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ABSTRACT 
 

Traditional toxicity testing methods rely on exposing whole organisms to chemicals and 

observing high-level responses such as mortality and reproduction. These methods are too slow, 

expensive, and ethically concerning to assess the tens of thousands of legacy and novel 

substances in need of testing, and since they measure only a small number of endpoints, do not 

provide much biological insight into the toxicity mechanism. Over the last fifteen years, there 

has been a growing push to develop new approach methods for toxicity testing that do not use 

animal exposures. One major objective of this movement is to conduct exposures in vitro, 

measure comprehensive molecular outcomes, and use the molecular data to predict and manage 

risk to whole organisms. This not only promises to make toxicity testing faster, less expensive, 

and more humane, but also promises to generate more informative data. Toxicogenomics, the 

measurement of ‘omics data such as transcriptomics, proteomics, and metabolomics in the 

context of toxicology, is key to realizing this goal. However, toxicogenomics data is extremely 

complex and the lack of computing resources, programming skills, advanced statistical training, 

and knowledge of bioinformatics databases presents barriers to many researchers and regulators. 

The barriers are particularly pronounced for environmental toxicologists using ecologically 

relevant species, as there are few bioinformatics resources outside of a small number of model 

organisms.   

 

The objective of this thesis is to design new statistical methods and corresponding software for 

analyzing and visualizing toxicogenomics data to support decision-making in the context of 

environmental toxicology. Many of the additional barriers to using transcriptomics data in 

ecologically relevant non-model organisms are related to raw data processing and annotation. 



 x 

Chapter 3 presents a set of computational tools (EcoOmicsAnalyst, ExpressAnalyst, 

EcoOmicsDB) for producing and analyzing annotated counts tables from raw RNA-seq data 

from any species, regardless of whether there is a reference genome. Traditional transcriptomics 

results such as lists of impacted genes and pathways are difficult to integrate into regulatory 

decision-making processes. Chapter 4 presents EcoToxModules, custom gene sets for 

summarizing and communicating transcriptomics data that are focused on toxicologically 

relevant biological processes. Chapter 5 presents FastBMD, software for performing rapid 

transcriptomics dose-response modeling. Since dose-response results such as benchmark dose 

values and points-of-departure are already familiar to the toxicology community, this type of 

analysis is useful because it translates unfamiliar toxicogenomics data into the familiar dose-

response framework. Finally, while the cost of acquiring whole-transcriptome data has decreased 

tremendously over the last few decades, it is still outside the scope of many research programs. 

EcoToxChips are qPCR arrays with 384 genes for six ecologically relevant species that address 

this issue because qPCR technology is cost-effective with widespread availability. Chapter 6 

presents EcoToxXplorer, software focused on EcoToxChip data processing, analysis, and 

interpretation.  

 

Together, the chapters in this thesis aim to support the use of toxicogenomics data in decision-

making processes by making it more usable and understandable to individual members of the 

toxicology community, while also enabling standardized workflows that can be easily accessed 

by many different people in different locations. One important aspect of this is that all software 

presented in this thesis are web-based, which means that they do not require users to have 

substantial computing resources or programming skills, and do not require local installation. 
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Throughout statistical method and software development, a design-thinking framework was used 

to continuously obtain and incorporate feedback from a large group of stakeholders and potential 

end-users from academia, government, and industry.  
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RÉSUMÉ 
 
 
Les méthodes traditionnelles de test de toxicité reposent sur l'exposition d'organismes entiers à 

des produits chimiques et sur l'observation de réactions de haut niveau telles que la mortalité et 

la reproduction. Ces méthodes sont trop lentes, coûteuses et problématiques sur un point de vue 

éthique pour évaluer les dizaines de milliers de substances héritées et nouvelles qui doivent être 

testées. De plus, comme elles ne mesurent qu'un petit nombre de paramètres, elles ne fournissent 

pas beaucoup d'informations biologiques sur le mécanisme de toxicité. Au cours des quinze 

dernières années, il y a de plus en plus de pressions pour mettre au point de nouvelles méthodes 

d'analyse de la toxicité qui n'utilisent pas l’expositions des animaux. L'un des principaux 

objectifs de ce mouvement est de réaliser des expositions « in vitro », de mesurer des résultats 

moléculaires complets et d'utiliser les données moléculaires pour prévoir et gérer les risques pour 

les organismes entiers. Cela promet non seulement de rendre les tests de toxicité plus rapides, 

moins coûteux et plus humains, mais aussi de générer des données plus informatives. La 

toxicogénomique, c’est-à-dire la mesure des données « omiques » telles que la transcriptomique, 

la protéomique et la métabolomique dans le contexte de la toxicologie, est essentielle à la 

réalisation de cet objectif. Cependant, les données toxicogénomiques sont extrêmement 

complexes et le manque de ressources informatiques, de compétences en programmation, de 

formation statistique avancée et de connaissances des bases de données bioinformatiques 

présente des obstacles pour de nombreux chercheurs et régulateurs qui souhaitent utiliser ce type 

de données. Ces obstacles sont particulièrement prononcés pour les toxicologues 

environnementaux qui utilisent des espèces écologiquement pertinentes, car il existe peu de 

ressources bioinformatiques en dehors d'un petit nombre d'organismes modèles. 
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L'objectif de cette thèse est de concevoir de nouvelles méthodes statistiques et des logiciels 

correspondants pour analyser et visualiser les données toxicogénomiques afin de soutenir la prise 

de décision dans le contexte de la toxicologie environnementale. Un grand nombre d’obstacles 

supplémentaires à l'utilisation des données transcriptomiques chez les organismes non-modèles 

écologiquement pertinents sont liés au traitement et à l'annotation des données brutes. Le 

chapitre 3 présente un ensemble d'outils informatiques (EcoOmicsAnalyst, ExpressAnalyst, 

EcoOmicsDB) permettant de produire et d’analyser des tableaux de comptage annotés à partir de 

données brutes d'ARN-seq provenant de n'importe quelle espèce, qu'il existe ou non un génome 

de référence. Les résultats traditionnels de la transcriptomiques, tels que les listes de DEG et de 

voies impactées, sont difficiles à intégrer dans les processus décisionnels réglementaires. Le 

chapitre 4 présente les EcoToxModules, des ensembles de gènes personnalisés pour résumer et 

communiquer des données transcriptomiques axées sur des processus biologiques pertinents sur 

le plan toxicologique. Le chapitre 5 présente FastBMD, un logiciel permettant de réaliser 

rapidement une modélisation transcriptomique dose-réponse. Étant donné que les résultats dose-

réponse, tels que les valeurs de dose de référence et les points de départ, sont déjà familiers à la 

communauté toxicologique, ce type d'analyse est utile car il traduit des données 

toxicogénomiques inconnues dans le cadre dose-réponse familier. Enfin, bien que le coût 

d'acquisition des données du transcriptome entier ait considérablement diminué au cours des 

dernières décennies, il n'entre toujours pas dans le cadre de nombreux programmes de recherche. 

Les EcoToxChips sont des matrices qPCR comprenant 384 gènes pour six espèces 

écologiquement pertinentes qui répondent à ce problème car la technologie qPCR est rentable et 

largement disponible. Le chapitre 6 présente EcoToxXplorer, un logiciel axé sur le traitement, 

l'analyse et l'interprétation des données EcoToxChip. 
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Ensemble, les chapitres de cette thèse visent à soutenir l'utilisation des données 

toxicogénomiques dans les processus décisionnels en les rendant plus utilisables et 

compréhensibles pour les membres individuels de la communauté toxicologique, tout en 

permettant des flux de travail standardisés qui peuvent être facilement accessibles par de 

nombreuses personnes différentes dans différents endroits. Un aspect important de cela est que 

tous les logiciels présentés dans cette thèse sont basés sur le web, ce qui signifie qu'ils ne 

nécessitent pas que les utilisateurs disposent de ressources informatiques importantes ou de 

compétences en programmation, et ne nécessitent pas d'installation locale. Tout au long du 

développement de la méthode statistique et du logiciel, un cadre de conception a été utilisé pour 

obtenir et intégrer continuellement les commentaires d'un grand groupe d’intervenants et 

d'utilisateurs finaux potentiels du milieu universitaire, du gouvernement et de l'industrie. 
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CONTRIBUTION TO ORIGINAL KNOWLEDGE 
 
 
This thesis developed statistical methods and software for processing and analyzing 

toxicogenomics data from ecological species. Here, novel aspects of the methods and software 

are highlighted. 

• First web-based software for processing raw RNA-seq data from any eukaryotic 

species without a reference genome. The Seq2Fun algorithm was previously published, 

however developing a web-based platform to support it is still a significant amount of 

work. FASTQ files are typically between 1-3 GB each and engineering a stable system 

that can handle simultaneous upload, processing, and storage for multiple users requires 

balancing bandwidth consumption, memory usage, and storage considerations. My 

contributions to this software also involved designing the ortholog databases, evaluating 

their coverage and relevance, demonstrating consistency with traditional methods, 

adapting software for downstream analysis, and developing the database (EcoOmicsDB) 

for ortholog evidence lookup. This software (EcoOmicsAnalyst, ExpressAnalyst, and 

EcoOmicsDB) reduces barriers to extracting value from raw RNA-seq data from non-

model organisms, making transcriptomics data analysis accessible to research programs 

with no prior bioinformatics experience.  

 

• Demonstration of Seq2Fun for comparative transcriptomics. In chapter 3, I 

demonstrate how Seq2Fun makes comparing transcriptomics results across species 

extremely easy through a case study with three different salamander species. Seq2Fun 

still recovers the same functional results as obtained by a reference and two de novo 

transcriptomes, but since sequences from all three species can be mapped to the same ID 
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space, it removes the need for extensive ortholog mapping and allows the data to be 

integrated throughout the entire analysis. This opens up possibilities for much more 

extensive comparisons of transcriptomics data across more species.  

 

• First gene set library focused on toxicology for non-model organisms 

(EcoToxModules). Many custom gene sets have been developed for model organisms1 

however to my knowledge there are no open-source gene sets available for toxicology 

research in ecological species. While Ingenuity Pathway Analysis does have Tox Lists 

and Tox Functions2, these are only defined for a few model organisms. By focusing on 

more general biological processes that are familiar to many within the toxicology 

community, EcoToxModules make overall transcriptomics results understandable by 

people who have no prior experience with bioinformatics results. This is useful for 

communicating toxicogenomics results to diverse audiences. 

 

• Fastest transcriptomics dose-response method that follows the NTP recommended 

approach. FastBMD uses previously developed methods for curve fitting in R that have 

proven to be very fast and adapted them to work with the statistical models recommended 

by the US National Toxicology Program. In addition, I developed my own method for 

calculating asymmetric confidence intervals to derive the BMDl and BMDu that is 

significantly faster than unrestricted likelihood profiling. These speed improvements 

 
1 https://maayanlab.cloud/Enrichr/#libraries 
2 https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-
visualization/qiagen-ipa/features/tox-lists-tox-functions/ 
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enable hosting FastBMD online, which improves accessibility. 

 

• Most comprehensive software for toxicogenomics analysis. To my knowledge, 

EcoToxXplorer is the only software available that covers raw data QA/QC, processing 

and normalization, differential analysis, integration with tox-focused knowledgebases, 

and visual analytics. qPCR is an affordable technology that many research programs 

already have the instruments and expertise to collect. By providing a standardized 

processing pipeline and tools for interpretation, EcoToxXplorer contributes towards the 

effort of making toxicogenomics analysis accessible for all ecotoxicology research 

programs. 

 

• Overall, provides user-friendly access to standardized toxicogenomics analysis 

pipelines. Together, the software in this thesis provides web-based, programming-free 

access to standardized toxicogenomics pipelines for transcriptomics data for many 

different species. This includes raw data processing, differential expression analysis with 

tox-focused functional analysis, and transcriptomics dose-response analysis. The goal of 

relying on in vitro exposures and other new approach methods for next-generation 

toxicity testing requires that big molecular data be integrated into the activities of 

research programs and government agencies worldwide. Software that makes it easy for 

non-bioinformaticians to draw biological insights from molecular data will help establish 

toxicogenomics as routine technology, moving the community closer to the 

aforementioned goal.   
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CHAPTER 1. GENERAL INTRODUCTION 
 

1.1 KNOWLEDGE GAP 
 
Traditional methods for analyzing gene expression data have contributed to the generation of 

new biological and toxicological knowledge, but the results they produce are not easily 

integrated into regulatory decision-making processes (Figure 1-1) (Villeneuve and Garcia‐

Reyero 2011). One factor is that practical applications of toxicogenomics data requires 

integration of knowledge from three different disciplines: bioinformatics, toxicology, and 

regulatory decision-making (NASEM, 2017). Proper analysis requires advanced programming 

skills, statistical training, and knowledge of bioinformatics resources (Ankley et al., 2006; Fent 

and Sumpter, 2011), appropriate interpretation requires deep knowledge of toxicological 

mechanisms, and real-world application requires familiarity with and connections to regulatory 

processes. Developing the capacity to extract value from toxicogenomics data requires 

significant investments of time and money (Balbus and Environmental Defense, 2005; ECETOC 

2007). Thus, there is an urgent need for simplified statistical methods and user-friendly software 

that make toxicogenomics analysis, interpretation, and application more accessible to more 

people. In 2020, the US EPA identified increased investment in software and databases as one of 

four main objectives in their five-year blueprint for computational toxicology (Thomas et al., 

2019). While this call is for tools to support both human and ecological risk assessment, it is 

particularly important to develop solutions for ecologically relevant species, given the relative 

paucity of genomics resources compared to mammalian model organisms. 
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Figure 1-1: The knowledge gap addressed by this thesis is that traditional toxicogenomics 
results are complex, detailed, and not easily integrated with decision-making processes. The 
objective of this thesis is to develop statistical methods and software that make analysis and 
interpretation of toxicogenomics data simple and accessible, particularly for ecological species. 
 

1.2  OVERALL OBJECTIVE 
 
The overall objective of this thesis is to design new statistical methods and corresponding 

software for analyzing and visualizing toxicogenomics data to support decision-making in the 

context of environmental toxicology. Statistical methods refer to bioinformatics methods 

expressed as R functions and corresponding software refers to web-based interfaces that make 

the statistical methods developed in this thesis, as well as other popular R packages and 

command-line software, accessible to a wide audience through careful design of user-friendly 

interfaces. The focus on supporting decision-making means that the design of the new methods 

and software will take an adopter-centric view by utilizing the principles of design-thinking, 

aiming to make toxicogenomics workflows simple and compatible with existing regulatory 

processes. The goal of doing this work in the context of environmental toxicology means that this 

thesis will analyze data from and design software for ecologically relevant species wherever 

possible. In some cases, this thesis presents data from mammalian model organisms, however 

this was only done when a comparable dataset could not be found from an ecologically relevant 

species.  
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1.3 SPECIFIC AIMS 
 
Chapter 3: Develop web-based tools for quantifying, analyzing, and interpreting raw RNA-seq 

reads from any eukaryotic species, regardless of whether it has a reference transcriptome. 

• Build web-based tools for the following tasks: 

o EcoOmicsAnalyst for raw RNA-seq data quantification (Kallisto for species with 

a reference transcriptome, Seq2Fun for those without) 

o ExpressAnalyst for statistical analysis of RNA-seq counts tables 

o EcoOmicsDB for retrieving detailed information on the Seq2Fun ortholog groups 

• Update the Seq2Fun algorithm by improving the efficiency of the core algorithm and 

expanding the underlaying protein ortholog database 

• Demonstrate key workflows with two case studies 

 

Chapter 4: Develop custom gene sets for organizing and analyzing toxicogenomics data from 

ecologically relevant species 

• Define two types of gene sets: 

o Statistical EcoToxModules, using co-expression analysis of a large microarray 

dataset 

o Functional EcoToxModules, using known molecular pathways from the KEGG 

database that are organized by ecotoxicology experts 

• Evaluate the ability of both EcoToxModule sets to capture trends in differential 

expression analysis results 

• Demonstrate how EcoToxModules can be used to interpret toxicogenomics data through 

two case studies 
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Chapter 5: Develop a web-based software for transcriptomics dose-response analysis 

• Develop a set of R functions to perform transcriptomic dose-response analysis, following 

the US National Toxicology Program’s recommended methods 

• Develop FastBMD, a web-interface to make transcriptomic dose-response analysis 

accessible to more people 

• Evaluate FastBMD by performing transcriptomic dose-response analysis on 24 datasets 

using both FastBMD and BMDExpress, another software, and comparing the 

performance 

 

Chapter 6: Develop a web-based platform for analyzing EcoToxChip data in the context of 

environmental toxicology 

• Design a standardized pipeline for QA/QC, normalization, and differential expression 

analysis of EcoToxChip qPCR data 

• Curate toxicology-focused knowledgebases for interpretation of EcoToxChip results 

o Manually expand EcoToxModule annotations of EcoToxChip genes 

o Pull and curate Adverse Outcome Pathway annotations of EcoToxChip genes 

from the AOP wiki 

• Develop visualizations and an automatic analysis report to aid in communication of 

EcoToxChip results 
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CHAPTER 2. LITERATURE REVIEW 
 

2.1 LITERATURE REVIEW 
 
2.1.1 MOTIVATION FOR ALTERNATIVE TOXICITY TESTING METHODS 
 
Assessing the potential toxic properties of chemicals and released wastes is an essential part of 

ecological risk assessments (ERAs) that governments and businesses conduct worldwide (Embry 

et al. 2014; Pastoor et al. 2014). Toxicity must be assessed in a range of contexts, including 

setting standards for new and legacy chemicals, ensuring regulatory compliance of treated 

wastewater, and prioritizing and monitoring the remediation of contaminated sites. Exposure to 

chemicals at environmentally relevant levels has been linked to adverse outcomes of regulatory 

concern in ecological species (Cizmas et al., 2015; Guigueno and Fernie, 2017; WHO, 2012). 

Additionally, pollution has been estimated to be responsible for 16% of premature human deaths 

worldwide (Landrigan et al. 2018). Thus, assessing and responding to the risks posed by 

contaminant exposure is vital for protecting both human and ecological health.  

 

Traditional toxicity testing methods cannot meet the need to assess the enormous number of 

untested chemicals because they rely on exposing thousands of animals and measuring apical 

outcomes, which is expensive, time consuming, and of ethical concern (Andersen and Krewski 

2008; Burden et al., 2015). In traditional chemical risk assessment, animals are exposed to a pure 

chemical at varying concentrations according to an established test method and endpoints of 

interest are measured (Embry et al., 2014; Pastoor et al., 2014). Dose-response models are fit to 

the observations to determine the benchmark dose (BMD), which is used to establish an 

exposure level with an acceptable amount of risk. The BMD is extrapolated to protect other 

species, life stages, and vulnerable sub-populations using uncertainty or safety factors (Celander 
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et al. 2011; Forbes et al. 2001). In comparison to human health risk assessment, ERAs face the 

additional challenges of assessing risk to many species, for both pure chemicals and the complex 

mixtures of contaminants found in the environment.  

 

 
Figure 2-1: Timeline of selected key events from the last 30 years related to environmental risk 
assessment, alternative toxicity testing, and toxicogenomics data. Events are divided into two 
groups based on whether they were primarily driven by regulatory actions or 
‘omics/toxicogenomics research. 
Note – EPA: Environmental Protection Agency; NGS: Next generation sequencing; REACH: Registration, 
Evaluation, Authorisation, and Restriction of Chemicals; TSCA: Toxic Substances Control Act; NRC: National 
Research Council 
 

In 2007, the U.S. National Research Council (NRC) proposed a new toxicity testing paradigm 

that would shift to in vitro exposures and harness systems biology to assess toxicity from 

molecular outcomes, resulting in a large reduction of live animal exposures (Figure 2-1) 

(Krewski et al. 2007). This new paradigm is organized around the idea that any organism-level 

adverse outcome, also called an apical outcome, is downstream of some initial molecular or 

cellular-level perturbation (Figure 2-2a) (Villeneuve and Garcia‐Reyero 2011). Non-animal-
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based approaches to inform chemical hazard and risk assessment, also called new approach 

methodologies (NAMs), have gained a foothold in the 15 years since the seminal NRC report 

was published (ECHA, 2016).  

 

Increasing societal pressure to both eliminate whole-animal testing for new chemicals and to 

evaluate the immense number of data-poor legacy chemicals has resulted in legislation that 

supports NAMs, first in the European Union and followed by the US and Canada. Key pieces of 

legislation are the Registration, Evaluation, Authorisation, and Restriction of Chemicals 

(REACH) in the European Union (managed by the European Chemicals Agency (ECHA)), the 

Canadian Environmental Protection Act (CEPA) in Canada, and the Toxic Substances Control 

Act (TSCA) in the United States (van der Vegt et al., 2021). REACH, first issued in 2007, was 

amended in 2017 to require that all toxicity testing use alternative methods unless animal-based 

tests are the only option (ECHA, 2020). In the US, an amendment to TSCA in 2016 included a 

directive to reduce reliance on animal testing (US Congress, 2016), and a memorandum issued in 

2019 by the US EPA Director made this more explicit by committing to reduce funding for 

mammal studies by 30% by 2025 and to eliminate them by 2035, replacing them with NAMs 

(Wheeler, 2019). In 2021 in Canada, Bill C-28 was introduced to amend the preamble to CEPA 

to recognize the “importance of promoting the development and timely incorporation of 

scientifically justified alternative methods and strategies in the testing and assessment of 

substances” (Bill C-28, 2021). Thus, in addition to the general motivation to improve chemical 

management, researchers and government agencies are now under significant regulatory pressure 

to develop NAMs for toxicity testing.  
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Figure 2-2: a) Comparison of traditional and alternative toxicity testing methods. Traditional 
toxicity testing relies on exposing whole organisms to chemicals and then observing apical 
outcomes. Alternative methods aim to predict apical outcomes from measurements at the 
molecular level. b) Main objectives of whole transcriptome toxicogenomics data analysis. Gene 
expression is one of the molecular level effects that can be measured within the alternative 
toxicity testing framework – others include protein and metabolite levels. These methods can be 
applied to the whole transcriptome, or to a reduced set of genes that adequately cover the 
biological space of interest. 
Note – MOA: mode of action; DEA: differential expression analysis. 
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2.1.2  EXISTING ANALYTICAL METHODS FOR TOXICOGENOMICS DATA 
 
Molecular endpoints collected after in vitro exposures promise to play a key part in the 

elimination of live animal testing (Andersen and Krewski 2008). The long-term objective is to 

predict apical outcomes in whole organisms from molecular outcomes measured in vitro (Burden 

et al. 2015; Dix et al. 2007). Thus, current research efforts aim to link molecular-level effects to 

downstream tissue and organism-level effects through organizing frameworks such as adverse 

outcome pathways (AOPs) (Villeneuve et al. 2014). These efforts rely heavily on the use of 

‘omics technologies, which enable the comprehensive measurement of molecular profiles within 

a biological assay. ‘Omics data are broken down into more specific categories, for example 

transcriptomics for gene expression, metabolomics for metabolites, and proteomics for proteins. 

Toxicogenomics refers to the use of ‘omics technologies within the context of toxicology 

(Aardema and MacGregor 2003; Brockmeier et al. 2017).  

 

The majority of toxicogenomics research has been conducted with transcriptomics data, partly 

because of early promises that gene expression profiling would revolutionize toxicity testing 

(Fields and Zacherewski, 2001). Transcriptomics data are collected using technologies such as 

microarrays and RNA sequencing that measure the expression of tens of thousands of genes in a 

single experiment. Most genes are not included in known toxicity pathways, for example there 

were only 173 genes in the AOP wiki as of 2018 (Wang et al., 2018; Davis et al., 2020). Thus, 

toxicogenomics research includes both efforts to expand resources such as the AOP wiki with 

focused mechanistic studies, and to develop statistical methods that link gene expression to 

apical outcomes or specific chemical exposures without focusing on mechanistic explanations 
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(Alexander-Dann et al. 2018). Existing statistical methods can be broadly sorted into three 

categories based their outcomes (Figure 2-2b): 

 

1 - Increased toxicity understanding: Traditional bioinformatics methods can be applied to 

toxicogenomics data to investigate the effects of a toxic exposure. These methods use differential 

expression analysis (DEA) to identify genes perturbed by the experimental conditions, followed 

by functional analysis to identify gene sets that are overrepresented in the list of differentially 

expressed genes (DEGs). The resulting lists of DEGs and enriched pathways are difficult to 

compare quantitatively across exposures, requiring qualitative interpretation by expert 

toxicologists to increase understanding of toxicity mechanisms (Ankley et al. 2016; Cote et al. 

2016).  

