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Abstract 
We consider the use of medial surfaces to represent symmetries of 3-D objects. 

This allows for a qualitative abstraction based on a directed acyclic graph (DAG) of 

components and also a degree of invariance to a variety of transformations includ­

ing the articulation and deformation of parts. We demonstrate the use of this repre­

sentation for both indexing and matching 3-D object models. Our formulation uses 

the geometric information associated with each node along with an eigenvalue la­

beling of the adjacency matrix of the subgraph rooted at that node. We compare 

our algorithm with the techniques of harmonie spheres (Kazhdan et al., 2003c) and 

shape distributions (Osada et al., 2002). The results demonstrate the significant 

potential of medial surface-based representations and their graph spectra in the 

context of 3-D model retrieval in computer graphies. 



Résumé 
Nous considérons l'utilisation de surfaces médiales afin de représenter les sym­

métries d'objets en trois dimensions. Cette approche permet une abstraction quali­

tative basée sur un graphe orienté sans circuit (DAG) des composantes. Elle permet 

aussi une certaine invariance vis-à-vis plusieurs transformations géométriques, 

telles que l'articulation et la déformation des parties. Nous démontrons l'utilisation 

de cette représentation autant pour l'indexation que le regroupement de modèles 

d'objets tridimensionnels. Notre formulation emploie l'information géométrique 

associée à chaque noeud ainsi que les valeurs propres de la matrice de contiguîté 

du sous-graphe basé à ce noeud. Nous comparons notre algorithme aux techniques 

des sphères harmoniques (Kazhdan et aL, 2003c) et de distributions des formes 

(Osada et aL, 2002). Nos résultats démontrent le potentiel important des représen­

tations fondées sur les surfaces médiales et de leur spectres de graphe quant à la 

recherche de modèles en trois dimensions dans le domaine de l'infographie. 
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CHAPTER 1. INTRODUCTION 2 

FIGURE 1.1: Exemplars of the object class "human" created by changes in pose and articu­
lations of parts (top row). The medial surface (or 3-D skeleton) of each is computed using 
the algorithm of (Siddiqi et aL, 2002) (bottom row). The medial surface is automatically 
partitioned into distinct parts, each shown in a different color. 

With an explosive growth in the number of 3-D object models stored in web 

repositories and other databases, the graphies community has begun to address 

the important and chaUenging problem of 3-D object retrieval and matching, a 

problem which traditionaUy faUs in the domain of computer vision research. Re­

cent advances include query-based search engines (Funkhouser et aL, 2003a) which 

employ promising measures including spherical harmonie descriptors and shape 

distributions (Osada et al., 2002). Such systems can yield impressive results on 

databases including hundreds of 3-D models, in a matter of a few seconds. 

Thus far the emphasis in the computer graphies community has broadly been 

on the use of qualitative measures of shape that are typicaUy global. Such measures 

are robust in the sense that they can deal with noisy and imperfect models, and at 

the same time are simple enough so that efficient algorithmic implementations can 

be sought. However, such methods are sensitive to deformations of objects and 

articulation of their parts. 

As a motivating example, consider the 3-D models in Fig. 1.1. These four exem-
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plars of an object class were created by articulations of parts and changes of pose. 

For such examples, the very notion of a center of mass or an origin, which is cru­

cial for the computation of descriptions such as shape histograms (sectors or shells) 

(Ankerst et al., 1999a) or spherical extent functions (Vranic and Saupe, 2001), can 

be nonintuitive and arbitrary. In fact, the centroid of such models may actually 

lie in the background. To complicate matters, it is unclear how to obtain a global 

alignment of such models, and hence signatures based on a Euclidean distance 

transform (Borgefors, 1984; Funkhouser et al., 2003a) have limited power in this 

setting. As well, measures based on reflective symmetries (Kazhdan et al., 2003a), 

and signatures based on 3-D moments (Elad et al., 2001) or chord histograms (Os­

ada et al., 2002) are not invariant under such transformations. 

In this thesis, we build on a recent technique to compute medial surfaces (Sid­

diqi et al., 2002) by proposing an interpretation of its output as a directed acylic 

graph (DAG) of parts. We then suggest refinements of algorithms based on graph 

spectra to tackle the problems of indexing and matching 3-D object models. These 

algorithms have already shown promise in the computer vision community for 

category-Ievel view-based object indexing and matching using 2-D skeletal graphs 

(Siddiqi et al., 1999b; Shokoufandeh et al., 1999). We demonstrate their significant 

potential for 3-D object retrieval with experimental results on a database of 320 

models representing 11 object classes, including exemplars of both rigid objects 

and ones with significant deformation and articulation of parts. 

1.1 Background 

The computer vision community has grappled with the problem of generic or category­

level object recognition by suggesting representations based on volumetric parts, 

including generalized cylinders, superquadrics and geons (Binford, 1971; Marr and 

Nishihara, 1978; Pentland, 1986a; Biederman, 1987). Such approaches build a de­

gree of robustness to deformations and movement of parts, but their representa-
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tional power is limited by the vocabulary of geometric primitives that are selected. 

Motivated in part by such considerations there have been attempts to encode 3D 

shape information using probabilistic descriptors. These allow intrinsie geometric 

information to be captured by low dimensional signatures. An elegant example of 

this is the geodesie shape distribution of (Hamza and Krim, 2003) where informa­

tion theoretic measures are used to compare probability distributions representing 

3D object surfaces. In the domain of graph theory there have also been attempts 

to address the problem of 3D shape matching using representations based on Reeb 

graphs (Hilaga et al., 2001). These allow for topological properties to be captured, 

at least in a coarse sense. 

An alternative approach is to use 3-D medialloci (3-D skeletons), obtained by 

considering the locus of centers of maximal inscribed spheres along with their radii 

(Blum, 1973). As pointed out by Blum, this offers the advantage that a graph of 

parts can be inferred from the underlying local mirror symmetries of the object. 

To motivate this idea, consider once again the human forms of Fig. 1.1. A me­

dial surface-based representation (bottom row) provides a natural decomposition, 

which is largely invariant to the articulation and bending of parts. 

1.2 Method Overview 

We develop an integrated framework for indexing and matching 3-D objects using 

medial surfaces and their graph spectra. The key idea is to decompose a 3-D object 

model into parts and to interpret the parts into a directed acyclie graph so that 

indexing and matching techniques can be applied (Siddiqi et al., 1999a; Macrini, 

2003; Shokoufandeh et al., 2005). 

An integrated framework for understanding the indexing and matching 3-D 

system using medial surfaces is demonstrated in Fig. 1.2. We begin by voxelizing a 

3D mesh model into volumetrie data. Then, medial surfaces are abstracted from the 

volumetrie data and decomposed into parts. The directed acyclie graph obtained 
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FIGURE 1.2: An integrated framework of indexing and matching 3D objects in a large 3D 
object database. 

from the decomposed medial surfaces is added to a database, on which indexing 

and matching is applied. 

1.3 Contributions 

We advance the state-of-the-art in 3-D object model retrieval by: 1) introducing a 

modification of a Euclidean distance function-based method for computing and 

segmenting medial surfaces, 2) proposing a DAG representation of the medial sur­

face which captures a notion of part saliency, 3) building on algorithms in the com-
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puter vision literature to address the problem of 3-D model indexing and match­

ing in a uniform framework and 4) presenting indexing and matching results on a 

database of object models organized according to an entry level of categorization, 

with categories having significant part articulation. Whereas aU the pieces of this 

system have been developed in past work, putting them together and demonstrat­

ing them in the context of 3-D model retrieval with comparative results against 

competing methods is the main contribution of this thesis. Sorne of these results 

are also presented in the article "Retrieving Articulated 3-D Models Using Medial 

Surfaces and their Graph Spectra" (Zhang et al., 2005). 

1.4 Organization 

An outline of the thesis is foUows. Chapter 2 contains a review of relevant work on 

shape based 3D object matching. Chapter 3 introduces medial surfaces and their 

computation, classification and segmentation. It also develops an interpretation 

of the decomposed medial surfaces as a directed acyclic graph for indexing and 

matching, which is discussed in Chapter 4. Chapter 5 presents experimental re­

sults evaluating medial surface based graph matching and comparing it against 

the alternative techniques of shape distributions (Osada et al., 2001) and spheri­

cal harmonies (Kazhdan et al., 2003c). FinaUy, a summary of contributions and a 

discussion of further work appears in Chapter 6. 



