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Abstract

Designers of software components can use finite-state properties to denote behav-

ioral interface specifications which enforce client-side programming rules that state

how the components ought to be used. This allows users of these components to check

their client code for compliance with these rules, both statically and at runtime.

In this dissertation we explain the design and implementation of Clara, a frame-

work for specifying and verifying finite-state properties of large-scale programs. With

Clara, programmers specify finite-state properties together with runtime monitors,

using a syntactic extension to the aspect-oriented programming language AspectJ.

Clara then uses a sequence of three increasingly detailed static analyses to de-

termine if the program satisfies the finite-state properties, i.e., is free of property

violations.

Clara produces a list of program points at which the program may violate the

properties, ranked by a confidence value. If violations are possible, Clara also instru-

ments the program with the supplied runtime monitor, which will capture property

violations when the program executes. Due to its static analyses, Clara can omit the

instrumentation at program locations which the analyses proved safe, and so optimize

the instrumented program. When much instrumentation remains, Clara partitions

the instrumentation into subsets, so that one can distribute multiple partially instru-

mented program versions that each run with a low overhead.

We validated the approach by applying Clara to finite-state properties denoted

in multiple formalisms over several large-scale Java programs. Clara proved that

most of the programs fulfill our example properties. For most other programs, Clara

could remove the monitoring overhead to below 10%. We also found multiple property

violations by manually inspecting the top entries in Clara’s ranked result list.
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Résumé

Les concepteurs des différentes composantes logicielles peuvent utiliser les pro-

priétés des automates finis pour fixer les spécifications de l’interface comportemen-

tale qui contrôleront les règles de programmations définissant l’utilisation des compo-

santes. Ceci permet aux utilisateurs de ces composantes de vérifier le respect de ses

règles par leurs codes sources, à la fois lors d’une analyse statique qu’à l’exécution.

Dans cette dissertation, nous montrerons la conception de Clara, une structure

qui permet de spécifier et de vérifier les propriétés des automates finis dans des pro-

grammes étendus, puis expliquerons son implantation. Le programmeur, à l’aide de

Clara, peut définir les propriétés des automates finis en complément aux proces-

sus de vérification à l’exécution, en utilisant une extension de la syntaxe d’AspectJ,

un langage de programmation orienté aspect. Clara utilise alors, en séquence, trois

analyses statiques de précision croissante pour déterminer si le programme respecte

les propriétés des automates finis.

Clara produit une liste des positions dans le code source où il y a risque de vio-

lation de ces �propriétés�, en ordre décroissant de certitude d’une violation. Quand

cela est possible, Clara ajoute au programme des processus de vérification per-

mettant d’étudier la violation de �propriétés� lors de son exécution. Grâce à son

analyse statique, Clara n’ajoute pas au code ces processus dans les portions de

code qui n’ont pas la possibilité de violer les propriétés des automates finis, ce qui li-

mite les ralentissements dus aux processus de vérification. Lorsque ses ajouts restent

considérables, Clara organise les processus de vérification à l’exécution en sous-

groupe, de sorte qu’il soit possible de distribuer différentes versions du programme

contenant seulement une partie de ceux-ci, limitant ainsi l’utilisation des ressources

système à l’exécution.
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Nous avons validé cette approche en soumettant à Clara les propriétés des au-

tomates finis sous différents modèles à appliquer sur différents programmes Java.

Clara a permis de prouver que la plupart de ces programmes respectaient déjà les

propriétés définies. Dans les autres cas, Clara a pu réduire le coût des processus de

vérification à moins de 10%. De plus, nous avons pu localiser de nombreuses viola-

tions de propriété manuellement, en inspectant les entrées en importance dans la liste

produite par Clara.
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Chapter 1

Introduction and contributions

1.1 Introduction

Programmers who develop large applications in modern programming languages often

face the problem that they have to obey many restrictions to guarantee the correct-

ness of the program they are developing, even irrespective of the actual functional

requirements that the program may have. For instance, it is common that pro-

grammers compose their software systems of existing third-party components, such

as libraries and frameworks [GSCK04]. These components come with restrictions

on how they ought to be used. Other restrictions may arise from company specific

programming rules that demand, for example, that certain program parts may not

interact, not share any information, or if they may interact then only at certain times

in the program execution or through certain control flows. Yet other restrictions exist

with respect to the programming language being used and the runtime libraries that

come with it. In the programming language C, for example, one may care about de-

allocating all memory that was previously allocated in order to prevent memory leaks,

but at the same time one would certainly care about not accessing a part of memory

that was never allocated or has already been de-allocated. In Java, the programming

language that we consider here, the Java Runtime Library can be seen as a special

software component that is used by every single Java program. The library comes

with special restrictions on how programmers should use its application interface. For
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instance, a programmer should not modify an object of class Collection while iter-

ating over this collection at the same time. In this case it would be unclear whether

the program should iterate over the original contents or the modified contents of the

collection.

Because programmers find it hard to remember all of these programming rules,

and, to date, are not even been made aware of many of these rules, programming errors

arise frequently during software development [Zel05]. Identifying and removing these

errors can consume a large fraction of a piece of software’s development cost [SHK98].

Researchers in Computer Science and Software Engineering hence develop methods

that mitigate the problems mentioned above by analysing programs for potential

programming mistakes. The programming language’s type system can enforce some

of the programming restrictions. The type system of Java, for instance, gives static

error messages if a method is called with a wrong number of parameters, or with

parameters that have an invalid type. For other classes of errors, like errors related

to memory allocation, researchers have developed very specialized tools [GMF06].

The approach that we present in this dissertation allows programmers to check

a large range of program properties, often called typestate [SY86] properties in the

literature. Typestate properties are capable of checking that certain program events

on a number of objects occur in a certain ordering. This comprises many of the

properties that we identified as important above.

In this dissertation we explain the design and implementation of Clara (Compile-

time Approximation of Runtime Analyses), a framework for verifying finite-state

properties of large-scale programs. One can see Clara as an extension of a more

traditional software development process that makes use of runtime verification. Fig-

ure 1.1 gives an overview of this process. At the beginning, somebody declares a

program property that requires checking by defining a set of finite-state specifica-

tions. For instance the designer of a reusable component may want to define how the

application interface (API) of the component ought to be used. In general, multiple

different specification languages are possible. Our current implementation supports
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abc compiler,

JavaMOP

. . .

tracematches,

PTLTL,

FTLTL, ERE,

. . .

abc or ajc compiler

compile & weave

program under test AspectJ aspects

specification

compiler

finite-state

specification

instrumented

program

runtime

monitor
programmer

component designer,

QA engineer,

. . .

test-run

hand-write

define

notify

abort, roll back, . . .

Figure 1.1: Overview of traditional runtime-verification approach (Sections 2 & 3)
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1 tracematch(Iterator i) {
2 sym hasNext before:

3 call(∗ java. util . Iterator .hasNext()) && target(i);

4 sym next before:

5 call(∗ java. util . Iterator .next()) && target(i);

6

7 next next { System.err.println(”Trouble with ”+i); } }

q0 q1 q2
next next

Σ

Figure 1.2: HasNext tracematch and automaton: do not call next() twice without

an intervening call to hasNext().

tracematches (a language based on regular expressions [Kle56]) through the Aspect-

Bench Compiler [ACH+05a] (abc for short), as well as past-time (PTLTL) and future-

time (FTLTL) linear temporal logic [Pnu77] and extended regular expressions (ERE)

through the JavaMOP [CR07] specification compiler. Figure 1.2, for example, shows

how a programmer could denote the “HasNext” property-specification pattern as a

tracematch. This pattern states that it is an error to call the method next() twice on

the same iterator i without calling i.hasNext() in between. In the next chapter we

will explain this example in greater detail. Traditionally, tools like abc and JavaMOP

compile finite-state specifications, like the one in Figure 1.2, into aspects written in

the general-purpose aspect-oriented programming language AspectJ [asp03]. In spe-

cial cases, the component designer may also wish to hand-write the AspectJ aspects

directly, for instance if a hand-written version of the aspect would be significantly

more efficient.

A programmer could then runtime-check whether her program code complies with

this property by weaving the generated aspects into the program using a standard
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AspectJ compiler like ajc [HH04] or abc (the compiler that we will consider in this

dissertation). The weaving process results in a modified version of the original pro-

gram that is instrumented with a runtime monitor. At runtime, the instrumentation

in the client code notifies the runtime monitor whenever the code triggers events that

are of interest to the original finite-state specification. While the exact internal work-

ings of the runtime monitor depend on the specification formalism and specification

compiler, the general evaluation scheme is always the same: the monitor essentially

consists of some implementation of a finite-state machine. When the events that the

client code triggers drive the monitor into a final (or accepting) state, this indicates

that the current execution violated the finite-state property. In this case the runtime

monitor executes some piece of error-handling code which the component designer

defined along with the finite-state specification. We show the finite-state machine

for the HasNext example in Figure 1.2, along with its tracematch definition. When

the program under test drives this state machine into its accepting state q2, then

the tracematch will execute its action handler, printing the error message defined in

line 7.

1.2 Research Motivation and Objectives

This traditional runtime-verification approach has several desirable properties. For

instance, because the finite-state specifications are evaluated at runtime, the specifi-

cations can be very expressive. They can refer to runtime events, compare runtime

values and can evaluate predicates over the current heap. Also, when a runtime mon-

itor detects a property violation, it can react to this violation in many different ways.

A simple monitor could issue an error message, while a more involved monitor could

try to work around the effects of the detected violation or revert the program to a

safe state. Another positive property is that a runtime monitor can give a safety

guarantee: if a program run violates the property that the monitor describes, then

the programmer has the guarantee that the monitor will detect this violation.

On the other hand, this traditional runtime-verification approach yields several
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drawbacks. One important drawback is that the instrumentation that is added to the

program under test can yield a significant runtime overhead when test-running the

program. After all, if the runtime monitor needs to monitor many events on a program

run, the monitor has to consume a certain amount of execution time to update its

internal state based on those events. Certain optimizations can be done and have

to be done on the level of the runtime monitor itself: if the runtime monitor can

compute every single state transition faster, then the instrumented program will run

faster too. Avgustinov et al. [ATdM07] showed which optimizations are necessary to

make runtime monitoring feasible at all. However, as we will show in our experiments,

in some cases, these optimizations may not be sufficient.

A second important drawback of runtime verification is that it gives no static

guarantees. In order to detect a property violation, the programmer of the client code

has to test-run the instrumented code potentially many times to achieve adequate test

coverage. On the one hand this is time consuming, and on the other hand this may

yield the problem that the programmer cannot say for certain when the instrumented

program was tested enough. While an increasing number of different test runs can

strengthen the confidence that the program will never violate the stated property,

these test runs still do not constitute a proof. Therefore it would be desirable to

conduct a static analysis that can prove a program safe with respect to the finite-

state property already at compile-time.

1.3 Solution Overview

In this dissertation we explain the design and implementation of Clara, a framework

for verifying finite-state properties of large-scale programs. The Clara framework

aims at mitigating both problems mentioned above: (1) it optimizes the runtime of

a program that has been instrumented with a runtime monitor, and (2) it attempts

to give static guarantees about the correctness of this program with respect to the

stated property. To achieve this goal, Clara conducts a set of static analyses. In

comparison to the analyses proposed by Avgustinov et al. [ATdM07], these analyses
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do not only analyze and the runtime monitor itself, but they also analyze the complete

instrumented program: Clara analyzes the program under test with respect to the

stated finite-state property. If Clara can detect that a certain code location can

never have an effect on the state of the runtime monitor, or is not on a control-flow

path over which one can reach a final state, then Clara removes all instrumentation

from this program point. This process results in an optimized program which has

a reduced amount of instrumentation and will therefore trigger the runtime monitor

less often than a fully instrumented program. In addition, if Clara’s analyses detect

that no single program point can violate the property, this means that there is no

possible execution on which the program could violate the property. This is proof

that the program fulfils the stated property.

Figure 1.3 gives an overview of the Clara framework and the software devel-

opment process that surrounds it. Similar to the traditional runtime-verification

approach, a component designer generates a set of AspectJ aspects, either by hand-

writing the aspects directly or—more commonly—by defining a set of finite-state

specifications which are then translated into AspectJ aspects using a specification

compiler. However, the aspects in this setting are special aspects that are annotated

with additional information. This information is essential to Clara when it comes

to conducting its static analyses. The annotations to the aspects preserve important

information about the combinations of events that may lead to a property violation

and potentially also the order in which the events have to occur to violate the prop-

erty. The problem is that the usual generated (or hand-written) AspectJ aspects are

Turing-complete and hence it would be very hard if not impossible to reconstruct

this information directly from the monitoring aspects. Using the annotations, this

information is explicitly preserved and readily available to Clara.

Through its annotation languages, Clara moreover provides researchers with a

unified way to specify finite-state properties of Java programs. Up until now, no

such format exists, and hence every research prototype uses its own special input

format. This makes it hard to compare static analyses that analyze these properties.

We believe that Clara’s annotation languages are general enough so that they allow

researchers to express a wide variety of properties. Moreover, researchers can integrate
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Figure 1.3: Overview of hybrid static/runtime verification with Clara
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a wide variety of static analyses that analyze programs with respect to the properties

that the annotations express.

We extended the abc compiler so that it can parse the annotated aspects. We

implemented Clara as an extension to the abc compiler. Therefore, the Clara

framework has access to the instrumented program, the monitoring aspects as well

as any information encoded in the annotations. Based on this information, Clara

conducts a set of different static analyses (details follow), all of which try to determine

where, if ever, the instrumented program may violate the stated finite-state property.

After its analyses finish, the programmer of the client code obtains an instrumented

program, similar to the one that she obtains in the traditional runtime-verification

approach. However, this time the program is optimized; it usually contains less

instrumentation than a fully instrumented program would contain. In cases where the

analyses in Clara have been able to prove the program safe, the resulting program

is even free of instrumentation, i.e., it runs without additional runtime overhead.

In certain cases the instrumented program may show a large runtime overhead

despite all static analyses. This may happen if some piece of code that does indeed

violate the stated property resides in a hot loop, or if the analyses are too imprecise

to determine that the code in this loop is actually safe. When this happens, the pro-

grammer can opt to have a specially instrumented program generated. This program

is suitable for collaborative runtime verification: the programmer can execute the

program collaboratively on multiple machines, where each machine will only observe

events generated by a subset of instrumentation points. In addition, the programmer

can configure these programs such that they will monitor certain instrumentation

points only from time to time. This approach is suitable when it comes to testing the

program in the field, and when the program is shipped to a large set of customers.

Each customer will execute a slightly different program, which monitors a slightly

different set of program points. In result, this monitoring approach cannot give any

guarantees: due to the partial instrumentation, property violations may be missed.

Nevertheless, our approach allows programmers to execute a partially instrumented

program that runs with a reduced runtime overhead, but still gives the programmers

some opportunity to find property violations in this program. In particular, when
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programmers ensure that for every single probe at least one user’s program copy

enables this probe, this yield the same coverage as enabling all probes in a single

program copy.

During its static analyses, Clara usually proves a large set of program points

safe, i.e., Clara proves that the runtime monitor cannot actually reach a final state

through these points. In addition however, the Clara framework allows programmers

to inspect the remaining program locations for which the analyses were unable to

prove these locations safe. We call such locations potential failure points. To assist the

programmer in inspecting these points manually, we devised a specialized ranking and

filtering approach. This approach first divides the potential failure points into inter-

related potential failure groups. The ranking algorithm then ensures that Clara lists

those potential failure points first that are most likely to lead to a property violation

at runtime.

1.4 Challenges

In the proposed setting we assume that we want to apply the Clara framework

to Java programs of substantial size. Analysing such programs is challenging, first

and foremost due to possible aliasing relationships that the programs may expose.

For example, consider the finite-state property that the program under test should

not write to a file handle that has already been closed. The problem is that the

program could reference the same file handle under different names at the same time,

e.g. the handle could be referenced simultaneously by a parameter p to the currently

executing method, a local variable l and a field f. In order to statically analyse

whether or not the program could indeed accidentally write to such a handle after it

was closed, an analysis has to track these alias relationships: when the file is closed

by calling f.close(), then the analyses must be able to infer that it is now unsafe

to call p.write(..).

For other properties, even must-alias information is required. Consider the exam-

ple of a URLConnection, which needs to be initialized before it is opened. Assume that

10
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this connection is again referenced by variables p and f and that a call to f.open(..)

is indeed preceded by a call to p.init(..). In this example, the information that

f and p may reference the same connection is not sufficient to determine that the

program fulfils the property. We have to know that f and p must point to the same

connection (on every execution) to determine that the connection indeed has been ini-

tialized when it is being opened. Such must-alias information is even more expensive

to compute than may-alias information because it requires control-flow information.

This poses another challenge to the analyses that Clara implements.

Sometimes, even control flow may matter when determining whether or not a

program violates a given property. In the above example, when the program uses

the connection before initializing it, this constitutes a property violation; when the

program uses the connection after initialization, the property is not violated. Con-

structing control-flow information for large programs is challenging and specific ab-

stractions are necessary to guarantee that even such large programs can be analyzed

efficiently.

Last but not least, the analyses in Clara have to deal with the potential for false

positives. All analyses in Clara are designed to be sound. In other words, the anal-

yses will only rule out an instrumentation point, i.e., mark it as safe, if the analysis

can prove that the program can never violate the property at this program point. In

particular, the optimized instrumented program that Clara emits is behaviourally

equivalent to the un-optimized instrumented program. Any sound static analysis of

an undecidable property must make conservative assumptions. Our analyses make

conservative assumptions about the possible control flow, or possible alias relation-

ships. Some of these assumptions may be overly conservative: even if a program

location is safe, the analyses in Clara may fail to prove this fact. In a setting where

one conducts static verification only, such situations would lead to a potentially long

list of false positives—program locations for which the analysis warns that the stated

property might be violated at this point, although this is not actually the case. Long

lists of potential false positives are quite a burden on the programmer, as she has

to go through this list manually to determine the result of the verification outcome.
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In our approach, fortunately, the programmer is given the option to defer the prop-

erty evaluation to the time at which the program actually executes. Because Clara

instruments the program under test with an optimized runtime monitor, the pro-

grammer can opt to just test-run the program and see whether property violations

do actually occur at these potential failure points. For certain programs however,

e.g. programs that use dynamic class loading and/or reflection, many conservative

assumptions have to be made, and consequently a lot of program instrumentation

may remain. It is a challenge to present useful information to the programmer nev-

ertheless, and to produce an instrumented program that can run efficiently even in

these cases.

1.5 Contributions

The Clara framework addresses the challenges mentioned above using the following

original contributions.

1.5.1 Dependent advice and Dependency state machines

To allow Clara to discover property-specific information from the generated AspectJ

aspects we designed two annotation languages called Dependent advice and Depen-

dency state machines. A dependent advice contains dependency annotations to en-

code crucial knowledge about the finite-state property. Dependent Advice are meant

to capture the essence of the information that is necessary to determine a program’s

finite-state properties at compile time without taking into account a program’s control

flow. Dependency state machines subsume dependent advice, but add information

about the order in which events need to occur so that the given finite-state property

is violated. The designers of software components may opt to annotate aspects by

hand when they hand-write monitoring aspects. However, as we show in this thesis,

one can easily extend existing specification compilers like abc (for tracematches) and

JavaMOP (for PTLTL, FTLTL and ERE) to generate annotated dependent advice
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or pieces of advice annotated with dependency state machines instead of ordinary

AspectJ advice.

We therefore believe that Clara’s annotation languages can be useful to many

researchers: researchers can use annotated aspects to express a wide variety of finite-

state properties, and in particular, these researchers can implement their static anal-

yses by instantiating the Clara framework. This enables researchers to compare

the precision and performance of their analyses, while eliminating all other acciden-

tal variability, such as slight (but nevertheless significant) differences in the property

specifications. At the current time, no such standard denotation exists, and this

makes it hard to compare static analyses of finite-state properties.

1.5.2 A three-staged static program analysis to evaluate runtime

monitors ahead of time

In a second step we extended the abc compiler so that it can parse these annotated

aspects. We further extended abc’s back-end with a three-staged analysis that eval-

uates ahead of time, i.e., at compile time, the runtime monitor that the annotated

aspect defines (see Figure 1.3). The analysis is staged so that it will run faster. First,

Clara applies a Quick Check that uses syntactic program information only. Often,

this check can immediately rule out a lot of potential failure points. When poten-

tial failure points remain, the programmer can opt to treat them further, using the

flow-insensitive Orphan-shadows Analysis. This analysis uses flow-insensitive context-

sensitive points-to information to determine whether a set of events that is necessary

to violate the stated property can at all occur (in combination, on the same objects).

When potential failure points remain even after this analysis, then the programmer

can opt to apply a third analysis stage, the Nop-shadows Analysis. The analysis

uses a novel notion of continuation-equivalent states to identify program points that

one does not need to monitor. This analysis stage is flow-sensitive, i.e., it considers

the order in which events can occur. This stage also uses must-alias information to

determine when two pointers must point to the same object. In order to guarantee an

efficient analysis, this third stage is intra-procedural, i.e., considers a single method
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at a time. The analysis models the remaining program with summary information

that is based on the flow-insensitive information that the Orphan-shadows Analysis

computed. As Figure 1.3 shows, Clara re-iterates the Nop-shadows Analysis and the

Orphan-shadows Analysis. This is because the third stage may enable optimization

potential for the second stage, and vice versa.

A key contribution of this thesis is a set of novel abstractions that allow each

of the three analysis stages to perform its task. While the Quick Check and the

Orphan-shadows Analysis contend themselves with flow-insensitive information, the

Nop-shadows Analysis requires a more detailed abstraction that essentially models the

runtime monitor, a finite-state machine, at compile time. Because the Nop-shadows

Analysis is intra-procedural, it has to make conservative assumptions at procedure

boundaries, which may cause imprecisions. To regain precision, the abstraction not

only models for every object which state(s) this object may be in at every program

point, but also which state(s) this object may certainly not be in. Both information

is crucial to the approach.

1.5.3 Collaborative runtime verification

In cases where possible failure points remain even after applying all three analysis

stages, the programmer still has multiple options. For instance, she can test-run the

instrumented program to check whether violations actually occur at runtime. How-

ever, if much instrumentation remains even after applying the static analysis, then

this may slow down these test runs by large amounts. In these cases, Clara can

apply a “spatial partitioning” technique, which effectively partitions the instrumen-

tation points into multiple subsets. One can then execute multiple instances of the

instrumented program on different machines, giving each instance another command-

line parameter. Depending on this parameter, the instrumented program will enable a

different subset of instrumentation points. In result, each program instance on its own

will only detect property violations in a specific part of the program, and therefore

execute faster than a fully instrumented program would execute. A nice property of
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spatial partitioning is that, nevertheless, all instances in combination yield complete

coverage.

1.5.4 Ranking of potential failure points

While resorting to runtime verification may be a viable option in some settings, it

may often be rather desirable to get a complete guarantee about a program already

at compile time. If only a few potential failure points remain after Clara’s analyses,

then the programmer can easily inspect these points manually. However, in cases

where the analyses suffers from imprecisions, the list of potential failure points may

be long, and therefore the burden on the programmer may be high. In a last stage,

we therefore applied machine-learning techniques to Clara, so that the analyses can

output a list of potential failure points that is ranked according to some probability

value. In result, the potential failure points at which actual matches are most likely

to occur are ranked to the top.

1.5.5 Summary of contributions and thesis organization

We organized the remainder of this thesis as follows. In Chapter 2 we describe a

case study that reveals finite-state specification patterns that are common to the

constraints that ought to be enforced on clients of the Java Runtime Library. As our

study will show, one can indeed express many of these constraints with finite-state

specifications. In Chapter 3 we then explain how programmers can use the traditional

runtime-verification approach to monitor violations of such finite-state properties at

runtime. We explain existing specification formalisms and specification compilers, and

also give background information about how AspectJ compilers weave the AspectJ

aspects that the specification compilers generate into the program under test.

Table 1.1 summarizes the main contributions of this dissertation. The remain-

ing chapters address these contributions. In Chapter 4 we explain how specification

compilers can preserve additional information about the given finite-state property

within the generated aspects, in the form of a novel AspectJ language extension,

called dependent advice. In this chapter we not only state the syntax and semantics of
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dependent advice but also explain two flow-insensitive optimizations that resolve ad-

vice dependencies ahead of time: the Quick Check and the Orphan-shadows Analysis.

These analyses make use of the dependency information present in the annotations

and a set of novel key abstractions. In Chapter 5 we extend this approach to de-

pendency state machines. A dependency state machine subsumes a set of dependent

advice, and adds information about the order in which events must occur to cause

a property violation. This enables a flow-sensitive analysis stage that we explain in

the same chapter. We explain our code-generation scheme for collaborative runtime

verification in Chapter 6, and our ranking scheme to aid the manual inspection of

remaining potential failure points in Chapter 7. We will discuss related experiments

and their results directly at the end of each chapter. In Chapter 8 we discuss related

work, and we conclude in Chapter 9. The appendices contain some lengthy proofs

and complexity estimates.

Contribution Chapter

Dependent advice (language definition and implementation) 4

Dependency state machines (language definition and implementation) 5

Three-staged static program analysis 4, 5

Spatial partitioning 6

Ranking of potential failure points 7

Table 1.1: Main contributions of this dissertation
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Chapter 2

Safety properties in large-scale Java programs

As we mentioned in the introduction, the Clara framework is an approach to

verifying interesting properties of Java and AspectJ programs through a combination

of compile-time and runtime techniques. In this chapter we discuss a wide range

of these properties. We start by commenting on a study conducted by Dwyer et

al. [DAC99], which surveyed a large set of finite-state property specifications from the

scientific literature and other sources. We then present a study that we conducted

ourselves. The goal of this study was to distill a list of rules that programmers need

to adhere to when they use the Java Runtime Library. The Java Runtime Library

is certainly the most widely used Java application interface and therefore its usage

contracts deserve special attention, as they concern many people and programs. This

chapter will make the reader familiar with the kinds of properties that may require

static or dynamic checking in Java programs by giving a large set of examples, many

of which we will use again in later parts of this dissertation.

2.1 Property specifications for finite-state verification

In 1999, Dwyer et al. conducted a study [DAC99] of 555 property specifications for

finite-state verification tools. To the best of our knowledge, this study is the most

substantial of its kind. The patterns were drawn from 35 different sources, mostly
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scientific papers, but also from the developers of verification tools and from student

projects.

The authors could show that, in their data set, the vast majority of specifications

(about 92%) are instances of certain specification patterns. Table 2.1 summarizes

these patterns. As the authors discovered, the patterns Response, Universality and

Absence are by far the most common ones. In their study, about 80% of all the

specifications were an instance of one of these three patterns.

The authors also distinguished different scopes. A given property (i.e., an instance

of a property specification pattern) may be required to hold globally (i.e., on the entire

program execution), between two events, or after, until or before another event. As

the study revealed, more than 80% of all the pattern instances used a global scope.

These results are encouraging in the sense that, despite the fact that finite-state

specifications have the potential for being quite complex, they will usually be rela-

tively simple. Program analyses like ours can exploit this fact. Indeed, as we show

later in this work, our analyses make some assumptions that do not always hold but

do hold in most cases. In these common cases the analysis works well, while in other

less frequent cases the analysis may not be as effective.

The study by Dwyer et al. is important because it reveals a set of common speci-

fication patterns. However, with respect to the work presented in this dissertation, it

was unclear whether the authors’ results would also hold up in the Java-based setting

that we consider here. After all, the authors had drawn their example specifications

mostly from the verification literature, and from people who had produced this litera-

ture. Hence it seems legitimate to ask whether or not the same kinds of specifications

are actually of concern to programmers of Java applications. In addition, Dwyer et

al. drew their specifications from literature that only considered finite-state specifica-

tions to begin with. An interesting question, that we will answer, is therefore whether

or not programmers may be interested in specifying properties that go beyond what

one can express with a finite-state specification formalism.
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Absence A given state/event does not occur within a scope.

Existence A given state/event must occur within a scope.

Bounded Existence A given state/event must occur k times within a scope.

Variants of this pattern specify at least k occurrences and

at most k occurrences of a state/event.

Universality A given state/event occurs throughout a scope.

Precedence A state/event P must always be preceded by a state/event

Q within a scope.

Response A state/event P must always be followed by a state/event

Q within a scope.

Chain Precedence A sequence of states/events P1, . . . , Pn must always be pre-

ceded by a sequence of states/events Q1, . . . , Qm. This pat-

tern is a generalization of the Precedence pattern.

Chain Response A sequence of states/events P1, . . . , Pn must always be fol-

lowed by a sequence of states/events Q1, . . . , Qm. This pat-

tern is a generalization of the Response pattern. It can be

used to express bounded FIFO relationships.

Table 2.1: Common patterns in finite-state property specifications; from [DAC99]
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2.2 Property specifications in Java programs

We therefore decided to conduct an informal survey on our own, with the goal to

determine common safety properties in Java programs, be they finite-state or not.

Like Dwyer et al., we sought to identify common characteristics of such properties

that would indicate some form of possible specification reuse.

2.2.1 Setup of the survey

As mentioned, we focused our study on the Java Runtime Library (JRL). We first

searched the library for locations at which certain exceptions may be thrown. Pro-

grammers should avoid program executions that can cause these exceptions. For in-

stance, if the JRL throws an IllegalStateException, this usually indicates that the

client program has violated a usage contract of the JRL. In addition, we used a simple

tool to extract JavaDoc API documentation from the JRL’s source code. We then

browsed through the extracted documentation, searching for key phrases like call, ini-

tialize, access or do not. Last but not least we uncovered a set of concurrency-related

properties from the excellent book Java Concurrency in Practice [PGB+05]. This

book contains many descriptions of common pitfalls with respect to concurrency in

Java. As it turns out, one can express most of these pitfalls as finite-state properties.

2.2.2 Property specifications in the Java Runtime Library

When we inspected the Java Runtime Library, we found a large set of properties that

could benefit from static and/or dynamic verification. Most of the properties, but

not all of them, relate to collection classes and I/O streams that the library provides.

Because virtually every Java program uses the Java Runtime Library, a verification

tool that could check these properties would benefit many software developers. In

the following we describe the different specification candidates that we found in the

Java Runtime Library.
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Asynchronous access to synchronized collections. In Java, a programmer can

synchronize access to a collection c by wrapping c into a wrapper object that dele-

gates to the wrapped collection c using synchronized methods only. To do so, the

programmer invokes the method Collections.synchronizedCollection(c). Per-

forming such a method call is a clear signal that the programmer intends the access

to c to be synchronized, so that multiple concurrently executing threads can access c

without causing race conditions [BH08]. Therefore, after performing this method call,

the programmer should not access the original collection c directly. (In [PGB+05]

this is called the “set and forget” policy.) Using the JRL, programmers can both

synchronize collections and maps. In the following we will refer to the property men-

tioned above by the name “LeakingSync”. The LeakingSync property describes that

one may not access a collection or map any more that was passed to any of the

Collections.synchronized* methods.

Even when a programmer has synchronized a collection by wrapping it into a

synchronized wrapper object, in certain situations it may still not be thread-safe

to access this collection through multiple threads. This is because one cannot only

inspect and modify the contents of the collection via the collection’s own (and now

synchronized) methods, but also via methods of any iterator associated with this

collection. Although access to the object returned by synchronizedCollection is

synchronized, access to the iterators that it produces is not. Hence, comments in the

JRL state that the programmer should explicitly synchronize on the synchronized

collection (using a synchronized block) while iterating over the collection. Similarly,

when the programmer produces a synchronized map, she has to synchronize on the

map while iterating over the map or any of its set representations like its key set or

value set, as these sets only provide views on the map (more on views below). In the

following we will refer to these properties by the names “ASyncIterC” (for collections)

and “ASyncIterM” (for maps).

A particularly subtle case is the one where the programmer calls a collection-

traversing method like c.containsAll(d). Even when both c and d are synchronized

collections, this access may not be thread safe, for the following reason: the method
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containsAll does synchronize on its wrapper object, i.e., on c, however it fails to syn-

chronize on the argument object d. Therefore, another thread could modify d while

the current thread computes the expression c.containsAll(d). (After all, it can

obtain d’s lock.) While programmers may consider this a bug in the implementation

of the JRL, Sun developers argue that the programmer calling this method should

be able to guess that the method iterates over the argument collection and hence

it is the responsibility of the programmer to wrap the method call into an appro-

priate synchronized block1. If a programmer happens to forget the synchronization,

this may lead to a subtle data race [Sen08]. The property “ASyncContainsAll” ex-

presses that a thread must own the lock of the argument collection when invoking

c.containsAll(d) on synchronized collections c and d.

Interestingly, a runtime-monitoring approach as we present it can recover from

such errors once the errors have been detected. In the case mentioned above, when

the monitor detects a method call c.containsAll(d), then the monitor can (1)

acquire d’s lock, (2) proceed with the original method call, and (3) release the lock

again after the original method call completed.

Fail-safe iterators. Even in a single-threaded program, the use of iterators can lead

to programming errors. For example, a programmer could accidentally modify a col-

lection c while at the same time iterating over c using an iterator. By definition of the

Iterator interface in the JRL, this is forbidden because it may leave the iterator in

an undefined state. After all, should the iterator be iterating over the modified or un-

modified collection? Iterators provided by the JRL therefore have fast-fail semantics,

which means that when such a situation occurs, the next call to the next() method

of the iterator that follows the modification of the underlying collection should throw

a ConcurrentModificationException2. To throw this exception at the right point

in time, every single implementation of the Iterator interface in the JRL contains

special monitoring code that keeps track of the status of the underlying collection.

1see http://bugs.sun.com/view_bug.do?bug_id=4505651
2The name of this exception is somewhat misleading. The error has nothing to do with concurrent

execution; it can well occur in single-threaded programs.
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It seems tedious and error-prone to implement a property that way that is actually

common to all iterators. As we will show, programmers can express this property,

and have the property checked, much more elegantly with a finite-state specifica-

tion. The older collection classes in the JRL, like Vector, produce iterators of type

Enumeration, which do not have the fail-fast semantics. Indeed, with such enumer-

ations, a property violation will go unnoticed if no runtime monitor is present. In

the following, we will refer to the property mentioned above as “FailSafeIter”. We

also define a related property over maps: a programmer may not modify a map while

iterating over the map’s key set or values. We refer to this property by the name

“FailSafeIterMap”. The properties “FailSafeEnum” and “FailSafeEnumHT” are sim-

ilar, but define conditions on vectors and enumerations, respectively hash tables and

enumerations instead of collections, iterators and hash maps.

Removing elements through an iterator. Programmers can easily break the above

programming rule when trying to filter a collection according to a given predicate: it

seems natural to iterate over the collection, test each element to see if the predicate

matches the element, and when it does, remove the element from the collection.

Because this idiom is so common, the Iterator interface provides a remove() method

that allows the programmer to remove the current element from the collection safely,

i.e., without an exception being thrown. However, the remove() method comes with

its own usage constraints: it may only be called after the iterator was advanced using

next() at least once. Also, after remove() was called, remove() may not be called

again until the iterator was advanced again.

Views on collections make the problem even worse. One other aspect that

makes the problem of an accidental concurrent modifications of collections in Java

even worse is the fact that several methods provided by the JRL return collec-

tions that are views on other maps or collections. For instance, the method call

d = Collections.unmodifiableCollection(c) returns a wrapper object d that

cannot be modified (all methods that would normally modify the state of this collec-

tion throw an UnsupportedOperationException instead). However, a programmer
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can still modify the argument collection c itself, and by doing so could accidentally

raise a ConcurrentModificationException if the program happens to be iterating

over d at the same time. The same is true for key sets and value sets of maps: the

map may be modified while iterating over one of the sets, and one of the sets may

be modified (hence altering the map) while iterating over the map. A particularly

interesting case is the method List.subList(int,int)3. This method returns a

view on a sub-list of the receiver of the call. While it is unlikely that a programmer

would wrap an unmodifiable collection in another one, it is possible (and probable)

that a programmer may call subList again on a list that is already a sub-list of some

other list. This would lead to a chain of views of arbitrary length, making concurrent

modifications yet more likely.

Iterating past the end of a collection. Another possible mistake with respect to

iterators is that a programmer could iterate past the end of a collection. Therefore,

a programmer should virtually always check whether i.hasNext() holds before ad-

vancing an iterator i. The same holds for enumerations as well. There are notable

exceptions to this rule, however. In general, a programmer can determine the number

of elements in a collection first, and then make sure by other means than by checking

hasNext() that the iterator is only advanced as many times as the collection has

elements. This is a particularly common idiom in cases where programmers want to

access an element contained in a set. The Set interface provided by the JRL allows

programmers to compare, join and intersect sets, but it provides no access to actually

retrieve the elements of a set. Hence, the only way to access an element of a set is

to create an iterator for this set and then retrieve the element via a call i.next() to

the iterator. To check whether this call is valid, programmers frequently check the

set for non-emptiness rather than calling i.hasNext(). Nevertheless, the property

is an interesting one in general. In the following we will refer to the property by the

names “HasNext” (for iterators) and “HasNextElem” (for enumerations).

3Thanks to Kevin Bierhoff for pointing out this example.
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Streams, readers and writers. The Java Runtime Library contains many definitions

of streams, readers and writers that programmers can connect in various combina-

tions. For instance, an InputStreamReader can read inputs from an InputStream.

The reader is connected to the stream when it is instantiated: the programmer passes

the stream as an argument to the constructor call that initializes the reader. One can

also connect readers to other readers in the same way, or streams to other streams.

Conversely, one can connect writers to output streams or other writers. In general,

in any such chain of connected readers, writers and/or streams, it is an error to close

any of the involved objects (by calling the close() method) and then call any of the

read(..), respectively write(..), methods on the same or any other object in the

same chain. This is because no reader can read from a closed reader or stream, etc.

Even more subtly, if a reader is closed, then all wrapped readers and input streams

are (transitively) closed as well, and hence should not be accessed any more. In

consequence, a programmer should be very careful about connecting one stream to

multiple readers: if one of the readers is closed, the stream becomes inaccessible and

the other reader(s) hence should not be accessed any more either. (The same holds

for writers and output streams.) In the following we will refer to these properties by

the names “Reader” for readers and “Writer” for writers respectively.

Again, there are subtle exceptions from this rule, some of which benefit the pro-

grammer, others of which are rather disconcerting. Closing a ByteArrayInputStream

or ByteArrayOutputStream has no effect at all. In fact, the implementation of the

close() methods is empty. This is because these classes access an in-memory byte

array only and perform no actual input/output operations. There is no semantics to

closing an array and hence, the methods perform no operation. So in this case, the

programmer does not need to worry about accidentally closing one of these streams.

The disconcerting case is the implementation of PrintWriter, as this implementation

in fact violates a contract inherited from the Writer class that PrintWriter extends.

To cite from the JavaDoc documentation4 of the close() method in the class Writer:

“Once the stream has been closed, further write() or flush() invocations will cause

4see http://java.sun.com/j2se/1.4.2/docs/api/java/io/Writer.html
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an IOException to be thrown.” The class PrintWriter violates this contract, as it

states in its own JavaDoc documentation: “Methods in this class never throw I/O ex-

ceptions, although some of its constructors may. The client may inquire as to whether

any errors have occurred by invoking checkError().” To us it is unclear as to why

the developers of the JRL opted for this decision, but we assume that the decision was

made due to the special buffering semantics of the PrintWriter. The same decision

was made for the class PrintStream. The field System.out usually references an

object of class PrintStream. This causes the problem that in the following program

our call for help would go completely unnoticed. This program prints nothing and

throws no exception:

public static void main(String[] args) {
System.out.close ();

System.out.println(”Help!”);

}

URL connections. Another class in the JRL that comes with subtle usage contracts

is the class URLConnection. Programmers have to go through a four-step initializa-

tion process to establish a connection using this class. To cite from the JavaDoc

documentation:

1. The connection object is created by invoking the openConnection method on

a URL.

2. The setup parameters and general request properties are manipulated.

3. The actual connection to the remote object is made, using the connect method.

4. The remote object becomes available. The header fields and the contents of the

remote object can be accessed.

For each of these four steps, there exist methods that may be called in this step and

in this step only. Fortunately, the documentation contains complete lists of these

methods. Nevertheless, programmers who are unfamiliar with this class and fail to

consult the documentation may easily make programming errors.

26



2.2. Property specifications in Java programs

2.2.3 Properties that Clara cannot express

While in our survey we did not actually find any properties that would go beyond

the capabilities of finite-state specifications, we are well aware of some specification

patterns from the literature that one cannot express with finite-state machines, or

that go beyond the capabilities of Clara and the runtime-monitoring tools that we

consider in this thesis for other reasons.

One limitation of finite-state specification formalisms, as we consider them in this

thesis, is that they allow developers only to specify joint properties of a fixed number

of objects. In some cases, this may be too restrictive. The runtime verification tool

PQL [MLL05] for example uses a recursive query language that allows developers to

reason about a combination of an unbounded number of objects. Using such queries,

developers can for example specify a “tainted string” property: no string entered

into the system by a user or produced through concatenation with such a string

may be passed to a certain sensitive method. Because a program can produce an

unbounded number of strings from a string that a user enters, there can be no bound

on the number of objects that one needs to examine to check this property. This is

different from the finite-state properties that we consider in this thesis. The finite-

state runtime-verification tools allow developers to reason about a bounded number

of objects, for instance a collection c that may not be modified while an iterator i is

used over c, but using these tools it is not possible to express specifications like the

“tainted string” example.

Nevertheless, one can use modern finite-state runtime-verification tools to specify

some specification patterns that go beyond the expressiveness of regular languages.

For instance, the PQL paper [MLL05] also mentions an example of matching method

entry and exit: one may want to check that a resource that was acquired during the

execution of a method m is released before leaving m. In order to get the right behavior

in case m calls itself recursively one needs to match the entry into m with the correct

exit out of m. AspectJ-based runtime-verification systems can often express such

properties by using special pointcuts. A built-in pointcut cflowdepth(i) holds for a

number i if and only if the depth of the current control flow is i. Using such special

27



Safety properties in large-scale Java programs

pointcuts, developers can specify properties that require the matching of method

entry and exit despite the usual limitations of regular languages.

A similar problem arises with the subList property that we mentioned earlier.

Programmers can create an arbitrarily long chain of sub-lists using repeated calls to

subList on objects that a subList call itself returns. Typical finite-state runtime

monitors like the ones generated from tracematches or JavaMOP cannot capture con-

straints over this unbounded number of sub-lists in combination because they provide

programmers with an arbitrarily large but nevertheless fixed number of variables.

Hence, programmers could express the property for up to n sub-lists for any fixed n,

but they cannot write a single monitor specification that captures the property for

every such n.
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Chapter 3

Runtime Monitoring through

history-based aspects

In the last section we discussed a wide range of program properties that may

benefit from automated checking in Java programs. As we argued, one can express

most of these properties as finite-state properties. Finite-state properties, in turn,

can be denoted in a variety of different finite-state specification languages. In the

following, we explain the syntax and semantics of four such languages on which we

focus our attention in this thesis. The four specification languages are:

1. tracematches (a special form of regular expressions),

2. past-time linear temporal logic (PTLTL),

3. future-time linear temporal logic (FTLTL) and

4. extended regular expressions (ERE).

Tracematches [AAC+05] are provided as an extension abc.tm to the AspectBench

Compiler [ACH+05a], while the specification compiler JavaMOP [CR07] provides the

other three specification formalisms. The reader may ask why we support trace-

matches at all, because, after all, we already support a regular-expression-based

syntax through JavaMOP. One reason is that when we developed Clara we first
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implemented Clara as an extension to the tracematch implementation and only

later on generalized it to support other specification languages as well. The second

reason is that although tracematches and the ERE language supported by JavaMOP

have a similar syntax, their semantics show important differences. We will discuss

these differences later in this chapter.

As we show in Figure 3.1, for each of the four specification languages there exists

a specification compiler that generates a runtime monitor in the form of an AspectJ

aspect (and some support classes). Because tracematches are implemented as an

extension to the AspectBench Compiler, this allows the tracematch implementation

to pass the generated aspects and classes that implement the runtime monitor to the

matching and weaving back-end in the form of an abstract syntax tree (AST) and

some auxiliary information that is also kept in memory.

The runtime-verification tool JavaMOP [CR07] implements the other three spec-

ification formalisms that we mentioned. JavaMOP is an open runtime-verification

framework that—by design—allows multiple specification languages to co-exist. One

design goal of JavaMOP is to make the framework independent of the actual AspectJ

compiler that inserts the monitoring aspects into the program under test. Therefore,

JavaMOP generates the monitoring aspects and support classes in the form of .java

text files. In theory, programmers could then weave these files into the program un-

der test using any AspectJ compiler. However, in our setting we focus on the case

shown in Figure 3.1, where programmers use the AspectBench Compiler to perform

the weaving.

It is worth emphasizing that the aspects that both JavaMOP and the tracematch

extension to abc generate are history-based. A history-based aspect contains pieces

of advice that execute conditionally, based on the observed execution history. The

notion of history-based aspects will be important in later chapters of this thesis, as all

the analyses and optimizations that Clara supports can be applied to history-based

aspects in general, no matter where they originate from.

We structured the remainder of this chapter as follows. In the next section we

explain the syntax and semantics of tracematches, and discuss important implementa-

tion details. In Section 3.2 we then discuss the syntax, semantics and implementation
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Figure 3.1: Overview of code-generation and weaving
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of the three finite-state specification languages supported by JavaMOP. Section 3.3

discusses why developers may prefer to use multiple specification languages at all,

opposed to using a single formalism only. Note that this section focuses on the run-

time checking of these specifications—we will explain our static analyses in Chapters

4 and 5. We conclude the chapter in Section 3.4, where we motivate the need for

Clara’s static analyses through experiments.

3.1 Tracematches

Tracematches [AAC+05] allow programmers to define a finite-state specification via

a regular expression. The tracematch runtime then matches this regular expression

against each suffix of the execution trace. Figure 3.2 presents an example program

that we would like to partially verify using tracematches. The program populates a

collection, which the program then passes to the method print for printing. We ex-

plicitly added copy statements at lines 4 and 12 to emphasize the problem of aliasing.

While the introduction of aliases through such copy statements presents no prob-

lem to runtime monitoring, in later chapters of this thesis it will become clear that

aliasing presents a major challenge to static analyses. Like many Java programs, our

example uses iterators and collections. As we showed earlier, these objects come with

implicit contracts defining how they ought to be used. Tracematches can verify such

contracts.

3.1.1 HasNext example tracematch

In Figure 1.2 (page 4) we already showed the HasNext verification tracematch, along

with the automaton that the AspectBench Compiler uses to evaluate the tracematch

at runtime. (Details about this evaluation will follow in Section 3.1.3.) This trace-

match identifies suspicious traces where a program calls i.next() twice in a row

without any intervening call to i.hasNext().

Like all finite-state specifications that we consider in this thesis, a tracematch

definition contains (1) an alphabet of symbols, (2) a specification pattern or formula
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1 void main() {
2 Collection c1 = new LinkedList();

3 c1.add(‘‘something’’); //update(c1)

4 Collection c2 = c1;

5 c2.add(‘‘somethingElse’’); //update(c2)

6 print(c2);

7 }
8

9 void print(Collection c3) {
10 Iterator i1 = c3. iterator (); //create(c3,i1)

11 while(i1.hasNext()) { //hasNext(i1)

12 Iterator i2 = i1;

13 System.out.println(i2 .next()); //next(i2)

14 }
15 }

Figure 3.2: Example program with shadows
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over this alphabet and a (3) body of code. In the case of tracematches, the specification

pattern has the form of a regular expression.

Symbols associate abstract tracematch events with concrete program events. De-

velopers define symbols using pointcuts in the aspect-oriented programming language

AspectJ. In this dissertation we use some terminology from the field of aspect-oriented

programming. In this terminology, a program’s execution consists of a sequence of

joinpoints, events in the program execution that are exposed to aspects and which

aspects can therefore intercept. Aspects intercept joinpoints by describing sets of

joinpoints via pointcuts. A pointcut is a predicate that may (1) match or not match

a given joinpoint, and when it does match a joinpoint, then it may (2) expose infor-

mation to the aspect about the execution context in which the joinpoint occurred. In

the example from Figure 1.2, the pointcut in line 3 matches on calls to the method

hasNext() defined on the Iterator interface (with any return type, denoted by “*”).

At the same time, the pointcut exposes the target object of the call by binding it

to a variable i that the programmer declared in line 1. Most examples in this thesis

use call pointcuts. In principle however, programmers could use any AspectJ point-

cut in their tracematch symbols. These other pointcuts can for instance match on

field reads and writes, exception handling, object initialization, etcetera. Apart from

the target object of a call, pointcuts can also expose the currently executing object

(this) and all argument objects to a call (args). There is also a means to expose a

value returned from a method call using a special “after returning” clause, or an

exception thrown by a method call, using an “after throwing” clause.

The fact that pointcuts, and therefore tracematch symbols, may bind objects is

important to tracematches. In our example, line 1 of the tracematch declares that

symbols in the HasNext tracematch may bind an Iterator i. In general, trace-

matches may also bind primitive values of type int, float, etc.. However, most

examples considered in this thesis will only reason about objects. Lines 2–5 define

symbols hasNext and next, which capture calls to the hasNext() and next() meth-

ods of i. These two symbols establish the alphabet for the tracematch’s regular

expression “next next” at line 7. Any occurrence of the hasNext symbol on a itera-

tor i discards partial matches for i. Line 7 also holds the body of code to be executed
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every time the regular expression matches. In this work, we focus on tracematches for

program verification. Our tracematch bodies report errors, but could instead contain

error-recovery code.

In the following we distinguish the concrete program trace, which consists of all

AspectJ joinpoints (including method calls, field assignments, etc.), from the abstract

event sequence, as seen by tracematches. The abstract sequence consists only of

symbol names and, as we will see later, variable bindings. This sequence therefore

abstracts from AspectJ’s concrete joinpoint model. The tracematch runtime matches

the regular expression against each suffix of this abstract (symbol-based) execution

trace. For instance, symbols map the concrete call sequence

hasNext() next() next() next()

to an event sequence

hasNext next next next,

which the regular expression “next next” matches twice, executing the body at the

second and third next events. abc implements these suffix-matching semantics by

augmenting the initial state(s) of the tracematch automaton with a Σ-loop, as shown

in Figure 1.2, where Σ represents the entire alphabet, i.e., set of symbols, of the

tracematch1.

