We want to find how the product part
of the z-measure scales for any worldsheet genus. If we neglect the conformal
Killing vectors, the result is quite easy to get. Using the same argument as in
cquations (A.13), we find that the Jacobian J;(7) of the measure [dz]; is given
by the ratio of determinants:

Det ~/%(—A2Gyn D)

- . A2
Det™V/2(=TGyn0O) (4.72)

J(7) =

The target space metric contributes to the some regularized factor f(G) in
the evaluation of the functional determinant Det(—Gasn 0) = f((;’)DctD (-Op),

where we defined Og to be the Laplacian O acting on a worldshect scalar:

0, = -\%aa(\/ﬁh“ﬁaﬂ). (A.73)

Using the equation (A.29) of section A.4.1, one find that the Jacobian J,(r)

is expressed in the following way in term of the (-function of the operator Oy:
— ~—%¢a,(0)
Jo (1) = 7725010, (A.74)

When we apply heat-kernel procedure of section A.4.2 to the operator Oy,
we can easily compute the Gilkey coefficients using equations (A.56) and Gilkey’s
method presented in (A.34) and (A.35). The result is that ¢ = 0 and therefore
we get a; (o) = Ry /6. This gives us:

{0,(0) = x(M)/6. (A.75)
and
Jo(r) = 7 BXM), (A.76)

Again, this is in accord with the result of section A.3, equation (A.21). In
conclusion to this section, we may say that the Gilkey procedure is quite efficient

to find the ¢-function evaluated at zero, associated with different second order
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operators. But previously, the problem of zero-mode was neglected and we said
that we would have to study it more carefully. It is what we will do in the next
section by computing explicitly the zeta function of Oy and ¥ on the sphere

and the torus as representatives of Riemann surfaces of genus y = 0 or 1.

A.5 Explicit Calculation of Zeta Functions

We will only study scalar operator (-functions (with respect to the target space:
Oy instead of 6psn0p). The motivation for studying this case is simple: the
last sections considerations allow us to infer that the effect of the number of
dimensions of the target space is simply to multiply the zeta function by D.
We introduced a bosonic real scalar ¢(0) and a fermionic Majorana spinot
¥(0), both defined on a two-dimensional space: the worldsheet M. These fields
will help us to compute explicitly the (-functions, evaluated at zero, for the
operator Oy (as defined in (A.73)) and ¥ = 42V, (with V, given in (A.44).
We will find the value of (_g,(0) and C¢(O) on a unit sphere and a flat torus,
doing the explicit sum over the eigenvalues of the operators, just as it is stated

in the definition (A.25).

A.5.1 Sphere

Zeta-function of Og: We will at first concentrate on the scalar field ¢(a). That

is we focus our attention on the calculation of
1
als) = —, (A.77)
ol
where
— Dgpn = npn. (A.78)

The first step is to determine what are the eigenvalues p1,,’s. That means we have
to solve the above eigenvalue equation (A.78). Since the operator Og explicitly

contains a metric dependence, the equation, that we want to solve, differs for
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diffcrent worldsheet metrics. We have a good clue from section A.3 that the
value of the zeta function at s = 0 is a topological invariant. Therefore, it will
be sufficient to specialize to the unit sphere and the flat torus, when studying

the cases where v =0 or 1.

Let us begin with the unit sphere $2, we choose to parameterize it with the
usual spherical coordinates: 8 for the latitude and ¢ as the azimuthal angle.

The metric hap(8, $) on S? is then given by:

1 0
het = : (A.79)

1
0 sin? 8
Using that metric, we find that the only non-zero components of the Christoffel

symbol are (except for the obvious symmetry in the lower indices):

I, = —sinfcos,
o0 S1n ¥ cos (A,SO)

Pgn# = cot .
So, the left-hand side of the eigenvalue equation (A.78) becomes explicitly:

1 0 Oy 1 9%y
a) —— . :
0¥n = sind 98 sin 960) 51112 P a¢2 (A 81)

In this last expression, we imiediately recognize the operator —L?, the angular
momentum very common and useful in non-relativistic quantum mechanics. The

solution for the eigenvalue problem is well known:

with degeneracy 2[ + 1. The functions Y,), (6, ¢) are called spherical harmonics.
Omitting the zero mode (when p, = 0) which makes it divergent, one thus

gets the following expression for the ¢-function:

. — 2+1
¢a(s) Z[I(l e (A.83)

In the last equation, the superscript 0 represents the genus of the surface that

we are working on; t.e. on the sphere, ¥ = 0. The tilde just says that we are
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neglecting zero-modes. It will be possible to evaluate explicitly Cg(()) using

Newton binomial expansion of the denominator {44].