 

2 - Toxicity MOA prediction: A recent review by Alexander-Dann et al. summarized existing 

methods for predicting compound-specific MOAs from gene expression data (Alexander-Dann et 

al. 2018). Briefly, the reviewed methods apply network and gene signature-based machine 

learning techniques to transcriptomics data to classify compounds based on their MOA 

(Alexander-Dann et al. 2018). This requires very large databases that contain gene expression 

data collected after exposure to hundreds or thousands of different compounds and 

corresponding phenotypic responses, such as DrugMatrix (Lea et al. 2016) and TG-GATEs 

(Igarashi et al. 2014). These databases are typically derived from mammalian organisms, focused 

on pharmaceutical exposures, and generated by large consortia.  
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3 - Toxicity assessment: Methods for applying dose-response modelling to gene expression data 

to quantitatively assess toxicity have been under development since 2003 (Table 2-1). These 

methods are of great interest because they can be used to compute transcriptomic versions of 

dose-response statistics such as BMDs and PODs. These statistics are familiar to regulators and 

already integrated into the risk assessment process. The most popular method for transcriptomic 

dose-response modelling in Table 2-2 is implemented in BMDExpress (Yang et al. 2007), and is 

the officially recommended method by the EPA, Health Canada, and Environment and Climate 

Change Canada (Farmahin et al. 2017). One advantage of this method is that it summarizes 

BMDs at the pathway level, which makes the results easier to interpret (Dean et al. 2017) and it 

has been shown to improve the prediction of apical outcomes (Farmahin et al. 2017; Thomas et 

al. 2012). The disadvantage is that by only analyzing genes in existing pathways, the coverage of 

biological space is limited, especially for genomes from ecological species that typically have 

sparse or no functional annotation.  

 

Table 2-1: Methods for transcriptomic dose-response analysis. These papers were found by 
searching “transcriptomic*” AND “dose-response” in Web of Science, yielding 94 results. From 
this list, the papers with a primary focus of describing a new method or software for 
transcriptomic dose-response modeling were read and summarized.  
Note – EC: effect concentration; NOTEL: no observable transcriptional effect level; 3P/4P: 3 or 
4 parameters; POD: point of departure; GSEA: gene set enrichment analysis; BMDts: 
transcriptional benchmark dose. 
 
Study description Software Reference 
Developed software (BMDExpress) for transcriptomic dose-
response analysis by adapting methods in the EPA BMDS software, 
a tool for dose-response analysis of apical endpoints. Considers 
linear, 2nd degree and 3rd degree polynomial, and power models for 
curve fitting.  

Java 
application 

(Yang et al., 
2007; 
Phillips et 
al., 2019) 

Developed a method to calculate an EC based on best fit, 
considering linear, Hill, exponential, Gauss-probit, and log-Gauss-
probit models. Range of models chosen to cover both monotonic 
and biphasic dose-response curves. Adapted from Smetanová et al.  

R package 
and web-
based tool  

(Larras et 
al., 2018) 
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Developed a method to calculate the NOTEL based on a novel 
algorithm that uses a one-class classifier. The model is trained on 
controls in the TG-GATEs database and uses anomaly detection to 
determine whether an exposure of interest has significant 
transcriptional activity.  

R script  (Quercioli 
et al., 2018) 

Measured the S1500+ reduced transcriptome using targeted RNA 
sequencing for multiple doses of four chemicals. Used best fit of 
constant, 3P-Hill, 4P-Hill, and Gain-Loss models to calculate the 
POD.  

R script (House et 
al., 2017) 

Integrates previous R packages for clustering, differential 
expression analysis, and curve fitting into one R package. Restricted 
to monotonic curves and does not include any pathway analysis.  

R package (Otava et 
al., 2017) 

GSEA was first performed to identify key pathways perturbed by a 
chemical exposure. BMDts were then calculated using the 
significantly enriched gene sets.  

R script (used 
BMDExpress
) 

(Dean et al., 
2017) 

Tested eleven different methods of identifying which genes should 
be used to calculate the BMDt for a specific chemical. Methods 
were evaluated based on concordance between resulting BMDts and 
BMDs from apical outcomes.  

R script (used 
BMDExpress
) 

(Farmahin 
et al., 2017) 

Describes BMDExpress Data Viewer, a web-based tool for 
enhanced visualization of BMDExpress result files.  

Web-based 
tool 

(Kuo et al., 
2016) 

ECs computed based on gene expression by choosing best fit from 
linear, linear-log, exponential, Michaelis-Menten, Hill, Weibull I, 
Weibull II, Gaussian-log, and Gaussian models.  

R script (Smetanová 
et al., 2015) 

Developed the ToxResponse Modeler to calculate transcriptomic 
POD from best fit of exponential, linear, Gaussian, quadratic, and 
sigmoidal models. Uses particle swarm optimization and iterative 
curve fitting to determine the best fit. 

Java 
application 

(Burgoon 
and 
Zacharewsk
i et al., 
2008) 

Described the dose-response analysis methodology implemented in 
BMDExpress. Demonstrated that summarizing BMDts at the 
pathway level provides mechanistic insight into dose-response 
statistics computed using apical outcomes. 

R script (Thomas et 
al., 2007) 

Genes are selected that increase monotonically according to either 
dose or time, based on order-restricted inference methodology. 

R script (Peddada et 
al., 2003) 

 

 

Overall, methods for the quantitative analysis of whole transcriptome toxicogenomics data are 

focused on summarizing the complex data as a smaller number of endpoints so that it is easier to 

compare gene expression profiles from different exposures. In doing so, these statistical methods 

attempt to achieve two main objectives. The first is to analyze and summarize any significant 
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changes in gene expression following an exposure, which requires adequate coverage of the 

entire transcriptome. The second is to produce results that have an intuitive functional 

interpretation, so that the changes in gene expression can be related to mechanisms of toxicity or 

apical outcomes. Since only part of the genome is functionally annotated, there is an inherent 

trade-off between these two objectives. Analytical methods that use more of the transcriptome 

are more difficult to interpret because they include a higher number of genes with unknown 

function, while methods that focus on known toxicity pathways have limited transcriptome 

coverage. 

 
2.1.3 TOXICOGENOMICS FOR ECOLOGICAL RISK ASSESSMENT 
 
Compared to chemical risk assessments that are done to protect human health, ecological risk 

assessments (ERAs) are more complex because they aim protect the health of ecosystems, which 

includes the hundreds to thousands of diverse taxa that live in them. Historically, this has been 

done by performing chemical exposures on a handful of model organisms that represent different 

taxonomic groups (Hope, 2006). Mammalian model organisms, for example mice and rats, are 

supplemented with non-mammalian species such as fathead minnow, zebrafish, chicken, 

Japanese quail, African clawed frog, roundworms, house flies, and green algae (LaLone et al., 

2021). These model organisms have been frequently used because of their compatibility with 

laboratory research, however in many cases they may not be representative of the specific 

ecosystems that ERAs aim to protect. For example, zebrafish, a tropical species, may not be 

representative of fish species found within the sub-arctic and arctic ecosystems of northern 

Canada. The need to extrapolate across species adds additional complexities to the methods 

described in sections 2.1.1 and 2.1.2. However, given the daunting magnitude of data required, it 

is even more important to harness NAMs that decrease cost, time, and live animal use for ERAs. 
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Toxicogenomics data do promise advantages that are specific to ERAs (Van Aggelen et al., 

2010; Basu et al., 2019). One example is using ‘omics data to improve cross-species 

extrapolation (Celander et al., 2010). Genetic backgrounds and activities of key toxicity 

pathways can be compared across species to develop a more nuanced understanding of the 

“taxonomic domain of applicability” of model organisms (LaLone, 2021). This will help to 

design better testing approaches by highlighting limitations of existing model organisms for 

specific ecosystems. Thus, in addition to the reasons outlined in section 2.1.1 and 2.1.2, there is 

great interest in developing toxicogenomics methods and resources for ecological species. 

 

Developing toxicogenomics methods for ecological species is more difficult than for popular 

mammalian organisms due to the lack of genomes, functional annotations, and large, high-

quality datasets (Primmer et al. 2013; Pruitt et al. 2007). Table 2-2 summarizes genome 

assembly and functional annotation resources for five vertebrate species frequently used as 

model organisms in ‘omics studies and six ecological species that are included in the 

EcoToxChip project, which is one of the largest toxicogenomics resources emerging from the 

ecological side (Basu et al. 2019). The genome annotation reports for non-mammalian species 

have undergone fewer releases (if they exist at all) and the actual genes have many fewer 

functional annotations (GO and KEGG). Additionally, there are no databases of comparable size 

and quality to TG-GATEs, DrugMatrix, and LINCS Connectivity Map for non-mammalian 

and/or ecological vertebrate species (Wang et al. 2016). Thus, existing machine learning 

methods that require large datasets for model training and testing, or that rely heavily on known 

toxicity pathways and gene sets, currently have limited relevance for ERAs. 
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Table 2-2: Summary of genome annotation resources for selected vertebrate species. In NCBI, 
there are genome assemblies (genomic DNA – accession ID starts with GCA) and genome 
annotations (location of features on the genome – accession ID starts with GCF). For species 
with no annotation report, the genome assembly ID is reported. 
 

Species NCBI genome 
accession 

# protein 
coding genes 

# GO 
terms1 

# KEGG 
pathways2 

Homo sapiens  
(human) 

GCF_000001405 
(release 38) 20 203 517 279 330 

Mus musculus 
(mouse) 

GCF_000001635 
(release 24) 22 493 404 888 326 

Rattus norvegicus 
(rat) 

GCF_000001895 
(release 5) 23 347 441 304 326 

Danio rerio 
(zebrafish) 

GCF_000002035 
(release 6) 26 522 224 788 167 

Gallus gallus 
(chicken) 

GCF_000002315 
(release 5) 17 477 139 687 168 

Xenopus laevis 
(African clawed frog) 

GCF_001663975 
(release 1) 31 434 11 137 167 

Oncorhynchus mykiss 
(rainbow trout) 

GCF_002163495 
(release 1) 42 884 2636 - 

Coturnix japonica 
(Japanese quail) 

GCF_001577835 
(release 2) 16 057 458 168 

Pimephales promelas 
(fathead minnow) 

GCA_000700825 
(release 1) 

No NCBI 
annotation 
report 

20 - 

Phalacrocorax auritus 
(double-crested 
cormorant) 

GCA_002173455 
(release 1) 

No NCBI 
annotation 
report 

- - 

Lithobates pipiens 
(leopard frog) 

Genome never 
sequenced 

No NCBI 
annotation 
report 

- - 

1 - http://amigo.geneontology.org/amigo/search/annotation  
2 - https://www.genome.jp/kegg/pathway.html  
 
 
When high-quality reference genomes do not exist, researchers must either A) align their raw 

reads to a reference genome from a different species, B) assemble their own genome, or C) 

assemble a de novo transcriptome. Option A is typically not preferred unless there is an 

extremely closely related species that has a reference genome. Option B is an immense amount 
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of work, for example the ongoing effort by the US EPA to produce a high-quality reference 

genome for fathead minnow has taken a team of researchers more than 5 years to complete 

(Burns et al., 2015; Martinson et al., 2021). Thus, most researchers in the environmental life 

sciences currently use option C to analyze sequencing data for species that do not have a 

reference genome. De novo transcriptome assembly involves piecing together putative transcript 

sequences directly from RNA-seq data itself, and then aligning all reads to the assembled 

transcripts to quantify their expression across samples. This process requires extensive 

computational resources, multiple command-line software, advanced programming skills, and 

days to weeks of runtime (Martin et al., 2011; Volshall et al., 2018). The results are difficult to 

analyze – de novo transcriptomes often contain several hundred thousand transcripts (compared 

to 15-40k for a high-quality genome), the majority of which remain uncharacterized even after 

functional annotation with software like Blast2GO (Conesa and Gotz, 2008). 

 

Thus, the lack of high-quality genome resources, pathway libraries, and accessible software 

solutions are immediate barriers to the widespread collection, processing, and interpretation of 

toxicogenomics data for ecologically relevant species.  

 
2.1.4 OUTLOOK FOR TOXICOGENOMICS DATA USE IN CHEMICAL RISK ASSESSMENT 
 
Researchers have been investigating and promoting toxicogenomics data since at least 1999 

(Nuwaysir et al., 1999), and the field remains an area of active research. However, how much of 

this effort has been translated into actual use of toxicogenomics data by regulatory agencies in 

decision-making processes? In 2018, Health Canada published a report that evaluated their use of 

toxicogenomics data (Cheung et al., 2018). They found that while some regulatory bureaus used 

toxicogenomics data within a weight-of-evidence approach to support MOA characterization, 
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toxicogenomics are not currently well-established for decision-making. This is consistent with 

other findings that while many advances have been made in toxicogenomics, thus far, practical 

applications have not lived up to early projections (Cote et al., 2016; Leung, 2017). 

 
In a recent study, Pain et al. analyzed 56 publications and reports on the adoption of 

toxicogenomics for chemical risk assessment to identify drivers and obstacles related to this goal 

(Pain et al., 2020). They found that toxicogenomics development is motivated by the drivers of 

superior scientific understanding, new applications, and reduced cost and increased efficiency. 

On the other hand, practical applications have been held back by the obstacles of insufficient 

validation, complexity of interpretation, and lack of standardization. Through further analysis, 

they derived the key insight that proponents of toxicogenomics data tend to have an “innovation-

centric” perspective. Research often focuses on novelty (in both ‘omics types and statistical 

methods) while largely ignoring the very practical needs of regulators. Pain et al. concludes with 

a call for people in the field of toxicogenomics to take on an “adopter-centric” perspective by 

focusing on the consistent calls by regulators for simple applications of toxicogenomics data that 

are consistent with existing decision-making processes (Pain et al., 2020). 

 

One tool that could help make toxicogenomics research more ‘adopter-centric’ is design-

thinking. Design thinking is a framework for developing innovative solutions for complex and 

open-ended problems that has gained popularity in engineering, business and management, 

information technology, and education circles (Dorst, 2011; Jensen and Steinert, 2016). At its 

core, design-thinking focuses the design process on the people who have the problem that is 

trying to be solved. While there are many slightly different versions of design-thinking 

(Tschimmel, 2012), most contain these five main phases:  
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1. Empathize: understand users through activities such as interviews, shadowing, literature 

reviews, and the construction of user journeys.  

2. Define: synthesize all observations from the empathize phase into the core problem that 

needs to be solved.  

3. Ideate: generate potential solutions to the problem definition from the define phase. The 

goal here is to brainstorm many solutions, hopefully including innovative ideas. 

4. Prototype: select the best few proposed solutions from the ideate phase and build a rapid 

prototype.  

5. Test: evaluate solutions from the ideate phase by testing out prototypes with real users.  

 

Another key characteristic of design-thinking is that it should be highly iterative (Tschimmel, 

2012). After gaining insight into the strengths and weaknesses of solutions in the test phase, 

problem solvers may improve the prototype and then re-test, gradually improving the solution 

over time. They may go back to the ideate phase if the prototyped solutions were insufficient, or 

even all the way back to the empathize and define phases if testing revealed that the problem was 

not well-understood. The adoption of toxicogenomics requires bringing together diverse 

stakeholders, complicated technologies, and disparate fields of research (NASEM, 2017).  

Design-thinking, with its focus on user perspectives and iteration, could be well-suited for 

organizing the innovation of new solutions in this space. The need for involving actual end-users 

and other stakeholders during NAMs development has been recognized by initiatives such as the 

Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) 

working groups, as laid out in their strategic roadmap for evaluating NAMs (ICCVAM, 2018). 
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CONNECTING PARAGRAPH 
 
Chapters 1 and 2 outlined barriers to using toxicogenomics data for decision-making in 

environmental risk assessments (ERAs). One of these is the lack of genomics resources for 

ecological species (section 2.1.3), and the inaccessibility of many bioinformatics workflows to 

people who do not have advanced programming skills and statistical training. 

 

The lack of genomics resources mainly relates to a lack of annotated reference genomes. Chapter 

3 presents a computing ecosystem for comprehensive analysis of raw RNA-seq data from any 

species regardless of whether that species has a reference genome. It is comprised of three tools: 

EcoOmicsAnalyst for raw data processing, ExpressAnalyst for statistical and functional analysis, 

and EcoOmicsDB for exploration of protein ortholog evidence. The core of the ecosystem is 

EcoOmicsAnalyst, which has workflows for both organisms with reference transcriptomes 

(Kallisto) and for those without (Seq2Fun). In addition to a robust computing environment with a 

web interface, chapter 3 presents version 2.0 of the Seq2Fun algorithm. Compared to version 1.0 

(Liu et al., 2021), version 2.0 has improved reads mapping efficiency, an expanded protein 

ortholog database, and expanded functional annotation of the orthologs. Together, the three tools 

allow users to go from raw RNA-seq data from any species to functional insights in less than 24 

hours, all on a standard laptop computer and without writing a single line of code. This greatly 

increases the accessibility and value of toxicogenomics data from ecologically relevant species, 

especially for researchers with limited prior experience with next-generation sequencing 

technologies. 
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This chapter is being prepared as manuscript to be submitted to the journal Nature Methods (aim 

for end of March 2022). As such, formatting requirements for this journal require the Results and 

Discussion section to be presented before the Methods section. There are two co-first authors, the 

candidate and Dr. Peng Liu, formerly a postdoctoral fellow at McGill University and now a 

bioinformatics biologist at Environment and Climate Change Canada in Ottawa, Canada. The 

manuscript is additionally co-authored by Orcun Hacariz, Elena Legrand, Guangyan Zhou, 

Benjamin de Jourdan, Jessica Head, Niladri Basu, and Jianguo Xia. Supplemental information is 

provided in the thesis appendix. 
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3.1 ABSTRACT 
 
RNA-sequencing data is increasingly being collected from non-model organisms by researchers 

in the environmental life sciences. However, many of these researchers have limited 

bioinformatics experience and therefore do not have the computing resources, programming 

skills, or domain knowledge to extract value from these data. Here, we present an entirely web-

based computing ecosystem for processing, analyzing, and interpreting RNA-seq data from any 

eukaryotic species. This is achieved by supporting both Kallisto-based pipelines for species with 

a reference transcriptome, and Seq2Fun-based pipelines for species without one. The ecosystem 

includes EcoOmicsAnalyst (www.ecoomicsanalyst.ca) for raw data processing, ExpressAnalyst 

(www.expressanalyst.ca) for statistical analysis, and EcoOmicsDB (www.ecoomicsdb.ca) for 

interpretation of Seq2Fun ortholog results. In this paper, we describe major improvements to the 

Seq2Fun algorithm and present two case studies to demonstrate 1) how Seq2Fun quantification 
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compares to Kallisto quantification with reference genomes, and 2) how the presented tools can 

be leveraged to produce high-quality functional insights for non-model organisms.  

 

3.2 INTRODUCTION 
 
As costs of RNA-sequencing have plummeted over the last decade, many researchers in the 

environmental life sciences have added a transcriptomics component to their research program 

(Wachi et al., 2017). Many are not computational scientists, thus lack of computing 

infrastructure, bioinformatics expertise, and programming skills present significant barriers to 

extracting value from the raw RNA-seq data (Ekblom and Galindo, 2011). Environmental life 

sciences researchers often study non-model organisms such as endangered species, under-studied 

taxonomic groups, or representatives from specific ecosystems. This makes RNA-seq data 

analysis even more challenging, since many of these species do not have high-quality, 

functionally annotated reference genomes (Sundaram et al., 2017; Ekblom and Galindo, 2011). 

Assembling and annotating genomes is an immense amount of work that is beyond the scope of 

most research labs.  For example, the ongoing effort by the US EPA to produce a high-quality 

reference genome for fathead minnow has taken a large team of researchers more than 5 years to 

complete (Burns et al., 2015; Martinson et al., 2021). 

 

Instead, many researchers use de novo transcriptome assembly to analyze RNA-seq data from 

non-model organisms (Wachi et al., 2017; Ekblom and Galindo, 2011). This process involves 

piecing together putative transcript sequences directly from the RNA-seq data itself, annotating 

these transcripts using BLAST-based algorithms, and then aligning all reads to the assembled 
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transcripts to quantify their relative expression across samples. Analyses that include de novo 

transcriptome assembly require extensive computational resources, multiple command-line 

software, advanced programming skills, and days to weeks of runtime (Martin et al., 2011; 

Volshall et al., 2018). Finally, the results that they produce are difficult to analyze because de 

novo-assembled transcriptomes often contain several hundred thousand transcripts (compared to 

15-40k for a well-annotated reference genome), the majority of which remain uncharacterized 

even after functional annotation with software like Trinotate and Blast2GO (Conesa and Gotz, 

2008). Moreover, de novo assembled transcripts are prone to false positives, which poses another 

layer of difficulties for data analysis and interpretation (Freedman et al., 2020). 

 

For these reasons, our group previously developed the Seq2Fun algorithm for aligning raw RNA-

seq reads from any species to a large collection of protein ortholog groups derived from the 

genomes of hundreds of species (www.seq2fun.ca). Seq2Fun allows researchers to avoid the 

difficult steps of de novo assembly and transcript annotation, while still producing counts tables 

that can be analyzed using conventional transcriptomics pipelines. We previously showed that 

Seq2Fun outperforms de novo transcriptomes in terms of accuracy, precision, computing time, 

RAM usage, and functional annotation of the results in analyses with zebrafish, mouse, chicken, 

and roundworm RNA-seq data (Liu et al., 2021). However, Seq2Fun was originally published 

only as command line software, which may not be accessible to researchers who are not trained 

as computational scientists, and there was limited support for downstream analysis of the results. 

In addition, the initial protein ortholog databases were based on the KEGG Orthology database 

(Kanehisa et al., 2016), which limited transcriptomic coverage, resolution, and functional 

annotation. 
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The objective of this study was to develop an entirely web-based computing ecosystem for RNA-

seq data from any eukaryotic non-model organisms, regardless of whether they have a reference 

genome. There are three main tools: EcoOmicsAnalyst for raw data processing, ExpressAnalyst 

for comprehensive downstream statistical analysis and visual analytics, and EcoOmicsDB for 

accessing ortholog evidence and information. With this ecosystem, researchers can extract 

functional insight from raw FASTQ files from any species without writing a single line of code, 

all on a regular laptop computer, and generally in less than 48 hours of runtime, the majority of 

which is unsupervised upload and processing time. In addition, we also present Seq2Fun version 

2.0, which includes major improvements to the algorithm’s protein ortholog databases and 

memory usage. 

 

3.3 RESULTS 
 
EcoOmicsAnalyst (www.ecoomicsanalyst.ca) is the main tool in the computing ecosystem. It is 

supplemented by ExpressAnalyst (www.expressanalyst.ca) and EcoOmicsDB 

(www.ecoomicsdb.ca) for downstream analysis of the results (Figure 3-1). EcoOmicsAnalyst 

contains two main workflows, one based on Kallisto (organisms with a reference transcriptome) 

(Bray et al., 2016) and one based on Seq2Fun (organisms without a reference transcriptome) 

(Liu et al., 2021). ExpressAnalyst, a popular tool for comprehensive transcriptomics profiling 

and network visual analytics that was previously named NetworkAnalyst (Zhou et al., 2019), 

includes ID annotation and pathway library files for counts tables generated by 

EcoOmicsAnalyst. EcoOmicsDB contains detailed information for each Seq2Fun ortholog for 

targeted analysis of key features that emerge from statistical analysis in ExpressAnalyst. 
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Figure 3-1: Overview of the computational ecosystem and steps for a typical workflow. 

 

Users can upload up to 30GB of compressed FASTQ files to their EOA account, and raw files 

are kept on the server for 30 days (alignment typically takes 6-9 hours). Processing results 

(abundance tables, annotation files, etc.) are accessible after raw files have been deleted. 

 

3.3.1 EXPANDED ORTHOLOG DATABASES IN SEQ2FUN VERSION 2.0 
 
Seq2Fun version 1.0 mapped reads to the KEGG ortholog (KO) database (Kanehisa et al., 2016). 

While the quantification was highly accurate and functional analysis was consistent with analysis 

results that used reference transcriptomes (Liu et al., 2021), the KO-based system has three main 

limitations. The first is limited and biased coverage of transcriptomes in the ortholog database. 

Not all protein-coding genes are annotated with KOs, for example the human genome has 19,648 

protein-coding genes and only 14,964 (76.16%) are annotated with KOs (Kanehisa et al., 2017). 

Coverage is even lower for non-mammalian species, for example the zebrafish genome has 

26,584 protein-coding genes and only 16,322 (61.40%) are annotated with KOs. This lower 



 38 

coverage is not evenly distributed across the transcriptome. There are fewer KEGG pathways 

defined for non-mammalian species and some whole biological processes specific to non-

mammalian species are missing, for example egg yolk formation in oviparous species. 

Vitellogenin, a frequently measured biomarker that is a precursor to egg yolk (Hansen et al., 

1998), is not found in the KO system.  The second limitation is transcript resolution. KO groups 

are at a higher level than individual genes, often grouping many genes from one species together. 

While this is inevitable to some extent during ortholog definition, increased resolution would be 

an asset. Finally, the third limitation is lack of functional annotation with gene sets beyond 

KEGG pathways. 

 

For Seq2Fun version 2.0, a custom ortholog database was created by using the OrthoFinders 

algorithm to group 12,828,537 protein-coding sequences from 687 species (Emms and Kelly, 

2019), which took more than ten days on a server with 54-threads and 504GB RAM. The new 

database addresses the limitations described above: it includes 100% of protein-coding genes 

from each constituent genome, the sequence-similarity parameters for ortholog definition were 

chosen to produce more ortholog groups at a higher resolution than the KO system (Figure S1), 

and species-specific functional annotations were compiled to produce both KEGG and GO term 

gene sets for Seq2Fun ortholog IDs (Kanehisa et al., 2017; Gene Ontology Consortium, 2019). 

Of the ~13 million protein-coding sequences, 5,871,017 were annotated with KEGG pathways 

and 1,567,627 were annotated with GO terms. The 687 species were organized into twelve 

phylogenetic groups (compared to six groups in version 1.0), based on the NCBI taxonomy 

database and which were used to define smaller sub-group ortholog databases (Table 3-1) 

(Schoch et al., 2020). 
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Table 3-1: Expanded ortholog databases for Seq2Fun version 2.0.  
 

