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Abstract

This thesis presents a new approach based on a spline formulation for the analysis of
thin acrofoils using the velocity singularity method. The method of velocity singularities
was originally developed by Mateescu and Newman in conjunction with a polynomial
representation of the normal perturbation velocities. The present method uses a cubic
spline representation vf the aerofoil contour, which led to improvements in the accuracy
and stability of the solution, especially in the case of the jet-flapped aerofoils.

This method has been first validated for the cases of rigid and flexible aerofoils. The
pressure distrubutions obtained with the spline formulation have proven to be in good
agreement with the previous solutions based on conformal transformation, or obtained
by Thwaites, Nielsen, and by Mateescu and Newman.

The spline-velocity singuliarity method has been used for the jet flapped aerofoils and
then extended to analyze the aerofoils with multiple sections, such as aerofoils with a
flap. The solutions for these problems have been found to be in good agreement with
the results obtaine(} theoretically or experimentally by Spence, and Dimmock, and by
Seebohm and Newman, based on a surface vortex method.

The spline-velocity singularity method displayed a better accuracy and an enhanced
stability of the solution, in comparison with the polynomial formulation, especially in
the cases when the aerofoil contour is not known « priori, such as for the flexible or

jet-flapped aerofoils.



Sommaire

Cette these présente une nouvelle approche a Fanalyvse de aeroloil par ta methode de
singularité de vitesse en utilisant des sphines cubiques. La méthode des singulatites de
vitesse fut initiallement developpée par Mateeseu of Newman en ntilisant nne reprosentation
polynomiale pour les vitesses verticales de perturbation. Par eontie. la méthode devel
oppée dans cette these utilise une représentation du contonr du prolil acrodynamique
basée sur des splines cubiques; ¢ca & conduit a lamélioration de la preciston et la stabylitd
de Ta solution, specialement dans le cas des prolils acrodynamicies avee des ailerons o
jot.

Cette methode a été validée pour les cas des profils actodynamiques tigides on fles
ibles. Les distributions des pressions obtenues avee cotte mithode ont ¢bé tronvees on
hon accord avee les solutions existantes basées sin des translommations conlormes, or
obtenues par Thwaites, Nielsen, ot par Mateesen o Newman,

La methode spline-singularités de vitesse a été utilisée pour Pétude des profiles adro
dynamique avee des ailerons & jet, et puis une extension a été developée pomn Panalyse
des profils avee plusicurs clements, comme les profils munis des ailerons. Les solutions
obtenues pour ces problémes ont, 6té trouvées en hon accord avee les 1ésulbats Lhéariques
ou experimentaux obtenus par Spence, Dimmaock, ou par Sechohm el Newinan, hasés sur
nne méthode tourbillonaire de surface,

La méthode spline-singularités de vitesse a demonteée ame meillenre précision el nne
stabilité ameliorée de la solution, en comparaison avee la représentation polynomiale,
specialement dans les cas ol la géometrie du profil n’est pas connne Pavanee, comme

dans les cas des profils aérodynamiques flexibles ou munis des ailerons i joet.
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Chapter 1

Introduction

1.1 General Considerations

The analysis of thin aerofoil theory has been a subject under research for many years.
Classical theories for rigid aerofoils of arbitrary shape began with Glauert [5] and Birn-
baum where the aerofoil was replaced by a vortex sheet on the camberline, and circulation
was formulated by the use of Fourier series. Stewart [30] modified this method by trans-
forming the aerofoil into a circle plane where the complex velocity perturbation function
consisted of a series of singularities. This resulted in a Fourier series expression for
pressure differences which was similar to that of Glauert’s. The advent of the modern
computer introduced methods where large matrices could be convieniently solved. This
produced boundary element methods based on source, doublet and or vortex distribu-
tions 110,13,20] This type of method could handle thicker aerofoils at the expense of
computing time. Another method based on the use of a computer was developed by

Halsey [8], in which the complex potential was iterated by conformal transformations.




Exact flow solutions around certain aerofoils can be found through conformal transfor-
mation, the problem being that their shapes are limited.

Methods of this type were derived for ideal fluid flow situations. An airplane in regular
cruising conditions would have aerfoils operating under low angles of attack (ideal fluid
flow situation). For an airplane cruising under conditions where compressibility becomes
a factor (i.e. at Mach numbers greater than 0.3) the influence of compressibility has to
be taken into account, whereby Prantl’s concepts need to be introduced. For aerofoils
subjected to large angles of attack (which usually occurs under slow flight conditions)
the effects of viscosity and flow separation need to be accounted for.

Topics related to thin aerofoil theory have included the analysis of flexible aerofoils
and aerofoils with jet flapped arrangements. The flexible aerofoil which is better known
as a sail, has been under analytical research since the early sixties. Nielsen (23] and
Thwaites [33] were the first to publish research based on a long Fourier series approach,
solved by an eigenvalue approach. Also Newman [21’22], and more recently Mateescu
and Newman [16:17] took an interest in the subject.

A jet flapped aerofoil increases lift on the aerofoil (without the use of a mechanical
flap) by expelling a jet of fluid at the trailing edge of the aerofoil. Published research
by Spence [27,28,29] analyzed an infinitely thin jet expelled out of the trailing edge at a
specific angle with a high velocity. He first used a Fourier series approach and then found
simple equations to predict lift and pressure variations. These equations compared quite
well with experimental results. O’Mahoney and Smith [24] ysed a circle transformation
method, which sometimes required several iterations becoming quite cumbersome.

Another interesting related topic is that of aerofoils with multiple sections (for exam-

ple an aerofoil with a flap). Research by Hess and Smith [9] analyzed this topic using a



source panel method. Another panel method using vortices on the surface of the aero-
foils was developed by Seebohm and Newman [26]. This method could also account for
viscosity which becomes important on the flap of the aerofoil which can be under large
deflections.

The present analysis represents an extension of the method of velocity singularities
developed by Mateescu and Newman [16,17] , in which special singularities at the aerofoil
leading edge and ridges along the aerofoil are used to determine the complex conjugate
velocity around the aerofoil. The mathematical expressions of these singularities are de-
termined to implicitly satisfy the boundary conditions outside the aerofoil and the Kutta
condition at the trailing edge. The velocity field around the aerofoil is thus determined
by a simple integration of these singularities based on the variation of the slope of the
aerofoil contour. This method is characterized by a simple and direct approach, leading
to closed-form solutions in all cases when the aerofoil contour is specified. In addition,
the method of velocity singularities has proven to be particularly suitable for solving the
special problems in which the aerofoil contour is not known a priori, such as the problems
of flexible aerofoils and jet-flapped aerofoils, in which the shape of the flexible membrane
or of the jet sheet depends on the pressure difference across them [17],

The method of velocity singularities has been developed by Mateescu and Newman
as a linear theory, using a polynomial representation of the aerofoil contour [15:17].
Later, Mateescu and one of his students, Nadeau, extended this method to the nonlinear

analysis of the aerofoils [18,20],




1.2 Scope of Thesis

The polynomial representation of the aerofoil contour has proven to be very convenient
and adequate for a large class of aerofoils of specified geometries, such as the tive digit
series of the NACA aerofoils, which are characterized by a polynomial representation of
the camberline. However, in some special problems, for example, the case of the jot-
flapped aerofoils, the polynomial representation of the acrofoil-contour can lead to high-
order polynomials with large coefficients which can have adverse effects on the accuracy
of the solution. In this respect, a smooth representation of the aerofoil contour, such as
a cubic, will certainly contribute to improve the accuracy of the solution in these special
problems.

In the present work, the method of velocity singularities is developed in conjunction
with a cubic spline representation of the aerofoil contour. This spline representation will
contribute to a higher accuracy and stability of the solution in special problems such as
the jet-flapped aerofoils, and in general will have a beneficial effect on the application of
the method of velocity singularities in all cases.

This thesis will focus on the method of velocity singularitics using a lincar approach
incorporating cubic splines. In chapter 2 the method of velocity singularities will be
described. This will form the basis for the work of chapter 3, where the spline formulation
will be presented. The method of solution will be followed by solutions for various
aerofoils comparing the use of cubic splines to the polynomials. The two methods will
be checked by the exact solution of the Karman-Trefftz conformal transformation. Once
the accuracy and validity of the method is shown, the method using cubic splines will be

used for the analysis of special problems.




Chapter 4 will describe the analysis of flexible aerofoils. In this chapter the general

theory will be deseribed along with solutions for flexible acrofoils. The solutions will
show how the method of velocity singularities is particularily suited for this type of
problem. Solutions will be compared to experimental and analytical results obtained by
Thwaites [33] and Nielsen [23],

The analysis of jet flapped aerofoils will be investigated in chapter 5. In this section it
will be shown how the method of velocity singularities has a clear advantage when using
cubic splines as opposed to large polynomials. Solutions for jet flaps will be compared to
the solutions obtained by Spence [27,28,29] 454 experimental results by Dimmock (32],

In chapter 6, the flow field outside of the aerofoil will be investigated to analyze
aerofoils with multiple sections. Solutions for various cases of aerofoils with flaps will be

compared to that of the inviscid case of the surface vortex method developed by Seebohm

and Newman [26].

ot




Chapter 2

Review of Selected Aerofoil

Theories

This chapter focuses on thin aerofoil theory, characterized by an acrofoil cousisting of

moderate thickness and camber, subjected to small angles of attack.

2.1 Basic Equations

This work refers to two-dimensional, incompressible, and irrotational fluid flows. For

incompressible flows, the continuity equation requires that:
V-V =0 (2.1)

This allows the flow to be represented by a streamline function ¥(z,y). For irrotational

flows, Vx V = 0, the fluid velocity derives from a velocity potential ¢(z,y) :

V =vVé. (2.2)




These two flow functions (¢ and ) are harmonic and satisfy Laplace’s equation:
V¢ =0, (2.3)

Vi) = 0. (2.4)

The solution of Laplace’s equation allows for superposition of different simple flows and

gives a complex potential for the fluid field:

F(z) = ¢+, (2.5)

where 2 = =z +y.

The velocity components can be obtained from the complex conjugate velocity defined

as the derivative of the complex potential,
Fliz)=u—w, (2.6)

where u represents the velocity component in the z direction and v is the velocity com-
ponent in the y direction (Cartesian coordinates). Pressures can be found using the
momentum equation

V.-V = —%VP. (2.7)

Integrating this equation along a streamline results in Bernoulli’s equation:
1 2 1 (72
P + §pU°° =P+ EpV . (2.8)

Because inviscid, irrotational flows are being dealt with, Bernoulli’s equation can be
applied along and across the streamlines (the stagnation pressure, P,, is the same every-

where). The pressure coefficient defined as:

P-P,
Cp = %pU& ) (2.9)
7




can be expressed using Bernoulli’s equation (2.8) in the form

Cr=1-— (D%)z (2.10)

The boundary condition on the aerofoil can be expressed as

V.i=0, (2.11)

1

where 77 is the unit vector normal to the surface of the aerofoil. Perturbation velocities
are assumed to be small, therefore far upstream and downstream of the aerofoil these

perturbations become negligible with the oncoming fluid flow

lim V = Us. (2.12)

2.2 Conformal Transformation Method

By use of conformal transformation, an aerofoil can be transformed to the z plane from

a circle in the ( plane. This idea makes use of the already known solution for the flow

with circulation around a circle in order to find velocity components on the aerofoil.
The Karman-Trefftz aerofoil has been chosen because it can be used for several types

of aerofoils (i.e. Joukowski, circular arcs, lenticular, etc.). The transformation itself is

defined as:

n

:«+:z= (§+:) ’ (2.13)

where b is a constant, { = £ + 1 are the coordinates in the complex ( plane, and n is

a nondimensional constant, with a value between 1 and 2, that defines the trailing edge
angle

T=(2—n)r. (2.14)

8




Clearly if n = 2 (known as the Joukowski transformation), the trailing edge angle becomes
zero, forming a cusp. The circle of radius a in the z plane is defined by a = b(1 + €)/ cos 7.
Details of the Karman-Trefftz transformation are discussed in Appendix A.1. The com-
plex conjugate velocity in the aerofoil plane, z can be obtained from the complex potential

around the circle, F((), from

dFF dFﬁ
P T (2.15)
where
dz _ (z—nb)(z + nb) (2.16)

¢~ (C-0)(C+b)

A review of the potential flow around a circle with circulation is presented in Appendix

A2

2.3 Method of Velocity Singularities

The potential flow analysis of thin aerofoils based on the velocity singularity method, was
originally developed by Mateescu and Newman [15,17), This method was then further
extended by Mateescu and Nadeau [18,20] for the nonlinear analysis of aerofoils using

polynomial expansions.

2.3.1 Basic Equations and General Considerations for the Ve-

locity Singularity Method

Velocity perturbations imposed by the aerofoil are represented as u in the z direction and
v in the y direction (using Cartesian coordinates). These perturbation velocities can be

superimposed over the undisturbed velocity U,, because u and v are harmonic functions




satisfying Laplace’s equation

V, = Uy 14y, (2.17)
V, = Up-7+v. (2.18)

The perturbation velocity components, u and v, in an incompressible irrotational flow

must satisfy

ov du

5 = 5—5, (2.19)
Ou _ v (2.20
dr Oy’ 20)

The boundary conditions on the aerofoil will be expressed using a complex function W (z)

defined in the form
W(z) = u(z,y) —1[v(z, y) — v, (2.21)
where 2z = z 4+ 1y, ¢ and y are coordinates of the physical plane where the acrofoil lies,

and v, is a conveniently chosen constant, which will be determined later.

2.3.2 Thin Aerofoil Solutions

This complex potential will be first analyzed by a simple flapped plate aerofoil at an inci-
dence o (as seen in Figure 2.1). The analysis for this geometry was originally developed
by Mateescu and Newman, by considering the singular behaviour of the perturbation
velocities at the leading edge and at the ridge R at z = s. Using thin aerofoil theory, the
boundary conditions on the aerofoil surface (transferred to the chordline) are expressed

by using the complex conjugate perturbation function in the form
0 for0 <z < s,

Imag[W(z)] = (v, —v) = (2.22)
—-Av fors<z <c,

10
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Figure 2.1: Simple flapped plate
where

Av = Uy cosaftan (§ — B) — tan 8] & —fU. (2.23)

The perturbation velocities are assumed to be small, becoming negligible at large dis-

tances from the aerofoil when compared to the oncoming flow U:
W(2) 2000 = t0,. (2.24)

In thin aerofoil theory perturbation velocities are assumed to have the same magnitude
on the top, as well as on the bottom of the aerofoil. On a thin cambered aerofoil, the
perturbation velocity u creates a discontinuity leading to an antisymmetrical flow with

respect to the r axis:

u(x)fop = _“(m)bottom, (2.25)
v(z)top = U(x)bottom- (2.26)
Ahead and behind of the aerofoil the perturbation velocity u on the aerofoil axis (y = 0)

is zero. This also satisfies the Kutta condition and accounts for the antisymmetrical

nature of the flow, and it can be expressed using the complex conjugate velocity function

11




in the form
Real[l¥(r)],_, = 0; forr <0, 0 > ¢ (2.27)

The assumed constant v, can now be determined as
Vo = [~ sina + cos a tan8]l/o, = (—a + &)U (2.28)

The function W(z) is now mapped from the physical = plane to an auxillary ¢ plane
using a Schwartz-Christoffel type conformal transformation (noting that the velocity

components do not change under this transformation):

-

¢(*=—"—, where (= £+ . (2.29)

cC— 2z

Now the boundary conditions in the auxillary plane become:

0 for —o<é<o
Imag[ W(¢) ],oy = (2.30)
—Av foré< ~—a, >0
Real| W({) oo = 0, (2.31)
where ¢ = . (2.32)
Ve—s
Discontinuities in the imaginary parts of W(() at { = ¢ and ¢ = —a can be represented
by the logarithmic singularities:
Av
W(Okwo = —In(¢~0), (2.33)
Av
W(Ok-ws = ——Wn((+0) (2.34)

The real part of W (() presents a singularity at the leading edge which becomes a doublet

corresponding to the sudden change of fluid flow:

[W(Q](-.u =

s

, (2.35)

12



where A is the doublet intensity. The singularity at the ridge can be represented by:

A —
WOl = 250 ( $52) o) (236)

By superposition (Laplace’s equation is satisfied ), the solution for W(¢) is

W) =%+ é—‘fln(glj) ~ ), (2.3

where A is a constant. Transforming this equation back into the physical z plane, one

W(z) = \/ —-Avcosh -1 (‘(: i) (2.38)

The constant A can now be determined by using equations 2.24, and 2.38:

obtains

A=- [vo + gAvcos'l\/g] . (2.39)
T c

On the upper surface of the aerofoil (y = 0 and z = z), the chordwise perturbation

velocity is

cC—T

uyg(z) = Real[W(z)] = A

- %Av -G(e, s, ), (2.40)

where the subscript A denotes the antisymmetrical nature and the singular ridge function

G(c, s, ) is defined as

cosh™1, /422 for0 <z < s

e(s~x)
Gles,z) =\ sinh™ /&= fors<o<e (2.41)
0 forz<0, z>ec

The first term of uu(z) represents the leading edge singularity and the second term
represents the ridge singularity; the Kutta condition at the trailing edge is satisfied by

both terms.

