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Abstract 

Spatial navigation and path integration impairments are sensitive markers of pathological 

decline during the early stages of Alzheimer’s disease (AD). To investigate the neural circuit 

operations that may cause these navigational deficits, we conducted in-vivo electrophysiological 

recordings of spatially-tuned neurons in the medial entorhinal cortex (MEC) and region CA1 of 

the hippocampus in the J20 transgenic amyloid beta (Aβ) mouse model of early AD. Entorhinal 

grid cells showed reduced spatial periodicity, spatial stability, and synchrony with interneurons 

and head-direction cells. In contrast, the spatial coding of non-grid cells within the MEC, and place 

cells within CA1, remained intact. Grid cell deficits emerged at the earliest incidence of Aβ fibril 

deposition and correlated with impaired spatial memory performance in a path integration task.  

To further substantiate a link between disrupted grid coding and path integration deficits 

in J20 mice, we investigated if disrupted early AD grid coding reflects increased noise across the 

network or a specific deficit in path integration, perhaps via an impairment in the integration of 

self-motion cues. We found that J20 grid cells were spatially unstable towards the center of the 

square arena but not near the borders, had qualitatively different spatial components that aligned 

parallel to the borders of the environment, and exhibited impaired integration of distance travelled 

via reduced theta phase precession. Together, our results 1) support the viability of grid cell 

integrity and spatial navigation deficits as early markers of AD; 2) suggest that early AD grid cell 

impairments reflect a preferential alignment to the external world and likely cause path integration 

deficits in preclinical individuals via reduced integration of self-motion cues. 
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Résumé 

Les troubles comportementaux de navigation spatiale et d'intégration de chemin sont des 

marqueurs fiables du déclin pathologique au cours des premiers stades de la maladie d'Alzheimer 

(MA). Pour étudier les opérations du circuit neuronal qui peuvent causer ces déficits de navigation, 

nous avons effectué des enregistrements électrophysiologiques de neurones accordés spatialement 

dans le cortex entorhinal médian (MEC) et la région CA1 de l'hippocampe dans le modèle de souris 

transgénique amyloïde bêta (Aβ) J20. Les cellules de grille entorhinale ont montré une perturbation 

de la périodicité spatiale, de la stabilité spatiale et de la synchronie avec les interneurones et les 

cellules de direction de la tête. En revanche, le codage spatial des cellules non-grille dans le MEC 

et CA1 sont restés intacts. Les déficits des cellules de grille sont apparus à la première incidence 

du dépôt de fibrilles Aβ et ont coïncidé avec des performances de mémoire spatiale altérées dans 

une tâche d'intégration de chemin. 

Pour mieux établir un lien entre le codage de grille perturbé et les déficits d'intégration de 

chemin chez les souris J20, nous avons étudié si les déficiences précoces de la grille AD reflétaient 

une plus grande influence des repères externes par rapport aux signaux d'auto-mouvement, ou 

simplement une augmentation du bruit neuronal. Nous avons découvert que la géométrie 

environnementale exerçait une plus grande influence sur le codage des cellules de la grille que 

l'auto-mouvement. Les cellules de la grille J20 étaient spatialement instables vers le centre de 

l'arène carrée mais pas près des bords, présentaient une intégration altérée de la distance parcourue 

via la précession de la phase thêta et et étaient plus actives parallèlement aux bords. Ensemble, nos 

résultats 1) soutiennent la viabilité de l'intégrité des cellules de la grille et des déficits de navigation 

spatiale en tant que marqueurs précoces de la MA ; 2) suggèrent que les déficiences précoces des 

cellules de la grille AD reflètent un alignement préférentiel sur le monde extérieur et provoquent 
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des déficits d'intégration de chemin chez les individus précliniques via une intégration réduite des 

signaux d'auto-mouvement. 
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Contribution to Original Knowledge  

1. Grid cells are disrupted during the early stages of Aβ pathology in the J20 transgenic 

mouse model of AD. Adult J20 grid cells showed reduced spatial periodicity, spatial 

stability, and synchrony with interneurons and head-direction cells. Young J20 grid cells 

had a less severe impairment, and only showed reduced synchrony with interneurons and 

head-direction cells. (Note that both “young” and “adult” refer to the early stages of 

pathology between 3-7 months of age in this mouse model. Data were divided between 

“young” and “adult” to better capture longitudinal effects).  

2. In contrast, the spatial coding of other non-grid spatial cell types in the MEC and place 

cells in CA1 remained intact. 

3. Grid cell impairment coincides with worsened PI behavior in both young and adult J20 

mice, suggesting that grid cell integrity and PI performance are sensitive early markers of 

AD.  

4. Adult J20 grid cells were spatially unstable towards the center but not near the borders.  

5. Adult J20 grid cells exhibited reduced theta modulation and distance coding via theta phase 

precession.  

6. A two-dimensional Fourier analysis revealed that reduced hexagonal symmetry in adult 

J20 grid cells could be directly explained by increased spatial firing aligned parallel to the 

borders.  

7. Points 4-6 collectively suggest that early AD grid cell impairments reflect a preferential 

alignment to the external world and likely cause path integration deficits in preclinical 

individuals via reduced integration of self-motion cues. 
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Introduction 

AD accounts for 60-80% of dementia cases and affects over 6 million people aged 65 years 

and over in the USA alone [1]. Worldwide, over 55 million people live with AD and other 

dementias [2]. The estimated global healthcare cost attributable to dementia surpassed US$ 263 

billion in 2019 and represents a major economic burden [3]. To date, there is no cure for AD and 

interventional trials aimed at slowing the progression of AD are largely unsuccessful [4], in part 

due to the lack of sensitive markers that accurately identify the early stages of pathology [5]. 

Recent evidence in rodents and humans suggest that behavioral impairments in spatial navigation, 

and more specifically, path integration, are more sensitive markers of early pathology compared 

to traditional diagnostic approaches [5,6]. Path integration is a cognitive function involving the 

integration of self-motion cues to maintain one’s sense of location relative to a starting point in 

space [7,8]. Individuals at genetic risk of AD and those with mild cognitive impairment (MCI) 

display path integration impairments up to decades preceding late AD pathology [9–13]. 

Compared to other forms of cognitive assessments such as episodic memory tests, path integration 

tasks are also simpler and cheaper to implement in the clinic [5].  

However, it is unclear which neural codes underlie path integration impairments during 

early AD. Furthermore, the neural circuit operations impacted during the initial stages of pathology 

remain elusive in general. Spatial navigation and path integration deficits suggest that AD 

pathology exerts its earliest impact on the neural systems that support spatial memory which 

include the MEC and the hippocampus [14–16]. The MEC and hippocampus contain many 

spatially-tuned neurons that include, but are not limited to: grid cells, head-direction cells, non-

grid spatially selective cells and place cells, all of which may contribute to path integration deficits 

during early AD [17–26].  
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In Chapter 2, to investigate how these spatially-tuned populations are impacted during early 

pathogenesis, we conducted in-vivo electrophysiological recordings of spatially-tuned neurons in 

the MEC and region CA1 of the hippocampus in the J20 transgenic Aβ mouse model of early AD. 

To ensure that we conducted our recordings during the initial stages of pathology, we restricted 

our experimental timeline between 3-7 months of age – a period that precedes the deposition of 

widespread Aβ plaques that are indicative of late AD [27]. We found that entorhinal grid cells 

showed reduced spatial periodicity, spatial stability, and synchrony with interneurons and head-

direction cells. In contrast, the spatial coding of non-grid cells within the MEC, and place cells 

within CA1, remained intact. Grid cell deficits emerged at the earliest incidence of Aβ fibril 

deposition and coincided with impaired spatial memory performance in a path integration task. 

These results suggest that a disrupted grid cell network may cause path integration impairments 

during early AD.  

Yet, an alternative interpretation of these results is that grid cell disruption occurs due to 

impaired processing of external landmarks, and early path integration deficits result from 

pathological processes unrelated to grid cell coding or self-motion. In Chapter 3, to further 

substantiate a link between disrupted grid coding and path integration deficits in J20 mice, we 

investigated if disrupted early AD grid coding reflects increased noise across the network or a 

specific deficit in path integration, perhaps via an impairment in the integration of self-motion 

cues. We found that J20 grid cells were were spatially unstable towards the center of the square 

arena but not near the borders, had qualitatively different spatial components that aligned parallel 

to the borders of the environment, and exhibited impaired integration of distance travelled via 

reduced theta phase precession.  
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Together, our results 1) support the viability of grid cell integrity and spatial navigation 

deficits as early markers of AD; 2) suggest that early AD grid cell impairments reflect a preferential 

alignment to the external world and likely cause path integration deficits in preclinical individuals 

via reduced integration of self-motion cues. 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

Chapter 1: Literature Review 

1.1. The spatial navigation system in rodents 

Navigation is defined as the process of moving from one point in physical space to another 

[28]. It is not hard to imagine how navigation is crucial to survival, whether it be foraging for 

resources or prey avoidance. There are at least two broad categories of navigational strategies: the 

stimulus-response strategy and the place strategy. In the early 20th century, stimulus-response 

theories of learning posited that all responses of an organism are brought about and modified by 

external stimuli [29]. In the context of navigation, a stimulus-response strategy is rigid and 

involves performing a series of motor actions determined by associations to the layout of the 

physical environment. It is, in a sense, habit learning, where the taken trajectory is memorized. 

Stimulus-response strategies primarily rely on the caudate nucleus [30]. 

 In the same century, Edward C. Tolman argued against the idea that navigation, and more 

broadly, animal behavior, is nothing more than stimulus-response associations [31]. Instead, 

Tolman suggested that animals learn an environment by encoding it into a mental representation. 

This ‘cognitive map’ is formed by learning the routes and spatial relationships between locations 

and landmarks, which are then flexibly used to guide meaningful behavior. To test this theory, rats 

were trained in an apparatus to move in a fixed path via an alleyway from a start point to an end 

point containing a food reward (Figure 1). Upon successful learning of this task, rats were then 

placed in the sunburst maze which contained multiple isolated paths that connected to the starting 

point. The start and end points remained in the same position as the previous paradigm, with the 

alleyway now blocked. One of these arms was the shortest distance to reach the food. The authors 

noted that overall, rats had a higher tendency to select the shortest path despite no prior experience 

in the sunburst maze. A stimulus-response strategy would not allow the rats to perform as well as 
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they did due to the novelty of the testing conditions. Therefore, Tolman concluded that animals 

formed a mental representation of the environment which allowed them to adapt and plan novel 

routes, often referred to as a place strategy. 

 

 

 

 

 

 

 

 

 

 

The neural basis for a cognitive map was believed to involve the hippocampus following 

the discovery of place cells [19]. Extracellular single-cell recordings in region CA1 of the rat 

hippocampus revealed a group of neurons that only fired when the animal was active in specific 

locations of space. This finding provided the first evidence that a distinct population of neurons 

encoded an allocentric representation of the external world. This important discovery, along with 

lesion studies of the hippocampus, founded the ‘cognitive map theory’ of the hippocampus [23]. 

Later discoveries of spatially-tuned neurons in the MEC suggested that the neural basis for the 

Figure 1. Edward Tolman’s sunburst maze. 

(Left) A schematic of the training apparatus where rats learned to follow a stereotyped path 
from the starting platform to the goal location. (Right) A schematic of the sun-burst maze which 
contains multiple paths radiating from the starting platform.  

Figure taken from: Jeffery, K.J. et al. Studies of the hippocampal cognitive map in rats and 
humans. (2004). 
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cognitive map includes surrounding parahippocampal regions [17,18,32]. The following 

subsections introduce the general anatomy of the rodent entorhinal-hippocampal circuit before 

describing place cells in the hippocampus and other various spatially-tuned neurons in the MEC. 

1.1.1. Entorhinal-hippocampal circuitry 

 The thalamus and primary sensory cortices receive unimodal sensory inputs which higher-

order associational cortices then combine to form complex representations that are either unimodal 

or multimodal. The entorhinal cortex (EC) further processes these representations and projects to 

the hippocampus via the superficial layers. Hippocampal outputs project back to the deep layers 

of EC and then throughout the neocortex. This processing loop is not entirely hierarchical because 

brain regions can directly project to the hippocampus without the EC. But in general, the EC is 

analogous to a gateway that controls information flow into the hippocampus.  

The EC is a six-layered cortical structure that can be subdivided into the lateral entorhinal 

cortex (LEC) and MEC, which are both reciprocally connected. The main EC inputs come from 

the perirhinal and postrhinal (also known as parahippocampal cortex in primates) cortices that also 

share reciprocal connections. In turn, the perirhinal and postrhinal cortices receive unimodal and 

multimodal information from various neocortical regions that are anatomically segregated. The 

perirhinal cortex largely receives olfactory, and lesser amounts of auditory and visual information 

from the piriform, insular, frontal, and temporal cortices. In contrast, the postrhinal cortex receives 

visual and visuospatial information from the cingulate, retrosplenial, parietal, occipital and 

temporal cortices [33–35]. The perirhinal and postrhinal cortices project to both EC subdivisions, 

but preferentially target the LEC and MEC, respectively [33]. In parallel, the EC subdivisions 

projects back to the perirhinal and postrhinal cortices. The MEC is also reciprocally connected to 

the presubiculum and parasubiculum [36]. The presubiculum and parasubiculum are integration 
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sites of cortical and thalamic inputs. Some predominant ones include visual information from 

occipital cortices directly, or indirectly via the retrosplenial and postrhinal cortices, as well as 

idiothetic cues from thalamic nuclei [37–39]. Other minor direct cortical projections into the EC 

come from the amygdala, in addition to the retrosplenial, cingulate, posterior parietal, occipital, 

piriform, insular, and frontal cortices (Figure 2) [34,40]. 

Together, the perirhinal, postrhinal, entorhinal cortices, along with the presubiculum and 

parasubiculum form the parahippocampal region, which controls the bulk of cortical input flow to 

the hippocampus. Traditionally, the hippocampus was viewed as a unidirectional circuit whose 

outputs target the deep layers of EC. But the modern view is that individual hippocampal 

subregions also project directly to other parahippocampal areas. CA3, CA1 and the subiculum 

project to the presubiculum and parasubiculum. In parallel, CA1 and the subiculum project to the 

perirhinal and postrhinal cortices [41]. 

The hippocampus is a three-layered allocortical structure that comprises the dentate gyrus 

(DG), CA3, CA2, CA1 and the subiculum. Its C-shaped structure runs longitudinally along the 

septal-temporal pole, which starts from the septum (near the midline) and curves ventrally towards 

the temporal lobe (Figure 3). Alternatively, the septal-temporal pole is commonly referred to as 

the dorsal-ventral axis. The DG contains three sublayers: the molecular layer, the granule cell 

layer, and the polymorphic layer. The molecular layer contains the dendrites of granule cells. The 

granule layer contains the cell bodies of granule cells. Granule cells project to CA3 via axonal 

projections called mossy fibres from the polymorphic layer.  

CA3 contains five sublayers: the stratum lacunosum-moleculare, the stratum radiatum, the 

stratum lucidum, the stratum pyramidale, and the stratum oriens. Mossy fibers project to CA3 

pyramidal cell dendrites located in the stratum lucidum. The stratum pyramidale contains the cell 
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bodies of pyramidal cells. Pyramidal cell apical dendrites are in the stratum lacunosum-moleculare 

and the stratum radiatum, while their basal dendrites are in the stratum oriens. CA3 pyramidal cell 

axons recurrently target other CA3 pyramidal cells while also projecting to CA1 via the Schaffer 

collaterals. The distal and proximal parts of CA3 project to the proximal and distal parts of the 

stratum radiatum in CA1, respectively [41]. Between CA3 and CA1 is CA2. Aside from direct 

CA3-CA1 projections via the Schaffer collaterals, CA3 also connects to CA2 which then projects 

to CA1 [42]. The DG also directly projects to CA2 via the Schaffer collaterals [43]. The general 

anatomy of CA2 remains understudied compared to CA3 and CA1. CA1 has the same sublayers 

as CA3 except for the stratum lucidum. The proximal and distal parts of CA1 project to the distal 

and proximal parts of subiculum, respectively. CA1 and the subiculum also project to the deep 

layers of EC, thus completing the entorhinal-hippocampal loop. Backprojections in the 

hippocampus exist between CA3-DG, CA1-CA3, CA2-CA3 and subiculum-CA1 [41,44].  

Layers 2 and 3 of the EC projects to the hippocampus via the perforant and the 

temporoammonic pathways, respectively. Layer 2 targets DG, CA3, and CA2, while Layer 3 

targets CA1 and subiculum [41,44]. Layer 3 might also target CA2, but this remains controversial 

[43,44]. The LEC and MEC project to the superficial and middle third of the dentate molecular 

layer, respectively [45,46]. The LEC and MEC project to the superficial and deep regions of the 

stratum lacunosum-moleculare of CA3, respectively [47]. Both the MEC and LEC target distal 

CA3, whereas proximal CA3 mainly receives inputs from the DG [47]. Via the temporoammonic 

pathway, the MEC projects to proximal CA1 and distal subiculum, whereas the LEC projects to 

distal CA1 and proximal subiculum. In parallel, there are a subset of excitatory neurons in Layer 

2 of the MEC that project directly to CA1 [48]. CA1 and the subiculum project to Layers 5 and 6 

of the EC, in addition to other parahippocampal regions as previously noted. The subiculum also 
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directly projects to the thalamus and throughout the neocortex. There is a topological organization 

of reciprocal connectivity between the dorsolateral–ventromedial axis of the EC (both MEC and 

LEC) and the septal-temporal axis of the hippocampus. The dorsolateral part of EC targets the 

septal hippocampus whereas the ventromedial part of EC targets the temporal hippocampus.  

Although less studied, parahippocampal regions have direct projections to the 

hippocampus. The presubiculum and parasubiculum project to DG, CA3, CA1 and subiculum. The 

perirhinal cortex has connections to CA1 and subiculum, whereas the postrhinal cortex may project 

to all hippocampal subregions [41].    

The main parahippocampal projections are shown in Figures 4 and 5.    

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Main entorhinal cortex projections. 

The entorhinal cortex has lateral and medial subdivisions. The main brain areas that project into 
the LEC and MEC are shown in green and magenta, respectively. Figure taken from [40]. 
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Figure 3. Hippocampal circuit. 

(Left). The septal-temporal pole of the hippocampus starts at the septum and finishes at the 
temporal lobe. (Right) The hippocampus is made up of the dentate gyrus (DG), CA3, CA2, 
CA1 and the subiculum. Hippocampal subregions can be further divided into proximal (towards 
dentate gyrus) and distal regions (towards subiculum).  

Figure taken from Matsumoto, N. et al. (2019) The subiculum: Unique hippocampal hub and 
more. Neurosci. Res. 143, 1–12. 

Figure 4. General entorhinal-
hippocampal connectivity. 

Layers 2 and 3 of the entorhinal cortex 
project to the hippocampus via the 
perforant (DG, CA3, CA2) and 
temporoammonic (CA1 and subiculum) 
pathways, respectively.  

Granule cells in the DG receive inhibition 
from mossy cells and interneurons in the 
polymorphic layer. DG granule cells 
project to CA3 via axonal projections 
called mossy fibers. CA3 pyramidal cells 
have recurrent connectivity and project to 
CA1 via the Schaffer collaterals.  

Figure taken from Deng, W. et al. (2010) 
New neurons and new memories: How 
does adult hippocampal neurogenesis 
affect learning and memory? Nat Rev 
Neurosci. 11, 339–350. 
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Figure 5.  

Major parahippocampal 
projections. 

Arrows indicate projections, and 
double-sided arrows indicate 
reciprocal connectivity. Gray 
arrows indicate minor projections 
from perirhinal cortex to MEC 
and from postrhinal cortex to 
LEC.  
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1.1.2. Place cells 

Hippocampal place cells fire when the animal is in specific locations of space [19]. Place 

cells exist in CA1, CA3 and the subiculum, but only those in CA1 and CA3 will be described here. 

Different place cells have unique, and often non-overlapping firing fields in the same environment, 

providing no clear evidence for field location topography (Figure 6a) [49,50]. However, there is 

a field size topography where field sizes increase linearly from dorsal (< 1 meter in diameter) to 

ventral hippocampus (~10 meters in diameter) in rats [51–53]. In addition, while a place cell 

generally has 1 or 2 firing fields, additional fields can form in larger testing arenas [54]. These 

findings suggest that the cognitive map flexibly encodes space of varying scales and sizes. 

When recorded in vastly distinct environments (i.e., a circular versus a rectangular arena), 

place cells exhibit uncorrelated firing profiles. These changes include variable field locations and 

firing rates, a phenomenon referred to as ‘global remapping’ [55–62]. Place representations that 

result from global remapping are orthogonal, such that there is no obvious pattern between place 

maps across different environments (Figure 6b). Place cells may also be silent between 

environments or across days, the mechanisms for which remain unknown [57,63].  

Place cell representations anchor to an allocentric reference frame. Rotation of a cue card 

on the enclosure’s walls caused an equal rotation in the place cell representation [56]. Removal of 

the cue card resulted in variable responses where some place cells underwent a shift in field 

location, and other place cells were largely unaffected. Place cells may therefore attend to a variety 

of different sensory stimuli in the local environment to maintain their spatial coding [56]. In 

general, manipulation of non-spatial environmental features (i.e., two geometrically identical 

enclosures with different colors) causes place cells to undergo a less dramatic form of remapping 

called ‘rate remapping’ where place field locations remain the same but firing rates change (Figure 
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6b) [59]. Hippocampal neurons respond to many non-spatial dimensions such as behavioral goals, 

odors, auditory tones, and the passage of time [64–67]. How can the hippocampus be a cognitive 

map of physical space when its neurons encode non-spatial dimensions? On one hand, non-spatial 

features may be integral pieces to the overall representation of a space. Alternatively, the 

hippocampus might have evolved to perform higher level function such as encoding episodic 

memories [68].  

While early studies suggested that place cell representations were generally stable across 

days and only underwent gradual changes across time, these findings could have be biased by 

small sample sizes [69–71]. Large-scale calcium imaging of hundreds of place cells 

simultaneously revealed that the ensemble representation of the same environment involves a 

unique subset of cells across days [63]. Only 15-25% of place cells fired day-to-day, meaning that 

the cell identity of 75-85% of the place ensemble was unique. Yet, despite this variability, the 

number of active place cells on any given day was sufficient to map the entire environment (Figure 

6c). This coding scheme suggests that the hippocampal map adequately encodes space as well as 

changes in experience. A more recent calcium imaging study showed that place cells in CA3 are 

more stable day-to-day than those in CA1 [72].  
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Figure 6. Place cell firing properties. 

(a) Different place cells have unique, and often non-overlapping firing fields in the same 
environment, providing no clear evidence for field location topography. Firing plots shown are 
rate maps, where warmer colors indicate higher firing rates. (b) Global remapping: two unique 
populations of place cells are active in two vastly different environments. Place representations 
are orthogonal, meaning there is no obvious pattern between a cell’s representation in one 
environment versus the other. Rate remapping: manipulation of non-spatial features of an 
environment causes changes in the existing place cell population’s firing rates. (c) Large-scale 
calcium imaging of place cells as the animal runs on a linear track across days. The y-axis of 
each matrix represents cells sorted by their firing position on the track, and the x-axis represents 
position on the track. Note that a different place cell ensemble is active on each day of 
recording, yet the number of total place cells active on a given day was sufficient to map the 
entire linear track. Figure c taken from [63]. 

Figures a and b are taken from Latuske, P. et al. (2017) Hippocampal remapping and its 
entorhinal origin. Front. Behav. Neurosci. 11, 253. 
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1.1.3. Head-direction cells 

Head-direction (HD) cells were first recorded in the dorsal presubiculum and integrate 

vestibular inputs to encode the animal’s heading direction [73–75]. The HD circuit spans multiple 

brain regions including the thalamic nuclei, mammillary bodies, presubiculum, parasubiculum, 

retrosplenial and entorhinal cortices [76], including the MEC where grid cells are found. Each HD 

cell is tuned to a range of directions, referred to as the directional firing range (Figure 7a). The 

preferred firing direction is the heading direction for which a given HD cell maximally fires. For 

all remaining directions in range, the cell fires at lower rates. Interestingly, during development, 

HD cells mature faster than any other spatially-tuned neuron in rats [77,78]. The presence of a 

directional signal before place cells form spatial representations suggests that the HD system plays 

a vital role in navigation.  

Similar to place cells, cue card rotations caused an equal rotation in the preferred firing 

direction of HD cells (Figure 7b) [74]. Removal of the cue card caused an unpredictable shift in 

directional tuning. HD cells also integrate self-motion cues aside external landmarks. Vestibular 

lesions impaired directional selectivity [75] and HD firing is preserved in complete darkness or 

when the animal is blindfolded (although with a gradual decrease in stability) [79]. Responses to 

both external landmarks and body-based stimuli suggest that HD cells provide an internal sense of 

direction relative to the outside world to support navigation.  

HD cells also undergo global remapping in a novel environment by changing their 

preferred firing direction (without changes in tuning width). However, the relative difference in 

preferred firing direction between HD cells is largely preserved across environments, 

demonstrating an internal consistency between HD cells at the population level (Figure 7c) [74].  
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Figure 7. Head-direction cell firing properties. 

(a) A HD cell’s firing rate is modulated by the animal’s heading direction. (b) Plot shows the 
change in preferred firing direction of a HD cell during a cue card rotation experiment. The 
solid line represents the baseline recording (with a preferred firing direction around 210 
degrees). The dash-dot line represents a 90 degree rotation of the cue card, which caused an 
equal shift in the preferred firing direction (now around 120 degrees). The line with two short 
dashes represents the post-manipulation recording where the cue card was returned to its 
original position (causing the preferred firing direction to revert back to 210 degrees). (c) (Top-
left and bottom-left) Plots show the change in preferred firing direction of two simultaneously 
recorded HD cells in two different environments (standard and rectangle). Despite a global 
remapping of preferring firing direction of the two HD cells, their relative difference is 
preserved. (Top-right and bottom-right) Plots communicate the same finding, but for a cue card 
rotation experiment. Figures taken from [73, 74]. 
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1.1.4. Grid cells 

Grid cells have multiple firing fields that form a periodic hexagonal array that spans two-

dimensional space (Figure 8a) [17,32]. This periodic code is theorized to provide a universal 

metric for space by encoding regular intervals between spatial locations. Grid cells were first 

recorded in the MEC, but also exist in the pre- and parasubiculum of rodents [80]. The motivation 

for investigating spatial coding in the MEC originated from a study that investigated CA1 place 

coding following CA3 lesions [81]. Removal of this intrinsic hippocampal connection did not 

affect CA1 place representations, suggesting that the spatial signal was external and possibly in 

the EC which is one synapse upstream.  

Grid cells have three defining spatial coding properties: scale, orientation, and phase 

(Figure 8b). Grid scale is the spacing between firing fields. Much like place cells, there is a 

topographic organization of grid field size and scale along the dorsal-ventral axis of the MEC 

[17,82]. Grid orientation refers to the direction of the grid axes relative to the environmental 

boundaries. Grid phase is the offset of the grid map in the x-y plane. Depending on the size of the 

environment, a couple of grid cells with differing phases could sufficiently map the entire space.   

Both grid scale and orientation have a modular organization. Large-scale recordings of grid 

cells in rats revealed that there are at least 4 modules of grid scale where grid cells within each 

module share the same scale but not phase (Figure 8c) [82]. Each module’s scale increases by a 

multiplicative factor of ~1.42 from the previous. Individual modules behaved differently to 

environmental compression (i.e., by moving a wall) and grid cells within a module acted 

coherently [82]. In terms of grid orientation, there are at least two subpopulations of grid cells 

whose initial spatial axes are offset by 30° or 60° (with a small offset of ~7.5° from the borders) 

from the east wall of the square environment [82–84].  
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Grid cells undergo global remapping in vastly different environments [17]. In contrast to 

the orthogonal remapping of place cells, grid scale and orientation remain the same between 

contexts, with the only change being grid phase [85] (Figure 8d). In other words, periodicity 

remains intact and only shifts in absolute spatial coordinates. The relative phase relationship 

between grid cells remains the same across different environments, offering further evidence of 

internal consistency at the population level [82,85]. Much like place cells and HD cells, grid 

representations are modulated by rotation of an environmental cue card [17]. Grid maps are 

maintained in complete darkness (more so in rats than in mice) and some are modulated by the 

animal’s heading direction and running speed [17,18,86,87]. Grid cells therefore integrate self-

motion cues and are continuously updated by allocentric cues. 

Rate remapping in grid cells causes changes in the firing rate of individual grid fields, 

implying that grid cells do not provide a pure context-invariant metric of space [88]. Grid cells 

also respond to non-spatial dimensions, again suggesting that the neural mechanisms supporting 

spatial navigation may be more generally evolved for episodic memory.  

Grid patterns are slightly elliptical and not perfectly hexagonal. Grid axes have a small 

offset of ~7.5° from the borders, thus causing a shearing-induced rotation of the grid’s hexagonal 

symmetry [84]. Theoretically, it has been proposed that a 7.5° offset from the borders reduces 

coding error by maximizing orientation solutions when sensory cues are ambiguous and do not 

reliably signal the animal’s location [89]. Therefore, environment geometry is a strong grid anchor, 

which is further revealed in irregular geometric enclosures. The grid pattern is distorted in 

trapezoidal enclosures, further suggesting that grid patterns are not purely context-invariant but 

also reflect features of the local environment (Figure 8e) [90].  
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Figure 8. Grid cell firing properties. 

(a) The first two rows are dorsal MEC grid cells (smaller spacing between fields), and the last 
two rows are ventral MEC grid cells. Each row shows the trajectory map, rate map and rate 
map autocorrelation. The trajectory map shows the animal’s trajectory (black) and location of 
cell firing (red). The rate map is a color-coded trajectory map where warmer colors indicate 
higher firing rates. The autocorrelation is taken by shifting the rate map across the x and y 
dimensions. Highly periodic grid cells have a prominent hexagonal pattern. (b) Schematics of 
grid scale, grid orientation, and grid phase. (c) (Top) Grid cells recorded along the dorsal-
ventral axis have grid spacing organized in discrete modules. (Bottom) Plot shows the tetrode 
depth at which each grid cell was recorded. (d) (Left) Rate maps of three grid cells recorded in 
two different environments (A and B). (Right) The cross-correlations of rate maps from the 
same environment (A vs. A’), and from different environments (A vs. B). Note that the cross-
correlation of A vs. B is just shifted relative to A vs. A’, indicating that grid scale and orientation 
remains the same during global remapping. (e) A grid cell recorded in a square environment 
(left column) and in a trapezoid (right column). Note the greater distortion of hexagonal 
symmetry in the autocorrelation of the trapezoid recording. Figures taken from [17, 82, 85, 90]. 