Group Species Proteins Ortholog Ortholog (v1) 

Eukaryotes 691 12 828 537 576 442 NA 

Vertebrates 212 4 573 967 74 321 30 392 

Mammals 94 1 909 225 51 570 19 323 

Birds 31 482 205 24 076 15 537 

Reptiles 20 382 462 24 823 15 884 

Amphibians 3 75 261 22 211 15 199 

Fishes 61 1 655 763 49 668 21 427 

Arthropods 119 1 709 887 114 560 NA 

Nematodes 6 103 321 38 733 NA 

Invertebrate 158 2 502 377 198 800 NA 

Plants 127 3 925 179 147 787 NA 

Fungi 138 1 278 312 142 573 NA 

Protists 52 655 135 138 844 NA 
 

The distribution of the number of species represented by each ortholog group in the eukaryotes 

database is shown in Figure 3-2A. The majority of ortholog groups contain transcripts from only 

one species (416 413 out of 576 442, 72%). Some databases contain more orthologs relative to 

the number of species represented in them than others (Figure 3-2B). For example, there are 

more vertebrate species (n = 212) than invertebrate (n = 158), however there are more than twice 

as many distinct orthologs for invertebrate (n = 198, 800) than for vertebrate (n = 74,321). This 

is likely due to the variable taxonomic diversity represented in the different databases. 
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Figure 3-2: A) Histogram of the number of genes mapping to each ortholog in the “eukaryotes” 
database. B) Scatterplot of the number of species and the number of orthologs in a database. 
 

3.3.2 ECOOMICSDB 
 
EcoOmicsDB (www.ecoomicsdb.ca) contains the Entrez IDs, symbols, descriptions, functional 

annotations, and Seq2Fun IDs of all ~13 million genes in the ortholog database. The database 

can be queried by Seq2Fun ID, which retrieves details and generates graphics on all genes and 

species in that ortholog group. Grouping over 13 million sequences from 687 species and 

assigning each group a single symbol, description, and functional annotation is a complex task. 

In some cases, two distinct ortholog groups can be given the same symbol, for example when a 

gene has mutated between (ortholog) or within (paralog) species, but the symbol has remained 

the same. Another problematic case is when transcripts with different symbols and descriptions 

are included in the same ortholog group. This happens occasionally because each reference 

genome has its own unique history of development, and over time, different conventions have 

been accepted for naming and describing the same protein in different species. EcoOmicsDB 

does not resolve these conflicts but increases the transparency of Seq2Fun ortholog groups so 

that users can investigate the evidence behind specific cases of interest. For convenience, the 
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table of differential expression results in ExpressAnalyst contain links to the EcoOmicsDB 

profiles for all Seq2Fun ortholog IDs. Further, graphics on the coverage of different species sub-

groups provides valuable insights into the taxonomic domain of Seq2Fun ortholog groups. 

 

3.3.3 CASE STUDIES 
 
Several datasets were used to develop, build, test, and update EcoOmicsAnalyst, ExpressAnalyst, 

and EcoOmicsDB. Here, we showcase three of them in two case studies to demonstrate how 

these tools simplify and improve transcriptomics data analysis for non-model organisms. Case 

study #1 uses data from two species that have reference genomes to enable comparisons between 

Kallisto and Seq2Fun. Case study #2 analyzes data from multiple species that do not have a 

reference genome to demonstrate strengths of Seq2Fun compared to de novo transcriptomes. 

 

Case Study 1: Kallisto vs. Seq2Fun 

In case study #1, RNA-seq profiles from two species with reference genomes (zebrafish and 

American lobster) were processed with both Seq2Fun and Kallisto using EcoOmicsAnalyst. The 

resulting counts tables were uploaded to ExpressAnalyst to perform DEA and GSA with KEGG 

pathways and Gene Ontology terms. Note that American lobster does not have any publicly 

available pathway libraries for the current version of the reference genome, so only DEA was 

done for the American lobster Kallisto pipeline. 

 

Reference species #1: Zebrafish  

The zebrafish RNA-seq data were collected as part of a previously published study that 

investigated the toxicity of perfluorooctane sulfonate (PFOS) compared to sodium p-perfluorous 
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nonenoxybenzene sulfonate (OBS), a popular PFOS alternative (Huang et al., 2021). Three 

groups of zebrafish embryos were exposed to 20 mg/L PFOS, 20 mg/L OBS, and 30 mg/L OBS, 

in addition to a fourth unexposed control group, starting at six hours post fertilization. RNA-seq 

profiles were measured in whole embryos at four days post fertilization. Raw FASTQ files were 

downloaded from NCBI’s Gene Expression Omnibus (GEO) at accession GSE164074. The 

original study found that while immune-related genes and pathways were impacted by both OBS 

and PFOS exposure, a higher number were dysregulated to a higher degree by PFOS. This 

supports their overall conclusion that while PFOS and OBS have a similar mechanism, PFOS is 

more toxic, likely because it is more bioaccumulative (Tu et al., 2019). 

 

 
Figure 3-3: PCA of normalized zebrafish counts tables for a) Kallisto and b) Seq2Fun. This plot 
was generated by ExpressAnalyst.  
 

Visual inspection of PCA plots of the normalized counts (Figure 3-3) shows that both Seq2Fun 

and Kallisto captured the same variability structure among the samples, even though Kallisto 

mapped a higher percentage of reads (78% vs. 53%) to a higher number of features (52 518 vs. 

17 186) (Table 2). The higher number of reads is expected since Kallisto is quantifying multiple 

transcript isoforms for each coding transcript, as well as non-coding transcripts, while Seq2Fun 

is quantifying orthologs that do not distinguish isoforms and only include protein-coding 
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sequences. The number of DEGs for each exposed vs. control group has the same pattern 

between Kallisto and Seq2Fun (PFOS > OBS30 > OBS20), with a slightly higher number in 

each contrast for Kallisto (Table 3-2). 

 

Table 3-2: Results from zebrafish DEA and GSA 
  

Kallisto Seq2Fun 

# Features quantified 41 345 17 186 

Reads mapping 77.49% 53.12% 

Gene mapping 73.57% 35.12% 
 

OBS20 OBS30 PFOS OBS20 OBS30 PFOS 

DEGs 111 395 571 97 320 503 

KEGG 6 1 1 1 10 23 

GO BP 3 4 5 0 5 3 

GO MF 8 9 5 0 8 3 

GO CC 1 2 1 2 2 2 

 
 

Directly comparing the DEGs across Kallisto and Seq2Fun is challenging because of a lack of 

mapping between zebrafish transcripts and ortholog groups, however a cursory examination of 

the results shows that the top DEGs are very similar across the two software. For example, in the 

PFOS vs. CTRL results, the symbols “mmp9” (Entrez = 406397; Seq2Fun = s2f_6058) and 

“ahsg2” (Entrez = 567406; Seq2Fun = s2f_12793) are in the top five DEGs for each software, 

and the quantified log2FC values are nearly the same (mmp9 = -3.81, -3.80 and ahsg2 = 6.84, 

7.16 for Kallisto and Seq2Fun respectively). The number of significant pathways is more 

variable between the Kallisto and Seq2Fun results, however the biological themes of the top 

enriched pathways are quite similar for given contrasts. For example, for both software the PFOS 
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vs. CTRL pathways are largely related to cellular signaling and the OBS30 vs. CTRL pathways 

are mostly related to lipid metabolism, lipid transport, and steroid biosynthesis (Tables S1 and 

S2). 

 

Differences in the specific pathways flagged as enriched across the two software are expected 

because the Seq2Fun ortholog groups are more densely annotated than most transcriptomes. 

Overrepresentation analysis is very dependent on the total number of measured genes and on the 

number of genes in individual pathways. Thus, even if the lists of DEGs are very similar across 

two analyses, the specific pathways that get flagged as enriched can vary if there are substantial 

differences in annotation densities, as in the case for the Kallisto and Seq2Fun analyses. For 

example, in the analysis for case study #1, there were 41 345 genes quantified by Kallisto that 

were annotated by KEGG pathways in 13 212 cases, whereas for Seq2Fun, there were 17 186 

quantified genes annotated by KEGG pathways in 32 922 cases. Thus, the ratio of KEGG 

annotations per gene is 0.32 for the Kallisto results and 1.92 for the Seq2Fun results. This 

explains many of the differences in the specific pathways that were flagged as enriched between 

the two analysis pipelines. 

 

Reference species #2: Lobster  

The American lobster RNA-seq profiles were collected as part of a study that investigated the 

biological impacts of exposure to heavy crude oil. One group was exposed to a water 

accommodated fraction (WAF) of oil at 72% concentration (WAF_72; n = 7), another to 0.39 

mg/L of the polycyclic aromatic hydrocarbon (PAH) 1-methynaphthalene (positive control; n = 
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6), and a third group was unexposed (control; n = 6). These are new, unpublished data collected 

by the authors of this paper. 

 

 
Figure 3-4: PCA of normalized lobster counts tables for a) Kallisto and b) Seq2Fun. This plot 
was generated by ExpressAnalyst. 
 

The patterns with the lobster data are very similar to those with the zebrafish data. PCA plots of 

the normalized counts data show the same variance structure for both quantification methods 

(Figure 3-4), even though more features were quantified by Kallisto and Kallisto had a higher 

reads and gene mapping rate (Table 3-3). The pattern of DEGs for each contrast is also similar 

between Kallisto and Seq2Fun, with the positive control group having many more DEGs than the 

72% WAF group. While the number of DEGs for each group is higher for Kallisto, the ratio 

between the two contrasts is very similar across both quantification methods. 

 

Table 3-3: Results from lobster DEA and GSA. 
  

Kallisto Seq2Fun 

# Features quantified 36 925 10 332 

Reads mapping 71.71% 29.13% 

Gene mapping 74.20% 13.86% 
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Pos. ctrl WAF 72% Pos. ctrl WAF 72% 

DEGs 908 50 287 14 

KEGG NA NA 3 0 

GO BP NA NA 1 0 

GO MF NA NA 4 0 

GO CC NA NA 0 0 

 

There were lower reads and gene mapping rates for the lobster Seq2Fun results than for the 

zebrafish Seq2Fun results (reads: 53% vs. 29%; genes: 35% vs. 14%). This is likely explained by 

the taxonomic diversity of each database, with “invertebrates” covering both a higher number 

and a greater diversity of species than “fishes”. As more genomes are published and added to the 

Seq2Fun databases, we expect that species coverage, reads mapping rates, the number of 

ortholog groups, and the number of genes in each ortholog group in each database will increase. 

However, the number of genes within an individual species’ genome will stay the same, thus we 

expect genes mapping rates to decrease and needs to be properly considered when performing 

gene set analysis. It can also be addressed by making more narrow species groups, like the 

“fishes” and “birds” databases that fall within the “vertebrate” category. 

 

Overall, case study #1 shows that Kallisto and Seq2Fun give very similar results in terms of 

relationships between samples, as shown by PCA plots and the relative number of DEGs for 

different experimental groups. While the number of pathways highlighted by overrepresentation 

analysis is less consistent, the functional interpretation is quite similar. The lobster analysis 

shows one advantage of Seq2Fun for recently published genomes - no publicly available gene set 

libraries exist for the American lobster transcriptome, however we are still able to easily perform 

functional analysis of the Seq2Fun results (Table S3). 
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Case Study 2: Comparative transcriptomics in salamander species 

In case study #2, Seq2Fun was used to analyze RNA-seq profiles from three ambystomatid 

salamander species, one with a reference genome (Ambystomatidae mexicanum, abbreviation 

MEX) and two without (Ambystomatidae andersoni, abbreviation AND; Ambystomatidae 

maculatum, abbreviation MAC). The data were originally collected as part of a comparative 

study of transcriptional responses to limb regeneration (Dwaraka et al., 2019). The upper arm 

was amputated from larvae from each of the three species, and tissue samples were taken at the 

time of amputation (time0), and 24 hours after amputation (time24). Three replicates from each 

species and time group were sequenced, resulting in 3 reps * 2 time points * 3 species = 18 

RNA-seq samples. Raw FASTQ files were downloaded from NCBI GEO at accession 

GSE116777. For this case study, FASTQ files were re-processed in 9 hours with the Seq2Fun 

module (vertebrates database) in EcoOmicsAnalyst. 

 

The primary source of variability in the normalized counts matrix was species differences, as 

shown by the separation according to species along PC1 (Figure 3-5). AND and MEX samples 

fall closer to each other than to MAC, which makes sense given that AND is more closely related 

to MEX (estimated divergence time = 4.27 million years) than MAC is (estimated divergence 

time = 21.47 million years) (Hedges et al., 2015). The second largest source of variability was 

time since amputation, shown by the separation of samples with time0 and time24 annotations 

along PC2 (Figure 5). 
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Figure 3-5: PCA of normalized counts tables for the salamander data, with samples annotated by 
A) time since amputation, and B) species. This plot was generated by ExpressAnalyst. 
 

Differential expression analysis was performed in ExpressAnalyst to identify genes that were 

significantly different between time0 and time24 across species by analyzing all samples 

together and considering species as a blocking factor. This takes variability associated with 

species into account when calculating the p-value for differences between time0 and time24. 

Using the same statistical thresholds as the original publication (FDR adj. p-value < 0.1, no 

log2FC cut-off), there were 1566 DEGs. 

 

The “Interactive Volcano Plot” tool in ExpressAnalyst was used to perform overrepresentation 

pathway analysis (ORA) separately on the up and down-regulated genes with KEGG, Gene 

Ontology Biological Process (GO BP), Molecular Function (GO MF), and Cellular Component 

(GO CC) gene sets. Overall, there were 24 significantly enriched pathways in the list of up-

regulated genes and 48 in the list of down-regulated genes (Tables S4 and S5). The up-regulated 

pathways were mainly related to immune response, cell proliferation (many cancer-related 
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pathways), and programmed cell death. The down-regulated pathways were mainly related to 

muscle tissue and cellular metabolism. This is very consistent with the functional analysis results 

reported by the original publication (Dwaraka et al., 2019), and makes sense when interpreted in 

the context of limb regeneration. 

 

The top five DEGs (Table 3-4) were queried in EcoOmicsDB to demonstrate the type of 

information that can be retrieved. EcoOmicsDB shows that each of these genes is supported by 

lots of evidence (>190 genes and > 170 species for each). Three of the genes (s2f_3904, s2f_939, 

and s2f_2248) have many more genes than species. Visual examination of the main 

EcoOmicsDB table output shows that each species contributes multiple genes with very similar 

descriptions, for example the s2f_939 table contains descriptions for metalloproteinase inhibitors 

1, 2, and 4, metalloproteinase-like genes, and multiple metalloproteinase isoform numbers. 

Taken together, there is ample evidence that these key differentially expressed genes are robust 

and represent real proteins, however it should be noted that the TIMP4 and MMP2 results could 

each represent a small group of highly similar genes within the salamander genomes. For these 

ortholog groups, each species is contributing, on average, two or three distinct genes as defined 

by the Entrez ID system. 

 

Table 3-4: Top 5 DEGs from case study #2. 
 
Seq2Fun ID Symbol Adj. p-value log2FC # Genes in EODB # Species in EODB 

s2f_11083 SERPINE1 3.2E-28 5.2 191 174 

s2f_9201 PLEK2 1.3E-25 4.4 222 207 

s2f_3904 TNC 2.6E-24 4.4 305 212 

s2f_939 TIMP4 3.8E-22 5.1 650 212 
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s2f_2248 MMP2 3.1E-21 3.6 467 212 

 

The original study quantified the RNA-seq data using a reference transcriptome from MEX and 

de novo transcriptomes from AND and MAC, and then performed DEA for each species. They 

then identified DEGs that were shared across species by searching for sequence similarities 

among the differentially expressed contigs from AND and MAC and the differentially expressed 

transcript sequences from MEX using the BLAST algorithm. Ultimately, they found 405 

transcripts that were significantly impacted in all three species. We quantified all RNA-seq 

samples with Seq2Fun, even though there was a reference transcriptome for one species. This 

greatly simplified the downstream analysis. Since all quantified samples shared the same set of 

Seq2Fun IDs, the data could be integrated across species and analyzed in a single DEA without 

performing any ortholog mapping. It also improved the statistical power, with n = 18 instead of n 

= 6, likely explaining our 1566 DEGs versus their 405. 

 

Finally, we note that the use of salamanders makes this a particularly strong case for Seq2Fun. 

Amphibians can have notoriously large genomes (Liedtke et al., 2018), estimated to range from 

14 to 120 GB across salamander species (for reference, the human genome is 3.2 GB) 

(Nowoshilow et al., 2018). Performing de novo assembly of two salamander genomes would be 

extremely computationally intensive. The full analysis for case study #2, including raw reads 

processing, statistical analysis, and figure preparation, took less than 24 hours, was completed 

without the command line or R, and was all done on a laptop computer. 
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3.4 DISCUSSION 
 
Overall, the web-based computing ecosystem presented in this paper represents a valuable 

resource for researchers collecting RNA-sequencing data from non-model organisms. By 

removing barriers related to computing resources, programming skills, and knowledge of 

bioinformatics databases, we believe that the combination of EcoOmicsAnalyst, ExpressAnalyst, 

and EcoOmicsDB will make transcriptomics data processing and analysis more accessible to the 

environmental life sciences community. 

 

Resolving conflicting ortholog annotations is unavoidable in RNA-seq analysis of non-model 

organisms: even when researchers choose to analyze their data with a de novo transcriptome, 

they still must annotate this de novo transcriptome by drawing on functional information from 

other species (Conesa and Gotz, 2008). Seq2Fun addresses ortholog grouping and annotation at 

the beginning of the raw data processing pipeline, while analyses with de novo transcriptomes do 

this at the end. Since Seq2Fun comprehensively addresses ortholog grouping and annotation 

across many species, it is extremely well suited for cross-species comparisons of transcriptomics 

data. There is already great interest in this, for example recent efforts to use ‘omics data for 

cross-species extrapolation in the field of environmental toxicology (LaLone et al., 2021). 

 

The current Seq2Fun algorithm (version 2.0) is based on a translated nucleotide to peptide 

search, which is extremely efficient at overcoming large evolutionary distances between query 

and target organisms in the database. However, this approach cannot quantify non-coding genes 

or distinguish gene isoforms. In the future, we will develop a tiered search strategy by first 

conducting DNA-to-DNA search for each read, then a DNA-to-protein (translated) search if the 
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read fails. This novel strategy will not only enable Seq2Fun to quantify the whole transcriptome 

including non-coding sequences but will also have a higher resolution of features without 

compromising the ability to overcome long evolutionary distance. 

 

We developed EcoOmicsDB for the limited initial goal of increasing transparency of the 

Seq2Fun ID system. However, with continued development and engagement of the 

environmental life sciences community, EcoOmicsDB could become the authoritative resource 

for transcript identification and functional annotation in non-model organisms. The genomes of 

non-model organisms have been much less studied compared to mammalian model organisms 

and there are still many uncharacterized IDs in published reference genomes. We envision a 

system in which functional information learned from individual transcriptomics studies is added 

to the Seq2Fun ortholog profiles in EcoOmicsDB. Over time, knowledge from such studies can 

be pooled across species to gain insights into uncharacterized proteins. This will not only 

improve the annotation and functional analysis of the Seq2Fun results but would also benefit the 

whole research community that works on orthologs and non-model organism transcriptomics. 

 

3.5 METHODS 
 
3.5.1 ORTHOLOG GROUP DEFINITION AND ANNOTATION 
 
The core algorithm of Seq2Fun is the translated search of RNA-seq reads against the protein 

database. To create a comprehensive database, all protein-coding genes (n = 13,057,389) from 

687 organisms which cover all major phylums of eukaryotes were downloaded from KEGG 

using KEGGREST (version 1.34.0). Protein FASTA files for each species were submitted to 

OrthoFinder (version 2.5.4) for classification of genes into ortholog groups. OrthoFinder 
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(parameters: t = 56, a = 25) was run on a server with 56 threads and 504 GB’s RAM and it took 

about ~10 days to finish ortholog grouping for all the organisms. Information from each gene 

was collapsed to generate a single gene symbol, description, KEGG pathway, and GO term 

annotation for each ortholog group. Phylogenetic groups of organisms were retrieved from 

KEGGREST to create sub-group databases, which is based on the NCBI taxonomy system. 

 

3.5.2 OTHER UPDATES TO SEQ2FUN ALGORITHM 
 
Seq2Fun version 2.0 also includes improvements to the memory usage by optimizing both the 

number of reads (n = 1000) in each pack and number of packs (n = 80) allowed in RAM to 

reduce the RAM consumption. In addition, more memory was allocated to heaps instead of 

stacks to further reduce the memory usage. Version 2.0 also includes a new function called 

SeqTract to retrieve mapped reads based on the list of genes. This subset of reads can be used for 

targeted gene assembly, which could be useful for primer design, isoform analysis, and 

phylogenetic analysis of specific genes. 

 

3.5.3 METHODS FOR CASE STUDIES #1 AND #2 
 
Case study #1 

Zebrafish RNA-seq data were obtained from NCBI’s Sequence Read Archive (SRA; 

https://trace.ncbi.nlm.nih.gov/Traces/sra/) at sample accessions SRR13332314 - SRR13332325. 

Files were downloaded and converted from SRA to FASTQ format using the NCBI SRA 

ToolKit (version 2.11.3) before being uploaded to EcoOmicsAnalyst. Lobster RNA-seq data 

were collected by the authors of this paper. Briefly, stage I lobster larvae were exposed for 24hrs 

to four doses of WAF (10%, 19%, 37% and 72%) a positive control (1-methylnaphthalene, at 0.3 
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mg/L corresponding to the estimated concentration of EC20) or a negative control (0.22 µm 

filtered seawater). Due to the lack of effects reported on survival, molting and respiration after 

WAF exposures, only the highest dose of WAF (72% WAF) was considered for transcriptomics 

analysis. RNA extraction of whole larvae exposed to 72% WAF (n = 7), methylnaphthalene (n = 

6) and filtered seawater (n = 6) was performed using Trizol. The transcriptomes were sequenced 

using Novaseq Illumina at 28M reads per library. FASTQ files were downloaded from the 

Genome Quebec portal and uploaded to EcoOmicsAnalyst.  

 

For the Kallisto workflow, zebrafish samples were aligned to the GRCz11 Danio rerio genome 

assembly (accession: GCA_000002035.4) and lobster samples were aligned to the 

GMGI_Hamer_2.0 Homarus americanus genome assembly (accession: GCA_018991925.1). 

The minimum quality score parameter was set to 25. For the Seq2Fun workflow, zebrafish and 

lobster samples were aligned to the “Fishes” and “Invertebrates” databases respectively, with the 

parameters “maximum number of mismatches” = 2, “minimum matching length” = 19, and 

“minimum matching BLOSUM62 score” = 80.  

 

Each of the four counts matrices (zebrafish: Kallisto and Seq2Fun; lobster: Kallisto and 

Seq2Fun) were analyzed with ExpressAnalyst. For upload, the appropriate organism and IDs 

were selected (Zebrafish - Ensembl, American lobster - RefSeq, Fishes - Seq2Fun ID, 

Invertebrates - Seq2Fun ID), data type was set to RNA-seq, and the gene summary method was 

set to “sum”. Data were filtered to remove those with low abundance and low variation by 

setting the variance filter to 15 and the abundance filter to 4. Data were normalized using the 

“Log2 counts per million” option, which uses the limma voom R package (Law et al., 2014).  
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Differential analysis was performed with the edgeR method, which uses the edgeR R package 

(Robinson et al., 2009). Each treatment group was compared to the control group using the 

“specific comparison” option. Genes were defined as differentially expressed if the adjusted p-

value (FDR method) was less than 0.05 and the abs(log2FC) was greater than 1.5. For each 

contrast, the list of DEGs was analyzed for enriched KEGG, GO BP, GO MF, and GO CC gene 

sets using the “ORA Networks” tool. A pathway was defined as significantly enriched if the 

adjusted p-value (FDR method) was less than 0.05 and there were at least five DEGs in the gene 

set. 

 

Case study #2 

Salamander RNA-seq data were obtained from NCBI’s SRA at sample accessions SRR7499348-

SRR7499365, excluding sample SRR7499350 which was identified as an outlier by QA/QC 

performed by the original publication (Dwaraka et al., 2019). Files were downloaded and 

converted from SRA to FASTQ format using the NCBI SRA ToolKit (version 2.11.3) before 

being uploaded to EcoOmicsAnalyst. Samples were aligned to the “Vertebrates” database using 

Seq2Fun. The count matrix was analyzed with ExpressAnalyst using the same methods as case 

study #1, until the differential expression step where case study #2 used a two-factor analysis. 

Time was set as the primary factor, and species as the secondary factor with the secondary factor 

defined as a “blocking factor”. Then, a “specific comparison” was performed between ‘time0’ 

and ‘time24’. Following the original publication, genes were considered differentially expressed 

if the adjusted p-value was less than 0.1. The list of DEGs was split into up and down-regulated 

genes, and each list was analyzed for enriched KEGG, GO BP, GO MF, and GO CC gene sets 
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using the “Interactive Volcano Plot” tool. A pathway was defined as significantly enriched if the 

adj. p-value (FDR method) was less than 0.05 and there were at least five DEGs in the gene set. 