13




For a continuously cambered thin aerofoil (Figure 3.1), the solution can be obtained
by considering a continuous distribution of elementary ridges. Using equation (3.14), the

chordwise perturbation velocity is obtained in the form

2 e(d s —r
ua(z) = {—v(O)—-?F/0 (%) cos™! ids} ¢ rl

2 e (dvg L ste—a) -
W/O (dm )mcosh ey (2.12)

where the normal-to-chord velocity component on the aerofoil is defined by
va(z) = [—a + k'(2)] Uy, (2.43)

in which A'(z) represents the slope fo the camberline (Figure 3.1). After integration by

parts, equation (2.42) becomes

uA(:c)=——7l;‘/c;x‘/ocv(s)‘/cjé;s(_l_sm. (2.44)

Details about this integration can be found in Appendix B.1.

2.3.3 Aerofoils of Symmetrical Thickness

A diamond shaped aerofoil is first considered at zero incidence. This gives a simple
symmetrical aerofoil to analyze. The complex conjugate velocity for symmetrical cases
is solved for in the same manner as the antisymmetrical cases, by investigating the
singularities at the leading edge (z = 0), ridge R (z = s), and trailing edge (¢ = c). On
a symmetrical aerofoil, the perturbation velocities can be defined on the top and bottom

surfaces as:

u(z)top = u(m)bottoma (2.45)
WT)op = —=0(Z)bottom. (2.46)

14
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Figure 2.2: Double wedge aerofoil

This signifies the fact that there is no circulation around the aerofoil at zero incidence
(ie. T' =0). Using the regular assumptions of small aerofoil thickness, the boundary

conditions can be expressed in the form

-v; for0<z<s
Ima‘g[W(z)z=z] = 4 ~vp fors<z<e (247)

0 forz <0, z > ¢,

\

where the constant v, is set to zero in equation (2.21), while v; = U, tané; and v, =
~Uy tan é, are the normal-to-chord velocities on the first and second panels of the upper
surface of the aerofoil. Using this, the complex conjugate velocity is expressed in the

form
1
W(z) = - [v1In(2) + Avin(z — ) — v, In(z - ¢)], (2.48)
where Av = v, — v,.
For an aerofoil with a continuously variable camber, g(z), the chordwise perturba-

tion velocity can be obtained in the form (by considering a continuous distribution of

15




elementary ridges):

d'vs

1 c
ug(z) = p {vg(O) Inz+ /0 (7;) N In(z ~ s)ds —vs(c)In(z — c)} , (2.49)
where the normal-to-chord velocity on the aerofoil is defined by
vs(z) = 9'(2)Ve, (2.50)

in which g'(z) represents the slope of the aerofoil contour (Figure 3.1). Here the subscript
S denotes the symmetrical nature of the velocity field. After integration (which can be

found in Appendix B.2.1), one obtains

us(z) = 1 [ vs(e)-2

A P (2.51)
This pure linear solution may be sufficiently accurate for the most part of the chord,
except the aerofoil extremities where it predicts an infinite velocity at the leading edge,
instead of a stagnation point which really exists. The correct flow behaviour at the leading

and trailing edges is better predicted by the local linearization method (Mateescu [10’15])

or by using a non-linear approach (Mateescu and Nadeau [15]).

2.3.4 Local Linearization Solution

For symmetrical aerofoils with rounded leading edges at zero incidence, it was found that
the purely linear solution defined in Section 2.3.3 was not giving very good results, espe-
cially near the leading edge. For these aerofoils, a local linearization approach [13,18,20]
had to be used instead, in order to obtain a better accuracy of the solution. This method

uses the tangential free stream velocity

U, = U cos 7, (2.52)
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Figure 2.3: Normal and tangential perturbation components on a rounded

leading edged aerofoil

where U, is used to normalize the tangential and normal components of the perturbation
velocity u; and v, [18]. The associated normal perturbation component v, is referred as

g'(z) the camberline coefficient:

v, Uyosint

Ui  Uco,

(2.53)

This equation acts as a boundary condition on the aerofoil where the large slopes of the

rounded-leading-edge can be modelled by

U = g'(z) (2.54)

This equation positions the stagnation point at the leading edge of the aerofoil and the
Kutta condition is satisfied by the small slope at the trailing edge. Once the normal

component is found the tangential compenenet can be expressed as

Uy _ V - Uwg
UOOg - U°°t .

(2.55)

This method of solution found very accurate results even for thicker aerofoils (which

shows the stability of the solution).
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Chapter 3

A Spline Formulation for the

Method of Velocity Singularities

The method of velocity singularities was first developed in conjunction with a polyno-
mial representation of the aerofoil contour. This may lead in some cases to high-order
polynomials with large coefficients which may affect the accuracy of the solution. The
present method uses instead, a cubic spline formulation to represent the geometry of the

acrofoil contour.

3.1 General Considerations for Spline Formulation

In this analysis, the method of velocity singularities is developed in conjuncdon with a
cubic spline representation of the aerofoil contour.

To begin, the chordline ¢ will be set to unity, and & will now be thought of as £, which

P

18
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Figure 3.1: Camberline coefficients for crescent shaped aerofoils

>

is simply converted to z. Using these notations, the boundary conditions are applied as

va(z) = Unla+ k(a)], (3.1)

vs(z) = Uwg'(2), (3.2)

where £'(z) and g'(z) are derivatives of the camberline contour and the aerofoil thickness;

h(x) and g(z) are defined as

h(z) = %[yu-}-y;], (3.3)

9(z) = %[yu—yz], (3.4)

where y, represents the upper surface of the aerofoil, and y; the lower surface. It becomes
clear that by these equations g(z) = 0 for a circular arc (where only antisymmetrical
velocities are found) and h(z) = 0 for a symmetrical aerofoil (where only symmetrical
velocities are found). Approximating the camberline coefficients by a cubic spline, any
function fi(x), such as va(z), vs(z) or h(z), ¢'(z), can be expressed on the interval

Ty < < x;in the form:

fi(z) = A + Bi(z — z,1) + Ci(z — 2i21)* + Dy(z — 2-1)?, (3.5)
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or, in the more formal manner.

3
Z Fi(r = a0 (3.6)

The cubic spline becomes a function of cubic order between two points &,y and r,. Many
boundary conditions can be used to formulate a cubic spline equation, two different Lypes
of splines are derived in Appendix C. The most important condition in the spline s the

requirement of the slopes being equal at the interface between two consecutive intervals:

fi(z,) = ¢,+1(-l'a)- (3.7)

Using this type of condition ensures that the series of splines will it smoothly through
the data points.

Once the velocities are found on the surface of the aerofoil, pressure coeflicients can
also be found. On aerofoils with just one type of velocity this can be casily done by
finding the total velocity and using the well known pressure cquation as defined hy
equation (2.10), which can be applied for both the top and hottom of the acrofoil sutface.
If the aerofoil has both antisymmetrical velocities and symmetrical velocitics, pressute

coefficients can be found by:

2 2
Cp,(z) = 1~ [cosn+ ua(z) + u,g(x)] - [sinu + valr) + ”H(J)] (3.8)

Us U, l... l..
ua(z) | us(@)]® . eale) es(n)]t
= — — — {8 - . .J
Cp/(z) | [cosa U + U sin ¢ + i i (13.9)

where the upper pressure coefficient is denoted by Cp,(x) and the lower by (' (). To

find the difference of pressures across the aerofoil:

ACP(.’E) (p[ x)—Cp,(z). (3.]())
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Knowing the pressure difference allows one to find many other aerodynamic characteris-

tics such as lift and moments about the leading edge:

CL = ACP(:I:) dw, (3.11)
0

Cm,, = ACp(z) z dz. (3.12)

3.1.1 Spline Formulation for Thin Aerofoils

Antisymmetrical perturbation velocities are a resultant of thin cambered aerofoils. Using
the cubic spline of equation (3.6) the aerofoil boundary conditions can be expressed as
3
va(2) = Us[-a + Y Hi(z — z,21)"), (3.13)
k=0
where H, represents the spline coefficients as described in Appendix C. After the anti-

symmetrical velocities are applied to the complex conjugate velocity W(z):

3(’-‘]%) = /U= ( ——ZZHkkk ) (3.14)

T

T i=1k=0
k -9
Ki(z) = Z Clzl_, {Z .’E‘Ak_q_l + ’\k—q} , (3.15)
g=0 =0
—9 P+l cosh™/21=2) for s > ¢
where: Ap = 2 \/ o (3.16)
2(1=2) | sinh=/20=2 for £ > s,
Pd
A, = / 5% (3.17)

-1 \/ l—s

The integration for A, results in:

e =0
Ao = /;._1 \/_lj = [cos (1- 28)]1:.-: .
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e p=1

Iy

Ay = /t' ____sds = [%cos"l (1 =2s) = /sl - s)]

=1 4/8(1 = s) Ti-

o p=2

Ty 2d‘ /8 < o

Aq .—./ —_— - [§c<>s~1 (1= 2s) - G + 3) Vs(1 - .s-)]

z-14/8(1 — s) 8 24 Fi-1

e p=3
T, s3d3 5 -1 82 5s 5 o
1\3_‘/3’:'—l -—s(—i-Ts—)— ['i'éCOS (1—-28)— (§-+T§+§> b(l -‘s)]r'_l

The constant C{ represents the coefficients of the binomial expansion (r—x,_y)k [i.v.(‘,‘kJ = (—=1)

The integration and algebra to find these velocities can be found in Appendix B.

3.1.2 Spline Formulation for Aerofoils of Symmetrical Thick-

ness

For aerofoils of symmetrical thickness the perturbation velocities are treated differently
than thin cambered aerofoils. Using the spline formulation of equation (3.6) with the

linear theory described by equation (3.2)
3
vs(z) = U D Gi(z — z,21)F, (3.18)
k=0

Again the spline coefficients G}, are described in Appendix C. Once the spline formulation

is applied to the complex conjugate velocity W(z):

r N 3
u(sjio) = ""I'ZZGU/:(CU), (3.19)

=1 k=0

Ji _ k Cq q k—-g-1 ;L" k-l—q k—l~gq k_ql I, — & . r(
He) =2 Clalli§ 3 o (@™ =l ) e | (3.20)
=0 =0 —t—q Ty T

The constant C{ is the same as previously expressed and the integration and algebra can

be found in Appendix B.
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3.1.3 Spline Formulation for Aerofoils Using Local Lineariza-
tion

For rounded leading edged aerofoils of symmetrical thickness at zero incidence the normal
method of calculating symmetrical velocities did not account for the stagnation point at
the leading edge. This can be overcome by using local linearization techniques with the

spline formulation:

Un o)y = = 3G (& = in)t (3.21)
Um—g v l-z_k=0 k =17 '

where the factor \/;—?—: creates a stagnation point at the leading edge. The Kutta condi-
tion is also satisfied with the low values of ¢(z) at the trailing edge, which also cancels
out the infinite values predicted by the zero denominator in \/:—?—: Finding the tangential
perturbation component was found through the integration:

u,_lNaiz- l1—s ; ds
o= ol G f (o ma)—, (3.22)

1=1 k=0

where the integral is represented by J,‘;,,k(w)
Uy 18 i 71
=" z E Gidp, (2). (3.23)
bl =1 k=0
This integration is performed in Appendix B, where the end result is:
k . k—g-1 . Ak-
I ()= Cizl, s =2)| Y a'Apogui - —;—1 - Ng—g ¢, (3.24)
=0 =0

Ap and A, are the same as described in Section 3.1.1. The surface pressure coeflicients

can be expressed as:

2
Cp = 1— (cosv' + E"f—) (3.25)
(1 +u,)?
- m—);u (3-26)

Using this equation the stagnation point at the leading edge is automatically satisfied.
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3.2 Applications of the Spline Formulation for Aero-
foils of Fixed Geometry

This section focuses on solutions for different types of aerofoils using the veloctiy singu-
larity method. Comparisons are made on the present spline integration method to the
similar polynomial method and the exact method based on conformal transformation.
The spline formulation has the advantage of explicitely finding the coefficients (if the

spline in Section C.1.2 is used).

3.2.1 Cambered Thin Aerofoils

Aerofoils with pointed leading edges are found on supersonic to transonic airplanes, and
propellers (near the tip). Although this method does not pertain to compressible flow
situations (as in the above mentioned situations), pressure distributions are still required
for incompressible cases (i.e. for take off and landing situations). The method of velocity
singularities is especially suitable for aerofoils with pointed leading edges because of the
singularity at the leading edge created by the factor \/—'% in equation (3.14).

To start with, pressure distributions for circular arcs are shown in F igure 3.2. The
best solution was found using the cubic spline as defined in Section C.1.2. Although
this type of spline gives the highest accuracy it is important that the spline coefficients
do not become very large with respect to unity. If this happens, the accuracy of the
perturbation velocities decreases greatly and it is a sign that the spline has oscillations,
instead of smoothly fitting between the camberline points.

It was found that ten points equally spaced along the chordline (giving 9 different
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spline intervals) provided a reasonably good accuracy for the aerofoils with pointed lead-
ing edges. In Figure 3.2 the spline solution is in very close agreement with that of the
polynomial method derived by Mateescu and Newman [17]. The relative difference be-
tween the two methods is within an order of six digits (10~6). The difference between the
velocity singularity method compared to conformal transformation is within 3% error,
except at the leading edge where it is larger. The method gives good accuracy even at
higher angles of attack (o = 20°); however, in real flow situations at high angles of inci-
dence, a flow separation would occur, which is not considered in this analysis. The next
graph (Figure 3.3) shows how the accuracy is decreasing, compared to the exact solution,
when the aerofoil camber increases. Howeve- an aerofoil of such camber magnitude is
not very common. Only few low speed applications such as a STOL aircraft, flapped
aerofoil (which would need to be treated differently) or a flexible membrane, such as a

sail, would need such a high camber ratio.
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Figure 3.2: Pressure coeflicients for circular arc aerofoil f/c = 0.025 at various

' angles of attack.,
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3.2.2 Acrofoils With Pointed Leading Edges

The pressure coefficient on aerofoils with pointed leading edges was treated ir a similar
manner, but in this case one has to consider both the solutions for the thin aerofoils and
for the aerofoils of symmetrical thickness.

The lenticular aerofoil is the first symmetrical aerofoil which will be studied. This type
of aerofoil is usually found on supersonic applications because of the pointed leading edge.
These aerofoils usually have quite low thickness ratios (= 2% chord) because of the high
speeds under which they operate. The first lenticular aerofoil investigated (Figure 3.5)
has a thickness ratio of 5% (i.e. e/c = 0.05). The velocity singularity method gives very
good accuracy on this type of aerofoil, except at the vicinity of the leading edge where,
the leading edge singularity gives an infinite velocity. The next lenticular aerofoil shown
(Figure 3.6) has a thickness ratio of 10% where the increasing thickness starts to deplete
the accuracy of the method, but it still gives reasonably good results.

The crescent shaped aerofoil is the combination of a flat plate and a circular arc,
symmetrical fore and aft of the mid chord point. Again an aerofoil of this type has
supersonic applications under low thickness ratios. Nevertheless this type of aerofoil
shows both the antisymmetrical and symmetrical perturbation velocities. This type of
aerofoil shows how good the accuracy is on the lower surface. This is due to the flat plate
nature of the lower surface which fits the boundary conditions underwhich the method
was derived. The upper surface shows how the error increases as the thickness from the
flat plate model aerofoil is increased. Figures 3.8 and 3.9 show the pressure distribution
for two different crescent shaped aerofoils. The thicker crescent shaped aerofoil becomes

to large in thickness and camber for the velocity singularity method to handle accurately.
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‘ Figure 3.10 shows a cambered aerofoil with a pointed leading edge. This aerofoil, like

the crescent shaped aerofoil uses both the symmetrical and antisymmetrical solutions.
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‘ at various angles of attack.
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3.2.3 Aerofoils with Rounded Leading Edges

Aerofoils with rounded leading edges are found in the case of subsonic applications. In
practice these types of aerofoils usually have higher thickness ratios than that of aerofoils

with pointed leading edges.