Figure b is taken from Moser, E.I. et al. (2014) Grid cells and cortical representation. Nat. Rev. 
Neurosci. 15, 466–481. 
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1.1.5. Other spatially-tuned MEC cells 

Border cells: They are found in the MEC, subiculum, presubiculum and parasubiculum 

[80,91,92]. These cells fire close to boundaries (single or multiple) in the environment (Figure 

9a). Most of these cells fire right next to borders, implying a spatial code for the geometric shape 

of the environment. A subset of these cells fires a certain distance away from borders and are called 

‘boundary-vector cells’.  

Speed cells: In addition to heading direction, some grid cells are modulated by movement speed 

[18]. Speed cells in the MEC encode running speed as a function of firing rate (Figure 9b) [93]. 

The modulation of firing rate by running speed in MEC speed cells is a mix of both linear and non-

linear relationships [94]. 

Object-vector cells: These cells are found in the MEC and fire when the animal is at a specific 

distance and direction away from an object (Figure 9c) [95]. These cells provide evidence that the 

MEC performs vector computations between locations.  

 

 

 

 

 

 

 

 

Figure 9. Other spatially-modulated cell types in the MEC. 

(a) (First row) A border cell fires to existing boundaries of an environment, in addition to added 
boundaries (middle panel). (Second row) Another border cell fires to boundaries irrespective 
of environmental shape. (b) A speed cell’s firing rate is modulated by the running speed of the 
animal on a linear track. (c) An object-vector cell’s firing is modulated by the presence of an 
object (white dot). Moving this object in space changes the cell’s firing representation. Warmer 
colors in rate maps indicate high firing rates. Figures taken from [91, 93, 95]. 
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1.2. Path integration 

Path integration is a cognitive function whereby self-motion cues including optic flow, 

vestibular feedback, proprioception, and motor efference copy combine with external landmarks 

to support navigation [6,7]. The process is automatic and continuous, persisting whether landmark 

information is available or not [96,97]. If landmark information is available, then path integration 

involves a mix of largely visual and self-motion cues. If landmark information is absent, then path 

integration primarily involves vestibular and proprioceptive cues. At the behavioral level, path 

integration is often defined as the computation of the shortest path from point A to B in the absence 

of external landmarks. Classic path integration experimental paradigms in rodents and humans are 

homing tasks where the subject must compute the shortest vector from a current position towards 

a goal location when external landmark information is unavailable (Figure 10a). This homing 

vector can be computed in complete darkness but contains some degree of angular error, 

demonstrating that path integration is susceptible to noise in the absence of external cues [7].  
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It was shown in desert ants that the amount of error accumulation approximated homing 

vector computation (Figure 10a) [98,99]. Ants were trained to navigate from a refuge nest to an 

artificial feeder. The complexity of this outbound path was experimentally controlled. Upon 

reaching the feeder, the ants were transferred to a different test environment in which they 

immediately moved in what they believed was the direction of the refuge. Importantly, the 

direction of this homing vector can be approximated by the angular turns taken throughout the 

outbound path [98]. Similarly, longer distances covered on the outbound path also led to greater 

uncertainty on the return [99,100].  Popular rodent and human path integration task designs follow 

the same experimental principles. Rodent tasks commonly involve a food-foraging scenario in 

complete darkness where the animal first leaves a refuge to forage for food in an open arena [5]. 

Upon finding the food, the animal must then return to the starting refuge for consumption. The 

angular offset between the ideal homing vector and the real homing path is a behavioral readout 

of the degree of error accumulation (Figure 10b). In parallel, human path integration is commonly 

assessed using the triangle completion task where blindfolded subjects are initially guided along 

two straight segments of a triangular shape from a starting location [5]. The subjects must then 

navigate back to the start point by themselves and the degree to which they miss the target location 

is quantified as the degree of path integration error (Figure 10c). 

Figure 10. Homing vector computation by path integration. 

(a) A schematic of an ant’s foraging trip. The outbound path from the nest (N) to a food item 
(F) is depicted by solid line, and the return path is shown by the stippled line. The outbound 
path here is 354.5m and the homing path is 113.2m. Note that the homing path is relatively 
straight like a vector but has some degree of angular error. (b) A rodent food-foraging task in 
complete darkness. The initial heading angle between the ideal homing path and the actual 
homing path is a measurement of path integration error. (c) A triangle completion task for 
human subjects. The absolute distance between the end points of the ideal homing path and the 
actual homing path is a measurement of path integration error. Figures taken from [5, 98]. 
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1.2.1. Neural basis of path integration in rodents 

The hippocampus and MEC are two key regions that support path integration. Hippocampal 

and medial entorhinal lesions in rodents disrupted path integration performance, while the MEC 

also contains neurons that encode distance travelled on a linear track in near-darkness [101–105]. 

Beyond the hippocampus and MEC, structural and functional MRI studies in humans reveal the 

importance of the retrosplenial cortex, the parahippocampal (postrhinal in rodents) cortex, the 

medial prefrontal cortex, the cerebellum, as well as the connectivity between the medial temporal 

lobe, parietal, and prefrontal cortices for path integration performance [5]. Therefore, while the 

following subsections focus on hippocampal and entorhinal spatially-tuned neurons, path 

integration is more nuanced and involves the integration of multiple sources of information across 

a distributed brain network. 

Place cells encode space in response to self-motion cues, in addition to landmark information 

[106–111]. Place fields not only persist in darkness, but do not reliably form without 

proprioceptive inputs via active movement [107,110]. In path integration tasks conducted on linear 

tracks, some place cells encoded the fixed distance to a moving start location [108,111]. In 

particular, when external cues are unreliable, place cells rely on self-motion cues to maintain 

accurate spatial coding. For instance, if rats are disoriented prior to being placed in an open arena, 

then simultaneously recorded place cells and thalamic HD cells were not reliably anchored to an 

external cue card [106]. Between multiple recording sessions in the same environment following 

disorientation, rotations of the cue card did not result in an equal rotation of place fields and HD 

directional selectivity in disorientated animals. In some cases, place cells and HD cells often 

corotated their firing fields away from the cue card and were strongly coupled, suggesting that 

animals relied more on internal direction instead of external landmarks [106]. Experimental control 
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of the animal’s internal direction is achievable by masking external cues in the open arena [109]. 

When landmark information is unavailable, rotation of the environment with the animal caused an 

equal rotation in place fields. In contrast, rotation of the environment alone did not cause corotation 

in place fields, whereas rotation of the animal alone almost always did. These results suggest that 

place cells utilize both landmark and self-motion cues depending on availability [109].  

 Grid cells persist in darkness (more so in rats than in mice), stabilize quickly in novel 

environments, and lose their spatial periodicity when self-motion information is eliminated during 

passive transport of the animal [17,86,87,112]. Yet, in contrast to the unstable and orthogonal 

nature of place cell representations across contexts, grid cells consistently encode all contexts 

across days while also maintaining the same spatial scale and spatial phase relationships with other 

grid cells between environments [56,63,85]. Furthermore, some grid cells are modulated by 

heading direction and movement speed, making them ideal candidates to encode self-motion 

[18,26]. The first causal study linking grid cells to PI performance demonstrated that genetic 

knockdown of NMDA glutamate receptors caused a disruption of grid cell spatial periodicity 

which resulted in impaired path integration performance [113]. In contrast, place cells in the 

hippocampus and spatially-selective cells in the MEC remained unaltered. Prior to this report, it 

was also shown that mice lacking GluA1-containing AMPA receptors had disrupted grid cell 

spatial coding which correlated to impaired path integration performance [114]. These lines of 

evidence suggest that grid cells play an important role in path integration, and the following 

subsections describe how they could do so by integrating hippocampal inputs, as well as 

information about heading direction and movement speed.  
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1.2.2. Grid cells and the hippocampus 

Grid cells require excitatory feedback inputs from the hippocampus [115]. Temporal 

inactivation of the hippocampus resulted in a gradual loss of grid cell spatial periodicity, 

suggesting that place cells may contribute to path integration by providing an important spatial 

signal to maintain grid coding. In support of this view, developmental studies in rats showed that 

grid cells mature the slowest relative to place and HD cells [77,78]. Prior to the emergence of an 

adult-like grid cell network, place cells developed key spatial coding properties and path 

integration capabilities that could support grid coding [111,116,117]. That being said, place cell 

spatial coding was initially concentrated along the environmental borders and only reliably 

encoded the center after maturation of the grid cell network [117]. Reduced spatial coding in the 

center where landmarks are relatively scarce compared to the borders implies limited path 

integration function by place cells without inputs from grid cells. Therefore, while place cells 

respond to self-motion, their predominant role in path integration may be to provide feedback 

signals to the MEC regarding associations between externals landmarks that update the grid cell 

path integrator [56,85,118]. In parallel, the context-invariant properties of grid cells may 

complement place coding by providing inputs to the hippocampus that are self-motion dominant 

[17,85,118]. In line with this theory, within virtual reality environments where velocity gain 

manipulations decouple external landmarks from the animal’s movements, place cell and grid cell 

activities were predominantly influenced by visual and self-motion, respectively [119].  

1.2.3. Grid cells and orientation coding 

A link between HD cells and path integration was reported in a food-foraging task in 

complete darkness [120]. On each trial, the rat was let out from a refuge into an open arena to 

randomly forage for a food pellet. Upon finding the food, the mouse then returned to the refuge 
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for consumption. The authors found that the initial heading direction on inbound paths correlated 

to an equal angular shift in the preferred firing direction of simultaneously recorded HD cells. This 

association between perceived orientation error by the HD network and behavioral performance 

confirms a link between HD cells and path integration.  

Another study confirmed a causal role of the HD network for path integration performance 

[121]. The authors optogenetically inactivated the nucleus prepositus which relays vestibular cues 

to the HD network. Inactivation caused HD cells in the anterior thalamic nucleus to become 

unstable only in the dark when no visual cues were available. Importantly, path integration 

performance in a food-foraging task in complete darkness was also impaired.  

At the physiological level, inactivation of HD cells in the anterior thalamic nucleus 

impaired grid spatial periodicity, demonstrating that integration of vestibular feedback by HD cells 

is necessary for grid cell coding [122]. Of interesting note, during inactivation of the hippocampus, 

the gradual loss of grid cell spatial periodicity was accompanied by increased HD tuning in 74% 

of non-directional grid cells and unaffected HD tuning in conjunctive grid-by-head-direction cells 

[115]. These results suggest that under circumstances when associations between external 

landmarks no longer reliably update the grid path integrator (or at the very least, when grid spatial 

coding is perturbed), grid cells rely on vestibular feedback to sustain some baseline level of activity 

[115,118].  

1.2.4. Grid cells and speed coding 

In addition to heading direction, some grid cells are also modulated by translational 

movement speed. The discovery of MEC speed cells that encode movement speed as a function of 

firing rate suggests a dedicated entorhinal circuit that tracks how fast the animal moves [93]. 

Movement speed positively modulates theta oscillation (4-12 Hz) firing frequency in the 
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hippocampus and MEC [123–127]. Disruption of theta oscillations via inactivation of the medial 

septum impaired grid spatial periodicity [128,129], but increased the strength of firing rate 

modulation by movement speed in grid cells [94]. Similar to how grid cells exhibited stronger 

directional tuning during inactivation of the hippocampus [115], speed inputs appear to exert a 

greater influence over grid cells when spatial periodicity is impaired. In contrast, HD cells did not 

show any changes in speed modulation during septal inactivation and conjunctive grid-by-head-

direction cells maintained their directional tuning [94,128]. Preservation of the HD network 

suggests that vestibular and proprioceptive information streams in the MEC independently 

contribute to grid coding. Similarly, grid cell spatial periodicity was impaired when speed 

modulation of theta rhythmicity was abolished via passive transport of the animals across an arena 

during a food-foraging task, but HD cells remained unaffected [112].  

During inactivation of the septum, interneurons also had increased firing rate modulation 

by movement speed. Part of the speed input to grid cells might originate from fast-spiking 

parvalbumin-expressing (PV) interneurons in the MEC, a portion of which are modulated by 

movement speed [93,130,131]. PV interneurons may convey speed information via their recurrent 

connectivity with a subset of grid cells [130,132]. Direct silencing of MEC PV interneurons 

impaired grid spatial periodicity and diminished speed coding in speed cells [133]. The loss of grid 

spatial coding might therefore result from faulty integration of proprioceptive-based self motion 

by interneurons, which would be detrimental to path integration behavioral performance. In 

support of this view, septal lesions disrupted path integration performance in a food-foraging task, 

where distance estimates derived from self-motion were impaired but directional estimates were 

moderately spared [134,135].  
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Beyond rodents, single-unit recordings of place and grid cells have been conducted in 

humans [20,21]. Functional magnetic resonance imaging (fMRI) has identified place, grid and 

HD-like patterns, highlighting similar path integration mechanisms across species [20,136,137]. 

That being said, self-motion information alone cannot maintain an accurate path integration system 

which must rely on external cues as corrective mechanisms [7,8]. External cues may be landmarks 

and boundaries, but also multisensory cues (e.g., visual, auditory, olfactory, etc.) which spatially-

tuned cells integrate alongside self-motion information [17,56,65,66,85,138].  

1.3. Alzheimer’s disease 

AD is a neurodegenerative disorder that accounts for 60-80% of dementia cases, with 

symptoms involving progressive memory loss, cognitive impairment, and functional decline. The 

first case of AD was reported in 1901 by the German physician, Alois Alzheimer [139]. At the 

time, Alzheimer noted that his patient, Auguste Deter, showed many clinical symptoms associated 

with the disease today. After Auguste passed away in 1906, her brain was examined by Alzheimer 

and colleagues who identified the first presence of amyloid plaques and neurofibrillary tangles 

(NFTs). Today, Aβ plaques and NFTs are the most common pathological markers of AD [140]. 

Yet, the exact cause of AD in the general population remains unknown, spurring a number of 

alternative hypotheses beyond amyloidopathy/tauopathy and numerous risk factors that may not 

be mutually exclusive [141–144].   

Much of the molecular understanding of AD comes from the study of Aβ within the last 

four decades. In 1984, Aβ was first isolated from amyloid fibrils of AD patients and characterized 

as a 4.2 kiloDalton peptide [145]. Glenner and Wong theorized that these peptides may be the 

proteolytic cleavage products of a larger precursor protein. In 1985, this Aβ peptide was 

determined to be 40-42 amino acids long and found in amyloid plaques from AD patients [146]. 
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In 1987, the precursor protein from which the Aβ peptides were derived was cloned and 

characterized [147–150]. This amyloid precursor protein (APP) is a cell-surface receptor that is 

cleaved via two pathways (Figure 11) [151]. The non-amyloidogenic pathway involves a chain of 

proteolytic cleavages by α-secretase and γ-secretase, resulting in harmless peptides that do not 

form plaques. On the other hand, the amyloidogenic pathway involving β-secretase and γ-secretase 

releases Aβ peptides (also called monomers) into the extracellular space. There, the monomers 

form toxic oligomers which eventually aggregate into Aβ plaques. The amyloid hypothesis posits 

that the release of Aβ peptides triggers a series of events that eventually causes late-stage AD 

[140,152,153].   

 

 

 

 

 

 

 

 

 

The first APP mutation discovered in 1990, APP E693Q (Dutch), caused increased amyloid 

deposition in a Dutch family with inherited cerebral hemorrhage [154]. Shortly after, the first 

mutation to cause early-onset familial AD was characterized as APP V717I (London) [155]. 

Figure 11. The amyloidogenic pathway.  

A schematic of APP cleavage. The non-amyloidogenic pathway involves a chain of proteolytic 
cleavages by α-secretase and γ-secretase. The end products are P3 and AICD which do not form 
plaques. The amyloidogenic pathway involves β-secretase and γ-secretase and releases Aβ 
peptides/monomers. These monomers aggregate to form oligomers, and eventually plaques. 
Figure taken from [148]. 
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Variants of this mutation occur on the C-Terminal of the Aβ domain and result in longer Aβ 

peptides being released into the extracellular space. Specifically, this results in increased Aβ42 

(Aβ peptides that are 42 amino acids long) levels while Aβ40 levels do not change [156,157]. A 

number of other autosomal-dominant APP mutations exist, and while each cause specific changes, 

the general end result is an overaccumulation of Aβ peptides [158]. Besides APP, two other genes 

that cause early-onset familial AD are presenilin 1 and 2 (PSEN1, PSEN2) [159–161]. 

Mutations APP, PSEN1, and PSEN2 determine those at risk of early-onset familial AD. 

Their predictability offers a powerful advantage for researchers to study independent contributions 

of each mutation. One method is the introduction of APP mutations into the genome of transgenic 

animals to mirror amyloidopathy seen in AD patients. One of the first successful models was the 

PDAPP mouse that had the APP V717F (Indiana) mutation and exhibited many pathological 

hallmarks of AD [162]. To date, there are numerous APP mouse models and the extent to which 

these mice recapitulate actual pathology in human patients is continuously debated [163]. No 

animal model of a disease is perfect, and multiple AD mouse lines should be studied in parallel. 

On the other hand, early-onset familial AD accounts for less than 5% of all AD cases. Most 

AD patients have a form of late-onset AD that is referred to as ‘sporadic AD’. Unlike familial AD 

that generally occurs prior to 60 years of age, sporadic AD affects patients after 60 years of age 

and arises due to a mix of genetic and environmental factors. Furthermore, mutations in APP, 

PSEN1, and PSEN2 do not occur in sporadic AD patients, although there is some evidence in larger 

cohorts suggesting that this is not entirely true [164].  

The most important genetic risk factor of sporadic AD is APOE which encodes the lipid 

transporter apolipoprotein E (ApoE). In the brain, ApoE plays a pivotal role in transporting lipids 

such as cholesterol to neurons. Humans have one of three versions of APOE polymorphic alleles:  
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APOE-ε2, APOE-ε3, and APOE-ε4. Those with the E4 polymorphic allele are at increased risk 

of developing sporadic AD and an earlier onset [165,166]. On average, 25% of the healthy 

population (Aβ-negative) carried one or two copies of APOE-ε4. In contrast, 64% and 66% of Aβ-

positive MCI and AD subjects were positive for APOE-ε4, respectively [167]. No other gene has 

been as extensively studied as APOE-ε4, and large-scale genome-wide association studies may 

prove useful in identifying other important genes that contribute to sporadic AD [168]. While there 

are distinctions between familial and sporadic AD such as age onset and environmental 

contributions, both forms of disease exhibit similar major neuropathological features including Aβ 

and NFTs [169]. In this sense, characterizing amyloidopathy in the context of familial AD (such 

as in transgenic APP mouse models) will improve the understanding of sporadic AD.  

1.3.1. Amyloid hypothesis 

The discoveries involving Aβ peptides, the gene encoding APP located on chromosome 

21, the neurotoxicity of Aβ, and the first APP mutation linked to increased amyloid deposition 

were four key discoveries that laid the foundation for the amyloid hypothesis [145–150,154,170]. 

This theory postulates that the aggregation of these peptides (either soluble Aβ oligomers or Aβ 

plaques) gives rise to a series of events (neuronal death, synaptic dysfunction, neuroinflammation 

and interactions with tau proteins to form tangles) that ultimately result in AD (Figure 12) [171]. 

While there have been several changes to the hypothesis over the decades, the central assumption 

remains that the accumulation of Aβ is the key initiator of events that later trigger clinical AD. 

Mutations in APP, PSEN1, and PSEN2 lead to Aβ overaccumulation in early-onset AD 

patients by directly influencing how APP is cleaved via the amyloidogenic pathway. The exact 

mechanisms for Aβ accumulation in sporadic patients are less clear, but they involve APOE-ε4 

[165,172]. One study suggests that APOE-ε4 does not affect Aβ production, but rather hinder Aβ 
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clearance [173]. The authors created multiple mouse lines that expressed human APP crossed with 

different human APOE isoforms (APOE-ε2, APOE-ε3, and APOE-ε4). Mice with the APOE-ε4 

gene showed the most amount of Aβ clearance, well before the deposition of Aβ plaques. 

Furthermore, the degree of Aβ synthesis via APP cleavage did not change between the different 

mouse strains, implying that APOE isoforms do not contribute to Aβ production. These results 

support existing evidence that suggest familial AD is caused by increased Aβ production, and 

sporadic AD is, in part, due to reduced Aβ clearance [157,174]. In both cases, the 

overaccumulation of Aβ brings forth a cascade of events that include synaptic dysfunction, 

neuroinflammation and the formation of NFTs (Figure 12). The eventual consequences are 

widespread synaptic loss and neuronal death which lead to dementia. 
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One significant addition to the hypothesis has been the focus on soluble Aβ oligomers. It 

has been shown that plaque load weakly correlates to cognition, whereas synapse loss and levels 

of soluble Aβ are better predictors [175,176]. Furthermore, plaques are also present in cognitively 

normal adults, although to a lesser extent [177]. Plaques may therefore be the inevitable result of 

earlier pathogenesis or normal aging. In contrast, soluble Aβ deposition precedes clinical AD by 

as early as decades and induces a host of AD symptoms in the absence of plaques [178–180].  

1.3.2. Tau hypothesis 

In 1986, phosphorylated and aggregated tau proteins were identified as the main protein 

compositions of NFTs in AD brains [181]. The tau hypothesis states that abnormal 

phosphorylation and aggregation of tau are the main initiators of AD. Tau is a microtubule-

associated protein that is commonly found in the axons and participates in microtubule dynamics. 

Hyperphosphorylated tau dissociates from microtubule assemblies and aggregates into oligomeric 

structures, followed by paired helical filaments, and finally NFTs intracellularly, or neuropil 

threads (NTs) extracellularly. Similar to the amyloid cascade, the propagation of tauopathy 

eventually leads to synaptic dysfunction, neuroinflammation and neuronal loss [182].  

  While amyloidopathy and tauopathy are often competing hypotheses, it remains unclear if 

they are independent of the other. The Braak staging system (next section) shows that Aβ and tau 

accumulate in different brain regions [183]. Aβ initially deposits in associational cortices, whereas 

tau first accumulates in the transentorhinal region [183]. It seems unlikely that Aβ causes tauopathy 

Figure 12. The amyloid cascade hypothesis.  

The buildup of Aβ in patients with trisomy 21 and/or early-onset familial AD is caused by 
genetic mutations that influence APP cleavage. In sporadic patients, the mechanisms are less 
clear but involves APOE-ε4. The aggregation of Aβ monomers into oligomers and plaques 
causes a series of downstream events that result in the classic symptoms of dementia. Figure 
taken from [168]. 
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if both pathologies do not start in the same brain regions. Furthermore, tauopathy can progress via 

Aβ-independent regulators in the absence of amyloidopathy, one of which is APOE-ε4. In tau 

transgenic mouse models with APOE-ε2, APOE-ε3 and APOE-ε4 isoforms, E4 mice had the 

greatest amount of brain atrophy and neuroinflammation [184]. In contrast, mice with the APOE 

gene knocked out did not exhibit these changes. Furthermore, an E4 allele led to greater 

neurodegeneration in individuals with a sporadic primary tauopathy. For a detailed review of Aβ-

independent regulators of tauopathy that include cholesterol metabolism, the endocytic system, 

APOE-ε4 and microglia, see [185].  

 There is also evidence in support of the alternative, classic view that Aβ drives tauopathy 

and/or exacerbates tauopathy via interaction. Temporally, Aβ is found in the brain during 

preclinical AD before tau or major cognitive impairments are apparent [177]. Throughout the 

clinical stages of AD, Aβ levels generally plateau whereas tau levels start to increase [186]. 

Various imaging studies also indicate that the progression of tauopathy better correlates with 

cognitive decline as opposed to Aβ (see [185] for a summary). These findings support the belief 

that while amyloidopathy is not the strongest correlate of disease progression, Aβ accumulation 

might be the initial event that causes later tauopathy-mediated neurodegeneration. There are also 

reports that tau accumulation is generally higher in Aβ-positive individual instead of those that are 

Aβ-negative [185]. For instance, NFT spread in those with sporadic primary tauopathies is limited 

when subjects are not Aβ-positive [185,187–189]. Lastly, transgenic mouse models also offer 

evidence in support of interactions between amyloid and tau (see [185] for a summary). Tauopathy 

progresses faster in in triple transgenic mouse mice expressing both human tau with APP or 

PSEN1, as opposed to single transgenic mice expressing only human tau [190]. Not to mention, in 

the 3xTg-AD triple transgenic model that express tau and APP transgenes at comparable levels in 
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the same brain regions, extracellular Aβ develops before tau which further validates the amyloid 

cascade hypothesis [191]. Interestingly, 3xTg mice showed impaired long-term potentiation 

synaptic responses, but 2xTg without the APP transgene did not [191]. These triple transgenic 

mice support the amyloid hypothesis, but it is unclear to what extent they mirror pathology in 

human subjects. Furthermore, it should be noted that familial AD transgene expression is not 

representative of the sporadic population.  

1.3.3. AD progression 

The anatomical progression of AD was first described by Braak and Braak in accordance 

with the spread of NFTs and NTs, but not amyloid deposits [183]. This work gave rise to the Braak 

staging system which differentiates between six stages of AD and is still widely adopted.  

Stages I-II: NFTs and NTs first appear in the transentorhinal region, a strip of cortex connecting 

the EC to the temporal lobe. Milder levels of NFTs form in the EC, CA1 of the hippocampus, the 

antero-dorsal nucleus of the thalamus (where HD cells can be found), and the basal forebrain. The 

number of NFTs and NTs progressively accumulates within the transentorhinal region. Given that 

the hippocampus is generally spared, and other cortical regions appear unaffected, these stages are 

referred to as ‘the transentorhinal stages’.  

Stages III-IV: NFTs and NTs severely increase in the transentorhinal region and EC while only a 

moderate amount accumulates in CA1. Milder changes take place in the basal forebrain, thalamic 

regions, and the amygdala. These stages are referred to as ‘the limbic stages’, given that 

hippocampal regions (and limbic regions) are moderately affected whereas cortical regions are still 

relatively unaffected. 
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Stages V-VI: Previously affected regions worsen, with the entire hippocampus showing NFTs and 

NTs. Furthermore, many cortical regions are severely affected, leading these final stages to be 

referred to as ‘the isocortical stages’.  

Extracellular amyloid deposits (not to be confused with plaques) varied between 

individuals and did not allow for accurate differentiation of multiple stages. In general, amyloid 

deposits first appeared in the basal parts of the cortex with mild presence in the entorhinal layers. 

Amyloid progressively spread to other cortical areas, while generally sparing the hippocampus. 

The final stages of pathology involved widespread amyloid throughout all cortical regions, with 

fewer deposits seen in the hippocampus and subcortical regions. Similarly, the distribution of 

amyloid plaques varied between individuals and were not useful for stage differentiation.   

The modern understanding of AD progression is informed by the development of brain 

imaging techniques such as positron emission tomography (PET) scans that track non-soluble Aβ 

and tau deposits [192,193], as well as the ability to detect soluble Aβ and tau in cerebrospinal fluid 

(CSF) [194]. PET imaging not only confirms that Aβ and tau accumulate in different brain regions, 

but increased tau PET signals better correlate with cognitive decline in MCI and AD patients as 

opposed to Aβ signals [195–198]. Importantly, tau PET imaging also accurately reproduces the 

progression of tauopathy initially described by the Braak staging system [199,200]. A recent 

longitudinal tau PET imaging study investigated how tau Braak staging correlates with amyloid 

progression and cognitive impairments in MCI and AD subjects [201]. Up until Braak stage III, 

subjects had modest tau-PET signals and mild cognitive impairments regardless of their Aβ status. 

However, tau progression beyond stage III only took place in patients that were Aβ-positive, 

reaffirming the belief that amyloidopathy is a pre-requisite for more severe forms of tau-mediated 

neurodegeneration [201].  
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Both PET imaging and CSF biomarkers may be used to monitor living patients and confirm 

any signs of early AD. In 1984, the National Institute of Neurological and Communicative 

Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and Related Disorders Association 

(ADRDA) published a list of criteria for AD diagnosis [202]. These criteria aimed to determine if 

a patient likely had dementia via cognitive assessments, an outcome which could only be 

confirmed post-mortem. In 2011, these guidelines were expanded by the National Institute on 

Aging and Alzheimer’s Association (NIA-AA) to include the use of imaging or CSF biomarkers 

to support or confirm an existing AD diagnosis [203]. However, these biomarkers could only be 

used in research settings and not in the clinic due to lack of standardization. In 2018, the NIA-AA 

published a ‘research framework’ which relabeled AD as a biological construct defined by the 

presence of biomarkers. This framework acknowledges that AD starts before clinical symptoms 

are apparent. In particular, both PET imaging and CSF concentrations of Aβ and tau were 

suggested to be reliable diagnostic tools [204]. Importantly, the goal of this framework is still 

intended for research, and not meant to replace cognitive AD diagnostics which remain the focus 

in clinical settings. 

In 2013, a hypothetical model of early biomarker progression was proposed by Jack and 

colleagues (Figure 13) [186]. The model describes the temporal evolution of different AD   

biomarkers which include amyloid deposition (measured by CSF Aβ42 and amyloid PET imaging) 

and neurodegeneration (measured by CSF tau, MRI, and FDG-PET imaging). Importantly, the 

model considers amyloidopathy and tauopathy as independent processes that may interact with 

one another. The Braak stages show that NFTs better separate disease phases, suggesting that 

tauopathy might be the initiator of AD [183]. Indeed, autopsies of individuals below the age of 

thirty show that formation of abnormally phosphorylated tau precedes amyloid deposition [205]. 
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Yet, Aβ also plays an initiating role given that familial AD arises via Aβ overproduction [155]. To 

corroborate these findings, the model posits that there is an abnormality detection threshold for all 

in-vivo biomarkers. Tauopathy could exist early on before Aβ but is undetectable in-vivo and/or is 

inconsequential. An independent rise of Aβ levels past the threshold (through unrelated processes) 

could accelerate the tauopathy trajectory and form NFTs. These changes then lead to abnormal 

signals in MRI and FDG-PET imaging before cognitive impairments appear. The clinical AD 

spectrum involves pre-clinical, mild cognitive impairment (MCI) and dementia. The category a 

patient falls under varies according to risk factors in combination with in-vivo biomarkers. 