One feature that tracematches have in common with the specification languages

that JavaMOP supports is that they require consistent variable bindings for a pattern

to match. Our example therefore would only match if two calls to next occur on the

same iterator. (Variable bindings for variables of a primitive type are compared via

equality.) Hence, with iterators i1 and i2, the call sequence we considered earlier

could actually be

i1.hasNext() i2.next() i1.next() i2.next(),

giving an abstract event sequence of

1In the tracematch literature [AAC+05, ATdM07] this loop is often omitted and only implied,
however its suits our comparison to other finite-state formalisms better to render this loop explicitly.
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hasNext(i=o(i1)) next(i=o(i2)) next(i=o(i1)) next(i=o(i2)).

Here and in the remainder of this dissertation, the notation o(x) denotes the ob-

ject referenced by program variable x. Conceptually, tracematches project the event

sequence onto distinct sub-sequences separated by variable bindings. Our example

sequence contains two projections: (1) “hasNext next” for i=o(i1), and (2) “next

next” for i=o(i2). The regular expression does not match projection (1), but it does

match projection (2), and the runtime would therefore execute the tracematch body

only once, at the last call to next(), with the binding i=o(i2).

3.1.2 FailSafeIter example tracematch

Tracematches and the specification languages supported by JavaMOP differ from

many previous approaches in that they enable developers to bind multiple variables2.

We demonstrate this feature with the FailSafeIter tracematch in Figure 3.3: this

tracematch uses multiple variables. The tracematch reports cases where the program

modifies a Collection c while an Iterator i is active on c. The figure also shows

the corresponding automaton. Statically evaluating properties that reason about

multiple objects is particularly challenging, and we will return to this particular

example in the following sections.

3.1.3 Tracematch implementation

In our approach, the programmer expresses verification properties using tracematches,

and then feeds the tracematches and the program under test to the AspectBench Com-

piler (see Figure 3.1, page 31). In the tracematch implementation provided by Allan

et al. [AAC+05], the extension abc.tm to abc first creates an automaton from the

regular expression of each tracematch. Figure 1.2 (page 4) presents the automaton

for HasNext below the tracematch definition. Based on this aspect, the tracematch

2Moreover, not all symbols need to bind all variables; the only requirement is that for each
complete pattern match and each tracematch variable v there must be some matched symbol that
binds v. This guarantees that when the tracematch body executes, for every declared variable v
there will have been some observed event that bound v to a value.
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1 pointcut collection update(Collection c):

2 ( call(∗ java. util . Collection+.add∗(..)) || ... ||
3 call(∗ java. util . Collection+.remove∗(..)) ) && target(c);

4

5 tracematch(Collection c, Iterator i) {
6 sym create after returning(i):

7 call(∗ java. util . Collection+.iterator ()) && target(c);

8 sym next before:

9 call(∗ java. util . Iterator+.next()) && target(i);

10 sym update after: collection update(c);

11

12 create next∗ update+ next { ... } }

q0 q1 q2 q3
create update

next

next

updateΣ

Figure 3.3: FailSafeIter tracematch and automaton: detect updates to a Collection

which is being iterated over.
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implementation generates (1) a history-based AspectJ aspect that modifies the pro-

gram under test to issue the events of interest that are mentioned in the tracematch

definition, and (2) a set of support classes which implement the actual runtime moni-

tor that consumes these program events. In the next section we explain the internals

of the generated AspectJ aspects. We explain important implementation details of

the runtime monitoring code in Section 3.1.5.

The abc extension also emits an implementation of this automaton in the form

of multiple Java classes. Secondly, the extension generates an AspectJ aspect whose

contents are directly based on the symbol definitions contained in the tracematch.

For every symbol in the tracematch definition, abc.tm generates pieces of advice that

trigger appropriate state transitions in the finite automaton when the events that

the symbol describes occur at runtime. In a last step, abc then weaves this aspect

into the program under test, just as it would weave any other AspectJ aspect: abc

identifies instrumentation points, or shadows [MKD03], as described by the aspect’s

pieces of advice (respectively the tracematch’s symbols). The compiler then converts

every piece of advice to an advice method and, at each joinpoint shadow, adds calls to

the appropriate advice methods, which in turn will execute the code that updates the

tracematch state in response to program events. The example program in Figure 3.2

includes shadows as comments. For instance, the comment “//hasNext(i1)” tells the

reader that at this line, the program contains a shadow for the symbol hasNext

that binds tracematch variable i to program variable i1. Hence, when the program

execution reaches this program line, this shadow will issue a hasNext event, which

the runtime monitor will consume. The variable binding for this event will consist of

a mapping {i 7→ o(i1)}.

3.1.4 Aspect generated for a tracematch

The general purpose of the AspectJ aspect that the tracematch implementation gener-

ates is to modify the program under test in such a way that it will automatically notify

the runtime monitor when the events of interest take place at runtime. As Allan et
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al. explain in their primary paper on the tracematch implementation [AAC+05, Sec-

tion 4.7], the generated aspects contain several pieces of advice for every tracematch:

• one piece of “sync” advice,

• one piece of “symbol” advice for every tracematch symbol,

• one piece of “some” advice, and

• one piece of “body” advice for every tracematch symbol that may lead to a

complete match.

Figure 3.4 shows the pieces of advice that the abc extension abc.tm would gen-

erate for the HasNext tracematch from Figure 1.2. The piece of advice in lines 2–5

first synchronizes on a lock unique to the tracematch to assure mutual exclusion of

what follows. Computing a transition is a two-step operation in the tracematch im-

plementation. First, the two pieces of advice in lines 8–10 and 13–15 register the

fact that a hasNext event, respectively a next event, has occurred. These pieces

of advice also store a reference to the object i mentioned in the target pointcut.

Then secondly, the piece of advice in lines 18–21 (Avgustinov et al. [AAC+05] called

this the “some advice”) commits these events, i.e., updates the automaton state ac-

cording to the events that the two pieces of symbol advice registered. The reason

for this two-staged commit computation of transitions is that this way tracematches

can implement a well-defined semantics in cases where symbol definitions overlap,

i.e., two symbols refer to an overlapping set of joinpoints. When this happens, the

“some” advice will have the information that more than one abstract event occurred

at the same joinpoint, and can update the state of the monitor accordingly. Such

a two-staged update protocol is used in other monitoring tools like J-LO [Bod05] as

well. JavaMOP uses a simpler technique that leads to unexpected behavior when

symbol definitions overlap. The last piece of advice, in lines 24–27, iterates through

all the complete matches that the tracematch’s runtime monitor computed, i.e., it

iterates over every iterator iter on which two consecutive next calls occurred, and

executes the tracematch body (line 7 in Figure 1.2) with the tracematch’s variable i

bound to iter.
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1 //”sync advice”

2 before() : call(∗ java. util . Iterator .hasNext()) && target(Iterator) ||
3 call(∗ java. util . Iterator .next()) && target(Iterator) {
4 //1) acquire mutex lock

5 }
6

7 //”symbol advice” for ”hasNext”

8 before(Iterator i) : call(∗ java. util . Iterator .hasNext()) && target(i) {
9 //2a) register transition for ”hasNext” event, exposing target iterator ”i”

10 }
11

12 //”symbol advice” for ”next”

13 before(Iterator i) : call(∗ java. util . Iterator .next()) && target(i) {
14 //2b) register transition for ”next” event, exposing target iterator ”i”

15 }
16

17 //”some advice”

18 before() : call(∗ java. util . Iterator .hasNext()) && target(Iterator) ||
19 call(∗ java. util . Iterator .next()) && target(Iterator) {
20 //3) compute and commit transitions for events registered above; release lock

21 }
22

23 //”body advice” for final symbol ”next”

24 before() : call(∗ java. util . Iterator .next()) && target(Iterator) {
25 //4) for every complete match on an iterator ”iter”:

26 // execute tracematch body with tracematch variable ”i” bound to ”iter”

27 }

Figure 3.4: Aspect generated for HasNext tracematch (simplified)
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All pieces of advice shown here are before advice, because the symbol definitions

in the tracematch from Figure 1.2 are also before symbols. The “sync advice” and

“some advice” need to execute whenever any of the other pieces of advice can execute,

and hence their pointcut is a disjunction of the pointcut definitions of all the symbol

definitions. Because these pieces of advice need no access to the bound variables (here

the iterator i), their pointcuts are “flattened”, i.e., they use this/target and args

pointcuts with types as parameters instead of variables. This speeds up the execution

of these pieces of advice. The same holds for the “body advice”: it also uses a flattened

pointcut. This piece of advice executes the original tracematch body, which is only

necessary for events that may lead to a complete match. By analyzing the regular

expression “next next” of the tracematch definition, the tracematch implementation

can determine that a match can only be completed using a next symbol. Hence, the

pointcut for this piece advice only matches on calls to next, not hasNext.

The listing in Figure 3.5 shows how an AspectJ compiler like abc applies these

aspects to a code sequence “ it .hasNext(); it .next()” in the program under test. Every

code position at which a piece of advice could apply is called a joinpoint shadow,

or shadow for short, in AspectJ terminology [MKD03]. In the statement sequence

mentioned above, there exist two shadows, one for the call to next, one for the

call to hasNext. However, not all of the five generated pieces of advice apply to

both shadows. By the way their pointcuts were generated, the pieces of “sync” and

“some” advice apply to both shadows, but the pieces of “symbol” advice apply to

their respective method calls only. The piece of “body” advice only applies to the

next call. It is important to note that the order in which these pieces of advice apply

and execute at the joinpoint shadow is well-defined: when all pieces of advice are

before advice, then it is the same order in which these pieces of advice are mentioned

in the aspect3. The tracematch implementation takes care to always produce an

ordering that makes the pieces of advice execute in the order required to guarantee

the correct semantics.

3For a complete documentation of AspectJ’s rules on advice ordering see
http://www.eclipse.org/aspectj/doc/released/progguide/semantics-advice.html.
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1 //1) acquire mutex lock

2 //2a) register transition for ”hasNext” event, exposing target iterator ”it”

3 //3) compute and commit transitions for events registered above; release lock

4 it .hasNext();

5

6 //1) acquire mutex lock

7 //2b) register transition for ”next” event, exposing target iterator ”it”

8 //3) compute and commit transitions for events registered above; release lock

9 //4) for every complete match on an iterator ”iter”:

10 // execute tracematch body with tracematch variable ”i” bound to ”iter”

11 it .next();

This Figure shows the way in which an AspectJ compiler would apply the pieces of

advice from Figure 3.4 to the statement sequence “ it .hasNext(); it .next()”.

Figure 3.5: Joinpoint shadows generated by aspect from Figure 3.4

Apart from these aspects, the tracematch implementation also generates a set of

specialized classes for each tracematch, which implement the actual runtime monitor.

The generated aspect directly accesses these classes.

3.1.5 Runtime monitor generated for a tracematch

The classes that make up a tracematch’s runtime monitor implement constraints over

variable bindings [AAC+05]. Constraints are logical formulae which a program can

evaluate to determine whether a given variable-to-object binding holds in the given

state. The aspect associates one constraint with each state. Every constraint is stored

in Disjunctive Normal Form and consists of a set of disjuncts, where each disjunct

associates tracematch variables with objects. For instance, a constraint c = o(l)∧ i =

o(it) on a state q, for tracematch variables c (e.g. a collection) and i (e.g. an iterator)

encodes the information that the combination of the objects that program variables

l and it reference is currently in state q. A negative constraint i 6= o(it) on a state

q would denote that the object referenced by it is not in q.
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The runtime system initially associates true (tt) with the initial automaton state

and false (ff) with all other states, since all objects start at the initial automaton

state. The constraint at the initial state always remains tt because tracematches may

start a match anytime—as we noted earlier, a tracematch is matched against each

suffix of a program’s execution trace. Because the HasNext automaton (Figure 1.2)

has three states (q0, q1, q2), its initial configuration is (tt,ff ,ff).

As the program executes, the woven pieces of advice notify the runtime monitor

as events occur; the monitor in turn updates the constraints accordingly. Figure 3.6

shows the evaluation of the HasNext automaton at the start of the print method

from Figure 3.2 with initial configuration (tt,ff ,ff) (A0). The hasNext shadow at

line 11 has no effect on this configuration, since q0 has no hasNext transition and

all other states contain ff (A1), i.e., no object is in any of these other states. The

assignment that copies i1 to i2 has no effect on the configuration either, since none

of the declared symbols match this statement. Hence, we obtain configuration (A2).

At line 13, the next shadow binds tracematch variable i to the object stored in

i2, denoted o(i2). The next transition from q0 to q1 in the automaton causes the

following update:

c′(q1) ≡ c(q1) ∨ ( c(q0) ∧ i = o(i2) )

≡ ff ∨ ( tt ∧ i = o(i2) )

≡ i = o(i2).

Here c(qi) denotes the original constraint at qi and c′(qi) the constraint after executing

line 13. The update results in the configuration (tt, i = o(i2),ff) (B). Another call

to next() on the same iterator o(i2) would propagate i = o(i2) to the final state

q2, and the runtime would execute the tracematch body. However, the example

program contains a loop, so control flow wraps around to line 11, again issuing the

first event hasNext(i=o(i1)). Because q1 has no hasNext self-loop, object o(i1)

cannot possibly be in q1 after this event, and the tracematch runtime hence conjoins

q1’s constraint with a negative binding i 6= o(i1). Since the incoming configuration
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line 10: Iterator i1 = c3. iterator ();

q0 q1 q2

tt ff ff

next next

Σ

line 11: i1 .hasNext()

q0 q1 q2

tt ff ff

next next

Σ

line 12: Iterator i2 = i1;

q0 q1 q2

tt ff ff

next next

Σ

line 13: System.out.println(i2 .next())

q0 q1 q2

tt i = o(i2) ff

next next

Σ

(A0)

(A1)

(A2)

(B)

<wrap around loop>

Figure 3.6: Effect of print (from Figure 3.2, page 33) on HasNext automaton.
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is (tt, i = o(i2),ff), and because o(i2) = o(i1), we get:

c′(q1) ≡ c(q1) ∧ i 6= o(i1) (3.1)

≡ i = o(i2) ∧ i 6= o(i1) (3.2)

≡ ff , (3.3)

which again yields the configuration (tt,ff ,ff) (A1). Observe that this configuration,

at line 13, has not changed from the previous iteration.

One effect of the static analyses that we present in Chapters 4 and 5 is that the

analyses will allow us to determine situations like the one above, where configurations

loop without reaching a final state, and remove the instrumentation from these pro-

gram points, omitting the unnecessary monitor updates. Note, however, that aliasing

information is critical for any static analysis that approximates the runtime configura-

tions: in the above example, any analysis must know that o(i2) = o(i1) to conclude

that the constraint updates inside the loop have no effect (as in Equation (3.2)).

3.2 Finite-state specification languages in JavaMOP

JavaMOP provides an extensible logic framework for specification formalisms [CR07].

Via logic plug-ins, one can easily add new logics into JavaMOP and then use these

logics within specifications. As we already showed in Figure 3.1, JavaMOP has sev-

eral specification formalisms built in, including extended regular expressions (ERE),

past-time and future-time linear temporal logic (PTLTL/FTLTL), and context-free

grammars. In this dissertation we focus our attention on the finite-state formalisms

ERE, PTLTL and FTLTL. While no formal semantics exists for these formalisms,

their implementation closely follows the semantics of tracematches, and we therefore

restrict our discussion to explaining crucial differences to tracematches.

3.2.1 JavaMOP specifications in general

All JavaMOP specifications follow a general scheme. Figure 3.7 shows a specification

for the HasNext pattern (from Figure 1.2), written in JavaMOP’s ERE syntax. Lines

45



Runtime monitoring through history-based aspects

1–5 in this specification contain certain modifiers that parametrize JavaMOP’s code-

generation scheme for this particular specification. While we cannot go into details

here, [CR07] gives an overview of these modifiers. Important is however the modifier

logic = ERE, which tells JavaMOP that what follows is a specification based on

Extended Regular Expression syntax. Like in tracematches, a JavaMOP specification

has a name and a vector of parameters that can be bound to objects (line 6). In lines

7–8, the specification also contains a set of symbol definitions not much different from

the ones found in tracematches. While the syntax differs slightly from the one chosen

for tracematches, the general intent and semantics of these symbols coincide. The

actual specification pattern is shown in line 9 in the form of a “formula”. Because

the programmer chose the ERE plug-in in line 5, JavaMOP will parse this “formula”

as an extended regular expression, using the respective logic plug-in.

In lines 11–13 follows a so-called “Validation handler”. JavaMOP allows both val-

idation and violation handlers to be present. A validation handler is called whenever

the given pattern is matched, respectively the given formula is fulfilled at the current

state of the execution. A violation handler, on the other hand, is executed whenever

the monitor reaches a violating configuration. JavaMOP generally uses deterministic

monitors that will always have a unique “unproductive” configuration from which no

accepting configuration can be reached any more. This configuration is, by definition,

the violating configuration. In case of the HasNext pattern, the error situation arises

when the pattern matches, i.e., two consecutive next calls were seen, and therefore

the programmer uses a validation handler.

3.2.2 General code-generation scheme in JavaMOP

Similar to the tracematch implementation, JavaMOP generates a set of pieces of

advice from every property specification. However, unlike the tracematch implemen-

tation, JavaMOP generates no “sync” and no “some” advice (see Section 3.1.4). In

other words, JavaMOP generates exactly one piece of advice per symbol definition.

Whenever the program under test reaches a joinpoint that is matched by one of the

generated pieces of advice, that piece of advice triggers a transition in the monitor
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1 sync

2 partial

3 centralized

4 scope = global

5 logic = ERE

6 HasNext(Iterator i){
7 event hasNext<i> : end(call(∗ i.hasNext()));

8 event next<i>: begin(call(∗ i.next()));

9 formula : (hasNext + next)∗ next next

10 }
11 Validation handler{
12 System.err.println(”called next twice in a row!”);

13 }

Figure 3.7: Definition of the HasNext pattern in JavaMOP’s ERE syntax

that is associated with the objects that the advice references. The monitor itself

can have different implementations, depending on the specification formalism that

was used to generate the monitor: even manual monitor implementations [CR07] are

possible. Due to the lack of “sync” and “some” advice, the current implementation

of JavaMOP cannot decide whether two abstract events occur at the same joinpoints

or at different joinpoints (where one precedes the other). This may lead to unex-

pected results in rare cases in which symbol definitions overlap. Nevertheless, from

our experience it seems to be the case that usually symbol definitions within the same

property specification describe disjoint sets of joinpoints, and hence we do not see this

implementation detail of JavaMOP as problematic.

The tracematch implementation associates automaton states with objects via con-

straints. This leads to an indexing scheme where a set of objects (or vector of objects,

stored in a sequence of maps) is associated with a state. Hence, when the tracematch

machinery computes a transition, it retrieves all the bindings for the source state of

that transition and then propagates these bindings onto the transition’s target state,
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the indexing scheme is:

State → 1st bound object → . . .→ n-th bound object

The indexing scheme in JavaMOP is inverted. In JavaMOP the runtime implementa-

tion first indexes on the objects bound at the current joinpoint shadow and for these

objects retrieves a generic monitor instance; the indexing scheme is:

1st bound object → . . .→ n-th bound object → Monitor

This scheme gives JavaMOP additional flexibility when it comes to implementing the

runtime monitor. Because the monitor (and its state) is at the end of the indexing

scheme, JavaMOP can easily substitute the implementation of one monitor for an-

other. In particular, JavaMOP uses simple deterministic finite-state machines for the

implementation of its ERE language, however uses other automata to implement the

other specification languages.

The chosen indexing scheme limits the generality of the current JavaMOP imple-

mentation. The current implementation allows programmers only to define property

specifications in which the first matched symbol binds all the property’s free vari-

ables. This is because, if one of the variables were unbound, JavaMOP could not

insert the monitor in its indexing tree, because it would have to index on a value

that has not yet been bound. Tracematches circumvent this problem through their

constraint logic. The limitation matters in cases like ASyncContainsAll: this prop-

erty first binds one synchronized collection only, and then afterwards the second one.

Hence, JavaMOP cannot currently express this and other similar properties. In re-

cent work [CR09] Chen and Roşu introduce a novel indexing algorithm that solves

this limitation. However, Chen and Roşu do not discuss how this algorithm would

work in combination with weak references. As Avgustinov et al. showed [ATdM07],

a combination of both efficient indexing and weak references is necessary to obtain

an efficient monitor implementation.

Every JavaMOP monitor is just a Java object. When an event of interest occurs

in the program execution, the matching piece of advice first looks up the monitor in

a set of generated maps, and then advances the internal configuration of this monitor
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by calling one of several transition methods that JavaMOP generated on the monitor

class. When the monitor reaches an accepting or violating configuration, the monitor

class executes the associated validation or violation handler.

In the following we describe the three different finite-state specification languages

supported by JavaMOP. Because the general indexing scheme is always the same,

we restrict ourselves to explaining the nature of the monitor classes that JavaMOP

generates when it comes to explaining the implementation.

3.2.3 Extended regular expressions (ERE)

Regular expressions were first described by Kleene in 1956 [Kle56] who used them to

describe event patterns in neural networks. Regular expressions use concatenation,

alternation and the Kleene-star operator to describe regular languages in a purely

positive way: as a regular expression grows, the language that the expression describes

grows as well. Sometimes it can be convenient to express regular languages as the

inverse or difference with respect to some other regular language. Extended regular

expressions hence add negation and intersection operations. While this makes certain

regular expression more concise, it does not add to their expressiveness [Lin01]. We

already showed an example of the Extended Regular Expression syntax in Figure 3.7.

A general description of the syntax can be found on the JavaMOP website4.

The monitor that JavaMOP generates from an extended regular expression is a

deterministic finite-state machine that is implemented as a simple Java class with a

single integer field that holds the number of the current state. The transition methods

generated by JavaMOP simply update this integer according to a transition table that

is computed from the original regular expression. The monitor executes the validation

handler when it switches to an accepting state, and it executes the violation handler

when it moves into an unproductive state from which no final state can be reached

any more.

Unlike tracematches, the ERE syntax in JavaMOP does not match the regular

expression against each suffix of the execution trace. A tracematch would match the

4Descr. of ERE syntax: http://fsl.cs.uiuc.edu/index.php/ERE_Plugin_Input_Syntax
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regular expression “a a” twice on an input trace “a a a”: once after the second a and

once after the third. The semantics of the ERE plug-in of JavaMOP are however that

the expression is matched against the entire trace. Hence, JavaMOP would execute

the validation handler when reading the second a of the trace “a a a” (because “a

a” is in the language) and it would execute its violation handler when reading the

third a, because one cannot extend the trace “a a a” so that the extended trace is

in the regular language described by the expression “a a”. Due to this semantics,

the automata that JavaMOP uses to evaluate an extended regular expression have no

Σ-self-loop on the initial state (unlike the ones used for tracematches, see Figure 1.2).

As Chen and Roşu show [CR07], there are cases where the tracematch semantics can

be more convenient, and cases where the ERE semantics chosen by JavaMOP can be

more convenient. Clara hence supports both formalisms.

In general, the rule for the execution of validation and violation handlers are as

follows. The validation handler is executed after every event that extends the abstract

execution trace in such a way that this execution trace is a word in the language that

regular expression describes. The violation handler executes exactly after each other

monitored event, e.g. after every single event that extends the abstract execution

trace in such a way that this execution trace is not a word in the language that the

regular expression describes.

3.2.4 Future-time linear temporal logic (FTLTL)

Future-time linear temporal logic [Pnu77] (FTLTL, or often just LTL for short) is a

fragment of the tree logic CTL∗ [EH86] that reasons about a single path in a labeled

transition system. Hence, the model over which an LTL formula is evaluated is a

single finite or infinite sequence of position where each position is labeled with a

(possibly empty) set of atomic propositions. LTL uses temporal operators such as

Finally, Globally, Until, and Next, as well as the usual Boolean operators to express

formulae that talk about the future (or remainder) of a path, as seen from a “current

position”. In JavaMOP, pointcuts are treated as propositions. JavaMOP interprets

the execution trace as a path of finite length where each node of this path is a
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joinpoint that is matched by at least one of the formula’s symbols. For each pointcut

that matches at such a node, JavaMOP assumes a proposition at this node with

the symbol’s name. Because, as mentioned earlier, multiple symbols can match the

same joinpoint, a node can hold multiple propositions; and because FTLTL is a

propositional logic, an FTLTL formula can distinguish all the different situations of

which propositions do or do not hold at a given node.

A complete description of the input syntax for JavaMOP’s FTLTL plug-in can

be found on the JavaMOP website5. To give an example, an FTLTL formula for our

HasNext pattern (Figure 1.2) looks as follows:

next /\ o next

Here, o is the “next” operator (often called X) from LTL. Therefore the formula holds

if the “next” symbol occurs next after having already seen another occurrence of the

“next” symbol.

JavaMOP’s FTLTL plug-in outputs a runtime monitor in the form of a binary

transition tree finite-state machine (BTT-FSM) [CR03]. A BTT-FSM is a state

machine in which each state holds a Binary Transition Tree, i.e., a Boolean function.

The BTT-FSM determines the target state of a transition by computing this Boolean

function when an event is received.

FTLTL formulae are traditionally evaluated over a path of infinite length. An

execution trace of a terminating execution is always of finite length, however. Some

LTL-based runtime-verification tools like J-LO [Bod05] have hence defined a special-

ized LTL semantics over finite traces. Researchers even developed special four-valued

variants of LTL [BLS07] which allow not only for the answers “validated” or “vio-

lated” but also “possibly validated in the future” and “possibly violated in the future”.

The developers of JavaMOP however opted, to stick to the standard LTL semantic

for finite traces. To make this work, one has to argue about all possible ways in

which the finite execution trace could be extended, had the execution of the program

not been interrupted or terminated. JavaMOP consequently assumes a formula as

violated only when the execution seen so far (1) violates the formula and (2) cannot

5Descr. FTLTL syntax: http://fsl.cs.uiuc.edu/index.php/FTLTL_Plugin_Input_Syntax
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be extended in any way such that the formula would be fulfilled again. It executes

the violation handler when such a violation is detected. Conversely, it executes the

validation handler when a formula is (1) validated and (2) no extension of the trace

can falsify the formula again. For example, consider the formula “after a never b”.

When reading a trace “a b”, this trace cannot be extended so that the formula is

fulfilled again. For other formulae, this can be different. Consider the formula “after

every a follows a b”. This formula is violated on the trace “a”, however it holds over

the extended trace “a b”. In fact, with the FTLTL semantics that JavaMOP uses,

this kind of formula can never be be validated nor violated on any execution: For

any execution trace ending in the symbol b (and hence making the formula hold),

this trace can be extended with another a, falsifying the formula. Conversely, any

trace ending with an unmatched a can be extended with an additional b, making the

formula hold again.

3.2.5 Past-time linear temporal logic (PTLTL)

PTLTL [Pnu77] is similar to FTLTL in the sense that it is a temporal logic that is

evaluated over the same paths as FTLTL. However, as the name suggests, PTLTL

comes with past-time temporal operators, such as Previously (at the preceding posi-

tion), Since, “at some point in the past” and “always in the past”.

For PTLTL as well, a complete description of the plug-in’s input syntax can be

found on the JavaMOP website6. A possible specification of the HasNext example in

PTLTL looks as follows:

next -> (*) hasNext

Here, (*) is the “previously” operator. Hence, the formula states that when “next”

occurs on an iterator then “hasNext” must have been the previous operation. This

specification would be used in combination with a violation handler: we want to

notify the programmer of an error when the formula is violated, i.e., when next was

called and the previous event was not hasNext.

6Descr. PTLTL syntax: http://fsl.cs.uiuc.edu/index.php/PTLTL_Plugin_Input_Syntax
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Unlike the ERE plug-in and the FTLTL plug-in, the PTLTL plug-in in JavaMOP

generates a monitor which has a vector of bits as its internal state [CR03].

The semantics of JavaMOP with respect to the execution of validation and vi-

olation handlers in the case of PTLTL follows the one from ERE, rather than the

FTLTL semantics. The validation handler is executed after every event that extends

the abstract execution trace in such a way that this execution trace validates the

formula. The violation handler executes exactly after each other monitored event,

e.g. after every single event that extends the abstract execution trace in such a way

that this execution trace violates the formula.

3.3 Why multiple specification formalisms?

The JavaMOP specification compiler supports multiple finite-state specification for-

malisms, and likewise in the case of Clara we took special care that the approach

would not be restricted to tracematches and regular expressions only, but would also

support the static analysis of programs with respect to specifications written in other

finite-state specification languages. However, what is the motivation for this general-

ity? After all, one could argue, every finite-state specification is expressible in every

finite-state specification language—by definition. While this is true, it holds that

certain properties can be expressed more easily and more direct by some formalism

while other properties are more easily expressed by another. In the following we give

examples of such properties.

3.3.1 Cases that favour PTLTL over ERE & tracematches

The HasNext pattern is a good example for why it may be useful to have multiple

specification formalisms. Above we mentioned a possible specification for the pattern

in PTLTL, next -> (*) hasNext. Note that this specification also captures the case

where next is called on a newly constructed iterator object. After all, also in this case

next is called and the previous event was not hasNext, because there is no previous
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event. This semantics benefits the programmer in this case, as the formula correctly

captures this additional error situation.

It is possible to capture the same property using the ERE pattern next \/

(hasNext next)* next next. As the reader can see, this pattern would be much

more awkward to write and harder to read and understand. The problem is that a

regular expression can only make positive statements about events, but not negative

ones, i.e., a regular expression cannot explicitly require an event not to occur. Hence

the regular expression needs to enumerate all the event sequences that may lead to

an error state.

3.3.2 Cases that favour FTLTL over ERE & tracematches

In other cases, FTLTL may be the formalism of choice. This is particularly true when

one wants to specify the absence of events on the remainder (i.e., in the future) of

the execution trace. Consider a specification which defines that a file handle that

is opened should also be closed. This kind of specification is a bounded liveness

property, i.e., it requires some event to occur eventually (or in other words, the

program to be alive). We can specify this rule in FTLTL as open -> o<>close,

which says that when open holds at some execution state, from the next (o) state

on at some point (<>) close will hold. In combination with a violation handler,

this specification would aid the programmer in detecting erroneous situations where

file handles are not properly closed. As above, this form of specification is very

direct, and it would be hard to express this property with a tracematch. Again we

would have to extend the alphabet, this time with an artificial end symbol shutdown

that models program shutdown. The regular expression open shutdown expresses

situations in which a handle is opened and then the program shuts down without the

handle being closed in between. Again, this kind of specification is very indirect, plus

it is actually non-trivial to instrument a Java program in such a way that it will issue

a shutdown event before it shuts down. Runtime-verification tools that specialize on

LTL, like J-LO [Bod05], use special “shutdown hooks”7 to notify the programmer

7Shutdown hooks: http://java.sun.com/j2se/1.5.0/docs/guide/lang/hook-design.html
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about formulae that become false at the end of an execution trace.

3.3.3 Cases that favour ERE & tracematches over LTL

A large set of specifications is nevertheless expressible as a regular expression, and in

many of these cases, a regular expression is also most concise. For example consider

the regular expression “close write” which, as we assume here, expresses that it is

an error to close a file handle and then later on write to the same handle. This spec-

ification is very direct, and in particular no temporal operators are required, as the

temporal operator “concatenation” is implicit in regular expressions: simply by plac-

ing the word write behind the word close we can specify that write has to follows

close temporally for a property violation to occur. In FTLTL and PTLTL, temporal

operators are required. A possible PTLTL formula would be “write -> <*>!close”

(when we see a write then before we saw no close), a FTLTL formula would be

“close -> o[]!write” (after close never write). Although both formulae are still

quite direct, they do require explicit temporal operators. Especially in rare cases

where specification refers to three or more events, a regular expression can be more

concise, because nested PTLTL and FTLTL formulae quickly become hard to reason

about.

3.3.4 Tracematches vs. ERE in JavaMOP

In their primary paper on JavaMOP, Chen and Roşu provide a detailed discussion of

the difference in semantics between tracematches and ERE as they are implemented

in JavaMOP—we here give a brief overview. As mentioned, tracematches match

their regular expression against each suffix of the execution trace, while JavaMOP

always matches the expression against the entire trace. Both can have advantages

and disadvantages. As Chen and Roşu mention, using tracematches a programmer

may easily profile the number of files that are opened and then closed using the

simple expression “open close”. In JavaMOP such a pattern would only match the

first sequence of opening and closing a particular file. If the same file was opened

and closed again, JavaMOP would miss this match. A programmer would have to
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use the more complex expression “(open+close)* open close” to achieve the same

semantics as tracematches. Using tracematches, on the other hand, it is more complex

to match on the first occurrence of an event on the execution trace. A tracematch

with the simple expression “open” would match whenever any file is opened, while its

JavaMOP equivalent would only match the first such event. A programmer that uses

tracematches can avoid this problem by introducing an artificial start symbol that

matches the program start. Because the symbol start is guaranteed to occur only

once on the program’s execution trace, the expression “start open” then matches

only at the first call to open (on any particular file).

3.3.5 Discussion & Conclusion

As we showed, PTLTL is particularly useful when it comes to specifying the absence

of certain events in the past. The past of a single Java object begins when the object

is constructed, and programmers can refer to this point of construction implicitly in a

PTLTL formula, while in FTLTL or ERE/tracematches, the programmer would have

to make this object-creation event explicit. FTLTL is more convenient when it comes

to specifying “liveness properties” that require that some event should occur before

the program terminates. Similar to the construction of an object being implicit in

PTLTL, the logic FTLTL provides the end of a program (and hence the definite de-

struction of a Java object) as an implicit event, which makes such properties easier to

express in FTLTL. Last but not least, ERE or tracematches are most convenient when

it comes to specifications that refer to many events or that can easily be expressed as

positive statements about event sequences. Regular expressions are more convenient

and easy to write and read than PTLTL or FTLTL formulae in such cases because

the concatenation operation in regular expression implies a temporal ordering with-

out increasing the nesting depth of the formula: while any LTL formula reasoning

about three events has to have a nesting depth of at least three, in regular expres-

sion the nesting depth does not necessarily increase as events are added. Whether

to choose ERE or tracematches in the particular situation depends on the particular

finite-state property. If matching on repetitive event sequences, tracematches with its
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suffix-matching semantics can be more convenient; when seeking to match the very

first occurance of an event, the JavaMOP’s ERE language is the language of choice.

We therefore conclude that it is beneficial to support a range of finite-state speci-

fication formalisms, as they give developers the opportunity to express a property in

the formalism that they see most fit. We designed Clara to support any finite-state

formalism, hence giving the developer a large degree of freedom.

3.4 Need for static analyses and optimizations

In this section we will motivate the need for the static analyses and optimizations that

we will present in the next chapters. Throughout this dissertation we will consider

two possibilities of verifying that a program satisfies a finite-state property: statically

and through runtime verification. When a programmer weaves a monitoring aspect

into her program under test, the AspectJ compiler emits a list of source code locations

at which runtime events of interest could occur—the joinpoint shadows. After the

compilation has finished, the programmer could in principle inspect all joinpoint

shadows manually to see whether the shadows may indeed contribute to a property

violation. However, this is only a viable approach if only a handful of shadows exist.

The second approach is to not consider the joinpoint shadows at all, but to instead

run the woven program and see if it reports a property violation at runtime. This

approach requires good test coverage and, equally important, requires the monitoring

instrumentation to induce only a low runtime overhead. In our experiments we applied

a number of monitoring aspects to a number of programs and then sought to determine

whether either approach, static inspection or runtime verification would be possible

for any combination of aspect and program.

3.4.1 Experimental setup

For our experiments we first wrote a set of twelve tracematch specifications for dif-

ferent finite-state properties regarding collections and streams in the Java Runtime

Library. We already explained all of these properties in Section 2.2. Table 3.1 gives
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brief descriptions for each of these properties. We selected properties of the Java Run-

time Library because this allowed us to find a large set of programs to which these

properties are of interest. Although this selection of properties induces a bias to our

results, we believe that this bias is minor: we have no reason to believe that the prop-

erties of other application interfaces would be in any way more complex than those

of the Java Runtime Library, especially in light of the study by Dwyer et al. [DAC99]

(see Chapter 2). In fact we did study other application interfaces but this study did

not yield any results that we felt worthwhile mentioning in this dissertation.

Although one can apply Clara to any AspectJ-based runtime monitor, we de-

cided to restrict our experiments to monitors generated from tracematch specifica-

tions. In particular, we will not consider JavaMOP-based specifications. In previous

work [BCR09] we showed that Clara always produces equivalent analysis results

for equivalent runtime monitors, independent of the specification formalism that the

programmer used to define these monitors. Hence there is little benefit from re-

doing all the experiments again with equivalent JavaMOP-based specifications. Note

that the monitors that abc generates from tracematches are already heavily opti-

mized [ATdM07] to induce a minimal runtime overhead. Therefore our baseline is by

no means a näıve baseline. All our tracematch definitions are available for download

at http://www.bodden.de/clara/.

Note that our tracematches contain no recovery code or even notification code of

any kind: the bodies of the tracematches are empty. This is for two reasons. Firstly,

the content of the bodies would only impact our static-analysis results if the body

called back into the program under test. This is unlikely for a monitoring aspect.

Hence, we can just as well assume that the body is empty. The content of the body

does however have an impact on the runtime overhead of the runtime monitor. We

are interested in measuring the time that the monitor has to consume to update

its internal state based on the events that it monitors. By using empty tracematch

bodies we can make sure that we measure only this overhead, and not any additional

overhead that error-reporting or recovery code would cause.

For our benchmarks we used version 2006-10-MR2 of the DaCapo benchmark
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property name description

ASyncContainsAll synchronize on d when calling c.containsAll(d)) for synchro-

nized collections c and d

ASyncIterC only iterate a synchronized collection c when owning a lock on c

ASyncIterM only iterate a synchronized map m when owning a lock on m

FailSafeEnum do not update a vector while iterating over it

FailSafeEnumHT do not update a hash table while iterating over its elements or

keys

FailSafeIter do not update a collection while iterating over it

FailSafeIterMap do not update a map while iterating over its keys or values

HasNextElem always call hasMoreElements before calling nextElement on an

Enumeration

HasNext always call hasNext before calling next on an Iterator

LeakingSync only access a synchronized collection using its synchronized wrap-

per

Reader do not use a Reader after its InputStream was closed

Writer do not use a Writer after its OutputStream was closed

Table 3.1: Monitored specifications for classes of the Java Runtime Library; available

at http://www.bodden.de/clara/
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suite [BGH+06]. The suite contains eleven different workloads that exercise ten dif-

ferent programs. In Table 3.2 we give brief descriptions of the benchmarks (taken

from [BGH+06]) and also state the number of methods that they contain. Note that,

on average, a DaCapo benchmark has about four times as many methods and about

four times as much code as one of the well-known SPEC benchmarks [Coo01,Coo99].

The benchmarks hsqldb, lusearch and xalan are multi-threaded. The benchmarks

luindex and lusearch are two different workloads that produce two different program

runs of the same program lucene. All benchmarks use dynamic class loading, and the

benchmark jython even generates classes dynamically which it then executes.

We used the AspectBench Compiler 8 to weave any of the twelve aspects separately

into each one of the ten DaCapo programs. By default, the compiler weaves only

into the application itself, not into the Java Runtime Library. Hence the runtime

monitors that we use do, for example, monitor events where the benchmark program

uses collections and streams of the Java Runtime Library, but it does not monitor

events where these objects are used inside the Java Runtime Library. As a baseline,

we also compiled every benchmark program with the AspectBench Compiler but with

no aspects present.

3.4.2 Number of shadows after weaving

Table 3.3 shows for every tracematch/benchmark combination the number of shadows

that the woven program for this combination contains. Note that the benchmarks

luindex and lusearch share the same code base. Therefore, the Quick Check produces

identical numbers for these two benchmarks. As the table shows, the compilation

process produced some shadows in all but eleven of the 120 combinations. Moreover,

the number of shadows is usually quite large. 100 cases result in more than 10

shadows, and 88 cases result in even more than 50 shadows; on average the compilation

results in 326 shadows spread over 82 methods. Therefore, in all but a few lucky cases

it would be impractical for a programmer to investigate all these program points

8Clara is available as part of the AspectBench Compiler (abc). For our experiments we used
Subversion revision 7508 of abc, in combination with Subversion revision 3326 of Soot.
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benchmark classes methods description

antlr 224 2972 parses one or more grammar files and gen-

erates a parser and lexical analyzer for

each

bloat 263 3986 performs a number of optimizations and

analysis on Java bytecode files

chart 512 7187 uses JFreeChart to plot a number of com-

plex line graphs and renders them as PDF

eclipse 344 3978 executes some of the (non-gui) JDT per-

formance tests for the Eclipse IDE

fop 967 6889 takes an XSL-FO file, parses it and for-

mats it, generating a PDF file

hsqldb 385 5859 executes a JDBCbench-like in-memory

benchmark, executing a number of trans-

actions against a model of a banking ap-

plication

jython 508 7240 interprets a the pybench Python bench-

mark

luindex 311 3013 uses lucene to index a set of documents;

the works of Shakespeare and the King

James Bible

lusearch 311 3013 uses lucene to do a text search of keywords

over a corpus of data comprising the works

of Shakespeare and the King James Bible

pmd 530 4785 analyzes a set of Java classes for a range

of source code problems

xalan 562 6463 transforms XML documents into HTML

Table 3.2: The DaCapo benchmarks, taken from http://dacapobench.org/
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antlr bloat chart eclipse fop

ASyncContainsAll 0 71 6 10 0

ASyncIterC 0 1621 498 214 146

ASyncIterM 0 1684 507 236 176

FailSafeEnumHT 133 102 44 217 205

FailSafeEnum 76 3 1 117 18

FailSafeIter 23 1394 510 391 288

FailSafeIterMap 130 1180 374 548 1374

HasNextElem 117 2 0 89 10

HasNext 0 849 248 109 72

LeakingSync 170 1994 920 1325 2347

Reader 50 7 65 218 102

Writer 171 563 70 1045 429

luindex
hsqldb jython

lusearch
pmd xalan

ASyncContainsAll 0 31 18 10 0

ASyncIterC 33 128 149 671 0

ASyncIterM 39 138 152 718 0

FailSafeEnumHT 114 153 37 100 319

FailSafeEnum 120 110 61 21 222

FailSafeIter 112 253 217 546 158

FailSafeIterMap 252 250 136 583 540

HasNextElem 53 64 22 6 63

HasNext 16 63 74 346 0

LeakingSync 528 1082 629 986 1005

Reader 1216 139 226 102 106

Writer 1378 462 146 62 751

Table 3.3: Number of shadows right after weaving
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manually to see if these points contribute to a property violation. It may, however,

be possible to monitor these programs for violations at runtime.

3.4.3 Runtime overhead through monitoring code

To determine the runtime overhead that the monitoring aspects cause, we first exe-

cuted the un-instrumented programs to establish a baseline. We used the standard

workload size of the DaCapo harness. The DaCapo benchmark suite comes with a

-converge option, that tries to make the determined runtime values better compa-

rable. When the option is enabled, then DaCapo runs the benchmark in question

multiple times until the relative standard deviation of the determined runtimes drops

below 3%. DaCapo then assumes that the benchmark has reached a “stable state”,

e.g. that the virtual machine has loaded and just-in-time compiled all of the bench-

mark’s methods. DaCapo then runs the benchmark one more time and reports the

runtime of this last run. In the past we have experienced problems with this approach:

if, coincidentally, the last run is extraordinarily better or worse than the previous runs

then the runtime that DaCapo reports will deviate from the “normal” runtime. We

hence modified the harness so that it would instead proceed as follows.

DaCapo first runs the benchmark once without collecting any timing information—

a warm-up run. Then DaCapo re-runs the benchmark multiple times, again until the

relative standard deviation of the determined runtimes drops below 3% (but at least

5 times and at most 20 times). Then we report the mean of these runs. This gives us

the advantage that the number that we report originates from a sample of runs from

which we know that this sample deviated no more than 3%.

It is important to note that we modified the monitor definitions slightly, to cope

with the fact that we re-run the benchmark without shutting down the virtual machine

between two consecutive runs. Normally, a runtime monitor would keep on monitoring

until the virtual machine shuts down, and hence it would accumulate internal state

over multiple runs of the test harness, potentially leading to a progressive slowdown,

as the monitor needs to store the state for more objects in each run. We hence

modified the property definitions so that the monitor would be reset whenever the
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test harness re-executes. We added a new symbol newDaCapoRun which matches at the

beginning of the method that triggers a new benchmark run. We did not modify the

tracematches’ regular expressions. Hence, by the way tracematches are implemented,

reading the symbol newDaCapoRun will automatically cause the implementation to

delete all monitoring state, effectively resetting the monitor.

We executed the benchmarks using the HotSpot Client VM (build 1.4.2 12-b03,

mixed mode), with its standard heap size on a machine with an AMD Athlon 64 X2

Dual Core Processor 3800+ running Ubuntu 7.10 with kernel version 2.6.22-14 and

4GB RAM. Then we executed, in the very same way, the programs that have had the

monitoring aspects woven into them.

Table 3.4 shows for every benchmark the baseline execution time (with no as-

pect present, in milliseconds), and for every monitoring aspect the relative runtime

overhead that this aspect causes, in percent. For instance, a value of 20 means that

the presence of the monitoring aspect caused the instrumented program to run 20%

longer than the un-instrumented baseline version of the program. We do not show

values that are within the 3% error margin. The value “>1h” means that a single

benchmark run took longer than one hour. In this case we aborted the run after this

first hour.

As the results show, runtime verification is indeed a viable solution for many of the

benchmark/property configurations that we consider. The vast majority of test runs

do not expose any perceivable overhead. This is true even for benchmark/property

combinations that have a high number of shadows. For instance, chart-ASyncIterM

has 507 shadows but shows no perceivable runtime overhead. This is because the

specific test run does not exercise the instrumented collections and iterators a lot.

Nevertheless, there are some cases for which the overhead is high. In about one

quarter of our test runs the overhead was at least 10%, and in five cases the overhead

was so high that even a single execution of the benchmark took longer than one

hour. Such overheads clearly prevent programmers from using runtime verification in

these particular cases. In the next sections we will show that our static analyses can

significantly lower and sometimes completely eliminate the runtime overhead in the

majority of cases.
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antlr bloat chart eclipse fop

baseline (ms) 4079 9276 14666 44725 2562

ASyncContainsAll -4 -4

ASyncIterC 140 5

ASyncIterM 139

FailSafeEnumHT 10

FailSafeEnum -4

FailSafeIter >1h 8 14

FailSafeIterMap >1h 7

HasNextElem

HasNext 329

LeakingSync 9 163 91 209

Reader 30218

Writer 37862 >1h 5

hsqldb jython luindex lusearch pmd xalan

baseline (ms) 12235 11105 17144 13940 13052 13424

ASyncContainsAll

ASyncIterC 28

ASyncIterM 35

FailSafeEnumHT >1h 32

FailSafeEnum 30 18

FailSafeIter 5 20 2811

FailSafeIterMap 13 5 >1h

HasNextElem 12

HasNext 70

LeakingSync >1h 34 365 16

Reader 77

Writer

Table 3.4: Runtime overheads with static analyses disabled; baseline in milliseconds,

rest in percent, values within the 3% error margin omitted, values of at least 10% in

boldface
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Chapter 4

Flow-insensitive optimizations through

Dependent Advice

As we showed in the last chapter, although runtime verification can be a powerful

tool for bug detection, it can slow down programs in many situations. In addition,

because runtime verification only observes a single program execution at a time, it can

virtually never guarantee that a program fulfils a crucial property on every execution.

Hence, in this chapter and the following one, we explain the core principles of Clara,

our framework for evaluating runtime monitors ahead of time, i.e. at compile time.

Using the analyses in Clara, programmers can often prove the program under test

correct with respect to the property in question. When this is not the case, the

analyses facilitate optimizations that remove instrumentation from program points at

which this instrumentation is unnecessary because the finite-state property cannot be

violated through these points. By applying our analyses, programmers can produce

a partially instrumented program that is usually much more efficient than a fully

instrumented program would have been.

History-based aspects. The analyses and optimizations in Clara exploit the fact

that the aspects used for runtime monitoring are almost exclusively history-based

aspects. A history-based aspect executes its pieces of advice conditionally, based on
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the observed execution history. Figure 4.1 shows a simplified example of a history-

based aspect, the “ConnectionClosed” aspect. This aspect monitors the events of

disconnecting and reconnecting a connection c, as well as writing data to c. Note

that almost all the aspect code is concerned with bookkeeping internal state. In the

example, the error message at line 17 implements the only functionality that is visible

outside the aspect. As we and others showed, this bookkeeping can induce a large

runtime overhead [ATdM07,BHL07,CR07,MLL05,GOA05].

Inter-dependent pieces of advice. It is important to note that the example aspect

prints the error only if both the advice “disconn” and “write” execute on the same

connection c. In addition, the advice “reconn” only has to execute on connections

that the program under test both disconnects and writes to at some point in time.

Compilers could use this important information to apply powerful optimizations: For

example, one does not have to monitor “disconn(c)” if the connection c is never writ-

ten to. Unfortunately a programmer cannot express this crucial domain knowledge

in plain AspectJ syntax, and also specification compilers like abc (for tracematches)

and JavaMOP have no means of expressing this information in plain AspectJ. To

make things worse, it would be very hard for an AspectJ compiler to re-construct

this knowledge solely based on the aspect code. After all, specification compilers

generate code that is very much specialized to the specified property. Such code can

become quite complex and the lack of additional knowledge about the specification

impedes crucial optimizations.

