
REPRODUCING KERNEL HILBERT SPACES AND
FEATURE LEARNING IN NEURAL NETWORKS

NOAH MARSHALL

Department of Mathematics and Statistics

FACULTY OF SCIENCE

McGill University, Montreal

JANUARY 2023

A thesis submitted to McGill University

in partial fulfillment of the

requirements of the degree of

Master of Science

© Noah Marshall 2023

ABSTRACT

Abstract

Neural networks allow one to learn a set of semantically meaningful features in

order to classify or regress to observed samples. Given this, neural networks may

be viewed as the composition of a learned set of features with a linear function. It

may also be shown that reproducing kernels are associated with a feature functions.

In this thesis, we explore the utility of this connection. We give an introduction to

reproducing kernel Hilbert spaces (RKHS) from a feature learning perspective. We

review the literature connecting neural networks to RKHS. Finally, we introduce the

neural feature kernel and show how it can be used to approximate an RKHS norm of a

neural network, and how one may estimate its Mercer decomposition. We then show

that the Mercer decomposition provides an importance score to the features of a neural

network, giving insight into the predictions made by a network.

ii

ABRÉGÉ

Abstract

Les réseaux neuronaux permettent l’apprentissage des caractéristiques saillantes

des données observées afin d’effectuer la classification ou la régression. Vus de cette

manière, ces réseaux sont la composition d’un ensemble de caractéristiques apprises

avec une fonction linéaire. On peut également montrer que les noyaux reproduisants

sont associés aux fonctions qui produisent des caractéristiques. Nous donnons une

introduction aux espaces de Hilbert à noyau reproduisant (RKHS) sous la perspective

de l’apprentissage de caractéristiques. Nous passons en revue la littérature qui relie

les réseaux neuronaux aux RKHS. Enfin, nous présentons le noyau de caractéristiques

neuronales et montrons comment il peut être utilisé pour approximer une norme RKHS

d’un réseau neuronal et comment on peut estimer sa décomposition de Mercer. Nous

montrons ensuite que la décomposition de Mercer fournit un score pour chacun des

caractéristiques d’un réseau neuronal, donnant un aperçu des prédictions produises

par un réseau.

iii

LIST OF FIGURES

1.1 A graphical representation of a multi-layer perceptron at initialization. 8

2.1 Kernels induce feature spaces where data may become linearly separable 14

3.1 An illustration of double descent. 36

4.1 Estimating the Mercer decomposition of the inhomogeneous polynomial kernel

from data. 48

4.2 Estimating the Mercer decomposition of the neural feature kernel. 49

4.3 Eigenvalues score the importance of Mercer features. 53

iv

CONTENTS

Abstract ii

Abrégé iii

List of Figures iv

Acknowledgements vii

1 Introduction 1

1.1 Learning Theory . 3

1.2 Neural Networks . 7

1.3 Feature Learning . 9

2 Reproducing Kernel Hilbert Spaces 13

2.1 Historical Background . 13

2.2 Reproducing Kernel Hilbert Spaces . 14

2.3 Mercer’s Theorem . 21

2.4 Why Use an RKHS? . 23

2.5 Learning in an RKHS . 24

2.6 Kernel Machines . 28

3 Short Survey of Kernels and Neural Networks 29

3.1 Infinite Width Neural Networks . 29

3.2 Finite Width Neural Networks . 32

3.3 Overparameterized Learning . 35

v

vi CONTENTS

4 Study of the Neural Feature Kernel 39

4.1 Evaluating the RKHS Norm of a Neural Network 40

4.2 Estimating Mercer’s Decomposition of the Feature Kernel 42

5 Conclusion 55

Bibliography 57

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my incredible wife, Manpreet. She is the bedrock

of my life, and none of this would have been possible without her love and support. I’m

forever grateful for how she disrupted her life in order to allow me this opportunity.

I would also like to thank my supervisor, Dr. Adam Oberman, for the many useful

meetings, literature recommendations, and ideas scribbled on blank printer paper. I would

like to thank Dr. Tiago Salvador, who always knew the next question to ask, or the next

experiment to run. I would like to thank my friend and fellow student, KC Tsiolis, for the

many great discussions and his invaluable help in editing this thesis. I must also thank

my lab mates; I’m honoured to work with such a collection of bright people. I would like

to thank Dr. Warren Hare and Dr. Rebecca Tyson for preparing me for the transition to

graduate school. Rebecca, I’ll always be grateful for the opportunity to work with you

during the chaos of the coronavirus pandemic.

I owe my penchant for learning to my parents, particularly my Mom. She has made

education a priority since day one and has always been relentlessly supportive. I’ve got

to thank my sister, Quinn, as well for being my best friend since she was born. Finally, I

would like to thank all of my friends. Whether playing D&D, playing squash, or simply

getting a drink, these moments make life all the more enjoyable.

I owe who and where I am to everyone who has supported me. Thank you all.

vii

CHAPTER 1

INTRODUCTION

Broad interest in machine learning from the general public, popular culture, governments,

and business has exploded in recent years [21], with the beginning of this explosion corre-

sponding roughly to the breakthrough success of neural networks in the 2012 ImageNet

Large Scale Visual Recognition Challenge [78, 52]. This interest has created a positive

feedback loop in which the development of new deep learning technologies has enabled

the discovery of new techniques leading to the further success of neural networks [69, 57,

16, 72]. Aided by these tools, neural networks have contributed to significant advances

in natural language processing [86], drug design and discovery [71], robotics [84], and

protein folding [48], among many others. Machine learning is a very broad term referring

generally to the set of methods and algorithms used to recognize patterns from data in

an automated fashion. Machine learning using neural network based methods is broadly

referred to as deep learning. The term deep learning specifically refers to learning with

neural networks of many layers; however, it is common to refer to any neural network

method as a deep learning method as modern neural networks are typically large and

complex.

Much of the success of neural networks stems from their ability to learn representa-

tions of data which can then be used for downstream tasks. By learning a semantically

meaningful representation of the data, a neural network can learn relationships between

the data and encode those relationships in a vector space. The subfield of deep learning

that explicitly aims to embed the input data into some vector space such that the represen-

tation is semantically meaningful is known as representation or feature learning. Neural

networks are uniquely capable among machine learning methods in their ability to learn

1

2

meaningful features from a wide variety of data. This is discussed further in Section 1.3.

However, neural networks are not alone in their use of features. Kernel machines —

learned functions that lie in a reproducing kernel Hilbert space (RKHS, see Chapter 2)

— implicitly compare the similarity of features extracted from an input to the features of

known examples. However, these features are not learned as they depend on the kernel

itself, which must be specified by the practitioner. The fact that both kernel machines and

neural networks use features to represent their input data suggests a connection between

them. Indeed, the connection between neural networks and kernel machines is far from

new and has been known since at least 1994 [63]. There has been a recent resurgence of

interest in this connection, which promises to give insight into the training dynamics [47],

generalization behaviour [9], and expressivity [25] of neural networks among other things.

As neural networks are relatively new and complicated models, much work remains

to be done to fully understand their behaviour. One aspect of neural networks that

has surprised researchers is generalization ability. Classical statistical learning theory

suggests that complex, highly parameterized models such as neural networks will predict

poorly when presented with new examples as a consequence of being over-reliant on

a limited set of known examples (see Section 1.1) [39, p. 221]. Yet, in practice, neural

networks generalize quite well [94]. This apparent mismatch between theory and reality

is an important question for the deep learning community to address. It appears likely

that a connection between neural networks and kernel machines can be used in order to

address this knowledge gap. There exist useful bounds on the complexity of the RKHS

associated with a particular kernel machine which can be used to estimate the worst-case

generalization error [60]. When classical theory is not useful — such as when working

with highly complex models — it has been shown that kernel machines can exhibit the

same behaviour as neural networks [9]. That this behaviour — overfitting the training data

while also generalizing strongly — is evident in kernel machines suggests that the large

body of RKHS theory will be useful in understanding the behaviour of neural networks.

Chapter 1. Introduction 3

Overall, there is a strong interest in better understanding the link between neural networks

and kernel machines.

In this thesis, we argue that a neural network should be viewed as a learned feature

function φθ which allows us to study the kernel and associated RKHS H formed by

⟨φθ(x), φθ(z)⟩, which we term the feature kernel. By taking this view, we may use the

existing RKHS theory to study the function space H and its properties. We give background

on relevant RKHS theory and connect it to our view of neural networks by introducing it

from a perspective of the features induced by kernel functions. Additionally, we survey

the existing literature exploring the connection between kernels and neural networks

including: neural networks of infinite width [63, 56, 90] including the neural tangent kernel

[47], overparameterized models [8, 9, 10], along with a collection of other approaches

[25, 95, 38, 97, 53, 32]. Finally, we apply RKHS theory to evaluate the norms of neural

networks in the RKHS induced by their feature kernel. Following this, we show how a

spectral decomposition of the feature kernel may be performed to yield eigenvalues that

serve as importance scores for a set of features. This is followed by numerical experiments

illustrating and confirming the veracity of our theory.

1.1 LEARNING THEORY

The general form of the learning problem consists of learning how to associate pairs of data

(x, y) ∼ D sampled from a joint distribution D. Here, x ∈ X is an observation and y ∈ Y is

an associated response that will depend on the task at hand. For instance, in a regression

context it is likely that Y = R, or for k-class classification Y = {1, . . . , k}. Examples of a

learning problem include: classifying objects in a photo, responding appropriately to a

text-based inquiry, or predicting how toxic a molecule is likely to be. In the case of image

classification, x is given by the photo’s pixel values and y is the true label of the photo

(according to some human labeller).

Often, problems will be categorized as supervised or unsupervised. In supervised

4 1.1. LEARNING THEORY

learning, the response variable associated with each observation is known; the response

variable is unknown in unsupervised learning. The response variable may be unavailable

because it is impossible to get. Perhaps one is trying to classify photos of unknown

animal species. Alternatively, obtaining the response could be prohibitively costly. Hiring

radiologists to classify a hundred thousand images of potential breast cancer tumours

would be awfully expensive. In this work, we will typically focus on supervised learning

objectives.

In an ideal world, a learner would have perfect knowledge of the data generating

distribution D. However, in practice, we must work with an empirical estimation D̂

derived from a dataset of observed samples. Because of this estimation, there is a gap

in the predictive performance of the best model on D̂ versus the same model on the

true distribution D. A model trained on D̂ which is nonetheless able to make accurate

predictions on data generated from D is said to generalize. The generalization of a model

is measured via the gap in performance between the model evaluated on D̂ and on D.

Generalization often depends on the complexity of the learned model. RKHS provide a set

of tools to both measure and control the complexity of the functions they contain. Once

RKHS are introduced in more detail, we examine their relevance to machine learning in

Section 2.5.

For simplicity, learning theory will be described in the context of supervised binary

classification. In this setting, we have a dataset of samples S = {(xi, yi)}n
i=1 where xi ∈ X ,

yi ∈ {0, 1}, and each pair (xi, yi) is drawn from some joint distribution D. The goal is to

learn a function f , which can identify which class a given data point x is most likely to

belong to. Given a candidate function f , we may measure how often it produces incorrect

results via the risk functional — also known as the 0-1 loss.

Definition 1.1.1 (Risk Functional). Given a predictor f and a distribution of pairs of samples D,

the risk functional is given by

Chapter 1. Introduction 5

R[f] = E(x,y)∼D
[
1f(x)̸=y

]
. (1.1)

The minimizer of (1.1) is known as the Bayes optimal classifier

fbayes(x) = argmax
c∈[0,1]

pD(y = c|x), (1.2)

where pD indicates the reliance on D. Of course, we do not know D and must make do

with the empirical risk functional.

Definition 1.1.2 (Empirical Risk Functional). Given a predictor f and a dataset of n samples

S = {(xi, yi)}n
i=1, the empirical risk functional is given by

R̂[f] = 1
n

n∑
i=1

1f(xi)̸=yi
. (1.3)

Note that for a fixed f , the expectation of the empirical risk is equal to the true risk

R[f] = ES∼Dm

[
R̂[f]

]
.

The glaring issue with the above risk functionals is that they are highly discontinuous

and thus difficult to minimize. Therefore, a surrogate functional that upper bounds the

empirical risk functional is minimized in its place. This surrogate is known as a loss

functional.

Definition 1.1.3 (Empirical Loss Functional). Given a predictor f , a loss function c : Y × Y →

R+ such that c(y, y) = 0, and a dataset of n samples S = {(xi, yi)}n
i=1 the empirical loss functional

is defined as

L̂[f] = 1
n

n∑
i=1

c(f(xi), yi). (1.4)

The loss function is nearly always required to be differentiable and convex as well.

6 1.1. LEARNING THEORY

Now, with an appropriate objective to measure the viability of a candidate function,

the search space is restricted to a hypothesis set of functions H. Thus, the objective is to

find the function f ∗ ∈ H which minimizes the empirical loss functional (1.4)

f ∗ := arg min
f∈H

L̂[f]. (1.5)

Having found such an f ∗, we turn our attention to studying the effect of the approximation

error induced by the estimation of D with a finite dataset. This difference is known as the

generalization gap and is defined as

|R[f ∗] − R̂[f ∗]|. (1.6)

Bounds on Equation 1.6 typically start by measuring the complexity of the hypothesis class

H. Although there are many such measures, we will focus on Rademacher complexity.

Definition 1.1.4 (Empirical Rademacher Complexity). Given a family of functions H mapping

X → [a, b] ⊂ R and a dataset of n points S = {xi}n
i=1 the empirical Rademacher complexity of H

with respect to S is defined as

R̂S(H) = Eσ

[
sup
h∈H

1
n

n∑
i=1

σih(xi)
]

, (1.7)

where σ = [σ1, . . . , σn]T and each σi is a Rademacher random variable — a random value which

uniformly takes the values ±1.

Definition 1.1.5 (Rademacher Complexity). The Rademacher complexity of a family of functions

H over samples of size n ∈ N is the expectation of the empirical Rademacher complexity (1.7)

Rn(H) = ES∼Dn

[
R̂S(H)

]
. (1.8)

The Rademacher complexity of a function class measures the ability of the function

class to fit randomly labelled binary data. The intuition behind Rademacher complexity is

Chapter 1. Introduction 7

that functions capable of fitting randomly labelled data are likely to overfit the training

data. The fact that the Rademacher complexity of a hypothesis class can be used to bound

the generalization gap supports this intuition.

Theorem 1.1.6 (Error Bounds via Rademacher Complexity). Let H be a family of functions

taking values in {±1}. Let D be the distribution of samples over the input space X . Then, for any

δ > 0 with probability at least 1 − δ over a sample S of size n we have

R(h) ≤ R̂S(h) + Rn(H) +
√

log 1
δ

2n
(1.9a)

R(h) ≤ R̂S(h) + R̂S(H) + 3
√

log 2
δ

2n
(1.9b)

Proof. The proof is given by [60, p.33].

