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Abstract 

This thcsis prcseIlts a new approach based on a spline formulation for the analysis of 

thin acrofoils using the velocity singularity method. The method of velocity singularities 

was originally developed by Matœscu and Newman in conjunction with a polynomial 

rcprescntatioll of tht· normal perturbation velocities. The present method uses a cubic 

splillc represcntation lif the aerofoi) contour, which led to improvements in the accuracy 

and siability of the solution, especially in the case of the jet-flapped aerofoils. 

This rncthod has beeu first validated for the cases of rigid and flexible aerofoils. The 

pressure distrubutions ob:~ained with the spline formulation have proven to be in good 

agreement with the previolllls solutions based on conformaI transformation, or obtained 

by Thwaites, Nielsen, and LW Mateescu and Newman. 

The spline-velocity singul\~rity method has been used for the jet Happed aerofoils and 

then extended ta analyze the aerofoils with multiple sections, such as aerofoils with a 

flap. The solutions for these problems have been found to be in good agreement with 

the results obtained theoretically or experimentally by Spence, and Dimmock, and by 
" 

Seebohm and Newman, based on a surface vortex method. 

The spline-velocity singularity method displayed a better accuracy and an enhanœd 

stability of the solution, in comparison with the polynomial formulation, especially in 

the cases when the aerofoil contour is not known a priori, such as for the flexible or 

jet-flapped aerofoiIs. 
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SOlnlnaire 

('l'Ue tht'st' pll~S(,1l11' 11I1t' 11011\'('\1(' apprlldH' :1 1'dll,d,\ ~t' dl' ,lo:'l'lIll1il l'dl 1.1 111('\ "\ldl' lh' 

singularit.é' dt' vitesse' ('11 utilisant dcs spllll('~ l'lIhiqlll's, 1,<1 1I11"t hllclt' dt,,, ... ill p,1I l,II ill'~ dl' 

vitt'sst' l'lit illitiillklllt'lJt. dc\'('loppl;(' par ~I,tll'l'S('II et l\1'\\'Ill<l1l l'IllIlilisdlll III\(' lt'pll"~I'III.tll(l1i 

polYllomiale pOUl' ks vit('SSI'S \'l'rlicaks dt' IH'rtlll)"diulI, P.1l ('I,"tll'. 1,1 Il\I"lhlldl' dl'\'t'I 

opp{'(' dalls cl't,t(· thi·st' utilis(' 11111' l'l'IH'('sl'ntalioll dll t (Jlllnill dll pllllii .(t·rod\'lIdllliqlll· 

hasét· Sil\' dl's splill(,s cllhiqlll'S; (a ~I COlldllit. a l '.1I11{,1iur.tI iUIl dl' 1.1 pl'l"t'lSillll ('1 Id ~t."l(litc', 

dt' la solution, speciale'm('nt dalls 1(· cas <!l'S prolils aé'rudyll,l\lIiCfllt'~ ,l\'t'(' d,,~ dilt'IUIl" .\ 

Cette' mHhot!(· a t;t.{> valid(;(' pOlir It·s cas d('s plolils iH'·lOdYIli.lIlli(l'll's li~idt's 1111 11(,\ 

ibl<>s, Lt's distributions des pl'l'ssions ohtl'IIII('S av('(' ('(·tt,t· 11I(·l.hodt· (Jllt ("1.('. 1.101I\'t'·(·S 1'11 

hon ilccord ,\V('C Jt.s solutiolls ('XisLéllltl'S h<ls('l's SIII cJt's t.1<lIISlollll;ll,illlls IOlllfll'lIl(·S. 01 

obt('lIIIf'S pal' Tltwait(·s, Nids('II, l't. pM Ma.t.(·(·S('1I (.t. N(·Wlllilll. 

La t11(·t.hodp splin(-'-sillglllalitl;~ d" vit.pss(· é\. {·u· IItilis(;p 1'0111' )'("1.111110 dl'S \llolill'~ rlC',I'O 

dynamiq\lt' av('c cJps ailerons it jl'l" d Pllis III\(' (·xl.(·lIsioll il {.t.(; d('v('lop{'(' pU111 1';III,IIy"(' 

d{'s profils av('(' plllsÎf'urs ('kll1<'ltl,s, 1'0111111(' I('s profils Illltllis d('s ilill'IOII~. Ll'S ~C)lltl.i()lI~ 

Obtf'II1WS pOlir C('S problé'llws ont (~t.(~ tI'OIlV{'('S ('II IHJII a( ('orel ilV('(' Il'''; 1t'·SIIIt.<lt.~ 1.1rt'·ld'iqllt':-. 

OH experinlPutallx ohtt'lIl1S pal' Sp('I1(,(', DilllllllJ( k, 0\1 pal' S(·(·IHJhlll d Nt·WIII .. II, IJrlSl"~ ~ltl' 

11llP l!li>thodp t01ll'hillollain> dt' slll'fa('(', 

La. m{>thodt' splill('-singlllal'it,c"B dt' vit.(·ss(· ft <I(·lIIolll./'{·(' '111<' IIl<'ill('III(' III{'( i~ilJll ('1, ""l' 

stahilitp all1pliorl>(' dl' la sollttioll, ('11 cO/llparaisoll av('(' Irl l'l'pr/'~('III.;t1,ilJll PIlIYIIOllli,s!(·, 

S}H'cj,dPIlH-'llt dans I(·s cas Oll la g(;omt'l./'i(· du profilll\·~t. pas (0111111(' d'aVilll«', ((JI""'l' 

dans ks cas d('s pl'ofils a{'rodY"illl1iqlt(,:;, IIpxihl('s 011 IlIl1l1i., dl'" aill'IOII,.;;1 .il'!., 

Il 
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• 
Chapter 1 

Introduction 

1.1 General Considerations 

The analysis of thin aerofoil theory has been a subject un der research for many years. 

• Classical theories for rigid aerofoils of arbitrary shape began with Glauert [5] and Birn-

• 

baum where the aerofoil was replaced by a vortex sheet on the camberline, and circulation 

was formulated by the use of Fourier series. Stewart [30] modified this method by trans-

forming the aerofoil into a circle plane where the complex velo city perturbation function 

consisted of a series of singularities. This resulted in a Fourier series expression for 

pressure difference& which was similar to that of Glauert's. The advent of the modern 

computer introduced methods where large matrices could be convieniently solved. This 

produced boundary element methods based on source, doublet and or vortex distribu­

tions {10,13,201. This type of method could handle thicker aerofoils at the expense of 

computing time. Another method based on the use of a computer was developed by 

Halsey [8], in which the complex potential was iterated by conformaI transformations. 

1 



• Exact flow solutions around certain aerofoils can he found through conformai transfor­

mation, the prohlem being that their shapes are limited. 

Methods of this type were derived for ideal fluid flow situations. An airplauc in reglllar 

cruising conditions would have aerfoils operating under low angles of attack (ideal flllid 

flow situation). For an airplane cruising under conditions where compressibility bt'COl1lt·s 

a factor (i.e. at Mach numbers greater than 0.3) the influence of compressibility has tu 

he taken into aceount, wherehy Prantl's concepts need to be introduced. For aerofoi!s 

subjected to large angles of attack (which usually occurs under slow flight conditions) 

the effects of viseosity and flow separation need to he accounted for. 

Topics related to thin aerofoil theory have included the analysis of flexible aerofoils 

and aerofoils with jet flapped arrangements. The flexible aerofoil which is better known 

as a sail, has heen under analytical research sinee the early sixties. Nielsen [23] and 

• Thwaites [33] were the first to publish research based on a long Fourier series approach, 

solved by an eigenvalue approach. Aiso Newman [21,22], and more recently Matecscu 

and Newman [16,17] took an interest in the suh ject. 

• 

A jet flapped aerofoil inereases lift on the aerofoil (without the use of a meehanical 

flap) by expelling a jet of fluid at the trailing edge of the acrofoil. Published research 

by Spence [27,28,29] analyzed an infinitely thin jet expelled out of the trailing edge at a 

specifie angle with a high velocity. He first used a Fourier series approach and then found 

simple equations to predict lift and pressure variations. These equations compared quite 

weIl with experimental results. O'Mahoney and Smith [24] used a circle transformation 

method, which sometimes required several iterations becoming quite cumbersome. 

Another interesting related topie is that of aerofoils with multiple sections (for exam­

pIe an aerofoil with a flap). Research by Hess and Smith [9] analyzed this topie using a 

2 



• source pane.I method. Another panel method using vortices on the surface of the aero­

foils was developed by Seebohm and Newman [261. This method could also account for 

viscosity which becomes important on the flap of the aerofoil which can be under large 

deflections. 

The present analysis represents an extension of the method of velocity singularities 

developed by Mateescu and Newman [16,17], in which special singularities at the aerofoil 

leading edge and ridges along the aerofoil are used to determine the complex conjugate 

velocity around the aerofoil. The mathematical expressions of these singularities are de­

termined to implicitly satisfy the boundary conditions outside the aerofoil and the Kutta 

condition at the trailing edge. The velocity field around the aerofoil is thus determined 

by a simple integration of these singularities based on the variation of the slope of the 

aerofoil contour. This method is characterized by a simple and direct approach, leading 

• to closed-fûrm solutions in aIl cases when the aerofoil contour is specified. In addition, 

the method of velocity singularities has proven to be particularly suitable for solving the 

special problems in which the aerofoil contour is not known a priori, such as the problems 

of flexible aerofoils and jet-flapped aerofoils, in which the shape of the flexible membrane 

or of the jet sheet depends on the pressure difference across them [171. 

• 

The method of velocity singularities has been developed by Mateescu and Newman 

as a !inear theory, using a polynomial representation of the aerofoil contour [15,171. 

Later, Mateescu and one of his students, Nadeau, extended this method to the nonlinear 

analysis of the aerofoils [18,201. 

3 
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• 

1.2 Scope of Thesis 

The polynoI1Ùal representation of the aerofoil contoul' has proven t.o 1)(' \'{'l'Y Ctlll\'('lIi('llt 

and adequate fol' a large class of a~rofoils of speClfied geollH't.l'iel'l, l'Iuch as t lit' fi\'{' di~it 

series of the NACA aerofoils, which are characterized by a polynomial rt'llI·t'S('I\t.at.ioll of 

the camberline. However, in some special problpllls, for {'xéLlllpl", tilt' Cill'l" of tht' .id­

flapped aerofoils, the polynomial representatioll of the ac.'rofoil-cont.olll' cali I{'éld tu hip,h­

order polynomials with large coefficients which can have adwl'l'Ie ('(fpds O!l tlll' él(,Clll'ac,\' 

of the solution. In this respect, a smooth represent.ation of t1H' (lerofoil cont.olll', slIch al'l 

a cubic, will certainly contribute to improve the accuracy of t.1H' solutioll ill t.h!'s(' sl)('cial 

problems. 

In the present work, the method of velocity singularit.ies is d('wlop(·d in cOlljllllct.ion 

with a cubic spline representation of the ael'ofoil contour. This splillP n'pn':'i{'lItatioll will 

contribute to a higher accuracy and stability of the solution in special pl'obl(,llls slIch (tS 

the jet-flapped aerofoils, and in general will have a beneficial effed, on t.1H' appljeatioll of 

the method of velocity singularities in ail cases. 

This thesis will focus on the method of velocity singulal'itics usin.!!; a lilll'éll' appl'Oélch 

incorporating cubic splines. In chapter 2 the method of vclocity sin.!!;lIlal'iti(,s will 1)(' 

described. This will form the basis for the work of chapt.er :1, whel't' t.ht, Hplil)(, fOI'lIlUlat.ioll 

will be presented. The method of solution will he follow('d Ily solllt.iollH fol' variolls 

aerofoils comparing the use of cubic splines to the polynomials. TIl!' t.WO 1Jl('t.llOcls will 

be checked by the exact solution of the Karman-Trefftz confol'mal t.rallsformat,ioll. 011(,(' 

the accuracy and validity of the method is shown, the method usiJJg CIIIJic splill('s will 1)(' 

used for the analysis of special problems . 
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• 

Chcl.pt.Pr tJ will c!('f,crilH' th(' étIlalysif, of flcxiblf' aerofoib. In this chaptel' tlw gt>neral 

tlwUJY will 1)(· .k!'>cril,C'd a]oJlg with ~olution5 for flexible acrofoiI5. TIl{' solutions will 

show how t}w lll('tllOd uf vclocity singularities is particularily suited for thi5 type of 

prohlcm. Solutions will be compared to experimental and analytical results obtained by 

Thwaites [3:J] and Nielsen [2:J1. 

The tLllalysis of jet f1apped aerofoils will be investigated in chapter 5. In this section it 

will he shown how the method of velocity singularities has a clear advantage when using 

cu hic splines as opposed to large polynomials. Solutions for jet fiaps will be compared to 

tlJ(' solutions ohtailled by Spence [~7,28,29) and experimental results by Dimmock [321. 

III chapter 6, the flow field outside of the aerofoil will be in vestigated to étnalyze 

ael'ofoils with multiple sections. Solutions for various cases of aerofoils with flaps will be 

('ornpared ta that of the inviscid case of the surface vortex method developed by Seebohm 

and Newman [261. 
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Chapter 2 

Review of Selected Aerofoil 

Theories 

This chapter focuses on th in aerofoil theory, characterized hy a.Il acrofoil cOllsistillp, of 

moderate thickness and camber, subjected to small angles of attack. 

2.1 Basic Equations 

This work refers to two-dimensional, incompressible, and irrotational f1l1id f1ows. For 

incompressible flows, the continuity equation requires that: 

(~.I ) 

This allows the flow to be represented by a streamline functioll l/J( x, y). For irrotat.iollal 

flows, V' x V = 0, the fluid velocity derives from a velocity potential tjJ(x, y) : 

v = V'f/J . 
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Thcse two flow functions (cP and t/J) are harmonie and satisfy Laplace's equation: 

(2.3) 

(2.4) 

The solution of Laplace's equation allows for superposition of different simple flows and 

gives a complex potential for the fluid field: 

F(z) - cP+zt/J, (2.5) 

where z - x + ty. 

The velocity components can he ohtained from the complex conjugate velocity defined 

as the derivative of the complex potential, 

F'(z) = u - tU, (2.6) 

where u represents the velocity component in the x direction and v is the velocity com-

ponent in the y direction (Cartesian coordinates). Pressures can he found using the 

momentum equation 

... .. 1 
(V. V)V = --VP. 

P 
(2.7) 

Integrating this equation along a streamline results in Bernoulli's equation: 

(2.8) 

Because inviscid, irrotational flows are heing dealt with, Bernoulli's equation can he 

applied along and across the streamlines (the stagnation pressure, P", is the same every-

where). The pressure coefficient defined as: 

P-P. 
Cp = 1 U2oo , 

'2P 00 

7 
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• can be expressecl using Bernoulli's equation (2.8) in the fonn 

(2.10) 

The boundary condition on the aerofoil can be expressed as 

li· Ti = 0, (2.11 ) 

where Ti is the unit vector normal to the surface of the aerofoil. Perturbation velocities 

are assumed to be small, therefore far upstream and downstream of the aerofoil thcse 

perturbations become negligible with the oncoming fluid flow 

(2.12) 

• 2.2 ConformaI Transformation Method 

By use of conformai transformation, an aerofoil can be transformed to the z plane from 

a circle in the (plane. This idea makes use of the already known solution for the flow 

with circulation around a circle in order to find velocity components on the aerofoil. 

The Karman-Trefftz aerofoil has becn chosen because it can be used for several types 

of aerofoils (i.e. Joukowski, circular arcs, lenticular, etc.). The transformation itself is 

defined as: 

z-nb=(~)n z + nb (+ b ' (2.13) 

where b is a constant, ( = e + ZTJ are the coordinates in the complex ( plane, and n is 

a nondimensional constant, with a value between 1 and 2, that defines the trailing cdge 

angle 

• T = (2 - n)1I'. (2.14) 
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• Clearly if n = 2 (known as the Joukowski transformation), the trailing edge angle becomes 

zero, forming a cusp. The circle of radius a in the z plane is defined by a = b( 1 + f) / cos "Y. 

Details of the Karman-Trefftz transformation are discussed in Appendix A.1. The com-

plex conjugate velocity in the aerofoil plane, z can be obtained from the complex potential 

around the circle, F( (), from 

dF dFd( 
dz = de dz' 

(2.15) 

where 

dz (z - nb)(z + nb) 
d( = (( - b)( ( + b) . 

(2.16) 

A review of the potential flow around a circle with circulation is presented in Appendix 

A.2. 

• 2.3 Method of Velo city Singularities 

• 

The potential flow analysis of thin aerofoils based on the velocity singularity method, was 

originally developed by Mateescu and Newman [15,171. This method was then further 

extended by Mateescu and Nadeau [18,20] for the nonlinear analysis of aerofoils using 

polynomial expansions. 

2.3.1 Basic Equations and General Considerations for the Ve-

locity Singularity Method 

Velocity perturbations imposed by the aerofoil are represented as 'U in the x direction and 

V in the y direction (using Cartesian coordinates). These perturbation velocities can be 

superimposed over the undisturbed velocity Uoo because 'U and v are harmonie functions 

9 



• satisfying Laplace's equation 

v~ - Üoo ' ~ + u, (2.1ï) 

(2.18) 

The perturbation velocity components, u and v, in an illcompressiblt:' irrotationa\ flow 

must satisfy 

av au 
(2.1 H) ax - ay , 

au av 
(2.20) ax - ay 

The boundary conditions on the aerofoil will be expressed using a complex fUllctioll W (::) 

defined in the form 

(2.21) 

• where z = x + zy, x and y are coordinates of the physical plane where the acrofoil lies, 

and Vo is a conveniently chosen constant, which will be determined later. 

• 

2.3.2 Thin Aerofoil Solutions 

This complex potential will be first analyzed by a simple flapped plate aerofoil at an inci­

dence a (as seen in Figure 2.1). The analysis for this geometry was originally developcd 

by Mateescu and Newman, by considering the singular behaviour of the perturbatioll 

velocities at the leading edge and at the ridge R at x == s. Using thin aerofoil theory, tlw 

boundary conditions on the aerofoil surface (transferred to the chordline) arc cxpresscd 

by using the complex conjugate perturbation function in the form 

Imag[W(x)] = (va _ v) = { 0 
-~v 

10 

for 0 < x < s, 

for s < x < c, 
(2.22) 
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LE TE __ ~ __ ~~ __ ~ __________________ ~~ ____ -+x 

1+-------- C ---------

Figure 2.1: Simple flapped plate 

where 

~v = Uoo cosa[tan (8 - (3) - tanS] ~ -f3Uoo • (2.23) 

The perturbation velocities are assumed to be smaU, becoming negligible at large dis­

tances from the aerofoil when compared to the oncoming flow Uoo : 

(2.24) 

In thin aerofoil theory perturbation velocities are assumed to have the same magnitude 

on the top, as weIl as on the bottom of the aerofoil. On a thin cambered aerofoil, the 

perturbation velocity U creates a discontinuity leading to an antisymmetrical flow with 

respect to the x axis: 

U(X}top - -U(X}bottom' 

V(X}top - V(Xhottom. 

(2.25) 

(2.26) 

Ahead and behind of the aerofoil the perturbation velocity u on the aerofoil axis (y = 0) 

is zero. This also satisfies the Kutta condition and accounts for the antisymmetrical 

nature of the flow, and it can be expressed using the complex conjugate velocity function 

11 
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in the form 

Rea![lF(.r)],,=o = 0; for.r < 0, .r > c. ( ') .,~) _.- / 

The assumed constant Va can now be determined as 

Va = [- sin fi + cos Q tan 8]Uoo ~ (-0 + Ii)l '""..,. 