 

3.5.4 IMPLEMENTATION OF WEB TOOLS 
 
EcoOmicsAnalyst was implemented based on the PrimeFaces component library (version 11) 

(www.primefaces.org) and R (version 4.1.2). FASTQ file upload is handled with proFTP 

(version 1.3.6), user accounts are stored in a MariaDB instance (version 10.5.12), and job 

management is done with Slurm (version 20.11.2). All visualizations in EcoOmicsAnalyst were 

prepared with the R package ggplot2. At the time of publication, the versions for reads quality 

check and quantification were: fastp (version 0.21.1), Kallisto (version 0.46.1), and Seq2Fun 

(version 2.0.2). 

 

ExpressAnalyst was also implemented based on the PrimeFaces component library (version 11) 

and R (version 4.1.2). Visual analytics tools are heatmap, volcano plot, gene set network, 3D 

PCA, and chord diagram, which are implemented using sigma.js (URL) and CanvasXpress 

(URL). For more details, see the latest publication on NetworkAnalyst, the original source of 

many ExpressAnalyst features (Zhou et al., 2019). 

 

EcoOmicsDB was implemented based on the PrimeNG component library (version 13), R 

(version 4.1.2), and SQLite. 
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CONNECTING PARAGRAPH 
 
Chapter 3 presented web-based tools for the comprehensive analysis of raw RNA-sequencing 

data from any species. A typical analysis performed by these tools produce lists of impacted 

genes and pathways, which can contain hundreds to thousands of items. These types of results 

are overwhelming to interpret for people who do not have extensive bioinformatics experience. 

 

Chapter 4 presents EcoToxModules, which are custom gene sets for organizing and analyzing 

transcriptomics data in the context of environmental toxicology. EcoToxModules aim to provide 

a high-level summary to help make sense of the extreme detail produced by typical ‘omics 

pipelines. Chapter 4 defines two types of EcoToxModules, one using a completely data-driven 

approach (statistical modules) and the other using a database of known molecular pathways 

(functional modules). Both sets were used to summarize changes in gene expression in a large 

microarray dataset measured in fathead minnow liver tissue. The overall conclusion is that while 

their performance in capturing major trends in the data is comparable, the functional modules 

were far easier to interpret. In addition, the functional modules were designed to be easily 

extended to new species with minimal additional work. Since the publication of this chapter, the 

functional EcoToxModules have been defined in terms of the protein orthologs from 

EcoOmicsAnalyst and incorporated into ExpressAnalyst.  

 

This chapter was published in the journal Environmental Science and Technology in February of 

2020 (volume 54 (7), pages 4376-4387). The candidate is the sole first author. It is additionally 

co-authored by Othman Soufan, Doug Crump, Markus Hecker, Jianguo Xia, and Niladri Basu, 

the candidate’s supervisor. Supplemental information is provided in the thesis appendix.  
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4.1 ABSTRACT 
 

 
Figure 4-1: Graphical abstract published in manuscript. 
 
 
Traditional results from toxicogenomics studies are complex lists of significantly impacted genes 

or gene sets, which are challenging to synthesize down to actionable results with a clear 

interpretation. Here we defined two sets of 21 custom gene sets, called the functional and 

statistical EcoToxModules, in fathead minnow (Pimephales promelas) to 1) re-cast pre-defined 

molecular pathways into a toxicological framework, and 2) provide a data-driven, unsupervised 

grouping of genes impacted by exposure to environmental contaminants. The functional 

EcoToxModules were identified by re-organizing KEGG pathways into biological processes that 

are more relevant to ecotoxicology based on input from expert scientists and regulators. The 

statistical EcoToxModules were identified using co-expression analysis of publicly available 

microarray data (n = 303 profiles) measured in livers of fathead minnows after exposure to 38 

different conditions. Potential applications of the EcoToxModules were demonstrated with two 

case studies that represent exposure to a pure chemical and to environmental wastewater 

samples. In comparisons to differential expression and gene set analysis, we found that 

EcoToxModule responses were consistent with these traditional results. Additionally, they were 

easier to visualize and quantitatively compare across different conditions, which facilitated 

drawing conclusions about the relative toxicity of the exposures within each case study. 

EndocrineImmune

Metabolism

Complex ‘omics data
EcoToxModule 

gene sets Improved results
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4.2 INTRODUCTION 
 
Whole-transcriptome profiling based on microarray or RNAseq represents a powerful approach 

to comprehensively measure changes in gene expression. This type of data can provide 

mechanistic insights into the effects of exposures of organisms to environmental contaminants 

(Alexander-Dann et al., 2018), particularly when using alternative toxicity testing strategies such 

as those called for by the amended United States Toxic Control Substances Act and the European 

Union REACH regulations (USEPA, 2015; Van der Jagt et al., 2004). However, transcriptomics 

data are complex and challenging to interpret for users who may not have experience with the 

advanced bioinformatics required to synthesize these data into understandable, actionable and 

trusted results (Martyniuk et al., 2018; Vachon et al., 2017; Zaunbrecher et al., 2017). As 

discussed in multiple papers published by the OpenTox Association, there is a need for open, 

computable, and standardized vocabularies for analyzing biological outcomes that can help to 

integrate measurements, including transcriptomics data, across levels of biological organization 

and within a toxicological framework (Hardy et al., 2012; Tcheremenskaia et al., 2012).  

 

One strategy for translating gene-level signatures into higher-level endpoints that are more 

meaningful, reproducible, and relevant to toxicology is to analyze whole-transcriptome data at 

the cellular pathway or biological process level (Dean et al., 2017; Farmahin et al., 2017). Many 

toxicogenomics studies employ gene set analysis with traditional pathway libraries developed for 

broader biological research, such as KEGG, the Gene Ontology (GO), or Reactome (Alexander-

Dann et al., 2018; Bourdon-Lacombe et al., 2015). However, these traditional methods have 

some limitations for analyzing toxicogenomics data. First, many of the pathways in these 
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libraries have little relevance to toxicology because they were designed for more general 

biological and biomedical applications using the human and mouse genome, posing challenges 

when trying to extrapolate to ecotoxicologically relevant species (Perkins et al., 2013). Also, 

there are hundreds to thousands of pathways in each library, so the results are still relatively 

complex and difficult to interpret and quantitatively compare across different exposures. Thus, 

there is a need for a toxicology-focused organizational scheme for existing molecular pathways 

to help make functional analysis of toxicogenomics data more relevant to ecotoxicological 

sciences, regulatory activities, and environmental management and monitoring. 

 

Another strategy for organizing individual genes into larger gene sets is to group them based on 

statistical similarity within large, data-driven networks using unsupervised machine learning 

methods (Kitano, 2002; Ma et al., 2012; Pavlopoulos et al., 2011). This type of analysis infers 

interactions between genes by computing the pairwise correlation or mutual information of gene 

expression values across many samples. Clustering algorithms are then used to detect groups of 

co-expressed genes within the computed network, with the rationale that co-expressed genes are 

likely to be associated with the same biological process (Langfelder et al., 2007; Van Dam et al., 

2017). Popular software for co-expression network analysis include ARACNE, DiffCor, and 

Weighted Gene Co-expression Network Analysis (WGCNA) (Margolin et al., 2006; Fukushima, 

2013; Langfelder et al., 2008). Since these computationally generated gene sets do not depend on 

transcriptome annotation, and ecological species typically lack high-quality annotation compared 

to popular mammalian models, this makes them especially well-suited for analyzing ‘omics data 

in ecotoxicology studies (LaLone et al., 2013; Pagé-Lariviére et al., 2019). However, there is a 
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paucity of existing studies that used co-expression network analysis to analyze toxicogenomics 

data from ecological species (Perkins et al., 2011; Williams et al., 2011).  

 

In this era of “big data” and predictive toxicology, translating complex ‘omics results into 

knowledge that can help inform decision-making is challenged by a lack of toxicologically-

focused vocabularies and organizational schemes for interpreting these data (Hardy et al., 2012). 

Therefore, the objective of this study was to help improve the interpretation and comparability of 

toxicogenomics results from ecological species by developing two custom gene set collections, 

called EcoToxModules, for analyzing whole-transcriptome data. In this particular case, 

EcoToxModule gene sets were developed for fathead minnow because of its popularity as a 

model species in aquatic toxicity testing, and because of the substantial amount of publicly 

available toxicogenomics data from this species (Ankley et al., 2006; Wang et al., 2016). 

However, the method for defining EcoToxModule gene sets is generic and can be applied to any 

other species with a sequenced transcriptome. The EcoToxModules were defined using two 

complementary approaches – one based on a priori knowledge of biological pathways 

(functional EcoToxModules) (Kanehisa et al., 2016), and one based on statistical co-expression 

analysis of toxicogenomics data from fathead minnow (statistical EcoToxModules) (Sutherland 

et al., 2016). This study was part of the EcoToxChip project (Basu et al., 2019).  

4.3 MATERIALS AND METHODS 
Overall the methods are separated into three phases (Figure 4-2). In phase I, fathead minnow 

microarray data were downloaded from NCBI’s Gene Expression Omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/), a database that consists of public gene expression data 

collected using either microarray or RNA sequencing technologies. The probe sequences were 
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re-annotated by aligning them to the fathead minnow genome (NCBI assembly accession: 

GCA_000700825.1). In phase II, the statistical and functional EcoToxModules were defined and 

compared to each other based on their size, overlapping genes, and responsiveness to chemical 

exposure. In phase III, the data from phase I were re-analyzed to investigate how 

EcoToxModule-based analysis compares to traditional differential expression and gene set 

analysis. Two subsets of the fathead minnow microarray data were highlighted as case studies to 

demonstrate how EcoToxModules can be applied to analyze toxicogenomics data. 

 

 

Figure 4-2: A visual representation of the different phases of the analysis workflow. 
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4.3.1 PHASE I: DATA PREPARATION AND PROCESSING 
 
This study used pre-existing data from the Agilent-019597 (GPL10259) one-color microarray 

platform, due to the relatively high number of toxicogenomics studies that have been conducted 

using this platform (Wang et al., 2016). The data (n = 303 microarray profiles) contain gene 

expression measurements in liver tissue from fathead minnows of both sexes and multiple life 

stages. We chose to focus on liver tissue because it is a common target tissue for many toxic 

chemicals and thus of prime interest in ecotoxicological studies (Wang et al., 20016). They are 

from 11 distinct data series, available in NCBI’s GEO DataSets database, and were generated by 

exposure studies that examined the toxicity of environmental water samples from 10 locations or 

varying doses of 6 chemicals (Tables 4-1 and S1) (Adedeji et al., 2012; Gust et al., 2011; 

Loughery et al., 2018; Martinović-Weigelt et al., 2014; Rodriguez-Jorquera et al., 2015; Vidal-

Dorsch et al., 2013). These data are a subset of a larger dataset compiled in a previous study on 

fish connectivity mapping (Wang et al., 2016). The Agilent-019597 microarray was developed 

using expressed sequence tag data before the fathead minnow genome was sequenced (Adedeji 

et al., 2012; Larkin et al., 2007). We aligned the probe sequences to the reference fathead 

minnow genome (GCA_000700825.1) using BLASTn so that they could be annotated with 

KEGG pathways in downstream steps (Burns et al., 2016). Probes that were either significantly 

aligned (e-value < 10-6) to multiple distinct locations on the genome or had no significant 

alignments were removed from downstream analyses.  
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Table 4-1: Overview of publicly available microarray data analyzed in Phases II and III. 
 

GEO 
accession 

Sample 
size (n) Exposure Sex Life stage 

GSE21100 60 Cyclonite (RDX) female adult 
GSE21102 24 Cyclonite (RDX) female juvenile 
GSE23521 18 Environmental sample (2 streams) male adult 

GSE29350 38 Effluent (2 WWTPs); 
Estrogen (E2) male adult 

GSE36465 12 Diethylstilbestrol (DES) female adult 
GSE36466 11 Diethylstilbestrol (DES) female adult 

GSE37550 15 Environmental sample (2 streams); 
Effluent (1 WWTP) male adult 

GSE44839 20 Phenanthrene (PHN) female adult 
GSE44840 28 Phenanthrene (PHN) female adult 
GSE49098 62 Effluent (3 WWTPs) male adult 

GSE54506 15 Perfluorooctanesulfonic acid (PFOS); 
Perfluorinated compounds (PFCs) male adult 

 

 

4.3.2 PHASE II: ECOTOXMODULE DEFINITION AND CHARACTERIZATION 
 
Defining functional EcoToxModules  

The objective of the functional EcoToxModules was to group functionally annotated genes using 

a hierarchical organization of physiological categories and biological processes that resonate 

with researchers and decision-makers within the field of toxicology.  The specific biological 

processes represented by the functional EcoToxModules were identified using a mixed methods 

approach. First, as part of the EcoToxChip project (www.ecotoxchip.ca), a panel of five principal 

investigators with expertise in ecotoxicology identified biological processes and pathways 

relevant to the fields of ecotoxicological sciences and applied environmental risk assessment, 

monitoring, and management by focusing on known toxicity mechanisms that affect survival, 

growth, and reproduction outcomes (Basu et al., 2019). The team identified an initial list by 
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consulting the Comparative Toxicogenomics Database (ctdbase.org) and the toxicogenomics 

literature (Davis et al., 2017), and then this list was deliberated upon and refined by members of 

the larger project team including stakeholders from government and industry. This exercise 

resulted in the identification of 21 biological processes, each corresponding to a functional 

EcoToxModule, sorted into five larger physiological categories (signaling, metabolism, immune, 

endocrine, and cellular processes). Of the 330 KEGG pathways that exist for vertebrates, 172 

were manually selected for inclusion in one of the functional EcoToxModules based on their 

relevance to the 21 biological processes and aided by the BRITE functional hierarchies devised 

by KEGG to organize individual pathways (Kanehisa et al., 2007).  

 

KEGG orthologues (KOs) are used to define groups of orthologous genes within the KEGG 

GENES database, and they form the basis of the reference pathway maps in the KEGG 

PATHWAY database (Kanehisa, 2008; Kanehisa et al., 2000). Fathead minnow coding 

sequences were annotated with KOs by uploading the fathead minnow transcriptome to the 

KEGG automatic annotation server (KAAS) (Moriya et al., 2007) and selecting all vertebrate 

species in the KEGG Genome database for sequence similarity computations. Microarray probes 

were assigned to functional EcoToxModules based on their alignment to fathead minnow 

transcript sequences. A complete list of the 21 modules and all of their KOs are available in the 

supporting information (SI) (Table S2). 

 

This proposed functional EcoToxModule hierarchy was discussed with internal core 

EcoToxChip project members, wider project partners, and potential end-users, including 

scientists and regulators from Environment and Climate Change Canada, Health Canada, the 
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U.S. Environmental Protection Agency, the U.S. Army Core of Engineers, Shell, and Qiagen. 

Since 2017, we have consulted the broader environmental toxicology and risk assessment 

community by presenting the EcoToxModule hierarchy at six scientific conferences. Moving 

forward, we expect that the modules and genes within the EcoToxModule hierarchy will 

continue to evolve as particular users create customized and fit for purpose variations. 

 

Defining the statistical EcoToxModules 

We chose to use WGCNA to conduct the co-expression network analysis used to define the 

statistical EcoToxModules because it is well-documented and has been successfully used to 

analyze toxicogenomics data from mammalian species (Maertens et al., 2018; Sutherland et al., 

2018). Prior to the co-expression analysis, the microarray data were first processed, background 

corrected and normalized with the limma R package using functions developed for the Agilent 

platform and parameters for single-channel microarrays (Langfelder et al., 2008; Ritchie et al., 

2015). A standard WGCNA workflow was used to detect clusters of co-expressed genes within 

the normalized microarray dataset (Langfelder et al., 2007; Zhao et al., 2010). A detailed 

description of the processing, normalization, and WGCNA workflow are included in the SI. The 

detected clusters were annotated with enriched KEGG pathways and Gene Ontology (GO) 

biological process, molecular function, and cellular component terms using hypergeometric tests 

(adjusted p-value < 0.05, false discovery rate [FDR] method). The human homologue 

annotations in the GEO Platform file (GPL10259) were used for enrichment analysis, following 

previous studies using this microarray (Perkins et al., 2011; Martinović-Weigelt et al., 2014).  
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To compare quantitative characteristics of the functional and statistical EcoToxModules, we 

computed different statistics measuring gene set similarity and module responses.  Gene set 

similarity was measured by calculating the number of overlapping genes and the Jaccard index 

between pairs of functional and statistical EcoToxModules. Two different module responses 

were calculated, the fold change and the eigengene. Here, the module fold change was defined as 

the average of the absolute log2FC of the EcoToxModule probes. Following a previous study that 

conducted co-expression network analysis based on the TG-GATES database (Sutherland et al., 

2016; Sutherland et al., 2018; Igarashi et al., 2014), the eigengene was defined as the first 

principal component computed from the log2FCs of the EcoToxModule probes.  

 

4.3.3 PHASE III: COMPARISON OF ECOTOXMODULE-BASED ANALYSIS TO TRADITIONAL 
BIOINFORMATICS 
 
The objective of Phase III was to investigate how EcoToxModule-based analysis compares to 

traditional differential expression and gene set analyses. The data from each study within the 

fathead minnow microarray dataset were re-analyzed using traditional differential expression and 

gene set analyses, and these results were compared to EcoToxModule summaries of the data. 

Prior to differential expression analysis, the data were normalized separately for each study using 

the same methods as in Phase I (Ritchie et al., 2015; Edwards, 2003; Silver et al., 2008). 

Differentially expressed genes between each exposure and associated controls were selected 

using FDR adj. p-value (< 0.05) and abs(log2FC) (> 1.5). The genes were analyzed for 

significantly enriched GO biological process (GO BP) and KEGG pathway gene sets (FDR adj. 

p-value < 0.05) using hypergeometric tests with the HTSanalyzeR R package (GO Consortium, 

2014; Wang et al., 2011).  
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Two subsets of the data were highlighted as case studies to demonstrate how the 

EcoToxModules can be used for analyzing whole-transcriptome data in more detail. The case 

studies reflect one pure chemical exposure (diethylstilbestrol (DES); GSE36465 and GSE36466; 

case study 1) (Adedeji et al., 2012), and one environmental water sample exposure (effluent 

from a wastewater treatment plant (WWTP) in Ely, Minnesota, USA; GSE49098; case study 2) 

(Martinović-Weigelt et al., 2014). These case studies were chosen to demonstrate what 

EcoToxModule results could look like for whole-transcriptome data collected during chemical 

risk assessment (case study 1) and environmental monitoring (case study 2), two important 

regulatory activities in environmental toxicology.  

 

The purpose of the DES exposure study was to collect information on the in vivo effects of 

exposure to environmentally relevant concentrations of DES, a synthetic estrogen, in fathead 

minnow. A complete description of the experimental design and methods are described in 

Adedeji et al (Adedeji et al., 2012). Briefly, the authors exposed sexually mature fathead 

minnows to varying concentrations of DES (control, 1, 10, and 100 ng/L, n = 6 or 8 replicate 

tanks per condition with 3 individual fish of each sex per tank) for four days, and then allowed 

the fish to recover without DES exposure for four additional days. Half of the fish were sampled 

to measure biological endpoints at the end of the DES exposure, and half were sampled at the 

end of the recovery period. Gene expression measurements were made in the liver of female 

fathead minnow using the Agilent-019597 microarray for a subset of both the DES exposure (n = 

3 individuals per condition) and recovery (n = 2 or 3 individuals per condition) groups.  
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One major objective of the WWTP study was to assess effluent-impacted field sites with ‘omics 

technologies. A complete description of the experimental design and methods are described in 

Martinovic-Weigelt et al. (Martinović-Weigelt et al., 2012). The authors exposed sexually 

mature fathead minnows to water collected upstream of, downstream of, and at the effluent 

discharge location of three different WWTPs, as well as an external control exposed to filtered 

Lake Superior water (n = 3 replicate tanks per condition with 4 individual fish of each sex per 

tank). Gene expression measurements were made in the liver of male fathead minnow using the 

Agilent-019597 microarray (n = 6-7 individuals per condition). In this case study, we re-

analyzed the data from the WWTP field site in Ely, Minnesota, USA. 

 

4.4 RESULTS AND DISCUSSION 
 
4.4.1 RE-ANNOTATION OF MICROARRAY PROBE SEQUENCES 
 
Of the 15, 208 probe sequences on the A019597 microarray, n = 4, 317 could be significantly 

and uniquely aligned to coding transcripts in the fathead minnow genome. The remaining probes 

were aligned to multiple locations (n = 2, 463), aligned to locations predicted to be non-coding (n 

= 6, 897), or had no significant alignments to the genome (n = 1, 531). While the percentage of 

probes aligned to predicted non-coding sequences is high (45%), these probes have distinct 

expression patterns compared to the probes aligned to predicted coding sequences (Figure S3). 

Additionally, a previous study that similarly aligned the highly used Affymetrix Mouse 430 2.0 

microarray probe sequences to the mouse genome found that 67 089 out of 496 468 probes 

(14%) aligned to predicted non-coding regions (Liao et al., 2011). Only probes that could be 

aligned to coding sequences were included in the EcoToxModules. 
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4.4.2 GENERAL COMPARISON OF THE STATISTICAL AND FUNCTIONAL ECOTOXMODULES 
 
A total of 1761 unique probes were identified across the two sets of 21 modules, with 962 in the 

functional EcoToxModules, 1097 in the statistical EcoToxModules, and 298 in both (Table S3, 

Table S4). 

 

The number of probes per functional EcoToxModule ranged from 13 to 352 (median = 64). Each 

functional EcoToxModule was further categorized into one of five more general biological 

categories (Table S2, Table S5). Since KOs can be part of more than one KEGG pathway 

(Kanehisa, 2008), some probes were in multiple functional EcoToxModules.  In all pairwise 

comparisons of functional EcoToxModules, the Jaccard index was < 0.3, indicating a small 

number of overlapping genes (Figure S4).  

 

 

Figure 4-3: Co-expression network dendrogram showing the locations of the EcoToxModule 
probes. Each leaf in the dendrogram corresponds to one probe. Probes were hierarchically 
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clustered based on their pairwise correlation scores. The first band displays the locations of the 
clusters detected in the dendrogram, including both predicted coding and non-coding probes. The 
statistical EcoToxModules consist of the coding probes within the detected clusters. Clusters 
with a consistent biological theme in their gene set analysis results are highlighted. The second 
band displays the locations of the probes from the functional EcoToxModules. 
 

The number of probes per statistical EcoToxModule ranged from 7 to 408 (median = 23). Seven 

of the statistical EcoToxModules were significantly enriched with multiple KEGG pathways and 

GO terms (Table S2, Table S6, Figure 4-3). Since biological annotations were inconsistent, the 

statistical EcoToxModules were named with alphanumeric IDs.  

 
One major strength of the functional EcoToxModules is that each one has clear biological 

annotations, whereas biological annotation could only be found for 7/21 statistical 

EcoToxModules (Table S6). Previous studies have also noted that a limitation of co-expression 

analysis is the difficulty of establishing biological relevance for each detected cluster (Perkins et 

al., 2011; Sutherland et al., 2018; Abdul Hameed et al., 2016). One strength of the statistical 

EcoToxModules is that they were better explained by their eigengenes (mean R2 = 0.44, standard 

deviation = 0.15) compared to the functional EcoToxModules (mean R2 = 0.11, standard 

deviation = 0.039), indicating that there is less variability in probe-level responses within the 

same module for a given exposure (Figure S5). This was expected since principal component 

analysis is more effective at capturing most of the variation in the first few principal components 

if the predictors are highly correlated to each other.  

 

The functional and statistical EcoToxModules overlapped for all but two of the statistical 

modules; however, the number of shared genes was very low for nearly all pairs of statistical and 

functional EcoToxModules (Figure S6). Regardless, even though there was minimal overlap, the 
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eigengenes produced similar global patterns of response across all of the exposure conditions for 

both the functional and statistical EcoToxModules (Figure 4-4A vs. 4-4B). In both heatmaps, the 

DES, DES recovery, E2, and WWTP4 – WWTP6 exposures cluster together, and the DES and 

DES recovery conditions displayed the highest transcriptional activity. This supports previous 

claims that module-based approaches of analyzing whole-transcriptome data are capable of 

capturing stable, reproducible trends within the complex data as compared to gene-level or 

pathway-level analysis (Sutherland et al., 2018; Abdul Hameed et al., 2016; Soufan et al., 2019). 

By focusing on a higher level of biological organization, organizing the data with both the 

statistical and functional EcoToxModules can be an effective method for visualizing and 

understanding the “big picture” across many different exposures.  