Joukowski Aerofoils at zero Incidence

The Joukowski aerofoil has the leading edge rounded, and will be used for discussion.
This aerofoil also has a cusp at the trailing edge (i.e. T = 0°) which satisfies the Kutta
condition. For these types of aerofoil the velocity singularity method must be modified
for a zero angle of attack (o = 0°). The first graph of an aerofoil with a rounded
leading edge (Figure 3.12) shows error between the conformal transformation and the
present method. This error was overcome by using the modified expansion described in
Section 2.3.4 (non-linear spline) which is shown in Figure 3.13. Here the calculations were
performed with zp = 0.01 and zx = 0.99 and the relative error is shown by Table 3.1.
If an even smaller value of difference was taken at the leading and trailing edge (such as
zg = 0.001 and zy = 0.999) the error difference was improved slightly which shows how

stable this method is. For accurate solutions only seven chordwise points were required.
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Exact Spline Polynomial
z/c Cp, Cp, |% Error| Cp, | % Error
0.0100 | -0.0782 [ -0.0784 | +0.24 [-0.0781[ -0.13
0.1189 | -0.2483 | -0.2482 | -0.04 |-0.2482 | -0.05
0.2278 | -0.2087 { -0.2086 | -0.05 |-0.2085| -0.06
0.3367 | -0.1633 | -0.1632 | -0.06 |-0.1632| -0.07
0.4456 | -0.1179 | -0.1178 | -0.09 |-0.1177| -0.10
0.5544 | -0.0734 | -0.0733 | -0.13 |-0.0733| -0.15
0.6633 | -0.0304 | -0.0303 | -0.29 |-0.0303| -0.36
0.7722 | 0.0112 | 0.0112 { +0.21 | 0.0113 | +0.96
0.8811 | 0.0511 | 0.0516 | +0.56 | 0.0512 | +40.21
0.9900 | 0.0895 | 0.0896 | +0.08 | 0.0896 | +0.12

Table 3.1: Accuracy of the present spline-velocity singularity method and poly-

nomial method in comparison with the conformal transformation method for

a symmetrical Joukowski aerofoil (e/c = 0.05, a = 0°).
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Figure 3.12: Pressure coefficients for symmetrical Joukowski aerofoil at a = 0°

using regular expansion.
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Figure 3.13: Pressure coefficients for symmetrical Joukowski aerofoil at o = 0°

using modified expansion (non-linear spline).
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Joukowski Aerofoils at Angles of Incidence

The symmetrical Joukowski aerofoil will first be analyzed. In analyzing the rounded
leading edge it became evident that the further from the leadiug edge the fivst point was
taken, the more stable the solutions became. This was due to the infinite slope at the
leading edge which dissipated into a more realistic value at approximately r = 0.05 which
the cubic spline could handle. On the aerofoil with the pointed leading edge this was
not a problem because at the leading edge the slope had a finite value. For the spline
to handle this problem without oscillations occuring, fifteen chordwise positions were
taken. This, with the careful placement of the leading edge position obtained solutions
within 5% error (except at the leading edge) for the first aerofoil analyzed, compared
with the conformal transformation. This careful placement of the leading edge position
was obtained by checking the spline coefficients. If the coefficients became large it was
a sign that oscillations were present and the error increased significantly. In Figure 3.14
the leading edge position was taken at zo = 0.04. In Figure 3.15 the leading edge
position was taken at the same position but the increasing thickness shows how the error
is increased. The pressure coefficient variations on a cambered Joukowski acrofoil are
shown, in Figure 3.16, in which one can notice again a good agreement between the
present solution based on cubic spline and the exact solution obtained by conformal

transformation.
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Chapter 4

Analysis of Flexible Aerofoils

Membrane aerofoils can be thought of as thin flexible aerofoils. The material used to form
this type of aerofoil is assumed to be inelastic. Some examples where flexible membranes
are in use are the sails on sail boats, wings on ultralight aircraft, etc.. There have been
several investigations on membrane aerofoils (Voelz). Thwaites [33] produced results
using linearized thin aerofoil theory and applying it to an integro-differential equation.
A couple of years after Thwaites’s [33] publications, Nielsen 23] came up with a solution
based on Fourier series treating two cases. One with a stagnation point at the leading
edge of the aerofoil and another with a singular point at the leading edge (leading edge
is referred to as a luff in nautical terms). Both Thwaites and Nielsen obtained solutions
using an eigenvalue problem. Later there was research done on approximating these two
methods [7], Recently (1992) a paper by Mateescu and Newman [16:17] was published
based on velocity singularities and using polynomial expansions. This seems to give the
best overall accuracy in comparison with other methods. The present method of velocity

singularities using cubic splines is primarily based on the work done by Mateescu and
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Le Te

Figure 4.1: Typical side picture of two-dimensional flexible aerofoil

Newman [16’17].

4.1 General Theory of a Flexible Aerofoil

For two dimensional flow over a flexible inelastic membrane of very low porosity, (if
porosity exists fluid will go from the high pressure side to the lower pressure side, thus
decreasing the membrane lift) theory follows the lines of conventional linearized aerofoil
theory. However, in the case of flexible aerofoils the geometrical shape is not known a
priori, and it has to be determined by an equilibrium equation. Thwaites called this type
of equation the sail equation. This means that the curvature of the sail (jib sail) must
be in such a way that the sail tension counterbalances the aerodynamic forces.

The problem of calculating the aerodynamic characteristics of membranes, such as lift,
pressure coefficients, the shape of the membrane and the excess length of the membrane
material starts with an equilibrium equation. The shape of the sail is unknown but the
tension may be specified. Neglecting the viscous shearing forces on the membrane (since

this is an inviscid model) the tension on the sail is constant along the chordline. The
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equilibrium equation can be expressed in the form

AP = % ~ —Th"(z), (4.1)
where § = —h”(z) is an approximation for small slopes only, or in a more convenient
form:

ACp = —cCrh"(z), (4.2)

where ACp = 1_‘:% and Cr = Ip—g,—c. Using thin aerofoil theory, the normal-to-chord
27" 00 2 oo

velocity on the membrane can be approximated as

v(z)
Us

= —a+ h'(z), (4.3)

where h'(z) is the camberline slope as defined in Section 3.1.1. Using this equation and

noting that the difference in pressure can be written as
ACp = 43‘(-](-?-)-, (4.4)

the equilibrium equation can be expressed in the form (Cr is used as an independent

parameter for computational convenience)

= —C——-Z, (4.5)

4.2 Spline Formulation For Flexible A erofoils

Considering the equilibrium equation (4.4) the membrane shape can be approximated by

cubic splines in the form
B(z) = v'(z) = a(-;— ~22),/ 1—;—“” + Hi 4+ 2H}Az; + 3HIAZ, (4.6)
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in which again the value of z is nondimensionalized by the chord, i.e. Z, which puts
the value of z between zero and one. The first term multiplied by the factor 1—;-5
is introduced to satisfy the equilibrium equation (4.5) at the leading edge, since u(r)
contains the same factor. This factor sastisfies the Kutta condition at the trailing edge,
z = 1, as well as the pointed leading edge singularity, \/'_%; Integrating equation (4.6)

once, gives the camberline slopes, and the camberline shape is found by integrating one

more time.
3
K(z) = a+ay/z(l-2)i+ Y HiAsk, (4.7)
k=0
h(z) = az+ald,+ ): =y i A:c"‘“ + @, (4.8)

where J, = -—cos Vi-z- m)—m (— T + —.’L‘ ) (4.9)

In equation (4.8) there is a constant of integration @, for every spline interval introduced
(i.e. N constants for N splines). Knowing these camberline characteristics, the normal-
to-chord perturbation velocity can be found in the form

v(z) = k'(z) - a = a\/z(l - z) %+ZH,,A3:,, (4.10)

k=0

Using the general solution formulated in Section 2.3.2, one obtains for u(x)

1 s ds
u(z) = lov(s)VI—ss-—w
-— N 3 —

where Kj(z) is defined in Section 3.1.1 (or appendix B) and again H] represents the

spline coefficients A,, B;, C,, and D; as defined in Section C.1.2. Using this type of cubic
spline, all the coefficients can be defined by the camberline coefficients h(z) and h'(:).

This means that including the coefficient a there are 2N 43 unknowns over N +1 points.
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The equilibrium equation (4.5) can be evaluated at pointsz =1,2,3... N giving N cubic
.N—

le
»lm
™

spline equations. This equation can also be evaluated at the midpoints ¢ = 1, 3,
giving an overall 2N equations. Using the equilibrium equation (4.5) at z = 0 (the leading

edge) leads to
1 N 3

; (l - -—-) + =3 S kHiK}(z (4.12)

1r 1=1k=1

The Kutta condition is already satisfied in equation (4.5) because of the factor /==
at the trailing edge becomes zero. The final boundary condition left is to allow the
membrane ends to be attatched to the z axis. This means that the camberline height at

the leading and trailing edges is zero:
h(1) = h(0) = 0. (4.13)

In using this boundary condition, it is required that the constants of integration w; are
solved for. Knowing that h(0) = 0 the first constant @, is solved as zero. The next ones

can now be solved for as:

3 1
—_ ch k41
2
3 3
H} ¥ H k1
w“"ngA +,§,k+ Ay

This keeps reoccuring right through the series of splines. If Az, is set to be the same

throughout the chordline namely ﬁ, then a in equation (4.12) can be solved for as:

«r o2 ()] w14

=1 k=0

Now there are 2N +2 equations with 2N +3 unknowns. To finish the system of equations
the equilibrium equation is imposed once more at a small distance from the beginning of
the first panel. This also helps the leading edge singularity and prevents the first spline

from producing oscillations in the system of equations.
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The lift coefficient can now be obtained in the form

o [ ACp dz

(.
t
i

3
= —-aCr [E H,ﬁvAm,ki,——Hg] . (4.15)

k=0
The excess length of the membrane, defined as ¢ = % — 1, can be calculated from the

equation:

1+ [—U—)+ ] dz — 1
[ ] (4.16)

4.3 Solutions for Flexible Aerofoils and Discussion

of Results

The following solution for flexible aerofoils (otherwise known as sails) is discussed as

%’. It is important to note that these solutions are accurate for

a function of a i.e.
reasonable values of o (if « is large the solutions become inaccurate due to flow separa-
tion). The solution is given for Cr > 1.727 (the first eigenvalue solution); on a sailboat
this would be the case of sailing straight into the wind or referred to having the sails in
“irons”. This may lead to an unsteady case, because the membrane may flap back and
forth.

The solutions have good agreement with experimental tests for membranes with high

tensions. For membranes with lower tension values the real flow separates at the trailing

edge and a separation bubble forms at the leading edge due to the higher camber (as

shown by Newman [22]).
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To find the solutions, the cubic spline from Section C.1.2 was used. All the spline
coeflicients were broken into the two camberline coefficients A'(z) and h"(z) leaving 2N +3
unknowns. Good accuracy was found using ten equally spaced points along the chordline.
This gave a 23 by 23 matrix which was easily solved with Guass-Jacobi elimination.

Table 4.1 shows how the present spline method compares with the polynomial method
developed by Mateescu and Newman [16’17], and the eigenvalue methods by Thwaites [33]
and Nielsen [23]. Of the two latter methods Thwaites is considered to be more accurate at
higher values of Cr while Nielsen’s method is better at lower values of C7. The present
spline method shows good agreement with the polynomial method, as well as, with
the other two methods. As the tension in the membrane is increased the lift coefficient
approaches 27ra which is the theoretical value for a flat plate. This shows how a membrane
would act if an infinite tension were applied to a membrane with zero porosity.

Table 4.2 shows how the camberline acts te different tension coefficients. It is in-
teresting to note how the maximum camber position shifts from the mid chord position
to a chord position of forty percent. These results compare well to the results found
by Nielsen for lower tension coefficients (2 < Cr < 15). Another point of interest is
the fact that at the lower tension where the maximum camber is at mid chordline, the
camberline is not symmetrical. This table is also shown as a graph (Figure 4.2) where
the comparisoi1 is made to the polynomial method by Mateescu and Newman. This also
shows the flat plate tendencies as the tension in increased.

Flat plate tendencies are also shown in Figure 4.4 where lift coefficients are graphed
against tension coefficients. As the tension approaches infinite values the well known
lift coefficient of 27 for a flat plate (which is determined by thin aerofoil theory) is

approached. This is also shown in Figure 4.5 where the centers of pressure are graphed
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against various values Cr. As the tension is increased the center of pressure approaches
the quarter chordline position. Again this is the position obtained for a flat plate using

thin aerofoil theory.
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| Cr [ Method a/\e| Crla]
[ [ Spline Method (present) 0.322 [ 28.252
2 | Polynomial Method (Mateescu & Newman) | 0.322 | 28.250
Nielsen 0.322 | 28.148
Thwaites 0.340 | 24.989
Spline Method (present) 2.434 | 8.952
4 { Polynomial Method (Mateescu & Newman) | 2.434 | 8.952
Nielsen 2.411 | 8.821
Thwaites 2.480 | 8.848
Spline Method (present) 6.427 | 7.256
8 | Polynomial Method (Mateescu & Newman) | 6.424 | 7.255
Nielsen 6.329 | 7.120
Thwaites 6.400 | 7.277
Spline Method (present) 8.404 | 7.022
‘ 10 | Polynomial Method (Mateescu & Newman) | 8.400 [ 7.021
Nielsen 8.266 | 6.884
Thwaites 8.371 | 7.120
Spline Method (present) 13.33 | 6.744
15 | Polynomial Method (Mateescu & Newman) | 13.33 | 6.744
Nielsen 13.10 | 6.605
Thwaites 13.29 | 6.762
Spline Method (present) 96.94 | 6.345
100 | Polynomial Method (Mateescu & Newman) | 96.88 | 6.345
Nielsen _ —
Thwaites 96.86 | 6.349
Spline Method (present) 391.93 | 6.298
400 | Polynomial Method (Mateescu & Newman) | 391.88 | 6.298
Nielsen _— —
Thwaites \ 391.83 | 6.299

Table 4.1: Comparison of lift coefficients and excess membrane length for var-

. jous tension coefficients Cr.
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Cr

z/c 2 4 8 10 15 100 400
0.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 [ 0.0000 | 0.0000 | 0.0000
0.05 | 0.3666 | 0.0621 | 0.0254 | 0.0197 | 0.0126 | 0.0018 | 0.0004
0.10 | 0.6974 | 0.1114 | 0.0446 | 0.0344 | 0.0220 | 0.0031 | 0.0008
0.15 ] 0.9930 | 0.1515 | 0.0597 | 0.0460 | 0.0292 | 0.0041 | 0.0010
0.20 | 1.2516 | 0.1837 | 0.0715 | 0.0549 | 0.0348 | 0.0048 | 0.0012
0.25 | 1.4710 | 0.2088 | 0.0803 | 0.0615 | 0.0388 | 0.0054 | 0.0013
‘ 0.30 | 1.6495 | 0.2273 | 0.0865 | 0.0661 | 0.0417 | 0.0057 | 0.0014
0.35 [ 1.7857 | 0.2397 | 0.0903 | 0.0690 | 0.0434 | 0.0059 { 0.0015
0.40 | 1.8788 | 0.2463 |[0.0921]][0.0702] | [0.0441] | [0-0060] | [0.0015]
0.45 | 1.9283 [[0.2475]| 0.0918 | 0.0699 | 0.0438 | 0.0060 | 0.0013
0.30 | [1.9344]| 0.2436 | 0.0898 | 0.0683 | 0.0427 | 0.0058 | 0.0014
0.35 | 1.8978 | 0.2349 | 0.0860 | 0.0654 | 0.0408 | 0.0053 | 0.0014
0.60 | 1.8194 | 0.2218 | 0.0808 | 0.0613 | 0.0383 | 0.0052 | 0.0013
0.65| 1.7010 | 0.2046 | 0.0742 | 0.0563 | 0.0351 | 0.0047 | 0.0012
0.70 | 1.5447 | 0.1836 | 0.0663 | 0.0502 | 0.0313 | 0.0642 | 0.0010
0.75 | 1.3532 | 0.1593 | 0.0573 | 0.0434 | 0.0270 | 0.0036 | 0.0009
0.80 | 1.1297 | 0.1318 | 0.0473 | 0.0338 | 0.0223 | 0.0030 | 0.0007
0.85| 0.8779 | 0.1017 | 0.0364 | 0.0275 | 0.0171 | 0.0023 | 0.0006
0.90 [ 0.6021 | 0.0694 | 0.0248 | 0.0187 | 0.0116 | 0.0016 | 0.0004
0.95 | 0.3073 | 0.0353 | 0.0126 | 0.0095 | 0.0039 | 0.0008 | 0.0002
1.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table 4.2: Comparison of h(z)/a for various tension coefficients Cy. The posi-

. tion of maximum camber is outlined.
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Figure 4.2: Flexible-aerofoil geometry for various tension coefficients Cr com-

pared with Mateescu and Newman.
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Figure 4.3: Pressure coefficients vs chordwise position for various tension co-

efficients Cr.
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Chapter 5

Analysis of Jet Flapped Aerofoils

It seems to be common knowledge that a flapped aerofoil gives a much higher lift coeffi-
cient than an aerofoil without a flap. A jet flap is an arrangement where a thin sheet of
fluid (air in this case) is ejected from the trailing edge of an aerofoil at specific angle, 8
(see Figure 5.1). This jet sheet gives thrust in both the horizontal and vertical directions,
while increasing the circulation around the aerofoil (hence increasing lift). This type of
arrangement was tried on a British trainer during World War II without much success
(the jet flap would sometimes alter the flow so much that separation would occur, some-
times only on one wing, creating thus undesirable landing or takeoff conditions). There
has been much research on suction and blowing around the aerofoil; this section will

concentrate on blowing near the trailing edge.
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Figure 5.1: Geometry of a jet flapped aerofoil

5.1 General Theory of a Jet Flapped Aerofoil

Let us consider the momentum flux of the jet defined as (Spence [27’28*29])
J = pV3, (5.1)

where 6 represents the thickness of the jet, which is assumed very small, and V is the
velocity of the jet stream, assumed very large. The jet is confined between two vortex
sheets which become streamlines. One may define the nondimensional jet momentum

coefficient, Cj, in the form

_pVi o 2J .
C)= é—pUEoc = UZo (5.2)