—s  1—s bad -+ Q-3
I+ =171 "t (A.84)
k=0
The above expansion is mathematically justified for all [, except | = 1. Nev-
crtheless, a careful treatment of this term shows that, i the limit s — 0, our

expression is correct. The next step consists in interchanging the sum order:

T(1 - s)

%0 — gl —2-k 4 p-2s-k]
¢a(0) 12;[ ! O o
oo
I'(1 —s)
= 2r(2s+k -1 254+ k)] s, (A.85
é[ Cr(2s+k = 1) + Cr(2s + W) gy (489)
where (r(z) is the Riemann (-function, which is defined by the following series:
= 1
Cr(z) = ,; =, (A.86)

and its analytic continuation. This function is found to be analytic over the
entire complex plane with the exception of a simple pole in z = 1.

We now take the limit s — 0 in the expression of (4(s) of equation (A.85).
In this limit, I'(1 — s — k) diverges for all £ > 1 while I'(1 — ) stays finite. This
implies that in the summation, we keep only the terms where & =0, and those
where the Riemann (-function diverge also, thus cancelling the gamma function
divergence. In other words, we may express ouly the important part of o)

when s — 0 by the following:

. _ Cr(2s—1)  1¢p(2s+1)
Cals) = 1“(1‘3){2 T(1—s) +2r(~1—s>)

Cr(2s) | Cr(2s+1)
) et o, (as)

+

In the above expression, the first two terms come from the first Ricmnanu ¢-
function of (A.85) with k = 0 and 2; while the (r(2s + k) of (A.85) with,
respectively, k = 0 and 1, is responsible for the third and fourth term of (A.87).
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Now, using the well known property of the Euler function: I'(n + 1) = nI'(n),

we finally get:
(a(0) lim,—g {2¢R(25 — 1) + Cr(23) + s%(r(2s + 1)},
= 2(r(-1) + Cr(0).

No matter how awkward this last expression may look, the values of (r(z) for

I

(A.88)

z < 1 arc well-defined by analytic continuation of the definition (A.86). And for
z = 0 and —1, they are found to be (r(0) = —-% and (p(-1) = ——ﬁ. Therefore,
we obtain in the case of a scalar on a sphere, neglecting the zero-mode:

(8,(0) = —%- (A.89)

We will interpret this result and the subsequent ones in section A.4.3 after that
we will have done the calculations for the other cases that we consider here. We
now turn to the evaluation of the (-function of the operator ¥, again on the
sphere.

Zetu function of Y: We want to compute explicitly the value of C&(O), taking
the unit sphere as the worldsheet. For that case, we could solve the eigenvalue
equation, as we did for the scalar, but instead, we take the cigenvalues that are
directly found in the appendix B of reference [45].

However, it is not possible to solve the eigenvalue problem for the ¥, since
this operator acting on a field changes its chirality. What is usually done is to
find the cigenvalues of the squared Dirac operator, Y2, that is called the Dirac
Laplacian. This is exactly what we had to do in the last section.

The cigenvalues of —¥? are given in [45] for a sphere of arbitrary dimen-

sionality SV. For { =0,1,2,..., they are:
1
pi=(+ §N)2, (A.90)

with degeneracies (recalling that tr 1 = 2¥/2 for N even and that we are dealing
with Weyl fermions, so the following degeneracy differs from [45]):

(14 N-1)

TR (A91)

dy=2
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Therefore, in our case, a two-dimensional sphere S%, we may consider that
the ‘eigenvalues’ of ¥ are simply the square root of those of the Dirac Laplacian,
namely !+ 1 with degeneracy 2(! + 1). Notice that there are no zcro-modes.
This may be understood by noticing that, as we implicitly found iu the last
section (cquation (A.64)), we have Y? = O — R;, /4. Since the cigenvalues of O
are negative or zero, as in the scalar case, and Ry = 2 for the unit sphere, the
cigenvalues of the Dirac Laplacian could by no mean be less or equal to zero.

The (-function of the operator ¥ is thus very casy to cvaluate. According
to the definition (A.77), the zeta function is expressed as follows:

o0

I+1 ‘
(g(s) = ZZ(H I (A.92)

With a shift in the dummy index | — | + 1, it is obvious that this reduces to
C¢(s) = 2(r(s — 1), where (gr(2) still represents the Riemann zeta function.
Remembering that its value at z = 1 is --ﬁ, we finally get in the case of a

spinor on a ¥ = 0 Riemann surface:
(‘f(O) = —-. (A.93)

We will relate those results with the ones we can obtain using Gilkey heat-
kernel procedure, but, in order to make this connection more explicit, we will
study another case: the flat torus as a representative of a surface of Eula

characteristic (M) =0 (y =1).