Preserving dependency information through annotations. In the remainder of

this chapter we explain how we overcome this problem with dependent advice. A de-

pendent advice contains dependency annotations to encode crucial domain knowledge:

a dependent advice needs to execute only when its dependencies are fulfilled. For the

“connection” example from Figure 4.1, a programmer could add the annotation

dependency{ strong disconn, write; weak reconn; }.
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1 aspect ConnectionClosed {
2 Set closed = new WeakIdentityHashSet();

3

4 after /∗disconn∗/ (Connection c) returning:

5 call(∗ Connection.disconnect()) && target(c) {
6 closed .add(c);

7 }
8

9 after /∗reconn∗/ (Connection c) returning:

10 call(∗ Connection.reconnect()) && target(c) {
11 closed .remove(c);

12 }
13

14 after /∗write∗/ (Connection c) returning:

15 call(∗ Connection.write (..)) && target(c) {
16 if (closed .contains(c))

17 error(”May not write to ”+c+”, as it is closed !”);

18 }
19 }

Figure 4.1: ConnectionClosed monitoring aspect
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Flow-insensitive optimizations through Dependent Advice

This annotation conveys the information that the execution of the advice “disconn”

and “write” both depend on one another, and in addition the execution of “reconn”

depends on both “disconn” and “write” executing at some point in time1.

Programmers can use dependent advice to document design intent or to aid static

verification. For instance, dependencies can encode forbidden combinations of events

and static whole-program analyses, like ours, can prove that such combinations can-

not occur. In addition, however, programmers can use dependent advice to aid an

efficient implementation of history-based aspects in general, and runtime monitors in

particular: the flow-insensitive whole-program analysis that we present in this chap-

ter removes dispatch code for dependent advice from program locations at which the

advice’s dependencies cannot be fulfilled. The results of our evaluation show that the

use of dependent advice can yield significant speedups at runtime, and it often allows

programs to statically prove that their history-based aspect can never reach an error

state. That way, dependent advice can facilitate static program verification.

However, writing dependency annotations by hand can be error-prone and time-

consuming. Therefore it would be beneficial if tools could generate these annotations

automatically. Fortunately, as we discussed earlier in this dissertation, many people

do not write history-based aspects by hand either: researchers have proposed several

tools [AAC+05, CR07, MH06, KLM06] that generate history-based AspectJ aspects

automatically, from formal specifications from runtime verification or model-driven

development. As we show in this dissertation, these specifications convey enough do-

main knowledge to generate dependent advice automatically. We modified abc to gen-

erate dependent advice from tracematches. Likewise, Feng Chen modified JavaMOP

to generate dependent advice from specifications that express monitoring properties

using past-time and future-time linear temporal logic and regular expressions.

Annotating aspects, not programs. It is important to note that the annotations

we present here are annotations to the monitoring aspects, not to the (potentially

1The names “strong” and “weak” were suggested by Patrick Lam, as an analogy to strongly
and weakly connected graphs. This analogy will become clearer when we discuss the annotations’
semantics.
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4.1. Syntax and semantics of dependent advice

much larger) program under test. Moreover, we will show how finite-state monitoring

tools can generate these annotations automatically. Hence, the annotations should

merely be seen as an intermediate language to communicate specification knowledge

to Clara. While programmers could in principle write these annotations manually,

for instance to statically analyze programs based on hand-written runtime monitors,

we do not see this as the primary application of our annotation language.

Chapter organization. In the next section we explain dependent advice, their syn-

tax and semantics. We present our implementation of dependent advice in Section

4.2, and in Section 4.3 we explain an algorithm to generate dependent advice from

any finite-state based monitor specification. In Appendix A, we also prove this al-

gorithm correct and “stable”: it generates equivalent dependency annotations for

equivalent finite-state specifications, even if these specifications are written in dif-

ferent formalisms. Section 4.4 demonstrates, through experiments, that the use of

dependent advice speeds up runtime monitoring and can, in many cases, help prove

already at compile time that programs fulfil the given finite-state property.

The annotations presented in this chapter encode flow-insensitive information,

and consequently we resolve the dependencies that the annotations encode through

a flow-insensitive analysis. In Chapter 5 we will explain how to lift both annotations

and analyses to a flow-sensitive level.

4.1 Syntax and semantics of dependent advice

In this section we describe dependent advice. We start by explaining their syntax,

first in a short form and then in a more verbose form. Then we explain how to

type-check dependent advice and give a matching semantics.

4.1.1 Syntax

Dependent advice are a backwards-compatible AspectJ language extension that com-

prise the following syntactic changes (Figure 4.2 shows the complete Syntax in EBNF,
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Flow-insensitive optimizations through Dependent Advice

as a syntactic extension to AspectJ.):

• Pieces of advice can have a dependent modifier,

• every dependent advice is given a name, and

• an aspect can hold a set of dependency declarations.

A dependency declaration has the following form:

dependency{
strong s1, . . . , sn ;

weak w1, . . . , wm;

}

Here s1 through sn, and w1 through wm, are advice references : names of dependent

advice declared in the same aspect as the dependency declaration. Figure 4.3 shows

how to use dependent advice for ConnectionClosed.

Informally, one can describe the meaning of the dependency annotation

dependency{ strong disconn, write; weak reconn; } by the dependency graph that we

show in Figure 4.4. The declaration of strong advice references strong disconn, write;

defines that the two pieces of advice form a strongly connected component (SCC) in

this dependency graph; in other words, both pieces of advice depend on each other.

The additional declaration of weak reconn; defines that reconn is weakly connected

to this SCC: it depends on both disconn and write, but these pieces of advice do not

depend on reconn. The meaning of an edge a→ b in this graph is that a only needs

to execute if itself and b have a chance of executing. Hence, in the ConnectionClosed

example, the dependency states that if disconn was to execute on a Connection c

for which it is known that write never occurs on c then the execution of disconn

can safely be omitted—and the other way around. In addition, due to the weak de-

pendency, reconn only has to execute on Connections c for which both disconn and

write execute at some point.

Note that this makes sense when considering the implementation of Connection-

Closed from Figure 4.3. When disconn can never execute on a connection object c,
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4.1. Syntax and semantics of dependent advice

Modifier ::= “public” | “synchronized” | . . . | “dependent”.

AdviceDecl ::= Modifier* [RetType] BefAftAround AdviceName

“(” [ParamList ] “)” [AftRetThrow ] “:” Pointcut Block .

AdviceName ::= ID

AspectMemberDecl ::= AdviceDecl | . . . | DependencyDecl .

DependencyDecl ::=

“dependency” “{” “strong” AdviceNameList “;”

[ “weak” AdviceNameList “;” ] “}”.

AdviceNameList ::= AdviceRef | AdviceRef “,” AdviceNameList .

AdviceRef ::= AdviceName | AdviceName “(” VarList “)”.

VarList ::= VarName | VarName “,” VarList .

VarName ::= ID | “*”.

Figure 4.2: Syntax of dependent advice, as extension (shown in boldface) to the

syntax of AspectJ [ACH+05a]

then c will never be added to the set closed and hence both other pieces of advice

degrade to a no-op when executing on c. Similarly, when write can never execute for

a collection c, then the aspect can never issue an error message for c either. Hence,

there is no need for disconn to add c to the closed set in the first place, and there-

fore there is also no need for reconn to remove c from the set. On the other hand,

disconn and write do not depend on reconn: it may well happen that a program

disconnects a connection c and then writes to c, which triggers the error message;

reconn does not need to execute.

Note that the dependency annotation in Figure 4.3 (line 2) omits the variable

name c of the Connection. This is because, by default, a dependency annotation

infers variable names from the formal parameters of the advice declarations that it

references (e.g. line 6). The dependency annotation from Figure 4.3 is a short hand

for the more verbose
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1 aspect ConnectionClosed {
2 dependency{ strong disconn, write; weak reconn; }
3

4 Set closed = new WeakIdentityHashSet();

5

6 dependent after disconn(Connection c) returning:

7 call(∗ Connection.disconnect()) && target(c) {
8 closed .add(c);

9 }
10

11 dependent after reconn(Connection c) returning:

12 call(∗ Connection.reconnect()) && target(c) {
13 closed .remove(c);

14 }
15

16 dependent after write(Connection c) returning:

17 call(∗ Connection.write (..)) && target(c) {
18 if (closed .contains(c))

19 error(”May not write to ”+c+”, as it is closed !”);

20 }
21 }

Figure 4.3: ConnectionClosed with dependent advice
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4.1. Syntax and semantics of dependent advice

Legend:

adviceA

adviceB

adviceA must be

enabled if itself and

adviceB may execute

disconn

write

reconnstrong

weak

dependency

Figure 4.4: Informal dependency graph for the ConnectionClosed example

dependency{ strong disconn(c), write(c); weak reconn(c); }

The semantics of variables in dependency declarations is similar to unification se-

mantics in logic programming languages like Prolog [CM03]: The same variable at

multiple locations in the same dependency refers to the same object. For each ad-

vice name, the dependency infers variable names in the order in which the param-

eters for this advice are given at the site of the advice declaration. Variables for

return values from after returning and after throwing advice are appended to

the end. For instance, the following advice declaration would yield the advice refer-

ence createIter (c, i ):

dependent after createIter(Collection c) returning(Iterator i):

call(∗ Collection . iterator ()) {}

We decided to allow for this kind of automatic inference of variable names because

both code-generation tools and programmers frequently seem to follow the convention

that equally-named advice parameters are meant to refer to the same objects. That

way, programmers or code generators can use the simpler short-form as long as they

follow this convention. Nevertheless the verbose form can be useful in rare cases.
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Assume the following piece of advice:

dependent before detectLoops(Node n, Node m):

call(Edge.new(..)) && args(n,m) {
if (n==m) { System.out.println(”No loops allowed!”); }}

This advice only has an effect when n and m both refer to the same object. However,

due to the semantics of AspectJ, the advice cannot use the same name for both

parameters, so the inferred annotation would be detectLoops(n,m). The verbose syntax

for dependent advice allows us to state nevertheless that for the advice to have an

effect, both parameters actually have to refer to the same object, say k:

dependency{ strong detectLoops(k,k); }

We next define the subset of syntactically valid dependent advice that we consider

well-typed.

4.1.2 Well-typed dependent advice

In the following, whenever we speak of a dependent advice then we mean an advice

annotated with the dependent modifier. We say that an AspectJ aspect holding

dependent advice and dependency annotations is well-typed if all of the following

holds:

• Only dependent advice have names and every dependent advice has a name

that is unique in the declaring aspect.

• Each advice name mentioned in a dependency declaration refers to an existing

dependent advice in the declaring aspect.

• Each dependent advice is referenced by at least one dependency declaration.

In addition, for each dependency declaration it must hold that:

• The list of strong advice names is non-empty.

• The strong and weak lists of advice names are sets, i.e., reference each advice

only once, and both sets are disjoint.
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4.1. Syntax and semantics of dependent advice

• The number of variables for an advice name equals the number of parameters

of the unique advice with that name, including the after-returning/throwing

variable. (When variable names are inferred, then this is guaranteed to hold.

The rule can only be broken when the programmer supplies variable names

manually.)

• Advice parameters that are assigned equal names have compatible types: For

two advice declarations a(A x) and b(B y), with a(p) and b(p) in the same

dependency declaration, both A and B must be cast-convertible [GJSB05, §5.5].

Further, in the verbose form, each variable should be mentioned at least twice inside

a dependency declaration. If a variable v is only mentioned once we give a warning,

because in this case the declaration states no dependency with respect to v. The

warning suggests to use the wildcard “*” instead. Semantically, * also generates a

fresh variable name. However, by stating * instead of a variable name, the program-

mer acknowledges explicitly that the parameter at this position should be ignored

when resolving dependencies.

4.1.3 Matching semantics

We define the matching semantics of dependent advice as a semantic extension to

ordinary advice matching in AspectJ. In the semantics of AspectJ, pieces of advice

are executed at joinpoints, each joinpoint being a period of time during the program’s

execution. Depending on the kind of advice, the advice will execute before or after

the joinpoint:

• a before advice executes before the joinpoint,

• an after-returning advice executes after a regular (i.e. non-exceptional) return

from the joinpoint,

• an after-throwing advice executes after an exceptional return from the joinpoint,

• an after advice executes whenever the equivalent after-returning or a after-

throwing advice would execute, and
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Flow-insensitive optimizations through Dependent Advice

• an around advice executes, like before advice, before the joinpoint, however

during its execution can replace the original joinpoint by custom code.

Because an advice executes at an entry or exit of a joinpoint, it is convenient to

label these entry and exit points. In the remainder of this dissertation we will call

these points events.

4.1.3.1 Joinpoints versus events

A joinpoint effectively describes a period: it has a beginning and an end, and code

can execute before or after the joinpoint (i.e., at its beginning or end) or instead of the

joinpoint. In particular, joinpoints can be nested. For instance, a field-modification

joinpoint can be nested in a method-execution joinpoint. Runtime monitors read a

trace of atomic events. Because events are atomic, they cannot be nested. Joinpoints

merely induce these events.

Definition 4.1 (Events). Let j be an AspectJ joinpoint. Then j induces two events,

jbefore and jafter which occur at the beginning respectively end of j. For any set J of

joinpoints we define the set E(J ) of all events of J as:

E(J ) :=
⋃
j∈J

{jbefore, jafter}.

In the following we will often just write E instead of E(J ), if J is clear from the

context.

4.1.3.2 Refining the matching function

A program can generally have multiple aspects with dependent advice. However, since

the semantics of dependent advice in one aspect is defined independently from other

aspects, in the following we assume one fixed aspect A, without loss of generality.

(While it would be interesting to consider dependencies between entire aspects, this

topic is out of the scope of this dissertation.)

Let A be the set of A’s pieces of advice, D the set of dependency declarations in

A, V the set of all valid variable names, O the set of all heap objects allocated on a

given program execution and E the set of all AspectJ events on that execution.
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4.1. Syntax and semantics of dependent advice

We refer to the set of all pieces of advice that a dependency declaration d references

as all(d), and to the sets of advice that d references as strong or weak by strong(d)

and weak(d) respectively.

In the following let us assume that variables in d have been fully inferred (see

Section 4.1.1) and that any occurring wildcard * has been replaced by a fresh variable

name. The set vars(d) is the set of variables mentioned in d. Our type checks ensure

that d references each advice a ∈ all(d) only once. Therefore d induces for each advice

a a mapping σda from variables in vars(d) to a’s parameters: If d references an advice

declaration adv(T1 p1,...,Tn pn) using the advice reference adv(v1,...,vn) then

we obtain the mapping

σdadv = {v1 7→ p1, . . . , vn 7→ pn}.

Note that σda is the identity function when variable names were inferred for a in d.

4.1.3.3 Advice matching for normal advice

We model advice matching in AspectJ [HH04] as a function

match : A× E → {β | β : V ⇀ O} ∪ {⊥}.

For each pair of advice a ∈ A and event e ∈ E , match returns ⊥ in case a does not

execute at e. If a does execute then match returns a variable binding β, a mapping

from a’s parameters to objects ({ } for parameter-less advice).

Adapting variable bindings to a dependency’s name space. In the following it

will be useful to rename variable bindings in such a way that they do not map from

advice parameters to objects, but instead from the appropriate variable names defined

in the dependency declaration to these objects. Formally, we define an overloaded

version of the substitution σdadv, called σ̂dadv and defined as follows:

σ̂dadv(β) = λv. β(σdadv(v))

For example, assume two pieces of advice, declared as a(X x1) and b(X x2),

and both referenced in a dependency declaration d: dependency{ strong a(k),b(k); }.
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This yields the mappings σda = {x1 7→ k}, and σdb = {x2 7→ k}. Also assume that a

matches some event, yielding a variable binding βa = {x1 7→ o1} and that b also

matches some event, yielding a variable binding βa = {x2 7→ o2}. Then we can

apply σ̂da to βa and σ̂db to βb accordingly, yielding σ̂da(βa) = {v 7→ o1}, respectively

σ̂db(βb) = {v 7→ o2}.
This renaming allows us to define a function renMatch, which is essentially equiv-

alent to AspectJ’s original matching function match but instead produces variable

bindings in terms of the variables of a particular dependency declaration d:

renMatch : A× E → {β | β : V ⇀ O} ∪ {⊥}

renMatch(a, e, d) =

σ̂da(match(a, e)) if match(a, e) 6= ⊥

⊥ otherwise

Compatible events. In the remainder of this section we will refer to “compatible

events”. We say that two events ea and eb are compatible with respect to a dependency

declaration d and two pieces of advice a and b if a executes at ea with a variable

binding βa, b executes at eb with a variable binding βb respectively, and both βa and

βb assign the same objects to equal variables, with variable names substituted as

defined through d. Formally we define a predicate compatible as follows:

compatible : E × A× E ×A×D → B

compatible(ea, a, eb, b, d) =

let βa := renMatch(a, ea), βb := renMatch(b, eb) in

βa 6= ⊥ ∧ βb 6= ⊥ ∧ ∀va ∈ dom(βa) ∀vb ∈ dom(βb) : va = vb → βa(va) = βb(vb)

Here by dom(β) we denote the domain of the partial function β.

4.1.3.4 Advice matching for dependent advice

Dependent advice differ in their matching semantics from normal AspectJ advice,

and we therefore define a function depMatch that matches dependent advice against

events, based on D and match. depMatch also has access to a function activates.

This function is a parameter to depMatch (description follows).
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depMatch : A× E → {β | β : V ⇀ O} ∪ {⊥}

depMatch(a, e) =


match(a, e) if match(a, e) 6= ⊥ ∧

∃d ∈ D : activates(d, a, e)

⊥ otherwise

The function depMatch refines the original match function provided by AspectJ: It

only produces a match if the Boolean predicate activates holds for at least one advice

dependency. When activates(d, a, e) holds, we say that the dependency d activates

the dependent advice a at e. The predicate activates is a parameter to our matching

semantics. A compiler may choose between different implementations of activates but

we define that any sound implementation of dependent advice must guarantee:

Condition 4.1 (Soundness condition).

∀d ∈ D ∀a ∈ A ∀ea ∈ E :(
a ∈ all(d) ∧ ∀b ∈ strong(d) ∃eb ∈ E : compatible(ea, a, eb, b, d)

)
−→ activates(d, a, ea) = true

Informally, Condition 4.1 states that a dependency d must activate a at event ea, if

d references a (as strong or weak advice), and for each strong advice b in d there is

some event eb (at some time earlier or later in the program execution, or the current

event itself) that is compatible with ea (with respect to d, a and b).

Note that, to guarantee that a dependency be activated, the dependency’s strong

pieces of advice need to execute on the same objects, but its weak pieces of ad-

vice are not required to execute to activate the dependency. This is why in the

ConnectionClosed example from Figure 4.1 (page 69), the dependency declaration

dependency{ strong disconn, write; weak reconn; } references reconn weakly: the as-

pect may emit an error message even when it never observes any reconn event. Note

however, that it would be incorrect to not reference reconn at all. Not referencing

reconn would disable this advice completely (and in fact our type checks would pre-

vent such a program from compiling), and hence a reconn event may accidentally be
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missed. This could in turn lead the monitor to believe that the connection is discon-

nected although it is not, and yield a false warning. The weak reference guarantees

that the event will not be missed.

Note also that there may be multiple dependency declarations referring to the

same dependent advice. This is intentional. For a dependent advice to be activated on

a vector of objects it just needs to be activated by one dependency that references the

advice. When dependency declarations are generated from finite-state specifications,

it can easily happen that we have to generate multiple dependencies for a single

finite-state monitor. This is the case when the finite-state machine induced by the

specification can reach a final state along multiple paths. The reader be also reminded

that our type checks ensure that every piece of advice declared as dependent must be

referenced by at least one dependency declaration. This ensures that it has at least

some chance of being activated.

The predicate “activates”. As mentioned, the predicate activates is a parameter

to the semantics above. The most conservative implementation of activates would

be the constant function true. This would effectively treat dependent advice just as

ordinary AspectJ advice (depMatch degenerates to match as our type-checks ensure

that D 6= ∅).

An optimizing implementation would instead want to return false from activates

whenever possible, but without jeopardizing soundness. A perfect implementation

would determine activates such that it returns false whenever the antecedent (left-

hand side) of Condition 4.1 does not hold. That way, the implementation would

disable dependent advice whenever possible but still guarantee soundness. Unfortu-

nately, determining activates that way is undecidable: at the time where activates

needs to decide whether or not to activate a dependency at the current event, it may

need to know whether a compatible event will occur in the future.

A sensible implementation of dependent advice must therefore find an approxi-

mation to activates. It must try to return false on a best-effort basis, but only when

the soundness condition permits, i.e., when the antecedent of the soundness condition
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does not hold. In the following section, we explain an effective implementation based

on this principle.

4.2 Implementing dependent advice

We next explain the static abstraction of Condition 4.1 that we use in our imple-

mentation of Clara. The abstraction considers all possible program executions, in

a flow-insensitive fashion. In Subsection 4.2.2 we prove this abstraction sound. We

explain the details of our concrete implementation in the AspectBench Compiler in

Subsection 4.2.3.

4.2.1 A static abstraction of Condition 4.1

Our soundness condition, Condition 4.1, defines when activates(d, a, ea) must return

tt. As noted earlier, an effective implementation of dependent advice should attempt

to return ff from this function whenever possible, i.e., whenever the antecedent of

Condition 4.1 does not hold. This is exactly the case when its negation holds:

Condition 4.2 (Negation of the antecedent of Condition 4.1).

a 6∈ all(d) ∨ ∃b ∈ strong(d) ∀eb ∈ E : ¬compatible(ea, a, eb, b, d)

According to Condition 4.2, a dependency d can fail to activate a dependent advice

a for two reasons. In the first case d does not reference a at all, i.e., a 6∈ all(d). This

is the trivial case. (Note that our type checks demand that a be referenced by some

dependency, so there must be another dependency d′ which at least gives a a chance

of being activated.) The second reason is that there is a strong advice b in d so that

there exists no event eb that is compatible with ea. This is the condition that our

static analysis exploits.

Note that we can fully determine the following parts of Condition 4.2 at compile

time. For each dependency d we can determine the sets strong(d) and all(d). For

any advice a ∈ all(d) the variable substitution substda (used within compatible) is also

statically determined. Hence, the only parts of Condition 4.2 that our static analysis

needs to approximate are:
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1. the set E of all events, and

2. the variable binding match(a, e) that occurs when advice a matches at joinpoint

e (also used within compatible).

Approximating events through joinpoint shadows. As mentioned earlier, a woven

AspectJ program generates the events jbefore and jafter for every joinpoint j by exe-

cuting a piece of code generated by the AspectJ compiler before, respectively after,

a specific program location, j’s joinpoint shadow, shadow(j). We define the set S of

all shadows as:

S =
⋃
j∈J

{s | s = shadow(j)}

Note that the sets that are joined in this union may not necessarily be disjoint in the

first place: multiple joinpoints can share the same shadow if the shadow resides in a

loop or is reached multiple times through re-entrant calls.

We can now define our static approximation of Condition 4.2 via joinpoint shad-

ows. Given a dependent advice a, a shadow sa and a dependency d, we define:

Condition 4.3 (Static approximation of Condition 4.2).

a 6∈ all(d) ∨ ∃b ∈ strong(d) ∀sb ∈ S : ¬stCompatible(sa, a, sb, b, d)

The function stCompatible is a static approximation of compatible that accepts

shadows instead of joinpoints. Both functions are very similar. The only difference is

that compatible uses match to compute mappings from variables to runtime objects.

At compile time we have no access to runtime objects. stCompatible therefore ap-

proximates this mapping through a compile-time function stMatch, as defined below.

Approximating objects through points-to sets. Because we now deal with join-

point shadows, we redefine match as a function stMatch over inputs from S instead

of E . A function call match(a, e) returns ⊥ when advice a does not execute at e. This

is a runtime decision: several AspectJ pointcuts have to be evaluated at runtime.

For instance the pointcut this(A) only matches if the concrete runtime type of the

currently executing object is a subtype of A. AspectJ compilers allow the AspectJ
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runtime to determine a match by weaving a dynamic residue [HH04] in place of the

joinpoint shadow. In some cases a compiler can statically determine that an advice

a can never apply at a given joinpoint shadow s = shadow(j). For instance, in the

above example it could be that the currently executing object must be of a final type

(i.e., can have no subtypes) that is not a subtype of A. In this case this(A) cannot

hold at s, and the compiler generates a “never” residue that instructs the compiler

not to weave any advice code for a at s. In the following we will say that never(a, s)

holds in this situation.

The other difference between match and stMatch is that, because stMatch is

evaluated at compile time, it cannot return a mapping from advice parameters to

runtime objects. Every joinpoint shadow does however give us access to a mapping

local which maps each advice parameter p to the local program variable l that the

compiler inserts to bind p to its runtime value when the advice is executed at this

shadow. For a local variable l we can determine its points-to set [LH03] pointsTo(l).

A points-to set pointsTo(l) = {s1, . . . , sn} is a set of allocation sites2. The set models

the fact that l is only ever assigned objects that are allocated at the sites s1, . . . , sn.

We denote the set of all points-to sets by P. This allows us to define stMatch as

follows.

stMatch : A× S → {β | β : V ⇀ P} ∪ {⊥}

stMatch(a, s) =

⊥ if never(a, s)

λp . pointsTo(local(p)) otherwise

Just as we defined a renamed version renMatch of match, we also define a renamed

version renStMatch of stMatch:

renStMatch(a, s, d) =

σ̂da(stMatch(a, s)) if stMatch(a, s) 6= ⊥

⊥ otherwise

This makes us almost ready for defining our static approximation of the function

compatible. The last insight that we exploit is that two run-time objects referenced

2In principle, points-to sets can also be implemented differently; in particular they can hold
additional information, not just allocation sites. For this dissertation we only require that it must
be possible to check two points-to sets for disjointness and impose no restrictions on the internal
representation.
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by advice parameters p and q cannot point to the same objects if pointsTo(local(p))∩
pointsTo(local(q)) = ∅: In this case p and q are only assigned values from local

variables that themselves are definitely not assigned objects from the same allocation

site. This yields the following definition of stCompatible.

stCompatible : S ×A× S ×A×D → B

stCompatible(sa, a, sb, b, d) =

let βa := renStMatch(a, sa), βb := renStMatch(b, sb) in

βa 6= ⊥∧βb 6= ⊥∧ ∀va ∈ dom(βa) ∀vb ∈ dom(βb) : va = vb → βa(va)∩βb(vb) 6= ∅

(Here and in the remainder of this dissertation dom(ϕ) denotes the domain of a

function ϕ.)

4.2.2 Soundness of the approximation

We next define what it means for this abstraction to be sound, and prove soundness

based on this definition.

Theorem 4.1 (stCompatible soundly approximates compatible).

∀ea, eb ∈ E ∀d ∈ D ∀a, b ∈ all(d) :

compatible(ea, a, eb, b, d)

−→ stCompatible(shadow(ea), a, shadow(eb), b, d)

Proof 4.1 (Proof of Theorem 4.1). The proof of Theorem 4.1 is almost immediate if

one assumes that points-to sets are computed in a sound way, i.e., if o is an object cre-

ated at allocation site s and assigned to a program variable l then s ∈ pointsTo(l)—a

general assumption that we make in this dissertation. We conduct the proof in inverse

order, from the right to the left. If stCompatible(shadow(ea), a, shadow(eb), b, d) does

not hold then this can have two reasons: (1) we have never(a, sa) or never(b, sb), or

(2) the two shadows induce variable bindings that assign disjoint points-to sets to the

same variable from d (used at different locations). In case (1) ¬compatible(ea, a, eb, b, d)

holds trivially because never(a, sa) implies match(a, ea) = ⊥, and the same holds for

86



4.2. Implementing dependent advice

b, sb and eb. Similarly, (2) disjoint points-to sets imply distinct runtime objects

(assuming sound points-to sets).

Theorem 4.1 directly implies the following corollary, therefore proving our approx-

imation sound.

Corollary 4.1 (Condition 4.3 soundly approximates Condition 4.2). For every event

e ∈ E of a joinpoint j ∈ J with s := shadow(j), every dependency d and every

dependent advice a ∈ all(d), it holds that Condition 4.3 implies Condition 4.2.

This concludes the discussion of our static abstraction. In the following we give

some additional detail about the actual implementation within the AspectBench Com-

piler.

4.2.3 Implementation in abc

Figure 4.5 gives an overview of our implementation of dependent advice as an ex-

tension “abc.da” to the AspectBench Compiler (abc). The user provides a Java or

AspectJ program as input, plus a set of aspects augmented with dependency annota-

tions. In a first step, our compiler extension parses and type-checks the aspects and

annotations. It then splits apart the dependency information from the aspects and

the base program3. abc then matches the resulting plain-AspectJ aspects against the

base program, producing a “weaving plan”. This plan holds information about which

advice applies where in the program. abc next weaves the appropriate pieces of advice

into the program (based on the weaving plan) and produces a woven program—still

un-optimized. At this stage, our extension intercepts the compilation to analyze the

woven program based on the previously extracted dependency annotations. For each

potential match recorded in the weaving plan, we statically analyze if the depen-

dencies for the matched advice can potentially be fulfilled at the matched program

location. If not, then we remove this potential match from the plan. In this chapter

3 In the terminology of aspect-oriented programming, people frequently refer to the fragment of
the program that is free of any aspect functionality as base program.
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Figure 4.5: Overview of our implementation of dependent advice
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we present two such static analyses, the Quick Check and the Orphan-shadows Anal-

ysis. After the analyses finish, we re-weave the entire program, i.e., we instruct abc

to un-do the previous weaving process and weave the base program again, this time

with the updated weaving plan. After the program was re-woven, abc automatically

emits Java bytecode for the woven (and now optimized) program. We next explain

the internals of the static analyses, highlighted in Figure 4.5.

As mentioned earlier, our analysis executes right after weaving, analyzing the

woven program. It has access to the base program, all aspects, all dependent advice

in these aspects, and abc’s weaving plan. The weaving plan W contains a list of

tuples (s, a, r) where s is a joinpoint shadow, a is an advice possibly executing at

s, and r the dynamic residue that the runtime will evaluate to determine whether a

must indeed execute at a concrete event induced by s.

4.2.3.1 Quick Check

Our analysis iterates through the weaving plan, considering each entry separately,

first using the “Quick Check” shown in Algorithm 4.1. The Quick Check changes the

residue of an entry (s, a, r) ∈ W to (s, a, never) if no advice dependency d activates

a at s for the trivial reason that at least one strong advice b in d matches nowhere

in the entire program, as determined by the weaving plan, line 9. Note that the

condition in line 9 depends on whether the algorithm already processed weaving-plan

entries for b itself. We therefore iterate Algorithm 4.1 until a fixed point is reached.

The Quick Check is “quick” because it does not require points-to information. In our

benchmarks it therefore always finished in under 3.3 seconds.

If active advice applications remain after the Quick Check, then we apply Srid-

haran and Bod́ık’s demand-driven refinement-based context-sensitive points-to anal-

ysis [SB06] to the woven program. This analysis first produces context-insensitive

points-to sets using Spark [LH03]. Then next, when queried for the points-to sets of

a local variable l the analysis refines the points-to sets for l with context information.

Essentially, this changes the representation of a points-to set from a set {s1, . . . , sn}
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Algorithm 4.1 Quick Check

1: for (sa, a, ra) ∈ W do // for every entry in the weaving plan

2: if (ra 6= never) ∧ (a is dependent advice) then

3: activated := false

4: for d ∈ D with a ∈ all(d) do // for every dependency d referencing a

5: // see if d’s strong advice match

6: allStrongAdviceMatch := true

7: for b ∈ strong(d) do

8: // if there is no shadow sb at which b may match, then b never matches

9: if ¬∃sb ∈ S such that ∃(sb, b, rb) ∈ W with rb 6= never then

10: allStrongAdviceMatch:= false

11: end if

12: end for

13: if allStrongAdviceMatch then

14: activated := true

15: end if

16: end for

17: if ¬activated then // no active dependency found; disable sa

18: W := ( W \ {(sa, a, ra)} ) ∪ {(sa, a, never)}
19: end if

20: end if

21: end for
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of allocation sites to a set {(c1, s1), . . . , (cm, sn)}, where the different ci are static rep-

resentations of calling contexts. This makes the points-to sets more precise. Context

information [SB06] is necessary to optimize pieces of advice that reference objects

created inside factory methods, e.g. iterators, which are all produced by a call to

the same method iterator(). Because we query the analysis only on variables that

actually bind values at joinpoint shadows of dependent advice, this demand-driven

approach likely executes faster than an analysis that determines context information

for every program variable.

4.2.3.2 Flow-insensitive Orphan-shadows analysis

We then apply the flow-insensitive “Orphan-shadows Analysis”, as shown in Algo-

rithm 4.2. The algorithm essentially proceeds like the Quick Check (Algorithm 4.2

only shows the differences to Algorithm 4.1), however an advice a only activates a

dependency d if every strong advice b of d has a shadow4 that is compatible with

sa, as determined by stCompatible. Again we iterate Algorithm 4.2 until we reach

a fixed point. This iteration is not a bottle-neck: in all our experiments we reached

the fixed point after two or three iterations. We named the analysis Orphan-shadows

analysis because it identifies shadows that are lacking other shadows to activate any

dependency.

4.2.3.3 Implementation details

In the following we note some implementation details with respect to the way in

which we query the demand-driven refinement-based points-to analysis. This will aid

researchers in reproducing our results.

Query parameters. Programmers can parameterize Sridharan and Bod́ık’s demand-

driven refinement-based context-sensitive points-to analysis [SB06] with the following

values:

4Note that at this point, due to the Quick Check, we know that there are shadows for b in general.
The Orphan-shadows Analysis determines whether the shadows are compatible with the ones for a.
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Algorithm 4.2 Flow-insensitive Orphan-shadows analysis

(only showing differences to Algorithm 4.1)
· · ·

9: if ¬∃sb ∈ S such that ∃(sb, b, rb) ∈ W with

rb 6= never ∧ stCompatible(sa, a, sb, b, d) then

10: allStrongAdviceMatch := false

11: end if

· · ·

traversal Make the analysis traverse at most this number of nodes per query. This

quota is evenly shared between multiple passes (see next option). (default:

75000)

passes Perform at most this number of refinement iterations. Each iteration tra-

verses at most ( traverse / passes ) nodes. (default: 10)

For both values, we used their default settings.

Lazy points-to sets. Depending on the size of the analyzed program, the points-to

analysis that we use may take several seconds to answer a “query”, i.e., to compute

the points-to set of a single variable. Hence, we tried to lower the analysis time by

making sure to only query it on variables that matter to us. We added special “lazy”

points-to sets to Soot that first content themselves with only context-insensitive infor-

mation. We only compute context information for lazy points-to sets p1 and p2 in the

case where we test for non-empty intersection of p1 and p2 and the context-insensitive

information is not sufficient to prove that p1 ∩ p2 = ∅ (either because indeed the vari-

ables associated with these sets could point to the same objects at runtime, or because

the information is too imprecise). We then compute context-sensitive information.

This information may or may not be sufficient to prove that p1 ∩ p2 = ∅.
Unfortunately, we found that nevertheless context information was necessary and

did have to be computed in the majority of cases. In our benchmark set, we found

that context information did have to be computed for 91% of the points-to sets in

average, with a maximal number of 1179 points-to sets for bloat-FailSafeIter. For 30
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out of the 72 cases to which we had to apply the Orphan-shadows Analysis we needed

to compute context information for all the variables for that we compute points-to

sets.

Singleton collections and iterators. We found another low-level optimization to

be necessary in some cases. Some special methods in the Java Runtime Library re-

turn singleton objects. For instance, the runtime library returns a singleton called

emptyEnumerator when calling elements() on an empty java.util.Hashtable ob-

ject. This causes problems for our our analysis in patterns like FailSafeEnumHashtable,

where the analysis needs to distinguish different hash table objects to successfully

prove that the program under test uses the enumerations over these hash tables

correctly. Unfortunately, the runtime library uses the following code (taken from

Hashtable) to determine whether or not to return the singleton enumeration:

1 private Enumeration getEnumeration(int type) {
2 if (count == 0) {
3 return (Enumeration)emptyEnumerator;

4 } else {
5 return new Enumerator(type, false);

6 }
7 }

Our pointer analysis completely abstracts from predicates such as count == 0. Hence,

for any two variables v1, v2 that could point to a Hashtable object, the analysis al-

ways has to assume the possibility that v1 and v2 could indeed point to the same

object. A similar problem arises with the objects returned from factory methods

such as Collections.emptySet(). The return set is the singleton instance of type

java.util.Collections.EmptySet. However, in this case the problem is less severe:

here the analysis will only suffer from this imprecision for variables that can indeed

be assigned the return value of a call to Collections.emptySet(). In case of the

hash table, any hash table could return the singleton enumeration object.
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When looking into the problem, it occurred to us that a singleton enumera-

tions or collection is behaviorally equivalent to a set of freshly created enumera-

tions, respectively collections.5 Hence we decided to add a new option “-p cg.spark

empties-as-allocs” to Soot, which makes the points-to analysis believe that the

singleton objects in these particular cases are indeed creation sites of fresh enumer-

ations and collections. This in turn allows the refinement-based context-sensitive

analysis to compute context information for these allocation sites. This optimization

proved to be necessary but also sufficient in the cases that indeed do reason about

hash maps and enumerations. For instance, when “empties-as-allocs” is enabled,

for lucene-FailSafeEnumHashtable, the Orphan-shadows Analysis manages to disable

all shadows, proving the program sound with respect to this property. With the op-

tion disabled the Orphan-shadows Analysis failed to remove a set of nine shadows,

which could then not even be ruled out by the Nop-shadows Analysis that we present

in the next chapter.

4.3 Generating dependent-advice declarations from

finite-state specifications

The above optimizations assumed dependency annotations in the code. Programmers

may write dependency annotations by hand, but this can be time consuming and error

prone. Fortunately, programmers often opt to have history-based aspects generated

automatically, from finite-state monitor specifications. As we showed in Chapter 3,

runtime-monitoring tools generate a runtime monitor from such a specification, in the

form of a finite-state machine (or an equivalent data structure), along with an aspect

that triggers state transitions when monitored events occur. The state machine then

executes a user-defined piece of code when those transitions drive it into a final state.

As we mentioned, if specifications bind free variables, there exists one state-machine

instance per variable binding.

5This is not quite true for empty collections. For instance, a program will throw an exception
when the programmer tries to add something to a java.util.Collections.EmptySet. However,
our control-flow graphs cater for such exceptional control-flow.
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The remainder of this section is structured as follows. First, in Section 4.3.1, we

explain a general algorithm to generate dependency declarations from a finite-state

machine. To ease the explanation of this algorithm and also its soundness proof (in

Appendix A), we introduce a special automaton model that we call lazy state ma-

chines. In Subsection 4.3.2 we explain how we apply the algorithm within JavaMOP

to generate dependency declarations from finite-state specifications denoted in the

ERE, FTLTL and PTLTL specification languages. In Subsection 4.3.3 we explain

the case of tracematches similarly.

4.3.1 Generation from finite-state machines

We next present a general algorithm that exploits domain knowledge in a given finite-

state specification to generate sound dependency annotations automatically.

Definition 4.2 (Finite-state machine). A non-deterministic finite-state machine M
is a tuple (Q,Σ, q0,∆, QF ), where Q is a set of states, Σ is a set of input symbols,

q0 the initial state, ∆ ⊆ Q × Σ × Q the transition relation and QF ⊆ Q the set of

accepting (or final) states. For this dissertation we assume that q0 6∈ QF . In other

words, the finite-state machine will never accept the empty word. This is consistent

with the semantics of runtime monitoring in general: a runtime monitor reports a

property violation when a final state is reached; it makes no sense to assume a program

as erroneous right from the starting state6.

Definition 4.3 (Words, runs and acceptance). A word w = (a1, . . . , an) is an element

of Σ∗. We define a run ρ of M on w to be a sequence (q0, qi1 , . . . , qin) such that

∀k : (0 ≤ k < n)→ (qik , ak+1, qik+1
) ∈ ∆, with i0 := 0. A run ρ is accepting if

qin ∈ QF . We say that M accepts w, w ∈ L(M), if there exists an accepting run

of M on w. Since we assume q0 6∈ QF , both accepted words and accepting runs are

non-empty, i.e., n ≥ 1.

6Note that even when monitoring liveness properties like in the LTL formula “Finally p”, the
monitor would not move into a final, i.e., violating, state before the end of the program is reached.
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The concepts behind determining strong and weak advice. In this dissertation

we assume that finite-state machines are the basis for synthesizing runtime monitors.

Our static analyses optimize the evaluation of these runtime monitors by preventing

certain events from being passed to the monitor when these events are provably not

of interest to the monitor, possibly depending on the monitor’s current internal state.

In this chapter we focus on dependent advice to encode relationships between input

symbols that require monitoring.

As defined above, a finite-state runtime monitor always accepts a word (i.e. iden-

tifies an erroneous execution) using an accepting run through a state machine. Stat-

ically, this means that the monitor can accept a word using multiple different paths,

each ending in an accepting state. To guarantee that optimizations are correct, we

need to take two different kinds of dependencies into account along each such path.

Firstly, we need to enable every symbol that makes progress on this path, i.e.

brings us closer to the final state. Enabling such “progress symbols” assures sound-

ness: it guarantees that the optimized monitor will not miss any actual property

violations. In the dependency declaration for this path we will reference such sym-

bols as strong. After all, one needs to see all symbols along the path to reach the

final state along this particular path.

Secondly, if all (strong) “progress symbols” match on this path, then the monitor

can indeed reach the final state via this path. When this is the case then we also

need to activate all symbols that may reject a word along this path. This guarantees

that the runtime monitor will not produce any false warnings, i.e., that it will only

execute its action handlers at events at which also the un-optimized monitor would

have executed it. In our dependency declaration we can reference these symbols as

weak: they only need to be active if the monitor can produce a complete match along

this path, i.e., if all strong symbols for this path are active as well.

How to determine weak symbols is a non-trivial question. A simple possibility

would be to just define that all symbols in the alphabet be weak that are not already

strong. However, this would give away optimization potential. Consider the following

finite-state machine that monitors for event traces that match the expression b∗a:
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0 1
a

b

Clearly, in this example b is not necessary for a pattern match: it suffices to read

an a to reach state 1. Hence, it is sound to disable the monitoring of b altogether.

Effectively this would mean that instead of monitoring b∗a over the alphabet {a, b}
one only would monitor the expression a over the alphabet {a}. Therefore, in this

example we would want to avoid referencing b as a weak symbol in our dependency

declaration. The general rule is that along each accepting path, if a symbol, like b, is

not a progress symbol (it does not lead towards the final state) and there is a b loop

on every state along this path (not taking the final state itself into account), then b

does not need to be monitored along this path. Conversely, if there was a state with

no b loop then b would have to be monitored: when reading a b in this state, the

monitor would have to exit the state to implement the correct semantics.

The issue of loops at final states. There is one notable exception to this rule.

Consider now the finite-state machine shown in Figure 4.6 instead. It monitors for

traces of the form b∗ab∗. In this example, there exist an additional b-loop at the final

state 1. Again, the symbol b makes no actual progress towards reaching the final

state, it never changes a state at all. Hence, b is not a strong symbol in this example.

In terms of our general rule above, b would not even be weak: there is a b loop on

every state along the accepting path. This actually makes sense because in terms of

pure language theory it would be sound to not consider b in this example: an event

trace is matched by the regular expression b∗ab∗ over the alphabet {a, b} if and only

if it is matched by the regular a over the alphabet {a}. The problem however, in

terms of runtime monitors, it is not true that an event trace is matched by the first

regular expression when and only when it is matched by the second one. The above

monitor ought to execute its validation handler two times when reading the sequence

“ab”. By removing b from the monitor’s alphabet the monitor would only see an

event trace “a” and hence execute the handler only once. Because we want our static

97



Flow-insensitive optimizations through Dependent Advice

optimizations to preserve the behavior of the instrumented program, we need to take

special care in these cases.

The problem with the above case is that the b loop on the final state has an

effect (it triggers the handler), although it has no effect in terms of whether the state

machine accepts the current trace. As we will describe later, the algorithm that we

derived for generating dependency annotations hence caters for loops on final states

in a special way.

Lazy state machines. A second problem with the traditional model of non-determi-

nistic finite-state machines is the following inverse relationship between loops and a

state machine’s operations. When a non-deterministic finite-state machine is in a

state q and reads a symbol a then (1) it does actively move out of q if there is no

a loop on q; on the other hand, (2) reading a has no effect if there is an a loop

on q. Hence, the transitions in the state machine do not really map one-to-one to

operations in the implementation of this state machine in the runtime monitor. If a

transition is a loop, then the monitor needs to perform no operation. On the other

hand, if there is no such transition on the current state then the monitor needs to

actively move out of the state to discard the partial match appropriately.

This inverse relationship between transitions and actions complicates the formula-

tion of our analyses. For instance, consider the non-deterministic finite-state machine

shown in Figure 4.7a. Assume that this finite-state machine is used as a runtime

monitor, over a program in which the event c can never occur. For such a program it

holds that the state machine in Figure 4.7a does not need to monitor b either. This is

the case because, when c cannot occur, then the automaton can only accept words of

the form b∗ab∗d, and in this case, the occurance of b in a word w does not matter to

decide whether or not this automaton accepts w. The problem is that this property

is not obvious by just looking at the state machine in Figure 4.7a.

We hence introduce in this thesis a new, equivalent automaton model that we call

lazy state machines. Figure 4.7b shows the state machine that is equivalent to the

non-deterministic finite-state machine from Figure 4.7a. In this automaton model,

state machines have no self-loops. Instead, their states are labeled with a set of
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Figure 4.6: Finite-state machine with loop at final state
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Figure 4.7: Traditional non-deterministic vs. lazy state machines

exit labels that tell when to exit the annotated state. In this model, the property

mentioned above is easy to determine. When c cannot occur in a program, then

state 2 cannot be reached, and hence no reachable state nor reachable transition

references b (except the final state, which does not need to be considered). Hence, in

this scenario, b does not need to be monitored either.

Definition 4.4 (Lazy state machine). A lazy state machine (LSM for short) M is

a non-deterministic finite-state machine with a non-standard acceptance conditions

and in which states are labeled with an exit set of symbol names. Formally, the lazy

state machine M is a tuple (Q,Σ, q0,∆, QF , exit) where Q, Σ, q0, ∆ and QF are

defined as for traditional non-deterministic finite-state machines, and exit is defined

as follows. exit is a labeling function of type Q → P(Σ), which assigns a subset of

input symbols to each state in Q. For every state q ∈ Q we call exit(q) ⊆ Σ the

exit set of q. In addition, the transition relation ∆ has to adhere to the following

“no-self-loop condition”: ∀q ∈ Q ∀a ∈ Σ ¬∃(q, a, q) ∈ ∆.

The crucial difference between lazy and traditional finite-state machines is that
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lazy state machines are, by default, lazy: they remain in a state q until reading a

symbol that is in q’s exit set. This is also the reason for why lazy state machines have

no self-loops. They are simply not needed because a lazy state machine resides in its

current state(s) by default. Note that lazy state machines do allow loops that span

multiple transitions.

Definition 4.5 (Words, runs and acceptance for lazy state machines). As earlier,

a word w = (a1, . . . , an) is an element of Σ∗. We define a run ρ of a lazy state

machine M on w to be a sequence (q0, qi1 , . . . , qin) such that ∀k : (0 ≤ k < n)→(
(qik , ak+1, qik+1

) ∈ ∆ ∨ (qik = qik+1
∧ ak+1 6∈ exit(qik)

)
, with i0 := 0. A run ρ is ac-

cepting if qin ∈ QF . We say thatM accepts w, w ∈ L(M), if there exists an accepting

run of M on w.

From non-deterministic state machines to lazy state machines and back. For

every non-deterministic finite-state machine there exists a lazy state machine that

accepts the same language, and the other way around. Moreover the conversion is

straightforward. A non-deterministic finite-state machine M exits a state q when

reading a symbol a if it has no a-self-loop (q, a, q). Hence, we can define a lazy state

machine, equivalent to M, as follows.

Definition 4.6 (Lazy state machine for a non-deterministic finite-state machine).

Let M = (Q,Σ, q0,∆, QF ) be a non-deterministic finite-state machine. We define

the lazy state machine Mlazy as Mlazy := (Q,Σ, q0,∆
`, QF , exit), with ∆` and exit

defined as:

∆` := {(qs, a, qt) ∈ ∆ | qs 6= qt}

exit := λq . {a ∈ Σ | ¬∃(q, a, q) ∈ ∆}

The inverse conversion is easy as well:

Definition 4.7 (Non-deterministic finite-state machine for a lazy state machine). Let

M := (Q,Σ, q0,∆
`, QF , exit) be a lazy state machine. We define the non-deterministic
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finite state machine Mbusy as Mbusy = (Q,Σ, q0,∆, QF ), where ∆ is defined as:

∆ := ∆` ∪ {(q, a, q) | q ∈ Q, a ∈ Σ, a 6∈ exit(q)}

By construction, these finite-state machines are equivalent:

Theorem 4.2. (Equivalence of non-deterministic and lazy state machines) For every

non-deterministic finite-state machineM it holds that L(M) = L(Mlazy). For every

lazy state machine M it holds that L(M) = L(Mbusy).

The theorem can be proven correct very easily, by comparing the possible runs of

both state machines. We leave the proof to the reader.

For the remainder of this section we assume that the non-deterministic finite state-

machine that we obtain from the finite-state specification has been converted to a lazy

state machine as explained above.

Algorithm 4.3 defines the function generateDependencies, which generates depen-

dency declarations from a lazy state machine M. The algorithm generates a single

dependency declaration d for every accepting path inM, where we denote d by (s, w)

if s = strong(d) and w = weak(d). When M accepts a word using a path p, we need

to reference the symbols at transitions on p as strong: events labeled with these sym-

bols all need to occur forM to accept the word along this path. Conversely, it suffices

to reference the exit symbols of states on p as weak: events that are necessary to exit

a state on p need to be monitored only if M can reach a final state using p, i.e., if

events for all of p’s transitions (all strong symbols) can occur.

