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Abstract 

General Form of the String Effective Action in Four Dimensions: We 

study the effective action that governs hetero~ic string theory compactified on 

a four-dimensional, N = 1 supersymmetric background. A scaling symmetry of 

the four-dimensional field T that represents the breathing mode on of interna.! 

manifold is introduced. This symmetry, being valid at each order in both per­

turbative series of the thcory (string-Ioop and sigma model expa.nsions), is used 

to find restrictions on the terms that can correct the truncated supersymmetric 

functions entel'ing the effective action. We derive the general form of these cor­

rections and show that, contrary to earlier conjectures in the literature, loops 

are not a priori counted by the ratio T / S, in which T and S represent the stan­

dard four-dimensional breathing mode and dilaton fields. Sorne other symmetry 

considerations allow us to restrict even more the corrections to the truncated 

results. Our conclusions are extended to the cases with matter fields, and more 

tItan one moduli for the internaI manifold. 

Sorne regularization techniques for problems related to those encountcred in 

the quantization of string theories are also presented in an appendix. 
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Résumé 

Forme générale de l'action effective des cordes en quatre dimensions 

Nous étudions l'action effective, N = I-supersymétriquc, qui gouverne les eordl's 

hétérotiques compactifiées dans un espace-temps à quatre dimensions. Nous 

introduisons une symétrie de changement d'échelle pour le champs T, qui ('st. 

défini sur l'espace à quatre dimensions et qui représente le rayon typiqlH' de' ln 

variété interne. Cette symétrie, étant valide pour tous les ordres pf'rt.m lmt,ifs 

des deux expansions de la théorie (expansion des bouclt's de corde et, dn IllodNt' 

sigma), nous permet de poser des restrictions sur les termes qui sont slls('('pt.ihlc's 

d" ''.:''Tiger les functions supersymétriques tronquées sc retrouvant dans l'actioll 

effective. !;ous identifions la forme générale que ces corrections pCllVf'Ut. pr<'udn' 

et montrons que, contrairement à ce qui a été conjecturé auparavant, les houcles 

ne sont pas a priori comptées par le ratio T / S, où T ct S rpprt~H('}ltt'llt. lt's 

champs quadri-dimensionnels décrivant respectivement le l'Hyon t.ypiqlH' de' ln 

variété interne et le dilaton. D'autres symétries nous permct.tC'llt de n'stI'('illdl'<' 

encore plus la forme des termes correctifs. Nos conclusions sont appliquées au 

cas avec des champs de matière et avec plus d'un module. 

Des techniques de régularisation s'appliquant à des problemcs f('ll('()llÜ(-S 

dans la quantification des cordes sont aussi développées en appendice. 
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En guise de préambulel 

L 'apparance des bateaux qui arrivent à bon port après v,n long périple, ne raconte 

(l'Il.e quelques bribes des multiples embûches, tempêtes et jours sans vent, m.u­

tineries et maladies, qu'il aura fallu surmonter pour lrzompher aujourd'h'ui. La 

foule qu, s'amasse le long des quais sous les fanions et les drapeaux, assourdie 

par le.~ coups de canons, acclame les braves matelots. La foule n'e8t pas sz bête, 

et ses cris de joze sont le reflet de son admiration p01Lr ces gens qui ont souffert 

elle le satt. 

J'achève aussi mon périple. Et, comme pour les nav'tres, mon gréement 

ne semble pas trop magané. Pourtant, ce mémoire représente deux annés de 

labeur qui a laissé ses marques. Regardez bien! Vous t'crrez une écorchure 

zébrant le gra.nd-mat. Approchez-vous et voyez combien il manque de poulies et 

de cordages, admirez ces planches ca,sées et ces voiles rapiècées! Ne frissonnez­

VO'lLS point en décou'vrant ce grand trou noir à même la coque? 

A us.,i ardu que puisse être ces voyages, les matelots se retrouvent toujours 

la semaine ou le moi" .mivant prêts à reprendre la mer. Pourquoz dont:? Pour 

l'amour de Thalas.IJa la Belle, la Grande, tout simplement. 

Jours sombres et nuits de découvertes éblouissante, frustratzons et joies en-

llf you don't read French, l'm very sad for you! However, what's contained In this little 

non-formai introduction isn't crucial for the understanding of the thesis. In any case, l'd like 

to thank here my supervisor who's susceptible to he ullable to understand the following. 1 

am very gratcful for aIl the knowledge he made me acquire and for the fantasl,ic experience of 

working wlth him. Thanx Cliff! 
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nivrante.'J, ont rempli une partie de ces deux année,~. Je ,~a'lM,~ la. prt',~r1/t(' 0('­

ca.'Jion pO'ur avouer que, comme les marins. J'at S01Iff/!rt. Ma~,~, 1)(/n""z Il fl/I. Jf' 

replongeraz très bientôt par amour pour cette qnêtc wjinu' d 1',l1nbl/' 1/ JlIl .. ~,~101I,· 

nante. 

Je veux dédier ce tra'vatl à ma nouvelle élJolL,qe Corin71 C L(' Qllt~"'~ Ij/l.l, l1tl7' 

son amour et par la me1'veilleuse preuve q'IL 'elle m'en Ilannt' a./I)O /tnl'h Ilt, m. '(1, 

soutenue tout le long de ces deux an,~. 

À mon père Gilles, qll.i m'enseigna, alors je n'a1'(U,~ 1}(l.Q l'71.Wl'(' 1'1'11,1/ (l.n,~, 

la différence entre masse et poids, et quz est donc le p7'fmu:r TI·'~lJOn."nbl(' dt: la. 

passion de tout connaître qui me dévore. 

À ma mère Louzse Lavoie, dont je sms redevable ponr (l)rc,~q/l.r) to nt le 1'e .. ~t/· 

qui m'offre un merveilleux exemple de force morale et de pazx int/:rlf! /l.l'e, 

À Clifford Burgess, mon dzrecteur de thèse, 

À tous mes amis ct collègues ... Merci! 2 

"Il Y a. un spectacle plus grand que la nler: c'cst le ciel; 

Il y a un spectacle plus grand que le ciel: c'est l'intéricUl' de l'iil1W." 

Victor Hugo, Lc.~ misérable,q. 

2Cette recherche a été rendue possible grâce à une Bourse en Scienc<, (·t Géni<, I!W7 dll 

Conseil de Recherche en Sciences Naturelles et Génie (C.R.S.N.G ) du Canada. .J(. hll !>ui., 

grandement reconnaissant de l'aide inestimable amsi accordée. 

Je remercie de même l'auteur de la référence [1], ounage de base qui H1'a (,té ('~"('lIti('1 tout 

au long de mon écriture. 
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Chapter 1 

Introduction 

Superstring thcory [2, 3, 4] has cmerg( d as the lllost pl'Olllisillp, ('awlidate t,o llllify 

into one theoretical framework the two fundanwIltnl t}J('ol'ic!-. of 1l\od(,! Il pby~i(':-.: 

quantum field thCOI'y and g<>neral rdativity. This wOIlId sol,,/, ail olll,stalldiul!: 

problem that has heen puzzling the physics cOll11lmnity fOI' lIlOle' t hall Hft.y y(·ars. 

From the phenomcnological point of vi('w, the tlH'OlY of IlC't.C'l'Otj(' stl'illp,:-. [.:i], 

which includc cxplicit Yang-Mi1ls fields, is the thcory that :,('('ms t.1U' dOl-!('1' t,o n 

complete description of a11 the knowll interactions. 

The most pressing problem fac;ng heterotic string th('ory Îs t Il(' Cft «'~ti()ll of 

breaking a ten-dimensional t.heory down to a realistic four-dillH'Il~i()llaI tjWOl'y 

Until such a ùimensional reduction can be made, the theOI'j' lacks any l'<'al C011-

tact \Vith phy:;ically measurablc quantities. Unfortunatcly, ft compldc'ly :-'1ttil->­

factory Inechanism for spontaneous dimensional breaking to a rOIll diuH'I1siollal 

theory is yet to be found. 

The best that can be done in the present knowlcdg(', is to study IH'rtur­

batively various classical vacua of the theory and set' wheth('r !('ltsonahl(, p}i('­

nomenology can be extracted from them. "Vith relativdy milJ assumptiollS OIl 

compactification (e.g. preservation of an N = 1 supersymmetry [GJ), it is l'0s~i-

1 
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Ille to obtain rcasonablc phenorncnological predictions. Dut the number of su ch 

theorics iH hnge: many thousands of Calabi-Yau spaces arc possible vacua! 

Th{· effective Lagrangian contains rnassless and very massi\'e fields. The 

low-cIlf'rgy four-dimcnsional Lagrangian should not be sensitive dircctly to the 

ma .. <:isive fit'lds: thcy must he integrated out. This integration is unfortunately 

v'cry difficult to !)('rform rigorously. However, if we set the massi\'e fields to zero 

in the' t('u-dimcnsionru effective action [7, 8, 9], thcn we can obtain an effective 

fou1"-dimeusional theory that approximates compactification on a Calabi-Vau 

space in Il <luite satisfactory manner. In this work, it is made ,"cry explicit how 

t,his approximation is in faet qui te prccise. 

As one would expcct, this effective theory is expressible by a D == 4, N == 1 

Hupcrgravity action. The approach of this paper is to find the gencral form 

that corrections to this action can take, using symmetry considerations. The 

work donc in rcfcrence [9] indicates sorne symmetries that restrict the form of the 

corrections at lowest-order in the string-Ioop expansion and in the QI-expansion. 

\Ve' idcntify a symmetry of the full ten-dimensional supergravity action that 

is va.lid at auy fiuite or der in both perturbative series. We then exploit it to 

HIX'cify the g('nf'fal form that is allowed for terms entering the effective action 

go\'('rnillg hcterotic strings in a four-dimensional, N = 1 supersymmetric back­

p;tound. The study of this symmetry has sorne importa.nt consequences for the 

eff'erti\"l' thcory. 

lu particula.r, it has been conjectured [10] that the two expansions of string 

throry weI'<' C'ounted only by one parametcr S fT, where Sand T represent, 

l'l'spectivcly, the dilaton and the scalar field associated with the first breathing 

1110de of t.he internaI manifold. This conjecture is shown to be faIse by of our 

more gellel'aI allalysis. 

To the bcst of our knowledge, this is the first time that this symmetry Has 

hCC'll pr<.'s(,llted in this context, and that its implication for the four-dimensional 

st ring (\rtion are discussed. 

2 



--

The rest of this paper is divided as follows: chapter 2 pres<'Ilts a !'{'view 

of bosonic and heterotic string theory, including massirss fields d('fined ou the 

D-dimensional background spacetime (D = 26 or 10). We p1'<'s<'11t. Il ckrivat.ioJl 

of the ten-dirnensional effective action for hcterotic strings, followiuF, r<'fel'<'ll("{, 

[11]. Our original work i5 presented in chnpter 3. In the finit, !::wd.ion, 11 llOll­

rcnormalizatioll theorern for the effective theory in ten dimensions i8 prC'S('llt.t'<l. 

Focussing our attcntion on the four-dirnensional them·y, wc fi1'st. gin' t.he t.nm­

caécd Lag1'angian [7, 8, 9], and then present our symmetry. The' l"t'I>t of t.he 

wapter is devoted to a discussion of its implications on the fortu that. enn t.ak(\ 

th.~ corrections to the truncated action. We aiso includc other sylllllletry ("()llsiel­

l'rations, in order to be as complete as possible. The conclusions nr(' SUE1111111izc'd 

in chapter 4. 

Vou will aiso find an appendix at dl~ end of the paper. The WOl'k presente,cl 

in it is not directly related to the main body of the thesis. Nevcrthelcs8, it. 

i8 included because it contains solutions to sorne regularizati{)!1 problcms t.hat 

arise in string theo1'Y. Sorne of these 1'eslllts are not restricted to two-climellHioual 

theories and are valid in general. 
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Chapter 2 

String Theory with 

Background Fields 

In or der to achieve the goal of unification of all the phenomena of nature into the 

structure of string theory, we must know how to include in the theory a descrip­

tion of the behavior of a string in a curved spacetime. For example, spacetime 

in string theories must always have a large number of dimensions (10 and 26, 

fol' the theories of, respectively, superstrings and bosonic strings). In order to 

recover the only four macroscopically observable dimensions of spacetime, we 

nccd to compactify the others. Typically such a compactification involves back­

grounds with non-trivial curvatures. This example illustrates the importance of 

the understanding of string theory in the presence of background fields. 

This chapter introduces string theory and the massles3 string fields whose 

background values are important at low energies. We first describe bosonic 

string theory in a fiat background and its quantization. We then treat bosonic 

strings propagating in a curved spacetime, and describe the derivation of its 

effective action in the critical spacetime dimension D. 'l'he last section of this 

chRptcr rcpeats the discussion for the superstring. We choose to work in the 
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fl'amework of heterotic string theory, since this is the thCOl'y which S('Cll1S to 

have the most promising phenomenology at low-energy. 

2.1 Introduction to String Theory 

2.1.1 Basic Ingredients 

Our approach to string theory is a first-quantized path-intcgral formalism, i. e. a 

quantum theory for one-dimensional extended objects (for an introduction, S('(' 

references [2, 3, 4]). This has the advantage of making manifC'st, many of t,hf' 

symmetries of the theory, as was first introduced for strings by Polyakov in the' 

early 1980s [12]. 

The ingredients that are used in this functional framcwol'k me tlw world­

sheet, the target space, a mapping X M (u) between thcse two spa('('s and a 

string action. We adopt the convention to always work with manifolds whosc 

metric has Euclidean signature. As is usually the case for quantum field th('ory 

(first-quanth,ed string theory can be considered as a two-dimcnsional QFT, with 

the worldsheet as a base spac<:.), the physical conclusions may be obtain('d by 

eontinuing to Minkowski signature at the end of a c:.Jculation, In this paper, 

the explicit calculations of appendix A are done in Euclidean space, hut the 

l'est of the discussion is not sensitive to the signature of thc metric, 

The above ingredients are defined as follows: 

• The physical meaning of the worldsheet is best expresscd with Minkow­

skian convention; the worldsheet is then the two-dimensional mauifo!d, 

denoted by M, that is swept out by the string as it evolves in t,imc. 

For our purpose, the study of the partition function, i,e. vacuum-to­

vacuum amplitudes, suffices. According to our convention to work with 

metric with Euclidean signature, the manifold is, in this case, eompact 

and orientable, sinee we are a1ways concerned about closcd and oricnted 

5 
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strings. Wc introd1.lce the metric hop( 0') to describe it with respect to the 

coordinates (0'1,0'2). 

• The target space (also called the background space) is the ordinary rea! 

spacet.ime through which the string propagates. In bosonic string theory, 

the target spacetime seems to necessarily have D = 26 dimensions. This 

is imposed by the necessity to preserve Weyl invariance on the worldsheet 

even after quantization. Weyl invariance is a scaling property of the action 

about which more will be said Iater (see equation (2.4)). For heterotic 

strings (see section 2.3), the analogous critical dimension of the target 

space is D = 10. 

• We represent the embedding of the worldsheet into the D-dimensional 

target space by a set of D functions called xM (0'). We use capitalletters 

taken from the middle of the Latin alphabet (e.g. M, N, P) to indicate 

the indices of the D-dimensional tangent space. These functions defined 

on the worldsheet are the coordinates of the points of the worldsheet in 

spacctime. In the case of heterotic strings (see section 2.3), there exist 

fermionic two-dimensional fields also: left-handed superpartners .\ M (0') 

oi target space coordinates xM (0'), and right-handed spinors "pa (0') that 

couple to the Yang-Mills background field . 

• The string action [[x, hl is a functional of the two-dimensional fields, like 

xM (0') and hop{ 0'), defined by an integration over the world"heet. It 

enters in the theory for the computations of amplitudes, or the S-matrix 

(see bclow cquation (2.1)). 

2.1.2 Bosonic Strings in Flat Target Space 

Polyakov's idea for string quantization is to consider the metric of the world­

shect "op( 0'), as well as the other string field xM (0'), as dynamicaI variables 

of a two-dimensional field theory [12]. Within the framework of path-integral 
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quantization, every amplitude is expressed as a functional integral. Th(' S­

matrix elements for n scattering (string) particles, with moment.a J>~t in D·SPiH'(' 

and quantum numbers jl, are given by (this more modern point of view thall 

Polyakov's is presented in [13, 14, 15]): 

Here the functional integration over the worldshcet metric f[dh JIn can 1)(' 

gauged away and replaced by a Jacobian and an integration over a finite lltllnbc'l' 

of moduli [16]. The definition of the functional measure [dx] is disc\1ss('Ù in t.he' 

appendix. [[x, h] is the bosonic string action as will be descrihed hdow (sC(' 

equatioll (2.5»j and Vk[X, hjp,j] is the vertex function, a functional of :r M (17) 

and hOtfJ( u) that aiso depends on 'pM and j. There is a vertex function associa.t.cd 

with every scattering string state (see references [2, 14]). 

The infinite sum in equatiol1 (2.1) is a sum over the genii, "'l, of the differcllt 

worldsheets. The constants C-y are proportional to ,\x(M), where ,\ is the st.ring 

coupling constant, and X(M) is the Euler characteristic of the surface M. This 

latter quantity is related to the genus "'1 of the surface by the l'elation X(M) = 

2-2"'1. 

The string eoupling constant ,\ that appears ab ove and the Rq~ge slope ct', 

that is presented below, are the two paramctcrs of string theOl'Y. Wc collsider 

that the string coupling constant, which is dimcnsionlcss, is sma11 CIlOllp;h so 

that the perturbation series in powcrs of ,\ will give asymptotical v(l}ue for tlw 

S-matrix. This expansion is the ~tring loop expan8ion for which cach order in 

labelled by the genus "'1 of the corresponding worldsheet. 

In the same way, we exp and the S-matrix in powers of a'. This expansion is 

llot really a perturbation series in Q' aione, sinee this parame ter is dimcusion­

fuI. Rather it is based on the assumption that the parameter a'-1/2 is large 

compared to the other dimensionful parameters entering the theory, sueh as 
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the moment a p~. For heterotic string theory in curved space, we form small 

dimensionless parameters using a' together with r~ and r~, the typical radii of, 

rcspcctively, our four-dimensional spacetime and the six-dimensional internaI 

manifold of compactified dimensions. 

For hosonic string theory in a fiat target space (i. e. with metric 6 MN), the 

string action IOadx, h] is completely determined by three symmetries that are 

assumcd for the theory [13, 14]: D-dimensional Poincaré invariance, worldsheet 

gcncral covariance and Weyl invariance . 

• Poincaré transformation of the coordinates xM is defilled as: 

(2.2) 

with AAt an arbitrary O(D) mat ri x (Euclidean spacc). 

• Worldsheet general covariance is just invariance under a general two­

dimensional reparameterization r x : M -+ M, with: 

(2.3) 

• Finally, Weyl invariance is a symmetry of the action which ensures that 

the theory is not dependent on the metric of the worldsheet. Given a fixed 

scalar fun ct ion </>( u) on the worldsheet, a Weyl transformation is defined 

to he the following: 

(2.4) 

and leaving the embedding xM (u) unchanged. 