A.5.2 Torus

Zeta function of Oy: The techniques used in the previous section apply as well
in the case of the torus. The eigenfunctions of the operator D acting on a scalar
are restricted by periodic boundary conditions. The corresponding eigenvalues
are given in [15]:

mn = (Qy") [m®y? + (n — ma)?] (A.94)
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where the real numbers  and y are the Teichmiiller parameters of the torus.
They appear in the following expression, quite common and useful in string

theory, for the metric hqp(0) of the flat torus with fundamental domain given

by the unit square:

1
hag = . (A.95)

z 22+ y?

We have the following expression for the (-function (the sum will be over

Z: = {(m,n) :m,n € Z;(m,n) # (0,0)} since we once again forget the diverg-
ing zero-mode part):
@)=Y, wnn (A.96)
(m,m)€Z]

Now, we notc that under the transformation m — —m and n — —n the eigen-
values wy,y are invariant. We thus can express the zeta-function in the following
way:
(h(s) = 2¢4(s) + Cols), (A7)
= 2T NS Wt + ez, Wi
Z. represents the set of non-zero integers. In the last equation, we have defined

w, to be:

2
Wm = W = (%/E) m2(172 + yz) (A98)

Again, we remark that w,, does not change if m — —m, so it is easy to compute
Co(s) in the above expression. Since wy = 0, we get:

[e 9]

Gls) = 2 wy’,

1

—2s
= 2(Z) @y ates), (4.99)
where (p(s) is again the Riemann {-function. Remembering that {r(0) = —3

and taking the limit, we obtain the intermediate result that ¢o(0) = —1.

It remains to compute the n # 0 part of the zeta function. In order to do
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that, we must know how to expand the following expression:

o (nam +ba\* T - )
2 m bm ? = 2 o + -
(n* +nam +bm)™" =n kgo ( n? kT(1— s — k)’

(A.100)

Expanding the binomial (na, + by, )* in term of the Newton coefficient, this

gives:

k
(n* + nap +bn)™" = i Y n7H A e T~ s) . (A.101)
Parfart m%m Ik ""j)'r(l —s=k)

The coefficients a,, and b,,, are the only numbers depending on m, in our case:
a4y = ma = -—2mr,
, (A.102)
b = m?B3 = m2(a? + y?).
We therefore have:
A CR(2s + k4 )T(1—-s) { I
C+(s =2(~—> Fak—r2 - mtt ],
W=2(y) ZEMT e om-en (X,
(A.103)

We compute the last summation in the above expression using Riemann (-

function (again!).

+o:> + o0 —00
Y mP o= Y omP 4+ > m? 4, (A.104)
m=-00o m=1 m=~1

= Cr(=p)[1+(=1)"] +4,. (A105)

where 6, is the Kronecker delta for p and 0 (z.e. taking values 0 for p # 0 and
1 for p = 0). This leads us to a final expression for the ¢-function of Oy in
terms of an infinite summation over k. But this can be reduced to only one
term noticing that T'(1 - s — k) is divergent when s — 0 for all ks except &k =0,

and that the term proportional to (r(1) vanishes. Therefore

—~2s
9 =2(Z) r2a0 o (A100)

So, using our result for (o(0), we finally get that, when we neglect the zero-

modes, the (-function for a scalar on a torus is:

CL(0) = 2¢r(0)[2¢R(0) + 1] - 1 = 1. (A.107)
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Showing that the zeta function corresponding to the opecrator Oy defined on a
flat torus (or any genus v = 1 surface) is —1.

Zeta function of Y: It is quite easy to extend our analysis of the flat torus
to the operator Y. We already emphasized the link between O and Y, deriving
the rclation: Y2 = O — Ry /4. Thus, for a flat torus, ¥? is simply the operator
0, since the torus has no curvature. Moreover the operator O is the same acting
on cither ficld, scalar or spinor, because there is no non-zero conncctions.

This remark allows us to use the same results as for the bosonic case, but
this time, the boundary conditions on the eigenstates of O can be cither periodic
or anti-periodic, giving four different possible combinations, labelled by (&, £).

The cigenvalues of the operator O corresponding to these combinations are given

by [15]:

a or\?
wien) = (—y-) (129 + (Va — paz)?], (A.108)
with
py =m, po=m+ 3, (A.109)
vy =n, vo=n+1.