The function W(z) is now mapped from the physica! :; plallf' to an auxillary ( p!éllll' 

using a Schwartz-Christoffel type conformai transformation (not.ing thal. 1.11(, v('!ocit.y 

components do not change under this transformation): 

(2 =~, where ( = ç + zr/. 
c-z 

Now the boundary conditions in the auxillary plane become: 

Imag[ W(() ]71=0 
{ ~~V for - 0" < é. < 0" 

-
for ç < -0", é. > u 

Real[ W(() ]e=o - 0, 

where u - ~. 

(2.:10) 

(2.a 1) 

(2.:12) 

Discontinuities in the imaginary parts of W( 0 at ( = 0" and ( = -u cali \)(' 1'<'pr<'s('I1I.('d 

by the logarithmic singularities: 

[W(()](-+a 

[W(O]< __ a 

~v 
- -In(( - u), 

7r 

~v 
--ln(( + 0"). 

7r 

(2.a:l) 

(2.:H) 

The real part of W(() presents a singularity at the leading ('dge which h('('ornes a douhl<'t, 

corresponding to the sudden change of fluid flow: 

A 
[W(()]<_o = C' 

12 



• whcrc A is th(' doublet intensity. The singularity at the ridge cau be represellted by: 

D.v (( - u) 
[W(())(_±" = ±-;-[In (+ u - Z7r). (2.36) 

Hy superposition (Laplace's equation is satisfied), the solution for W( () is 

A D.v (( - u) 
W(() = "( + -;-[ln (+ 0' - Z7r], (2.37) 

whcre A is a constant. Transforming this equation back into the physical z plane, one 

obtains 

W() AVe - z 2 A h-1 (c - z)s z = -- - -uvcos . 
Z 'Ir e(s - z) 

(2.38) 

The constant A can now be determined by using equations 2.24, and 2.38: 

(2.39) 

• On the upper surface of the aerofoil (y = 0 and z = x), the chordwise perturbation 

velocity is 

R-x 2 
UA(X) = Real[W(z)) = A -- - -D.v· G(c,s,x), 

x 'Ir 
(2.40) 

where the subscript A denotes the antisymmetrical nature and the singular ridge functioll 

G( c, .'l, x) is defined as 

cosh- 1 for 0 < x < s 

G(c,s,x}= sinh- 1 
for s < x < c (2.41) 

o for x < 0, x > e. 

The fi rst term of UA (x) represents the leading edge singularity and the second term 

l't'presents the l'idge singularity; the Kutta condition at the trailing edge is satisfied by 

both tel'ms . 

• 13 
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• For a continuously cambered thin aerofoil (Figlll'(> :1.1), the' ~ol\ltioll can bl' ohtaillt'd 

by considering a continuous distribution of elementary ridgl>s. llsing t'quat.ion (:U.I), t.ht' 

chordwise perturbation velocity is obtained in the form 

f-
-

2 c dVA _1 S C - .1' 

{ -V(O) - - f (-) cos f!..d.~} -. 
7r Jo dx V ~ .1 ;r=s 

21C (d'VA) h-t(r --.;:j"d' -- -- cos ---- .'i, 
7r 0 dx c($ -.- .r) 

x=s 

(~.·12) 

where the normal-to-chord velocity component on the aerofoil is d('fiJl(>d by 

VA(X) = [-0 + h'(x)] U<XlI (2.,1 a) 

in which h'(x) represents the slope fo the camberline (Fi~~llre 3.1). After integratioll hy 

parts, equation (2.42) becomes 

IR-Xie ~s - ds UA(X) = -- -- v(s) ----. 
7r X 0 C-~'ls-X 

('2,41) 

• Details about this integration can be found in Appendix B.I. 

2.3.3 Aerofoils of Symmetrical Thickness 

A diamond shaped aerofoil is first considered at zero incidence. This g,iv('s il. silllpl(' 

symmetrical aerofoil to analyze. The complex conjugate velocity for sYIHlll(-trical CilfH'S 

is solved fol' in the same mannel' as the antisymmetrical cases, by illvestigatillg 1.11<' 

singularities at the leading edge (x = 0), ridge R (x = s), and trailillg l'dg(' (:1' = c). 011 

a symmetrical aerofoil, the perturbation velocities can be defined on the top alld botl.om 

surfaces as: 

U(x)top = u(xhottom, 

V(x)top = -v(xhottom. (:2,46 ) 

• 14 
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• 
1+--------- C -------+ 

Figure 2.2: Double wedge aerofoil 

This signines the fact that there is no circulation around the aerofoil at zero incidence 

(i.e. r = 0). Using the regular assumptions of small aerofoil thickness, the houndary 

conditions can he expressed in the form 

-VI for 0 < x < s 

• Imag[W(z)z=x] = -V2 for s < x < c (2.4 7) 

o for x < 0, x > c, 

where the constant Vo is set to zero in equation (2.21), while VI = U 00 tan 81 and V2 = 

-1100 tan 82 are the normal-to-chord velocities on the first and second panels of the upper 

surface of the aerofoil. Using this, the complex conjugate velocity is expressed in the 

form 

1 
W(z} = - [vIln(z) + ~v In(z - s) - v21n(z - c)], 

1[" 
(2.48) 

where ~v = V2 - VI' 

For an aeroioil with a continuously variable camher, g( x), the chordwise perturba-

tion velocity can be obtained in the form (by considering a continuous distribution of 

• 15 
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elementary ridges): 

us(x) = ;. {vs(O)lnz + 1." (~7) x •• ln(z - s)ds - vs(c) ln (z - cl}, (2.49) 

where the normal-to-chord velocity 011 the aerofoil is defined by 

vs(x) = g'(x)Uoo , (2.50) 

in which g'(x) represents the slope of the aerofoil contour (Figure 3.1). Here the subscript 

S denotes the symmetrical nature of the velocity field. After integration (which can lit, 

found in Appendix B.2.1), one obtains 

1 LC ds us(x) = - vs(x)--. 
7r 0 s-x 

(2.51) 

This pure linear solution may be sufliciently accurate for the Most part of the chord, 

except the aerofoil extremities where it predicts an infini te velocity at the leading edge, 

instead of a stagnation point which really exists. The correct flow behaviour at the leading 

and trailing edges is better predicted by the locallinearization method (Mateescu [10,15]) 

or by using a non-linear approach (Mateescu and Nadeau [15]). 

2.3.4 Local Linearization Solution 

For symmetrical aerofoils with rounded leading edges at zero incidence, it was found that 

the purely linear solution defined in Section 2.3.3 was not giving very good results, espe­

cially near the leading edge. For these aerofoils, a locallinearization approach [13,18,20] 

had to be used instead, in order to obtain a better accuracy of the solution. This method 

uses the tangential free stream velocity 

(2.52) 
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Figure 2.3: Normal and tangential perturbation components on a rounded 

leading edged aerofoil 

where U001 is used to normalize the tangential and normal components of the perturbation 

velocity Ut and Vn [181. The associated normal perturbation component Vn is referred as 

g'(x) the camberline coefficient: 

Vn Uoo sin T 

U
001 

= U
001 

(2.53) 

This equation acts as a boundary condition on the aerofoil where the large slopes of the 

rounded-leading-edge can be modelled by 

V
n '()~ --=g x --. 

U001 c- X 
(2.54) 

This equation positions the stagnation point at the leading edge of the aerofoil and the 

Kutta condition is satisfied by the small slope at the trailing edge. Once the normal 

component is found the tangential componenet can be expressed as 

Ut V - U001 

U
001 

= U
001 

(2.55) 

This method of solution found very accurate results even for thicker aerofoils (which 

shows the stability of the solution) . 
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Chapter 3 

A Spline Formulation for the 

Method of Velo city Singularities 

The method of velocity singularities was first (leveloped in conjullct.ioll wi lh il polyno­

mial representation of the aerofoil contour. This may learl in sonw cm;es 1.0 lIigh-onl('r 

polynomials with large coefficients which may affect the accuracy of t.h(· sollltioll. '1'11(· 

present method uses instead, a cu bic spline formulation to reprt'sclll t1u· g(·(Hl1<,t.ry of t.ItI' 

a('fofoil contour. 

3.1 General Considerations for Spline Formulation 

In this analysis, the method of velocity singularities is dc·veloped ill conjullcdoll wit.h iL 

cubic spline representation of the aerofoil contour. 

To begin, the chordline c will be set to unit y, and .r: will now he thought of as ~, w!Ji(:h 

18 
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LE TE ~~~ ____________ L-__________ ~~~ ____ -+x 

g(X) 

Figure 3.1: Camberline coefficients for crescent shaped aerofoils 

is simply converted to x. Using these notations, the houndary conditions are applied as 

VA(X) - Uoo[-a + h'(x)], 

vs(x) - Uoog'(x), 

(3.1 ) 

(3.2) 

where h'(x) and g'(x) are derivatives of the camberline contour and the aerofoil thicknessj 

h( x) and g( x) are defined as 

h(x) 

g(x) 

1 
- 2 [Yu + YI], 

1 
- 2 [Yu - YI], 

(3.3) 

(3.4) 

where Yu represents the upper surface of the aerofoil, and YI the lower surface. It becomes 

clear that by these equations g( x) = 0 for a circular arc (where only antisymmetrical 

velocities are found) and h(x) = 0 for a symmetrical aerofoil (where only symmetrical 

velocities o.re found). Approximating the camherline coefficients by a cubic spline, any 

fUllction fi(x), such as VA(X), vs(x) or h(x), C'(x), can he expressed on the interval 

X.-l < X < Xi in the form: 

(3.5) 
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• or, in the more formaI manuer. 

:l 

11('1') = L Fk(.r - .tl_d'. 
1.=0 

The cubic spline becomes a function of cubic ord('r betwel'II t.wo points '/'1-1 and .1'1' ~lal\y 

boundary conditions can be used to formulat,p a cubic splim' (·C(uat.iol\, !'wo difft'I'l'Ilt. I.,\'pl·:; 

of splines are derived in Appendix C. The 1110:.t. important. cOIl(ht.ioll in t.hl· splint' IS t.11t' 

requirement of the slopes being equal at tht"' illl.erfac<' 1)(>(,w('('1\ two ('Olls('clltiw illt.t'I'vals: 

( :Li) 

Using this type of condition ensures that the series of spliu('s will fit. srnoot.hl~' t.hrollp,h 

the data points. 

Once the velocities are found on the surface of tht' aNofoil, pn'SSIII'I' co('flicit'l11,s (',Ill 

• also be found. On aerofoils with just one type of v('locit.y t.his rail \)(' ('asi Iy dOIll' Ily 

finding the total velocity and using the weil knowlI !>1'<'SSIlJ'(, ('C)llilt.ioll ilS ddillt'd il)' 

equation (2.10), which can be applied for bath the top alld hott.olll of the' (l('rofoi 1 ~1l1 féU'f', 

If the aerofoil has bath antisymmetrical velocities and symmetl'ical Vl'locit.i(·s, 1"'('S81111' 

coefficients can be found by: 

[ 
UA(X) lt..,(X)]

2 
[,. IJA(.r) p";(.I')]l 

1 - cos fl' + li 00 + v::: - S III n + --,;::- + tï::: (:LX) 

Cp,(X) = l [ 
UA(X) ll..,(X)]

2 
[. IJA(J') /1";(.I')]l 

- cos a - -- + -- - SIlI (l' + -- - --
U= Urx) (lrx, IJ.., 

(:L!J) 

where the upper pressure coefficient is denoted by CpJ x) and t1H' low('1' by ("', (.r). Tu 

find the difference of pressures across the aerofoil: 
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Knowing the pressure' diffcrf'ncf' allows one to find many other aerodynamic characteris-

liCl> sllch a.s lift and moments about the leading edge: 

CL = foC D.Cp(x) dx, 

CMLE = foC D.Cp(x) x dx. 

3.1.1 Spline Formulation for Thin Aerofoils 

(3.11) 

(3.12) 

Antisymmetrical perturbation velocities are a resultant of thin cambered aerofoils. Usillg 

H)(' cu bic spline of equation (3.6) the aerofoil boundary conditions can be expressed as 

3 

VA(X) = Uoo[-a + E Hk(x - x~_dk], (3.13) 
k=O 

when' H~ represents the spline coefficients as described in Appendix C. After the anti-

symmetrical velocities are applied to the complex conjugate velocity W(x): 

(3.14) 

J(j.(x) (3.15) 

for s > x 
where: (3.16) 

for x> 5, 

(3.17) 

The integration for Ap results in: 

.p=o 

l x. ds [ ]X, 
Ao = J = cos -1 (1 - 25) . 

X,_l 8(1 - s) X'-l 
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• 
l x. s2ds [3 1.0;; 3) ]r. 

A2 = = -cos-1 (1 - 28) - ( :) + -; JS(l -- .0;) . 
x._1 ';s(1 - s) 8 \- 1 .ro-\ 

.p=3 

A3 = [x. -;::=== = -cos-1 (1 - 28) - ~ + -;. + ~ /8(1 _ .'1) s3ds [ 5 (2 5 r:) j.r. 
JX'_J ';8(1 - 8) 16 3 12 8 r._1 

The constant ckq represents the coefficients of the binomial expansion (J-X1_l)k [i.t'J'7 = ( -1)'1 I(kl.! 
" '1. '-q 

The integration and algebra to find these velocities can be fOUlul in Appendix R. 

3.1.2 Spline Formulation for Aerofoils of Symmetrical Thick-

ness • For aerofoils of symmetrical thickness the perturbation velocities art' trc'ated difrer('ntly 

than thin cambered aerofoils. Using the spline formulation of equation (3.6) with OH' 

linear theory described by equation (3.2) 

3 

vs(x) = Uoo L:Gk(x - xl_J)k. 
k=O 

Again the spline coefficients Gi. are described in Appendix C. Once the splim' formulat.ion 

is applied to the complex conjugate velocity W(x): 

us(x) = _2. t t Gk.Jk(x), 
Uoo 1f' 1=1 k=O 

(:Ll9) 

J I( ) = ~ Cq q '" x (k-I-q _ k-I-q) + k-q 1 
k {k-q-l 1 

k x L- kXI-l L- k _ 1 _ XI X 2 _1 x n 
q=O 1=0 q 

(a.20) 

The constant CZ is the same as previously expressed and the intt~gration and alp,ebra cau 

be found in Appendix B. 
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3.1.3 Spline Formulation for Aerofoils Using Local Lineariza-

tion 

For rounded leading edged aerofoils of symmetrical thickness at zero incidence the normal 

method of calculating symmetrical velocities did not account for the stagnation point at 

the leading edge. This can be overcome by using local linearization techniques with the 

spline formulation: 

(3.21 ) 

where the factor Jl~X creates a stagnation point at the leading edge. The Kutta condi­

tion is also satisfied with the low values of g'(x) at the trailing edge, which also cancels 

out the infinite values predicted by the zero denominator in V l~X' Finding the tangential 

perturbation component was found through the integration: 

Ut _ 1 ~~ Qi lX' R-s( )k ds ----L-L...t k --S-X1 --, 

Uoo 'Ir 1=1 k=O x'-1 S S - x 
(3.22) 

where the integral is represented by JÀf
k 
(x) 

U 1 N 3 Tf = -- LLQ~JÀ1k(X). 
00 'Ir 1=1 k=O 

(3.23) 

This integration is performed in Appendix B, where the end result is: 

JÀ1 .. (x) = L C:X~_1 (1 - x) L xIAk-q-l-l - k-q - Ak-q , k {(k-q-t À)} 
q=O 1=0 x 

(3.24) 

>'p and Ap are the same as described in Section 3.1.1. The surface pressure coefficients 

can be expressed as: 

Cp = 1 - (cos T + ;:r (3.25) 

= 1 _ (1 + Ut)2 

1 + g'(x)2' 
(3.26) 

U sing this equation the stagnation point at the leading edge is automatically satisfied . 
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3.2 Applications of the Spline Formulation for Aero­

foils of Fixed Geometry 

This section focuses on solutions for different types of aerofoils usillg the veloctiy sillgu­

larity method. Comparisons are made on the present spline intcgration Illt'thod to tIlt' 

similar polynomial method and the exact method based on conformaI transformation. 

The spline formulation has the advantage of explicitely finding the coefficient.s (if tlu' 

spline in Section C.1.2 is used). 

3.2.1 Cambered Thin Aerofoils 

Aerofoils with pointed leading edges are found on supersonic to transonir airplancs, auo 

propellers (near the tip). Although this method does not pertain to compressible fJow 

situations (as in the above mentioned situations), pressure distributions are still rcquired 

for incompressible cases (i.e. for take off and landing situations). The method of velocit.y 

singularities is especially suitable for aerofoils with pointed leading edges because of the 

singularity at the leading edge created by the factor Jt:x in equation (3.14). 

To start with, pressure distributions for circular arcs are shown in Figure ~.2. Th{' 

best solution was found using the cubic spline as defined in Section C.1.2. Althollgh 

this type of spline gives the highest accuracy it is important that the spline coefficients 

do not become very large with respect to unity. If this happens, the accllracy of the 

perturbation velocities decreases greatly and it is a sign that the spline has oscillations, 

instead of smoothly fitting between the camberline points. 

It was found that ten points equally spaced along the chordline (giving 9 clifferent 
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• spline intervals) provided a reasonably good accuracy for the aerofoils with pointed lead­

ing edges. In Figure 3.2 the spline solution is in very close agreement with that of the 

polynomial method derived by Mateescu and Newman [171. The relative difference be­

tween the two methods is within an order of six digits (10-6). The difference between the 

velocity singularity method compared to conformaI transformation is within 3% error, 

except at the leading edge where it is larger. The method gives good accuracy even at 

higher angles of attack (0' = 20°); however, in real flow situations at high angles of inci­

dence, a flow separation would occur, which is not considered in this analysis. The next 

graph (Figure 3.3) shows how the accuracy is decreasing, compared to the exact solution, 

wh en the aerofoil camber increases. Howeve" an aerofoil of such camber magnitude is 

Dot very common. Only few low speed applications sucb as a STOL aircraft, flapped 

aerofoil (which would need to be treated differently) or a flexible membrane, such as a 

• sail, would need sucb a high camber ratio . 
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Figure 3.2: Pressure coefficients for circular arc aerofoil f / c = 0.025 at various 

• angles of attack .. 
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Figure 3.3: Pressure coefficients for circular arc aerofoil f je = 0.05 at various 
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3.2.2 Aerofoils With Pointed Leading Edges 

The pressure coefficient on aerofoils with pointed leading edges was treated in a similar 

manner, but in this case one has to consider both the solutions for the thin aerofoils and 

for the aerofoils of symmetrical thickness. 

The lenticular aerofoil is the first symmetrical aerofoil which will be studied. This type 

of aeroCoil is usually found on supersonic applications because of the pointed leading edge. 

These aerofoils usually have quite low thickness ratios (::::::: 2% chord) because of the high 

speeds under which they operate. The first lenticular aerofoil investigated (Figure 3.5) 

has a thickness ratio of 5% (Le. e/c = 0.05). The velocity singularity method gives very 

good accuracy on this type of aerofoil, except at the vicinity of the leading edge where, 

the leading edge singularity gives an infinite velocity. The next lenticular aerofoil shown 

(Figure 3.6) has a thickness ratio of 10% where the increasing thickness starts to deplete 

the accuracy of the method, but it still gives reasonably good results. 