These three symmetries completely fix the fiat bosonic string action to be 

givcll hy the followillg functional: 

[ ] T J 2 r. ofjôx
M 

ôx
N 

Iflat X, h = '2 d uv hh ôuo ôu fJ DMN, (2.5) 
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where heu) is the determinant h = det(ha ,8), and T is the string ten.~ion, which 

can be identified with the classical tension of the string. The Reg!!,e slop<" 

mentioned earlier is related to T by a' = 1/27rT. In the prcscut discussion, W(' 

assume that the worldsheet coordinates {(TOt} are dimensiollicss and thnt the D­

dimension al spacetime coordinates xM (u) carry dimensions of Lcngth. In ordt'l' 

for the string action to be dimensionless, the string tension must. have diuH'llSiollS 

of (M ass )2. The Regge slope a' carries therefore dimensions of (Lc1I.gth)2. III 

order to correctly reproduce Newtoll's constant for the gravitatiollnl action, wC' 

choose 0;'-1/2 to be of the order of the Planck mass, lvIp rv 10 19 GcV. 

In the framework of string theory, the quantization of this action can 1)(' 

understood as two-àitJ1c.1lsicnal quantum field theory. The embcddillg :rM ((J') is, 

in this point of view, a set of D operators, or quantum fields, on the worldslwd .. 

They are scruars in the two-dimensional space, though xM (0') is st.ill Cl v<'<'tOI' 

wi th respect to the real D-dimensional background space. 

Let us IlOW turn to a description of bosonic string thcory whieh incorporat.C's 

the effects of massless background fields, such as gravit y, for exampl(', hut abo 

other fields. 

2.2 Bosonic Strings with Background Fields 

2.2.1 Non-Linear Sigma Model 

Background fields are D-dimensional quantum fields that are pl'oduccd hy string 

field theory. In our first-quantized language, they appear as external fields in 

our action. However, it is possible to compute the mass spectrum corrcspondillg 

to these fields (see reference [2]). Perturbing around fiat spacctimc, we get 

full towers of dlfferent states having very large masses (of the order of the 

Planck mass Mp) and a few massless states, as weIl as a tachyon, z.c. a pCll'ticle 

of imaginary mass. These masses are background dependent but, for slowly­

varying fields, the masses of the 'massless' fields remain very small comparcd to 
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Jl.fp, and the 'tachyon' remains a tachyon. Throughout this paper, we therefore 

caU the light background fields, massless fields. 

When we allow our theory to have background fields, the string action 

that wc must consider is a bit more complicated than that of equation (2.5). 

The terms involving heavy fields turn out to be nonrenormalizable as two­

dimeI1sional quantum field theory, while the terrn involving rnassless background 

fields anci the tachyon arc renormalizable. The conditions that are imposed on 

the string action become renorrnalizability and the worldsheet symmetries that 

we had bcfore: invariance under a general coordinate transformation and 'Veyl 

invariance. We can no longer require the D-dimensional Poincaré invariance 

sin ce one of the background fields is the curved metric of the D-dimensional 

targct spacetime. General covariance for the D-dimensional target space is not 

required, but it cornes as a consequence of the other conditions. 

The most general classical bosonic string action satisfying these criteria 

(rcnormalizability, general covariance on the worldsheet and Weyl invariance) 

lS: 

I[G,B] = 4:a' J d2
q [v'hho

,8GMN(x) +fcr /1BMN(X)] 8cr x
M

a,8X
N

. (2.6) 

Here, the Levi-Cività tensor fO,8 (0') is a tensor density (not a covariant ten­

sor), so we must be aware that while 1512 takes the value 1, the tensor density 

fo:/1 is proportional to h = det( ho ,8)' Actions of the form (2.6) are called non­

linenr sigma models and were originally used to describe the coupling of mesons. 

Many of the techniques t.hat have bcen developed for those theories may be ap­

plicd here [17J. The limit a' -+ 0 is the semi-classicallimit for the q-model; for 

thnt reason, the a'-expansion, in the context of string theory, is often called the 

sigma-mode! expansion. 

In the string action (2.6), the fields G M N( x) and B M N( x) are massless fields 

of the background spacetirne. They are, respectively, the spacetime metric and 

the antisymmetric tensor field. As we shaH sec using the effective action, they 

correspond to the usual D-dimensional quantum fields, up to sorne scaling. 
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Surprisingly enough, this is not the whole story. The action (2.G) has an 

anomaly associated with Weyl symmetry, and we add a local Ü'rm t.o the Ildion 

in such a way that the anomaly is cancelled [18] (this is still Ilot thp \\'1101e story, 

we will study Weyl invariance further in the next spction and se(' how it. rdnt.{'s to 

the equations of motion of the background fields). Two 11101(' backl!,l'Onn<l fidd~ 

arc Introduced through a string action that i8 not classically \VI'yl iuvatiant., 

but still renormalizable and generally covariant on the worlcbh('d.. Tllt'Y art' 

the tachyon lJI( x) and the dilaton 4>( x). They appear t.hrou!?,h tlj(' followinp, 

string action: 

(2.7) 

where Rit ((7) is the 2-dimensional Ricci scalar of the worldshpd. manifold, whi('l1 

is related to its Gaussian curvature k by the relation Rit = 2l·. Doth of t.Ju· 

above fields are D-dimensional scalars. vVe will Ilot disnlss auy lOIl!?,t'r t.Jl<' 

tachyon tenn, since it does not appear in heterotic strill!?, thcory. It. will silllply 

be omitted, even in our hosonic string discussion. 

An important feature of the action (2.7) i8 that il. docs Ilot have tlw factor 

a'-l as the other term (2.6) does. The reason for this is that it i8 a r('llol'ma]­

ization tcrm that must cancel 'quantum' effects (l.C. of O1<1('r 0') of tll<' actioIl 

I[G, B). 

Furthermore, if the dilaton wete shifted by a constant, a, thCl~ the actiou 

(2.7) acquires an additional term: 

(2.8) 

where we used the Gau6-Bonnet t.heorem to relate the worldshcct curvature tn 

its Euler characteristic. Putting this action into the expression (2.1) for t.he 

S-matrix, we sec that the string coupling constant may he absorlH'd illto t.he 

vacuum expectation value (v.e.v.) of the dilaton field. This can he cxpressed as: 

,\ = exp < flI(x) > . (2.0) 
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2.2.2 D-Dimensional Effective Action 

The effective action is the integration over D-dimensional space of a Lagrangian 

dCIlsity involvingonly the background fields (GMN(X), BMN(X) and cp(x)) and 

not the string coordinates. The effective action is meant to produce the same 

equations of motion and scattering amplitudes as the direct string calculations. 

We will study Iater a four-dimensional effective action, i.e. in the same way, 

involving only background fields defined on the physical four-dimensional space-

Lime. 

Howevcr, it is not possible to compute the full effective action: the bcst that 

can be donc is a calculation order by order in a' [19, 20]. This provides an 

expression for the D-dimensional effective action at each order. However, this 

procedure involves quite lengthy caIculations, and another equivalent mcthod 

base<.l on beta functions and Weyl invariance was devcloped [11]. The two 

lllcthods are shown to be equivalent in references [21]. 

Lct us present the beta function method in the following. In ordinary quan­

tum field theory, when we have a theory with n coupling constants, we have 

ft beta functions, one for each coupling constant, giving the dependencc of the 

conpling as sorne arbitrary scale, introduced by regularization, is varied. For 

instance, the À</>4 theory, with dimensional regularization gives (as presented by 

Réunom! in reference [22]): 

(J(>.) = lim Il
Ô

ÔÀ 
, 

f-+O Il-
(2.10) 

where >. is the coupling constant, Il the arbitrary scale and € the dimensional 

rcgularization parameter, i. e. this is computed in 4 - 21'0 dimensions. 

Analogously, our action contains, not a finite number of coupling constants, 

Lut a cov.pling function GMN(X), Thus, we get a beta functional j3(GMN(X)] = 
[:Jfr N (x). Other beta functions are also present for the other coupling functions 

of our non-linear O'-model, namely (JZ N(x) and (J~(x). In the above analogy, 

t.he arbitr8l'y sc ale Il corresponds to the parameter for Weyl transformations. 
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To have a theory inV-driant ullder \Veyl scalings, it is sufficient to Hsk t.hat the 

bcta functionais vanish [23]. 

The /1-functionals are computcd at leading-ordcr in a' in [11]; t.!1<'y an' giwn 

Ly: 

/1frN -

/1ZN -

/1<1> -

where 

(2.12) 

and H2 = HMNPlI MNP . AIso, the symbol V' At represents the covariant. deliva­

tive (using Christoffel symbols rff N( x) obtained from the mctric G MN (.r)). W<, 

aiso have DeI> = VMV MeI>. RMN and Rare, respect i vcly, the Ricci curvabtrf, 

tensor and the Riemann scalar curvature of D-dimensional spacdlIlH'. 

It is important to note that the first non-trivial contribution of /f"(J') wlH'll 

the spacetime dimension is restricted to its critical value D = 2û is Hot of th, 

same order as the eorresponding terms in other bcta fuudions. As di:,wl\ss<'d in 

[11], this cornes from the faet that the coefficient of the action (2. ï), involvinp, 

the dilaton, is one order higher in a' than I[G, B] (equation (2.û)). 

The conditions for Weyl invariance of the theory thcn turns out to he: 

/1ft N = pl, N = /14J = 0, providing the equations of motion for t,he ma.sslcsH 

fields of the theory. These equations may be interprctcd as Eukr-Lagrange 

equations of the following 26-dimensional effective action: 

(2.13) 

where G(x) is the determinant det( GM N) and Il, is Newton's constaut for gravit y 

in D dimensions. Since string theory contains only one single dimensionful 

parameter, we can relate Il, and ci. In referencc [14], it is shown that the 

gravitational coupling must be proportional to the string coupling constant "\. 
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Dimcnsional analysis implies then that K, == cÀa,(D-2)/4, for sorne constant of 

proportionality c. 

The non-linear C)-dependence of the action (2.13) makes explicit the fact that 

c 24> is the string-Ioop expansion parameter and that this effective action is an 

approximation coming uniquely from the sphere-term of the genus expansion. 

The n-loop contribution is computed on a worldshect with gcnus 'Y = n and is 

proportional to e-4>(x)x(M) = e2(n-l)<I>, as can be seen from equations (2.7) and 

(2.8). 

It is important to cmphasize that in the sigma-model variables, i. e. the very 

ones we have been using up to now, the expansion parameters are then uniquely 

givcn by the dilaton and the Regge slope a' (more correctly dimensioniess quan­

titics involving a' and, for example, r6, the typical radius of the compactified 

manifold). The other fields give no indications of the order in the perturbative 

expansions. 

We can however find an Hilbert-like action from (2.13). Let us perform the 

following conformaI scaling of GMN(X) to its canonical form: 

(2.14) 

where, we changed variables for the dilaton field: 

'(J = exp[4c)j(D - 2)], (2.15) 

cach string loop term being down by a factor of '{J-4 with respect to the preceding 

one. This new canonical metric also counts, in part, string loops. We then get 

the following equivalcnt effective action in term of the canonicai metric [11]: 

S = _1_ J dDxVG (R - 4 (V' «)2 __ l-e-S4>!(D-2) H2) 
eff 2K,2 D _ 2 M 12 ' (2.16) 

where R is the scalar curvature constructed from the new canonical metricj all 

contraction are aiso performed using it. This action is essentially the bosonic 

pru't of an action involving a graviton, a dilaton field and an antisymmetric 

tcnsol' field as was derived with the techniques of supergravity by Chamseddine, 

14 



Chapline and Manton (see rcfcrcnccs [25] and cquation (3.1)). So, I1siIl~ stl'inp, 

thCOl'y at the lowcst or der in the o'-expansion and in the strill.e;-loop expansion. 

we recover the principal features of the bOSOIl1c part of sup<,rgranty 

Notice that, in these variables, it is still possible tu S('(' that this ndioll is a 

contribution of the spherc: the quanti tics RAI N, \7 M <I>\' N/fJ aud R.H/'Cl HN l'Q 

are not scaled by the transformation (2.14), whih' in CHIlOllÎcal ,-anahks, !Ill' 

factor JGGMN '" )0-4 asyrnptotically as IP -+ O. Usin~ th(' rl'latiolls (2.9) and 

(2.15) betwcen the string coupling constant and the dilatoll, t his shows t iwt. tll(' 

Einstein terrn is a sphere contribution to the effccti"c action, 

It is possible to find string-theoretic corrections to t.lH' actlOIl (2.1G), wit.h 

higher powers of a'. This is donc in refcrences [10]. As au illustlatioll of t.ltis, 

let us state the beta functional 13ft N(.r) at the next or der in th(' 1\ '-l'xpallsion, 

whcn we set the other background fields to zero: 

a' PQIl 
f3MN(X) = RMN - 2"RMPQllRN . (2.17) 

This implies a 'stringy' correction to general rclativity. Dut if tlH' typical di­

mension of RM PQR(.r) becomes very srnall compared with th(' string t.c·nsioll T, 

then this correction is negligible. In other words, this correction is not. impor­

tant when the typical radius of spacctime is a lot largcf than thc' n(>.e;~(· slo}>1' 

0:'1/2. This provides us with an upper limit on the value tlwt tlU' pax il UH't,('I' n' 

can take with respect to the other dimensionful qtmntitif'!i of t IH' thl'Ory. TIl(' 

effective Lagrangian, for which (2.17) is an Euler-Lagrange ('(l'latioll, tlllls al'­

quires an additional stringy term proportional to a' RM N pqRM ",' l'Q, comparccl 

with the previous effective action (2.16). 

Boscnic string theory could possibly explain very weIl ct wOild of bosons, hut. 

in order to include fermions, the most common mattf'r partides of tll(' uni verse , 

we must enlarge the theory. The usuaI way to do this uses the vezy prop('rtic's 

of supersymmetry, providing in this way, as an additional aclvaut.a~(', t.hf'oriC's 

without tachyons [2]. This gives rise to two new groups of thcories: Sllr)('rstriIl~ 

and heterotic string theories. We shaH treat only the latter. 
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2.3 Heterotic Strings with Background Fields 

2.3.1 Flat Target Space 

Supersymmetry is a symmetry in the action (here, the 2-dimensional one) whieh 

relates bosons to fermions. Essentially, this is done by the addition to the string 

coordinates xM ((1) of superpartners À M «(1) which are Grassmann variables. 

The properties of heterotic strings are more casily exprcssible for a space 

with Minkowskian signature, wc will thereforc express them in this framework. 

Hetcrotic string theory (see rcfercnces [5]) has an interesting N = ! Majorana­

'Veyl worldshect supersymmetry: meaning that only the left-moving bosons 

have fcrmionie superpartners and the supcrsymmctry of opposite ehirality is 

absent. Right-moving fermions do exist, but they are. used to form a chiral Es x 

Es 01' Spin(32)jZ2 eurrent algebra. By left- or right-moving, we menn that the 

fields dcpcnd only on one of the combinations T ± (1, where (T, (1) parameterize 

t,he Minkowskian worlclsheet. For fermions, it turns out that the Dirae equation 

implies that they are left- or right-handed Majorana-"Veyl spinors, respeetively. 

The worldsheet action for heterotic string in a fiat target space is written 

in the covariant language as [5] (we do not write the very compEC'!>ted cou­

pling of the gravitino with the right-handed fermions .,pli; the gra~,itino will be 

gauged away very soon and we introduce it here only for the completelless of 

the argument): 

4:0:
1 
f d2o'yh, [ha,8aaXM a,8X M + i)..M-ya8a>.M + i~8-yaaa'lj)s 

+i(Xa)'a-y.8 >.M)8,8xM + gravitino termsJ . (2.18) 

The field content of this equation, xM«(1), >.M«(1), ,p"(u), haf3«(1) aï.d Xa«(1), is 

explained below. 

'\Te define the two-dimensional gamma matrices in fiat Minkowskian 2-space, 
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as in four dimensions, by the requirement that they obey the Clifford Illgcbra,l: 

(2.19) 

where 1Jab = diag(l, -1). 

For a general curved worldsheet, the procedure is the samc as 111 four­

dimensional curved spacetime (see [26], for example). Wc dcfillC a z wetbcin 

e~( u), a non-coordinate basis of the tangent space (the latin index rcfcrs to the 

Euclidean tangent space), which has the following propcrtics of coruplctcll<'ss 

and orthonormality: 

(ea)O(eb)li1Jab == ho {3, 

(ea)O(eb)lihojJ = 1Jab. 

The ,-matrices in curved space are then dcfined by: 

They are, as indicated, dependent on their position on the worldshect, 

(2.20) 

(2.21) 

The xM's of equation (2.18) are, as before, the embedding of the worldsll<'ct 

in the D-dimensional target spacetime, although here, anomaly cancellatioll for 

Weyl transformation obliges us to work in critical dimension D = 10, z. c. Af = 

0,1, ... ,9. 

The ).M,s of equation (2.18) are two-component lcft-handcd Ma.jorana-Weyl 

spinors. With a Minkowskian worldsheet, we may choosc to work in the Majo­

rana representation for the two dimensional,-matriccs: 

(2.22) 

and define 

(2.23) 

1 The corresponding gamma matrices for a Euclidean two-dimensional spacc, dcnolcd 'Y'x, 

will be defined and used thoroughly in appendix A. 
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Of course, those Dirac "Y-matrices satisfy the Minkowski antieommutation rule 

ha, "Yb} = 27]ab. In this representation, the Weyl and the Majorana conditions 

for the Icft-handcd spinor ).M read, respectively, as follows: 

(2.24) 

(2.25) 

The tl/"s are right-handed Majorana-Weyl fermions where s = 1, ... ,32. 

The linearly-realized sigma-model gauge group is either SO(32) for heterotic 

strings having the gauge group Spin(32)jZ2, or a SO(16)xSO(16) subgroup 

for hetcrotic strings with gauge group Es x Es, depending on the boundary 

conditions imposcd on the spinor field. Xa(O') in equation (2.18) represents a 

two-dimcl1sional spin- ~ field; this is what we caU in four-dimensional field theory 

the gra'/Jitino, Binee it is the superpartner of the zweibein e~(o'). 

The theory of heterotic strings has the supersymmetry ('N = t'): 

6x M = O.M, 

6).M = h a [8a x M + Xo"M]e, 

6Xo: = -2Va ê, 

&~ = ie"YaXa' 

(2.26) 

ê is the parameter of the symmetry, which has the properties of a Majorana­

Weyl spinor. 

The complete heterotic string action (not the equation (2.18)) also has a 

sUI/er- Weyl invariance: 

(2.27) 

Here also 'Tl is a Majorana-Weyl fermionic parameter. This symmetry leaves 

the other string fields invariant. We can fix the worldsheet metric to sorne 

gauge choice using the two bosonic symmetries: reparameterization and Weyl 

iUvaI·iance. Now, these two fermionie symmetries (supersymmetry (2.26) and 

super-''''eyl (2.27)) can be used locally to set the four components of Xa = O. 
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There are sorne complications with non-trivial solutions that arise in the process 

(super-Teichm üller parameters and superconformal Killing spillors), but the)" do 

not affect our conclusions. From now on, we will omit the worldshect gravitino 

contribution to the theory. 