This shows that there is one zero-mode for the periodic boundary conditions
(+,+), and none in the other cases.

Now, there is four different ¢-functions ((2%)(s) corresponding to each choice
of boundary condition. Using the same method as before, we easily get that the
zeta-functions computed with the anti-periodic boundary conditions in either

dircction or in both vanishes giving:

(a -1 if (a, b) = (+,+),
£§%0) = i (a,0) = (+,4) (A.110)
0 otherwise.

A.5.3 Contact with Gilkey Procedure

This section A.4 is interesting only if we can make the contact with the Gilkey
procedure we used in section A.3. We will see that the difference between the

values of the various (-function found in the present section and the ones that
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we derived in the previous section comes only from the inclusion or not of the
zero-modes of the operator under consideration.

Let us first express the zeta function of section A.3, in a form that will
permit us to compare. In this section, we had {A(0) for A being P? (or, in the
same time ¥?) and —DOy, depending on the topology of the worldsheet. Writing,
this times, the (-function on a surface with specific genus, we get that Gilkey's

method had led us to:

for a sphere

¢-0,(0) = (Gilkey) (A.111)

1
3
0 for a torus

And we have gotten in the last section, by explicit evaluation:

—2  for a sphere

(-g,(0) = 3 (A.112)

—1 for a torus

We therefore see that this does not correspond with what we obtained just
before. But, in fact, it is due to the introduction of the cut-off parameter m in
the Gilkey procedure of section A.3.

En effet, this mass term has the consequence that the zero-modes of the
operator [y are included in the sum over eigenvalues in the definition (A.77) of
((s) as an extra factor of one when m — 0 before s does. Since the operator O
is known to have only one zero-mode per dimension when acting on scalars, the
two ways to evaluate zeta functions agree when we compare equivalent objects,
in that case (-functions without considering the zero-modes.

In the case of the Dirac operator ¥, when there are no zero-modes, so the
result of section A.3 agrees with the one found just above. Namcly, Gilkey's

result are (see equation (A.41)):

1
—~¢& for a sphere

C#(O) = (Gilkey) (A.113)

0 for a torus

This is also what we have found in the last explicit calculations. However, for

the case of periodic boundary conditions on the eigenspinors defined on the flat
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torus, the result was:

c”;“*’(()) = -1 (A.114)

Let us mention that this is of small importance for the theory since the partition
function associated with these boundary conditions for spinors in known to

vanish on a torus [15].

Finally, we can state the following prescription:
E1(0) = (e (0) = NG*?, (A.115)

where (7*(0) is the zeta function, defined on the Riemann surface with genus
~ and spin structure s, that does not take in account the zero-modes of the
opcrator considered, and Ny"* is the number of those modes.

The rcason for this prescription is rather clear: {a(0) can be thought of as
the number of modes of the operator A. In the expression ¢(0), we do not count
the zero-modes, while in Gilkey procedure, we count them as as a small mass
term. The relation (A.115) follows trivially.

In the casc of the operator Oy, there is a unique zero-mode for cvery Riemann
surfaces, whatever is the genus. It is the constant mode independent of ¢*. So,

the zeta-function without the zero-mode is given by:
{8, = x(M)/6 -1, (A.116)

for all Euler characteristic. The general result for ¥ require the knowledge of
the number of zero-modes of this operator, defined on every Riemann surfaces

with every spin structure. We will not express them explicitly here.

A.6 Conclusion: Regularization

The purpose of all those calculation was to know how to regularize the T'-
dependence of the two-dimensional field measures [dzlr, [dA]lr and {d¥]r, as
defined in section A.1l. Since it was given by products over all values of o, we

must take the results that we have got including the zero-modes.
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We can finally express the regularized power of T arising in the two-dimen-
sional field measures. They are given by the power of 7 in each of the Jacobians
(A.24) obtained for the partial measures [dz];, [dA]; and [d¥];. They depend

on the worldsheet genus and they are explicitly given by:

[dz]p = T-DxM/12(4g] |
[d)p = T-PxM/24(dg], (A.117)
[dz]p = T-Nrx(M)/24[ 4],

As secondary results, we also obtain the following uscful formulas:
Det(rA) = r=¢a(ODet(A). (A.118)
And, for A = ~(0 +¢);
¢a(0) = f; / d2 oV trfay (o), (A.119)

where a1(0) = Ri /6 +¢ is one of Gilkey coeflicients.
Finally, we derive that for {(s) the zeta-function of the operator without

considering the zero-modes, we have:

C7(0) = (iey (0) — NG, (A.120)
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