Chapter 2 

Previous Work 
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Numerous 3-D shape matching schemes can be found in the literature of com­

puter vision and computer graphics (AIt and Guibas, 1996; Arman and Aggarwal, 

1993; Besl and Jain, 1985; Loncaric, 1998; Pope, 1994; VeItkamp and Hagedoom, 

1999). A few links to 3-D shape retrieval systems are presented in Appendix A 

(Bochuan et aL, 2004). At first glance, since shape based 3-D object matching avoids 

the challenges of projection, occlusion and segmentation, it might seem easier than 

2-D shape matching. Unfortunately, since 3-D surfaces do not have a natural arc 

length parameterization and the topology of the 3-D objects can be complex, the 

pose registration and feature correspondence problems in three dimensions are dif­

ficult to address. Many shape matching approaches perform pose normalization 

as a preprocessing step before extracting a shape descriptor characterizing intrinsic 

properties of the object. Discriminative matching methods without pose estimation 

and registration have not been weIl explored. Matching articulated and deformed 

objects is another significant challenge for 3-D shape based object matching tech­

niques. The following subsections give a detailed discussion of the methods used 

in 3-D shape matching. The approaches are characterized according to whether 

the matching methods need normalization or registration of objects and whether 

they can cope with articulated objects: l)translation and rotation normalization 

needing methods, 2)translation invariant methods, 3)rotation invariant methods, 

4) translation and rotation invariant methods, 5)articulation invariant methods. A 

discussion of each method's advantages and disadvantages is presented after a 

short introduction. 

2.1 Translation and Rotation N ormalization N eeding 

Methods 

3-D object models, given in the form of polygonal meshes or volumetrie data, are 

created with various poses in arbitrary reference frames. A common process of 
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shape comparison between two 3-D objects begins by extracting feature vectors 

and then computing the distance between the feature vectors. However, feature 

vectors of the same 3-D model abstracted based on the distribution of the data in 

different reference frames may result in distinct orders of feature vector elements. 

Hence, to obtain a uniform order of feature vectors for similar models, one pos­

sibility is to estimate the pose of the 3-D objects and then optimally align the 3-D 

models into canonical coordinates. 

Principal Component Analysis is the most prominent technique for pose nor­

malization and has been tested in pose registration for 2-D images, for which a de­

tailed description can be found in (Elad et aL, 2002). It begins with translating the 

origin of the 3-D models to the center of mass and then rotating around the origin 

so that the orientation of the largest variance is along the x-axis. Another rotation is 

then performed around the x-axis in order that the orientation of the second largest 

variance is consistent with the y-axis. The PCA techniques enable the alignment 

of the models into canonical coordinates for which matching algorithms can later 

be applied. However, as experience reveals (Funkhouser et aL, 2003b), PCA does 

not offer a perfect alignment for objects within the same class because of the unsta-
, 

ble orientation of the second largest variance. A modification of PCA associating 

weights with triangles for 3-D mesh models is introduced in (Vranic et al., 2001). 

AIso, Vranic et aL (2001) cornes up with a continuous principal component analysis 

for an infinite number of points. Equivalent to PCA, SVD decomposition on the co­

variance matrix of the 3-D data is also a common pose registration method for 3-D 

objects. A large number of the shape descriptors use or need PCA or SVD for pose 

normalization. Typical examples include cords-based shape descriptors, reflective 

symmetry descriptors (Kazhdan et aL, 2003b), statistic moments (Elad et al., 2002), 

parameterized statistics (Ohbuchi et aL, 2002), shape histograms (Ankerst et al., 

1999b) and spherical extent functions (Vranic et al., 2001). After translation and 

rotation of 3-D models, Elad et aL (2002) suggests a flipping using the heaviness 
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factor in each octant to confirm the orientation of the 3-D objects. 

Paquet and Rioux (1997) de scribe a cords-based shape descriptor. A cord is de­

fined as a ray shooting from the center of mass of the 3-D object to the center of 

mass of a triangle. Obviously, the number of cords is the same as the number of 

the triangles in the mesh model. A cords-based representation consists of three 

histograms: 1) an angle histogram defined by the angles of the cords with the first 

principal axis, 2) an angle histogram figured out by the angles of the cords with the 

second principal axis and 3) a length histogram obtained by the norm of the cords. 

The Euclidean distance between the histograms gives a measure of shape similar­

ity. In practice, this approach is very sensitive to the sampling and level of detail 

of the mesh model. Furthermore, a PCA normalization is needed to determine the 

principal axes. 

The reflective Symmetry Descriptor proposed in (Kazhdan et al., 2003b) gen­

erates a spherical function where each point on the sphere represents a reflective 

symmetry similarity of the 3-D shape against a 2-D plane through the center of 

the mass of the 3-D shape. The reflective symmetry similarity of the 3-D shape 

against a 2-D plane measures the Lrdifference between the 3-D shape and its re­

flection. The peaks of the spherical function illustrate the 2-D planes possessing 

highly reflective symmetry and the valleys suggest the 2-D planes with poor re­

flective symmetry. The distance between two reflective symmetry descriptors is 

measured by taking the Loo-distance of the two spherical functions. The reflec­

tive symmetry descriptor is scale invariant and scale normalization is unnecessary. 

The spherical function relies on knowing the origin of the model and rota tes with 

rotation of the object. Thus it is neither translation, rotation nor articulation invari­

ant. It is a global measure of 3-D shapes and it is orthogonal to many other shape 

measures. It can be efficiently computed in a matter of 5 seconds on a standard 

desktop Pc. Kazhdan et al. (2003b) suggest to use it in combination with other 

existing measures. 
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Statistical moments have been broadly used for pose registration for 2-D images 

and 2-D object matching. In (Elad et aL, 2002), the authors extend them to the 3-D 

domain, where the (p, q, r)th moment for an object D is defined as: 

with aD denoting the surface. From lower to higher order moments, these statistics 

provide coarse and detailed shape information. The first order moments are used 

to translate the center of mass of the object to the origin of the coordinate system. 

SVD decomposition of the matrix of the second order moments is used for rotat­

ing the 3-D models in the canonical coordinates. Experimental results demonstrate 

that the first six order moments are typical1y enough for discriminating different 

objects. To further improve the retrieval system, they associate the SVM, a learning 

and classification system, to refine the search by allowing the user to select their 

preferred results and use the feedback to figure out the weights for the SVM. Itera­

tive refinements of the search implicitly picks up the useful orders of moments for 

different types of models. 

The technique of (Ohbuchi et al., 2002) identifies a set of parameterized statistic 

features of VRML-like models, including degenerated mesh models. Three feature 

vectors are abstracted along the principal axes of inertia by evaluating the statistics 

within analysis windows: 1)the moment of inertia about the axis, 2) the average 

distance to the surfaces from the axis, 3) and the variance of distance to the sur­

faces from the axis. The technique assumes that the object has been normalized to 

the canonical axes and that the axes have been divided into equal intervals. The 

Euclidean distance between the feature vectors gives a rigid comparison and the 

elastic distance allows a degree of deformation and elongation of portions of the 

objects. 

Ankerst et al. (1999b) introduce 3-D shape histograms as a means of determin­

ing similarity for 3-D molecular surfaces. After pose registration of the 3-D objects, 
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the objects are divided into isometric sectors and isometric shells around the cen­

troid of the objects. The geometric properties, as well as thematic attributes such 

as physical and chemical properties are analyzed within each partition. Two kinds 

of distance measures are evaluated on the shape histograms of the database, the 

Euclidean distance and the quadratic distance. As the experimental results show, 

quadratic distance accounts for some degree of the measurement error, numerical 

rounding and rotation. 

Vranic et aL (2001) employa shape descriptor based on spherical functions. A 

series of dense concentric spheres with increasing radius are constructed centered 

at the origin of the 3-D object. The spherical functions are gained from the intersec­

tions of the concentric spheres with the 3-D shape. An analog of the fourier trans­

form using spherical harmonics on the spherical functions gives a set of feature 

vectors composed of the complex coefficients. L1 distance is computed for search­

ing the nearest neighbors of the query modeL This ray based spherical harmonics is 

rotation dependent, while an improved approach presented in (Funkhouser et aL, 

2003b) modifies it into a rotation invariant one, which is described in 2.3. 

Kôrtgen et aL (2003) consider using 3-D shape contexts as a search key for 3-D 

object retrievaL The 3-D shape contexts capture the local properties of N uniformly 

distributed boundary points on the 3-D shape. The representation of shape feature 

is N histogram vectors, where each histogram defines a distribution of N-1 other 

boundary points with respect to a reference boundary point and each element in a 

histogram vector estima tes the number of N-1 other boundary points in a bin with 

respect to that reference point. The organization of the bins is based on three kinds 

of models: a SheU Model, a Sector Model and a Combined Mode!. Only the Shell 

Model is rotation invariant. AU the models are defined by the center of gravity of 

the object and thus are translation invariant. The matching process consists of local 

matching and global matching. The local matching differentiates two histograms 

by considering shape, appearance and position. The global matching tries to find 
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the best correspondences for two 3-D shapes. 