As will be seen in Section 2.5, there exists known bounds of the Rademacher complexity

of an RKHS. As neural networks are capable of perfectly fitting random noise [94], they

have high Rademacher complexity making the above bound essentially vacuous when

learning with a neural network. Formulating a neural network as a function in an RKHS

could allow one to bound the generalization gap of a neural network using the bounds

described later in Section 2.5.

1.2 NEURAL NETWORKS

Neural networks are general purpose, highly parameterized functions used to approximate

an unknown function through data. Neural networks are called such as they were initially

inspired by the neurons of the human brain — they were first called artificial neural

networks. They work to approximate functions through repeated linear and non-linear

transforms of their input data. There are many variants of neural networks designed for

computer vision [55], natural language processing [44, 87], playing games [85], and much

more. One of the simplest variants of a neural network is known as a multi-layer perceptron

8 1.2. NEURAL NETWORKS

Figure 1.1: A graphical representation of a multi-layer perceptron at initialization (Equation 1.10). The
nodes are called neurons and the edges represent the weights connecting the nodes. The edges are coloured
according to randomly chosen weights with dark blue representing highly negative weights and dark red
representing highly positive weights. The second to last (and, in this case, middle) layer corresponds to the
feature layer. Note that the activation functions are not shown but are applied element-wise to the sum of
weights entering any particular node.

— named after the Perceptron [59] — which consists of multiple iterations of matrix

multiplication followed by the element-wise application of a non-linear, almost everywhere

differentiable function σ — known as the activation function — to every layer but the

very last. Traditionally σ has been taken to be σ(x) = tanh(x) or σ(x) = (1 + exp(−x))−1;

however, modern work tends to use σ(x) = max(0, x) or slight variants of such. In

principle, any almost everywhere differentiable, non-linear function will suffice and the

activation function is chosen empirically. The equation for an MLP is

fθ(x) = WLσ(. . . σ(W2σ(W1x + b1) + b2) · · ·) + bL, (1.10)

where θ represents the parameters of the neural network and is taken to be the collection

of every element of the weights Wi and biases bi for i = 1, . . . , L. It is typical to write a

neural network, particularly in a classification context, as a feature function φθ followed

by a linear classifier

fθ(x) = WLφθ(x) + bL. (1.11)

Chapter 1. Introduction 9

The fitting of the parameters θ of a neural network is typically done via variants of the

gradient descent algorithm. In the machine learning literature, this optimization is known

as training. The stochastic gradient descent (SGD) algorithm is the most popular variant

used to train neural networks due to its simplicity and its effectiveness [77].

One appealing property of neural networks is that under certain assumptions, they

can approximate any sufficiently well-behaved function [24, 6]. This result is known as

universal approximation. Universal approximation combined with reliable optimization

tools and well-maintained libraries of code to implement and train neural networks

has resulted in deep learning being a highly active field of research that has achieved

remarkable performance across many disciplines.

1.3 FEATURE LEARNING

Feature or representation learning refers to the problem of learning a map φ : X → Rd such

that φ(x) encodes the semantics of x in a meaningful way. Feature learning has become

a subfield in its own right within the machine learning community, even having its own

conference, ICLR, the International Conference on Learning Representations. Due to their

expressivity and architecture, neural networks are naturally suited to such a learning

objective. Their construction allows one to view them as progressively combining ever

more intricate features layer-by-layer until the final layer, where the features are applied to

the task at hand. This is the view expressed in Equation 1.11. This algorithmic learning of

features transfers the effort of creating features away from experts handcrafting features

[31] and towards the design of algorithms and more powerful computers. This allows

algorithmic feature learning to scale much faster than expert-driven feature engineering

while increasing the flexibility and expressive power of the learned features. It should

be noted that feature learning is not unique to deep learning. For instance, word2vec

uses a contrastive loss in order to solve a matrix factorization problem, giving a word

representation depending on its context within a corpus of text [58].

10 1.3. FEATURE LEARNING

The general implementation of feature learning is conceptually quite simple. One

wishes to learn representations such that a mathematical notion of similarity (such as

distance or cosine similarity) agrees with statements of similarity that a human may make

about the same data. For instance, we may wish to learn a representation of objects such

that an orange cat is more similar to a grey cat than a dog while also being more similar to

the dog than to Swiss cheese.

Features may be extracted from generative models trained to sample from the data

distribution [43, 88, 22, 66, 36, 95]. However, these approaches likely solve a harder

problem than is necessary since representations need not capture low-level details such

as pixel colour. Indeed, representations might be better formed by encapsulating the

higher-level aggregate features such as shapes or objects.

Alternatively, the models may be trained via a pre-text task that is hoped to produce

features that will be useful in downstream tasks [27]. Such tasks might include: image

inpainting [70], colourization [54], predicting rotations [35], or predicting image patch

locations [65]. However, the choice of pre-text task is important, and a pre-text task which

is too dissimilar to the true objective can produce unsatisfactory features. Moreover, a

pre-text task must be defined for various applications, which may be time-consuming and

difficult. For example, at least to a lay deep learning practitioner, it is not obvious what

pre-text task might produce good representations of chemical compounds.

Contrastive learning has emerged as a popular and now common framework [20,

67, 18, 37, 68, 5, 42, 17] to learn representations. It acts as a sort of general pre-text

task where the challenge of defining the task is reduced to the challenge of determining

which samples are similar (or dissimilar). The first contrastive learning paper sought to

learn features where samples from the same class are close, and samples from different

classes are distant [20]. This general idea still forms the core of most contrastive learning

algorithms. However, one can replace the idea of the same and different classes with

that of positive and negative pairs. A positive pair is a pair of samples the practitioner

Chapter 1. Introduction 11

expects to be represented similarly, while a negative pair is one the practitioner expects

to be represented dissimilarly. Formulating contrastive learning in terms of positive and

negative pairs allows one to algorithmically produce these pairs. For instance, one can

take a positive pair to be a sampled image and a heavily modified version of that image

(modified perhaps by blurring, cropping, adjusting the colour, etc.). The process of creating

a positive pair through modification is known as data augmentation. The negative pair

would simply be the original image along with a separate randomly sampled image.

This approach, laid out in Chen et al. [18], remarkably allows the learning problem to be

unsupervised. This formulation allows the method beyond the need for human-labelled

datasets. Methods exist in which negative pairs are not required [37, 93], but require some

other objective so that the representations do not collapse — if every representation is

the same, similarity is always satisfied. Recent models have used text and image pairs to

perform contrastive learning [73, 74, 64]. Making use of extensive datasets of captioned

images, the authors use the text and image as positive pairs. Having learned good

representations, the authors show that these representations can be used to help generate

new images given a text prompt. It is remarkable that contrastive learning algorithms

can produce unsupervised models with performance nearly on par with their supervised

counterparts. This suggests something foundational about the concept of similarity to the

learning process.

Another key benefit of feature learning is that once a good representation has been

found, the same representation may then be used for many other downstream tasks. The

process of generalizing across contexts is known as transfer learning. It is believed that

representation learning algorithms have an advantage in transfer learning because they

learn representations that capture underlying attributes of the data [11]. A simple example

is as follows: a representation function φθ is trained to produce representations for photos

of monster trucks and learns that the presence of a wheel is a useful attribute of the

data. This representation would then be useful in tasks involving wheeled objects more

12 1.3. FEATURE LEARNING

generally.

Further empirical support for the utility of feature learning is provided by the concept of

foundation models [14]. A foundation model refers to a model trained with a tremendous

amount of data and computation that is meant to be adapted to downstream tasks. A large

amount of data is thought to force the model to learn good representations, which can

then be used in other tasks with little to no additional training. The fact that foundation

models can be used effectively suggests that neural networks can be trained to provide

useful representations of data which can then be used in numerous tasks.

CHAPTER 2

REPRODUCING KERNEL HILBERT SPACES

2.1 H ISTORICAL BACKGROUND

The study of reproducing kernel Hilbert spaces (RKHS) first arose in the early twentieth

century as a result of Hilbert’s study of Fredholm integral equations. [13, 82, 33]. The

study of these spaces seems to have happened in parallel with the works of Zaremba [92]

on boundary value problems and Mercer’s study of positive definite functions within the

study of integral equations [33].

The importance of this work was realized in the thesis of Bergmann [12] and later

expanded through the various works of Aronszajn [2, 3, 4]. In the mid-twentieth century,

Aizerman realized the broad applicability of kernels to machine learning; he pointed

out that kernels enable what has become known as the kernel trick — the ability to

replace an inner product with a kernel evaluation in order to make use of rich feature

spaces induced by the kernel without added computational cost [1]. However, it was

arguably the support vector machine (SVM) taking full advantage of the kernel trick

that popularized the use of RKHS in machine learning [30, 15, 23]. Kernel theory was

computationally attractive because a reproducing kernel function allows one to indirectly

compute the inner product between a possibly infinite-dimensional representation of the

kernel’s arguments. The representations are induced by the choice of kernel. The inner

product may be computationally costly or impossible to compute directly, yet the kernel

allows this inner product to be calculated nonetheless. This representation can provide

a richer set of features than the inputs themselves. For example, the indicator function

1[−0.5,0.5] is not learnable by a linear function. Yet, in a representation associated with the

kernel K(x, z) = (1 + xz)2 it is (see Figure 2.1).

13

14 2.2. REPRODUCING KERNEL HILBERT SPACES

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

(a) Indicator function, 1[−0.5,0.5]

φ−→

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

(b) Feature space, Vfeat

Figure 2.1: The indicator function 1[−0.5,0.5] is not linearly separable in R (left); however, it becomes linearly
separable when R is embedded with the feature function φ(x) = [1, x, x2] (right). The feature function
corresponds to the kernel K(x, z) = ⟨φ(x), φ(z)⟩ = (1 + xz)2, known as the 2nd degree polynomial kernel.

From a theoretical viewpoint, RKHS are attractive partially due to their associated

norm, allowing one to regularize — loosely, to smooth out — an approximating function

and partially because, as we will see, evaluation functionals applied to functions in an

RKHS are bounded. This property ensures that we may use these function norms to

find a convergent series of functions that continue to approximate training data without

converging to uninformative solutions, as can happen with other function norms (see

Section 2.4). While nowadays, SVMs have fallen somewhat out of fashion in the research

community, being substituted for neural networks, kernel theory is very much an active

area of research. In Chapter 3, we further detail modern work connecting kernel theory

with neural networks.

2.2 REPRODUCING KERNEL H ILBERT SPACES

This chapter will introduce the necessary background to understand the basic concepts of

reproducing kernel Hilbert spaces, beginning more generally with the concept of inner

product and Hilbert spaces. We then introduce reproducing kernels and RKHS before

expanding on some of their fundamental properties. We frame our presentation of this

Chapter 2. Reproducing Kernel Hilbert Spaces 15

theory as much as possible around the induced feature spaces associated with each kernel.

Reproducing kernel Hilbert spaces are, first of all, Hilbert spaces. Hilbert spaces

generalize the properties of Euclidean space which we use to model the world of everyday

life. For this reason, Hilbert spaces have intuitive and simple properties while remaining a

very rich and powerful concept. It is natural to try to work in a Hilbert space whenever

an inner product and vector structure is available. With inner products come norms.

Norms measure the size of an element within an inner product space, and in the context of

an inner product on functions, the norm can serve as a measure of complexity. Thus in

many machine learning contexts, we will seek to regularize an approximating function by

controlling its norm in some Hilbert space.

Definition 2.2.1 (Inner Product Space). An inner product space V is a vector space equipped

with an inner product ⟨·, ·⟩V : V × V → R such that

1. ⟨f, f⟩V ≥ 0 for all f ∈ V and where ⟨f, f⟩V = 0 iff f = 0

2. ⟨f, g⟩V = ⟨g, f⟩V for all f, g ∈ V

3. ⟨f, αg + h⟩V = α⟨f, g⟩V + ⟨f, h⟩V for all f, g, h ∈ V and all α ∈ R.

Inner products provide a natural way to measure the similarity of two points in a

space. Consider the inner product ⟨u, v⟩V between two vectors u, v with unit length. Then

⟨u, v⟩V = cos(θ) where θ represents the angle in V between u and v. Thus the inner product

provides a measure of alignment between the two vectors in the space V with: ⟨v, v⟩V = 1

indicating the vectors are perfectly aligned, ⟨v, v⟩V = 0 indicating they are orthogonal, and

⟨v, v⟩V = −1 indicating they are essentially opposites. This notion of similarity through

inner products is a very important notion throughout machine learning [83, 18, 73, 81].

Note that inner products give rise to a norm ∥v∥V =
√

⟨v, v⟩V . Using this norm, we can

define a Cauchy sequence as a sequence {fn}∞
n=1 with all fn ∈ V such that for all ϵ > 0

16 2.2. REPRODUCING KERNEL HILBERT SPACES

there exists an N ∈ N where ∥fm − fn∥V < ϵ for all n, m ≥ N . Intuitively, a function with a

small norm is relatively “flat”, while a function with a large norm is quite oscillatory.

Definition 2.2.2 (Hilbert Space). A Hilbert space H is an inner product space where every Cauchy

sequence {fn}∞
n=1 converges to some element f ∗ ∈ H.

Example 2.1 (Square Integrable Functions). The space of square integrable functions

L2[0, 1] is a prototypical example of a Hilbert space that is not Rd. This space consists of all

functions f : [0, 1] → R such that

∫ 1

0
f 2(x)dx < ∞.

The inner product associated with L2[0, 1] is given by

∫ 1

0
f(x)g(x)dx, for all f, g ∈ L2[0, 1].

In mathematics and computing, the term kernel is quite overloaded. Here, we use

the term to refer generally to a function K : X × X → R of two variables to the real line.

Here X is some data space that we do not assume to have any structure. Images, word

sequences, and probability distributions are all examples of valid data spaces. We will also

use the term kernel to refer to a positive semidefinite kernel (see Definition 2.2.4) when the

context is clear.

If we wish to view the kernel function as an inner product in some (possibly infinite)

dimensional space, it is then worth asking which functions mapping two variables to the

real line have this interpretation. The answer will lie in the class of positive semidefinite

kernels.

Definition 2.2.3 (Positive Semidefinite Matrix). A matrix M ∈ Rn×n is called positive semidefi-

nite (PSD) if for all α ∈ Rn we have

αT Mα ≥ 0.

Chapter 2. Reproducing Kernel Hilbert Spaces 17

Definition 2.2.4 (Positive Semidefinite Kernel Function). A symmetric, bivariate function

K : X × X → R is positive semidefinite (PSD) if for all n ∈ N and all subsets {xi}n
i=1 ⊂ X the

matrix given by Kij := K(xi, xj) is PSD. The matrix K is known as the Gram matrix.