Overall, the EcoToxModule responses were representative of major trends in the differential 

expression analysis results. The sums of the 21 EcoToxModule fold changes for each exposure 

were positively correlated with the number of DEGs for both the statistical (r = 0.82) and 

functional (r = 0.76) EcoToxModules. This indicates that exposures with higher numbers of 

DEGs also had larger EcoToxModule fold changes. Additionally, the most perturbed functional 

EcoToxModules were biologically consistent with the significant gene set analysis results (Table 

S8). It was difficult to make a similar comparison for the statistical EcoToxModules since only 

one third of these modules had clear biological annotations.  
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Figure 4-4: Heatmaps of EcoToxModule eigengene expression for all exposure conditions. 
Rows correspond to EcoToxModules, columns correspond to the exposure conditions, and 
squares correspond to the eigengene expression. The eigengene is calculated as the 1st principal 
component of log2FC of module probes for A: functional EcoToxModules, and B: statistical 
EcoToxModules. Statistical EcoToxModules with an “*” have at least one significantly enriched 
KEGG pathway (adj. P-val < 0.05, FDR). 
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Case studies: overview 

Subsets of the data were highlighted as case studies to demonstrate in more detail how the 

EcoToxModules can be helpful for organizing, analyzing, and visualizing whole transcriptome 

toxicogenomics data. The two case studies were chosen to represent both exposures to 1) varying 

doses of a pure chemical (Adedeji et al., 2012), and 2) complex environmental water samples 

(Martinović-Weigelt et al., 2014). These exposures generated many DEGs, so comparisons could 

be drawn between the traditional bioinformatics and EcoToxModule-based results.  

 

4.4.3 CASE STUDY 1: DES EXPOSURES (GSE36465 AND GSE36466) 
 
The differential expression analysis results showed that there was a concentration-dependent 

increase in the number of DEGs for the DES exposures, with n = 39, 80, and 336 for the 1, 10, 

and 100 ng/L treatment groups, respectively (Table S7). The recovery exposures showed less 

consistent patterns, with n = 87, 4, and 200 DEGs for the 1, 10, and 100 ng/L recovery treatment 

groups, respectively. Out of the 21 modules in each set, there were dose-dependent perturbations 

for 14 functional and 12 statistical EcoToxModules, and the 100 ng/L (high) treatment had the 

greatest perturbation in 19 functional and 16 statistical EcoToxModules (Figure 4-5). The 

recovery treatments had less severe perturbations compared to the exposure treatments for 19 

functional and 14 statistical EcoToxModules. Thus, both sets of EcoToxModule responses 

reproduced the traditional differential expression results, although the functional EcoToxModule 

responses were more consistent compared to the statistical EcoToxModules. 
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Figure 4-5: EcoToxModule fold changes for case study 1 (DES exposures). EcoToxModule fold 
changes are calculated as the mean of the abs(log2FC) of all probes in the module for a given 
exposure condition. Grey bars correspond to the low (1 ng/L), medium (10 ng/L), and high (100 
ng/L) exposures to DES and green bars correspond to the same low, medium, and high exposures 
after a 4 day recovery period, for the A) functional EcoToxModules and B) statistical 
EcoToxModules. Data are from the GSE36465 and GSE36466 data series. Statistical 
EcoToxModules with an “*” have at least one significantly enriched KEGG pathway (adj. p-val 
< 0.05, FDR). 
 

The traditional approach of gene set analysis produced significant results for the DES 10 and 100 

ng/L exposures, and the 100 ng/L recovery treatments (Table S8). The significant gene sets were 

generally related to cellular energy production and protein translation. For example, they 

included the KEGG pathways “Oxidative phosphorylation” and “Ribosome biogenesis”, and the 

GO BP terms “tRNA aminoacylation for protein translation”, “electron transport chain”, and 

“rRNA processing” (Table S8). However, the list of significant results also included some gene 

sets that are clearly irrelevant to a toxicology study, such as the KEGG pathways “Huntington’s 

disease” and “Systemic lupus erythematosus”. Results such as these that include a mix of 

toxicologically relevant and irrelevant terms are difficult to synthesize into overall conclusions 

that make sense to a scientist with a general ecotoxicology background, and even more so for 

regulatory decision-makers who likely have less familiarity with molecular biology.  



 82 

 

In contrast, the functional EcoToxModule responses provided simplified, toxicologically 

relevant summaries of these traditional results. The most and second-most perturbed modules 

were “Metabolism – Energy” and “Metabolism – Amino acids” for all six treatments, which was 

consistent with the overall biological theme represented by the significant gene sets (Table S8). 

Additionally, each functional EcoToxModule is associated with a quantitative measure of 

response, which makes it easier to compare results across different exposures and helps 

individuals to draw conclusions from the complex ‘omics data. 

 

4.4.4 CASE STUDY 2: WWTP EFFLUENT EXPOSURES (GSE49098) 
 
The differential expression analysis results showed that there was a similar number of DEGs for 

the upstream and downstream exposures (n = 84 and 79), and a higher number for the effluent 

exposure (n = 146) (Table S7). This was reproduced by the functional EcoToxModule responses 

as the effluent exposures caused the most severe perturbations for all 21 modules, while the 

upstream and downstream exposures caused perturbations that were both less severe and similar 

to each other (Figure 3-6a). The statistical EcoToxModule responses were less consistent with 

the differential expression results, with only 11 modules showing the most severe perturbation 

for the effluent exposures, and less similarity between the upstream and downstream exposures 

(Figure 3-6b). 
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Figure 4-6: EcoToxModule fold changes for case study 2 (WWTP exposures). EcoToxModule 
fold changes are calculated as the mean of the abs(log2FC) of all probes in the module for a 
given exposure condition. Bars correspond to exposure to water samples collected upstream of 
(green), downstream of (grey), and at the effluent discharge point (black) of the WWTP in Ely, 
Minnesota, USA. Data are from the GSE49098 data series. Statistical EcoToxModules with an 
“*” have at least one significantly enriched KEGG pathway (adj. p-val < 0.05, FDR). 
 

There were significant gene set analysis results for all three exposures, with enriched KEGG 

pathways and GO BP terms related primarily to xenobiotic metabolism, oxidation-reduction, 

lipid metabolism, and PPAR signalling.  Once again, the results also included biomedical terms 

such as the KEGG pathway “Leishmaniasis” and the GO BP term “defense response to virus” 

that are not linked to ecotoxicological outcomes (Table S8). The functional EcoToxModule 

responses were consistent with and are easier to interpret than the results from the traditional 

gene set analysis. The three most perturbed functional EcoToxModules were either “Endocrine – 

PPAR”, “Metabolism – Lipids”, “Metabolism – Xenobiotic and ROS”, or “Metabolism – Amino 

acids” for all exposures.  

 

The original publications for both case studies used the number of DEGs to compare the relative 

transcriptomic response across exposures, PCA plots to visualize similarity between the 
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exposures, and lists of enriched pathways and DEGs of interest in either the text or a table to 

describe the main biological effects (Adedeji et al., 2012; Martinović-Weigelt et al., 2014). The 

lists of enriched pathways had an inconsistent vocabulary that ranged across different levels of 

detail and included biomedical terms that are unfamiliar and irrelevant to ecotoxicological 

sciences and regulatory activities related to ecological management and monitoring (Adedeji et 

al., 2012; Martinović-Weigelt et al., 2014). The functional EcoToxModule bar plots combine all 

of these main findings into one intuitive figure for each study (Figure 4-5a and 4-6a). For 

example, the bar plot for the DES case study clearly shows the dose-dependent response, the 

difference in response magnitude between the exposure and recovery samples, and the main 

biological processes affected by the perturbed genes and pathways (Figure 4-5a). We propose 

that EcoToxModule bar plots (Figure 4-5 and 4-6) be used to gain an overview of the whole-

transcriptomic effects of chemical exposure, which can then help guide the interpretation of more 

detailed traditional differential expression and gene set analysis results.  

 

4.4.5 STATISTICAL ECOTOXMODULES CAN BE USED TO IDENTIFY POTENTIAL BIOMARKERS 
 
The statistical EcoToxModules were sparsely annotated because they include many probes with 

unknown function and, as the case studies showed, had more variable patterns of relative 

responses across different conditions. While their lack of functional annotation makes them less 

effective at summarizing traditional analysis results compared to the functional EcoToxModules, 

it also makes them more suitable for discovering novel biomarkers of chemical exposure.  
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Figure 4-7: Statistical EcoToxModules that are potential exposure biomarkers. Exposure 
conditions (n = 38) were divided based on whether they had high estrogenic potency (n = 8, DES 
and E2 exposures, red fill) or medium-low estrogenic potency (n = 30, all other exposures, blue 
fill). Fold change, calculated as the mean of abs(log2FC), for each A) statistical EcoToxModules 
and B) probe within the SM9 EcoToxModule. Statistically significant differences (adj. p-val < 
0.05) between the two groups were assessed using the Wilcoxon test for each module and probe. 
There are 66 probes in SM9, 23 of which correspond to coding sequences. P-values were 
adjusted using the Bonferroni method. Statistical EcoToxModules with an “*” have at least one 
significantly enriched KEGG pathway (adj. p-val < 0.05, FDR). 
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For example, the SM16 module was in the top five most perturbed statistical EcoToxModules for 

30 out of 38 exposure conditions, and thus stood out as being extremely responsive to the 

chemical exposures represented in the combined microarray dataset (Figure 4-7a). This module 

was enriched with five GO BP terms and five KEGG pathways, all of which were related to the 

innate immune system, and especially to complement activation (Table S6). Links between 

exposure to endocrine disrupting chemicals (EDCs) and modulation of the innate immune system 

in teleost fish have been established by many previous studies (Rehberger et al., 2017; Torrealba 

et al., 2018), including several that observed the perturbation of pathways related to complement 

activation with whole-transcriptome profiling (Rehberger et al., 2017; Shelley et al., 2012a; 

Shelley et al., 2012b; Wenger et al., 2011). One review found that parameters relating to 

complement activation showed significant responses 95% of the time (n = 19 exposures) for 

EDCs and 67% of the time (n = 144 exposures) for all exposures (Rehberger et al., 2017). Thus, 

the SM16 EcoToxModule could be a potential source of biomarkers for exposure to a range of 

xenobiotics, and EDCs in particular, in the fathead minnow liver. 

 

The SM9 module is another statistical EcoToxModule of interest because it appears to be 

especially responsive to estrogenic exposure (Figure 4-7). The exposure conditions in the 

microarray dataset (n = 38 total) were grouped based on whether they had high estrogenic 

potency (E2 and DES conditions, n = 8), or medium to low estrogenic potency (all other 

conditions, n = 30). A statistically significant difference was observed between the mean SM9 

EcoToxModule fold changes of the high and medium-low estrogenic exposures (adjusted p-

value < 0.01, Bonferroni correction). This is partially due to the presence of transcripts for 

vitellogenin (vtg3) and a vitellogenin precursor in the module (probe IDs: UF_Ppr_AF_115478 
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and UF_Ppr_AF_115272), which are known biomarkers for estrogen exposure (Flouriot et al., 

1995; Hansen et al., 1998). However, statistically significant differences (adj. p-value < 0.05, 

Bonferroni correction) were observed for 58 out of 66 EcoToxModule probes (Figure 4-7b), 

suggesting that the separation between SM9 EcoToxModule responses is only partially driven by 

changes in the abundance of vtg3 transcripts. This EcoToxModule provides candidates for 

alternative estrogen biomarkers that, if measured together, could be more robust than 

measurements of single genes such as vtg or esr1. For example, the DES exposures used female 

fathead minnow and only found a significant change in vtg expression for the highest dose 

(Adedeji et al., 2012), yet the SM9 EcoToxModule was still significantly perturbed in a dose-

dependent manner for all of the exposure and recovery conditions (Figure 4-5b). 

 

4.4.6 ECOTOXMODULES AS TOOLS TO HELP IMPROVE THE INTERPRETATION OF 
TOXICOGENOMICS DATA 
 
The interpretation of complex ‘omics data is challenged by a lack of toxicologically-focused 

vocabularies and organizational schemes that can handle this “big data” (Hardy et al., 2012; 

Tcheremenskaia et al., 2012). The functional and statistical EcoToxModules attempt to fill this 

gap using two distinct yet mutually reinforcing approaches. The main advantage of the functional 

EcoToxModules is that they can help to identify the main biological processes affected by 

different exposures because they provide a concise summary and organization of known 

pathways that are relevant to toxicology. However, they are limited to including genes with 

functional annotation, which is less extensive in ecological species compared to popular 

mammalian models. By providing a data-driven organization of the active transcriptional space 

that is unbiased by functional annotation, the main strength of the statistical EcoToxModules is 
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that they can help to uncover novel toxicity mechanisms and biomarkers within the complex 

data.  

 

While the EcoToxModules address the call from groups like the OpenTox Association for more 

practical methods to organize and describe complex biological data (Hardy et al., 2012; 

Tcheremenskaia et al., 2012), and thus offer exciting new possibilities for synthesizing 

toxicogenomics data, they also have limitations. For example, one limitation of the statistical 

method is that users must use their own judgment to decide whether module fold changes are 

meaningful. In the future, we plan to use RNAseq data collected by the EcoToxChip project 

(Basu et al., 2019) to quantify the baseline variability of module responses within control 

samples to estimate module-specific thresholds that, when surpassed, suggest true biological 

responses. It was not possible to do this in the present study because of the variation in 

experimental design, including control choice, across the original studies (Table S1). Other 

limitations relate to uncertainty about how this new approach to analyzing toxicogenomics data 

will be received by potential users across academia, government, and industry. While this study 

is a start, further research that seeks to understand user experiences across a range of case studies 

within different decision-making contexts is needed to guide the continued development and 

validation of new methods for analyzing toxicogenomics data. 

 

Despite these limitations, both the statistical and functional EcoToxModules distill 

toxicogenomics data down to simple, quantitative results that represent major trends within the 

whole transcriptome. In doing so, they improve the comparability and interpretability of 

toxicogenomics data in several ways, compared to traditional methods. Since there is a small 
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number of modules and they have quantitative responses, they are easier to visualize using tools 

such as heatmaps and bar plots. Also, they focus on toxicologically relevant genes and pathways, 

which makes their responses easier to interpret in the context of ecotoxicological sciences and 

regulatory decision-making activities. Applied together, the two sets of EcoToxModules are 

complementary and powerful new approach methods for exploiting existing knowledge of 

molecular pathways to improve understanding of and find meaning in complex toxicogenomics 

data from ecological species.  

 

4.5 SUPPORTING INFORMATION 
• Detailed methodology for co-expression analysis 

• Additional results from mapping microarray probes to the fathead minnow genome 

• Additional statistical characteristics of the EcoToxModules 

• Tables summarizing sample meta-data, probes in each EcoToxModule, and gene set 

analysis results 
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CONNECTING PARAGRAPH 
 
Chapter 4 presented the EcoToxModules, which in part aim to improve communication of 

complex toxicogenomics results to a broad audience. Transcriptomic dose-response modeling, 

the subject of chapter 4, can also be thought of as a tool for communicating toxicogenomics 

results to a non-bioinformatics audience. Dose-response analysis is a cornerstone of chemical 

risk assessment, and as such, statistics such as benchmark doses (BMD) and points of departure 

(POD), as well as the theory behind them, are already familiar to both toxicology scientists and 

regulators. Applying dose-response methods to transcriptomics data translates it into a familiar 

framework, while maintaining the rich mechanistic detail that toxicogenomics data captures. 

However, existing software requires users to process and normalize their transcriptomics data 

before performing curve fitting, can be very slow for large datasets, and must be locally installed. 

Thus, there is a need for more user-friendly and accessible options. 

 

Chapter 5 is on FastBMD, a web-based tool for rapid transcriptomic dose-response modeling that 

goes from raw counts tables to results visualization. It was accepted for publication in 

Bioinformatics in February of 2021 (volume 37 (7), pages 1035-1036). The candidate is the sole 

first author, and additional co-authors are Othman Soufan, Jianguo Xia, and Niladri Basu. While 

the format of a Bioinformatics Application Note requires a short word count, there is 

considerable additional methodological details and case study results within the supplementary 

materials (provided in the thesis appendix), and in the FAQ and Tutorial pages of the web-tool 

(www.fastbmd.ca).  
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CHAPTER 5. FASTBMD: AN ONLINE TOOL FOR RAPID BENCHMARK 
DOSE-RESPONSE ANALYSIS OF TRANSCRIPTOMICS DATA 
 
 
Jessica D. Ewald1, Othman Soufan1, Jianguo Xia1, Niladri Basu1 
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Canada 

 

5.1 ABSTRACT 
 
Motivation: Transcriptomics dose-response analysis is a promising new approach method for 

toxicity testing. While international regulatory agencies have spent substantial effort establishing 

a standardized statistical approach, existing software that follows this approach is 

computationally inefficient and must be locally installed. 

Results: FastBMD is a web-based tool that implements standardized methods for 

transcriptomics benchmark dose-response analysis in R. It is >60 times faster than the current 

leading software, supports transcriptomics data from 13 species, and offers a comprehensive 

analytical pipeline that goes from processing and normalization of raw gene expression values to 

interactive exploration of pathway-level benchmark dose results.   

Availability: FastBMD is freely available at www.fastbmd.ca  

Contact: jeff.xia@mcgill.ca or niladri.basu@mcgill.ca 

Supplementary information: Supplementary data are available at Bioinformatics online. 
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5.2 INTRODUCTION 
 
Dose-response analysis (DRA) is a classic method in toxicology used to identify the dose of a 

chemical that causes a predetermined change in a physiological response; traditionally, this 

would be an apical outcome such as mortality. This identified dose, called the benchmark dose 

(BMD), is a key component for developing regulatory standards that aim to protect human and 

ecological health from adverse effects associated with exposure to chemicals.  

 

Benchmark doses derived from transcriptomics data from short-term exposures are similar to 

BMDs derived from apical outcomes from long-term exposures (Thomas et al., 2013). Thus, 

there has recently been a concerted effort by regulatory agencies, including the US National 

Toxicology Program (NTP) and Health Canada, to develop standardized methods for DRA with 

transcriptomics data (Farmahin et al., 2017; US NTP, 2018, Table S1). The leading tool, 

BMDExpress, is a Java-based software that follows these standardized transcriptomics DRA 

methods (Phillips et al., 2019). However, it is computationally intensive, requires local 

installation, and is not easily integrated with the wealth of bioinformatics resources available in 

R.  

 

Here, we present FastBMD, a computationally efficient implementation of the NTP’s approach 

to transcriptomics DRA (US NTP, 2018). FastBMD is a freely available web-based software 

(www.fastbmd.ca) that supports BMD analysis at the gene, pathway, and transcriptomic levels. 

FastBMD currently supports microarray and RNA sequencing transcriptomics data from 13 

species (Table S2), and also includes an annotation-free pipeline for gene and transcriptomic-

level BMD analysis for non-model organisms. 
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5.3 IMPLEMENTATION 
Previous work demonstrated that core non-linear curve fitting algorithms can be efficiently 

implemented in R (Larras et al., 2018; Ritz et al., 2015). This provided the foundation for 

FastBMD as an R-based DRA software that follows the NTP approach (US NTP, 2018).  

 

Prior to curve fitting, a matrix of expression values is annotated (Table S2), summarized at the 

gene level, filtered according to abundance and variance thresholds, and normalized. Genes are 

filtered according to fold-change and p-value thresholds to eliminate those that are unlikely to 

have dose-dependent behaviour prior to the computationally intensive curve fitting step. For 

DRA, model parameters are found for up to 10 statistical models using base R non-linear search 

functions (Larras et al., 2018; Ritz et al., 2015), and filtered with a lack-of-fit p-value threshold 

(US NTP, 2018). The best-fit model is selected for each gene. The gene-level BMD (geneBMD) 

and its upper and lower 95% confidence interval are calculated using the likelihood-profiling 

method based on the mean and standard deviation of control expression values (US NTP, 2018; 

Ritz et al., 2015). GeneBMDs are filtered to remove any that occur above the highest measured 

dose, or that have a wide confidence interval (US NTP, 2018). The transcriptomic-level 

(omicBMD) is calculated using the distribution of geneBMDs (Pagé-Larivière et al., 2019). 

Pathway-level BMDs are calculated as the bootstrapped median of geneBMDs within each 

pathway. Finally, the gene, pathway, and transcriptomic-level results are integrated with 

interactive plots and tables (Fig. 5-1 A). Detailed explanations of each component of the analysis 

can be found in the “FAQ” and “Resources” tabs on www.fastbmd.ca. 
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Figure 5-1: FastBMD performance. A) Snapshot of interactive gene, pathway, and 
transcriptomic BMD visualization in FastBMD for the TRBZ (13 weeks) dataset. B) Comparison 
of elapsed time during curve-fitting between FastBMD (yellow) and BMDExpress (grey) for 24 
datasets. C) OmicBMDs from FastBMD and BMDExpress for 24 datasets. 
 

FastBMD was implemented based on the PrimeFaces (v8.0) component library 

(http://primefaces.org/) and R (version 3.6.2). The interactive features were developed using 

Plotly.js (https://plot.ly). The system is hosted on a Google Cloud instance (12 virtual CPUs, 

70GB RAM), except for curve fitting which is computed in parallel through a microservice 

hosted on a dedicated server (24 cores, 128GB RAM) using SpringBoot.  

 

5.4 MATERIALS AND METHODS 
 
The performance of FastBMD was compared to that of BMDExpress 2 with microarray data 

measured in adult rats from 24 separate dose-response experiments (Table S3) (Thomas et al., 

2013). Data were quantile normalized in R, and then analyzed using both FastBMD and 

BMDExpress on a Macbook Pro with 4 cores and 8 GB RAM. Genes that did not have a fold 

change of at least two for any dose group compared to the control were filtered out. All statistical 

models other than 3º and 4º polynomials were fit to the expression of each remaining gene. More 

methodological details are given in the supplementary materials.  
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5.5 RESULTS AND DISCUSSION 
 
FastBMD was over 60 times faster than BMDExpress, taking 0.18 hours to compute geneBMDs 

for all 24 experiments compared to 11.03 hours for BMDExpress (Fig. 5-1B). The omicBMDmode 

from each experiment were extremely similar with an even distribution around the 1:1 line and 

an R2 of 0.997 (Fig. 5-1C). Sources of variation in the results between the two software are 

discussed in the supplementary materials. The increased efficiency can be mainly explained by 

the curve fitting algorithm. In FastBMD, parameters are roughly estimated using the input data, 

and then fed into a modern non-linear parameter search algorithm that quickly either converges 

or fails. In contrast, BMDExpress searches the parameter space until either a solution is found, or 

the user-specified timeout period is surpassed.     

 

FastBMD is designed to be a flexible tool that can accommodate diverse transcriptomics data. It 

addresses reproducibility by allowing users to download results after each analytical step and 

generate summary reports. Since it is implemented in R, FastBMD is uniquely positioned to 

leverage existing statistical packages to rapidly implement future updates as the regulatory and 

scientific communities continue to refine the recommended approach. In the future, we plan to 

incorporate knowledgebases of environmental chemical concentrations, expanded gene-set 

libraries, and baseline gene expression levels in common target tissues to provide additional 

context for the BMD results. 
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CONNECTING PARAGRAPH 
 
Chapter 6 is on EcoToxXplorer, a web-based tool for analyzing transcriptomics data within the 

context of environmental toxicology. At the time of publication, EcoToxXplorer was split into 

three modules: 1: EcoToxChip Analysis, 2: Raw RNA-seq Processing, and 3: RNA-seq 

Analysis. Since publication of the Chapter 6 manuscript, the raw RNA-seq processing module 

has been expanded into EcoOmicsAnalyst and the RNA-seq analysis module has been 

incorporated into ExpressAnalyst, a more general platform for RNA-seq analysis. The 

EcoToxChip analysis module, at the time of publication and now, forms the core of 

EcoToxXplorer.  

 

The selection of genes to include on the EcoToxChips was significantly informed by the 

functional EcoToxModules (Chapter 4), and the EcoToxModules are incorporated into 

visualizations and gene set analysis throughout the EcoToxChip analysis pipeline. In the spirit of 

design-thinking, significant updates were made to the EcoToxModules as we learned more about 

how they were used as they were incorporated into EcoToxXplorer. Since the publication of the 

Chapter 6 manuscript, a dose-response pipeline was added to the EcoToxChip module in 

EcoToxXplorer that uses the core algorithm from Chapter 5.  

 

This chapter was published as a focus article in the journal Environmental Toxicology and 

Chemistry in November of 2021. The paper has two co-first authors: the candidate, and Othman 

Soufan, formerly a post-doc at McGill University and now an assistant professor at St. Francis 

Xavier University in Nova Scotia, Canada. It is additionally co-authored by Guangyan Zhou, 

Orcun Hacariz, Emily Boulanger, Alper James Alcaraz, Gordon Hickey, Steve Maguire, 
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Guillaume Pain, Natacha Hogan, Markus Hecker, Doug Crump, Jessica Head, Niladri Basu (the 

candidate’s supervisor), and Jianguo Xia. Supplemental information is provided in the thesis 

appendix. 
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6.1 TRANSCRIPTOMICS DATA ARE TRANSFORMATIONAL YET CHALLENGING 
 
The generation and use of transcriptomics data across the life sciences have risen sharply in 

recent years driven largely by advances in biotechnology and computational biology.  Within the 

field of environmental toxicology, the data being generated from these efforts are providing 

important insights into stressor-induced perturbations at the molecular-level and helping increase 

understanding of causal linkages to connect such molecular perturbations with adverse outcomes 

at the whole organism level (Villeneuve et al., 2014).  Despite impressive advances in these 

areas, the scope and pace of adoption of transcriptomics approaches in the practices of chemical 

risk assessment and environmental management have generally not met the expectations of their 

proponents (Mondou et al. 2021; Pain et al. 2021).  