The first argument to generateDependencies is a current state q. The second argu-

ment is an accumulator that holds all states on the current path leading up to q, the

second argument is an accumulator that holds all symbols at transitions on this path.

The programmer initializes the algorithm by calling generateDependencies(q0, ε, ε),

where ε is the empty word. Intuitively, generateDependencies recursively exploresM
in a depth-first manner to find all paths p through M that satisfy the following two

conditions: (1) the path ends in an accepting state (line 2), and (2) the path does not
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visit a state more than twice (line 1)7. When generateDependencies finds such a path,

it adds a new dependency declaration to the global set D. The dependency references

the labels of all edges on p as strong. Further, it references all those symbols as weak

that are not already strong but are either exit symbols of one of p’s states or symbols

that loops on the final state (lines 3–7). The latter (looping) symbols could cause

the monitor’s handler to re-execute and therefore it would be unsound to omit them

from the set weak.

Figure 4.8 shows an example run of Algorithm 4.3. Part 4.8a shows the non-

deterministic finite-state machine M that we saw earlier, and part 4.8b shows again

the lazy counterpart Mlazy. 4.8c shows the two paths P1 and P2 that Algorithm 4.3

discovers. Note that the paths exclude the final node 3 (shown dashed). 4.8d shows

the two resulting dependency declarations: D1 for P1 and D2 for P2. D1 does not

reference b because b occurs neither as a transition label nor within an exit set along

P1. D2, however, includes b because b is contained in the exit set of state 2: if M
reads b while in state 2, M will discard the partial match.

Our static approximation of dependent advice (Section 4.2) can make use of these

generated dependencies as follows. Assume a program in which the advice that nor-

mally triggers symbol c never matches at any joinpoint shadow. c is necessary to

reach the accepting state via P2—that is why c is strong in D2. Because c is strong

in D2, and c never matches, D2 is not activated for this program. The symbol b

is only referenced by D2; hence, when D2 is inactive, there’s no active dependency

referencing b. This means that for this program it is safe to not monitor b, i.e., it

suffices to monitor a and d only. (The reader be reminded that we said that c does not

match in this program and hence c is not monitored anyway, although D1 references

c weakly.)

7Condition (2) assures termination in the case where the finite-state machine has loops. It assures
that on the computation of every path, every edge will be visited only once. In Appendix A we
prove that it is indeed correct to consider such paths only, because every longer accepting paths
can be broken down into smaller fragments, and the dependencies induced by these fragments are
equivalent to those of the original path.
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4.3. Generating dependent-advice declarations

Algorithm 4.3 generateDependencies(q, qs, as), with q ∈ Q, qs ∈ Q∗, as ∈ Σ∗

// algorithm is initialized by calling generateDependencies(q0, ε, ε)

// dependencies will be added to the global set D, as they are discovered

Global variable: D := ∅

1: if q occurs at most twice in qs then // if processed edge at most once before

2: if q ∈ QF then // if reached final state, add dependency declaration

3: strong :=
⋃
a∈as

{a} // all symbols a from edges on this path

4: finalLoopSyms := Σ− exit(q) // all symbols that loop on final state q

5: exitSyms :=
⋃
q′∈qs exit(q′) // all other exit symbols of states on this path

6: weak := (exitSyms ∪ finalLoopSyms) − strong

7: D := D ∪ {(strong,weak)}
8: end if

9: for a ∈ Σ, q′ ∈ Q such that (q, a, q′) ∈ ∆ do // for every outgoing edge

10: qs′ := qs · q // add current state to path accumulator

11: as′ := as · a // add current symbol to path accumulator

12: generateDependencies (q′, qs′,as′) // recurse

13: end for

14: end if
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(a) Example non-det. state machine M

0start 1

2

3

{a, c, d} {a, c, d}

{a, b, c, d}

{a, b, c, d}

a d

c c

(b) Equivalent lazy state machine Mlazy

0start 1

2

30start 1 3

{a, c, d} {a, c, d}

{a, b, c, d}

{a, b, c, d}{a, c, d} {a, c, d} {a, b, c, d}}
P1 }

P2

a d

c c

a d

(c) Paths that generateDependencies determined for Mlazy

for P1 : dependency{ strong a,d; weak c; } //D1

for P2 : dependency{ strong a,c,d; weak b; } //D2

(d) Dependency declarations generated for M, respectively Mlazy

Figure 4.8: An example run of Algorithm 4.3
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Correctness and Complexity of Algorithm 4.3. One can prove that Algorithm 4.3

is correct, meaning that it generates dependency declarations that are both sound and

complete, or in other words, the runtime monitor without dependency annotations

accepts exactly the same words as the same monitor augmented with dependency

annotations. The proof is quite lengthy and hence we present it in Appendix A.

Let us now consider the theoretical worst-case complexity of Algorithm 4.3. We

designed the algorithm in such away that it visits every transition in ∆ at least once,

but at most twice. The initial state q0 is fixed; there is no choice possible. As the

generation of dependency declarations only happens at final states, the complexity of

the algorithm is clearly dominated by the number of possible recursive descents. On

its first recursive descent, the algorithm has at most |∆| transitions to choose from,

that lead out of the current state q (line 9). In the worst case, a fully connected

graph but without self-loops, |∆| could be as large as |Σ| · (|Q| − 1). Then, on every

recursive descent, the algorithm can repeat this choice of transitions. However, the

number of recursive descents on every path is bounded: every state must occur at

most twice in qs, and as soon as it is seen a third time, line 1 will abort the recursive

descent for that path. Hence, there can be at most 2 · (|Q| − 1) recursive descents.

Therefore, the number of calls to generateDependencies is bounded by the following

number:

1 +
(
|Σ| · (|Q| − 1)

)
·
(
2 · (|Q| − 1)

)
= 1 + (2 · |Σ|) · (|Q| − 1)2 ∈ O(|Σ| · |Q|2)

Table 4.1 (page 106) shows this upper bound for reasonable values of |Σ| ≤ 5 and

2 ≤ |Q| ≤ 10. (The reader be reminded that our automata have at least two states,

as q0 6∈ F and we assume that F 6= ∅). In practice we have found that for usual

specifications, ∆ will be a lot smaller than its theoretical worst-case size: Algorithm

4.3 never generated more than 48 dependencies for our example specifications. It

always terminated within milliseconds. As it turns out, one can still significantly

reduce the number of generated dependency declarations.
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Formula: 1 + (2 · |Σ|) · (|Q| − 1)2

1 2 3 4 5 ← |Σ|
2 3 5 7 9 11

3 9 17 25 33 41

4 19 37 55 73 91

5 33 65 97 129 161

6 51 101 151 201 251

7 73 145 217 289 361

8 99 197 295 393 491

9 129 257 385 513 641

10 163 325 487 649 811

|Q| ↑

Table 4.1: Theoretical worst-case complexity of Algorithm 4.3 by example

Eliminating redundant advice dependencies

Algorithm 4.3 may generate different but equivalent sets of dependency declarations

when given different but equivalent finite-state machines as input. For instance, a

minimal state machine for a given finite-state property will likely have fewer paths

to a final state than a non-minimal state machine expressing the same property may

have. In Appendix A we prove that Algorithm 4.3 will always produce equivalent sets

of dependency annotations for such state machines. In this section, we are interested

in finding a reduced representation of such a set of dependency declarations.

Assume two dependency declarations d1 and d2. We define that d1 implies d2

when d1 is active in all cases in which d2 is active, and when d1 activates at least all

pieces of advice that d2 activates:

d1 → d2 :⇐⇒ strong(d1) ⊆ strong(d2) ∧ all(d1) ⊇ all(d2)

Based on this definition, we then define a function reduce as follows.

Definition 4.8 (Function reduce). Let D ⊆ D be a set of dependency declarations.

Then we define:

reduce(D) := {d ∈ D | ¬∃d′ ∈ D such that d′ 6= d ∧ d′ → d}
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Note that the resulting set reduce(D) is not necessarily the minimal set of depen-

dencies that is equivalent to D. For instance, {dependency { strong s; weak w1; },

dependency { strong s; weak w2; }} is in reduced form but has the minimal repre-

sentation dependency { strong s; weak w1, w2; }. In our experiments we found that

reduce can significantly reduce the number of dependencies that Clara needs to

consider and that in practice there is little room for further reduction. As we will

show in Section 4.4.1 (page 112), our reduction even resulted in a minimal number

of dependencies for all the properties that we consider in this thesis. Note that, in

any case, reducing the size of D only saves analysis time, it does not impact Clara’s

analysis precision.

Example 4.1 (Eliminating redundant dependencies). As an example, consider the

state machine from Figure 4.9, a non-minimal finite-state machine for the HasNext

pattern from Figure 1.2 (page 4). Algorithm 4.3 would generate the following set D

of dependencies for this state machine:

dependency { strong next; weak hasNext; } //d1

dependency { strong next, hasNext; } //d2

Here, d1 is the dependency for the path q0q1q2, while d2 is the dependency for paths

of the form q0(q3q0)+q1q2. The reduced version of D contains only d1, because for d2

it holds that there exists another dependency d′ = d1 with d1 → d2. d1 is active when

only next matches, and therefore is active at least in the cases in which d2 is active.

Further, d1 activates all the pieces of advice from d2. Hence:

reduce(D) = {dependency { strong next; weak hasNext; }}.

Clara automatically reduces the set of all declared dependencies before Clara’s

static analyses commence. Therefore, the programmer or any code generator that pro-

vides dependency annotations does not need to bother about eliminating equivalent

dependencies on the client side.

Stability. An interesting property of Algorithm 4.3 is also that it is “stable”: for

equivalent finite-state machines, it generates two equivalent sets of dependencies.
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q0 q1 q2

q3

next next

next, hasNext

nexthasNext

Figure 4.9: Non-minimal finite-state machine for HasNext property

Theorem 4.3 (Stability of Algorithm 4.3). LetM1 andM2 be two equivalent finite-

state machines, i.e. L(M1) = L(M2). Let D1 and D2 be the dependencies that

Algorithm 4.3 generates forM1 andM2 accordingly. Then D1 ≡ D2, i.e., D1 and D2

are logically equivalent. We therefore say that Algorithm 4.3 is “stable”.

Stability is an interesting property that may be useful beyond the applications within

out own work, for instance to reduce finite-state machines for certain purposes. Just

as soundness, we prove the stability theorem in Appendix A.

4.3.2 Implementation in JavaMOP

The left-hand side of Figure 4.10 illustrates our implementation in JavaMOP. As

noted earlier, we generate dependency declarations from finite-state specifications

denoted in the specification formalisms ERE, FTLTL and PTLTL. For this purpose,

Feng Chen, one of the developers of JavaMOP, extended the three logic plug-ins for

these formalisms such that they convert the domain-specific automaton that they use

to generate a runtime monitor into an equivalent standard non-deterministic finite-

state machine.

ERE. The monitoring code generated by the ERE plug-in in JavaMOP is already a

standard finite-state machine [CR03].
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JavaMOP
Extension
abc.tm

Extension
abc.tmwpopt

ERE Patterns FTLTL Formula PTLTL Formula Tracematch

ERE Plugin FTLTL Plugin PTLTL Plugin
Tracematch

back-end

Binary transition-

tree FSM

Vector-based

monitor

FTLTL

Translator

PTLTL

Translator

Finite-state

machine

Finite-state

machine

Finite-state

machine

Finite-state

machine

Algorithm 4.3 Algorithm 4.3

Dependency Declarations

Figure 4.10: Generating dependent advice in JavaMOP and abc
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FTLTL. JavaMOP’s FTLTL plug-in outputs a binary transition tree finite-state

machine (BTT-FSM) [CR03]. A BTT-FSM is a state machine in which each state

holds a Binary Transition Tree, i.e., a Boolean function. The BTT-FSM determines

the target state of a transition by computing this Boolean function when an event is

received. We translate a BTT-FSM into a standard finite-state machine by symbol-

ically computing its BTTs exhaustively in each state. According to Feng Chen, the

complexity of this translation is linear in the number of states of the BTT-FSM: the

conversion algorithm visits each state of the BTT-FSM only once and converts the

binary transition tree of this state into a set of transitions in the finite-state machine

in constant time.

PTLTL. Unlike the ERE plug-in and the FTLTL plug-in, the PTLTL plug-in in

JavaMOP generates a monitor which has a vector of bits as its internal state [CR03].

We implemented an algorithm to exhaustively explore all possible states of the PTLTL

monitor in order to construct an equivalent finite-state machine. Again according to

Feng Chen, the conversion algorithm is linear in the number of states of the finite

automaton that is used to monitor the PTLTL property. However, in its worst case,

it can be exponential in the number of bits occupied by the bit vector. This num-

ber of bits is bounded by the number of symbols that are declared in the PTLTL

specification.

In practice, the generation of the finite-state machines took never longer than a

few milliseconds in our experiments.

JavaMOP next applies the general Algorithm 4.3 to obtain the dependency in-

formation from the state machine. As noted earlier, every JavaMOP monitor sup-

ports both validation and violation handlers. For a violation handler we instead fix

QF := {qr}, where qr is the state from which no accepting state can be reached.

JavaMOP uses minimized deterministic state machines and therefore qr is unique,

and the property monitored by JavaMOP is violated exactly when qr is reached. We

then emit the appropriate set of dependencies, depending on whether the monitor
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uses only a validation handler, only a violation handler, or both. (Note that gener-

ating dependencies this way is in sync with the semantic definition that we gave for

the three finite-state specification formalisms in Section 3.2).

JavaMOP writes AspectJ source code to disk. Our extension to JavaMOP adds

dependency declarations to this output and also modifies the output so that each

generated piece of advice is given a unique name. The dependency declarations

reference those names. In a second step, the programmer can then use the dependent-

advice extension abc.da to abc (see Figure 4.5, page 88) to read this generated code

again from disk and weave monitoring code into a base program of her choice, making

full use of the optimizations that we explained in Section 4.2.

4.3.3 Implementation for tracematches

As we explained in Section 3.1, tracematches use yet another data structure to im-

plement their runtime monitors: they use constraints.

JavaMOP’s automata are deterministic and minimized, and therefore have a

unique reject state (the only state from which no final state can be reached). Trace-

matches, however, use non-deterministic automata. They actively reject traces using

“skip-loops” [AAC+05]. Every state q holds a skip-loop with label a for every a for

which q has no “normal” a-self-loop. Note that this means that q holds a skip-loop

with label a exactly if a ∈ exit(q) in the equivalent lazy state machine. Further, be-

cause tracematches are matched against each suffix of the execution trace, the trace-

match automaton remains always also in the initial state q0. In tracematches, this is

implemented implicitly: q0 has no Σ-loop, but instead its constraint is constantly set

to true.

Hence, to prepare the tracematch automaton so that it can be passed as a valid

input to Algorithm 4.3, we pre-process the automaton as follows. First, we make the

implicit Σ-loop explicit: for each a ∈ Σ we add an a-loop to q0. We also remove all

skip loops from the automaton. Algorithm 4.3 is directly applicable to the resulting

state machine.
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Another notable difference of our tracematch-based implementation compared to

JavaMOP is that for tracematches, we never write AspectJ source code to disk. Trace-

matches, like dependent advice, are implemented as an extension to abc, and they

generate history-based aspects directly in the form of Java bytecode. We there-

fore enhanced the abc extension “abc.tm” for tracematches with another extension

“abc.tmwpopt” for whole-program optimization (see the right-hand side of Figure

4.10). This extension injects dependency annotations directly into the back-end of

our abc extension “abc.da” for dependent advice (below the “parse, check & split”

in Figure 4.5). Every advice generated from a tracematch already carries a unique

name, so we can re-use those names when we generate the dependency declarations.

4.4 Experiments

In this section we report on the effects of both the Quick Check and the Orphan-

shadows Analysis. We will see that both analyses can significantly reduce the number

of shadows that programmers or later-running analyses need to consider.

4.4.1 Result of eliminating redundant dependencies

Table 4.2 shows the effect of eliminating redundant dependencies. As we explained

in Section 4.3.1 (page 106), eliminating redundant dependencies should not affect

the precision of the analysis, it should only accelerate it. We therefore checked that

our implementation is correct by analyzing all benchmark/tracematch combinations

twice, once with our reduction enabled and once with the reduction disabled. We

found that indeed the analyses reported exactly the same results in both cases and

therefore have no reason to believe that we implemented the reduction incorrectly.

Table 4.2 shows that our reduction has significant effects. For most patterns,

only a single dependency remains. This confirms the intuition that we developed

in Chapter 2, which tells us that most properties are in fact relatively simple. In

particular, most of the properties that we consider here describe one single error

situation. Hence it is only natural to describe this situation through a single sequence
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before after

ASyncContainsAll 6 1

ASyncIterC 14 2

ASyncIterM 28 2

FailSafeEnumHT 4 1

FailSafeEnum 4 1

FailSafeIter 4 1

FailSafeIterMap 10 1

HasNextElem 3 1

HasNext 3 1

LeakingSync 2 1

Reader 48 8

Writer 48 8

Table 4.2: Number of advice dependencies before and after reduction

of events that will lead to an error state. Part of the reason for why the initial

number of dependencies was so high is that we added the symbol newDaCapoRun to the

monitor specifications, as we explained in Section 3.4.3. While this symbol does not

introduce any new non-redundant dependencies, the symbol’s presence complicates

the automaton structure and hence leads to some more dependencies before reduction.

We can observe that larger numbers of dependencies remain for the ASyncIter*,

Reader and Writer patterns. The regular expression for both ASyncIter* properties

contains a disjunction: it is a bug to create an iterator i for a synchronized collection

c without holding c’s lock when i is created, but it is also a bug to iterate using i

without holding c’s lock, even if the program held the lock when it created i. The

regular expression for Reader and Writer even concatenates three disjunctions, and

hence there are 23 = 8 possible paths to a final state. In result, we can say that, in

our benchmark set, the number of dependencies that remain after reduction reflects

exactly the number of possible ways in which a program could violate the property

at hand. In other words, the reduction that we proposed in Section 4.3.1 is optimal

for the finite-state properties that we consider in this thesis.
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4.4.2 Effects of applying the Quick Check

We next explain the effects that the Quick Check has on (1) the number of depen-

dencies that need to be considered further, (2) on the number of shadows and (3) on

the runtime overhead that the related monitoring code induces.

4.4.2.1 Dependencies eliminated by the Quick Check

The Quick Check can significantly reduce the number of dependencies that need to

be considered by further analyses. We quantify this effect in Table 4.3. The second

column of the table re-states for every finite-state property the total number of depen-

dencies that remain after reduction (see above) but before applying the Quick Check.

The remaining columns then show the total number of dependencies that remain af-

ter we applied the Quick Check to the respective program/property combination. As

the tables show, the Quick Check is very effective on the ASync* and LeakingSync

patterns, eliminating all dependencies for almost all benchmark programs. This is

not surprising: because these properties refer to synchronized collections, and many

programs, especially single-threaded ones, never produce synchronized collections,

the Quick Check suffices to detect that these programs can never violate the proper-

ties. The Quick Check is also quite effective on the FailSafeEnum* properties. This

is because the Enumeration interface was superseded by the Iterator interface a

long time ago (and vectors by collections) and therefore many programs do not use

enumerations any more. antlr and xalan are notable exceptions: as the tables show,

they use enumerations, but apparently no iterators. The cases xalan/FailSafeIter*

are interesting: xalan does update collections at many places, but at all these places

xalan uses collections of type Vector. On these vectors, xalan then only uses enumer-

ations, not iterators. This is why the Quick Check is so effective for these two cases.

The same holds for hsqldb. For other properties, the Quick Check is only effective

occasionally. We require more sophisticated static analyses like the Orphan-shadows

Analysis to improve on these cases.
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before antlr bloat chart eclipse fop

ASyncContainsAll 1 0 0 0 0 0

ASyncIterC 2 0 0 0 2 0

ASyncIterM 2 0 0 0 2 0

FailSafeEnumHT 1 1 0 0 1 1

FailSafeEnum 1 1 0 0 1 1

FailSafeIter 1 0 1 1 1 1

FailSafeIterMap 1 0 1 1 1 1

HasNextElem 1 1 1 0 1 1

HasNext 1 0 1 1 1 1

LeakingSync 1 0 0 0 1 0

Reader 8 6 0 4 8 2

Writer 8 4 8 0 8 2

luindex
before hsqldb jython

lusearch
pmd xalan

ASyncContainsAll 1 0 0 1 0 0

ASyncIterC 2 0 0 2 0 0

ASyncIterM 2 0 0 0 0 0

FailSafeEnumHT 1 1 1 1 0 1

FailSafeEnum 1 1 1 1 1 1

FailSafeIter 1 1 1 1 1 0

FailSafeIterMap 1 1 1 1 1 0

HasNextElem 1 1 1 1 1 1

HasNext 1 1 1 1 1 0

LeakingSync 1 0 0 1 0 0

Reader 8 8 8 8 5 8

Writer 8 8 4 4 5 8

Table 4.3: Number of enabled dependencies before and after Quick Check
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4.4.2.2 Shadows eliminated by Quick Check

If the Quick Check removes all advice dependencies, then of course it also disables all

dependent-advice shadows in the program, as there is no active dependency any more

that could activate these shadows. In cases where the Quick Check only disables a

subset of the dependencies, one may however ask how many of the shadows the

Quick Check can disable as a result of disabling the dependencies. As we can see in

Table 4.4, and as one would expect, the ratio of disabled shadows does not always

correspond directly to the number of disabled dependencies. For instance, for antlr-

Reader, the Quick Check removed two out of eight dependencies, but the remaining

six dependencies were enough to activate all of the shadows, i.e., the Quick Check

could not remove any shadow for antlr-Reader.

4.4.2.3 Runtime overhead after Quick Check

Table 4.5 shows for every benchmark/property combination the runtime overheads

(in percent) before and after applying the Quick Check (we omit the values for hsqldb

and xalan, as these benchmark show no perceivable overheads). As one would expect,

the table shows that after applying the Quick Check there is no perceivable remaining

overhead in cases where the Quick Check managed to disable all shadows. In other

cases, like antlr-Writer, the Quick Check manages to lower the overhead by large

amounts, however not to eliminate it completely.

As our results demonstrate, the Quick Check is essential in showing that a property

does not really apply to a given program and that therefore programmers or later-

running analyses do not need to consider such a property any further for this program.

However, the Quick Check is not powerful enough to prove such programs partially

correct (with respect to the given property) that actually do contain shadows for all of

the events that the property describes. The Orphan-shadows Analysis can therefore

improve on the Quick Check’s results by resorting to pointer information.
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antlr bloat chart eclipse fop

bef aft bef aft bef aft bef aft bef aft

ASyncContainsAll 0 0 71 0 6 0 10 0 0 0

ASyncIterC 0 0 1621 0 498 0 214 214 146 0

ASyncIterM 0 0 1684 0 507 0 236 236 176 0

FailSafeEnumHT 133 133 102 0 44 0 217 217 205 205

FailSafeEnum 76 76 3 0 1 0 117 117 18 18

FailSafeIter 23 0 1394 1394 510 510 391 391 288 288

FailSafeIterMap 130 0 1180 1180 374 374 548 548 1374 1374

HasNextElem 117 117 2 2 0 0 89 89 10 10

HasNext 0 0 849 849 248 248 109 109 72 72

LeakingSync 170 0 1994 0 920 0 1325 1325 2347 0

Reader 50 50 7 0 65 33 218 218 102 68

Writer 171 115 563 563 70 0 1045 1045 429 226

luindex
hsqldb jython

lusearch
pmd xalan

bef aft bef aft bef aft bef aft bef aft

ASyncContainsAll 0 0 31 0 18 18 10 0 0 0

ASyncIterC 33 0 128 0 149 149 671 0 0 0

ASyncIterM 39 0 138 0 152 0 718 0 0 0

FailSafeEnumHT 114 114 153 153 37 37 100 0 319 319

FailSafeEnum 120 120 110 110 61 61 21 21 222 222

FailSafeIter 112 112 253 253 217 217 546 546 158 0

FailSafeIterMap 252 252 250 250 136 136 583 583 540 0

HasNextElem 53 53 64 64 22 22 6 6 63 63

HasNext 16 16 63 63 74 74 346 346 0 0

LeakingSync 528 0 1082 0 629 629 986 0 1005 0

Reader 1216 1216 139 139 226 226 102 102 106 106

Writer 1378 1378 462 227 146 74 62 62 751 751

Table 4.4: Number of enabled shadows before and after Quick Check
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antlr bloat chart eclipse fop

bef aft bef aft bef aft bef aft bef aft

ASyncContainsAll 4 -4

ASyncIterC 140 5

ASyncIterM 139

FailSafeEnumHT 9 10

FailSafeEnum 5 -4

FailSafeIter >1h >1h 8 9 14 19

FailSafeIterMap >1h >1h 7 6

HasNextElem

HasNext 329 329

LeakingSync 8 163 91 209

Reader 30151 29923

Writer 37779 37727 >1h >1h 5 5

jython luindex lusearch pmd

bef aft bef aft bef aft bef aft

ASyncContainsAll

ASyncIterC 28

ASyncIterM 35

FailSafeEnumHT >1h >1h 32 29

FailSafeEnum 30 30 18 17

FailSafeIter 5 5 20 20 2811 2806

FailSafeIterMap 13 12 5 5 >1h >1h

HasNextElem 12 12

HasNext 70 71

LeakingSync >1h 34 35 365 347 16

Reader 77 72

Writer

Table 4.5: Runtime overheads after applying Quick Check, in percent; as before,

hsqldb and xalan show no perceivable overheads
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4.4.3 Shadows reachable from the program’s main class

So far, when we reported the “number of shadows” in a program, then this referred

to the number of shadows in both the code that can and cannot be reached when

executing the particular benchmark through its main class. Our Orphan-shadows

Analysis operates on points-to sets and the points-to analysis that we use computes

these points-to sets only over the part of the program that one can reach by executing

a user-supplied main class. To establish a baseline for the Orphan-shadows Analysis

we will hence only consider the number of reachable shadows in the remainder of our

experiments. In Tables 4.6 and 4.7, we therefore report for each property/benchmark

combination the number of shadows that is reachable from the benchmark’s main

class, as determined by the static call graph that Clara computes.

4.4.3.1 Problems due to dynamic class loading

As the reader will notice, we do not include numbers for the benchmark eclipse. This

is because we were unfortunately unable to set up Clara in such a way that it would

construct a complete and hence sound call graph for eclipse. This is due to problems

caused by reflection. Many of DaCapo’s benchmarks load classes dynamically, using

the method Class.forName(String). (In fact, DaCapo loads the entire benchmarks

dynamically.) Without further information, Clara has no way of knowing which

particular classes a program could load and execute through such calls. Hence, when

analyzing such programs, the programmer must provide Clara with the set of classes

that may be loaded through such method calls. It is usually easy to determine these

classes, at least for a single program run. We wrote an AspectJ aspect that would

print at every call to forName and a few other reflective calls the name of the class

that this call loads. (We also double-checked with Ondřej Lhoták who compiled such

lists of dynamic classes earlier.) In addition, the aspect would also print the location

from which the program loads the class, in the form of a URL. Usually this URL will

point to a JAR file or directory, and the programmer can then produce a sound call

graph by informing Clara about the names of the dynamically loaded classes using

Soot’s -dynamic-class option. In addition, the programmer must add the JAR files
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antlr bloat chart fop hsqldb

all rch all rch all rch all rch all rch

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 133 107 205 170 114 8

FailSafeEnum 76 45 18 12 120 3

FailSafeIter 1394 929 510 160 288 55 112

FailSafeIterMap 1180 751 374 114 1374 1116 252 8

HasNextElem 117 86 4 12 8 53 6

HasNext 849 565 248 82 72 8 16

LeakingSync

Reader 50 41 33 68 3 1216 33

Writer 115 85 563 226 226 70 1378 120

(a) total number of shadows (all) vs. absolute number of reachable shadows (rch)

antlr bloat chart fop hsqldb

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 20 17 93

FailSafeEnum 41 33 98

FailSafeIter 33 69 81 100

FailSafeIterMap 36 70 19 97

HasNextElem 26 100 33 89

HasNext 33 67 89 100

LeakingSync

Reader 18 100 96 97

Writer 26 60 69 91

(b) ratio of unreachable shadows, in percent

Table 4.6: Number of reachable shadows, part 1
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jython luindex lusearch pmd xalan

all rch all rch all rch all rch all rch

ASyncContainsAll 18 18 1

ASyncIterC 149 24 149 42

ASyncIterM

FailSafeEnumHT 153 104 37 21 37 9 319 68

FailSafeEnum 110 71 61 29 61 22 21 13 222 6

FailSafeIter 253 119 217 49 217 62 546 379

FailSafeIterMap 250 165 136 38 136 48 583 455

HasNextElem 64 47 22 16 22 6 11 6 63 3

HasNext 63 31 74 12 74 22 346 250

LeakingSync 629 139 629 260

Reader 139 50 226 9 226 24 102 77 106 12

Writer 227 13 74 5 74 10 62 21 751 8

(a) total number of shadows (all) vs. absolute number of reachable shadows (rch)

jython luindex lusearch pmd xalan

ASyncContainsAll 100 94

ASyncIterC 84 72

ASyncIterM

FailSafeEnumHT 32 43 76 79

FailSafeEnum 35 52 64 38 97

FailSafeIter 53 77 71 31

FailSafeIterMap 34 72 65 22

HasNextElem 27 27 73 45 95

HasNext 51 84 70 28

LeakingSync 78 59

Reader 64 96 89 25 89

Writer 94 93 86 66 99

(b) ratio of unreachable shadows, in percent

Table 4.7: Number of reachable shadows, part 2
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and directories that the aspect printed to Clara’s classpath. When analyzing our

benchmarks we did exactly this. The page http://www.sable.mcgill.ca/soot/

tutorial/usage/ gives an explanation of Soot’s command line options. Clara

understands all of these command-line options, as does abc.

Unfortunately, eclipse caused problems. Eclipse uses URLs that do not point

directly to a JAR file or directory but instead to a location relative to a “OSGi

resource bundle”. (In a nutshell, eclipse loads classes not from JAR files that are

stored in the file system but instead from JAR files within JAR files.) Clara has no

notion of such bundles, and hence cannot cope with such URLs. In result, while we

could determine the names of the classes that eclipse loads dynamically, we could not

determine the exact locations from where eclipse loads these classes. We therefore

decided to not report further results on eclipse at all. After all, this case nicely shows

the limitations of static whole-program analyses.

4.4.3.2 Problems due to dynamic class generation

Jython exposed a different problem: to interpret a Python program, jython generates

code for this program at runtime, which it then executes. This causes problems

not only for our static analysis but also even when performing runtime monitoring.

After all, jython generates the code at runtime. So how should an AspectJ compiler

instrument these classes with runtime-monitoring code ahead of time? Programmers

can only solve this problem by resorting to load-time weaving [Tea04]. Unfortunately,

abc does not support load-time weaving at this time. Therefore, programmers cannot

instrument the runtime-generated code with abc. Because therefore the runtime-

generated code will not send any notifications to the runtime monitor anyway, we do

analyze jython in our experiments, but restrict ourselves to a generally unsound call

graph that does not contain any call edges to the runtime-generated code.

In Section 3.4 we explained that the DaCapo suite has two different workloads,

luindex and lusearch, which are both actually two different runs of the same program

lucene. Note that luindex and lusearch produce different static call graphs because

they use a different set of dynamically loaded classes.
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As the data shows, some of the DaCapo benchmarks have unfortunately quite

bad code coverage. For instance consider hsqldb in Table 4.6b. As the table shows,

almost all the shadows are unreachable for this benchmark.

When Clara determines that a shadow is unreachable from the program’s main

class then it disables this shadow. Note that this will have no impact on the program’s

runtime because the program execution will never reach the shadow (assuming that

we supplied a correct set of dynamically loaded classes and the call graph is therefore

sound).

4.4.4 Effects of applying the Orphan-shadows Analysis

In the following, we discuss the effects of applying the Orphan-shadows Analysis.

4.4.4.1 Shadows eliminated by the Orphan-shadows Analysis

In Tables 4.8 and 4.9 we give, as before for the Quick Check, the number of shadows

before and after applying the Orphan-shadows Analysis. Before we conducted these

experiments, we already suspected that the Orphan-shadows Analysis would be very

effective on the patterns that reason about synchronized collections, namely ASync*

and LeakingSync. This is because, for instance in the case of ASyncIterC, even if a

program does create a synchronized collection and even iterates over some collection

(hence causing the Quick Check to be too imprecise), it is not likely that the program

in fact iterates over exactly those collections that it synchronizes. It did however

come as a surprise to us that the Orphan-shadows Analysis was so effective on the

Reader and Writer patterns, too. We remind the reader that for instance the Reader

pattern detects cases in which a program writes to a closed Reader. Indeed we

could confirm, through manual inspection, that all of the benchmarks for which the

Orphan-shadows Analysis is 100% effective on Reader or Writer (lucene, xalan, fop

and jython), indeed fail to close the readers and writers that they use on the runs

that the DaCapo benchmark suite produces. The Orphan-shadows Analysis is also

very effective on xalan and lucene, in combination with iterators. Those benchmarks
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iterate over some of the vectors that they use, and they modifies some of their vectors

but they do not iterate over vectors that they modify.

As we can see, the Orphan-shadows Analysis is very effective in many cases. How-

ever, there are also some cases in which the Orphan-shadows Analysis fails completely.

One of these cases is the HasNext property. For this property it is in fact very likely

that the Orphan-shadows Analysis will be too imprecise to rule out any shadow in

any benchmark. To understand why this is, consider when the Orphan-shadows Anal-

ysis could remove a shadow that is induced by the HasNext tracematch. For this to

happen, a program would have to use an iterator on which the program only invokes

hasNext but not next. Obviously, this is not likely to happen.

The crucial ingredient that the Orphan-shadows Analysis misses to handle cases

like HasNext is flow-sensitivity. Consider the common case in which we have iterators

on which both next and hasNext are invoked. In this case, if our analysis could

determine that a given program calls next only after a hasNext call then our analysis

could prove that this program cannot violate the HasNext property. In the next

chapter we will present an annotation language that encodes flow-sensitivity and an

analysis that makes use of flow-sensitive information. In combination, this third

analysis stage will be able to significantly improve on HasNext and other cases.

4.4.4.2 Number of potential failure groups

Instead of just reporting a simple list of remaining shadows, Clara reports a list of

groups of inter-connected shadows after finishing the Orphan-shadows Analysis. We

call any such group of shadows a “potential failure group” (PFG for short). Every

group consists of a “final” shadow that can drive the monitor into a final state, and

all (final or non-final shadows) that overlap with this shadow. Shadow groups allow

programmers to divide the work of manual inspection into smaller, related units. The

number of potential shadow groups can therefore significantly influence the amount

of work that the programmer has to perform when inspecting shadows by hand.

Table 4.10 shows the number of potential failure groups for each benchmark/prop-

erty combination. As one can see the average number of such PFGs is significantly
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antlr bloat chart fop hsqldb

bef aft bef aft bef aft bef aft bef aft

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 107 30 170 8 3

FailSafeEnum 45 3 12 7 3

FailSafeIter 929 922 160 160 55

FailSafeIterMap 751 446 114 49 1116 1114 8

HasNextElem 86 86 8 8 6 6

HasNext 565 565 82 82 8 8

LeakingSync

Reader 41 14 3 33 3

Writer 85 44 226 19 70 120 10

(a) absolute number of shadows

antlr bloat chart fop hsqldb

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 72 100 63

FailSafeEnum 93 42 100

FailSafeIter 1 0 100

FailSafeIterMap 41 57 0 100

HasNextElem 0 0 0

HasNext 0 0 0

LeakingSync

Reader 66 100 91

Writer 48 92 100 92

(b) ratio of shadows disabled by Orphan-shadows Analysis, in percent

Table 4.8: Enabled shadows before and after Orphan-shadows Analysis, part 1
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jython luindex lusearch pmd xalan

bef aft bef aft bef aft bef aft bef aft

ASyncContainsAll 1

ASyncIterC 24 42

ASyncIterM

FailSafeEnumHT 104 76 21 15 9 5 68

FailSafeEnum 71 47 29 22 5 13 10 6

FailSafeIter 119 116 49 27 62 36 379 302

FailSafeIterMap 165 151 38 48 455 314

HasNextElem 47 47 16 16 6 6 6 6 3 3

HasNext 31 31 12 12 22 22 250 250

LeakingSync 139 260

Reader 50 4 9 24 77 24 12

Writer 13 5 10 21 7 8

(a) absolute number of shadows

jython luindex lusearch pmd xalan

ASyncContainsAll 100

ASyncIterC 100 100

ASyncIterM

FailSafeEnumHT 27 29 44 100

FailSafeEnum 34 100 77 23 100

FailSafeIter 3 45 42 20

FailSafeIterMap 8 100 100 31

HasNextElem 0 0 0 0 0

HasNext 0 0 0 0

LeakingSync 100 100

Reader 92 100 100 69 100

Writer 100 100 100 67 100

(b) ratio of shadows disabled by Orphan-shadows Analysis, in percent

Table 4.9: Enabled shadows before and after Orphan-shadows Analysis, part 2
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lower than the average number of shadows that remains after the Orphan-shadows

Analysis. For instance, for jython-FailSafeIterMap, 165 shadows remain, but they

form only 4 consistent shadow groups. Note that this does not necessarily mean that

the programmer would only have to inspect four combinations of maps and iterators

in this case, though: the Orphan-shadows Analysis models objects through points-to

sets and if these points-to sets are imprecise then this may lead to larger shadow

groups that represent multiple such actual combinations.

4.4.4.3 Runtime overhead after Orphan-shadows Analysis

As we show in Table 4.11, the Orphan-shadows Analysis can lower the overhead

that runtime monitoring induces, sometimes by a significant amount. In the case of

antlr-Writer, for example, the Orphan-shadows Analysis reduced the overhead from

more than 377-fold to just about 38%. For fop the analysis eliminated all perceivable

overhead in two out of three cases, for luindex in half of the cases and for lusearch

in all cases. In case of the HasNext* properties, the Orphan-shadows Analysis failed

to reduce the overhead because the analysis failed to disable any shadows in these

cases. We can see that in 16 cases, runtime overheads of 10% or more still remain. In

the next chapter, we will present a flow-sensitive analysis that will disable yet more

shadows and lower the overhead even further.

4.4.4.4 Analysis time

The Quick Check never took longer than one second to execute on any of our bench-

marks. For the Orphan-shadows Analysis, it is hard to determine the actual runtime

for the actual analysis itself. Because we use lazy points-to sets, context information

for these points-to sets may be computed on demand, during the execution of the

Orphan-shadows Analysis. Including this computation of context information, the

Orphan-shadows Analysis took never longer than 91 seconds on any of our bench-

marks. In earlier work [BCR09] we used the Orphan-shadows Analysis on a similar

benchmark set, but without lazy points-to sets. Therefore, we could measure the

overhead that the Orphan-shadows Analysis causes more precisely in this case, and
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antlr bloat chart fop hsqldb

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 6 1

FailSafeEnum 1 1

FailSafeIter 259 38

FailSafeIterMap 258 38 1

HasNextElem 41 4 3

HasNext 266 38 3

LeakingSync

Reader 4 1

Writer 3 1 1

jython luindex lusearch pmd xalan

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 24 4 2

FailSafeEnum 2 1 2

FailSafeIter 4 6 10 90

FailSafeIterMap 4 32

HasNextElem 26 8 3 3 2

HasNext 14 6 10 98

LeakingSync

Reader 1 5

Writer 2

Writer

Table 4.10: Number of potential failure groups after Orphan-shadows Analysis
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antlr bloat chart fop

bef aft bef aft bef aft bef aft

ASyncContainsAll 4

ASyncIterC

ASyncIterM

FailSafeEnumHT 10 4

FailSafeEnum 5

FailSafeIter >1h >1h 9 8 19

FailSafeIterMap >1h >1h 6 5

HasNextElem

HasNext 329 329

LeakingSync

Reader 29923

Writer 37727 38 >1h 229 5

jython luindex lusearch pmd

bef aft bef aft bef aft bef aft

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT >1h >1h 29 28

FailSafeEnum 30 17

FailSafeIter 5 4 20 2806 526

FailSafeIterMap 12 14 5 >1h >1h

HasNextElem 12 12

HasNext 71 70

LeakingSync 35 347

Reader 72

Writer

Table 4.11: Runtime overheads after applying Orphan-shadows Analysis, in percent;

as before, hsqldb and xalan show no perceivable overheads
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we determined that the analysis itself never took longer than 17 seconds, with an

average of 1.4 seconds.

We first compute context-insensitive points-to sets using Spark [LH03], and then

refine these sets with context information on demand. Computing the initial context-

insensitive points-to sets can take quite some time: on average, this took two and a

half minutes for our benchmark set, and up to almost five minutes in the case of fop-

FailSafeIterMap. This may seem like a long time, however, considering the currently

available technologies, we believe that any analysis that needs to cope with aliasing

on a whole-program level would require a similar points-to analysis. The initialization

of Sridharan and Bod́ık’s demand-driven analysis [SB06] may take several seconds,

too. Because we initialize the analysis on demand, within our lazy points-to sets, this

overhead shows up as part of the computation time for the Orphan-shadows Analysis

that we mentioned above. The complete compilation and analysis with both Quick

Check and Orphan-shadows Analysis enabled never took longer than nine minutes on

any of our benchmarks.
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Chapter 5

Flow-sensitive optimizations through

Dependency State-machines

In the previous chapter, we showed how static program analyses can exploit de-

pendency information which is preserved in history-based aspects in the form of de-

pendent advice. In particular, dependent advice capture exactly the minimal amount

of information that a pointer-based analysis requires to flow-insensitively determine

whether an aspect that implements a finite-state runtime monitor can reach a final

state when applied to a particular program. If the monitor can reach a final state,

then the analysis determines the joinpoint shadows that drive the monitor into this

state.

While our results from Section 4.4 showed that the use of dependent advice can

greatly enhance the performance of the monitoring aspects, the results also showed

that the presented analyses are still too coarse grained when it comes to actually

proving programs sound at compile time (with respect to the stated finite-state prop-

erty). For some finite-state specification patterns, like HasNext for example, even

the pointer-based Orphan-shadows Analysis was completely unsuccessful in removing

shadows, and brought no runtime improvements whatsoever.

Hence, in this chapter, we introduce a third static analysis that is flow-sensitive

in nature, i.e., the analysis considers the order in which events occur. To enable

this analysis, the annotations added to our history-based monitoring aspects need
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to be extended: they also need to retain information about the order of events that

can drive a finite-state machine into its final state, or in other words its transition

relation. The most simple way to encode and preserve the transition relation of

a finite-state machine is to simply encode the entire state machine itself, as a list

of transitions. Hence, in this chapter, we introduce Dependency State machines,

our second AspectJ language extension to preserve information about inter-advice

dependencies at compile time.

Chapter organization. We organized the remainder of this chapter as follows. In

the next section, we describe the syntax and semantics of dependency state machines.

Then, in Section 5.2, we explain how Clara’s third static analysis, the Nop-shadows

Analysis, can evaluate a history-based aspect using these state machines. The anal-

ysis identifies “nop shadows”, i.e., shadows that one does not need to monitor, using

a novel notion of continuation-equivalent states. In Section 5.3, we expand on ad-

ditional experiments, which show that this additional analysis is effective in proving

many programs sound (with respect to the stated finite-state property) for which the

Orphan-shadows Analysis is too imprecise to prove soundness.

5.1 Syntax and semantics of Dependency

State machines

In Figure 5.1, we show how the syntactic extension that we provide could be used

to denote the state machine for the ConnectionClosed pattern from Figure 4.1 on

page 69. On purpose, we kept the syntax similar to the syntax for dependent advice

that we saw in the last chapter. What distinguishes the dependency state machine

in Figure 5.1 from its dependent-advice counterpart is that (1) the state machine

description contains no mention of strong or weak advice, and (2) instead it contains

a list of states, along with their transitions, that encode the entire finite-state machine

of the finite-state property. Note that this representation is richer than the one for

dependent advice; it contains more information. We can easily reconstruct (1) all the
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information about strong and weak advice by applying Algorithm 4.3 to the encoded

state machine, but in addition, we get (2) flow-sensitive information about the order

in which events need to occur so that a final automaton state can be reached.

Line 2 contains references to advice names. These can be parameterized with

free variables, just as the strong and weak advice names inside the dependency dec-

larations of dependent advice. In this example, the programmer could have written

disconn(c), write(c), reconn(c) in line 2. As in dependent advice, variables are

inferred from the advice declarations when they are not explicitly mentioned. Lines

3–9 enumerate all states in the state machine in question, and for each state a (poten-

tially empty) list of outgoing transitions. An entry “s1: l -> s2” reads as “there

exists an l transition from s1 to s2”. In addition, a programmer can mark states as

initial or final (in other words, accepting). We give the complete syntax for depen-

dency state machines in Figure 5.2, as a syntactic extension to the dependent-advice

language extension to AspectJ that we gave in Figure 4.2 (page 73).

5.1.1 Type-checking dependency state machines

After parsing, we impose the following semantic checks to the dependency state ma-

chines supplied in an aspect:

• Every advice must be referenced only by a single declaration of a dependency

state machine.

• The state machine must have at least one initial and at least one final state.

• The alphabet may contain every advice name only once.

• The names of states must be unique within the dependency declaration.

• Transitions may only refer to the names of advice that are named in the alphabet

of the dependency declaration, and to the names of states that are also declared

in the same dependency declaration.

• Every state must be reachable from an initial state.
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1 dependency{
2 disconn, write, reconn;

3 initial s0: disconn −> s0,

4 write −> s0,

5 reconn −> s0,

6 disconn −> s1;

7 s1: disconn −> s1,

8 write −> s2;

9 final s2;

10 }

Figure 5.1: Finite-state machine for ConnectionClosed pattern (Figure 4.1, page 69),

written in the syntax of our syntactic extension

AspectMemberDecl ::= AdviceDecl | . . . | DependencyDecl | DependencySMDecl .

DependencySMDecl ::=

“dependency” “{” AdviceNameList “;” StateList “;” “}”.

StateList ::= State | State StateList .

State ::= StateModifier ∗ Identifier [“:” TransitionList ] “;”.

StateModifier ::= “initial” | “final”.

TransitionList ::= Transition | Transition “,” TransitionList .

Transition ::= Identifier “->” Identifier .

Figure 5.2: Syntax of Dependency State machines, as extension (shown in boldface)

to the dependent-advice extension to AspectJ (see Figure 4.2)
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Note that these checks are very minimal and allow for a large variety of state machines

to be supplied. For instance, we do allow multiple initial states and final states. We

also allow the state machine to be non-deterministic. The state machine can have

unproductive states from which no final state can be reached, and the state machine

even does not have to be connected, i.e., it may consist of multiple components which

are not connected by transitions. (In this case, the state machine essentially consists

of multiple state machines that share a common alphabet.) To the advice references

in the alphabet of the declaration of a dependency state machine we apply the same

warnings that we also apply to dependent advice (see page 77).

5.1.2 The semantics of dependency state machines

As we saw in Chapter 3, runtime monitors frequently operate on “parameterized

traces”, i.e., traces that are parameterized through variable bindings. The HasNext

tracematch from Figure 1.2 (page 4), for example, tracks an internal state for every

single iterator object on which next or hasNext is called. The semantics of state

machines are usually defined using words over a finite alphabet Σ. In particular,

state machines usually have no notion of variable bindings. In the following, we will

call traces over Σ, which are given as input to a dependency state machine “ground

traces”, as opposed to the parameterized trace that the program execution generates.

We will therefore define the semantics of dependency state machines over ground

traces. We obtain ground traces by projecting parameterized events of the unique

parameterized runtime trace onto ground events. This yields a unique ground trace

for every variable binding.

For any declaration of a dependency state machine, the set of dependent advice

names mentioned in the declaration of the dependency state machine induces an

alphabet Σ, where every element of Σ is the name of one of these dependent advice.

For instance, the alphabet for the ConnectionClosed dependency state machine from

Figure 5.1 would be Σ = {disconn,write, reconn}. When one matches these pieces of

advice against a runtime event e, this results in a (possibly empty) set of matches
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for this event, where each match has a binding attached. We call this set of event

matches the parameterized event ê.

Definition 5.1 (Parameterized event). Let e ∈ E be an event and Σ be the alphabet

of advice references in the declaration of a dependency state machine. We define the

parameterized event ê to be the following set:

ê :=
⋃
a∈Σ

{(a, β) | β = match(e, a) ∧ β 6= ⊥}.

We call the set of all parameterized events Ê :

Ê :=
⋃
e∈E

{ê}

It is necessary to consider sets of matches because multiple pieces of advice can

match the same event. While this is not usually the case, we decided to cater for

the unusual cases too. As an example, consider the dependency state machine in

the UnusualMonitor aspect in Figure 5.3a. The aspect defines a dependency between

two pieces of advice a and b. Note that the pointcut definitions of a and b overlap,

i.e., describe non-disjoint sets of program events. The advice b executes before all

non-static calls1 to methods named foo. The advice a executes before these events

too, because by its definition it executes before any non-static method call.

Next assume that we apply this aspect to the little example program in Fig-

ure 5.3b. We show the program’s execution trace in the first row of Figure 5.3c (to

be read from left to right). This execution trace naturally induces the parameterized

event trace that we show in the second row of the figure: this trace is obtained by

matching at any event every piece of advice against this event.

Next we explain how we use projection to obtain “ground traces”, i.e., words of

Σ∗, from this parameterized event trace.