Like the flexible membrane, the jet sheet shape is defined by an equilibrium equation
over the jet, relating the jet sheet curvature with the pressure difference across the jet,
flap:
J
AP = —.
R
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Using the relationship of the jet sheet curvature % ~ j"(z), where j(z) represents the

coordinate of the jet flap, one obtains
ACp = Cy 7"(z), (5.4)

where ACp = 4'—3&1 represents the nondimensional pressure difference across the jet sheet.
Using linear theory from Section 3.1.1, the normal-to-chord perturbation velocity can be

expressed on the jet flap as

[-a + j(2)|Us, (5.5)

<
~

8
—

]

V(z) = j"(2)Us. (5.6)

The curvature of the jet flap shape, which is a priori unknown, has to be determined
using the equilibrium equation:

u(z) = ZLof(a), (5.7)

where ACp = 4% has been introduced in equation (5.4). The jet flap angle 8 at which

the fluid is ejected at the trailing edge must be specified:

Jj'(c) = —tan B =~ -5. (5.8)

The Kutta condition in this case must be satisfied at the end of the jet flap. Since the
length of the jet flap is unknown, a value ! is specified to be as a very large distance
(theoretically infinite), from the trailing edge of the aerofoil; this distance [ is usually
taken as 2 or 3 chordlengths, depending on the value of the jet coefficient C;. At this

distance /, the perturbation velocities become zero:

v(l) = u(l) =0, (5.9)




aerofoil

panel N

Figure 5.2: Jet flap panel arrangement

and the curvature of the jet stream becomes also zero, the jet stream be oming straight

and parallel with the undisturbed flow U,__:

i) = a, (5.10)

J'y = o. (5.11)

5.2 Spline Formulation for Jet Flapped Aerofoils

Using cubic splines to approximate perturbation velocities on jet flaps has a great advan-
tage over using large polynomials. In the polynomial formulation the normal-to-chord

perturbation velocity on the jet is represented by:
v(r) AR , .
T T m e i) (5.12)

where e, represented the polynomial coeficients on the jet and the extia function «- I'(r),
(as defined in Reference 17) helped to approximate the large singularity created by the jet
flap at the trailing edge of the aerofoil; in this method large coefficients for the polynomial
are obtained which can create problems when trying to calculate pressure coefficients
on the aerofoil. With the spline formulation these large coefficients are avoided. The
perturbation velocities can be approximated by two different sets of splines, one set for

the aerofoil and the other set for the jet flap. On the aerofoil, the normal-to-chord
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perturbation velocity on the aerofoil, is represented. as explained in Section 2.3.2. by:

3
velr) = —a+ Y Hi(r —z,21)%. (5.13)
k=0

The subscript @ denotes the aerofoil and subscript J will be used to denote the jet flap.

First Jet Panel

On the jet there is a singularity at the flap beginning and the end of the aerofoil. The
problem of approximating this singularity can be accomplished by using a special function
on the first panel of the jet. This function is related to the integration of u(z) whereby

the perturbation velocity is approximated by:

I~

m. (5-14)

3
2
vy (x) = j"( E kE})(z — o)k~ l-}-¢z7r31nh -1

The extra function is designed to disappear at the end of the first panel and presents a
singular behaviour at the trailing edge of the aerofoil, where the slope of the jet-flapped

acrofoil has a sudden jump. Integrating this equation results in:

3
va) +a=j(z) =3 Eiz - o) +a- fla), (5.15)

where f(z) = -72; [(m - l)sinl]_l‘/;li(lf:—% -V — lcos"’\/—%] . (5.16)

For simplicity in approximating the chordwise perturbation velocity, this extra function

is also approximated by a spline

3
ie) = 3 k(BL+a-F)(x— o), (5.17)
k=1
3
() = —a+) (E,} +a- Fk) (x — xo)*. (5.18)
A=0
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The Remaining Jet Panels

On the rest of the jet panels the extra function is not required, which leaves:

3
() = SkE} (r - a0, (5.19)
k=1
2 k
vy(r) = —a+ Z L(r—ury). (5.20)
k=0

Finding the chordwise perturbation velocities u(r) is similar to that of Section 3.1.1,

where the limits of integration are changed from 0 and 1 to 0 and L = ‘1

u(z) = /OL o(s) s ds

L—ss—1r

3

L;{ W[Z(Ek+aFk) L (o)
k=0
N 3
33 Bk (e)+ 33 Hik, H (5:21)

1=2 k=0 =14
where the K (z) represents the integration over the jet and the integration over the
aerofoil is represented by K (z). The integration is found in appendix B where ¢ must

be replaced by L which gives:

k k—q

Ki(z) = Y_Ciz] {Z 2 Ajemgt + ’\k-q} ’ (5.22)
q=0 =0

N —Qppt! cosh™! 24(%53 fors > i
dp = (5.23)
(L —=z) | Gnp~! Z(’;::) for v > s,

s sPds

b= [ (5.21)

? zi-1 yfs(L - s)

where the integrals for A, are:

e p=20

A, = /‘Iu ds _ [ros" (L - z.s)] J ’
Tyl ,S(L — S) L Ty



—_—

*p

L—‘.’s) ]T'
— ) —y/s(L - s
7 ( ) .

x sds L
Ay =/r‘_l -—-——m = [-é—cos ! (

o p=2
ds 3L2 L—2s s 3L o
- (2)- ()]
/.1:._1 5 —s [ L 2 4 Ty—1
e p=3

A’;—/ [-E-)-L—acos (_11;2_3_>_<g+5_L3+§gj> s(L—-s)]i‘ .
Zres \/‘T L 3 12 8 s
Putting the perturbation velocities into the jet momentum equilibrium equation (5.4),
a solution can be obtained in a similar manner as in the case of flexible membranes, where
the spline coefficients are broken into their respective derivatives. This needs to be done
for the spline approximating the jet flap (E.). The spline coefficients on the aerofoil H¥
can be found using linear aerfoil theory found in Section 3.1.1. The spline coefficients
for F} are found by evaluating equation (5.16) at the beginning and the end of the first
panel. After this has been done, there are 2N + 3 unknowns to be solved for, by using

the boundary conditions previously discribed in Section 5.1:

J'(©)+a-f(c) = —tanp, (5.25)
i) = o (5.26)
i) = o (5.27)

The last condition also represents the Kutta condition where the perturbation velocities

become zero at the end of the jet.
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LCr | L [Clj | Closunee
02525 ] 1.02 | 1.0
0.50 { 2.77 | 1.48 1.49
0.75 | 3.25 | 1.87 1.87
1.00 | 3.75 | 2.20 2.20
1.25 | 4.36 | 2.53 2.52
1.50 | 4.97 | 2.80 2.81

Table 5.1: Coeflicients of lift for a jet-flapped aerofoil with 8 = 31.4°, compared

to Spence’s solution.

5.3 Solutions for Jet Flapped Aerofoils and Discus-
sion of Results

The spline formulation becomes especially advantageous over the polynomial method for
the solution of the jet-flapped aerofoils. In finding the solution it became apparent that
a value of 0.1 for Az, (ie. z; — zi-; = 0.1) produced accurate enough results. The
problem of choosing the variational parameter L proved to become rather difficult. This
parameter changed with the angle of the jet and the value of the jet coefficient. A graph
for different values of C; against L were compiled (see Figure 5.5) using Az; = 0.1. These
values were attained by checking the overall lift coefficient from the jet, with the values
attained by Spence 27,28,29] oy the first panel a special function was added to take into
account for the singularity produced by the jet. It was found that for the best results the
first jet panel point was taken at ¢+ 0.01. If a value closer to the chordlength was taken,
the singularity became to large and produced oscillations within the spline formulation.
Typical values for L are shown in Table 5.1 for various values of C; for a jet-flapped

aerofoil (a = 0°, B = 31.4°). Figure 5.3 shows the pressure difference across a typical jet
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. flapped aerofoil at zero incidence. This shows the good agreement with Dimmock’s [32]
experimental results. In Figure 5.4 lift slopes of the jet-flap are compared to Spence’s

[27,28,29]

solution
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Figure 5.3: Nondimensional pressure difference ACr across a jet flapped sym-
metrical aerofoil at zero incidence compared to Dimmock’s, experimental

results (a =0°, B =31°, C; =0.3).
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Figure 5.5: Plot of the jet-flap length L against jet coefficients C;.
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Chapter 6

Analysis of Multi-Element Aerofoils

Multi-element aerofoils are used on almost all airplanes in operation today, which need
high lift devices such as leading and trailing edge flaps in order to take off and land
within reasonable runway distances. It is interesting to adapt the method of velocity

singularities for these special types of aerofoils.

6.1 Flow Field Solution outside the Aerofoil Con-

tour by the Method of Velocity Singularities

In the linear analysis of single element aerofoils it was assumed that the aerofoil was
in steady unperturbed air flow, and the calculations have been made to determine the
pressure distribution on the aerofoil contour. In the case of the multi-element aerofoils,
there are perturbation velocities generated by one aerofoil section which affect the other
aerofoil section. To find these perturbation velocities, an analysis of the complex functions

appearing in the expression of the complex conjugate perturbation velocity, has to be
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Part | —o<z=z<c, Co<2=T<§ s<2=xr<¢ c<s=r <00

-1 c—z)(s—co . -1 c—zY a~co
Real 0 cosh \ / %—;?5(-;;% sinh %T-c%)(&&% 0
-1 —z)(s—co b - c-2)(8=cq
Imag | cos (Z_L;g(—;% 0 3 cos 1\/ %‘-:‘,)(alL:c_zl)

Table 6.1: Real and imaginary parts of the ridge function found in the complex

conjugate perturbation function.

done for the domain outside of the aerofoil contour. M p
.16 T

a >
Uo.?v e S, -

6.1.1 Thin Aerofoil Solutions

In analyzing the domain outside of a thin flapped aerofoil (as shown in figure above),
the complex perturbation velocity function from Section 2.3.2 must be evaluated. This

function is written for a thin flapped aerofoil as:

W(z) = A |$=Z _ Av%cosh"l\J (o= 2)(s — co) (6.1)

z—c, (c—co)(s—2)
Here c, defines the position of the leading edge of the aerofoil and ¢ defines the trailing
edge position. This function does not present any problems while z is inside the limits of

the aerofoil (i.e. ¢, < z = = < ¢). While outside the limits of the aerofoil at the chordline,

(ie. y=0,z=z>cand z=2 < ¢,), the function \/:_‘:o becomes imaginary, and
the second function cosh‘l\/%%%% changes as shown in Table 6.1. The constant A

remains the same as in Section 2.3.2:

A=— [ch + -;??Avcos~l 2% } . (6.2)

Putting this into the disturbance function yields:

o c—¢, (c—¢,)(s - 2)

W(z) =1 £=c [-—-vcg - Av%cos‘l G ] — zAv%cos"\J (o= 2)(s - c"). (6.3)
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‘ Modelling the aerofoil as a continuous distribution of ridges gives:

_ zZ—cC 2 d'UA -1 $—Cp
Walz) = 2 p—y {—vA(co)———/ (dm) scos c—cods}
2 [ (dvy -1 [ (e=2)(s—¢,) _
-1 ( < ) . cos \j (e )= z)ds, (6.4)
one obtains after integrating by parts

t fz—c f° s—e¢, ds
z)__;‘/z—co /CO’UA(S)\/ c—ss—z+w°°' (6.5)

Evaluating the imaginary part on the z-axis (y = 0), the vertical perturbation velocity

induced upstream or downstream of the aerofoil (2 =z > ¢, 2 = z < ¢,) is

/w——c S—¢,
z—-co/covAs) c—-ss—z (6.6)

Hence, in the case of a two-element aerofoil, it is necessary to take into account the

‘ vertical velocity induced by one of the aerofoils, on the other aerofoil, which will be
evaluated using equation ( 6.6).
Considering a cubic spline representation for the vertical velocity on the aerofoil in

the form

3
VA(T) |z, <2<z, = Z Vi(z - 5'31'—1)Ic s (6.7)
k=0

the vertical perturbation velocity induced upstream and downstream of the aerofoil (2=

I >¢, z=1x<c,) is obtained from equation (6.6) in the form:

va(e) = —= > ViQi(a), (6.8)

where @}(r) are expressed as

k k-gq k-g-1 X Co | (c=2z)(s—c,)
z) =y Cia! Z ' Thmget — €6 Y &'ty — 22 T %05t ,
=0

=0 =0 z—c (= co)(s - z)

(6.9)
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i which

&p(la
T, / . (6.10)
J(e =)

(s — ¢,

For the various p, the expressions of T}, are:

¢+ ¢, — 28\1"
To = [cos'1 <—-—-———-—-—— ,
c— Co .

Y - 9‘ Iy
T, = [(Eiﬁ‘l) cos™! (.(_‘j_-ﬂ’__“_q> — (s = e)(e ~ 5)] .
2 c—Cg o
v .)‘, 3 : FU——— T B

= Bt o (S22 [l ]

1 | . e
T, = [—- (~18¢3 + 21cke — 15¢%, + Ac® + Heoe) cos”™ («————‘ ! J) -

16 - -0,

2
S

' + 5sc 4 5c? L Be,s N 34 ( ( ] .
P —— —— — ‘g' — ‘() b — "
371278 T2 12 T Co)le =

ERT |

The integration value s is varied between x,_; and r, situated on the studied aeroloil,
z,€ [c,, c] for any 7, and C7 represents the coeflicients of the binomial expansion (r—r, ),
[i.e. C}l=(-1)* '(k ] The integration and algebra to lind these velocities can he found
in Appendix D.

As concerns the axial perturbation velocity, wa, on the acrofoil tsell (outside of the

aerofoil u4l,=¢ = 0), this can be obtained, in the same manner as in Section 2.3.2, from

c— T o=, ds
uA = - ?’,1 . {611
T —c, =5 85—

which leads to the following expression for the cubic spline 1epresentation:

the equation

ug(z) = ZZ A A (6.12)

"z 1 h=0

where R} (z) are expressed as

h—g-1 T
I"'( ’.-—_("’ hl
E C {E T7k —g—l = Co E , T Ik—-ll -1 ™ & 2r l\/;_'—i((,”(’g,r)}‘
=0

(=0 ¢ —.r

(6.13)
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in which T}, is the same as previously expressed and

¢

cosh™!, [z e=co) Co <O <8

{e=co)(s~x)
F(Cosc,Sg J’) = 4 siuh"l %z—::-:gj)‘('—;-_c—:% s<r<e (6.14)
0 r<c, >0,

\

6.1.2 Aerofoils of Symmetrical Thickness

A similar evaluation of the perturbation velocity must be done for acrofoils of symmet-
rical thicknesses. The corresponding complex velocity function for a typical symmetrical

aerofoil is defined as

Ws(z)

1 ¢ fdv
= [vco In(z —¢,) + /co (IE—) In(z — s)ds = v, In(z — ¢)

=3

1 oqe d
;r-j;ovs(s) __SS. (6.15)

As already known, for y = 0 outside the symmetrical aerofoil (2 = ¢ < ¢, and z = 2 > ¢},
the vertical perturbation velocity calculated with the above equation is zero, vs(x) = 0,
Hence, by contrast with the antisymmetrical part of the solution, there is no vertical
velocity induced by the symmetrical thickness of one aerofoil on the sccond acroloil
contour.

To calculate the axial velocity ug(z), the symmetrical vertical velocity on the aerofoil

vs(z), will be put into the form of a cubic spline representation
2\ k
s (2)|e,_y <aca, = D, G (2 — 2i0)". (6.16)
k=0
Putting this spline representation into equation (6.15) the axial velocity can be found
similarily to that of Section 2.3.3 where:
1 N 3

us(z) = —=3 3 GiJi(e), (6.17)

i=1 k=0
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Figure 6.1: Flapped aerofoil at incidence a and flap incidence 5.

where Jj(x) are the same as previously expressed in Section 2.3.3.

6.2 Analysis of Two-Element Aerofoils

The analyzed two-element aerofoil is shown in Figure 6.2, in which ¢; represents the
chordlength of the first aerofoil and ¢, the chordlength of the flap, which will be denoted
in the following as the second aerofoil. The distance between the two aerofoils is Ac (i.e.
the distance from the trailing edge of aerofoil one and the leading edge of aerofoil two).
The angle of incidence of the first aerofoil is o and J represents the deflection angle of
the second aerofoil (the flap) with respect to the chord of the first aerofoil.

Table 6.2 shows the definition of the chordlengths according to the notations used in
Sections 6.2.1 and 6.2.2. In order to analyze the flow past the two-element aerofoil, the

problem will be decomposed into two separate flow fields, namely the antisymmetrical

Aerofoil c o

1 (5] 0

2 c+Ac+e | ¢+ Ac

Table 6.2: Definitions for ¢ and ¢, for aerofoil 1 and aerofoil 2.
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Figure 6.2: Decomposition of (a) antisymmetrical and (b) symmetrical parts of

a two-element aerofoil.

and symmetrical velocity flow fields:

u = up + ug, (6.18)

v = vy + vg, (6'19)

where u and v define the perturbation velocity in the = and y directions, and where the
subscripts A and S stand for the antisymmetrical and symmetrical flow fields, respec-
tively, As shown in Figure 6.2a, the antisymmetrical velocity field takes into account the
effect of the aerofoil camber and angle of attack, and in Figure 6.2h, the symmetrical
velocity field takes into account the effect of the symmetrical thickness of the aerofoil.