Example 2.2 (Linear Kernel). The simplest example of a PSD kernel function on Rd is that

of the linear kernel. The linear kernel function K(x, z) : Rd × Rd → R is simply given by

K(x, z) = ⟨x, z⟩.

We can verify positive semidefiniteness by letting {xi}n
n=1 be a arbitrary collection of points

in Rd and considering the matrix Kij := ⟨xi, xj⟩. Letting α be any vector in Rn, we see

αTKα =
n∑

i=1

n∑
j=1

αiαj⟨xi, xj⟩ = ∥
n∑

i=1
αixi∥2

2 ≥ 0,

and conclude that K is PSD.

Example 2.3 (Feature Kernel). Given any function φ : X → Vfeat where Vfeat has an inner

product we may define a kernel K(x, z) : X × X → R by

K(x, z) = ⟨φ(x), φ(z)⟩Vfeat
. (2.1)

It is worth noting that the kernel is not uniquely associated with the feature function φ. For

instance, if U ∈ Rd×d is an orthogonal matrix and Vfeat = Rd then K(x, z) = ⟨φ(x), φ(z)⟩ =

⟨Uφ(x), Uφ(z)⟩. A kernel of this type is known as a feature kernel.

The following property of PSD kernels is generally useful and worth noting.

Proposition 2.2.5 (Cauchy-Schwarz Property of Kernels). With PSD kernel K and two

arbitrary points x1, x2, we have

K2(x1, x2) ≤ K(x1, x1)K(x2, x2). (2.2)

Proof. The proof follows from considering the determinant of the 2 × 2 Gram matrix.

18 2.2. REPRODUCING KERNEL HILBERT SPACES

Having introduced the notion of Hilbert spaces and kernels, we are quite close to

justifying the name of reproducing kernel Hilbert spaces. Given any PSD function K on

X × X , we will be able to define a Hilbert space of functions H such that

⟨K(·, x), f⟩H = f(x), for allf ∈ H, x ∈ X . (2.3)

This identity (2.3) is known as the reproducing property.

Theorem 2.2.6. Given any PSD kernel function K : X × X → R, there is a unique Hilbert

space such that the reproducing property 2.3 is satisfied. This Hilbert space is referred to as the

reproducing kernel Hilbert space with kernel K.

It is worth taking the time to prove Theorem 2.2.6 as the proof is constructive and useful

in Chapter 4. As we will see later on, it is beneficial to be able to characterize functions in

an RKHS in terms of the associated unique kernel. We now show how to build an RKHS

from a PSD kernel. To construct our RKHS, we will first need to construct a Hilbert space.

This process consists of first building an inner product space and then completing it. We

will then show that our Hilbert space has the reproducing property.

Proof. Consider the collection of functions H̃ with the form

f(·) =
n∑

i=1
αiK(·, xi),

for some collection of points {xi}n
i=1 ⊂ X with n ∈ N and some weight vector α ∈ Rn.

It is clear that H̃ forms a vector space. Given any pair of functions f, f̄ ∈ H̃ where

f(·) = ∑n
i=1 αiK(·, xi) and f̄(·) = ∑n̄

i=1 βiK(·, x̄i) we define the inner product as

⟨f, f̄⟩H̃ :=
n∑

i=1

n̄∑
j=1

αiβjK(xi, x̄j). (2.4)

We wish our inner product to be independent of the representation of our functions, as

there may be multiple equivalent representations. Note that

Chapter 2. Reproducing Kernel Hilbert Spaces 19

〈
f, f̄

〉
H̃

=
n̄∑

j=1
βjf(x̄j) =

n∑
i=1

αif̄(xi),

so we need not be concerned with the particular representation of either function in regards

to our inner product.

We’ll now verify that (2.4) is a valid inner product according to Definition 2.2.1. Clearly,

it satisfies symmetry and linearity. By positive definiteness of K, ⟨f, f⟩H̃ ≥ 0. It remains

to show that ⟨f, f⟩H̃ = 0 if and only if f = 0. By the reproducing property as well as

Proposition 2.2.5, we have

|f(x)|2 = |⟨K(·, x), f⟩H̃|2 ≤ K(x, x)⟨f, f⟩H̃,

and ⟨f, f⟩H̃ = 0 implies f = 0.

It is then possible to complete the space H̃, which we will then refer to as H. Finally, we

show uniqueness of the space. Let G be another RKHS with kernel K so that K(·, x) ∈ G

for all x. This implies the H ⊆ G. We can write G = H + H⊥. Let g ∈ H⊥ be an arbitrary

function. Then, since K(·, x) ∈ H for all x we have g(x) = ⟨K(·, x), g⟩G = 0. Thus H⊥ = {0}

and H = G.

The proof of Theorem 2.2.6 suggests two important properties of RKHS. Namely, their

reproducing property and the kernel function’s role in providing a basis for the RKHS.

These properties are fundamental enough that we may define an RKHS in terms of these

properties.

Definition 2.2.7 (Reproducing Kernel Hilbert Space 1). Let X be a non-empty set and H a

Hilbert space of functions f : X → R. Then H is called a reproducing kernel Hilbert space with

inner product ⟨·, ·⟩H and norm ∥·∥H =
√

⟨·, ·⟩H if there exists a PSD kernel function K : X ×X → R

such that

1. ⟨K(x, ·), f⟩H = f(x), for all x ∈ X

20 2.2. REPRODUCING KERNEL HILBERT SPACES

2. H = span{K(·, x) : ∀x ∈ X }, for A denoting the completion of a set A

Definition 2.2.7 helps characterize which functions f might belong to some RKHS H.

Roughly, any function f ∈ H must be at least as smooth as the kernel (where smoothness

is measured by the RKHS norm), given that it is either a linear combination of partially

evaluated kernels or the limit of such a combination. The reproducing property shows that

any kernel may be written as a feature kernel (2.1) where φ(x) := K(x, ·) and Vfeat := H.

We see

K(x, z) = ⟨K(x, ·), K(z, ·)⟩H .

An alternative definition of an RKHS — and one that is particularly relevant to learning

(see Section 2.4) — is as a Hilbert space of functions where all evaluation functionals

evalx[f] = f(x) are bounded (and therefore continuous). In that case, we may appeal to

the Riesz Representation Theorem for a characterization of the kernel.

Theorem 2.2.8 (Riesz Representation Theorem). Let L be a bounded, linear functional on a

Hilbert space H. Then there exists a unique g ∈ H such that L[f] = ⟨f, g⟩H for all f ∈ H. We call

g the representer of L.

Definition 2.2.9 (Reproducing Kernel Hilbert Space 2). A reproducing kernel Hilbert space H

is a Hilbert space of functions f : X → R such that for each x ∈ X the evaluation functional evalx

is bounded. That is

evalx[f] ≤ M∥f∥H M ∈ R.

It can be shown that Definitions 2.2.7 and 2.2.9 are equivalent (see [89, p. 391]).

Chapter 2. Reproducing Kernel Hilbert Spaces 21

2.3 MERCER ’S THEOREM

Clearly, a lot is going on inside of an RKHS. These spaces have nicely behaved functions

and are characterized nicely by positive semidefinite kernel functions. The one-to-one

correspondence between PSD kernels and RKHS ensures that we can work within an

RKHS whenever we have an appropriate kernel. It turns out that any PSD kernel may be

written as an inner product as in Example 2.3. In fact, infinitely many features can form a

given kernel. Yet, there is one particularly important feature decomposition that yields a

natural interpretation of RKHS as providing an embedding of our data domain X into ℓ2.

Let the space X be measurable with respect to the non-negative measure µ. Then

consider the function space L2(X , µ), simply L2 for short. Given a symmetric PSD kernel,

we can then define an integral operator TK on L2 as

TK[f](x) =
∫

X
K(x, z)f(z)dµ(z). (2.5)

If the kernel satisfies the following condition

∫
X

∫
X

K2(x, z)dµ(x)dµ(z) < ∞, (2.6)

known as the Hilbert-Schmidt condition, then the operator (2.5) is bounded on L2. See that

∥TK[f]∥2
L2 =

∫
X

(∫
X

K(x, z)dµ(x)
)2

dµ(z)

≤ ∥f∥L2

∫
X

∫
X

K2(x, z)dµ(x)dµ(z).

These such operators are known as Hilbert-Schmidt operators, which may be seen to

generalize a matrix. Indeed, if X = {xi}m
i=1 and µ(xi) = 1 for all i = 1, . . . , m then

TK[f](x) =
m∑

i=1
K(x, xi)f(xi),

and the operator reduces to matrix multiplication. We may use eigenfunctions and eigen-

22 2.3. MERCER’S THEOREM

values of the integral operator in order to decompose the kernel.

Theorem 2.3.1 (Mercer’s Theorem). If X is compact, K is PSD, continuous, and satisfies the

Hilbert-Schmidt condition then there exists a sequence of eigenfunctions {φi}i∈N that form an

orthonormal basis for L2(X , µ) and non-negative eigenvalues {λi}i∈N such that

TK[φi] = λiφi, (2.7)

and

K(x, z) =
∞∑

i=1
λiφi(x)φi(z), (2.8)

where the infinite series converges uniformly and absolutely.

We pause briefly to ask: what would one call a young eigensheep? Clearly, it is a lamb,

duh [75]. Continuing, we see that any kernel K may be seen to be a feature kernel (2.1) by

the mapping of X into ℓ2 defined by φ : X → ℓ2

φ(x) :=
[√

λ1φ1(x),
√

λ2φ2(x),
√

λ3φ3(x), . . .
]T

,

where {(λi, φi)}∞
i=1 are the eigenvalues and eigenfunctions guaranteed by Mercer’s theo-

rem.

In Section 4.2, we show how to estimate the eigenvalues and eigenfunctions associated

with the integral operator (2.5) from data. The ability to approximate these quantities

through data allows one to gain insight into the properties of the RKHS associated with a

kernel when solving the integral operator eigenvalue problem (2.7) is intractable, as is the

case with the feature kernel (2.1) defined by the features learned by a neural network.

2.3.1 Approximation of Kernels by Neural Networks

Note that Theorem 2.3.1 implies that given any appropriate kernel and some ϵ > 0 there

exists some d ∈ N such that | ⟨φ(x), φ(z)⟩Rd − K(x, z)| < ϵ. Thus any kernel may be learned

Chapter 2. Reproducing Kernel Hilbert Spaces 23

by a neural network of width d up to any desired ϵ. However, we focus on studying the

kernel associated with learned features rather than learning features associated with a

known kernel.

2.4 WHY USE AN RKHS?

What makes an RKHS an appropriate and useful space in a machine learning context?

One way to define an RKHS is as a Hilbert space of functions such that the evaluation

functional is bounded (Definition 2.2.9). This important characterization implies that

convergence in an RKHS implies pointwise convergence. Indeed this is easy to see using

the Cauchy-Schwarz inequality. Let fj → f ∗ be a sequence of functions converging in the

RKHS H. Then

|fj(x) − f ∗(x)| = | ⟨Rx, fj⟩H − ⟨Rx, f ∗⟩H |

= | ⟨Rx, fj − f ∗⟩H |

≤ ∥Rx∥H∥fj − f ∗∥H → 0,

where Rx is the representer of evaluation guaranteed by Theorem 2.2.8.

In the context of statistical learning, this is an essential property. We will be seeking

a sequence of iterates in our hypothesis space that converge to some ideal function f ∗.

However, we are typically limited to finding a function f̂ which agrees with our ideal

function on a finite set of training examples S = {(xi, f ∗(xi))}n
i=1. Were our hypothesis

space not an RKHS, our iterates may converge in hypothesis space while disagreeing over

the training set rendering us incapable of learning f ∗ using the norm associated with the

hypothesis space. This situation is illustrated in the following example.

Example 2.4. Let our hypothesis space be L2[0, 1] — which is not an RKHS — equipped

with the usual norm. Assume that f ∗(x) = 0 for all x and consider the iterates fn(x) =

24 2.5. LEARNING IN AN RKHS

xn, n ∈ N. Then, ∥fn∥2
L2[0,1] =

∫ 1
0 x2ndx = 1

2n+1 , so we see that fn → f ∗ in L2[0, 1]. Yet

fn(1) = 1 for all n ∈ N, so {fn}n∈N does not converge pointwise to f ∗.

2.5 LEARNING IN AN RKHS

We now discuss learning in an RKHS. We give some bounds on the Rademacher complexity

of RKHS and discuss the use of RKHS to regularize the problem. These topics allow for

theoretical guarantees on the bound of the generalization gap (1.6), as these bounds give

an explicit description of the Rademacher complexity of a bounded subset of an RKHS.

We then discuss how to evaluate the RKHS norm of a function which leads us to the

representer theorem. Finally, we discuss more modern work drawing analogies between

learning with neural networks and learning in an RKHS.

Theorem 2.5.1 (Rademacher Complexity Based on Kernels). Let K : X × X → R be a

PSD kernel associated with RKHS H. Let S ⊆ {x : K(x, x) ≤ r2} be a sample of size n and

HΛ = {⟨w, K(x, ·)⟩H : ∥w∥H ≤ Λ} for some Λ ≥ 0. Then

Rn(H) ≤
Λ

√
Tr(K)
n

≤
√

r2Λ2

n
, (2.9)

where K ∈ Rn×n is the Gram matrix associated with S.

Proof. The proof is given by [60, p.118].

Theorem 2.5.1 in combination with Theorem 1.1.6 allows us to bound the generalization

gap associated to a function f ∈ HΛ. It is then of interest to control the RKHS norm of a

learned function. This capacity control procedure is known as regularization.

2.5.1 Regularization

RKHS theory provides a natural framework to regularize the learning problem. The

intuition complementing the theoretical benefits may be thought of in analogy to Occam’s

Chapter 2. Reproducing Kernel Hilbert Spaces 25

razor — the simplest sufficient solution is likely the best. One way regularization may be

achieved is through the regularized empirical loss minimization problem.

min
f∈H

1
m

m∑
i=1

L(f(xi), yi) + λR(f), (2.10)

where the loss functional L over the hypothesis space H measures goodness of fit to the

data and R is a regularizer used to penalize overfitting and incorporate prior knowledge—

such as smoothness of the minimizer. The tuning parameter λ controls the trade-off

between minimizing the sometimes conflicting objectives. Typically, R is taken to be

convex since when L is also convex, this ensures that there exists a global minimum and

any minimum found is global rather than local. We may take H to be an RKHS H and R to

be the associated norm squared, giving

min
f∈H

1
m

m∑
i=1

L(f(xi), yi) + λ∥f∥2
H. (2.11)

Minimizing ∥f∥2
H serves to simplify f while still ensuring good agreement with the data,

and thus small values of the loss. In general, the objective (2.11) is intractable due to the

need to calculate the norm in H where such spaces are often large or infinite dimensional.