2.2 Translation Invariant Methods 

Translation normalization is easily realized by finding the center of the mass of the 

3-D object and then applying a translation transformation to move the centroid of 

the object to the origin of the coordinates. It is known that when the centroid of the 

object coincides with the origin, the sum of the squared distance of the points on 

the object is minimized. Thus, there are not too many approaches focusing merely 

on translation invariance. 

Extended Gaussian Images (Hom, 1984) project the points on the object to 

points on the Gaussian Sphere (unit sphere) having the same unit normal and asso­

ciate each mapped point on the Gaussian Sphere with the inverse of the Gaussian 

curvature of the points at the object. The extended Gaussian image is not a rotation 

invariant shape descriptor. To get every unit normal for each point on the object 

surface, it is assumed that the object is c10sed and convex, which is a big limitation. 

Each 3-D object defines a unique gaussian sphere, while a gaussian sphere may 

correspond to a number of 3-D objects. This fact implies that extended gaussian 

images are not discriminative enough to be good shape descriptors. 

2.3 Rotation Invariant Methods 

As mentioned in the last section, normalization is a way to address the fact that 3-D 

models are created with arbitrary position and orientation. Proposing a shape de­

scriptor which is insensitive to the rotation of the models is an alternative solution. 

Examples include spherical harmonics and 3-D Zernike moments. These methods 

just need to move the object to its center of mass and leave out the step of rotating 

the object to a canonical coordinate frames. 
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Kazhdan et al. (2003c) introduce a powerful rotation invariant spherical har­

monies descriptor on a voxel grid. This descriptor characterizes frequency in­

formation encoding on the concentric spheres with different radii. The spherical 

functions are decomposed as the sum of their harmonies. The L2-norm for each 

frequency is obtained by summing the harmonies within each frequency. The first 

L bands of spherical harmonies for each sphere with increasing radius capture the 

important shape property encoding on the spheres and thus are used to form the 

shape histogram. It is shown that the norm of L2-norm remains the same even 

if the spherical function rotates. As a result, the 3-D rotation invariant shape de­

scriptor is represented as a 2-D histogram indexed by the frequency and radius. 

An L2-distance comparing two 2-D histograms gives a similarity measure between 

two 3-D shapes. This spherieal harmonies shape descriptor is argued to be the most 

discriminative technique which supports rotation invariance so far. One limitation 

is that the spherical functions are drawn on a voxel grid and thus are dependent 

on the sampling resolution of the 3-D models. The determination of the center 

of gravity of the spherical functions makes them sensitive to the articulation and 

deformation of the objects. 

Funkhouser et al. (2003b) proposed sketch queries similar to view based match­

ing techniques. 3-D object model is aligned with cartesian axes and is then pro­

jected onto 2-D images in 13 orthographie view directions. Hand drawn sketches 

entered by a user are compared against the 13 projected images for each 3-D model 

using image matching methods analogous to the 2-D spherieal harmonies based 

on the Euclidean distance transform of the sketch and rendered image. This pro­

vides a rotation and reflection invariant descriptor for 2-D images. It offers a brand 

new interface to allow the user to input the query by drawing sketches (Igarashi 

et al., 1999), which is different with the traditional way of giving a 3-D model in a 

file format as a query. This property allows the user to search for a desired model 

without having to possess a 3-D model in advance. However, drawing a complex 
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projection of a 3-D model on the sketch interface is not an easy job for many users. 

3-D Zernike moments investigated in (Novotni and Klein, 2003) are natural ex­

tensions of moments and spherical harmonics based descriptors. The basis func­

tions of the moments are defined by the radius coefficients and spherical harmon­

ies on voxel grids. The orthogonality property of the basis functions enable a more 

compact representation of the objects than spherieal harmonics. Not only are the 

features of the object along the spherieal direction encoded but also the frequency 

coherence in the radius direction is captured. A vector of 122 scalar values provides 

discriminating power and saves lots of storage. As the experimental results indi­

cate, 3-D Zenike moments compare favorably to spherieal harmonies. In the imple­

mentation, the numerical problems of accurate computation of geometric moments 

and of handling long floating point numbers are considered. 

2.4 Translation and Rotation Invariant Methods 

Approaches that ignore the origin and main axis of the 3-D models provide match­

ing algorithms that are robust to translation and rotation of the 3-D models and 

independent of the origin of the object. Many algorithms make an assumption 

that the models are weH defined, have no holes and no cracks, no self-intersections 

and no missing polygons. The Shape Distribution method proposed in (Osada 

et al., 2001) is a simple but robust algorithm that can be applied to aH kinds of 

nondegenerate or degenerate models, mesh models or volume objects. The idea 

is to represent the signature of the 3-D models as a distribution by sampling ran­

dom points on the uniformly sampled surface of the models, compute shape func­

tions on these points, and distribute shape functions into continuous divided bins. 

Shape functions include D2 space(Euclidean distance between two fixed points), 

A3 space(angles between three fixed points) and sorne other geometric measure­

ments based on angles, distances and volumes. The Loo distance of two distribu­

tions is shown to be the best for comparing two models. Though the distribution 
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abstracted in this way is robust to translation and rotation of objects, it is not ro­

bust to articulation and deformation. The sampling process is fast but too simple to 

provide a discriminative shape distribution to distinguish complex models. More­

over, the histogram of shape distribution also depends largely on the number of 

bins and the number of sample points. The authors show that 1024 bins and 64 

intervals realize the best results. 

Graph based methods are a category of shape matching methods that can be 

performed independently of the position and orientation of objects. These meth­

ods represent the shape as a graph structure by decomposing the 3-D objects into 

parts, following a particular rule. Not only geometric properties but also the topo­

logical structure of the objects are taken into account. Regional geometry prop­

erties are stored in graph nodes and regional relationships between graph nodes 

are reflected in the arcs. This type of organization of the overall impression of 

the object agrees with the way that the human brain memorizes and recognizes 

objects(Biederman, 1987). The problem of measuring the similarity between two 

models is equivalent to estimating the minimum distance between two graphs. It 

allows for partial matching by applying subgraph isomorphism techniques. By 

searching the correspondences among the graph nodes, matches for the regional 

geometry are also retrieved. By considering the topological structure of models, 

the problem breaks into smaller pieces to compensate for the complexity of match­

ing. Examples includes generalized cylinders, superquadrics and geons (Binford, 

1987),(Marr and Nishihara, 1978),(Pentland, 1986b)(Bierderman, 1987). Such ap­

proaches build a degree of robustness to deformations and movement of parts, but 

their representational power is limited by the vocabulary of geometric primitives 

that are selected. 

Hilaga et al. (2001) introduced a Multiresolutional Reeb Graph Based matching 

method on a 3-D mesh model with triangles evenly scattered. The function Il used 

to partition the 3-D object for each point is the sum of the geodesic distances of 



CHAPTER 2. PREVIOUS WORK 17 

that point to aU points on the surface of the object. The surface of the object is di­

vided into patches according to the ranges of the function J.L. Each patch represents 

a node in the Reeb graph and edges are created for connected patches. By vary­

ing the ranges of the function J.L, coarse to fine reeb graphs are created at various 

levels of resolution. The matching focuses on topology matching using a coarse­

to-fine strategy while preserving the topology consistency. In general, the reeb 

graph defined by the geodesic distances provides a translation and rotation robust 

shape descriptor but cannot avoid being computational expensive. The construc­

tion of the reeb graph is quite sensitive to the range of the function J.L. Moreover, 

the topological structure of the reeb graph appears to be quite different from what 

the human visual system builds, so it does not offer a natural decomposition of a 

3-D model. The matching considers a simple node similarity measure based on the 

area and length of the attributes of the patch. 

2.5 Articulation Invariant Methods 

One of the most chaUenging and interesting issues for research in 3-D object match­

ing is the question of how to come up with an articulation invariant method. Ar­

ticulation aUows the models to move around joints. This supports the creation of 

diverse, natural and interesting objects for the applications in education, entertain­

ment and many other areas. 