 In-vivo biomarkers provide a longitudinal understanding of early pathology, which is a 

desirable advantage over post-mortem analysis. These biomarkers occur decades before clinical 

symptoms and may help the detection of asymptomatic patients. Yet, biomarkers do not guarantee 

the appearance of cognitive impairments which may be influenced by risk factors and individual 

variability [206]. The study of novel biomarkers will likely establish a more accurate timeline of 

early pathology. Furthermore, treating amyloidopathy and tauopathy as independent processes 

might be productive. Given the many alternative theories of AD (at least for sporadic patients) 

[141–143], an integrated understanding of pathology is likely more informative than conforming 

to a central, dominant hypothesis. 
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1.3.4. Importance of early diagnosis 

There is no cure for AD, in part because interventions do not effectively treat symptoms of 

late stage AD [5,207,208]. The lack of treatments highlights the importance of establishing reliable 

biomarkers to identify healthy individuals at risk and to prioritize their recruitment into clinical 

Figure 13. A hypothetical model of early in-vivo AD biomarker progression.  

CSF Aβ42, amyloid PET imaging, CSF tau, and MRI + FDG-PET imaging are represented by 
the purple, red, light blue, and dark blue curves, respectively. The gray area indicates biomarker 
changes that cannot yet be detected by CSF or PET imaging. As CSF Aβ42 levels associated 
with pathophysiology rise above the detection threshold, there is an acceleration of tauopathy. 
The green area represents the onset of cognitive symptoms associated with clinical diagnosis 
of AD. The magnitude of cognitive impairment depends on individual risk. Importantly, the 
model treats Aβopathy and tauopathy as independent processes that interact.  

Figure taken from Selkoe, D.J. and Hardy, J. (2016) The amyloid hypothesis of Alzheimer’s 
disease at 25 years. EMBO Mol. Med. 8, 595–608. 

Aβ, amyloid β-protein; FDG, fluorodeoxyglucose; MCI, mild cognitive impairment.  
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trials early on. The 2018 research framework proposed by NIA-AA aims to do this, but also 

acknowledges that novel biomarkers aside from amyloidopathy, tauopathy and neurodegeneration 

should be considered when relevant [204]. 

 In contrast, cognitive markers of early pathology are lacking. A study compared the 

detection sensitivity of the NIA-AA research framework biomarkers versus clinical diagnostic 

approaches (such as cognitive markers) in individuals between 60 to 89 years of age [209]. The 

results indicated that biologically-defined AD was more prevalent than clinically-diagnosed AD 

at any age group, highlighting the discrepancy in sensitivity between biomarkers and cognitive 

markers. As cognitive assessments remain a staple in the clinic, it is desirable to identify novel 

cognitive markers that signal earlier stages of pathology. 

 Current clinical AD diagnoses heavily rely on episodic memory tests [210]. Yet, episodic 

memory loss is also common in other pathologies such as frontal temporal dementia (FTD), or 

general aging [210,211]. In delayed recall tasks, AD is distinguished by impaired memory 

consolidation, whereas FTD and general aging cause impaired memory retrieval [210]. These tasks 

involve a patient being given a list of content (e.g., words) to remember (in association with 

semantic cues), and later asked to recall the encoded material. The presentation of semantic cues 

during the encoding phase helps ensure that the material was effectively encoded. These same cues 

can be re-presented during the recall phase to test for retrieval ability. If cue presentation improves 

recall performance, as is the case in FTD patients, then the impairment is related to memory 

retrieval. In contrast, presentation of a cue does not improve recall performance in AD patients, 

suggesting an impairment in memory encoding. Aside from this specific distinction, episodic 

memory assessments are largely insensitive to AD pathophysiology and offer limited clinical 



56 
 

utility [6,212]. Therefore, the efficacy of future interventional trials depends on the identification 

of novel markers that reliably detect early pathology. 

1.3.5. Path integration as an early cognitive marker 

Given the relationship between entorhinal grid cells and path integration, in addition to the 

EC being one of the first regions affected by AD pathology [183,213], path integration 

impairments may be may be sensitive early cognitive markers of AD. In general, spatial navigation 

tasks offer fewer verbal, cultural and educational biases amongst subjects, offering a more 

globalized diagnosis approach than current cognitive tests [6]. Multiple studies have demonstrated 

that path integration performance reliably differentiates AD patients or those at risk from healthy 

older adults. When performing a real-world variant of the triangle competition task without access 

to visual cues, amnestic MCI and AD patients had greater difficulty estimating the start location 

compared to healthy older adults [10]. In another study where subjects performed a virtual triangle 

completion task, young APOE-ε4 carriers (as young as 18 years of age) at genetic risk of AD also 

demonstrated path integration impairments [12]. In particular, the impairment observed in young 

carriers (18-42 years) worsened in older carriers (42-75 years). The experimenters controlled for 

the presence of visual cues in the virtual environment to ensure that participants relied on self-

motion. In a different virtual task where visual information was available, path integration 

performance reliably differentiated APOE-ε4 carriers from non-carriers [13]. These results 

suggest that path integration performance is a sensitive cognitive marker to detect those at risk of 

sporadic AD up to decades before clinical onset.  

To establish a better link between behavioral performance and pathology, a separate study 

reported that path integration performance by MCI subjects in a virtual triangle completion task 

correlated with AD biomarkers [11]. Not only did MCI patients perform worse than healthy adults, 
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but MCI patients with positive AD biomarkers performed worse than those with negative 

biomarkers. In particular, levels of CSF Aβ and tau independently correlated to performance. 

Compared to standard neuropsychological assessments and a hippocampus-dependent spatial 

memory task, path integration performance offered the greatest sensitivity in classifying these two 

MCI subgroups [11].  

1.3.6. Grid cells as an early biomarker 

 The link between gid cell computations and path integration suggests that a disrupted grid 

cell network underlies path integration impairments during early AD. In young APOE-ε4 carriers, 

grid-like representations detected using fMRI were reduced and correlated to impaired path 

integration performance [9,12]. While it is unclear if grid-like fMRI activity reflects the activity 

of single grid cells, impaired path integration in older APOE-ε4 carriers is accompanied by altered 

functional connectivity between the entorhinal (where grid cells are found) and retrosplenial 

cortices [13]. Furthermore, multiple mouse models of tauopathy and amyloidopathy individually 

show a shared disruption of grid cell and place cell coding during the later stages of pathology 

[214–221]. However, prior to the data presented in this thesis, no rodent study examined whether 

grid cell coding was disrupted during the earliest stages of pathology, and if such an impairment 

also correlated to path integration deficits. In addition, these rodent studies mostly involved tau 

models; the only reported study of grid cell coding in an amyloid model during late-stage 

pathology suffered from low sample sizes of recorded cells which rendered the conclusions 

difficult to interpret. 

 To better establish a link between grid cells (and potentially other spatially-tuned cells) and 

path integration deficits during early AD, we conducted in-vivo electrophysiological recordings of 

spatially-tuned neurons in the MEC and region CA1 of the hippocampus in the J20 transgenic Aβ 
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mouse model. To ensure that we conducted our recordings during the initial stages of pathology, 

we restricted our experimental timeline between 3-7 months of age – a period that precedes the 

deposition of widespread Aβ plaques that are indicative of late AD [27]. We also separately 

tested J20 mice on a path integration task to observe whether a degraded grid cell network 

correlated to impaired path integration performance.  
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Abstract 

Early-onset familial Alzheimer’s disease (AD) is marked by an aggressive buildup of 

amyloid beta (Aβ) proteins, yet the neural circuit operations impacted during the initial stages of 

Aβ pathogenesis remain elusive. Here, we report a coding impairment of the medial entorhinal 

cortex (MEC) grid cell network in the J20 transgenic mouse model of familial AD that over-

expresses Aβ throughout the hippocampus and entorhinal cortex. Grid cells showed reduced spatial 

periodicity, spatial stability, and synchrony with interneurons and head-direction cells. In contrast, 

the spatial coding of non-grid cells within the MEC, and place cells within the hippocampus, 

remained intact. Grid cell deficits emerged at the earliest incidence of Aβ fibril deposition and 

coincided with impaired spatial memory performance in a path integration task. These results 

demonstrate that widespread Aβ-mediated damage to the entorhinal-hippocampal circuit results in 

an early impairment of the entorhinal grid cell network. 
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Introduction 

The molecular and synaptic underpinnings of Aβ pathology during the earliest stages of 

familial AD are well-documented, but the impact that these changes have on neural coding 

has not been resolved1,2. The emergence of spatial memory deficits in patients with preclinical 

AD and those with Mild Cognitive Impairment with high levels of cerebrospinal fluid Aβ 

suggest that Aβ pathology exerts its earliest impact on the neural systems that support spatial 

memory3,4. Extensive work in both animals and humans have pinpointed the MEC-

hippocampal circuit as essential brain regions for spatial memory performance5–7. At the level 

of neural coding, the MEC-hippocampal circuit contains a myriad of spatially-tuned cell types 

including place cells in the hippocampus, as well as grid cells, head direction cells, and non-

grid spatially-selective cells in the MEC8–12. Decades of theoretical work have proposed how 

these functional cell types work in concert to support spatial memory13–17. Yet, it remains 

unknown how these spatially-tuned populations are impacted at the earliest stages of Aβ-

mediated pathogenesis when spatial memory is impaired. 

To address this question, we recorded spatially-tuned neurons from the hippocampus and 

MEC of the J20 transgenic mouse model of familial AD that expresses a mutant form of human 

amyloid precursor protein (APP), referred to here as ‘APP mice’18. In this model, elevated 

and comparable levels of soluble Aβ throughout the entorhinal cortex and hippocampus are 

present at 3 months of age19. By 5-7 months of age, small Aβ fibrils are detectable in the 

hippocampus but neither of these regions demonstrate widespread amounts of Aβ plaques that 

are indicative of late AD pathology19. We confirmed that APP mice expressed little-to-no 

plaques by 6 months of age in the MEC and hippocampus (Supplementary Fig. 1). Between 3-

7 months of age, APP mice exhibit several amyloid-related processes that we refer to 
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collectively as ‘early Aβ pathology’. These include neuroinflammation, 10-20% neuronal 

loss, and reduced presynaptic terminal density throughout the entorhinal cortex and 

hippocampus (detailed pathology description in Methods, Subjects)20–23.  

In this work, we show that early Aβ pathology reduces grid cell spatial coding in an age-

dependent manner preceding the widespread expression of Aβ plaques. In contrast, the spatial 

coding of non-grid cells within the MEC, and place cells within the hippocampus, is unaffected. 

The grid cell impairments correlate with worsened spatial navigation performance in a path 

integration task, thus pointing to both grid cell integrity and path integration performance as 

possible early markers of AD in familial and sporadic populations. 

Results 

Grid cell spatial tuning in APP mice is impaired across age 

We obtained in vivo recordings of MEC neurons (n cells = 4524) from 38 APP transgenic 

and 30 non-transgenic (nTG) littermates as they foraged for water droplets in an open field arena 

(Summary of MEC recordings, Table S1; MEC Tetrode locations, Supplementary Fig. 2). We 

observed an age-related disruption in the spatial periodicity of grid cells in APP mice (Fig. 1a-d, 

Supplementary Figs. 3, 4, 5). Young APP mice (3-4.5 months) had grid cells with tuning 

comparable to those of age-matched nTG mice (Fig. 1). In contrast, grid cells recorded in adult 

(4.5-7 months) APP mice exhibited reduced spatial periodicity and spatial information (bits/spike) 

in comparison to those from young APP mice and age-matched nTG mice (Fig. 1). Peak spatial 

firing and mean firing rates of grid cells did not reliably differ between groups and across age (Fig. 

1e). A two-way ANOVA was conducted to determine the effects of age and genotype on grid score 

between groups. A significant interaction effect was discovered, supporting the view that grid cell 

spatial periodicity is reduced across age in APP mice (ANOVA, age main effect: P = 1.89 × 10-7; 
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genotype main effect: P = 0.011; interaction effect: P = 3.86 × 10-4, Supplementary Fig. 6). To 

ensure that these results are not biased by oversampling the same cells across days, we removed 

duplicate grid cells and re-ran our analyses. Grid cell spatial periodicity remained impaired in adult 

APP mice, and the significant interaction effect persisted (ANOVA, age main effect: P = 4.5 × 10-

4; genotype main effect: P = 0.013; interaction effect: P = 0.046, Supplementary Fig. 7).  

Spatial tuning of non-grid MEC cells remains intact in APP mice 

In contrast to the age-dependent impairment observed in grid cells, entorhinal head 

direction cells, which encode the orientation of the animal’s head in polar coordinates10, did not 

differ in their directional tuning or firing rates between groups or across age (Fig. 2a, 

Supplementary Fig. 8). Similarly, there was no difference between groups in the average firing 

field size of non-grid spatially-tuned neurons, which fire in a non-periodic but spatially reliable 

manner (Fig. 2b, Supplementary Fig. 8). Mean firing rates did not differ between groups, but 

spatial peak firing rates were, however, oddly elevated in adult nTG mice (Fig. 2b).  

To examine if spatial coding by downstream hippocampal place cells was disrupted when 

adult APP mice exhibit a degraded grid cell code, we obtained in vivo recordings from region CA1 

of the hippocampus (n cells = 992) from 6 adult APP and 6 adult nTG mice (Summary of CA1 

recordings, Table S2; CA1 Tetrode locations, Supplementary Fig. 9). Place cells in adult APP and 

nTG mice were similarly tuned for spatial location and had similar peak spatial and mean firing 

rates (Fig. 2c, Supplementary Fig. 8). Spatial tuning remained largely preserved across groups 

when varying our cell selection threshold (spatial peak firing rates between 0 and 8 Hz), with the 

exception of thresholds less than 1 Hz (Fig. 2d). Mean firing rates were higher in APP place cells 

at peak firing selection thresholds of 6 Hz and greater, suggesting that the overall mean firing rate 

is higher in adult APP mice than those in adult nTG mice (Fig. 2d). These results demonstrate that 
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the hippocampal place code remains grossly intact when the entorhinal grid code is degraded in 

adult APP mice, mirroring findings observed in early development and during inactivation of the 

medial septum24–26. Our findings are consistent with previous work showing that the spatial 

tuning of place cells in Tg2576 APP mice remained intact at the earliest incidence of Aβ 

plaques, but was subsequently impaired when Aβ plaques become widespread27. Moreover, 

our results suggest that impaired grid coding in adult APP mice is not the result of disrupted 

feedback from the hippocampus28.  

Prior work has reported a selective disruption of grid cell spatial periodicity without 

impairment of other spatial codes when the power of entorhinal theta oscillations (6-10 Hz) is 

reduced via inactivation of the medial septum25,26. We therefore examined entorhinal theta 

oscillations across nTG and APP mice and found that theta power remained intact in adult APP 

mice across running speeds (ANCOVA, APP-a vs nTG-a, main effect: P = 0.99; interaction 

between running speed and theta power: P = 0.096; APP-a vs APP-y, main effect: P = 0.051; 

interaction between running speed and theta power: P = 0.56; Fig. 2e). In both young and adult 

APP mice, the overall baseline frequency of theta oscillations was lower while the gain in theta 

frequency across running speeds was preserved (ANCOVA, APP-a vs nTG-a, main effect: P = 

0.01; interaction between running speed and frequency: P = 0.51; APP-y vs nTG-y, main effect: 

P = 0.0001; interaction between running speed and frequency: P = 0.82; Fig. 2e), revealing that 

the baseline frequency of theta oscillations was reduced in APP mice prior to the onset of grid cell 

disruption. Theta frequency reduction in both young and adult APP mice was roughly 0.2 Hz 

across all running speeds (Supplementary Fig. 10). Assuming that this reduction in theta frequency 

has no effect on grid cell periodicity in young APP mice, these results indicate that impaired grid 

cell coding in adult APP mice cannot be explained by a disruption of the theta-generating circuit.  
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Speed cells in the MEC encode the animal’s running speed by firing rate and are assumed 

to provide a speed signal for grid cell formation29. To determine if impaired speed cells could 

explain the disrupted grid cell periodicity in adult APP mice, we examined the running speed vs 

firing rate correlation of MEC cells that were not characterized as either grid cells, head direction 

cells and non-grid spatially-tuned cells (Supplementary Fig. 11). No significant differences were 

found between groups when varying our cell selection threshold (running speed vs firing rate 

correlation values between 0.1 and 0.9), suggesting that MEC speed cells remained unaffected by 

APP pathology (Supplementary Fig. 11a). Running speed vs firing rate correlations of grid cells 

was also non-significant between groups, providing further evidence for an intact speed code 

(Supplementary Fig. 11b, c).  

Grid cells in adult APP mice are spatially unstable 

To characterize the nature of reduced grid cell periodicity in adult APP mice, we examined 

the spatial firing properties of grid cells in further detail. In contrast to grid cells recorded in adult 

nTG mice, grid cells in adult APP mice exhibited larger firing fields when accounting for 

differences in spatial scale (Fig. 3a). We reasoned that an increase in field size in adult APP mice 

could reflect a drifting or unstable grid pattern over time. Consistent with this, a partitioned rate 

map stability analysis revealed that the overall grid pattern in adult APP mice exhibited reduced 

spatial stability (Fig. 3b-d). The reduced stability of grid cells in adult APP mice was not due to 

changes in the orientation of grid fields, indicating that instability reflected an inconsistent spatial 

phase of the grid pattern over time (Fig. 3e). In contrast, non-grid spatially-tuned cells and 

hippocampal place cells of adult APP mice remained spatially stable across time (Fig. 3b-d). A 

two-way ANOVA was conducted to further confirm that the spatial instability was specific to grid 

cells, but not non-grid spatially-tuned cells and place cells in adult APP mice. The ANOVA 
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design’s factors consisted of genotype and cell type, and both significant main and interaction 

effects were discovered (ANOVA, genotype main effect: P = 0.0038; genotype main effect: P = 

0.0084; interaction effect: P = 0.013, Supplementary Fig. 12). Pairwise comparisons using Tukey’s 

Test revealed greater spatial instability in APP-a grid cells, but not in APP-a non-grid spatially-

tuned cells or place cells (APP-a grid cells vs. nTG-a grid cells: P = 0.0064; APP-a non-grid cells 

vs. nTG-a non-grid cells: P = 1; APP-a place cells vs. nTG-a place cells: P = 0.99). Instability 

persisted in adult APP grid cells when partition lengths were extended from 3 minutes to 5, 6 and 

10 minutes (Supplementary Fig. 13). Consistent with previous literature30,31, positional coverage 

and running speeds were higher in adult APP mice, suggesting that greater displacements were not 

biased by insufficient exploration of the open field environment (Supplementary Fig. 14).    

Grid cells in APP mice have reduced spike-time synchrony with interneurons and head 

direction cells  

Given that inhibition constitutes a major input for grid cell generation32,33, we analyzed the 

firing properties of interneurons in APP mice. Across age, mean firing rates became elevated in 

adult APP mice (ANOVA, genotype main effect: P = 0.0038; genotype main effect: P = 0.0084; 

interaction effect: P = 0.013, Supplementary Figs. 15, 16), alluding to possible changes in 

inhibitory networks within the MEC. In particular, we noted that a significant proportion of 

interneurons in young and adult APP mice had slower theta rhythmicity and theta power, 

suggesting a potential early impairment in spike-timing dynamics between grid cells and 

interneurons preceding the loss of grid cell spatial periodicity (Supplementary Figs. 15, 16). By 

computing spike-time cross-correlations between simultaneously recorded MEC cells, we 

observed that synchrony between grid cells and interneurons were qualitatively reduced in young 

APP mice in comparison to nTG mice (Fig. 4a-b). In fact, young APP grid cells and interneurons 
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appeared anti-synchronous at a temporal lag of ~25ms, suggesting the start of an early impairment 

of the grid cells’ ability to temporally integrate inhibitory signals. Surprisingly, the same reduction 

in synchrony was also qualitatively observed between grid cells and head direction cells, which 

appeared to worsen across age (Fig. 4a-b).  

A two-way ANOVA was conducted to determine the effects of age and genotype on the 

mean co-activity within a 25 ms time window for grid cell-interneuron and grid cell-head direction 

cell pairs (Supplementary Fig. 17, Fig. 4c). There was no significant interaction effect in either 

group (ANOVA: grid-interneuron interaction effect: P = 0.091; grid-head direction interaction 

effect: P = 0.083 Supplementary Fig. 17, Fig. 4c), confirming the absence of any age-dependent 

reduction in synchrony. However, there was a significant main effect of genotype in both groups, 

indicating that grid cell-interneuron and grid cell-head direction cell synchrony were impaired 

overall in both young and adult APP mice (ANOVA: grid-interneuron genotype main effect: P = 

1.3 × 10-5; grid-head direction genotype main effect: P = 0.012, Supplementary Fig. 17). In support 

of this view, synchrony was significantly lower in adult APP mice compared to adult nTG mice, 

and was unaffected compared to young APP mice (Fig. 4c). However, the lack of statistical 

significance between young APP and young nTG mice implies that this reduction may be milder 

in the earliest stages of pathology (Fig. 4c). These findings are noteworthy for two reasons. First, 

given the importance of inhibitory and head direction information for grid cell spatial firing32–34, 

these results suggest that disrupted grid cell spatial periodicity across age in APP mice (Fig. 1) 

arises in part due to the temporal decoupling of grid cells from inhibitory and head direction inputs 

within the local MEC network. Second, this decoupling starts (albeit mildly) at an age when the 

grid pattern is still intact, implying that grid cell coding is affected by early pathology preceding 

the complete loss of spatial periodicity.  
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Grid cell impairments in APP mice correlate with worsened path integration performance 

Prior work has shown that APP mice exhibit spatial memory deficits on the Morris water 

maze and the radial arm maze by as early as 3-4 months of age21,30. Given the proposed role of 

grid cells in supporting path integration17,35, we hypothesized that APP mice would also experience 

spatial memory deficits related to path integration. To test this hypothesis, we conducted a path 

integration task to assess the animals’ ability to return directly to their refuge after finding a food 

pellet in an open field in complete darkness with an independent, non-implanted cohort of APP 

and nTG mice (n mice = 12 APP-y, 9 APP-a, 10 nTG-y, 8 nTG-a; Fig. 5a, Supplementary Fig. 

18a). APP and nTG mice demonstrated a similar inclination to return to the refuge prior to 

consumption of the pellet (Supplementary Fig. 18b-d). However, we observed that APP mice were 

impaired in all measures of path integration ability relative to age-matched controls, with the 

greatest behavioral deficits in adult APP mice. In particular, the probability of arriving at the 

refuge during the initial wall contact decreased in APP mice across age (APP-a: 29%, APP-y: 

38%, nTG-y: 58%, nTG-a: 57%; Fig. 5b, c), suggesting that they had a greater difficulty in 

estimating their position relative to the refuge. In further support of this possibility, adult APP 

mice exhibited increased error in both their initial heading direction and the angular difference 

between the refuge and the first wall encountered during the return trajectory (Fig. 5d, e). With 

regards to overall navigational efficiency, adult APP mice travelled longer distances to return to 

the refuge and exhibited greater thigmotaxis by spending a larger proportion of the return path 

along the periphery of the environment (Fig. 5d, e). All groups showed improved performance 

when visual cues were made available (Supplementary Fig. 19), though APP mice remained 

impaired across all measures of task performance which worsened with age (Supplementary Fig. 
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20). Together, these results show that path integration abilities decline with age in APP mice, 

closely mirroring the time course of the spatial coding deficits observed in the grid cell network. 

 Lastly, we characterized which molecular changes could explain these early network 

alterations in the entorhinal-hippocampal circuit. A recent meta-analysis confirmed that synapse 

loss and changes in synaptic marker expression are major events in AD pathogenesis36. Likewise, 

altered synaptic function could also affect circuit function such as grid cell coding that is known 

to require both excitatory and inhibitory drive28,32,33. For these reasons, we carried out 

immunoautoradiography in the MEC and CA1 to visualize and quantify the expression of synaptic 

markers that include VGLUT1, VGLUT3, VAChT, VGAT and NR1 (Supplementary Fig. 21). 

VGLUT1, VGLUT3 VAChT and VGAT are neurotransmitter transporters whereas NR1 is a 

subunit of NMDA receptors that was previously shown to be necessary for both grid cell integrity 

and path integration ability35 (detailed marker descriptions in Methods, 

Immunoautoradiographic labelling of synaptic markers).  

 To interpret the most robust pathological changes, we ran linear mixed models to pinpoint 

which marker expression levels were most affected by early Aβ pathology. Out of the ten 

experimental groups, two cases were significantly modulated by the effect of the subject’s 

genotype: VGLUT3 in the MEC and VGLUT1 in CA1 (VGLUT3 in MEC, genotype effect: P < 

0.01; VGLUT1 in CA1, genotype effect: P < 0.01; Supplementary Fig. 22). We observed an 

increase of VGLUT3 in both young and aged APP mice, indicating that CCK-positive interneurons 

are exerting greater influence in inhibitory circuits within the MEC (Supplementary Figs. 23, 24). 

However, VGAT levels were not significantly different (Supplementary Figs. 21, 22), suggesting 

that early Aβ pathology targets a specific inhibitory circuit while sparing overall inhibitory 

drive. Taken together with our spike-time cross-correlation analysis (Fig. 4), these findings 
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pinpoint inhibitory mechanisms as one of the earliest network changes in the MEC. An increase 

of VGLUT1 was also detected in CA1 of young APP mice that stayed elevated across age 

(Supplementary Figs. 22, 23). This finding explains the higher mean firing rate of adult APP 

place cells (Fig. 2d), and supports existing evidence showing that hyperexcitability is a major 

pathological symptom of AD37. Taken together, these results provide an in-depth overview of the 

early network changes in the MEC-hippocampal circuit susceptible to Aβ pathology at the 

molecular, physiological, and behavioral levels. 

Discussion 

To identify the impact of Aβ pathology on neural coding in the MEC-hippocampal 

circuit, we obtained single-unit recordings during the initial stages of disease in an APP mouse 

model of familial AD. These data revealed a disruption in entorhinal grid cell coding when initial 

Aβ fibrils are detected. In contrast, the spatial tuning of other functional cell types in the MEC 

and region CA1 of the hippocampus was preserved. Theta power and modulation of theta by 

running speed remained intact in adult APP mice, yet grid cells exhibited reduced theta 

rhythmicity and spatial stability. Grid cells in young APP mice appeared to be decoupled from 

interneurons and head direction cells, which worsened across age. These changes in grid cell 

coding corresponded with impaired performance of adult APP mice in a path integration task. 

Together, these results reveal that early Aβ pathology targets the entorhinal grid cell network 

within the MEC-hippocampal circuit. 

Our results address several possible circuit-level explanations that could underlie 

reduced grid cell coding in APP mice. Prior studies have shown that inputs from the anterior 

thalamic nuclei (ATN), the dorsal hippocampus, and the medial septum are each 

independently necessary for normal grid cell function. Entorhinal head direction cells, which 
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are dependent on direct and indirect inputs from the ATN34, were preserved in adult APP 

mice, suggesting that projections from the ATN were intact. Place cells in the dorsal 

hippocampus remained spatially selective, stable, and had high firing rates, indicating that 

reduced feedback from the hippocampus cannot explain grid cell deficits in adult APP mice28. 

Finally, theta power and speed modulation of theta were preserved in adult APP mice, 

suggesting that medial septal theta-generating inputs to the MEC are conserved25,26. 

Nevertheless, our findings could still indicate a subtle impairment of basal forebrain inputs 

that innervate the grid cell network; one candidate could be decreased septal cholinergic 

inputs38, as a selective loss of basal forebrain cholinergic neurons in the nucleus basalis of 

Meynert is observed in familial AD patients39,40.  

We also observed that grid cells recorded in APP mice had reduced spike-timing 

synchrony with interneurons and head direction cells. This is interesting because interneuron 

mean firing rates and head direction cell directional selectivity were not lower in APP mice. 

These results are particularly noteworthy because grid cells require excitatory, inhibitory and head 

direction inputs28,32–34. While we did not observe any obvious impairments in those systems 

specifically in terms of basic firing properties, their temporal integration within the grid cell 

network could potentially disrupt spatial coding. The temporal decoupling of grid cells from local 

inputs therefore provides a network-level explanation for the reduced grid cell spatial periodicity 

and stability observed in adult APP mice. On that note, we could not analyze grid cell-place cell 

synchrony, given that we did not record from the MEC and CA1 simultaneously. This decoupling 

is also weakly present in young APP mice (as suggested by a two-way ANOVA, but 

insignificant via direct non-parametric testing), alluding to the possibility that grid cell coding 

is impaired prior to the complete loss of spatial periodicity. It could be that the temporal 
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decoupling is progressive and worsens with age, but we cannot directly confirm this idea with the 

current data and the lack of a significant effect size in young APP mice. Lastly, the cross-

correlation analyses should not be used to draw conclusions regarding the amount of inhibition or 

excitation integrated by grid cells, which require other experiments to validate.  

We also characterized whether local network-level changes can be accounted for at the 

molecular level. Based on our quantification of synaptic markers, VGLUT3 levels were 

pathologically elevated in the MEC of APP mice. These findings pinpoint specific inhibitory 

mechanisms as one of the earliest network changes in the MEC, as VGAT levels indicative of 

global inhibition were unaltered. However, these findings are hard to relate to the observed grid 

cell impairment. On the other hand, an increase of VGLUT1 was also detected in CA1 of young 

APP mice that stayed elevated across age. This finding explains the higher mean firing rates of 

adult APP place cells and is consistent with the hypothesis that hyperexcitability is a major 

pathological symptom of AD37. We applied a linear mixed model and only considered marker 

expression levels that were significantly modulated by the subject’s genotype. By doing so, a more 

subtle effect amongst other markers might have been deliberately missed. For instance, there was 

a slightly lower NR1 expression in adult APP mice relative to adult nTG mice, and it is known 

that this NMDA receptor subunit is necessary for grid cell firing35.  

Our results suggest that grid cells contribute to path integration, and possibly other 

forms of spatial memory. Young APP mice were modestly impaired in our path integration task 

despite an intact grid cell spatial periodicity. In parallel, prior work has shown spatial memory 

impairments in this APP mouse line at the same age in the radial arm and Morris water mazes21,30. 