However, we will see that this difficulty may be avoided with the representer theorem

2.5.2.

2.5.2 Evaluating the RKHS norm

A practical problem that naturally arises is computing the norm of a function f in the

RKHS H. Recall that by Definition 2.2.7 for any f ∈ H there is some α ∈ Rm and collection

{xi}m
i=1 ⊂ X such that

f(x) =
m∑

i=1
αiK(x, xi). (2.12)

Then

26 2.5. LEARNING IN AN RKHS

∥f∥2
H = ⟨f, f⟩H

=
〈

m∑
i=1

αiK(x, xi),
m∑

j=1
αjK(x, xj)

〉
H

=
m∑

i=1

m∑
j=1

αiαjK(xi, xj)

= αTKα,

(2.13)

where α = [α1, . . . , αm] ∈ Rm and K is the Gram matrix associated with {xi}m
i=1. The issue

in using (2.13) is that generally the collection of points {xi}m
i=1 is not known requiring one

to integrate over the entire input space X . This problem is addressed through the famous

representer theorem originally due to Kimeldorf and Wahba [49] and [50].

Link this with representer form

Theorem 2.5.2 (Representer Theorem). Let R be a strict, monotonic increasing function and

H be an RKHS of functions f : X → Y associated with the kernel K. Then for the dataset

S = {(xi, yi)}n
i=1 each minimizer of the regularized risk with the loss functional L

min
f∈H

1
n

n∑
i=1

L(f(xi), yi) + λR(∥f∥H) (2.14)

has a representation in terms of the data points such that

f(x) =
n∑

i=1
αiK(x, xi). (2.15)

We will say functions in an RKHS of the form (2.15) are in representer form.

Proof. Assume that we are working with R̂(∥f∥H) = R(∥f∥2
H). Note that R̂ is strictly

monotonic on [0, ∞) if and only if R is. Now, we decompose any f ∈ H into the part

spanned by {K(·, xi)}n
i=1 and this set’s orthogonal complement leading to

f(x) =
n∑

i=1
αiK(x, xi) + f⊥(x).

Chapter 2. Reproducing Kernel Hilbert Spaces 27

Here αi ∈ R and f⊥ ∈ H is such that ⟨f⊥K(xi, ·)⟩H = 0 for all i = 1, . . . , n. It then remains to

show that minimizers of (2.14) have f⊥(x) = 0. First see that for {xj}n
j=1

f(xj) = ⟨f(·), K(·, xj)⟩H

= ⟨
n∑

i=1
αiK(·, xi), K(·, xj)⟩H + ⟨f⊥(·), K(xj, ·)⟩H

=
n∑

i=1
αiK(xj, xi).

So, the value of the loss function does not depend on f⊥. Also, note that

R̂ = R(∥s∥2
H + ∥f⊥∥2

H) ≥ R(∥s∥2
H).

Thus, when αi are fixed (2.14) is minimized when f⊥ = 0.

The representer theorem guarantees that solutions to RKHS regularized problems have

representations in terms of points in our dataset. This gives the ability to compute norms

of minimizing functions. The ability to represent optimal solutions to (2.14) as linear

combinations of the kernel function partially evaluated on points within the training set

reduces the minimization problem from a search over an infinite dimension space to a

search for coefficients α = [α1, . . . , αn] ∈ Rn.

Additionally, the representer theorem allows us to interpret the behaviour of a function

f in representer form. Because the kernel function is an inner product in an RKHS, we see

that f(x) is a weighted combination of inner products in this RKHS. That is, f(x) produces

a weighted score of how similar x is to points in the training set in terms of the features

associated with K. In Section 4.1, we take inspiration from the representer theorem to

show how to evaluate the norm of a neural network in terms of the RKHS associated with

the feature kernel (2.1).

28 2.6. KERNEL MACHINES

2.6 KERNEL MACHINES

Functions in an RKHS applied in the context of machine learning are often referred to as

kernel machines.

Definition 2.6.1 (Kernel Machine). A kernel machine is a function f in the RKHS H associated

with a kernel K. Given a dataset S = {xi}n
i=1 ⊂ X a kernel machine is a function in representer

form

f(x) =
n∑

i=1
αiK(xi, x). (2.16)

If we view K(x, z) = ⟨φ(x), φ(z)⟩Vfeat
for some feature function φ : X → Vfeat we may view

a kernel machine as a two layer neural network

f(x) =
n∑

i=1
αi ⟨φ(xi), φ(x)⟩Vfeat

=
〈

n∑
i=1

αiφ(xi), φ(x)
〉

Vfeat

= ⟨w, φ(x)⟩Vfeat
,

(2.17)

where the first layer is fixed to be φ(x) and only w is learnable. Care must be taken to learn

w ∈ Vfeat. Generally, we may take Vfeat ⊆ ℓ2.

One may also view neural networks as kernel machines. We espouse this view in

Chapter 4, where we argue the benefits of viewing neural networks as kernel machines

with respect to the feature kernel (2.1). An alternate view shows that neural networks

trained with gradient descent using an infinitesimal step size are also kernel machines

[28]. The particular kernel is given by the neural tangent kernel (see Section 3.1) integrated

along the path of the parameters during optimization. However, the exact kernel given

is practically tough to evaluate. Additionally, the coefficients of the partially evaluated

kernels depend on the input to the kernels, which is atypical.

CHAPTER 3

SHORT SURVEY OF KERNELS AND NEURAL NETWORKS

3.1 INFINITE W IDTH NEURAL NETWORKS

The first connection to be made between neural networks and kernels was made by

Radford Neal in his 1994 thesis [63]. Neal considers neural networks fθ of the form (1.10)

with L = 2 and σ(x) = tanh(x). For cleaner notation, we will drop the θ subscript denoting

that fθ is a parameterized function.

f(x) = W√
H

tanh(Ux + a) + b

:= W√
H

h(x) + b, h(x) := tanh(Ux + a)
(3.1)

Where f : RI → RO and the hidden layer has H units. Thus, U ∈ RI×H and W ∈ RO×H . The

weights Uij and biases ai are initialized according to mean zero Gaussians with standard

deviations σu and σa. Additionally, the weights Wki and biases bk are initialized according

to mean zero Gaussians with standard deviations σw and σb.

Considering the k-th output of the network initialized as above, we see that

fk(x) = 1√
H

H∑
i=1

Wkih(x)i + bk (3.2)

The expectation of each term in the sum is E[Wkihi(x)] = E[Wki]E[hi(x)] = 0 due to indepen-

dence of the initializations. The variance of the terms is E[(Wkihi(x))2] = E[W 2
ki]E[hi(x)2] =

σ2
wE[hi(x)2] < ∞ which is finite as h(x) is bounded by 1. Define V := E[hi(x)2] which is

equal for all i. Accordingly, we may apply a central limit theorem to see that as H → ∞

fk(x) become Gaussian with zero mean and variance σ2
b + σ2

wV .

29

30 3.1. INFINITE WIDTH NEURAL NETWORKS

Consider now the joint distribution of the outputs fk for a number of inputs {x(i)}n
i=1.

An identical argument to the above shows that this joint converges to mean zero, multi-

variate Gaussian with covariance

E[fk(x(p))fk(x(q))] = σ2
b + 1

H

H∑
i=1

E[hi(x(p))hi(x(q))]

= σ2
b + σ2

wE[hi(x(p))hi(x(q))]
(3.3)

It is interesting to note that any two distinct outputs of the neural network described

above are independent despite using the same hidden layer features. This is a conse-

quence of the fact that for Gaussian random variables, having zero covariance implies

independence.

Distributions over functions where the distribution of the function values at any finite

collection of points is multivariate Gaussian are known as Gaussian processes. Gaussian

processes and kernels are intimately linked through the covariance function of the process.

Observations are thus connected through their covariance, defined by the network. This co-

variance function is a kernel connecting the gaussian process — and thus scaled, infinitely

wide, 2-layer neural networks — to the theory of RKHS. Covariance is symmetric and

positive definite and thus defines a valid kernel; this is shown formally through the Loève

representation theorem [13, p. 65]. Neal then uses this connection to Gaussian processes to

perform Bayesian inference over neural network priors. While Neal’s results apply only

to neural networks with one hidden layer, identical results were later obtained by Lee

et al. [56] for networks of many layers. A follow-up by Williams gives some methods for

computing with infinite width neural networks [90]. Inspired by this work, Cho and Saul

[19] propose a class of kernels meant to mimic neural networks.

Recently, one of the developments that has most excited researchers is the discovery

of the Neural Tangent Kernel (NTK) [47]. As the name might suggest, the neural tangent

kernel of a neural network fθ : X → R with layers scaled as in (3.1) is given by ⟨∇θfθ, ∇θfθ⟩.

Chapter 3. Short Survey of Kernels and Neural Networks 31

By using the above equivalence of infinitely wide neural networks to Gaussian processes,

the authors are able to show that the NTK converges in probability to a deterministic

limit as the neural network approaches infinite width. The distribution of the NTK for

particular networks at initialization is studied by [45]. Additionally, the authors show that

performing gradient descent with an infinitely small step size on a parameterized function

with respect to a loss function is equivalent to performing gradient descent in function

space with respect to the tangent kernel. Using this deterministic NTK, the authors can

study the training dynamics of a neural network under gradient descent with respect to

the square loss. For a dataset D with |D| = m the square loss is given by

L(θ) = 1
m

m∑
i=1

(yi − fθ(xi))2

The authors use this connection to help explain the behaviour of the network during

training, namely, that the parameters will evolve along a line in the direction of the first

kernel principal component with respect to the NTK (for more information on kernel

principal component analysis see [80, p. 429]). A remarkable consequence of this connec-

tion between kernel and cost gradient descent is that the optimization is guaranteed to

converge to a global minimum in this infinite width limit. This is in contrast to general gra-

dient descent results, which only guarantee convergence to a local minimum. A practical

consequence is that for finite-width neural networks, by Taylor expanding fθ around θ, one

may view the linearized neural network at θ trained with the square loss as performing

kernel ridge regression with the NTK kernel [91, 47]. This suggests that the linearization of

the neural network can also be studied and approximated from the perspective of kernel

methods.

A common, critical assumption in all of these works is that the last layer of the neural

network is linear, i.e., we do not apply a non-linear activation on top of the final linear

transform. This assumption is necessary to apply a central limit theorem and thus obtain

convergence of the network’s outputs to Gaussian variables. Additionally, convergence

32 3.2. FINITE WIDTH NEURAL NETWORKS

in the context of central limit theorems is known to happen quite slowly (O(
√

n) where

n is the layer width), so it is not clear that results relying on infinite width limits are

likely to approximate the behaviour of practical neural networks sufficiently; experiments

performed in these papers use networks of width ≈ 10, 000 for best results which is

exceedingly rare in practice. As Neal himself says, "[in the infinite width limit] the

contributions of individual hidden units are all negligible, and consequently, these units

do not represent hidden features that capture important aspects of the data" [63, p.49].

3.2 F INITE W IDTH NEURAL NETWORKS

In many cases, it seems more natural to view a neural network from the feature learning

perspective as in Equation 1.11, where a neural network learns meaningful features asso-

ciated with the data. Recall also that we may view a kernel machine as a 2-layer neural

network (2.17) where the feature function is fixed and induced by the kernel. Authors

taking this perspective then study kernels related to a neural network feature function φθ.

For instance, Zhang et al. [95] introduce the neural Fisher kernel to extract relevant

features from a neural network. The Fisher kernel measures the similarity of two data

points in terms of the Fisher score and the Fisher information matrix [46]. The authors

then use an approximation to the neural Fisher kernel to get compact and informative

representations of the data. The neural Fisher kernel incorporates gradient information

with respect to the model’s parameters in a similar fashion to the NTK. This gradient

information can allow for more informative features to be extracted from the model.

Indeed, the authors are motivated to extract features from generative models, which are

known to produce relatively poor features in general [96].

However, when good quality features are available, it is simpler to study the feature

kernel associated with the neural network (see Example 2.3). Additionally, neural networks

do not include gradient information in their output. Thus, it is more practical to study the

neural feature kernel.

Chapter 3. Short Survey of Kernels and Neural Networks 33

3.2.1 Neural Feature Kernel

Let fθ(x) = WLφθ(x) + bL, where fθ is a neural network. Then, the neural feature kernel

associated with fθ is

K(x, z) = ⟨φθ(x), φθ(z)⟩ . (3.4)

It must be noted that the feature kernel is also known as the conjugate kernel in some

literature. However, given our view of kernels and neural networks as models which work

with features at their core, the term feature kernel is preferred. This term has been used

previously when focusing on the features that neural networks produce [40].

The feature kernel is frequently studied — often incidentally — in theoretical analyses

of contrastive learning. This should not be surprising as contrastive learning essentially

seeks to enforce similarity (or dissimilarity) relations between representations of data, and

kernels quantify exactly these types of relations. For example, the authors of [38] show that

minimizing a particular variant of the InfoNCE loss [68] using data augmentation to create

positive and negative samples yields a representation which approximately decomposes

a particular kernel which measures how likely one input is to be an augmentation of

the other. The authors use this analysis to show that these learned features can separate

sufficiently well-clustered data. Similarly, [97] show that contrastive learning under the

right conditions learns a feature function corresponding to a kernel which gives the dot

product between the latent variables which have generated the observed inputs. This

allows the authors to prove that the features learned are equal to the latent variables up to

permutations. Similar results are seen in [53].

However, the connection between the feature kernel and neural networks can be

made very explicitly. Daniely, Frostig, and Singer [25] argue for a dual view of neural

networks and kernels to study the effects of random parameter initialization in neural

networks. The main results show that the neural feature kernel is approximately equal to

a compositionally defined kernel consisting of the repeated application of inner products

34 3.2. FINITE WIDTH NEURAL NETWORKS

followed by dual activation functions. A dual activation function σ̂ is defined as

σ̂ = E(X,Y)∼Nρ [σ(X)σ(Y)]

where σ is an activation function and Nρ is a centred multivariate Gaussian with

covariance
[

1 ρ
ρ 1

]
. The design of this kernel is clearly meant to mimic neural networks.

This compositional kernel is referred to as the dual kernel. Using this dual kernel, the

authors show that the set of functions expressible using the dual kernel is approximately

equal to the set of functions expressible with the neural network with randomly initialized

weights, implying that with the right initialization, one need not train φθ and can simply

train the last layer instead. This idea has shown empirical promise [79]. Additionally, this

view provides an RKHS that may be used to study the functions learnable by the neural

network near initialization. Note that the results suggest that weights do not change with

training but rather that the functions expressible with the neural network do not change

drastically. These findings also appear to agree with some NTK results suggesting that

there are invariants associated with the weights given the appropriate initialization.