The antisymmetrical and symmetrical flow fields are defined by the following houndary

conditions:
—a + h(2)] U, for0l<z<e
valz) = [ 1(a)] ‘ (6.20)
[—(a+8)+ hy(2)] Uy, for et +Ac<z<ci+Actey
us(z) = 0, forz <0, a;<z<e;+Ac, = >c+0Ac+ey (6.21)
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Figure 6.3: Two thin cambered aerofoils to determine the antisymmetrical
velocity flow field.

¢

91 (2 VU, forl<zr<q
vs(z) = { gh(z)Us, for ej+Ac<z<c;+Ac+cy (6.22)

0, forz <0, y<z<c1+Ac, ¢ >c1+Ac+e,.

\

6.2.1 Antisymmetrical Part of the Solution

The antisymmetrical part of the flow field is decomposed into two separated antisym-
metrical flow fields past two isolated thin aerofoils represented by the camberlines of the
first and second aerofoils, as shown in Figure 6.3:
va(z) = vj(z) + vj(z), (6.23)
ua() = ul(a) + u3 (o). (6.24)

The superscripts 1 and 2 ate used in the above equations to denote the corresponding

antisymmetrical flows past the first and the second aerofoils, which are defined by the
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following spline distributions of the vertical velocities:

v, (2)]ericoca, = ZV“’ (2 = zi2)", O<r<er, (6.25)
k=0
NPy k

V4, (D)eycicocz, = 2 Vi (= zim)", cit+Ac<r<e +Acte. {6.26)
=0

where the spline coefficients V' and V2 are unknown a priori and will be determined
later; the subscripts 1 and 2 indicate the aerofoils on which the vertical velocity is for-
mulated.

Using equation (6.18), the following expressions are obtained for the axial perturba-

tion velocities, u}(z) and u%(z):

uh(z) = Z:Z VI Ri(z), O<r<e (6.27)
1=1 k=0
1 e+ Ac+cp—¢2 24 i ‘
2 —_— o — % It . f
uy(z) = 7r\/ = (T 29 g___‘{’;% Ri(z), e+ Ac<z<ey+Actey.(6.28)

The vertical velocity induced by the aerofoil 1 on the aerofoil 2, v}, (), and the vertical
velocity induced by the aerofoil 2 on the aerofoil 1, v3 (z), are obtained from equa-

tion (6.8) in the form:

vl (z) = C‘ZZV,;'Q,: er+Ac<z<er+Actcy, (6.29)
=1 k=0

2 _ L — (Cl -+ AC+02) FP '

vi,(z) = W\J = (o T A0 t{_i}:_%v,c Qi(z O<z<e. (6.30)

The a priori unknown coefficients V,* and V** can now be determined using the hound-

ary conditions (equation (6.20)) in the form

vy, (2) + 03, (2) = [~a+ hi(2)]Ux, (6.31)
v (@) + v (z) = [~(a+B)+ k)] Us, (6.32)
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Figure 6.4: Two symmetrical aerofoils to determine the symmetrical velocity

flow field.

which lead to a linear system of equatiens. To make the system of equations simpler, the
spline coefficients were broken into the two main components (as described in Appendix
C.1.2) of v(z) and v'(z) for both the aemofoils. Then the components for v'(z) can be
broken down further into functions of v(z) using second order differencing techniques.
This produces a matrix with a dominent diagonal which reduces any possibilities of ill-
conditioning. Solving the problem by this method leaves 2V +2 unknowns. Once the
spline coefficients V;}* and V2 are solved for, the axial components from equation (6.27)

and equation (6.28) can be determined.

6.2,2 Symmetrical Part of the Solution

The analysis of the symmetrical velocity field is also decomposed into two separate sym-

metrical flow fields past two isolated aerofoils of symmetrical thickness (Figure 6.4):
vs(z) = vi(z)+vi(z), (6.33)
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us(xr) = uh(r) + ud(r). (6.34)

Where the superscripts | and 2 denote the corresponding symmetrical flow ficlds defined

by the following boundary conditions:

!
91(z)U. forl <z <
vi(z) = | e (6.35)
| 0, forr <0, 2>¢
g4(z)U. forei;+Ac<r<ei+Ac+ey
i) = 0 (6.36)
| 0, forr < ey+Ac, x >c¢1+Actey
Cubic spline representations for the vertical velocities on the two acrofoils in the form
3 ; Q
05, (€)ayor e, = 912V = 3 GV (2 = mim)*, O<z<e, (6.37)
k=0
2\ o k
'ng(w)'z'_l <zxlz, = g;(m)U‘X’ = ZGk" (33 - :L'i..l) b}
k=0

for ey +Ac<z<ei+Acte;. (6.38)

The axial perturbation velocities on the first aerofoil, u, (x) and u} (z), and those on

the second aerofoil, u}, (z) and u}, (z), are obtained as

N 3

ulsl(m) = —lZZG};'Ji.(z), O<z<e, (6.39)
1=1 k=0

uZ( — 1 N 3 2,8 71 '

5(z) = —-;ZZGk Ji(z), 0<zr<e, (6.40)
i=1 k=0
1 N 3 ..

u}g:(:c) = -—;%G}Q"J,ﬁ(w), a+Ac<z<e)+Acte,, (6.41)
1 N 3 .

ug,(z) = —-;ZZG%"JL(CE), ci+Ac<z < e+ Actey, (6.42)
i=1 k=0

where Jj(z) are defined by equation (3.20) in Section 3.1.2. The symmetrical part of the

solution for the axial perturbation velocities on each aerofoil can hence he calculated as

us(z)h = ug () +uk (2), O<z<ey, (6.43)
us(z)|, = u}gz(x)-i-u%?(y), a+Ac<z<e+Acta. (6.44)
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. Karman-Trefftz Characteristics
Aerofoil | efc | flc| ¢ n v
A 0.05 | 0.02 | 0.024 | 1.97 2.32°
B 0.05 | 0.00 | 0.040 | 2.00 0.00°

Table 6.3: Definitions of two types of aerofoil.

where ug(z)|; and ug(z)|; define the total axial velocity due to symmetrical thickness.

All of the symmetrical velocities can be found explicitly if the cubic spline of Appendix

C.1.2 is used.

6.3 Results and Comparisons for Two-Element Aero-
foils

To determine the accuracy of the present method, comparisons were performed for the
case of two-element aerofoils, with the results obtained by Seebohm and Newman [26]
using a surface vortex method.

These comparisons have been made for the case when the main aerofoil section (aero-
foil 1) and the flapped section (aerofoil 2) are both Karman-Trefftz aerofoils with the
same characteristics f/c, efe, €, n and 4. The results have been obtained for two dif-
ferent aerofoils indicated by A and B in Table 6.3 (in fact the aerofoil B is a Joukowski
aerofoil, which represents a particular type of Karman-Trefftz aerofoil with n = 2 and
the trailing edge angle v = 0).

The antisymmetrical and the symmetrical parts of the solution were determined for

these two-element aerofoils in the manner indicated in Sections 6.2.1 and 6.2.2, and
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then the pressure coefficients are calculated based on these solutions as indicated by
equations (3.8) and (3.9) in Section 3.1,

The pressure coefficients distributions obtained for these two-element aerofoils are
shown in Figures 6.5- 6.8 for the following geometrical characterisitics: ¢; = 1, ¢; = 0.35,
and Ac = 0.05.

The results obtained for the two-element aerofoil based on the Karman-Trefftz acrofoil
of type A (see Table 6.3) are shown in Figure 6.5 for & = 0° and 8 = 15° and in Figure 6.6
for o = 10° and B = 15°. The results for the two-element aerofoils based on the Joukowski
aerofoil of type B (see Table 6.3) are shown in Figure 6.7 for a = 0° and 8 = 20° and in
Figure 6.8 for o = 10° and # = 20°.

In all these figures, the solutions obtained with the present method, using 25 equally
spaced points on each aerofoil, have been compared with the results obtained by Seebohm
and Newman [26] using a vortex panel method. A reasonable good agreement has been

found between the results obtained with these two methods.
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Figure 6.6: Pressure coefficients for an aerofoil with a rounded leading edge

. (e/c =0.05, f/e=0.02) and a 35% flap (a =0°, B = 15°).
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Chapter 7

Conclusions

In this thesis, the method of velocity singularities has been developed in conjunction
with a cubic spline representation of the aerofoil contour slope. This spline representation
has improved substantially the accuracy and stability of the solution in special problems
such as the jet-flapped aerofoils; in these cases, the polynomial representation previously
used can lead to high-order polynomials with large coefficients, which can have adverse
effects on the accuracy of the solution. The spline-velocity singularity method developed
in this respect has proven to lead to accurate solutions, computationally efficient, in all
studied problems.

This method has been first validated for the cases of rigid and flexible aerofoils, in
comparison with the previous solutions based on conformal transformations, or obtained
by Thwaites [33] and Nielsen 23] A very good argeement has been obtained between
the present spline-velocity singularity solutions and the previous results, as well as with
the results based on the polynomial representation [15,16,17],

The method has then been used to solve the flow past jet-flapped aerofoils, in which
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case it has been characterized by a better accuracy and an enhanced stability of the
solution in comparison with the polynomial representation used previously in conjunction
with the same method of velocity singularities. The solutions obtained for the jet-flapped
aerofoils have been compared with the theoretical solution obtained by Spence [27,28,29]
and the experimental results obtained by Dimmock [32]; a good agrecement has been
found between these results.

The spline-velocity singularity method has also been extended to the problem of
multi-element aerofoils. The solutions obtained for two-clement aerofoils, represented by
an aerofoil with a flap, have been compared with the results obtained by Seebohm and
Newman [26] using a surface vortex method. A good agreement has been obtained for
both cases of Karman-Trefftz and Joukowski aerofoils,

In all problems treated in this thesis, the spline-velocity singularity method has proven
to have a definite advantage in comparison with the polynomial formulation, displaying
a better accuracy and stability of the solution; this was found especially in the probh-
lems in which the aerofoil geometry is not known a priori and depends on the pressure

distribution, as in the cases of the flexible or jet-flapped aerofoils.
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Appendix A

Conformal Transformation

A.1 Karman-Trefftz Transformation

Here the Karman-Trefftz transformation is explained, This transformation is defined by

equation (2.13)

z—nb _ ((-b\"
z+4+nb (C+b) ' (A1)
If we let:
1 C.—b " ¢
Me _(_C+b) , (A.2)

we can get an equation to solve for z (note: do not confuse ¢ with the velocity potential

described in chapter 2):

Me* + 1
z=-nb (m) . (A3)

Breaking z into real and imaginary parts:

M? — 1
T = —nb(Mz—ZMcos¢+l)’ (A4)
2nbM sin ¢
V= (M'~'~2Mcos¢+1)' (A.5)
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i On the circle, M and ¢ are written as functions of 8,
N Mett = [£=0 i _ (e "
(+0 reetz )

M= (Tl) é = (6 — 03).

L)

where

At a point (P) on the circle ry,72, 0, and 0, are obtained using the cosine law:

ri = b +r?—2rbcost,
b +r—r?
27'1b ’
r: = b +r?—2rbcos(m - 6),

cos™! Bty =1’
21‘21) '

6, = w—cos'l(

)
[
il

Now r and @ are the only unknowns. r can be obtained using

! r = b(G(6) + H(9)),
where
G(#) = —ecosf@+(14¢) ta.n':ysin 0,
1o) = (S5 - poo),
F(@) = —esin@— (14 ¢€)tanycosd,

(A.6)

(A7)

(A.8)
(A.9)
(A.10)

(A.11)

(A.12)

(A.13)
(A.14)

(A.15)

Iteration for a y coordinate on the aerofoil at position = can be obtained by guessing 6

using

0 = cos™! (-2%) ,

(A.16)

as an approximation, Now numerical analysis can be applied (i.e. using a secant method).

To find a value for the unknown constant b, the chordlength is set to unity and b can be

;N—
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_ karman-Trefftz Aerofoil |
~ Aerofoil ) Parameters Characterisitics
| Type ¢ | n | v |elc]%chord| f/e T% chord
[ Circular Arc 0.000000 [ 2.00 [ 2.865 [ 0.00 ] — |0.025] &0 |
Circular Arc 0.000000 | 2.00 { 5.711 | 0.00 —_ 0.050 50
Lenticular 0.002931 | 1,94 | 0.000 | 0.05 50 0.000 —
Lenticular 0.005807 | 1.88 | 0.000 | 0.10 50 0.000 -
Cambered Lenticular 0.002911 [ 1.94 | 1.178 | 0.05 50 0.010 50
Cresent Shaped 0.002806 | 1.94 | 2,944 | 0.05 50 0.025 50
Cresent Shaped 0.004788 | 1.88 | 6.028 | 0.10 50 0.050 50
Symmetrical Joukowski | 0.040226 | 2.00 | 0.000 | 0.05 22 0.000 —
Symmetrical Joukowski | 0.083915 | 2.00 | 0.000 | 0.10 22 0.000 —
Cambered Joukowski 0.040200 | 2.00 | 2.292 | 0.05 22 0.025 50

Table A.1: Summary of aerofoil parameters used in Karman-Trefftz transfor-

mation,

evaluated using

_ X
c = 2nb1__x, (A.17)
where y = (1i6> . (A.18)

A summary of the different aerofoils used in this thesis are given by table A.1.

A.2 Flow Around A Circle With Circulation

To find the velocity components we need to define the flow around the circle by a complex

potential:

U (e BY T
F(z) = Us (c +C*) S (A.19)

where * = re'’, r is the radius at which flow is to be defined, 6* = 0 — a, and T is the

circulation around the aerofoil. Taking the derivative of the complex potential gives the
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R 4
N 3 T
)

complex conjugate function of the circle:

2
F(¢™) = U, (1 - -C“—‘; - -2-;-;71;—02-) : (A.20)

Using the Kuita condition by imposing the perturbation velocities to be zero at the

trailing edge, the circulation around the aerofoil can be determined as
I' = —4ralq sin(a + 7). (A.21)
Taking the modulus of the complex velocity potential
|F'(¢*)] = 2Us(sin(# — &) + sin(a + 7)), (A.22)

the flow field around the aerofoil is obtained by:

3
—
o~

#*
-

V=|F(z)| =

: (A.23)

A

Now pressure coefficients can be solved for using equation 2.10.
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Appendix B

Perturbation Velocity Formulation

B.1 The Antisymmetrical Velocity field

B.1.1 Complex Conjugate Disturbance Velocity Function

As wrote in Section 2.3.2 the complex conjugate perturbation velocity function:

=400 = 2 [ oi(s)eos=! JEmZ 2y -1 |sle—2)
W(z) = ¢ —v(0) 1r¢/o v'(s)cos \/.?d.i - 7r./o v'(s)cosh c(s——w)ds'
K ‘ ¥

)

Breaking the complex conjugate perturbation velocity into smaller integrals and doing

the integration by parts:

e Integral Io:

/oc v'(s)cos™ /sds =

[()cos 1\/’] Q/C \/;_Z_:_S_ds,

_u(s)

= 0y [ i
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o Integral /;:

Al;_ -

v'(s)cosh™! z((: : ;; ds

T e -1 | s(e—=) ° -1 |sle—=)
= !% v (s)cosh Py z)ds+/z+¢ v'(s)cosh 5 =2) m)ds

o Integral /5:

J} ¥(e)cosh™ zé::z;ds =[] [ o(spsinnr | S 2y,

o Integral I5:

[ v(s)eosh? Se=a)yy [v(é‘)cosh"] Z(C—w)] + +% [ o z(c=2) ds_

+e (s — x) (s — z) +e c(s—z)s—z
e From integrals I; and I3
4 ¢ g 2 3
@
x !1_1}(1) {v(a: — €)sinh™! G Z)(z —2) - v(z + e)cosh“l\/(ac + Z)(i — :v)} = 0.

Putling these integrals into the complex conjugate perturbation velocity equation:

Wia) = /== { (0)—~(-—v()+2/ ,___)f)}

—%{1/ DN P +zg(v(s)-v(0))}.

c(s—z)s—z

JTaking real parts for u4(z) where the A subscript stands for antisymmetrical velocities:

———\/m/ va(8)y == == (B.1)
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Figure B.1: Geometric notations of camberline panels used for the cubic spline

representation of the aerofoil camberline

B.1.2 Spline Formulation

Using linear theory as defined in Section 3.1.1 a cubic spline approximation is used to

find the velocity ua(z):

W(z) = Hi+ HiAz, + Hi(Az;)? + Hi(Az,)?, (B.2)
3 .
= Y Hi(Az), (B.3)
k=0
where A:B,' =X — Ti-q. (B.")