An early disruption of the spike-timing relationship between grid cells and other MEC cell types 

in young APP mice could potentially underlie these behavioral impairments. Likewise, reduced 
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grid cell spatial periodicity and stability could explain the more pronounced path integration 

impairments in adult APP mice. Our behavioral data showed that in addition to increased travel 

distance and angular errors in the return path, adult APP mice spent more time along the 

environment periphery. This suggests that adult APP mice could not plan effective routes back to 

the refuge and instead adopted a thigmotaxic strategy. The severity of grid cell deficits paralleling 

the worsened behavioral performance provides compelling evidence to suggest that this 

microcircuit is linked to path integration and perhaps other forms of spatial memory. There are 

likely other undetermined factors that explain the spatial memory impairment observed in these 

mice at a young age, but our findings are consistent with the current understanding of how grid 

cells are necessary for proper path integration function17,35.  

Of particular importance, our results reveal that Aβ-mediated perturbations at the 

synaptic level do not uniformly impact neural computations. APP mice express soluble Aβ 

oligomers throughout the entorhinal cortex and exhibit a reduced density of presynaptic 

terminals and neuronal loss across all entorhinal layers by 6 months of age20, yet only the grid 

cell subnetwork within the MEC was disrupted. Similar and widespread changes are observed 

throughout the hippocampus, but the spatial coding of place cells was not disrupted.  

Place cells have also been recorded in other APP-related mouse models. The spatial 

tuning of place cells in the Tg2576 APP mouse model remained intact at the earliest incidence 

of Aβ plaques27, similar to our results. However, differences in place cell physiology have 

also been reported. In the 3xTg triple transgenic mouse model displaying both APP and tau 

pathology, place cells exhibited spatial instability on a linear track preceding the detection of 

plaques which seems to be in conflict with our findings41. One explanation for this difference 

is environmental influence. As the mouse’s freedom of movement is constrained on a one-
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dimensional track, the direction of instability is spatially restricted. In contrast, instability in an 

open field can occur in 360 degrees and averaging these directional shifts over time may ultimately 

cancel out to give the impression that APP place cells are stable. It could be that a linear track is 

more sensitive at detecting precise changes in place cell stability that may not meaningfully impact 

overall spatial coding in a two-dimensional environment. Alternatively, this difference could be 

due to the presence of tau pathology in 3xTg mice. In a different study involving a chimeric 

APP mouse model where the onset of APP expression could be controlled, place cell stability 

was also impaired on a linear track42. However, this disruption took place 9.5 months 

following APP expression, a pathogenic timepoint that is much later than ours which could 

explain their results. Lastly, a study reported that grid cells and place cells were disrupted in an 

APP knock-in mouse model43. Despite already have moderate levels of plaque formation 

throughout the brain, these young APP knock-in mice still did not show any impaired place cell 

coding, which are consistent with our findings. 

It is certain that inherent differences within mouse models may contribute to variability 

between results41,42, but so can the experimental design. Our place cell results are best 

comparable to those recorded from Tg2576 mice27 because recordings were done in an open 

field during the earliest detection of amyloid plaques. From this perspective, our results are 

consistent with what is currently known about Aβ pathology and place cell coding. To this 

growing body of knowledge, we show that impairments in grid cell firing emerge prior to 

place cell disruption. Importantly, both extracellular and intracellular Aβ-related processes may 

be pathogenic drivers of the reported network changes and should be further investigated. 

Despite the popular belief that extracellular Aβ initiates many aspects of pathology, there is a 

wide body of evidence showing that intracellular Aβ does the same44–47.  
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Alternatively, functional magnetic resonance imaging (fMRI) has revealed that the lateral 

entorhinal cortex (LEC) could be the first region affected in early AD48. The LEC is an important 

node in the entorhinal-hippocampal circuit and has also been studied in APP mouse models. In 

PDAPP mice, the location of amyloid deposits in the dentate gyrus greatly coincided with the 

termination of afferent projections from the LEC49. In terms of single-unit physiology, a report 

showed cells in Tg2576 mice displayed hyperactivity in the LEC by as early as 3 months of age50. 

Physiological changes in the LEC as a result of Aβ may precede the reported grid cell impairments 

and merit further investigation. 

There is concern regarding the use of transgenic APP mice such as the J20 model that 

overexpresses non-physiological Aβ given that recent APP knock-in mice express 

pathological profiles that are more faithful of AD pathogenesis. Caution should be exerted 

when relating conclusions of this study to human AD populations. Nevertheless, we took 

advantage of the robust phenotypic nature of J20 mice to identify the specific parts of the 

MEC-hippocampal spatial coding circuit most impacted by early APP pathology. Importantly, 

AD is also a multifaceted neurodegenerative disease marked by pathological markers other 

than Aβ, such as widespread neurofibrillary tangles consisting of the hyperphosphorylated-

tau protein. Therefore, the results of our study do not provide a complete overview of grid cell 

dysfunction in AD. Yet, it is interesting to note that prior work using a tau transgenic mouse 

line has shown that grid cell spatial coding is preserved when tau is initially restricted to 

axonal and somatodendritic compartments, but is subsequently impaired once tau has 

accumulated extensively in entorhinal cell bodies51. 

Reports on multi-study validation of data-driven disease progression in human AD 

patients52,53 predict that cohorts of familial AD and APOE-ε4-positive subjects exhibit 
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cerebrospinal fluid biomarkers in a distinct sequence: amyloid-β1–42, phosphorylated tau, 

and then total tau. However, in the broader AD population, total tau and phosphorylated tau 

are found to be earlier biomarkers than Aβ. The combined findings that early Aβ and advanced 

tau pathologies each independently target the grid cell network highlight the vulnerability of 

this entorhinal subnetwork and raise the possibility that spatial memory deficits in AD are 

linked directly to grid cell integrity. Indeed, functional imaging in young adults at genetic risk 

of AD (APOE-ε4 carriers) revealed a reduced grid-like hexa-symmetric signal in the MEC that 

correlated with spatial memory and path integration impairments54–56. These convergent lines 

of evidence support the viability of grid cell integrity and spatial navigation deficits as early 

markers of AD4, and as dependent variables to assess the efficacy of AD therapeutics.  

 

 

 

 

 

 

 

 

 

 



76 
 

Methods 

Subjects 

J20 APP male mice (B6.Cg-Zbtb20 Tg(PDGFB-APPSwInd) 20Lms/2Mmjax) were obtained 

from Jackson Laboratories (MMRRC stock #34836) and bred with female C57/BL6/j mice. Mice 

were individually housed on a 12-h light/dark cycle and underwent experiments during the light 

cycle. Housing room conditions of the mice were maintained at 20-22 degrees Celsius and 21-30% 

humidity. All experimental procedures were performed in accordance with McGill University and 

Douglas Hospital Research Centre Animal Use and Care Committee (protocol #2015-7725) and 

in accordance with Canadian Institutes of Health Research guidelines. 

In J20 mice, layers 2, 3 and 5 of the MEC undergo progressive neuronal loss and by 7.5 

months of age, all layers experienced a combined loss of 16.3% in comparison to age-matched 

controls18. The entorhinal cortex as a whole exhibits a reduced density of presynaptic 

terminals (quantified by synaptophysin-immunoreactivity) by 7 months of age20. Similarly, 

by 6 months of age, region CA1 of the hippocampus in APP mice exhibits a 10%+ loss of 

neurons compared to age-matched controls21. Synapse loss is observed as early as 3 months 

of age in CA1, confirmed both by synaptic marker-immunoreactivity and electron 

microscopy22. In addition to these processes, the complement-dependent pathway and 

microglia undergo aberrant upregulation that is dependent on soluble Aβ oligomeric levels in 

the hippocampus22. Furthermore, gliosis (activated astrocytes) and neuroinflammation 

(activated microglia) become elevated across age in the hippocampus of 6-month-old APP 

mice21. Lastly, in vitro slice electrophysiology experiments revealed that both basal synaptic 

transmission recorded in CA1 and long-term potentiation in the Schaffer collateral–CA1 

synapse are impaired in 3 month-old APP mice23. To examine the impact of these Aβ-
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mediated changes on neural coding circuit during these early stages of Aβ pathology, we 

focused on APP mice between 3-7 months of age. 

Single-unit recording data in the (MEC) were collected from 68 APP mice and littermates with 

negative transgene expression across four experimental groups: young APP mice (3-4.5 months of 

age), adult APP mice (4.5-7 months of age), young non-transgenic (nTG) mice (3-4.5 months of 

age), adult nTG mice (4.5-7 months of age). Thirty-one males and 37 females were used. Ten 

animals fell into multiple age groups. The male/female ratios were 6:5, 16:16, 9:5, and 11:10 for 

young APP, adult APP, young nTG, and adult nTG mice respectively. Single-unit recording data 

in region CA1 of the hippocampus were collected from six adult APP mice (3:3 male/female ratio) 

and six adult nTG mice (2:4 male/female ratio).  

A separate, non-implanted cohort of APP and nTG mice were tested in the path integration 

behavior task. Mice were separated into the same four experimental groups defined above. The 

male/female ratios were 6:6, 6:3, 5:5, and 4:4 for young APP, adult APP, young nTG, and adult 

nTG mice respectively. 

Surgery 

On the day of surgery, mice were anesthetized with isoflurane (0.5% - 3% in O2) and administered 

carprofen (0.01 ml/g) subcutaneously. For each mouse, three anchor screws were secured to the 

skull and a ground wire was positioned either above the cerebellum at midline position or the left 

visual cortex. A ‘versadrive’ containing four independently movable tetrodes (Axona, Inc) was 

implanted on top of the right MEC at the following stereotaxic coordinates: 3.4 mm lateral to the 

midline, 0.25-0.40 mm anterior to the transverse sinus. For hippocampal implants, the versadrive 

was implanted on top of the right CA1 at the following stereotaxic coordinates: 1.5 mm lateral to 

the midline, 1.9 mm posterior from bregma. Tetrodes were gold-plated to lower impedances to 
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150-250 kΩ at 1 kHz prior to surgery. The versadrive was angled at eight degrees in the posterior 

direction for MEC implants and was not angled for CA1 implants. Following placement, the 

versadrive was secured in place using Kwik-Sil (to prevent exposure of the brain) and dental 

acrylic (to secure the versadrive to the skull and anchor screws). The ground wire was soldered to 

the implant, and tetrodes were lowered 1.0 mm and 0.5 mm from the dorsal surface for the MEC 

and CA1 respectively. All surgical procedures were performed in accordance with McGill 

University and Douglas Hospital Research Centre Animal Use and Care Committee (protocol 

#2015-7725) and in accordance with Canadian Institutes of Health Research guidelines. 

Neural Recordings 

Three days post-surgery, mice were placed on water restriction and maintained at 85% of their ad 

libidum weight for the duration of experiments. Mice were tested in six different open field 

environments. The majority of MEC recordings were done in a 75 x 75 cm box (1109 recordings), 

but a number of them also took place in a ten-sided maze with a 63.8 diameter (9 recordings), a 50 

x 50cm box (121 recordings), a 84 x 84 cm box (23 recordings), a 90 x 90 cm box (1 recording), 

and a 100 x 100 cm box (58 recordings). All CA1 recordings were done in the same 75 x 75 cm 

box. As mice explored their environments, water droplets were randomly scatter throughout to 

motivate the subjects to adequately sample the entire open field. Once mice reliably provided good 

trajectory coverage, tetrodes were turned quickly until theta rhythmic units were observed which 

indicated that the tetrodes had entered the MEC. Tetrodes were then advanced in increments of 25 

microns to sample new putative MEC neurons, which was later confirmed by histology. For the 

CA1 cohort, sleep recordings were carried out prior to open field exploration to detect sharp wave 

and ripple activity. Once ripple amplitude was stable across days, tetrodes were no longer turned. 

Occasionally, tetrodes were either advanced or retracted depending on fluctuations in ripple 
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amplitude and unit activity. In most cases for both MEC and CA1 recordings, neurons were not 

stable enough between recordings to reliably determine whether cells were re-sampled across days 

and thus we have included all cells recorded into our analysis.  

To record spikes and local field potentials, versadrives were connected to a multichannel amplifier 

tethered to a digital Neuralynx (Bozeman, MT) recording system, and data were acquired using 

Cheetah 5.0 software (Neuralynx, Inc). Signals were amplified and band-pass filtered between 0.6 

kHz and 6 kHz. Spike waveform thresholds were adjusted before commencing each recording and 

ranged between 35-140 µV depending on unit activity. Waveforms that crossed threshold were 

digitized at 32 kHz and recorded across all four channels of the given tetrode. Local field potentials 

were recorded across all tetrodes.  

Histology 

Animals were anesthetized with Isoflurane and perfused intracardially using saline, followed by 

4% paraformaldehyde. Animal heads were left in 4% paraformaldehyde for between 24-72 hours 

following perfusion, before brains were extracted. Brains were left to sink in a 30% sucrose 

solution, and then frozen and stored in a -80ºC freezer. Sagittal brain sections (40µm) were sliced 

using a cryostat and Nissl-stained with a Cresyl violet solution. In cases where brain slices 

repeatedly came off the glass slides during Nissl-staining, slices were instead mounted using a 

fluorescent DAPI labeling mounting medium.  

Tetrode tracks were characterized to be in either the superficial or deep layers based on the location 

of the track tip. Only data collected from tetrodes within the MEC were included in the analysis. 



80 
 

For hippocampal recordings, all tetrode tips that picked up single-units were determined to be in 

region CA1 of the dorsal hippocampus. Tips from tetrodes located outside of CA1 did not pick up 

any single-units.   

Spike sorting 

Single-units were isolated ‘offline’ manually using Offline Sorter 2.8.8 (Plexon, Inc) individually 

for each recording session. Neurons were separated based on the peak amplitude and principal 

component measures of spike waveforms. Evaluation of the presence of biologically realistic 

interspike intervals, temporal autocorrelations, and cross correlations was used to confirm single-

unit isolation. The experimenter was blind to the age and genotype of the subjects and only well-

separated clusters were included in analysis. 

Position, direction and velocity estimation 

For all electrophysiological recordings, positional data was acquired at 30 frames per second at 

720 x 480 pixel resolution (4.9 pixels per cm) using a camera purchased from Neuralynx 

(Bozeman, MT). The camera was elevated at a height such that it fully captured all recording 

environment sizes used. The estimated position of the animal was calculated as the centroid of a 

group of red and green diodes positioned on the recording head stage. Head direction was 

calculated as the angle between the red and green diodes. Up to five lost samples due to occlusion 

of tracking LEDs, or reflections in the environment were replaced by a linear interpolation for both 

position and directional data. Running velocity was calculated using a Kalman filter. Rate maps 

were constructed by calculating the occupancy-normalized firing rate for 3cm x 3cm bins of 

position data. Data were smoothed by a two-dimensional convolution with a pseudo-Gaussian 

kernel involving a three pixel (9 cm) standard deviation. To visualize periodicity of grid fields, we 



81 
 

computed the spatial autocorrelation of the smoothed rate maps using Pearson’s product moment 

correlation coefficient as described in Supplementary Fig. 3. 

Gridness score 

To quantify the spatial periodicity of MEC neurons, we calculated a ‘gridness score’ as described 

in Brandon et al., 201125. Briefly, this metric quantifies the hexagonal spatial periodicity in firing 

rate maps, while also accounting for elliptical eccentricity along one of two mirror lines that exist 

in a hexagonal lattice structure. Distortion along one of the mirror lines was corrected after 

determining the major and minor axes of the grid based on the six fields closest to the central peak 

of the rate map autocorrelogram. The entire autocorrelogram was compressed along the major axis 

so that the major axis became equal to the minor axis. Large eccentricities (where the minor axis 

was less than half of the major axis) were not corrected. From the compressed autocorrelogram, 

we extracted a ring that encased the six peaks closest to the center peak but excluded the central 

peak to report periodicity between fields. We then calculated a rotational autocorrelation of this 

ring and observed the periodicity in paired pixel correlations across 180 degrees of rotation. The 

gridness score was computed as the difference between the lowest correlation observed at 60 or 

120 degrees of rotation and the highest correlation observed at 30, 90, or 150 degrees of rotation. 

To ensure that our finding that grid cell reduction was not observed because of double-sampling 

grid cells across recording sessions, we made efforts to reduce putative double-sampling. 

Recordings of grid cells with cluster centroids within 0.2mV on subsequent days were considered 

to be putative duplicate recordings, and the grid cell recording with the best separation index was 

chosen for statistics on gridness across groups in Supplementary Fig. 7. We used the full set of 

recordings for all other analyses.  

Directionality 
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Polar histograms of firing rate by head direction were generated to visualize the pattern of spiking 

dependent upon the animal’s direction. To construct the polar plots, head direction was collected 

into bins of 6 degrees and the number of spikes in each bin was divided by the time spent facing 

that direction. The mean resultant length (MRL) of the polar plot was taken as a metric of head 

direction selectivity.  

Cell selection 

We categorized each entorhinal neuron as a grid cell, head direction cell, or non-grid spatially-

tuned cell. We performed a shuffling procedure to set significance criteria to determine grid cells 

and head direction cells. Spike trains from each neuron recorded were randomly shifted in time by 

at least 30 seconds. We then calculated gridness and directionality measures. This process was 

repeated 50 times for each neuron, and the 99th percentile of the resulting distribution of scores 

was determined as the significance criteria for both measures. This results in a gridness threshold 

of 0.54 and directionality threshold of 0.21 which we used to define grid cells and head direction 

cells in our full dataset. Any cell recorded in the MEC which did not qualify as a grid cell but had 

a split-half correlation ≥ 0.6 was categorized as a non-grid spatially-tuned cell. Putative 

interneurons in the MEC were selected by having a narrow wave form (<0.3ms) and a mean firing 

rate of at least 0.5 Hz. Hippocampal neurons were classified as putative place cells if they had 1) 

a minimum mean firing rate of 0.1 Hz, 2) a maximum mean firing rate of 5.0 Hz, and 3) a spatial 

peak rate of greater than 5.0 Hz. Duplicate place cells sampled across recording sessions were 

removed for Fig. 2d and Fig. 3d. 

Spatial 2D displacement analysis 

To quantify noise in the two-dimensional (2D) phase of grid cells (and other cell types) on short 

timescales, we began by dividing the first 30 minutes of each recording into 10 epochs of three 
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minutes each. For each epoch, we computed the resulting rate map. Next, for all pairwise 

comparisons of epoch rate maps, we computed the spatial cross-correlation between rate maps 

over a window of ±5 pixel (±15 cm) lags in both dimensions. The peak of this cross-correlogram 

captures the 2D translation necessary to best align the current pair of rate maps. Because the 

periodic nature of the grid pattern might lead to multiple local maxima in the cross-correlogram, 

we first computed the patch of correlation values nearest the center for which all contiguous 

correlation values were at least 50% of the maximum correlation value. We then chose the 

maximum correlation in this patch as our peak. The distance from the center (no difference in 

alignment) to this peak was computed as our measure of 2D phase-shift between these epochs. The 

average across all pairwise comparisons of epochs was then the final measure of 2D phase noise 

for that cell. 

Speed modulation of theta power and frequency 

Local field potential traces obtained from the MEC were referenced to a cortical reference 

electrode and downsampled to 500 Hz. Power between 1-15Hz was calculated using a Morlett 

Wavelet with a 0.25 Hz bandwidth to obtain a power spectrum for each sample. Theta-by-Speed 

spectrograms were calculated as the power between 5-15 Hz divided by power in the delta band 

(2-4 Hz) across running speeds. The average Theta-by-Speed spectrogram is show in Fig. 2e. To 

quantify speed modulation of theta power, the mean power between 7-12 Hz across speeds was 

extracted from each Theta-by-Speed spectrogram across speeds (Fig. 2e). To quantify speed 

modulation of theta frequency, the frequency of the peak power for each running speed was 

extracted from the Theta-by-Speed spectrogram (Fig. 2e). Analysis of co-variance (ANCOVA) 

was performed on these extracted data. 

Single-cell temporal autocorrelations and intrinsic frequency 
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The spike times of each cell were binned at 5ms intervals and the temporal autocorrelation for the 

given spike train was computed. The obtained signal was smoothed by a Gaussian kernel with 2 

bin standard deviation, zero padded to 213 samples and the power spectrum was calculated using 

the Chronux toolbox function MTSPECTRUMC from Matlab. The intrinsic frequency of a given 

cell was then taken as the frequency with the max power in the 6-12 Hz range.  

Cross-correlations and synchrony analysis 

To examine spiking synchrony unbiased cross-correlations were computed between 

simultaneously recorded grid cells, head direction cells, and putative interneurons with 5ms 

temporal bins from a lag of -400 to 400ms. The resulting cross-correlations were convolved with 

a 25ms gaussian and normalized to their median absolute deviation for comparison.  

Path integration task 

Data were collected in a ten-sided maze (diameter = 63.8 cm) surrounded by black curtains. Steel 

bars were screwed into the walls of the testing room and hovered over the maze. A plastic base 

was positioned on these bars and acting as the ceiling for the maze. On this ceiling, an infrared 

camera purchased from Neuralynx was positioned and acquired positional data at 30 frames per 

second at 720 x 480 pixel resolution (6.13 pixels per cm). Black curtains were positioned on top 

and around this plastic base which draped over the maze and ensured a complete darkness 

environment. Within the maze, 10 refuge enclosures connected to the open environment were 

closed off by top-down sliding doors that acted as walls.  For all trials, the same refuge was used 

for each subject. When the door was slid open, the mouse could voluntarily enter or exit the refuge 

by their own volition. The height of these walls (and the entire maze throughout) was 27.6 cm.  

Mice were placed on food restriction and maintained at 85% of their ad libidum weight throughout 

training and testing phases. In each trial, the mouse was kept in the same refuge enclosure separated 
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from the open environment by the sliding door. The maze was operated in darkness via a pulley 

system which consisted of a rope fastened to the top of the sliding door. This rope extended outside 

of the curtains by passing through 2 clamps that were installed along the steel bars above the maze. 

This setup mimicked a pulley system where the experimenter could pull on the rope and open the 

sliding door while the curtains were draped over the maze. The handle of the rope end was twisted 

into a knot; at the start of each trial, the rope was pulled, and the knot was looped onto a third 

clamp fastened to a table post. Doing so kept the sliding door held up throughout the duration of 

each trial. At the end of a trial, the knot was lifted from the clamp which closed the door. This 

setup allowed the experimenter to quickly operate the door without needing to physically interact 

with the maze. 

Once the mouse was let into the open environment, it had to forage for a randomly placed small 

food pellet and return to the refuge prior to consumption. These food pellets were the same kind 

as administered in the subjects’ cages, but smaller in size weighing less than 0.2 g. Successful 

trials were defined as events where the mouse picked up the food pellet and navigated to the refuge 

before consumption. Failed trials were defined as events where the mouse failed to return to its 

refuge before consuming the pellet. Incomplete trials were defined as events where the mouse 

failed to retrieve the pellet before returning to its refuge.  

Visual cues were set up along the walls of the environment to allow for increased allocentric-

guided behavior in the light trials. The three visual cues used consisted of a triangle, square, and 

three stripes constructed using tape and were positioned on three almost-equally spaced walls 

(given that the environment is ten-sided, a cue couldn’t be completely equally-spaced from the 

other two). White noise played throughout all trials to account for potential auditory cues that may 

affect the mouse’s return trajectory. Furthermore, the maze environment was wiped using 
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Peroxyguard following every five consecutive trials to reduce the extent to which olfactory cues 

influenced behavior. In light trials, room lighting was turned on and the curtains were pushed to 

the side. In dark trials, room lighting was turned off and the curtains completely covered the arena. 

The mouse’s movements were tracked using an overhead infrared camera, and the maze was lit 

using an infrared light. 

Path Integration Behaviour Timecourse. Mice reached 85% of their ad libidum weight before 

experiments commenced. Mice first underwent a training phase where they achieved a minimum 

of eight successful trials out of ten total complete trials within a session in light conditions. 

Incomplete trials did not count as a completed trial. Mice went through consecutive light training 

days until they reached the success criteria. During failed trials, the experimenter punished the 

mouse by holding it by the tail suspended in air for ten seconds before placing it back into the 

refuge. 

Following light training, mice then underwent five consecutive days of dark training. The same 

protocol as the light training applied to dark training. Mice were required to achieve a minimum 

of eight successful trials out of ten total complete trials within a session in any of the five days. 

All mice reported in the dataset achieved success criteria. Four mice that did not pass the training 

criteria were excluded from analysis. These mice included two young nTG mice, one young APP 

mouse, and one aged APP mouse.  

Following dark training, mice then underwent five consecutive days of light and dark testing. In 

days 1, 3 and 5, five light trials were conducted, followed by five dark trials. Incomplete trials 

counted as trials. This was repeated until the mouse achieved ten complete trials in each of the 

light and dark conditions. On days 2 and 4, the same protocol applied, but the mouse started with 

five dark trials, followed by five light trials. 
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Analysis of path integration behavior 

All path integration behavioral data were recorded at 30 frames per second. The positional 

coordinates of the mice for each trial were obtained using an open-source deep learning tracker 

algorithm called DeepLabCut57. DeepLabCut was only used to quantify positional data in the path 

integration task and not for electrophysiological recordings. Custom Matlab scripts were used to 

analyze various behavioral parameters from the mice’s positional data.  

Genotyping 

Tail samples were collected at weaning for genotyping, and just prior to brain perfusion for 

additional confirmation. DNA sample were extracted and amplified using the REDExtract-N-

Amp™ Tissue PCR Kit (MilliporeSigma, XNAT-100RXN) and the primer sequence and PCR 

protocol provided by The Jackson Laboratory (MMRRC, 34836-JAX). Genotyping results were 

visualized using a QIAxcel instrument (Qiagen).  

Immunofluorescence 

Mice were anesthetized with Isoflurane (Baxter, FDG9623) and intracardially perfused with 0.05% 

heparin (Sandoz, 10750) in ice-cold saline followed up cold and filtered 4% paraformaldehyde 

that was freshly made from powder (MilliporeSigma, 158127-500g). Extracted brains were 

cryopreserved in 30% sucrose (MilliporeSigma, S0389-1Kg), flash frozen in 2-methylbutane 

(Fisher Scientific, 03551-4), and kept at -80ºC until sliced on a cryostat (Leica, CM3050-S). 

Sagittal sections (40µm) were collected on microscope slides for on-slide staining. Each slide had 

two positive controls (APP animals 18 months old) and at least one brain section from the 

remaining experimental groups (young APP, adult APP, young nTG, adult nTG). The same 

combinations of brain sections were used for both MEC and hippocampal staining. Sections that 

were too damaged were discarded. All slides were processed at the same time using the purified 
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mouse monoclonal anti-beta-amyloid 1-16 antibody (6E10) (Biolegend, catalog number 803001) 

at a dilution of 1:500 for 30 minutes, along with the M.O.M.® Fluorescein Kit (Vector 

Laboratories, catalog number FMK-2201). Slides were mounted with DAPI containing 

Fluoromount-G (SouthernBiotech, catalog number 0100-20). 

Analysis of Immunofluorescence 

Images for each section were acquired within the same session at 10x magnification with the same 

exposure settings (FITC: 250 ms, DAPI: 50 ms) on a slide scanner (Olympus, VS120) within one 

week of the immunofluorescence assay. The images were digitally processed using ImageJ47. ROIs 

were manually drawn for both MEC and the hippocampus and clear visually identifiable artifacts 

were removed from ROIs. Rolling ball background subtraction (70µm radius) was applied to every 

image. ROI areas were measured, and fluorescence intensity was extracted. A threshold was set 

for analysis to capture the plaque fluorescence signal (6000 a.u.), based on beta amyloid plaques 

observed in positive control animals. Using RStudio (RStudio Team 2016), the sections were 

grouped by structure: MEC or hippocampus. For each animal, the normalized fluorescence was 

calculated as the total fluorescence divided by the total area.  

Immunoautoradiographic labelling of synaptic markers 

Immunoautoradiography experiments were performed on fresh frozen mouse brain sections 

(10µm) as described previously58,59. Brain slices were taken at the level of the MEC (bregma 2.76 

to 3.90) and the hippocampus (bregma -1.0 to -2.0).  Slices were incubated overnight at 4° with 

rabbit polyclonal antiserum specific of VGLUT1 (dilution 1:10,000), VGLUT3 (dilution 1:20,000, 

Synaptic Systems, catalog number 135203, Göttingen Germany), VGAT (dilution 1:10,000, 

Synaptic Systems, catalog number 131002, Göttingen Germany), VAChT (dilution 1:10,000, 

Synaptic Systems, catalog number 139103, Göttingen Germany), NR1 (dilution 1:10,000, 
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Synaptic Systems, catalog number 114103, Göttingen Germany) and then with anti-rabbit [125I]-

IgG (PerkinElmer, 0.25 µCi/ml final dilution) for 2hr at 4°. Sections were then washed in PBS, 

rapidly rinsed in water, dried, and exposed to x-ray films (Biomax MR, Kodak) for 5 days. 

Standard radioactive microscales were exposed to each film to ensure that labeling densities were 

in the linear range. Densitometry measurements were performed with MCID analysis software 7.1 

(InterFocus, Ltd) on sections for each region per mouse (4 mice per experimental group for a total 

of 16 mice). 

VGLUT1, VGLUT3, VACH and VGAT are vesicular transporters that mediate neurotransmission 

from the presynaptic side. VGLUT1 is necessary for the vesicular accumulation of glutamate and 

is a general marker for glutamatergic drive in synapses. In the context of grid cells, excitatory drive 

is a prerequisite for grid cell generation28. VGLUT3 is a specific marker for synapses made by 

CCK-positive basket cells in the MEC. VAChT expression in the MEC marks presynaptic 

cholinergic terminals from the medial septum. The severe loss of cholinergic neurons is a hallmark 

of Alzheimer’s disease and a possible role of acetylcholine for grid cell activity has previously 

been reported. VGAT mediates vesicular accumulation of GABA and is a general marker for 

inhibitory drive which is important for grid cell generation32,33. In the case of NR1, it is a subunit 

of NMDA receptors that has previously been shown to be necessary for both the generation of grid 

cells and path integration ability35.  