2.3.2 Gange Field and Heterotic Effective Action 

Heterotic string theory incorporates as a masslcss bosonic background field (1)('­

si des the graviton, the dilaton and the antisymmetric tensor field, as W(' <,n­

countered them in section 2.2), a gauge vector boson ~4ÂJ(x) for the currcul 

algebra SO(32) or SO(16)xSO{16). The most general renormalizable action for 

the heterotic string in the presence of an arbitrary background fields and satis­

fying general covariance, Weyl invariance and N = ! supersymmetry, is derived 

in reference [27] (in the gauge where Xa = 0): 

I[G,B,4},A) = ~J d20'yr,;{GMN{X) [ÔaXMÔCXXN +ÜM,O'(DuÀ)N] 

op . 
E B ()~ Ma N 't€a/lH ( )\M u\Na{1 P + Jh MN X vaX (1X - h3 / 2 MNP X 1\ ,.., 1\ X 

+~aa [XM,..,a,\N BMN(X)] + i"fiIJ,,·tÔO.,plf 

+ "fi"T:t"'t.,p' [AM(x)aaXM - ~FMN{X)XN,aÀMl} 

+~ J d20'v'h Rh4:J(X). 

(2.28) 

In this equation, as before, indices from the beginning of the Grcck nlphahet 

(e.g. a or fi) refer to the worldsheet parameterizcd by {aa}. Of coursc, all 

the contractions in (2.28) involve the worldsheet metric haP{ 0'), or the :t,weibein 

e~ (0') for the gamma matrices. Indices taken from the middlc of Latin alphabet 

(M, N, P, etc.) refer to the D-dimensional target space. GMN(a:) is the mdric 

of the background space (10 dimensions). BMN(X) is the antisymmctrk. tcnsor 

field. 
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The covariant derivative of the spinors .xM is defined by: 

(2.29) 

whcrc, as usual, rtJp(x) represents the Christoffel connection on the ten-dimen­

sional space. Ta denotes an arbitrary generator of one of these groups. Finally 

AM(x) is the background gauge field with, as usual: 

(2.30) 

Here jabc arc the structure constants of the group defined through the relation 

(2.31) 

As for the bosonic string, the S-matrix may be represented by a ten-dim­

ensional effective action. The ten-dimensional action that reproduces the scat­

tcring amplitudes obtained from (2.28) at lowest order in a' has the form of 

the Chamseddine-Chapline-Manton supergravity action wjth matter fields (ref­

crences [25] and equation (3.1». This time, there are also fermionic matter 

fields in the effective action. This is derived in references [11, 19]. 

Two things are to be noticed about the effective action for heterotic strings, 

in contrast with the bosonic case. Firstly, we must include Yang-Mills interac­

tions through a term in the effective heterotic string Lagrangian proportional to 

a' tr( FM N FM N), where the trace is over gauge indices. This term is of the same 

order as the R2 term, coming from stringy corrections to the effective action for 

bosonic strings (sec section 2.2.2). 

Secondly, interactions of the gauge fields with the antisymmetric tensor field 

are introduced by the mean of a redefinition of the field strength HM N P by a 

Chern-Simons completion. In the language of differential forms: 

a' a' 
H = dB + str(F" A) - gtr(R" w), (2.32) 

wi th w the connection one-form; the Yang-Mills trace is taken in the fundamental 

rcprescntation (for the adjoint representation, we have to multiply the Yang­

Mills tcrm by a factor 3
1
0 [3]). 
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The bosonic part of the effective action keeping ol1ly the tcnus haviug two 

or less derivatives has thus the form of: 

_1_ fdDxv0{R __ 1_(~. )2 _ ~e-8<l>/(LJ-2) H'J. 
2a,4 D - 2 ,M 12 

- ~' e--4«1>/(D-2)tr(F2 ), } (2.33) 

where F 2 = Fkl NFaM N, the trace is over the gauge index a, and HAt NP is gin'Il 

by equation (2.32). We also used explicitly the fact that the on]y dimcnsionfu] 

constant was a'. 
This effective action governs the light background bosons of the hcterotic 

string theory at low energy. In order to have a more complete description of the 

low-energy theory, we must include fermions and eut down the number of spacc­

time dimensions to four. The fermion content at low cncrgy is detcrmil1cd by 

supersymmetry. The compactification causes more problems; the I1(,Xt. chapter 

addresses these issues . 
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Chapter 3 

Four-Dilllensionai String 

Effective Action 

A realistic low-energy effective theory should be written in a language that 

we can interpret easily: an effective action of a four-dimensional quantum field 

theory. Of course, an unusual property of string theories is the rather large num­

ber of spacetime dimensions. The problem of expressing the low-energy theory 

addresses the question of compactification, i. e. the fact that six dimensions of 

spacetime are so tightly clll,led up that we cannot even see them! 

Compactification is a difficult problem. In our case, we are only interested 

in the light background particles (that we called 'massless'j light is meant to be 

"lllderstood by comparison with both the Planck mass Mp and the compacti­

fication seale }vIc = 1/r6)' The formal way of obtaining an effective action for 

them would be to integrate over all the very massive states of the theory that 

cao contributes to the scattering amplitudes. It is a lot casier to first approxi­

mate the result by setting every of these massive states to zero. This is what is 

called truncation and wc shall see that its predictions are very close to the full 

theory at the lowest order in the perturbative expansions. This method was first 
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that the scaling of the harmonie forms is the following: 

L \-1 L 
11'"mn -." 1I'mn' (3.16) 

In general, we can do the same thing also for the forms or tensors ddincd on K 

that are eigenstates of the corresponding kinetic operator \Vith non-zero eigC'u­

value. Dy this, we mean that for a given form Wntfl2'''nq(Y), the transformation 

ruIe will be: 

(3.n) 

The antisymmetric covariant tensor f.mnpqrll/.;g also scale with the propC'r fador 

À -3, as a consequence of (3.14). This implies that evcry scalar combination of 

such forms and tensors will be invariant under the BM symmctry. An cxampl(\ 

of this is given by the Yukawa eoupling constants ÀJKL and (n"1, defilwd in 

equation (3.11) that are indeed invariant. 

Being a ten-dimensional field, the dilaton 'P( x) will not smIc. E(!llatiollH 

(3.3) and (3.16) then show that the moduli k]( or hL do not seale dt,her. The 

other fields that transform under the BM symmetry (3.14) are (following from 

equation (3.2) and the normalization of the gauge group generators T1P): 

Al( --. ÀAK, (3.18) 

Also, the coefficients de(x are invariant under the BM transformation (3.14), as 

may be derived from the equation (3.12). 

The eomplex scalar fields Sand T must also get sca.led by the DM symmetry 

(3.14). The scaling is direetly read from their definition (3.7). The dilaton t.p is 

kept invariant, so: 

(3.19) 

It is straightforward to show from the definitions of 8( x) and '1'/( x) (see equation 

(3.8» that this scaling symmetry is consistent for each of the constituent fields 

of the eomplex scalars S and T. 
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( applied to string theory on a toy background by Witten [7]. The full truncation 

of the Chamscddine-Chapline-Manton action in the context of heterotic string 

was later devcloped by the authors of reference [9]. 

The procedure that we adopt in order to describe the low-energy effective 

theory in four dimensions is to work within the framework of aD = 4, N = 1 

supersymmetric theory. The residual supersymmetry is assumed to have sur­

vived the process of compactification. One way that assures that we have such 

a thcory is to choose the background internaI space to be a Calabi-Yau manifold 

i. c. Ricci-fiat with SU(3) holonomy [6]. The truncated Lagrangian is naturally 

put into the form of such a four-dimcllsionaI theory [7]. Our approach for find­

ing the full low-energy effective action is then to use symmetry considerations 

that allow us to dictate the form that the full low energy action must take. 

This chapter is divided as follows: we first derive a nonrenormalization the­

orem for the effective string action in ten dimensions. We proceed to the identi­

fication of the massless modes of the four-dimensional effective theory, and then 

use the standard D = 4, N = 1 supergravity action to match the Lagrangian 

obtained using these massless fields. We then introduce a symmetry, that we caU 

breathing mode (BM) symmetry, that is valid at each order in both perturbati~re 

cxpansions (string loops and sigma model expansion). This HM symmetry is 

crucial for our discussion, it allows us to state the gcneral form for the eftèctive 

Lagl'angian at each order in the perturbative series. We derive it at first in a 

special case (no matter field and only one modulus for the internaI manifold) 

that is generalized at the end. We are then in a position to extract sorne inter­

esting implications of this property: nonrenormalization theorems and specific 

prescriptions. 
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3.1 Ten-Dimensional Supergravity 

The Chamseddine-Chapline-Manton ten-dimensional supcrgravity action is uui­

que: it is the most general action with two or less d('rivativcs and with the 

given field content for supergravity in ten dimensions cou pied to Yang-Mills 

inter, ctions. 'We have seen that the bosonic part of the cffectiv<, action gov('min.(!; 

heterotic string at low-energy \Vas consistent, with it (sec section 2.3.2), The' 

effective ten-dimensional fermionic fields of heterotic string thcory mat.ch Hl(' 

(3.1) 

The gauge group is here chosen to be E8 x Es for phenomenological reasons [3]. 

This action is the one that we take as the lowest-order effective action fol' 

heterotic strings in a ten-dimensional background space. We want to compute 

from this action a four-dimensional effective theory. In order to do t,his, wC' 

must introduce the four-dimensional massless modes that come from the ten-

dimensional fields entering the above action (3.1). It will he donc in section 

3.1.2, but before, we may illustrate the kind of arguments that we will use in 

four dimensions by stating a nonrenormalization theorem. 

3.1.1 A Nonrenormalization Theorem in Ten Dimensions 

The full effective action governing the heterotic string in an N = 1 supcrsym­

metric ten-dimensional background is an expansion in term of two parameters 
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that were already introduced in chapter 2. They are the string coupling con­

stant ,x, which can be interpreted as the constant part of the dilaton expectation 

value (we have ,x l'V ",2 according to the equation (2.15)) and the Regge slope 

a', that carries dimensions of (Length)2. 

Wc know, from the anaJysis presented in section 2.3.2, that the action (3.1) 

is the tcn-dimensional effective action for heterotic string theory at lowest order 

in both the ~tring-loop and the sigma-model expan"ions. This action might 

therefore be corrccted by higher order efFects. 

A nonrenormalization theorcm is a statement that the action gets no cor­

rection to certain orders of the perturbative expansions. We are in position to 

state such a nonrcnormalization theorem concerning the ten-dimensional string 

effective theory: 

NR Theorem 1 At lowed order in the a'-expansion, the effective action (9.1) 

doe" not get corrected by effeet" of higher order in the "tring-loop expansion. 

The proof gocs as follows: take the effective action (2.33) or the bosonic 

part of (3.1). Things are arranged in such a way that the only dimensionful 

componcnts arc derivatives BAI, gauge field AM and the Regge slope a'. Thus, 

the Q'-expansion is essentially the expansion in the number of derivatives of 

the fields. The bosonic part of the action (3.1) is the most general D = 10, 

N = 1 supersymmetl'Ïc action with the given field content and with at most two 

derivatives and its coefficients are completely fixed by supersymmetry, including 

its dependence on the dilaton. 

Let us con si der now a correction term not of the lowest order in the string­

Ioop expansion (i.e. not a sphere contribution). !fit is at the lowest order in the 

O'-model expansion, then it must involve at most two derivatives. But, sinee it is 

of higher order in the genus expansion, the dilaton <pC x) must couple differently 

to the other field than (3.1). This is forbidden by supersymmetry and this 

term cannot exist. It follows that string-loop corrections cannot renormalize 

the action (3.1). Let us now truncate the theory to four dimensions. 
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3.1.2 Four-Dhnensional Massless Modes 

If we demand that in four dimensions, an N = 1 supersymmC'try survives, wc 

must compactify the six internal dimensions of hctcrotic string th('ory on a 

Ricci-fiat manifold, K, of 5U(3) holonomy (see [6. 28]). 

'We expand the ten-dimensional fields in term of the eigenfunctions of th(' 

operator 0 (or the corresponding kinetic operator) defined on the compact IllHn­

ifold K. The coefficients multiplying these functions depend on the' position in 

the four-dimensional spacetime and are the four-dimensional fields of t1w t.}}('­

ory. Vve will express the zero-modes (i. e. eigenstates with eigellvalue Z('ro) in UH' 

language of differential forms; they turn out to correspond to harmonie forms. 

The manifold K possesses a definite number of harmonie forms defincd on 

it. This space may be parameterized by complex eoordinates, and the harmonie 

forms are chosen to have a definite number of holomorphie and antiholomorphic 

indices (i, j). The number of independent harmonie forms of cach type is gi vell 

by the Hodge numbers bl ,}. In general, these numbers arc aIl obtaillcd from 

b1,ï ~ 1 and b1,ï, which can be larger or equal to o. 
We express the harmonie (l, ï)-forms w!S(y) with ]{ = 1, ... , bl,j, and t,he 

(1,2) forms wL_k-(y) with L = 1, ... , bl 2. We write 7r;} = f.}Hwl\I..~'-' whcre ri}!.. is 
l,} , l, 

the SU(3)-invariant antisymmetric tensor. 

Then the four-dimensional massless fields can he derivcd from the corre-

sponding massless modes of the full ten-dimensional action (3.1). Wc writC' 

everything in the canonicat variables, i. e. using the mctric G~iN( x, y) defincd 

in cquation (2.14) for spacetime which pro duces a canonical Einstein tcrm in 

the ten-dimensional Lagrangian. The massless modes are thcn [!)]: 

cp(x,y) - cp( x) + heavy modes, 

Bp,,(x, y) - Bp,,(x) + heavy modes, 

A:(x,y) == A:(x) + heavy modes, 

Bi,}(X, y) - AK(x) w!S(y) + heavy modes, (3.2) 
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A~(x, y) 

GMN(X,y) -

wherc Ymn(X, y) = Ymn(Y) + hmn(x, y) with ymn(y) hmn(x, y) = 0 and 

]( =2, ... ,b1,Î' 
(3.3) 

L = 1, ... ,b1,2' 

Here the masslcss fields Ail (x) take values in the adjoint representation of 

the unbl'okcn gauge group, while the matter fields CJ(e (resp. Bl() transforms 

as 27 (resp. 27) of the E6 subgroup of Es left unbroken by Calabi-Yau compact­

ification. Tie are the corresponding generators of Es; they are normalized by 

tr (TieTj') = y.,j6e(. The fields kK(x) and hL(x) are the so-called moduli fields 

of the compact manifold. Their expectation values correspond to the moduli 

that describe the internaI manifold [2]. 

From now on, we will use the following notations for the coordinates of 

spacctimc: xl' are the coordinates of the four-dimensional observable spacetime 

M., (ft = 0,1,2,3.) and ym describe the six dimensional compact manifold I< 

(m = 1, ... ,6.). In the complex coordinates for K, we use, as before, the indices 

i = 1,2,3 and J = î,2,3 for, respectively, holomorphie and antiholomorphie 

cool'dinates. We denote as Ymn(X, y) the six-dimensional metric of the internaI 

l'pace K and the four-dimensional metric is g'll/(X), which has a canonical kinetic 

tcrm of the Hilbert (or Einstein) form, i.e. C4 '" y'gR4' 

The truncation of string theory, as presented in reference [9], is the expression 

of the string action in terms of these massless fields (3.2) and (3.3). Defining 

C" = JI\. CIO, it gives an approximation for what should be the low-energy 

Lagrangian governing heterotic strings in a four-dirnensional supersymmetric 

background. 
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1 3.2 'Iruncation of the Ten-Dimensional Action 

3.2.1 D = 4, N = 1 Supergravity 

vVe know that Calabi-Yau compactification is supposed to preserve an N = 1 

supersymmetry for the four-dimensional compactified Lagrangiall [6]. A l'<'alistic 

assumption to be made is thus thé't the correct Lagrangian in four dimensiolls 

is the D = 4, N = 1 supergravity Lagrangian couplcd lo Yang-Mills and matt.<'r 

that has bcen worked out by Cremmer et al. [29]. It is totnlly <!escril)('cl by 

only two functions depending on the complex scalars z' of the chiral SIlI)('lfiC'lds 

representing matter [30]: 

• A real gauge invariant function Q(z, z*), that wc caU the K(ï.hlc1· fl/.ndion, 

written as: 

Q(z, z*) = K(z, z*) + log 11V(zW, (3.4) 

where the real function K(z, z*) and the analytk function lF(z) are re­

spectively called the Kiihler potential and the supcrpotentzal. Tlwy an' 

defined completely once it is specified that there is no annlytic t('rm in Hl(' 

Kiilher potentinl. 

• And an analytic function fab(Z) with a and b bcing gaugc indic('sj this is 

the gauge coupling function (see the actio.'l (3.5) below). 

The bosonic part of this D = 4, N = 1 supergravity effective action is thUH 

given by [29]: 

s - 2- JcrxVg {R - 2QzzoDp zD"z· + 2VrQ(z, z*)] 
2a' 

a' (Ç )F& Fbp" ia' 1 (Ç )F& FMb/'''} -2Re Jab l''' + ""2 m Jab 1'" , 

where the potential Vis: 
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wherc F,~" is the dual field strength tf/lIlP~Fap~, T,~. is a gauge group generator 

matl'ix and 9 l, and g:: dcnote, respectively, the derivatives 89/ 8z, and 89/ 8z; . 

As a supersymmetric theory, the effective action (3.5) also includes fel'mionic 

fields. Howcver, tbcy do not play an important role for our discussion, since 

supcrsymmetry illdicates that they do not require the introduction of any new 

function to charadel'ize further the theory. Moreover, the symmetry consider­

ations that we look at in the next sections may be extended to f('rmionic fields 

without any complications. We will therefore omit the fermions for the l'est of 

the discussion. 

3.2.2 The Truncated Lagrangian 

lu the ca.."e of the heterotic effective action, there are many scalar fields in the 

Kahler function (3.4) and the gauge coupling function (both entering the action 

corresponding to (3.5) for heterotic strings). In faet, their number is related to 

the llumber of harmonie forms defined on the internaI manifold (i.e. bl,l and 

IJl,ï). As we can see from equations (3.2) and (3.3), we have: the dilaton field 

't'ex), the breathing mode eO'(x) (corresponding to the 1< = 1 modulus) the other 

moduli e«x) and hL.(x) (for respectively [( = 2, ... , bi,l and L = 1, ... ,b1,2)' 

the matter fields CKe(x) and Bf(x) (for aU J( and L) and the scalars defined by 

the antisymmetric tensor field on the internaI space AK(x). They aIl combine 

tu form complcx scalar fields of chiral supermultiplet. 

\Ve now conccntrate on the dilaton and the breathing mode field. In most 

of the rest of the discussion, we focus our attention on the case where b1,ï = 1 

and b1,2 = O. In this case, wc omit the index K that should appear, since only 

the value ]{ = 1 is present. We will however state results for the other moduli 

whcnevcr it is possible. 