H} are spline coefficients as defined in Appendix C. Now v(2) can be written using

equation (B.3) and linear theory:

va(z) = —a + Z Hi(Aw,)k. (B.5)

=0

This can now be used to solve for uy(z):

1 C— ¢ N 3 . k 8 (IS
- [ (e T Hiaay) [
l—-]k" L=$ 8¢ x
N 3
c—x -z T ) ds
= 1/ / H'/ (8 = @,y )F
/ c—ss—m ;,g ke, 1) c—ss—ux'

l:.
C—(D/
C—SS—$

ua(z)
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L, i
)
K

R

i

a\/;:;{/ \/s(_c:.s /\/T—-—s"(s—m)}

22 o () - s L)

c—
?
)

il
2

N 3

o= oSSESY HiKi),

T T i=1k=0
Ty S dS

where Kj(z) = / (s = z1)*
r

1 c—8SS—1

Now the perturbation velocity in the z direction can be written:

c— N 3 L
ua(z) = m"”( _%ggﬂuq(x)). (B.6)

B.1.3 Derivation of Integral Kj(z)

The integral for Kj(z) becomes quite tedious, long and difficult. This is probably the

. largest downfall to using the spline velocity method.

ds
k
S — Tj
wi-x( | 1) c—8s—gz'

k
let (s — i1 ) =Y C,f‘s"""x?_l

Ki(z)

g=0
. k=g+1 d
s s
Ki(z) = C"m_/
k ) E tlz'_l\/ms_w’
k—q
let (sk—-q-H k—-q+1) — Zsk—q-—lml,
=0
¢ )
; b N '
Kim) = YOkl (T o [ = ghoe A »
= E; zi-1 y[s(c — s) Tyt \/ s{lc—s (s—a:) ’
| . ")
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k-q+1/
Ty \/s(c -5 (e - )

-2:1:""""‘1 z(c—z) d
. /m(c - z:....l s(c—s)s—z’

—9gk=g+1 | cosh™? sema) fon o5 g

c(s~z)

z(c—z) | siph=? z—((:—:’;’} forz>s

Integral number Ir will be identified by A,. Integral number /s must be integrated

separately as k is changed, and will be identified by A,:

e p=20
2 ds c— 25\1"
e [ o (52
0 /w--l s(c—s) c Ty~
o p=1
z- sds _1(0-23)_ —1”
./\1--.‘/33'“J G 3)—[ZCOS - V(e — s) .
o p=2
2 s2ds 3e c—2s 3c =
e [ [ (52) - 4 845
: jz;-x s(c—s) [SCOS ¢ 24 ( ).z'...|
.p=3

_f»  sds  [5 1<c—2s) Scs  Hc? — o
AS"/z._l o5 1167 \ TG 3+12+ g ) Vsle—s)

Now K}(z) can be written:

) k k—q
Ki(z) = }_Cizl_, {Z &' kgt + )‘k-*q} ' (B.7)
=0 =0
The Cf represents the coefficients of the binomial expression of (s — zi)¥,
€1 = (1) (B8)
¢ q!(k - q)V’ '
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Putting this into K}(z), written out in long form:

Ki(z) = Ao+ o

K:i(-'b') = A+ Ao+ A —zi1 (Ao + o)
Ki(z) = Azt + 2o+ Ao — 271 (Ar + 2Ao + M) + 22, (Ao + Ao)
1{5(32) = Ag+zA; + $2A| + .‘ESAQ + Az — 3z;q (Ag + zA; + szo -+ /\2) +

8z3_1 (A1 + zho + M) — 21 (Ao + Ao).

B.2 The Symmetrical Velocity Field

B.2.1 Complex Conjugate Disturbance Velocity Function

The symmetrical velocity field described in Section 2.3.3 leads us to:

Ws(z) = %{U(O) et [ (g_)

Because we are dealing with the symmetrical velocity field the chordlength can be set to

In(z — s)ds — v(c) In(z — c)} . (B.9)

=9

unity (the chordlength changes only when using the jet flapped antisymmetrical veloci-

ties):

[ (%)  In(e = a)ds = [o(s) Infe = )y + " o(s) . (Ba0)

s§—X

Putting the relation v(s)In(z — s) = v(s)(+r + In(s — z)) for s > z, and the results from

equation (B.10) into equation (B.9):

= lim{fo(s) In(e = o)™ + (s)om + In(e ~ )l } + [ o) 2
= (1) In(1 — z) — v(0) In(z) + s (v(1) — v(s)) + jol ofs)- ‘i‘sm.
After rearranging:
Wsa) = = [ v(s) =2 —n(a) (B.11)
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For the velocity us(z) =, the real part of Ws(x) is taken:

us(@) = == [ o(s)-2

(B.12)

B.2.2 Spline Formulation

Using linear theory as defined in Section 3.1.1 a cubic spline approximation is used to

find the velocity ug(z):

G;’, + G Az; + Gi(An:)? + Gi(Az;)?,

E Gi(Ag;)*,

k=0
where Az; = z; — 7;_4,

il

g ()

]

and G}, are spline coefficients.

Now vs(z) can be written using linear theory:

vg(z) = E Gl (Am.

k=0

This can now be used to sclve for ug(z):

1 (S ds
uS(w) - —;r.‘/o (ZG(A:I:‘ )m=a;_:—£’

k=0
1 N 3 .opm
= 2336 [T (o m
Ti=th=0 Yo 8=
= —= GiJi(2)
T i=1 k=0 ,
where Ji(z) =/$' (8 — zip)¥ ds .
Tye} § -
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B.2.3 Derivation of Integral Ji(z)

The integration for Ji(z):

Ji(z)

Ji(2)

Jy(z)

Is

Iy

I

]

let (s — z;y)* =

-1

JRCEE

ds
S.— T

k
k ok=9 .9
chs Zi-1y

Z sk-—q-l -1 I

-

L.

9-1 x )
! ' S k— v ds

S ohy [ sl oty |

\ﬂ-’;—] x

-1 8 — 2

g=0
k z d
k ' kg 08
Zoq xg-—l/ Ch
q=0 Ty—1 §—T
k~q~l
let (s¥-9 — zk-9) = (s -
=0
k . k-
> Coxly
q=0 =0
Is
k—g~1 24
S el [ ki,
{=0 Tl
k~g~1 !
Ti1 k=g~ _  k—q-!
‘Z: k— q— l(mt-}-l — Ti1 )a
=0
k=g T ds
Timy ’
..y S— T
Tia1 ¢
Liw) — T

JA

k]

Noting that for integral Iy, is restricted to no = between z;_; and z;. If this occurs:

Ig

Hence Iy

ds

k-—q /1’-(
wn_l s—
i [ Ty £r— S

T;— I
ghapn [ B2
= Ti-1

m-

?In
: l T

Putting integrals Is and Iy into J}(x):

E Ckwt-l

=0

|

k~-g-1

2

I=0

l
Zi1

l( k-q—l+m

k—q-
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-1
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) + !

y

k—q
i~1

In

ds

+cs—m]’

Ti— T
Ti1 — 2

L
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. B.3 Modified Expansion Field - Local Linearization

For Symmetrical aerofoils with rounded leading edges, a modified expansion ficld is ve-

quired to treat this special case. This modified expansion:

vs(z) = ,/ Z Gi Ak, : (B.14)
k=0

which treats the Kutta condition at the trailing edge and helps treat the infinite velocity

at the leading edge. Putting the spline approximation into equation (B.12)

us(z) =——ZEG'/ s-—r, ¥ ds (B.15)

i=lk=0 % s—z’

where the integral is represented by J,‘wk(w), now

Ug = ———ZZG JML(.T). (B.16)
T §=1 k=0
, B.3.1 Derivation of Integral J}, (z)
T () = —2(s - 21-1) —

let (l—s )=(1—-2)- (s-—m)

R (s —zi)F ds _(s-—-:c,-..;)"' o
(1 )‘/zv—l—_—s(l—s)s“m Ty

k
Using (s — 2i-1)F = Cks*=12]_),
9=0

k x kwq
Crad_ {(1 - ds L s ),
B0 st [ )

The last two integrals were already defined in Section B.1.3. Collecting all the integrals:

! M=
JM;: ZCI’ Ti_; {(1 —z) ( Z &' Npmgatoq — ——2——"—) - Ak—q} . (B.17)

g=0
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Appendix C

Cubic Spline Formulation

C.1 Introduction

A series of different types of splines were researched and two types were found to give

the best accuracy versus difficulty.

C.1.1 Cubic Spline Using Tri-Diagonal Matrix

This type of spline gives good accuracy without having to know the second derivative of
the camberline coefficients k() and g(x). We start with a set of coordinates < z,y >,

where we want to find specific values of y at a given z coordinate, hence:
y = f(z). (C.1)
A function where the fourth derivative is zero is desired so a cubic order will be the best.

Vi1 = Ai+ B;Az; + C;Aw? + D.-Aa:?, (C.2)

where Az; = &; — 21, (C.3)
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Figure C.1: Geometric notations of camberline panels used for the cubic spline

representation of the aerofoil camberline

This cubic starts at point () and ends at (¢ + 1). This leads to () splines for (N + 1)

points (Figure C.1 shows how the panels and points are numbered in this case). If the

spline is evaluated at z = =z;:

vi = A;

(C4)

Now B;, C;, and D; are unknowns, requiring 3N — 3 equations. Using equation (C.2),

demanding continuity of the first and second derivatives:

setting:

which gives:

y;f“ = B, +2Az;C; + 3Aw?D,—,

yiy1 = 2C;+6Az;D;,

yi(zip) = 3/:'+1 (Zi41),

¥ (zin1) = yin(zia),

Biyn = B;+2Ax0; +3A22D;,

2C§+1 = 2C; + 6Ax;D;.
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| . Two more conditions are now required to solve for the solution. By imposing and putting

the second derivative to be zero at the ends (ie: =0, i = N):

D; = é?,—z-‘(o,-,,l-c.-), (C.11)
i1 =Y Az
B, = y*&@-” —~ (i1 +20)). (C.12)

Using these conditions and putting into equation (C.7):

Az; C; + 2(A:L‘,~ + A(B.'.H )OH-I -+ Am;+1 C;.,.g = Rhs;, (013)
o |¥Hr = Y Vi — i
Rhs; = 3 | 1= ek (C.14)

This results in a tri-diagonal matrix:

2(Azy + Axzy) Az, 0 cee C, Rhs,
Q Az, 2(Az; + Azz) Az cre Cs Rhs,
0 ses Azyn_s 2(Aw~-2 + A.’BN..l) CN-1 Rhsy.;

(C.15)
The spline can be changed by using different end conditions and redefining equations (C.12),
(C.11), and (C.T7).
For writing formulas the orientation of the spline is also found
3
y(z) = ?; HiAxF, (C.16)
where the spline coefficients A;, B;,... are represented by Hj, Hj,.... This is done so

the coefficients can be written in a simple summation.
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C.1.2 Cubic Spline Using Second Derivatives

This type of spline obtains very accurate results without any matrix operations. The
downfall of the method is the need for the second derivative of the camberline coefficients
h(z) and g(z). If the aerofoil is a function of x, the derivatives can be easily obtained,
otherwise differencing methods have to be used. Differencing methods sometimes tend
to lose accuracy near the ends (this is where the tri-diagonal matrix may be a better
choice).

This method starts similarily to the tri-diagonal method using y as a function of x as
in equation (C.1). This function may be written as equation (C.2), where its derivative

is written as equation (C.5). If we evaluate these two functions at z = z;:

At' = Y (0.17)

B; yi. (C.18)

Evaluating these equations at z = 2;4.1:

Yig1 — Yi — yﬁAw.- = C,Aw? + D,-Aa:?, (C.lg)

Y1 — i = 2CiAz; +3DiAg}, (C.20)

Combining these two equations:

R 3(y‘+1 - yi) - y$+1 + 2y$ .
G = ( Az} Az; ’ (C.21)
' '
R 1Tt A 2(Yip1 — i)
b, = (M) - (Hepzul). (C22)
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Appendix D

Imaginary Part of the Perturbation

Functions

D.1 Imaginary Part of the Ridge Function

C—=Z) 83— Co

The ridge function denoled as cosh™!
& (c=co)(a—7)

becomes purely imaginary outside of
the acrofoil regime. This becomes important when analyzing multi-section aerofoils. The

hyperbolic cosh function is defined as:

cosh™"R = In(R+VR? - 1). (D.1)

When the limits of 2 become outside of the aerofoil (ie z > ¢ and z < ¢,) the function

\/‘(':EZ—Z%(LE% is less than one, Allowing this function to be denoted by R the upper formula

becomes;

= In(R+:V1 - R?), (D.2)
= (R £ V1 - R2)—Iny, (D.3)
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= sin” ‘h’:}:a;, (D)

= +icos™' R (D.5)

This function also poses a problem while s < z < ¢, This is on the acrofoil itsell and

doesn’t contribute to the imaginary velocity field hut contributes to the axial velocity

%f:—f-;-(‘k—f_—;% which

function. The function %’-}ﬁ—:)u(:‘;:—z% itsell hecomes imaginary giving

will again be denoted by R:

= IR+ vV-R-1), (.6)
= In(RLVI+ R+, (D.7)

= sinh”'R+ 1% (D.8)

These derivations are summed up in Table 6,1,

D.2 Imaginary Part of the Antisymmetrical Veloc-

ity Function outside the Aerofoil Contour

The complex conjugate perturbation function hecomes outside of the acrofoil contonr

(z=a<chorz=>c)

z—c 2 [ §—c 2 e cm zM s =0
W(z) = 1 /— —v(e,) — ~/ v'(s)cos™! “ils g —1= / n'(s)('ns“'\J (e = 2)s =, ds,
7!' Co C - (.:(J 7r LR 7Y ((. & ~

-, [

T "

Performing the integrals by parts gives:

o Integral /o

(4 —
/ W(s)eos™\ |2 ds =
Co

¢~ ¢

8-, ((-q

n{s)
— .]m 2/“ \/ ds



Co)+2./ca \/(c-—c P (ls

e Integral /y:

" (s)cos™! (c—ﬁ')(s-—ca)”
[ ¥eos J(c—-ca)(e—~)"‘

— e (e=2)(s —c,) 1 re 5 (r—c)(e—2) ds
= [v(.s)(,os J } + 5. v(. )\l e ’

(e—¢,)(s — =) = )8 — ) s — 2

(z—c,)e—2) ds
=-—-—U( )2+2/U(J .

(c—c))(s—cp)s—2z

Putting these two integrals back into the disturbance velocity function:

—73{ —o(en)3 + 3 ()\) (e~ c)lc—w) ds }

(e—c)(s—¢)s—u

= _.,...v - Co /ca UA(S)\I c:(;a sz w(ca).

Taking the imaginary portions of the distrubance velocity function gives the perturbation

I fe—c [¢ §—c, ds
oale) = == [222 [T A (D.9)

This can be represented by a cubic spline notation such as

velocity va()

N 3

vaw) = ==\ [Z=2 33" VQi(e), (D.10)

T —C =1 k=0

where Q}(x) defines the integral.
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D.2.1 Derivation of Integral Qj(.x)

While analyzing outside of the acrofoil contour the perturbation velocitios are formulated

as:

Q). (0.11)

let (S —_ ,1:1_1) Z CVL k—(] q

q==0

(s — ) da

0—0 /‘”'1\/( o)(e—8) S —

kg1
]E‘t ( ""-{1) -— (Q — L Z /c—rr-[...
=0
k k—q k=g=~1 . o
= Z CZ'IU:" Z wlTk—q—l - €, Z .i!l7 , (‘ oA )( " C,
q=0 =0 I=0 ((' -, (..., - J-)

in which

sPds
. .12
= 7 (D.12)

8 — Co)( = 8)

For the various p, the expressions of 7}, are:

T, = [cos™ (‘_i_c__::_‘i)] t
L F ™ Co Ty
_ [(eto) oo (c+ca—2ﬁ>__ PRV ]
Tl - -( ) ¢c—c, \/("’ (o)(( 'L') e s
T, = § (c + Gee, +c)cos'l ((—jp—%—(i—ﬁ)”[é ::' (+(”]\/(5,_,“ (e “s)] :,,,
i _ r 1 '+'((,"“ZH
T3 = TG (—-l}c +21cte — 15ckc, + ¢ -l-l?Sm()‘“S ( c— ¢ )_

a1y

s Bsc B c,e Beys  Bed
("3’+T:'z"+"é"+ﬁ+ 2 +‘“‘) \/“*‘w)“'*)}

Iy
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Appendix E

Computer Subroutines

All of these subroutines are coded using the C language. For some of the subroutines

global variables exist. These are defined in the preamble of the main program.

a,,@ #define N 10 /* Number of chordline points %/
,' #define M N+2 /* Matrix size */
‘ #define PI  acos(-1) /* pi=3.14159... */
#define rad 180/PI /* conversion from deg to rad */
#define diff le-13 /* used to change x-coordinates */
#define L 3 /* used for jet flaps */
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E.1 Subroutine for Antisymmetrical Velocities

/* Subroutine AntiSpline calculates values of Cp by using Cubic Splines

on aerofoils having antisymmetrical velocities only. Calculations are
performed for 5 different angles of attack

Recieves: x - coordinates
h' (x) - camberline slope on aerofoil
h* (x) - second derivative of aerofoil camberline
Returns: Cp - pressure coefficients for top and bottom of aerofoil

void AntiSpline(double x[M],double h[M],double hp[M],double Cp[2][5][N])
{

double srt[N],K(5],H[5][M],u,v,A;
int 1,j,p,1ii,aa;

/* Calculate V((1-x)/x)_*/ .-
for(i=0;i<N;i++) "
srt[i] = sqrt((1l - x[i]) / x[i]);