Inspired by this work, Fan and Wang [32] study the spectra of the feature kernel and the

NTK at initialization in finite width neural networks where layer width increases linearly

with sample size. They show that the feature kernel spectrum may be found by iterating

the Marchenko-Pastur distribution across the hidden layers. Similarly, the NTK spectrum

can be found using a recursive, fixed-point iteration relating to the Marchenko-Pastur

distribution. The authors then study these kernels empirically over the course of training.

They see that isolated principal components emerge from the eigenvalues bulk, which are

predictive of the training labels. These results, on their face, appear to disagree with [25]

as these principle components appear to be related to useful features that the network has

learned. Indeed, to our knowledge, although randomly initialized and untrained features

are surprisingly effective [34, 79], any network’s predictions improve with training.

Chapter 3. Short Survey of Kernels and Neural Networks 35

3.3 OVERPARAMETERIZED LEARNING

Zhang et al. [94] provided empirical evidence that neural networks trained to have zero

classification risk in training do not have significant problems with overfitting. This is de-

spite the same networks being capable of fitting randomly labelled data. This observation

would appear to disagree with generalization bounds based on Rademacher complexity

of the hypothesis class. Neural networks are able to fit randomly labelled data implying

they have high Rademacher complexity suggesting that neural networks will generalize

poorly; however, given the empirical success of neural networks, this does not appear to

be an issue in practice. This extremely interesting observation has intrigued the machine

learning community since its inception.

Recently, it was discovered that kernel machines and even linear models could exhibit

this same behaviour when the number of parameters greatly exceeds the number of

available data [9, 7]. Given that relatively well understood models can share this perplexing

behaviour with neural networks, it was suggested that understanding this behaviour in

kernel machines would give insight into the behaviour driving generalization in neural

networks [9, 8]. This idea is lent further support with the view of kernel machines as

neural networks with a fixed representation layer (see (2.17)). As the models have many

times more parameters than available data, this line of research is known as the study of

overparameterized models.

A proposed explanation for this behaviour suggests that in a hypothesis space rich

enough to contain many functions which perfectly fit the training data, it will be possible

to select one such function with favourable generalization properties [10, 8]. The selection

of this ideal function must then depend on the inductive biases associated with the

training method. For instance, it was shown that kernel machines in representer form

have particularly good generalization abilities [9]. It is then shown that the inductive

bias produced through optimization using SGD initialized at 0 is compatible with finding

a minimum RKHS norm solution. Recall that such solutions are in representer form

36 3.3. OVERPARAMETERIZED LEARNING

(Theorem 2.5.2).

The notion of double descent expands further on this hypothesis. Take the number

of parameters in a model as a measure of model complexity. Beginning from an empty

model as parameters are added and the model retrained, double descent suggests that

classical learning theory will hold with the model first underfitting, then finding a ’sweet

spot’, followed by the model overfitting up until the point where the model is capable

of perfectly fitting the training data. This point is called the interpolation threshold and

models which perfectly fit the training data are called interpolating models. Past the

interpolation threshold, as more parameters are added to the model, the generalization

gap again begins to narrow, suggesting that as the set of learnable interpolating models

increases, inductive biases are more able to select functions which generalize [10]. The

practitioner often produces such an inductive bias themselves. When training a neural

network, it is common practice to periodically test model performance on a held-out test

set and to retain the model with the best performance. This practice ensures that the final

model will be the one with the best observed test performance rather than simply the

model obtained at the end of training. Double descent is illustrated in Figure 3.1.

Figure 3.1: (figure reproduced from [8], licensed under CC BY 4.0) An illustration of double descent.
Starting from the left, the risk of the model decreases as a function of model capacity. As model capacity
increases further, a threshold is reached where the model begins to overfit. This behaviour is encapsulated
in classical learning theory. Overfitting worsens until the interpolation threshold is reached. Past the
interpolation threshold, the model risk again decreases with model capacity. Double descent suggests this
is due to the larger set of interpolating models, some of which generalize well and are selected for. This
behaviour has been suggested by more modern research.

Understanding overparameterization in kernel machines, with their abundance of

https://creativecommons.org/licenses/by/4.0/

Chapter 3. Short Survey of Kernels and Neural Networks 37

theory, promises to give insight into the generalization behaviour of neural networks.

However, this area of research is young, and many questions remain open. Moreover,

classical learning theory already provides generalization bounds for functions in an RKHS.

In this thesis, we do not focus on the overparameterization regime; however, given that

reproducing kernel theory is useful in both classical and overparameterized regimes, it is

clear that it is important to better understand the connections between neural networks

and kernel machines.

CHAPTER 4

STUDY OF THE NEURAL FEATURE KERNEL

Upon defining a satisfactory kernel K — as we have seen in previous sections — the

practitioner has implicitly defined a (non-unique) feature map φ : X → Vfeat such

that ⟨φ(x), φ(z)⟩Vfeat
= K(x, z). Noticing this, we view the problem in reverse from a

feature learning perspective where one seeks to learn a feature map φθ from a dataset

S = {(xi, yi)}n
i=1 using a neural network parameterized by θ. Upon successfully learning a

feature map, we may study the associated feature kernel. Namely

K(x, z) := ⟨φθ(x), φθ(z)⟩Vfeat
, (4.1)

where Vfeat := span{φθ(x) : x ∈ X } ⊆ Rd (see Example 2.3). We refer to this kernel as

the neural feature kernel or simply the feature kernel when the context is clear. Since

Vfeat ⊆ Rd the inner product in Vfeat is taken to be the usual dot product on Rd.

Having learned φθ, we compose the features with a linear function to allow the neural

network to be deployed on a downstream task. The resulting function can be viewed in

the form of Equation 1.11 giving

fθ(x) = wT φθ(x), (4.2)

where fθ : X → R. A bias term is not included as it may be incorporated into the weights

w.

39

40 4.1. EVALUATING THE RKHS NORM OF A NEURAL NETWORK

4.1 EVALUATING THE RKHS NORM OF A NEURAL NETWORK

Recall Equation 2.17, where it was shown that kernel machines may be viewed as neural

networks. Similarly, for an appropriate choice of w, the neural network fθ may be viewed

as a kernel machine lying in the RKHS H associated with K. Specifically, fθ ∈ H if and

only if w ∈ Vfeat. Given w ∈ Vfeat, we could write w = ∑m
j=1 ajφθ(xj) for some collection

of points A = {xj}m
j=1 ⊂ X with m ∈ N. With access to A, we could compute the RKHS

norm of fθ as shown in Section 2.5.2. However, we do not, in general, have knowledge

of A. Instead, we seek to approximate fθ in representer form (2.15) by projecting w into

Vn := span{ϕθ(x)|x ∈ S} ⊂ Vfeat. Thus reducing the projection problem to least squares

regression.

Define Fθ to be the d × n matrix with columns given by {φθ(x) : x ∈ S}. We seek

b∗ = arg min
b∈Rn

∥w − Fθb∥2
2. (4.3)

In practice, numerical instabilities can make solving (4.3) difficult, so a small regularization

term is added. This leads to the objective

b∗ = arg min
b∈Rn

∥w − Fθb∥2
2 + λ∥b∥2

2, (4.4)

which may be solved using an abundance of least squares algorithms. Once we have

solved for b∗, we may define both

ŵ =
n∑

i=1
b∗

i φθ(xi), (4.5a)

f̂(x) = ŵT φθ(x). (4.5b)

From there, it is straightforward to define the Gram matrix Kij = K(xi, xj) for all pairs

(xi, xj) ∈ S × S and evaluate the norm of the projected function f̂

Chapter 4. Study of the Neural Feature Kernel 41

∥f̂∥H =
√

b∗TKb∗.

Proposition 4.1.1. Given a function f(x) = wT φθ(x) and f̂(x) as in Equation 4.5b the absolute

difference between the norms ∥f∥H and ∥f̂∥H is bounded by a constant depending on the feature

kernel and the representation of the coefficients in Vfeat.

Proof. If w /∈ Vfeat then f /∈ H and ∥f∥H is taken to be infinite.

Now assume w ∈ Vfeat and write w = ∑m
j=1 ajφθ(xi) for some collection of points

A = {xi}m
i=1 ⊂ X . Let C := A ∪ S and p = |C|. Then, extend the coefficients {ai}m

i=1, {b∗
i }n

i=1

by defining α, β ∈ Rp such that for k = 1, . . . , p

αk =


ak xk ∈ A

0 xk /∈ A

βk =


b∗

k xk ∈ S

0 xk /∈ S

Then f(x) = ∑p
k=1 αkφθ(xk)T ϕ(x) and f̂(x) = ∑p

k=1 β∗
kφθ(xk)T ϕ(x). Thus,

|∥f∥H − ∥f̂∥H| ≤ ∥f − f̂∥H

= ∥w − ŵ∥2

=
√

(α − β)TG(α − β)

≤ ∥α − β∥2

√
∥G∥op,

where Gij := K(xi, xj) for all pairs (xi, xj) ∈ C × C.

In the following section, we show that G approximates the integral operator (2.5)

defined in Section 2.3. As a consequence ∥G∥op ≈ ∥K∥op. We also suggest how one could

42 4.2. ESTIMATING MERCER’S DECOMPOSITION OF THE FEATURE KERNEL

estimate and control ∥G∥op.

4.1.1 Multi-Output Neural Networks

In a k-class classification setting, one typically will regress to ec, the standard basis vector

of a data point with label c. For k-dimension regression, we regress to each dimension of

the target. In these cases, the neural network takes the form

fθ(x) = W T φθ(x) =



wT
1 φθ(x)

wT
2 φθ(x)

...

wT
k φθ(x)


,

in which case we may view our network as k stacked subnetworks and apply the above

theory to each of the k subnetworks.

4.2 ESTIMATING MERCER ’S DECOMPOSITION OF THE FEATURE KERNEL

We now describe a method of estimating the Mercer decomposition guaranteed by Mer-

cer’s Theorem 2.3.1 for the neural feature kernel K (4.1) with associated RKHS H. The

approach holds for kernels generally and was first introduced in [76] and later, apparently

independently, by [61] for general operators on RKHS. The method is closely related to

the Nyström method, which is often used to speed up computation involving the Gram

matrix in traditional kernel methods [29]. The approach was used in the context of neural

networks by [46]; however, they justify their approach as Monte Carlo estimation of (2.5)

rather than through the theory of operators as is done here.

In general, solving the eigenvalue problem for the integral operator TK (see (2.5))

involves solving a Fredholm integral equation. This is a highly non-trivial problem, made

ever more intractable by the high dimensional data domains typical of machine learning

Chapter 4. Study of the Neural Feature Kernel 43

applications. However, it turns out that we may link TK with the Gram matrix given by

our dataset through the singular value decomposition of linear operators.

Recall the singular value decomposition of a compact linear operator A : H → F

where H, F are Hilbert spaces (see [62, 76, 61]). Let {λi}∞
i=1, {ui}∞

i=1 be the eigenvalues

and eigenfunctions of A∗A and {vi}∞
i=1 be the eigenfunctions of AA∗. Then A may be

decomposed as

A =
∞∑

i=1

√
λiviu

∗
i , (4.6)

where

A∗Aui = λiui

AA∗vi = λivi

Aui =
√

λivi

A∗ui =
√

λiui.

The goal then, is to define appropriate operators in order to relate the integral operator TK

and the normalized empirical Gram matrix Kij := K(xi,xj)
n

associated with a dataset {xi}n
i=1

[76]. To this end, it is helpful to define an operator TH : H → H equal to the restriction of

TK to H

TH[f](z) :=
∫

X
⟨f, K(·, x)⟩H K(x, z)dρ(x). (4.7)

Also define an analog of TH where ρ(x) is estimated via the empirical distribution ρ̂ =
1
n

∑n
i=1 δ(xi)

Tn[f](z) := 1
n

n∑
i=1

⟨K(·, xi), f⟩H K(xi, z) (4.8)

From here, we will connect our four objects of study K, Tn, TH, TK. We will show that

44 4.2. ESTIMATING MERCER’S DECOMPOSITION OF THE FEATURE KERNEL

K = T ∗
n and TK = T ∗

H. Then, it will be shown that Tn → TH as n → ∞ and bounds will be

given.

Proposition 4.2.1. Let Rn be the sampling or restriction operator Rn : H → Rn associated with

sample {xi}n
i= where

Rn[f] := [f(x1), f(x2), . . . , f(xn)]T . (4.9)

Then K = RnR∗
n, Tn = R∗

nRn and K∗ = Tn with respect to the normalized euclidean inner

product ⟨·, ·⟩n := ⟨·,·⟩Rn

n
. This inner product is also known as the sampling inner product.

Proof. The adjoint R∗
n with respect to ⟨·, ·⟩n can be seen to be

R∗
n[(y1, . . . , yn)](z) = 1

n

n∑
i=1

yiK(xi, z) (4.10)

as

⟨f, R∗
n(y1, . . . , yn)⟩H = ⟨Rnf, (y1, . . . , yn)⟩n

= 1
n

n∑
i=1

yif(xi)

= 1
n

n∑
i=1

yi ⟨K(xi, ·), f⟩H .

Then, we may see that Tn is equal to R∗
nRn

R∗
nRn[f] = R∗

n[f(x1), . . . , f(xn)]

= 1
n

n∑
i=1

f(xi)K(xi, z)

= 1
n

n∑
i=1

⟨f, K(xi, ·)⟩H K(xi, z)

= Tn[f](z),

Chapter 4. Study of the Neural Feature Kernel 45

where the last equality is due to the reproducing property (2.3). And K is equal to RnR∗
n

when viewed as an operator from Rn → Rn

RnR∗
n[(y1, . . . , yn)] = Rn

[
1
n

n∑
i=1

yiK(xi, z)
]

= 1
n

[
n∑

i=1
yiK(xi, x1), . . . ,

n∑
i=1

yiK(xi, xn)
]T

.

Finally, K∗ = (RnR∗
n)∗ = R∗

nRn = Tn.

Proposition 4.2.2. Let RH : H → L2 be the inclusion map then TK = RHR∗
H, TH = R∗

HRH and

T ∗
K = TH.

Proof. Similar to the previous case

Thus, via Proposition 4.2.1 along with operator SVD, we see that if û(j), v̂(j) are the j-th

eigenvector and eigenfunction of K and Tn associated with the singular value λj then

v̂(j)(z) = 1
n

√
λj

n∑
i=1

û
(j)
i K(z, xi) (4.11)

where û
(j)
i is the i-th component of û(j). Additionally, û(j), v̂(j) must be normalized accord-

ing to the sampling and H inner products, respectively. Similarly, via Proposition 4.2.1

along with operator SVD, if u(j), v(j) are the j-th eigenfunctions of TK and TH associated

with the singular value λj then

v(j)(z) =
√

λiu
(j)(z), for ρ-almost all x ∈ X , (4.12)

where u(j), v(j) are normalized in L2 and H.