The cres cent shaped aerofoil is the combinat ion of a fiat plate and a circular arc, 

symmetrical fore and aft of the mid chord point. Again an aerofoil of this type has 

supersonic applications under low thickness ratios. Nevertheless this type of aerofoil 

shows both the antisymmetrical and symmetrical perturbation velocities. This type of 

aerofoil shows how good the accuracy is on the lower surface. This is due to the fiat plate 

nature of the lower surface which fits the boundary conditions underwhich the method 

was derived. The upper surface shows how the error increases as the thickness from the 

fiat plate model aerofoil is increased. Figures 3.8 and 3.9 show the pressure distribution 

for two different crescent shaped aerofoils. The thicker cres cent shaped aerofoil becomes 

to large in thickness and camber for the velocity singularity method to handle accurately . 
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Figure 3.10 shows a carnbered aerofoil with a pointed leadillg edge. This aerofoil, likt' 

the cres cent shaped aerofoil uses both the symmetrical and antisymmetrical solutions . 
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Figure 3.5: Pressure coefficients for symmetrical lenticular aerofoil eJc = 0.05 

• at various angles of attack. 
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• 3.2.3 Aerofoils with Rounded Leading Edges 

Aerofoils with rounded leading edges are found in the case of SUbSOllic applications. ln 

practice these types of aerofoils usually have higher thickness ratios than that of aerofoils 

with pointed leading edges. 

J oukowski Aerofoils at zero Incidence 

The Joukowski aerofoil has the leading edge rounded, and will be used for discussion. 

This aerofoil also has a cusp at the trailing edge (i.e. T = 00) which satisfies th(' Klltta 

condition. For these types of aerofoit the velocity singlliarity method must be l110dified 

for a zero angle of attack (0 = 00
). The first graph of an aerofoil with a roullded 

leading edge (Figure 3.12) shows error between the conformaI transformation and the 

present method. This error was overcome by using the modified expansion described in 

• Section 2.3.4 (non-linear spline) which is shown in Figure 3.13. Here the calculations were 

performed with Xo = 0.01 and XN = 0.99 and the relative error is shown by Table 3.1. 

If an even smaller value of difference was taken at the leading and trailing edge (such as 

Xo = 0.001 and XN = 0.999) the error difference was improved slightly which shows how 

stable this method is. For accurate solutions only seven chordwise points were required. 
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Exact Spline Polynomial 
xIe C Pu CPu % Error CPu % Error 

0.0100 -0.0782 -0.0784 +0.24 -0.0781 -0.13 
0.1189 -0.248:J -0.2482 -0.04 -0.2482 -0.05 
0.2278 -0.2087 -0.2086 -0.05 -0.2085 -0.06 
0.3367 -0.1633 -0.1632 -0.06 -0.1632 -0.07 
0.4456 -0.1179 -0.1178 -0.09 -0.1177 -0.10 
0.5544 -0.0734 -0.0733 -0.13 -0.0733 -0.15 
0.6633 -0.0304 -0.0303 -0.29 -0.0303 -0.36 

• 0.7722 0.0112 0.0112 +0.21 0.0113 +0.96 
0.8811 0.0511 0.0516 +0.86 0.0512 +0.21 
0.9900 0.0895 0.0896 +0.08 0.0896 +0.12 

Table 3.1: Accuracy of the present spline-velo city singularity method and poly-

nomial method in comparison with the conformai transformation method for 

a symmetrical Joukowski aerofoil (e/c = 0.05, Ct = 00
) • 
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• J oukowski Aerofoils at Angles of Incidence 

The symmetrical Joukowski aerofoil will first be analyzed. ln allalyzillg lI\(, l"UlIIlllt·d 

leading edge it became evident that the further from the leading t'dg,e t.1lt' thst. point was 

taken, the more stable the solutions became. This was dut' to the infiuitc slo!><' at th(' 

leading edge which dissipated into a more realistic value at approximatdy .r = 0.0.1) whirh 

the cubic spline could handle. On the aerofoil with the point,<,d It>ading <'dgt, t.his wa.s 

not a problem because at the leading edge the slope had a fillit(, valuc. Fol' the' splÎlH' 

to handle thi8 problem without oscillations occuring, fifteell chordwist, positions W<'J'(' 

taken. This, with the careful placement of the leading edge position obtain<,d solut.ions 

within 5% error (except at the leading edge) for the first ael'ofoil analyz{'d, romptU't'd 

with the conformaI transformation. This careful placement of th<, Icadillg <'dge position 

was obtained by checking the spline coefficients. If the coefficients becan)(' larg(' it WiLS 

• a sign that oscillations were present and the error increased signifirantly. III Figl1l't' :t 11 

the leading edge position was taken at Xo = 0.04. In Figure :1.1 [) t.he> leadi Ilg ('dg(' 

position was taken at the same position but the increasing thicklless shows how t,lU' CI'I'OI' 

is increased. The pressure coefficient variations on a cambcred .Joukowski al'l'Ofoil m'(' 

shown, in Figure 3.16, in which one can notice again a good agreement. het.w('en t11<' 

1· 
1 

present solution based on cubic spline and the exact solution obtained by conformaI 

transformation. 
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0.05 at various angles of attack. 

43 



• 

• 

• 

-3.5 

-3.0 : :: !~: } Spline Method 

" ~ = 20° 
-2.5 Polynomial Method 

_Conformai Transformation 

-2.0 

Cp,. -1.5 

-1 0 

-0.5 

0.0 L-__ ..L.. __ ....L __ -L __ --L-==~~ 

0.0 0.2 0.4 0.6 0.8 1.0 

xie 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 L_---=t~Sè::Q~~:::=~ __ ...L__----l 
0.0 0.2 0.4 0.6 08 1.0 

xie 
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Figure 3.16: Pressure coefficients for a cambered Joukowski aerofoil with e/c = 
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Chapter 4 

Analysis of Flexible Aerofoils 

Membrane aerofoils ean be thought of as thin flexible aerofoils. The material used to form 

this type of aerofoil is assumed to be inelastic. Sorne examples where flexible membranes 

arc in use are the sails on sail boats, wings on ultralight aireraft, ete .. There have been 

• several investigations on membrane aerofoils (Voelz). Thwaites [33] produced results 

• 

using linearized th in aerofoil theory and applying it to an integro-differential equation. 

A couple of years after Thwaites's [33] publications, Nielsen [23] came up with a solution 

based on Fourier series treating two cases. One with a stagnation point at the leading 

edge of the aerofoil and another with a singular point at the leading edge (Ieading edge 

is referred to as a luff in nautical terms). Both Thwaites and Nielsen obtained solutions 

using an eigenvalue problem. Later there was research done on approximating these two 

methods [71. Recently (1992) a paper by Mateescu and Newman [16,17] was published 

based on velocity singularities and using polynomial expansions. This seems to give the 

best ove rail aceuracy in comparison with other methods. The present method of velocity 

singularities using eubic splines is primarily based on the work done by Mateescu and 
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Figure 4.1: Typical side picture of two-dimensional flexible aerofoil 

Newman [16,171. 

4.1 General Theory of a Flexible Aerofoil 

• For two dimensional flow over a flexible inelastic membrane of very low porosity, (if 

porosity exists fluid will go from the high pressure side to the lower pressure sicle', thUH 

decreasing the membrane lift) theory follows the tines of conventiol1al lillcariz('d aerofoil 

theory. However, in the case of flexible aerofoils the geometrical shape is Ilot kllOWll (l 

priori, and it has ta be determined by an equilibrium equation. Thwaites called titis t.yP(· 

of equation the sail equation. This means that the curvature of the sail (jib sail) must 

be in such a way that the sail tension counterbalances the aerodynamic forces. 

The problem of calculating the aerodynamic characteristics of membranes, :-:uch as lift, 

pressure coefficients, the shape of the membrane and the ex cess lengt.h of the rncrnhrarH' 

material starts with an equilibrium equation. The shape of the sail is unknowll but the 

tension may be specified. Neglecting the viscous shearing forces on the membrarH' (sina· 

this is an inviscid model) the tension on the sail is constant along the chordline. The 
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equilibrium equatiol1 can be expressed in the form 

6.P = ~ ~ -Th"(x), (4.1 ) 

where h = -h"(x) is an approximation for small s]opes on]y, or in a more convenient 

form: 

6.Cp = -cCTh"(x), (4.2) 

where !lCp = [ t1uP2 and CT = 1 uT2 • Using thin aerofoil theory, the normal-to-chord 
'lP 00 'lP ooC 

velocit,yon the membrane can be approximated as 

V(x) = -0 + h'(x), 
Uoo 

(4.3) 

where h'(x) is the camberline stope as defined in Section 3.1.1. Using this equation and 

noting that the difference in pressure can be written as 

6.Cp = 4 u(x), 
Uoo 

(4.4) 

the equilibrium equation can be expressed in the form (CT is used as an independent 

parameter for computational convenience) 

u(x) CT v'(x) --=-C---. 
UOO 4 Uoo 

(4.5) 

4.2 Spline Formulation For Flexible Aerofoils 

Considering the equilibrium equation (4.4) the membrane shape can be approximated by 

cubic splines in the form 

, , 1 ~. . 2 
h '(x) = v (x) = a(2 - 2x)V -;--x- + H; + 2H~6.x, + 3H~!lxl' (4.6) 
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in which again the value of x is nondimensionalized by the chord, i.e. ~, which puts 

the value of x between zero and one. The first term multiplied by the factor ";1~:r 

is introduced ta satisfy the equilibrium equation (4.5) at the leading edge, sinet' u(.r) 

contains the same factor. This factor sastisfies the Kutta condition at thl' trailillg t>dgl" 

x = 1, as weB as the pointed leading edge singularity, ";1;Z. Illtegrating equation (4.6) 

once, gives the camberline slopes, and the camberline shape is found by intl'grating OIW 

more time. 

h'(x) (4.7) 

h(x) ( 4.8) 

where Jo (4.9) 

In equation (4.8) there is a constant of integration roi for every spline interval illtroduC<'d 

(i.e. N constants for N splines). Knowing these camherline characteristics, the Ilormal-

to-chord perturbation velocity can he found in the form 

3 

v(x) = h'(x) - 0: = av'x(1 - x)~ + E Hi/~x:, (4.10) 
k=O 

Using the general solution formulated in Section 2.3.2, one ohtaillS for u(x) 

u(",) = rI v(.)V • ~ 
Jo 1 - s s - x 

- _!..Jl - x {t t HlKHx)+ a [-21 - x + x(l - x) ln VI ~ xl} ,(4.11) 
7r x ;=1 k=O x 

where Kk(x) is defined in Section 3.1.1 (or appendix B) and again Ht represcnts the 

spline coefficients A" Bi, CIl and Di as defined in Section C.1.2. Using this type of cubic 

spline, all the coefficients can he defined by the camberline coefficients h( x) and h'( x). 

This means that induding the coefficient a there are 2N +:3 unknowns over N + 1 points. 
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• The equilibrium equation (4.5) can be evaluated at points i = 1,2,3 ... N giving N cubic 

spline equations. This equation can also he evaluated at the midpoint~ i = !' ~, ~ ... N -! 
giving an overall 2N equations. Using the equilibrium equation (4.5) at x = 0 (the leading 

edge) leads to 

~ (.!. - CT) +.!. t t kHlKl(x) = o. 
2 11" 4 11" 3=1 k=1 

(4.12) 

The Kutta condition is already satisfied in equation (4.5) because of the factor Jl;:1: 
at the trailing edge hecomes zero. The final boundary condition Ieft is to allow the 

membrane ends to be attatched to the x axis. This means that the camberline height at 

the leading and trailing edges is zero: 

h(l) = h(O) = O. ( 4.13) 

In using this boundary condition, it is required that the constants of integration Wj are 

• solved for. Knowing that h(O) = 0 the first constant tv} is solved as zero. The next ones 

can now be solved for as: 

~ Hl A k+I 
tv2 = ~ k}ux} , 

k=O + 
3 Hl 3 H2 

tv3 = L _k_~x~+I + L __ k_~X~+l. 
k=ok+l k=ok+l 

This keeps reoccuring right through the series of splines. If ~Xi is set to be the same 

throughout the chordline namely k, then a in equation (4.12) can be solved for as: 

16 [ N 3 Bk (1) kHl a=-- a+LL- - . 
11" \=1 k=O k + 1 N 

(4.14) 

Now there are 2N +2 equations with 2N +3 unknowns. To finish the system of equations 

the equilibrium equation is imposed once more at a small distance from the beginning of 

the first panel. This also helps the leading edge singularity and prevents the first spline 

• from producing oscillations in the system of equations . 
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The lift coefficient can now be obtained in the form 

CL - 101 ACp dx 

- -QCT [t HfAx~ - Hg]. 
k=O 

(4.15) 

The excess length of the membrane, defined as f = ~ - l, cau be calculatcd from th" 

equation: 

, l 1+ [v~~ +afdX-I 

~ ~2 f [1 + :~2]' dx. (4.W) 

4.3 Solutions for Flexible Aerofoils and Discussion 

of Results 

The following solution for flexible aerofoils (otherwise known as sails) is discusst·d as 

a function of 0 Le. ~'. It is important to note that these solutions are accuratt~ for 

reasonable values of 0 (if 0 is large the solutions become inaccurate due to flow separa-

tion). The solution is given for CT > 1.727 (the first eigenvalue solution); 011 a sail boat 

this would be the case of sailing straight into the wind or referred to having tlw sails in 

"irons". This may lead to an unsteady case, because the membrane may fIap hack and 

forth. 

The solutions have good agreement with experimental tests for membranes with high 

tensions. For membranes with lower tension values the real flow separates at the trailing 

edge and a separation bubble forms at the leading edge due to the higher carnber (as 

shown by Newman [22]). 
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To find the solutions, the cubic spline from Section C.1.2 was used. AlI the spline 

coefficients were broken into the two camberline coefficients h'( x) and h"( x) leaving 2N +3 

unknowns. Good accuracy was found using ten equaIly spaced points along the chordline. 

This gave a 23 by 23 matrix which was easily solved with Guass-Jacobi elimination. 

Table 4.1 shows how the present spline method compares with the polynomial method 

developed by Mateescu and Newman [16,17], and the eigenvalue methods by Thwaites [33] 

and Nielsen [231. Of the two latter methods Thwaites is considered to be more accurate at 

higher values of Cr while Nielsen's method is better at lower values of Cr. The present 

spline method shows good agreement with the polynomial method, as weB as, with 

the other two methods. As the tension in the membrane is increased the lift coefficient 

approaches 21rQ which is the theoretical value for a fiat plate. This shows how a membrane 

would ad if an infinite tension were applied to a membrane with zero porosity . 

Table 4.2 shows how the camberline acts to different tension coefficients. It is in­

teresting to note how the maximum camber position shifts from the mid chord position 

to a chord position of fort y percent. These results compare well to the results found 

by Nielsen for lower tension coefficients (2 < Cr < 15). Another point of interest is 

the fact that at the lower tension where the maximum camber is at mid chordline, the 

camberline is not symmetrical. This table is also shown as a graph (Figure 4.2) where 

the comparisoa is made to the polynomial method by Mateescu and Newman. This also 

shows the fiat plate tendencies as the tension in increased. 

Flat plate tendencies are also shown in Figure 4.4 where lift coefficients are graphed 

agaillst tension coefficients. As the tension approaches infinite values the weIl known 

lift coefficient of 21r0' for a fiat plate (which is determined by thin aerofoil theory) is 

approached. This is also shown in Figure 4.5 where the centers of pressure are graphed 
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against various values CT. As the tension is increased the center of pressure approaches 

the quarter chordline position. Again this is the position obtained for a fiat plate usillg 

thin aerofoil theory . 
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CT 1 ~[ethod a/Jê 1 CL/a 1 

Spline ~rethod (present) 0.322 28.252 
2 Polynomial :'vlethod (Mateescu & ~ewman) 0.322 28.250 

Nielsen 0.322 28.148 
Thwaites 0.340 24.989 
Spline Method (present) 2.434 8.952 

4 Polynomial Method (Mateescu & Newman) 2.434 8.952 
Nielsen 2.411 8.821 
Thwaites 2.480 8.848 
Spline Method (present) 6.427 7.256 

8 Polynomial Method (Mateescu & Newman) 6.424 7.255 
Nielsen 6.329 7.120 
Thwaites 6.400 7.277 

• Spline Method (present) 8.404 7.022 
10 Polynomial Method (~Iateescu & Newman) 8.400 7.021 

Nielsen 8.266 6.884 
Thwaites 8.3il 7.120 
Spline Method (present) 13.33 6.744 

15 Polynomial )'lethod (Mateescu & Xewman) 13.:33 6.744 
Nielsen 13.10 6.605 
Thwaites 13.29 6.762 
Spline Method (present) 96.94 6.345 

100 Polynomial Method (Mateescu & Newman) 96.88 6.345 
Nielsen - --
Thwaites 96.86 6.349 
Spline Method (present) 391.93 6.298 

400 Polynomial :'vlethod (Mateescu & Newman) 391.88 6.298 
Nielsen -- -
Thwaites 391.83 6.299 

Table 4.1: Comparison of lift coefficients and excess membrane length for var-
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1 xJe ~1--2~~--~4--~~8~~~~0~T~--~1~5~~~10=0~~~40=0~ 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.05 0.3666 0.0621 0.0254 0.0197 0.0126 0.0018 0.0004 
0.10 0.6974 0.1114 0.0446 0.0344 0.0220 0.0031 0.0008 
0.15 0.9930 0.1515 0.0597 0.0460 0.0292 0.0041 0.0010 
0.20 1.2516 0.1837 0.0715 0.0549 0.0348 0.0048 0.0012 

• 0.25 1.4710 0.2088 0.0803 0.0615 0.0388 0.0054 0.0013 
0.30 1.6495 0.2273 0.0865 0.0661 0.0417 0.0057 0.0014 
0.35 1.7857 0.2397 0.0903 0.0690 0.0434 0.0059 0.0015 

0.40 1.8788 0.2463 10.09211 10.07021 1 0.04·11 1 10.00601 10.00151 
0.45 1.9283 10.24751 0.0918 0.0699 0.0438 0.0060 0.001.:> 

0.50 Il.93441 0.2436 0.0898 0.0683 0.0427 0.0058 0.0014 
0.55 1.8978 0.2349 0.0860 0.0654 0.0408 0.005.5 0.0014 
0.60 1.8194 0.2218 0.0808 0.0613 0.0383 0.0052 0.0013 

0.65 1.7010 0.2046 0.0742 0.0563 0.0351 0.0047 0.0012 
0.70 1.5447 0.1836 0.0663 0.0502 0.0313 0.0042 0.0010 
0.75 1.3532 0.1593 0.0573 0.0434 0.0270 0.0036 0.0009 
0.80 1.1297 0.1318 0.0473 0.0358 0.0223 0.0030 0.0007 
0.85 0.8779 0.1017 0.0364 0.027.5 0.01 il 0.0023 0.0006 
0.90 0.6021 0.0694 0.0248 0.0187 0.0116 0.0016 0.0004 
0.95 0.3073 0.0353 0.0126 0.0095 0.0059 0.0008 0.0002 
1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 4.2: Comparison of h(x)JCt for various tension coefficients CT. The posi-

• tion of maximum camber is outlined • 
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Figure 4.2: Flexible-aerofoil geometry for various tension coefficients CT com-

• pared with Mate'i!scu and Newman . 
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Figul't' 4.;3: Pressure coefficients vs chordwise position for various tension co-

efficients CT-

58 

-------------------- ----~- ------



• 

• 

• 

9 

8 

7 

Flat Plate .-

Spline 
o Nielsen 
• Thwaites 

• ./0 
,/ 
o 

.1 

/0 
/ 

1 
1 

Lift value ---1./_ 
6 L __________ ~ __________ ~ __________ ~ 

00 J.l 0.2 0.3 

1 

Figttrp 4.4: Lift coefficients vs various tension coefficients CT-

.59 



• 

• 

• 

0.45 

0.40 

0.35 

0.30 

0.25 

'" 
0.20 

0.0 

o Nielsen 
-Spline 

" Flat Plate Center of Pressure 

01 0.2 

1 
CT 

C 3 04 0.5 

FigurE' 4.5: Centers of pressure for various tension coefficients Cr-

60 



• 

• 

• 

Chapter 5 

Analysis of Jet Flapped Aerofoils 

ft seems to be common knowledge that a flapped aerofoil gives a much higher lift coeffi­

cient than an aerofoil without a flap. A jet flap is an arrangement where a thin sheet of 

fluid (air in this case) is ejected from the trailing edge of an aerofoil at specifie angle, (3 

(see Figure 5.1). This jet sheet gives thrust in both the horizontal and vertical directions, 

while increasing the circulation around the aerofoil (hence increasing lift). This type of 

arrangement was tried on a British trainer during World War II without mueh success 

(the jet flap would sornetimes alter the flow so much that separation would occur, sorne­

tirnes only on one wing, creating thus undesirable landing or takeoff conditions). There 

has been much research on suction and blowing around the aerofoit; this section will 

concelltrate 011 blowing near the trailing edge . 
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Figure 5.1: Geometry of a jet flapped aerofoil 

5.1 General Theory of a Jet Flapped Aerofoil 

• Let us consider the momentum flux of the jet defined as (Spellce [27,28,2Hl) 

• 

( !i.1 ) 

where 6 represents the thickness of the jet, which is assumed very small, ana V is t.h(' 

velocity of the jet stream, assumed very large. The jet is confined betweclI two vorl('x 

sheets which become streamlines. One may define the nondimensional jet rnonwnt,ulrl 

coefficient, CJ, in the form 

(.1.2) 

Like the flexible membrane, the jet sheet shape is defincd by an cquilibriurn (~quatiolJ 

over the jet, relating the jet sheet, curvature with the pressure difference across tlJ(' jet. 

flap: 

J 
6.P =-. 