Data availability 

All data supporting the key findings of this study are available within the article, Supplementary 

Information and Source Data, or via request to the corresponding author. Source data are provided 

with this paper. 
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Code availability 

All custom codes supporting the key findings of this study are available at the following GitHub 

page: https://github.com/johnson-ying/ying-et-al-2021, or via request to the corresponding author.  
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Figure Legends 

Fig. 1: Reduction of grid cell spatial periodicity in adult APP transgenic mice. a Firing rate 

maps for grid cells from each experimental group. Each row includes 15 grid cells with the highest 

grid scores sorted in descending order. The spatial peak firing rate and grid score are indicated in 

the rate map’s top-left and top-right, respectively. b Grid scores (nTG-y vs. nTG-a: P = 0.12; nTG-

y vs. APP-y: P = 0.73; APP-y vs. APP-a: P = 1 × 10-7; nTG-a vs. APP-a: P = 2.5 × 10-6) between 

groups (cells, n = 64 for nTG-y; n = 99 for nTG-a; n = 74 for APP-y; n = 50 for APP-a). c Scatter 

plot displays grid score by age recorded (in days). A two-way ANOVA was conducted to examine 

the effects of age and genotype on grid score. There was a significant interaction between the 

effects of age and genotype: F (1, 280) = 11.99, P = 6.2 × 10-4. d Color-coded rotational 

correlations are shown, sorted in descending order of the grid score value. All neurons within the 

top 20% of grid scores are shown. The max grid score in each experimental group is displayed at 

the top of the respective plot. e Spatial information (nTG-y vs. nTG-a: P = 0.77; nTG-y vs. APP-

y: P = 0.34; APP-y vs. APP-a: P = 6.5 × 10-6; nTG-a vs. APP-a: P = 1.2 × 10-3), spatial peak firing 

rate (nTG-y vs. nTG-a: P = 0.59; nTG-y vs. APP-y: P = 0.79; APP-y vs. APP-a: P = 0.77; nTG-a 

vs. APP-a: P = 0.27), and mean firing rate (nTG-y vs. nTG-a: P = 0.99; nTG-y vs. APP-y: P = 

0.086; APP-y vs. APP-a: P = 0.13; nTG-a vs. APP-a: P = 0.79) between groups (cells, n = 64 for 

nTG-y; n = 99 for nTG-a; n = 74 for APP-y; n = 50 for APP-a). nTG-y, non-transgenic young; 

nTG-a, non-transgenic adult; APP-y, APP young; APP-a, APP adult. Wilcoxon rank sum tests 

(two-sided) corrected for multiple comparisons using a Bonferroni-Holm correction were applied 

to analyze the data in Fig. 1 b and e. Data in bar graphs are presented as median values ± 25th and 

75th percentiles; **P < 0.01, ***P < 0.001; n.s, not significant. Source data are provided as a 

Source Data file. 
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Fig. 2: Medial entorhinal head direction cells, non-grid spatially-tuned cells, CA1 place cells, 

and medial entorhinal theta oscillations in adult APP mice. a (Top) Polar plots of eight head-

direction cells for each group. Directional peak firing rate and mean resultant length (MRL) are 

indicated in the top-left and top-right, respectively. (Bottom) MRL (nTG-y vs. nTG-a: P = 0.051; 

nTG-y vs. APP-y: P = 0.45; APP-y vs. APP-a: P = 0.41; nTG-a vs. APP-a: P = 0.11), spatial peak 

firing rate (nTG-y vs. nTG-a: P = 0.44; nTG-y vs. APP-y: P = 0.21; APP-y vs. APP-a: P = 0.96; 

nTG-a vs. APP-a: P = 0.073), and mean firing rate (nTG-y vs. nTG-a: P = 0.18; nTG-y vs. APP-

y: P = 0.28; APP-y vs. APP-a: P = 0.87; nTG-a vs. APP-a: P = 0.08) between groups (cells, n = 295 

for nTG-y; n = 244 for nTG-a; n = 305 for APP-y; n = 471 for APP-a). b (Top) Rate maps of eight 

non-grid spatially-tuned cells for each group. Spatial peak firing rate and split-half reliability 

scores are indicated in the top-left and top-right, respectively. (Bottom) Average firing field size 

(nTG-y vs. nTG-a: P = 0.40; nTG-y vs. APP-y: P = 0.66; APP-y vs. APP-a: P = 0.64; nTG-a vs. 

APP-a: P = 0.37), spatial peak firing rate (nTG-y vs. nTG-a: P = 0.028; nTG-y vs. APP-y: P = 

0.49; APP-y vs. APP-a: P = 0.73; nTG-a vs. APP-a: P = 0.032), and mean firing rate (nTG-y vs. 

nTG-a: P = 0.76; nTG-y vs. APP-y: P = 0.37; APP-y vs. APP-a: P = 0.50; nTG-a vs. APP-a: P = 

0.93) between groups (cells, n = 82 for nTG-y; n = 83 for nTG-a; n = 106 for APP-y; n = 119 for 

APP-a). c (Top) Rate maps of eight CA1 place cells in nTG and APP adult mice. (Bottom) Same 

as (a), but panels compare spatial information (nTG-a vs. APP-a: P = 0.08), spatial peak firing rate 

(nTG-a vs. APP-a: P = 0.32), and mean firing rate (nTG-a vs. APP-a: P = 0.31) between groups 

(cells, n = 118 for nTG-a; n = 109 for APP-a). d Comparison of spatial information (0 Hz: P = 

0.03; 0.5 Hz: P = 0.03; 1.0 Hz: P = 0.028; 1.5 Hz: P = 0.057; 2.0 Hz: P = 0.10; 2.5 Hz: P = 0.15; 

3.0 Hz: P = 0.16; 3.5 Hz: P = 0.28; 4.0 Hz: P = 0.18; 4.5 Hz: P = 0.12; 5.0 Hz: P = 0.08; 5.5 Hz: 

P = 0.16; 6.0 Hz: P = 0.11; 6.5 Hz: P = 0.12; 7.0 Hz: P = 0.30; 7.5 Hz: P = 0.31; 8.0 Hz: P = 0.41) 

and mean firing rates (0 Hz: P = 0.64; 0.5 Hz: P = 0.64; 1.0 Hz: P = 0.70; 1.5 Hz: P = 0.81; 2.0 

Hz: P = 0.95; 2.5 Hz: P = 0.99; 3.0 Hz: P = 0.90; 3.5 Hz: P = 0.82; 4.0 Hz: P = 0.85; 4.5 Hz: P = 

0.73; 5.0 Hz: P = 0.31; 5.5 Hz: P = 0.24; 6.0 Hz: P = 0.048; 6.5 Hz: P = 0.016; 7.0 Hz: P = 0.025; 

7.5 Hz: P = 0.027; 8.0 Hz: P = 0.039) of CA1 place cells in adult nTG and APP mice when varying 

the cell selection criteria of peak spatial firing rate. The colored dots indicate the number of place 

cells (cells, 0 Hz: n = 210 for nTG-a; n = 233 for APP-a; 0.5 Hz: n = 210 for nTG-a; n = 233 for 

APP-a; 1.0 Hz: n = 209 for nTG-a; n = 231 for APP-a; 1.5 Hz: n = 205 for nTG-a; n = 224 for APP-

a; 2.0 Hz: n = 197 for nTG-a; n = 212 for APP-a; 2.5 Hz: n = 187 for nTG-a; n = 202 for APP-a; 
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3.0 Hz: n = 172 for nTG-a; n = 185 for APP-a; 3.5 Hz: n = 159 for nTG-a; n = 166 for APP-a; 4.0 

Hz: n = 147 for nTG-a; n = 148 for APP-a; 4.5 Hz: n = 136 for nTG-a; n = 127 for APP-a; 5.0 Hz: 

n = 118 for nTG-a; n = 109 for APP-a; 5.5 Hz: n = 103 for nTG-a; n = 94 for APP-a; 6.0 Hz: n = 91 

for nTG-a; n = 77 for APP-a; 6.5 Hz: n = 83 for nTG-a; n = 62 for APP-a; 7.0 Hz: n = 75 for nTG-

a; n = 54 for APP-a; 7.5 Hz: n = 61 for nTG-a; n = 49 for APP-a; 8.0 Hz: n = 56 for nTG-a; n = 45 

for APP-a) that passed the selection threshold. e (Left) Spectrograms compare the MEC theta 

frequency and power as a function of the animal’s running speed. (Right) MEC theta power and 

frequency are independently displayed as a function of the animal’s running speed. Data are 

presented as mean values ± 99% confidence intervals. nTG-y, non-transgenic young; nTG-a, non-

transgenic adult; APP-y, APP young; APP-a, APP adult. Wilcoxon rank sum tests (two-sided) 

corrected for multiple comparisons (where applicable) using a Bonferroni-Holm correction were 

applied to analyze the data in Fig. 2 a-d. Data in bar graphs are presented as median values ± 25th 

and 75th percentiles; Boxplot elements present data as a median dot, interquartile range boxes 

extend from 25th to 75th percentile, whiskers extend from smallest values to the largest values; 

*P < 0.05; n.s, not significant. Source data are provided as a Source Data file. 
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Fig. 3: Grid cells in adult APP mice are spatially unstable. a Normalized firing field size of 

grid cells (nTG-y vs. nTG-a: P = 0.076; nTG-y vs. APP-y: P = 0.76; APP-y vs. APP-a: P = 0.52; 

nTG-a vs. APP-a: P = 0.0025) between groups (cells, n = 64 for nTG-y; n = 99 for nTG-a; n = 74 

for APP-y; n = 50 for APP-a). b Each grid cell recording was split into 10 three-minute partitions. 

Two-dimensional spatial cross-correlations were computed across all partition pairs. Example 

cross-correlations of the first partition to subsequent partitions in two grid cells recorded from a 

nTG and an APP mouse are shown to the right. c (Left) Schematic shows that two-dimensional 

spatial displacement was calculated as the distance between the peak correlation pixel and the 

center pixel of the cross-correlation. Note that this analysis makes no conclusions about the 

magnitude of the peak correlation pixel, and strictly assesses the shift of said peak value. (Right) 

Two-dimensional displacement of grid cells, non-grid spatially-tuned cells and place cells as a 

function of lags between partitions. Dots indicate mean values and error bars indicate SEM. d 

Two-dimensional displacement of grid cells (nTG-y vs. nTG-a: P = 0.76; nTG-y vs. APP-y: P = 

0.76; APP-y vs. APP-a: P = 9.1 × 10-4; nTG-a vs. APP-a: P = 3.4 × 10-4), non-grid spatially-tuned 

cells (nTG-y vs. nTG-a: P = 0.74; nTG-y vs. APP-y: P = 0.24; APP-y vs. APP-a: P = 0.19; nTG-

a vs. APP-a: P = 0.87), and place cells (nTG-a vs. APP-a: P = 0.37) between groups (grid cells, 

n = 61 for nTG-y; n = 95 for nTG-a; n = 73 for APP-y; n = 49 for APP-a; non-grid spatially-tuned 

cells, n = 77 for nTG-y; n = 80 for nTG-a; n = 98 for APP-y; n = 115 for APP-a; place cells, n = 114 

for nTG-a; n = 96 for APP-a). e Two-dimensional rotational displacement of one grid cell partition 

relative to another in the cross-correlation (nTG-y vs. nTG-a: P = 0.15; nTG-y vs. APP-y: P = 

0.87; APP-y vs. APP-a: P = 0.73; nTG-a vs. APP-a: P = 0.15) between groups (grid cells, n = 61 

for nTG-y; n = 95 for nTG-a; n = 73 for APP-y; n = 49 for APP-a). nTG-y, non-transgenic young; 

nTG-a, non-transgenic adult; APP-y, APP young; APP-a, APP adult. Wilcoxon rank sum tests 

(two-sided) corrected for multiple comparisons using a Bonferroni-Holm correction were applied 

to analyze the data in Fig. 3 a and d-e. Data in bar graphs are presented as median values ± 25th 

and 75th percentiles; ***P < 0.001; n.s, not significant. Source data are provided as a Source Data 

file. 
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Fig. 4: Reduced spike-time synchrony in grid cell-interneuron and grid cell-head direction 

cell pairs. a Spike-time cross-correlations between grid cell-interneuron pairs (left) and grid cell-

head direction cell pairs (right) for all experimental groups (rows). Each panel displays the 

normalized correlation (by median) by time lag (in ms). Black curves indicate median values and 

gray contours indicate median absolute deviation. Lighter gray columns indicate the 25 ms time 

window in each lag direction from 0 ms. b Color-coded raster plots show the magnitude of co-

activity within a 400 ms time window. Y-axes are sorted in descending order by cell-pairs with 

the maximum co-activity within a 25 ms time window, and numbers indicate the number of cell-

pairs in each experimental group. c The mean co-activity within a 25 ms time window for grid-

interneurons pairs (nTG-y vs. nTG-a: P = 0.30; nTG-y vs. APP-y: P = 0.13; APP-y vs. APP-a: P 

= 0.51; nTG-a vs. APP-a: P = 0.0018), and grid-head direction pairs (nTG-y vs. nTG-a: P = 0.33; 

nTG-y vs. APP-y: P = 0.56; APP-y vs. APP-a: P = 0.078; nTG-a vs. APP-a: P = 0.038) between 

groups (grid-interneuron pairs, n = 60 for nTG-y; n = 115 for nTG-a; n = 34 for APP-y; n = 54 for 

APP-a; grid-head direction pairs, n = 73 for nTG-y; n = 110 for nTG-a; n = 34 for APP-y; n = 30 

for APP-a). nTG-y, non-transgenic young; nTG-a, non-transgenic adult; APP-y, APP young; APP-

a, APP adult. Wilcoxon rank sum tests (two-sided) corrected for multiple comparisons using a 

Bonferroni-Holm correction were applied to analyze the data in Fig. 4 c. Data in bar graphs are 

presented as median values ± 25th and 75th percentiles; *P < 0.05, **P < 0.01; n.s, not significant. 

Source data are provided as a Source Data file. 
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Fig. 5: Path integration is impaired in APP mice and worsens across age. a Schematic of food-

foraging task in total darkness. Mice left their refuge to forage for a randomly placed food pellet. 

Upon discovery, they navigated back to the refuge prior to consumption. b (Left) The probability 

of reaching the refuge at the initial wall encounter is depicted in a polar plot. (Right) Probability 

density plot compares the likelihood of arriving at each of the ten walls between groups. W1 and 

W10 refer to the ten walls in consecutive order. c Polar plots compare the probability of reaching 

the refuge at the initial wall encounter between groups. Probability values are indicated below 

polar plots for each group. d The initial wall angle (nTG-y vs. nTG-a: P = 0.50; nTG-y vs. APP-

y: P = 6.3 × 10-15; APP-y vs. APP-a: P = 0.11; nTG-a vs. APP-a: P = 5.6 × 10-15), the initial heading 

angle (nTG-y vs. nTG-a: P = 0.22; nTG-y vs. APP-y: P = 3.1 × 10-10; APP-y vs. APP-a: P = 1.9 × 

10-5; nTG-a vs. APP-a: P = 9.5 × 10-17), the normalized distance travelled (nTG-y vs. nTG-a: P = 

0.0083; nTG-y vs. APP-y: P = 1.2 × 10-6; APP-y vs. APP-a: P = 1.2 × 10-6; nTG-a vs. APP-a: P = 

3.9 × 10-11), and the proportion of the return path spent along the periphery (nTG-y vs. nTG-a: P 

= 0.74; nTG-y vs. APP-y: P = 0.011; APP-y vs. APP-a: P = 7.1 × 10-5; nTG-a vs. APP-a: P = 1.6 

× 10-7) between groups (behavior trials, n = 377 for nTG-y; n = 307 for nTG-a; n = 500 for APP-y; 

n = 311 for APP-a). e The increase (measured in degree change) of the initial wall angle (nTG-a 

vs. APP-a: r.s P = 0.42; k.s P = 2.3 × 10-11) and the initial heading angle (nTG-a vs. APP-a: r.s P 

= 0.019; k.s P = 8.1 × 10-6) across age, as well as the increase (measured as a % increase) of the 

normalized distance travelled (nTG-a vs. APP-a: r.s P = 0.0029; k.s P = 8.5 × 10-4) and the 

proportion of the return path spent along the periphery (nTG-a vs. APP-a: r.s P = 0.014; k.s P = 

0.0013) across age between groups (behavior trials, n = 307 for nTG-a; n = 311 for APP-a). The 

median change for each group is indicated above the respective bars. The P values obtained from 

a two-sided Wilcoxon rank sum test (r.s) and a two-sample, two-sided Kolmogorov-Smirnov test 

(k.s) are both indicated. nTG-y, non-transgenic young; nTG-a, non-transgenic adult; APP-y, APP 

young; APP-a, APP adult. Wilcoxon rank sum tests (two-sided) corrected for multiple 

comparisons using a Bonferroni-Holm correction were applied to analyze the data in Fig. 5 d. 

Wilcoxon rank sum tests (two-sided) and two-sample Kolmogorov-Smirnov tests (two-sided) were 

applied to analyze the data in Fig. 5 e. Data in bar graphs are presented as median values ± 25th 

and 75th percentiles; *P < 0.05, **P < 0.01, ***P < 0.001; n.s, not significant. Source data are 

provided as a Source Data file. 
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Supplementary Information 

Contains: 

 Supplementary Tables 1-2 

 Supplementary Figures 1-24 

 

 

Supplementary Table 1. Summary of MEC cell yield within subject. 

 

Animal 
ID# Genotype 

 

 

 

 

Sex 
Age 

Group 

 

#  

recording 
sessions 

#  

total 
cells 

# 

total 
cells 

MEC 

#  

grid 
cells 

#  

HD 
cells 

#  

Non-
grid 

spatial 
cells 

12015 nTG F A 5 21 18 0 7 0 

12040 APP M A 11 35 35 1 5 1 

12375 nTG F Y 21 114 114 1 35 14 

12378 nTG F Y 9 28 28 1 12 0 

12644 nTG F A 7 32 0 0 0 0 

12646 APP F A 2 3 3 1 3 0 

12655 nTG F A 5 15 4 0 2 0 

12656 nTG F A 8 36 0 0 0 0 

12746 nTG F A 10 36 36 2 20 3 

12748 nTG F A 33 97 97 16 25 7 

12756 nTG F A 10 36 8 0 3 4 

12757 nTG F A 18 64 55 0 20 4 

12758 APP F A 24 112 40 1 17 0 

12759 APP F A 23 70 70 0 30 3 
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12784 APP M A 18 81 81 1 26 7 

12785 APP M A 22 32 32 2 11 2 

12786 nTG M A 18 60 60 1 9 7 

12787 nTG M A 24 153 91 1 13 9 

12788 APP M A 7 9 7 0 4 0 

12790 APP M A 18 79 79 2 27 2 

12791 nTG M A 38 192 192 1 49 17 

12792 APP M A 14 31 31 1 11 1 

12794 nTG M A 14 29 29 0 7 1 

13530 APP F Y 10 29 5 0 3 0 

13532 APP F Y 28 117 117 4 38 10 

13534 APP F Y 30 142 142 27 21 31 

13601 nTG F Y 18 67 7 0 0 0 

13630 nTG M Y, A 33 260 260 79 45 29 

13631 nTG M Y 16 95 95 0 38 6 

13683 APP F A 12 64 64 1 17 3 

13781 nTG M A 16 46 16 5 4 2 

13782 nTG M A 26 168 168 31 54 20 

13783 nTG M A 23 104 104 7 20 6 

13784 nTG M A 14 65 11 1 2 1 

13791 APP F A 14 43 43 0 5 0 

13792 APP F A 13 40 40 0 5 2 

13794 APP F Y 17 63 63 0 24 7 

13795 APP M Y 21 91 64 0 15 3 

13798 nTG M Y 19 106 106 7 16 10 

13799 APP M Y 25 86 86 31 13 3 

13827 nTG M Y 17 84 84 0 36 4 
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13828 APP M A 19 52 52 8 17 0 

13884 nTG F Y, A 22 57 29 1 12 2 

13885 nTG F Y, A 25 87 87 6 23 7 

13894 APP F A 17 86 86 2 12 14 

13895 nTG F Y 18 63 63 1 17 0 

13927 APP F A 23 97 97 0 44 2 

13928 nTG F Y 10 20 20 0 10 0 

13931 APP F A 16 53 53 1 12 10 

14012 APP F A 13 40 40 0 18 0 

14014 APP M A 15 62 62 1 12 1 

14015 APP M A 15 80 80 0 30 4 

14020 APP F A 12 47 47 0 20 3 

14117 APP F A 12 29 29 0 9 2 

14118 APP F A 12 34 34 6 3 4 

14125 APP M A 15 59 59 12 10 1 

14574 APP F Y, A 22 71 71 0 10 11 

14593 APP F A 20 63 63 6 21 7 

14598 APP M A 14 57 36 0 20 0 

14599 APP M A 25 68 68 2 9 8 

14623 APP M A 25 94 63 1 9 28 

14754 APP M Y, A 30 175 139 1 31 0 

14756 APP M Y, A 30 267 267 3 127 26 

14757 APP M Y, A 34 168 164 8 43 7 

14847 nTG F Y, A 21 63 63 0 25 1 

14849 nTG M Y, A 20 95 52 1 16 1 

15035 APP F Y, A 30 188 188 2 45 22 

15036 nTG F Y 25 108 64 1 19 10 
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Supplementary Table 2. Summary of CA1 cell yield within subject. 

 

Animal ID# Genotype Sex # recording 
sessions 

# total 
cells 

# place 
cells 

16129 APP F 17 58 28 
16130 nTG F 15 74 58 
16132 nTG M 14 60 27 
16133 APP M 14 102 76 
16135 nTG M 24 137 79 
16153 nTG F 2 9 4 
16154 APP F 17 138 45 
17624 APP F 22 53 18 
17625 nTG F 18 87 37 
17627 APP F 19 115 51 
17628 nTG F 18 74 49 
17903 APP M 8 85 33 
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Supplementary Figure 1. Quantification of amyloid-beta plaques in APP mice. Representative 

examples of magnified brain sections of the hippocampus and medial entorhinal cortex of nTG 

and APP mice across 3 different age groups: young (3-4.5 mo.), adult (4.5-7 mo.) and old (18 mo.). 

Arrows and arrowheads indicate the presence of two different kinds of fluorescent morphologies. 

Adult APP mice have low levels of fluorescence in the medial entorhinal cortex, but the fluorescent 

signal is intracellular and does not resemble the bigger and widespread morphology observed in 

the hippocampus and medial entorhinal cortex of old APP mice. The fluorescence signal in adult 

APP mice might therefore represent early deposition of fibrillar amyloid-beta prior to the 

formation of mature plaques. 
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Supplementary Figure 2. Tetrode track histology for MEC recordings. a Averaged sagittal 

brain sections from the most lateral part of MEC (far right) to the start of parasubiculum (far left). 

The individual track locations obtained from each animal were plotted along these sections by 

experimental group. b Quantification of track locations shown in (a). (Left) Comparison of the 

percentage of tetrode tips located in the MEC between groups. (Right) Comparison of the 

percentage of tetrode tip in either the superficial or deep layers of MEC between groups. c Track 

locations of each animal ordered by genotype and age. The tips of tracks are highlighted with a 

red dot.  

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3. Creation of raster plots indicating the strength of rotational 

correlation of each cell. Autocorrelations of grid cell rate maps were resized to ensure that the 

major and minor axes, a and b, were equal in length. The resulting image was then rotated 180 

degrees to compute a color-coded row indicating the correlation strength at each degree of rotation. 

These rows were then sorted by decreasing order of grid score in a raster plot.  
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Supplementary Figure 4. Example of well-isolated waveforms of four grid cells recorded in 

nTG-a and APP-a mice. Cells with a high and low grid score were selected in each group for 

comparison. Each panel consists of the cell’s grid score, the unit location in the six possible 

conformations of cluster space sorted by waveform amplitude, individual waAveforms recorded 

across the four recording channels (grey) and the average waveform (black), the cell’s rate map, 

trajectory map and rate map autocorrelation. 
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Supplementary Figure 5. Spike isolation quality of grid cells. a Percentage of spike pairs with 

an interspike interval (ISI) less than 1 millisecond (nTG-y vs. nTG-a: P = 1.3 × 10-5; nTG-y vs. 

APP-y: P = 1.2 × 10-4; APP-y vs. APP-a: P = 0.30; nTG-a vs. APP-a: P = 0.45), between groups 

(cells, n = 61 for nTG-y; n = 30 for nTG-a; n = 19 for APP-y; n = 30 for APP-a). These instances 

are considered non-physiological and may be due to faulty isolation or the presence of noisy spikes. 

b Mean mahalanobis distance of spikes per grid cell (nTG-y vs. nTG-a: P = 0.65; nTG-y vs. APP-

y: P = 0.58; APP-y vs. APP-a: P = 0.066; nTG-a vs. APP-a: P = 0.18), between groups (cells, 

n = 61 for nTG-y; n = 97 for nTG-a; n = 74 for APP-y; n = 45 for APP-a). nTG-y, non-transgenic 

young; nTG-a, non-transgenic adult; APP-y, APP young; APP-a, APP adult. Wilcoxon rank sum 

tests (two-sided) corrected for multiple comparisons using a Bonferroni-Holm correction were 

applied to analyze the data in Supplementary Fig. 5 a-b. Data in bar graphs are presented as median 

values ± 25th and 75th percentiles; ***P < 0.001; n.s, not significant. Source data are provided as a 

Source Data file. 
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Supplementary Figure 6. Spatial tuning of grid cells, but not head-direction cells or non-grid 

spatial cells, is disrupted across age in APP mice. Two-way unbalanced ANOVAs compare the 

effects of age, genotype, and interaction on spatial tuning scores for grid cells (grid score), head-

direction cells (mean resultant length) and non-grid spatial cells (field size cm^2).  

 

df = degrees of freedom, MS = mean square. 
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Supplementary Figure 7. Grid cell spatial tuning remains impaired in adult APP mice when 

duplicate cell counts are removed. a Grid score (nTG-y vs. nTG-a: P = 0.19; nTG-y vs. APP-y: 

P = 0.44; APP-y vs. APP-a: P = 4.1 × 10-4; nTG-a vs. APP-a: P = 0.0031), spatial information 

(nTG-y vs. nTG-a: P = 0.73; nTG-y vs. APP-y: P = 0.70; APP-y vs. APP-a: P = 0.0044; nTG-a 

vs. APP-a: P = 0.0072), spatial peak firing rate (nTG-y vs. nTG-a: P = 0.89; nTG-y vs. APP-y: P 

= 0.64; APP-y vs. APP-a: P = 0.73; nTG-a vs. APP-a: P = 0.22), and mean firing rate (nTG-y vs. 

nTG-a: P = 0.67; nTG-y vs. APP-y: P = 0.23; APP-y vs. APP-a: P = 0.45; nTG-a vs. APP-a: P = 

0.80) between groups (cells, n = 36 for nTG-y; n = 67 for nTG-a; n = 32 for APP-y; n = 40 for APP-

a). b Two-way unbalanced ANOVAs comparing the effects of age, genotype, and interaction on 

grid scores for grid cells. df= degrees of freedom, MS = mean square. nTG-y, non-transgenic 
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young; nTG-a, non-transgenic adult; APP-y, APP young; APP-a, APP adult. Wilcoxon rank sum 

tests (two-sided) corrected for multiple comparisons using a Bonferroni-Holm correction were 

applied to analyze the data in Supplementary Fig. 7 a. Data in bar graphs are presented as median 

values ± 25th and 75th percentiles; **P < 0.01, ***P < 0.001; n.s, not significant. Source data are 

provided as a Source Data file. 
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Supplementary Figure 8. Top 15 quality cells across groups. a Polar rate maps for head 

direction cells from each experimental group. Each row includes 15 head direction cells with the 

highest mean resultant scores sorted in descending order. The mean resultant length (light purple) 

and peak firing rate (Hz) (black) of each cell are indicated on top of their respective rate maps. b 

Same as (a) but for non-grid spatially-tuned cells. Cells are sorted by the highest spatial 

information scores in descending order. The spatial information (light purple) and peak firing rate 

(Hz) (black) of each cell are indicated on top of their respective rate maps. c Same as (a) but for 

place cells. Cells are sorted by the highest spatial information scores in descending order. The 

spatial information (light purple) and peak firing rate (Hz) (black) of each cell are indicated on top 

of their respective rate maps.  
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Supplementary Figure 9. Tetrode track histology for CA1 recordings. Track tips in each 

animal are shown in red dots.  
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Supplementary Figure 10. The magnitude of theta frequency reduction in APP mice is 

roughly equal across all running speeds. a Reduction of theta frequency in APP-y (left) and 

APP-a (right) mice across running speeds (APP mice theta frequencies were subtracted from age-

matched non-transgenic counterparts). Data are presented as mean values ± standard deviation. b 

Same as (a) but data are presented as mean values ± 99% confidence intervals.  
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Supplementary Figure 11. Intact speed coding in APP mice. a Running speed vs. firing rate 

correlation (S-F corr.) of putative speed cells. Cells were selected via a S-F corr. threshold ranging 

from 0.1-0.9.  