For this special case, apartfrom the matter fields Band C, the theory in­

volves only two complex scalar fields, S and T, that are defined as follows in 

order to have the standard D = 4, N = 1 supersymmetry transformation rules 
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[7,9]: 
S _ cp-1 e30' + i8, 

T - 'Peu + Q' ( C*Kecj( + BieBî,) + i1" 
(3.7) 

where B( x) and 7]( x) are two axion fields arising from il III N (:1', 'U) aH dd1tH'd 

bclow. 7] is simply given by the relation 7](x) = V2AI\(x), with I\. = 1. In our 

case (wherc there is just one (1, ï)- and no (1, 2)-moduli), we have Bmu(.'"' U) = 

T'(X) wmn(y), where Wmn is the unique harmonie form cxprrss('c! in t.he' n'al 

coordinate basis {ym}. We define B( x), in the language of diff<>l'cutial [orIns, 1,y 

dB = *H in four dimensions, with a non-conventiollal *-dualisatinll: 

H l ( -3(7)2 a"8 
,lVp = - 3V29 cpc €,wpÀ • (3.8) 

At the truncation level, we know the exact form of both the 1\i,hler and 

the gauge coupling functions, when we omit to takc in consideration the ot.lu'l' 

moduli fields kI«x) with k > 2 and hL(x). They arc founù in [7,9]: 

gtrunc - -logeS + S*) - 3log(T + T*) + log IIV(zW, 

f(trunc)a.b - SDab. (3.0) 

where Da.b is the Kronecker delta and the superpotential is given hy: 

(3.10) 

Here, the couplings are defineù by (in the real coordinate basic;; of K): 

,,\ , - ~ ( 1 ) J Ji mnpqrll J 1( 1, 
JI\.L - 31 J d6yJ'Y Y € WmnWpqWrln (3.11) 

and çJJ(L is the corresponding expression in Lerm of the harmonie (1, 2)-forms 

L' - J( d ll'mn(Y) mstead of the (1, l)-forms wmn(y). The coefficients eçx are defined 

through the following equation: 

(3.12) 

Notice that "\JJ(L and ÇJKL are interesting quanti tics that look just like ordinary 

constants as for the {our-dimensional theory, but, in faet, dcpcnd on the internaI 
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( space in a very crucial way. The effective theory in four-dimension is full of these 

constants that carry informations about the internaI space. 

The truncated Kahler and gauge coupling functions, as expressed in (3.9) 

abovc, arc those that we want to correct at aIl orders in the two expansion 

paramcters (cp and a'), with the objedive of finding a more complete low-energy 

effective Lagrangian. In order to do this, we introduce in the next section a 

Rymrnetry valid at each order of the perturbative expansions that will help us 

to givc restrictions on the form of the general correction terms. 

3.3 Breathing Mode Symmetry 

The breathing mode (DM) syrnmetry relies on the crucial observation that there 

is sorne ambiguity in the definitioll of the four-dimensional metric as expressed 

by (3.2). Indeed, the truncation of the ten-dimensional rnetric defines the met­

ries of the four- and the six-dimensional spaces, as well as the breathing mode 

by the following expression (still in the case where there are no (1,2) and only 

one (1, 1) modulus, namely the breathing mode 0'( x »: 

( 

e-317(x) () 

Gean ( .) _ 9 p,v x 
MN x,y -

o ). (3.13) 

\Vc thcrcforc see that the four- and six-dimensional metrics are defined up 

to an arbitrary constant that can be absorbed into the breathing mode e17 • In 

effcd, wc may write the following symrnetry: 

(3.14) 

that gives GAIN -+ lhfN. 

The important thing fol' the transformation is to keep the ten-dimensional 

fields invariant, it will then be a symmetry of the ten-dimensional effective 

action. FUrthermore, since the ten-dirnensional fields come directly from the 

string action in which they appear as 'massless' background fields, the full theory 
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will be invariant under the BM symmetry. We ean see that no anolllaly cau ruin 

the symmetry beeause the string functional measures are niso construdcd with 

these invariant background fields (see the appendix). If all the tcn-dimcusional 

fields are kept unaffected by the BM symmetry, then the symmctry ShOllld 

be respected by the four-dimensional effective action to aU order in t,he two 

perturbative series (sigma model and string loop expansions). HO\w'ver, our 

knowledge of the genus expansion is very smali. And, while at t.he spherc level 

cvery four-dimensional fields will have a simple sealing un der the DM symmetry, 

loop effeets will in general min this property and the transformation laws may 

beeome more eomplieated. Nevertheless the symmetry should remain ('xad" 

sinee it does not involve any anomaly. 

We may then exploit the BM symmetry to give restrictions on the possibl!' 

form that the correction terms to the truneated effective Lagrangian <:an takc, in 

a very eonvincing way nt the tree-Ievel, and more hypothetically for string-Ioop 

terms. To see that it is possible to arrange the transformation laws of the four­

dimensional fields in such a way that the string massless background fields stay 

invariant, we have to notice that we have enough scalar fields in equation (3.2) 

to counterbalanee every sealing imposed by the transformation rules (3.14). In 

what follows, we ùerive explicitly the sealing rules for aU the fields introduced 

in equations (3.2) and (3.3). 

In the general case of more than one single modulus, this HM symmetry also 

Beales the harmonie forms w!n and 7r{:.n. Being eigenstates of the operator DG, 

their normalization is not fixed and we may ehoose: 

J d!'yyg gmpgnqw~nW;q = nK t5]Œ, (3.15) 

where OK = JK tJ.6yyg is the volume of the manifold K. And similarly for 7r~n' 

The volume factor transforms under the BM symmE;,try (3.14) by: nI( --+ >.-301(. 

The requirement that the above normalization should be invariant implics then 
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As one expccts, the truncated functions (3.9) have the right behavior under 

our symmetry. Assuming that the gauge coupling function !a.b has the form 

(3.9), we compute the scaling of the following typical term (see equation (3.5)): 

CYM = -lvlfi Re (fab) gl''' gP.\ F;"F;.\ (0:'-3 J cfy.jg) . (3.20) 

The two inverse met ries cancel the factor À 6 coming from the four-dimensional 

dcterminant V§, and the truncated gauge function acquires a scale factor of À3 

from the S-field that gets cancelled by the six-dimensional metric determinant 

vg. This term of the Lagrangian is therefore invariant as it should be and we 

sec that the gauge coupling function fab scales in the same way as does the field 

5 docs under the BM transformation. 

'lb check that the truncated form (3.9) of the Kahler fun ct ion Q(z, z*) has 

the right behavior under the symmetry, we take the part of potential term, which 

has the {ollowing form (neglecting the part proportional to the derivatives of 

Ç): 

(3.21) 

Again, we see that all the À-dependence of this term get cancelled at the trun­

cated level after the BM transformation is performed. The determinants of the 

four- and the six-dimensional metrics carry together a factor À 3 which is can­

celled by the factor À -6 coming from the Kahler potential el( and the factor À 3 

of the supcrpotential W. The above term is therefore invariant under the BM 

symmetry. From this, we see that under the BM transformation, we must have 

cO -+ À-3eO. 

In the next section, we start studying the implications of this symmetry to 

find correction terms to the truncated Lagrangian. 

3.4 Corrections Allowed by BM Symmetry 

The upshot of our analysis is the faet that the use of the symmetry (3.14) and 

(3.19) allows us to read the possible form that can be taken by the higher-loop 
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corrections to the two truncated functions (3.9) defining the supersynlllletric 

four-dimensional effective action. We define the full supersymmetric functions 

to be given by: 

Q(z, z*) 

fab(Z) 

- Qtrunc(z,z*)+ 10gQ(z,z*), 

- S [6ab + Ïab(Z») . 
(3.22) 

Then, since the truncated term has already the right behavior undcr the t,rans­

formation (3.19), then the correction Q(z, z*) must be invariant under DM sym­

metry. The same reasoning shows that the gauge coupIing correction fab (z ) 

must not scale under the action of the symmetry transformation. ln othcr 

words, we get: 

Q(z,z*) ~ Q(z, z*), (3.23) 

with respect to the transformation of the fields (3.19) Wc emphasize that the' 

transformation rule for the fields Z' are different for each scalar, C.g. Sand T 

do not scale in the same way. Aiso note that dimension al analysis shows that 

Q and lab must be dimensionless. 

If the theory were to contain only the four-dimension al fields, thcn (3.23) 

would restrict very much the corrections 9 and Ïab. For instance, it is possible 

to evaluate the effective action at the stationary point B = C = 0 [9] (still 

omitting the moduli other than the global radius of K), in which case' t,he only 

possible corrections must be functions of the unique invariant combinatioll of 

the scalar fields, T3 / S. Th;s correction is however incompatible with what is 

known of the large Sand T limits (see below cquation (3.31) and what follows). 

3.4.1 InternaI Degrees of Freedom 

The effective theory in four dimensions depends on the the fields dcfined on the .. 
six-dimensional internaI space K. For example, we saw that the terms (3.20) 

and (3.21) were proportional to Jg(y) through the volume of K, QI{. We also 

encountered the constants )..JKL and eJKL that were constructed out of the har­

monie forms of the compact space. These kinds of constants that are coefficients 
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in the four-dimensional theory have a crucial impact on our understanding of the 

theory in four dimensions. Another possihility is that these coefficients invoive 

six-dimensional curvatures RP mqn(Y) or F;'n(Y). 

Let us introduce the notation V~d) for these constants in the four-dimen­

sional theory. The superscript d is the engineering dimension of the constant 

(in other words, V!d) has dimensions of (Mass )d) and the subscript i is just to 

distinguish between various kind of constants that have the srune dimension. 

\Ve daim that no matter what six-dimensional fields or forms are hidden in 

the expression of V~d), then its scaling under the BM symmetry (3.14) is the 

following: 

(3.24) 

To see this, we must just notice that our fields are defined such that only 

dcrivatives âM or gauge vector fields AM(x, y) have dimensions of Mass. The 

same will true for the six-dimensional space K. Apart from the coordinates, the 

only quantities definecl on K that carry dimensions are am and A~(x,y). Both 

of these quantities have one Lorentz index that will neecl to he contracted with 

the inverse metric gmn, or with the antisymmetric tensor, or with any of the 

forms we need to consider, etc. The engineering dimensions of V~d) correspond 

to the numher of indices that have to be contracted using a tensor that scaie 

by a fador Àd / 2 , according to equations (3.14), (3.16) and (3.17). In the same 

way that we followed for ÀJKL and eJKL, we introduce a factor nj(l for each 

integration over l( that we must perform in the expression of V~d), then these 

constants have the claimed scaling under the BM symmetry. 

In order to fix ideas, we study explicitly the case of the sphere. Here, we will 

always have one integration. We only consider the constants V.(d=2C) that in­

volve six-dimensional curvatures and no other derivatives. Considered as quan­

tum fields, terms in the action are proportional to integrals over K of vacuum 

cxpectation values (v.e.v.) of different combinations of these curvatures. As 

bcfore, the subscript i = (io, il, ... , ic) indicates that there are usually more 
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than one possible combination. Then V?c) is of the following normalized form 

(remember that it is only a special case): 

V (2c) 1 J ~ ~ tml ... m2c < TIl T I 2 Tic > (3 ')1:) 
1 = J d6yV9 yvg 10 ml rn 2 ms rn4··· rn2c_lrn2r • ._0, 

In the above expression, T~n represents either F~n (y) or RP rnqll (y). It is un­

derstood that the gauge indices (a for the Yang-Mills gauge group and, p and q 

for the Lorentz group) are properly eontracted or summcd over in such a. way 

that the v.e.v. is a gauge-invariant Lorentz sealar. Doth F!n(Y) and R"mqll(Y) 

are invariant under the BM symmetry (3.14). More gcnrally the tcnsors T,',~n 

ean aiso represent a pair of derivatives applied either to the curvaturcs or to 

sorne part of the contraction tensor t:: 1 " ·m2. (y). 

A contraction of c such curvatures necessitates a tensor t~1 . 1fL2c(y) with 2c 

indices, constructed with the covariant tensors 9mn(Y) or (1/ J§)f.mnpqrs, which 

are the only invariant ones available. But we have: 

fmnpqrs emnpqrs 
..;g -t >.3 yg (3.26) 

Of course, tensors as W~n or tr!:an ean be used to form the contraction tensor 

ti: 1
• .. 

m2C (y), but their scaling laws are indirectly determined by the mctric gmll 

The transformation laws (3.26) show that the power of ). in the scaling is 

simply given by half the number of upper indices. Renee the transformation law 

for the contraction tensor t:1 ·,.m2 C (y) is a sealing by a factor ).C. The hchavior 

of the v.e.v. V?c) under the BM transformation is thercfore (eonsistently with 

(3.24)): 

V
(2c) \ cV~2C) 
1 -tl\ l , (3.27) 

sinee neither F::ml nor RP mqn seale under the DM symmetry. 

It is essential to include these v.e. v. 's since they appear as coupling constants 

of the terms in the action that have two or less four-dimensional dcrivativcs, 

even when the v.e.v.'s included have a large number of derivatives. They thcll 

contribute to the low-energy effective Lagrangian in four dimensions and are 
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rcsponsible for sorne correction terms that must be include in the functions 9 
and Îab. 

The next part of the discussion is devoted to the derivation of the most 

general correction term that is allowed by our BM symmetry (3.19). 

3.4.2 General Correction Term 

For now, wc study only the special case where there is one single modulus and 

where the matter fields vanish: Be = Ce = O. The general case where we allow 

the matter fields to take non-zero values is quite similar to the following; it will 

not bc treated in detail here. We will state the solution in the last section of 

this chapter, the discussion can be found in [31]. Sorne rcsults for the inclusion 

of othcr moduli are also given in the last section and tl: ~ above reference. 

Let us investigate the possible correction terms that may be obtained from 

thcsc v.e.v. 's, together with the scalar fields S and T. We define C~d) to be the 

correction term of {;(S, S·; T, T*) (or fab(S, T») that arise from the coefficients 

V~d). Since the fields S and Tare indistinguishable from their respective conju­

gatcs S* and T* from the point of view of their properties under the BM trans­

formation (3.19), we may at first concentrate only on corrections C~d)(S, T) to 

the Kahler function (see however the implication of the axion symmetry (3.37), 

prcscntcd in section 3.5). It will be understood that we can replace every field 

by its complex conjugate in the case of the Kahler function corrections. 

V~d) has dimension of (Mass)d. So, in or der to arrive at a dimensionless 

factor, we must introduce the Regge slope a'. The correction terms take the 

following form: 

(3.28) 

By construction, we must require that, under the BM scaling S -+ À3 S 

and T -+ ÀT, the correction be invariant C~d) -+ C~d). The factor T-d/ 2 is 

illtroduced in (3.28) to counterbalance the scaling the v.e.v. under the BM 
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symmetry. Hence, the correction is invariant under our symmetry if and only 

if the function :F.(d)(S, T) is aiso. In other words, by virtue of our symmctry, 

F. d) (S, T) must be function of the scalar fields only in the invariant ratio Tl / S. 

A priori, this last function of T3 / S is unrestricted. Expanding in powcrs of 

l/S, which is the string coupling constant expansion as wc will see (equation 

(3.31», we get: 

:F.(d)(S T) = ~ A(d) (T
3

) n 
• , ~ ',n S ' 

»=0 

for sorne set of arbitrary constants A~~2. We will aiso write: 

(3.29) 

(3.30) 

for the general correction term, putting the constant .A~(~~ in the definition of 

the coefficient. V~ ~ . , 
In order to understand the reasons that gives us the range of the paramcter 11 

in equation (3.29), we have to use sorne of our knowiedge of the two pertnrha.t,ivc 

expansions arising in the theory: (i) the string loop expansion, whieh is wl"itten 

in terms of a series in À, the string coupling constant that was assirnilatcd to 

the exponential of the v.e.v. of the string dilaton field in chapter 1 (so ,,\ "" cp'). 

according to equation (2.15» and (ii) the sigma model expansion, which is 

expanded in term of a' /r~, where T6, the typicai radius of the internaI manifold, 

is the only dimensionful constant that can be eombined with a' in ordcr to give 

a parameter without dimension. It will be possible to identify the orcier of t,he 

correction term (3.30) in these expansion for each d and n. 

The sealar fields S and T depend on these parameter and can be us cel to 

replace them. To see this, let us write s = Re (S) = c.p-1e3tT and t = Re (T) = 

c.pe tT (without the matter fields), then in the sigma model variables: 

G tT - mod _ (~gplI 0) 
MN - 0 tg

mn 
. 

(3.31) 

We know that in these variables, the string loop expansion parameter is c.p4 only, 

39 



----------------------_. __ .... _-_. 

because the other fields are string background fields which are explicitly written 

without any dcpendencc on the string coupling constant (see chapter 1). 

Let us take the limit tp ~ O. According to the above, GM N and amn are 

kept constant, so equation (3.31) implies that t also is. Therefore, in thts limit, 

e- tl 
_ tp. This means that S-1 IV cp4 is the string-Ioop expansion parameter. 

On the other hand, the q-model variables are very convenient for the a'­

expansion since no fields involve any dcpendence on a' in this case. Also, the 

order in cl is then only dimensional analysis, beeause the Regge slope carries 

dimensions. It is possible in ten-dimensional field theory to transform to a set 

of variables wherc the paramcter a' is included in the definition of the fields 

(c.g. G M N ~ a,-l G MN)' In this case, we can choose t to be equivalent to the 

sigma-model parameter. But, sorne other fields like sand g"1/ will then acquire 

sorne a' -dependence. We should be careful when we say that the breathing 

mode and the Regge slope are equivalentj it is only true in sorne cases. For this 

rcason, we prcfer not to count a' with t, but dircctly by dimensional analysis. 

AlI the corrections g and lab are normalized in such a way that the term 

(1/ S)O corresponds to the spherej a surface of genus 'Y will contribute to cor­

rections of order (l/S)"I. Since l/S is the only string-Ioop counting parameter 

in equation (3.28), this explains why we begin the series in equation (3.29) at 

n = 0 only. 

Secondly, V~d) is of the order (1/r6)d, for it depends only on the six-dim­

ensional manifold. We require the sigma model perturbation series to start 

with order (a' /r~)O and then continue with terms involving higher power of the 

ratio 0;' /r~. The power series (3.29) of the function F!d)(T3 / S) is therefore 

unrestricted for large n, sinee the power in a' cornes only from the coefficient 

V!d). For convcnienc<" we will denote the order in the string-Ioop expansion by 

the genus 'Y, or the let ter n, and the order in the sigma model expansion by the 

letter c = d/2. This indicates that, in general, d should be an even integer. 

This analysis shows that if we restrict ourselves to the case d = 0 and c = 0 
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then the correction C<O) can only be a constant and cannot depend on tlw sealnl' 

fields Sand T. This is what we already knew: ~he truncated Lagrangian is the 

lowest-order approximation for the heterotic effective action. 