R 
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Using the relationship of the jet sheet curvature ~ :::::: j"(x), where j(x) represents the 

coordinate of the jet flap, one obtains 

(5.4) 

where 6.Cp = 4~~ represents the nondimensional pressure difference across the jet sheet. 

Using linear theOl'Y from Section 3.1.1, the normal-to-chord perturbation velocity can be 

expressed on the jet flap as 

v(x) = [-0 + j'(x)]Uoo , 

v'(x) j"(x)Uoo • 

(5.5) 

(5.6) 

The curvature of the jet flap shape, which is a priori unknown, has to be determined 

using the equilibrium equation: 

u(x) = ~J v'(x), (5.7) 

where 6.Cp = 4~ has been introduced in equation (5.4). The jet flap angle j3 at which 

the fluid is ejected at the trailing edge must be specified: 

j'( c) = - tan j3 :::::: -j3. (5.8) 

The Kutta condition in this case must be satisfied at the end of the jet flap. Since the 

length of the jet flap is unknown, a value 1 is specified to be as a very large distance 

(theoretically infinite), from the trailing edge of the aerofoil; this distance 1 is usually 

taken as 2 or 3 chordlengths, depending on the value of the jet coefficient CJ. At this 

distance l, the perturbation velocities become zero: 

v(l) = u(l) = 0, (5.9) 
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Figure 5.2: Jet flap panel arrangement 

and the curvature of the jet stream bCCümes also Zt~ro. t.lw jet st.reéllll 1)('( 011 li lit!, :-.11.Ii,!!,h! 

and parallel with the undisturbed flow Uoo : 

j'(l) - a, (ri.IO) 

j"(1) - o. 

5.2 Spline Formulation for Jet Flapped Aerofoils 

• Using cubic splines to approximate perturbation velocitics on jt't flap~ ha~ il gn'al. advitll-

tage over using large polynomials. In the polynomial formulation UH' 1101'1 Ilal- t.o-chol'd 

perturbation velocity on the jet is represented by: 

v(.r) ~ Cf.. , -- + Q = ~ k + a . l' (.r), 
Uoo k=O X 

(!l.I~) 

where ek represented the polynomial coefficienb on tlw jet and 1.11(' ('XlIii fUlIC't.iulI (/. "'(.1'), 

(as defined in Reference 17) helped to approxirnate tlw large' sifl~lllarity ( n';ü(·rI IIy t111' jl't 

flap at the trailing edge of the aerofoil; in this method lal'~(' coeffici('llt~ fOI !.I1(' pulYllolllial 

are obtained which can create problerns whcn tryiIlg 1,0 calcula!'!' P(('S~III(' ('()('f[jei('lIb 

on the aerofoil. With the spline formulation tJJCse lar~c' codficipllls al(' é1voÎclt·d. 'l'III' 

perturbation velocities can be approxirnated by two diffc'rent ~('t" of ~plilll's, (JlIC' Sf'1. fOI 

the aerofoil and the other set for tlw jet fIap. On tl\C' aerofoiI, tllf' IICJJ'lwtl-to-rhold 
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• perturbat.ion v('lo( ity 011 tht' aC'rofoil, i!o. repre~ent.ed. as explained in Section 2.:3.2. hy: 

3 

1}(I(:r) = -fi + I: Ht(.r - Xt-I )1.. (5.1:J) 
k=O 

Th(' subscript (L dcnotes t.he aerofoil and subscript J will be used to den ote the jet fiap. 

First Jet Panel 

On the jet thcrc is a singularity at the fiap beginning and the end of the aerofoil. The 

problcm of approxilllating this singularity can be accomplished by using a special fUl1ction 

011 the> first panel of the jet. This fUl1ctiol1 is related 1.0 the integratiol1 of u( x) whereby 

tilt' perturbation velo city is approximated by: 

3 2 Xl - X 
v~(x) = j"(x) = I: kEl(x - xo)k-I + a-sinh- 1 

k=I 7r xI(x-I)' 
(5.14) 

• TIlt' ('xtra fUllction is designed to disappear at the end of the first panel and presents a 

sillglliar behaviour at the trailing edge of the aerofoil, where the slope of the jet-fiapped 

élt'rofoil has a sudden jump. Integrating this equation results in: 

3 

vJ(X) + 0' = j'(x) = L EI(x - xo)k + a . f(x), (;).15) 
k:;:;Q 

2 [ . 1 Xl - X l[f] wllt're f(J.') = - (x - l )slllh - ( ) - VXI - lcos- - . 
7r Xl X - 1 x) 

(5.16) 

For simplirity in approximating the chordwise perturbation velocity, this extra function 

is also approximated by a spline 

3 

"J(.r) -- L k (El + a . Fk) (x - xo)k-I, (5.1 ï) 
k=I 

3 

l'J(.l') - -Q + L (E~ + a· Fk) (x - xo)k. (5.18) 
k=O 
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• The Remainillg Jet Panels 

On the rest of the jet pant>ls the extra fUllction is Ilot rt'<]uil'ed, which lt-a\'('s: 

J 

L J.·E~ (;r - .r1 -1 )1.-1 • ( !), \ !I) 
k=1 

3 

VJ(.r) = -0 + L E~ (.r - J· I _I)1. . 
k=O 

Finding the chordwise perturbation vt>locities u(.r) is similar to th(\I, of S{'dillll ;U.\, 

where the limits of integration are changed from 0 and 1 tü 0 and L = l, 
" 

u(x) = fL V(S)v s ~ 
Jo L -.r; s - .r 

- VL 
x {a _.!. [t (El + a Fi) 1\1(.1')+ 

x 11" k=O 

t, 1;.. E'J<j,(x) + ~ t. J/,I\;, (J)]}. (fi.:!l) 

• where the Kjk (x) represents the integration over the jet and tlw iut,<'gmt,ioll Ov('r 1.11(, 

aerofoil is represented by K~k(X). The il1tegration is fouud iu apJ>('l1dix B wlH'J'(' (' \lI1I:>\. 

be replaced by L which gives: 

KI(x) = t C%x; {I: xll\k_q_1 + ).,1..-'1} , 
q=O 1=0 

+1 { 1 -) s(L-x) for 8 > :1' -2xP cos J L(,-x) 
Àp - --;:=== 

/x( L - x) sinh- 1 ~(/;~~~ for.1' > ''', 
( ~ ')')) .) • ...,t) 

/8{L - s)' 

where the integrals for I\p are: 

.p=o 

l
x, 

1\0 = 
X,_J 

d.s [-1 (L _ ~.~)]:L' --;:=== - cos 
/S(L-8)-' L J,_J' 
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• • p = 1 

• l' = 2 

A l x, 82ds [3L2 
-1 (L - 28) (S 3L) J (L )] x, 

2 = = -cos - - + - s - s , 
X,_I J.r;{L - s) 8 L 2 4 x._1 

• ]J = 3 

A,3 = lX' -;::=s3=d,='l = = [_5L
3 cos-1 (L - 2S) _ (s2 + _5Ls + _5L_2) JS{L _ s)]X' 

X,_1 JS{L - s) 16 L 3 12 8 X,_1 

Putting the perturbation velocities into the jet momentum equilibrium equation (5.4), 

iL solution can be obtained in a similar manner as in the case of flexible membranes, where 

t.he spline coefficients are broken into their respective derivatives. This needs to be done 

for the spline approximating the jet flap (Ek). The spline coefficients on the aerofoiI H1
k 

• call he round using Iinear aerfoil theory found in Section 3.1.1. The spline coefficients 

for Fi. are round by evaluating equation (5.16) at the beginning and the end of the first 

panel. After this has been done, there are 2N + 3 unknowns to be solved for, by using 

the boundary conditions previously disrribed in Section 5.1: 

j'(c) + a· J(c) - - tan,8, (5.25 ) 

j'(l) - a, (5.26) 

j"(l) - O. (5.27) 

Tht' last. condition also represents the Kutta condition where the perturbation velocities 

h('COIl1<' zero al. the end of the jet . 
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0.25 2.5 1.02 1.02 
0.50 2.77 1.48 1.49 
0.75 3.25 1.87 1.87 
1.00 3.75 2.20 2.20 
1.25 4.36 2.53 2.52 
1.50 4.97 2.80 2.81 

Table 5.1: Coefficients of lift for a jet-ftapped aerofoil with fJ = 31.40
, compared 

to Spence's solution. 

5.3 Solutions for Jet Flapped Aerofoils and Discus-

sion of Results 

The spline formulation becomes especially advantageous over the polynomial method for 

• the solution of the jet-flapped aerofoils. In fin ding the solution it became apparent. t,hat. 

a value of 0.1 for ~x, (i.e. Xi - Xi-l ~ 0.1) produced accurate ellough results. The 

• 

problem of choosing the variational parameter L proved to become rather difficult. This 

parameter changed with the angle of the jet and the value of the jet coefficient. A graph 

for different values of CJ against L were compiled (see Figure 5.5) using ~Xi = 0.1. These 

values were attained by checking the overall lift coefficient from the jet, with the values 

attained by Spence [27,28,291. On the first panel a special function was added to take into 

account for the singularity produced by the jet. It was round that for the best results the 

first jet panel point was taken at c+ 0.01. If a value doser to the chordlengt.h was takcn, 

the singularity became to large and produced oscillations within the spline formulation. 

Typical values for Lare shown in Table 5.1 for various values of CJ for a jet-flapped 

aerofoil (a = 00
, fJ = 31.40

). Figure 5.3 shows the pressure difference across a typical jet 
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• flapped aerofoil at zero incidence. This shows the good agreement with Dimmock's [32] 

cxperimental results. In Figure 5.4 lift sIopes of the jet-flap are compared to Spence's 

solution [27,28,291. 

• 
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Figure 5.3: Nondimensional pressure difference /lep across a jet flapped sym­

metrical aerofoil at zero incidence compared to Dimmock's, experimental 

results (a = 0°, (3 = 31°, CJ = 0.3) . 
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Figure 5.4: Lift slope, 8ffpL, compared to Spence's solution and Spence's exper-

imental values . 
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Figure 5.5: Plot of the jet-flap length L against jet coefficients CJo 
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Chapter 6 

Analysis of Multi-Elernent Aerofoils 

Multi·e1ement aerofoils are used on almost ail airplanes in operation today, which need 

high lift devices su ch as leading and trailing edge flaps in order to take off and land 

within reasonable runway distances. It is interesting to adapt the method of velocity 

singularities for these special types of aerofoils. 

6.1 Flow Field Solution outside the Aerofoil Con­

tour by the Method of Velo city Singularities 

In the linear analysis of single element aerofoils it was assumed that the aerofoil was 

in steady unperturbed air flow, and the calculations have been made to determine the 

pressure distribution on the aerofoil contour. In the case of the multi-element aerofoils, 

there are perturbation velocities generated by one aerofoil section which affect the other 

aerofoil section. To find these perturbation velocities, an analysis of the complex functions 

appearing in the expression of the complex conjugate perturbation velocity, has to be 
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Part -oo<z=x<co co<z=x<s s<z=x<c c<z=.r<oo 

Real 0 cosh-1 J~C-::)(6-CO) 
(c-co}("-::) 

. 1 -1 J(c-z)(a-co) sm l (c-co)(::-') 0 

Imag -1 J (c-::)(a-co) 0 !!: cos- 1 J (<"-::)(a-co) cos (e- Co)(8-:: ) 2 • (C-Co)(8-:) 

Table 6.1: Real and imaginary parts of the ridge function found in the complex 

conjugate perturbation function. y 

done for the domain out,ide of the aerofoil contou:~ k~T. 

6.1.1 Thin Aerofoil Solutions 

In analyzing the domain outside of a thin flapped aerofoil (as shown in figure above), 

the complex perturbation velocity function from Section 2.3.2 must be cvaluatcd. This 

function is written for a thin flapped aerofoil as: 

W(z) = A - ~v-cosh-t jS-z 2 
Z - Co 1f' 

( c - z)( s - co) 
(c-co)(s-z)' 

(6.1 ) 

Here Co defines the position of the leading edge of the aerofoil and c defines the trailillg 

edge position. This function does not present any problems white z is inside the limits of 

the aerofoil (i.e. Co < z = x < c). While outside the limits of the aerofoil at the chordlim', 

(i.e. y = 0, z = x > c, and z = x < co), the function J ::::0 becomes imaginary, and 

the second function cosh-1 (e-z)( .. -eo) changes as shown in Table 6.1. The constant A 
(e-co)(a-z) 

remains the same as in Section 2.3.2: 

[ 2 !§.-c 1 A = - v
eo 

+ -~vcoS-l __ 0 • 

7r C - Co 

Putting this into the disturbance functioll yields: 

/§;c [ 2 t!§.-Co 1 2 1 W(z) = Z -Veo - ~v-cos- -- - z~v-cos-
Z-Co 1f' C-Co 7r 
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(C - z)(s - Cu) 
( c - co )('<; - zr 

(6.2) 

(6.a) 



• Modelling the aerofoil as a continuous distribution of ridges gives: 

-l- - cos-2jC (dVA) 1 

7r Co dx X=:f 

one obtaius aCter integrating by parts 

(c - z) (s - Co) d 
S' 

(c - Co) (s - z) , 

l{§;-C l c I§-c ds WA(z) = -- -- VA(S) __ 0 __ + ZV
Co

' 

7r Z-Co Co c-s s-z 

(6.4) 

(6.5) 

Evaluating the imaginary part on the x-axis (y = 0), the vertical perturbation velocity 

induced upstream or downstream of the aerofoil (z = x > c, z = x < co) is 

lR-C jC f2i-c ds VA(X) = -- VA(S) __ 0 __ • 

7r X - Co Co C - S S - x 
(6.6) 

Bence, in the case of a two-element aerofoil, it is necessary to take into account the 

• vertical velocity induced by one of the aerofoils, on the other aerofoil, which will be 

evaluated using equation ( 6.6). 

• 

Considering a cubic spline representation for the vertical velo city on the aerofoil in 

the rorm 
3 

vA(x)lx'_I<X<X, = L Vk (x - Xi_l)k , 
k=O 

(6.7) 

the vertical perturbation velocity induced upstream and downstream of the aerofoil (z = 

.r > c, z = x < co) i8 obtained from equation (6.6) in the form: 

where Qk(.r) are expressed as 

k {k-q k-q-l Iê ' _ q q 1 1 k-q X - Co -1 
Qk(X) - L CkX, LX Tk-q-I - Co L X Tk-q-I-l - 2x cos 

q=O 1=0 1=0 x - C 
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(C-X)(S-co )} 

(c-co)(s-x) , 
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------------------------------

in which 

l
J " 8Pd.~ 1;, =. . 

X,_I J( ... -(·,,}((·-s) 
( (i.1 (l) 

For the various p. the expressions of 1~) are: 

To - [cos- 1 (C +,~ - 2S)]J" , 
C CO X,_I 

[( C + Co) -1 (C + Co - 2$) _ J( . _ . )( . _ .)]J" cos .0; (tJ ( .0; 

2 C - Co J ,_1 

T~ - [
3 . (C + Co - 28) [8:~ ] r: ---] ,) 8(cl+6cco+c~)COS-l C-('o - :!'+1('+C..) V('~-(',,)(('-,~) /,.1 

[ 
1 ( .' ) (C + ('" - ~''') 16 -13c~ + 2lc~c - 15c

2
co + !lc:-l + ~tkoc cos- I 

(' _ ('" - -

( 

2 r:: r:: 2 5 ,) ',l') 1 J , S üsc ü(' CoC , CO'" ,)C,,' J -+-+-+-+-+- (s-c )(c-,<;) 
3 12 8 12 12 ·1 : () 

J ._1 

The integration value s is varied between X,_I alld ,r, Ritllal.(·d 01\ t!1<' st.lI<lil·d ,w\'oluil, 

X,E [co, cl for any i, and Cl represents the coefficients of 1,1)(' hillolllÎa,1 ('xpallsÎoII (,1'-.1',_1 )A, 

[i.e. Cl = (-1)q q!(kk~q)l] The integration and algt>bra t,o (ind UH'S(' w,lo( it,i(,s (<1111)(' fOl\lId 

in Appendix D. 

As cOllcerns the axial perturbation velocity, /tA, 011 the' a('l'ofoil Il.sdf (oul.slllc or 1.11(' 

aerofoil uAly=o = 0)1 this can he ohtailled, in Uw SiUIH' 1Il<LIlIWJ' éI.~ ill S('ctÎOII :!.:L~. 1'10111 

the equation 

1 ~-J'jC f§" _. Cf) dh lLA(X) = -- -- l'A(."} -.----.' 
7r x - Co Co ( - ... ... - .1 

( Il.1 1 ) 

which leads to the following expression for tIlt' Cllbit' splillt· l<'J>r{,~t'lltéLti()ll: 

(fi.I:l) 

where Rk(x) are exprcssed as 
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in which Tp is the same as previously expl'essed and 

cosh-1 'c-:rH·-co) 
Co <:Z'<'" (C-Co)(.-w) 

r ( Co, c, .s, x) = siuh-1 ~c-:r:H.-co~ 
c-co}(:r:-.t s<x<c (6,14) 

0 X < COI if > C. 

6.1.2 Aerofoils of Symmetrical Thickness 

A similar evaluation of the perturbation velocity must be done for aerofoils of symlll('i~ 

rieal thicknesses. The corresponding complex velocity function for a typical symmctrkal 

aerofoil is defined as 

Ws(z) = .!.. [Vco ln(z - co) + lC (ddV) In(z - s)ds - Va ln(z - c)] 
7r Co X w=.t 

_ .!..lcvs(o)~. (6 Ir.:) P' , a 
7r Co Z - S 

As already known, for y = 0 outside the symmetrical aerofoil (z = x < Co and z = ;l! > c), 

the vertical perturbation velo city calculated with the above equation is zero, 'vs (x) = o. 