Definition 5.2 (Projected event). For every ê ∈ Ê and binding β, we define a

projection of ê with respect to β:

ê ↓ β := {a ∈ Σ | ∃(a, βa) ∈ ê such that compatible(βa, β)}
1The calls cannot be static because the advice binds the call target to x. For static calls there is

no call target, and the target pointcut does not match such calls.
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1 aspect UnusualMonitor {
2 dependency{
3 a, b;

4 //transitions omitted from example

5 }
6

7 dependent before a(Object x): call(∗ ∗(..)) && target(x) { ... }
8

9 dependent before b(Object x): call(∗ foo(..)) && target(x) { ... }
10 }

(a) UnusualMonitor aspect with overlapping pointcuts

1 SomeClass v1 = new SomeClass();

2 SomeClass v2 = new SomeClass();

3 v1.foo (); v1.bar(); v2.foo ();

(b) Example program

execution trace v1.foo(); v1.bar(); v2.foo();

parameterized trace t̂ {(a, x = o(v1)), {(a, x = o(v1))} {(a, x = o(v2)),

(b, x = o(v1))} (b, x = o(v2))}
projected traces a a

for t̂ ↓ x = o(v1) b a

projected traces a

for t̂ ↓ x = o(v2) b

(c) Resulting traces; note that o(v1) 6= o(v2)

Figure 5.3: UnusualMonitor aspect, example program and resulting traces
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The reader be reminded that two bindings are compatible as long as they do not bind

the same variable to two different objects.

Definition 5.3 (Parameterized and projected event trace). Any finite program run

induces a parameterized event trace t̂ = ê1 . . . ên ∈ Ê∗. For any variable binding β we

define a set of projected traces t̂ ↓ β ⊆ Σ∗ as follows. t̂ ↓ β is the smallest subset of

Σ∗ for which holds:

∀t = e1 . . . en ∈ Σ∗ : if ∀i ∈ N : (1 ≤ i ≤ n)→ ei ∈ êi ↓ β then t ∈ t̂ ↓ β

In the following we will call traces like t, which are elements of Σ∗, “ground” traces,

as opposed to parameterized traces, which are elements of Ê∗.

For our example, the third and fourth row of Figure 5.3c show the four traces

that result when projecting this parameterized event trace onto the variable bindings

x = o(v1) and x = o(v2). For x = o(v1) we obtain the two traces “aa” and “ba”, for

x = o(v2) we obtain the two traces “a” and “b”. At runtime, there will hence be four

monitor instances for this program run, one for every projected event trace.2

A dependency state machine will execute its validation handler whenever a prefix

of one of the ground traces of any variable binding is in the language described by

the state machine. We exclude the empty trace (with no events) because this trace

cannot possibly cause the validation handler to execute. This yields the following

definition.

Definition 5.4 (Set of non-empty ground traces of a run). Let t̂ ∈ Ê∗ be the pa-

rameterized event trace of a program run. Then we define the set groundTraces(t̂) of

non-empty ground traces of t̂ as:

groundTraces(t̂) :=

(⋃
β∈B

t̂ ↓ β

)
∩ Σ+

We intersect with Σ+ to exclude the empty trace.

2Note that by the definition of the example program (Figure 5.3b), it holds that o(v1) 6= o(v2).
If we had had the case o(v1) = o(v2), then this would have resulted in a different set of ground
traces, namely “aaa”, “aab”, “baa” and “bab”.
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The semantics of a dependency state machine

We define the semantics of dependency state machines similar to the way in which we

defined the semantics of dependent advice. Before, we defined a specialization of the

predicate match(a, e), which models the decision of whether or not the advice a ∈ A
matches at event e ∈ E , and if so, under which variable binding. For dependent

advice, we defined a specialized version of match, called depMatch. Now we will

provide a similar specialization, stateMatch.

stateMatch : A× Ê∗ × N → {β | β : V ⇀ O} ∪ {⊥}

stateMatch(a, t̂, i) =

let β = depMatch(a, e) inβ if β 6= ⊥ ∧ ∃t ∈ groundTraces(t̂) such that necessaryShadow(a, t, i)

⊥ else

As we can see, stateMatch takes as arguments not only the piece of advice for which

we want to determine whether it should execute at the current event, but also the

entire parameterized event trace t̂, and the current position i in that event trace.

Note that t̂ also contains future events, which makes the function stateMatch unde-

cidable. Our static optimization, however, will provide a sound approximation of all

possible future traces, which makes the approximation decidable again. The func-

tion necessaryShadow mentioned above is a parameter to the semantics which can be

freely chosen, as long as it adheres to a certain soundness condition that we define

next.3

Soundness condition. The soundness condition will demand that an event needs to

be monitored if we would miss a match or obtain a spurious match by not monitoring

the event. A dependency state machine M matches, i.e., executes its validation

handler after every prefix of the complete execution trace that is in L(M).

3We wish to emphasize that above we formulated stateMatch as a refinement of depMatch,
not match. This reflects the fact that we only apply the flow-sensitive analysis when the flow-
insensitive analysis, which determines depMatch, fails. We could also have formulated stateMatch as
a refinement of match, but depMatch can be determined faster than stateMatch and the formulation
that we chose here is more practical.
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Definition 5.5 (Set of prefixes). Let w ∈ Σ∗ be a Σ word. We define the set pref(w)

as:

pref(w) := {p ∈ Σ∗ | ∃s ∈ Σ∗ such that w = ps}

Definition 5.6 (Matching prefixes of a word). Let w ∈ Σ∗ be a Σ word and L ⊆ Σ

a Σ language. Then we define the matching prefixes of w (with respect to L) to be

the set of prefixes of w in L:

matchesL(w) := pref(w) ∩ L

We will often write matches(w) instead of matchesL(w) if L is clear from the context.

As before, the predicate necessaryShadow can be freely chosen, as long as it ad-

heres to the following soundness condition:

Condition 5.1 (Soundness condition for dependency state machines). For any sound

implementation of necessaryShadow, we demand:

∀a ∈ Σ ∀t = t1 . . . ti . . . tn ∈ Σ+ ∀i ∈ N :

a = ti ∧matchesL(t1 . . . tn) 6= matchesL(t1 . . . ti−1ti+1 . . . tn)

−→ necessaryShadow(a, t, i)

The soundness condition hence states that if we are about to read a symbol a,

then we can skip a if the monitor’s validation handler would execute on the complete

trace t just as often (and at the same points in time) as it would execute on the

partial trace where ti = a is omitted.

5.2 Flow-sensitive Nop-shadows Analysis

In the last section we explained the syntax and semantics of dependency state ma-

chines at runtime. As we saw, the function necessaryShadow is a free parameter

to these semantics, and it can be freely chosen as long as the implementation of

necessaryShadow adheres to its soundness condition, Condition 5.1. In this section,

we will explain a static analysis that approximates the function necessaryShadow,
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5.2. Flow-sensitive Nop-shadows Analysis

while still fulfilling Condition 5.1. We first situate the static analysis in the con-

text of the compilation process for history-based aspects and then explain our static

abstraction.

5.2.1 Weaving process

As Figure 5.4 shows, we extended our package abc.da so that it generates depen-

dency declarations from dependency state machines present in the source code, using

Algorithm 4.3 (generateDependencies). The analysis then proceeds as follows. We ap-

ply the flow-sensitive Nop-shadows Analysis after first running the Quick Check and

the flow-insensitive Orphan-shadows Analysis. Due to this setup, in cases where the

Quick Check and the Orphan-shadows Analysis already manage to eliminate all of the

shadows, we do not need to run the Nop-shadows Analysis at all. The Nop-shadows

Analysis has access to the dependency declarations (through the Orphan-shadows

Analysis), but also has direct access to an internal representation of the dependency

state machines. This provides the analysis with flow-sensitive dependency informa-

tion. Just as in the earlier analysis stages, the Nop-shadows Analysis updates the

weaving plan after the analysis has completed.

As the figure shows, it is possible to re-iterate the Orphan-shadows Analysis and

Nop-shadows Analysis. We found that the flow-sensitive Nop-shadows Analysis may

yield further optimization potential for the flow-insensitive Orphan-shadows Analysis,

and the other way around. Hence, after the Nop-shadows Analysis completed, if the

Nop-shadows Analysis managed to disable any shadows, then we run the Orphan-

shadows Analysis and Nop-shadows Analysis again. We iterate this process until a

fixed point has been reached, i.e., until no shadows can be disabled any more. All the

analyses update the weaving plan. The program is then re-woven using the updated

weaving plan after all analyses have finished, yielding an optimized instrumented

program (potentially un-instrumented even) and a runtime monitor.
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Figure 5.4: Overview of our implementation of dependency state machines
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5.2. Flow-sensitive Nop-shadows Analysis

5.2.2 General idea of the Nop-shadows Analysis

We wish to motivate the Nop-shadows Analysis by example. In Chapter 4, we already

showed the ConnectionClosed aspect, which issues an error message in cases where the

program under test writes to a connection that has previously been disconnected and

not reconnected since (Figure 4.3, page 74). In Figure 5.5, we show the same code for

ConnectionClosed, however, this time annotated with a dependency state machine.

This annotation could have been generated automatically, from tools like JavaMOP or

abc (for tracematches), or it could have been written by hand. Figure 5.6a visualizes

the dependency state machine.

5.2.2.1 Motivating example

In this section, we motivate the analysis principle by a simple example, consisting

of a single method with straight-line code, involving only a single connection object.

In Section 5.2.3, we will extend the analysis to handle loops, multiple methods, and

events on arbitrary combinations of aliased objects. Consider the example in Fig-

ure 5.7. The program creates a connection and then executes a few operations on

this connection, all of which are monitored by the ConnectionClosed aspect.

While this example is clearly contrived, it shows the possibilities for optimization

by taking control flow into account. (Note that the flow-insensitive Orphan-shadows

Analysis is of no use here since both disconn and reconn events occur on the con-

nection.) The only events that actually need to be monitored to trigger the monitor

for this example at the right point in time is the write at line 7 and one of the two

disconnect events at lines 5 and 6. In particular, the disconnect and reconnect oper-

ations at lines 3 and 4 do not need to be monitored because they are on the prefix

of a match, and that match can be completed even without monitoring this prefix.

Conversely, the operations at lines 8 to 10 do not lead to a pattern violation and

hence do not need to be monitored either. Of the the two disconnects at lines 5 and

6, it is sound to omit monitoring one of them, but not both. The static analysis that

we present in the following will eliminate the monitoring of exactly those events that

we just identified as unnecessary, or “nop shadows” as we will call them. In result,
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1 aspect ConnectionClosed {
2 dependency{
3 disconn, write, reconn;

4 initial s0: disconn −> s0,

5 write −> s0,

6 reconn −> s0,

7 disconn −> s1;

8 s1: disconn −> s1,

9 write −> s2;

10 final s2;

11 }
12

13 Set closed = new WeakIdentityHashSet();

14

15 dependent after disconn(Connection c) returning:

16 call(∗ Connection.disconnect()) && target(c) {
17 closed .add(c);

18 }
19

20 dependent after reconn(Connection c) returning:

21 call(∗ Connection.reconnect()) && target(c) {
22 closed .remove(c);

23 }
24

25 dependent after write(Connection c) returning:

26 call(∗ Connection.write (..)) && target(c) {
27 if (closed .contains(c))

28 error(”May not write to ”+c+”, as it is closed !”);

29 }
30 }

Figure 5.5: ConnectionClosed aspect, annotated with a dependency state machine
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disconn

disconn, reconn, write

write

disconn

(a) Original non-deterministic finite-state machine for L

0 1 2

disconn

reconn, write

write

disconn

reconn disconn

reconn, write

(b) Deterministic finite-state machine for L

{2} {1} {0, 1, 2}write disconn

disconn, reconn, write

(c) Deterministic finite-state machine for L

Figure 5.6: Finite-state machines for Connection example
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1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]);

3 c1.disconnect(); //disconn(c1)

4 c1.reconnect(); //reconn(c1)

5 c1.disconnect(); //disconn(c1)

6 c1.disconnect(); //disconn(c1)

7 c1.write(args [1]); //write(c1)

8 c1.disconnect(); //disconn(c1)

9 c1.reconnect(); //reconn(c1)

10 c1.write(args [1]); //write(c1)

11 }

Figure 5.7: Simple example program using a single connection object

instrumentation will only remain in lines 5 and 7, or 6 and 7—the minimal set of

instrumentation points so that the optimized instrumented program will report an

error if and only if the un-optimized program would have reported an error.

5.2.2.2 General rule for identifying nop shadows

The general rule that we use for identifying nop shadows is the following. A shadow

s is necessary, i.e., not a nop shadow when the following holds.

1. The automaton for some binding compatible with s’s own variable binding can

be in state q just before s, and

2. the shadow s performs a transition from q to some state set Q′, and

3. one of the following:

(a) Q′ ∩ F 6= ∅, i.e., s triggers the validation handler, or

(b) from just after s, when being in state q, the program can reach a final state

using some execution, but not when being in any state of Q′, or
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5.2. Flow-sensitive Nop-shadows Analysis

(c) from just after s, when being in any state of Q′, the program can reach a

final state using some execution, but not when being in state q.

We prove this rule correct in Appendix B. In particular, we prove that if a shadow s

is a nop shadow by the above rule, then by the soundness condition, Condition 5.1,

it is sound to return false from necessaryShadow(a, t, i) for any event ti monitored

through s.

Part 3b is necessary for soundness: assume that we mistakenly identified some

shadow s as nop shadow and disabled it, although one can reach the final state from q

but not from any state in Q′. In this case, we would jeopardize soundness: the monitor

may fail to trigger during an actual property violation at runtime. Conversely, part 3c

is necessary for completeness. Assume we mistakenly disabled a shadow for which we

cannot reach the final state from q but we can reach it from Q′. This would mean

that the monitor could produce a spurious match, i.e., would notify the programmer

about a property violation where there is none—a false positive. Part 3a takes care

of the special case where some final state of the monitor contains a self-loop. In this

case, when the state machine is in a final state q already, and s leads from q back

to q, then both part 3b and 3c do not apply. Nevertheless, we need to keep the s

alive, because, according to the semantics of dependency state machines, the repeated

execution of s in a final state leads to the repeated execution of the violation handler.

(Remember that a validation handler executes after each matched prefix that is in

the state machine’s language.)

In the following, we will describe a forward and a backward analysis that determine

the necessary state sets to decide the above rule. The forward analysis determines

the set of states that may reach a shadow (necessary for deciding part 1 or the rule),

and the backward analysis computes the sets of states from which a final state can

be reached at this shadow (necessary for deciding parts 3b and 3c). We can decide

parts 2 and 3a locally, by inspecting a shadow in isolation.
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5.2.2.3 Forward analysis

The forward pass determines for each statement the set of automaton states which

the automaton could be in when reaching this statement. One way to compute this

information is to use a determinized version of the dependency state machine. Clara

obtains this automaton using the well-known subset-construction technique:

Definition 5.7 (Deterministic version of a non-deterministic state machine). Let

L ⊆ Σ∗ be a regular Σ language and letM = (Q,Σ,∆, Q0, F ) be a non-deterministic

finite-state machine with L(M) = L. Then we define the deterministic finite-state

machine det(M) as det(M) := (P(Q),Σ, Q0, δ, F̂ ) with:

δ = λQsλa . {qt ∈ Q | ∃qs ∈ Qs such that ∃(qs, a, qt) ∈ ∆}

F̂ = {QF ∈ P(Q) | ∃q ∈ QF such that q ∈ F}

Figure 5.6b shows the determinized version of the original (non-deterministic)

automaton from Figure 5.6a. In the deterministic automaton, we labeled every state

with a fresh state number. Figure 5.8 shows the previous example program, but this

time we annotated each statement with the state of the deterministic automaton just

before and after executing the statement.

In the remainder of this dissertation, we will refer to the deterministic finite-state

machine det(M) that the forward analysis uses by the name of Mforward.

5.2.2.4 Backward analysis

The backward analysis determines for every statement the set of states from which one

could potentially reach a final state using the remainder of the program execution.

Similar to the forward analysis, the backward analysis uses a determinized state

machine, however this time a determinized state machine for the mirror language L.

Definition 5.8 (Mirror word). Let w = w1 . . . wn ∈ Σ∗ a Σ word. We define the

mirror word w as w := wn . . . w1.

Definition 5.9 (Mirror language). Let L ⊆ Σ∗ a Σ language. Then we define the

mirror language L as:

L := {w | w ∈ L},
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1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]);

3 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 0

4 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1

5 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 0

6 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1

7 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · 1

8 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 2

9 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1

10 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · 0

11 }
· · · · · · · · · · · · · · · · · · · · · · · · · 0

Figure 5.8: Example program from Figure 5.7, annotated with states of forward

analysis

Given a non-deterministic finite-state machineM with L(M) = L, one can easily

obtain a non-deterministic finite-state machine accepting L, as follows.

Definition 5.10 (Reversed finite-state machine). LetM = (Q,Σ, Q0,∆, F ) be a non-

deterministic finite-state machine. Then we define the reversed finite-state machine

rev(M) as rev(M) := (Q,Σ, F, rev(∆), Q0) with

rev(∆) := {(qt, a, qs) | (qs, a, qt) ∈ ∆}.

Note that for any finite-state machine M it holds that

L(rev(M)) = L(M).

Our backwards analysis operates on the state machine

Mbackward := det(rev(det(M))) = det(rev(Mforward)).
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Note that L(Mbackward) = L. Figure 5.6c shows the state machine that the backwards

analysis uses for the ConnectionClosed example. Note that the states of Mbackward

are actually subsets of the state set of Mforward.

It would be sound to have the backwards analysis operate on any state machine

recognizing L, for instance on a reversed-determinized version of M. However, by

using a reversed-determinized version of det(M) instead, we automatically obtain a

minimal deterministic finite-state machine for L. (See [Brz62] for a proof.) Using a

minimal deterministic finite-state machine yields additional optimization potential.

(In Section 5.2.2.6 we explain why this is.) Figure 5.6c shows the state machine that

the backwards analysis uses for the ConnectionClosed example. In this figure, we la-

beled every state of this state machine with the corresponding state set of rev(det(M))

(Figure 5.6b). Note that, for presentation purposes, we omitted from the figure the

reject state, which represents the empty state set.

In Figure 5.9, we show how the states of Mbackward evolve during the backwards

analysis. Note that, because a dependency state machine executes its validation han-

dler after matching any prefix of the execution trace, we have to start the backwards

analysis after every statement that could lead into a final state. In case of the Con-

nectionClosed example, the only event that can lead into a final state, and hence

cause the validation handler to execute, is a write event. Hence, in this case we have

to start one instance of the analysis after every write statement. As a result of this

process, the backwards analysis computes for every statement not a single set, but

multiple sets of states from which a final state could be reached.

5.2.2.5 Combining forward and backward analysis results

In Figure 5.10 we show the same program, annotated with both the analysis infor-

mation from the forward analysis (to the left) and from the backward analysis (to

the right). For instance, by the forward analysis we know that we will be in state 0

when reaching line 5. When executing the disconn transition in this line, this leads

us from state 0 to state 1. According to the backwards-analysis information, every

set that contains state 0 also contains state 1, and the other way around. This tells
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1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]);

3 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · {} · · · {0, 1, 2}

4 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · {} · · · {0, 1, 2}

5 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · {} · · · {0, 1, 2}

6 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · {} · · · {0, 1, 2}

7 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · {} · · · {1}

8 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · {} · · · {2}

9 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · {}

10 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · {1}

11 }
· · · · · · · · · · · · · · · · · · · · · · · · · {2}

Figure 5.9: Example program from Figure 5.7, annotated with states of backward

analysis (note that the analysis is computed bottom-up)

us that we can reach a final state from state 0 in the same way as from state 1. This

is how we infer that we can disable the shadow at line 5.

5.2.2.6 Nop shadows transition between continuation-equivalent states

We can now determine and disable nop shadows based on this combined analysis

information. Our notion of a nop shadow is strongly connected to a novel notion of

“continuation-equivalent states”. In the following, for two states q1 and q2 we say

that q1 and q2 are “continuation-equivalent at a shadow s”, or “equivalent at s” for

short, and write q1 ≡s q2, if for all possible continuations of the control flow after s it

holds that the dependency state machine to which s belongs reaches the final state

at the same points of the program execution, regardless of whether we are in state q1

or q2 when reaching s. We can formally define this equivalence relation as follows.

For every shadow s, let us call the sets of set of states that the backwards analysis

determined for the position just after s the futures of s. Further, let us call the state
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1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]);

3 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · · · · · {} · · · {0, 1, 2}

4 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · · · · · {} · · · {0, 1, 2}

5 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · · · · · {} · · · {0, 1, 2}

6 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · · · · · {} · · · {0, 1, 2}

7 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · · · · · {} · · · {1}

8 c1.disconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 2 · · · · · · {} · · · {2}

9 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · · · · · {}

10 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · · · · · {1}

11 }
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · · · · · {2}

Figure 5.10: Example program from Figure 5.7, annotated with combined analysis

information

that the forward analysis computed for the position just before s the source(s), and

the state just after s as target(s). For instance, for the disconnect statement at line 5

of Figure 5.10 we have:

source(line 5) = 0

target(line 5) = 1

futures(line 5) = { {}, {0, 1, 2} }

We then define continuation-equivalence as:

q1 ≡s q2 :⇐⇒ ∀Q ∈ futures(s). q1 ∈ Q↔ q2 ∈ Q

A shadow is a nop shadow when it transitions between states in the same equiv-

alence class, unless the target state is an accepting state. (Because reaching a final

state has the side effect of triggering the monitor, the transition has an effect in this

case even though it switches between equivalent states.) Let us denote by F the set
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of accepting, i.e., violating states of Mforward. Then we call a shadow at a statement

s a “nop shadow” if:

1. source(s) ≡s target(s), and

2. target(s) 6∈ F .

The first case states that the shadow transitions between states that are in the same

equivalence class. Hence, monitoring the shadow appears unnecessary. (Note that,

as a special case, this condition handles looping: when source(s) = target(s) then

Condition 1 holds trivially.) However, there is one exception that we need to con-

sider, and which we handle in Condition 2: When target(s) ∈ F , then the shadow

directly triggers the runtime monitor. According to Clara’s monitoring seman-

tics, a monitor must signal repeated property violations every time the violation

occurs. (This is useful when the monitor executes error-handling code.) For instance,

on “c. close (); c.write (); c.write()” the monitor should signal a violation after both

“write” events. However, the second “write” event does not change the monitor’s

state; we have source(s) = target(s) = 2. Therefore, Condition 1 holds although the

statement is not a nop shadow. Adding Condition 2 handles this corner case.

For example, for the disconnect statement at line 5 of Figure 5.10 it holds that

source(s) = 0 and target(s) = 1. For both sets Qf ∈ futures(s) = { {}, {0, 1, 2} } it

holds that 0 ∈ Qf ↔ 1 ∈ Qf . Consequently, we have 0 ≡s 1 and because 1 6∈ F , s is

a nop shadow.

For the write statement at line 7, things look differently, though. Here, source(s) =

1 and target(s) = 2, but there exists a set Qf = {2} ∈ futures(s) such that 2 ∈ Qf

but 1 6∈ Qf . Hence, 1 6≡s 2, i.e., s is not a nop shadow and may therefore not be

disabled.

Note that the condition for determining nop shadows is a generalization of a

more restrictive condition: one can disable a shadow if it loops. When a shadow s

loops then we always have source(s) = target(s), and hence source(s) ≡s target(s)

obviously holds.

The above definition of nop shadows also explains why it is beneficial to use a

deterministic finite-state machine that is minimal when we perform the backwards
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analysis: in a minimal state machine, any two equivalent states are collapsed into

one. The collapsed state will be labeled with a larger set Qf of Mforward states than

the un-collapsed sets would have been. Hence, through collapsing equivalent states,

the chances of obtaining sets Qf that contain states source(s) as well as target(s) for

any shadow s increase.

Using this procedure, one can easily identify several nop shadows in our example

program. For instance, all the shadows at lines 3–6 are nop shadows according to

our definition, and indeed it is sound to disable any single (!) one of these shadows.

Note however, that we can only remove shadows one-by-one: after a shadow has been

disabled, we need to re-compute the analysis information for this method because

the transition structure for this method may have been changed. In our example,

otherwise we would be disabling both disconn shadows at lines 5 and 6. This is

unsound: removing both these shadows leads to the monitor not reaching its final

state in line 7.

Hence, our analysis proceeds as follows: it first computes the forward and back-

ward analysis. Then next it tries to determine a single shadow that can be disabled,

based on this analysis information. If such a shadow can be found, then the anal-

ysis disables the shadow and re-iterates the flow-insensitive Nop-shadows Analysis.

Next, it starts over, computing the forward and backward analysis again for the same

method. We iterate this process until no shadows can be disabled any more. In

our example, this would leave us with one of the shadows at lines 5–6, and with the

shadow at line 7—exactly the minimal correct set of shadows in this case.

Note that by following this procedure we disable shadows in a “greedy” manner:

by disabling a single nop shadow at a time, without taking other nop shadows into

account, we may reach the fixed point in a local optimum, which is not necessarily the

global optimum. (The global optimum is the version of the program that carries the

minimal number of shadows necessary to allow for a sound runtime monitor, given

the approximations of control flow and pointer information that we computed.) In

Appendix C, we present a constructed example that demonstrates how one particular

order of disabling nop shadows can cause our algorithm to “get stuck” in such a local

optimum, while the algorithm could find a global optimum for the same example when
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disabling nop shadows in a different order. However, as this constructed example

shows, such local optima only exist in quite specific situations with quite specific and

complex finite-state properties. Because the finite-state properties that programmers

are interested in are typically quite simple (see Chapter 2), we have reason to believe

that for such properties local optima will not exist in most cases. In these cases,

our greedy selection of shadows will discover the global optimum. Our experimental

results back this intuition.

The example that we presented here was very simplistic. In particular, it ab-

stracted from the following complications that program analyses face when analyzing

real-world Java programs:

1. conditional control flow and loops,

2. methods with virtual dispatch,

3. aliased objects, and

4. more general specification patterns referring to more than one object.

In the following, we explain a general analysis scheme that takes all of the above

into account. It is sound for any single-threaded Java program.

5.2.3 Implementing the Nop-shadows Analysis

In this section, we present an effective implementation of the function necessaryShadow

that is guaranteed to adhere to the soundness condition, Condition 5.1. The function

that returns true for any input would be a sound implementation of necessaryShadow,

just as it would be for the predicate activates that the Orphan-shadows Analysis uses.

However, this function would not be effective, as it would not yield any optimization

effect. An effective implementation of necessaryShadow instead tries to disable as

many shadows as possible. We call our implementation the Nop-shadows Analysis .

We decided to implement the Nop-shadows Analysis as an intra-procedural anal-

ysis. In other words, the analysis considers only a single method at a time. The
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reasons for this design choice are twofold. Firstly, an intra-procedural analysis can

be made more efficient than an inter-procedural one. Secondly, however, Patrick

Lam manually investigated the instrumentation points that remained active after the

flow-insensitive Orphan-shadows Analysis had already been applied to our bench-

marks. He found that, in most of the cases, intra-procedural analysis information was

sufficient to rule out unnecessary instrumentation points, when paired with coarse-

grained inter-procedural summary information that had already been computed by

the Orphan-shadows Analysis. The result presented in this dissertation confirm these

findings.

The Nop-shadows Analysis rules out shadows on a per-method, per-state-machine

basis, first computing additional, flow-sensitive alias information for this method, then

detecting and removing all nop shadows, using the forward and backward analysis

that we already saw in the ConnectionClosed example.

We defined the semantics of a dependency state machine over ground traces that

are projections of one single trace of parameterized events. To be effective, our static

analysis also needs to separate traces that refer to different variable bindings.

5.2.3.1 Abstracting from objects with object representatives

At runtime, a runtime monitor associates automaton states with variable bindings,

i.e., mappings from free variables declared in the dependency state machine to con-

crete runtime objects. For instance, the variable binding x = o(v1)∧y = o(v2) denotes

the fact that x points to the object currently referenced by v1, and y points to the ob-

ject currently referenced by v2. At compile time, we have no access to these runtime

objects, and hence need to resort to a static abstraction. For our purposes, we devel-

oped a specific static abstraction of runtime objects that we called object representa-

tives [BLH08b]. At compile time, we model a runtime binding x = o(v1)∧ y = o(v2)

using a binding x = r(v1) ∧ y = r(v2), where r(vi) is the object representative of

o(vi). Explaining exactly how object representatives are computed would go beyond

the scope of this thesis. (Details can be found in [BLH08b].) For our purposes, it

suffices to know the following properties of an object representative.

156



5.2. Flow-sensitive Nop-shadows Analysis

An object representative represents the value of a (reference-typed) program vari-

able at a specific program statement. Programmers can compare two object represen-

tatives r1 and r2 through a must-not-alias query: when r1 and r2 cannot represent the

same runtime object, then this query returns true, which we denote by r1 6= r2. We

determine must-not-aliasing through a combination of (1) the flow-insensitive context-

sensitive whole-program points-to analysis that we computed for the Orphan-shadows

Analysis, and (2) an intra-procedural flow-sensitive must-not-alias analysis.

Similarly, a programmer can compare r1 and r2 with a must-alias query. However,

we resolve must-alias queries on an intra-procedural level only. When r1 and r2

represent pointer values at statements from different methods then the query will

always return false. When r1 and r2 represent values at statements within the same

method m then we use an intra-procedural flow-sensitive must-alias analysis, specific

to m, to determine whether r1 and r2 must-alias. When they do, we denote this fact

by r1 = r2. We chose this notation because in our implementation, we in fact defined

the equals method of object representatives in such a way that r1.equals(r2) if and

only if r1 and r2 must-alias. This helps us keep our abstraction concise. In particular,

when a programmer attempts to add r2 to a set that already contains r1, then r2 will

not be added.

In cases where r1 and r2 neither must-alias nor must-not-alias, we say that they

may-alias, and denote this fact by r1 ≈ r2. Table 5.1 gives an overview of our notation.

We call the set of all object representatives Õ. For any subset R ⊆ Õ of object

representatives, we define two sets mustAliases(R) and mustNotAliases(R) as follows:

mustAliases(R) := {r′ ∈ Õ | ∃r ∈ R such that r = r′}

mustNotAliases(R) := {r′ ∈ Õ | ∃r ∈ R such that r 6= r′}

5.2.3.2 Abstracting from bindings with binding representatives

At runtime, a variable binding maps from variables to runtime objects. In Chapter 3,

we denoted a mapping {x 7→ o(v1), y 7→ o(v1)} by a conjunction of equations, x =

o(v1) ∧ y = o(v2).
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r1 ≈ r2 Object representatives may-alias

r1 = r2 Object representatives must-alias

r1 6= r2 Object representatives must-not-alias

Table 5.1: Aliasing relations between object representatives

At compile time, we model variable bindings through “binding representatives”. A

binding representative contains both positive and negative information. The positive

information tells the analysis which objects a variable could possibly be bound to. The

negative information, on the other hand, tells the analysis which objects a variable

cannot be bound to.

We define a binding representative b as a pair (β+, β−) of two partial binding

functions, a positive binding β+ and a negative binding β−. Both binding functions

map free variables defined in the dependency state machine to sets of object repre-

sentatives. For any free variable v, the positive binding β+(v) encodes information

about the objects that v may be bound to. The negative binding β−(v), on the other

hand, encodes information about the objects that v can certainly not be bound to.

We naturally extend both partial binding functions to total functions so that they

map a variable v to ∅ when no other mapping for v is defined.

For example, assume a binding representative

({x 7→ {r1, r2}, y 7→ {r3}}, {x 7→ {r4}}).

This binding representative expresses that x can only be bound to objects represented

by both r1 and r2, and can certainly not be bound to objects represented by r4.

Further, y can only be bound to objects represented by r3. Similar to our presentation

of bindings at runtime, it will sometimes be useful to write binding representatives in

the form of a conjunction of equations. For instance, we can write the above binding

representative as:

x = r1 ∧ x = r2 ∧ y = r3 ∧ x 6= r4
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Such equations allow us to perform basic Boolean arithmetic on bindings. For

instance, if we know that r1 6= r2, i.e., r1 and r2 must-not-alias, then it holds that:

x = r1 ∧ x = r2 ≡ ff .

Certain implications that hold in Boolean logic do not however hold in the three-

valued logic that we consider here. For instance, ¬(r1 = r2) does not imply r1 6= r2.

This is because, if two objects representatives do not must-alias, then this does not

necessarily mean that they must-not-alias: they could also may-alias. Table 5.2 gives

an overview about the possible simplifications that can be safely applied to binding

representatives of the form (x = / 6= r1) ∧ (x = / 6= r2). Note that, if we know that

r1 = r2 or r1 6= r2, then we can simplify the resulting binding representative in all

cases except for (x 6= r1)∧(x 6= r2) (shown in gray), in which case we need to store the

full binding representative. If r1 and r2 may-alias (Table 5.2c) then we must always

store the full binding representative. This is one reason for why aliasing information

is so essential to our approach: it allows us to keep our abstraction concise. The other

reason is that the updates in tables 5.2b and 5.2a allow us to recognize impossible

bindings by reducing a binding representative to ff . As we will see in the following,

this yields precision, as it avoids false positives.

For any variable binding β : V → Õ, mapping variables to object representatives,

and any binding representative (β+, β−), we can determine whether β is compatible

with (β+, β−):

compatible(β, (β+, β−)) := ¬∃v such that β(v) ∈ mustNotAliases(β+(v))

∨ β(v) ∈ mustAliases(β−(v))

Informally, this definition says that a binding is incompatible with a binding repre-

sentative if it binds some variable v to an object representative that must-not-alias

some object representative in v’s positive binding, or if this representative must-alias

some object representative in v’s negative binding. Note that when β is empty, i.e.,

binds no variables at all, β will be compatible to any binding representative.

We also introduce the notion of a shadow being compatible with a binding rep-

resentative. Every shadow s induces a variable binding βs = shadowBinding(s) of
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r1 6= r2 x = r1 x 6= r1

x = r2 ff x = r2

x 6= r2 x = r1 x 6= r1 ∧ x 6= r2

(a) Resulting binding representative when r1 and r2 must-not-alias

r1 = r2 x = r1 x 6= r1

x = r2 x = r1 ≡ x = r2 ff

x 6= r2 ff x 6= r1 ≡ x 6= r2

(b) Resulting binding representative when r1 and r2 must-alias

r1 ≈ r2 x = r1 x 6= r1

x = r2 x = r1 ∧ x = r2 x 6= r1 ∧ x = r2

x 6= r2 x = r1 ∧ x 6= r2 x 6= r1 ∧ x 6= r2

(c) Resulting binding representative when r1 and r2 may-alias

Table 5.2: Possible simplifications of binding representatives using alias information

type V → Õ. Hence, in the following we will often write compatible(s, b) in place of

compatible(βs, b).

In the following, we will denote the set of all binding representatives by B̃. Using

the notion of compatibility, we can further define an inclusion relation on binding

representatives. Let b1 and b2 be two binding representatives. We say that b2 is “at

least as permissive” as b1, or b1 ⊆B̃ b2, if the following holds:

b1 ⊆B̃ b2 :⇐⇒ ( ∀β. compatible(β, b1)→ compatible(β, b2) )

Informally, b1 ⊆B̃ b2 means that for every variable v, every object o that can be bound

to v according to the binding representative b1 can also be bound to o according to

the binding representative b2. We will write b1 ⊂B̃ b2 if b1 ⊆B̃ b2 but b1 and b2 are

different.

In the following, we will denote the empty binding representative, in which both

binding functions β+ and β− are undefined for all variables, by >. Note that by the
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above definition it holds that > is the most permissive binding:

∀b ∈ B̃ : b ⊆B̃ >

5.2.3.3 The worklist algorithm

Our forward and backward analysis both compute for every statement a set of possible

configurations before and after executing the statement. A configuration (Qc, bc) is

an element of P(Q) × B̃, i.e., a configuration combines a set Qc ⊆ Q of automaton

states with a binding representative bc. The underlying state set Q is the state set of

Mforward, regardless of whether we perform a forward or backward analysis: both the

forward and backward analysis operate on the same state set, they just use different

transition functions where one is the inverse of the other. The Nop-shadows Analysis

propagates configurations for both the forward and backward analysis using a general

worklist algorithm, Algorithm 5.1.

The algorithm first initializes a worklist wl , which we actually implement as a

“work map”. We wl as a mapping from statements to sets of configurations: for

every statement, wl contains a set of configurations that were determined to reach

the statement and for which successor configurations need to be computed. We say

that the worklist wl is empty if it maps every statement to the empty set. Also,

we call each entry (stmt , cs) in wl , where stmt is a statement and cs is a set of

configurations, a job.

The algorithm further initializes two mappings before and after that store the

configurations that have been computed so far before, respectively after each state-

ment. These sets allow us to perform a terminating fixed point iteration. Lines 6–7

implement an important optimization. In the last section we defined the relation ⊆B̃
in such a way that b1 ⊆B̃ b2 if b2 is as least as permissive as b1. In lines 6–7, the

algorithm first computes the union cstemp of the old before set and the configurations

that need to be computed at the current statement, according to the job taken from

the worklist. Because we implemented the worklist as a mapping from statements

to jobs, we know that the current job is the only job for this statement, and hence
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Algorithm 5.1 worklist(initial , succcfg , succext , δ)

The syntax f [x 7→ y] denotes the function

that is equal to f on all values v, except

for x, in which case it returns y:

f [x 7→ y] := λv

y if v = x

f(v) otherwise

1: wl := initial

2: before := after := λstmt . ∅ // associate ∅ with every statement

3: while wl non-empty do

4: pop job (stmt , cs) from wl

5: // reduce configurations so that only most permissive ones remain

6: cstemp := cs ∪ before(stmt)

7: csnew := {(Qc, bc) ∈ cstemp | ¬∃(Qc, b
′
c) ∈ cstemp with bc ⊂B̃ b′c} − before(stmt)

8: cs′ :=

csnew if shadows(stmt) = ∅

∅ otherwise

9: for c ∈ csnew, s ∈ shadows(stmt) do // compute transition

10: cs ′ := cs ′ ∪ transition(c, s, δ)

11: end for

12: before := before[stmt 7→ before(stmt) ∪ cs] // update before-flow

13: cs′new := cs′ − after(stmt) // filter out configurations already computed

14: if cs′new non-empty then

15: after := after [stmt 7→ after(stmt) ∪ cs′new] // update after-flow

16: // add jobs for m-successor statements to worklist

17: for stmt ′ ∈ succcfg(stmt) do

18: wl := wl [stmt ′ 7→ wl(stmt ′) ∪ cs′new]

19: end for

20: // add jobs for interprocedural successor statements to worklist

21: for stmt ′ ∈ succext(stmt) do

22: wl := wl [stmt ′ 7→ wl(stmt ′) ∪ reachingStar (cs′new, relevantShadows (stmt))]

23: end for

24: end if

25: end while
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the set cstemp holds the complete information that the algorithm computed so far for

the position just before the current statement. Then next, in line 7, the algorithm

removes from this set first all these configurations (Qc, bc) for which there is a con-

figuration (Qc, b
′
c) with b′c being more permissive than bc. This is sound because any

shadow that is compatible with bc will also be compatible with b′c. Hence, if (Qc, bc)

causes a shadow to be identified as a “necessary” shadow, then so will (Qc, b
′
c). In our

experiments, this optimization had a significant effect, often reducing the number of

configurations computed for a method by two to three orders of magnitude. Lastly,

in the same line 7, the algorithm removes again from the resulting set all the configu-

rations contained in the before set. This is sound because in a previous iteration the

algorithm already computed successor configurations for these configurations (using

lines 9–11) and there is no need to compute the same information again.

Next the algorithm computes, for every new configuration c ∈ csnew and any

shadow s at a statement, successor configurations using a function transition. We

will explain this function in detail below. The algorithm then updates the statement’s

before set and checks (line 14) if any configurations were computed that had not been

computed at this statement before. If this is the case, then the algorithm propagates

these configurations to two different kinds of successor statements. First, in lines 16–

19, the algorithm adds new jobs containing the successor configurations cs′new for any

statement that is a successor of stmt in m’s control-flow graph (as determined by

succcfg). Lines 20–23 handle inter-procedural control flow. After all, the automaton

state of objects which shadows in m refer to may not only be changed by these

shadows within m, but also by other compatible shadows. We will explain this part

of Algorithm 5.1 in detail in Section 5.2.3.3. First we explain how we implemented

the transition function.

The transition function. We describe the implementation of our transition function

in Algorithm 5.2. Our implementation directly mirrors Avgustinov et al.’s implemen-

tation of the tracematch runtime [AAC+05]. For a given configuration and shadow,

the algorithm computes a set cs of successor configurations. In line 1, the algorithm

first initializes the result set cs. Then, in line 2, the algorithm extracts the shadow’s
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Algorithm 5.2 transition((Qc, bc), s, δ)

1: cs := ∅ // initialize result set

2: l := label(s), βs := shadowBinding(s) // extract label and bindings from s

3: // compute target states

4: Qt := δ(Qc, l)

5: // compute configurations for objects moving to Qt

6: β+ := and(bc, βs)

7: if β+ 6= ⊥ then

8: cs := cs ∪ {(Qt, β
+)}

9: end if

10: // compute configurations for objects staying in Qc

11: B− :=
⋃

v∈dom(βs)

{ andNot(bc, βs, v) } − {⊥}

12: cs := cs ∪ {(Qc, β
−) | β− ∈ B−}

13: return cs

label and binding. As described above, the binding βs is a mapping from variable

names to object representatives. In line 4, the algorithm then computes the set Qt

of target states, according to the shadow’s label l. The transition function δ here

depends on whether we perform a forward or backward analysis. For the forward

analysis, δ will be the transition function of Mforward, and for the backward analysis

it will be the transition function of Mbackward respectively. The remaining part of

Algorithm 5.2 deals with variable bindings. Note that, at runtime, the event induced

by shadow s moves the internal state of all those runtime monitors from Qc to Qt

whose variable bindings are compatible with βs. For those monitors that moved,

the resulting variable binding can be described by “bc ∧ βs”. The monitors for all

other variable bindings (those that are incompatible with βs) remain in Qc. Hence,

the variable bindings that remain in Qc can be described by “bc ∧ ¬βs”. Lines 6–9

compute successor configurations for all the variable bindings that move to Qt, using

the function and. In lines 11–12, the algorithm creates configurations for all these

variable bindings that remain in Qc, using the function andNot. We explain both
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functions and and andNot further below.

The algorithm applies andNot for each bound variable v separately. We adopted

this implementation detail from Avgustinov et al.’s implementation of the tracematch

runtime [AAC+05]. It can be explained by the following example. Assume that

the shadow s induces a variable binding βs that binds multiple variables, e.g. x =

r(v1) ∧ y = r(v2). Then we get:

β− ≡ bc ∧ ¬βs
≡ bc ∧ ¬(x = r(v1) ∧ y = r(v2))

≡ bc ∧ (¬x = r(v1) ∨ ¬y = r(v2))

≡ (bc ∧ ¬x = r(v1)) ∨ (bc ∧ ¬x = r(v2))

Because our abstraction stores all information in Disjunctive Normal Form, we have

to return multiple configurations in this case, one for every disjunct.

We present our implementation of and in Algorithm 5.3. Both algorithm and and

andNot use the simplification rules from Table 5.2 to achieve two different goals: (1)

return ⊥ whenever the abstraction allows us to conclude that bc and βs are incom-

patible, and (2) minimize the number of bound object representatives in the resulting

binding representative as much as possible, without losing precision. Returning ⊥
means that the current configuration will not be propagated any further (see Algo-

rithm 5.2, lines 7 and 11). This is one essential contribution to the precision of our

analysis. Minimizing the number of bound object representatives leads to a smaller

abstraction and to a smaller number of possible configurations, thus enabling an

earlier termination of the worklist algorithm, Algorithm 5.1.

In line 1, Algorithm 5.3 first creates copies of the original positive and negative

binding functions. Then next, for every variable v that the shadow binds, the al-

gorithm first compares the existing positive and negative bindings for v with the

object representative βs(v) to which the shadow’s variable binding maps v. By the

semantics of β+ and β−, the bindings are incompatible if βs(v) must-not-alias some

object representative in β+(v), or if it must-alias any object representative in β−(v).
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Algorithm 5.3 and((β+, β−), βs)

1: β+
new := β+, β−new := β−

2: for v ∈ dom(βs) do

3: // if bindings incompatible, return ⊥
4: if βs(v) ∈ mustNotAliases(β+(v)) ∨ βs(v) ∈ mustAliases(β−(v)) then

5: return ⊥
6: end if

7: // add new positive binding

8: β+
new := β+

new[v 7→ β+
new(v) ∪ {βs(v)}]

9: // prune superfluous negative bindings

10: β−new := β−new[v 7→ β−new(v)−mustNotAliases(βs(v))]

11: end for

12: return (β+
new, β

−
new)

In this case the algorithm returns ⊥. Next, in line 8, the algorithm performs the

actual refinement of the positive binding by adding βs(v) to β+
new(v). This operation

can have two possible outcomes. When βs(v) ∈ mustAliases(β+
new(v)) already, then

it will not be added to the set again. (The reader be reminded that object repre-

sentatives implement an equals method that ensures this automatically.) The case

βs(v) ∈ mustNotAliases(β+(v)) was treated earlier. Hence, βs(v) will only actually

be added to the set if it may-aliases all object representatives currently associated

with v. In line 10, the algorithm then prunes superfluous negative bindings. Assume

that βs = x 7→ r(v) was just added to β+
new(v). Then x = r(v) implies that x 6= r−

for all r− with r− 6= r(v). Hence we can remove such object representatives r− from

β−new(v)—they encode redundant information. (This is the same case as the one shown

in the top right and bottom left cell of Table 5.2a.)

Algorithm 5.4 shows how we compute the function andNot with respect to some

variable v ∈ dom(βs). First, in line 2, the algorithm checks if the new binding is

compatible with the existing negative binding. If βs(v) must-alias an object rep-

resentative from v’s positive binding, then the bindings are incompatible, and the
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Algorithm 5.4 andNot((β+, β−), βs, v)

1: // if bindings incompatible, return ⊥
2: if βs(v) ∈ mustAliases(β+(v)) then

3: return ⊥
4: end if

5: // no need to store negative binding if it must-not-alias some positive binding

6: if βs(v) ∈ mustNotAliases(β+(v)) then

7: return ( β+, β− )

8: else // return updated binding

9: return ( β+, β−[v 7→ β−(v) ∪ {βs(v)}] )

10: end if

algorithm returns ⊥. Otherwise, the algorithm adds βs(v) to the negative bindings

and returns the updated binding representative. However, there is no need to add

βs(v) when it must-not-alias a positive binding. Omitting the update in these cases

has the same effect as the pruning of superfluous negative bindings in Algorithm 5.3.

This concludes the description of our transition function. We next continue our

explanation of the remainder of the worklist algorithm, Algorithm 5.1.

The external-successor function succext. Lines 20–23 of Algorithm 5.1 handle

inter-procedural control flow. Figure 5.11 visualizes this process. The figure shows

the current method m as a box. The dashed arrows denote the successor function

succcfg , which is given by m’s control-flow graph. In addition, the solid arrows show

a second, inter-procedural successor function, succext . During the course of the ex-

ecution of m, invoke expressions within m may cause methods to be called. These

calls either can or cannot transitively perform a recursive call back into m. When the

call is recursive, then (1) configurations that we computed for this call site can reach

m’s entry statement. Conversely, for configurations that we computed for any of m’s

exit statements, we need to propagate (2) these configurations back to any recursive

call site within m. At compile time, we can only determine that a method call may
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be recursive, not that it must be. Hence, we (3a) also need to propagate configura-

tions from the call site to after itself. For calls that are certainly not recursive (as

determined by our call graph), we (3b) only propagate configurations past the call

site but not to m’s entry statement. In addition, we need to take into account the

case in which method m returns (either by throwing an exception or by returning

normally—both cases are equally handled through m’s control-flow graph), and is

then invoked again: to model this case we (4) propagate configurations from m’s exit

statement(s) to its entry statement.

In line with Figure 5.11 we define the function succext as follows. Let heads(m) be

the set of entry statements of m, and tails(m) the set of exit statements of m4. Fur-

ther, let recCall(m) be the set of statements of m that contain an invoke expression

through which m can potentially call itself recursively. Conversely, nonRecCall(m)

contains all statements that contain an invoke expression through which m can cer-

tainly not be called. Then:

succext := λstmt .



heads(m) ∪ succcfg(stmt) if stmt ∈ recCall(m)

succcfg(recCall(m)) ∪ heads(m) if stmt ∈ tails(m)

succcfg(stmt) if stmt ∈ nonRecCall(m)

∅ otherwise

One may be interested in knowing how many potentially-recursive call sites an

average method has. In Figure 5.12 we show how many methods have how many

potentially-recursive call sites in our benchmark set. As the graph shows, the largest

number of potentially-recursive call sites is 19, however the vast majority of methods

have no such sites at all. Only 244 out of 1361 methods have potentially-recursive

call sites at all.

4Usually, heads(m) will be a singleton set because all methods have a unique first statement.
Note however, that our backwards analysis will operate on a reversed control-flow graph. In this
graph heads become tails and tails become heads. Therefore, heads(m) can contain more than one
element in this setting.
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public void m() {

}

x.m()

y.n()

◦
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recursive

call site
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non-recursive
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(2)

(1)

method entry

method exit

Figure 5.11: Inter-procedural control-flow regarding the current method m
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Figure 5.12: Number of potentially-recursive calls (log scale)

When propagating configurations along an edge defined through succext , it is not

enough to copy the configurations from the edge’s source statement to it’s target state-

ment. Note that between any two executions of m other methods may execute and

cause state transitions in the monitoring state machine. To soundly model these po-

tential state transitions through “other methods”, Algorithm 5.1 associates in line 22

with any inter-procedural successor not just the set of configurations cs′new but instead

the set reachingStar(cs′new, relevantShadows(stmt)). reachingStar computes successor

configurations using the flow-insensitive analysis information obtained through the

Orphan-shadows Analysis.

The functions relevantShadows, reachingPlus and reachingStar. Given a state-

ment stmt and a set cs of configurations just before stmt , the function reachingPlus

computes for any set of configurations the set of configurations that one obtains by

executing at least one shadow of a set of shadows “relevant to stmt”, denoted by

relevantShadows(stmt). We define this set as follows. If stmt contains an invoke

expression (potentially recursive or not), then relevantShadows(stmt) contains all

shadows in all the methods transitively reachable through the method invocation,
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except for the ones in m itself. After all, these are all the shadows that could poten-

tially be reached before again reaching m’s entry statement. Otherwise, i.e., if stmt

is a head or tail statement of m, then relevantShadows(stmt) contains all shadows in

the entire program, except for the ones in m. Unfortunately, even in the presence of

a call graph, we do not know which methods may or may not execute before or after

m, and hence we have no way of reducing this set any further without jeopardizing

soundness.