Still in the case where d = 0, i. e. zeroth order in the 0" -expansioll, t,he higher­

Ioop contributions to the Lagrangian are thus secn to be abitrary Hualyt.ical 

function of the invariant T3 / S with dimensionless coefficients. At t.!H' g<,uns ft 

level, the correction is of the form: V!,~T3n / sn. 
"'vVe will now explicitly treat the very restrictive ('ase that wc aln'ady t.nlked 

about in the preceding section, where all the coefficients V~d) are interprf't('d as 

v.c.v.'s of curvatures (Yang-Mills and gravitational). Although this is sllffkiC'ut. 

to understand the case of string tree level, it need not be general ('nough to 

describe aIl string-Ioop effects. It wi11nonetheless give good insight,s on the 

form of the corrections even in this case. 

3.4.3 V.E.V. Corrections 

"'vVe will study first the cases for smaU d's, considering only v .c. v. 's V~ tl) of the 

form (3.25), for which d = 2c. We need not consider the case c = 1 hecausc the 

compact internaI manifold J( is supposed to be Ricci-fiat, so the v.e v. < R > 

vanishes. Moreover thc othcr possible v.c.v. Ea < w mn Fr~1II > "Iso vallisheH he­

cause F~n can be chosen to be proportional to traecless gencrators of the gallge 

group. We thus get no correction as function of only one internaI curvalurp. 

The first important correction terms arise for c = 2. lu this case, there exists 

ollly one possible v.e.v. with an antisymmetric contraction tensor, sinee the 

curvatures satisfy the following condition on a Calabi-Yau space [28]: k trR /\ 

R = JK trF /\ F. However, there is also the term coming froID the v.c.v.'s 

Rmn Rmn and Fmn Fmn. As we said before aU these differcnt possible v.c.v.'s 
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are denoted by V~4). We have: 

V(4) _ n-I 1 J6 mnpqrJJ Rm ' Rn' > 
1 - HK lK a-Yf Wmn < pn'q rm'JJ , 

(3.32) 

We derive the form of the correction terms of the form (3.30) involving these 

v.c.v.'s, i.e. still in the case where c = 2. The first term (n = 0) of the power 

series of equation (3.29) is responsible for a correction C~~ fV a'2V~4) JT2. This 

is coming from the sphere, or order (1/ S)O, still at the or der c = 2 in the sigma­

model expansion. The second term (c = 2, n = 1) arises at torus··level in the 

string loop expansion, (1/ S), and at order (a' / ,.~)2 in the (J'-model expansion. 

It corresponds to the axion term that is found by truncating the Green-Schwarz 

allomaly cancellation Lerm. The next section (3.4.4) is devoted to an explicit 

derivation of this term. It is easy to derive the two-loop term: V~4)T4JS2 and 

the following for higher loop contributions. 

In the case where c = 3, the function F.(2C)(T3 / S) gives rise to three dif­

fercut terms for each possible v.e.v. Omitting the a'-dependence that is easily 

recovercd by dimcnsional analysis, we get: 

n = 0 : dG) fV V(6)/T3 
1.0 1,0 

n = 1: d 6
) fV V~6)/S .,1 1,1 

n = 2 : dG) '" V(6)T3 /S 
1,2 1,2 

de ... 

(sphere) 

(torus) 

(2-torus) 

\Ve summarize first v.e.v.correction terms allowed by our symmetry for the 

two expansions (string loops and sigma model) in table 1. 

In general, we see that there i" ~ome v. e. v. correction to the truncated La­

grangian at the each order ({, c) except for c = 1 and it is proportional to: 

(3.33) 
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t) 

d 2e) 
I,n 

(ot' /rn° 

(a'/r~)l 

(a'/r~)2 

(a' /rn3 

(a' /r'lJ4 

First v.e.v. correction terms cf,~) in string loop 

and sigma model expansions 

sphere torus 2-torus 3-torus 
')'=0 ')'=1 1'=2 1'=3 

V(O)T3 V(O)T6 V(O)T9 

constant 1 1 1 

S S2 1 sa 
(V(2) = 0) ... . .. . .. 

V(4) V(4)T V(4)T4 V('OT7 

a '2 - 1
-

12 1 a'2 1 12 1 a --
(f S3 T2 S S2 

V(6) V(6) V(6)T3 V(6)TIl a '3 _i _ a '3 _ 1 - 13 1 a'l 1 

a S2 T3 S <;;'3 
v 

V(8) V(8) V(B)T2 V(8)T5 
a'4_i_ a'4_1_ a,4 1 Il 1 

fi S3 T4 TS 52 

Table 1. 

where n = ')'. 

... 

... 

" . 

" . 

... 

... 

This exhibits the failure of the naive a'-counting by 1fT. In fact, this prop­

erty is only true at string tree-level. For higher loops, wc must also take in 

account the field 5 which is equivalent to a factor (f'3. 

The following section is intended to present in details a special case (c = 

d/2 = 2, n = 1), that has been already studicd from a diffcrcnt approach. Our 

results are in complete agreement with the previous one. 

3.4.4 Green-Schwarz Axion Term: an Example 

Green and Schwarz found that a certain term has to arise as a onc-string-loop 

counter-term in the 10-dimensional action, in order to cancel aIl the anomn.-
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lies (Yang-Mills and gravitational) [32]. This term is then responsible for a 

correction to the gauge coupling function [33]: 

- T 
fab(S, T) '" S6ab' (3.34) 

This would seem to be in contradiction with our BM s)'mmetry because the 

only invariant combination of the scalar fields alone as been found to be T3 / S. 

Ncvertheless, as we saw in the above discussion, it is not, because of the v.e.v.'s 

of the six-dimensional curvature fields. It is an explicit counter-example which 

cxhibits the failure of the naïve argument that says that only T counts the 

O'-modcl perturbative theory. 

In more details, let us take the example of one of the anomaly-cancellation 

terms of Green and Schwarz (Yang-Mills). It looks like: 

(3.35) 

Upon truncation, we get C4 '" Va /2 7] fP").P F;"Ftp in D = 4 where the six­

dimensional fields F~n(Y) are replaced by their v.e.v. and: 

V = (J d,6~,;g) J cf'y fmnpqr.tWmn < F;q(y)F:a(Y) > (3.36) 

(V was one of the previously called V(4) in equation (3.32)). Under our sym­

metry, V -+ ,\2V and then the combination VT / S is invariant. Therefore, the 

upshot is that we actually have fab(S,T) '" a /2 (VTIS)6ab. 

This behavior as liS, according to (3.31), is a clear indication that this 

correction is coming from the one-string-Ioop sector. The fact that it is pro­

portional to T should not surprise us. It does not mean that the term is an 

a'-1-contribution in the O'-model expansion, because in our convention we chose 

V '" l/r~, so a /2 VTIS is a two-Ioop term in the sigma model expansion. 

3.5 Other Symmetry Considerations 

lu order to restrict eveu more the form they can take, it convenient to consitfer 

some other kuowll symmetries: the axion symmetries that is valid to all orders 
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in a' and the string-Ioop expansion, and the D = 4, N = 2 sup<,rsymmet.ry, 

which appHes only at string tree-level and with matter fields Band C Rd, to 

zero. 

3.5.1 Axion Symmetries 

The axion (or Peccei-Quinn) symmetries were exhibited by Witten [28, 34] aJl(l 

hoId for all finite order in both perturbative expansions. Tt is valid for both 

axions of the theory. These symmetry state that tlw action is invariant ll1ltkl' 

a shift of the axions by constants: 

(3.37) 

where al and a2 are independent constants. In terms of the scalar fields T and 

S (as defined in equation (3.7)), this means that the IGihler potcntial s11oul<.1 

depend on the scalar fields only through their real parts: 

s = (S + S*), t = (T + T*). (3.38) 

This symmetry has the important consequence of restricting even more the 

correction terms of table 1. While every substitution of T'" (rcsp. S*) to T 

(l'esp. S) was a priori possible in the general correction tcrm (3.30), now wc 

know that we must replace every entry of table 1, and the gcncral tcrrn (3.30), 

by the corresponding function of sand t, instead of Sand T. 

The same symmetry can be used to state a non-renorrnalization thcorcm 

for the gauge coupling function fab. The axion symmetry indccd rcquircR that 

the l'eal part of the gauge coupling function Re (fab) be function of t and s, 

uniquely. However, this holomorphie function can satisfy this condition only if 

it linear in T and S. The upshot is then: 

NR Theorem 2 The only correction term to the ga'Uge co'Upling fab(S, T) at 

finite order in the pert'Urbative expansions is proportional to T and cornes from 

the ('Y = 1, k = 1 )-level. This is the Green-Schwarz term, as wc Iwvc sccn it, 
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which i~ a one-~tring-loop term, 0(1/5), and of order a' /r~ in the sigma model 

cxpan~,on. 

The conclusion of this theorem was already taken for granted in the past, 

but the 'proof' given by Cecotti et al. was based on an incorrect conjecture 

formulated by Nilles [10J. The assumption is that, under the transformation 

S -t r-1/ 2 Sand T -+ rl/2T, the n-string-Ioop effective Lagrangian had the 

following scaling property: Cn -+ ,.n-l/2 Cn , heing also valid at tree-Ievel (n = 
0). This behavior would oblige each correction term to be of the form (T / 5)n. 

Our general term (3.30) shows that this is only a special case and the next 

section will exhibit a term in the effective Lag.angian that has to exist and does 

not possess the above property. Our demonstration closes the loophole in the 

precedent argument. 

Applied to the superpotential, this symmetry also has the virtue of giving 

us the possibility of deriving another nonrenormalization theorem. The axion 

symmetry acting on the superpotential W(z) restricts its form. As before, 

we demand that it should be a function of the real parts of the scalar fields 

only, i.e. s and t. The solution to this problem is round in re{erence [9]. The 

superpotcntial may be of the following form (we include matter fields C and B, 

and other moduli Gand Hj see section 3.6.1): 

lIV(S, T, B,C,G, H) = exp(aS + bT + cKGK)W(C, B,H), (3.39) 

whcre a, band CK are some constant to he determined. 

Let us neglect the other moduli fields GK and HL and concentrate on the 

5- and T-dependence of the superpotential. The exponent looks like a non­

perturhative effect. It produces a term proportional to a. + bt in the correction 

Q to the Kahler function. 

But, we see from the general form (3.30) of the terms in the expansions that 

the cxponcnt of s is a1ways negative: it is not possible to get a power series for 

the Kahler function that would he expressed in terms of positive powers of .~. If 
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the superpotential has sorne S-dependence, it is therefore not a pcrturbativc onc. 

On the other haud, once we know that wc have no perturbative S-dcpendell<'e in 

the superpotential W, the T-dependence can only arise from the sigma-modd 

expansion at the sphere level. The series will not involve positive powcrs of 

T as can be seen from (3.30) and cannot contribute to a fador cxp( liT). TIl<' 

nonrenorrnalization theorem is thus: 

NR Theoreln 3 The superpotentzal W, that is indcpcndent of S (Lnd T (Lt tlH! 

truncated leveZ, will not acquire any dependence on these ficld.~ (Lt lLny ord(~r in 

the perturbative expansions. 

The above theorem was proven at string tree-Ievel by Witten [28] and ex­

tended to string loops by Dine and Seiberg [34]. Their proofs arc <'sscntially 

repeated here, but we emphasized the fact that sinee the supcrpotential HpJ>car 

through its modulus only, an exponential dependence over the fieldl; S Clnd T 

would have been a priori perrnitted by the axion symmetrics. It is ouly our 

knowledge of the expansion parameters that allow us to concluùe. 

The prcvious considerations now permit us to say that, in the case of the 

gauge coupling function fab(S, T) the only perturbative correction is propor­

tional to V(2)T / S. For the Kiihler {unction, however, wc know that the gcnernl 

correction term C~d)(s, t) is givcn by: 

(3.40) 

where n = 1. And the superpotential does not get renormalized. 

3.5.2 D = 4, N = 2 Supersymmetry 

In the str;ng-Ioop perturbation series, the terms in the Lagrangian that arc eon­

tributions from the sphere have a particular property. Using this, wc are able to 

show that the terms coming from surfaces of genus 1 = 0 docs not get corrected 

at any order in the sigma model expansion. This property is the preservation of 
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an N = 2 supersymmctry for the sphere-term of the four-dimensional effective 

action governing heterotic strings [35], instead of the N = 1 supersymmetry 

which has been seen to be an effect of Calabi-Vau compactification and, thus, 

to be a gencral symmetry for all order in both perturbative expansions. 

This symmetry implies that the K8hler potential is written as a sum of two 

terms ](8, t) = KI (t)+K2 (s). On the sphere, the dilaton part ](2(8) cannot be 

modified at higher order in the sigma model expansion because the correction 

terms of table 1 corresponding to the sphere do not involve the scalar field s. 

The (l,l)-moduli part of the Kahler potential is of the form (see [35,36]): 

(3.41) 

where Y(T, T·) is completely determined by a complex holomorphie function 

F(T) called prepotential: 

Y(T, T·) = F + F· - ~ [~~ + (~:) *j (T + T·). (3.42) 

We ean show that, if we require Y(T, T·) to be function of t = T + T· 

uniquely to respect the axion symmetry, then the general solution for the pre­

potential F(T) is the following: 

F(T) = -2AT3 + BT + a, (A,B E Rja E C), (3.43) 

giving: Y = At3 +2Re a. Notice that the linear term is irrelevant for the Kiihler 

potential K1(t). This implies that the general form of the Kahler potential at 

the sphere level is: 

K(s,t) = -loges) -log(At3 +a) = -loges) -3log(t) -log (A+ t~) (3.44) 

whcre a = 2Re a is a constant. 

The number of corrections to the truncated Kahler potential is only two. 

The constant tcrm .4 is clcarly at lowest order in both expansions, since it does 

not dcpcnd on s and t. Truncation implies that it is one. 
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The other correction that wc get is proportional to t-3 • Comparing this 

with the general forrn (3.30), we observe that it corresponds to n = 0 (of ('OUl'H<', 

wc are on the sphere!) and d = 6. We know that the order in the sigma-mode! 

expansion is given by c = d/2 = 3. It is an 0(0:'3 ) effect (four loops) and it. is 

the only correction term coming from higher Ioops. 

NR Theorem 4 The ~phere-term of the truncated prepotential (loc.~ not !let 

corrected at the higher levels in the perturbative expansion in a' /1'~, the fonr­

loop orders, at order 0/3 . The Kahler potential acquires thcn cOTn;ction.' at 

d 13 16 t Of, ers 0: , a ,e c ... 

This correction to the Kahler potential is exactly the same as the one found 

by Candelas et al. [37] in a special case. It corresponùs to thc fonrth-loop 

counter-terrn to the rnetric that is found in direct sigma-mode! calcuiatiolls [38J. 

This counterterm ligtJ '" âtâJ V(7, where Va is a particular case of V.C.v. similar t.o 

equation (3.25) with c = 3. The counter-term, bcing at four 100}>s, the COl1Htaut 

V cr is an 0(0:'3 ) term in the sigma-rnodel expansion, by dirncnsional aualysis. It 

cornes directly from a counter-term in the prepotential, 80 this latter term must 

be a third-orùer one. The correction that we have found is thus consistent with 

the results found in [38]. 

3.6 Other Moduli and Matter Fields 

We can now ex tend our analysis to the more gencral cases where thf'l'(' is Illore' 

than one modulus, i.e. sorne number of (1, ï)- and (2, i )-moduli. In addition, 

we cau treat the CaEe where the matter fields are not set to zero. We will not 

write the detailed analysis for those cases; they arc presellted in [31], but the 

results go as follows. 
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3.6.1 Other Moduli 

The inclusion of other moduli is also possible. The corresponding scalar fields 

that appear in the D = 4, N = 1 effective Lagrangian are GK(x) and HL(x), 

which are defined as follows [9]: 

hL + non-linear terms, 

k K + iV2 nUl AK + non-linear terms, 
(3.45) 

where ]( = 2, ... ,bl ,}; we write GK=1 = T. 

Then wc have HL ~ Hl and GK ~ G K (except for J( = lof course!) under 

the DM symmetry (3.14). It is therefore to be expected that this symmetry give 

no new information to restrict the appearance of the moduli fields in the effective 

action: as far as the BM symmetry is concerned they could appear in arbitrary 

manner. 

However, since an axion symmetry is also valid for the other (1, ï)-moduli, 

the fields GK(x) [9], the correct combination to incorporate is (GK + G*K). On 

the other, since we do not know the general form of the terms involving GK , 

for 1\ > 2, then we cannot conclu de that the perturbative expansion does not 

produce the exponential term in the superpotential of equation (3.39). This 

term howevcr would be a tree-Ievel term in the sigma-model expansion, because 

GI\ does not count 01'. The upshot of the superpotential NR theorem remains: 

IV i,~ not renormalized in the u-model expan3ion. 

If we require the Kahler potential to depend only on the real part of the 

(1, î)-moduli, T and GK, the same N = 2 supersymmetric arguments as before, 

illdicates that the prepotential F( GK) (corresponding to (3.43» has to be of 

the fonn : 

F(T, G K ) _ AT3 + AKGKT2 + AJKGJGKT + AJKLGJGK G L 

+BT + BKGh + 0', 

(3.46) 

for J, 1\, L = 2, ... , bl,i. In order for each term of this function to scale consis­

tently under the DM symmetry, we must require that the constants A and B 

50 



-~ 
\ 

transform under the symmetry by a factor À for each their indiccs. For illstaJl('c: 

A-+A, (3.4 7) 

This indicates that the constants in equation (3.46) carry a cOllutillg of the 

Regge slope: e.g. A = o(a/O), AJh'L = o(a'3), etc. The corr('ct.iolls ta the' 

Kiihler potential would then be of each order: first, second and t.hinl. Dut, t 11<' 

direct calculations of the countel'-term gives only a four-loop contribution tn 

the metric as do general arguments in [38], so wc must haV<' \\uiq\1dy 1\ t.hinl 

order correction term in the Kiihler potentia! and AI\", .4J 1\" = O. The Kiihl('1' 

potential is thus in general: 

(3.48) 

with A' a constant involving no power of a', while A~IJ\Ï) and a arc COllstaut.s of 

the type a'3V~6). We aiso defined gK = GA: + G*K, and wc must. kc<,p in mind 

that J, K, L = 2,3, ... , b1,ï' This shows that, in the argumcnt of the' Iogarithlll 

of the IGi.hler potentia!, completely dccouplcs the breathing mode and the' oth('1' 

(1, ï)-moduli completely dccouple. 

3.6.2 Matter Fields 

For the case of the single moduli internaI spacc, the fields CF. ~ À 1 /2CF. lIwl<'l' 

our BM symmetry (equation (3.18», and they carry the dimension of M(L,~,,,, so 

they must be coupled to a t1 / 2 • The dimensionless invariant combinatioll HIld('l' 

the BM symrnetry is thus a,1/2Ce / ,,1 or its complcx conjugat,e. Th(~se tenus 

are of order c = 1/2 in the sigma-model expansion. This means that the g('ncrfll 

correction term (3.40) can be rnultiplied by sorne power of the&c comhiuations 

arbitrary large. 