Renee, by eontrast with the antisymmetrical part of the solution, there is no vortical 

velocity indueed by the symmetrical thickness of one aerofoil on the second aOl'Ofoil 

contour. 

To calculate the axial velo city us(x), the symmetrieal vertical velocity 011 the ael'ofoil 

vs(x), will be put inta the form of a cubic spline representation 

(6.16) 

Putting this spline represelltation into equation (6.15) the axial velocity can be round 

similarily to that of Section 2.3.3 where: 

(6.17) 

77 



• 
... 

K:----=-~_ 
Uoo ~ 

Figure 6.1: Flapped aerofoil at incidence cr and flap incidence (3. 

where Jkex) are the sarne as previously expressed in Section 2.3.3. 

6.2 An~lysis of Two-Element Aerofoils 

The analyzed two-element aerofoi! is shown in Figure 6.2, in which Cl represcnts the 

chordlength of the first aerofoil and C2 the chordlength of the flap, which will be denoted 

in the following as the second aerofoil. The distance between the two aerofoils is .6.c (Le. 

the distance from the trailing edge of aerofoil one and the leading edge of aerofoiI two). 

The angle of iucidence of the first aerofoil is a and (3 represents the deflection angle of 

the second aerofoil (the flap) with respect to the chord of the first aerofoil. 

Table 6.2 shows the definition of the chordlengths according to the notations used in 

Sections 6.2.1 and 6.2.2. In order to analyze the flow past the two-elernent aerofoil, the 

problem will be decomposed into two separate flow fields, namely the antisymmetrical 

1 Aerofoil 1 C 

1 Cl 0 

2 Cl + Âc+ C2 Cl +Âc 

Table 6.2: Definitions for c and Co for aerofoil 1 and aerofoil 2. 
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(a) 

L hl(x) h2(.I') 

(~ 
t -------- ./""'1 :::-.... .. .r 

1. Ct .1 Ae l.-- C2--J 
U~ 

(b) 

b 9t(X) 92(X) 
UOO f ;..Ef~ ... lt 

cr-~AcLc2~ 

Figure 6.2: Decomposition of (a) antisymmetrical and (b) symmetrical parts of 

a two-element aerofoil. 

and symmetrical velocity flow fields: 

(6.18) 

(6.19) 

where u and v define the perturbation velocity in the x and y directions, and whcrc the 

subscripts A and S stand for the antisymmetricaJ and symmetrical flow fields, rCRpec-

tively. As shown in Figure 6.2a, the antisymmetrical velocity field takes iuto accouut the 

effect of the aerofoil camber and angle of attack, and in Figure 6.2b, the symmetl'ical 

velocity field takes into account the effect of the symmetrical thickness oC the acroCoi!. 

The antisymmetrical and symmetrical flow fields are defined by the following boundary 

conditions: 

_ 
{

[-a + hHx)] uOO , 

VA(X) 
[- (a + (3) + h~(x)) Uoo , 

for 0 < x < CI 

for x < 0, Cl <x <Cl +6c, x >Cl +~C+C2 
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(a) 

u
l
("". = 0 L t vI u1(x) = 0 

t v~ / ~ .. AerofolJ 1 ----- .x 
1. Ct .1 

(b) 

( t vl 
u2(x) = 0 t v~ u2(x) = 0 

'" Aerofoil 2 
Lx .c= :;::==... 

1. Cl .I~e I.-c2--l 

Figure 6.3: Two thin cambel'ed aerofoils to determine the antisymmetrical 

velocity flow field. 

vs{x) -

g~(x)Uoo, 

g~(x)Uoo, 

0, 

for 0 < x < Cl 

for Ct+ ÂC <X<Cl+ÂC+C2 (6.22) 

6.2.1 Antisymmetrical Part of the Solution 

The antisymmetrical part of the flow field is decomposed into two separated antisym~ 

metrical flow fields past two isolated thin aerofoils represented by the carnberlines of the 

first and second aerofoils, as shown in Figure 6.3: 

VA(X) = v~(x) + v~(x), 

UA(X) = u~(x) + u~(x). 

(6.23) 

(6.24) 

The superscripts land 2 are used in the above equations to denote the corresponding 

autisymmetrical flows past the first and the second aerofoils, which are defined by the 
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• following spline distributions of the vertical velocities: 

3 

V~l (X)!.r'_l<X<X, = L l'k1,i (x - Xi_d k
, 

k=O 
3 

V~2(X)!XJ_l<X<.r, = L: l'k2,i (x - Xi_d k 
, 

k=O 

(6.25) 

where the spline coefficients Vk1,i and l't,i are unkllown a priori and will be determined 

Iater; the subscripts 1 and 2 indicate the aerofoUs on which the vertical velocity is for-

mulated. 

Using equation (6.18), the following expressions are obtained fOI' the axial perturha-

tion velocities, u~(x) and u~(x): 

- _.!.. r;;:::-; t t V~,i Rj.(x), 
1r V --;- i=l k=O 

o<x <Cl «(i.27) 

u~(X) = 1 Cl + ~c + C2 - X ~ ~ 1/'2,iRi ( ) A A ( " ) -- ( A) L.lL..JVk k X ,Ct+uC <X<C.+UC+C2.6.28 
1r x - Cl + uC i=l k=O 

The vertical velocity induced by the aerofoi1l on the aerofoil 2, v1:1(x), and th(' Vl'rl,ical 

velocity induced by the aerofoil 2 on the aerofoil 1, V~I (x), are obtaiued from cqUét-

tion (6.8) in the form: 

V~2(X) = _.!. ~ ftV~·iQi(x), Ct+~C<X<CI+ÂC+C2, (6.29) 
1r V --;- i=l k=o 

V~l(X) = _.!.. X-(Ct+ÔC+C2)f:ÊVk2.iQi(x), O<x<Ct. (6.30) 
'Ir x - (Cl + Ôc) i=l k=O 

The a priori unknown coefficients Vk
1•i and Vk

2,i can now be deterrnined using the bound-

ary conditions (equation (6.20)) in the form 

V11 (x) + V~l (x) - [-a + hi (x)] UOO , 

V12(X) + V~2(X) - [- (a + /3) + h~(x)] UCXJ , 
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(a) 

(b) 

VI (X'\') 0 b' _-:::=~ ___ " V1(X) = 0 
Aerofnill /".. ~~:::=~~~~ ______ ~ ________ .w 

[14--::- cr--l ---+1./ 

Figure 6.4: Two symmetrical aeltofoils to determine the symmetrical velocity 

flow field. 

which lead to a linear system of equaticmus. To make the system of equations simpler, the 

spline coefficients were broken into the -"0 main components (as described in Appendix 

C.1.2) of v(x) and v'(x) for both the aeuwfoils. Then the components for v/ex) can be 

broken down further into functions of v(::t~ using second order differencing techniques. 

This produces a matrix with a dominent diagonal which reduces any possibilities of ill­

conditioning. Solving the problem by this method leaves m + 2 unknowns. Once the 

spline coefficients Vi,i and \!k21i are solved for, the axial components from equation (6.27) 

aud equation (6.28) cau be determined. 

6.2.2 Symmetrical Part of the Solution 

The analysis of the symmetrical velocity field is also decomposed into two separate sym-

metrical flow fields past two isolated aerofoils of symmetrical thickuess (Figure 6.4): 

vs(x) = v1(x) + v~(x), (6.33) 
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(l.a., ) 

Where the superscripts land 2 den ote the carrespolldillg symtllt'triral flo\\' fields df'lll1C'd 

by the follawing boundary conditions: 

{ 

g~ (x)Uoo , 
v1(x) = 

0, 

{ 

g~(x)Uoo, 
v~(x) = 

0, 

far 0 < x < CI 
(fi ,an) 

far;r < 0, x > Cl 

( n.:l(l) 
for x < Cl +~c, X > Cl +~(,+C2 

Cubic spline representatians for the vertical velacities 011 the two acrofails i11 tht:' fOl'1n 

3 

v11 (X)lr'_l<r<r, - g~(x)Uoo = L: al,i (x - xi_dk , 
k=O 

3 

v~2(x)lr'_1<r<r, - g~(x)Uoo = L: a%,t (x - Xi_t)k , 
k=O 

The axial perturbation velocities on the first aerafail, uk. (x) and U~I (x), and those 011 

the second aerofoil, U12(X) and U~2(X), are abtained as 

1 N 3 

u11(x) - -- LI:Gl"J~(x), O<X<Ct, 
'Ir i=l k=o 

1 N 3 
U~I(X) - -- LI:G%,iJk(x), 0<X<Cl 1 

'Ir i=l k=O 

(6.:19) 

(6.40) 

(BAI) 

(6.42) 

where Jt(x) are defined by equatian (3.20) in Section 3.1.2. The symmetrieal part af the 

salution far the axial perturbation velocities on eaeh aerofoiJ ean hence be calcuJatcd as 

us(x)1t - U11(X)+U~1(X), 

US(X)12 - u1
2
(x) + U~2(:r), 
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Karman-Trefftz Characteristics 

Aerofoil etc fIc f n "( 

A 0.05 0.02 0.024 1.97 2.32° 

B 0.05 0.00 0.040 2.00 0.00° 

Table 6.3: Definitions of two types of aerofoil. 

where us(x)1t and US(X)12 define the total axial velocity due to symmetrieal thickness. 

Ali of the syrnmetrical velocities can he found explicitly if the cuhic spline of Appendix 

C.1.2 is used. 

6.3 Results and Comparisons for Two-Element Aero-

fa ils 

To determihe the accuracy of the present method, comparisons were performed for the 

case of two-element aerofoils, with the results obtained by Seebohm and Newman [26) 

using a surfa.ce vortex method. 

These comparisons have been made for the case when the main aerofoil section (aero-

foilI) and the ftapped section (aerofoil 2) are both Karman-Trefftz aerofoils with the 

sarne charaderistics fie, elc, f, n and "(. The results have been obtained for two dif­

ferent aerofoils indicated by A and B in Table 6.3 (in fact the aerofoil B is a Joukowski 

aerofoil, which represents a particular type of Karman-Trefftz aerofoil with n = 2 and 

the trailing edge angle 'Y = 0). 

The antisymmetrical and the symmetrical parts of the solution were determined for 

these two-element aerofoils in the manner indicated in Sections 6.2.1 and 6.2.2, and 
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• then the pressurt: coefficients are calculated based on thesl' solutions as indkatt'd by 

equations (3.8) and (3.9) in Section 3.1. 

The pressure coefficient~ distributions obtained for these t.wo·e1ement acrofoils an' 

shown in Figures 6.5· 6.8 for the following geometrical characterisities: CI = l, C2 = 0.35, 

and Âc = 0.05. 

The results obtained for the two-element aerofoil based on t.he Karman-Trcfftz aOl'Oroil 

of type A (see Table 6.3) are shown in Figure 6.5 for a = 0° and {3 = 15° and iu Figlll'c 6.6 

for a = 10° and f3 = 15°. The results for the two-element. aerofoils based on t.he Joukowsld 

aerofoil of type B (see Table 6.3) are shown in Figure 6.7 for a = 0° and f3 = 20° and in 

Figure 6.8 for a = 100 and f3 = 20°. 

In a11 these figures, the solutions obtained witb the present method, using 25 equally 

spaced points on eaeh aerofoil, have been compared with the results obtailled hy Scebohm 

and Newman [26] using a vortex panel method. A reasonable good agreement has beon 

found between the results obtained with these two methods. 
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Figure 6.6: Pressure coefficients for an aerofoil with a rounded leading edge 

(ele = 0.05, fie = 0.02) and a 35% flap (a = 0°, !3 = 15°). 
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Figure 6.7: Pressure coefficients for an aerofoil with a rounded leading edge 

(e/c = 0.05, fic = 0.02) and a 35% flap (ex = 100, fi = 15°) • 
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Figme 6.8: Pressure coefficients for a symmetrical Joukowski aerofoil (e/c = 

• 0.05) with 35% flap (0 = 00
, (3 = 200
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Figure 6.9: Pressure coefficients for a symmetrical J oukowski aerofojJ ((~/ (' :::: 
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Chapter 7 

Conclusions 

In this thesis, the method of velocity singularities has been developed in conjullction 

with a cubic spline representation of the aerofoi! contour slope. This spline representation 

has improved substantially the accuracy and stability of the solution in special problems 

t:· such as the jet-flapped aerofoilsj in these cases, the polynomial representation previously 
M', 

used can lead to high-order polynomials with large coefficients, which can have adverse 

effects on the accuracy of the solution. The spline-velocity singularity method developed 

in this respect has proven to lead to Rccura.te solutions, computationally efficient, in aU 

studied problems. 

This method has been first validated for the cases of rigid and flexible aerofoils, in 

comparison with the previous solutions based on conforma.I transformations, or obtained 

by Thwaites [33] and Nielsen [23]. A very good argeement has been obtained between 

the present splille-velocity singularity solutions and the previous results, as well as with 

the results based on the polynomial representation [15,16,171. 

The method has then been used to solve the flow past jet-flapped aerofoils, in which 
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case it has been characterized by a better accuracy and an enhanced stability of the 

solution in comparison with tbe polynomial representation USf.'d pl'cviously in cOlljunction 

with the sarne method of velocity singularities. The solutions obtailled for thf.' jct.f1nppcd 

aerofoils bave been compared with the theoretical solution obtaiued by Spcucc [27,28,29] 

and tbe experimental results obtained by Dimmock [32]; a good agreement has been 

found betweell these results. 

The spline·velocity singularity method has also beeu extended to the problem of 

multi·elemellt aerofoils. The solutions obtained for two·element acrofoils, l'epresentcd by 

an aerofoi! with a flap, have been compared with the results obtailled by Seebohm and 

Newman [26] using a surface vortex rnethod. A good agreement has beeu obtained for 

both cases of Karman-Trefftz and Joukowski aeTofoUs. 

In aIl problems treated in this thesis, the spline.velocity singularity method has proven 

to have a definite advantage in comparison with the polynomial formulation, displaying 

a better accuracy and stability of the solution; this was found especially in the proh~ 

lems in which the aerofoil geometry is not known a priori and clepends on t.he pressure 

distribution, as in the cases of the flexible or jet-flapped aerofoils. 
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Appendix A 

ConformaI Transformation 

A.l Karman-Trefftz Transformation 

Here the Karman-Trefftz transformation is explained. This transformation is defincd by 

equation (2.13) 

If we let: 

z - nb = (' - b)7i . 
Z + nb ,+ b 

Met'" = (~)n 
'+b ' 

(A.l ) 

(1\.2) 

we can get an equation to solve for z (note: do not confuse rp with the vclocity pot.clltial 

described in chapter 2): 

(
Met'" + 1) 

z = -nb Met'" _ 1 . (A.:l ) 

Breaking z into real and imaginary parts: 

(A.4 ) 

(A.5) 

97 



On the circle, M and fjJ are written as functions of (), 

(A.6) 

where 

M = (~:) n, ~ = n((Jt - (J2). (A.7) 

At a point (P) on the circ1e rI, r2, (JI and fJ2 are obtained using the cosine law: 

r~ - b2 + r2 
- 2rb cos 0, (A,8) 

(JI - -1 ('" + r~ - r') 
1r - cos 2rt b ' (A.9) 

r~ - b2 + r2 
- 2rb cos (11" - fJ), (A.IO) 

fJ2 - -1 (b'+r~-r') 
cos 2r2b • (A.1l) 

Now rand fJ are the only unknowns. r can be obtained using 

I~ 
Ji<!"': r = b(G((J) + H(O)), (A.12) 

where 

G((J) - -€ cos fJ + (1 + €) tan '"'/ sin (), (A.13) 

H(fJ) 
(1 + e)2 

- F2(O), (A.14) - cos2 , 

F((J) - -€sine - (1 + €)tan,",/cosfJ, (A.15) 

Iteration for a y coordinate on the aerofoil at position x can be obtained by guessing fJ 

usillg 

e = cos- I (;b) , (A.16) 

as an approximation. Now numerical analysis can be applied (i.e. using a secant method). 

Ta find a value for the unknown constant b, the chordlength is set ta unit y and b can be 
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• I(arnlan-Trefftz Aerofoil 
Aerofoil Parameters Charactet'Îsi tics 

Type t n {o elc % chord fIc % chord 
Circular Arc 0.000000 2.00 2.865 0.00 - 0.025 50 
Circular Arc 0.000000 2.00 5.711 0.00 - 0.050 50 
Lenticular 0.002931 1.94 0.000 0.05 50 0.000 -
Lenticular 0.005807 1.88 0.000 0.10 50 0.000 --
Cambered Lenticular 0.002911 1.94 1.178 0.05 50 0.010 50 
Cresent Shaped 0.002806 1.94 2.944 0.05 50 0.025 50 
Cresent Shaped 0.004788 1.88 6.028 0.10 50 0.050 50 
Symmetrical Joukowski 0.040226 2.00 0.000 0.05 22 0.000 -
Symmetrical Joukowski 0.083915 2.00 0.000 0.10 22 0.000 -
Cambered J oukowski 0.040200 2.00 2.292 0.05 22 0.025 50 

Table A.l: Summary of aerofoil parameters used in Karman-Trefftz trallsfor-

mation. 

evaluated using 

x c - 2nb-
1
-, -x 

w here X - (1: t) n • 

A surnmary of the different aerofoils used in this thesis are given by table A.I. 