It remains to be shown that the eigenvalues and eigenfunctions of Tn approach those of

TH as n increases. It is shown in Theorem 7 of Rosasco, Belkin, and Vito [76] that Tn and

46 4.2. ESTIMATING MERCER’S DECOMPOSITION OF THE FEATURE KERNEL

TH converge in Hilbert-Schmidt norm at a
√

n rate. This theorem is reproduced here for

convenience.

Theorem 4.2.3 (Theorem 7 of Rosasco, Belkin, and Vito [76]). With probability at least 1 − δ

∥TH − Tn∥HS ≤
√

8κ2 log(2/δ)
n

, (4.13)

where κ = supx∈X K(x, x).

Theorem 12 of Rosasco, Belkin, and Vito [76] shows that the eigenfunction extension

(4.11) can provide a faithful approximation to the true eigenfunctions of TK with conver-

gence in L2(X , ρ) norm. Again, this theorem is reproduced for convenience.

Theorem 4.2.4 (Theorem 12 of Rosasco, Belkin, and Vito [76]). Let m be the sum of the

multiplicities of the first N eigenvalues of TK ordered such that

λ1 > λ2 > . . . , > λm > λm+1

and PN be the orthogonal projection onto the span of the corresponding eigenfunctions. Let k be

the rank of K and û1, . . . , ûk be the corresponding eigenvectors to the nonzero eigenvalues of K

in decreasing order. Finally, let v̂1, . . . , v̂k be the corresponding extensions given by (4.11). Then,

with probability at least 1 − δ if

n >
128κ2 log(2/δ)
(λm − λm+1)2 ,

then

m∑
i=1

∥v̂i − PN v̂i∥2
L2 +

k∑
i=m+1

∥PN v̂i∥2
L2 ≤ 32κ2 log(2/δ)

(λm − λm+1)2n
. (4.14)

Finally, these results combined show that the j-th eigenfunction u(j) of the kernel

integral operator Tk can be estimated over the dataset by the j-th eigenvector of K.

Chapter 4. Study of the Neural Feature Kernel 47

Furthermore, by combining equations (4.11) and (4.12), we see that this estimation can be

extended to the entire domain X as

u(j)(z) ≈ 1
nλj

n∑
i=1

û
(j)
i K(xi, z), (4.15)

and in the case of the feature kernel

u(j)(z) ≈ 1
nλj

n∑
i=1

û
(j)
i φθ(xi)T φθ(z). (4.16)

Remark 4.1. The bounds in Theorems 4.2.3 and 4.2.4 do not depend on the dimension of

the data. This is wonderful news for a machine learning practitioner who often works

in very high dimensions. In the case of the feature kernel, the dimension of the feature

representation influences the bounds only through κ. This can be eliminated by first

normalizing the features.

With these tools in hand, we can approximate Mercer’s decomposition of any kernel

from data. This is illustrated and empirically verified through a simple example.

Example 4.1 (Polynomial Kernel). Consider the kernel K(x, z) = (1 + xz)2 where X =

[−1, 1] and µ is the uniform measure over X . Then, it is known that the integral operator

TK[f](x) =
∫

R
(1 + xz)2f(z)dz

2

has the (L2 normalized) eigenfunctions and eigenvalues given by [89, p. 397]

φ1 = 1
1.06(0.94 + 0.34x2), λ1 = 1.12 (4.17a)

φ2 = −1
0.58x, λ2 = 0.67 (4.17b)

φ3 = 1
0.28(0.34 − 0.94x2), λ3 = 0.08 (4.17c)

In order to empirically verify the theory, we sample n = 10 and n = 100 points uniformly

48 4.2. ESTIMATING MERCER’S DECOMPOSITION OF THE FEATURE KERNEL

from [−1, 1] and form and decompose the Gram matrix before plotting the estimated and

true eigenfunctions in Figure 4.1.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−2

−1

0

1

(a) n = 100

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(b) n = 1000

Figure 4.1: The estimated (dashed) and true eigenfunctions (solid) of the polynomial kernel from Example
4.1. We see that the empirical estimation agrees with the theory and improves with the sample size. Red, blue,
and green lines correspond to φ1, φ2, and φ3 respectively.

Example 4.2 (Neural Feature Kernel). We now a train a neural network to classify data

generated by the XOR function. The XOR function xor : [−10, 10]2 → {±1} is given by

xor([x1, x2]) =


1 (x1 ≥ 0 and x2 < 0) or (x1 < 0 and x2 ≥ 0)

−1 (x1 > 0 and x2 > 0) or (x1 ≤ 0 and x2 ≤ 0)

1, 000 sample points are generated uniformly from [−10, 10]2 and given labels according

to XOR. The neural network is a simple 3-layer MLP as in Section 1.2, with a feature

dimension d = 10. The trained network achieves 100% accuracy on a 100 sample test set.

We repeat the experiment using both the ReLU and hyperbolic tangent activation functions.

In Figure 4.2, we plot the first two Mercer features. It is interesting to note the remarkable

differences between ReLU and tanh networks. Inspecting the functions, it appears that

the first Mercer features respond highly when xor(x) = 1 and the second Mercer features

respond highly when xor(x) = −1.

Chapter 4. Study of the Neural Feature Kernel 49

x1

−10
−5

0
5

10
x2

−10
−5

0
5

10

u(x1,x2)

0.5
1.0
1.5
2.0
2.5
3.0

(a) u(1) for the ReLU network. λ1 = 132.45.

x1

−10
−5

0
5

10 x2−10
−5

0
5

10

u(
x1

,x
2)

−1

0

1

2

3

(b) u(2) for the ReLU network. λ2 = 76.58.

x1

−10
−5

0
5
10

x2 −10−50510

u(x1,x2)

−1.0

−0.5

0.0

0.5

1.0

(c) u(1) for the tanh network. λ1 = 2.862.

x1

−10
−5

0
5

10

x2

−10
−5

0
5

10

u(x1,x2)

−1.5

−1.0

−0.5

0.0

0.5

(d) u(2) for the tanh network. λ2 = 2.70.

Figure 4.2: The first two Mercer feature functions for both the ReLU and the tanh networks. Note the
remarkable difference between functions with different activations; however, across networks, it appears that
the first Mercer feature responds highly when xor(x) = 1 and the second Mercer feature responds highly
when xor(x) = −1.

4.2.1 Relationship Between Neural Network Features and Mercer Eigenfunctions

For simplicity, assume that X = RD and we have trained a neural network to produce

features φθ : RD → Rd. Consider the neural feature kernel. Then the eigenfunctions of TK

guaranteed by Mercer’s theorem are estimated by (4.16). We thus have a set of non-zero

eigenvalues {λi}k
i=1 and a set of feature functions u(j), j = 1, . . . , k whose outputs we may

form into a vector giving a new representation of data in X .

50 4.2. ESTIMATING MERCER’S DECOMPOSITION OF THE FEATURE KERNEL

φM(z) = [u(1)(z), . . . , u(k)(z)] (4.18)

We’ll refer to these features as the Mercer features. It should be noted that eigenfunctions

are unique only up to sign. For this reason, one may sometimes wish to flip the sign of a

given u(j). The key benefit of these features is that they are given an importance ranking

from the associated eigenvalues. The expressivity of the Mercer features is the same as the

learned features φθ. This may be seen by establishing a linear relationship between the

two sets of features. Let

bj = 1
n

n∑
i=1

u
(j)
i φθ(xi), j = 1, . . . , k

bj = 0, j = k + 1, . . . , d

and define the matrices B = [b1, . . . , bd] ∈ Rk×d and Λ = diag(λ1, . . . , λk) then

φM(z) = Λ−1BT φθ(z).

Thus, linear models built on top of either φM or φθ will be equally as expressive. See

that

f(z) = wT φM(z)

= wT Λ−1BT φθ(z)

= vT φθ(z), for some w, v ∈ Rk

In Section 4.2.3, we perform some experiments on three benchmark datasets showing

that the ordering of the eigenvalues associated with the the Mercer features corresponds

to their usefulness in downstream tasks.

Chapter 4. Study of the Neural Feature Kernel 51

4.2.2 Differentiating the Mercer Eigenfunctions

The extended Mercer eigenfunctions or Mercer feature functions (4.16) are differentiable

with respect to the input z. Having learned neural network features φθ and found the

associated Mercer feature functions, this differentiability may be used to find the argmin

or argmax of the Mercer features. This could lend insight into how the neural network

is forming the features. For example, given x ∈ argmaxz∈X |u(1)(z)| an inspection of x

yields insight into what aspects of the data provoke the highest response from the most

informative Mercer feature. The absolute value must be taken as eigenfunctions are unique

only up to sign.

The gradient of a Mercer feature u(j) may be found as follows. Define the Jacobian J(z)

as usual with Jij(z) = dφi(z)
dzj

, i ∈ [d], j ∈ [D]. Then

∇u(j)(z) = 1
nλj

n∑
i=1

û
(j)
i J(z)T φθ(xi) (4.19)

The Jacobian is easy to compute using commonly found autograd functionality in deep

learning libraries [69, 57]. This makes it straightforward to optimize the eigenfunction

using gradient ascent type algorithms.

4.2.3 Eigenvalues Provide an Importance Score

We seek to demonstrate that the eigenvalues associated with the Mercer decomposition of

the feature kernel act as an importance score for the Mercer features. Let φθ : RD → Rd be

a learned representation function and K(x, z) = φT
θ (x)φθ be the associated neural feature

kernel. Given access to a dataset S = {xi}n
i=1, we approximate the Mercer decomposition

as described above resulting in a collection of Mercer features {u(i)}k
i=1 and their associated

eigenvalues {λi}k
i=1. Define

φα
M(z) = [u(1)(z), . . . , u(α)(z)], 1 ≤ α ≤ k, (4.20)

52 4.2. ESTIMATING MERCER’S DECOMPOSITION OF THE FEATURE KERNEL

to be the Mercer feature vector truncated to only the first α components. Similarly, define

φβ
M(z) = [u(k)(z), . . . , u(k−β)(z)], 1 ≤ β ≤ k, (4.21)

to be the Mercer feature vector truncated to the first β components.

We may then compose linear classifiers with the truncated feature functions φα
M , φβ

M

resulting finally with models in the form of Equation 1.11

fα
M(z) = wT φα

M(z) (4.22a)

fβ
M(z) = wT φβ

M(z). (4.22b)

It should be expected that using φα
M should provide good performance even for low values

of α as the purportedly most informative features are preferentially included. On the other

hand, using φβ
M will give a poor performance for low values of β as the purportedly least

informative features are included first. We test this theory using a ResNet-18 model [41] on

three datasets: MNIST [26] , CIFAR-10 [51], and ImageNet [78]. When building the Gram

matrix for each dataset, we first take a random subset of 10, 000 samples from the original

dataset. This avoids the decomposition of an otherwise very large Gram matrix while

obtaining a high-quality approximation. The results are available in Figure 4.3. We see

that eigenvalues rank the utility of the associated Mercer features. The fα
M models quickly

match the accuracy of the full neural network. However, fβ
M models do not achieve parity

with the neural networks until the highest ranked features are included in the model.

This provides empirical evidence that the eigenvalues are valuable tools in judging the

importance of these features. This gives insight into the workings of a neural network as

one could inspect highly ranked Mercer features.

Chapter 4. Study of the Neural Feature Kernel 53

0 10 20 30 40 50 60 70
α

0.6

0.7

0.8

0.9

1.0
AC

C

train
test
NN train
NN test

(a) fα
M on MNIST.

0 10 20 30 40 50 60 70
β

0.2

0.4

0.6

0.8

1.0

AC
C

train
test
NN train
NN test

(b) fβ
M on MNIST.

0 10 20 30 40 50 60
α

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AC
C

train
test
NN train
NN test

(c) fα
M on CIFAR.

0 10 20 30 40 50 60
β

0.2

0.4

0.6

0.8

1.0
AC

C

train
test
NN train
NN test

(d) fβ
M on CIFAR.

0 100 200 300 400 500
α

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AC
C

train
test
NN train
NN test

(e) fα
M on ImageNet.

0 100 200 300 400 500
β

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AC
C

train
test
NN train
NN test

(f) fβ
M on ImageNet.

Figure 4.3: We see that eigenvalues rank the utility of the associated Mercer features. The fα
M models quickly

match the accuracy of the full neural network. However, fβ
M models do not achieve parity with the neural

networks until the highest ranked features are included in the model. We see that the ImageNet trained model
has learned features whose value decays slower. It seems likely that the difficulty of the ImageNet task forced
the model to learn more complex features leading to a fuller use of the 512 dimensional feature space. A
Mercer feature was included in this experiment if its associated eigenvalue was significant to two digits.
Due to computational constraints only a subset of possible k values were evaluated for the ImageNet models.
These are shown with a star.

CHAPTER 5

CONCLUSION

In this thesis, we argued that feature learning provides a lens with which to view both

neural networks and kernel machines. To support this view, we introduce the theory of

reproducing kernel Hilbert spaces from a feature learning perspective, paying particular

attention to the induced feature spaces associated with any kernel. Neural networks are

viewed as the composition of a learned feature function with a linear model. Understand-

ing neural networks from an RKHS perspective could allow for improved generalization

bounds or better insight into the nature of neural networks. We examine some recent work

connecting kernels to neural networks and contrast these works with our view. Finally, we

apply our developed theory of RKHS and kernels from a feature learning perspective by

introducing the neural feature kernel. This allows us to approximate the norm of a neural

network in the RKHS associated with the neural feature kernel, which may be used to

apply generalization bounds. Additionally, we describe a method to find eigenvalues and

eigenfunctions of the neural feature kernel. This gives a set of features with a utility score,

essentially describing their usefulness in the task at hand. There is much room for future

work looking into potential applications for these features. Another possible direction of

study is using batched approximations of the neural feature kernel to shape the learned

RKHS during the training process.

55

BIBLIOGRAPHY

[1] Mark A. Aizerman. “Theoretical Foundations of the Potential Function Method in

Pattern Recognition Learning”. In: Automation and Remote Control 25 (1964), pp. 821–

837.

[2] N. Aronszajn. “Theory of reproducing kernels”. In: Transactions of the American

Mathematical Society 68.3 (1950), pp. 337–404. DOI: 10.1090/s0002- 9947- 1950-

0051437-7. URL: https://doi.org/10.1090/s0002-9947-1950-0051437-7.

[3] N. Aronszajn and K. T. Smith. “Characterization of Positive Reproducing Kernels.