 

0.1: nTG-y-nTG-a: P = 0.17; nTG-y-APP-y: P = 0.69; APP-y-APP-a: P = 0.23; nTG-a-APP-a: P 

= 0.42; n = 772 nTG-y; 949 nTG-a; 686 APP-y; 1515 APP-a 
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0.2: nTG-y-nTG-a: P = 0.21; nTG-y-APP-y: P = 0.72; APP-y-APP-a: P = 0.16; nTG-a-APP-a: P 

= 0.70; n = 696 nTG-y; 846 nTG-a; 619 APP-y; 1368 APP-a 

0.3: nTG-y-nTG-a: P = 0.71; nTG-y-APP-y: P = 0.41; APP-y-APP-a: P = 0.23; nTG-a-APP-a: P 

= 0.47; n = 629 nTG-y; 725 nTG-a; 552 APP-y; 1206 APP-a 

0.4: nTG-y-nTG-a: P = 0.61; nTG-y-APP-y: P = 0.65; APP-y-APP-a: P = 0.93; nTG-a-APP-a: P 

= 0.29; n = 537 nTG-y; 620 nTG-a; 493 APP-y; 1033 APP-a 

0.5: nTG-y-nTG-a: P = 0.42; nTG-y-APP-y: P = 0.49; APP-y-APP-a: P = 0.78; nTG-a-APP-a: P 

= 0.15; n = 442 nTG-y; 507 nTG-a; 407 APP-y; 859 APP-a 

0.6: nTG-y-nTG-a: P = 0.64; nTG-y-APP-y: P = 0.74; APP-y-APP-a: P = 0.39; nTG-a-APP-a: P 

= 0.06; n = 340 nTG-y; 400 nTG-a; 308 APP-y; 658 APP-a 

0.7: nTG-y-nTG-a: P = 0.32; nTG-y-APP-y: P = 0.06; APP-y-APP-a: P = 0.40; nTG-a-APP-a: P 

= 0.86; n = 238 nTG-y; 297 nTG-a; 224 APP-y; 447 APP-a 

0.8: nTG-y-nTG-a: P = 0.53; nTG-y-APP-y: P = 0.13; APP-y-APP-a: P = 0.06; nTG-a-APP-a: P 

= 0.35; n = 142 nTG-y; 167 nTG-a; 119 APP-y; 244 APP-a 

0.9: nTG-y-nTG-a: P = 0.54; nTG-y-APP-y: P = 0.72; APP-y-APP-a: P = 0.99; nTG-a-APP-a: P 

= 0.22; n = 35 nTG-y; 44 nTG-a; 30 APP-y; 80 APP-a 

 

b Grid cell S-F corr. (nTG-y-nTG-a: P = 0.65; nTG-y-APP-y: P = 0.66; APP-y-APP-a: P = 0.99; 

nTG-a-APP-a: P = 0.98) between groups (n = 55 nTG-y; 79 nTG-a; 62 APP-y; 33 APP-a). c Two-

way unbalanced ANOVA comparing the effects of age and genotype on S-F corr. of grid cells. df 

= degrees of freedom, MS = mean square. Wilcoxon rank sum tests (two-sided) with Bonferroni-

Holm’s correction were applied to Supplementary Fig. 11 a-b. Data in bar graphs are presented as 

medians ± 25th and 75th percentiles; n.s, not significant. Source data are provided as a Source Data 

file. 
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Supplementary Figure 12. Mean 2D displacement is higher in grid cells, but not non-grid 

spatially-tuned cells or place cells, in adult APP mice. Two-way unbalanced ANOVAs compare 

the effects of genotype, cell type, and interaction on the mean 2D displacement scores for grid 

cells, non-grid spatially-tuned cells and place cells. Grid cells, non-grid spatially-tuned cells and 

place cells were included in the “Cell type” factor. Pairwise comparisons with Tukey’s test at a 

corrected alpha value of 0.05 are shown at the bottom. The 3 comparisons of interest (nTG-a grid 

- APP-a grid; nTG-a nongrid - APP-a nongrid; nTG-a place - APP-a place) are bolded.  

 

df = degrees of freedom, MS = mean square. 
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Supplementary Figure 13. Reduced grid cell spatial stability in adult APP mice persists 

across different partition lengths. a 3-minute partition analyses. Two-dimensional displacement 

of grid cells (nTG-y-nTG-a: P = 0.76; nTG-y-APP-y: P = 0.76; APP-y-APP-a: P = 9.1 × 10-4; 

nTG-a-APP-a: P = 3.4 × 10-4), non-grid spatially-tuned cells (nTG-y-nTG-a: P = 0.74; nTG-y-

APP-y: P = 0.24; APP-y-APP-a: P = 0.19; nTG-a-APP-a: P = 0.87), and place cells (nTG-a-APP-

a: P = 0.35) between groups (grid cells, n = 61 nTG-y; 95 nTG-a; 73 APP-y; 49 APP-a; non-grid 

spatially-tuned cells, 77 nTG-y; 80 nTG-a; 98 APP-y; 115 APP-a; place cells, 243 nTG-a; 247 

APP-a). (bottom-row) Two-dimensional displacement of grid cells, non-grid spatially-tuned cells 

and place cells as a function of lags between partitions. Dots indicate mean values and error bars 

indicate SEM. b-d Five-minute (grid cell: nTG-y-nTG-a: P = 0.35; nTG-y-APP-y: P = 0.98; APP-

y-APP-a: P = 0.0019; nTG-a-APP-a: P = 0.01; non-grid cell: nTG-y-nTG-a: P = 0.92; nTG-y-

APP-y: P = 0.35; APP-y-APP-a: P = 0.65; nTG-a-APP-a: P = 0.58; place cell: nTG-a-APP-a: P = 

0.67), 6-minute (grid cell: nTG-y vs. nTG-a: P = 0.39; nTG-y vs. APP-y: P = 1; APP-y vs. APP-

a: P = 6.0 × 10-5; nTG-a vs. APP-a: P = 0.0025; non-grid cell: nTG-y vs. nTG-a: P = 0.31; nTG-y 

vs. APP-y: P = 0.96; APP-y vs. APP-a: P = 0.41; nTG-a vs. APP-a: P = 0.67; place cell: nTG-a 

vs. APP-a: P = 0.47) and 10-minute (grid cell: nTG-y vs. nTG-a: P = 0.93; nTG-y vs. APP-y: P = 

0.53; APP-y vs. APP-a: P = 8.4 × 10-4; nTG-a vs. APP-a: P = 0.0026; non-grid cell: nTG-y vs. 

nTG-a: P = 0.92; nTG-y vs. APP-y: P = 0.65; APP-y vs. APP-a: P = 0.35; nTG-a vs. APP-a: P = 

0.79; place cell: nTG-a vs. APP-a: P = 0.61) partitions between groups. Wilcoxon rank sum tests 

(two-sided) corrected for multiple comparisons using Bonferroni-Holm’s correction were applied 

to Supplementary Fig. 13 a-d. Data in bar graphs are presented as median values ± 25th and 75th 

percentiles; **P < 0.01, ***P < 0.001; n.s, not significant. Source data are provided as a Source 

Data file.  
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Supplementary Figure 14. Positional coverage and running speeds across groups for MEC 

and CA1 recordings. a Mean % of the environment covered per minute (nTG-y vs. nTG-a: P = 

3.3 × 10-5; nTG-y vs. APP-y: P = 0.51; APP-y vs. APP-a: P = 0.0053; nTG-a vs. APP-a: P = 

0.0041), and average running speed (nTG-y vs. nTG-a: P = 9.1 × 10-4; nTG-y vs. APP-y: P = 0.91; 

APP-y vs. APP-a: P = 0.099; nTG-a vs. APP-a: P = 0.047) between groups (recording session, 

n = 270 for nTG-y; n = 302 for nTG-a; n = 253 for APP-y; n = 492 for APP-a) for MEC recordings. 

b Mean % of the environment covered per minute (nTG-a vs. APP-a: P = 0.017), and average 

running speed (nTG-a vs. APP-a: P = 1.4 × 10-4) between groups (recording session, n = 91 for 

nTG-a; n = 96 for APP-a) for CA1 recordings. nTG-y, non-transgenic young; nTG-a, non-

transgenic adult; APP-y, APP young; APP-a, APP adult. Wilcoxon rank sum tests (two-sided) 

corrected for multiple comparisons using a Bonferroni-Holm correction were applied to analyze 

the data in Supplementary Fig. 14 a-b. Data in bar graphs are presented as median values ± 25th 
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and 75th percentiles; *P < 0.05, **P < 0.01, ***P < 0.001; n.s, not significant. Source data are 

provided as a Source Data file.  

 

 

 

 

 

 

 

 

 

Supplementary Figure 15. Interneuron firing properties. Intrinsic frequency (nTG-y vs. nTG-

a: P = 0.99; nTG-y vs. APP-y: P = 0.038; APP-y vs. APP-a: P = 0.49; nTG-a vs. APP-a: P = 

0.023), intrinsic frequency power (for the top 80% of values) (nTG-y vs. nTG-a: P = 0.056; nTG-

y vs. APP-y: P = 0.58; APP-y vs. APP-a: P = 0.38; nTG-a vs. APP-a: P = 0.034), and mean firing 

rate (nTG-y vs. nTG-a: P = 0.95; nTG-y vs. APP-y: P = 0.82; APP-y vs. APP-a: P = 0.034; nTG-

a vs. APP-a: P = 0.028) of interneurons between groups (cells, intrinsic frequency: n = 74 for nTG-

y; n = 111 for nTG-a; n = 71 for APP-y; n = 167 for APP-a; intrinsic frequency power: n = 164 for 

nTG-y; n = 218 for nTG-a; n = 170 for APP-y; n = 350 for APP-a; mean firing rate: n = 205 for 

nTG-y; n = 272 for nTG-a; n = 213 for APP-y; n = 437 for APP-a). nTG-y, non-transgenic young; 

nTG-a, non-transgenic adult; APP-y, APP young; APP-a, APP adult. Wilcoxon rank sum tests 

(two-sided) corrected for multiple comparisons using a Bonferroni-Holm correction were applied 

to analyze the data in Supplementary Fig. 15. Data in bar graphs are presented as median 

values ± 25th and 75th percentiles; *P < 0.05; n.s, not significant. Source data are provided as a 

Source Data file. 
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Supplementary Figure 16. Slower intrinsic theta rhythmicity and reduced theta power in 

APP mice. Two-way unbalanced ANOVAs compare the effects of age, genotype, and interaction 

on the intrinsic frequency, intrinsic frequency power (for the top 80% of values), and mean firing 

rates of interneurons between groups. 

 

df = degrees of freedom, MS = mean square. 
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Supplementary Figure 17. Grid cell synchrony with interneurons and head-direction cells 

are both impaired in APP mice. Two-way unbalanced ANOVAs compare the effects of age, 

genotype, and interaction on the mean co-activity within a 25 ms time window for grid cell-

interneuron pairs, and grid cell-head direction cell pairs.  

 

df = degrees of freedom, MS = mean square. 
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Supplementary Figure 18. Experimental timeline for the path integration task and mouse 

performance across days. a Experimental timeline for the food-foraging task. Days are indicated 

as D0, D1, etc. The number of trials that each mouse performed are indicated as 10-L (i.e., 10 light 

trials) and 10-D (i.e., 10 dark trials). b The number of days that it took mice in each group to 

achieve the success criteria in the pre-training phase (8/10 successful trials) (nTG-y-nTG-a: P = 

0.079; nTG-y-APP-y: P = 0.65; APP-y-APP-a: P = 0.24; nTG-a-APP-a: P = 0.28) between groups 

(mice, n = 10 for nTG-y; n = 8 for nTG-a; n = 11 for APP-y; n = 9 for APP-a). c (Left) The number 

of successful trials achieved by mice across 5 days of training. (Right) The number of days within 

this training period that mice took to reach the success criteria (nTG-y-nTG-a: P = 0.42; nTG-y-

APP-y: P = 0.45; APP-y-APP-a: P = 0.70; nTG-a-APP-a: P = 0.84) across groups (same sample 
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sizes as in a). d (Top-Left) Same as (c) but across 5 days of testing in dark conditions. (Top-Right) 

The number of days within this testing period that mice performed at or above the success criteria 

(nTG-y-nTG-a: P = 0.60; nTG-y-APP-y: P = 0.24; APP-y-APP-a: P = 0.11; nTG-a-APP-a: P = 

0.11) across groups (same sample sizes as in a). (Bottom-Left) Same as (c) but across 5 days of 

testing in light conditions. (Bottom-Right) The number of days within this testing period that mice 

performed at or above the success criteria (nTG-y-nTG-a: P = 0.37; nTG-y-APP-y: P = 0.39; APP-

y-APP-a: P = 0.21; nTG-a-APP-a: P = 0.59) between groups (same sample sizes as in a). nTG-y, 

non-transgenic young; nTG-a, non-transgenic adult; APP-y, APP young; APP-a, APP adult. 

Wilcoxon rank sum tests (two-sided) corrected for multiple comparisons using a Bonferroni-Holm 

correction were applied to analyze the data in Supplementary Fig. 18 b-d. Data in line graphs are 

presented as mean values ± SEM. Data in bar graphs are presented as mean values ± SEM; n.s, not 

significant. Source data are provided as a Source Data file. 
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Supplementary Figure 19. Overall navigation ability improves in light trials for all mice. 

Normalized distance travelled in dark (solid lines) versus light (dashed lines) trials. (nTG-y: P = 

6.9 × 10-9; nTG-a: P = 1.4 × 10-21; APP-y: P = 0.0084; APP-a: P = 0.017) (dark behavior trials, 

n = 377 for nTG-y; n = 307 for nTG-a; n = 500 for APP-y; n = 311 for APP-a; light behavior trials, 

n = 426 for nTG-y; n = 344 for nTG-a; n = 538 for APP-y; n = 330 for APP-a). nTG-y, non-

transgenic young; nTG-a, non-transgenic adult; APP-y, APP young; APP-a, APP adult. Wilcoxon 

rank sum tests (two-sided) were applied to analyze the data in Supplementary Fig. 19. Data are 

presented as mean values ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001; Source data are provided 

as a Source Data file. 
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Supplementary Figure 20. APP mice have impaired path integration ability in light 

conditions. The initial wall angle (nTG-y vs. nTG-a: P = 0.0075; nTG-y vs. APP-y: P = 1.1 × 10-

18; APP-y vs. APP-a: P = 0.013; nTG-a vs. APP-a: P = 1.5 × 10-32), the initial heading angle (nTG-

y vs. nTG-a: P = 0.0029; nTG-y vs. APP-y: P = 3.4 × 10-17; APP-y vs. APP-a: P = 0.0044; nTG-a 

vs. APP-a: P = 1.2 × 10-33), the normalized distance travelled (nTG-y vs. nTG-a: P = 0.053; nTG-

y vs. APP-y: P = 7.7 × 10-12; APP-y vs. APP-a: P = 6.3 × 10-5; nTG-a vs. APP-a: P = 1.2 × 10-26), 

and the proportion of the return path spent along the periphery (nTG-y vs. nTG-a: P = 0.0015; 

nTG-y vs. APP-y: P = 8.2 × 10-13; APP-y vs. APP-a: P = 9.5 × 10-9; nTG-a vs. APP-a: P = 9.3 × 

10-35) between groups (behavior trials, n = 426 for nTG-y; n = 344 for nTG-a; n = 538 for APP-y; 

n = 330 for APP-a). nTG-y, non-transgenic young; nTG-a, non-transgenic adult; APP-y, APP 

young; APP-a, APP adult. Wilcoxon rank sum tests (two-sided) corrected for multiple 

comparisons using a Bonferroni-Holm correction were applied to analyze the data in 

Supplementary Fig. 20. Data in bar graphs are presented as median values ± 25th and 75th 

percentiles; *P < 0.05, **P < 0.01, ***P < 0.001; n.s, not significant. Source data are provided as 

a Source Data file. 
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Supplementary Figure 21. Immunoautoradiographic labelling of synaptic markers in MEC 

and CA1. a Signal intensity of VGLUT1 (nTG-y-nTG-a: P = 1.3 × 10-5; nTG-y-APP-y: P = 0.014; 

APP-y-APP-a: P = 1.1 × 10-4; nTG-a-APP-a: P = 0.014; n = 52 nTG-y; 53 nTG-a; 48 APP-y; 55 

APP-a), VGLUT3 (nTG-y-nTG-a: P = 1.9 × 10-4; nTG-y-APP-y: P = 1.5 × 10-8; APP-y-APP-a: P 

= 2.6 × 10-6; nTG-a-APP-a: P = 2.3 × 10-4; n = 52 nTG-y; 50 nTG-a; 45 APP-y; 51 APP-a), VAChT 

(nTG-y-nTG-a: P = 0.87; nTG-y-APP-y: P = 0.053; APP-y-APP-a: P = 4.5 × 10-4; nTG-a-APP-a: 

P = 0.051; n = 47 nTG-y; 45 nTG-a; 48 APP-y; 52 APP-a), VGAT (nTG-y-nTG-a: P = 0.0037; 

nTG-y-APP-y: P = 0.0027; APP-y-APP-a: P = 7.4 × 10-6; nTG-a-APP-a: P = 2.1 × 10-5; n = 49 

nTG-y; 50 nTG-a; 46 APP-y; 55 APP-a) and NR1 (nTG-y-nTG-a: P = 1.6 × 10-5; nTG-y-APP-y: 

P = 0.063; APP-y-APP-a: P = 2.7 × 10-5; nTG-a-APP-a: P = 0.023; n = 48 nTG-y; 53 nTG-a; 51 

APP-y; 58 APP-a) in the MEC. b Signal intensity of VGLUT1 (nTG-y-nTG-a: P = 4.6 × 10-6; 

nTG-y-APP-y: P = 3.9× 10-21; APP-y-APP-a: P = 0.15; nTG-a-APP-a: P = 4.5 × 10-21; n = 79 nTG-

y; 80 nTG-a; 70 APP-y; 79 APP-a), VGLUT3 (nTG-y-nTG-a: P = 0.76; nTG-y-APP-y: P = 5.7 × 

10-4; APP-y-APP-a: P = 0.066; nTG-a-APP-a: P = 0.10; n = 76 nTG-y; 84 nTG-a; 81 APP-y; 77 

APP-a), VAChT (nTG-y-nTG-a: P = 0.14; nTG-y-APP-y: P = 0.30; APP-y-APP-a: P = 0.039; 

nTG-a-APP-a: P = 0.39; n = 86 nTG-y; 78 nTG-a; 82 APP-y; 87 APP-a) VGAT (nTG-y-nTG-a: 

P = 0.87; nTG-y-APP-y: P = 0.33; APP-y-APP-a: P = 0.074; nTG-a-APP-a: P = 0.35; n = 72 nTG-
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y; 69 nTG-a; 70 APP-y; 79 APP-a) and NR1 (NR1: nTG-y-nTG-a: P = 0.71; nTG-y-APP-y: P = 

2.1 × 10-14; APP-y-APP-a: P = 9.4 × 10-19; nTG-a-APP-a: P = 0.41; n = 70 nTG-y; 82 nTG-a; 72 

APP-y; 85 APP-a) in CA1. Wilcoxon rank sum tests (two-sided) corrected for multiple 

comparisons using Bonferroni-Holm’s correction were applied to Supplementary Fig. 21 a-b. Data 

are presented as mean values ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001; n.s, not significant. 

Source data are provided as a Source Data file. 
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Supplementary Figure 22. We used the fitlme function in MATLAB to perform linear mixed 

effects analyses on the relationship between the subjects’ genotype (nTG and APP), age 

(young and adult) and expression of VGLUT3 and VGLUT1 levels in the MEC and CA1 

respectively. The fixed effects of the model comprised genotype and age (without interaction 

between the two). The random effects of the model comprised random intercepts by-subject, 

random slopes for the effects of genotype and age by-subject, and independence between the 

intercepts and slopes. P-values obtained in the model output were considered as the measurements 

for significance. 

 

a Table shows the model information, statistics of fit, the fixed effects coefficients, and the random 

effects covariance parameters. In the fixed effects panel, the ‘Intercept’ refers to the aged APP 

experimental group; its estimate is the predicted mean VGLUT3 signal intensity. The estimates 

for genotype and age refer to the predicted slope change from the intercept. Std. Error refers to the 

standard error associated with the slope. T-values and P-values for the contribution of genotype 

and age are bolded. b Same as (a) but for levels of VGLUT1 in CA1.  

 

tStat = T-value, CI = confidence interval,  DF = degrees of freedom, LL  =  lower  limit,  UL  =  

upper  limit. 

* = independence between intercepts and slopes. 
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Supplementary Figure 23. Pathological expression of MEC VGLUT3 levels and CA1 

VGLUT1 levels in APP mice. a Single slice examples of VGLUT3 and VGLUT1 expression in 

MEC and CA1 respectively. Darker signals indicate higher marker expression levels. b Signal 

intensity of VGLUT3 levels (nTG-y vs. nTG-a: P = 1.9 × 10-4; nTG-y vs. APP-y: P = 1.5 × 10-8; 

APP-y vs. APP-a: P = 2.6 × 10-6; nTG-a vs. APP-a: P = 2.3 × 10-4) in the MEC between groups 

(brain slice, n = 52 for nTG-y; n = 50 for nTG-a; n = 45 for APP-y; n = 51 for APP-a). c Signal 

intensity of VGLUT1 levels (nTG-y vs. nTG-a: P = 4.6 × 10-6; nTG-y vs. APP-y: P = 3.9× 10-21; 

APP-y vs. APP-a: P = 0.15; nTG-a vs. APP-a: P = 4.5 × 10-21) in CA1 between groups (brain slice, 

n = 79 for nTG-y; n = 80 for nTG-a; n = 70 for APP-y; n = 79 for APP-a). nTG-y, non-transgenic 

young; nTG-a, non-transgenic adult; APP-y, APP young; APP-a, APP adult. Wilcoxon rank sum 

tests (two-sided) corrected for multiple comparisons using a Bonferroni-Holm correction were 

applied to analyze the data in Supplementary Fig. 23 b-c. Data in bar graphs are presented as mean 
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values ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001; n.s, not significant. Source data are provided 

as a Source Data file. 

 

 

 

 

 

 

 

 

 

Supplementary Figure 24. VGLUT3 levels in the MEC and VGLUT1 levels in the CA1 are 

both higher in APP mice. Two-way unbalanced ANOVAs compare the effects of age, genotype, 

and interaction on VGLUT3 and VGLUT1 signal levels in the MEC and CA1 respectively.  

 

df = degrees of freedom, MS = mean square. 
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FORWARD TO CHAPTER 3 

The data presented in Chapter 2 provide the first evidence that grid cells are disrupted 

during the early stages of pathology in a mouse model of early AD. Furthermore, these results 

support the viability of grid cell integrity and path integration deficits as early markers of AD. 

Given that grid cells are necessary for path integration in healthy animals, the logical 

interpretation is that a disrupted grid cell network causes early path integration impairments in 

J20 mice – and by extension, preclinical AD subjects or those at genetic risk of AD (APOE-ε4 

carriers). However, our data are correlational, and we did not directly show a causal link between 

grid cell coding and path integration performance. It could be that preclinical path integration 

deficits have nothing to do with grid cell disruption. Likewise, grid cell disruption might not result 

from impaired processing of self-motion.  

In Chapter 3, to further substantiate a link between disrupted grid coding and path 

integration deficits in J20 mice, we investigated if disrupted early AD grid coding reflects 

increased noise across the network or a specific deficit in path integration, perhaps via an 

impairment in the integration of self-motion cues. We found that J20 grid cells were spatially 

unstable towards the center of the square arena but not near the borders, had qualitatively different 

spatial components that aligned parallel to the borders of the environment, and exhibited impaired 

integration of distance travelled via reduced theta phase precession. These results collectively 

suggest that early AD grid cell disruption reflects a preferential alignment to the external world 

and cause path integration impairments in preclinical individuals via reduced integration of self-

motion cues.  
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Abstract 

Grid cell impairments and path integration deficits are sensitive markers of early 

Alzheimer’s disease (AD). Converging evidence from human and rodent studies suggest that 

disrupted grid coding underlies path integration deficits in preclinical individuals. However, it still 

remains unclear if disrupted early AD grid coding reflects increased noise across the network or a 

specific deficit in path integration, perhaps via an impairment in the integration of self-motion 

cues. Here, we report in the J20 transgenic amyloid beta mouse model of early AD that grid cells 

were spatially unstable towards the center of the square arena but not near the borders, had 

qualitatively different spatial components that aligned parallel to the borders of the environment, 

and exhibited impaired integration of distance travelled via reduced theta phase precession. Our 

results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues 

but not environmental landmarks, providing further evidence that grid cell impairments underlie 

specific path integration deficits in preclinical individuals.  
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Introduction 

Grid cells in the medial entorhinal cortex (MEC) fire in multiple spatial locations to form 

a periodic hexagonal array that spans two-dimensional space (Fyhn et al., 2004; Hafting et al., 

2005; Jacobs et al., 2013). This periodic code is implicated in path integration, a cognitive function 

involving the integration of self-motion cues to maintain one’s sense of location relative to a 

starting point in space (Gil et al., 2018; McNaughton et al., 2006; Mittelstaedt & Mittelstaedt, 

1980; Segen et al., 2022). Both grid cell and path integration impairments are sensitive markers of 

pathological decline during early AD in human subjects and mouse models of pathology 

(Bierbrauer et al., 2020; Coughlan et al., 2018; Kunz et al., 2015; Mucke et al., 2000; Segen et al., 

2022; Ying et al., 2022).  

These early grid impairments may result from disrupted processing of self-motion cues, 

which constitute necessary inputs that maintain grid representations in healthy animals (Buetfering 

et al., 2014; Campbell et al., 2018; Chen et al., 2019, 2016; Couey et al., 2013; Hafting et al., 2005; 

Kraus et al., 2015; Kropff et al., 2015; Miao et al., 2017; Pérez-Escobar et al., 2016; Sargolini et 

al., 2006; Winter, Clark, et al., 2015; Winter, Mehlman, et al., 2015). Yet, external landmarks also 

exert significant influences over grid coding, particularly in rectilinear environments where grid 

representations scale proportionally to manipulations along the borders (Barry et al., 2007). 

Furthermore, deformed grid hexagonal symmetry in asymmetrical enclosures such as trapezoids 

demonstrates the degree to which geometric landmarks compete with self-motion cues to generate 

grid firing (Krupic et al., 2015).  

To distinguish if early AD grid cell impairments reflect increased noise across the network 

or a specific deficit in processing self-motion cues over external landmarks, we analyzed our in 

vivo electrophysiological dataset of MEC neurons recorded in the J20 transgenic amyloid beta 
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(Aβ) mouse model of early AD that expresses a mutant form of human amyloid precursor protein 

(APP) – referred to here as ‘APP mice’ (Mucke et al., 2000; Ying et al., 2022).  

Results 

Adult APP grid cells are spatially unstable in the center of the environment 

We analyzed 4524 MEC neurons from 38 APP transgenic and 30 non-transgenic (nTG) 

littermates as they foraged for water droplets in a 75 cm square arena (Summary of MEC 

recordings, Table S1; MEC Tetrode locations, Figure S1) (Ying et al., 2022). Mice were recorded 

between the ages of 3-7 months, timepoints corresponding to the early stages of pathology prior 

to the expression of widespread Aβ plaques (detailed pathology description in Materials and 

methods, Experimental model and subject details). Mice were categorized into two age groups: 

young mice between 3-4.5 months of age (APP-y and nTG-y) and aged mice between 4.5-7 months 

of age (APP-a and nTG-a). Cells with gridness scores (a measure of hexagonal spatial periodicity 

in the rate map) higher than the 99th percentile of a shuffled distribution (a gridness score above 

0.54) were characterized as grid cells (Materials and methods, Grid cell and head-direction cell 

selection).  

To quantify spatial stability of grid cells across the environment, we divided the spatial 

arena into “wall” or “center” regions. The wall length was selected to be 12 cm, corresponding to 

the body length of a mouse and approximately divides wall and center regions into equal surface 

areas (Figure 1A). Recordings were partitioned into two halves either by time (15 minutes each) 

or by the animal’s occupancy (Materials and methods, Spatial stability analysis). Both methods 

revealed greater center instability in APP-a grid cells, but wall stability was unchanged across 

groups (Figures 1B-D; n = 36, 64, 30 and 37 cells for nTG-y, nTG-a, APP-y, APP-a). We repeated 

our analysis in an unbiased manner by incrementally shifting the layer of spatial bins 



148 
 

corresponding to both wall and center regions (Figure S2). In both time-partitioned and 

occupancy-partitioned analyses, APP-a center stability was lower across multiple conditions. In 

contrast, wall stability generally remained unchanged across groups until more center spatial bins 

were included into the wall region (Figures S2A and S2B). Out of all groups, APP-a grid cells 

also had the most instances where stability was lower in the center versus the borders (Figure S2C 

and S2D). Greater instability towards the environmental center where the sparsity of external 

landmarks necessitates the use of path integration to maintain a stable grid code suggests that APP-

a grid cells do not reliably process self-motion cues. 

 Adult APP grid cells exhibit fewer spatial Fourier spectral components  

Previously, we reported a disruption in APP-a grid cell hexagonal symmetry (Ying et al., 

2022). However, it remains unclear if these disrupted patterns reflect increased random noise in 

the network or qualitatively different underlying spatial structures. To quantify structural 

differences of APP-a grid cells, we implemented a two-dimensional Fourier analysis to decompose 

a cell’s spatial firing rate map into its basic spatial components (Krupic et al., 2012) (Materials 

and methods, Generation of Fourier spectrums). Grid cells typically had three components in the 

Fourier spectrum which could be visualized as images of spatial axes facing specific orientations 

offset by 60°, such that the sum of all component images produced the firing rate map (Figure 

2A). Similar to prior findings, grid cell Fourier components had distinct wavelengths (spacing 

between axes) where modules scaled by multiples ranging from 1.34 to 1.59 in all groups (Figure 

S3) (Barry et al., 2007; Krupic et al., 2012; H. Stensola et al., 2012). To discount the inherent 

biases of grid cell selection criteria, we also applied the Fourier analysis to all recorded MEC cells. 

Most non-grid MEC cells typically had two Fourier components and adopted a quadrant-like 

arrangement of spatial axes with angular offsets being multiples of 90° (Figure 2A; n = 768, 997, 
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720 and 1318 cells for nTG-y, nTG-a, APP-y, APP-a). We computed the polar autocorrelations of 

all recorded MEC cells by circularly shifting each cell’s polar representation by 360° and found a 

noticeable decrease in 60° modulation but an increase in 90° modulation for APP-a mice (Figure 

2B). These results suggest that APP-a spatial axes at the population level were less hexagonal and 

more quadrant-like. 

Further quantification of Fourier component count revealed that APP-a mice had less 3-

component grid cells. Grid cells in nTG-y, nTG-a and APP-y mice generally had three significant 

Fourier components, while grid cells in APP-a mice had a similar number of cells with two or three 

components (Figure 2C). Most non-grid MEC cells had two significant Fourier components 

(Figure 2C). There was a higher percentage of 3-component grid cells than 3-component MEC 

cells in all groups except for APP-a mice (Figure 2D; nTG-y: p < 0.001, nTG-a: p = 0.024, APP-

y: p = 0.01, APP-a: p = 0.14). On the other hand, there was a higher percentage of 2-component 

MEC cells than 2-component grid cells in nTG-y and APP-y mice, but not in nTG-a and APP-a 

mice (Figure 2D; nTG-y: p = 0.005, nTG-a: p = 0.20, APP-y: p = 0.03, APP-a: p = 0.93). These 

results suggest that only APP-a mice had both a larger percentage of 2-component grid cells and a 

smaller percentage of 3-component grid cells.  