A.2 Flow Around A Circle With Circulation 

(A.17) 

(A.l8) 

To find the velocity components we need to define the flow around the circle by a. complex 

potential: 

F( ) = U (/"* b
2

) _ tr ln((*) 
Zoo., + (* 21r' (A.J9) 

where (* = rele·, r is the radius at which fiow is to be defined, 0* = 0 - 0', and r is the 

circulation around the aerofoil. Taking the derivative of the complex potential givcs the 

99 



• 
complcx conjugate function of the circle: 

(A.20) 

Using the Kutta condition by imposing the perturbation velocities to be zero at the 

trailing edge, the circulation around the aerofoil can be determined as 

r = -47raUoo sin (a + ï). (A.21) 

Taking the modulus of the complex velocity potential 

IF'(C)I = 2Uoo(sin(O - a) + sin(a + ,)), (A.22) 

the flow field around the aerofoil is obtained by: 

v - IF'(z)1 _ IF'(*)I - - I~I . (A.23) 

Now pressure coefficients can be solved for using equation 2.10. 
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• 
Appendix B 

Perturbation Velo city Formulation 

B.l The Antisymmetrical Velocity field 

B.I.I Complex Conjugate Disturbance Velocity Function 

As wrote in Section 2.3.2 the complex conjugate perturbation velocity f\ludion: 

{ 
2la° }R-x 210° s(c-:c) W(z) = -v(O) - - v'(s)cQs-1ysds .- - - v'(s)COSh-1 ( ) ds. 
1rQ X 1rO cs-x , / 

.h, ' 'T' 
h 

Breaking the complex conjugate perturbation velocity into smaller intcgrals alld doillg 

the integration by parts: 

,. Integral 10 : 

[ () 
-1 r..] c 1 lac V(.5) 

- V 8 cos v,r; + -2 . / do'; 1 

o 0 yS(C-S) 

7f' 1 r v(s) 
- --2v(O) + -2 Jo ./ ds. 

o ys(c-s) 
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• • Integral h: 

S(C-x)ds 
c(s - x) 

= lim foX-( v'(s)cosh- 1 
(_0 Jo s~c - x~ ds + r v'(s)cosh-l s(c - x) ds . 

cs-x JX+f c(s-x) 
~'---------y---------~' ~~--------~y---------h k 

1,-, ~.(C ;-) v'(s)cosh-l ds -
o c(s - x) [

'Ir] X-( r-c s( C - x) d 
t'2V(S) 0 + Jo v(s) sinh-

1 
c(s _ x) s. 

r v'(s)cosh-l s(c - x) ds 
Jx+c c(s-x) [ 

s (c - X)] c 1 r x (c - x) ds 
- v(s)cosh-l c(s _ x) + 2" JX+f v(s) c(s - x);=;· 

x+, 

• From integrals /2 and /3: 

lim {V(X _ f)sinb-1. J(x - f)(C - x) _ v(x + f)cosh-1 (x + €)(c - X)} = o. 
,-0 V c,€ C'f 

Putting these integrals into the complex conjugate perturbation velocity equation: 

W(x) _ J" -:J) {-V(O) _ 2 (_!.v(O) +! fe v(s)ds )} 
x 'Ir 2 2Jo Js(c-s) 

_ ~ {.!. r v (s ) X (c - x) ds + t 'Ir (v ( s) _ v (O»} . 
'Ir 2 Jo c(s - x) s - x 2 

... Takillg real parts for UA (x) where the A subscript stands for alltisymmetrical velocities: 

1 f?-x lC ff ds UA(X) = -- -- VA(S) --. 
'Fr x 0 c-ss-x 

(B.1) 
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Figure B.1: Geometrie notations of eamberline panels used for the eubie spline 

representation of the aerofoil eamberline 

B.l.2 Spline Formula~ion 

U sing linear theory as defined in Section 3.1.1 a cubic spline appl'oxi mat.ioll is IIs{·d \.0 

find the velocity UA(X): 

h'(x) - HJ + H{~xl + H~(~Xi)2 + H~(~Xi)3, 
3 

- 1: Hk(~xd'~, 
k=o 

where ~Xi = Xi - Xi-l. 

(B.~) 

(B.:l) 

(BA) 

HL are spline coefficients as defined in Appelldix C. Now VA(X) cali \W Wriitüll IIHlIIg 

equation (B.3) and linear theory: 

(lUi) 

This can now be used to solve for UA(X): 

1 Rx lC ( ~ ~ i k) {};.~ d.'l -- -- -a+ LJL..JHk(~Xi) --.--, 
'Ii X 0 '-1 k-O C - oS S - X 

1- - .c=s 

aRxlc~ ds lR-X~~lJll:r1 ( )k{};.S d.'! - - -- ------ --L..JLJ k .<)-X1_1 ----, 
'Ii X 0 C - S S - x ')j X 1=1 k=O :1:._1 C - oS .'l - X 
, T'" y -1 

h h 

14 _ a Fz r ~ ds ;V -;--x- Jo V -;;-:::; s - x' 
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"._-- ......... _ .. _. _ ...... -

_ a r;::::; { r ds r ds } 
;y -;- Jo Js(c - 8) + x Jo Vs(c - s)(s - x) 1 

_ Q r;::::;{[ -1 (C-2S)]C 2x r 1 "--x(c--x) ds } 
;y --;- cos c 0 - Jx(c _ x) Jo -2 s(c - x);=-; 1 

- "'Je x x, 
l, - !..j< x t t HkJ(k(x), 

'Ir x i=l k=O 

whoro J(t(x) = r (s - xô-tlkJ • ~. J:C'_l C - 8 S - X 

Now the perturbation velocity in the x direction can he written: 

R-x( 1~~ .. ) tLA(X) = - Q - - 4-1 L..J HkJ(k(x) . 
x 'Ir i=1 k=o 

(B.6) 

B.l.3 Derivation of Integral [<t(x) 

The integral for !(1( x) becomes quite tedious, long and difficult. This is probahly the 

, largest downfall to using the spline velocity method. 

1", (s - XÔ-l)kJ S ~, 
;l:i-l ç - S S - x 

le 

let (s - Xi_t)1e = E C:sk-'1xi_ll 
'1=0 

le l:Ci sk-'1+1 ds - I: O;xl-1 .; -, 
'1=0 ;1:1-1 s( C - s) s - x 

k-q 
let (sk-q+l - xk-'1+l) = (s - x) E sk-q-lxl, 

1=0 

le 

I(~(x) - L C;xl_1 
q=O 
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Ir X k-'1+ l 1Z
• ds 

- z._1 JS(C - S)(S - X) , 

_2Xk-9+1 1z , 1 x(c - x) ds 
- Jx{c - x) :1:'_1 -2 s(c - s) ~' 

k +1 { h- l ,(c-z) for s > x -2x -q cos c(,-z} 

- .Jx{c - x) sinh-1 J~~~:~~ for x > s 

Integral number 17 will be identified by Àp• Integral numbcr 10 must he integl'ated 

separa tel y as k is changed, and will be identified by Ap: 

.p=o 

1
z
• ds [-1 (C - 2s)]X. Ao = = cos . 

:1:1-1 Js(c - s) C x._1 

.p=l 

1:1:'· sds [c 1 (C - 2S) V ];1), Al = = -cos- - s(c - 8) . 
:CI-l ';8(e - 8) 2 C X,_I 

.p=2 

1Z1 s2ds [3e2 
1 (e - 28) (S 3c) J l,'/:' A2 = = -cos- - - + - s( c - 8) . 

Z._I Js(c - s) 8 c 2 4 Z,_1 

.p=3 

Lx. s3ds [5c3 1 (C - 2s) (s2 5es 5C2
) V ]X. A3 = = -cos- - -+-+- S(C-8) . 

Z,-l Js(c - s) 16 c 3 12 8 X,_1 

Now /<k(x) can be written: 

(A.7) 

The CZ represents the coefficients of the binomial expression of (8 - xi_dk , 

cq (1)9 k! 
k = - q!(k-q)!' (B.8) 
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Putting this into I<k(x), written out in long form: 

J(Mx) - Ao + ;\0 

J(;(x) - Al + xAo + Al - Xi-I(Ao + ;\o} 

J<~(x) - A], + XAI + x2Ao +;\2 - 2:r.i-t(A1 + xAo + At} + x~_l(Ao + Ao) 

J(J(x) - As + xA2 + x2At + x3Ao + >'3 - 3Xi_l(A2 + xAt + ;c2Ao + A2) + 

3X~_1 (Al + xAo + >'1) - X~_l (Ao + Ao). 

B.2 The Symmetrical Velo city Field 

B.2.1 Complex Conjugate Disturbance Velocity Function 

The symmetrical velocity field descrihed in Section 2.3.3 leads us to: 

Ws(z) = ! {V(O) ln z + ].' (~: t.ln(Z - s)ds - v(c) ln(z - c)} . (B.9) 

Because we are dealing with the symmetrical velo city field the chordlength can he set to 

unit y (the chordlength changes only when using the jet flapped antisymmetricai veloci­

ties): 

fI (dV) fI ds 
Jo dœ :r:=s In(x - s)ds = [v(s) In(x - s)]~ + Jo v(s);::-;. (B.10) 

Putting the relation v(s) lo(x - s) = v(s)(t1l' + ln(s - x)) for s > x, and the results from 

equatioo (B.10) into equation (B.9): 

_ Hm {[v(s) In(x - S)]~-f + [v(s)(t1l' + 10(s _ x))]!+<} + fI v(s)~ 
(-+0 Jo s - X 

11 ds 
- v(l)ln(l - x) - v(O)ln(x) + z1I'(v(1) - v(s)) + v(s)--. 

o S-3; 

After rearranging: 

1 11 ds Ws(x) = - v(s)-- - w(x). 
1C' 0 s-x 

(B.11 ) 
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For the velocity us(x) =, the real part of Ws{x) is taken: 

1 il ds us(x) = -- v(s)-. 
'Ir 0 s-x 

B.2.2 Spline Formulation 

(0.12) 

Using linear theory as defined in Section 3.1.1 a cubic spline approximation is used to 

find the velocity us(x): 

g'(x) i i i 2 i 3 - Go + Gll:::.Xi + G2(ÂXi) + G3{t::.xd , 
3 
". k - ~ GHl:::.xi) , 
k=O 

where ÂXi = Xi - Xi-l, 

and Gi are spline coefficients. 

Now vs(x) can be wrÎtten using linear theory: 

3 

vs(x) = 2: Gi(t::.xdk
• 

k=O 

This can now be used to solve for us(x): 

us(x) = 1 101 (~' k) ds -- .L, Gk(t::.Xi) -, 
'Ir 0 1..-0 s-x ,..- :Z:=6 
1 N 3 'l:Z:i k ds - --EEGk (s-xi-d --, 
'Ir i=l k=O :1:'_1 S - :c 
1 N 3 .. 

- --E L GiJk{x) , 
'Ir i=l k=O 

where Jt(x) = 1:1:1 

(s - Xi_dk~. 
:1:'-1 .s - :c 
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B.2.3 Derivation of Integral JL(x) 

The integration for JL( x): 

Jk(x) 

k-q-l ID 

"" 1 f' k-q-I-1d 
~ Xi-l Jœ S s, 
1=0 :7:'-1 

18 -

k-q-l 1 
"" Xi-l (k-q-l k-q-l) 
~ k _ q _ 1 xi+! - Xi-l , 
1=0 

k- Q 1.1:' ds 10 - Xi-l -, 
:7:,_1 S - X 

k-q 1 (Xi-t - x) - Xi_l n . 
Xi-l - X 

Noting that for integral 10 , is restrÎcted to no x between Xi-l and Xi. If this occura: 

k-q 1 Xi - x Hence 19 = xi_l n ~--
Xi-l - X 

Xi - x } 
Xi-l - X • 

(B.13) 
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B.3 Modified Expansion Field - Local Linearization 

For Symmetrical aerofoils with rounded leading edges, a modified expansion field i8 ft'· 

quired to treat this special case. This modified expansion: 

() RX~GiA k 
Vs X = - '- k~xi' 

x k=O 

which treats the Kutta condition at the trailing edge and helps treat the infinitt' vclocity 

at the leading edge. Putting the spline approximation lnto equation (B.12) 

1 ~ ~ 'l.e l Rs k doS us(x) = -- L-J "-' Gk -Cs - Xi-l)'-, 
, 1r i==l k=O :1:1_1 s S - x 

where the integral is represented by JAt/c (x), llOW 

1 N 3 . , 

Us = -- I:L:GkJMI.(X), 
1f' i=l k=O 

". B.3.1 Derivation of Integral JA.tk(X) 

let (1 - s) = (l - x) - (s - x), 

_ (1 _ x) 1:1:1 (s - Xi_l)k ~ _ (s - xi_dk ds 
3:,_1 -/S(l - s) s - x -/s(1 - s) 

k 
Using (s - Xi_t)k = L: O;sk- II xl_1, 

q=O 

_ t 0:X1_1 {Cl - x) r· sk-II ds _ r' sk-q dS} . 
q=o J3:I_1 -/s(1 - s) s - x J:r'_1 JS(l - s) 

(8.15) 

(B.16) 

The last two integrals were already defined in Section B.1.3. Collecting a1l the intograls: 

(8.17) 
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Appendix C 

Cubic Spline Formulation 

C.I Introduction 

A series of different types of splines were researched and two types were found to give 

the best accuracy versus difficulty. 

C.1.1 Cubic Spline Using Tri-Diagonal Matrix 

This type of spline gives good accuraey without having to know the second derivative of 

the eamberline coefficients h(x) and g(x). We start with a set of coordinates < x,y >, 

where we want to find specifie values of y at a given x coordinate, hence: 

y = I(x). (C.1) 

A fUllction where the fourth derivative is zero is desired so a eubic order will be the best. 

Yi+1 - Ai + Bi6.xi + Ci6.x~ + DiÂxf, 

where dXi - Xi - Xi-l. 
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Figure C.1: Geometrie notations of eamberline panels used for the eubie spline 

representation of the aerofoil eamberline 

This cubic starts at point (i) and ends at (i + 1). This leads to (N) splines for (N + 1) 

points (Figure C.1 shows how the panels and points are llumbered in this case). If the 

spline is evaluated at x = Xi: 

Yi = Aj. (C.4) 

Now Bi, Ci, and Di are unknowns, requiring 3N - 3 equations. Using equation (C.2), 

demanding continuity of the first and second derivatives: 

setting: 

which gives: 

Bi+1 - Bi + 2ÂXiOi + 3Âx~ Di, 

2Oi+1 - 2Ci + 6ÂXiDi' 
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• Two more conditions are now required to solve for the solution. By imposing and putting 

the second derivative to be zero at the ends (ie i = 0, i = N): 

Âx· 
Di - -i(Ci+l - Ci), 

Bi - Yi+l - Yi _ ÂXi (G. + 20.) 
ÂXi 3 1+1 , • 

Using these conditions and putting into equation (C.7): 

This results in a tri-diagonal matrix: 

o 
... 

o 

(C.ll) 

(C.12) 

(C.13) 

(C.14) 

RhsN - 2 

(C.15) 

The spline can be changed by using different end conditions and redefining equations (C.12), 

(C.11), and (C.7). 

For writing formulas the orientation of the spline is also found 

3 

y(x) = E HLÂxf, (C.16) 
k=O 

where the spline coefficients Ah Bi,'" are represented by H~, Hi,.... This is done so 

the coefficients can be written in a simple summation. 
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C.1.2 Cubic Spline Using Second Derivatives 

This type of spline ohtains very accurate results without any matrix operations. The 

downfall of the method is the need for the second derivative of the camherlille coefficients 

h(:c) and g(:c). H the aerofoil is a function of x, the derivatives can be easily obtaiued, 

otherwise differencing methods have to he used. Differencing methods sometimes tend 

to lose accuracy near the ends (this is where the tri-diagonal matrix may be a hetter 

choice). 

This method starts similarily to the tri-diagonal method using y as a function of x é~S 

in equation (C.1). This function may he written as equation (C.2), where its derivative 

is written as equation (C.5). If we evaluate these two functions at x = Xi: 

Evaluating these equations at x = Xi+!: 

Combining these two equations: 
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Appendix D 

Irnaginary Part of the Perturbation 

Functions 

D.l Imaginary Part of the Ridge Function 

TIlt! l'idgc rllllct.ion dellOLed as cosh -1 {~:~!~(~;~ becomes pl11'ely imagillary oULsicle of 

t1w lICrofoil rngimc. This becomes important whell allalyzing multi-sectioll aerofoils. The 

hypel'bolic cosh fnnction is defiucd as: 

cosh-1 R = In(R+ -JR2 -1). (D.1) 

Whml t,Il<' limits of z bcc:ome outside of the ael'ofoil (ie z > c and z < co) the fUllction 

!~.:;:~f~:~~ is less than one. Allowing this fUllction to he clenotecl by R the upper formula 

bCCOllWS: 

- 111( R ± nit - R2), 

- 111('tR ± vil - R2) - ln 'L, 
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- ±H'OS-l H. (IUl) 

This funr.tion also POS("S a problplll whill' ,.; < :; < ('. Tilh; is 1I11 t hl' (\t'rofllil itsl'lf illld 

doesll't cOlltributc to thl" il11é\ginary Vl'Iocit.y fil'ld hllt, l'ontrih1\t.l'S 1.'1 tilt' axia.l wludt,y 

functioll. The fUllction (S-Co)(C-::) it.sC'lf Iwcollws illlaginill'Y givill!!; 1 s-e" lC-:~ whidl 
(l'-co)(s-::) " • , (,0-('" (,-., 

will again be denoted by R: 

- III ( 1 R + V - 1t2 - 1), ( D.li) 

- In(R ± Vi + H2) + III l, ( 1).7) 

. 1 -1 If. 'Ir (D.H) - SIIl) .+ l-. 
2 

These del'ivations arc slltnmed IIp in Tablc' 6.1 . 

• D.2 Imaginary Part of the Antisymmetrical Veloc-

ity Function outside the Aerofoil Contour 

The complex conjugate pel'tuI'ba.tioll flllld.ioll IW('OIlH'S ulltside of 1.11<' iU'l'ol'oil f'OlI!.01\I' 

(z = ;v < Co, or z = ;v > c) 
> -

i 

Wez) = 'V: c !-V(CO) - ~lc o'(,c;)cos- I _''1 -_('(Jrl.'i)_'.~ f.r "'(,'1)('os-1 
'" - Co 'Ir Co C - Co 'Ir • Co 

, T~ _______ J '~ __________ ~y __________ ~ 

~ 'I 

k - ::)(,0; - (',,) 1 
( t'l • 

((' - (',,)(,0; - Z) 

Performing the iutegrals by pal'ts gi v('s: 

• Integral la: 

l c 1 .'1 - Co l v'(s )cos- t.o; 
Co C - Co --. 1 11:, 



• 
l e , _1~(C - Z)(.S - co) 

v (.S )COS ( )( ) d.s 
Co C - Co .'l - Z 

[ 

-1 (C-Z)(''l-co)]'' Ile 
- v(.'!)COR (c - Co)(s - z) Co + 2" Co V(S) 

(z - co)(C - z) cl.'l 
(c - co)(.'l - co) ;=-;, 

'Ir l j" (Z - Co) (c - z) d.., = -'0(('0)-2 + 7; Ca V(.'l) ----
~ ( C - Co) (S - Co) .S - Z • 

Pllt,tillg thes(' iwo intcgrals back illto the disiurbance velocity fUllction: 

Taking tilt"' imaginary portions of the distrubance velocity fUllCtiol1 gives the perturbation 

() IIS'v C je (){§<;-co t!.<; VA.v = -- VA .'l --. 
'Ir ;v - Co Co C - .<; .r; - ;,; 

(D.9) 

This l'ail Iw repl'<'seuted hy a cubic spline llotatioll sllch as 

(0.10) 

WIH'I'(' qjJv) dditws the intcgl·al. 
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D.2.1 Derivation of Integral Ql.(,':) 

While aualyzing outside of tIlt' éU'l'Ofoil contour tilt' IWI't.mhat.ion \'('Iucit.it's an' fUl'llllllillt'd 

as: 
, • N :l 

,/ - ( "" \nQ' ( ) L...J L...J 'k k ./' , 
Z' - (' 
" () 1=\ k=lI 

(IUl) 

where the integt'al QL(,z:): 

c-,r:; ,r:;-;/: 

.1' - ('f} -1 JF.' - ,/,)(',~ ~- (',,) } 
--('uH -
,1' - (' (c - /,,,)(,., -- ,l') 

in which 

(U.I~) 

To - [
COS- l (C + Co - 2.'l)] x, , 

C - Co x'-l 

Tl - [(C + Co) -1 (C + Co - ~8) y( )( )]J" -- ('os - .'l - Co (' - .'i , 
') C C' 
liJ - "0 J,_I 

12 - [a , , (C+Cu-~''l) [''i a] --]" '8 (c2 + 6cco + c~) cor.;-I c _ Co - ~ + ~ (c + ('u) y(,'i - (',,)(,' - ,.,) '._1 ' 

Ta - [ 
1 ( 3 2 2 '1 ) 1 (' + ('0 - ~,';) -, -1:3c~ + 21co c - 15c Co + 5c' + Uko (! ('08- -
16 (! - t'a 

(
,5

2 5,sc 5c
2 

CaC !'jea ,<; :k~) r.('1_(.)((,_<;)]3' 
:3 + 12 + 8 + 12 + 1 ~ + t\ V ~.~ - '0 ' • 

J._I 
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Appendix E 

Corn·puter Subroutines 

Ail of these subroutines are coded using the C language. For sorne of the subroutines 

global variables exist. These are defined in the preamble of the main program. 