/* Find Spline Coefficients H */
Spline{x,h,hp,H);

/* Find perturbation velocities and calculate pressure coefficients */
for (aa=0;aa<5;aa++)

{
A =aa * 5/ rad;
for(i=0;i<N;i++)

u=24a*gsgrt[il, v = -A + h[i];
for (p=0;p<N;p++)
{

KKK(X[D] lx[p+1] Ix[i] IK) H
for(j=0;j<4;j++)
u -= H[j)[p] * K[j] * srt([i) / PI;

)
oo

-

o

)

b ]

[

v

—
i

1 - (pow(cos(A) + u,2) + pow(sin(a) + v,2));
1 - (pow(cos(A) - u,2) + pow(sin(a) + v,2));
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’ E.2 Subroutine for Symmetrical Velocities

- /* Subroutine SymmetSpline calculates values of Cp by using Cubic Splines
on aerofoils of symmetrical thickness. Calculations are performed for
5 different angles of attack

Recieves: x - coordinates
g’ (x) - slope of thickness function
g" (x) - second derivative of thickness function
Returns: Cp - pressure coefficients for top and bottom of aerofoil */
void SymmetSpline(double x[M],double g[M],double gp(M],double Cp(2] [5][N])
{

double srt[N],J(5],G[5])([M],Vs,Va,Us,Ua,A;
int 1,3j,p,ii,aa;

/* Calculate V((1-x)/x) */
for(i=0;i<N;i++)
srtf{i] = sqre((l - x[i]) / x[i]);

/* Find Spline Coefficients G */
Spline(x,g,9p,G);

/* Find perturbation velocities and calculate pressure coefficients */
x[0] = 0, x[N] = 1;
for(aa=0;aa<5;aa++)

]
Bty {
T

;i A =aa * 5 / rad;
o for{i=0;i<N;i++)
| {
Ua = A * srt[i), Us = 0, Va = -A, Vs = g[i];
for (p=0;p<N;p++)
{
JIJ(x[p],x[p+1],x[i]1,J);
for(3=0;3<4;j++)
: u -= G[j)[p] * J[J] / PI;
Cpl[0][aa)l [i] = 1 - (pow({cos(A) + Ua + Us,2) +
_ pow(sin(A) + Va + Vs, 2));
Cpll]) [aa) (i] =1 - (pow(cos(A) - Ua + Us,2) +
} pow(sin({ad) + Va - Vs,2));
}
)
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E.3 Subroutine using Local Linearization

‘!’/* Subroutine ModSpline calculates values of Cp by using Cubic Splines
| on aerofoils of symmetrical thickness at zero incidence.

Recieves: x - coordinates
g’ (x) - slope of thickness function
Returns: Cp - pressure coefficients for top of aerofoil */

void ModSpline(double x[M],double g[M],double CpIM])
{

double srt[M],G[5])[M],J[5],gmod[M], gmodp [M],Vs,Va,Us,Ua, A, dx;
int iljlp;

/* Calculate V((1-x)/x) and modified portion of g’(x) */
dx = 1. / N;
for(i=0;i<=N;i++)
{
srt{i] = sqgrt((l - x[i]) / x[i]);
gmod[i] = g(i] / srt[i];

/* Find second derivative using forward and backwards second order
differencing techniques */
for(i=0;i<N-1;i++)
{
dx = (x[i+2] - x[1]) / 2;
gmodp (1] = (gmod[i+1]*2-1.5*gmod[i]-gmod{i+2]/2)/dx;

- }

%. for(i=N-2;i<=N;i++)

o {

g dx = (x[i] - x[i-2]) / 2;

: gmodp{i] = (1.5*gmod[i] - 2*gmod([i-1]) + gmod[i-2]/2) / dx;
}

/* Find Spline Coefficients G */
Spline(x,gmod, gmodp,G) ;

/* Find perturbation velocities and calculate pressure coefficients */
x[0] =0, x[N] = 1;
for(i=0;i<N;i++)
{
Us = 0;
for(p=0;p<N;p++)
{

JIM(x[p],x[p+l],x[i],J);
for{j=0;j<4;j++)
Us -= G[3jllp] * J[j] / PI;
Cpli] =1 - pow(l + Us,2) / (1 + pow(g[i],k2)};
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x st

/* Subroutine KKK calculates the integration values for Kk(x) as needed

E.4 Subroutine for Integral Kj(z)

by the antisymmetrical velocity field, defined by section appendix B.1.3
- first limit of integration
- second limit of integration
- position on velocity field

Recieves: x1
x2
XX
Returns: K

- integration values

void KKK (double x1,double x2,double xx,double K([5])

{

double 1i(5],Io[5],I([5],t1,t2,templ,temp2, temp3;

int q,p;

t2 = sqQrt(x2*{1-x2)), tl

if (%2 == xx)
else if (xx
else if(xx
else if(x2
else

if(x]1l == xx)
else if (xx
else if(xx
else 1f(x1
else

>
<
>

>
<
>

1)
0)
XX)

1)
0)
XX)

temp?2
temp2
temp2
temp2
temp2
templ
templ
templ
templ
templ

0w uwnwuwwugnuan

sqgrt (x1*(1-x1));

fécos(sqrt(xz*(l-xx)/(xz-xx)

[

acos (sqgrt (x2* (1-xx)/ (x2-xx))

))
)
acosh(sqrt (x2* (1-xx)/ (x2-xx)))
asinh(sqrt (x2* (1-xx)/(xx - x2)

0:

+écos(sqrt(xl*(1-xx)/(xl~xx)

S);

r’

acos (sgrt (x1* (1-xx)/ (x1-xx))

))
)i
acosh({sqgrt (x1* (1-xx)/(x1l-xx)))
asinh(sqgrt (x1*(l-xx)/(xx - x1)

temp3 = sqrt(fabs (xx*(1-xx)));
for(g=0;q<4;:q++)

/ temp3 *
- acos(l-2*xl);

5);

(temp2-templ) ;

(.75*%(t2-tl) + (t2*x2-tl*x1)/2);

Iolgl = -2 * pow(xx,qg+l)
I[0] = acos(1~-2*x2)
I[1] = I(0]1/2 - (t2-tl);
If2] = .375*I[0] -
I{3] = .3125*1([0] -

for({g=0;q<4;q++)
{

iilql = Iolql;
for (p=0;p<=q;p++)
ii(qg] += pow(xx,p)

}
K[0]}] = 1i1(0];
K[1l} = 1i[1]
K{2] = 1i[2]
K[3] =

(.625* (t2-tl)

- x1*1i[0];
- 2*x1*1ii[1l] + pow(x1l,2)*ii[0];

+ 5/12.%(£2*x2-t1*x1l) +

* Ilg-pl;

2

(X2*X2*£2-x1*x1*tl)/3.);

ii[3] - 3*x1*ii[2] + 3*pow(x1l,2)*ii[l] - pow(xl,3)*ii[0];

*/



® E.5 Subroutine for Integral Ji(z)

W /% gubroutine JJJ calculates the integration values for Jk(x) as needed
by the symmetrical velocity field, defined by section appendix B.2.3

Recieves: x1 - first limit of integration
x2 - second limit of integration
XX - position on velocity field
Returns: J - integration wvalues
void JJJ(double x1,double x2,double xx,double J[5])
{
double ii[5],temp;
int a,p;
if(x1 == xx) temp = log(fabs(x2-xx));
else if (x2 == xxX) temp = -log(fabs(xl-xx));
else temp = log(fabs((x2-xx)/(x1-xx)));

for(p=0;p<4;p++)
{

ii[p] = pow(xx,p) * temp;
for(g=0;q<p; g++)
ii(p] += pow(xx,q) / (p-q) * (pow(x2,p-q) - pow(xl,p-q)):

ii[0];

ii[1] - x1*ii[0];

ii[2] - 2*x1*ii{1l] + pow(x1l,2)*ii[0];

ii[3] - 3*x1*ii[2] + 3*pow(xl,2)*ii[l] - pow(xl,3)*ii[0];

GaQoggqg
L B s X o X aae §
WK OW

nnnan
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E.6 Subroutine for Integral Ji, ()

W /* Subroutine JJM calculates the integration values for JkM(x) as needed
by the modified symmetrical velocity field, defined by section
appendix B.3.1

Recieves: x1 - first limit of integration
x2 - second limit of integration
XX -~ position on velocity field
Returns: J - integration wvalues */
void JJIM(double x1,double x2,double xx,double J[5])
{
double 1i[5]),Io([5],I(5]},tl,t2,templ, temp2, templ;
int q,p;

t2 = sqrt (x2*(1-x2)), tl
1f(x2 == xx) temp2
else if(xx > 1) temp2
else if(xx < 0) temp2
else if(x2 > xx) temp2
else temp2
if(x1 == xx) templ

sqgrt (x1*(1-x1));

0;

tacos (sqrt (x2* (1-xx) / (x2-xx)))
acos (sqrt (x2* (1-xx) / (x2-%x)) ) ;
acosh(sqrt (x2* (1-xx)/ (x2-%xx)))
gsinh(sqrt(xz*(l-xx)/(xx - x2)

!

;);

(LD T I T N (A IO L O N | Y OO 1

else if(xx > 1) templ yracos (sqrt (x1* (1l-xx)/(x1-xx)));
else if(xx < 0) templ acos (sart (x1* (l-xx)/ (X1-%xx)));
else if (x1 > xx) templ acosh(sqrt (x1*(1l-xx)/(x1-xx)));
else templ asinh{sqrt (x1*(l-xx)/(xx - x1)));

temp3 = sqrt(fabs (xx*(l-xx)));
7N for(g=0;Q<5;q++)
! Io(g] = -2 * pow(xx,q) / temp3 * (temp2-templ);

I[0] = acos(1l-2*x2) - acos(l-2*x1);

I[1] = I[0] / 2 - (t2~tl);

I(2] = .375 * I[0] - (.75*(t2-tl) + (t2*x2-tl*x1l)/2);
I[3] = .3125*I(0] - (.625*(t2-tl) + 5/12.*(t2*%x2-t1*x1l) +

(x2*x2*t£2~-x1*x1*tl)/3.);
for(p=0;p<S;p++)
{

ii[p] = Io[p] * (1 - xx) - I{p);
for(1=0;1<p;l++)
ii{p) += pow(xx,1l) * I[p-1-1] * (1 - xx);

}
J[(0] = 1ii([0];
J[1] = 1i[1] - x1*ii[0];
J[2] = ii[2] - 2*x1*ii[1l] + pow(xl,2)*ii[0];
J(3] = 1i[3) - 3*x1*ii[2] + 3*pow(x1l,2)*ii[l] - pow(xl,3)*ii[0];

S
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E.7 Subroutine for Spline Formulation

./* Subroutine Spline calculates spline coefficients using spline derived
in appendix C.1.2

Recieves: x - coordinates
v (x) - coordinates to be splined
Yy’ (x) - slopes of coordinates
Returns: G - spline coefficients */
void Spline(double x[M],double y[M],double yp([M],double G[5] [M])
{
double dx;

int i;

for(i=0;i<N;i++)

{
dx = x[i+1] - x[i];
G[0][i]) = y[i];
G[1]1[i] = yp([i]; _ . . .
G[2] [1] = 3/dx/dx * (y[i+1] - y[i]) - (yp[i+l] + 2 * yplil) / dx;
GI3][i] = (ax * (ypl[i+l] + yp[i]) - 2 * (y[i+1l] - y[i])) / pow(dx,3)
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. E.8 Subroutine for Flexible Membranes

!/W Subroutine SailSpline calculates values of Cp and shape of membrane
by using Cubic Splines.

Recieves: x - coordinates
Returns: h(x) - membrane shape
Cp - pressure coefficients for membrane */

void SallSpllne(double %x[M] ,double h[M],double Cp(M])

{
double A(2*M] [(2*M],t([4],t1([4],t2[4],srt([2] [M],Rhs[2*M],b[2*M], h[M], hp[M],
H[4][M] tt[4] dx,sl,a,xx;
int 1i,3,411i,33, q,end More;

/* Calculate V((1l-x)/x) */
dx = 1. / N;
for(i=0;i<N;i++)
{
®xx = (x[i+1] + x[i]) / 2;
srt (0] [1i] = sgrt((1l - x[i]) / x[i]);
sre(1l][i] = sqgre((l - xx) / xx);

}
srt[0] [N] = sgrt((l - x[N]) / x[N]);

/* Set Matrix wvalues to zero */
for(i=0;1i<2*M;i++)
. for(j=0§j<2*M;j++)
'; A(i][3] = 0;
&r{

/* Fill Matrix */

end = 2*N+l;

for(g=1;qg<=N;qg++)
{

i=gq-1, ii = N + g,

/* find midpoints and values for dx */
xx = (x[qg] + x[ag-1]) / 2, dx = x[qg] - x[g-1], dx2 = dx / 2;

/* find values for v’ (x) in eqn 4.7 */

Templ (dx,dx,Ct/4,tl), Templ (dx2,dx,Ct/4,t2);
sl = So(x[ql), 82 = So(xx);

Rhs[i] = -Alpha * sl1l, Rhs[ii] = -Alpha * s2;
A1) {i] += t1(0], A[i)[i+1] += t1[1};
Ali]({ii] += t1(2], A[i)[dii+1l]) += tl[3];
A[ii][i] += £2([0], A[ii][i+1] += t2[1];
Afii] (ii) += t2[2], A[idi]({ii+1) += t2[3];

/* find values for u(x) */
for(j=0;73<N;j++)
{

N+ 3j+1, dx = x[j+1] - x[j];

JJ =
Afi](3] += sl * dx/2, A[i)[j+1] += sl * dx/2;
t A[l][Jj] += sl * dx*dx/12, A[i][jj+1] -= sl * dx*dx/12;
. KRK(x{J],x[j+1]),x[q],tt), Temp(dx,tt,-srt[0][q]/PI,t);
Afi] (31 += t[OJ. A[l][3+1] += t[1];
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Ali) [33] += t(2], A[i)([jj+1] += t[3];
KKK(x[j)],x[j+1],xx,tt), Temp(dx,tt,-srt(1l][q-1]/PI,t);
A[ii]) [J] += s2 * dx/2, A[ii][j+1) += s2 * dx/2;

Alii] [J3] += s2 * dx*dx/12, A[ii][jj+1l] -= s2 * dx*dx/12;
Alii] [3] += t([0], A[ii])[j+1] += t[1];

A{ii] (3] += t([2), A[4ii)([JF+1] += ¢[3];

}

/* use equation 4.7 once more on first panel of membrane */
s =1./N- 0L/N, 1 =0, do { i++; } while(s > x[i]), i--, ii =
Templ (s-x[i],dx,Ct/4,tl), sl = So(s), Rhs[N] = -s1 * Alpha;
A[N] [1] += t1([0], A[N][i41] += t£1[1];
A[N] [ii] += t1([2], A[N]([ii+1] += t1(3];
for(j=0;j<N;j++)
{
Jji =N+ 3+ 1;
A[N)[F] += s1l * dx/2, A[N][j+1] += sl * dx/2;
A[N}([jj] += sl * dx*dx/12, A[N]{jj+1l] -= sl * dx*dx/12;
KKK(x[j],x[j+1],s,tt), Temp(dx,tt,-sqrt((l-s)/s)/PI,t);
A[N] (3] += t[0], A[N][j+1] += £[1], A[N][3j] += t[2];
: A[N][ji+1] += t[3];

/* Leading Edge singularity */
i = N-1;
for(j:O;j§=end;jf+)_ o
Alend] [j] = A[i]l[3], A[i] (3] = O;
Rhs[end] = Rhs[i], sl = 16/PI*(.5/PI-Ct/8), Rhs([i] = -sl*Alpha;
for(j=0;j<N;j++)
{

jj =N+ j + 1;
Ali)[j] += sl * dx/2, A[i][j+1] += sl * dx/2;
A[i])[jF) += s1 * dx*dx/12, A[i)[jj+1] -= sl * dx*dx/12;
KKK(x[3],x[j+1],x[0],tt), Temp(dx,tt,-1/PI,t);
A[i][3] += t[0], A[i][J+1] += t[1];
} A[il[33] += t[21, A[i][ji+1) += t([3];

/* Perform Guass-Jacobi Elimination */
Polynomial (A, Rhs,b) ;
for(i=0;i<=N;i++)

h = b{i], hp = b[i+N+1];

/* Find Spline Coefficients */
Spline(x,h,hp,H);

/* Find Constant a as defined by equation 4.21 =*/
a = Alpha;
for(i=0;i<N;i++)
for(j=0;j<4;j++)
a += H[F][1] * pow(dx,j+1) / (j+1);
a *= -16 / PI;

N+i+1;



- /* Find membrane shape and pressure coefficients */
. for(i=0;i<=N;i++)

- {
] Cpl[i] = a*(.5=2*x[1i])*srt[0][1i]);

if(i == 0) Cpl[i] += H[1][0], hl[i] = sl = 0;
else

for(j=0;3<4;j++)
{

sl += H{j][i-1] * pow(dx,j+l) / (j+1);
Cpli] += 3 * H[j][i-1] * pow(dx,j-1);

}
h{i] = sl + a * Jo(x([i]) + Alpha * x[i];

}
Cpli] *= -Ct;

}
}
vo%d Temp (double x,double J[4],double s,double t[4])

/* summation k=0.,.3 ¥/

t[0] = s * (J[0] + (2*J[3]/x-3*T(2])/%/%X);
(1] = s * (3*J(2] -~ 2*J[3]/x)/x/x%;
t(2] = (J[1] - 2/x*J[2] + J[3]/x/x) * s;
} t[3] = (J[3]1/x/x - J[2]/x) * s;
!!Vo%d Templ (double s,double x,double temp,double t[4])

/* Summation k =1 .. 3 */

t[0] = temp * 6*s/xX/x * (s/x - 1);
E[l] = temp * 6*s/x/x * (1 - s/x);
£(2) = temp * (1 - 4*s/xX + 3*s*s/x/X);
t[3)] = temp * (-2*s/X + 3*s*s/x/x);

}

double So(double x)
{ return ((.5 -~ x + x*(1l-x)*log((l-x)/x)) / PI - Ct/4*(.5-2*x)) *
sqrt ((1-x)/x) * 16 / PI; }

/* equation 4.11 */

double Jo(double x)
{ return (.l25*acos(sqgrt(l-x)) - sqQrt(x*(1l-x))*(.125-7./12*x+x*x/3)); }

-
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E.9 Subroutine for Jet Flapped Aerofoils

/* Subroutine JetSpline calculates values of Cp on the jet and aerofoil
by using Cubic Splines.