Sundar et al. (2003) simula tes a skeleton graph based matching. The stick-figure 

of a 3-D model is constructed by a volume thinning strategy. A clustering process 

is foUowed to group skeleton parts and then a directed acyclic graph is formed 

based on a minimum spanning tree. The matching is formulated based on the 

eigen space based characterization of the graph. This particular skeleton is a coarse 

abstraction of the 3-D object. The volume thinning process is heuristic and can 

be sensitive to noise and perturbation on the boundaries. It does not necessarily 

converge to locating exact skeletal points and the skeleton turns out to have many 
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unwanted branches, which affects the structure of the graph. The c1ustering based 

on proximity is also heuristic and does not offer a unique group of skeletal points. 

The formulation of the directed acyc1ic graph based on the length of the edges is 

very sensitive to the shape of the object. The matching emphasizes the topological 

structure of the graph, but little emphasis is place on the geometry of the implied 

parts. 

Tarn et aL (2004) consider topology points as features for topological and geo­

metric similarity matching. The topology points are extracted based on the Level 

Set Diagram algorithm that sÏmuIates the marching of a waterfront to Iocate the 

critical points: minima, maxima and saddIes, which significantly describe the topoI­

ogy change of a smooth model surface. A heuristic rule is opted for reduction of 

incorrect points marked as saddles. The 3-D mesh is partitioned into N parts with 

respect to a topology point and a curvature distribution vector for this topology 

point is obtained from a list of curvature distributions for each part. A bipartite 

graph is formulated for a query and a model by topology points as nodes with 

edges measuring the geometric distance of the sum of geodesic distances and cur­

vature distribution vectors. This approach provides a robust measure of similarity 

for deformable models. However, the localization of topology points is too local 

and the reduction rule is too heuristic to be robust. The computation of the sum 

of geodesic distances for each vertex adds a heavy computational cost for the im­

plementation. Though it considers the use of the topological structure of the ob­

ject, the matching process does not take into account the relationships between the 

topology points. 

View based 3-D object matching can be classified into any one of the above 

types of 3-D object matching methods, depending on the matching metric used for 

the 2-D views. Cyr and Kimia (2004) identify a representation of a 3-D object by 

selecting a set of aspects of the object using a region-growing approach. An un­

known view of an unknown object is matched against aU the aspects of the known 
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objects in the database based on a shock graph. The shock graph based matching 

allows this approach to handle articulation of the object. Their approach can be 

extended to incorporate various viewpoints of a object rather than "ground views". 

Macrini et aL (2002) extend the shock graph matching described in (Siddiqi 

et aL, 1998) to address the problem of 3-D object recognition. A number of differ­

ent viewpoints of a 3-D model is taken and their shock graphs constructed based 

on (Siddiqi et aL, 1998) are stored in the database. A shock graph of a view of a 

3-D query model is generated as a search key for the whole database. Indexing 

based on the topological structure of the graph and matching adding the geome­

try information in the nodes, are both explored, accommodating variations due to 

occlusion and noise. 

In this thesis, we propose a medial surface graph based shape matching method 

which allows matches invariant to a large degree of articulation and deformation 

of 3-D objects. It also supports translation and rotation invariance. The topology 

structure is encoded in the graph and geometric properties are stored in the nodes 

of the graph. It therefore provides an indexing scheme by filtering the similarity 

of topology structure with respect to the graphs. High ranking models obtained 

through the indexing are later verified by a graph matching method. The follow­

ing chapters give a detailed description of the construction of the medial surface 

based shape descriptor, the indexing, and the matching incorporating geometry 

and topological information. 



Chapter3 

Medial Surfaces and Directed Acyclic 

Graphs 
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3.1 Medial Surfaces 

The computation of the skeleton is a fundamental problem which the computer 

vision community has focused on for several years. The skeleton of an object is the 

locus of the centers of all maximal inscribed balls of the object (Blum, 1973). It was 

fust populated by Blum's grass fire theory: Given the assumption that an object is 

composed of dense grass, flammable and isotropie homogeneous, place it in a non 

flammable surrounding space and set a fue from its boundary at the same time; 

the fire will propagate inward from the boundary until two or more flame fronts 

meet and the location where the fue stops is the locus of the medial set (see Fig. 

3.1)(Bouix,2003). For further reading, we refer the reader to the upcoming book 

(Siddiqi and Pizer, 2005) which provides an in-depth account of the mathematics, 

algorithms and applications of skeletal representations. 

3.1.1 Computation of Medial Surfaces 

Recent approaches for computing 3-D skeletons include the power crust algorithm 

(Amenta et al., 2001), the shock scaffold (Leymarie, 2003) and average outward flux­

based skeletons (Siddiqi et al., 2002). The first two methods have the advantage 

that they can be employed on input data in the form of points sampled from an 

object' s surface, and theoretical guarantees on the quality of the results can be pro­

vided. Unfortunately, automatic segmentation of the resulting skeletons remains 

a challenge. The last method assumes that objects have first been voxelized, and 

this adds a computational burden. However, once this is done the limiting behav­

ior of the average outward flux of the Euclidean distance function gradient vector 

field can be used to characterize 3-D skeletal points. We choose to employ this lat­

ter method since it has the advantage that the digital classification of (Malandain 

et al., 1993) allows for the taxonomy of generic 3-D skeletal points (Giblin and 

Kimia, 2004) to be interpreted on a rectangular lattice, leading to a graph of parts. 
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FIGURE 3.1: The medial set (axis in 2-D) of X is the set of points of X sirnultaneously reached 
by grass fires initiated from at least two different points of dX, the boundary of X. Taken 
from (Siddiqi et al., 1999b) 

Under the assumption that the initial model is given in triangulated form, we 

begin by scaling aU the vertices so that they faU within a rectangular lattice of fixed 

dimension and resolution. We then sub-divide each triangle to generate a dense 

intersection with this lattice, resulting in a binary (voxelized) 3-D model. The av­

erage outward flux of the Euc1idean distance function's gradient vector field is 

computed through unit spheres centered at each rectangular lattice point, using 

Aigorithm 3.1. This quantity has the property that it approaches a negative num­

ber at skeletal points and goes to zero elsewhere (Siddiqi et al., 2002), and thus 

can be used to drive a digital thinning process, for which an efficient implemen­

tation is described in Aigorithm 3.2. This thinning process has to be implemented 

with sorne care, so that the topology of the object is not changed. This is done by 

identifying each simple or removable point x, for which a characterization based on 

the 26-neighborhood of each lattice point x is provided in (Malandain et al., 1993). 

With 0 being the set of points in the interior of the voxelized object and Ni6 being 
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the 26-neighborhood of x, not including x itself, this characterization is based on 

two numbers: 

1. C*: the number of 26-connected components 26-adjacent to x in 0 n Ni6' and 

2. C: the number of 6-connected components 6-adjacent to x in 0 n NIS. 

It can be shown that a digital point x is simple if C*(x) = 1 and C(x) = 1. 

Algorithm 3.1: Average Outward Flux. 

Data : Voxelized 3-D Object Model. 

Result : Average Outward Flux Map. 

Compute the Euclidean distance transform D of the model ; 
Compute the gradient vector field V' D; 
Compute the average outward flux of V' D: 

1 26 
For (each point x) AOF(x) = 26 ~ < Ni, V'D(Xi) >; 

1=1 

(where xi is a 26-neighbor of x in 3-D and Ni is the outward normal at Xi of 
the unit sphere centered at x) 

The average outward flux based method along with the topology preserving 

thinning process is applied for every model in the database. Exemplars of a cup, 

an airplane, a human and a deer are shown along with their corresponding medial 

surfaces in Fig. 3.2. 

3.1.2 Classification and Segmentation of Medial Surfaces 

The taxonomy of generic 3-D skeletal points in the continuum, Le., those which are 

stable under small perturbations of the object, is provided in (Giblin and Kimia, 

2004). Using the notation A~, where n denotes the number of points of contact of 

the maximal inscribed sphere with the surface and k the order of these contacts, 

the taxonomy includes: 1) Ai points which form a smooth medial manifold, 2) 

A3 points which correspond to the rim of a medial manifold, 3) Ai points which 
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Algorithm 3.2: Topology Preserving Thinning. 

Data : 3-D Object Model, Average Outward Flux Map. 