Applications to Green’s Functions”. In: American Journal of Mathematics 79.3 (July

1957), p. 611. DOI: 10.2307/2372565. URL: https://doi.org/10.2307/2372565.

[4] Nachman Aronszajn. “Reproducing and pseudo-reproducing kernels and their

application to the partial differential equations of physics”. In: ().

[5] Philip Bachman, R Devon Hjelm, and William Buchwalter. “Learning Represen-

tations by Maximizing Mutual Information Across Views”. In: Advances in Neu-

ral Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Asso-

ciates, Inc., 2019. URL: https://proceedings.neurips.cc/paper/2019/file/

ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf.

[6] A.R. Barron. “Universal approximation bounds for superpositions of a sigmoidal

function”. In: IEEE Transactions on Information Theory 39.3 (1993), pp. 930–945. DOI:

10.1109/18.256500.

57

https://doi.org/10.1090/s0002-9947-1950-0051437-7
https://doi.org/10.1090/s0002-9947-1950-0051437-7
https://doi.org/10.1090/s0002-9947-1950-0051437-7
https://doi.org/10.2307/2372565
https://doi.org/10.2307/2372565
https://proceedings.neurips.cc/paper/2019/file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf
https://doi.org/10.1109/18.256500

58 BIBLIOGRAPHY

[7] Peter L. Bartlett et al. “Benign overfitting in linear regression”. In: Proceedings of the

National Academy of Sciences 117.48 (Apr. 2020), pp. 30063–30070. DOI: 10.1073/pnas.

1907378117. URL: https://doi.org/10.1073/pnas.1907378117.

[8] Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning

through the prism of interpolation. 2021. DOI: 10.48550/ARXIV.2105.14368. URL:

https://arxiv.org/abs/2105.14368.

[9] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we

need to understand kernel learning. 2018. DOI: 10.48550/ARXIV.1802.01396. URL:

https://arxiv.org/abs/1802.01396.

[10] Mikhail Belkin et al. “Reconciling modern machine-learning practice and the classical

bias–variance trade-off”. In: Proceedings of the National Academy of Sciences 116.32

(July 2019), pp. 15849–15854. DOI: 10.1073/pnas.1903070116. URL: https://doi.

org/10.1073/pnas.1903070116.

[11] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A

Review and New Perspectives. 2014. DOI: 10.48550/ARXIV.1206.5538. URL: https:

//arxiv.org/abs/1206.5538.

[12] Stefan Bergmann. “Über die Kernfunktion eines Bereiches und ihr Verhalten am

Rande. I.” In: crll 1933.169 (1933), pp. 1–42. DOI: 10.1515/crll.1933.169.1. URL:

https://doi.org/10.1515/crll.1933.169.1.

[13] Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Spaces in

Probability and Statistics. Springer US, 2004. DOI: 10.1007/978-1-4419-9096-9. URL:

https://doi.org/10.1007/978-1-4419-9096-9.

[14] Rishi Bommasani et al. On the Opportunities and Risks of Foundation Models. 2021. DOI:

10.48550/ARXIV.2108.07258. URL: https://arxiv.org/abs/2108.07258.

https://doi.org/10.1073/pnas.1907378117
https://doi.org/10.1073/pnas.1907378117
https://doi.org/10.1073/pnas.1907378117
https://doi.org/10.48550/ARXIV.2105.14368
https://arxiv.org/abs/2105.14368
https://doi.org/10.48550/ARXIV.1802.01396
https://arxiv.org/abs/1802.01396
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.48550/ARXIV.1206.5538
https://arxiv.org/abs/1206.5538
https://arxiv.org/abs/1206.5538
https://doi.org/10.1515/crll.1933.169.1
https://doi.org/10.1515/crll.1933.169.1
https://doi.org/10.1007/978-1-4419-9096-9
https://doi.org/10.1007/978-1-4419-9096-9
https://doi.org/10.48550/ARXIV.2108.07258
https://arxiv.org/abs/2108.07258

Bibliography 59

[15] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A training algorithm

for optimal margin classifiers”. In: Proceedings of the fifth annual workshop on Compu-

tational learning theory - COLT ’92. ACM Press, 1992. DOI: 10.1145/130385.130401.

URL: https://doi.org/10.1145/130385.130401.

[16] James Bradbury et al. JAX: composable transformations of Python+NumPy programs.

Version 0.3.13. 2018. URL: http://github.com/google/jax.

[17] Mathilde Caron et al. Unsupervised Learning of Visual Features by Contrasting Cluster

Assignments. 2020. DOI: 10.48550/ARXIV.2006.09882. URL: https://arxiv.org/

abs/2006.09882.

[18] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Represen-

tations”. In: arXiv preprint arXiv:2002.05709 (2020).

[19] Youngmin Cho and Lawrence Saul. “Kernel Methods for Deep Learning”. In: Ad-

vances in Neural Information Processing Systems. Ed. by Y. Bengio et al. Vol. 22. Curran

Associates, Inc., 2009. URL: https://proceedings.neurips.cc/paper/2009/file/

5751ec3e9a4feab575962e78e006250d-Paper.pdf.

[20] S. Chopra, R. Hadsell, and Y. LeCun. “Learning a similarity metric discriminatively,

with application to face verification”. In: 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05). Vol. 1. 2005, 539–546 vol. 1. DOI:

10.1109/CVPR.2005.202.

[21] Michael Chui et al. The state of AI in 2021. 2021. URL: https://www.mckinsey.com/

business-functions/quantumblack/our-insights/global-survey-the-state-

of-ai-in-2021.

[22] Adam Coates and Andrew Y. Ng. “Learning Feature Representations with K-Means”.

In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 561–580.

DOI: 10.1007/978-3-642-35289-8_30. URL: https://doi.org/10.1007/978-3-

642-35289-8_30.

https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
http://github.com/google/jax
https://doi.org/10.48550/ARXIV.2006.09882
https://arxiv.org/abs/2006.09882
https://arxiv.org/abs/2006.09882
https://proceedings.neurips.cc/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://doi.org/10.1109/CVPR.2005.202
https://www.mckinsey.com/business-functions/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021
https://www.mckinsey.com/business-functions/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021
https://www.mckinsey.com/business-functions/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021
https://doi.org/10.1007/978-3-642-35289-8_30
https://doi.org/10.1007/978-3-642-35289-8_30
https://doi.org/10.1007/978-3-642-35289-8_30

60 BIBLIOGRAPHY

[23] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine Learn-

ing 20.3 (Sept. 1995), pp. 273–297. DOI: 10.1007/bf00994018. URL: https://doi.

org/10.1007/bf00994018.

[24] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Math-

ematics of Control, Signals, and Systems 2.4 (Dec. 1989), pp. 303–314. DOI: 10.1007/

bf02551274. URL: https://doi.org/10.1007/bf02551274.

[25] Amit Daniely, Roy Frostig, and Yoram Singer. “Toward Deeper Understanding of

Neural Networks: The Power of Initialization and a Dual View on Expressivity”. In:

Advances in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran

Associates, Inc., 2016. URL: https://proceedings.neurips.cc/paper/2016/file/

abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf.

[26] Li Deng. “The MNIST Database of Handwritten Digit Images for Machine Learning

Research”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142.

[27] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. “Unsupervised Visual Repre-

sentation Learning by Context Prediction”. In: 2015 IEEE International Conference

on Computer Vision (ICCV). IEEE, Dec. 2015. DOI: 10.1109/iccv.2015.167. URL:

https://doi.org/10.1109/iccv.2015.167.

[28] Pedro Domingos. Every Model Learned by Gradient Descent Is Approximately a Kernel

Machine. 2020. DOI: 10.48550/ARXIV.2012.00152. URL: https://arxiv.org/abs/

2012.00152.

[29] Petros Drineas and Michael W. Mahoney. “On the Nystrom Method for Approxi-

mating a Gram Matrix for Improved Kernel-Based Learning”. In: Journal of Machine

Learning Research 6.72 (2005), pp. 2153–2175. URL: http://jmlr.org/papers/v6/

drineas05a.html.

[30] Harris Drucker et al. “Support Vector Regression Machines”. In: Advances in Neural

Information Processing Systems. Ed. by M.C. Mozer, M. Jordan, and T. Petsche. MIT

https://doi.org/10.1007/bf00994018
https://doi.org/10.1007/bf00994018
https://doi.org/10.1007/bf00994018
https://doi.org/10.1007/bf02551274
https://doi.org/10.1007/bf02551274
https://doi.org/10.1007/bf02551274
https://proceedings.neurips.cc/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://doi.org/10.1109/iccv.2015.167
https://doi.org/10.1109/iccv.2015.167
https://doi.org/10.48550/ARXIV.2012.00152
https://arxiv.org/abs/2012.00152
https://arxiv.org/abs/2012.00152
http://jmlr.org/papers/v6/drineas05a.html
http://jmlr.org/papers/v6/drineas05a.html

Bibliography 61

Press, 1996. DOI: 10.5555/2998981.2999003. URL: https://proceedings.neurips.

cc/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf.

[31] David Kristjanson Duvenaud. “Automatic Model Construction with Gaussian Pro-

cesses”. PhD thesis. 2014.

[32] Zhou Fan and Zhichao Wang. Spectra of the Conjugate Kernel and Neural Tangent

Kernel for linear-width neural networks. 2020. DOI: 10.48550/ARXIV.2005.11879. URL:

https://arxiv.org/abs/2005.11879.

[33] “Functions of positive and negative type, and their connection with the theory of

integral equations”. In: Proceedings of the Royal Society of London. Series A, Containing

Papers of a Mathematical and Physical Character 83.559 (Nov. 1909), pp. 69–70. DOI:

10.1098/rspa.1909.0075. URL: https://doi.org/10.1098/rspa.1909.0075.

[34] Claudio Gallicchio and Simone Scardapane. Deep Randomized Neural Networks. 2020.

DOI: 10.48550/ARXIV.2002.12287. URL: https://arxiv.org/abs/2002.12287.

[35] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised Representation

Learning by Predicting Image Rotations. 2018. DOI: 10.48550/ARXIV.1803.07728. URL:

https://arxiv.org/abs/1803.07728.

[36] Will Grathwohl et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible

Generative Models. 2018. DOI: 10.48550/ARXIV.1810.01367. URL: https://arxiv.

org/abs/1810.01367.

[37] Jean-Bastien Grill et al. “Bootstrap Your Own Latent - A New Approach to Self-

Supervised Learning”. In: Advances in Neural Information Processing Systems. Ed. by H.

Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 21271–21284. URL: https:

//proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-

Paper.pdf.

https://doi.org/10.5555/2998981.2999003
https://proceedings.neurips.cc/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://proceedings.neurips.cc/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://doi.org/10.48550/ARXIV.2005.11879
https://arxiv.org/abs/2005.11879
https://doi.org/10.1098/rspa.1909.0075
https://doi.org/10.1098/rspa.1909.0075
https://doi.org/10.48550/ARXIV.2002.12287
https://arxiv.org/abs/2002.12287
https://doi.org/10.48550/ARXIV.1803.07728
https://arxiv.org/abs/1803.07728
https://doi.org/10.48550/ARXIV.1810.01367
https://arxiv.org/abs/1810.01367
https://arxiv.org/abs/1810.01367
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf

62 BIBLIOGRAPHY

[38] Jeff Z. HaoChen et al. Provable Guarantees for Self-Supervised Deep Learning with

Spectral Contrastive Loss. 2021. DOI: 10 . 48550 / ARXIV . 2106 . 04156. URL: https :

//arxiv.org/abs/2106.04156.

[39] Trevor Hastie, Robert Tibshirani, and J H Friedman. The elements of statistical learning.

en. 2nd ed. Springer series in statistics. New York, NY: Springer, Dec. 2009.

[40] Bobby He and Mete Ozay. “Feature Kernel Distillation”. In: International Confer-

ence on Learning Representations. 2022. URL: https://openreview.net/forum?id=

tBIQEvApZK5.

[41] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. DOI: 10.48550/

ARXIV.1512.03385. URL: https://arxiv.org/abs/1512.03385.

[42] Kaiming He et al. “Momentum Contrast for Unsupervised Visual Representation

Learning”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2020, pp. 9726–9735. DOI: 10.1109/CVPR42600.2020.00975.

[43] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of Data with

Neural Networks”. In: Science 313.5786 (July 2006), pp. 504–507. DOI: 10.1126/

science.1127647. URL: https://doi.org/10.1126/science.1127647.

[44] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural

Computation 9.8 (Nov. 1997), pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.

URL: https://doi.org/10.1162/neco.1997.9.8.1735.

[45] Zhengmian Hu and Heng Huang. “On the Random Conjugate Kernel and Neural

Tangent Kernel”. In: Proceedings of the 38th International Conference on Machine Learning.

Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning

Research. PMLR, 2021, pp. 4359–4368. URL: https://proceedings.mlr.press/

v139/hu21b.html.

https://doi.org/10.48550/ARXIV.2106.04156
https://arxiv.org/abs/2106.04156
https://arxiv.org/abs/2106.04156
https://openreview.net/forum?id=tBIQEvApZK5
https://openreview.net/forum?id=tBIQEvApZK5
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.mlr.press/v139/hu21b.html
https://proceedings.mlr.press/v139/hu21b.html

Bibliography 63

[46] Tommi Jaakkola and David Haussler. “Exploiting Generative Models in Discrimi-

native Classifiers”. In: Advances in Neural Information Processing Systems. Ed. by M.

Kearns, S. Solla, and D. Cohn. Vol. 11. MIT Press, 1998. URL: https://proceedings.

neurips.cc/paper/1998/file/db1915052d15f7815c8b88e879465a1e-Paper.pdf.

[47] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Con-

vergence and Generalization in Neural Networks”. In: (2018). DOI: 10.48550/ARXIV.

1806.07572. URL: https://arxiv.org/abs/1806.07572.

[48] John Jumper et al. “Highly accurate protein structure prediction with AlphaFold”.

In: Nature 596.7873 (July 2021), pp. 583–589. DOI: 10.1038/s41586-021-03819-2.

URL: https://doi.org/10.1038/s41586-021-03819-2.

[49] George Kimeldorf and Grace Wahba. “Some results on Tchebycheffian spline func-

tions”. In: Journal of Mathematical Analysis and Applications 33.1 (Jan. 1971), pp. 82–95.

DOI: 10.1016/0022-247x(71)90184-3. URL: https://doi.org/10.1016/0022-

247x(71)90184-3.

[50] George S. Kimeldorf and Grace Wahba. “A Correspondence Between Bayesian

Estimation on Stochastic Processes and Smoothing by Splines”. In: The Annals of

Mathematical Statistics 41.2 (Apr. 1970), pp. 495–502. DOI: 10.1214/aoms/1177697089.