C(d)(s t) = ~ o:'dV~d)t3n-d/2 s-n1{ _--.f. (C~ C*) 
n , ~ _,n Vi' v't ' 

1 

(3.40) 

where Ji is ail arbitrary function. Moreover, C~d) is of order n in the st.ring-Iool' 

expansion, and, depending on the powers of the arguments the function 'H, the 
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order in the (J/ expansion changes. If we have a power m for the ratio Ce / .Ji 
(or with CD, then the order in the sigma model expansion is: H d + m). 

This result generalizes with no further complications for the case with many 

moduli, with the matter fields CKe and BeL taking the place of Ce. 

The truncated Kahler potential exhibit an interesting SL(2,R) symmetry 

(sec [39]) that would indicate that the lowest-order corrections need to he func­

tions of c;Celt uniquely. This symmetry, however, is not a priori a general 

property of aU perturhative orders. Moreovcr, this symmetry scems to he bro­

ken hy the J:nclusion of the other (1, ï)-moduli, if they existe This particular 

combinat ion of the fields should not he considered as the most general term 

appearing in the effective action. 
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Chapter 4 

Conclusion 

This study was motivated by the question: What are the manifestations of string 

theory at low-energy? We answer at least sorne part of this qucstiOll. Wc arc' 

allowed to say that, if we take the framework of an N = 1, D = 4 Htlpergrllvity 

coupled with Yang-Mills, the corrections to the well-known lowcfit-ordcr df('c­

tive Lagrangian are given by corrections to the Kiihler potential cxprcsH(~d in 

equation (3.40). The exact coefficient of each term is, of course, unknown at thiH 

stage, and moreover, is expected to be function of the topology of the illterual 

manifold. However, the identification of the terms that arc allowcd is a step in 

the forward direction for the understanding of the low-encrgy manifestations of 

heterotic string theory. 

Let us summarize the procedure wc use to dcrivc this rcsult. Our k('y­

observation was that the definition of the metrics of four-dimcn~ional spacd,iIlH' 

and six-dimensional internaI manifold, hides an ambiguity. Wc cxtcnd titis 

syrnmetry to hold for the full effective theory in ten-dimensions, and therefor(' 

for the four-dimensional action at each order in both perturLative cxpansionfi 

of the theory. 

Our general conclusion is that we need to take in account constants that 
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( are formed by internai degrees of freedom. They were called V~2C) and we saw 

that c was at the same time half of the engineering dimension of the coefficients 

and the order in the sigma-model perturbative expansion. The level in the 

string-Ioop expansion is given by 8-1 , as it is known for already sorne time. 

The ncw information is that once both of these orders are chosen the field T( x ) 

must appear to a specifie power T3n-c. The general correction term is given by 

cquation (3.30) that we repeat here: 

( 4.1) 

With this and other symmetry considerations, we may state four nonrenor­

malization theorems, plus another one that is derived without the use of the 

ubove formula in section 3.1.1: 

1. At lowcst order in the li-expansion, the heterotic string effective action is 

the Chamseddine-Chapline-Manton action and it does not get corrected 

by effects of higher order in the string-Ioop expansion. 

2. The only correction term to the gauge coupling fun ct ion fab(S, T) at n.nite 

order in the perturbative expansions is proportional to T and cornes from 

the ("y = 1 ,e = 2 )-level. This is an effect of the anomaly cancellation term 

of Green and Schwarz. 

3. The superpotential W, that is independent of 8 and T at the truncated 

levcl, will Ilot acquire any dependence on these fields at any order in the 

perturbative expansions. 

4. The prepotential of the sphere-term of the truncated Kiihler potential, for 

B = C = 0, does not get corrected at the higher levels in the perturbative 

expansion in a', except at o(a'3) (four loops in the sigma model). 

The extension of the DM symmetry to the other moduli and to the matter 

fields does not restrict their appearance in the correction terms to which they 
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contribute. However, sorne of the ahove theorerns still apply or arc slightly 

modified. 

The very lowest order term ('Y = 0, c = 0) can he rcnormalizcd by a functioll 

of the other moduli. The symmetry does not restrict the appearnnce of th('s(' 

moduli fields in the gauge coupling function either. The supcrpotcntial cotlld 

depend on H, but it docs not get renormalized a.t RUy finit(\ onl<'I'. Finally, 

the NR thcorem 4 is not rnodified by the inclusion of other moduli, but. tll(' 

counter-terrn is. 

An interesting extension of these conclusions would he to verify t.hat they 

hold for orhifolds, a case where the corrections are somctimes cxplicitly t"OlU­

putable. We could then determine the ab ove unkuown coeffici(\llts for S01ll(' of 

these special cases. Also, it would be interesting to how thesc coud Il~i()ns ('an 

be applied to the case of four-dimensional strings with non-liucur rcali;t,atioll of 

the worldsheet supersymmetry. 

The results that we will find in the following appendix are Sll111lIHlri~cd in 

thcir own conclusion at the end of the appelldix (section A.6). 

55 



( 

Appendix A 

Regularization and String 

Theory 

This appendix is not clo~ely related with the rest of the thesis! However, the 

littlc history of this research made us focus our attention on that subjcct in first 

place and for some period of time, we thus want to share our experience, here. 

As it is expressed by the first section of this appendix, the functional mea­

sures, [dx], [dÀ] and [dtjJ], that enter the Polyakov's framework for quantization 

of strings contains many ambiguous expressions: functional determinants or in­

finite products over a constant. One may be, with reason, bothered by thern. 

This appendix is intended to make explicit these ambiguities. The key tool 

that w(~ use herc is regularization. This concept is relatively new in physics 

(fifty years) and it appears with the infinities that are involved in perturbative 

language and in funetional analysis framework. It is related to the well-known 

mathematical study of analytical continuation of holomorphie functions in the 

framework of classical complex analysis. 

We have included the following discussion within this paper, for at least 

two more reasons: first, sorne of these regularization schemes are very general 
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and cau be applied to various cases, not restricted to string thml'y and t.wo­

dimension al physics. Next, we investigate several methods for rcgularizillg t IH' 

same quantities and we feel that the comparison bctwcen thcm, that. pt'rf('ctly 

agree, is worthwhile. 

The structure of the discussion is the following: wc bcgin by mot.ivatc t.he 

study of partial measures for our two-dimensional fields, that do llot iU\'olve tll(' 

string tension Tl. This leads us to the study of ratios of dct.crminants nnd 

anomalies for the partial measures. We computc thcsc, both in gt'IH'ral élud in 

particular cases, using different methods (Weyl anornaly, Gilkt'y procC'dul't· auc! 

explicit computations), showing sorne relation betwcell zeta f\lud.ion of op<'ra­

tors that involve zero-modes and those for which they arc rcrnm'(·(l. Fillally, wc' 

conclude by a small Rection where the regularized values of t.hosc expn'ssiollH 

are stated. 

A.1 String Field Measures 

First, let us recall a result of standard differential geornctry on finitc-dimPllsiollal 

manifolds. It is possible to define the measure on a manifold 1\ hy tJl(' l1lPlIsun' 

on the tangent bundle TIC This is because a set of coordinatcs {ql} of K clc·finc·:,; 

a natural set of coordinates {pl} on the tangent spacc TqK. Thf'y are cxpli('itly 

given by the parameterization: v = pl( â / âql)q for any v E T'II\. If wc' hm'(' 

another set ql on K, then we get pl as new coordillatcs of the tangC'ut. space, 

with Jacobian 

J(q) = det ~ = clet . .iL 
1 

ÔAI 1 1 DAI 1 
ôpJ q 8qJ 

(A.1) 

This shows that J(q) depends indced only on the position q on the manifold 

and not on where we are on T qK. A volume form w = J( q )dql ... dqn on K 

1 Important notice: through ail this appendlx, we use the string tl'lll>iOIl 1', in"tC'/l(1 of 

the Regge slope. This is not to be confused with the breathmg mode scalar field T in tl\(' four 

dimensionsl effective action (see chapter 2) 
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thus induces an n = f(q)dpl ... dpn on TqK which transforms with the same 

Jacobian J(q). If for some reasons, it is more convenient to work on TK, wc 

can tum this argument around and define on the tangent bundle the measure 

of K and its transformation law under a change of variables. 

There is not.hing that forbids us to extend this argument to our case of 

an infinite-dimensional manifold. The measures of the worldsheet metric [dh] 

and of the gravitino [dxJ are formally defined this way [16J. But we can use 

worldsheet symmetries (general covariance, supersymmetry, Weyl and super­

Weyl scalings) to gauge away all the freedom contain in the functional measures. 

There rcmain, then, a Jacohian and a integration over a finite number of super­

moduli (or super-Teichmüller parameters). The measures of the metric and the 

gravitino are completely independent of the ten-dimensiollal fields and of the 

string tension. We will use the above remark to define the string field measures 

[dx1, [dA] and [dt/J] that do depend on the background field and/or the Regge 

slope. 

A.I.I Functional Measure for xAf «(]) 

The measure for xM (u) is much easier to define than that for the worldsheet 

rnctl'ic (see references [16]). We define the norm of an element 6x M(u) of the 

tangent space, Tî of the space of embeddings, e. We ask that it must be 

invariant under world~heet reparameterization, and ultra-local, meaning that 

we do not couple different locations on the worldsheet in the definition of the 

norIll (the metl'Ïc over Te must be proportional to 8(u - (T') [40]). If moreover, 

wc wallt this expression to he generally covariant with respect to background 

spacetime, then we are forced to define this norm as follows: 

(A.2) 

whcre the constant A is unphysieal and arbitrarily fixed; in faet, we will neglect 

it! The subscript T is included to emphasize the dependence of the norm on 
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string tension, 

The dependence on Tin equation (A,2) is crucial for our pm'posl'. It COn1t'8 

in as a consequence of the requirement that the norm be dimensit'mlcss, sine(' \\'(' 

implicitly define the x-measure in the exponential of a Gaussian inh>g,ral. Let. 

us note the following: 

J (!! d( 6xM (0"))) .-lIhll}/' = net -1/' [TG AIN ( x( (7 )).5(0" - 0"')1. (A.3) ..,. 

We require that the measure [dx]T satisfies 1 = f[dx]exp(- IIh:rIl~, /2), just. 

as previously. This condition and equation (A.3) imply that the X-lllCaSUf<' is: 

[dX]T = Detl/2[TGMN(X(u))6(0' - a')] II d:l'M(O'). (A.4) 
(! ,!vI 

The expression Det[TGMN(X(O'))t5(u - 0")] is a functional detel'minnnt.. H 

results in the introduction within the mensure [d'Ch' of the following factor: 

TIt7detl/2[GMN(X(0'»], as weIl as sorne T-dependence requiring SOIlle kind of 

regularization. The former factor is essential ip order to assure t.}l(' g('1l<'1'1l1 

covariance of the partition function (see [41]), and it remains to he intcrpretc<l. 

A fini te dimension example could perhaps be more clear for the in:plications 

of the T-dependcnce of the mensure [dX]T' We choose for simphcity a fiat 

background metric and we take the variable of integration to he yI, wlwl'e i = 
1,2, ... , n. Then, according to (A.4), the measure is [dy] = TfI/2d"y, implying 

that: 

(A.5) 

and not det(TM), as we could have thought. This is consistent with the l'C­

quirement that the partition function be dimensionless, as can be deduccd from 

the S-matrix expression (2.1.). 

A.1.2 Polyakov Measure for Fermions 

The usual way to treat fermions in a path-integral formalism is to use Grassmann 

variables. The integration over these anti-commuting variables is quite peculiar. 
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As an illustration of this strange behavior, let us dcrive the J acobian of the 

transformation 7] --+ (J = a7], which will be of somc importance to us (here, a 

is sorne fixed realor complex number). We know that Grassmann integration 

implics 

J dB (J = 1 J d(Jl = O. (A.6) 

Dcfiuing J(a) to be the Jacobian, we trivially see that J"~a) = lia; it is precisely 

the inverse of the ordinary result for cornmuting real var" ables. 

This rule has onc important consequence: when we define the norm of sorne 

spinol" field to be 116tP Il}= g'Jb.,pÎ 6tP j , where i and j represent aIl the indices of 

the spinor (gauge or target spacetime index, position on the worldsheet, etc.), 

the measure is then given by Det-1
/

2C(iii) ni d.,p'. This is to be compared with 

the Riemann rule in which the square root of the deterrninant appears in the 

numerator. 

Once this is noted, we may set the spinor norms as before, demanding that 

thcy be ultra-local, dimensionless, invariant under worldsheet l'eparameteriza­

tion and gencrally covariant with respect to background ten-dimensional space­

time. \Ve know the dimensionality of ..\M and .,pli from the action (2.28), 50 the 

mensures are given by: 

IIh..\II}= T f d2uVh, GMN(X)h..\M6..\N, 

IIh'tP"}= T f d2uVh, hll,htPllb.,p'. 

(A.7) 

Note that T-dependence is required to rnake the norms dimensionless. The 

fCl'mionic measurcs are thcn implicitly defined by the usual Gaussian integrals. 

The rcsult is therefore very similar to the previous one for xM (0' ), except that 
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one gets the inverse power, since the integrations are over Grassmann yariables. 

[d'\]T - Det-l/2[TGMN(X(0'»b'(0' - 0")] II d(b',\M(O')), 
cr,M (A.8) 

The latter infini te product over a constant may cause sorne problf'Il1s in t.lll' 

integration, but as we will see, it is not the case. Reglllarizatioll t('c1miqlH's 

applicable in this case will also be developed in t.he following sections. 

A.2 Jacobians for the DS Transformation 

In the previous section, equations (A.4) and (A.8), wc illtroduccl.l the functioual 

determinant: Det[TGMN(X(O'»)b'(u - 0")] and the illfillit.c product n~,t7 Til'}.. 

These two expressions are basically the same thing, for the dcterminnnt is also 

an infini te product. In order to interpret these quantities, wc 11('('(1 to kllOW how 

to regularize them. 

For the moment, we will be more intcrested in their T-dcpendcw'(', This 

leads us naturally to introduce a norm for the fields indcpcndcut of tlH' strillp, 

tension in order to single out this dependence. For examplc, in the case of 1/)" (11), 

which is simpler because the part of the action (2.28) involving 1/' is (l'l1tdratic 

in this field, and the definition of its norm does not involvc G MN. Similady tu 

(A.7), the tjJ-norm is defined as: 

(A.n) 

Consistently with the previous notation, the subscript 1 in (A.9) indicatcs that 

the norm is indepelldent of T. Wc will write as [dtP] 1 the corrcsponding lllNtsure 

verifying: 

(A.IO) 
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This mcasure cannot be taken as the full measure for tP Il ( u) for parti tion fun ct ion 

cvaluation, becausc it is equivalent to (sec equation (A.8»): 

(A.11) 

Clearly, (dtPh has dimensions and is not equivalent to (dt/J]T. 

Let us introduce a dimensionful scaling (DS) transformation: we define r = 
T-t A2. Then, the transformation is: 

GMN = r-1GMN 

BMN = r-1BMN 

~ = r- I / 2tP 

(A.12) 

This transformation cannot have an anomaly since it is equivalent to dimensional 

analysis: each tensor of type (r, s) then carries a dimension of (M ass ) r- Il . 

However, the norm defined in equation (A.9) has not the right behavior 

under a DS transformation (A.12). The net result of such a transformation is 

to scale t,he norm by a factor of r. It is then to be expected that the measure 

[d,plt aC<luire sorne Jacobian J1/1(r) under the DS transformation (A,12). If the 

transformation has no anomaly, then this Jacobian will cancel exactly the factor 

coming from the illfinite product, namely TIIl,u r- 1/ 2 • 

\Ve can compute this Jacobian J",( r) noticing that 

N t Detl / 2(A2P) = j[d,(fih e-I",["b,A
2

] 

- J",(r) j[dtPh e-I"'["',Tj 

- N1J",(T) Det I/2(T.fJ). (A.13) 

whel'e NI is sorne numerical constant. In (A.l3), we denoted 1", the part of the 

heterotic string action (2.28) involving tP ll
( u) and we let: 

1",[tP, T P] = ~ j tfuVh 1fiIYl/J, 

Ht'nce, the Jacobian J",(r) is given by the formula: 

Detl / 2(A2p) 
J",( r) = Oet 1/ 2(T,tJ) . 
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Obviously, this can be also applied to the other two-dimensional fields .rAI 

and ).M. In the same way, we define the norms Il Ô.r II~ and Il Ô>.. IIi t.hat nr(' 

independent of string tension T, and then we set the measures [dx], and [d>..lt 

using the same condition as before. \Ve then get: 

[dX]T = Det
1
!2[GMN(X(0'))b(0' - 0")] [dJ'JI, 

Detl/2[TGMN(X(0')b(0' - 0")] 
(A.lG) 

And sirnilarly for [d-\] , apart that the relation is inverse due t,o Hl<' Hpiuorial 

nature of this field. Such a ratio of determinant is something we would like to 

interpret. 

Again, the knowledge of the faet that there is no anomaly for the full Il]('(t­

sures [dX]T and [d-\]T allows us to relate this with sorne Jacobinns in tlw saUle 

way as before. For example, working with bosonic strings in fiat. Eudidcllu 

background spacetirne the J acobian J x ( r) for the DS transforma tiOH (A, 12) OH 

the measure [dxh is given by: 

Det-1 / 2 ( -A2 0) 
J (r) = --.,,-'---'-

J: Det-1!2( -TO) , 

o = b MN 00, and 00 is defined by: 

( A.lï) 

(A.l8) 

The .Tacobian of the measure [d-\h is given by some expression more similar 

to J",(r) (equation (A.15)). Those Jacobians should cancel exactly the scalillg 

coming from the ratio of functional determinants. 

This kind of ratios of functional deterrninants is whul we will be jnt(~n~stc'd 

to compute in the next sections using several methods. This prohlelll caB 1)(' 

generally stated as the regularization of an expression like: Dct(T6)jDct(6), 

where the deterrninant is an functional one, r is sorne paramctcr (llsually the 

one defined in equation (A.12» and 6 sorne (at most quadratic) op('rator. lu 

the finite case, 6 is a n x n matrix and the above expression is cqual to Tri, hut 

as n -+ 00, sorne regularization is needed. This is what wc will do in the ncxt 

sections using different methods. 
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A.3 Weyl Anomaly 

The first of our methods uses the faet the effeet of the DS symmetry on the 

norm defined without the string tension in them is very similar to the action 

of a Weyl transformation. We can then exploit this in or der to compute the 

.Jaeobians for eaeh of the partial measures [dxh, [dt/'h and [d.\h. 

As we already mentioned several times, it happens that, when an action 1 

is invariant under some symmetry transformation of the fields, the partition 

fUlletion is Ilot. This is due to the faet that the functional measures of the fields 

are not always invariant under the symmetry themselves. Weyl transformation, 

fol' example, induees an anomaly, that has heen a central issue in string theory 

ever its debut. It was first computed using funetional methods by Polyakov [12J. 

A Weyl sealing of the worldsheet metric, hO/fj -+ ehO/fj also makes the norm 

(A.9) scale by sorne power of e. So, it will not notice the difference between 

thosc two transformations (DS and Weyl) provided that we ehoose e to he the 

rcquircd power of T. 