Result : 3-D Skeleton (Medial Surface). 
for (each point x on the boundary of the object) do 

if (x is simple) then 
1 insert(x, maxHeap) with AOF(x) as the sorting key for insertion; 

while (maxHeap.size > 0) do 
x = HeapExtractMax(maxHeap); 
if (x is simple) then 

if (x is an end point) and (AOF(x) < Thresh) then 
1 mark x as a medial surface (end) point; 

el se 
Removex; 
for (aIl neighbors y of x) do 

if (y is simple) then 

1 

ins~rt(y, maxHeap) with AOF(y) as the sorting key for in­
sertion; 

24 

FIGURE 3.2: A voxelized cup, an airplane, a human and a deer (top row), and their corre­
sponding medial surfaces (bottom row) 
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FIGURE 3.3: Classification of medial surface points. Grey, red, yellow, green, cyan and blue 
corresponds, respectively, to border points, curve points, curve junctions, surface points, 
surface-curve junction points and surface junctions. 

represent the intersection curve of three medial manifolds, 4) an Ai point at the 

intersection of four Af curves, and 5) an A1A3 point at the intersection between an 

A3 curve and an Af curve. 

It is clear from this classification that 3-D skeletons are essentiaUy comprised 

of medial manifolds, their rims and intersection curves, and this is why we refer 

to this as a medial surface representation. As shown in (Malandain et aL, 1993), the 

numbers C· and C, defined in section 3.1.1, can also be used to classify surface 

points, rim points, junction points and curve points on a rectangular lattice. These 

results are summarized in Table 3.1 with examples shown in Fig. 3.3. This suggests 

the foUowing 3-step approach for segmenting the (voxelized) medial surface into a 

set of connected parts: 

1. Identify aU manifolds comprised of 26-connected surface points and border 

points. 

2. Use junction points to separate these manifolds, but aUow junction points to 

belong to aU manifolds that they connect. 

3. Form connected components with the remaining curve points, and consider 

these as parts as weU. 

This process of automatic skeletonization and segmentation is illustrated for four 

object classes, a cup, an airplane, a human form and a deer in Fig. 3.4. 
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C 1 C* 1 TYPE 
0 any interior point 

any 0 isolated point 
1 1 border (simple) point 
1 2 curve point 
1 >2 curves junction 
2 1 surface point 
2 >2 surface-curve(s) junction 

>2 1 surfaces junction 
>2 >2 surfaces-curves junction 

TABLE 3.1: The topological classification of (Malandain et al., 1993). 

FIGURE 3.4: Thin set of medial surfaces of a cup, an airplane, a human and a deer form 
(top row), with segmented medial surfaces shown in the botlom row. 

3.2 Directed Acyclic Graph 

The segmented medial surfaces are now interpreted as directed acyclic graphs 

(DAGs). The topological properties of the 3-D models are encoded in the struc­

ture of the directed acyclic graph along with the geometrical properties of the parts 

of the 3-D models stored in the nodes of the graph. In the remainder of the thesis, 

we shall use these DAGs for 3-D model matching and indexing. 
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3.2.1 Definition and Properties of a Directed Acydic Graph 

Definition: A directed graph with no path that starts and ends at the same vertex, 

is also known as a acyclic directed graph or an oriented acyclic graph. 

Directed acyclic graphs are an important class of graphs and have many ap­

plications. In the context of 3-D object retrieval, many good properties render the 

directed acyclic graph a powerful tool : 

1. TOPOLOGICAL STRUCTURE. A node in the graph can correspond to a 

part in the 3-D object. Edges in the graph indicate the connectivity between 

the nodes. 

2. GEOMETRIC PROPERTIES. Geometric information about a part of a 3-D 

object is contained in anode, permitting detailed comparisons when neces­

sary but also allowing for invariance to part articulation. 

3. GRAPH MATCHING. Much pioneering work has been done on the sub­

ject of graph matching. By comparing two directed acyclic graphs based on 

topological structure and geometric properties, one can develop a similarity 

measure between the two 3-D objects. 

3.2.2 Forming Directed Acydic Graphs from Segmented Medial 

Surfaces 

We now propose an interpretation of the segmented medial surface as a directed 

acyclic graph (DAG). We begin by introducing a notion of saliency which captures 

the relative importance of each component. Consider that the envelope of maxi­

mal inscribed spheres of appropriate radii placed at all skeletal points reconstructs 

the original object's volume (Blum, 1973). The contribution of each component to 

the overall volume can thus be used as a measure of its significance. Since the 

spheres associated with adjacent components can overlap, an objective measure of 
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component j' s saliency is given by: 

. VoxelSj 
Salzency j = N . 

Li=l Voxelsi 

Here we assume that there are N components and Voxels i is the number of voxels 

, uniquely reconstructed by component i. We propose the following construction of 

a DAG, using each component's saliency. Consider the most salient component as 

the root node (level 0), and place components to which it is connected as nodes 

at level 1. Components to which these nodes are connected are placed at level 2, 

and this process is repeated in a recursive fashion until aIl nodes are accounted for. 

The graph is completed by drawing edges between aIl pairs of connected nodes, in 

the direction of increasing levels. However, to allow for 3-D models comprised of 

disconnected parts we introduce a single dummy node as the parent of aIl DAGs 

for a 3-D mode!. This process is illustrated in Fig. 3.5 (bottom row) for the human 

and chair models, with the saliency values shown within the nodes. Note how this 

representation captures the intuitive sense that the human is a torso with attached 

limbs and a head, a chair is a seat with attached legs and a back, etc. Our DAG 

representation of the medial surface is quite different than the graph structure that 

follows from a direct use of the taxonomy of 3-D skeletal points in the continuum 

(Giblin and Kimia, 2004). The latter is more complex and does not naturaIly lend it­

self to hierarchical structure indexing and matching algorithms, which we describe 

next in the following chapter. 
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FIGURE 3.5: A voxelized human form and chair (top row), their segmented medial surfaces 
(middle row). A hierarchical interpretation of the medial surface, using a notion of part 
saliency, leads to a directed acyclic graph DAG (bottom row). The nodes in the DAGs have 
labels corresponding to those on the medial surface, and the saliency of each node is also 
shown. 



Chapter4 

Indexing and Matching 
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In previous chapters we have proposed a medial-surface based DAG as a shape 

descriptor which is designed to be robust to articulation. In this chapter we shall 

use this graph representation for indexing and matching. The implicit assumption 

we make is that similar 3-D models have similar topologies. Comparing the hierar­

chical structures of two DAGs yields an efficient preliminary measure for the sim­

ilarity between two 3-D models. With this idea, we use an indexing method based 

on the DAG topologies and select a small number of candidates for the matcher to 

verify (Siddiqi et al., 1999a; Shokoufandeh et al., 2005). This facilita tes the retrieval 

process when the database is very large. 

Articulations of parts of 3-D models are often associated with junctions of me­

dial surface manifolds. Therefore, when we partition the medial surfaces at junc­

tions, variations due to articulation are handles. The topological structure of the 

3-D models is reflected by the connectivity of the graphs. The algorithm we use 

as had sorne success in 2-D shape matching using skeletal graphs (Siddiqi et al., 

1999a) and is essentially a greedy best-first search bi-partite graph matching tech­

nique. The method considers both node information (part geometry) and the sub­

structure rooted at each node (part connectivity). We begin by discussing the in­

dexing problem. 

4.1 Indexing 

The method we use is described in much greater detailed in (Shokoufandeh et al., 

2005). 

4.1.1 Criteria for an Effective Index 

The goal of indexing is to se arch a small set of candidates which share similar 

properties with the query. The criteria for an effective index can be conc1uded as 

follows: i) provide a small number of candidates carrying similar shape properties 
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with the query. ii) take possession of a large proportion of the desired candidates 

over aU the retrieved candidates. iii) establish computationaUy efficient search over 

a large portion of database. 

A linear search of the 3-D model database, Le., comparing the query 3-D ob­

ject model to each 3-D model and selecting the closest one, is inefficient for large 

databases. An indexing mechanism is therefore essential to select a smaU set of can­

didate models to which the matching procedure is applied. When working with 

hierarchical structures, in the form of DAGs, indexing is a chaUenging task, and 

can be formulated as the fast selection of a smaU set of candidate model graphs that 

share a subgraph with the query. But how do we test a given candidate without 

resorting to subgraph isomorphism and its intractability? The problem is further 

compounded by the fact that due to perturbation and noise, no significant isomor­

phisms may exist between the query and the (correct) model. Yet, at sorne level of 

abstraction, the two structures (or two of their substructures) may be quite simi­

lar. Thus, our indexing problem can be reformulated as finding model (sub )graphs 

whose structure is similar to the query (sub )graph. 