For any configuration c = (Qc, bc) that reaches an exit point or the point of a

recursive call during the analysis of method m, all the shadows that are relevant to

this program point may perform transitions on this configuration until the configura-

tion reaches the method’s entry point again. However, by definition of the function

transition, only shadows that are compatible with bc may actually cause the state set

Qc to change. Hence, for every binding representative b ∈ B̃ and shadow set ss ⊆ S,

we define the set compLabels(b, ss) as:

compLabels(b, ss) := {a ∈ Σ | ∃s ∈ ss such that compatible(s, b) ∧ label(s) = a}

This set contains the labels of all those shadows in ss that are compatible with b.

We then define reachingPlus(cs, stmt) as the set of configurations that are reach-

able from cs by applying at least one compatible shadow that is relevant to stmt .

Formally, we define reachingPlus(cs, stmt) as the smallest set of configurations satis-

fying the following conditions.

• for every configuration (Qc, bc) ∈ cs and l ∈ compLabels(bc, ss):

(δ(Qc, l), bc) ∈ reachingPlus(cs, stmt), and

• for every (Qc, bc) ∈ reachingPlus(cs, s) and l ∈ compLabels(bc, ss):

(δ(Qc, l), bc) ∈ reachingPlus(cs, stmt).

We further define reachingStar as the reflexive closure of reachingPlus:

reachingStar(cs, stmt) := reachingPlus(cs, stmt) ∪ cs

Hence, reachingStar computes the set of configurations that one can reach from

cs by executing 0 or more shadows that are relevant at stmt.
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5.2.3.4 Initializing the worklist algorithm

We next explain how we initialize Algorithm 5.1. The initialization depends on

whether we perform a forward or backwards analysis. In forward-analysis mode,

succcfg is simply the successor function of m’s control-flow graph, and succext is the

inter-procedural successor function as defined above; the function δ is the transition

function of Mforward. For the backwards analysis we simply invert the two successor

functions, and likewise δ is the transition function of Mbackward.

Determining the set initial , which Algorithm 5.1 uses to initialize its worklist

in line 1, is more involved. We show the initialization and subsequent fixed-point

iteration for the forward analysis in Figure 5.13. First let us bring to the reader’s

attention that, because Algorithm 5.1 soundly treats subsequent executions of m

using the loop in line 20–23, for the initialization it is sound to assume that m has

not executed yet. When m has not yet executed, not even in part, then we can enter

m only through its first statement (its head) and not, for instance, by returning from

a recursive call site. The configurations that can reach m’s head are the ones that

are reachable from the initial state set Q0, by executing any shadows outside of m,

in any particular order, for any variable binding (i.e., for >). Hence, for the forward

analysis we define:

initial := { (h, reachingStar({(Q0,>)}, relevantShadows(h))) | h ∈ heads(m) }

For the backward analysis, the initialization is more complicated. We visualize

the appropriate initialization and iteration in Figure 5.14. Conversely to the forward

analysis, we now assume for the initialization that m will not be executed any more

after the current execution of m. We now have to create a job associating a statement

stmt with any configuration c from which the remainder of the execution (including

the execution of stmt itself) could lead into a final state. This is obviously the case

if there is a “final” shadow in m itself—a shadow s labeled with a label l = label(s)

such that there exists an l-transition into a final state qF ∈ F .

However, we also need to consider the case where m executes completely, re-

turns, and the remainder of the execution drives the configuration into a final state
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Figure 5.13: Possible configurations reaching a method m’s first statement
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Figure 5.14: Possible control-flow leading to a final state qF from a statement in m
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using shadows in methods other than m. To cater for these cases, we create jobs

that associate any tail statement stmt of m with any configuration c that is in

reachingPlus({F}, relevantShadows(stmt)). Note that this is almost the exact op-

posite of the initialization for the forward analysis. The only difference is that

here we now use reachingPlus, not reachingStar. The reason is, that, by definition,

reachingStar({F}, ss) is always a super set of F , even if ss is empty. However, we

cannot actively reach a final state from F (hence executing the validation handler)

from any of m’s tail statements if there are no shadows in any other methods at all.

reachingPlus computes exactly those configurations that reach in at least one step,

and therefore in this case the configurations that lead into a final state.

The third case that we need to consider is the case where a partial execution of m

leads to a configuration c at a statement stmt that contains an invoke statement. Sim-

ilarly to above, we associate stmt with reachingPlus({F}, relevantShadows(stmt)).

The only difference is that here relevantShadows(stmt) will contain all shadows reach-

able through evaluating stmt ’s invoke expression, while in the above case, it contains

all shadows in methods other than m.

We hence initialize the backwards analysis with the union of two sets. One set

holds all configurations that lead into a final state within m, while the other set holds

all those that could into a final state outside of m:

initial := let reachingConfigs = reachingPlus({(F,>)}, relevantShadows(stmt)) in:

{ (stmt , {(F,>)}) | ∃s ∈ shadowsOf(stmt) : δ(F, label(s)) 6= ∅)}
∪ { (tail , reachingConfigs) | tail ∈ tails(m)∪ recCall(m)∪ nonRecCall(m) }

In the above definition, note that δ is the transition function of Mbackward.

5.2.3.5 Removing nop shadows

After applying the forward and the backward analysis pass, our analysis tries to iden-

tify a single nop shadow, according to the rule that we mentioned in Section 5.2.2.2.

If the analysis fails to identify a nop shadow then we proceed with the next shadow-

bearing method. Else, if the analysis does identify a nop shadow then we (1) remove

the shadow, (2) re-compute the flow-insensitive Orphan-shadows Analysis on all the
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shadows of the current method m and then (3) re-iterate the Nop-shadows Analysis on

m. When the analysis fails to identify any further nop shadows within m then we re-

apply the flow-insensitive Orphan-shadows Analysis on the entire program (thereby

potentially disabling further shadows) and proceed with the next shadow-bearing

method. The current method m may be re-visited if shadows are removed from any

other methods in the future, because this yields further optimizations for m. This

process terminates when no further nop shadows can be identified any more in any

method. In Figure 5.15 we show how often we re-iterate within a single method. As

the figure shows, we iterate only a few times for the vast majority of cases (after

all, this number is bounded by the number of still-enabled shadows in the method),

and there are only twelve few cases in which we have to iterate more than ten times.

There was one single method for which we had to re-iterate 78 times: fillArray

in class CompactArrayInitializer of the bloat benchmark in combination with the

FailSafeIter tracematch. This method contains a large number of statements that

modify a collection, adding instructions to an instruction stream.
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Figure 5.15: Number of re-iterations per method (log scale)
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5.2.3.6 Optimizations for increased performance at analysis time

In Section 5.2.3.3 we already discussed an important optimization that eliminated

configurations that were less permissive than other configurations at the same state-

ment. In our experiments, this optimization had a significant effect, often reducing

the number of configurations computed for a method by two to three orders of mag-

nitude. We perform a set of other optimizations to decrease the analysis time.

Abstracted call graph. The call graph that we use to identify all shadows in the

transitive closure of an outgoing method call is an abstracted version of the call graph

that the points-to analysis in Spark [LH03] computes: in the abstracted call graph

we omit paths that never reach a shadow-bearing method. This accelerates look-

ups that the analysis performs on the graph. In particular, if a method invocation

cannot transitively call any shadow-bearing methods at all then the call graph will

not have any call edge for the invocation and the analysis can identify the call as

“harmless” in constant time. In our benchmark set, abstracting the call graph was

highly effective. On average, the abstracted call graph had only about 4.3% of the

edges of the complete call graph, with 12.9% in the worst case (12984 remaining edges

in bloat-FailSafeIter), and 0.02% (26 edges in fop-HasNext) in the best case.

Caching. In addition, we use extensive amounts of caching, wherever this makes

sense. For instance we cache points-to sets, the results of the must-alias and must-

not-alias analysis for every method and the set of methods transitively reachable

through a method call. We also cache the set of shadows that are currently enabled

in such methods. Note that it would be imprecise to cache this set while analyzing

multiple methods: when the analysis disables a shadow it must be removed from the

set, and this removal must be visible when analyzing other methods later on. To

avoid having to re-compute the set of still-enabled shadows entirely, we store “sets

of enabled shadows” using a special class EnabledShadowSet. When a shadow s

is added to such a set, the set automatically registers itself with the shadow as a

listener. When the analysis disables s later on, s notifies all registered sets, which
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then update themselves by removing s. In addition, if a programmer attempts to add

a shadow s to an EnabledShadowSet at a time where s is already disabled, the shadow

is not actually added in the first place (nor is the set registered with the shadow).

This mechanism assures us that an EnabledShadowSet is always kept up-to-date in

constant time.

Aborting overly long analysis runs. Despite these optimizations we found a small

number of methods for which the Nop-shadows Analysis would still take a long time

to reach its fixed point. Figure 5.16 shows a much simplified view of the method

peelLoops(int) in the class EDU.purdue.cs.bloat.cfg.FlowGraph of the bench-

mark bloat (the original method is 456 lines long!). For this particular benchmark,

the context-sensitive points-to analysis that we use fails to compute context infor-

mation for the iterators and collections. Hence, when analyzing this method with

respect to the FailSafeIter monitor, the Nop-shadows Analysis gets the imprecise in-

formation r(i1) ≈ r(i2) ≈ r(i3), i.e., it has to assume that i1, i2 and i3 could

all point to the same iterator. This, in turn, leads to a large number of possible

configurations. Assume that when have a configuration with a binding representative

b ≡ c = r(c1) ∧ i = r(i1), and we want to compute b ∧ i = r(i2). If we did have

precise points-to information then this would tell us that r(i1) 6= r(i2) (because we

know for a fact that both iterators cannot be the same) and hence we would get:

b ∧ i = r(i2)

≡ c = r(c1) ∧ i = r(i1) ∧ i = r(i2)

≡ c = r(c1) ∧ ff

≡ ff

However because we only know that r(i1) ≈ r(i2), the analysis fails to reduce “c =

r(c1) ∧ i = r(i1) ∧ i = r(i2)” any further. With the many consecutive loops in

peelLoops(int) this drastically increases the size and number of configurations that

need to be computed before the fixed point is eventually reached. Even worse: because

of the imprecise pointer information the analysis fails to identify any single nop-

shadow.

178



5.2. Flow-sensitive Nop-shadows Analysis

1 void foo(Collection c1, Collection c2, Collection c3)

2 Iterator i1 = c1. iterator ();

3 while(i1.hasNext()) {
4 i1 .next();

5 c2.add (..);

6 }
7 Iterator i2 = c2. iterator ();

8 while(i2.hasNext()) {
9 i2 .next();

10 c3.add (..);

11 }
12 Iterator i3 = c3. iterator ();

13 while(i3.hasNext()) {
14 i3 .next();

15 }
16 }

Figure 5.16: Worst-case example for complexity of Nop-shadows Analysis

(in the case of imprecise points-to sets)
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To guard the analysis from degenerating in such cases where imprecision is caused

by the points-to analysis, we decided to determine the maximal number of config-

urations that is computed on a successful analysis run, i.e., a run that succeeds in

identifying a nop shadow. This run was in method visitBlock(Block) of the class

EDU.purdue.cs.bloat.cfg.VerifyCFG, not quite coincidentally in the same bench-

mark. The analysis computed 8828 configurations before it removed a shadow from

this method; this is the maximal number that we observed on all benchmark runs.

Then next we modified the Nop-shadows Analysis so that it would abort the analysis

of a single method (continuing with the next one) whenever it computed a number of

configurations that exceeded a given fixed quota. We defined this quota to be 15000,

i.e., a number that still accommodates a significant number of additional configura-

tions over the 8828 that we observed. We believe that this value is high enough to yield

excellent precision in cases where pointer information is precise, but our experiments

also showed that it is low enough to significantly decrease the overall analysis time in

the benchmarks bloat-FailSafeIter, bloat-FailSafeIterMap and pmd-FailSafeIterMap.

(In all other cases, the quota never exceeded 15000 and Clara aborted no analysis

runs.)

The benchmarks bloat, chart and pmd all use reflection in connection with collec-

tions. For instance, Figure 5.17 shows a simplified version of a clone method in chart.

The problem with Java is that, despite the fact that its Cloneable interface signifies

that any object of a class tagged with this interface should support a clone operation,

the interface does not actually demand that the class implements a publicly accessible

clone method. The chart developers hence work around this shortcoming by calling

the clone method reflectively when it exists. Such reflection greatly confuses the

points-to analysis that we use, as the analysis has no idea which class’s clone method

will be called (reflection is not modeled precisely enough in Spark). As a result, there

are many possible implementations to consider and the demand-driven analysis fails

to compute context in its given quota.
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1 public static Object clone(final Object object) throws CloneNotSupportedException {
2 if (object == null) {
3 throw new IllegalArgumentException(”Null ’object’ argument.”);

4 }
5 if (object instanceof PublicCloneable) {
6 final PublicCloneable pc = (PublicCloneable) object;

7 return pc.clone();

8 } else {
9 final Method method = object.getClass().getMethod(”clone”,(Class[]) null);

10 if (Modifier. isPublic(method.getModifiers())) {
11 return method.invoke(object, (Object[]) null);

12 }
13 }
14 throw new CloneNotSupportedException(”Failed to clone.”);

15 }

Figure 5.17: Clone method in chart using reflection
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5.3 Experiments

As before, we applied the Nop-shadows Analysis to our benchmark set. Note that,

because the Nop-shadows Analysis is flow-sensitive, this is not sound to apply the

analysis to multi-threaded programs. When a program is multi-threaded then this

means that the program’s threads could execute shadows in an order that the Nop-

shadows Analysis did not anticipate. After all, the Nop-shadows Analysis assumes

that its intra-procedural control-flow graphs soundly model all possible control flow.

In future work we plan to make our analysis thread safe by using a may-happen-

in-parallel analysis [Bar05] to determine which methods could potentially execute in

parallel. The benchmarks hsqldb, lusearch and xalan are multi-threaded. For now,

we just analyzed these three benchmarks like all other benchmarks, i.e.,we made the

un-safe assumption that these programs do not execute dependent-advice shadows in

parallel.

5.3.1 Shadows eliminated by the Nop-shadows Analysis

Tables 5.3 and 5.4 show the number of shadows that remain before and after applying

the Nop-shadows Analysis. As we can see, the Nop-shadows Analysis is very successful

on the HasNext* patterns. This is hardly surprising: after all, programs mostly use

iterators within a single method. Therefore, the Orphan-shadows Analysis yields its

full potential in this case. There are, however, cases where the Nop-shadows Analysis

fails even for these patterns. When this happens, this is due to issues with the

points-to analysis. As we pointed out earlier, the analysis fails to compute context

information for some of the iterators. When this happens, then the Nop-shadows

Analysis has to take into account succext edges that are not actually realizable at

runtime, making the analysis less precise. The Nop-shadows Analysis is also very

effective on the Reader and Writer properties. These properties do not usually require

context information because programs hardly ever create readers or writers inside

factory methods. Hence, the Nop-shadows Analysis succeeds in these cases even

when the points-to analysis fails to compute context. In case of fop-FailSafeIterMap,
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the analysis ran out of memory, despite the fact that we used 3 GB of maximal heap

space. The call graph and pointer-assignment graph for the points-to analysis already

take up a lot of space for this benchmark, and remaining memory is insufficient to

compute the required information about the benchmark’s 1114 shadows.

For luindex, lusearch, antlr and fop the Nop-shadows Analysis is very effective,

often removing all instrumentation. The analysis manages to prove luindex sound

with respect to all the properties. These benchmarks are relatively “well behaved”,

i.e., make little use of reflection and dynamic class loading, have relatively short-

lived objects and therefore have a relatively small number of shadows per object

(representative). bloat has very long-lived objects which are used in many different

methods. This makes it hard for us to analyze the representatives of these objects and

also causes problems for the points-to analysis. Just as chart does, pmd and jython

also cause problems due to dynamic class loading. In many other cases in which

the analysis cannot reduce the number of remaining shadows to zero, the analysis

nevertheless manages to reduce the number of remaining shadows by large amounts.

Many of the few shadows that remain in lusearch actually do lead to a property

violation at runtime. As we will discuss later, the benchmarks antlr, bloat, jython and

lusearch all do violate some of the properties, which explains why shadows remain in

these programs.

5.3.2 Number of potential failure groups

As Table 5.5 shows, as for shadows, the Nop-shadows Analysis was very effective on

reducing the number of potential failure groups for benchmark/property combina-

tions that involved the HasNext property. At the same time, the number of potential

failure groups was not reduced a lot for the other properties. The number of remain-

ing potential failure groups will be important for the next two chapters. In Chapter 6

we explain how to perform collaborative runtime verification using Clara. In collab-

orative runtime verification, every single user gets a partially instrumented program.

The program is instrumented with a “probe”, which is quite similar to a potential
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antlr bloat chart fop hsqldb

bef aft bef aft bef aft bef aft bef aft

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 30 26 3 3

FailSafeEnum 3 7 6

FailSafeIter 922 830 160 149

FailSafeIterMap 446 444 49 49 1114 MEM

HasNextElem 86 8 6

HasNext 565 452 82 48 8

LeakingSync

Reader 14 3 3

Writer 44 35 19 15 10 10

(a) absolute number of shadows

antlr bloat chart fop hsqldb

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 13 0

FailSafeEnum 100 14

FailSafeIter 10 7

FailSafeIterMap 0 0 MEM

HasNextElem 100 100 100

HasNext 20 41 100

LeakingSync

Reader 100 0

Writer 20 21 0

(b) ratio of shadows disabled by Nop-shadows Analysis, in percent

MEM=OutOfMemoryException at compile time

Table 5.3: Enabled shadows before and after Nop-shadows Analysis, part 1
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jython luindex lusearch pmd xalan

bef aft bef aft bef aft bef aft bef aft

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 76 61 15 5

FailSafeEnum 47 44 5 10

FailSafeIter 116 112 27 36 16 302 287

FailSafeIterMap 151 133 314 204

HasNextElem 47 34 16 6 6 3 1

HasNext 31 24 12 22 250 184

LeakingSync

Reader 4 4 24

Writer 7

(a) absolute number of shadows

jython luindex lusearch pmd xalan

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 20 100 100

FailSafeEnum 6 100 100

FailSafeIter 3 100 56 5

FailSafeIterMap 12 35

HasNextElem 28 100 100 100 67

HasNext 23 100 100 26

LeakingSync

Reader 0 100

Writer 100

(b) ratio of shadows disabled by Nop-shadows Analysis, in percent

Table 5.4: Enabled shadows before and after Nop-shadows Analysis, part 2

185



Flow-sensitive optimizations through Dependency State-machines

failure group. In Chapter 7 we explain how Clara ranks potential failure groups

before it reports these groups to the user.

5.3.3 Runtime overhead after Nop-shadows Analysis

In Table 5.6 we show the reduction in runtime overhead that the Nop-shadows Analy-

sis causes. We do not show lusearch because for this benchmark already the Orphan-

shadows Analysis removed all of the monitoring overhead. As our results show, the

analysis was able to remove all overhead from luindex, which is not surprising be-

cause the Nop-shadows Analysis removed all shadows from this benchmark for all

properties. The analysis was equally effective in eliminating the overhead for antlr-

HasNextElem. For bloat-FailSafeIterMap, the analysis reduced the overhead by large

amounts. However, the remaining overhead is still very large, and large overheads

also remain in many other cases. In the next chapter we will present an approach

that can lower the runtime overhead further by performing partial instrumentation

only.

5.3.4 Analysis time

As mentioned, the Nop-shadows Analysis runs after the Orphan-shadows Analysis

and Quick Check have already been applied. Hence, the combined analysis time will

always be at least as long as the time that we reported in the last chapter. However,

the reader will find that the Nop-shadows Analysis often comes at a rather moderate

cost. In all but two cases, the total compilation and analysis time including all

three analysis stages was under ten minutes (in the last Chapter we reported nine

minutes with only the first two analysis stages enabled). The combination bloat-

FailSafeIterMap took almost 18 minutes in total, and bloat-FailSafeIter took just

about 25 minutes in total. The bloat benchmark has some very large methods. Many

of these methods use iterators an collections. This explains these extraordinarily high

analysis times.

The Nop-shadows Analysis itself took under 50 seconds on average. This time

includes all re-iterations of the Orphan-shadows Analysis and Nop-shadows Analysis
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antlr bloat chart fop hsqldb

bef aft bef aft bef aft bef aft bef aft

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 6 6 1 1

FailSafeEnum 1 1 1

FailSafeIter 259 259 38 38

FailSafeIterMap 258 258 38 38 1 MEM

HasNextElem 41 4 3

HasNext 266 163 38 4 3

LeakingSync

Reader 4 1 1

Writer 3 1 1 1 1 1

jython luindex lusearch pmd xalan

bef aft bef aft bef aft bef aft bef aft

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 24 9 4 2

FailSafeEnum 2 2 1 2

FailSafeIter 4 4 6 10 5 90 90

FailSafeIterMap 4 4 32 32

HasNextElem 26 14 8 3 3 2 1

HasNext 14 9 6 10 98 51

LeakingSync

Reader 1 1 5

Writer 2

MEM=OutOfMemoryException at compile time

Table 5.5: Potential failure groups before and after Nop-shadows Analysis
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antlr bloat chart fop

bef aft bef aft bef aft bef aft

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT 4 4

FailSafeEnum

FailSafeIter >1h >1h 8 8

FailSafeIterMap >1h 22027 5 MEM

HasNextElem 6

HasNext 329 258

LeakingSync

Reader

Writer 38 36 229 228

jython luindex pmd

bef aft bef aft bef aft

ASyncContainsAll

ASyncIterC

ASyncIterM

FailSafeEnumHT >1h >1h 28

FailSafeEnum

FailSafeIter 4 526 524

FailSafeIterMap 14 13 >1h >1h

HasNextElem 12

HasNext 70 64

LeakingSync

Reader

Writer

MEM=OutOfMemoryException at compile time

Table 5.6: Runtime overheads after applying Nop-shadows Analysis, in percent;

hsqldb, lusearch and xalan show no perceivable overheads
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that Clara performs. In 90% of the cases, the analysis finished in under one minute.

The worst case is also here bloat-FailSafeIter with a little more than 19 minutes of

analysis time for this stage. The average analysis time for a single shadow-bearing

method was about half a second. The analysis of the method toString in the class

EDU.purdue.cs.bloat.context.CachingBloatContext of the benchmark bloat in

combination with FailSafeIter and FailSafeIterMap took, with around five minutes, by

far the longest. The method is hard to analyze and the Nop-shadows Analysis reached

its quota of 15000 configurations (see Section 5.2.3.6) before it aborted the analysis

of this method. The method uses nine consecutive loops which use nine different

iterators but for which the demand-driven context-sensitive points-to analysis that

we use fails to compute context information. Therefore, our Nop-shadows Analysis

has to consider the possibility that all of these iterators may actually be the same

iterator. This, in turn, drastically increases the size of the configurations that the

Nop-shadows Analysis computes. If we set this quota to a lower value then this would

decrease the analysis time for the toString method. But, if lowered to a too small

value, this may decrease the analysis precision for other methods.
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Chapter 6

Collaborative runtime verification

In the last two chapters we have presented a set of static program analyses and

optimizations that evaluate runtime monitors ahead of time. These analyses can often

reduce and sometimes completely eliminate the performance penalties that runtime

monitors induce. However, even the most sophisticated static analysis techniques will

fail in some cases: as we saw, for some benchmarks much instrumentation remains

even after applying all our static-analysis stages. This may be acceptable in a pre-

deployment setting where developers can produce a large number of slow test runs on

dedicated machines. But even then the runtime overhead that the instrumentation

induces may be too large.

The situation is even worse when considering a setting in which instrumentation-

carrying programs are deployed. In the verification community it is now widely

accepted that, especially for large programs, verification is often incomplete, and

hence bugs still arise in deployed code on the machines of end users. If deployed

code carried instrumentation for runtime verification, developers could track down

the causes of observed failures more easily.

In such a setting it is mandatory that the monitoring code only induces a low

runtime overhead. According to researchers in industry [fMR07], companies would

likely be willing to accept runtime verification in deployed code if the verification

overhead was below 5%. Hence in this chapter, we show how to reduce the runtime

verification-induced overhead further, using methods from remote sampling [LAZJ03].
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Because companies that produce large pieces of software (which are usually hard to

analyze) often have access to a large user base, one can leverage the size of the user

base to deploy different partial instrumentation (“probes”) for each user. A cen-

tralized server can then combine runtime-verification results from runs with different

probes. Although sampling-based approaches have many different applications, we

are most interested in using sampling to reduce instrumentation overhead for indi-

vidual end users. We have developed an approach to partition this overhead, called

spatial partitioning.

Spatial partitioning works by partitioning the set of instrumentation points into

subsets. We call each subset of instrumentation points a probe. Each user is given a

program instrumented with only a few probes. This works very well in many cases.

We explored the feasibility of our approach by implementing it as part of the

Clara framework, and by applying this implementation to those benchmarks from

our benchmark set whose overheads persisted after applying the static analyses from

the previous chapters. We found that some benchmarks were very suited to spatial

partitioning. In these cases, each probe produced lower overhead than the complete

instrumentation, and many probes carried less than 10% overhead. Spatial partition-

ing only works if shadows remain that are not compatible to each other. In one of our

benchmarks, all remaining shadows were compatible to each other and hence spatial

partitioning failed for this benchmark. In other cases, it may happen that a single

probe contains a very hot—that is, expensive—instrumentation point. In those cases,

the unlucky user who gets the hot probe will experience most of the overhead.

In previous work [BHL+08], we explained how runtime-verification tools can cope

even with such cases by applying a second partitioning approach that we called tem-

poral partitioning. Temporal partitioning works by turning the instrumentation on

and off periodically, limiting the total overhead. This method works even if there are

very hot probes, because even those probes are only enabled some of the time. How-

ever, since probes are disabled some of the time, any violations of monitored runtime

verification properties may go unnoticed while the probes are disabled. When trying

to avoid false positives (a property that we consider crucial) then temporal parti-

tioning requires specific knowledge of the monitor implementation at hand. In our
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previous work, for example, we implemented temporal partitioning for tracematches,

and the implementation exploited special implementation details of tracematches.

Unfortunately, Clara’s dependency annotations currently do not provide Clara

with enough information to implement temporal partitioning in a general way that

would apply to every AspectJ-based runtime-monitoring tool. In future work we plan

to determine a minimal extension to Clara’s annotation languages that would then

provide Clara with the appropriate information. In this dissertation, on the other

hand, we focus on what one can achieve with dependency annotations alone, and

therefore only consider spatial partitioning.

We structured the remainder of this chapter as follows. We explain the concepts

of spatial partitioning in Section 6.1, and an implementation based on these concepts

in Section 6.2. We discuss our experiments in Section 6.3.

6.1 Spatial partitioning

Spatial partitioning reduces the overhead of runtime verification by only leaving a

subset of a program’s shadows enabled. However, choosing an arbitrary subset of

shadows is more than unsatisfactory; in particular, arbitrarily disabling shadows for

weakly referenced symbols may lead to false positives. Consider the example from

Figure 6.1, in combination with the HasNext pattern (page 4). The example program

was taken from an early version of our own implementation of Clara. The program

uses two different iterators, “entryIter” and “iterator”, to print the contents of a

map to a StringBuffer. We have underlined the shadows at which events occur that

are of interest to the HasNext pattern. In this example, one safe spatial partitioning

would be to disable all shadows in the program except for those referring to entryIter

(lines 3, 4 and 17). However, many partitionings are unsafe; for instance, disabling

the hasNext shadow on line 3 (an exit shadow, i.e., a shadow that may prevent a

match) but enabling the next shadow on line 4 (a progress shadow) on a map with

two or more entries gives a false positive, since the monitor “sees” two calls to next()

and not the call to hasNext() that would prevent the match.
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1 private void mapToString(Map<String, List<String>> map, StringBuffer sb) {
2 for ( Iterator<Map.Entry<String, List<String>>> entryIter =

3 map.entrySet().iterator (); entryIter .hasNext();) {
4 Map.Entry<String, List<String>> entry = entryIter.next();

5 sb.append(entry.getKey());

6 List<String> args = entry.getValue();

7 if (!args.isEmpty()) {
8 sb.append(”(”);

9 for ( Iterator<String> iterator = args.iterator(); iterator .hasNext();) {
10 String varName = iterator.next();

11 sb.append(varName);

12 if ( iterator .hasNext())

13 sb.append(”,”);

14 }
15 sb.append(”)”);

16 }
17 if (entryIter .hasNext()) {
18 sb.append(”,”);

19 }
20 sb.append(” ”);

21 }
22 sb.append(”\n”);

23 }

Figure 6.1: Example program using two iterators
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Enabling arbitrary subsets of shadows can also lead to wasted work. Disabling

the next shadow in the above example and keeping the hasNext shadow enabled

would, of course, lead to overhead from the hasNext shadow. But, on their own,

hasNext shadows can never lead to a complete match without any next shadows: in

the HasNext pattern, hasNext shadows can only force the runtime monitor to exit a

state; hasNext shadows are no progress shadows. We therefore need a more principled

way of determining sensible groups of shadows to enable or disable.

In Chapter 4 we have already seen a means to describe sets of symbols (and shad-

ows) that, in combination, can trigger a property violation: dependency annotations.

For HasNext, Algorithm generateDependencies would generate the dependency dec-

laration dependency{ strong next; weak hasNext; }, which conveys the information

that we need to see next to see a pattern violation and, given that next transitions

may occur with respect to some iterator, we also need to keep alive hasNext shadows

for this iterator.

In spatial partitioning, we use dependency annotations to compute a set of differ-

ent “probes”. Each probe is a set of shadows that is both consistent and complete.

The probe is consistent because we require that all shadows that are part of the probe

must be compatible with each other (with respect to the dependency declaration that

defines the probe). The probe also has to be complete: no shadow that is compatible

may be left out.

Let S be the set of all still-enabled shadows in the program. As before, for s ∈ S
we write label(s) to denote the symbol for which s triggers an automaton transition.

Definition 6.1 (Strong and weak shadows). Let d ∈ D be a dependency declaration.

For d, we define two sets strongShadows(d) and weakShadows(d) as follows:

strongShadows(d) := {s ∈ S | label(s) ∈ strong(d)}

weakShadows(d) := {s ∈ S | label(s) ∈ weak(d)}

We would like a probe to be sufficiently large so that it can lead to a match,

however otherwise minimal in the sense that it contains the least number of shadows

to reach this match. In the following we therefore define “minimal activation sets”.
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Every minimal activation set contains exactly the minimal set of shadows that is

necessary to reach a final state, for a given dependency d.

Definition 6.2 (Minimal activation set). We define minActivationSets(d) as a set of

sets of shadows:

minActivationSets(d) :=

{ss ⊆ strongShadows(d) | ∀l ∈ strong(d)
1

∃ s ∈ ss . label(s) = l}

Here,
1

∃ denotes “there exists exactly one”. Hence, minActivationSets(d) contains all

subsets ss of strong shadows of d such that there is exactly one shadow s in ss for

every strong label in d. In other words, all the sets of shadows in minActivationSets(d)

are minimal in the sense that they contain the minimal set of shadows necessary to

activate a dependency declaration.

Definition 6.3 (Probe). For any set of shadows ss ⊆ S and dependency declaration

d we define compShadows(ss, d) as the set of all shadows that are compatible (see

page 86) to a shadow of ss, with respect to d:

compShadows(ss, d) :=
⋃
s∈ss

{s′ ∈ S | stCompatible(s, label(s), s′, label(s′), d)}

Here, stCompatible is the same function as the one defined on page 86. We then

define probes(d) ⊆ P(S), the set of d’s probes as:

probes(d) := { ss ∪ ws | ss ∈ minActivationSets(d) ∧ ws = compShadows(ss, d) }

Informally, a probe hence consists of a fixed number of strong shadows that make

up a consistent (all shadows are compatible) minimal activation set, and of all shadows

that are compatible to those strong shadows.

Probes by example. Consider again the example program from Figure 6.1 in com-

bination with the HasNext property. As mentioned, the dependency declaration

d := dependency{ strong next; weak hasNext; } is the only one generated for the
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HasNext property. We denote a shadow s at line number n by (label(s), n), yielding:

strongShadows(d) := {(hasNext, 3), (hasNext, 17), (hasNext, 9), (hasNext, 12)}

weakShadows(d) := {(next, 4), (next, 10)}

minActivationSets(d) :=
{
{(next, 4)}, {(next, 10)}

}
In the program, entryIter and iterator cannot point to the same object. Hence,

their shadows are not compatible among each other and we get two probes:

probes(d) :=
{

{(next, 4), (hasNext, 3), (hasNext, 17)},

{(next, 10), (hasNext, 9), (hasNext, 12)}
}

The first probe contains all shadows related to entryIter, the second all shadows

related to iterator.

Probes may overlap. Note that this example may mislead the reader into thinking

that probes always have to be disjoint. As it turns out, probes are only disjoint for

properties like HasNext, that only use one free variable; in this case, the partitioning

into probes is a true partitioning that leads to disjoint classes of shadows. In cases

where a property refers to multiple variables, however, probes may overlap. For

instance, consider the simplified code example in Figure 6.2 in combination with the

FailSafeIter tracematch. Again, we have underlined the relevant joinpoint shadows.

In this example, Algorithm generateDependencies would yield the single depen-

dency declaration dependency{ strong create, next, update; }. Because the collection

is modified at line 6, we have an update shadow at this line, and get:

probes(d) :=
{

{(create, 2), (next, 4), (update, 6)},

{(create, 3), (next, 5), (update, 6)}
}

In this setting, both probes contain the update shadow at line 6. This is because

clearing the collection c may lead to a property violation on either iterator when

the respective iterator is progressed after c has been modified. Using our approach

to collaborative runtime-verification, the workload for verifying this program may
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1 void printAndClear(Collection c) {
2 Iterator i1 = c.iterator();

3 Iterator i2 = c.iterator();

4 i1 .next();

5 i2 .next();

6 c.clear();

7 }

Figure 6.2: Example program violating the FailSafeIter property for two iterators

be distributed among two users: one user would monitor the first probe, detecting

property violations with respect to the iterator referenced by i1, while the other user

would monitor the other probe for the second iterator.

Spatial partitioning can guarantee complete coverage. Note that, by its defi-

nition, spatial partitioning can guarantee complete coverage in the following sense.

Assume a program run r that leads to a property violation in the fully instrumented

program. Further assume that we obtain k different probes through spatial partition-

ing, and we distribute differently instrumented versions of the program to a number

of users, such that every single one of the k probes is enabled in at least one user’s

program version. When all these users now re-execute the same program run r then

there will be at least one user for which r causes the runtime monitor to notify this

user about the property violation.

6.2 Implementation

There are generally two ways to implement spatial partitioning. For n different

probes, one could in principle generate up to 2n − 1 different program copies where

each copy enables a different subset of probes. We instead opted for a more flexible

approach where we generate only one program copy. This copy then carries special

instrumentation that can select a subset of probes to enable when the program is
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started. In the following, we present our algorithm for spatial partitioning. We first

explain how we compute all probes (based on the flow-insensitive Orphan-shadows

Analysis from Section 4.2.3.2). Then, in Section 6.2.2, we explain how we gener-

ate supportive data structures for selecting probes at program start-up. We generate

bytecode for two arrays: a “map” array mapping from probes to shadows and a “flag”

array with one entry per shadow. When emitting code for shadows, we guard each

shadow’s execution with appropriate array look-ups.

6.2.1 Computing the probes

We compute probes using two algorithms. First, the algorithm minActivationSets

(Algorithm 6.1) computes all minimal activation sets, i.e., the “ss” sets from Defini-

tion 6.3. The shadows of each minimal activation set potentially suffice to drive the

runtime monitor into a final state when the program under test executes. However,

if we just instrumented the program under test with a minimal activation set, then

this program could report false positives because we have not yet taken any weak

shadows into account. False positives put a burden on the programmer. Therefore

Algorithm 6.2 (page 201), called probes, adds to every minimal activation set all the

strong and weak shadows that are compatible to the probe’s minimal activation set.

This combined set of shadows forms the probe. When we instrument a program par-

tially, with a given probe, then this program cannot report any false positives because,

for any shadow (from the minimal activation set) that can drive the monitor into a

final state, we also enabled all compatible shadows that could potentially prevent the

monitor from reaching the final state.

Because Algorithm minActivationSets is non-trivial, we discuss it in more detail.

The algorithm accepts as parameters a dependency declaration d, for which it should

generate probes, and a mapping shadowsOf from dependent advice to a list of all

shadows that are labeled with this piece of advice. It is important that the mapping

maps to lists, not sets: the algorithm needs to traverse the shadows in a fixed ordering

(the ordering is arbitrary, but it must be fixed for the execution of the algorithm).
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Algorithm 6.1 minActivationSets (d, shadowsOf) with d ∈ D, shadowsOf : A → S∗

1: res = ∅
2: let strongShadows be an ordered list containing all shadows of strong(d)

3: // for all shadows labelled with first strong label

4: for all shadows s0 labeled with first advice in strongShadows do

5: push s0 on stack // try to find a minimal activation set containing s0

6: lastShadow := null // no last shadow for next strong label yet

7: repeat

8: let s be the shadow at the top of stack

9: // search for shadow s′ to complete the current minimal activation set

10: if there is a successor symbol l′ of label(s) in strongShadows then

11: if there is a successor shadow s′ to lastShadow in shadowsOf(l′) that is

compatible to all shadows on stack then

12: push s′ on stack

13: end if

14: end if

15: if |stack| = |strong(d)| then // if completed the minimal activation set

16: res = res ∪
{
{s | s on stack}

}
// commit minimal activation set

17: pop lastShadow off the stack // search for next set

18: else

19: if pushed shadow on the stack (executed line 12) then

20: lastShadow := null // successfully added shadow, move to next symbol

21: else

22: pop lastShadow off the stack // try another shadow, after lastShadow

23: end if

24: end if

25: until stack is empty // no more choices

26: end for

27: return res
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Algorithm 6.2 probes (d, shadowsOf) with d ∈ D, shadowsOf : A → S∗

1: probes := ∅
2: for set ss ∈ minActivationSets(d, shadowsOf) do

3: ws := ∅
4: for s ∈ S with label(s) ∈ all(d) do

5: if s is compatible to all shadows in ss then

6: ws := ws ∪ {s}
7: end if

8: end for

9: probes = probes ∪ {ss ∪ ws}
10: end for

11: return probes

The algorithm computes exhaustively all minimal activation sets. Starting with

the first label in strong(d), it attempts to add exactly one compatible (line 11) shadow

s′ to the current probe for each label (line 10) in strong(d). To allow for backtracking,

the algorithm holds the partial minimal activation sets in a stack. Once the minimal

activation set becomes complete (the size of the stack equals the size of strong(d);

line 15), it is committed to the set res. Note that in line 11, where the algorithm

looks for a successor shadow to lastShadow, in case that lastShadow == null the

algorithm will just pick any shadow of shadowsOf(l′) that is compatible to all shadows

on stack.

The complexity of the algorithm mentioned above is bounded by the number

of minimal activation sets. Estimating this number is non-trivial. In Appendix D

we compute a reasonable upper bound for this number. In our implementation,

Algorithm minActivationSets operates on a two-dimensional boolean matrix in which

entry (i, j) is true if shadows i and j are compatible. This makes our implementation

very efficient.

The more of the remaining shadows are compatible, the more minimal activation

sets we will get. However, on the other hand, when Algorithm 6.2 adds compatible
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shadows to the minimal activation sets then this will result in fewer possible probes,

the more of the remaining shadows are compatible. In our experiments, the maximal

number of probes that we obtained was 3343. This means that the programmer has

the option to spread the instrumentation over as many as 3343 users. However, there

is no need to have that many users: one can choose to have a smaller set of users and

then simply enable more than one probe at a time for every user.

6.2.2 Generating the arrays that encode the probes

The arrays, along with some glue code in the AspectJ runtime, allow us to dynam-

ically enable and disable probes as desired (using array look-ups). In the context

of spatial partitioning, we choose one probe to enable at the start of each execu-

tion; however, our infrastructure permits experimentation with more sophisticated

partitioning schemes.

In our running example, the “map” array, which maps from probes to shadows,

would look like this:

map 3 4 9 10 12 17 ← line number

0 tt tt ff ff ff tt

1 ff ff tt tt tt ff

For presentation purposes we show for every shadow the line number of the shadow.

Our implementation does not store these line numbers. The array encodes the infor-

mation that the shadows at lines 3, 4 and 17 all belong to probe number 0, and the

shadows at lines 9, 10 and 12 belong to probe number 1. To index into the array, we

assign each probe and each shadow a unique number, starting at 0. Note that, when

different probes may overlap, there may be multiple rows with a tt entry in the same

column.

The “flag” array, with one entry per shadow, is initialized to all ff :

flag 3 4 9 10 12 17

ff ff ff ff ff ff
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If we then assume that the user chooses to enable probe number p, the Clara

runtime sets the Boolean flags in the “flag” array for all shadows of this probe (as

determined by the “map” array) to tt.

∀i ∈ {0, . . . , |S| − 1} : flag[i] := flag[i] ∨map[p, i]

For our example, with p = 1, this would result in:

flag 3 4 9 10 12 17

ff ff tt tt tt ff

6.2.3 Generating the runtime checks

We also add a dynamic residue to every advice application of every dependent advice.

The residue checks the flag for the shadow at which this advice application applies.

The advice will only execute at this shadow when the flag is set to true.

6.3 Experiments

To validate the feasibility of spatial partitioning, we selected five representative bench-

mark/property combinations that expose a high runtime overhead even after we had

applied all three of Clara’s static analysis stages. We then applied the spatial-

partitioning algorithm from Section 6.1 to these five combinations. In Clara, pro-

grammers can easily enable spatial partitioning through a simple command-line flag.

Clara then automatically runs the spatial-partitioning algorithm just after all static

analyses have been completed. Because spatial partitioning requires points-to infor-

mation, Clara requires that at least the Quick Check and Orphan-shadows Analysis

are computed before the spatial-partitioning algorithm is run.

Table 6.1 shows the runtime overheads with full instrumentation and also presents

the number of probes generated for each benchmark. For informational purposes

we also show the number of minimal activation sets that these probes comprise.

Recall that the number of probes depends heavily on the precision of the underlying

points-to analysis, as well as intrinsic properties of the benchmark, for instance the
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lifetimes of bound objects: If objects are longer-lived then they tend to be referenced

at more program places than rather short-lived objects. Therefore in these cases many

variables share the same points-to sets, yielding larger probes. If the points-to analysis

is imprecise (e.g. because it soundly over-approximates dynamic class loading) this

may lead to larger points-to sets that overlap a lot among another, which in turn

causes probes to be merged that would otherwise remain separate had the points-to

analysis been more precise. Consequently, the number of probes varies a lot from

case to case depending on these properties. antlr-Writer is an extreme case: here all

of the 36 shadows that remain after applying the Nop-shadows Analysis overlap, and

hence form only a single probe. One could therefore say that spatial partitioning fails

in this case. When this happens, one has to resort to monitor-specific optimizations

like temporal partitioning [BHL+08].

Under the spatial-partitioning approach, Clara emits instrumented benchmarks

which can enable or disable each single probe at program start-up. We tested the

effect of each probe individually by executing each benchmark with one probe enabled

at a time. (Note that it is generally possible to enable multiple probes at the same

time without jeopardizing soundness.) Because the five different benchmark/property

combinations together contain 5428 different probes, this would give us the opportu-

nity to perform up to 5428 different test runs. So many test runs would consume very

much time. Hence we randomly picked 100 probes for each combination, except for

antlr-Writer, because this combination only contains one probe. We then executed

the respective instrumented program with one of these probes enabled and all other

probes disabled. To reduce the overall benchmarking time further, we parameterized

the DaCapo harness so that it would report the mean runtime of a minimum of 3

runs and not 5 as before. In the end we obtained 1 + 4× 100 = 401 different bench-

mark runs. Figure 6.3 shows runtime overheads for the probes in our benchmarks.

Dots indicate overheads for individual probes. For some benchmarks, many probes

were almost identical, sharing the same hot shadows. These probes therefore also had

almost identical overheads. We grouped these probes into batches and present them

as bars. We labelled each bar with the number of probes that the bar represents.
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benchmark overhead (%) min. activation sets probes

antlr-Writer 36 289 1

bloat-HasNext 258 172 163

chart-FailSafeIter 8 9061 1766

jython-FailSafeIterMap 13 5040 155

pmd-FailSafeIter 524 54215 3343

Table 6.1: Full overheads and number of minimal activation sets and probes
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Figure 6.3: Runtime overheads per probe in spatial partitioning (in percent; bars

indicate batches of probes, labelled by size of clump)
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Our results demonstrate that, in some cases, the different probes manage to spa-

tially distribute the overhead quite well. For the combinations chart-FailSafeIter and

jython-FailSafeIterMap the gains are moderate. This is because these benchmark

only caused 8%, respectively 13% overhead in the first place. Nevertheless, even for

these two benchmarks there are many probes that produce a significantly smaller

overhead. For bloat-HasNext and pmd-FailSafeIter, spatial partitioning manages to

bring down the overhead from 2.5 fold, respectively 5.2 fold to less than 10% in most

cases. However, spatial partitioning does not always suffice. For antlr-Writer there is

only one probe and so it is not a surprise that we observe a runtime overhead similar

to the one that we would obtain without spatial partitioning.

We conclude that spatial partitioning can often be effective in spreading the over-

head among different probes. In some cases, like antlr-Writer, spatial partitioning

may however fail.
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Ranking and filtering

Although our static analysis removes many false positives, factors like dynamic

class loading and inter-procedural data flow can still lead to imprecise analysis results;

for some of our benchmarks we still report up to 259 potential failure groups. In such

a case, the large number of potentially interesting program points makes it hard for

the programmer to investigate all these points manually. Moreover, it may also be

problematic to test-run a program that is instrumented at so many program points:

possibly, the runtime overhead will be high. Hence, manually inspecting the program

may be the only option to find out whether or not the program under test actually

does violate the property in question. If we cannot avoid a manual inspection then at

least we want to ease the programmer’s inspection task as much as possible. In this

chapter we present an approach that helps the developer focus on the most important

points first, by ranking, i.e., sorting, the list of potential failure groups that we report.

But how can we determine which of the potential failure groups will most likely be

relevant?

7.1 Approach

As we describe in previous work [BLH08a], we manually investigated many of the

potential failure groups that remained even after applying all our static analyses. As

we found out, we can categorize any remaining shadow as follows:
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nop-shadows The shadow is actually a nop shadow but the analyses fail to identify

this fact, due to some imprecision.

conservative property definition The shadow remains active because the pro-

gram actually violates the stated property at runtime. However, it turns out

that the property definition was wrong; it was too conservative: the program

safeguards itself from failing by means that the finite-state property does not

capture. For example, a program may cause the HasNext pattern to match by

calling next twice on an iterator. However, if the collection to which this iter-

ator belongs must have multiple elements, then these calls may still be correct.

program error The shadow remains active because the program actually violates

the stated property at runtime, and the property indicates an actual program-

ming error.

Penalizing failure groups that carry imprecisions. It is impossible for our static

analyses to tell whether a shadow belongs into the second or third category. After

all, Clara only determines whether the given program may violate the given finite-

state property. If the property does not accurately describe the error situation that

the programmer actually wishes to express, then there is nothing that Clara could

do to change this fact. Clara therefore leaves it to the programmer to specify the

properties of interest as accurately as possible. In Section 8.7 we will discuss some

approaches that try to infer accurate specifications from existing program code. These

approaches can ease the programmer’s task.

Nevertheless, Clara can actively help to determine whether a shadow falls into

the first category, i.e., whether it is likely that the shadow is a nop shadow, although

some imprecision caused the analysis to fail to identify this fact. The idea is that in

certain cases we can determine that we do have imprecise analysis information for

a shadow s. In this case, we will give any potential failure group that contains s a

“penalty” value. The higher the penalty of a potential failure group, the further to

the bottom of the ranked list of potential failure groups the group will appear.
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Ranking criteria. We decided to assign a potential failure group a penalty value if

for one of the group’s shadows one or more of the following criteria hold.

ABORTED: Clara aborted the Nop-shadows Analysis because the analysis exceeded

its quota (see page 178)

DELEGATE: the shadow is at a delegating statement (see below).

NO CONTEXT: the shadow is associated with points-to sets that contain no context

information—that is, the demand-driven analysis failed to find context infor-

mation in its time budget.

For each of these three criteria we assign an equal penalty value. We assign a

penalty to shadows at delegating calls for the following reason: Assume, for in-

stance, an (unchecked) call inner.next() within wrapper.next(). According to

the Nop-shadows Analysis, such a call could violate the HasNext property, because

the inner.next() call is not preceded by an inner.hasNext() call. However, such

potential violations are uninteresting for error detection because clients use inner

correctly whenever they use wrapper correctly. The penalty value will cause such less

interesting cases to show up further towards the bottom of the ranked result list.

In our view, a ranking approach is useful to the programmer if it ranks those

potential failure groups at the top that (1) describe actual property violations, or

(2) for which a programmer can easily tell whether or not the potential failure group

describes an actual property violation. The penalty value that we obtain from the

three criteria mentioned above helps to determine case (1). To facilitate (2), when

Clara decides whether to rank a potential failure group g1 before or after a group

g2, if g1 and g2 have the same penalty value, then Clara will show g1 first if g1 has

fewer shadows than g2. This is because the larger a potential failure group is, the

harder it will be for a programmer to determine whether or not this group describes

an actual property violation.
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7.2 Experiments

To determine whether our criteria really do rank actual property violations to the top,

we inspected all the program points at which shadows remained active after applying

the Nop-shadows Analysis. For these points, we marked actual property violations

with a flag ACTUAL, giving us training data. We also ran the respective benchmarks

with monitoring instrumentation to validate the results gained by manual inspection.