'define N 10 1* Number of chordline points *1 

'define M N+2 1* Matrix size *1 

'define PI acos(-1) 1* pi=3 .14159 ... *1 

'define rad lS0/PI 1* conversion from deg to rad *1 

'define diff 1e-13 1* used to change x-coordinates *1 

'define L 3 1* used for jet flaps *1 
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E.l Subroutine for Antisymmetrica1 Velocities 

1* Subroutine AntiSpline calculates values of Cp ~ using Cubic Splines 
on aerofoils having antisymmetrical velocities only. Calculations are 
perfor.med for 5 differ~nt angles of attack 
Recieves: x - coordinat es 

h' (x) - camberline slope on aerofoil 
h"(x) - second derivative of aerofoil camberline 

Returns: Cp - pressure coefficients for top and bottorn of aerofoil 
void AntiSplineCdouble x[M],double h[M],double hp[M],double Cp[2] [5] [N]) 

{ 

} 

double srt[N],K[5],H[S] [M),u,v,Ai 
iot i,j,p,ii,aai 

1* Calculate ~(l-x)/x)~*/ 
for (i=O; i<N; i++) 

srt[i] = sqrt(l - xli]) 1 xli]); 

1* Find Spline Coefficients H */ 
Spline(x,h,hp,H); 

1* Find perturbation velocities and calculate pressure coefficients */ 
for(aa=Oiaa<5;aa++) 

{ 

} 

A = aa * 5 1 rad; 
for(i=Oii<Nii++) 

{ 

} 

u = A * srt[i], v = -A + h[i); 
for (p=O;p<N;p++) 

{ 

} 

KKK(x[p],x[p+l],x[i],K); 
for (j=O; j<4; j++) 

u -= H[j] [pl * K[j] * srt[i] 1 PI; 

Cp[O] [aa] ri] = l - (pow(cos(A) + u,2) + pow(sin(A) + v,2»; 
Cp[l) [aa] [il = 1 - (pow(cos(A) - u,2) + pOW.(sin(A) + v,2» i 
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, E.2 Subroutine for SymmetricaI Velocities 

/* Subroutine SymmetSpline calculates values of Cp by using Cubic Splines 
on aerofoils of symmetrical thickness. Calculations are performed for 
5 different angles of attack 
Recieves: x - coordinates 

g' (x) - slope of thickness function 
g"(x) - second derivative of thickness function 

Returns: Cp - pressure coefficients for top and bottorn of aerofoil */ 
void SymmetSpline(double x[M],double g[M],double gp[M],double Cp(2] [5] [N]) 

( 

} 

double srt(N],J[5],G[S] [M],Vs,Va,Us,Ua,A; 
int i,j,p,ii,aa; 

/* Calculate V«l-x)/x) */ 
for (i=O; i<N; i++) 

srt [i] = sqrt «1 - x[i]) / x[i]); 

/* Find Spline Coefficients G */ 
Spline(x,g,gp,G); 

/* Find perturbation velocities and calculate pressure coefficients */ 
x[O] = 0, x(N] = 1; 
for(aa=Oiaa<S;aa++) 

( 

} 

A = aa * 5 / rad; 
for(i=O;i<Nii++) 

( 

} 

Ua = A * srt[i], Us = 0, Va = -A, Vs = gril; 
for(p=O;p<NiP++) 

{ 

} 

JJJ(x(p],x[p+1],x[i],J)i 
for (j =0; j <4; j ++) 

u -= G(j] [pl * J[j] / PI; 

Cp[O] [aa] [il = 1 - (pow{cos(A) + Ua + Us,2) + 
pow(sin(A) + Va + Vs,2»j 

Cp[l] [aa] (i] = 1 - (pow(cos(A) - Ua + Us,2) + 
pow{sin(A) + Va - VS,2»i 
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c" E.3 Subroutine using Local Linearization 
~ /* Subroutine ModSpline calculate5 values of Cp by using Cubic Splines 

on aerofoils of symmetrical thickness at zero incidence. 
Recieves: x - coordinat es 

g' (x) - slope of thickness function 
Returns: Cp - pressure coefficients for top of aerofoil */ 

void MoàSpline(double x[M],double g[M],double Cp[M}) 
( 

} 

double srt[M],G[S] [Ml,J[S],grnod[M],gmodp[M],Vs,Va,Us,Ua,A,dx; 
int i,j,Pi 

/* Calculate ~«l-x)/x) and rnodified portion of g'(x) */ 
dx = 1. / Ni 
for(i=Oii<=Nii++) 

( 
srt[il = sqrt«l - xCi]) / xCi]); 
gmod[i] = gril / srt[il; 

} 

/* Find second derivative using forward and backwards second order 
differencing techniques */ 

for(i=Oii<N-lii++) 
{ 

dx = (x[i+2] - xCi]) / 2i 
grnodp[i] = (gmod[i+1]*2-1.5*gmod[i]-grnod[i+21/2)/dx; 

) 
for(i=N-2;i<=Nii++) 

{ 
dx = (x[i] - x[i-2J) / 2; 
grnodp[i] = (l.S*g.mod[i] - 2*grnod[i-l] + grnod[i-2]/2) / clxi 

} 

/* Find Spline Coefficients G */ 
Spline(x,gmod,gmodp,G); 

/* Find perturbation velocities and calculate pressure coefficients */ 
x[O] = 0, x[N] = 1; 
for(i=Oii<Nii++) 

( 

} 

Us = 0; 
for(p=OiP<NiP++) 

{ 
JJM(x[p],x[p+1],x[i],J); 
for(j=Oij<4ij++) 

Us -= G[j] [pl * J[j] / PI; 
Cp[iJ = 1 - pow(l + Us,2) / (1 + pow(g[i],2»; 

} 
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•

"- E.4 Subroutine for Integral Ki(x) 
-_ /* Subroutine KKK calculates the integration values for Kk(x) as needed 

• 

by the antisymmetrical velocity field, defined by section appendix B.1.3 
Recieves: xl - first limit of integration 

x2 - second limit of integration 
xx - position on velocity field 

Returns: K - integration values */ 
void KKK(double x1,double x2,double xx,double K[5]) 

{ 

} 

double ii[5],Io[5],I[S],t1,t2,ternp1,temp2,temp3; 
int q,Pi 

t2 = sqrt(x2*(1-x2», tl = sqrt(x1*(1-xl»; 
if(x2 == xx) ternp2 = Oi 

else if(xx > 1) temp2 = tacos(sqrt(x2*(1-xx)/(x2-xx»); 
else if(xx < 0) ternp2 = acos(sqrt(x2*(1-xx)/(x2-xx»); 
else if(x2 > xx) ternp2 = acosh(sqrt(x2*(l-xx)/(x2-xx»); 
else temp2 = asinh(sqrt(x2*(1-xx)/(xx - x2»); 

if(x1 == xx) templ = 0; 
else if(xx > 1) templ = tacos(sqrt(x1*(l-xx)/(xl-xx»); 
else if(xx < 0) templ = acos(sqrt(x1*(1-xx)/(xl-xx»); 
else if(xl > xx) templ = acosh{sqrt(x1*(1-xx)/(xl-xx»); 
else templ = asinh(sqrt(xl*(l-xx)/(xx - xl»); 

ternp3 = sqrt(fabs(xx*(l-xx») i 
for(q=Oiq<4;q++) 

Io[q] = -2 * pow(xx,q+l) / ternp3 * (temp2-ternp1); 
I[O] = acos(1-2*x2) - acos(1-2*xl); 
I[l] = I[0]/2 - (t2-tl); 
I[2] = .375*I(0] - (.7S*(t2-tl) + (t2*x2-t1*x1)/2); 
I[3] = .3125*I[0] - (.625*(t2-t1) + S/12.*(t2*x2-t1*x1) + 

(x2*x2*t2-x1*x1*tl)/3.); 
for(q=O;Q<4iQ++) 

{ 
ii[q] = Io[q); 
for(p=OiP<=q;p++) 

ii[q] += pow(xx,p) * I[q-pl; 
} 

K[O) = ii [0] ; 
K[l] = ii[l] - x1*ii[0]; 
K[21 = ii[2] - 2*x1*ii[l] + pow(xl,2)*ii[0]i 
Kf3] = ii[3] - 3*x1*ii[2] + 3*pow(xl,2)*ii[1] - pow(x1,3)*ii[0]; 
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• 
E.5 Subroutine for Integral J~(x) 

. ~ ~. /* Subroutine JJJ calculates the integl:ation values for Jk (x) as needed 
by the symmetrical velocity field, defined by section appendix B;2.3 
Recieves: xl - first limit of integration 

x2 - second limit of integration 
xx - position on velocity field 

Returns: J - integration values */ 
void JJJ(double xl,double x2,double xx,double J[5]} 

{ 

.1."" } :,'J,.~?", 

• 

double ii[5],ternpi 
int 'l,Pi 

temp 
== xx) temp 

temp 

if (xl == xx) 
else if(x2 
else 

for(p=Oip<4;p++) 
{ 

= log(fabs(x2-xx)i 
= -log(fabs(xl-xx»; 
= log(fabs«x2-xx)/(xl-xx))i 

ii[p] = pow(xx,p) * tempi 
for(q=Oi'l<Pi'l++) 

ii(p] += pow(xx,q) / (p-q) * (pow(x2,p-q) - pow(xl,p-'l»i 
} 

J[O] = ii[O]; 
J[l] = ii[l] - xl*ii[O]; 
J[2] = ii[2] - 2*xl*ii[1] + pow(xl,2)*ii[O]i 
J[3] = ii[3] - 3*xl*ii[2] + 3*pow(xl,2)*ii[1] - pow(xl,3)*ii[O]i 
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E.6 Subroutine for Integral J.~Jk(X) ./* Subroutine JJM calculates the integratl.on values for JkM(x) as 
by the modified symmetrical velocity field, defined by section 
appendix 8.3.1 
Recieves: xl - first limit of integration 

x2 - second limit of integration 
xx - position on velocity field 

Returns: J - integration values 
void JJM(double xl,double x2,double xx,double J[S]) 

( 
double ii[S],Io[S],I[S],tl,t2,temp1,temp2,temp3i 
int q,Pi 

t2 = sqrt(x2*(1-x2», tl = sqrt(xl*(l-xl»; 
if(x2 == xx) temp2 = Oi 

el se if(xx > 1) temp2 = tacos(sqrt(x2*(1-xx)/(x2-xx»); 
el se if(xx < 0) temp2 = acos(sqrt(x2*(1-xx)/(x2-xx»)i 
else if(x2 > xx) temp2 = acosh(sqrt(x2*(1-xx)/(x2-xx»)i 
else temp2 = asinh(sqrt(x2*(1-xx)/(xx - x2»); 

if(xl == xx) templ = 0; 
else if(xx > 1) templ = tacos(sqrt(x1*(1-xx)/(xl-xx»)i 
else if(xx < 0) templ = acos(sqrt(xl*(l-xx)/(xl-xx»)i 
el se if(xl > xx) templ = acosh(sqrt(x1*(1-xx)/(x1-xx»); 
el se templ = asinh(sqrt(x1*(1-xx)/(xx - xl»); 

temp3 = sqrt(fabs(xx*(l-xx»); 
for(q=O;q<S;q++) 

Io[q] = -2 * pow(xx,q) / temp3 * (temp2-templ); 
1[0] = acos(1-2*x2) - acos(1-2*xl); 
1[1] == I[O] / 2 - (t2-tl); 
1[2] == .375 * I[O] - (.7S*(t2-t1) + (t2*x2-t1*x1)/2); 
1(3) == .3125*I[0] - (.625*(t2-tl) + S/12.*(t2*x2-t1*x1) + 

needed 

*/ 

(x2*x2*t2-x1*x1*tl)/3.); 

} 

for(p==O;p<SiP++) 
{ 

} 
J (0] 
J[l] 
J[2] 
J [3] 

ii[p] = Io[p] * (1 - xx) - I[p]; 
for(l=Oil<P;l++) 

ii[p] += pow(xx,l) * I[p-l-1] * (1 - xx); 

== ii [0] ; 
== ii [1] - x1*ii[O]; 
= ii[2] - 2*x1*ii[1] + pow(xl,2)*ii[O]; 
= ii[3] - 3*x1*ii[21 + 3*pow(x1,2)*ii[11 - pow(xl,3)*ii[O]; 
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E.7 Subroutine for Spline Formulation 
4It/* Subroutine Spline calculates spline coefficients using spline derived 

in appendix C.l.2 
Recieves: x - coordinates 

y(x) - coordinates to be splined 
y'(x) - slopes of coordinat es 

Returns: G - spline coefficients */ 
void Spline(double x[M],double y[M],double yp[M],double G[5] [Ml) 

{ 

} 

'. 

double dx; 
int ii 

for(i=Oii<Nii++) 
{ 

dx = x[i+l] - xli]; 
G[O] [il = y[i]; 
G[l] ri] = yp[i]; 
G [2] [i J = 3 / dx/ dx * (y [ i + 1] - y [ i]) - (yp [ i + 1 ] + 2 * yp [ i]) 1 dx; 
G { 3] [i] = (dx * (yp [ i + 1 ] + yp [ i]) - 2 * (y [ i + 1 ] - y [ i] » 1 pow ( dx 1 3 ) 

} 
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~ E.8 Subroutine for Flexible Membranes 
t/* Subroutine sailSpline calculates values of Cp and shape of membrane 

by using Cubic Splines. 
Recieves: x - coordinat es 
Returns: h(x) - membrane shape 

Cp - pressure coefficients for membrane *1 
void SailSpline(double x[M],double h[M] ,double Cp[M]) 

( 
double A(2*M] [2*M) ,t[4] ,tl(4) ,t2 [4) ,srt[2) [M) ,Rhs[2*M) ,b[2*M] ,heM] ,hp[M], 

H[4) [M] ,tt[4] ,eix,sl/a,xx; -
int i,j,ii,jj,q,end,More; 

1* Calculate ,,( (1-x) lx) * 1 
c:lx = 1. 1 N; 
for(i=O;i<N;i++) 

{ 

} 

xx = (x[i+1] + xli]) 1 2; 
srt [0] [il = sqrt «1 - x[i]) 1 x[i]); 
srt[l] ri] = sqrt«1 - xx) 1 xx); 

srt[O] [N] = sqrt(l - x[N]) 1 x[N]); 

1* Set Matrix values ta zero *1 
for(i=0;i<2*M;i++) 

for(j=O;j<t*M;j++) 
A[i] [j] = Oi 

1* Fill Matrix *1 
end = 2*N+l; 
for(q=liq<=Niq++) 

{ 
i = q-l, ii = N + q, 

1* find midpoints and values for dx *1 
xx = (x[q] + x[q-1]) J 2, dx = x[q] - x[q-l], dx2 = dx 1 2; 

J* find values for v'(x) in eqn 4.7 *1 
Templ(dx / dx,Ct/4,tl), Temp1(dx2,dx,Ct/4,t2); 
51 = So(x[q), 52 = So(xx); 
Rhs[i} = -Alpha * sl, Rhs[ii] = -Alpha * S2; 
A[i] [il += tl[O], A[i] [i+1] += tl[l]; 
A[i] (ii] += t1 [2], A[i] [ii+l] += t1 [3]; 
A[iil ri] += t2 [0], A[ii] [i+l] += t2 [1]; 
A~ii] [ii] += t2 [2], A[ii] (ii+1J += t2 [3]; 

/* find values for u(x) */ 
for (j =0 i j <N; j ++) 

{ 
jj = N + j + l, dx = x[j+l] - x[j]; 
A[i} [jJ += 51 * dx/2, A[i) [j+l] += 51 * dx/2; 
A[i] [jj] += sl * c:lx*dx/12 , A[i] [jj+1] -= 51 * dx*dx/12; 
KKK(x[j] ,x[j+1] ,x[q] ,tt), Temp(clx,tt,-srt[O] [q]/PI,t) i 
A[i] [j] += t [0], A[i] [j+1] += t [1] ; 
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• 
) 

} 

A[i] [jj] += t (2], A[i] [jj+l1 += t (3) ; 
KKK(x[j],x[j+l],xx,tt), Temp(dx,tt,-srt[l] [q-1]/PI,t); 
A[ii] [j] += s2 * dx/2, A[ii] [j+1] += 52 * dx/2; 
A[ii] [jj] += s2 * dx*dx/12, A[ii] [jj+1] -= s2 * dx*dx/12; 
A[ii] [j] += t (0), A[ii] [j+11 += t (1); 
A[ii] (jjJ += t[2], A[ii] [jj+1] += t[31; 

/* use equation 4.7 once more on fir5t panel of membrane */ 
s = 1./N - .Q1/N, i = 0, do { i++; } while(s > xli]), i--, ii = N+i+1; 
Temp1(s-x[i],dx,Ct/4,t1), sl = SoCs), Rhs[N] = -sl * Alpha; 
A[N] [il += tl[O], A[N] [i+1] += t1[l] i 
A[N] [ii] += tl [2], A[N] [ii+1] += t1 [3]; 
for(j=O;j<Nij++) 

( 

} 

jj = N + j + li 
A[N] [j] += sl * dx/2, A[N] [j+1] += 51 * dx/2i 
A[N][jj] += sl * dx*dx/12, A[N] [jj+1] -= sl * dx*dx/12; 
KKK(x[j],x(j+1],s,tt), Temp(dx,tt,-sqrt«1-s)/5)/PI,t)i 
A[N) [j] += t[O], A[M] [j+1] += t[l], A[N] [jj] += t[2]; 
A[N] [jj+1] += t[3]; 

/* Leading Edge singularity */ 
i = N-l; 
for(j=Oij<=endij++) 

A [ end] [j] = A [ i J [j] 1 A [ i] [j] = 0; 
Rhs[end] = Rhs[i], sl = 16/PI*(.S/PI-Ct/8), Rhs[i] = -sl*Alpha; 
for ( j = 0 ; j <N ; j + + ) 

{ 

} 

jj = N + j + 1; 
A[i] [j] += 51 * dx/2, A[i] [j+1J += sl * dx/2; 
A[i] [jj] += 51 * dx*dx/12, A[i] [jj+1) -= sl * dx*dx/12; 
KKK(x[j],x[j+1],x[O],tt), Temp(dx,tt,-l/PI,t); 
A[i] [jJ += t[O], A[i] [j+l] += t[l]; 
A[i] [jj] += t[2], A[i) [jj+1] += t[3J; 

/* Perform Guass-Jacobi Elimination */ 
polynomial (A,Rhs,b) ; 
for(i=O;i<=N;i++) 

h = b[i], hp = b(i+N+1]; 

/* Find Spline Coefficients */ 
Spline(x,h,hp,H)i 

/* Find Constant a as defined by equation 4.21 */ 
a = Alpha; 
for(i=Oii<Nii++) 

for (j =0; j <4 ; j ++) 
a += H[j] [il * pow(dx,j+1) / (j+1); 

a *= -16 / PI; 



·, 
" . -

If 
/* Find membrane shape and pressure coefficients */ 
for(i=O;i<=N;i++) 

{ 

} 
} 

Cp [ i J = a * ( . 5 - 2 *x [ i] ) * s rt [ 0] [i) ; 
if(i == 0) Cp[i] += H[l] [0], h[i] = sl = 0; 
else 