To determine the type of spatial alignment adopted by these 2- and 3-component cells, we 

computed the angular difference of neighboring Fourier components. Angular offsets in grid cell 

neighboring components were mostly 60° (and occasionally 90°) in nTG-y, nTG-a, and APP-y 

mice, but we observed similar percentages between 60° and 90° offsets in APP-a mice (Figures 

2E and 2F; 60°±10°: nTG-y: 40%, nTG-a: 43%, APP-y: 40%, APP-a: 20%; 90°±10°: nTG-y: 

11%, nTG-a: 12%, APP-y: 16%, APP-a: 22%). Furthermore, the ratio of 60° to 90° was 

substantially reduced in APP-a grid cells (Figure 2E; (60°±10°)/(90°±10°): nTG-y: 3.62 nTG-a: 
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3.61 APP-y: 2.48 APP-a: 0.91). Compared to chance level (the average of observed percentages 

across all groups), only APP-a mice had significantly less instances of 60° but more of 90° 

(Figures 2E and 2F; APP-a vs. 60° chance: p = 1.13 x 10-7; APP-a vs. 90° chance: p = 9.98 x 10-

4). These results suggest that APP-a grid cell axes deviate from a 3-component hexagonal 

alignment and more strongly adopt a 2-component quadrant-like alignment. Angular differences 

in the neighboring components of all MEC cells were predominantly multiples of 90° in all groups 

(Figure 2E). Relative to other groups, APP-a MEC cells had a ~60% decrease in 60° angular 

offsets and a ~15% increase in 90° angular offsets (Figure 2F; 60°±10°: nTG-y: 8.7%, nTG-a: 

8.7%, APP-y: 8.7%, APP-a: 3.5%; 90°±10°: nTG-y: 25.5%, nTG-a: 24.9%, APP-y: 24.9%, APP-

a: 28.6%).  

Adult APP grid cell spatial axes align parallel to environmental borders 

Reduced spatial stability towards the arena’s center but not near the borders suggests that 

APP-a grid cells remained anchored to the environment despite a potential impairment of self-

motion cue integration.  To quantify this anchoring, we analyzed how hexagonal and quadrant-

like spatial codes aligned to the environment’s geometry. Most 2-component and 3-component 

cells adopted one of three alignment profiles (Figure 3A). Consistent with previous reports, many 

3-component cells were either 30° or 60° hexagonally offset from the east wall (Figure 3A) 

(Krupic et al., 2012; H. Stensola et al., 2012; T. Stensola et al., 2015). On the other hand, most 2-

component cells were aligned parallel to the borders at multiples of 90° (Figure 3A). APP-a mice 

had ~8% more MEC cells that adopted this quadrant-like alignment profile and 5-6% less cells 

that adopted hexagonal alignment profiles (Figure 3A; quadrant-like cells: p = 5.47 x 10-10, 

hexagonal cells: p = 4 x 10-8).  
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Prior to visualizing the spatial alignment of grid cells, we considered the possibility that 

many 1- or 2-component grid cells may have been falsely classified 3-component grid cells as a 

result of Fourier components not being properly identified in the Fourier spectrum due to relaxed 

image detection parameters. To control for this possibility, we increased image detection 

thresholds to obtain an additional 29% (4/14 cells), 54% (14/26 cells), 46% (6/13 cells) and 33% 

(9/27 cells) 3-component grid cells from 1- and 2-component grid cells in nTG-y, nTG-a, APP-y, 

and APP-a mice, respectively (Materials and methods; Figure S4). From this corrected data set, 

we observed that all groups had 30° and 60° 3-component grid cells, or 90° 2-component grid cells 

(Figure 3B). Specifically, we found 28% (10/36 cells), 19% (12/64 cells), 23% (7/30 cells), and 

46% (17/37 cells) 1- and 2-component grid cells aligned parallel to the borders in nTG-y, nTG-a, 

APP-y, and APP-a mice, respectively. APP-a mice had a greater percentage of 1- and 2-component 

grid cells by ~20-25% than other groups (Figure 3B; Table S2; p = 0.01). Polar autocorrelations 

revealed that ~75% of grid cells were modulated at 60° intervals in nTG-y, nTG-a and APP-y 

mice, whereas ~25% of cells were modulated at 90° intervals (Figures 3C and S5). In contrast, 

APP-a grid cells were roughly equally split between 60° and 90° modulation (Figure 3C). Notably, 

3-component grid cells had higher gridness scores than their 1- and 2-component counterparts in 

all groups (Figure 3C). These results demonstrate that our previously reported finding of disrupted 

grid cell hexagonal symmetry in APP-a mice is not due to increased random noise, but rather 

caused by a higher concentration of firing aligned parallel to the borders (Ying et al., 2022). We 

confirmed that our results are not artifacts caused by the parameters of our correction threshold to 

retrieve 3-component grid cells or the square dimensionality of rate map images (Table S3 and 

Figure S6). 
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Adult APP grid cells exhibit reduced theta modulation and positional coding via theta phase 

precession 

Given the importance of theta rhythmicity for grid cell spatial coding (Brandon et al., 2011; 

Koenig et al., 2011) and the proposed link between entorhinal or hippocampal theta rhythms and 

various forms of self-motion including running speed, positive acceleration and vestibular inputs 

(Hafting et al., 2008; Jacob et al., 2014; Jeewajee et al., 2008; Kropff et al., 2021; Maurer et al., 

2005; O’Keefe & Recce, 1993; Ravassard et al., 2013; Skaggs et al., 1996; Terrazas et al., 2005; 

Winter, Clark, et al., 2015), we examined whether intrinsic theta rhythmicity of spiking was 

reduced in APP-a grid cells. Visualization of the spike–time autocorrelations of grid cells revealed 

weaker overall theta modulation than other groups (Figure 4A). Visualization of the power 

spectrums of the spike-time autocorrelations yielded a similar conclusion. APP-a grid cells showed 

weaker theta modulation around 8-10 Hz compared to other groups (Figure 4B). Next, we 

quantified the percentages of theta-modulated grid cells from the power spectrums of the spike-

time autocorrelations (Materials and methods, Theta modulation analyses). There were 21-31% 

less theta-modulated APP-a grid cells than other groups (p = 0.009) (Figure 4C; nTG-y: 69%, 

nTG-a: 77%, APP-y: 67%, APP-a: 46%). We repeated our quantifications in an unbiased manner 

for a wide range of temporal bin sizes between 1-10 ms and observed a consistent ~21-31% 

reduction in theta-modulated APP-a grid cells than other groups (Figure 4D).  

A potential consequence of non-theta-modulated grid cells is their inability to encode 

distance travelled via a temporal code known as theta phase precession. As the animal travels 

across a firing field, a theta-modulated grid cell spikes at progressively earlier phases of theta 

oscillations in the local field potential (Hafting et al., 2008; O’Keefe & Recce, 1993). Oscillatory 

interference and continuous attractor network models suggest that theta phase precession 
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properties could allow grid cells to integrate spatial displacement on the basis of self-motion while 

planning future paths as part of a path integration system (Burgess, 2008; Burgess et al., 2007; 

Navratilova et al., 2012). To examine theta phase precession of grid cells across groups, we 

computed the strength of correlation between distance travelled across a field and spike theta 

phase, and observed an impairment in APP-a mice (Figure 4E). If theta modulation is a 

requirement for theta phase precession, then APP-a grid cells would logically exhibit less phase 

precession than other groups. Indeed, further quantification revealed that there were 28-35% less 

phase-precessing APP-a grid cells than other groups (p = 0.0022) (Figure 4F; nTG-y: 50%, nTG-

a: 50%, APP-y: 57%, APP-a: 22%). Together, these results suggest that APP-a grid cells may not 

reliably integrate self-motion via precisely-timed theta-related mechanisms.  

Discussion 

Our results suggest that early grid cell disruption in the J20 mouse model of amyloidopathy reflects 

reduced integration of self-motion cues and increased influence of environmental geometry. 

Reduced spatial stability towards the center but not near the borders suggests that grid cell 

impairments predominantly arise from disrupted processing of self-motion. In parallel, reduced 

theta modulation and theta phase precession suggests that APP-a grid cells could not properly 

integrate self-motion cues or accurately encode positional information within theta cycles in the 

local field potential. In contrast, APP-a grid cells appeared to be more strongly influenced by 

environmental geometry. A Fourier spectral analysis revealed that disrupted grid spatial 

periodicity in APP-a mice was not as random as previously assumed (Ying et al., 2022), but 

directly explained by the degree of spiking aligned parallel to the borders. Grid cell patterns are 

hypothesized to arise from intrinsic network activity and then anchor to the outside world via 

external landmarks (Buetfering et al., 2014; Couey et al., 2013; Gardner et al., 2019; T. Stensola 
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& Moser, 2016; T. Stensola et al., 2015; Trettel et al., 2019). The strongest grid anchor appears to 

be the environmental geometry itself, as different enclosure shapes affect grid cell hexagonal 

symmetry (Krupic et al., 2015; T. Stensola & Moser, 2016; T. Stensola et al., 2015). Future 

experiments should investigate if hexagonal and quadrant-like spatial alignment profiles also 

persist in other types of environmental geometries that vary in polarisation and symmetry. Given 

that grid hexagonal symmetry is disrupted in trapezoidal geometries (Krupic et al., 2015), one 

might intuit that MEC spatial patterns will not be as definable as those observed in a square 

environment. Therefore, we emphasize that the quadrant-like grid firing reported here are limited 

to square recording environments until there is further evidence in non-square geometries.  

What are the implications for reduced theta modulation and phase precession in adult APP 

mice? The oscillatory interference model posits that one mechanism by which grid cells integrate 

self-motion is interference of theta oscillations between upstream velocity-controlled oscillators 

(VCOs) (Burgess, 2008; Burgess et al., 2007; Hasselmo & Brandon, 2008). Different VCO firing 

frequencies vary according to the animal’s movement speed along angular offsets of 60°. When 

multiple theta-modulated VCOs with preferred directions evenly spaced around 360° oscillate in 

phase, the thresholded sum of their directional interference patterns in a band-like manner 

produces grid hexagonal periodicity and theta phase precession. Alternatively, phase precession is 

proposed to be a ‘look-ahead’ mechanism to plan future routes and has been modeled in a 

continuous attractor network (Navratilova et al., 2012). Both oscillatory and continuous attractor 

models could form the foundations of a path integration system that allows for continuous tracking 

of position along directions offset by 60° and computation of translational vectors toward goal 

locations. For instance, neural network implementations of grid cells can be successfully trained 

to produce vector-based navigation by utilizing phase precession properties (Bush et al., 2015). 
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Specifically, the phase difference relationships of different grid cells encoding current and goal 

locations can accurately produce goal-directed translational vectors in large-scale two-dimensional 

spaces (Bush et al., 2015). The lack of phase precession in many APP-a grid cells could impair 

their ability to integrate self-motion and plan future paths in the environment’s center, thus causing 

the grid cell network to adopt quadrant-like alignment that may integrate spatial displacement 

through other means such as visual cues and contact with environmental borders. The sequential 

organization of grid cell spikes within continuous theta cycles might also constitute a temporal 

readout of movement direction within short time windows (Zutshi et al., 2017). Theta phase 

precession suggests that past grid fields fire at earlier phases in a theta cycle while recent grid 

fields fire at later phases. Each theta cycle therefore describes past, current and future locations. 

This continuous phase code could underlie the animal’s ability to infer position relative to a starting 

location when path integrating across long behavioral time scales. Phase precession has also been 

reported in other species including bats and humans, suggesting that phase coding serves a broad 

role in linking sequential locations and events (Eliav et al., 2018; Qasim et al., 2021). 

Many real-world and virtual human path integration behavioral paradigms eliminate or 

control against the use of environmental borders (Allen et al., 2004; Bierbrauer et al., 2020; Howett 

et al., 2019; Mahmood et al., 2009; Mokrisova et al., 2016; Stangl et al., 2020). Partial or complete 

removal of external landmarks could force preclinical individuals to rely on self-motion 

information which they have difficulty integrating, thus leading to unstable and compromised 

fMRI grid-like signals (Bierbrauer et al., 2020; Kunz et al., 2015; Segen et al., 2022). Hexagonal 

and quadrant-like alignment may suggest general principles about how one encodes position via 

self-motion. Hexagonal structure is superior to quadrant-like structure in terms of angular 

resolution and sampling frequency between vertices (Mersereau, 1979). In the context of path 
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integration, 60° grid axes allow for more frequent updating of heading direction, as well as spatial 

displacement or movement speed between intersection points. These advantages may explain why 

grid cells in general adopt hexagonal symmetry, or why grid-like representations are modulated at 

60° and not at 90° intervals (Doeller et al., 2010).  

Tauopathy and amyloidopathy are pathological hallmarks of AD (Berron et al., 2021; 

Braak & Braak, 1991). While tauopathy is generally regarded as the main driver of entorhinal 

dysfunction in the general population, different tau and Aβ mouse models independently show a 

shared disruption of grid cell hexagonal symmetry during early and late pathogenesis (Archetti et 

al., 2019; Braak & Braak, 1991; Fu et al., 2017; Johnson et al., 2016; Jun et al., 2020; Ossenkoppele 

et al., 2016; Ridler et al., 2020; Ying et al., 2022; Young et al., 2014). In a two-dimensional 

continuous attractor neural network model of grid cell activity, simulated AD synaptic damage 

resulting from the propagation of neurofibrillary tau tangles disrupted grid cell hexagonal 

symmetry (Zhi & Cox, 2021). Similar to APP-a mice, simulated healthy grid cells had three 

significant Fourier components offset by 60°. In contrast, simulated damaged grid cells had two, 

one, or no components depending on the magnitude of synaptic impairment. The similarities 

between these model simulations of tau propagation and our experimental results in an amyloid 

mouse model suggest that despite the different molecular pathways of tauopathy and 

amyloidopathy, the loss of grid hexagonal symmetry across multiple AD mouse models might 

initially occur through a similar process where the grid map detaches from the individual’s self-

motion while staying anchored to the external world. More broadly, our findings support existing 

theories which suggest that disrupted processing of self-motion by grid cells underlies path 

integration impairments reported during early AD (Bierbrauer et al., 2020; Howett et al., 2019; 

Kunz et al., 2015; Segen et al., 2022; Ying et al., 2022). 
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Figures and legends 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Adult APP grid cells are spatially unstable in the center of the environment.  

(A) The spatial arena was divided into ‘wall’ and ‘center’ regions. The wall length was 12 cm. 
Spatial stability was calculated via two methods. A time-partitioned analysis split the first 30 
minutes of each grid cell recording into two 15 minutes partitions. An occupancy-partitioned 
analysis split the entire recording into two maps where the occupancies in each spatial bin were 
the same. Higher correlation scores between wall or center partitions indicate higher spatial 
stability.  

(B) Center stability is reduced in time-partitioned APP-a grid cell maps, but wall stability is 
preserved. Bars indicate medians, and error bars show the 25th and 75th percentile, two-way 
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ANOVA (center - age x genotype interaction: F(1, 163) = 7.2, p = 0.008; wall - age x genotype 
interaction: F(1, 163) = 8.1, p = 0.005), Wilcoxon rank sum post hoc tests with a Bonferroni-Holm 
correction. 

(C) Center stability is reduced in occupancy-partitioned APP-a grid cell maps. Bars indicate 
medians, and error bars show the 25th and 75th percentile, two-way ANOVA (center - age x 
genotype interaction: F(1, 163) = 9.14, p = 0.0029; wall - age x genotype interaction: F(1, 163) = 
2.81, p = 0.10), Wilcoxon rank sum post hoc tests with a Bonferroni-Holm correction. 

(D) Time-partitioned rate map examples for seven grid cells with the highest wall stability in each 
group. Wall and center scores are indicated above each partition (p1 and p2) set in black and red, 
respectively. Wall correlation scores remained consistently high between groups, but center 
correlation scores were generally lower in APP-a grid cells.  

For all panels, n.s = non-significant, *p < 0.05, **p < 0.01. 
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Figure 2. Adult APP MEC neurons more frequently adopt quadrant-like spatial alignment.  

(A) A 2D Fourier transform decomposes the rate map into a small number of Fourier components. 
Each grid cell component can be visualized as an image of grid axes typically oriented at multiples 
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of 60°. The orientations of all Fourier components could be visualized as a polar plot. Single grid 
and non-grid spatially periodic cell examples are shown for all groups.  

(B) Polar autocorrelations for all MEC cells sorted by the strength of hexagonal modulation at 60° 
multiples or by the strength of quadrant-like modulation at 90° multiples. Dashed white lines 
indicate where hexagonal modulation or quadrant-like modulation ends. 

(C) Percentage distribution of cells that had one-to-four Fourier components for grid cells and all 
MEC cells. 

(D) The percentages of grid cells that had either three (one-tailed t-test for proportions) or two 
components (two-tailed t-test for proportions) versus all MEC cells. 

(E) Histograms show the distribution of angle difference between neighboring components of grid 
and all MEC cells. Solid red lines mark specific orientations.  

(F) Bar graphs show the percentages of angular differences at 60°±10° and 90°±10° compared to 
an expected percentage calculated as the average of observed proportions across all groups (dotted 
red line). Binomial test.  

For all panels, n.s = non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 3. Adult APP grid cells align parallel to the borders.  

(A) (Left-top) Absolute orientation of all cells relative to the recording environment. Dashed white 
lines indicate where quadrant-like alignment starts. (Left-bottom) Percentage distributions of 
quadrant-like cells between groups, and compared to the expected chance of recording them 
(dotted red line). Binomial test. 

(Right-top) Zoomed-in view of the absolute orientations of the top 20% of cells in the left panel. 
Dashed white lines indicate where 30° or 60° hexagonal alignment ends. (Right-bottom) 
Percentage distributions of hexagonal cells between groups, and compared to the expected chance 
of recording them (dotted red line). Binomial test.  

(B) Top: Absolute orientation of all grid cells relative to the recording environment. Grid cells 
could be grouped into 30° or 60° hexagonal alignment, as well as 90° quadrant-like alignment 
(boundaries separated by black dotted lines). To account for differences in Fourier power between 
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cells, colors indicate the z-score of each polar representation. Bottom: Percentage distributions of 
hexagonal or quadrant-like grid cells between groups. 

(C) Polar autocorrelation for grid cells in all groups. Grid cells are sorted by the strength of 
hexagonal modulation at 60° multiples. Colors indicate correlation at each degree shift along the 
x-axis. Bottom: Gridness scores of grid cells sorted by their degree of hexagonal or quadrant-like 
modulation (90° intervals) along the x-axis. The boundary between the two categories is indicated 
by the gray dotted lines, and the percentage of strongly hexagonally modulated grid cells are 
indicated for each group. Wilcoxon rank sum tests.  

For all panels, n.s = non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 4. Adult APP grid cells have reduced theta modulation and theta phase precession.  

(A) Color-coded raster plots of spike-time autocorrelations for grid cells across groups. White lines 
are the average autocorrelation curves.  

(B) Left: Color-coded raster plots show the power spectrums of spike-time autocorrelations for 
grid cells across groups. Line graphs show the mean intrinsic frequency curve and red lines mark 
where a 9 Hz intrinsic frequency. Right: Theta modulation ratio is reduced in APP-a grid cells. 
Bars indicate medians, and error bars show the 25th and 75th percentile, two-way ANOVA (age x 
genotype interaction: F(1, 163) = 5.33, p = 0.022), Wilcoxon rank sum post hoc tests with a 
Bonferroni-Holm correction. 

(C) Proportions of significantly theta-modulated grid cells compared to the expected chance of 
recording them (dotted red line). Binomial test. 

(D) Repetition of (C) when varying the bin size of the spike-time autocorrelation between 1 to 10 
ms. In all conditions, there was a consistent decrease in significantly theta-modulated grid cells in 
APP-a mice. 

(E) Left: Open field phase precession for an example grid cell. Trajectory of mouse in black with 
overlaid color-coded circles indicate the location and theta phase of spiking. Pass index values of 
-1 and +1 represent the entry and exit of a firing field, respectively. Right: The strength of 
correlation between the spiking phase and distance travelled across a firing field is reduced in 
APP-a mice. Data includes quadrant-like and hexagonal grid cells. Bars indicate medians, and 
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error bars show the 25th and 75th percentile, two-way ANOVA (age x genotype interaction: F(1, 
163) = 5.34, p = 0.02), Wilcoxon rank sum post hoc tests with a Bonferroni-Holm correction. 

(F) Proportion of significantly phase-precessing grid cells compared to the expected chance of 
recording them (dotted red line). Binomial test. 

For all panels, n.s = non-significant, *p < 0.05, **p < 0.01. 
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Supplementary Information 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. Tetrode track locations. 
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Track locations of each animal ordered by genotype and age. The tips of tracks are highlighted 
with a red dot. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. Unbiased spatial stability analyses for grid cells. 
(A) Center or wall Pearson correlations of time-partitioned maps as a relationship of pixel layer 
shift towards the absolute center. Left: Dots indicate medians. Right: Bars indicate medians, and 
error bars show the 25th and 75th percentile, two-way ANOVA, Wilcoxon rank sum post hoc tests 
with a Bonferroni-Holm correction. 

(B) Same as A, but for occupancy-partitioned maps. 

(C) Center versus wall stability of time-partitioned maps as a relationship of pixel shift. Wilcoxon 
rank sum tests. Stars indicate significant comparisons where p is at least less than 0.05. 

(D) Same as C, but for occupancy-partitioned maps. 

For panels A-B, n.s = non-significant, *p < 0.05, **p < 0.01. 
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Figure S3. Fourier component wavelengths. 
Distribution of Fourier component wavelengths for grid cells Colors indicate different wavelength 
modules. The mean wavelength values for the red and blue modules are shown above, as well as 
the ratio between modules. 
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Figure S4. Retrieval of 3-component hexagonal grid cells via correction. 
All 1-component or 2-component grid cells in the uncorrected group are shown by its polar 
representation and the raw Fourier spectrum. A mix of automatic and manually selected higher 
thresholds (see Table S3) were used to correct falsely classified cells. Each cell in the Corrected 
group is shown by the corrected polar representation and the more strongly filtered Fourier 
spectrum. 
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Figure S5. Grid cells, their Fourier components, and polar representations. 
The spatial rate maps, Fourier components, and polar representations for all grid cells in Figure 3 
are shown. The color scale of the rate maps indicates occupancy normalized firing rate. The color 
scale of the Fourier spectrums indicates Fourier power. The scale of the polar representations 
indicates Fourier power. 
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Figure S6. Fourier components reflect rate map content, and not the square shape of images. 
(A) Rotation of positional data by 45° clockwise causes an equal rotation in the Fourier spectrum. 
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(B) Top: Absolute orientation of all grid cells relative to the recording environment. Bottom: 
Percentage distributions of hexagonal or quadrant-like grid cells between groups. 

(C) Polar autocorrelation for grid cells in all groups. Grid cells are sorted by the strength of 
hexagonal modulation at 60° multiples. Bottom: Gridness scores of grid cells sorted by their degree 
of hexagonal or quadrant-like modulation along the x-axis. The boundary between the two 
categories is indicated by the gray dotted lines, and the percentage of strongly hexagonally 
modulated grid cells are indicated for each group. Wilcoxon rank sum tests. 

(D-E) Same as B-C, but for data when positional data was rotated by 45° clockwise. 

For panels C and E, n.s = non-significant, **p < 0.01, ***p < 0.001. 
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Methods 

Mice 

J20 APP male mice (B6.Cg-Zbtb20 Tg(PDGFB-APPSwInd) 20Lms/2Mmjax) were obtained from 
The Jackson Laboratory (MMRRC stock #34836) and bred with female C57/BL6/j mice. Mice 
were individually housed on a 12-h light/dark cycle and underwent experiments during the light 
cycle. Housing room conditions of the mice were maintained at 20-22 degrees Celsius and 21-30% 
humidity. All experimental procedures were performed in accordance with McGill University and 
Douglas Hospital Research Centre Animal Use and Care Committee (protocol #2015-7725) and 
in accordance with Canadian Institutes of Health Research guidelines. 

J20 mice undergo progressive neuronal loss in layers 2, 3 and 5 of the MEC. By 7.5 months of 
age, all layers exhibit a total loss of 16.3% of neurons compared to control mice, along with 
reduced density of presynaptic terminals by 7 months of age (Nagahara et al., 2013). By 6 months 
of age, region CA1 of the hippocampus also experiences 10%+ of neuronal loss compared to 
control mice. In parallel, marker-immunoreactivity and electron microscopy confirm the presence 
of synapse loss in the CA1 as early as 3 months. Besides neuronal and synaptic loss, the 
complement-dependent pathway and microglia are upregulated in a manner that is dependent on 
soluble Aβ oligomeric levels in the hippocampus (Hong et al., 2016). On a related note, gliosis 
(activated astrocytes) and neuroinflammation (activated microglia) are elevated across age in the 
hippocampus by 6 months of age (Wright et al., 2013). Furthermore, in vitro slice 
electrophysiology experiments reveal that basal synaptic transmission recorded in CA1 and long-
term potentiation in the Schaffer collateral–CA1 synapse are impaired by 3 months of age 
(Saganich et al., 2006). In terms of oscillatory activity, between 4-7 months of age, gamma 
oscillations are reduced in the parietal cortices which causes network hypersynchrony and are 
linked to a reduction in the voltage-gated sodium channel subunit Nav1.1 predominantly found in 
parvalbumin interneurons (Verret et al., 2012). Such hypersynchrony may be linked to 
spontaneous nonconvulsive seizure activity between 4-7 months, along with numerous inhibitory 
deficits in the dentate gyrus (Palop et al., 2007). At the behavioral level, J20 mice exhibit numerous 
spatial navigation impairments in the Morris water maze, the radial arm maze and a food-foraging 
path integration task in darkness (Cheng et al., 2007; Wright et al., 2013; Ying et al., 2022). To 
examine the impact of these Aβ-mediated changes on neural coding during early pathology, we 
restricted our experiments between 3-7 months of age. 

Single-unit recording data in the MEC were collected from 68 APP mice and non-transgenic 
littermates across four experimental groups: young APP mice (3-4.5 months of age), adult APP 
mice (4.5-7 months of age), young non-transgenic (nTG) mice (3-4.5 months of age), adult nTG 
mice (4.5-7 months of age). Thirty-one males and 37 females were used. Ten animals fell into 
multiple age groups. The male/female ratios were 6:5, 16:16, 9:5, and 11:10 for young APP, adult 
APP, young nTG, and adult nTG mice respectively. 

Surgery 

On the day of surgery, mice were anesthetized using isoflurane (0.5% - 3% in O2) and administered 
carprofen (0.01 ml/g) subcutaneously. Three anchor screws were secured to the skull and a ground 
wire was positioned either above the cerebellum at midline position or the left visual cortex. A 
‘versadrive’ containing four independently movable tetrodes (Axona, Inc) was implanted on top 
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of the right MEC at the following stereotaxic coordinates: 3.4 mm lateral to the midline, 0.25-0.40 
mm anterior to the transverse sinus. Tetrodes were gold-plated to lower impedances to 150-250 
kΩ at 1 kHz prior to surgery. The versadrive was angled at eight degrees in the posterior direction. 
Following placement, the versadrive was secured in place using Kwik-Sil and dental acrylic. The 
ground wire was soldered to the implant, and tetrodes were lowered 1.0 mm from the dorsal surface 
of the MEC. All surgical procedures were performed in accordance with McGill University and 
Douglas Hospital Research Centre Animal Use and Care Committee (protocol #2015-7725) and 
in accordance with Canadian Institutes of Health Research guidelines. 

Neural Recordings 

Three days post-surgery, mice were placed on water restriction and maintained at 85% of their ad 
libidum weight throughout experiments. Mice were recorded in a 75 x 75 cm box. As mice 
explored their environments, water droplets were randomly scattered to motivate the subjects to 
sample the entire arena. Once mice provided good trajectory coverage, tetrodes were turned until 
theta rhythmic units were observed which indicated that the tetrodes had entered the MEC. Across 
days, tetrodes were advanced in increments of 25 microns to sample new putative MEC neurons. 

To record spikes and local field potentials, versadrives were connected to a multichannel amplifier 
tethered to a digital Neuralynx (Bozeman, MT) recording system, and data were acquired using 
Cheetah 5.0 software (Neuralynx, Inc). Signals were amplified and band-pass filtered between 0.6 
kHz and 6 kHz. Spike waveform thresholds were adjusted before each recording and ranged 
between 35-140 µV depending on unit activity. Waveforms that crossed threshold were digitized 
at 32 kHz and recorded across all four channels of the given tetrode. Local field potentials were 
recorded across all tetrodes.  

Histology 

Animals were anesthetized with Isoflurane and perfused intracardially using saline and 4% 
paraformaldehyde. Animal heads were left in 4% paraformaldehyde for 24-72 hours following 
perfusion, before brains were extracted. Brains sanks in a 30% sucrose solution before being frozen 
and stored in a -80ºC freezer. Sagittal brain sections (40µm) were obtained using a cryostat and 
Nissl-stained with a Cresyl violet solution. In cases where brain slices came off the glass slides 
during Nissl-staining, slices were instead mounted using a fluorescent DAPI labeling mounting 
medium.  

Tetrode tracks were characterized to be in the superficial or deep layers based on the location of 
track tips. Only data collected from tetrodes within the MEC were included in analysis. 

Spike sorting 

Single-units were isolated ‘offline’ manually using Offline Sorter 2.8.8 (Plexon, Inc). Neurons 
were separated based on peak amplitudes and principal component measures of spike waveforms. 
Evaluations of the presence of biologically realistic interspike intervals, temporal autocorrelations, 
and cross correlations confirmed single-unit isolation. The experimenter was blind to the age and 
genotype of the subjects and only well-separated clusters were included in analysis. 