For convenience, we will also denote e = eE 80 that the Weyl sealing of 

the worldshcct metrie will be equivalently written as 6hO/(J( (1) = fhO/{J( (1), for 

infillitesimal variation. In the same way, we will write T = e"" and the DS trans­

formation law (A.12) becomes for the metric of target spacetime: 6GMN(X) = 
wG At N( x), where w is also smal!. 

We know that the zweihein is such that: (ea)O/( ea){J = hO/(J. So under a Weyl 

transformation, 6( ea)O/ = - f( ea)O/. Now if the action is to he Weyl invariant, 

then the fields must transform as follow: 

6x M = 0, 

(A.19) 

h'ljJlI = - i'ljJlI, 

On the othel' hand, the effect of the DS transformation (A.12) is the same 

fol' all llorms Il hx Il?, 116,p Il? and " 6.\ Il?. It consists simply in the sealing of 

thosc norms by a factor cf T. 
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We will symbolically write W(e) for the Weyl transformation (A.W) with 

parameter e = el and S(-T) for the transformation (A.12) with paranwt,<'r T. 

Comparing the effect of those two transformations of the fields 01l tIl<' Uj('a~llr('s 

defined with the T-independent norms, we find that., l'ven for fiuite dmnp,(': 

for [dxh: S( r) {:=} W( r), 

for [d'xh: S(r) {:=} W(r 2 ), 

for [d,ph: S( r) <=:=} W( r 2 ). 

(A.20) 

The symbol '<:=>' in the above expression do not mean that the effcds of ca eh 

of the above field transformations on the full measurcs arc equivalcnt, but only 

the changes of the T -independent norms of t.he fields arc. 

The author of [42] computes the effect of a Weyl transformat.ion on t.he 

measures for superstl'ings (using implicitly the heat-kcrncl proeedul'(, t.hat is t.lH' 

subject of the next section). Ullder a Weyl sealing W(e f
) they chanAt' as follow: 

(A.21) 

and 

(A.22) 

where, using GauB-Bonnet theorem, we made explicit the depende>nC'C ov<:'l' 

X(M), whieh is the topologieal Euler characteristic of the worl(lshe{'f, M. 

The effect on the 'x-measure of the Weyl transformation in eqllation (A.22) 

differs from the result in [42] by a factor one half. This is due tu t}l(' fad, 

that we are here dcaling with Majorana-Weyl fermions, whilc, in Hw paper, 

the fermions had only to verify Majorana condition. Renee, the trace over spin 

indices contributes to a factor half less. 

For tP-spinors, wc have a similar action, thus a similar rcsult. The only 

change is in the number of fermions, here NF = 32 instead of D: 

(A.23) 
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We thus get the Jacobians that we were looking for: 

.J",( r) = r-NFX(M)/24. 

(A.24) 

In the next section, we will examine a way to compute exactly the [dtPh­

anomaly. This way is more direct than the previous one and makes use of the 

explicit change in tP ullder the transformation (A.12). AIso, this procedure will 

allow us to do the regularizatiolls that we need. This is what we calI the Gilkey 

heat-kcrnel procedure. 

A.4 Gilkey Heat-Kernel Procedure 

A.4.1 Zeta Functioll 

We will use the (-functioll trick to regularize the ratio of functional determinants 

that gives the above Jacobians. If we define J-ln to be the cigenvalues of the 

operator ~, thcn we say that the functional determinant of ~ is the product 

over aIl Pn 's. However, there could be difficulties in evaluating this infini te 

produd, so the regularization process goes as follows. First let the function 

(a ( s) he defined by: 
1 

(~(s) = L-' 
n l':' 

(A.25) 

for all s coutained in the region of the complex plane where the series converge. 

The (-fullction is then a.nalytically continued to s = 0 and we obtain that: 

Det(~) = e-d'Idll/ . 
11=0 

(A.26) 

But the essential property to remark for our purpose is that we may now 

express (,\a (s) in term of (a (s), for any constant À. This is done as follows: 

(A.27) 
n 
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Differentiating the two sides of the last equality, wc gct: 

(A.28) 

Now, evaluating the last equation at s = 0, using the d('finition (A.26) fol' 

determinants and, say, the expression (A .15) that we have got fol' J t1. ( r) (fol' 

which ~ is $>, we are in position to write, in term of the f\luction (~(.'i), t.he' 

Jacohian that wc are looking for. This gives: 

J",(r) _ (cH4(O)logA2-H~(O») (e-!(4(O)lOg'r+t<~(o»), 

_ r!(4(O), 
(A.2D) 

remembering that we defined T = T-l A2. Therefore, the only important qtlilU­

tity to regularize this kind of ratio of functional dcterminallts is (~«(). Gilkc'y 

heat-kernel procedure allows us to do exactly this. 

A.4.2 Gilkey coefficients 

In this section, we will adopt the convention to simply write ((s) fol' (~(.~). 

Now let us turn to Gilkey's mcthod, that will allow us to compute ((0). It is in 

faet a gcneral procedure to obtain the (-function of a second order diff('l'(,lltial 

opcrator. Let us explain how it is done. 

For /-ln and tPn ((J), respectively eigenvalues and eigmfunctions of th(, operator 

~, let us define the heat-kernel function K( (J, a'; t) to he the following: 

1« (J, (JI; t) = E e-I'n ttPn( a )1/1:' ((JI). (A.30) 
n 

Then we can show that: 

((s) = r;s) LOO dtt 6
-

1 J d2 a trK(O',ajt). (A.3I) 

The trace is to he taken over all indices (spin, gauge, etc.) of the cigenstates 

1/In(0'). Then, Gilkey has shown that it is possible to evaluate the (-function of 

an operator written in the form: 

(A.32) 
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where, as wc can see, Q( u) does not involve the regularization factor m2• For 

a operator of the above form, we can explicitly compute the Gilkey coefficients 

(lk(U) which are defined by the coincidence limit of the heat-kerncl function2: 

IVh 'J~ k 
]((u,u;t) = 471'-t- e- m 

t L..,adu)t , 
k=O 

(A.33) 

where, as before, h = det( hOlfj) is the determinant of the worldsheet metric. 

Gilkc'y's results for the coefficients ak(u) can be found in [43]. For our 

pUI'pose, as we arc about to sec, the knowledge of the second coefficient al(u) 

is sufficicnt. Following Gilkey, we first define: 

(A.34) 

and 

(A.35) 

with pOl and Q as in equation (A.32). Then Gilkey has shown that: 

(A.36) 

whcre Rh is the Riemann scalar curvature or the worldsheet M. 

Let us see how we get that the (-function, as expressed in (A.31), reduces 

to the only k = 1 term of the heat-kernel expansion (A.33), when we evaluate 

it at s = O. For convenience, we introduce the following functions: 

100 dt t'+k-2e.-m2t 

m2(1-.-k>r(s + k - 1). 

Using this definition, it is easy to rewrite our zeta function as: 

(A.37) 

(A.38) 

2111 the following, ail the calculations are in general explicitly done for a two-dimensional 

manifold (the worldshcct), but Gilkey's procedure applies equally weil for operators defined 

in 1\ space of arbitrary dimension, 
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In this expression, all the dependence over s is in the ratio p,,(s) = q(.~)/f(s). 
What is important to us is the behavior of thi5 ratio Pk( s) in the limit. s - O. 

As z - 0, the Euler gamma function f( z) has a simple pole. But it also has 

a simple pole for every negative integer z = -no From this, w(' cJearly S('P that, 

r( s + k - 1) a150 gets a pole when s -+ 0, but only for the vaIu('s k = li or 1. In 

fact, the Laurent series of fez) near any of these poles is well knOWll. 

1 
r(s - 1) = -- + (t - 1) + o(s), 

1 s 
r(s) = - - ')' + o(s), 

s 

k =0: 
(A.39) 

k = 1: 

'Y = 0.5772 ... being the Euler-!vfascheroni constant. The Brnit of the ratios 

Pk( s) as s -+ 0 thus vanishes for aIl k, except for the two values k = 0 and 1. 

Their value are given by the following limits: 

PoCO) = 
PI(O) = 

lim(sco) = 
" ..... 0 

lim(sel) = 
" ..... 0 

_m2 , 
(.\.40) 

1, 

showing that the k = 0 contribution to the (-function evaluated at zero vallÎshes 

in the limit m - O. Finally, the expression for (0) only involvcs tll<' Gilkcy 

coefficient al «(]): 

(A.41 ) 

With this, we have restricted our problem to the filldillg of the Gilkey C{)('ffkicut 

al (0') for the two operators that we have considcred, namcly tJ and O. 

A.4.3 Jacobian for [d1/Jh 

Let us first define very explicitly what is meant by /J. To be the most g('n­

eral as possible, we will work in a reparameterization invariant language. The 

covariant derivative Da(x, À) acting 011 the 1/J-field thus involves a general co­

variant derivative Va, plus a gauge connection aa(x, À) coming from the gaug(l 

group,i.e. we have set Da = Va + aa. 

AU of those operators will be expressed explicitly in a moment, but, bcforc, 

we need to define :Jab to be spin-f representation of the gencrator Jab of the 
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Lorentz group (or rather of 80(2), since wc are working in Euclidean space), 

thcn: 

(A.42) 

Here, ;ya is the notation for the ')'-matrices dcfined in fiat Euclidean space. 

They diffcr from the gamma matrices of equation (2.22) only by: ;yI = -hl 
and ;y2 = ,o. We also define ;YP = _i;yl;y2 = ,p, as we can see in equation 

(2.23). Notice that they are then simply given by the corresponding Pauli 

matrices, ;YP being the third one. Since in two dimensions, only four matrices 

are independcnt, namely, l, ;yI, ;y2 and 1P, the spin-! representation of the 

group generator Jab can be wl'itten in term of those, as: 

(A.43) 

Once this is settled, we may express precisely what we meant by the covariant 

dcrivative DOt in equation (A.14). First, let us precise that tJ is a short-hand 

notation for ;YOt DOt. Now, the general covariant derivative on the worldsheet VOt 
is given by: 

VOt = ÔOt + nOt (+r~~ as necessary ) , 

nO' being the spin conncction defined by: 

(A.44) 

(A.45) 

The quanti tics w~b( u) are a connection that can be computed from the require­

ment that the covariant derivative of the zweibein vanishes, i. e. V Otep = O. 

80lving this equation, and writing evcrything in term of the zweibein, we get 

[2]: 

W~b = ~e!ia(âOte~ - âpe~) - ~e~b(âO'ep - ô,ae!) - ~e,aae"1b(ô,ae"1C - ô"1e{Jc)e~ 
(A.46) 

Finally, since equation (A.14) is the tP-part of the action (2.28) for heterotic 

string thcory, it is clear that the previously introduced gauge conncction aOt is 
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the following: 

(A.47) 

Before going any further, we must be cardul with tlw zcro-m(lIk~ of /J. A 

zero-mode of an operator is an eigenstate of this operator t.hat has cig('uvahl<' 

zero. This, in a Grassmannian integratioIl, causes obvionsly SOlll(' t.rouhl('s, 

sinee, when integrating the zero-mode part of the exponmtial, Wt' Hlt" iu rad, 

illtegrating a constant over a Grassmann measure. And it vallislws, as il. is \V('11 

known. In order to get rid of them, we introduce il, smaH 'mas:;' t.('ml 1/1 t.hnt, w(' 

will take to zero at the end. Do not worry about. tll(' justificatioll of t.his st(·]> 

sinee we will nced to come back to this in sections A.5 and A.G. Explicit.ly. W(' 

define ~m = P + m, and we suppose thell that ~m has no Z('w-lllod('s nt. ail. 

However, in order to be able to use Gilkey's results [43J to comput(' t.h(· valllt' 

of the (-function, we need to find a way to relate ~m to a s('cond onkr 0lwmt,ol' 

(see cquation (A.32». In order to achicve this, it is uscful to n'lllm).;: t.hat,: 

[~ ~]-[~ ][ A-BD-le 

o 
o ] [ 1 0 ], (A.48) 
D D-1C 1 

50 

Det [~ ~] = det(A - BD-
1 Cl dctD. 

Similarly, we can get: 

Det [; ~] = detA det(D - CA -1 D). 

Therefore we see that: 

det [m2 - D+D_) , 

det [m 2 - D_D+] , 

(A.49) 

(A.50) 

(A.51) 

where wc defined D± = Dl ± iD2 with D being the covariant derivativc defincd 
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in cquation (A.14). On the other hand, we can easily see that: 

(A.52) 

This has the obvious consequence that we can compute the determinant of 

6 in term of the one of 62 , explicitly we get: Det(6) = Det1
/

2 (.:i2 ). Using the 

definition (A.26) for determinants, this shows that (~2(O) = 2(~(O). And it is 

not hard to sec that it cornes from the faet that: 

(A.53) 

sinee the cigenvalues of 62 are the square of those of Àm. This means that we 

arc in position to compute the Jacobian J",(r) with the following expression: 

(A.54) 

At this point, the last step is to put the operator 6 2 in the desired form 

(A.32) and to compute the coefficient al (0'). Remember that wc defined Ji 2, in 

('quation (A.52) to be given by: Ji2 = m2 - tJ2. Let us express l/J2 = (;y. D)2 

in a differcnt form: 

(A.55) 

\\'ith i o /3 = H1°, 1.8]. We then write these terms in a very explicit way. The 

first of thcsc is given by: 

(A.56) 

where 0 == hOtf/V 01 V.8 (equivalent to the previous definition in two dimensions) 

which can be rewritten as: 

(A.57) 

The second term of equation (A.55), involving the commutatol', requires 

the knowledge of the commutator [VOt, V.8] of the general covariant derivatives. 
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Remember that it is a very common statement in differcnt,ial gc0111ctry mui in 

general rclativity that this last commutator, when applied to a "cetOl' field l'CI 

takes the value: 

(A.58) 

where, R6
011h is the Riemann curvature tensor on the worldshcct. In ordcr to 

express the commutator [VOl' V pl, we find the equivalellt of equation (A.58) for 

an arbitrary group representation. When wc notice that the rcprcscntation of 

the 80(2) generator (Jab)cd is simply OacObd - OadObc for a vcetor field, wc filld 

that an obvious generalization of the formula (A.58) for an arbitrary spin fi<'ld 

lS: 

(A.5\)) 

giving [VOl' V 13] = i ROip ab Eab'YP, when applied on a spin-! spinor field, aR wc cau 

find it from equation (A.43). This enables us to derive the whole commutator 

[DOl, D.8]' Before, let us define the field strmgth tensor fo:(3(x, >-') of the gangc 

connection aOl(x, >-') to be the following: 

(A.GO) 

And then we get: 

(A.G1 ) 

Here, we introduce specifie properties of the two-dimensional worldl,hed. 

that make the above expression (A.61) simpler. First, let us us remarIe that 

in a two-dimensional space, like our worldshect, Riemann tcnsor haH only one 

independent component, namely the scalar curvature Rh. 

(A.62) 

"Vith this and the faet that "ab€ab == 2 in two-dimcnsion, wc gct: 

(A.63) 
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Thcrefore, putting aIl together the results of equations (A.56), (A.57) and 

(A.63), we fillally get the desired form (A.32) for the operator 6,2, where pa(u) 

and Q( u) read explicitly as follows: 

Rcmark that this and equation (A.57) show that: 

12 = 0 _ Rh. 
4 

(A.64) 

(A.65) 

Using cquations (A.34) and (A.35), all this, fortunately, reduces to vcry 

simple expressions: J(a = aD + na, and 

(A.66) 

Thcl'cfore, wc finally get the value of the Gilkey coefficient al (0'). 

(A.67) 

Here the trace is over spin and gauge indices. We know that the field strength 

/op is proportional to the generator TM. We know tlnt we can choose a repre­

sentntion in which aIl the matrices T3~1 are traceless, so this term drops out of 

the expression. The spin trace will not have any effect on our answer because, 

dealing with Weyl spinors, we are summing over only one index. Thus, the final 

expression for the' -function will he: 

Np J 2 Iï NF 
(0) = - 4871' d uv hRh = - 12 X(M). (A.68) 

Thercfore, according to equation (A.54), the change in the product part 

[dt/'h of the measure of 'ljJ due to the action of the DS transformation (A.12) 

will be givcn by the Jacohian Jvl T). 

(A.69) 
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." Explicitly, that means that under the DS transformation (A.12), tlH' chauge 

in the product part of the functional measure of the spinol' field 11'( (1) is tilt· 

following: 

(A.70) 

where, as before, w = log T. We see that this result agrccs with t.he 011<' oht.aill('d 

previously (see equation (A.23) and (A.24)), 

A.4.4 Jacobian for [dxh 

When we want to apply the ab ove heat-kerncl procedure to t.he othcr fi('ld:-. of 

the heterotic string action (2.28), the things are Dot as dpat' as l)('fol(" :-.i Il CI , 

the fields xM «(1) and .xM (0') involvc operator which arc Ill1lC!t 11101 (' ('olllplicat('d 

than a Dirac operator like 1J (equation (A.14)). In fad, thp Ü'llllS illV()l\'lll~ the 

embedding xM (u) are not quadratic, and not cvell a prtorz clcfill('d. 

However, the Gilkey procedure apply for the bosonic case iu SOIlU' approx­

imation. It is possible to expand the coordinat cs :cM (a) élloull(l SOllll' fix('(l 

point fiAt that does not depend on the position on the worldf,}wd an. Wlit,ill~ 

e~1 (u) = xM «(1) - xM, wc can expand the target spacc metric as follows, :rM 

being reparameterized in Gaussian coordinates: 

(A.71 ) 

where we have introduced the not.ation GMN = GMN(i'). 

We will considcr the case when we can ncglcct aU corrections and aSh\1UH' 

that the mctric of the targct space is simply G MN. Then, w<, may illtc~mtl~ by 

part one of the derivatives 80t x M and get the action of bOf">Ilic string tll('ol'y in a 

curved background spacetime (see equation (2.6) or the firsl terrn of the hetcrot.ic 

string action (2.28)) in a quadratic form Ix = -CM N(xM, Dx N ), where ( , ) 

represents the scalar product between worldsheet scalars (an intcgration OVCI' 

the worldsheet M). 
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This action, since it is the first term of the hetcrotic string action (2.28), 

is clcarly seen to classically obey the transformation rule (A.12) under a DS 

transformation of the background metric. We want to find how the product part 

of the x-measure scales for any worldsheet genus. If We neglect the conformaI 

Killing vcctors, the result is qui te easy to get. Using the same argument as in 

equations (A.13), we find that the Jacobian Jx(r) of the measure [dxh is given 

by the ratio of detcrminants: 

(A.72) 

The target space metric contributes to the sorne regularized factor f(G) in 

the evaluation of the functional determinant Det( -G MN 0) = f( G)Det D ( - Do), 

where wc defined 00 to be the Laplacian 0 acting on a worldshcct scalar: 

(A.73) 

Using the eql1ation (A.29) of section A.4.1, one find that the Jacobian Jx ( T) 

is cxpressed in the following way in term of the' -function of the operator 00: 

(A.74) 

When we apply heat-kernel procedure of section A.4.2 ta the operator 00, 

wc can easily compute the Gilkey coefficients using equations (A.56) and Gilkey's 

method presented in (A.34) and (A.35). The result is that e = 0 and therefore 

wc get at{O') = Rh/6. This gives us: 

(00 (0) = X(M)/6. (A.75) 

and 

(A.76) 

Again, t.his is in accord with the result of sect.ion A.3, equation (A.21). In 

conclusion to this section, we may say that the Gilkev procedure is quite efficient 

to find the' -function evaluated at zero, associated with differellt second order 
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operators. But previously, the problcm of zero-mode was ncglccted and wc said 

that we would have to study it more carefully. It is what wc will do iu the Ilext. 

section by computing explicitly the zeta function of 00 and l' 011 t Il(' sphel"(' 

and the torus as representatives of Riemann surfaces of g('IlUH r = 0 or 1. 