 

A major challenge with transcriptomics data is that they can be complex and difficult for users to 

distill and synthesize into clear and actionable insights. Transcriptomics technologies can 

generate a tremendous amount of data, and accordingly the handling and analysis of these data 

require powerful computers and comprehensive databases along with bioinformatics and 

programming know-how.  Even studies of a few dozen genes can prove difficult for many users 

in terms of data management, analysis and interpretation. These challenges are compounded for 

ecological species, which have far fewer and less developed knowledgebases and user-friendly 

software tools compared to common model organisms.  Further, tools that do exist are generally 

designed for ‘omics specialists rather than novice users.  

 

Even though regulatory science communities are exhibiting increased awareness and acceptance 

of transcriptomics data (Mondou et al., 2020), activities in this field are mostly performed by 
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research institutions and individuals who have deep ‘omics expertise and capabilities but tend to 

focus on fundamental biological questions (Health Canada 2019; Pain et al., 2021). For example, 

results from an online survey of 29 Canadian risk assessors revealed that the application of 

toxicogenomics data is marginal; 85% of respondents indicated that they never or rarely used 

such data (Vachon et al., 2017). Thus, while toxicogenomics data are now plentiful, their 

analysis and interpretation remain concentrated in the hands of a small group of domain experts. 

To help realize the potential for toxicogenomics data to transform chemical risk assessment, new 

tools are urgently needed to help novice users translate transcriptomics data efficiently and 

effectively into meaningful information and actionable knowledge. 

 

6.2 DEMOCRATIZING ‘OMICS DATA VIA WEB-BASED VISUAL ANALYTICS 
 
Over the years, authors of this paper have developed and published a series of web-based tools 

for metabolomics, transcriptomics, microbiomics, and multi-omics integration to help users 

translate complex ‘omics data into biological insights and actionable knowledge (Table 6-1). 

These tools have been gaining popularity among diverse user communities since their initial 

releases.  As an example, over the last 12 months, the MetaboAnalyst platform has processed 

>3.8 million data analysis jobs submitted from >120,000 users worldwide.  We have 

purposefully developed these tools to help users, including novice ones, overcome difficulties 

associated with the sheer size and complexity of big data as elaborated upon below. 

 

In terms of the sheer size of big data, raw datafiles are typically gigabytes in size and usually 

require the use of a high-performance computing center and command-line programming scripts, 

and thus are generally not accessible to the novice user. Such barriers are now being overcome 
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by innovations in computing technologies. Specifically, cloud computing services offer access to 

scalable high-performance computing power without the need for on-site hardware resources.    

When these cloud-based services are coupled with powerful, modern web browsers, efficient and 

easy-to-use software platforms can be developed. Such innovations have helped spur the 

development of computational platforms (e.g., Galaxy, KNIME, along with our tools listed in 

Table 6-1), that in recent years have started to make ‘omics data analysis more accessible, 

reproducible, and standardized for users. 

 

Table 6-1: A list of web-based tools for ‘omics data analytics that team members have 
developed. The user statistics are based on Google Analytics (retrieved in May 2021).  The 
metabolomics and microbiome data analysis tools are species agnostic and applicable to both 
model and non-model species.  The transcriptomics data analysis tools are species dependent, 
though NetworkAnalyst, FastBMD, and Seq2Fun can support generic species based on KEGG 
orthologs as well as custom annotations.  OmicsAnalyst can integrate different ‘omics data in a 
species independent manner. 
 

Tool Purpose First 
released 

Current 
version 

Users/ 
year 

Jobs / 
year 

MetaboAnalyst.ca Analyze metabolomics data 2009 5.0 135,000 3,800,000 
NetworkAnalyst.ca Analyze transcriptomics data 2014 3.0 43,500 540,000 

MicrobiomeAnalyst.ca Analyze microbiomics data 2017 1.0 24,000 100,000 

FastBMD.ca Calculate transcriptomics 
benchmark doses 2020 1.0 

insufficient data 
Seq2Fun.ca 

Functionally quantify 
RNAseq data in non-model 

organisms 
2020 1.0 

EcoToxXplorer.ca 
(current study focus) 

Analyze transcriptomics 
(EcoToxChip) data in an 
ecotoxicological context 

2021 1.0 

OmicsAnalyst.ca Integrate multi-omics data 2021 1.0 
 
 

In terms of the complexity of big data, advanced data management skills, statistical analysis 

tools, and visualization methods, along with a keen sense of the scientific context, need to be 

brought together to deal with the challenge of extracting biological meaning from datasets that 
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tend to be large and complicated. Concerning data management and statistical analysis, most 

environmental researchers tend to rely on simple spreadsheets and these do not work well (nor 

scale well) for big data. Many environmental researchers are also used to visualizing each 

measured variable individually to decide which statistical methods to apply in each case. This 

approach is not feasible for ‘omics datasets, where instead the general approach is to uniformly 

apply relatively simple and well-established statistical models, and then to visually assess the 

results afterwards to ensure that nothing has gone drastically wrong. Many statistical methods 

commonly used for “small data” do not work well for big data due to the high dimensionality 

and heterogeneity characteristics of most ‘omics datasets, and so it is important to use well-

established bioinformatics methods that have been proven robust under these conditions. 

 

The scientific community now accepts that there has been an over-reliance on p-values obtained 

from routine statistical analyses, and that they should only be treated as one input amongst others 

into an overall evidence base. Rather than base conclusions primarily on a strict cut-off (i.e. p-

value < 0.05), researchers are advised to compare and contrast the results from different 

analyses, while also evaluating scientific practices and contextual evidence (e.g., study design, 

biological plausibility) to obtain a comprehensive and deeper understanding of their data. Visual 

analytics has emerged as a promising solution to help extract even more biological meaning from 

any given dataset by combining human (i.e., pattern discovery through visualization) and 

computational (i.e., pattern validation through analytics) capabilities.  In doing so, visualization 

tools such as interactive statistics and graphical plots that link to functional knowledgebases help 

make complex data more accessible and usable, while also engaging and empowering users to 

explore data in a user-friendly and iterative manner. This exemplifies the open data concept in 
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data science and contrasts with the perception of many bioinformatics pipelines as closed (black-

box approach) to end users.  

 

One challenge associated with the open data concept concerns reproducibility where different 

algorithms, parameters, and their combinations may generate vastly different results.  A lack of 

standardization has been flagged as a key obstacle for the regulatory uptake of toxicogenomics 

data (Pain et al., 2020), thus necessitating the need for data analysis tools that are built on rigid 

and predefined workflows.  While it is necessary and technically feasible to build out such data 

analysis tools, there is also a need to achieve some balance between flexibility and 

standardization given that scientific discoveries sometimes arise from open ended exploration of 

large datasets.  This balanced approach underpins the wide acceptance of the web-based tools 

developed by some of the authors (Table 6-1), and several features are included in these tools to 

ensure reproducibility.  For example, each analysis session automatically records the procedures 

and parameters used, and these are captured in a detailed PDF report that documents each step 

(for general users) along with the underlying R command history (for those familiar with 

programming).   In addition, the FAQ and tutorials pages provide guidance on the most 

appropriate analysis parameters. 

 

6.3  OBJECTIVE 
 
Actors in the fields of chemical risk assessment and environmental management express 

tremendous interest in harnessing the power of transcriptomics data, yet the lack of standardized 

and validated bioinformatics tools to help organize, analyze, visualize, and interpret the data 

remain key barriers in doing so (Health Canada 2019; Pain et al., 2021).  Motivated by our 
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team’s experiences outlined above, the objective of this project was to design EcoToxXplorer as 

a next-generation bioinformatics tool that is high performance (i.e., scalable for large data or user 

traffic), intuitive to use (i.e., enables complex analytics via a simple interface), and universally 

accessible (i.e., web-based and user-friendly design) to handle transcriptomics data for the 

purpose of chemical risk assessment and environmental management.   

 

Transcriptomics data in ecotoxicology is highly variable and can range from information on a 

few well-curated genes to the entire transcriptome, as well as from species with no (or limited) 

genomic understanding to those with fully characterized genomes.  EcoToxXplorer was initially 

designed to handle data from these diverse situations though in recent updates we have focused 

the tool to handle data specifically from EcoToxChips.  Foremost behind this decision is that the 

development of EcoToxXplorer falls under the EcoToxChip project which aims to develop, test, 

validate, and commercialize quantitative PCR arrays (EcoToxChips) and a data evaluation tool 

(EcoToxXplorer) for the characterization, prioritization, and management of environmental 

chemicals and complex mixtures of regulatory concern (Basu et al. 2019).  Briefly, EcoToxChips 

consist of ~370 evidence-based gene targets carefully selected from a combination of input from 

domain experts (e.g., review of ecotoxicogenomics literature including AOPs), bioinformatics 

analyses of relevant datasets (e.g., de novo experiments performed through EcoToxChip project), 

and consultation with regulatory stakeholders to include genes they are familiar with and trust.  

EcoToxChips are manufactured through a commercial partnership with Qiagen (Frederick, 

Maryland, USA) in an ISO-compliant facility and available through a global distribution 

network.  In terms of EcoToxXplorer’s ability to handle other transcriptomics needs, for 

processing raw RNAseq data, EcoToxXplorer’s home page has a ‘Raw RNAseq Processing’ 
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module button that is detailed in Supporting Information 1.  For the analysis of the entire 

transcriptome, the home page has a ‘RNAseq Expression Profiling’ module button that will route 

users to NetworkAnalyst, where we have expanded the number of annotation resources and 

analysis pipelines for ecological species.  For the study of organisms without a reference 

transcriptome (or one that is poorly annotated), we recently developed Seq2Fun available 

through the EcoOmicsAnalyst portal (www.ecoomicsanalyst.ca). 

 

6.4 DESIGN THINKING 
 
To ensure that end-user input and feedback were integrated systematically into every aspect of 

EcoToxXplorer (from overarching design, to key features, to user experience), the team 

leveraged a design thinking approach.  Grown from roots in the fields of architecture and 

engineering in the 1950’s and 60’s, design thinking is an approach to problem solving that 

employs tools and methods typically used by designers. Designers strive to solve the problems of 

existing and prospective users, placing users’ needs and inputs at the core of design thinking and 

its five components or “modes” – empathize, define, ideate, prototype, and test – as represented 

in Figure 1: 

- “Empathizing” entails learning about users’ values, behaviors, and experiences; 

- “Defining” translates empathizing into an actionable problem statement; 

- “Ideating” generates and explores design alternatives; 

- “Prototyping” turns ideas into interactive models; and, 

- “Testing” helps to gather feedback, refine models, and continue to learn about users. 

By fostering collaborative, iterative, and meaningful engagements with the user community, 

design thinking can contribute to lowering knowledge barriers faced by nonexpert users, a 
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necessary condition for the adoption of complex innovations such as the use of transcriptomics 

data for regulatory decision-making (Pain et al., 2021).    

 

Accordingly, the development of EcoToxXplorer followed a design thinking process, which was 

in fact, built into all activities of the EcoToxChip project (Figure 6-1).  Notably, over 100 project 

partners representing 67 distinct institutions informed the project with experience and knowledge 

on a range of topics pertinent to toxicity testing (e.g., animal species, new approach methods, 

‘omics measures), user communities (e.g., government scientists and regulators, industry, 

contract research organizations, academics, non-governmental organizations), and decision-

making goals (e.g., chemical read across, screening and prioritization, environmental monitoring, 

basic research, etc.).  These, and other, diverse perspectives have helped shape the design of 

EcoToxXplorer.  
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Figure 6-1: Design thinking components and activities therein that underpinned the development and 
evaluation of EcoToxXplorer. 
 

Activities to map out both EcoToxXplorer’s macro- and micro-level features were needed 

(Supporting Information 2). At the macro-level, the ‘recipient system’ within which 

EcoToxXplorer was to operate needed to be understood to help ensure that the tool could be 

integrated into existing routines and decision-making processes of users. Therefore, mapping out 

this system warranted an understanding of diverse aspects, ranging from the design of standard 

chemical exposure studies and the types of genomic data that EcoToxXplorer would handle, to 

how it would interface with transcriptomics data from EcoToxChips and other sources, to the 

process by which users would engage with EcoToxXplorer including their work routines and 

associated ‘pain points’. At the micro-level, EcoToxXplorer needed to be designed by 

identifying, developing, testing, and optimizing key features of interest to users and their 

particular needs.  Key design thinking activities we undertook are outlined in Figure 6-1, and 

identified macro and micro-level design features are summarized in Table 6-2. 
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Table 6-2: Key features identified through design thinking activities. These design features are 
described in more detail in the following sections. 
 

Macro-level features Micro-level features 

Give analysis pipeline a toxicology 
context 

• Curate genes included on the EcoToxChips 
based on input from domain experts and 
regulatory stakeholders 

• Integrate toxicology-specific knowledgebases 
(EcoToxModules; AOPWiki) 

• Provide option for dose-response analysis 

Help users navigate the complex 
results 

• Edit gene symbols and names to be more 
familiar 

• Offer interactive visual analytics 
• Connect the big picture (EcoToxModules) to the 

granular details (statistics/plots for individual 
genes) 

• Generate comprehensive reports  

Standardize analysis across species 

• Lock down analysis pipeline regardless of 
species 

• Provide comparable biological coverage across 
species (i.e., common core genes) 

• Harmonize knowledgebases across species 

Ensure novice users can 
comfortably use the tool 

• Identify and flag low-quality data 
• Provide established statistical methods 
• Choose appropriate parameter defaults 
• Ensure design pipeline is “error proof” by not 

allowing incorrect combinations of parameters 
• Offer clear documentation, tutorials, and case 

studies 
 

 

6.5 OVERVIEW OF ECOTOXXPLORER 
 
EcoToxXplorer version 1 (available at www.EcoToxXplorer.ca) was built between 2017 and 

2020 and has been modelled after successful cloud-based tools developed by team members 

(Table 6-1), most notably NetworkAnalyst.ca, which currently processes over 500,000 

transcriptomic jobs per year.  EcoToxXplorer has been developed with careful attention to 

employing best practices and standards to help realize a user-friendly tool (Helmy et al., 2016), 
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specifically designed for the analysis of ecotoxicogenomics data. We note that side-by-side 

comparisons of results derived from EcoToxXplorer with alternate data analysis methods (e.g., 

programming in R, spreadsheets in Microsoft Excel) were regularly conducted by different 

project team members on diverse datasets to ensure that there was 100% concordance between 

workflows. 

 

EcoToxXplorer was implemented based on the PrimeFaces (v10.0) component library and R 

(version 4.0.2). Visual analytic tools were developed using several JavaScript visualization 

components, including CanvasXpress, E-Charts, and Plotly.js. Interactive (2D) network 

visualization was realized through Sigma.js.  The system is hosted on a Google Cloud n1-

highmem-8 instance (64 GB RAM and eight virtual CPUs with 2.6 GHz each).   

 

The web interface has evolved since its inception (Supporting Information 3), and the current 

version has links to pages that provide detailed FAQs, tutorials, updates, contact information, 

and project management login information (Figure 6-2A).  Through the home page, users can 

access three main modules: 1) EcoToxChip Analysis; 2) RNAseq Expression Profiling; and 3) 

Raw RNAseq Processing.  Once a specific module has been selected, users are then directed to 

that module’s upload page within which there are example datasets to help users navigate the 

tools (Figure 6-2B).  The ‘RNAseq Expression Profiling’ module routes users to 

NetworkAnalyst, where we have integrated annotation resources and analysis pipelines for 

ecological species that were curated as part of the EcoToxChip project. The ‘Raw RNAseq 

Processing’ module button routes users to https://galaxy.ecotoxxplorer.ca as detailed in 

Supporting Information 1. Within each module, navigation panels highlight the user’s current 
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execution step as well as the remaining ones (Figure 6-2C). Each module also includes options to 

generate and download figures, input and export data files, and track the history in R.  There is 

no cost in using EcoToxXplorer, and users can register to set up a project management account. 

Registered users may store up to 10 projects, which may be used for up to one year to keep track 

of selected parameters, re-perform analyses, and save time uploading files.   

 

Figure 6-2: Screenshots of EcoToxXplorer’s interface design. A) Home page with links to FAQs, 
tutorials, user accounts and other resources, along with entry points into the three main modules: 1) 
EcoToxChip Analysis; 2) RNAseq Expression Profiling; and 3) Raw RNAseq Processing. B) For the 
EcoToxChip Analysis module, three example datasets are provided to help the user learn how to 
navigate EcoToxXplorer. C) A navigation panel is provided to inform the user of their current 
processing step. 

Note, in this paper we focus mainly on the ‘EcoToxChip Analysis module’ because developing 

the EcoToxChip data analysis pipeline was the primary motivation for developing 

EcoToxXplorer (Basu et al., 2019). The ‘Raw RNAseq Processing’ module is detailed in 

Supporting Information 1, and the ‘RNAseq Expression Profiling’ module is detailed in the 

NetworkAnalyst tool. 
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Figure 6-3: Data processing workflow of EcoToxXplorer.  All major steps are listed with key 
aspects summarized. 
 

 

6.6 NAVIGATING ECOTOXCHIP ANALYSIS 
 
The general workflow for using EcoToxXplorer to analyze EcoToxChip data is shown in Figure 

6-3 and includes six key steps: 1) data upload, 2) quality check and normalization, 3) differential 

expression analysis, 4) EcoToxModules, 5) visual analytics, and 6) report generation.   

 
Step 1: Data upload  

EcoToxXplorer was designed to handle gene expression data arising from EcoToxChips that 

were run in a wide range of study conditions from investigation of single samples to 

concentration-response analysis of multiple treatments.  The raw data generated from 

EcoToxChips consists of a table of gene names and corresponding Ct values (cycle threshold; 

point at which the fluorescent signal crosses a threshold in the qPCR instrument).  Users can 

upload files with a maximum size of 50 MB (though a typical file is less than 10 KB), and data 

can be uploaded as a group of CSV files.  
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EcoToxChips are currently designed to handle 384- and 96-well microplate formats for six 

different species, including three laboratory model species that represent the most important 

vertebrate groups in ecological risk assessment (fish: fathead minnow; bird: Japanese quail; 

amphibian: Xenopus laevis), as well as three native species that are representative of Canadian 

ecosystems and actively monitored by current Environment and Climate Change Canada 

programs (fish: rainbow trout; bird: double-crested cormorant; amphibian: Northern leopard 

frog). Species and version-specific data annotation are built into EcoToxXplorer and linked to 

the data at the upload step and are necessary to enable downstream functional analyses 

(Supporting Information 4). 

 

Step 2: Quality check and normalization 

EcoToxXplorer allows users to assess the distribution of EcoToxChip data through an interactive 

diagram that provides an overview of Ct values averaged across all plates as well as values from 

individual plates (see ‘1. Data Upload’ in Figure 6-3).  In addition, EcoToxChips contain in-plate 

proprietary controls developed by Qiagen, which can be interrogated through features built into 

EcoToxXplorer.  There is a single Genomic DNA Contamination (GDC) control well that 

contains primers that only amplify genomic DNA and not cDNA.  Amplification with a Ct value 

<35 in considered to indicate that genomic DNA is present in the sample.  There are also three 

Reverse Transcription Control (RTC) wells that detect an artificial external RNA control 

sequence spiked into the cDNA synthesis reaction.  The RTC well can be used to assess the 

efficiency of the reverse transcription reaction when analyzed in conjunction with the three 

Positive PCR Control (PPC) wells.  The latter contain pre-dispensed external DNA templates of 
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known copy numbers, which produce a defined cycle threshold (Ct) value under ideal PCR 

conditions.  A difference in Ct values between the average of the RTC wells and the average of 

the PPC wells of ≤ 5, signifies that the reverse transcription reaction was efficient.  In addition to 

these controls, each EcoToxChip plate has five reference (housekeeping) genes that are used to 

normalize the data.  The Ct values of each of these genes are compared across groups using 

ANOVAs.  If there are statistically significant differences between housekeeping genes across 

treatment groups, or if the RTC or PPC controls exceed certain thresholds, then EcoToxXplorer 

will return an “inquiry” comment.  This indicates that the user should look more closely at the 

raw data to determine the source of the issue and take further action.  For each of these quality 

check factors, criteria for success are defined along with visual diagnostic plots to help support 

decision-making. Users are given the option of removing individual samples through the “Data 

Editor” if they fail multiple QA/QC criteria. 

 

Once the overall quality of the data has been verified, users can next focus on outlier detection 

and normalization.  In terms of outliers, options are provided to filter particular wells, to set a Ct 

cut-off, and to impute non-detect values.  These can be tested iteratively to evaluate their impact 

on the final dataset.  In terms of normalization, EcoToxXplorer provides two widely-used 

options; Delta Ct normalization and quantile normalization. In the ‘Data Normalization’ page, 

diagnostic plots (i.e., scatterplot, box plot, PCA plot, and density plot) are available to visualize 

the effects of data normalization.  This empowers users to deeply investigate their data, make 

decisions on how to best deal with genes that do not amplify or are not detected, and which 

normalization steps should be taken.  As an example, we illustrate pre-processing effects on 

density and PCA plots before and after normalization (Supporting Information 5). 
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Step 3: Differential expression analysis 

Users can generate differentially expressed gene (DEG) lists, by selecting a particular statistical 

approach (parametric or non-parametric) and significance thresholds of interest (i.e., p-value and 

fold change).  The initial result will be a simple tally of the number of significant genes that are 

up- and down-regulated.  This is followed by a detailed table of computed statistics (i.e., fold 

changes and p-values) for each gene, along with an option to view the gene expression data as 

bar charts.  When available, each Gene ID is hyperlinked to its corresponding page on NCBI 

from which a user can obtain more information.  The adjusted p-value is calculated using the 

False Discovery Approach to account for multiple testing. To facilitate navigation and visual 

assessment of the result table, genes that are significantly up-regulated are highlighted in light 

red, and those that are significantly down-regulated are highlighted in light green. Given that the 

Adverse Outcome Pathway (AOP) concept is of interest to our community (Villeneuve et al., 

2014), many genes selected for inclusion on EcoToxChips are also ones that can be mapped to 

AOP(s) and their underlying Key Events (KE).  To draw attention to these specific genes, we 

developed a separate tab which allows users to view genes according to a given AOP or KE. The 

AOP and KE names hyperlink directly to the corresponding entry in the AOPWiki (aopwiki.org) 

led by the OECD’s Extended Advisory Group for Molecular Screening and Toxicogenomics 

(EAGMST) group.  Finally, a static volcano plot is provided that summarizes all the gene 

expression values while highlighting those that are statistically significant and meet a certain fold 

change cut-off. 

 

Step 4: Functional analysis based on EcoToxModules 



 129 

The ecological species in EcoToxXplorer include some with official genomes that have been 

annotated with gene names, gene ontology terms, and KEGG pathways (e.g. Japanese quail) and 

others with no existing resources (e.g. Double-crested cormorant). We intentionally designed the 

analytical pipeline to accommodate this range of pre-existing resources by focusing the 

functional interpretation on our previously developed EcoToxModules (Ewald et al., 2020), 

custom toxicology-focused gene sets that can be defined for transcript sequences from any 

species. Specifically, these functional EcoToxModules were identified by re-organizing 172 

KEGG pathways into modules that are more relevant to ecotoxicology based on input from 

expert scientists and regulators. In doing so, we identified 21 biological modules (which we term 

EcoToxModules), which are further organized into five larger physiological process (signaling, 

metabolism, immune, endocrine, cellular processes; which we term EcoToxProcesses). Since 

there are only 377 genes on the EcoToxChips, most individual KEGG pathways have none or 

only a handful of representative genes, making them unsuitable for overrepresentation pathway 

analysis. The larger EcoToxModule gene sets do not suffer from this problem, and thus all 

pathway analysis embedded in the downstream visual analytics tools are conducted with the 

EcoToxModule and EcoToxProcess gene sets. 

 

The EcoToxModule data are presented in both tabular and graphical formats, with the 

corresponding data summarizing gene expression values for all genes in a given module and not 

just those that are differentially expressed.  A threshold toggle is provided to the user to flag 

whether the sample is “yellow” or “red”, which can aid in screening, prioritizing and visualizing 

the results.  Currently, these threshold values are uniformly applied and arbitrary (similar to the 
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use of a logFC threshold in differential expression analysis), though in the future we aim to 

derive data-driven thresholds that are more predictive. 

 

Step 5: Visual analytics 

A key feature of EcoToxXplorer is the development and support for visualization tools (volcano 

plots, Sankey plots, and heat maps) to allow users to interact with their results to gain further 

insights beyond the standard analyses described in earlier sections.  In terms of the volcano plot, 

a static version was provided earlier in the workflow (see ‘Differential gene expression step’ in 

Figure 3), whereas in the Visual Analytics section, we offer a more interactive form in which 

users can click on a particular gene to learn more (e.g., a pop-up violin plot showing the 

expression values of a particular gene across treatment groups), select a certain area of the figure 

to explore deeper into a subset of genes, or sort the displayed genes according to various 

groupings (e.g., a specific EcoToxModule). The Sankey plot allows users to view and explore 

the EcoToxProcess and EcoToxModule data in a more interactive manner.  For example, the 

width of the arrows is proportional to the number of genes a given EcoToxProcess or 

EcoToxModule contains.  A user can click on a given arrow to view which genes are found in a 

given EcoToxProcess or EcoToxModule, along with some key summary statistics for those 

genes.  Additionally, users can move the arrows to create their preferred figure and then 

download a high-quality version.  The final visual analytic method, which complements the other 

two methods, is an interactive heat map allowing users to intuitively view the complete gene 

expression patterns across different EcoToxChips.  Users can apply different clustering 

algorithms and then select regions of interest (i.e. those with clear patterns of change with regard 

to doses or chemical exposures) for more detailed examinations and functional analyses. 
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Step 6: Report generation 

To help support the quality, reproducibility, and reporting of results from a given analysis, we 

developed a report-generating feature into EcoToxXplorer that drew inspiration from: 1) the on-

going Transcriptomics Reporting Framework (TRF) project being led by the OECD Extended 

Advisory Group on Molecular Screening and Toxicogenomics (EAGMST), 2) a SETAC Pellston 

workshop with ideas on how to improve the usability of ecotoxicology data in regulatory 

decision making (Hanson et al. 2017), and 3) guidelines from the Minimum Information About a 

Microarray Experiment effort (MIAME). Thus, when users finish their analysis workflow, they 

are prompted to click the “Report” link from which an options page appears to allow users to 

select which sections they would like included. The default report keeps all sections, including 

an Introduction section (in which the user can input key information on study design) along with 

summaries of all tasks performed in terms of data upload, quality check, normalization, as well 

as key tables and figures from the various analyses performed. Each report is date and time 

stamped.  This report is a key tool to help users properly document their analysis and permit 

reproducible research practices. 