Position, direction, velocity estimation, and rate map construction 

Positional data was acquired at 30 frames per second at 720 x 480 pixel resolution (4.9 pixels per 
cm) using a camera purchased from Neuralynx (Bozeman, MT). The camera was elevated at a 
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height to fully capture the entire recording arena. The estimated position of the animal was the 
centroid of a group of red and green diodes positioned on the recording head stage. Head direction 
was calculated as the angle between the red and green diodes. Up to five lost samples due to 
occlusion of tracking LEDs, or reflections in the environment were replaced by a linear 
interpolation for both position and directional data. Running velocity was calculated using a 
Kalman filter. Rate maps were constructed by calculating the occupancy-normalized firing rate for 
3cm x 3cm bins of positional data. Data were smoothed by a two-dimensional convolution with a 
pseudo-Gaussian kernel involving a three pixel (9 cm) standard deviation. In most analyses (when 
specified), rate maps were resized into squares of size 36 x 36 pixels or 26 x 26 pixels.  

Gridness score 

We calculated the gridness score using the same procedure described in Brandon et al. 2011 
(Brandon et al., 2011). This metric quantifies hexagonal periodicity in the firing rate map, while 
also accounting for elliptical eccentricity along one of two mirror lines that exist in a hexagonal 
lattice structure. Distortion along one of the mirror lines was corrected after determining the major 
and minor axes of the grid based on the six closest fields to the central peak of the rate map 
autocorrelogram. The entire autocorrelogram was compressed so that the major axis became equal 
to the minor axis. Large eccentricities where the minor axis was less than half of the major axis 
were not corrected. From the compressed autocorrelogram, we extracted a ring of the six closest 
peaks to the center peak. A rotational autocorrelation of this ring was calculated to observe the 
periodicity in paired pixel correlations across 180 degrees of rotation. The gridness score was 
computed as the difference between the highest correlation observed at 30, 90, or 150 degrees of 
rotation and the lowest correlation observed at 60 or 120 degrees of rotation.  

Directionality 

The animal’s head direction was collected in bins of 6 degrees and the number of spikes in each 
bin was divided by the time spent facing that direction. The mean resultant length (MRL) of the 
polar plot was taken as a metric of directional selectivity.  

Grid cell and head-direction cell selection 

Grid cells and head direction cells were determined via a shuffling procedure. Spike trains from 
each neuron were randomly shifted in time by at least 30 seconds. We then calculated gridness and 
directionality measures. This process was repeated 50 times for each neuron, and the 99th percentile 
of the resulting distribution of scores was determined as the significance criteria for both measures. 
This resulted in a gridness threshold of 0.54 and directionality threshold of 0.21. Cells that passed 
these thresholds were characterized as grid cells and head direction cells, respectively.  

Spatial stability analysis 

Time-partitioned analysis: Rate maps of size 26 x 26 pixels were created for each grid cell. The 
first 30 minutes of each recording was divided into two 15-minute partitions. Each rate map was 
divided into wall or center regions, depending on how many pixel layers each had. Next, the pixels 
corresponding to both regions were extracted for both partitions. A Pearson correlation was 
computed for wall or center time partitions.    

Occupancy-partitioned analysis: A 26 x 26 pixel matrix (an ‘occupancy map’) tracked the number 
of time frames that the animal spent in each spatial bin throughout the full recording. All time 
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frames where the mouse was stationary (velocity < 5cm/s) were dropped. The values in each bin 
were then halved, and the resulting numbers represented the number of time frames per bin 
allocated to each partition. Time frames were then selected throughout the entire recording session 
in an ‘ascending’ or ‘monotonically increasing’ manner to build both partition maps. Rate maps 
of size 26 x 26 pixels were created for each partition. The rest of the analysis was the same as the 
time-partitioned analysis. 

Generation of Fourier spectrums 

We followed the procedure used previously in Krupic et al. 2012 (Krupic et al., 2012). We used 
the fft2 MATLAB function to compute the two-dimensional Fourier transform of the rate map of 
a given cell. Initial rate maps were unsmoothed at size 36 x 36 pixels and center zero-padded to 
have size 256 x 256 pixels in order to increase the spatial resolution of the Fourier spectrogram. 
After running fft2 on the zero-padded rate map, the resulting amplitude spectrum was divided by 
the mean firing rate of the given cell to allow for comparison between cells that have different 
firing rates. The amplitude spectrum was element-wise squared to re-visualize the spectrum in the 
power domain.  

We used the fftshift MATLAB function to shift low frequencies to the center and high frequencies 
to the periphery of the spectrum. Lastly, we created a two-dimensional gaussian loss function 
(where the bump values are 0) with a width of 1. This gaussian was centered at the strongest value 
pixel of the spectrum and element-wise multiplied. This procedure was done to erase the center 
block of energy that resulted from the fft2 function.   

Identifying Fourier components 

The Fourier power spectrum was first computed. To reduce effects of noise, the 75th percentile 
value of power in shuffled data (from the Voronoi procedure) was subtracted and negative values 
set to zero. To further control for noise, values lower than 25% of the resulting maximum power 
were also set to zero. These are higher thresholds than what was used by Krupic et al. 2012 (Krupic 
et al., 2012). However, to ensure that these thresholds do not bias our results, we varied this latter 
parameter in Table S3.  

A zero matrix with the size of the Fourier spectrum was created. Any non-zero value in the 
corrected Fourier spectrum had its corresponding position in the zero matrix set to 1. Using the 
regionprops MATLAB function, Fourier components were individually identified as separate 
“regions”. To account for effects of noise, any regions with an area less than 10 pixels was 
discarded. Similar to Krupic et al. 2012, cells with more than 4 Fourier components were not 
included in analysis (Krupic et al., 2012). 

To determine a component’s orientation, the distances (along the x- and y-axes) between the 
centroids of each region and the center of the Fourier spectrum were computed. The “wave vector” 
corresponding to the x- and y-displacements were calculated as: 

𝑘௫ =  
2𝜋 ∗ 𝑑𝑥

𝑁𝑏
 

𝑘௬ =  
2𝜋 ∗ 𝑑𝑦

𝑀𝑏
 



178 
 

Where dx and dy are the x- and y-displacements, respectively; N and M are the x- and y-axis 
lengths of the rate map (both 36 in our case); b is the bin size in meters (0.0208 in our data). The 
orientation of the wave vector was:   

𝜑 = 𝑎𝑡𝑎𝑛 ቆ
𝑘௬

𝑘௫
ቇ 

And the orientation of the periodic band (or grid axes) is 90 degrees offset to the wave vector’s 
orientation.  

𝜃 = 𝜑 + 90° 

Fourier polar representations and autocorrelations 

To compute Fourier polar representations, we first plotted the orientations of individual Fourier 
components on a polar plot. The power corresponding to each orientation was that given 
component’s Fourier power in the Fourier spectrum. The polar plot was then smoothed using a 
one-dimensional Gaussian kernel with a standard deviation of 13 degrees. 

To compute Fourier polar autocorrelations, the smoothed polar plots were circularly shifted 360 
degrees. At each degree shift, the Pearson correlation between the original and shifted polar 
profiles was computed.   

Fourier wavelength identification 

To compute a Fourier component’s wavelength, a line was drawn over the Fourier spectrum at the 
given component’s orientation. This was achieved using the improfile MATLAB function, which 
draws a line between a specific start (the Fourier spectrum’s center) and end point (a point 
exceeding the dimensions of the spectrum) on a given image (the spectrum). The distance away 
from the spectrum’s center along this line which had the maximum Fourier power was taken as 
the wavelength. 

Fourier orientation offset from reference axes 

A grid cell was first determined to be either a 30° or 60° hexagonal grid, or a 90° quadrant-like 
grid based on where the Fourier orientations faced. The reference axes for a 30° grid faced (30°, 
90°, 150°, 210°, 270°, 330°). The reference axes for a 60° grid faced (0°, 60°, 120°, 180°, 240°, 
300°). The reference axes for a 90° grid faced (0°, 90°, 180°, 270°). The angular difference 
between each Fourier component and its closest reference axis was calculated as the offset.  

Theta modulation analyses 

To visualize theta modulation, spike-time autocorrelations were computed for each cell with 5ms 
temporal bins from a lag of -400 to 400ms. The resulting autocorrelations were convolved with a 
25ms gaussian and z-score normalized. The average z-scored correlation curve for all cells was 
also plotted. 

To compute intrinsic frequency, the spike-time autocorrelations were zero padded to 2^13 samples 
and the power spectrum was calculated using the Chronux toolbox function MTSPECTRUMC 
from Matlab. The intrinsic frequency of a given cell was taken as the frequency with the max 
power in the 6-12 Hz range. The theta modulation ratio was calculated as the mean power within 
6-12 Hz, divided by the mean power between all other frequencies within 2-100 Hz. To be 
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considered a significantly theta-modulated cell, the mean power within 6-12 Hz needed to be four 
times greater than the mean power within 2-100 Hz (a theta modulation ratio greater than 4). 

Phase precession 

The degree of grid cell phase precession was calculated via a ‘pass index’ analysis as described in 
Climer et al. 2013 (Climer et al., 2013). Briefly, this method quantifies precession by assessing the 
correlation of a cell’s firing in relation with theta phase as the mouse passes a spatial field. The 
spatial field locations were estimated using a ‘field index’ method that calculates the degree of 
occupancy-normalized firing within each bin of positional data. Field contours and centers were 
then generated by using various parameters involving the field index and firing rate. Lastly, based 
on the field index signal across a recording session, a mouse’s entry and exit of a spatial field could 
be estimated. The pass index was therefore determined by normalizing field index signal segments 
consisting of the passage across a spatial field between -1 and +1, where -1 represents the start of 
a pass, 0 represents the center, and +1 represents the end. Phase of spiking across field crossing 
was aligned to this normalized position and a linear-circular correlation was computed between 
field index and spiking phase (Kempter et al., 2012). A grid cell with a significant correlation at p 
< 0.05 and a slope per pass between -1440 and -22 was classified as a phase-precessing cell. 

Genotyping 

Tail samples were collected at weaning for genotyping, and also prior to brain perfusion. DNA 
sample were extracted and amplified using REDExtract-N-Amp™ Tissue PCR Kit 
(MilliporeSigma, XNAT-100RXN) and the primer sequence and PCR protocol from The Jackson 
Laboratory (MMRRC, 34836-JAX). Genotyping results were visualized with a QIAxcel 
instrument (Qiagen).  

Quantification of neural data 

Single-unit data were obtained using Neuralynx (Bozeman, MT) software and isolated ‘offline’ 
manually using graphical cluster cutting software (Plexon, Inc) individually for each recording 
session. Custom MATLAB scripts were used to analyze neural data.  

Statistical analysis 

Statistical analyses for neural and behavioral data were performed using MATLAB. Bars in bar 
graphs represent median values, and the error bars represent the 25th and 75th percentile.  

Comparisons between two groups involving continuous data used unpaired, two-tailed Wilcoxon 
rank sum tests. Comparisons between more than two groups involving continuous data used a two-
way ANOVA with age and genotype as the factors. A significant interaction effect was followed 
by post-hoc testing using unpaired, two-tailed Wilcoxon rank sum tests with a Bonferroni-Holm 
correction in the following four comparisons: nTG-y vs. nTG-a, nTG-y vs APP-y, APP-y vs. APP-
a, nTG-a vs. APP-a.  

In specific cases where proportions were compared between groups in Figure 2D, a one-tailed t-
test for proportions was used to compare 3-component cells, and a two-tailed t-test for proportions 
was used to compare 2-component cells.  

All remaining cases involving proportions in Figures 2F, 3A, 3B, 4C, 4D and 4F used binomial 
tests. A binomial test determines the probability of an outcome when there are only two possible 
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outcomes. In our case, the test determined if the obtained proportion by a group was equal or 
unequal (either lesser or larger) compared to expected chance. Expected chance was calculated as 
the average of the proportions obtained in all four groups. The rationale for calculating expected 
chance in this manner is assuming that all four animal groups were the same age and genotype, 
then the average of the four should provide a theoretical level of chance.  

All statistical tests used an alpha value of 0.05. Significance was determined as follows: * p < 0.05, 
** p < 0.01,*** p < 0.001.  

Data and code availability 

All data reported in this paper will be shared by the lead contact upon request. All original code 
has been deposited at GitHub [insert link] and is publicly available as of the date of publication. 
DOIs are listed in the key resources table. Any additional information required to reanalyze the 
data reported in this paper is available from the lead contact upon request. 
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Chapter 4: General Discussion 

In this thesis, we investigated how the medial entorhinal grid cell network is disrupted 

during the early stages of pathology in the J20 (APP) mouse model of AD. We conducted single-

unit recordings in the MEC and CA1 in APP mice between the ages of 3-7 months, an age range 

that precedes the widespread expression of amyloid plaques in this transgenic model [27]. APP-y 

grid cells had reduced temporal synchrony with local HD cells and interneurons. APP-a grid cells 

had reduced spatial periodicity and spatial stability, along with reduced temporal synchrony. These 

results highlight a progressive impairment of grid cell coding throughout early pathology. Further 

analysis revealed that disrupted grid cell coding in APP-a mice reflected an increased influence of 

environmental geometry instead of self-motion cues. APP-a grid cell were spatial unstable towards 

the center but not near the borders, exhibited reduced theta modulation and theta phase precession, 

and had increased spiking aligned parallel to the borders. This progressive grid cell coding 

impairment also correlated to reduced path integration performance in a food-foraging task during 

complete darkness. In parallel, we found that spatial coding of entorhinal non-grid cells and CA1 

place cells remained intact. Together, these results 1) support the viability of grid cell integrity and 

spatial navigation deficits as early markers of AD; 2) suggest that early AD grid cell impairments 

reflect a preferential spatial alignment to the external world and likely cause path integration 

deficits in preclinical individuals via reduced integration of self-motion cues. 

4.1. How can grid cell impairments explain path integration deficits 

Grid cells require excitatory, inhibitory and head direction inputs [115,122,130,133]. A 

portion of MEC interneurons are also speed cells [131]. Our temporal synchrony analysis suggests 

that grid cells could not effectively integrate speed and heading information on short time scales. 

Proprioceptive and vestibular inputs are the dominant sources of self-motion information in the 
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food-foraging task during complete darkness. An inability to effectively integrate these cues by 

grid cells on the outbound paths may account for homing errors despite grid hexagonal symmetry 

remaining intact. Of course, there may be other explanations (not mutually exclusive) for the early 

path integration impairments in APP-y mice. For instance, APP-y mice may have deficient higher 

level cognitive processing involving working memory, attention and postural control [5]. A 

previous study showed that APP mice had impaired working memory performance on the radial 

arm maze by 3-4 months of age [222]. Reduced working memory might affect one’s ability to 

remember longer outbound paths, which in turn would affect homing behavior [223]. These higher 

cognitive processes may also account for the path integration deficits in healthy adults or AD 

patients, but data in support of these theories remain sparse [5]. An alternative explanation is that 

these early path integration impairments are caused by deficits in other neural systems involved in 

path integration, such as the postsubiculum, as well as various thalamic and brainstem nuclei [224]. 

Other undetermined factors caused by transgene expression may have also caused path integration 

deficits in APP-y mice.  

Numerous grid cell impairments could explain the more pronounced path integration 

deficits in APP-a mice. Reduced grid cell spatial periodicity is the obvious culprit given that a 

previous study showed a causal link between grid cell coding and path integration performance in 

healthy mice [113]. Greater grid spatial instability towards the environmental center but not near 

the borders further suggests that the underlying explanation for the behavioral impairment is the 

grid cell network’s inability to process self-motion cues. Reduced theta modulation and distance 

coding via theta phase precession support this interpretation. There was a significant reduction in 

theta rhythmic grid cells compared to other groups, suggesting that they could not effectively 

integrate self-motion cues via precisely-timed theta-related mechanisms [52,110,122,127,225–
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230]. As consequence, there was also a reduction in theta phase-precessing grid cells. 

Computational models convey the significance of reduced theta modulation and phase precession. 

The oscillatory interference model posits that grid cells integrate heading and speed information 

via the interference of theta oscillations between upstream VCOs [231,232]. When multiple theta-

modulated VCOs with angular offsets of 60° evenly spaced around 360° oscillate in phase, the 

thresholded sum of their directional interference patterns in a band-like manner produces grid 

hexagonal periodicity and theta phase precession. Alternatively, phase precession has also been 

successfully modeled in continuous attractor networks and is proposed to be a ‘look-ahead’ 

mechanism to plan future routes [233]. Continuous attractor models generate grid cell activity via 

intrinsic network connectivity that integrates heading and speed information [26].  Both oscillatory 

and continuous attractor models could form the foundations of a path integration system that 

allows for continuous tracking of position along directions offset by 60° and computation of 

translational vectors toward goal locations. The lack of phase precession in many APP-a grid cells 

could impair their ability to integrate self-motion and plan future paths in the environment’s center. 

Indeed, when path integrating in the food-foraging task, in addition to increased travel distance 

and angular errors on the homing path, APP-a mice spent more time along the environment 

periphery. This suggests that APP-a mice could not plan effective routes back to the refuge and 

instead relied on a simpler but inefficient thigmotaxic strategy. 

This thigmotaxic strategy is particularly noteworthy given that APP-a grid cells had 

increased firing aligned parallel to the borders. Our Fourier analysis revealed that disrupted grid 

cell spatial periodicity did not merely reflect random spatial noise, but rather an increase in spatial 

alignment to the enclosure’s geometry. This result persisted at the population level and was 

therefore not biased by our grid cell selection criteria. Environmental geometry appears to be the 
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strongest grid anchor and is likely the only source of allocentric influence in the food-foraging task 

[84,90,234]. Increased spiking aligned parallel to the borders suggests that grid cells cannot 

integrate self-motion cues and may rely more on the spatial layout of the external world to 

compensate. This interpretation might explain why APP-a mice were more thigmotaxic on the 

homing path than other groups. On a related note, APP-a mice were also more thigmotaxic on 

outbound paths, whereas APP-y mice were not (data not shown).  

4.2. Parallels to human AD literature 

In general, path integration impairments in AD patients are thought to arise from a 

combination of degraded sensory processing along with tauopathy and amyloidopathy directly 

affecting the neural substrates that govern path integration that include, but are not limited to, the 

grid cell network [5]. Path integration deficits correlate with greater levels of CSF amyloid and tau 

[11], as well as APOE-ε4 status [12,13]. Multiple mouse models of tauopathy and amyloidopathy 

exhibit grid and place cell coding deficits that correlate with impaired spatial behavior towards the 

later stages of pathology [214–221]. In the rTg4510 tau model, impaired grid cell firing was 

accompanied by reduced firing rate-by-speed modulation in MEC cells [221]. Tauopathy might 

therefore reduce integration of movement speed which is necessary for grid cell firing and path 

integration [94,112]. Place cells in rTg4510 mice were also spatially unstable and not anchored to 

any particular location [219]. Similar findings were observed in pure amyloid and triple transgenic 

mouse models [215,217]. The consistency of reported impairments despite the inherent differences 

of mouse models provides compelling evidence that tauopathy and amyloidopathy target the neural 

substrates of path integration. 

The key novelty of our findings versus other AD mouse model studies is that we restricted 

our experimental timeline to an age range which just preceded the widespread expression of 
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amyloid plaques. Our results therefore provide the first evidence at the single cell level in an AD 

mouse model that there is a progressive impairment in the grid cell network across early pathology. 

In human subjects, APOE-ε4 effects on path integration performance appear to worsen across age, 

suggesting that grid-like representations may undergo a similar progressive impairment [12]. In 

general, AD-related pathological effects on PI are likely to take place early on in life given that 

grid-like representations are impaired in APOE-ε4 carriers as young as 18 years of age [9]. For 

instance, there is a profound loss of layer 2 EC neurons in individuals with mild forms of AD 

[235,236]. Progressive EC neuronal loss is also observed in AD mouse models [237,238], and the 

majority of grid cells are in layer 2. AD pathology also alters inhibitory circuits [239], while grid 

cells require inhibitory inputs [130,132,133]. A proportion of PV interneurons that innervate grid 

cells are also speed-modulated [93,130,131], suggesting impaired integration of movement speed 

by grid cells [221]. Lastly, certain types of neurons characterized by their protein composition may 

be particularly vulnerable to AD pathology. Aside from PV interneurons, reelin-positive neurons 

in EC layer 2 expressed intracellular Aβ in a rat model of amyloidosis before the expression of Aβ 

plaques [240]. Given that the layer 2 stellate cell population involves various spatially-tuned cell 

types including grid cells [241], the grid cell network could be particularly vulnerable to early AD 

pathogenesis.  

4.3. Parallels to other APP mouse models 

Place cells have also been recorded in other APP mouse models. The spatial tuning of 

place cells in Tg2576 mice remained intact at the earliest incidence of Aβ plaques [214], 

similar to our results. In the 3xTg triple transgenic mouse model of both APP and tau 

pathology, place cells exhibited spatial instability on a linear track preceding the expression 

of amyloid plaques [217]. One explanation for this result is the additional presence of tau 
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pathology in 3xTg mice. In a different study involving a chimeric APP mouse model where 

the onset of APP expression could be controlled, place cell stability was also impaired on a 

linear track [215]. However, this disruption took place 9.5 months following APP expression, 

a pathogenic timepoint that is much later than ours. Lastly, a study reported that grid cells and 

place cells were disrupted in an APP knock-in mouse model [218]. Despite already have moderate 

levels of plaque formation throughout the brain, these young APP knock-in mice still did not show 

any impaired place cell coding, which is consistent with our findings. However, Jun et al. suffers 

from extremely low sample sizes of recorded cells and inappropriate statistical designs. For these 

reasons, the conclusions of their study are difficult to interpret. Our place cell results are best 

comparable to those in Tg2576 mice [214] because recordings were done in an open field 

during the earliest detection of amyloid plaques. From this perspective, our results are 

consistent with what is currently known about Aβ pathology and place cell coding. To this 

growing body of knowledge, we show that impairments in grid cell firing emerge prior to 

place cell disruption.  

Grid cell spatial periodicity is also disrupted during late pathology in both tau and 

amyloid mouse models - EC-Tau, rTg4510 and APP-KI [218,220,221]. All studies, including 

ours, assessed spatial periodicity using the gridness score (a measurement of hexagonal 

symmetry in the spatial firing pattern). Our Fourier analysis suggests that the loss of grid 

spatial periodicity does not reflect increased random noise, but rather stronger spatial 

alignment parallel to the borders. In a two-dimensional continuous attractor neural network 

model of grid cell activity, simulated AD synaptic damage resulting from the propagation of 

neurofibrillary tau tangles disrupted grid cell hexagonal symmetry [242]. Similar to our APP-a 

mice, simulated healthy grid cells had three significant Fourier components offset by 60°. In 
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contrast, simulated damaged grid cells had two, one, or no components depending on the 

magnitude of synaptic impairment. The similarities between these model simulations of tau 

propagation and our experimental results in an amyloid mouse model suggest that despite the 

different molecular pathways of tauopathy and amyloidopathy, the loss of grid hexagonal 

symmetry across multiple AD mouse models might initially occur through a similar process where 

the grid map detaches from the individual’s self-motion while staying anchored to the external 

world. 

4.4. Potential circuit-level mechanisms for grid cell impairments 

Our results address several possible circuit-level explanations that could underlie 

reduced grid cell coding in APP mice. Prior studies have shown that inputs from the anterior 

thalamic nuclei, the dorsal hippocampus, and the medial septum are each independently 

necessary for normal grid cell activity [115,122,128,129]. MEC HD cells did not show any 

impairments in directional tuning, suggesting that projections from the anterior thalamic 

nuclei remained intact. CA1 place cells remained spatially selective, stable, and had high 

firing rates, indicating that reduced feedback from the hippocampus cannot explain grid cell 

deficits in APP-a mice.  

The medial septum might be an area of interest of further investigation because local 

field potential theta frequencies in APP-y and APP-a mice were slower by ~ 0.2 Hz than nTG 

mice. It has been shown that reduction of local field potential theta oscillations via medial 

septal inactivation disrupted both grid cell spatial periodicity and theta rhythmicity in healthy 

animals [128]. Considering that APP-a grid cells had reduced spatial periodicity and theta 

rhythmicity, pacing local field potential theta at faster frequencies by optogenetically 

manipulating PV interneurons (the main GABAergic cell type in the medial septum) [243–
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245] might constitute a rescue approach that would lock the spike-phase relationship of grid 

cells to the stimulated frequency. Pure oscillatory interference models or hybrid models 

containing elements of both oscillatory interference and continuous attractors posit that the 

baseline grid cell frequency is driven by theta oscillations from the medial septum. 

Recalibrating the baseline grid cell frequency to a normal endogenous range might rescue 

spatial periodicity, intrinsic theta rhythmicity and theta phase precession. A recent study 

adopted this optogenetic strategy in healthy rats by pacing theta beyond the normal 

endogenous range of 6-10 Hz [245]. Interestingly, grid cells kept their spatial patterns but 

there was a complete abolishment of theta phase precession. These results suggest that septal 

theta inputs may not be necessary for grid cell spatial patterns but do affect grid cell temporal 

properties such as theta phase precession.  

However, APP-y grid cells do not have reduced spatial periodicity, intrinsic theta 

rhythmicity or theta phase precession. Yet, APP-y mice local field potential theta was still 0.2 

Hz slower. This optogenetic rescue might therefore not rescue spatial periodicity, intrinsic 

theta rhythmicity and theta phase precession. Instead, restoring local field potential theta (and 

subsequently increasing grid cell intrinsic frequency) might rescue the reduced grid cell 

temporal synchrony with local HD cells and interneurons that both APP-y and APP-a mice 

exhibit. In either case, rescuing any of these grid cell impairments could potentially improve 

path integration performance. Ultimately, optogenetic pacing of medial septal theta inputs is 

perhaps the most promising circuit-level manipulation to consider for future experiments. A 

rescue of grid cell properties and a simultaneous improvement in path integration would 

establish causal evidence that grid cells cause path integration impairments in preclinical 

individuals. 
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Alternatively, perhaps this 0.2 Hz reduction in local field potential theta is minor and 

insignificant. Considering that theta power and speed modulation of theta were preserved in 

APP mice, medial septal theta-generating inputs to the MEC may be unaffected. Nevertheless, 

our findings could still indicate a subtle impairment of basal forebrain inputs that innervate 

the grid cell network; one candidate could be decreased septal cholinergic inputs [246], as a 

selective loss of basal forebrain cholinergic neurons in the nucleus basalis of Meynert is 

observed in familial AD patients [247,248].  

4.5. Grid cells and path integration tasks have clinical value 

To date, numerous AD clinical trials have failed due to the difficulty in identifying the 

initial stages of pathology such that interventions are applied too late [5]. For instance, current 

cognitive assessments – the dominant method for AD diagnosis – rely heavily on episodic memory 

tests. Yet, episodic memory loss is also common in other pathologies such as frontotemporal 

dementia or general aging [211], and appears to be more sensitive to later stages of AD – thereby 

offering limited clinical utility [6,212]. Therefore, the true value of grid cell integrity (or grid-like 

fMRI representations in human subjects) and path integration performance lies in their predictive 

power (along with other biomarkers such as amyloid and tau) to accurately identify individuals 

most suitable for early intervention. Grid-like fMRI and path integration performance may also 

serve as assessment tools to determine the efficacy of treatments. Beyond clinical diagnosis, 

pinpointing individuals most at risk of AD could be particularly useful when identifying novel 

therapeutic targets. It is impractical to run large-scale molecular or genome-wide studies in the 

entire population in hopes of determining what other molecular or genetic markers could be 

causing AD. However, narrowing the subject pool of interest renders these questions more feasible 

to ask.  
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Our results also show for the first time that path integration behavioral deficits are present 

in an AD mouse model during early pathology. These findings further justify the implementation 

of path integration tasks as a clinical diagnostic tool. AD clinical diagnosis predominantly relies 

on the appearance of cognitive impairments in subjects, yet there is a great discrepancy in 

sensitivity between modern biomarkers and available cognitive markers. In-vivo Aβ and tau 

biomarkers including PET, CSF and blood biomarkers show changes decades before clinical 

symptoms, yet their presence does not guarantee the appearance of cognitive impairments which 

may be influenced by risk factors and individual variability [186,206].  

Likewise, our behavioral findings further support cross-species translation between animal 

models and human subjects. Path integration tasks are relatively similar in rodents and humans. 

Our food-foraging task involves the same elements of homing behavior observed in the triangle 

completion task commonly used in human subjects. The efficacy of cross-species translation relies 

on standardization. Many intervention studies in rodents rely on the Morris water maze, a task that 

is infrequently used in AD cognitive assessments [6,210,212]. Given their simplicity, path 

integrations tasks allow for similar experimental setups between rodents and humans which is ideal 

for bridging the research gap across species. With that said, there are still minor differences 

between path integration tasks in rodents and humans, and a truly standardized task between 

species would be ideal.  

Lastly, path integration tasks are practical because they are economically viable. For 

instance, they can be adapted into computerized tasks that can be performed using smartphones, 

desktop computers or tablets [5]. Importantly, computerized tasks are inexpensive and yield 

comparable results to real-life navigation [249]. On a related note, our results suggest that 

behavioral readouts of path integration performance offer a window into grid cell or grid fMRI 
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integrity without the need for time-consuming and expensive single-cell recordings. Large-scale 

path integration behavioral studies in the general population without the costs incurred by brain 

imaging is economical and could accelerate clinical intervention.  

Conclusion and summary 

To investigate the neural circuit operations that may cause path integration behavioral 

deficits in preclinical AD patients, we conducted in-vivo electrophysiological recordings of 

spatially-tuned neurons in the MEC and region CA1 of the hippocampus in the J20 transgenic Aβ 

mouse model of early AD. Entorhinal grid cells showed reduced spatial periodicity, spatial 

stability, and synchrony with interneurons and head-direction cells. In contrast, the spatial coding 

of non-grid cells within the MEC, and place cells within CA1, remained intact. Grid cell deficits 

emerged at the earliest incidence of Aβ fibril deposition and correlated with impaired spatial 

memory performance in a path integration task. Further analysis revealed that environmental 

geometry exerted greater influence on J20 grid cell coding than self-motion. J20 grid cells were 

spatially unstable towards the center of the square arena but not near the borders, exhibited 

impaired integration of distance travelled via theta phase precession, and had increased spiking 

aligned parallel to the borders. Our results suggest that early AD grid cell impairments reflect a 

preferential alignment to the external world and likely cause path integration deficits in preclinical 

individuals via reduced integration of self-motion cues. More broadly, our results suggest that grid 

cell integrity (or grid-like fMRI representations in human subjects) and path integration 

performance are sensitive clinical early AD diagnostic tools and valuable assessment metrics of 

therapeutic efficacy.  
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