A.5 Explicit Calculation of Zeta Functions 

Wc will only study scalar operator (-functions (with resp('d t,n the tm'gd. spa('(': 

00 instead of 8 MN 00)' The motivation for studying this case is simpl(': t.lu· 

last sections considerations allow us to infer that the effcd. of th€' llnml)('r of 

dimensions of the target space is simply to multiply t.he zda fll11diou hy D. 

We introduced a bosonic real scalar <.p(0') and a fcrmionic MajOl<lllll SpiWll 

'1/'( 0'), both defined on a two-dimensional spacc: the worldsh('('t, M. Thes(' Rd(lH 

will help us to compute explicitly the '-functions, evaluat('d nt ;1,1'10, for the 

operatol 00 (as dcfined in (A.73») and YI == Y"\1 f)f (wit.h \7(1 ~iv('u in (A.-t·1). 

vVe will find the value of (-00 (0) and ',,(0) on a unit sph('1'(' and a fiat tOrtlS, 

doing the explicit sum over the eigenvalues of the opcrators, just. as it is stat.ed 

in the definition (A.25). 

A.S.I Spltere 

Zeta-function of 00: We will at first concelltrate on the sealar field ~(11). That 

is wc foeus our attention on the calculation of 

where 

1 
(0(05) = L -~, 

n ILn 
(A.77) 

(A.78) 

The first step is to determine what are the eigcnvalues Iln 's. That menns wc have 

to solve the above eigenvalue equation (A.78). Since the operator 00 explicitly 

contains a metrie dependencc, the equation, that we want to solve, diff('rs for 
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d:ffcrent worldshect metrics. Wc have a good clue from section A.3 that the 

value of the zeta function at s = 0 is a topological invariant. Therefore, it will 

he sufficient to specialize to the unit sphere and the fiat torus, when studying 

tlw cases where 1 = 0 or 1. 

Let us begin with the unit sphere S2, wc choose to paramcterize it \Vith the 

usual spherical coordinates: 9 for the latitude and tP as the azimuthal angle. 

The metric hOfJ( 9, <p) on S2 is then given by: 

~ ]. 
sm 2 (J 

(A.79) 

Using that rnctric, we find that the ouly non-zero components of the Christoffel 

symbol arc (exccpt for the obvious symmctry in the lower indices): 

r:", = - sin 9 cos 8, 

rt", = eot 8. 
(A.SO) 

So, the left-hand side of the eigenvalue equation (A.78) bccomes explieitly: 

(A.8I) 

In this last expression, we immediately recognize the opcrator -L2, the angular 

lUomcntum vcry corn mon and useful in non-relativistic quantum mechanics. The 

solution for the eigcnvalue problem is weIl known: 

(A.82) 

\Vi th dcgcneracy 21 + 1. The functions Y~ (8, <p) are called spherical harmonies. 

Omitting the zero mode (when JLn = 0) which makes it divergent, one thus 

gcts the following expression for the '-function: 

(A.83) 

In the last cquation, the superscript 0 represents the genus of the surface that 

wc are workillg on; i. e. on the sphere, ; = O. The tilde just says that we are 
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neglecting zero-modes. It will be possible to ('valuat(' pxplicit.ly d~(O) maug 

Newton binomial expansion of the denominator [44]. 

(A.84 ) 

The ab ove expansion is mathematically justified for aIl !, exct'pt 1 = 1. Ne\'­

crthcless, a careful treatment of this term shows that., in the limit, .'i --. 0, 0111' 

expression is correct. The next step consists in intcrchangillg tlH' SUlll ol'd.'r: 

(g(O) = "" [21 1- 2,,-1. + r 2,,-k] _ f( 1 - s) , ft k!f(l-8-k) 

00 

"" [?l' (? k 1) l' (?, 1.)] [(1 - 8) - ~ -'sn _8 + - + 'sn -~ +" /.-!r(l _ ,.; _ k)' 
k=O 

(A.85 ) 

where (n( z) is the Riemann' -function, which is dcfinn} hy Hw followiu/!, s('rit,s: 

00 1 
(n(z) = "" -, ~nz 

n=l 

(A.86) 

and Hs analytic continuation. This fundion is fotllld to be aualytic OVC'l' t.1H' 

entire complex plane with the exception of a simple pole in z = 1. 

We now take the limit s -+ 0 in the expression of (g( s) of equatioll (A.85). 

In this limit, r(l- s - k) diverges for aIl k ? l while f(1- ,.,) f>tays fiuitc,. This 

implies that in the summation, we keep only the tenns wh('l'(, k = 0, <Lwl thos(' 

where the Riemann' -function diverge also, thus cancelling the' gaullua fllllctioll 

divergence. In other words, we may express only tll<' important. part of Cg( ... ) 
when s --. 0 by the following: 

r(l _ s) { 2 (R(2S - 1) + ! (1l(2s + J ») 
r( 1 - s) 2 f( -1 - s) 

(R(2s) (n(2s + 1) ()} 
+r(1-s)+ r(-s) +08 , 

(A.87) 

In the above expression, the first two terms come from the first. Riema.nu (­

function of (A.85) with k = 0 and 2; while the (n(2s + k) of (A.85) with, 

respectively, k = 0 and 1, is responsible for the third and fourth tCl'm of (A.87). 
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Now, using the well known property of the Euler function: r(n + 1) = nr(n), 

we finally gct: 

(0(0) == lim •. _o {2(R(2s - 1) + (R(2s) + s2(R(2s + 1)}, 

== 2(R( -1) + (R(O). 
(A.SS) 

No matter how awkwarù this last expression may look, the values of (R(Z) for 

z < 1 arc well-dcfineù by analytic continuation of the definition (A.86). And for 

z = 0 and -1, they are found to he (R(O) == - t and (R( -1) = - 1\' Thercfore, 

we obtain in the case of a scalar on a sphere, neglecting the zero-mode: 

(A.S9) 

Wc will interpl'et this result and the subsequent ones in section A.4.3 aftel' that 

wc will have donc the calculations for the other cases that we consiùcr here. vVe 

now t urn to the eval uation of the (-function of the operator y;, again on the 

sphere. 

Zctajlmction of Y': Wc want, to compute explicitly the value of (1(0), taking 

the unit sphere as the woddsheet. For that case, we could solve the eigenvalue 

cquation, as we did for the scalar, but instead, we take the cigenvalues that are 

directly found in the appcndix Bof reference [45]. 

However, it is not possible to solve the eigenvalue prohlem for the y;, since 

this operator acting on a field cha.nges its chirality. What is usually done is to 

filld the eigenvalues of the squared Dirac operator, y/2, that is called the Dirac 

Laplacian. This is exactly what we had to do in the last section. 

The cigenvalues of - '112 are given in [45] for a sphere of arbitrary dimen-

. al' SN '1:' 1 2 h sIon Ity . .cor = 0,1, , ... , t eyare: 

(A.90) 

with degcneracies (recalling that tr 1 = 2N/2 for Neven and that we are dealing 

with \-Veyl fermions, so the following degeneracy differs from [45]): 

(1 + N - 1)! 
d, == 2 lIeN _ 1)! . 
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Therefore, in our case, a two-dimensional sphcrc S2, wc may consid('l" t.hat 

the 'eigenvalues' of YI are simply the square root of those of t!u' Dirac Lllpla("Înn, 

narndy 1 + 1 with degcncracy 2(1 + 1). Notice that there arc no Z('lO-lllOd('s. 

This may be understood by noticing that, as wc implicitly round in t.he last 

section (cquation (A.64», we have "{J2 = 0 - Rh/4. Sinet' tll(' eigt'Ilmhlt,s of 0 

are negative or zero, as in the scalar case, and Rh = 2 for the unit splH'n', Hl(' 

eigenvalues of the Dirac Laplacian could by no mean he lf'sS Œ' ('(l'lHl to z('ro. 

The (-function of the operator "{J is thus very casy to cyaillat(·. Accordllll!, 

to the definition (A.77), the zeta functioll is cxprcsscd as follows: 

lA.92) 

With a shift, in the dummy index 1 - 1 + 1, it is obvious tlwt this 1'(·<1u('(·s to 

(.,(s) = 2(R(.'l - 1), where (R(Z) still represents the Riemann z('t.a f\ludiou. 

Remembering that its value at z = 1 is - /2' we fiually gd, in tlH' cas(' of a 

spinor on a 'Y = 0 Riemann surface: 

(A.D3) 

We will relate those results with the ones we can obtaill USillg Gilkt,y lu·at.­

kernel procedure, out, in order to make this conncction mon' cxplicit., w(' will 

study another case: the fiat torus as a rcprescntativc of a Hurfac(' of EllIeI 

characteristic x(M) = 0 b = 1). 

A.5.2 Torus 

Zeta function of Do: The techniques used in the prcvious section apply as weIl 

in the case of the torus. The eigenfunctions of the operator 0 acting on Il scalar 

are restricted by periodic boundary conditions. The corrcsponùing cigenvalu(!s 

are given in [15]: 

Wmn = C;)' [m'y' + (n - mx)'], (A.94) 
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where the real numbers x and y are the Teichmüller parameters of the torus. 

They appear in the (ollowing expression, quite cornmon and useful in string 

thcory, for the metric ha{J(u) of the fiat torus with fundamental domain given 

by thc unit square: 

(A.95) 

Wc have the following expression for the (-function (the sum will be over 

Z; = {(m, n) : m, nEZ; (m, n) 1= (0, On since we once again forget the diverg-

iug zero-mode part): 

(Ms) = L W;~I· (A.96) 

(rn,n)eZ! 

Now, wc note that undcr the transformation m ~ -m and n ~ -n the eigen­

valués Wmn are invariant. We thus can express the zeta-function in the following 

way: 

(A.97) 
2 ~+oo ~+oo -II + "" -II = L,..,m=-oo L....,n::;l w mn L.",mEZ. wm , 

Z. rcprcsents the set of non-zero integcrs. In the last equation, we have dcfined 

W II to be: 

_ (21r)2 2( 2 2 
W m = WrnO = y m x + y ) (A.98) 

Again, wc remark that W m docs not change if m ~ -m, so it is easy to compute 

(o(s) in the above expression. Since Wo = 0, we get: 

00 

(o(s) = 2 L w;;;lJ, 
m=1 

- 2 C:) -,. (x' + y')-'(n(2s), (A.99) 

whcrc (Il(s) is again the Riemann (-function. Remembering that (R(O) = -t 
lUld taking the limit, we obtain the intermediate result that (0(0) = -l. 

It rcmains to compute the n 1= 0 part of the zeta function. In order to do 
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that, we must know how to expand the following expression: 

( 2 + + b )-6 _ -2" EOO (nam + bm)k f(l- s) n nam m - n . 
n 2 k!r(l - s - ~,) 

k=O 

(A.IOO) 

Expanding the binomial (na m + bm)k in tenu of the Nt'wton ('opfIkiput, t.his 

gives: 

00 k 

( 
2 b )-6 _ ""' \.~ -26-I.-Jb! k-J r(l - . .;) 

n +narn + rn -L....JL- n marn '!(I.:_ ')!r(1-$-~')' (A.101) 
k=O )=0 J J 

The coefficients am and bm arc the only num.bers depcndillg on 7/1, in our ('asc': 

am = 1110: = -2mx, 
(A.102) 

We therefore have: 

Î ()=?(~7!')-2.!1~~(.lJ k_)(R(2s+k+J)r(1--s) (~ 1.+,) 
~+ S.., L-~iJ 0: '!(k- ')!f(l-s-k) L- 711 , 

Y k=O )=0 J J 111::::-00 

(A.I03 ) 

,~,re compute the last summation in the ab ove cxprCS.,ioIl u:"iug Ri('lWUlIl (­

function (again!), 

+00 +00 -00 

L m P = Em'+ L p 6 rn + Il' (A.I04 ) 
m=-oo m=l m=-l 

= (R(-p) [1 +(-1)P] +6p ' (A.I05 ) 

where 6, is the Kronecker delta for p and 0 (t,e. taking values 0 for p =1- 0 and 

1 for p = 0). This leads us to a final expression for the (-function of Do in 

terms of an infinite summation ovcr k. But this can be reduccd to ouly one 

term noticing that r(1- s - k) is divergent when .5 --t 0 for ail k \, pxC<'pt k = 0, 

and that the term proportional to (n(l) vanishcs. Th"'refore 

(

? ) -2.!1 
(+(8) = 2 "'y1r (n(2s) [2(n(O) -/- 1] + 0(8). (A.lOG) 

So, using our result for (0(0), we finally get that, when wc neglcct the wro-

modes, the (-function for a scalar on a torus is: 

(6(0) = 2(R(0)[2(R(0) + 1] - 1 = -1. (A.107) 

83 



( 
Showing that the zeta function corresponding to the opcrator 00 defined on a 

fiat torus (or any germs 1 = 1 surface) is -1. 

Zeta Iu.ndion 01 '1: It is quite ea..,y to extcnd our analysis of the fiat torus 

to the operator VI. WC already emphasized the link between 0 and VI, deriving 

the relation: 12 = 0 - Rh/4. Thus, for a fiat torus, Y;2 lS simply the operator 

0, since the torus has no curvature. Moreover the operator 0 is the same acting 

on either field, scalar 01' spinor, bccause there is no non-zero connections. 

This rcmark allows us to use the same results as for the bosonic case, but 

this timc, the boundary conditions on the eigenstates of 0 can be either periodic 

or anti-pcriodic, giving four different possible combinations, labclled by (±, ±). 

The eigcnvalucs of the operator 0 corresponding to these combinat ions are given 

by (15): 

(A.108) 

with 

Jl+ = m, Il- = m +!' (A.109) 
v+ = n, v_ = n + !. 

This shows that there is one zero-mode for the periodic boundary conditions 

(+, +), and none in the other cases. 

Now, there is four different (-functions (46)(8) corresponding to each choice 

of boundary condition. Using the same method as before, we easily get that the 

z(!ta-functions computed with the anti-periodic boundary conditions in either 

direction or in both vanishes giving: 

if(a,b)=(+,+), 
(A. nO) 

otherwise. 

A.S.3 Contact with Gilkey Procedure 

This section A.4 is interesting only if we can Inake the contact with the Gilkey 

procedurc we used in section A.3. We will see that the difference between the 

values of the various (-function found in the present section and the ones that 
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we derived in the previous section comes only from the inclusion or not of the 

zero-modes of the operator under consideration. 

Let us first express the zeta function of section A.3, in a form thnt will 

permit us to compare. In this section, we had Ç~(O) for à being (J2 (or, in the 

same time "2) and -00, depending on the topology of the worldshcd .. \Vritillg, 

this times, the (-function on a surface with specifie gcnus, wc get that. Gilkey's 

method had led us to: 

(_0,(0) = { ! for a sphere 

for a torus 
(Gilkey) 

And we have gotten in the last section, by explicit cvaluation: 

_ _ { -~ for a sphere 
(-Do(O) -

-1 for a t.orus 

(A.Ill) 

(A.112) 

We therefore see that this does not correspond with what we ohtaincd just 

before. But, in fact, it is due to the introduction of the eut-off parametC'r TrI in 

the Gilkey procedure of section A.3. 

En effet, this mass term has the consequence that th(" zero-modes of the 

operator 00 are included in the sum over eigenvalues in t.he dcfinition (A.77) of 

(s) as an extra factor of one when m --+ 0 before s cioes. Since the operator 0 

is known to have only one zero-mode per dimension when acting on scalars, the 

two ways to evaluate zeta functions agree when we compare equivalcnt objects, 

in that case (-functions without considering the zero-modes. 

In the case of the Dirac operator ." when there are no zero-modes, so the 

result of section A.3 agrees with the one found just above. Namcly, Gilkey's 

result are (see equation (A.41»: 

for a sphere 

for a toros 
(Gilkey) (A.113) 

This is also what we have found in the last explicit calculations. However, for 

the case of periodic boundary conditions on the eigenspinors defined on the fiat 
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( 

( 

tm'us, the result was: 

(A.114) 

Let us mention that this is of small importance for the theory sinee the parti tion 

fuuction associated with these boundary conditions for spinors in Imown to 

vauish on a torus (15), 

Finally, we can state the following prescription: 

(A.115) 

whcre ("1"'(0) is the zeta function, defined on t\e Riemann surface with genus 

1 and spin structure s, that does not take in account the zero-modes of the 

operator considercd, and NJ'6 is the number of those modes. 

The l'cason for this prescription is rather clear: (t1(0) can be thought of as 

the lltllll ber of modes of the operator .ô. In the expression (( 0), we do not count 

the zero-modes, while in Gi1key procedure, we count them as as a small mass 

t.enn. The relation (A.115) follows trivially. 

In the case of the operator 00, there is a unique zero-mode for every Riemann 

surfaces, whatever is the genus. It is the constant mode independent of aO:. So, 

the zeta-function without the zero-mode is given by: 

(do = X(M)/6 - 1, (A.116) 

for aU Euler characteristic. The general result for YI require the knowledge of 

the Humber of zero-modes of this operator, defined on every Riemann surfaces 

with cvcry spin structure. We will not express them explicitly here. 

A.6 Conclusion: Regularization 

The purpose of all those calculation was to know how to regularize the T­

dcpcndcnce of the two-dimensional field measures [dX)T, [dÀ]T and [d1/l1T, as 

defillcd in section A.l. Since it was given by products over aIl values of a, we 

must take the results that we have got including the zero-modes. 
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We can finally express the regularized power of T arising in the two-dimcn­

sional field measures. They are given by the power of Tin each of the Jacobians 

(A.24) obtained for the partial measures [dxh, [dÀh and [d~)h. They depelld 

on the worldsheet genus and they are explicitly given by: 

[dX]T = T-Dx(M)/12[dx] l, 

[d.\]T = T-Dx(M)/24[dxh. 

[dX]T = T-NFX(M)/24 [dxh . 

As secondary results, we also obtain the following uscful formula.s: 

Det(TA.) = T-,~(O)Det(A.). 

And, for A. = -(0 + ê); 

where al (0") = Rh/6 + ê is one of Gilkey coefficients. 

(A.117) 

(A.118) 

(A.llD) 

Finally, we derive that for C( s) the zeta-function of the operatol' wit,hout. 

considering the zero-modes, wc have: 

1"1,8(0) = 1'"'(',8 (0) _ N'Y,s 
':, ~Gdkey 0' (A.120) 
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