Interestingly, the benchmark harness did not actually exercise many of the matches

that we had identified. This is one of the reasons for why static analysis is useful:

because it considers all paths, it provides complete coverage. We then used the Weka

machine-learning toolkit [WF05] to create decision trees which would distinguish false

positives from true positives. To generate input for Weka, we interpreted the three

penalty criteria as features of a feature vector. Weka then determined how the three

values in these vectors correlate with the presence of the ACTUAL flag.

For our data set, Weka computes the decision tree shown in Figure 7.1. This tree

tells us that, as we anticipated, if none of NO CONTEXT, ABORTED or DELEGATE apply

to a potential failure group then one should best decide that this group is a true

positive, otherwise as a false positive.

NO_CONTEXT = 0

| ABORTED = 0

| | DELEGATE = 0: TRUE_POSITIVE (5.0)

| | DELEGATE = 1: FALSE_POSITIVE (7.0)

| ABORTED = 1: FALSE_POSITIVE (33.0)

NO_CONTEXT = 1: FALSE_POSITIVE (949.0/2.0)

Figure 7.1: Decision tree computed by Weka

Weka evaluates its classifiers with 10-fold stratified cross-validation to ensure that

the classifiers do not over-fit the data. Cross-validation is a statistical technique

that allows the estimation of error without distinct training and testing sets. Cross-

validation estimates the error by using a subset of a data set as training data and
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then applying the trained model to the remainder of the data set. Ten-fold strati-

fied cross-validation is a cross-validation technique that has been proven statistically

stable [Koh95].

As Figure 7.1 shows, under cross-validation the decision tree correctly identifies

five out of seven actual failure groups, but it incorrectly classifies two actual failure

groups as false positives (both due to NO CONTEXT). The tree further correctly identifies

all 989 false positives as false positives. This means that these false positives would

not show up if we filtered the list of potential points of failure according to this

decision tree. However, the filtered list would also not contain two of the seven

actual failure groups that we identified through manual inspection. In these cases,

our feature vectors do not contain enough information to deduce the correct answer.

As the decision tree shows, NO CONTEXT is the criterion that is most useful to us:

when we have no context information for a shadow s then it is very likely that the

Nop-shadows Analysis will fail to identify s as a nop-shadow, even when it is one.

Hence, NO CONTEXT is a large source of false positives in the un-filtered list of potential

failure groups.

Result of filtering and ranking. In Table 7.1, we show for every benchmark that has

shadows remaining after applying the Nop-shadows Analysis the number of potential

failure groups (PFGs), both before and after filtering. Where applicable, we show

the number of false negatives in brackets. We also show the number of actual failure

groups (AFGs) identified through manual inspection. In the last column, we show

the ranks of these actual failure groups in the ranked but un-filtered list of potential

failure groups. Note that through filtering we can pinpoint the actual failure group in

bloat-HasNext. Also note that we filter out all potential failure groups for benchmarks

that have no actual failure. Hence the false-positive rate is zero for our benchmark set.

However, as the table shows, we also miss two actual violations because the filtering is

too eager in this case. In the case of jython-Reader, the filter would filter out the only

actual failure group (due to NO CONTEXT). However, since the benchmark only contains

this one potential failure group to begin with, the programmer would likely not have

enabled the filter anyway. For pmd-HasNext, the filter also incorrectly classifies one
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potential actual failure group as a false positive (also due to NO CONTEXT). In the

un-filtered ranked list of potential failure groups, this group shows up at position 7.

Suspicious code and defects. Using our filtered results, we identified the following

defects and pieces of suspicious code in our benchmarks by manually inspecting the

program code. In pmd-HasNext, a method passes an iterator i to another method.

The callee method then extracts i’s first element without further checks. While this

is not an actual bug, the undocumented precondition (that i has a next element) on

the callee might cause problems for long-term software maintenance. Interestingly,

pmd’s developers fixed the method in a later version of pmd by using Java5’s for-each

loops, which avoid the explicit use of iterators. Our filter misclassifies this actual

failure point as a false positive (producing a false negative) because the potential

failure group is marked with NO CONTEXT.

The pmd benchmark also calls next() on iterators without calling hasNext()

before. This is not an error because pmd makes sure that the iterator can be advanced

by checking the size of the underlying collection. Although not an error, these cases

still constitute a violation of the stated property.

The actual point of failure in jython-Reader indicates an actual defect. The code

may close Reader objects and then read from them. The developers “cured” this

defect by returning null from the method that reads from the Reader, in case of an

IOException. Unfortunately, as Table 7.1 shows, Clara would filter out this actual

error when filtering is enabled, also due to NO CONTEXT.

The bloat benchmark extracts two elements from a collection without any checks,

leading to an actual match in the bloat-HasNext benchmark.

Conclusion. This concludes our description of Clara. We have described how

programmers can use Clara to analyze runtime monitors ahead of time. We also

showed how these analyses enable the programmers to find programming errors earlier

in the development process or faster at runtime. We next discuss related work.
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PFGs PFGs AFG positions
benchmark-property

before filtering after filtering
AFGs

in ranked list

antlr-FailSafeEnumHT 6 1 1 1

antlr-Writer 1

bloat-FailSafeIter 259

bloat-FailSafeIterMap 258

bloat-HasNext 163 1 1 1

bloat-Writer 2

chart-FailSafeIter 38

chart-FailSafeIterMap 38

chart-HasNext 4

fop-FailSafeEnum 1

hsqldb-FailSafeEnumHT 1

hsqldb-Reader 1

hsqldb-Writer 1

hsqldb-Writer 1

jython-FailSafeEnumHT 9

jython-FailSafeEnum 2

jython-FailSafeIter 4

jython-FailSafeIterMap 4

jython-HasNextElem 14

jython-HasNext 9

jython-Reader 1 0 (-1) 1 1

lusearch-FailSafeIter 5

pmd-FailSafeIter 90

pmd-FailSafeIterMap 32

pmd-HasNext 51 3 (-1) 4 1,2,3,7

xalan-HasNextElem 1

Table 7.1: Number of potential failure groups (PFGs) before and after filtering, num-

ber of actual failure groups (AFGs), and positions of AFPs in ranked, un-filtered list

of PFGs
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Chapter 8

Related work

We first discuss, in Section 8.1, how our analysis relates to the general subject

of typestate analysis. In Section 8.2 we then discuss three very related approaches

that analyze tracematches statically, one by Naeem and Lhoták and two from our

own previous work. Section 8.3 presents other approaches to runtime monitoring

and explains which of these approaches programmers could use in combination with

Clara. In Section 8.4 we point out why we decided to use Sridharan and Bod́ık’s

points-to analysis, what properties this analysis has and how exactly we use the

analysis. We present related work on aspect-oriented programming in Section 8.5,

while Section 8.6 shows how Clara relates to more lightweight static checking tools.

Lastly, in Section 8.7, we present a number of tools that can infer specifications from

a program’s code or execution traces. In the future, programmers may use such

automatically inferred specifications in combination with Clara.

8.1 Typestate analysis

The scientific literature has frequently referred to the finite-state verification problem

that we describe in this dissertation under the name of typestate analysis.
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8.1.1 Strom and Yemini

In their original paper on typestate [SY86], Strom and Yemini first describe the

idea of having a value’s type depend on an internal state, the typestate, associated

with that value. Certain operations can change a value’s type by transitioning from

one typestate to another. Strom and Yemini used state charts [Har87] to describe

the possible state transitions for a class of objects. Statecharts allow programmers

to capture behavioural sub-typing [LW94], an important property of object-oriented

languages. Figure 8.1 shows three example statecharts. The first state chart (8.1a)

models a visual Frame as it exists in the Swing framework. When created, the frame

is hidden and therefore the frame starts off in state hidden, a sub-state of alive. The

frame can switch to state visible by calling the show() method. When the program

disposes a frame, the monitor leaves the state alive (and all its sub-states).

A subtype of Frame can then refine Frame’s protocol as shown in Figure 8.1b. This

subtype implements a lockable frame whose widgets can be locked from modification,

but only if the frame is currently visible. Hence, the statechart refines the state visible

with two new states, editable and locked. The semantics of statecharts can be defined

through “flattening” as shown in Figure 8.1c where the refined state appears inlined

in the statechart for Frame.

Clara currently does not allow programmers to enter dependency state machines

in the form of statecharts, however we will consider such a feature for a future release

of Clara. The implementation should be straightforward: one can always flatten

state charts so that the flattened state chart is effectively a non-deterministic finite-

state machine.

In the description by Strom and Yemini, typestate properties are restricted to

describing the state of single objects. For example, their model does not allow the

state of an iterator i to change when the iterator’s collection c is modified. This is

because the author’s model has no means of associating i with c. Recently, typestate

properties have been enjoying renewed interest, and many current analyses, including

ours, do support the analyses of such “generalized” typestate properties.
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hidden

visible

alive

show() hide()

dispose()

(a) Statechart modelling behaviour of a frame

editable

locked

visible

lock() unlock()

(b) Statechart refining state visible for a lockable frame

hidden

visible

alive

editable

locked

show() hide()

dispose()

(c) Statechart, combined through “flattening”

Figure 8.1: Example statecharts
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8.1.2 Fink et al.

Fink et al. present a static analysis of typestate properties [FYD+06]. Their approach,

like ours, uses a staged analysis which starts with a flow-insensitive pointer-based

analysis, followed by flow-sensitive checkers. The authors’ analyses allow only for

specifications that reason about a single object at a time. This prevents programmers

from expressing multi-object properties such as FailSafeIter. Like us, Fink et al. aim

to verify properties fully statically. However, our approach nevertheless provides

specialized instrumentation and recovery code, while their approach only emits a

compile-time warning. Also, Clara supports a range of input languages so that

developers can conveniently specify the properties to be verified, while Fink et al. do

not say how developers might specify their properties.

8.1.3 Bierhoff and Aldrich

Bierhoff and Aldrich [BA07] recently presented an intra-procedural approach that

enables the checking of typestate properties in the presence of aliasing. The author’s

approach aims at being modular, and therefore abstains from potentially expensive

whole-program analyses like the ones that Clara uses. To be able to reason about

aliases nevertheless, Bierhoff and Aldrich associate references with special access per-

missions. Their abstraction is based on linear logic, and using access permissions it

can relate the states of one object (e.g. an iterator) with the state of another object

(e.g. a collection). These permissions classify how many other references to the same

object may exist, and which operations the type system allows on these references.

The authors use reference counters to reclaim permissions to help their type system

to accept more valid programs. In their approach, they assume that every method

is annotated with information about how access permissions and typestates change

when this method is executed. Of course this does not necessarily imply that it has

to be the programmer who adds these annotations. Many approaches exist that can

infer typestate properties, and we discuss some of these approaches in Section 8.7.

Bierhoff and Aldrich’s approach has the advantage of being modular: given appro-

priate annotations it can analyze any method, class or package on its own. Clara
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on the other hand needs the whole program to be present, and in particular expects

a complete but nevertheless sufficiently precise call graph. When the whole program

is available, and can be analyzed, then Clara gives programmers the advantage

that it does not require any program annotations. Clara only requires annotations

that describe error situations, not the program, and then automatically analyzes the

program to see whether such error situations can occur. We have found that worst-

case assumptions coupled with coarse-grained side-effect information are surprisingly

effective.

Bierhoff and Aldrich define typestate properties via a textual representation of

statecharts. Hence, programmers can conveniently model behavioral sub-typing, as

in the original typestate-checking methodology that Strom and Yemini proposed.

Because Bierhoff and Aldrich’s work defines a type system and not a static checker

like Clara, the workflow that a programmer has to follow in Bierhoff and Aldrich’s

approach is slightly different than it is in the case of using Clara. Clara allows the

programmer to define a program that may violate the given safety property. Clara

then tries to verify that the program is correct, and when this verification fails it

delays further checks until runtime. Bierhoff and Aldrich’s approach defines a type

checker, and hence the idea is that the programmer is prevented from compiling a

potentially property-violating program in the first place. This gives the advantage of

strong static guarantees. After all, if the program does compile then the programmer

knows that the program must fulfill the stated property. On the other hand, the type

checker may reject useful programs that appear to violate the stated property but

will not actually violate the property at runtime.

8.1.4 DeLine and Fähndrich

DeLine and Fähndrich’s approach [DF04] is similar in flavor to Bierhoff and Aldrich’s.

The authors implemented their approach in the Fugue tool for specifying and checking

typestates in .NET-based programs. Fugue checks typestate specifications statically,

in the presence of aliasing. The authors present a programming model of types-

tates for objects with a sound modular checking algorithm. The programming model
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handles typical features of object-oriented programs such as down-casting, virtual

dispatch, direct calls, and sub-classing. The model also permits subclasses to extend

the interpretation of typestates and to introduce additional typestates, similar to the

statecharts-based approach by Strom and Yemini. As in Bierhoff and Aldrich’s ap-

proach, DeLine and Fähndrich assume that a programmer (or tool) has annotated

the program under test with information about how calls to a method change the

typestate of the objects that the method references. One fundamental difference be-

tween the two approaches is the treatment of aliasing. While Bierhoff and Aldrich

used access permissions to reason about aliases, Fugue’s type system tracks objects

merely as “not aliased” or “maybe aliased”. Objects typically remain “not aliased”

as long as they are only referenced by the stack. The respective objects can change

state only during this period. Once they become “maybe aliased”, Fugue forbids any

state-changing operations on these objects. This makes Fugue’s type system less per-

missive than the system that Bierhoff and Aldrich describe: in the latter type system

objects can change states even when they are aliased.

8.1.5 Dwyer and Purandare

Dwyer and Purandare use existing typestate analyses to specialize runtime moni-

tors [DP07]. Their work identifies “safe regions” in the code using a simple static

typestate analysis similar to [DCCN04]. Safe regions can be methods, single state-

ments or compound statements (e.g. loops). A region is safe if its deterministic

transition function does not drive the typestate automaton into a final state. A spe-

cial case of a safe region would be a region that does not change the automaton’s state

at all. The authors call such a region an identity region. For regions that are safe but

no identity regions, the authors summarize the effect of this region and change the

program under test to update the typestate with the region’s effects all at once when

the region is entered, instead of at the individual shadows that the region contains.

This has the advantage that the analyzed program will execute faster because it will

execute fewer transitions at runtime. One possible disadvantage of such summary

transitions may be that one loses the connection between the places in the code that
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perform a state transition and the places that actually cause these transitions. This

makes it harder for programmers to investigate these program places manually to

decide for themselves whether this part of the program could or could not violate the

property at hand. Our static analysis does not attempt to determine regions; we in-

stead decide if each single shadow is a nop-shadow. Dwyer and Purandare’s analysis

should be easily implementable in Clara and we encourage such an implementation.

8.2 Static analyses for tracematches

Clara is the result of a large body of research that we conducted over a period of

three years. During this research, we made several attempts at finding analysis imple-

mentations that were correct, precise and efficient. In Section 8.2.1, we comment on

some of our earlier attempts and their weaknesses. We also describe how Clara im-

proves on these earlier algorithm versions, yielding an implementation that is indeed

correct, precise and efficient. Earlier versions were bound to tracematches only and

therefore programmers could not apply these analyses to monitoring aspects that do

not originate from tracematches. Clara instead provides these implementations as

instantiations of a common framework that supports a large variety of AspectJ-based

runtime-monitoring tools.

Motivated by our work, Naeem and Lhoták also developed a static analysis to

analyze tracematches at compile time. Their analysis differs from our analyses mostly

in the chosen abstraction. In Section 8.2.2 we discuss in detail which impact the choice

of abstraction has.

8.2.1 Earlier versions of Clara’s analyses

During the development of this dissertation, we published two papers on evaluating

tracematches ahead of time. Clara integrates this early work with small but signifi-

cant improvements, and it generalizes the previous work to apply to a large variety of

runtime-monitoring tools, as opposed to just tracematches. In the first paper [BHL07]

we presented a three-staged analysis consisting of a Quick Check, a flow-insensitive
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Consistent-shadows analysis and a flow-sensitive Active-shadows analysis. The Quick

Check is essentially the same as the one that we present in this thesis, except for one

minor difference: the quick check in our earlier work would consider an entire state

machine, and simply disable checking of the whole state machine, if one cannot reach

any final state along any path. The Quick Check that we present here acts on every

path separately: when the state machine cannot reach a final state any more along a

path p then the check disables monitoring of the events on p, even if one can reach

the final state along other paths. As we showed in Section 4.4.2.2 (page 116), this can

be beneficial in case of properties that yield state machines with multiple accepting

paths, e.g. for Reader: in this example there is one path that reports a violation when

writing to an InputStream whose Reader was closed, and the other path reports a

violation when writing to a Reader whose InputStream was closed.

The Consistent-shadows analysis is also similar to the Orphan-shadows Analysis

that we present here. In fact, both analyses yield the exact same result. However, the

Orphan-shadows Analysis improves over the Consistent-shadows analysis in terms of

analysis time and memory requirements. The Consistent-shadows analysis can be

regarded as a generate-and-test algorithm: to determine whether two shadows s1

and s2 are compatible, the analysis first creates all sets of compatible shadows and

then tests whether there exists a set that contains both s1 and s2. The number of

sets of compatible shadows is bound only by the size of P(S) and the amount of

aliasing present in the program. In particular, this algorithm is exponential in the

number of shadows. We found that for most cases the Consistent-shadows analysis

was efficient enough nevertheless, but that the complexity could lead to long analysis

times and large memory consumption in cases like bloat-FailSafeIter. The execution

time of the Orphan-shadows Analysis is polynomial in the number of shadows, and

the Orphan-shadows Analysis uses only |S|2 bits of memory to cache its results.

The third stage from our earlier work, the Active-shadows analysis, was a first

attempt at a flow-sensitive analysis of tracematches. While Clara’s third analy-

sis stage, the Nop-shadows Analysis, is flow-sensitive only on an intra-procedural

level, the Active-shadows analysis from our earlier work was a flow-sensitive, context-

insensitive analysis of the entire program. Unfortunately, the abstraction that we
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chose for this Active-shadows analysis only allowed for weak updates because it did

not encode must-alias information. Further, we chose a flow-insensitive pointer ab-

straction, and the computation of typestate information was context-insensitive too.

In combination, the analysis was so imprecise that it was unable to identify a single

nop-shadow in a benchmark set quite similar to the benchmark set that we con-

sider here. These results, in combination with the work that we present in this

thesis, show that choosing the right abstractions is key to obtaining good precision.

Clara uses precise flow-sensitive pointer information and context-sensitivity on an

intra-procedural level. As we showed in this thesis, this information can yield much

optimization potential and therefore significantly improves over the earlier Active-

shadows analysis.

In a second paper [BLH08a] we presented an improved version of the the Active-

shadows analysis. The analysis presented there is similar to the Nop-shadows Anal-

ysis that we present in this dissertation, except for the following points. Firstly, the

analysis in [BLH08a] recognizes “necessary shadows” through a shadow history. Un-

fortunately, this is unsound (explanation follows below). By design, this analysis is

also optimistic: it assumes that a shadow s is unnecessary and can be removed, unless

proven otherwise, by driving a shadow history containing s into a final state. Opti-

mistic analyses can be more prone to error because their optimistic default answer is

unsound. The Nop-shadows Analysis that we present here instead detects “unneces-

sary shadows”, i.e., nop shadows, using a backwards analysis. This analysis is rather

pessimistic: it assumes that a shadow is necessary until we prove that it is in fact a

nop shadow. The only optimistic part of our computation is the initialization of our

worklist algorithm, Algorithm 5.1. We initialize the worklist algorithm for a method

m by assuming that m did not execute before the current execution of m that we are

analyzing. This is an unsafe, optimistic assumption, and we re-gain soundness only

later-on by propagating configurations along edges from succext .

A second difference between the two analyses is the treatment of inter-procedural

control-flow. In [BLH08a], we assumed that any state machine instance could be in

any state when entering the current method m. This is sound but also the most im-

precise assumption one could think of. In the Nop-shadows Analysis that we present
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here, we use the function reachingStar to compute a better approximation. Further,

in [BLH08a] we did not use the inter-procedural successor function succext . Instead,

whenever we recognized an outgoing method call that could potentially and transi-

tively call a shadow-bearing method, then we simply “tainted” successor configura-

tions. Our optimization phase, which normally disabled nop shadows, would then

not take tainted configurations into account, therefore maintaining soundness. The

solution that we present in this paper is not only more elegant, it is also more precise.

Tainting makes a worst-case assumption about the outgoing method call, while our

current implementation considers such method calls more precisely.

Another difference is that all of the above analyses were designed and implemented

to work for tracematches only. We believe that all of them could be modified so

that they work on dependency state machines in general, but at the current time,

the approach that we present here is, to the best of our knowledge, the only one

in which programmers can apply static typestate analyses to optimize any runtime

monitor, if this monitor is implemented as an AspectJ aspect and contains appropriate

dependency annotations.

Unsoundness. As we briefly mentioned above, the Active-shadows analysis that

we presented in earlier work is unsound. The problem is that the Active-shadows

analysis uses a forward-analysis phase only, and uses no backward analysis. As we

saw in Section 5.2, the backward analysis is essential to determine the set of states

from which one can reach a final state using the remainder of the program execution.

Our earlier analysis assumed that one could circumvent computing the backward

analysis by instead propagating forward a “shadow history”: when detecting that a

shadow s changes states from some possible source state source(s) to some target

state target(s) 6= source(s), then the analysis would not yet decide whether or not

s is a nop-shadow, but would instead add a reference to s to the configuration for

target(s). When this configuration later-on reaches a final state, then the analysis

knows that s (1) changes states and (2) is on a path that reaches a final state, and

therefore s is not a nop shadow. In all other cases, the analysis would declare s a
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nop shadow and disable s. This is unsound, and in Figure 8.2 we give an example for

why this is so.

1 void foo(Connection c) {
2 c.disconnect();

3 if (?) {
4 c.reconnect();

5 } else {
6 //c.reconnect ();

7 }
8 c.write (..);

9 }

(a)

0

1

2 3

4

5

c.disconnect()

c.reconnect() c.reconnect()

c.write (..)

(b)

0

1

2

4

5

c.disconnect()

c.reconnect()

c.write (..)

(c)

Figure 8.2: Unsoundness in earlier tracematch-based static analyses

First consider the program code that we show in Figure 8.2a, in combination with

the ConnectionClosed example property (Figure 5.5, page 144). Figure 8.2b shows

the control-flow graph for this method for the case where line 6 is not commented out.

In this case, the program cannot violate the ConnectionClosed property: although the

program disconnects the connection in line 2, the connection is re-connected on all

paths that lead up to the write in line 8. In this case, the analysis would determine

correctly that all the shadows are nop shadows. At the disconnect in line 2, the

analysis would add the disconn shadow to the configuration’s shadow history, and then

propagate the configuration to both branches. When reaching either of the reconnect

statements, the analysis would then conclude that the successor configuration is ff .

When this happens, the analysis discards the configuration, and the shadow history

with it. Therefore, no shadow in any shadow history would ever reach a final state,

and the analysis would remove all shadows in the example program.

Now consider Figure 8.2c, which represents the control-flow graph for the version

of the code where line 6 is commented out. In this setting it is not sound to remove

any of the shadows! The disconnect and read shadow have to be enabled so that they
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can report an error at runtime, in case the program executes the “false” branch, thus

writing to a disconnected connection. The reconnect shadow on the other hand also

needs to be enabled so that the runtime monitor will not report a property violation

when the program executes the “true” branch instead. However, the Active-shadows

analysis that we presented in earlier work would erroneously disable the reconnect

shadow and may therefore cause a false positive when the instrumented program

is executed. Along the “true” branch, the analysis would, as before, conclude that

the successor configuration is ff , and therefore not propagate this configuration any

further. The configuration that the algorithm propagates along the “false” branch

does reach a final state when processing the write at line 8. However, the shadow

history contains at this point only the disconnect and the write shadow, but not

the reconnect shadow, because the configuration in question was only propagated

along the “false” branch, and this configuration therefore never visited the reconnect

shadow at all.

The Nop-shadows Analysis that we present in this dissertation soundly handles

this and all other cases using a backwards analysis instead. In the example from

Figure 8.2b, the analysis would first conclude that the write shadow at line 8 is a

nop-shadow. This is because after the reconnect event the monitor will be in its

initial state, and a write event will loop in this state. Once the write shadow is

disabled, even the flow-insensitive Orphan-shadows Analysis suffices to determine

that the remaining shadows cannot violate the ConnectionClosed property any more.

In the program that we show in Figure 8.2c, the analysis would not, however, be

able to disable the write shadow: there is a path (along the “else” branch) that leads

into a state from which the write shadow leads into a final state, and hence the write

shadow cannot be a nop shadow. The reconnect shadow is also no nop-shadow in this

example, because it discards a partial match, and the disconnect shadow is no nop

shadow because it propagates a match that the write shadow may complete. Hence

the Nop-shadows Analysis will correctly not disable any shadow in this program.

We discovered this unsoundness by running the analysis on a test case that looks

much like the one from Figure 8.2a. It took us several weeks to change the analysis

so that it would be sound, by basing it on a backwards analysis. Interestingly, this
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work does not really seem to pay off very much: we did not discover any shadows

in our benchmarks that the earlier algorithm would have mistakenly disabled. We

presume that this is due to the nature of the cases in which this unsoundness can

arise. The example from Figure 8.2a (with line 6 commented out, as shown) shows

a program that is conditionally correct: the program does or does not violate the

ConnectionClosed property, depending on whether or not the “false” branch can be

taken at runtime. In other words, the figure shows a very unusual program. It seems

not very likely that programmers make such programming mistakes. Nevertheless,

it is good to know that the Nop-shadows Analysis solves the unsoundness problem,

so that one can get static guarantees in cases where the Nop-shadows Analysis does

disable all shadows.

8.2.2 Naeem and Lhoták’s analysis for tracematches

Naeem and Lhoták present a context-sensitive flow-sensitive inter-procedural whole-

program analysis [NL08] to analyze typestate-like properties of multiple interacting

objects at compile time. Unlike our approach, Naeem and Lhoták restrict themselves

to handling specifications that are given in the form of a tracematch. Nevertheless,

this is presumably the case because Clara did not exist at the time at which Naeem

and Lhoták’s work was conducted. We believe that one could integrate the authors’

analysis easily into Clara. The analysis that Naeem and Lhoták present can be seen

as a generalized version of our Nop-shadows Analysis. Our Nop-shadows Analysis is

mostly intra-procedural and uses only flow-insensitive information to model inter-

procedural control flow. Naeem and Lhoták’s analysis, on the other hand, propagates

configurations along call edges and then further through the bodies of called methods.

This can potentially lead to enhanced precision in cases where multiple methods use

combinations of objects that are relevant to a given specification.

Different pointer abstractions. Another difference to our Nop-shadows Analysis is

that Naeem and Lhoták use a different pointer abstraction. Our pointer abstraction,
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object representatives, is flow-sensitive only on an intra-procedural level, and at out-

going method calls we have to resort to context-sensitive but flow-insensitive pointer

information. Naeem and Lhoták instead use a special “binding lattice” that models

each object by the variables that may or must point to the object. This representation

encodes must-aliasing and must-not-aliasing at the same time. The authors’ analysis

updates this object representation at the same time as the state information. This is

different from our approach: we compute the inter-procedural points-to information

only once, before executing the Orphan-shadows Analysis. Further, we also compute

the local flow-sensitive must-alias analysis and must-not-alias analysis for any method

m only once, before applying the worklist algorithm (Algorithm 5.1) to m for the first

time.

1 s0 : x := new ();

2 s1 : y := new ();

3 z := y;

4 if (?) {
5 y. close ();

6 z := x;

7 }
8 s2 : z.read();

(a)

1 s3 : f := new ();

2 while (?) {
3 s4 : f .read();

4 if (?) {
5 f . close ();

6 s5 : f := new ();

7 }
8 }

(b)

Figure 8.3: Program fragments illustrating the effect of aliasing on typestate verifi-

cation

In theory, one can gain additional precision by computing typestate information

at the same time as the pointer information like Naeem and Lhoták do. Consider

the two example programs in Figure 8.3, taken from Field et al. [FGRY05]. In the

following, we quote Field et al.:

“The principal difficulty in doing precise verification arises from de-

termining how aliasing interacts with operations on objects. Some prior
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work on typestate verification has employed a two-step approach to the

problem, in which an initial phase performs a conservative heap analysis

of the program, and a subsequent phase uses the information from the

heap analysis to do typestate analysis. However, we can see from the

program fragments in [Figure 8.3] that such an approach can sometimes

lead to imprecise results. One can easily verify that in both [Figure 8.3a

and 8.3b], all sequences of file operations on a given object are prefixes of

read ; close; i.e., that no read ever follows a close.

However, consider a two-phase analysis in which the heap analysis

is separate from the typestate analysis. In [Figure 8.3a], a precise (and

correct) heap analysis will determine that program variable z at program

point s2 may point to the object created at s0 or the object created at

s1. Furthermore, a precise typestate analysis will determine that the

object created at s1 could be in a closed state at s2. A two-phase analysis

must therefore erroneously conclude that the read could be performed on

a closed file. Similarly, in [Figure 8.3b], any conservative heap analysis

would determine that objects created at program points s3 and s5 could

reach the read statement at s4. In addition, a typestate analysis would

also determine that the objects created at program points s3 and s5 could

be in a closed state at s4. The analysis would, however, not be able

to discover that f can never point to a closed object at s4, and would

incorrectly indicate a possible error.”

The example by Field et al. is therefore a good example for an intra-procedural

case in which Naeem and Lhoták’s abstraction is superior to ours. Interestingly, in

our benchmark set we could not find any instances where we failed to identify a

nop-shadow for the reasons that Field et al. put forward. Hence we conclude that

although we pre-compute our aliasing information, this may not actually cause much

of an imprecision in practice. As Naeem and Lhoták note [NL08, Section 5], there are

however also examples in which our analyses succeed in identifying a nop shadow, but

Naeem and Lhoták’s fails on the same shadow. This is due to the context-sensitive
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points-to analysis that we use. Generally, this analysis is very precise, due to the large

amount of context information that it uses. When this context information matters,

the pointer abstraction that Naeem and Lhoták chose may be less precise.

Naeem and Lhoták are currently re-implementing their analysis to increase pre-

cision and performance. Their current implementation is written in Scala, while the

rewritten version will be written in Java, and will be using customized, more efficient

data structures. We therefore did not compare our analysis to Naeem and Lhoták

directly at this stage. In the future we plan to create a joint comparative study in

which we consistently use the very same tracematch specifications and analyze the

same benchmark versions with the same runtime library, taking into account the exact

same set of potentially dynamically loaded classes.

Context-sensitivity. It is worthwhile noting that the way in which we treat outgoing

method calls in our Nop-shadows Analysis can also be considered context-sensitive:

when analyzing method m, then we analyze an outgoing call to another method

m′ only with respect to the configurations that reach the entry of m′ through m,

and not through other call sites that may call m′ too. Therefore, the Nop-shadows

Analysis analyzes m′ in the context of m. The analysis is flow-insensitive in that

case because the analysis propagates configurations along an edge of succext , but it is

context-sensitive.

Naeem and Lhoták’s analysis builds on our Active-shadows analysis from earlier

work, and therefore the analysis suffers from the same unsoundness problem that we

described above: Naeem and Lhoták’s analysis also uses shadow histories. It should be

possible to fix Naeem and Lhoták’s analysis by making it use an analysis scheme that

is similar to Clara’s, where one conducts both a forward and a backward analysis,

possibly maintaining the pointer abstractions that the authors are using now. One

problem that one would face then, would be that Clara re-computes the analysis

information every time after Clara has disabled any shadow, because the program’s

transition structure may change when a shadow is disabled. As we showed, this can

be done efficiently on an intra-procedural level. However, it would be unrealistic to

re-iterate an inter-procedural analysis every time a shadow gets disabled: every single
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inter-procedural iteration typically takes already several minutes to compute. One

would hence have to augment shadows and analysis information with dependency

information to determine which parts of the analysis information need to be updated

once a shadow is disabled. We plan to consider such an approach in future work.

8.3 Other approaches to runtime monitoring

In the following we discuss a number of monitoring tools that influenced the design

and implementation of Clara. We also discuss whether programmers could use these

tools in combination with Clara.

8.3.1 Stolz and Huch

Our work was originally motivated by Stolz and Huch’s work [SH05] on runtime-

verifying concurrent Haskell programs. The authors specify program properties using

linear-temporal-logic formulae. Such formulae are generally evaluated over a propo-

sitional event trace: a formula refers to a finite set of named propositions and any of

the propositions can either hold or not hold at a given event. Stolz and Huch imple-

mented a runtime library that would generate a propositional event trace at runtime

and update a linear-temporal-logic formula according to the monitored propositional

values. The library reports a property violation when the formula reduces to ff . The

formulas that Stolz and Huch allow for can be parameterized by different values,

similar to the object-to-variable bindings that Clara supports.

8.3.2 J-LO

We ourselves developed J-LO, the Java Logical Observer [Bod05], a tool for runtime-

checking temporal assertions in Java programs. J-LO follows Stolz and Huch’s ap-

proach in large parts, however the propositions in J-LO’s temporal-logic formulae

carry AspectJ pointcuts as propositions. The J-LO tool accepts linear-temporal-

logic formulae with AspectJ pointcuts as input, and generates plain AspectJ code by
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modifying an abstract syntax tree. J-LO extends the AspectBench Compiler, which

allows it to then subsequently weave the generated aspects into a program under test.

Pointcuts in J-LO specifications can be parameterized by variable-to-object bindings.

While the implementation of J-LO is effective in finding seeded errors in small exam-

ple programs, it causes a runtime overhead that is too high to allow programmers to

use J-LO on larger programs. Nevertheless, one could annotate the J-LO-generated

aspects with dependency information and then use Clara’s static analyses to remove

some of this overhead.

8.3.3 Tracematches

Allan et al. [AAC+05] are the creators of tracematches. Tracematches share with J-

LO the idea of generating a low-level AspectJ-based runtime monitor from a high-level

specification that uses AspectJ pointcuts to denote events of interest. Nevertheless,

the tracematch implementation generates runtime monitors that are far superior to

those that J-LO generates. Avgustinov et al. [ATdM07] perform sophisticated static

analyses of the tracematch-induced state machine to determine an optimal monitor

implementation that satisfies three main goals:

1. The monitor implementation should be correct.

2. The monitor should allow parts of its internal state to be garbage-collected

whenever possible without jeopardizing correctness.

3. The monitor should implement an indexing scheme that allows the monitor,

at any event that binds a variable v to an object o, to quickly look up all

state-machine instances for the binding v = o.

As Avgustinov et al. show, reclaiming memory (2) and indexing of partial matches (3)

are both necessary to achieve a low runtime overhead in the general case. In all the

experiments that we conducted with tracematches in our work, these optimizations

were already enabled. Hence our experiments show that, while these optimizations are

necessary, they may not always be sufficient on their own. However, in combination
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with Clara’s analysis, the runtime overhead will be low in most cases. Another

difference between Allan et al.’s analyses and ours is that Allan et al. only analyze

the state machine, while we analyze both the state machine and the program. This

allows us to disable shadows at program points where this is sound, hence making it

easier to check the program for potential property violations already at compile time.

Allan et al.’s analyses do not analyze or modify shadows.

8.3.4 Tracecuts

Walker and Viggers developed tracecuts [WV04], an approach that monitors programs

with respect to a specification given as a context-free grammar over AspectJ pointcuts.

Context-free grammars are strictly more expressive than the finite-state patterns that

we consider in Clara: in Chapter 2 we showed that some properties exist that

finite-state formalisms cannot express but that could be expressed as a context-free

language. However, we also showed that most interesting program properties are

in fact finite-state properties. It is unclear how much runtime overhead tracecuts

induce. In previous work [ATB+06], we tried to compare the relative efficiency of J-

LO, tracematches, tracecuts and another tool called PQL (see below). As we reported

there, there is an implementation of tracecuts, but it is immature, and while its

authors kindly gave us private access to their executables, they did not feel it was

appropriate for us to use their prototype for our experiments.

8.3.5 JavaMOP

JavaMOP provides an extensible logic framework for specification formalisms [CR07].

Via logic plug-ins, one can easily add new logics into JavaMOP and then use these

logics within specifications. As we already showed in this thesis, JavaMOP has sev-

eral specification formalisms built-in, including extended regular expressions (ERE),

past-time and future-time linear temporal logic (PTLTL/FTLTL), and context-free

grammars. JavaMOP translates specifications into AspectJ aspects using the rewrit-

ing logic Maude [CELM96]. JavaMOP aims to be a generic framework that should

support multiple specification languages. Therefore, the designers of JavaMOP are

233



Related work

careful when it comes to making assumptions about the specifications used with their

framework. While this helps keep the framework general, this generality makes it

hard, if not impossible, to analyze the specification in the way that Avgustinov et al.

have done [ATdM07] for tracematches. This can cause problems.

In [CR07], Chen and Roşu report that their implementation outperforms the trace-

match implementation in terms of runtime overhead while also being memory-safe.

However, this is only true in cases where the validation or violation handler does not

actually reference any of the objects that are involved in the match. As soon as the

programmer does reference such objects, JavaMOP has to resort to strong references

that keep the internal state of the objects’ monitors alive indefinitely, thereby causing

high memory consumption and runtime overhead. Another shortcoming of JavaMOP

is that it currently only supports specifications that bind all the objects of a complete

match already at the first transition (see Section 3.2.2). This is fine in cases like

FailSafeIter (see page 37): here the create symbol that leads out of the initial state

binds both c and i. For such patterns, JavaMOP can easily store the state for this

variable binding in a cascaded hash map that maps from c to a map that in turn

maps from i to the state in question. For other patterns, things are not so simple.

ASyncContainsAll describes the situation in which one calls c1.containsAll(c2) on

two synchronized collections c1 and c2. Here the first symbol binds only c1, when this

collection c1 is returned from a call to synchronizedCollection. The second symbol

binds c2 and only the final symbol binds both values together. In recent work [CR09]

Chen and Roşu present an algorithm that circumvents this problem by using a differ-

ent indexing structure. However, the authors do not discuss if they allow a program

to reclaim monitoring state by using weak references, and more importantly why

their algorithm would still be sound if they did. The analysis by Avgustinov et al.

combines both weak references and efficient indexing in a provably sound way, but it

requires an analysis of the specification pattern.

For the work presented in this thesis, Feng Chen extended [BCR09] the JavaMOP

implementation so that it would perform some limited analysis of the specification, so

that JavaMOP could annotate the generated monitors with dependency information
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that Clara can use to partially evaluate these monitors at compile time. Interest-

ingly, as Chen writes in his most recent work [CR09], this dependency information can

also be useful to reduce he number of indexing trees that JavaMOP uses to associate

states with object combinations at runtime. We believe that the same information

should also be useful to implement memory-saving techniques in JavaMOP like the

ones that Avgustinov et al. proposed for tracematches.

8.3.6 PQL

The Program Query Language [MLL05] by Martin at al. resembles tracematches in

that it enables developers to specify properties of Java programs, where each property

may bind free variables to runtime heap objects. PQL supports a richer specification

language than tracematches: it uses stack automata rather than finite state machines,

which yields a language slightly more expressive than context-free grammars. Mar-

tin et al. propose a flow-insensitive static-analysis approach to reduce the runtime

overhead of monitoring programs with PQL. This approach inspired us to implement

our Orphan-shadows Analysis. As the authors show and as we confirm in our work,

such an analysis can be very effective in ruling out impossible matches. However, we

also showed that a flow-sensitive analysis can yield additional optimization potential.

PQL instruments the program under test manually, using the BCEL [Dah] bytecode

engineering toolkit. If PQL used AspectJ instead, then is should be possible to opti-

mize the generated monitor with Clara, similar to tracecuts. PQL was published as

an open-source project, available for download at http://pql.sourceforge.net/.

However, it appears that the project is no longer maintained.

8.3.7 PTQL

Goldsmith et al. [GOA05] proposed PTQL, the Program Trace Query Language,

which provides an SQL-like language for querying properties of program traces at

runtime. The authors also provide “partiqle”, a compiler for this language. The

compiler instruments the program that is to be queried so that the program notifies

monitoring code about the appropriate events at runtime. The monitor itself uses
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indexing trees to associate the monitor’s internal state with the appropriate objects.

It may be possible to evaluate parts of a program query at compile time, for instance

when comparing a method name to a constant string. Partiqle resolves such parts

of a query already during compilation. This is the same as the partial evaluation of

pointcuts that happens in standard AspectJ compilers: these compilers also insert

runtime checks only for parts of a pointcut that the compilers cannot determine at

compile time. Partiqle resorts to a table-based approach to evaluate the remainder

of the query at runtime. Because PTQL uses its own compiler, and is not based on

AspectJ, one cannot currently use Clara to evaluate PTQL queries ahead of time.

Even if PTQL did generate aspects for its monitoring needs, one would have to take

into account that the PTQL language is very expressive and probably Turing com-

plete. Hence it remains unclear whether one could effectively determine dependencies

within a query at compile time, so that Clara could exploit these dependencies to

optimize PTQL monitors.

8.3.8 Sub-alphabet sampling

Dwyer, Diep and Elbaum propose a novel mechanism to guaranteeing low runtime

overhead even in the presence of multiple monitoring properties and in cases where

programs need to update the internal state of monitors for these properties very

frequently [DDE08]. The authors first propose to combine multiple properties over

objects of the same class into one large “integrated” property. As the work shows,

monitoring of this integrated property can be more efficient than monitoring of the in-

dividual original properties. Then second, the authors propose to project the monitor

for this integrated property onto multiple sub-alphabet monitors, where each monitor

monitors exactly one subset of the original alphabet Σ of events. These sub-alphabet

monitors form a lattice that is isomorphic to the power-set lattice of Σ. By the way in

which Dwyer et al. define their state-machine semantics, each individual monitoring

automaton in this lattice is sound, i.e., cannot report any false positives. The authors

show that programmers can gain fine-grained control over the perceived monitoring

overhead by selecting a subset of monitors from the lattice. Further, the authors
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present several heuristics that attempt to select reasonable subsets automatically. As

the results show, the sub-alphabet lattice allows for a flexible selection of monitors

that gives programmers fine-grained control over their overhead. We therefore believe

that the author’s technique is a valuable addition to our own efforts of reducing the

runtime-monitoring overhead, such as the spatial partitioning that we presented in

Chapter 6. It remains unclear, however, whether the author’s technique can easily

be extended to handle properties that refer to a shared state of multiple interacting

objects. Such properties would likely impose certain constraints on the sub-alphabet

monitors, rendering some of these automata illegal.

8.3.9 QVM

Arnold, Vechev and Yahav present QVM, the “Quality Virtual Machine”, an exten-

sion of IBM’s J9 Java Virtual Machine that implements a set of techniques that aim

at aiding programmers to debug their programs [AVY08]. QVM comes equipped

with support for virtual-machine-level monitoring of single-object typestate proper-

ties. Programmers can use a simple syntax to define typestate properties for any given

Java class. QVM then instruments instances of such classes to track the instances’

typestate at runtime. Once QVM detects and report that a typestate property was

violated, it starts sampling method calls that the program issues on objects that are

allocated at the same allocation site as the object for which the violation occurred.

Naturally, the calling sequences for both objects are not necessarily the same. Yet,

the authors argue that in most cases these sequences will be similar enough such

that the sampled trace will help the programmers pinpoint the actual problem on the

violating sequence and hence fix the bug in their program code. QVM’s techniques

are complementary to all of the static techniques that Clara provides and it would be

interesting to integrate both tools into a common solution.

237



Related work

8.4 Demand-driven pointer analysis

Clara makes heavy use of Sridharan and Bod́ık’s demand-driven refinement-based

flow-insensitive context-sensitive points-to analysis [SB06]. Context information is

important for our work because Clara’s analyses need to be able to distinguish

multiple objects that are created at the same allocation site. The author’s analysis is

both demand-driven and refinement-based. Clients can query the points-to analysis

on single variables. The analysis answers a query by returning either a context-

sensitive points-to set, modeling all possible objects that the program under test could

assign to this variable, or, in case the analysis fails, it returns a context-insensitive

points-to set (computed by Spark [LH03]) instead. The analysis can “fail” because

it is demand-driven: a client analysis provides the points-to analysis with a given

quota that the points-to analysis can then use to refine points-to sets with context

information. If the analysis exceeds the quota then it aborts and returns context-

insensitive information. In our analyses we used the default quota settings.

Sridharan and Bod́ık’s analysis works by trying to prove that certain entries into

methods, denoted by “(m”, cannot be matched with appropriate exits “)m”, or that

certain assignments to a field f , denoted by “[f” cannot be matched with appropriate

reads “]f” from this field. The analysis first starts with a very coarse-grained pointer-

assignment graph that skips many possible method entries and exits and field reads

and writes using so-called “match edges”. A match-edge can be seen as an artificially

introduced epsilon transition in the pointer-assignment graph. Match edges speed

up the analysis because they allow the analysis to skip analyzing everything between

the match edge’s source and target nodes. The analysis is refinement-based: when

the analysis fails to prove that a certain allocation site cannot be assigned to a given

variable then it successively deletes match edges, thereby analyzing larger and larger

parts of the program, until ultimately the whole program will be analyzed or the

analysis exceeds its quota.

We chose this particular analysis because our client analyses have two important

properties: (1) they require context information and (2) they require only points-to

information for some few program variables, namely those variables that bind objects
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to dependent advice. In Sridharan and Bod́ık’s analysis, every single points-to query

can be relatively expensive. However, because we query the analysis only on a small

fraction of the total number of variables, the overall points-to-analysis time is still

lower than if we had used another context-sensitive points-to analysis that determines

context-sensitive points-to information for every program variable.

8.5 Aspect-oriented programming

We next discuss related work from the field of aspect-oriented programming. This

work comprises other static analyses, expressive pointcuts and code generators that

generate aspects from high-level specifications.

8.5.1 Static optimizations for cflow pointcuts

The cflow pointcut in AspectJ allows programmers to execute a piece of advice only

at joinpoints that occur in the control-flow of a certain other joinpoint. This is

often useful to define an aspect’s scope: for instance one may want to monitor all

calls to println in a given base program. To avoid the aspect from monitoring

println calls that the aspect itself triggers, the programmer can use a cflow pointcut

to exclude joinpoints that are in the control flow of the aspect’s advice execution.

Avgustinov et al. [ACH+05b] implemented an abc extension that tries to determine

statically whether a given joinpoint shadow may not or must occur in the control

flow of another shadow. In case of a “may not” or “must” answer, the analysis can

eliminate the appropriate runtime checks for the cflow pointcuts.

The analyses that Clara supports can be seen as a generalization of this analysis

approach to support the static approximation of typestates instead of control-flow

relationships. Both the cflow analysis and Clara are implemented as extensions to

abc. In principle this allows programmers to first reduce the number of joinpoint

shadows by applying the cflow analysis and then by applying Clara, or even the

other way around. We did not, however, enable the cflow analysis in our experiments.

Because none of our specifications uses a cflow pointcut, enabling the cflow analysis
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would only have increased the analysis time but would not have impacted the precision

of our approach.

8.5.2 Association aspects and relational aspects.

Sakurai et al. [SMU+04] proposed association aspects, an AspectJ language extension

that allows programmers to restrict advice execution to joinpoints involving objects

that the programmer explicitly associated with an aspect. A programmer associates

an object o with an aspect A by calling A.associate(o), and releases the association

via A.release(o). In earlier work [BSH08], we showed that one can implement re-

lational aspects, a variant of association aspects, via a syntactic transformation into

tracematches. abc implements relational aspects that way, and the implementation

automatically integrates into Clara: The optimizations proposed in this dissertation

remove advice-dispatch code from locations where the objects involved are known not

to be associated with A. Further, for objects for which no advice in the relational as-

pect can ever execute, the optimization will remove the call to the code that associates

the object with the aspect in the first place.

8.5.3 Data-flow pointcuts

Masuhara and Kawauchi proposed a pointcut dflow [MK03]. Programmers can write

pointcuts of the form

p && dflow[s,t](q),

which matches if data flows from s to t, where p is a pointcut binding s, and q is an

inner pointcut binding t. dflow is evaluated at runtime, i.e., it only matches if data-

flow does indeed exist. The authors suggest however, to devise a static analysis that

would optimize data-flow pointcuts at compile time. Unfortunately, neither depen-

dent advice nor dependency state machines are expressive enough for this purpose:

both are defined using tests of pointer equality, and our alias analyses therefore only

regard pointer assignments. In general, data-flow can however also comprise the flow

of primitive values and flow arising from String concatenation.
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8.5.4 maybeShared pointcut

Bodden and Havelund proposed [BH08] a pointcut maybeShared() that matches ac-

cesses to fields that can potentially be shared among threads. This approach is

similar to dependent advice and dependency state machines in that the semantics of

maybeShared() are also parameterized. Like in dependent advice, a trivial default

implementation may return tt in every case, but Bodden and Havelund use a static

thread-local objects analysis [HPV07] to approximate maybeShared() in a more ef-

fective way. Deciding thread-locality is very different from deciding aliasing and type-

states, and therefore Clara cannot benefit the implementation of maybeShared().

8.5.5 SCoPE

SCoPE [AM07] is an abc extension by Aotani and Masuhara. The extension provides

programmers with a means to define highly expressive pointcuts that can reason about

the static structure of the program. For instance, consider the following pointcut:

pointcut executeLowercaseMethod(): execution(∗ ∗(..)) &&

if (thisJoinPoint.getSignature().getName().matches(”ˆ[a−z]+$”));

This pointcut will match the execution of any lowercase method. Programmers could

write the same pointcut in plain AspectJ, too. However, such an implementation

would be very costly: any standard AspectJ compiler would produce a shadow for

this pointcut at the execution of every method and then attach to the shadow a

dynamic residue that in turn dispatches to a method that evaluates the if-check.