( 

} 

for(j=0;j<4;j++) 
{ 

} 

s 1 + = H [j ] (i -1 ] * pOW ( dx, j + 1 ) 1 ( j + 1) ; 
Cp [ i ] + = j * H [j] [i -1 ] * pow ( dx, j -1) ; 

h[i] = 51 + a * Jo(x(i]) + Alpha * xli]; 

Cp [ i J * = - Ct; 

void Ternp(double x,double J[4],double s,double t[4]} 
{ 

1* summation k=0 .. 3 *1 
t[O] = s * (J[O] + (2*J[3J/x-3*J[2] )/x/x); 
tell = s * (3*J[2J - 2*J[3] lx) IX/Xi 
t[2] = (J[l] - 2/x*J[2] + J[3]/x/x) * Si 
t [3] = (J[3] /x/x - J[2] lx) * Si 

i;;,~ } 

IIvoid Ternpl(double s,double x,double ternp,double t[4]) I!r ( 

} 

/* Surnrnation k = 1 .. 3 *1 
t[O] = temp * 6*s/x/x * (s/x - 1); 
t[ll = temp * 6*s/x/x * (1 - sIx); 
t[2] = temp * (1 - 4*s/x + 3*s*s/x/x); 
t[3] = temp * (-2*s/x + 3*s*s/x/x); 

do~ble So(double x) 
{ return «.5 - x + x*(l-x)*log«l-x)/x» / PI - Ct/4*(.5-2*x» * 

sqrt«l-x)/x) * 16 / PI; } 

1* equation 4.11 *1 
double Jo (double x) 

( return (.125*acos(sqrt(1-x» - sqrt(x*(1-x»*(.125-7./12*x+x*x/3»; } 



E.9 Subroutine for Jet Flapped Aerofoils 
~/* Subroutine JetSpline calculates values of Cp on the jet and aerofoil 
.~ 

by using Cubic Splines. 
Recieves: x - coordinat es 

, h' (x) - camberline slope on aerofoil 
h"(x) - second derivative of aerofoil camberline 

Returns: Cp - pressure coefficients for aerofoil */ 
void JetSpline{double x[M),double h[M],double hp[Ml,double Cp[M]} 

( 
double xx[2] [M] ,srt[2] [M] ,E[S] [M] ,H[S] [M] ,A[2*M] [2*M1 ,Rhs[2*Ml ,tl[41, 

t2[4],e[M],ep[Ml,t[4],b[2*Ml,bp[M],F[S],ff,fp,sl,s2,dx,u,dx2,a,hh; 
int l,p,i,j,k,end,q; 

1* Calculate x and ~((l-x)/x) *1 
for(i=Oii<=Nii++) 

{ 

} 

xx[O] ri] = l+diff + (L - (l+diff)) * il (N*l.) ; 
srt [0] [il = sqrt {(L - xx[O] [i]) 1 xx[O] [i]) i 
if(i > 0) 

{ 
xx[11 [i-1] = (xx[O] [il + xx[O) [i-1]) 1 2; 
srt [1] [i-1] = sqrt «L-xx[l] [i-1] ) Ixx[l] [i-1] ) ; 

} 

dx = xx[O] [1] - xx[O] [0] i ei., /* special spline function given by equation 5.16 * 1 
:;"ll!!!", fp = 2/PI*asinh(sqrt «L-xx[O] [0] ) ILl (xx[O] [0] -1))); 

ff = (xx[O] [O]-l)*fp - sqrt(L-1)*2/PI*acos(sqrt(xx[O] [O]/L»); 
F[Ol = ff, F[l] = fp, F[2] = -(3/dx*ff + 2*fp)/dxi 
F[3] = (fp + 2/dx*ff)/dx/dxi . 

/* Find Spline Coefficients H for aerofoil surface */ 
Spline(x,h,hp,H)i 

/* Set matrix to zero *1 
end = 2*N+2i 
for(i=Oii<=endii++) 

{ 

} 

Rhs [i] = 0; 
for(j=Oij<=end;j++) 

A[i] [j] = 0; 

1* Fill Matrix */ 
for(i=l;i<=Nii++) 

{ 
ii = N + i, dx = xx[O] [il - xx[O] [i-1], dx2 = dx / 2; 
if(i :::: 1) 

{ 
A[i] [end] = Cj 1 4 * F[O); 
for(k=lik<4ik++) 

A[ii] [end] += Cj 1 4 * ~ * F[k] * pow(dx2,k-l); 
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} 

} 
Rhs[i] = srt[01 [i-1] * Alpha, Rhs[ii] = srt[l] [i-ll * Alpha; 
Templ(dx,dx,Cj/4,t1), Temp1(dx2,dx,Cj/4,t2); 
A[i] ri] += tl[O], A[iJ [i+l] += tl[l]; 
A[il [ii] += tl [2], A[i] [ii+l] += tl [3]; 
A[ii] [il += t2 [0], A[ii] (i+l] += t2 [1]; 
A[ii] (ii] += t2 (2J, A[ii] [ii+1] += t2 [3]; 
for(j=O;j<Nij++) 

{ 

} 

dx = xx [ 0] [j + 1 ] - xx [ 0] [j], dx2 = dx / 2 1 j j = N + j + 1 i 
KKK (x ( j ] , x [ j + 1] , xx [ 0] [i -1] , t 1), KKK (x [j ] , x [ j + 1] , xx [ 1] [i -1] , t:2) ; 
for(k=0;k<4;k++) 

{ 

} 

Rhs(i] -= srt[O] (i-l] / PI * H[k] [j] * tl[k]; 
Rhs[ii] -= srt[l] [i-1] / PI * H[k] [j] * t2[kl; 

KKK (xx [ 0] [j] , xx [ 0] [j + 1] 1 xx ( 0] [i -1] , t 1) i 
KKK (xx [ 0] [j ] , xx [ 0 ] [j + 1] 1 xx [ 1) [i -1] 1 t 2) ; 
if(j == 0) 
for(k=O;k<4;k++) 

{ 

} 

A[i] [end] += srt [0] [i-1] / PI * F[k] * t1 [k]; 
A[ii] [end] += srt [1] [i-1) / PI * F [k] * t2 [k] ; 

Temp(dx,t1,srt[O] [i-1]/PI,t), A[i][j] += t[O], A[i] [j+1] += t[l]; 
A[i] [jj] += t[2] 1 A[i] [jj+1] += t[3] i 
Temp(dx,t2,srt[1] [i-1]/PI,t), A[ii] [j] += t[O]; 
A[ii] [j+1] += t[l], A[ii1 [jj] += t[2], A[ii] [jj+1] += t[3]; 

1* boundary condition e' (c) = -tan(Beta) *1 
A[OJ [OJ = l, Rhs[O] = -tan(Beta); 
A[O] [end] = -sqrt (xx[OJ [1] -1) * 2 / PI * acos (sqrt (l/xx[O] [1]» ; 

/* boundary condition e' (1) = 0 */ 
for(i=O;i<=end;i++) 

A[end] ri] = A[N] [i], A[N] Ci] = 0; 
Rhs[end] = Rhs[N], Rhs[N] = 0, A[N] [N] = 1; 

/* boundary condition e" (1) = 0 */ 
A[end-1] (end-1] = l, Rhs[end-1] = 0; 

/* Perform Guass-Jacobi Elimination */ 
Polynomial(A,Rhs,b); 
for(i=O;i<=Nii++) 

ii = i + N + l, e[i] = b[i], ep[i] = b[ii); 

/* Find spline coefficients E for jet */ 
Spline(xx[O),e,ep,E) ; 

/* Find constant a for first panel *1 
a = b [end] ; 

/* Find Pressure Coefficients on Aerofoil */ 



'. 

~ -
_ .• ~if 

"'i c-",_ ' 

} 

for(i=Oii<=Nii++) 
{ 

} 

Cp[i] = Alpha; 
for (j =0; j <N i j ++) 

{ 

} 

KKK (x [j ] , x [ j + 1] , x ( i] 1 t 1) i 
KKK (xx [ 0] [j] , xx [ a 1 [j + 1) , x [ il, t 2) i 
if(j == 0) 

Cp[il -= a 1 PI * (F(0]*t2[01+F[l]*t2[1]+F[2]*t2(2]+F[3]*t2[31); 
for(k=0;k<4ik++) 

Cp [ i ] - = ( H [k] [j] * t 1 [k] + E [ k] [j] * t 2 [k 1) 1 PI; 

Cp [i] * = sqrt ( (L-x [i] ) lx [i]) * 4; 

void Temp(double x,double J[S],double s,double t[4]) 
{ 

} 

t[O] = s * (J[O] + (2*J[3]/x-3*J[2])/x/x); 
t[l] = s * (3*J[2] - 2*J[31/x)/x/x; 
t[2] = (J[l] - 2/x*J[2] + J[3]/x!x) * Si 
t[3] = (J[3]/x/x - J[2J/x) * Si 

void Temp1(double s,double x,double temp,double 
{ 

t [0] = temp * 6*s/x/x * (six - 1) i 
tel] = temp * 6*s/x/x * (1 - six) i 
t[2] = temp * (1 - 4*s/x + 3*s*s/x/x); 
t [3] = temp * (-2*s/x + 3*s*s/x/x) ; 

} 

t [4] ) 

• 



, E.I0 Subroutine for Multi-:Element Aerofoils 
1 

'* Subroutine Multi calculates values of Cp on aerofoil one and two 
by using Cubic 
Recieves: x 

h' (x) 
g' (x) 

~eturns: Cp 
roid Multi(double 

{ 

Splines. 
- coordinat es 

- camberline slope on aerofoil 
- second derivative of aerofoil camberline 

- pressure coefficients for aerofoil 
x[2] [M],double h[2] [Ml,double g[2] [Ml,double 

*/ 
Cp (2] [2] [M] ) 

double t 1 [4 J 1 t [4] , J [4] , J2 [4] , G [2] [4) [M] , H [2] [4] [M] , srt [2] [M] , A [Ml] [Ml] , 
b[Ml],Rhs[Ml], xl,x2,dx,templ,temp2,Ua,Us,Vs / Va,tus,tvs,dxl,dx2, 
ratio,det,temp,AAi 
int i,j,p,l,q,end,enn,ii,jj,perm,k,nn,lli 

/* Calculate ~«l-x)/x) */ 
end = 2*(N+1), enn = N + 1; 
for(i=Oii<=Nii++) 

{ 

} 

art [0] [il = sqrt (fabs «Cl+dc+C2-x[O] [i]) / (x(O] [il -Cl-de))); 
srt [1] [il = sqrt (fabs «Cl-x[l] [iJ) /x[l] [i])); 

/* Set Matrix to zero and fill Rhs[i] */ 
for(i=Oii<=end;i++) 

for(j=O;j<=endij++) 
A[i] [j] = 0; 

for(i=O;i<=Nii++) 
{ 

Rhs [i] = -Alpha1 + h [ 0] [i] ; 
Rhs[i+enn] = -(Alphal + Alpha2) + h(l] [il; 

} 

/* Fill Matrix A */ 
for(i=Oii<=Nii++) 

{ 
ii = enn + i; 
if (i == 0) xl = x [0] [i], x2 = x [1] [i] ; 
el s e xl = x [ 0] [i -1], x2 = x [ 1] [i -1] ; 
if (i < (N-3)) 

{ 

} 

/* Equation one */ 
Temp1 (x[O] ,xl, i, t), A[i] ri] += t [0] 1 A[i] [i+l] += t [1] i 
A[i] [i+2] += t[2], A[i][i+3] += t[3]i 

/* Equation two */ 
Temp 1 (x [ 1] , x2 , i 1 t), A [ i i] [i i] + = t [ 0], A [ i i] [i i + 1 ] + = t [1] ; 
A[ii] [ii+2] += t(2), A[ii] [ii+3] += t[3]; 
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} 

else 
{ 

1* Equation one */ 
Templ(x[O] ,xl,i,t), Ari] [il += t[O], A[i] [i+l) += t[l]; 
A[i] [i-l] += t[2], A[i] [i-2] +::: t[3]; 

/* Equation two */ 
Temp 1 (x ( 1] , x2 , i , t), A [ i i] [i i] +::: t [ 0], A [ i i] [i i + 1] + = t [ 1] ; 
A[ii] [ii-1] += t[2], A[ii} [ii-2] += t[3]; 

} 
for(j=O;j<N-3;j++) 

{ 
jj = j + enni 

-/* Equation one * / 
KKK(x[l] [j] ,x[i] [j+1] ,xl, t1, 1) ; 
Temp(x[l] ,t1,-srt[O] [i]/PI,j,t), A[i] [jj] += t[O]; 
A[i] [jj+1] += t[l], A[i] [jj+2} += t[2], A[i] [jj+3) += t[3] i 

1* Equation two */ 
KKK (x [ 0] [j] , x [ 0] [j + 1] 1 x2 , t 1 , J , 0 , 0) i 
Temp (x [ 0] , t 1 , - s r t [1 J [i] / PI, j , t), A [ i i] [j] + = t [0] , 
A[ii] {j+1] += t[l], A[ii] [j+2] += t[2], A[ii) [j+3] += t[3); 

} 
for(j=N-3;j<N;j++) 

{ 
j j = j + enn; 

/* Equation one */ 
KKK (x [ 1] [j ] , x [ 1] [j + 1] , xl, t l , J, 1 , 0) ; 
Temp(x[l] (t1,-srt[O] [i]/PI,j,t), A[i] [jj] += t[O], 
A[i] [jj+l] += t[l], A[i] [jj-l] += t[2], A[i] [jj-2] += t[3]; 

/* Equation two */ 
KKK (x [ 0] [j ] , x [ 0] [j + 1] 1 x2 1 t l, J , 0 , 0) ; 
Temp(x[O] ,tl,-srt[i] [i]/PI,j,t), A[ii] [j] += t[Q], 
A[ii] [j+iJ += t[l], A[ii] [j-1] += t[2], A[ii] [j-2] += t[3]; 

} 

/* Perform Guass-Jacobi Elimination */ 
end-- ; 
for(j=O;j<end;j++) 

for(i=j+l;i<=end;i++) 
{ 

} 

printf("\n%2d %2d",i,j); 
ratio = A [i] [j] / A [j ] [j] ; 
for(q=j;q<=end;q++) 

A[i] [q] -= A[j] [q] * ratio; 
Rhs[i] -= Rhs[j] * ratio; 



} 

/* Solve for b[j] *1 
for{i=endii>=O;i--) 

( 

} 

b [ i ] = Rhs ri] ; 
for(j=i+l;j<=endij++) 

b(i] -= A[i] [j] * b[j]; 
b[i] 1= A[i] [i]; 

/* Put solution vector into h for Splining Purposes */ 
for(i=O;i<=N;i++) 

h [0] [i] = b [i], h (1] [i] = b [i+enn] i 

/* Spline Velocities for both Aerofoils */ 
Spline (x [0] , h [Q] , H [Q] ), Spline (x [1] , h [1] , H [1] ) ; 
Spline(x[O] ,g[Q] ,G[O]), Spline(x[l] ,g[l] ,G[l]); 

/* Find perturbation velocities and calculate pressure coefficients */ 
AA = Alphal; 
for(1=0;1<2;l++) 

{ 

} 

for(i=Oii<=Nii++) 
{ 

} 

xl = x [ 1] [i], Va = h [1] [i], Ua = Us == 0, Vs = g [ 1] [i] ; 
11 = 0; 
if(l==O) 11 == 1; 
x2 = x ( 11] [i] ; 
for (p==O ; p<N; p++) 

{ 
KKK(X[l] [pl ,x[l] [p+l] ,x1,tl,J, l, 0); 
J J J (x [ 1] [p] , x [ 1] [p + 1] , xl , J) ; 
JùJ(x[l] [pl ,x[l] [p+1] ,x2"J2); 
for (j =O;j <4; j ++) 

} 
if(l -- 0) 
aIse 

{ 

} 

Cp[l] [0] [il 

Ua -= H[l] [j] [p] * tl[j] / PI; 
Us -= G[l] [j] [pl * J[j] 1 PI; 
Us -- G[11] [j] [pl * J2 [j] / PIi 

Ua *= 
Ua *= 
== 1 -

sqrt(fabs(Cl-xl)/x1); 
sqrt(fabs«Cl+dc+C2-xl)/(xl-C1-dc»); 
(pow(cos(AA) + Ua + Us,2) + pow(sin(AA) 

+ Va + Vs, 2) ) ; 
Cp [ 1] [1] [i] == 1 - (pow(cos(AA) - Ua + Us,2) + pow(sin(AA) 

+ Va - Vs, 2) ) ; 

AA += Alpha2; 



:.~~d Temp(double x[M],double J[5],double s,int i,double t[4]) 
, - { 

double h,dxl,dx2,tt[4]; 
h = x[i+l] - xCi] ; 
tt[OJ = s * (J[O] + (2*J[31/h-3*J[2])/h/h); 
ttfl1 = s * (3*J[2] - 2*J[3]/h)/h/h; 
tt[2] = (J[l] - 2/h*J[2] + J[3]/h/h) * s; 
tt[31 = (J[3]/h/h - J[2]/h) * s; 
if (i < (N-3» 

{ 

} 
else 

{ 

dxl = (x[i+2] - xCi]) / 2, dx2 = (x[i+3] - x[i+l]) / 2; 
tt[2] /= dxl, tt[3] /= dx2; 
t[O] = tt[O] - 1.5*tt[2]; 
tel] = tt[l] + 2*tt[2] - 1.5*tt[3]; 
t[2] = 2*tt[3] - tt[2]/2; 
t[3] = -tt[3]/2; 

dxl = (x [ i ] - x [ i - 2 l) / 2, dx2 = (x [ i + 1 ] - x [ i -1]) / 2; 
tt[21 /= dxl, tt[3] /= dx2; 
t[O] = tt[O] + 1.5*tt[2] - tt[3]*2; 
tel] = tt[l] + 1.5*tt[3]; 
t[2] = tt[3]/2 - tt[2]*2; 
t[3] = tt[2]/2; 

{Ît } 
~} 

._- void Templ (double x [M] , double xx, int i, double t [4 l ) 
{ 

double dxl,dx2,dx,h,tt[41,tmpi 
if (i == 0) t [0] = 1, t [1] = t [2 J = t [3] = 0 i 
else 

{ 
h = x[iJ - x[i-ll, dx = xx - x[i-1I, tmp = dx / h; 
tt[O] = 1 + pow(tmp,2) * (tmp*2 - 3), 
tt[l] = pow(tmp,2) * (3 - tmp); 
tt[2] = dx * (1 + tmp * (tmp - 2», tt[3] = dx * (trop * (trop - 1»; 
if (i < (N-3» 

{ 

} 
else 

{ 

dxl = (x [ i + 2 l - x [ i]) / 2, dx2 = (x [ i + 3 ] - x [ i + 1) / 2; 
t t [2 ] / = dxl, t t [3 ] 1 = dx2; 
t[O] = tt[O] - 1.5*tt[2]; 
tel] = tt[l] + 2*tt[2] - 1.5*tt[3]; 
t[2] = 2*tt[3] - tt[2]/2; 
t[3] = -tt[3]/2; 

dxl = (x[i] - x[i-2]) / 2, dx2 = (x[i+l1 -x(i-11); 
t t [2 ] / = dxl, t t [3 ] / = dx2; 
t[O] = tt[OJ + 1.5*tt[21 - tt[31*2; 
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•• 
} 

} 

} 

t[l] = tt[l) + 1.5*tt[3]; 
t[2] = tt[3]/2 - tt[2]*2; 
t[3] = tt[2]/2; 