Choosing the appropriate level of abstraction with which to characterize a DAG 

is a chaUenging problem. We seek a description that, on the one hand, provides 

the low dimensionality essential for efficient indexing, while on the other hand, is 

rich enough to prune the database down to a tractable number of candidates. We 

adopt the approach of Siddiqi et al. (1999b), which draws on the eigenspace of a 

graph to characterize the topology of a DAG with a low-dimensional vector that 

will facilitate an efficient nearest-neighbor search in a database. The approach be­

gins by noting that any graph can be represented as an antisymmetric {D,l, -1} 

node-adjacency matrix (which we will subsequently refer to as an adjacency ma­

trix), with l's (-l's) indicating a forward (backward) edge between adjacent nodes 

in the graph (and D's on the diagonal). The eigenvalues of a graph's adjacency ma­

trix encode important structural properties of the graph, characterizing the degree 
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distribution of its nodes. Moreover, it has been shown that the magnitudes of the 

eigenvalues (and hence their topological characterization) are stable with respect 

to minor perturbations of graph structure due to, for example, noise, segmentation 

error, or minor within-class structural variation. 

One simple structural abstraction would be a vector of the sorted magnitudes 

of the eigenvalues of a DAG's adjacency matrix l . However, for large DAGs, the 

dimensionality of the index would be prohibitively large (for efficient nearest­

neighbor search), and the descriptor would be global (prohibiting effective index­

ing of query graphs with added or missing parts). This problem can be addressed 

by exploiting eigenvalue sums rather than the eigenvalues themselves, and by 

computing both global and local structural abstractions Siddiqi et aL (1999b). Let V 

be the root of a DAG whose maximum branching factor is L\, as shown in Fig. 4.l. 

Consider the subgraph rooted at node a, the first child of V, and let the out-degree 

of a be kl . We compute the sum 51 of the magnitudes of the kl largest eigenvalues 

of the adjacency sub-matrix defined by the subgraph rooted at node a, with the 

process repeated for the remaining children of V. The sorted 5;'s become the com­

ponents of a L\-dimensional vector x(V), called a tapalagical signature vectar (TSV), 

assigned to V. If the number of 5;'s is less than L\, the vedor is padded with zeroes. 

We can recursively repeat this procedure, assigning a vedor to each nonterminal 

node in the DAG, computed over the subgraph rooted at that node. 

In summing the magnitudes of the eigenvalues, sorne uniqueness has been lost 

in an effort to reduce dimensionality. The kj largest eigenvalues are chosen for two 

reasons: 1) the largest eigenvalues are more informative of subgraph structure, and 

2) by summing k j elements, the sums are effectively normalized according to the 

local complexity of the subgraph root, thereby distinguishing subgraphs that have 

richer part structure at coarser levels. The dimensionality of the TSV, X, is bounded 

by the maximum branching factor in the graph, which is typically small, and not 

lSince the eigenvalues of an antisymmetric matrix are complex we utilize the magnitude of an 
eigenvalue. 
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X(V)=[SI' S2' ... , SA' 0, ... , 0] 
SI~ S2~ ... ~ SA 

a b c d 

a 0 1 1 0 
b -1 0 0 0 
c -1 0 0 1 
d 0 0 -1 0 

SI Antisymmetric 
Adjacency Matrix 

FIGURE 4.1: Forming a Low-Dimensional Vector Description of Graph Structure. At node 
a, we compute the sum of the magnitudes of the k1largest eigenvalues of the adjacency sub­
matrix defined by the subgraph rooted at a. The sorted sums Sj become the components of 
xCV), the topological signature vector (or TSV) assigned to V. 

by the size of the graph, which can be large for complex 3-D models. 

4.1.2 Formulating an Index 

Indexing now amounts to a nearest-neighbor search in a model database, as shown 

in Fig. 4.2. The TSV of each non-leaf node in each model DAG defines a vector loca­

tion in a low-dimensional Euclidean space (the model database) at which a pointer 

to the model containing the subgraph rooted at the node is stored. At indexing 

time, a TSV is computed for each non-leaf node, and a nearest-neighbor search is 

performed using each "query" TSV. Each TSV "votes" for nearby "mode!" TSVs, 

thereby accumulating evidence for models that share the substructure defined by 

the query TSV. Indexing could, in fact, be accomplished by indexing solely with the 

root of the entire query graph. However, in an effort to accommodate large-scale 

perturbation (which corrupts aIl ancestor TSVs of a perturbed subgraph), index­

ing is performed locally (using aIl non-trivial subgraphs, or "parts") and evidence 
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aIl non-Ieaf 
nodes 

Query Structure 

N earest-N eighbour 
Database Search 

01 02 03 04 05 

Object Accumulators 
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FIGURE 4.2: Indexing Mechanism. Each non-trivial node (whose TSV encodes a topologi­
cal abstraction of the subgraph rooted at the node) votes for models sharing a structurally 
similar subgraph. Models receiving strong support are candidates for a more comprehen­
sive matching process. 

combined. The result is a small set of ranked model candidates which are verified 

more extensively using the matching procedure described next. 

4.2 Matching 

The matching algorithm uses: a)a measure of topological structure given by the 

sum of the magnitudes of the eigen values of the adjacency matrix rooted at each 

node and b)a node similarity measure based on a mean curvature signature vector. 

4.2.1 Node Similarity 

The graph matching algorithm requires anode similarity function that compares 

the shapes of the 3-D parts associated with two nodes. A variety of the measures 

used in the literature as signatures for indexing entire 3-D models could be used to 

compute similarities between two parts (nodes) Osada et al. (2002); Ankerst et al. 

(1999a); Vranic and Saupe (2001); Elad et al. (2001); Kazhdan et al. (2003a). Sorne 

care would of course have to be taken in the implementation of methods which 
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require a form of global alignment. We have opted for a much simpler measure, 

which is based on the use of a mean curvature histogram. 

First, consider the volumetrie part that anode i represents, along with its Eu­

c1idean distance function D. At any point within this volume, the mean curva­

ture of the iso-distance level set is given by div( II~gll). On a voxel grid with unit 

spacing the observable mean curvatures are in the range [-1,1]. We compute a 

histogram of the mean curvature over aU voxels in the volumetric part, over this 

range, using a fixed number of bins N. A mean curvature histogram vector Mi is 

then constructed with entries representing the fraction of total voxels in each bin. 

The similarity between two nodes i and j is then given by: 

N 

Similarity(i, j) = [1 - E [Mi(k) - Mj(k)]2] . 
k=l , 

v 
Distance(i,j) 

By construction, this similarity function is in the interval [0,1]. This measure could 

be further modified to take into account overaU part sizes. In our experiments 

we choose not to do this since our object models have undergone a global size 

normalization. 

4.2.2 Bi-partite Graph Matching Algorithm 

Each of the top-ranking candidates emerging from the indexing process must be 

verified to determine which is most similar to the query. If there were no noise our 

problem could be formulated as a graph isomorphism problem for vertex-Iabeled 

graphs. With limited noise, we would search for the largest isomorphic subgraph 

between query and model. Unfortunately, with the presence of significant noise, 

in the form of the addition and/or deletion of graph structure, large isomorphic 

subgraphs may simply not exist. This problem can be overcome by using the same 

eigen-characterization of graph structure used for indexing Siddiqi et al. (1999b). 
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As we know, each node in a graph (query or model) is assigned a TSV, which 

reflects the underlying structure in the subgraph rooted at that node. If we simply 

discarded all the edges in our two graphs, we would be faced with the problem 

of finding the best correspondence between the nodes in the query and the nodes 

in the model; two nodes could be said to be in close correspondence if the dis­

tance between their TSVs (and the distance between their domain-dependent node 

labels) was small. In fact, such a formulation amounts to finding the maximum car­

dinality, minimum weight matching in a bipartite graph spanning the two sets of 

nodes. At first glance, such a formulation might seem like a bad idea (by throwing 

away important graph structure) until one recalls that the graph structure is effec­

tively encoded in the node's TSV. Is it then possible to reformulate a noisy, largest 

isomorphic subgraph problem as a simple bipartite matching problem? 

Unfortunately, in discarding aH the graph structure, the underlying hierarchical 

structure has also been discarded. There is nothing in the bipartite graph matching 

formulation that ensures that hierarchical constraints among corresponding nodes 

are obeyed, Le., that parent/child nodes in one graph don't match child/parent 

nodes in the other. This reformulation, although softening the overly strict con­

straints imposed by the largest isomorphic subgraph formulation, is perhaps too 

weak. Since no polynomial-time solution is known to exist for enforcing the hier­

archical constraints in the bipartite matching formulation, an approximate solution 

to finding corresponding nodes between two noisy, occluded DAGs, subject to hi­

erarchical constraints, is sought Siddiqi et aL (1999b); Shokoufandeh et aL (2002). 