SCoPE will instead evaluate this pointcut at compile time. SCoPE first inspects the

expression within the if-pointcut. If this pointcut only depends on static properties

of the thisJoinPoint object, then SCoPE evaluates the expression with respect to

the joinpoint’s shadow at compile time instead of evaluating it with respect to the

joinpoint at runtime. In result, SCoPE will weave calls to a piece of advice that is

attached to the above pointcut only into methods that actually do have a lowercase

method name.
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SCoPE and Clara have in common that they attempt to evaluate parts of a

runtime check (a “dynamic residue”) at compile time. However, the kinds of run-

time checks that both approaches can handle are very different. Clara supports

stateful typestate checks and resolves aliasing, while SCoPE was designed to filter

out joinpoints based on the static context in which they occur. Consequently, both

approaches are orthogonal. Clara could benefit from SCoPE by applying SCoPE

prior to running Clara’s analyses: applying SCoPE would potentially disable some

shadows upfront, which the later analysis stages could then skip. On the other hand

we do not see a situation in which Clara could benefit the implementation of SCoPE.

8.5.6 S2A and M2Aspects

Maoz and Harel proposed S2A, a tool [MH06] to generate executable AspectJ code

from Live Sequence Charts [DH99] (LSCs). An LSC and its generated aspects can

either implement functional aspects of a system, or they can be used for runtime

monitoring, reporting error messages when they match. Some of the aspects that S2A

generates are history-based, and in fact even implement a finite-state machine. We

confirmed with Maoz that S2A could, in principle, generate dependency annotations

for these aspects and that they could lead to optimization potential similar to what

we observed in our experiments, at least when LSCs are used to specify forbidden

scenarios, implemented as runtime monitors. M2Aspects [KLM06] generates AspectJ

aspects from scenario-based software specifications, denoted as Message Sequence

Charts (MSCs). MSCs are less expressive than LSCs. Hence we believe that one

could also modify M2Aspects to generate dependent advice.

8.5.7 Alpha

Alpha [OMB05] is an aspect-oriented programming language that allows programmers

to define pointcuts via Prolog queries over a program’s static structure and dynamic

behavior. Alpha is an aspect-oriented extension of a simple Java-like object-oriented

core language. Alpha supports classes, single inheritance, and has a static type sys-

tem. In Alpha, the program runtime evaluates pointcuts over a Prolog facts database.
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Because it would be very expensive to evaluate every query at every joinpoint, the

authors propose a static analysis that relates queries to only those joinpoint shadows

that can impact the result of the query. The Alpha language is very expressive and al-

lows programmers to define many properties similar to the ones that SCoPE supports.

Of special interest to us is that fact that Alpha allows for queries over the current

execution trace, which means that one can use Alpha to implement runtime moni-

tors. Because the pointcuts that Alpha uses are formulated as Prolog queries, and

not in AspectJ syntax, Clara cannot currently parse these pointcuts and therefore

it would be difficult to have Alpha generate input that Clara could use to optimize

the monitored program. Similarly, Alpha programs are not woven using a standard

AspectJ compiler, and therefore, to obtain an optimized program, one would have to

derive a new mechanism to feed back Clara’s analysis information to Alpha’s own

matching mechanism.

8.5.8 LogicAJ

LogicAJ [KRH04] is an aspect-oriented programming language that extends AspectJ’s

pointcut mechanism with logic variables. Logic variables have unification semantics

like the variables in dependent advice and dependency state machines: variables with

the same name denote the same (meta) objects. The scopes differ, however. In depen-

dent advice the scope spans a dependency declaration (which can reference multiple

pieces of advice). In LogicAJ, however, each pointcut has its own scope. Program-

mers can use logic variables inside pointcuts, in place of the names of packages, types,

fields, methods and AspectJ’s pointcut variables. In the last case, one uses a logic

variable v in the form this(v), target(v) or args(v) binding v to the receiver,

target, respectively argument object of a call. Such a pointcut p only matches when

there is a consistent variable binding for all uses of v in p. One could use dependent

advice to optimize cases where v is used more than once within the same pointcut.

However, because in LogicAJ each pointcut has its own scope, one cannot infer (and

therefore not exploit) inter-dependencies between multiple pieces of advice or their

pointcuts in LogicAJ.
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8.6 Static checkers

There are a number of static checkers that aim to find potential programming errors.

Rutar et al. did an excellent comparative study [RAF04] on some of the best-known

tools in the field. They found that all tools succeed in finding programming problems,

but interestingly, every tool identified slightly different classes of problems. We give

an overview of the tools that are most relevant to our research.

8.6.1 FindBugs

FindBugs [HP04] is a static rule checker developed and maintained by the Univer-

sity of Maryland. It is one of the few static checking tools that has been reportedly

used in a production environment of several large companies. FindBugs is popular

because it comes pre-equipped with a large set of checkers that identify programming

problems with respect to common libraries like the Java Runtime Library. More-

over, the checks that FindBugs implements are very efficient—either because they

are mostly modular, i.e., only check a single method at a time, or because they only

access very limited global information like the type hierarchy. FindBugs analyzes

Java bytecode. Programmers can integrate FindBugs into the Eclipse IDE as a plug-

in. Alternatively, they can use FindBugs as an Ant task or run it from a specialized

graphical user interface. Companies can extend FindBugs with their own company-

specific rules. However, FindBugs offers no special-purpose syntax to support this

task; programmers write rules by writing Java code. The rules in FindBugs are usu-

ally designed to favor false negatives over false positives. In other words, FindBugs

will often miss programming errors, but when it does give a warning then this may

give a good indication of an actual programming problem. This is in contrast to the

sound analyses in Clara, which we designed to never miss a potential violation, and

rather report a false positive if necessary. Of course, due to the limited amount of

information that FindBugs checkers use, the checkers often report a fair number of

false positives despite the efforts to reduce this number.
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8.6.2 PMD

PMD [Cop05] is (apart from being one of our benchmarks) another static checker

that is targeted more towards finding violations of “best practices” or programming

styles, rather than finding actual programming errors. An example is a rule that says

“A class that has private constructors and does not have any static methods or fields

cannot be used.”. Like FindBugs, PMD has a large user base. PMD operates on the

abstract syntax tree of a Java program, and therefore operates on its source code.

Programmers can therefore not use PMD on parts of a program for which no source

code is available. However, this is usually no problem in practice because most of

PMD’s analyses are intra-procedural anyway, and usually one has control over the

source code for a method that one is interested in checking. Unlike FindBugs, PMD

has no support for data-flow analyses. Hence it cannot, for instance, easily determine

whether a pointer may be null or whether a variable will be initialized before it is

used. Like FindBugs, PMD integrates with Eclipse and Ant, but in addition it also

integrates with many other IDEs and even text editors1.

8.6.3 ESC/Java

ESC/Java [FLL+02] is an “extended static checker” for Java source code, developed by

a group of researchers from Compaq. The authors describe the idea of extended static

checking as the efficient static checking of undecidable properties (as opposed to type

checkers, which should only consider decidable properties). Because the properties

are undecidable, any such checker would have to be either unsound or imprecise,

and ESC/Java is both. ESC/Java mainly checks pre- and post-conditions, as well

as invariants. By default, ESC/Java checks for a set of pre-defined properties like

whether the program de-references a null pointer. Programmers can easily add further

conditions through an expressive annotation language. Like similar static checkers,

ESC/Java supports “ghost fields”, which are virtual fields that are only known to the

checker, and which therefore the program itself cannot access. Although we do not

know of any research that has attempted this, we believe that it should be possible

1See http://pmd.sourceforge.net/integrations.html for a complete list.
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to encode an object’s typestate through such a field, which should essentially allow

programmers to use ESC/Java for basic typestate checking. Programmers can also

use special assume annotations to suppress false warnings: if the programmer has

knowledge about the program that the analyses in ESC/Java cannot derive, then she

can add an assume annotation to make the analysis aware of this knowledge. Houdini

(see below) is a tool that can generate annotations for ESC/Java automatically.

8.6.4 JML

JML, the Java Modeling language [LC06], is a general specification language that sup-

ports in-code specifications via annotations. JML supports pre- and post-conditions

and invariants, but also unique features such as model programs [SLN07]. JML is the

joint effort of a number of institutions and various people2 have developed static and

dynamic checkers for JML. While these tools vary greatly in their focus and abilities,

we are not aware of any JML-based tool that would support the checking of typestate

properties, neither at runtime nor at compile time.

8.7 Inferring properties

Clara assumes a set of given property specifications, in the form of runtime mon-

itors that are annotated with dependency information. Generally we assume that

programmers define these specifications by hand. However, researchers have devel-

oped tools that can assist programmers in inferring specifications directly from their

program code. All these approaches share the common assumption that programs

will produce mostly correct runs most of the time. Therefore, one should be able to

infer possibly useful specifications from the “usual” behavior of a program.

2See http://www.cs.ucf.edu/~leavens/JML/ for a complete listing.
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8.7.1 Dynamic approaches

Dynamic approaches generate proposals for possible specifications by mining a set of

traces that are either collected on-the-fly or ahead of time, using a number of test

runs.

8.7.1.1 Daikon

Daikon [ECGN01] by Ernst et al. infers program invariants at runtime. The invariants

are mostly numerical invariants that specify that the numeric value of a variable

cannot be outside a certain range. Therefore, the invariants that Daikon infers are

not really compatible with Clara’s notion of a specification. We will see that there

are other tools that suite Clara’s specification needs better.

8.7.1.2 DIDUCE

DIDUCE [HL02] by Hangal and Lam instruments Java programs to mine and check

program invariants at runtime. The goal is that these invariants provide the program-

mer with information about the root cause of an observed error: when an error occurs

in a program that violated an established invariant just before the error occurred then

the invariant will likely be helpful in finding the root cause of the error. The approach

instruments every expression in the program to keep track of a predefined set of pos-

sible changes to the return value of each such expression. These expressions can be

field stores and loads and method calls. The implementation tracks every program

expression with a bit set in which each bit encodes information about whether or not

the invariant holds. DIDUCE induces a runtime overhead of one to two orders of

magnitude. DIDUCE can help identifying the root cause of a problem by inspecting

(1) invariants that were invalidated just before an error or (2) invariants that are

invalidated after a very long initial runtime. The invariants that DIDUCE produces

do not describe invariants with respect to the typestate of an object. Therefore they

too are not suitable inputs to Clara. In fact, DIDUCE’s approach is complementary

to our approach with Clara: while Clara aims at identifying property violations,

the goal of DIDUCE is to identify the root cause of such violations.
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8.7.1.3 Java Anomaly Detector (JADET)

Wasylkowski, Zeller and Lindig propose the Java Anomaly Detector (JADET) for

detecting object usage anomalies in programs [WZL07]. JADET first generates com-

mon usage patterns from the program, considering control flow, one object at a time.

The tool lists uncommon usages contradicting the pattern, ranked by confidence.

The authors show that seven uncommon usages in their benchmarks are actual de-

fects. While useful, JADET’s analysis may both miss actual defects and yield false

warnings.

JADET’s mining phase makes the tool fully automated. Clara requires property

specifications, but can validate more complicated usage patterns, namely patterns

involving multiple objects, like FailSafeIter. Furthermore, finite-state properties are

more expressive than JADET’s pattern language, which only allows relationships of

the form “event e may precede event f ”. Extending JADET to finite-state properties

would be an interesting project.

8.7.1.4 Specification mining

Ammons et al. put forward the idea of specification mining [ABL02]. In this approach,

the authors developed an algorithm and tool to mine state-based specifications from

dynamic execution traces collected at runtime. The traces consist of basic events,

where each event can bind certain values, similar to the traces that we consider in

the case of Clara. From these traces, the authors then create “scenarios”, where

each scenario is a set of events that occurs on a common set of objects. This is

similar to our flow-insensitive Orphan-shadows Analysis, except that scenarios are

defined in terms of runtime data. The authors then assume that the user provides

a seed in the form of a single event of interest. The author’s approach identifies

the scenarios that contain this seed, normalize the scenarios and then feed them to

a probabilistic automaton learner. The learner generates a probabilistic finite-state

automaton (PFSA). The PFSA usually contains a hot core (high probability) and

some other cold transitions. A ”corer” extracts the hot core. Interestingly, when

extracting the hot core, the corer has to take care not to remove transitions that are
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necessary to reach a final state. Note how this is similar to our our definitions of

probes in Chapter 6: probes always contain a minimal activation set, which in turn

contains enough shadows to reach a final state. The result of this coring process is a

non-deterministic finite-state machine that is ready for human inspection.

The approach by Ammons et al. fits Clara’s notion of a specification very well.

Firstly, the author’s approach generates a finite-state specification in the form of a

finite-state machine, which is exactly the input format that Clara expects. Even

better, state transitions in the specifications that Ammons et al.’s approach gener-

ates can bind free variables to objects. This allows for expressive specifications that

reason about the internal state of multiple related objects. As we learned, transitions

in Clara’s specifications for dependency state machines can bind free variables as

well. Hence it almost appears as if the output of the author’s tool could be easily con-

verted to an input to Clara. However, there is one important issue, which we plan

to address in future work. The specifications that Ammons et al.’s tool generates are

“positive” specifications: the finite-state machine describes allowed typestate tran-

sitions; a property violation occurs when the program triggers a transition labelled

l while being in a state q that has no outgoing l-transition. This is inverse to the

semantics of dependency state machines, in which the state machine describes un-

wanted behavior. It should be simple to define an alternative input format to Clara,

in which programmers or tools could then define dependencies in a “positive” way.

Clara could then automatically convert the supplied state machine to obtain an

automaton that describes forbidden event sequences.

Runtime monitoring for violations of such “positive” specifications does, however,

pose some new questions. The main problem is that a program can often violate a

positive specification in multiple ways. It is important to report to the user in which

way the program violated the property. For instance, consider a specification that

defines that “files are always closed after they have been opened, and the program

writes to files only while they are open”. Now consider a monitor that reports that this

property has been violated. Just notifying the programmer about “a violation” is of

little use: the monitor would have to provide the information if the program violated

the property by not closing an open file, or by writing to a closed file. Providing
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such information requires the monitor to issue a state-dependent error message. The

monitor’s error message depends on the state in which the monitor was last, just

before the last transition lead to a violation. Clara’s dependency state machines

circumvent this problem by using specifications of forbidden behavior instead. In the

above example, programmers would supply two runtime monitors, one that monitors

for files not being closed and one for monitoring writes to closed files.

8.7.1.5 Javert

Javert [GS08] is a novel approach to mining finite-state specifications by Gabel and

Su. In their approach, the authors first use efficient techniques to find small pat-

terns in dynamic traces. Then next Javert uses a rule engine to construct larger

patterns from these smaller pattern instances. As the authors show, this process can

result in impressively comprehensive specifications involving non-trivial combinations

of objects. Unfortunately, the authors do not discuss whether the specifications that

Javert generates contain any specific information about which objects instances are

bound at which transitions of the specification. Such information would be necessary

to make the specifications really useful for reasoning about groups of related objects.

Javert is currently being turned into a commercial tool, and therefore not publicly

available. This prevented us from obtaining more detailed information about the

exact specification format at this point in time.

8.7.1.6 Lo and Maoz

Lo and Maoz present an approach [LM08] to infer property specifications of live

sequence charts [DH99] from dynamic program runs. Live sequence charts explicitly

model the lifetime of multiple objects and the events that these objects interchange.

As we mentioned above, Maoz and Harel previously developed S2A, a program that

generates monitoring aspects from live sequence charts. One can use S2A to generate

monitoring aspects from the specifications that Lo and Maoz’s inference engine mines.

One could then use Clara to evaluate these runtime monitors ahead of time.
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8.7.2 Static approaches

There are also static approaches to inferring specifications. These approaches do not

analyze runtime traces but instead inspect the static program structure to identify

method calls and other operations that often happen in combination.

8.7.2.1 PR-Miner

PR-Miner [LZ05] uses frequent-itemset mining to determine “complex patterns”: sets

of identifiers that are often used in combination within a single method of a program.

PR-Miner first parses the program, then hashes names to numbers and determines

frequent itemsets. The algorithm makes sure to only generate “closed itemsets”, as

these closed itemsets subsume others. This speeds up computation. The algorithm

filters out frequent itemsets that have low support (i.e., are not that frequent after all)

and only retains the ones that have support over a given threshold t. The analyzed

program does not violate properties described by sets that have a support of 100%.

Sets that have a support of t < s < 100% describe properties that the program

potentially violates. Given the analysis information, one can then easily determine

the methods that can cause the violation.

Similar to our Nop-shadows Analysis, PR-Miner inspects the program one method

at a time. This may cause a problem where the current method m does not contain

some crucial method calls that other similar methods do contain, but where m in fact

does call these methods indirectly. When this happens, the implementation of m is

actually safe, but PR-Miner’s analysis would usually report a false warning in this

case. To mitigate the problem, the authors use a simple inter-procedural analysis to

prune these false positives. The authors test PR-Miner over C programs, where this

works well. It is unclear how well this approach would work in a Java-like language

supporting virtual dispatch.

The rules that PR-Miner reports tell a programmer which methods the program

under test usually calls on certain objects in combination, but to the best of our

knowledge the rules do not tell the programmer in which order the program invokes

these methods. Therefore any runtime monitor that would want to check these rules
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would have to be very basic: it could only report “missing” method calls. One

could then however annotate the monitor with dependency annotations based on

the programming rule. Because both the rule and the dependency annotation are

flow-insensitive, this seems like a natural fit. It is interesting that PR-Miner does

not take aliasing into account. PR-Miner instead assumes that different variables

represent different objects. This is not so problematic because PR-Miner’s analysis

is both unsound and incomplete anyway. However, it may lead to patterns being

misclassified in cases where objects are aliased.

8.7.2.2 Houdini

Houdini [FL01] is an annotation assistant for ESC/Java (see above). Houdini im-

plements a generate-and-test approach. The tool first generates a set of candidate

specifications for a given set of classes and then uses ESC/Java to verify or refute

these specifications with respect to the given program. Houdini uses a set of simple

heuristics to “guess” the initial set of candidate specifications. For instance, it is

generally useful to specify that reference-typed arguments to a method call should

not be null. Specifications that pass the verification with ESC/Java can be consid-

ered good candidates for an actual program specification. As mentioned above, the

specifications that ESC/Java deals with are very different from those that Clara

uses. In particular, ESC/Java focuses on data values, while Clara can only reason

about typestates. Unfortunately, to the best of our knowledge, Houdini only supports

ESC/Java version 1, which in turn only supports Java 1.3 source code.

Summary. As we showed, Clara provides a framework for both specifying a wide

variety of expressive typestate-like properties and verifying whether programs adhere

to these properties. As opposed to many other approaches that require program an-

notations, Clara is fully automated. This reduces the burden on the programmer,

but on the other hand requires more expensive whole-program analyses where in other

approaches efficient, modular, intra-procedural analyses suffice. We also showed that
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Clara integrates a large body of own previous work into a common framework, yield-

ing a set of analyses that are correct, precise and nevertheless efficient. We explained

that Clara can be used with a wide variety of runtime-monitoring tools and how it

relates to static analyses that support the efficient implementation of aspect-oriented

language constructs. In relation to lightweight extended static checkers, we found

that Clara’s analyses are often orthogonal to these checkers: while many checkers

try to find a generic set of programming errors, programmers would use Clara to

find different classes of programming errors that occur by using methods or fields

of an application interface in incorrect combinations or in an incorrect order. Last

but not least, we gave an overview of dynamic and static tools for property infer-

ence. Researchers could integrate such tools into Clara to generate likely property

specifications automatically from existing program code.
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Chapter 9

Conclusion and future work

Finite-state specifications can describe important properties of programs, often

called typestate properties in the literature. Such properties include descriptions of

how programmers must or must not access given application interfaces. Up until

now, there exists no standardized way to specify finite-state properties. This makes

many analysis approaches incomparable, because these approaches often reason about

properties that may seem equivalent at first sight but do reveal significant differences

on closer inspection.

Further it would be desirable to verify whether a program fulfils a given set of

finite-state properties, as this allows programmers to reason about the correctness

of their programs. However, verifying whether a given program fulfils a given finite-

state property is a hard problem, which requires precise abstractions of both pointer

and control-flow relationships. Moreover, any practical solution to the finite-state

verification problem requires efficient algorithms for manipulating these abstractions.

9.1 Static analysis of finite-state properties

We have presented Clara, a framework for specifying and verifying finite-state prop-

erties of large-scale object-oriented programs at compile time. Through a syntactic

extension of the aspect-oriented programming language AspectJ, Clara allows pro-

grammers to specify finite-state properties in a unified way, independently of any

255



Conclusion and future work

finite-state specification formalism such as linear temporal logic or regular expres-

sions. Further, Clara contains a set of static analyses that are both efficient and

precise. As we showed, we gain precision by using a set of specially designed abstrac-

tions that store, for any abstract representative of a combination of runtime objects,

not only information about whether these objects can be in a given automaton state,

but also whether they cannot be in a given state. This combination of positive and

negative information allows us to obtain precise flow-sensitive analysis information

on an intra-procedural level, while at the same time allowing us to model the remain-

der of the program (all other methods) in a very efficient, flow-insensitive way. We

make Clara’s analysis even more efficient by executing different analysis parts in

stages: simple and fast stages run early and often succeed in proving large parts of

the program correct already. Later-running stages then have an easier job of proving

the finite-state property for the remainder of the program.

It is also worthwhile noting that all analyses in Clara are fully automated; they

require no user input and no program annotations. This is in contrast to other

static approaches that use type systems to assure that programs fulfil given typestate

properties [BA07,DF04]. Such approaches typically assume program annotations that

give information about how a given statement or method may change an object’s state.

Clara infers such information automatically from the program and from an AspectJ-

based specification of the property in question. Of course, this functionality comes at

a cost: while approaches based on type systems are typically modular and therefore

very efficient, Clara performs a whole-program analysis. A whole-program analysis

requires the whole program to be present and analyzable, and it typically takes a

longer time to compute. As we showed, the success of Clara’s analyses crucially

depends on the effectiveness of the pointer analyses that it uses. This can become a

problem when programs use dynamic class loading and reflection, both of which cause

the pointer analyses to be quite imprecise. Type-system based approaches often avoid

this problem by modeling pointer relationships through explicit aliasing annotations.

In the near future, we plan to experiment with automated approaches that are more

modular, and therefore more efficient, but do not require program annotations.
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9.2 Reducing the runtime-monitoring overhead

We designed Clara’s analyses in a special way, so that they would not only allow us

to report whether or not the given program under test adheres to the given finite-state

property. If the program may violate the property then Clara produces a program

that is instrumented with runtime checks, but only at exactly these positions at

which Clara could not prove the program safe in the first place. As we showed, a

program that is instrumented with such a partial set of instrumentation points often

runs much more efficiently than a fully instrumented program that attempts to check

the finite-state property only at runtime. Further, we showed that in cases where

large overheads still remain after applying our static analyses, one can lower these

overheads further by partitioning the instrumentation points into different probes and

then distributing differently instrumented programs to multiple users. We determine

probes in such a way that a partially instrumented program cannot report any false

warnings.

9.3 Dependencies between events

Clara’s analyses determine whether certain events may violate a given property

by resolving dependencies between these events. Events are inter-dependent when

they may refer to the same runtime objects and when they are on the same path

to a final automaton state. The dependency information allows Clara to disregard

an event e when no events exist that depend on e. However, we found that our

notion of dependencies may be useful even for purposes that go far beyond static

typestate analysis. For instance, Chen and Roşu found the same dependencies to be

useful [CR09] to reduce the number of indexing trees in their runtime monitors. In

the future, we plan to give this notion of dependencies a more theoretical treatment

to see whether there is a more fundamental relationship between dependencies and

finite-state machines.
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Conclusion and future work

9.4 Clara as a framework

We designed Clara in such a way that it accepts, as input, any finite-state run-

time monitor that is implemented as a history-based AspectJ aspect—an aspect that

changes its internal state based on the observed execution history. A large number of

modern runtime-verification tools are already implemented as specification compilers

that generate history-based AspectJ aspects. It is therefore easy to adapt these tools

so that they are compatible with Clara. In this dissertation, we presented two forms

of aspect annotations: dependent advice and dependency state machines. To make a

runtime-verification tool compatible with Clara, the programmer of the tool simply

modifies the tool so that it attaches appropriate annotations to the history-based as-

pects that the tool generates anyway. We have presented a generic algorithm that can

generate correct annotations from any finite-state machine. We have implemented the

approach for four different finite-state specification languages, on top of two differ-

ent runtime-verification tools. To conclude, through its architecture, Clara allows

a wide range of AspectJ-based finite-state runtime-monitoring tools to make use of

state-of-the-art static optimization and verification almost for free.

In addition, we see Clara as an open framework for implementing and exper-

imenting with static typestate analyses. Clara uses aspects to specify typestate

properties. Because AspectJ is a very high-level declarative language, a programmer

can easily denote typestate properties as aspects. The Clara framework supports

convenient abstractions for the program points that matter to a given typestate prop-

erty, and gives information about which of these program points could refer to the

same runtime objects. Further, Clara completely abstracts from the actual spec-

ification formalism at hand; it only operates on finite-state machines. This makes

Clara very flexible. In this dissertation we presented three static analyses that

make direct use of this information. We propose Clara as an open framework that

allows researchers to implement their own typestate analyses easily and effectively,

but more importantly allows them to compare their analyses directly to each other.

Clara is freely available for download, along with all our benchmarks and bench-

marking results, at http://www.bodden.de/clara/.
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Appendix A

Proof of correctness and stability of

dependent-advice generation

A.1 Correctness of Algorithm 4.3

In this section we prove the correctness Algorithm 4.3. The proof is conducted in

multiple steps. First, we explain the exact relationship between automaton symbols

and the dependent pieces of advice that recognize these symbols. Next, we define a

set of valid dependencies for a formal language L.

In Theorem A.1 we show that it is correct to not monitor events that are not

referenced by any active, valid dependency declaration. This theorem holds for formal

languages in general and for regular languages in particular.

Theorem A.3 then shows that all dependency declarations generated by Algo-

rithm 4.3 are indeed valid.

Symbols and advice. In the following, we assume that every automaton symbol is

associated with one or more pieces of advice that recognize this symbol: Whenever the

event represented by the symbol occurs on a program execution, one of the associated

pieces of advice sends a notification to the state machine, triggering state transitions

for this symbol.
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Proof of correctness and stability of dependent-advice generation

Let us now define some additional notation that will be used in the remainder of

the proof.

Definition A.1 (Symbols of a word). Let Σ be an alphabet. We define the function

sym as:

sym(w) := {w1, . . . , wn | w = w1 . . . wn}.

Definition A.2 (Shuffle). Let Σ be an alphabet and w = w1 . . . wn ∈ Σ∗. We define

a shuffle operator ‖ over words and symbols as follows.

w ‖ a :=
⋃

1<i≤n

{w1 . . . wi−1awi . . . wn}

Preventers. The definition of the shuffle operator allows us to easily define the

notion of a preventer. Informally a preventer is an event that would prevent an

execution trace from leading to a complete automaton match when it happened. For

instance, assume that an automaton recognizes when a programmer calls next()

twice on an iterator without calling hasNext() in between. Then the automaton

would match the string “next next”. The symbol “hasNext” would be a preventer

for this match because the automaton would not match “next hasNext next”.

Definition A.3 (Preventers). Let Σ be an alphabet and w = w1 . . . wn ∈ Σ∗. Also

assume a fixed Σ-language L and w ∈ L. We say that a symbol a ∈ Σ is a preventer

for w, w 6∈a L for short, if (w ‖ a) 6⊆ L.

Definition A.4 (Closed under shuffling). For any Σ-language L we say that L is

closed under shuffling with a if a is not a preventer for any word in L:

¬∃w ∈ L . w 6∈a L

.

Example A.1 (Preventers and shuffle closure). Let Σ = {a, b} and L defined through

the regular expression b+. Then a is a preventer for the word bb ∈ L because bab 6∈ L.

On the other hand, b is not a preventer for bb because bb ‖ b = {bbb} ⊆ L, i.e., L is

closed under shuffling with b.
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A.1. Correctness of Algorithm 4.3

Preventers are important because we must not forget to monitor them, although

they do not lead us closer towards the final state. If we accidentally disabled a

preventer then the resulting automaton could recognize too many words, in terms of

runtime verification leading to false positives.

Valid advice dependencies. We now come to advice dependencies. In the following

we assume that a dependency consists of strong and weak symbols (opposed to advice).

We can easily do so because, as noted above, advice are associated with symbols.

Definition A.5 (Dependency). A dependency D = (S,W ) is an element of P(Σ)×
P(Σ), a combination of strong and weak symbols, with S ∩W = ∅.

A word w activates an advice dependency D if it contains all the symbols that

are strong in D.

Definition A.6 (Activation). We say that a word w activates a dependency D =

(S,W ), if sym(w) ⊇ S.

On the other hand, a dependency D assures recognition of w if (1) w activates

D (i.e., D is relevant to w) and (2) D contains all of w’s preventers. Condition

(1) means that D contains enough symbols to make sure that symbols of w can

drive the automaton into a final state (“completeness”). Condition (2) on the other

hand assures that every intervening event that could prevent w from matching in the

original automaton will also be recognized by the optimized automaton (“soundness”).

Definition A.7 (Assuring recognition). We say that a dependency D = (S,W )

assures recognition of a word Σ-word w in a Σ-language L if w activates D and

∀a ∈ Σ . w 6∈a L → a ∈ S ∪W

In general one could define any dependency declarations for any formal language.

However, we demand that dependency declarations be valid: we say that a set D of

dependency declarations is valid for a language L if (1) there are “enough” dependen-

cies such that every word in L will indeed be recognized by the optimized automaton

and (2) for every word, D assures recognition, i.e., activates the right preventers (for

soundness).
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Definition A.8 (Valid dependencies). We say that a set D of dependencies is valid

for a language L if for all w ∈ L it holds that:

1. ∃D ∈ D such that w activates D, and

2. for every such D, D assures recognition of w in L.

Correctness of sparse monitoring.

Theorem A.1 (Validity for smaller languages). Let L be a language and L− ⊂ L.

Let D be a set of dependencies that is valid for L. Then D is also valid for L−. The

proof is trivial because for every w ∈ L− it holds that w ∈ L.

Theorem A.2 (Sparse monitoring is correct). Let Σ be an alphabet and L a Σ-

language. Assume that D is a set of valid dependencies for L. Assume now that we

monitor a program in which certain events can be proven not to occur. This yields

a reduced input alphabet Σ− ⊂ Σ. Assume that one of the events that do not occur

in the program is the event a: a ∈ (Σ\Σ−). Then the language that the monitor

can actually recognize over this program is: L6a := {w|w ∈ L, a 6∈ sym(w)}. Because

L 6a ⊆ L, it holds that D is also valid for L 6a (Theorem A.1). This tells us that the

dependencies are “rich enough” to assure recognition also over this reduced alphabet.

However, some of these dependencies may have become superfluous, because they

cannot be activated any more over this reduced input alphabet. Let D− ⊆ D be the

dependencies which are activated by words in L 6a. We can define a reduced monitoring

alphabet ΣM that only contains the symbols that occur in dependency declarations

activated through words over the program’s reduced input alphabet. Let ΣM be

defined as:

ΣM := {b ∈ Σ− | ∃D = (S,W ) ∈ D− . b ∈ S ∪W}

The resulting language is LM , defined as:

LM := {w | w ∈ L, sym(w) ⊆ ΣM}

The beauty of the dependency declarations is now that we know that any symbol

b which we fail to monitor because it is not contained in any active dependency this
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symbol b could not have been a preventer in the first place, and therefore it is sound

to not monitor b because L 6a is closed under shuffling with b. It holds that:

∀w ∈ LM ∀b ∈ (Σ−\ΣM) . ¬(w 6∈b L)

Proof A.1. We know that D is valid for L. We also know that w activates some

D ∈ D−. Assume that D = (S,W ) and that there exists an b ∈ S ∪ W . Then,

because D ∈ D and D is valid for L: ¬(w 6∈b L).

Example A.2 (Example for sparse monitoring). Let us again consider the example

automaton M from Figure 4.8. This automaton recognizes the language denoted by

the regular expression b∗ab∗(ccb∗)∗d. Let us again assume a program in which c does

not occur, i.e., Σ− = {a, b, d}. Then L 6c can be described by the regular expression

b∗ab∗d, which is exactly the language that M accepts via the path P1. (Note that

this language is closed under shuffling with b.) Consequently, words over Σ− activate

D1, but fail to activate D2 (because c is strong in D2). Hence, D− = {({a, d}, {c})},
which yields the monitoring alphabet ΣM = {a, c, d}. Because the program will in

fact never trigger c, it does not matter whether or not c ∈ ΣM ; we could even define:

ΣM := {a, d}. Now we see that, due to the definition of our dependencies, the regular

expression b∗ab∗d over the original alphabet {a, b, d} is naturally equivalent to the

same expression over the alphabet {a, d}: b does not need to be monitored to reach a

final state (otherwise it would have been strong in D1), and it is not a preventer for

any words in L(b∗ab∗d) either (otherwise it would have been weak in D1).

Correctness of Algorithm 4.3. We start off with a trivial lemma that we require

in the actual proof.

Lemma A.1 (Preventers and loops). LetM be a state machine that has an a-loop on

every non-initial, non-final state. Then it holds that L(M) is closed under shuffling

with a.

This lemma holds trivially and remains without proof.

Note that the opposite direction does not hold: There can be automata whose

language is closed under shuffling with a but which do not have an a-loop on every
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non-initial, non-final state. For instance, Figure A.1 shows two automata that both

recognize the the language L(ba∗b), which is closed under shuffling with a. The left

automaton does have an a-loop on every non-initial, non-final state, however the right

automaton has not. In the latter case our Algorithm 4.3 will generate less precise

dependency declarations (a will be strong in all declarations, although it would suffice

to have a weak) but these declarations will still be valid. In our implementation, we

determinize automata. In this case, the opposite direction does hold, yielding full

optimization potential.

Theorem A.3 (Correctness of Algorithm 4.3). Let L be a regular language. Then

Algorithm 4.3 generates a set of dependency declarations that is valid for L.

Proof A.2 (Proof of Theorem A.3). Let L be a regular Σ-language with w ∈ L. Let

M be a finite-state machine with L(M) = L. Because w ∈ L(M), we know thatM
recognizes w with a run ρ ending in a final state. Trivially, this run has a fragment

that visits every edge only once, and this fragment visits the same edges as ρ itself.

Therefore Algorithm 4.3 must have generated a dependency declaration D = (S,W )

for this fragment of ρ and w activates D. Assume now that a ∈ Σ is a preventer of

w for L. In this case, ρ must have visited a state q that has no a self-loop (Lemma

A.1). Therefore, a ∈ S ∪W .

A.2 Stability of Algorithm 4.3

In this section we prove that generateDependencies is stable, i.e., that it computes

equivalent sets of dependency declarations for equivalent finite-state machines.

Theorem A.4 (Stability of Algorithm 4.3). Let M1 and M2 be two equivalent

finite-state machines, i.e. L(M1) = L(M2). Let D1 and D2 be the dependencies that

Algorithm 4.3 generates forM1 andM2 accordingly. Then D1 ≡ D2, i.e., D1 and D2

are logically equivalent. We therefore say that Algorithm 4.3 is “stable”.

Proof A.3 (Proof of Theorem A.4). By Theorem A.3 we know that both D1 and D2

are valid for L. Assume now that D1 6≡ D2. Then there would be a word w ∈ L such
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0start 1 2
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b
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b
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b
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Figure A.1: Two automata recognizing the language L(ba∗b), which is closed under

shuffling with a.

that D1 (without loss of generality) either (1) has no D ∈ D1 such that w activates

D or (2) no such D assures recognition of w. This means that D1 is not valid for L,

which is a contradiction.
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Appendix B

Proof of correctness of Nop-shadows Analysis

In Section 5.1.2, we defined the semantics of dependency state machines in terms

of a predicate necessaryShadow that researchers can be choose freely, as long as it

adheres to a given soundness condition, Condition 5.1. In this appendix we will show

that if the Nop-shadows Analysis disables a shadow, then the soundness condition

will hold for all events that this shadow could notify the runtime monitor about when

the program under test is executed. To restate the soundness condition, for any sound

implementation of necessaryShadow we demand:

∀a ∈ Σ ∀t = t1 . . . ti . . . tn ∈ Σ+ ∀i ∈ N :

a = ti ∧matchesL(t1 . . . tn) 6= matchesL(t1 . . . ti−1ti+1 . . . tn)

−→ necessaryShadow(a, t, i)

Helper definitions. In the following, we define for any transition function δ the

function δ̂ as the transitive closure of δ. Also, for any deterministic finite-state

machine M = (Q,Σ, q0, δ, F ), we define for any q ∈ Q a state machine Mq as

Mq := (Q,Σ, q, δ, F ).

Correctness of condition for shadow removal. Assume that the Nop-shadows

Analysis disables a shadow s with label(s) = ti. In the following, we will prove
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that in this case

matchesL(t1 . . . tn) = matchesL(t1 . . . ti−1ti+1 . . . tn)

must hold. When this holds, then we can safely define necessaryShadow(label(s), t, i) :=

false for all traces t and positions i without violating the soundness condition, be-

cause the soundness condition only applies to cases where the two matches sets are

different.

Assume a (projected and therefore ground) runtime trace t = t1 . . . ti . . . tn ∈ Σ+

and a shadow s with ti = label(s). For convenience, let us define w1 := t1 . . . ti−1,

a := ti and w2 := ti+1 . . . tn, i.e., we have that t1 . . . tn = w1 a w2. Let source :=

δ̂(q0, w1) and target := δ̂(q0, w1 a) = δ(source, a). Further assume that the following

holds for s:

target 6∈ F ∧ ∀Qf ∈ futures(s) : source ∈ Qf ←→ target ∈ Qf

From the definition of matches we know that:

∀w ∈ pref(w1) : w ∈ matches(w1 w2)←→ w ∈ matches(w1 a w2)

Hence, in the following, we only regard words w with w 6∈ pref(w1).

Further, because target 6∈ F we know that w1 a 6∈ matches(w1 a w2) and hence it

follows that:

∀w ∈ pref(w1 a) : w ∈ matches(w1 w2)←→ w ∈ matches(w1 a w2)

Hence, in the following, we only regard words w with w 6∈ pref(w1 a).

Assume ∃w = w1 a w
′ ∈ (pref(w1 a w2)− pref(w1 a)) with

¬(w ∈ matches(w1 w2)←→ w ∈ matches(w1 a w2)). (B.1)

But this cannot hold: because it holds that

∀Qf ∈ futures(s) : source = δ̂(q0, w1) ∈ Qf ←→ target = δ̂(q0, w1 a) ∈ Qf

we know that L(Msource) = L(Mtarget). This contradicts the existence of a witness

w as described by B.1.

280



Therefore, we now only need to show that the set of states that we approximate

in our forward and backward analysis is correct. In particular, our implementation

has to assure that for every set Qf ∈ futures(s) it holds that all states q ∈ Qf are

indeed continuation-equivalent, i.e., that for all ground traces t that the continuation

of the program execution after reading s could produce it holds that

t ∈ L(Msource(s))↔ t ∈ L(Mtarget(s)).

This implies that our implementation must never merge states sets, as merging state

sets may cause the analysis to assume invalid equivalencies. Indeed our worklist algo-

rithm, Algorithm 5.1 (page 162), assures that state sets are never merged: while the

algorithm does over-approximate pointer information in various ways, it never merges

configurations that have differing state sets Qc. Every configuration c = (Qc, bc) rep-

resents one element of the set futures. Algorithm 5.1 simply propagates these config-

urations but never merges them. In particular, note that the algorithm has no special

treatment for control-flow merge points: when two different configurations reach the

same statement along different paths then the algorithm will simply propagate both

configurations, without attempting to merge these configurations in any way.

Further, the algorithm takes into account all possible continuations because it

propagates configurations along all possible intra-procedural and inter-procedural

paths. When propagating intra-procedurally, the algorithm refines the binding rep-

resentative of any configuration using the simplification rules from Table 5.2. These

rules hold trivially. When propagating configurations inter-procedurally, along succ 6m,

the algorithm does not refine the binding representatives. Because the un-refined

binding representatives are a least as permissive as refined representatives would be,

this is a sound over-approximation.

The correctness of the forward and backward analysis then follows from the fact

that we (1) initialize both analyses with configurations for all places at which an

initial (or final) state could be reached, and (2) propagate this information along all

possible control-flow paths (or abstractions of these), taking into account all “rele-

vant” shadows (as determined by the function relevantShadow), and (3) never merges

any configurations with differing state sets.
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Minimality of reversed state machine. We mentioned that the reversed state

machine that we use is minimal, because we obtain it by reversing an already-

determinized finite-state machine. Brzozowski proved already in 1962 the minimality

of state machines that are obtained that way:

To quote Brzozowski [Brz62, Theorem 13]:

“Given any (not necessarily reduced) state diagram G (with starting state

qλ and all other states accessible from qλ), the graph G− of predecessors

of πλ is always reduced if only one state is introduced for each predecessor

of πλ. In other words, two states of G− are equivalent if and only if their

predecessor sets are equivalent.”

Translated into our terminology, this reads as:

Given any (not necessarily minimal) non-deterministic finite-state ma-

chine M = (Q,Σ, q0,∆, F ) (with starting state q0 and all other states

reachable from q0), the state machine rev(M) is always minimal if for any

state q of M and a ∈ Σ it holds that |{q′ ∈ Q | ∃(q′, a, q) ∈ ∆}| = 1.

For the deterministic state machine det(M), the condition |{q′ ∈ Q | ∃(q′, a, q) ∈
∆}| = 1 holds by definition, and hence det(rev(det(M))) must be a minimal deter-

ministic finite-state machine for L(M).
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Appendix C

Non-optimality of greedy shadow deactivation

The Nop-shadows Analysis that we presented in Section 5.2 disables in every

iteration just a single shadow. This is because the analysis can only determine whether

a shadow s is a nop shadow in its current context. Disabling a nop shadow modifies

the context of other shadows and may then render other shadows necessary that were

formerly nop shadows too. For instance, in Figure 5.10 (page 152) both the shadows

at line 5 and 6 are nop shadows. This means that it is safe to disable either one of

them. However, disabling the shadow at line 5 will render the shadow at line 6 to

be necessary, i.e., not a nop shadow, and the other way around. In this example, it

does not matter, though, which shadow we disable: no matter whether the shadow

at line 5 or the one at line 6 remains enabled eventually, both partially instrumented

programs will result in the same execution traces.

But this need not necessarily be the case. We can construct an example in which

disabling nop shadows in a certain order can lead to an optimal result but disabling

nop shadows in another order leads to a result that is not optimal: because the shad-

ows are disabled in a “greedy” fashion, we can steer into a local optimum. This

prevents the algorithm from finding the global optimum. Consider a property that

induces the dependency state machine Mforward in Figure C.1a. This state machine

accepts the regular language “[a[b[b]]]m | bbm”. Figure C.1b shows the appropriate

backward state machine Mbackward. Now consider a program with an execution se-

quence “a b b m”. In Figure C.2a we show this sequence at the top, along with the
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analysis information that the Nop-shadows Analysis computes. When executing this

program, the state machine matches once, when reading the m. When looking at the

underlined state numbers in the figure, we can see that in this example all shadows

except for the m-shadows are nop shadows: we can safely drop any single one of these

shadows and the state machine will still match once, when reading the m.

Now let us assume that we first drop one of the b shadows, yielding the sequence

“a b m”. We show this case in the second row of Figure C.2a. Then the other b-

shadow is still a nop shadow. When we disable this b-shadow this yields the trace

“a m”. Now a is a nop shadow again and disabling it yields the optimal trace “m”.

1 2 3 4

75

6

a b b

m
m

m mb

b
m

(a) Deterministic finite-state machine Mforward

{7} {1,2,3,4,6} {2,3,5}

{1}

{1,2}m b

a

b

a
a

(b) Deterministic inverted finite-state machine Mbackward

Figure C.1: Example state machines Mforward and Mbackward
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{1}
2

{1,2}
3

{2,3,5}
4

{1,2,3,4,6}
7

{7}
a b b m

1

{1,2}
2

{2,3,5}
3

{1,2,3,4,6}
7

{7}
a b m

1

{2,3,5}
2

{1,2,3,4,6}
7

{7}
a m

1

{1,2,3,4,6}
7

{7}
m

(a) When disabling shadows in order b, again b, and then

a, all shadows except for the last one can be disabled.

1

{1}
2

{1,2}
3

{2,3,5}
4

{1,2,3,4,6}
7

{7}
a b b m

1

{1,2}
5

{2,3,5}
6

{1,2,3,4,6}
7

{7}
b b m

(b) When disabling the a-shadow first, the anal-

ysis fails to identify any further nop shadows.

Figure C.2: Example showing that the order in which shadows are disabled matters.

Top half of state: information from forward pass. Bottom half of state: informa-

tion from backwards pass. Dashed edge: nop shadow that is removed in next step.

Underlined state number(s) identify equivalencies that cause a nop shadow to be

identified.
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Let us now roll back to the original program “a b b m” and let us assume that we

disable the nop shadows in a different order, disabling a first. Figure C.2b depicts

this situation. When we disable a, this yields the sequence “b b m”. In this sequence,

no shadow is a nop shadow: on the trace “b b m” the state machine matches after

reading the m, but if we disable any single of the shadows, the state machine will not

match any more on the resulting trace.

The “problem” with the state machine in this example is that if an a is read

initially, then it does not matter whether we see zero, one or two b events before

reading the m event, however if the initial a is missing then the number of b events

does matter: “b b m” is in the state machine’s language and so is “m”, but “b m” is

not an element of the language.

This example shows that disabling shadows in a random, greedy manner may

not be optimal. For the example from Figure C.2b, a more clever analysis could be

able to infer that we may disable both b-shadows in combination, yielding the same

optimal trace “m” that we obtained in Figure C.2a. Such an analysis could infer see

that this would be sound because both 1 and 6 are elements of the set {1, 2, 3, 4, 6}
that we obtain after the second b-shadow. However, such an analysis would have to

compute dominance relationships to prove that the analysis information holds for all

possible paths between the locations just before the first b-shadow and the one just

after the second b-shadow. When considering single shadows in isolation, such as our

Nop-shadows Analysis, this dominance relationship is obvious because every shadow

dominates itself.

It is important to note that the example from Figure C.1 was constructed to

demonstrate a theoretical problem. We believe that in practice state machines will

have a simple enough form and programs a simple enough structure such that the

greedy algorithm that we propose will actually yield the globally optimal result in

many cases. (By “optimal” we here mean optimal with respect to the alias informa-

tion and state sets that the Nop-shadows Analysis computed, i.e., the algorithm will

yield an optimal result when assuming a perfect approximation of control flow and

aliasing.)
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Number of minimal activation sets

The complexity of Algorithm 6.1 (page 200) is bounded by the number of possible

minimal activation sets.

Number of minimal activation sets. Assume that we have k strong symbols and

|S| =: n shadows. Each minimal activation set contains exactly k of these n shadows.

Hence, the number of minimal activation sets can be computed as follows. Let p ∈
P(P(S)) be a k-partitioning of shadows, i.e., |p| = k, with p = {p1, . . . , pk}. Then the

number of minimal activation sets is bounded by the maximal number of subsets of

S which contain exactly one element of each pi. In other words, if ∀i : |pi| =: ni, then

we are looking for max(
∏

1≤i<n

ni) such that
∑

1≤i<n

ni = n. However, this is the same

as looking for the maximal volume of a k-dimensional hyper-rectangle with a fixed

perimeter. For any number of dimensions, it holds that for any given perimeter, the

hyper-rectangle with this perimeter and a maximal volume is a hyper-cube. In our

particular case, we may not be able to form a perfect hyper-cube, though, because

the length of every edge needs to be a whole number. We can hence determine the

volume of the hyper-rectangle that comes closest to the hype-cube as follows:

⌊n
k

⌋k−(n mod k)

·
⌈n
k

⌉n mod k
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Here,
⌊
n
k

⌋
is the length of the “short sides” of the hyper-rectangle, and

⌈
n
k

⌉
is the

length of the “long sides”. The value k − (n mod k) is the number of “short sides”

and n mod k is the number of “long sides”.

Example. Assume that we have n = 5 shadows and |S| = k = 2. In this case, the

combined length of the two sides that span up the rectangle must be n = 5. According

to the above rule, the two lengths of sides that come closest to forming a square, then,

are the lengths
⌊

5
2

⌋
= 2 and

⌈
5
2

⌉
= 3. In this case, there are 2− (5 mod 2) = 1 short

sides (of length 2) and n mod k long sides (of length 3). For n = 6 and k = 2 there

would be 4 equal sides (all “short”) of length 3 instead.

Impact of aliasing. The number of minimal activation sets that we gave above is

the maximally possible number, which is obtained in the case where every shadow is

compatible with every other shadow. This will usually not be the case, because quite

often shadows will bind variables to must-not-aliased pointers. To model the impact

of the “amount of aliasing” on the number of minimal activation sets, we introduce a

“compatibility ratio” c, which is the average ratio of mutually compatible shadows:⌊n
k
· c
⌋k−(n mod k)

·
⌈n
k
· c
⌉n mod k

Table D.1 gives an impression of the growth rate of this function for reasonable values

of 0 ≤ k ≤ 5, 0 ≤ n ≤ 1000. For the value n = 1000 we show both the numbers

for the worst case with c = 1 and the numbers for the more likely case of c = 0.1.

In our benchmark set, there is only one property with an n-value as large as 4:

FailSafeIterMap.
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n 1 2 3 4 5 100 1000 1000

c 1 1 1 1 1 1 1 0.1

1 1 2 3 4 5 100 1000 100

2 0 1 2 4 6 2500 250000 2500

3 0 0 1 2 4 37026 37036926 37026

4 0 0 0 1 2 390625 3.9·109 390625

5 0 0 0 0 1 3200000 3.2·1011 3200000

k

Table D.1: Maximal number of minimal activation sets for up to 5 strong symbols

and up to 1000 shadows
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