URL: https://doi.org/10.1214/aoms/1177697089.

[51] A. Krizhevsky and G. Hinton. “Learning Multiple Layers of Features from Tiny

Images”. In: Master’s thesis, Department of Computer Science, University of Toronto

(2009).

[52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-

cessing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc., 2012. URL:

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-

Paper.pdf.

https://proceedings.neurips.cc/paper/1998/file/db1915052d15f7815c8b88e879465a1e-Paper.pdf
https://proceedings.neurips.cc/paper/1998/file/db1915052d15f7815c8b88e879465a1e-Paper.pdf
https://doi.org/10.48550/ARXIV.1806.07572
https://doi.org/10.48550/ARXIV.1806.07572
https://arxiv.org/abs/1806.07572
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1016/0022-247x(71)90184-3
https://doi.org/10.1016/0022-247x(71)90184-3
https://doi.org/10.1016/0022-247x(71)90184-3
https://doi.org/10.1214/aoms/1177697089
https://doi.org/10.1214/aoms/1177697089
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

64 BIBLIOGRAPHY

[53] Julius von Kügelgen et al. “Self-Supervised Learning with Data Augmentations Prov-

ably Isolates Content from Style”. In: Advances in Neural Information Processing Sys-

tems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021, pp. 16451–16467.

URL: https://proceedings.neurips.cc/paper/2021/file/8929c70f8d710e412d38da624b21c3c8-

Paper.pdf.

[54] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. “Learning Represen-

tations for Automatic Colorization”. In: Computer Vision – ECCV 2016. Springer

International Publishing, 2016, pp. 577–593. DOI: 10.1007/978-3-319-46493-0_35.

URL: https://doi.org/10.1007/978-3-319-46493-0_35.

[55] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”. In:

Neural Computation 1.4 (Dec. 1989), pp. 541–551. DOI: 10.1162/neco.1989.1.4.541.

URL: https://doi.org/10.1162/neco.1989.1.4.541.

[56] Jaehoon Lee et al. Deep Neural Networks as Gaussian Processes. 2017. DOI: 10.48550/

ARXIV.1711.00165. URL: https://arxiv.org/abs/1711.00165.

[57] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

Software available from tensorflow.org. 2015. URL: https://www.tensorflow.org/.

[58] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their

Compositionality”. In: Advances in Neural Information Processing Systems. Ed. by C.J.

Burges et al. Vol. 26. Curran Associates, Inc., 2013. URL: https://proceedings.

neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[59] Marvin Minsky and Seymour Papert. Perceptrons. London, England: MIT Press, Feb.

1969.

[60] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine

learning. en. Adaptive Computation and Machine Learning series. London, England:

MIT Press, Aug. 2012.

https://proceedings.neurips.cc/paper/2021/file/8929c70f8d710e412d38da624b21c3c8-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/8929c70f8d710e412d38da624b21c3c8-Paper.pdf
https://doi.org/10.1007/978-3-319-46493-0_35
https://doi.org/10.1007/978-3-319-46493-0_35
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.48550/ARXIV.1711.00165
https://doi.org/10.48550/ARXIV.1711.00165
https://arxiv.org/abs/1711.00165
https://www.tensorflow.org/
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Bibliography 65

[61] Mattes Mollenhauer et al. “Singular Value Decomposition of Operators on Reproduc-

ing Kernel Hilbert Spaces”. In: Advances in Dynamics, Optimization and Computation.

Springer International Publishing, 2020, pp. 109–131. DOI: 10.1007/978-3-030-

51264-4_5. URL: https://doi.org/10.1007%2F978-3-030-51264-4_5.

[62] Valter Moretti. Spectral theory and quantum mechanics. en. 2nd ed. La Matematica per

il 3+2. Basel, Switzerland: Springer International Publishing, Feb. 2018.

[63] Radford M. Neal. “Bayesian Learning for Neural Networks”. In: 1995. URL: http:

//www.cs.toronto.edu/~radford/ftp/thesis.pdf.

[64] Alex Nichol et al. GLIDE: Towards Photorealistic Image Generation and Editing with

Text-Guided Diffusion Models. 2021. DOI: 10.48550/ARXIV.2112.10741. URL: https:

//arxiv.org/abs/2112.10741.

[65] Mehdi Noroozi and Paolo Favaro. “Unsupervised Learning of Visual Representations

by Solving Jigsaw Puzzles”. In: Computer Vision – ECCV 2016. Springer International

Publishing, 2016, pp. 69–84. DOI: 10.1007/978-3-319-46466-4_5. URL: https:

//doi.org/10.1007/978-3-319-46466-4_5.

[66] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu koray. “Neural Discrete

Representation Learning”. In: Advances in Neural Information Processing Systems. Ed.

by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. URL: https://proceedings.

neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf.

[67] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with

Contrastive Predictive Coding. 2018. DOI: 10.48550/ARXIV.1807.03748. URL: https:

//arxiv.org/abs/1807.03748.

[68] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with

Contrastive Predictive Coding. 2018. DOI: 10.48550/ARXIV.1807.03748. URL: https:

//arxiv.org/abs/1807.03748.

https://doi.org/10.1007/978-3-030-51264-4_5
https://doi.org/10.1007/978-3-030-51264-4_5
https://doi.org/10.1007%2F978-3-030-51264-4_5
http://www.cs.toronto.edu/~radford/ftp/thesis.pdf
http://www.cs.toronto.edu/~radford/ftp/thesis.pdf
https://doi.org/10.48550/ARXIV.2112.10741
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2112.10741
https://doi.org/10.1007/978-3-319-46466-4_5
https://doi.org/10.1007/978-3-319-46466-4_5
https://doi.org/10.1007/978-3-319-46466-4_5
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://doi.org/10.48550/ARXIV.1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://doi.org/10.48550/ARXIV.1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748

66 BIBLIOGRAPHY

[69] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach

et al. Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/

paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-

library.pdf.

[70] Deepak Pathak et al. “Context Encoders: Feature Learning by Inpainting”. In: 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 2536–

2544.

[71] Debleena Paul et al. “Artificial intelligence in drug discovery and development”. In:

Drug Discovery Today 26.1 (Jan. 2021), pp. 80–93. DOI: 10.1016/j.drudis.2020.10.

010. URL: https://doi.org/10.1016/j.drudis.2020.10.010.

[72] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine

Learning Research 12 (2011), pp. 2825–2830.

[73] Alec Radford et al. Learning Transferable Visual Models From Natural Language Supervi-

sion. 2021. DOI: 10.48550/ARXIV.2103.00020. URL: https://arxiv.org/abs/2103.

00020.

[74] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP Latents.

2022. DOI: 10.48550/ARXIV.2204.06125. URL: https://arxiv.org/abs/2204.

06125.

[75] Paul Renteln and Alan Dundes. “Foolproof : A Sampling of Mathematical Folk

Humor”. In: Notices of the American Mathematical Society. Vol. 52. AMS, 2005.

[76] Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. “On Learning with Integral

Operators”. In: Journal of Machine Learning Research 11.30 (2010), pp. 905–934. URL:

http://jmlr.org/papers/v11/rosasco10a.html.

[77] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2016. DOI:

10.48550/ARXIV.1609.04747. URL: https://arxiv.org/abs/1609.04747.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1016/j.drudis.2020.10.010
https://doi.org/10.1016/j.drudis.2020.10.010
https://doi.org/10.1016/j.drudis.2020.10.010
https://doi.org/10.48550/ARXIV.2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://doi.org/10.48550/ARXIV.2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
http://jmlr.org/papers/v11/rosasco10a.html
https://doi.org/10.48550/ARXIV.1609.04747
https://arxiv.org/abs/1609.04747

Bibliography 67

[78] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.

In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. DOI:

10.1007/s11263-015-0816-y.

[79] Andrew M. Saxe et al. “On Random Weights and Unsupervised Feature Learn-

ing”. In: ICML. 2011, pp. 1089–1096. URL: https://icml.cc/2011/papers/551_

icmlpaper.pdf.

[80] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press,

2001. ISBN: 0262194759.

[81] Amit Singhal. “Modern Information Retrieval: A Brief Overview.” In: IEEE Data Eng.

Bull. 24.4 (2001), pp. 35–43. URL: http://singhal.info/ieee2001.pdf.

[82] James Stewart. “Positive definite functions and generalizations, an historical survey”.

In: Rocky Mountain Journal of Mathematics 6.3 (Sept. 1976). DOI: 10.1216/rmj-1976-

6-3-409. URL: https://doi.org/10.1216/rmj-1976-6-3-409.

[83] Xiaoyuan Su and Taghi M Khoshgoftaar. “A survey of collaborative filtering tech-

niques”. en. In: Adv. Artif. Intell. 2009 (Oct. 2009), pp. 1–19.

[84] Niko Sünderhauf et al. “The limits and potentials of deep learning for robotics”.

In: The International Journal of Robotics Research 37.4-5 (Apr. 2018), pp. 405–420. DOI:

10.1177/0278364918770733. URL: https://doi.org/10.1177/0278364918770733.

[85] Richard S Sutton and Andrew G Barto. Reinforcement Learning. en. Adaptive Compu-

tation and Machine Learning series. Cambridge, MA: Bradford Books, Feb. 1998.

[86] Amirsina Torfi et al. Natural Language Processing Advancements By Deep Learning: A

Survey. 2020. DOI: 10.48550/ARXIV.2003.01200. URL: https://arxiv.org/abs/

2003.01200.

https://doi.org/10.1007/s11263-015-0816-y
https://icml.cc/2011/papers/551_icmlpaper.pdf
https://icml.cc/2011/papers/551_icmlpaper.pdf
http://singhal.info/ieee2001.pdf
https://doi.org/10.1216/rmj-1976-6-3-409
https://doi.org/10.1216/rmj-1976-6-3-409
https://doi.org/10.1216/rmj-1976-6-3-409
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.48550/ARXIV.2003.01200
https://arxiv.org/abs/2003.01200
https://arxiv.org/abs/2003.01200

68 BIBLIOGRAPHY

[87] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information

Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. URL:

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf.

[88] Pascal Vincent et al. “Stacked Denoising Autoencoders: Learning Useful Representa-

tions in a Deep Network with a Local Denoising Criterion”. In: Journal of Machine

Learning Research 11.110 (2010), pp. 3371–3408. URL: http://jmlr.org/papers/v11/

vincent10a.html.

[89] Martin J. Wainwright. High-Dimensional Statistics. Cambridge University Press,

Feb. 2019. DOI: 10 . 1017 / 9781108627771. URL: https : / / doi . org / 10 . 1017 /

9781108627771.

[90] Christopher Williams. “Computing with Infinite Networks”. In: Advances in Neural

Information Processing Systems. Ed. by M.C. Mozer, M. Jordan, and T. Petsche. Vol. 9.

MIT Press, 1996. URL: https://proceedings.neurips.cc/paper/1996/file/

ae5e3ce40e0404a45ecacaaf05e5f735-Paper.pdf.

[91] Blake Woodworth et al. “Kernel and Rich Regimes in Overparametrized Models”. In:

Proceedings of Thirty Third Conference on Learning Theory. Ed. by Jacob Abernethy and

Shivani Agarwal. Vol. 125. Proceedings of Machine Learning Research. PMLR, 2020,

pp. 3635–3673. URL: https://proceedings.mlr.press/v125/woodworth20a.html.

[92] Stanislaw Zaremba. “L’équation biharmonique et une class remarquable de functions

fondamentales harmoniques”. In: Bulletin International de l’Acadmie des Sciences de

Cracovie (1907).

[93] Jure Zbontar et al. Barlow Twins: Self-Supervised Learning via Redundancy Reduction.

2021. DOI: 10.48550/ARXIV.2103.03230. URL: https://arxiv.org/abs/2103.

03230.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://jmlr.org/papers/v11/vincent10a.html
http://jmlr.org/papers/v11/vincent10a.html
https://doi.org/10.1017/9781108627771
https://doi.org/10.1017/9781108627771
https://doi.org/10.1017/9781108627771
https://proceedings.neurips.cc/paper/1996/file/ae5e3ce40e0404a45ecacaaf05e5f735-Paper.pdf
https://proceedings.neurips.cc/paper/1996/file/ae5e3ce40e0404a45ecacaaf05e5f735-Paper.pdf
https://proceedings.mlr.press/v125/woodworth20a.html
https://doi.org/10.48550/ARXIV.2103.03230
https://arxiv.org/abs/2103.03230
https://arxiv.org/abs/2103.03230

Bibliography 69

[94] Chiyuan Zhang et al. Understanding deep learning requires rethinking generalization.

2016. DOI: 10.48550/ARXIV.1611.03530. URL: https://arxiv.org/abs/1611.

03530.

[95] Ruixiang Zhang et al. Learning Representation from Neural Fisher Kernel with Low-rank

Approximation. 2022. DOI: 10.48550/ARXIV.2202.01944. URL: https://arxiv.org/

abs/2202.01944.

[96] Shengjia Zhao, Jiaming Song, and Stefano Ermon. “Learning Hierarchical Features

from Deep Generative Models”. In: Proceedings of the 34th International Conference on

Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Ma-

chine Learning Research. PMLR, 2017, pp. 4091–4099. URL: https://proceedings.

mlr.press/v70/zhao17c.html.

[97] Roland S. Zimmermann et al. “Contrastive Learning Inverts the Data Generating

Process”. In: Proceedings of the 38th International Conference on Machine Learning. Ed. by

Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research.

PMLR, 2021, pp. 12979–12990. URL: https : / / proceedings . mlr . press / v139 /

zimmermann21a.html.

https://doi.org/10.48550/ARXIV.1611.03530
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://doi.org/10.48550/ARXIV.2202.01944
https://arxiv.org/abs/2202.01944
https://arxiv.org/abs/2202.01944
https://proceedings.mlr.press/v70/zhao17c.html
https://proceedings.mlr.press/v70/zhao17c.html
https://proceedings.mlr.press/v139/zimmermann21a.html
https://proceedings.mlr.press/v139/zimmermann21a.html

	Abstract
	Abrégé
	List of Figures
	Acknowledgements
	Introduction
	Learning Theory
	Neural Networks
	Feature Learning

	Reproducing Kernel Hilbert Spaces
	Historical Background
	Reproducing Kernel Hilbert Spaces
	Mercer's Theorem
	Why Use an RKHS?
	Learning in an RKHS
	Kernel Machines

	Short Survey of Kernels and Neural Networks
	Infinite Width Neural Networks
	Finite Width Neural Networks
	Overparameterized Learning

	Study of the Neural Feature Kernel
	Evaluating the RKHS Norm of a Neural Network
	Estimating Mercer's Decomposition of the Feature Kernel

	Conclusion
	Bibliography