 

In addition to the Analysis Report, the “Download” link in the navigation panel allows users to 

download the processed numeric data, high-resolution images (PNG format), and the R 

command history.  For anonymous or guest users, all raw and processed data files are stored on 

the server in a private folder for 72 hours before being deleted; for registered users, the results 

can be saved for up to one year.  
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Tutorials and Example Datasets 

In order to help users navigate EcoToxXplorer, a number of supportive resources have been 

developed and offered on the website.  First, tutorials are accessible through the ‘Tutorials’ link 

on the home page’s header, within which there are files with step-by-step screenshots on how to 

navigate EcoToxXplorer as well as a video tutorial (https://youtu.be/BonFzvue4tg).  Second, 

EcoToxXplorer currently has over 30 FAQs to complement the information found in the 

tutorials.  ‘Question mark’ icons are also found on many pages that users can click on to learn 

more.  Third, on the Contact page, feedback can be provided through an online form.  Finally, 

there are three example datasets built into EcoToxXplorer that can help users navigate the 

workflow (Japanese quail exposed to chlorpyrifos, Xenopus laevis exposed to 

hexabromocyclododecane, fathead minnow exposed to ethinylestradiol).  These can be accessed 

via the ‘Try Example’ button on the EcoToxChip Analysis page. 

 

6.7 CONCLUDING REMARKS 
 
There is palpable evidence that toxicity testing is undergoing a transformation. Alternatives to 

conventional testing approaches, which are often based on expensive and time-consuming animal 

studies that tend to focus on apical measures (e.g., survival, growth, development), are being 

sought, developed, and validated.  These alternative (or new approach) methods are built on 

advances in biotechnology, focus on comprehensive understanding of molecular and systems 

biology, and favour non-animal testing strategies (i.e. in silico, in vitro and embryo-based 

approaches) that incorporate the “3Rs” principle (reduce, refine, replace).  These alternative 

methods also generate big and complicated data, and thus there is a need to make the analyses 
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standardized and the resulting information more accessible, understandable, and useable to the 

entire user community, not just to bioinformaticians.   

 

In this Focus article, we detail EcoToxXplorer, a next-generation bioinformatics tool that is high 

performance (i.e., scalable for large data or user traffic), intuitive to use (i.e., enables complex 

analytics via a simple interface), universally accessible (i.e. web-based, user-friendly), and built 

to handle transcriptomics data for the purpose of chemical risk assessment and environmental 

management.  In doing so, we also demonstrate how a design thinking approach can bring 

together innovators of new approach methods (i.e., EcoToxXplorer programmers and developers, 

along with toxicologists and social scientists) with adopters (i.e., users from academia, 

government, and industry), and ultimately co-produce a tool that is standardized and trusted to 

help organize, analyze, visualize, and interpret transcriptomics data for the purpose of toxicity 

testing. Moving ahead, we intend to update the tool every few years (as we have done with other 

web-based tools, Table 6-1) based on user feedback and their experiences as well as with 

evolving needs of the field. 
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CHAPTER 7. GENERAL DISCUSSION 
 

7.1 TOXICOGENOMICS TO SUPPORT DECISION-MAKING 
 
My understanding of what “designing toxicogenomics to support decision-making in 

environmental toxicology” (title of this thesis) means has changed greatly since I started my 

doctoral work in 2017. At the outset, I interpreted it as working towards a machine learning 

algorithm that could universally predict toxicity from gene expression data and that would one 

day be capable of replacing some existing regulatory systems. Five years later, I understand that 

the way toxicity is defined is too context-dependent for simple and universal replacement. 

Chemical management is also situational. Within an individual country or province, different 

classes of substances are regulated by different agencies, each with its own legislation and 

mandates. Decisions are not a simple yes or no given by an individual person. Instead, they are 

characterized by large teams of people, integrating multiple data streams over periods of months 

to years, while trying to maintain public trust and balance the (often conflicting) needs of many 

stakeholders.  

 

Over time, my interpretation of “toxicogenomics to support decision-making” has changed to 

making toxicogenomics data analysis and interpretation as accessible to as many people as 

possible. Put another way, my objective has become to empower rather than to replace. This is 

reflected in the breakdown of my work: for every hour spent on developing statistical methods, 

ten were spent on software infrastructure, user interface and user experience (UI/UX) 

considerations, documentation, and tutorials. Toxicogenomics is a rich source of information that 

has the power to transform chemical risk assessment, however, to do so, it must be usable and 

understandable by a broad group of people.  



 137 

 

Figure 7-1: Overview of barriers to toxicogenomics that were addressed by thesis chapters 3 – 6.  
  
 

Chapters 3 – 6 presented various software and tools that contribute towards the goal of making 

toxicogenomics more accessible (Figure 7-1). Chapter 3 addressed raw RNA-seq data processing 

for non-model organisms, which is a large computational barrier (both in terms of computing 

resources and programming expertise) to many researchers working with ecologically relevant 

species. Chapters 4 and 5 addressed difficulties in interpreting and communicating 

transcriptomics data within an environmental toxicology context, through custom gene sets 

aimed at giving a big picture overview of the complicated data (Chapter 4) and dose-response 

methods that translate toxicogenomics results into statistics that are familiar to risk assessors 

(Chapter 5). Chapter 6 presented an analytical tool for EcoToxChips, which make measuring a 

panel of 384 genes more financially viable for labs that already have access to qPCR technology. 

EcoToxXplorer incorporates statistical methods from chapters 4 and 5 and was the original home 

of the raw data processing pipelines that became chapter 3.  
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7.2 DESIGN-THINKING IN CHAPTERS 3-6 
 
Each of chapters 3 – 6 presented snap shots in time of statistical methods and software that have 

been and will continue to be continuously updated and improved. This follows the design-

thinking framework, with its focus on cycles of prototyping and testing. This section highlights 

some of the groundwork and follow-up to methods and software presented in these chapters.  

 

Chapter 3 is the first description of novel statistical methods and software in this thesis, but 

chronologically it is the most recent. However, ExpressAnalyst contains mainly features that 

were split from the NetworkAnalyst software, most recently published in a paper that I was a co-

author of (Zhou et al., 2019). EcoOmicsAnalyst is the continuation of the raw data processing 

pipelines that were initially hosted by EcoToxXplorer (chapter 5) (Soufan and Ewald et al., 

2021). Chapter 3 also describes major updates to the Seq2Fun algorithm, compared to version 

1.0 published in a paper that I was also a co-author of (Liu et al., 2021). The updates to Seq2Fun 

were motivated by various case studies with researchers at McGill University, University of 

Saskatchewan, Huntsman Marine Science Centre, US Geological Survey, and Environment and 

Climate Change Canada, including studies on the endangered copper redhorse, double crested 

cormorant, lobster, sturgeon, and rainbow trout.  

 

Chapter 4 introduces the EcoToxModule gene sets and was published in 2020 (Ewald et al., 

2020). Since then, feedback from researchers within McGill University resulted in an update to 

the KEGG pathways included in the functional modules, which included merging the “Cellular 

Process – Transcription” and “Cellular Process – Protein Production” module into “Cellular 

Process – Transcription and Translation” and adding a “Metabolism – Other” module with more 
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metabolism pathways. The updated EcoToxModules were used by the McGill University 

researchers to compare the transcriptomics response to chlorpyrifos exposures in Japanese quail 

and double-crested cormorant embryos (Desforges et al., 2021). A second update was made in 

2021 to manually add EcoToxModule annotations to all genes included in the EcoToxChips for 

Japanese quail, African clawed frog, and fathead minnow, and this version was incorporated into 

EcoToxXplorer (chapter 6) (Soufan and Ewald et al., 2021). These additional annotations were 

also incorporated into the files for analyzing transcriptomics data. The most recent version of the 

EcoToxModule gene sets is available on the “Resources” tab of www.ecotoxxplorer.ca. 

 

Since its publication in 2020, FastBMD (chapter 5) has been updated to include fathead minnow, 

rainbow trout, and Seq2Fun ortholog ID and pathway files, as requested and published by users. 

(Alcaraz et al., 2021; Alcaraz et al., 2022) In addition, the dose-response algorithm has been 

incorporated into the EcoToxChip pipeline in EcoToxXplorer, which involved developing 

custom normalization methods to enable non-linear curve fitting for qPCR data. Evaluation and 

publication of the qPCR pipeline are still underway.  

 

7.3 ADDITIONAL OBSTACLES FACING TOXICOGENOMICS FOR REGULATORY 
DECISION-MAKING 
 
In addition to “complexity of data analysis and interpretation”, Pain et al., identified “insufficient 

validation” and “lack of standardization” as obstacles to the adoption of toxicogenomics for 

chemical risk assessment (Pain et al, 2020). The OECD defines validation as demonstrating the 

reliability and relevance of a given method to a specific use case (Environment Directorate, 

2005). In the context of toxicogenomics, establishing reliability has mainly meant demonstrating 

reproducibility of results between laboratories, platforms, and time points (Eskes and Whelan, 
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2016), while establishing relevance has meant demonstrating that use of ‘omics data leads to 

superior biological understanding (Pettit et al, 2010). Achieving widespread validation is further 

complicated by the fact that each government agency and use case may require different criteria 

(Malloy et al., 2017). Addressing concerns about validation is largely beyond the scope of this 

thesis, especially because these activities are typically driven by institutions such as the OECD 

and involve coordination of multiple laboratories and government agencies (Mondou et al., 

2021). However, the software presented in this thesis could make such validation efforts easier 

by making uniform analytical workflows accessible to many different people in different 

locations. This could also contribute towards improving the reproducibility of toxicogenomics 

approaches.  

 

The lack of standardization for toxicogenomics data is being addressed by efforts such as the 

transcriptomics reporting framework (Gant et al., 2017), an international and multi-institution 

collaboration to establish parameters and methodology that should be reported by all ‘omics 

studies that are conducted within a regulatory context. A similar effort is underway for qPCR 

data, and we have been in contact with people involved in this effort to ensure that each analysis 

parameter in the reporting framework is exposed by EcoToxXplorer workflows so that users can 

report them. In the future, the plan is to incorporate the reporting framework parameters into the 

PDF report that can be generated at the end of the EcoToxChip analytical pipeline.  

 

7.4 STRENGTHS AND LIMITATIONS OF THIS THESIS 
 

7.4.1 LIMITATIONS  
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This thesis focused on developing toxicogenomics methods and software for ecological species. 

One limitation is the types of species that were included in the definition of “ecological species”, 

which in this thesis were limited to non-mammalian vertebrate species (ie. representatives of 

birds, fishes, and amphibians). Chapter 3, with its scope of enabling raw RNA-seq reads 

processing and analysis for any eukaryotic species, did cover more taxonomic categories. 

However, even this chapter was biased towards vertebrate species as these taxonomic categories 

were better represented by both reference transcriptomes for Kallisto, and in transcriptomes 

included in the ortholog databases for Seq2Fun. This reflects the bias towards vertebrate species 

in published whole genomes (Liu et al, 2021). Chapters 4 – 6 used exclusively vertebrate 

species. Important plant (ie. Arabidopsis) and invertebrate species (ie. Daphnia) are used in 

toxicity testing (Jonczyk and Gilron, 2005; Cobbett, 2003), however these were largely beyond 

the scope of this thesis. This is partly because this research was connected to the EcoToxChip 

project, which is based on vertebrate representatives of fish, bird, and frog species as part of an 

effort to address ethical concerns related to animal toxicity testing according to the “3Rs” 

principles of reduction, replacement, and refinement (Basu et al., 2019).  

 

The focus on using toxicogenomics data from ecologically relevant species also limited the 

scope of statistical methods that could be investigated and developed, due to the lack of large, 

uniform datasets that are well-suited for predictive modeling. There are large transcriptomics 

datasets available for mammalian species (both in vivo and in vitro) that include exposures to 

hundreds or thousands of compounds such as TG-GATES, DrugMatrix, and the LINCS L1000 

datasets (Igarashi et al., 2015; Svoboda et al., 2019; Subramanian et al., 2017). These datasets 

have enabled the development of statistical models for predicting adverse outcomes from gene 



 142 

expression data (Mohsen et al., 2021; Ganter et al., 2006; Gusenleitner et al., 2014). The largest 

dataset from ecological species in this thesis was the fathead minnow dataset used to develop the 

statistical EcoToxModules in chapter 4 (sample size n = 303 microarray profiles). To achieve 

this size, samples were combined from 11 studies that used different exposure methods, creating 

a heterogeneous dataset that was not well suited for predictive modeling. However, since the 

beginning of this thesis, the EcoToxChip RNA-seq dataset has been collected (n > 700 samples 

across six species, eight chemicals, and multiple life stages), which I have begun using for 

preliminary cross-species analysis after processing all samples with Seq2Fun. There are also 

initiatives such as the US EPA’s TARGET EcoTox Challenge to promote the creation of 

medium-to-high throughput toxicogenomics tools for ecological species. Hopefully, activity like 

this will spur research on predictive toxicogenomics models for ecologically relevant species in 

the coming years.  

 

7.4.2 STRENGTHS 
 
Overall, this thesis presents user-friendly software that make toxicogenomics analysis accessible 

to researchers with no previous training in bioinformatics. In my experience, it typically takes 

someone who already has previous training in both college-level biology and statistics three to 

four months of focused learning (the equivalent of one graduate-level bioinformatics course) 

before they can confidently perform basic differential expression and pathway analysis in R. This 

is consistent with concerns that increasing capacity for toxicogenomics is expensive and time 

consuming (Balbus and Environmental Defense, 2005; ECETOC 2007). With the software in 

this thesis, multiple researchers that I have worked with have been able to perform this standard 

analysis, as well as more advanced toxicogenomics analysis, interpretation, and visualization 
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tasks, after one to two weeks of exploring the example datasets, tutorials, and FAQs provided 

online. Empowering more toxicologists to directly perform toxicogenomics analysis will help 

with the effort to integrate big molecular data into the activities of environmental toxicology 

research programs and government agencies worldwide (Thomas et al., 2019). 

 

One strength of this thesis was the number of people who were involved across all the chapters, 

both those on the co-author lists and those listed in the acknowledgement sections. Working with 

and alongside the EcoToxChip project (www.ecotoxchip.ca) gave me access to a group of ~160 

people that work in academia, government, and industry (Basu et al., 2019). Previous sections of 

this thesis have discussed the design thinking framework, and it was the involvement of this 

large group of people that made applying this framework possible. Working with such a diversity 

of expertise and qualifications continually stretched my understanding of toxicity testing, and 

what needs to happen to create change in this field. This learning is mainly reflected in choices to 

include simpler and better understood statistical methods in the software developed for chapters 

3 – 6, rather than the most novel and cutting edge possible. This focus is supported by the 

conclusions and recommendations of Pain et al. 2020:  

“We observed that an innovation-centric perspective appears to have dominated 

discourse about the adoption of toxicogenomics in chemical risk assessment during 

the period 1998–2017, with proponents extolling the tools’ putative superior and 

novel functionality but overlooking the tools’ and data sets’ understandability, ease 

of use, and fit with users’ routines. We recommend that more attention be placed on 

ensuring the simplicity and compatibility of toxicogenomics tools and data, as well 

as creating opportunities for potential adopters to experiment with them directly 
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(trialability) and vicariously (observability). We also conclude that the innovation-

centric perspective would be usefully balanced with an adopter-centric one that 

highlights the importance of skill development and organizational learning in the 

adopting system.” 

 

This quote highlights an additional unexpected strength of this thesis. While the methods and 

software were created mainly for researchers to use to analyze their data, over time they have 

also shown their usefulness as educational tools. Since each of the software are web-based and 

have built in example datasets, it is extremely easy to invite people to pull up the websites and 

start interacting directly with toxicogenomics data and workflows. Throughout my PhD, this has 

happened many times, both formally during conference presentations, workshops, and courses, 

and informally during conference networking sessions or after meetings. I am also aware of 

several professors who have incorporated FastBMD (chapter 5) into their undergraduate 

toxicology courses.  
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CHAPTER 8. GENERAL CONCLUSION 
 
 
This thesis used a design-thinking framework to design new statistical methods and 

corresponding software for analyzing and visualizing toxicogenomics data to support decision-

making in the context of environmental toxicology. By focusing on the needs of end-users, a 

focus was put on making the software easy to understand and use. Together, the software 

described in this thesis provide a powerful toolkit for analyzing transcriptomics data from 

ecological species for toxicogenomics applications. Specifically, there are tools to support data 

analysis for raw data processing (EcoOmicsAnalyst), filtering, normalization, and differential 

analysis (ExpressAnalyst, EcoToxXplorer, and FastBMD), dose-response modeling (FastBMD 

and EcoToxXplorer), visual analytics and figure preparation (ExpressAnalyst, FastBMD, and 

EcoToxXplorer), and various knowledgebases focused on toxicology and ecological species 

(EcoOmicsDB, EcoToxXplorer – EcoToxModules and AOPwiki genes). These methods and 

software reduce barriers to toxicogenomics analysis for people who do not have computing 

resources, programming skills, advanced statistical training, and knowledge of bioinformatics 

databases. 
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APPENDIX: SUPPLEMENTARY INFORMATION FOR CHAPTERS 3-6 
 

SI FOR CHAPTER 3 
 

 
Figure S1. Difference in ortholog mapping systems between Seq2Fun version 1.0 and version 
2.0. 
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Table S1: Significantly enriched pathways for case study #1 - zebrafish, Kallisto dataset. 
 

Pathway Total Hits FDR Library 

OBS20 
Proteolysis 457 9 0.00283 GO BP 

Lipid metabolic process 163 6 0.00283 GO BP 

Xenobiotic metabolic process 4 2 0.00733 GO BP 

Extracellular region 574 10 0.019 GO CC 

Protein methyltransferase activity 534 13 0.000414 GO MF 

Aldo_keto reductase (NADP) activity 22 4 0.000551 GO MF 

Phosphatase inhibitor activity 100 5 0.0122 GO MF 

Lipid transporter activity 56 4 0.0122 GO MF 

Cytochrome_c oxidase activity 112 5 0.0133 GO MF 

Unfolded protein binding 135 5 0.0262 GO MF 

Calmodulin binding 298 7 0.0268 GO MF 

Growth factor binding 91 4 0.0391 GO MF 

Metabolism of xenobiotics by cytochrome P450 37 5 1.21E-05 KEGG 

Metabolic pathways 1500 15 9.81E-05 KEGG 

Drug metabolism - cytochrome P450 34 4 0.000172 KEGG 

Glutathione metabolism 59 4 0.0012 KEGG 

Drug metabolism - other enzymes 66 4 0.0015 KEGG 

alpha-Linolenic acid metabolism 18 2 0.0388 KEGG 

OBS30 
Proteolysis 457 29 1.83E-08 GO BP 

Lipid metabolic process 163 13 0.000232 GO BP 

Lipid transport 60 7 0.004 GO BP 

Immune response 181 10 0.0418 GO BP 

Extracellular region 574 32 5.96E-08 GO CC 

Extracellular space 382 17 0.00982 GO CC 

Unfolded protein binding 135 18 1.69E-09 GO MF 

Calmodulin binding 298 23 7.64E-08 GO MF 

Growth factor binding 91 13 2.36E-07 GO MF 

Protein methyltransferase activity 534 23 0.00139 GO MF 

Lipid transporter activity 56 7 0.00193 GO MF 

Receptor binding 13 4 0.00217 GO MF 
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Enzyme inhibitor activity 88 8 0.00387 GO MF 

Phosphatase inhibitor activity 100 8 0.00832 GO MF 

Aldo_keto reductase (NADP) activity 22 4 0.0132 GO MF 

Steroid biosynthesis 19 4 0.016 KEGG 

PFOS 
G_protein coupled receptor signaling pathway 732 36 0.0138 GO BP 

Transmission of nerve impulse 11 4 0.0156 GO BP 

Response to wounding 12 4 0.0156 GO BP 

Ion transport 424 23 0.0242 GO BP 

Response to stress 16 4 0.0319 GO BP 

Extracellular region 574 41 3.63E-07 GO CC 

Enzyme inhibitor activity 88 16 3.75E-08 GO MF 

Protein serine/threonine/tyrosine kinase activity 673 35 0.000666 GO MF 

Transmembrane signaling receptor activity 178 14 0.00592 GO MF 

Cysteine_type peptidase activity 11 4 0.00592 GO MF 

Amino acid transmembrane transporter activity 18 4 0.0387 GO MF 

Neuroactive ligand-receptor interaction 499 38 1.16E-11 KEGG 
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Table S2: Significantly enriched pathways for case study #1 - zebrafish, Seq2Fun dataset.  
 
     Pathway Total Hits FDR Library 

OBS20 
Extracellular region 772 16 0.000222 GO CC 

Extracellular space 253 9 0.000835 GO CC 

Staphylococcus aureus infection 77 4 0.0331 KEGG 

OBS30 
Proteolysis 553 24 0.00109 GO BP 

Lipoprotein metabolic process 16 5 0.00237 GO BP 

Lipid transport 61 7 0.0163 GO BP 

Immune response 117 9 0.0203 GO BP 

Signal transduction 1080 31 0.0234 GO BP 

Extracellular region 772 55 8.20E-21 GO CC 

Extracellular space 253 20 3.16E-07 GO CC 

Hormone activity 90 13 1.08E-06 GO MF 

Iron ion binding 99 11 0.000192 GO MF 

Oxidoreductase activity, acting on paired donors, with 
incorporation or reduction of molecular oxygen 66 8 0.00225 GO MF 

Peptidase activity 325 17 0.00225 GO MF 

Serine_type peptidase activity 89 9 0.00225 GO MF 

Serine_type endopeptidase activity 126 10 0.00499 GO MF 

Heme binding 92 8 0.0162 GO MF 

Oxidoreductase activity 472 18 0.0459 GO MF 

Cholesterol metabolism 90 10 0.000158 KEGG 

Cytokine-cytokine receptor interaction 319 16 0.00151 KEGG 

Fat digestion and absorption 65 7 0.00385 KEGG 

Staphylococcus aureus infection 77 7 0.00869 KEGG 

IL-17 signaling pathway 127 8 0.0264 KEGG 

Vitamin digestion and absorption 47 5 0.0264 KEGG 

Malaria 73 6 0.0264 KEGG 

Steroid biosynthesis 28 4 0.0264 KEGG 

Neuroactive ligand-receptor interaction 604 19 0.0264 KEGG 

African trypanosomiasis 58 5 0.0473 KEGG 

PFOS 
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Signal transduction 1080 73 5.64E-17 GO BP 

G protein_coupled receptor signaling pathway 626 41 6.23E-08 GO BP 

Immune response 117 12 0.00517 GO BP 

Extracellular region 772 65 1.70E-17 GO CC 

Extracellular space 253 20 0.000601 GO CC 

G protein_coupled receptor activity 566 38 1.37E-07 GO MF 

Hormone activity 90 15 3.15E-07 GO MF 

Cytokine activity 62 10 0.000277 GO MF 

Cytokine-cytokine receptor interaction 319 32 1.75E-13 KEGG 

Neuroactive ligand-receptor interaction 604 39 9.44E-11 KEGG 

IL-17 signaling pathway 127 16 6.80E-08 KEGG 

TNF signaling pathway 183 16 1.03E-05 KEGG 

Rheumatoid arthritis 152 13 0.000175 KEGG 

Toll-like receptor signaling pathway 156 13 0.000195 KEGG 

Malaria 73 8 0.00204 KEGG 

JAK-STAT signaling pathway 199 13 0.00204 KEGG 

Th17 cell differentiation 176 12 0.00238 KEGG 

Pertussis 125 10 0.0024 KEGG 

Lipid and atherosclerosis 352 17 0.00459 KEGG 

C-type lectin receptor signaling pathway 203 12 0.00663 KEGG 

NF-kappa B signaling pathway 174 11 0.00663 KEGG 

Viral protein interaction with cytokine and cytokine receptor 104 8 0.0124 KEGG 

Chagas disease 194 11 0.0146 KEGG 

Inflammatory bowel disease 84 7 0.0154 KEGG 

Relaxin signaling pathway 231 12 0.0159 KEGG 

Primary immunodeficiency 47 5 0.0282 KEGG 

Estrogen signaling pathway 226 11 0.04 KEGG 

Th1 and Th2 cell differentiation 135 8 0.0473 KEGG 

Hepatitis B 271 12 0.0473 KEGG 

Leishmaniasis 108 7 0.0473 KEGG 

Non-alcoholic fatty liver disease 272 12 0.0473 KEGG 
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Table S3: Significantly enriched pathways for case study #1 - lobster, Seq2Fun dataset for the 
POSl vs. CTRL contrast. There were no significantly enriched pathways for the WAF_72 vs. 
CTRL contrast.  
 