Recieves: X ~ coordinates
+ h’ (%) - camberline slope on aerofoil
h* (x) - second derivative of aerofoil camberline
Returns: Cp - pressure coefficients for aerofoil */

void JetSpline(double x[M],double h[M],double hp[M],double Cp([M])
{

double xx[2] [M],srt (2] [M],E([S] [M],H([5][M],A[2*M] [2*M],Rhs([2*M],t1[4],
t2[4] ,e[M],ep[M],t[4],b(2*M],bp{M],F([5],£E,fp,sl,s2,dx,u,dx2,a, hh;
int 1l,p,i,3J,k,end,q;

/* Calculate x and V((1l-x)/x) */
for (i=0;i<=N;i++)
{
xx[0][1i]) = 1+diff + (L - (l+diff)) * i/(N*1.);
sre (0] [i]) = sgrt((L - xx[0][i]) / xx[0][i]);
if(i > 0)
{
xx[1][i-1] = (xx[0][i] + =xx[0][i-1]) / 2;
) srt(l][i-1] = sqgrt((L-xx[1][i-1])/xx[1])(i-1]));

}
dx = xx[0][1] - =xx[0][0];

/* special spline function given by equation 5.16 */

fp = 2/PI*asinh(sqgrt((L-xx[0][0])/L/(xx[0]([0)-1)));

£f = (xx[0][Q]-1)*fp - sqgrt(L-1)*2/PI*acos(sqrt(xx[0][0]/L));
F[0] = ££, F[l] = fp, F[2] = -(3/dx*ff + 2*fp) /dx;

F[3] = (fp + 2/dx*ff)/dx/dx; '

/* Find Spline Coefficients H for aerofoil surface */
Spline(x,h,hp,H);

/* Set matrix to zero */
end = 2*N+2;
for(i=0;i<=end;i++)

{
Rhs([i] = 0;
for(j=0;j<=end;j++)
) Afi]l [J] = O;

/* Fill Matrix */
for(i=1l;i<=N;i++)
{
1 = N + 1, dx = xx[0][i] - =xx[0)[i-1]), dx2 = dx / 2;
(i == 1)
{

rh e

i
i
Afil(end] =Cj /7 4 * F[0];
for(k=1;k<4;k++)

Alii](end] +=Cj / 4 * k¥ * F[k] * pow(dx2,k-1);
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}
Rhs{i] = srt(0][i-1] * Alpha, Rhs[ii] = srt([1l]([i-1] * Alpha;

Templ (dx,dx,Cj/4,tl), Templ(dx2,dx,Cj/4,t2);
Al(i)[1i] += t1([0]), A[i]}(di+1] += t1l([1]);
Ali][11] += tl({2], A[i][1ii+1] += tl1([3]
Alii] [1) += t2[0], A[ii]l([i+1] += t2[1]
Alii]) [(i1] += t2[2]), A[i1])[ii+1] += t2]
for(j=0;3<N;Jj++)

{

;
;
31;

dx = xx[0][j+1] - xx[0][j], dx2 =dx / 2, §] =N + 3§ + 1;
KKK(x[j],=x[j+1],xx[0] {i-1],tl), KKR(x[j],x[j+1],xx[1]([i~-1],t2);
for(k=0;k<4;k++)
{
Rhs[i] -= srt(0]([i-1] / PI * H[(kI[3j] * tl(k];
Rhs([ii] -= srt(l]([i-1] / PI * H[k][3j] * t2[k];
}
KKK(xx[0][j],xx[0] [j+1],xx([0] (i-1],¢t1);
KKK (xx[0] [j],xx[0](j+1],=xx([21][i-1],t2);

if(j == 0)
for(k=0;k<4;:k++)
{

Ali) [end] += srt[0][i-1] / PI * F[k] * tl([k];
A[ii] [end] += srt[l][i-1) /7 PI * F[k] * t2[k];
}
Temp (dx, t1l,srt[0] [1-1]/PI,t), A[i]l([j] += t([0], A[i]([j+1] += t[1l];
A[i) [j3) += t[2], A[i)([Jd+1] += t[3]; |
Temp (dx, t2,srt (1] [(i-1]/PI,t), A[ii]{j] += £[0];
A[iil[3+1] += t£[1], A[ii1(d3] += tl2], A[ii]}[jj+1] += t[3];
}

/* boundary condition e’ {c) = -tan(Beta) */
A(0][0] = 1, Rhs[0] = -tan(Beta);
A[0] [end] = ~-sgrt(xx[0][1l]-1) * 2 / PI * acos(sqrt(l/xx[0]1[1]));

/* boundary condition e’ (l) = 0 */
for(i=0;i<=end;i++)

Alend] [i] = A[N][i], A[N][i] = 0;
Rhs[end] = Rhs[N], Rhs[N] = 0, A[N][N] = 1;

/* boundary condition e’’(l) = 0 */
Alend-~1] [end-1] = 1, Rhs(end-1) = 0;

/* Perform Guass-Jacobi Elimination */
Polynomial (A,Rhs,b);
for(i=0;i<=N;i++)

ii =1+ N+ 1, e[i] = b[i], ep[i] = b[ii];

/* Find spline coefficients E for jet */
Spline(xx[0],e,ep,E);

/* Find constant a for first panel */
a = blend);

/* Find Pressure Coefficients on Aerofoil */



for(i=0;i<=N;i++)

{ {

. Cpli) = Alpha;

for(j=0;3<N;j++)
{

KKK(x[j],x[3+1]),x[1i],tl);
K??{xx[oéfj],xxlol[j+1],x[i].t2);
1l ==
Cpl(i)] -=a / PI * (F[O]*t2[0]+F[1]*t2[1]+F[2]*t2[2]+F[3]*t2[3});
for(k=0;k<4;k++)

) Cpl(i] -= (H[k]1{j] * tl(k] + E[k][3j] * t2(k]) / PI;
Cpli] *= sqrt((L-x[i])/x[1]) * 4;
}
}
void Temp(double x,double J[5],double s,double t[4])
{ .
t[0] = s * (J[0] + (2*JT[31/x-3*T([2])/x/x);
t{l] = s * (3*J[2] - 2*JT[3]1/x)/x/x;
ti2] = (J[1] - 2/x*J[2] + J[3}/x/x) * s;
t[3] = (J[3)/x/x - J[2]/x) * s;
}
void Templ(double s,double x,double temp,double t[4])
{
t{0] = temp * 6*s/x/X * (s/x - 1);
t[l] = temp * 6*s/x/x * (1 - s/X);
t[2) = temp * (1 - 4*s/x + 3*s*s/x/X);
t[3] = temp * (-2*s/x + 3*s*s/x/x);



E.10 Subroutine for Multi-Element Aerofoils

'* Subroutine Multi calculates values of Cp on aerofoil one and two

by using Cubic Splines,

Recieves: x - coordinates
h'(x) - camberline slope on aercofoil
g’ (%) - second derivative of aerofoil camberline
Returns: Cp - pressure coefficients for aerofoil */

roid Multi (double x[2] [M],double h[2][M],double g{2] [M],double Cp{2][2][M])

how oG

{

double t1(4]},t[4],T(4]),J2(4],G[2])[4] (M), H[2][4] [M],srt[2] [M],A[M1][ML],
b[(M1],Rhs[M1], %1,%x2,dx,templ,temp2,Ua,Us,Vs,Va,tus,tvs, dxl,dx2,
ratio,det,temp, AA;

int i,j,p,1,q9,end,enn,ii,jj,perm, k,nn,1ll;

/* Calculate Y((1-x)/x) */
end = 2*(N+1), enn = N + 1;
for (i=0;i<=N;i++)
{
srt[0] [1]
y srt([1l][1i]

/* Set Matrlx to zero and f£ill Rhs[1] */
for(i=0;i<=end;i++)
for(J 0; 3<-end,3++)

)/ (x{0][1]-Cl-dc)));
(1i1));

sqrt (fabs ( (Cl+dc+C2-x[0] [1]
sqgrt (fabs{(Cl-x[1]1([i])/x[1]

AEi][j] = 0;
for(i=0;i<=N;i++)
{
Rhs[i] = -Alphal + h{0][i];
Rhs[i+enn] = - (Alphal + Alpha2) + h[1][i];
}

/* Fill Matrix A */
for(i=0;i<=N; i++)
{

ii = enn + 1i;

if(i == 0) x1 = x{0][1i], x2 = x[1](i];
else X1l = x[0][1i-1), %2 = x[1])[1i-1];
if(i < (N-3))

{

/* BEquation one */
Templ (x[0]),x1,1i,t), A[1i)([i] += t[0], A[i)[i+1]) += t[l];
Afi}[i+2] += t[2], A[L)[i+43] += t[3];

/* Equation two */

Templ (x[1],x2,1,t), A(ii]{ii] += t(0], A(ii) [dii+1] +=t[1]);
Alii) [1i42]) += t[2], Alii] [11i+3] += t[3];
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— else

, {

, /* Equation one */

| Templ(x([0],x1,1i,t), A[{i}[i] += &[0
A[i][i-1]) += t[2]), A[i][i-2] += t[

], A[i][i+1) += t[1l]);
3};
/* BEquation two */
Templ (x(1),x2,1i,t), A[ii] [ii] += € [0], A[ii)[ii+1] +=t[1);
} Alii)([ii-1) += €[2]), A[ii)[ii-2] += t[3]; -
for(j=0;j<N-3;j++)
{

jj = j + enn;

‘/* Equation one */

KKK(x[1][j),x[1])[3+1],x1,¢tl,1); :

Temp (x[1],tl,-srt (0] [i1/PI,j,t), A[i]1[3]j] += t[0]);
A[L][J3+1]) += t[1], A[i)[33+2) += t[2], A[L)[33+3) += t[3];

/* Equation two */

KRR(x[0][3),x[0)[j+1],x2,t1,T,0,0);

Temp (x[0] ,tl,-srt (1] [i]/PI,j,t), A[ii]([j] += t[O],
Alii])13+1] += €[1], A[Lii) [J+2] += t[2}, A[1i][+3] += t[3];

}
for (j=N-3;7j<N;j++)
{

:f. jj = j + enn;
e :
T /* Bquation one */

KRR(x([1]) [j],=x[2][j+1],x1,t1,0,1,0);
Temp (x[1],tl,-srt [0] [i1/PI,j,t), A[i][3F) += t[0],
A[L][33+1] += £[1], A[L][3F~1] += t[2]), A[i}[dF-2] +=t[3];

/* Eguation two */
KKK(x[0][j]1,x({0] [J+1] 1 X2,¢1,3,0,0);
% Temp (x(0]},tl,-sxt[1])[i)/PI,j,t), A[ii]([J] += t[0],
; A[Liil[3+1] += t([1), A[ii]1[3-1] += €[2], A[ii}1([j-2] += t[3];

4 }

/* Perform Guass-Jacobi Elimination */
end--;
for(j=0;j=end;j++)
for(i=j+l;i<=end;i++)
{
printf("\n%2d %24",1i,3j);
ratio = A[i}[3] / A[31[]);
for(qg=j;qg<=end; g++)
Ali][q) -= A[j][qg) * ratio;
Rhs(i] -= Rhs([j] * ratio;




L,
?! -

/* Solve for b(j] */
for(i=end;i>=0;4i--)
{
b[i] = Rhs[i];
for(j=i+l;j<=end;j++)
bli] -= a(i)([j] *
} b(i] /= A[i)[i]);

/* Put solution vector into
for(i=0;i<=N;i++)
h{0][i] = b[i], h{1]([1i]

b

h

/* Spline Velocities for both

Spline(x([0],h(0]),H{0]),
Spline(x[0],9(0],G(0]),

/* Find perturbation velocities and calculate pressure

AA = Alphal;
for(l=0;1<2;1++)

(31;

for Splining Purposes */
b(i+enn];

Aerofoils */

Spline(x[1],h[1],H([1]);
Spline(x[1],g[1],G([1]));

{
for(i=0;i<=N;i++)
{
? = g[l][i], Va = h(l][i], Ua = Us = 0, Vs = g[l][i];
1f(i==6) 11 = 1;
x2 = x[11])[i);
for (p=0;p<N;p++)
KKK(x(1] [p] ,x[1][p+1],x1,t1,J,1,0);
JIJJI(x[1] (p],x([1]) [p+1],x1,J);
JIT(x[1][p],x[1][p+1]),x2,72);
for(%=0;j<4;j++)
Ua -= H[1l][j}[p] * t1[3J] / PI;
Us -= G[1l][J][p] * J[3] / PI;
} Us -= G[11l][3]1[p] * J2(3] / PI;
}
if(l == 0) Ua *= sqrt({fabs(Cl-x1l)/x1);
else Ua *= sqrt({fabs((Cl+dc+C2-x1)/(x1-Cl-dc)));
Cp(l)[0]{i] =1 - (pow(cos(AA) + Ua + Us,2) + pow(sin({Aa)
+ Va + Vs,2));
Cpl[l]l[1]1[i) =1 - (pow(cos(AA) - Ua + Us,2) + pow(sin(Aa)

}
AA += AlphaZ2;
}

+ Va =- Vs, 2));

coefficients */



’}:M

:!!’id Temp (double x[M],double J[5],double s,int i,double t[4])
=

double h,dxl,dx2,tt[4];
h = x[i+1] - x[i];

te[0] = s * (J[0] + (2*J([3]/h-3*J[2]1)/h/h);
ttf{k] = s * (3*J[2] - 2*J([3)/h)/h/h;
tt[2] = (J[1] - 2/h*J[2] + J[(31/h/h) * s;
tt[3] = (J[(31/h/h - J([2]/h) * s;
if(i{< (N-3))
dxl = (x[i+2] - x[i]) / 2, dx2 = (x[i+3] - x[i+1)) / 2;
tt(2] /= dx1l, tt[3] /= dx2;
t[0] = ££[0] - 1.5*tt(2];
t[1l] = £t£[1l] + 2*tc[2] - 1.5*tt(3];
t(2] = 2*tt[3] - tt([2]1/2;
t[{3] = ~-tt[3})/2;
}
else
{
dxl = (x[i] - x[1-2]) / 2, dx2 = (x[i+1] - x[i-1]) / 2;
tt[2] /= dx1, tt[3] /= dx2;
t{0] = tt[0] + 1.5*tt{2] - tt[3]*2;
t[1l] = tt£[1l] + 1.5*tt(3];
t{2] = tt[3]/2 - tt[2]*2;
e t[3] = tt[2]/2;

®

- void Templ (double x[M],double xx,int i,double t[4])
{

double dxl,dx2,dx,h,tt[4],tmp;
if(di == 0) t[0) =1, t[l] = t[2] = t[3] = 0;
else
{
h = x[1] - x[i-1], dx = xx - x[i-1], tmp = dx / h;
tt[0] = 1 + pow(tmp,2) * (tmp*2 - 3),
tt[l] = pow(tmp,2) * (3 - tmp);
tt[2] =dx * (1 + tmp * (tmp - 2)), tt[3] = dx * (tmp * (tmp - 1));
if(i < (N-3))
{
dxl = (x[i+2] - x[i]) / 2, dx2 = (x[i+3] - x[i+1]) / 2;
tt[2] /= dxl, tt[3] /= dx2;
t{0] = tt[0] - 1.5*tt([2];
t{l] = tt[1l) + 2*tt[2] - 1.5*tt[3];
t[2] = 2*tt[3] - tt([2]/2;
t[3] = -tt[31/2;
else
{
P dxl = (x[i] - x%[1-2]) / 2, dx2 = (x[i+1]-x[i-11);
. tt[2] /= dx1l, tt[3] /= dx2;

R £[0] = tt[0] + 1.5*tt[2] - tt[3]*2;



tt{1l] + 1.5*tt([3];
tt[31/2 - tt[2]*2;
te[2]/2;
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