The key idea is to use a modification of Reyner's algorithm Reyner (1977), that 

combines the ab ove bipartite matching formulation with a greedy, best-first search 

in a recursive procedure to compute the corresponding nodes in two rooted DAGs, 

as shown in Fig. 4.3. As in the above bipartite matching formulation, the maximum 

cardinality, minimum weight matching in the bipartite graph spanning the two sets 

of nodes from the query and model graphs, is computed, as shown in Fig. 4.3(a). 
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(a) Ob) (c) 
FIGURE 4.3: Matching Aigorithm. Given two graphs to be matched (a), form a bipar­
tite graph (b) spanning their nodes but excluding their edges. Edge weights (W(i, j)) not 
only encode node content similarity (see Section 4.2.1), but the structural similarity of their 
underlying subgraphs, as encoded by the difference in their respective TSV's. The best 
matching pair is identified, the two nodes are removed from their respective graphs and 
added to the solution set of correspondences, and the process applied recursively to their 
subgraphs (c) .. 

Edge weight encodes a function of both topological similarity as weIl as domain­

dependent node similarity, described in the following paragraph. The result will 

be a selection of edges yielding a mapping between query and model nodes. As 

mentioned above, the computed mapping may not obey hierarchical constraints. 

They therefore greedily choose only the best edge (the two most similar nodes in 

the two graphs, representing in sorne sense the two most similar subgraphs), as 

shown in Fig. 4.3Ob), add it to the solution set, and recursively apply the procedure 

to the subgraphs defined by these two nodes, as shown in Fig. 4.3(c). Unlike a 

traditional depth-first search, which backtracks to the next statically-determined 

branch, this algorithm effectively recomputes the branches at each node, always 

choosing the next branch to descend in a best-first manner. In this way, the search 

for corresponding nodes is focused in corresponding subgraphs (rooted DAGs) 

in a top-down manner, thereby ensuring that hierarchical constraints are obeyed. 

The structural abstraction offered by the TSV effectively unifies the indexing and 

matching procedures, providing an efficient model retrieval mechanism. 



Chapter 5 
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5.1 Construction of the Database 

In order to test the power of our indexing and matching algorithms using medial 

surface-based DACs, we have considered using the Princeton Shape Benchmark 

Shilane et al. (2004). This standardized database, which contains 1,814 3-D object 

models organized by class, is an effective one for comparing the performance of 

a variety of methods including those in Funkhouser et al. (2003a); Kazhdan et al. 

(2003a); Osada et al. (2002); Ankerst èt al. (1999a); Vranic and Saupe (2001); Elad 

et al. (2001). A majority of the models in the database correspond to rigid, man­

made objects for which a notion of a centroid applies. The natural objects include a 

variety of animaIs (including humans), trees, plants and body parts. However,only 

a limited number of these have articulated or deformed parts. When such models 

are present, the precise nature of part articulation typically defines a unique base 

level category. For example, animal-biped-human contains human models which are 

upright, animal-biped-human-arms-out contains similar models with outstretched 

hands and animal-biped-human-walking contains those in a walking pose. Results 

reported in Shilane et al. (2004) indicate that a number of global shape descriptors 

perform suitably at such base levels of classification, but degrade rapidly at coarser 

levels, e.g., the classification human. In the context of generic 3-D model retrieval, 

such coarser levels in fact correspond to the notion of a basic level or entry level cate­

gorization Rosch (1978); Biederman (1987), whose exemplars might reflect a variety 

of complex poses and articulations, such as those seen in Fig. 1.1. Our matching 

and indexing algorithms have the potential to work at this more challenging level, 

because they use intuitive part-based representations. 

To demonstrate this, we have constructed our own database adopting sorne 

of the models in the Princeton repository, but adding several of our own. Our 

database includes a total of 320 exemplars taken from several basic level object 

classes (hands, humans, teddy bears, glasses, pliers, tables, chairs, cups, airplanes, 

birds, dolphins, dinosaurs, four-legged animaIs, fish). A large number of the se 
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models are shown in Fig. 5.1. We divide these classes into two categories, those 

with significant part articulation, and those with moderate or no part articulation. 

In our experiments we merge the categories "four-Iegged" and "dinosaurs", treat­

ing them as a single category "four-limbs" 

5.2 Indexing Experiments 

In order to test our indexing algorithm, which utilizes only the topological struc­

ture of medial surface-based DAGs, we carried out two types of experiments. In 

the first we evaluated percentage recall. For a number of rank thresholds the per­

centage of models in the database in the same category as a query (not including 

the query itself) with higher indexing rank, are shown in Fig. 5.2. The results indi­

cate that on average 70% of the desired models are in the top 80 (25% of 320) ranks. 

In the second experiment we examine the average ranks according to object classes. 

For all queries in a class the rank of all other objects in that class is computed. The 

ranks averaged across that class are shown in Fig. 5.3. The results indicate that for 

9 of the 13 object classes the average rank is in the top 80 (25% of 320). The higher 

average ranks for the remaining classes are due to the fact that certain categories 

have similar part decompositions. In such cases topological structure on its own is 

not discriminating enough, and part shapes also have to be taken into account. 

It should be emphasized that the indexer is a fast screener which can quickly 

prune the database down to a much smaller set of candidates to which the matcher 

can be applied. Furthermore, the eigen characterization used to compute the index 

is also used at matching time, so the same eigen structure calculation is exploited 

for both steps. The systems against which we evaluate the matcher in the following 

section run a linear search on the entire database for each query. This approach 

does not scale weIl, since the indexing problem is essentially ignored. 
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5.3 Matching Experiments 

On a large database we envision running the indexing strategy first to obtain a 

smaller subset of candidate 3-D models and to match the query oruy against these. 

However, given the moderate size of our database we were able to generate the 

320 x 320 = 102,400 pairs of matches in a matter of 15-20 minutes on a 3.0 GHz 

desktop Pc. We compare the results using medial surfaces (MS) with those ob­

tained using harmonic spheres (HS) Kazhdan et al. (2003c) and shape distributions 

(SD) Osada et al. (2002). The pair-wise distances between models using harmonic 

spheres were obtained using Michael Kazhdan' s executable code 

(http://www.cs.jhu.edu;- misha) and those using shape distributions were based 

on our own implementation of the algorithm described in Osada et al. (2002). For 

both HS and SD we used as input a mesh representation of the bounding voxels 

of the voxelized model used for MS. The comparisons are performed using the 

standard information retrieval notion of recall versus precision, where curves shifted 

upwards and to the right indicate superior performance. 

The results for objects with articulating parts are presented in Fig. 5.4. For the 

category "teddy" both MS and HS give excellent results and for all other categories 

MS outperforms the other two techniques. Fig. 5.5 shows the results for objects 

with moderate or no part articulation. For categories in the top row MS gives 

superior results. For categories in the middle row HS gives slightly better results 

than MS, but both are significantly superior to SD. For categories in the third row 

the results are comparable for birds, but for four-limbs and fishes, both HS and 

SD out perform MS. In Table 5.1 we show the average similarity scores using MS, 

organized by object class. Red and blue boxes are drawn, respectively, around 

the two highest similarity scores. In all cases the highest score coincides with the 

correct object class. Overall these results demonstrate the significant potential of 

medial surface based representations and their graph spectra for generic level3-D 

model retrieval, despite substantial articulation of parts. 



CHAPTER 5. EXPERIMENTS 43 

Query 
.i.:::-' ~ tfJ -~/ "'ft f,~ if '1f"r -- w X 

/?..r., 
':::> [61J .37 .00 [][ .23 .20 .02 .02 .10 .00 .09 .16 .26 

""::;. 
~ ~ .00 .21 .25 .18 .12 .10 .18 .02 .18 .23 .25 

""' 
Jrn- .00 .00 1.511 ~ .17 .15 .07 .03 .00 .15 .02 .00 .07 

~ ~ .21 .29 [§!] .34 .23 .04 .04 .00 .01 .05 .04 .28 
~ .. 

.23 .25 .17 1.341 @] .24 .16 .15 .12 .04 .22 .06 .19 

~ .20 .18 .15 .23 .24 1·281 .20 .22 .14 .07 1·261 .05 .14 

~ .02 .12 .07 .04 .16 .20 cm 1.461 .37 .08 .45 .00 .09 
,1 

ŒJ ~ ,P .02 .10 .03 .04 .15 .22 .29 .03 .47 .02 .06 
~ .10 .18 .00 .00 .12 .14 cm .29 1.581 .04 .31 .02 .23 

t .00 .02 lliJ .01 .04 .07 .08 .03 .04 ~ .08 .15 .07 - @] ~ .09 .18 .02 .05 .22 .26 .47 .31 .08 .02 .12 

W .16 1·231 .00 .04 .06 .05 .00 .02 .02 .15 .02 lZLI .21 
X 

.26 .25 .07 1·281 .19 .14 .09 .06 .23 .07 .12 .21 1·401 

TABLE 5.1: Average Matching Results Using MS. Each object in the database is matched 
against an the other objects in the database. Each cell shows the average similarity between 
objects selected from two fixed object classes. In each row red and blue boxes are drawn, 
respectively, around the two highest average similarity scores. In all cases the highest 
score coincides with the correct object class. In most cases there is also a very significant 
difference between the top two average similarity scores. 
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significant articulation moderate or no articulation 

FIGURE 5.1: Database Exemplars. 20 members are shown from each of the object classes 
(with the exception of the class dolphins which has fewer exemplars). Exemplars from 
classes on the left have significant part articulation of a complexity not seen in the Prince­
ton Shape Benchmark. Note that we treat the dinosaurs and the four-Iegged animaIs as 
members of a single object class "four-limbs". 
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FIGURE 5.2: Indexing Results: Percentage RecaH. For several rank thresholds, N = 
10,20, ... , we plot the percentage of models in the database in the same category as the 
query (not including the query itself) with indexing rank ~ N. The results averaged across 
aH classes are shown along with error bars depicting + / - 1 standard deviation. 
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FIGURE 5.3: Indexing Results: Average Ranks. For ail queries in a class the rank of aH other 
objects in that class are computed. The ranks averaged acrass that class are shown, along 
with errar bars depicting + / - 1 standard deviation. 
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hando humans glasses 

pl .... teddy 

I.···.m ~~ 1 
- MS 

FIGURE 5.4: Precision (y axis) versus Recall (x axis): Objects with artieulating parts. The 
results using mediai surfaces (MS) are shown in red, those using harmonie spheres (HS) 
are shown in blue and those using shape distribution (SD) are shown in green. The results 
obtained using MS are superior for all categories with the exception of the category "teddy" 
for which both HS and MS give excellent results. 
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FIGURE 5.5: Precision (y axis) versus Recall (x axis): Objects with moderate or no artic­
ulation. The results using medial surfaces (MS) are shown in red, those using harmonic 
spheres (HS) are shown in blue and those using shape distribution (SD) are shown in green. 
For categories in the top row MS gives superior results. For categories in the middle row 
HS gives slightly better results than MS, but both are superior to SD. For categories in the 
third row the results are comparable for birds, but for four-limbs and fishes, both HS and 
SO out perform MS. 
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In this thesis, we have addressed the problem of 3-D model indexing and match­

ing based on medial surfaces and associated directed acyclic graphs. This last and 

final chapter emphasizes again the motivation for our work, and summarizes its 

main contributions. We also discuss a number of possible directions for future 

work. 

6.1 Discussion 

With the growth in availability of 3-D object models, the 3-D model retrieval prob­

lem has gained significance. We have argued that most current techniques do not 

use shape descriptors that are invariant to articulation and deformation of parts. In 

this thesis, we have proposed a matching method that is appropriate in this setting, 

and is based on a decomposition using medial surfaces. 

We have proposed a graph representation with nodes corresponding to parts 

and edges corresponding to links between adjacent parts. In this way, matching 

based on an eigen characterization of the graphs can accoinmodate articulation 

and deformations. Moreover, indexing schemes developed in the literature can be 

readily employed when the database is large. 

6.2 Contributions and Summary 

We propose a novel method for 3-D object indexing and matching based on medial 

surfaces. To our knowledge, this is the first time that medial surfaces have been 

adopted and implemented for 3-D object indexing and matching. This the sis makes 

three main contributions. 

First, we have employed an average outward flux based method for comput­

ing and segmenting medial surfaces (Siddiqi et al., 1999a; Bouix, 2003). Using the 

junction points, we decompose the medial surface into parts which in tum reflect 

a natural segmentation of the underlying 3-D object. We have proposed a DAG 
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representation of the medial surface which captures a notion of part saliency and 

aUows for existing matching and indexing methods to be applied (Shokoufandeh 

et aL, 2005). 

Second, we have built on algorithms in the computer vision literature to ad­

dress the problem of 3-D model indexing and matching in a uniform framework. 

Few techniques have been demonstrated in the context of 3-D model matching and 

indexing. The indexing step can facilitate retrieval by filtering a number of unde­

sired 3-D objects after which the matcher is applied only to the subset of candidates 

that survive. Here the indexing is based on the topological structure of the DAG. 

The matcher considers both the topological structure of the DAG and the geomet­

ric properties stored in the nodes. The correspondences among the nodes between 

the DAGs are determined and consistent topology is preserved. 

Finally, we have presented extensive indexing and matching results on a database 

of object models organized according to a generic level of categorization, but with 

significant articulation and deformation of parts. Few 3-D shape matching tech­

niques have been tested on a database containing a significant number of artic­

ulated objects. We have not only coUected many articulated object models, but 

have also modified sorne to create additional exemplars. The experimental results 

on a database of 320 objects demonstrate that our method significantly outper­

forms the techniques of Shape Distributions (Osada et aL, 2001) and Harmonics 

Spheres (Kazhdan et al., 2003c) for articulated objects. 

Whereas aU the pieces of this system have been developed in past work, putting 

them together and demonstrating them in the context of 3-D model retrieval with 

comparative results against competing methods has been the focus of this thesis. 

6.3 Future Work 

There are several possible directions for future work. 

First, medial surfaces can only be applied to objects with closed surfaces. Ob-
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jects with incomplete surfaces and large holes, or objects that are not closed due 

to the articulation of parts, such as the opening a door of a car, do not define the 

notion of an interior and an exterior. Hence medial surface-based DAGs would 

not be appropria te. It is feasible to "patch" models with a few missing triangles, 

so that voxelization becomes possible. It might also be fruitful to explore Voronoi 

methods for computing medial surface-based DAGs that could in princip le be ap­

plied directly to point clouds, provided that the sampling density is high enough 

Amenta et aL (2001) or to use the shock scaffold technique Leymarie (2003). 

Second, the segmentation of medial surfaces considers only the digital (local) 

classification of (Malandain et al., 1993). In practice the determination of medial 

surface points can be sensitive to the local properties(as exemplified by the poorer 

results on the four-limbed animaIs). It is well known that certain regions of the me­

diallocus are less stable than others, such as Blum's ligatures Blum (1973). Thus, 

there is more work to be done both in the direction of developing robust techniques 

for segmenting 3D skeletons as well as in selecting its stable manifolds for build­

ing representations. A more robust segmentation algorithm would incorporate the 

orientation of the medial surfaces. In the continuum, junction points concide with 

locations where the orientation of two adjacent medial surface manifolds changes 

significantly. 

Third, the interpretation of a set of decomposed medial surfaces of a 3-D object 

into a directed acyclic graph is sensitive to the segmentation and saliency of the 

parts. The mle to construct the directed acyclic graph is to pick up the most salient 

part of the decomposed medial surfaces as the root. Take a lion as an example, 

the most salient part of the lion would be the body. However, if the body of the 

lion breaks into parts, the most salient part of the lion would probably be the legs. 

It would be worthwhile to study other ways of constructing the DAGs for objects 

within same category. 

Fourth, the node similarity is based on a mean curvature histogram on the re-
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constructed parts. This histogram is a translation and rotation invariant shape rep­

resentation, but it is quite coarse. Indeed we expect that the performance of graph 

theoretic algorithms for comparing medial surface based representations will im­

prove with more discriminating part similarity measures, and any one of a number 

suggested in the literature can be investigated. 

Finally, the number of objects in the database can be increased for a more con­

vincing demonstration of our technique. The majority of available models on web­

sites are in a polygonal mesh format. Our computation of medial surfaces is ap­

plied for volumetric data and thus it takes sorne effort and labor to voxelize the 

mesh models. 



AppendixA 

Usefullinks for online 3D shape 

retrieval 

1. http://www.informatik.uni-leipzig.de/ ...... vranic/ICME2002/ 

2. http://www.shapesearch.net/index.hbnl 

3. http://www.cs.uu.n1/centers/give/imaging/3Drecog/3Dmatching.hbnl 

4. http://shape.cs.princeton.edu/search.hbnl 

5. http://www.dbs.informatik.uni-muenchen.de/Forschung/Similarity /Demos /protein/ 

6. http://3d.csie.ntu.edu.tw / ...... dynamic/ 

7. http://3d-search.iti.gr / 

8. http://www.cleopatra.nrc.ca/ 

9. http://www.nime.ac.jp/ ...... motofumi/Ogden/ 

10. http://www.deepfx.com/meshnose 
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