Pathway Total Hits FDR Library 
Metabolic process 102 7 0.000372 GO BP 

Oxidoreductase activity 479 13 0.00226 GO MF 

Hydrolase activity 1050 19 0.00226 GO MF 

Hydrolase activity, acting on glycosyl bonds 85 6 0.00434 GO MF 

Diacylglycerol O_acyltransferase activity 3 2 0.0445 GO MF 

Metabolic pathways 2360 35 5.93E-05 KEGG 

Biosynthesis of secondary metabolites 727 15 0.00758 KEGG 

Carbohydrate digestion and absorption 34 4 0.00799 KEGG 
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Table S4: Significantly enriched pathways in the list of up-regulated genes from case study #2. 
 

Pathway Total Hits FDR Library 
Osteoclast differentiation 162 22 1.04E-05 KEGG 

MicroRNAs in cancer 215 23 0.000207 KEGG 

TNF signaling pathway 148 18 0.000342 KEGG 

Transcriptional misregulation in cancer 324 26 0.00362 KEGG 

Lipid and atherosclerosis 307 25 0.00362 KEGG 

MAPK signaling pathway 334 26 0.00455 KEGG 

Small cell lung cancer 129 14 0.00685 KEGG 

Adipocytokine signaling pathway 92 11 0.0138 KEGG 

Parathyroid hormone synthesis, secretion and action 125 13 0.0142 KEGG 

Cholesterol metabolism 66 9 0.0149 KEGG 

IL-17 signaling pathway 115 12 0.0179 KEGG 

Bladder cancer 56 8 0.0179 KEGG 

Toxoplasmosis 150 14 0.0179 KEGG 

Plasma membrane 975 63 0.022 GO CC 

Protein tyrosine kinase activity 63 12 0.0264 GO MF 

NF-kappa B signaling pathway 140 13 0.0272 KEGG 

Growth hormone synthesis, secretion and action 143 13 0.0309 KEGG 

Phospholipase D signaling pathway 200 16 0.0325 KEGG 

Ferroptosis 50 7 0.0337 KEGG 

Pathways in cancer 703 39 0.0349 KEGG 

Biosynthesis of nucleotide sugars 52 7 0.0363 KEGG 

Human T-cell leukemia virus 1 infection 308 21 0.0363 KEGG 

Glutathione metabolism 67 8 0.0363 KEGG 

Amino sugar and nucleotide sugar metabolism 71 8 0.0481 KEGG 
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Table S5: Significantly enriched pathways in the list of down-regulated genes from case study 
#2. 
 

Pathway Total Hits FDR Library 
Mitochondrial inner membrane 148 39 7.05E-19 GO CC 

Oxidative phosphorylation 188 37 1.12E-17 KEGG 

Diabetic cardiomyopathy 314 47 1.12E-17 KEGG 

Cardiac muscle contraction 99 28 1.12E-17 KEGG 

Mitochondrion 443 64 3.77E-17 GO CC 

Thermogenesis 281 43 1.59E-16 KEGG 

Non-alcoholic fatty liver disease 227 35 1.93E-13 KEGG 

Prion disease 368 44 5.45E-13 KEGG 

Chemical carcinogenesis - reactive oxygen species 299 38 5.31E-12 KEGG 

Citrate cycle (TCA cycle) 50 15 5.98E-10 KEGG 

Biosynthesis of secondary metabolites 599 51 1.24E-09 KEGG 

Carbon metabolism 191 27 1.24E-09 KEGG 

Hypertrophic cardiomyopathy 93 18 1.20E-08 KEGG 

Dilated cardiomyopathy 105 18 8.67E-08 KEGG 

Retrograde endocannabinoid signaling 158 22 8.67E-08 KEGG 

Amyotrophic lateral sclerosis 484 40 3.16E-07 KEGG 

Respirasome 39 13 4.53E-07 GO CC 

Electron transport chain 31 12 3.45E-06 GO BP 

Z disc 8 6 2.07E-05 GO CC 

Tricarboxylic acid cycle 31 11 2.60E-05 GO BP 

Calcium ion binding 443 44 3.44E-05 GO MF 

Sarcolemma 14 7 6.68E-05 GO CC 

Glycolysis / Gluconeogenesis 108 14 0.000118 KEGG 

Pyruvate metabolism 67 11 0.000118 KEGG 

Arginine and proline metabolism 58 10 0.000191 KEGG 

Sarcoplasmic reticulum 7 5 0.000264 GO CC 

Arrhythmogenic right ventricular cardiomyopathy 80 11 0.000615 KEGG 

Cysteine and methionine metabolism 73 10 0.00138 KEGG 

Mitochondrial matrix 38 9 0.00138 GO CC 

Catalytic activity 384 36 0.00147 GO MF 

ECM-receptor interaction 156 15 0.0017 KEGG 
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Adrenergic signaling in cardiomyocytes 175 16 0.00176 KEGG 

Mitochondrial respiratory chain complex IV 11 5 0.00339 GO CC 

Central carbon metabolism in cancer 98 11 0.00342 KEGG 

Calcium signaling pathway 276 20 0.00543 KEGG 

Basement membrane 21 6 0.0086 GO CC 

Oxidoreductase activity 451 37 0.014 GO MF 

Pyridoxal phosphate binding 51 10 0.014 GO MF 

Propanoate metabolism 39 6 0.0158 KEGG 

Oxidoreductase activity, acting on NAD(P)H 11 5 0.016 GO MF 

Biosynthesis of amino acids 141 12 0.0191 KEGG 

beta-Alanine metabolism 28 5 0.0193 KEGG 

Glycolytic process 31 8 0.0255 GO BP 

Muscle organ development 11 5 0.0348 GO BP 

Valine, leucine and isoleucine degradation 48 6 0.0396 KEGG 

Starch and sucrose metabolism 48 6 0.0396 KEGG 

cGMP-PKG signaling pathway 199 14 0.0409 KEGG 

Oxidative phosphorylation 12 5 0.0462 GO BP 
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SI FOR CHAPTER 4 
 
In addition to the textual supplementary tables provided below, there is an Excel spreadsheet 

with supplementary tables S1-S9 in the Supporting Information section of the published 

manuscript. It can be found at 

https://pubs.acs.org/doi/10.1021/acs.est.9b06607?goto=supporting-info. 

 

WGCNA workflow used to define the statistical EcoToxModules 

Prior to computing pairwise co-expression between genes, the microarray data were first 

processed, background corrected and normalized with the limma R package using functions 

developed for the Agilent platform and parameters for single-channel microarrays (Langfelder et 

al., 2008; Ritchie et al., 2015). The “normexp” method (offset = 16) was used for background 

correction (Edwards, 2003; Silver et al., 2008), and the “quantile” method was used for between-

array normalization. Probes were ranked by their variance and the lowest 15% across all datasets 

were removed. Previous work has shown that removing up to 50% of genes based on variance 

can decrease the false positive rate during differential expression analysis (Bourgon et al., 2010). 

Since we combined data from multiple studies, we chose 15% with the rationale that a threshold 

as high as 50% may filter out many genes that were significantly perturbed by only a few of the 

exposure conditions. We did not attempt to account for potential batch effects because it has 

been shown that Pearson correlation is a valid method of computing connections between 

microarray probes using the WGCNA workflow, even in the presence of significant batch effects 

(Li et al., 2018).  
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The matrix of normalized gene expression values was transformed into a similarity matrix by 

calculating the absolute value of the pairwise Pearson correlation of the probes. Next, a soft 

threshold parameter (b) was chosen such that the adjacency function transforms the similarity 

matrix to one that approximates scale-free topology (Yip et al., 2007). For each b = [2, 4, … 20], 

the similarity matrix was raised to the power b, and the mean connectivity and a scale-free 

topology fit index were calculated. Since connectivity decreases as b increases, the lowest b 

parameter that resulted in an R2 > 0.8 was selected (b = 8, Figure S1). The similarity matrix was 

further transformed using the topological overlap measure (TOM), which uses information from 

neighboring nodes to reduce the effect of random noise on inferred connections between genes 

(Yip et al., 2007).  

 

Hierarchical clustering and the dynamic tree cut algorithm were used to detect clusters in the co-

expression network (Langfelder et al., 2008). First, the dissimilarity matrix, computed as 1 – 

TOM similarity matrix, was hierarchically clustered into a dendrogram using the average linkage 

distance measure. The dynamic tree cut algorithm was then used to detect clusters within the 

dendrogram. The algorithm has parameters that can be changed to adjust the cluster detection 

sensitivity. A low sensitivity results in a smaller number of larger clusters, while high sensitivity 

results in a larger number of smaller clusters (Langfelder et al., 2008). Since clusters with a 

small number of genes (< 10) are difficult to annotate using gene set analysis, larger clusters are 

generally preferable; however, directly detecting clusters with a low sensitivity can miss 

important groups of co-expressed genes. For this reason, initial cluster detection was done with 

high sensitivity (deepSplit parameter = 3), and then clusters were merged if their dissimilarity 

score was less than 0.3 (Langfelder et al., 2008) (Figure S2).   
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Figure S1: Elbow plots used to select the soft threshold parameter. The first plot displays the 
R2 of fitting the scale free model to the adjacency network for different values of the soft 
threshold (b). The second plot displays the mean node connectivity (calculated as the mean sum 
of edges from each node) for different values of the soft threshold. The objective here is to use 
the two plots to maximize the scale free model fit and the mean connectivity simultaneously. 
Here, selecting b = 6 or 8 would be acceptable. We chose b = 8.  
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Figure S2: Dendrogram showing the location of the original and merged clusters. Each leaf 
in the dendrogram corresponds to one probe. Probes were hierarchically clustered based on their 
pairwise correlation scores. The first band shows the locations of the clusters detected with a 
deepSplit parameter of 3. Each cluster is given a distinct colour. The second band shows the 
locations of the clusters after being merged. Clusters were merged if the dissimilarity score 
between their eigengenes (computed using pairwise eigengene correlation) was < 0.3.  
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Figure S3: Results of the microarray probe re-annotation. Pie chart shows the proportions of 
microarray probes mapped to different locations on the fathead minnow reference genome using 
BLASTn. “Aligned to ZF transcript” were significantly (e-value < 10-6) mapped to a transcript 
homologous to a coding transcript from the zebrafish genome, “aligned to AUGUSTUS 
transcript” were significantly mapped to a transcript predicted as a coding gene by the 
AUGUSTUS software and not mapped to a ZF transcript, “Predicted non-coding” were mapped 
to location with no coding transcript prediction, “no mapping” were not significantly mapped to 
any location, and “ambiguous” were significantly mapped to multiple locations. Density plots 
show the distribution of probe expression values across all n = 303 microarray samples for each 
re-annotation category.  
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Figure S4: Pairwise overlap coefficient between functional EcoToxModules. Each square in 
the heatmap displays the Jaccard index between a pair of functional EcoToxModules. The 
Jaccard index is computed as the number of intersecting genes divided by the size of the union of 
the two gene sets. 
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Figure S5: R2 of statistical EcoToxModule eigengene expression. The eigengene expression is 
calculated as the 1st principal component of the probe fold changes with a module. Purple bars 
correspond to statistical EcoToxModules and orange corresponds to functional EcoToxModules. 
Statistical EcoToxModules with an “*” have at least one significantly enriched KEGG pathway 
(adj. p-val < 0.05, FDR). 
 



 167 

 
 
Figure S6: Similarity of statistical and functional EcoToxModules. The first heatmap 
displays the Jaccard index between pairs of one statistical and one functional EcoToxModule. 
The Jaccard index is computed as the number of intersecting genes divided by the size of the 
union of the two gene sets. The second heatmap displays the number of overlapping genes 
between pairs of one statistical and one functional EcoToxModule. Statistical EcoToxModules 
with an “*” have at least one significantly enriched KEGG pathway (adj. p-val < 0.05, FDR).  
References 
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SI FOR CHAPTER 5 
 
SM Table 1: Comparison of FastBMD to popular dose-response software. The platform type 
impacts accessibility and flexibility, with web platforms being the most accessible and R being 
the most flexible. Speed is estimated relative to the other software, with one check representing 
the slowest and three being the fastest. See Figure 1 for a more detailed speed comparison with 
BMDExpress 2. “Batch analysis” refers to the ability to upload and process multiple 
transcriptomics dose-response matrices at one time. 
Software FastBMD BMDExpress 

2 
BMDS 3 PROAST DROmics 

Platform Web Locally 
installed** 

Locally 
installed*** 

R and Web R and Web 

Speed   * R: * 
Web: * 

R:  
Web:  

Number of 
continuous 
models 

10 10 10 47 7 

Interactive 
data 
visualization 

Yes Yes No No No 

Designed for 
transcriptomics 

Yes Yes No No Yes 

Supports batch 
analysis 

No Yes No No No 

Supports gene 
set analysis 

Yes Yes NA NA No 

Follows NTP 
approach 

Yes Yes NA NA No 

Citation NA (Phillips et 
al., 2019) 

(Davis et 
al., 2011) 

(Hardy et al., 
2017) 

(Larras et 
al., 2018) 

 
*: This software is not purposefully designed for transcriptomics data, thus additional code must 
be written by the user to automate curve fitting for 100s – 1000s of genes. The time it would take 
to develop this additional code is not considered in the speed ranking. 
**: BMDExpress 2.0 is compatible with Windows, Mac OSX, and Linux operating systems. 
***: BMDS 3.0 is compatible with Windows operating systems. Microsoft Excel must also be 
installed.  
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SM Table 2: Species and annotation ID types supported by FastBMD. Specific supported 
microarray platforms can be found by visiting www.fastbmd.ca, choosing the organism of 
interest from the “Specify Organism” dropdown menu, and then consulting the “ID type” 
dropdown menu. Ens. G = Ensembl Gene; Ens. P = Ensembl Protein; Ens. T = Ensembl 
Transcript; OGS = Official Gene Symbol; ORF = Open Reading Frame. 

Species 
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ns
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G
en

ba
nk

 

U
ni
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St
ri

ng
 

Other  

A. thaliana  
(Arabidopsis) X X X X X X X X  Tair 

B. taurus  
(cow) X X X X X X X X   

C. elegans  
(roundworm) X X X X X X X X X Wormbase 

C. japonica  
(Japanese quail) X X X X X X     

D. melanogaster  
(fruit fly) X X X X X X X X X Flybase 

D. rerio  
(zebrafish) X X X X X X X X X 1 microarray  

G. gallus  
(chicken) X X X X X X     

H. sapiens  
(human) X X X X X X X X  22 microarrays 

M. musculus  
(mouse) X X X X X X X X X 19 microarrays 

R. norvegicus  
(rat) X X X X X X X X  4 microarrays 

S. cerevisae  
(yeast) X X X X X X  X X ORF identifiers 

S. scrofa  
(pig) X X X X X X X X   

X. laevis  
(African clawed frog) X X         
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Comparison between FastBMD and BMDExpress 2 

Datasets 

The performance of FastBMD was compared to that of BMDExpress 2 (Phillips et al., 2019) by 

analyzing 24 previously published microarray dose-response datasets (Thomas et al., 2013) with 

both software. The transcriptomic data were measured in adult rats (Rattus norvegicus) that were 

exposed to five doses of six chemicals for four different exposure durations (five days, two 

weeks, four weeks, thirteen weeks) with Affymetrix HT Rat230+ PM microarrays. This resulted 

in 24 distinct datasets, as described in SM Table 3. Data were downloaded from NCBI’s Gene 

Expression Omnibus (accession = GSE45892). More details on the exposures can be found in the 

original publication (Thomas et al., 2013).  

 

SM Table 3: Description of dose-response experiments used to test FastBMD performance. 
Exposures that generated the previously published datasets used to compare the performance of 
FastBMD to BMDExpress. For dose units: mkd = mg per kg per day; ppm = parts per million.  
CHEMICAL DOSES TISSUE 
1,2,4-Tribromobenzene 
(TRBZ) 

0, 2.5, 5, 10, 25, 75 mkd Liver 

Bromobenzene 
(BRBZ) 

0, 25, 100, 200, 300, 400 mkd Liver 

2,3,4,6-Tetrachlorophenol 
(TTCP) 

0, 10, 25, 50, 100, 200 mkd Liver 

4,4’-Methylenebis(N,N-dimethyl) benzenamine 
(MDMB) 

0, 50, 200, 375, 500, 750 ppm Thyroid 

N-Nitrosodiphenylamine 
(NDPA) 

0, 250, 1000, 2000, 3000, 4000 
ppm 

Bladder 

Hydrazobenzene 
(HZBZ) 

0, 5, 20, 80, 200, 300 ppm Liver 
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Statistical analysis 

Prior to dose-response analysis, each dataset was quantile normalized in R using the ‘limma’ R 

package (Ritchie et al., 2015). FastBMD was run offline on the same computer and using the 

same computational resources as BMDExpress so that the elapsed time for each analysis could 

be directly compared between the two software. Within both software, each of the 24 datasets 

were filtered to remove any probe that did not have a fold-change of greater than two for any 

dose group. For the BMD analysis, all models except for the higher order polynomials (Exp2, 

Exp3, Exp4, Exp5, Linear, Poly2, Hill, and Power models) were fit to the expression values of 

each probe. These model fits were then used to calculate the geneBMDs and their 95% upper 

(geneBMDu) and lower (geneBMDl) confidence intervals. 

 

For BMD analysis in BMDExpress, the following parameters were selected: 
• Maximum Iterations: 250 
• Confidence Level: 0.95 
• Constant Variance: TRUE 
• BMR Type: Standard Deviation 
• BMR Factor: 1 SD 
• Restrict Power: >= 1 
• BMDL and BMDU: Compute but ignore non-convergence in best model selection 
• Best Poly Model Test: Lowest AIC 
• P-value Cutoff: 0.1 
• Number of threads: 8 
• Model Execution Timeout (secs): 30 

 
For BMD analysis in FastBMD, the following parameters were selected: 

• Lack-of-fit p-value: 0.1 
• BMR Factor: 1 SD 
• Control expression: Evaluate model at 0 

 

After gene-level BMD analysis, model fits and geneBMD results were downloaded from both 

software and imported into R. These results were filtered to remove any probes where the 

geneBMD was greater than the highest dose, or where the geneBMDu/geneBMDl was greater 
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than 40. The remaining geneBMDs were used to compute an omicBMD for each dose-response 

experiment using the “mode” method. Curve fitting results were compared between FastBMD 

and BMDExpress based on the time to compute model fits and geneBMDs, number of probes 

that passed each filtering step, omicBMD values, geneBMD values, distribution of best fit 

models, and model fit quality. Model fit quality was assessed using Akaike’s Information 

Criterion (AIC), which is a modified measure of a model’s prediction error that applies 

increasingly large penalties for more complex models. Thus, a model that has a smaller 

prediction error, but many parameters, may have a worse (higher) AIC score than a simpler 

model that has a slightly larger prediction error.  

 

Comparing AIC scores across BMDExpress and FastBMD models was challenging as the AIC 

values returned by BMDExpress and FastBMD were different even when the model had the 

exact same coefficients. Thus, AIC values had to be re-computed in R using the same method for 

both software, however there is no straightforward method to manually create model fit objects 

in R with previously defined coefficients. To overcome this, we re-ran “nls”, a non-linear model 

fitting algorithm in base R, for each model fit. Using the previously found coefficients as starting 

values and restricting the number of iterations forced “nls” to converge on the coefficients from 

FastBMD and BMDExpress, returning model fit objects that could be used to compute the AIC.  
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Results and Discussion 

Some datasets exhibited a much stronger dose-dependent response to chemical exposure than 

others, resulting in different numbers of probes that passed the fold change, curve fitting, and 

BMD filters across the 24 datasets (SM Figure 1). The number of geneBMDs computed for each 

dataset ranged from a minimum of 16 (TTCP – 4 weeks, BMDExpress) to a maximum of 2945 

(NDPA – 5 days, FastBMD). In general, the omicBMDs from both software were similar to each 

other, with an R2 of 0.997 (SM Figure 2a). OmicBMDs were more variable between the two 

software when there were smaller numbers of geneBMDs (Figure 2b). This makes sense as an 

omicBMD that is computed from 10s of geneBMDs likely has more associated uncertainty than 

one that is computed from 100s or 1000s of geneBMDs. 

 

SM Figure 1: Number of probes that passed each filter. Bars show the number of probes that 
passed each of the filtering steps. (blue = FastBMD; pink = BMDExpress; prefilter_n = after fold-
change filter; fit_n = after lack-of-fit p-value filter; bmd_n = after BMD quality filters).  
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SM Figure 2: Comparison of the omicBMDs from FastBMD and BMDExpress. A) 
omicBMDs computed with the “mode” method using both FastBMD and BMDExpress for the 
datasets summarized in SM Table 2. B) log10 of the ratio of BMDExpress:FastBMD omicBMDs 
plotted against the minimum number of geneBMDs used to compute the omicBMD from both 
software. Given that the y-axis is on a log10 scale, the solid red line indicates a fold-change of 1 
(no change), the solid blue line is a fold-change of 2, and the dotted blue line is a fold-change of 
10.  
 

Across all 24 experiments, BMDExpress and FastBMD found 15 479 and 16 394 geneBMDs 

respectively. The majority of the fits were for the same probes (n = 14 598), however 

BMDExpress and FastBMD both found model fits that passed all of the quality criteria for some 

probes (BMDExpress: n = 881; FastBMD: n = 1796) that the other software did not find (SM 

Figure 3a). For the models fit to the unique probes in particular, there was a different distribution 

of best-fitting model types, with BMDExpress tending to find more Hill and Power model fits 

and FastBMD finding more Exponential and Polynomial fits (SM Figure 3b). This shows that 

while neither curve fitting algorithm is the best choice in all scenarios, the FastBMD algorithm 

does find high-quality model fits more often than the BMDExpress algorithm does. 
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SM Figure 3: Overlapped and unique probes with geneBMDs. A) The overlap of probes with 
geneBMDs that passed all quality filters from BMDExpress and FastBMD. B) Percent of best fit 
models of each type that had a geneBMD from one software but not the other (n = 881 for 
BMDExpress; n = 1796 for FastBMD).  
 

The AIC scores were re-computed for the models that were fit to the same probes by both 

software. Overall, AIC scores were able to be re-computed for both the FastBMD and 

BMDExpress model fits for 13 224 out of the 14 598 shared probes (90.6%). AIC scores were 

unable to be computed for all genes since forcing ‘nls’ to rerun with certain restrictions caused 

errors for some data, while loosening the restrictions had the effect of allowing ‘nls’ to find new 

model parameters. Errors were thrown by both FastBMD and BMDExpress models, so we are 

working under the assumption that the re-computed AIC values for 90.6% of probes are 

representative of the full set of models.  

 

The re-computed AIC values were very similar across all probes (SM Figure 4a). Out of the 13 

224 probes with AIC values for both software, 10 080 had the exact same individual parameters 

and model types. They had nearly identical BMDs, except for 18 of the Poly2 fits (SM Figure 

4b). This can be explained by how each software computes the benchmark response (BMR). The 

benchmark response (BMR) is found by evaluating the fitted model at zero, and then either 
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adding or subtracting the standard deviation of the residuals depending on whether the adverse 

direction is positive or negative. In FastBMD, the adverse direction is determined by fitting a 

linear model to the expression values for each probe and seeing if the slope coefficient is positive 

or negative. Since Poly2 curves can change direction, it’s possible for the overall slope to be in 

the opposite direction as when the curve first surpasses one standard deviation of the residuals. 

Thus, on rare occasions (1.4% of Poly2 fits; 18/1282 occurrences), BMDExpress and FastBMD 

can return substantially different gene-level BMDs from the same Poly2 fits. 

 

Probes with different models (n = 3144) produced geneBMDs that were less consistent across the 

two software (SM Figure 4c). The vast majority of these probes (99%) had different best-fitting 

model types, which then returned less similar geneBMDs for the same probe expression values. 

To determine which software tended to find models with higher quality fits, the differences 

between FastBMD and BMDExpress AIC scores were visualized with a density plot (SM Figure 

4d). The differences were negative 59% of the time, indicating that when the software found 

different models, FastBMD found higher quality fits more often than BMDExpress, although 

neither algorithm performed the best in all scenarios. 
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SM Figure 4: Probe-level results from FastBMD and BMDExpress. A) AIC scores for models 
returned by FastBMD and BMDExpress (n = 13 224). B) geneBMD values for models with the 
same type and coefficients from FastBMD and BMDExpress that also have AIC scores (n = 10 
080). Upon investigation, all noticeable outliers are from Poly2 model fits (n = 18 Poly2 outliers). 
C) geneBMD vaues for models with different coefficients and/or types (n = 3144). D) Distribution 
of differences between FastBMD and BMDExpress AIC values from models with different 
coefficients and/or types (n = 3144). Negative and positive differences indicate that the FastBMD 
and BMDExpress models had a higher quality fit, respectively.  
 

The majority of the variation in geneBMDs appears to be from scenarios where BMDExpress 

and FastBMD find different best-fitting model types (SM Figure 4c), even though these model 

fits still had very similar AIC values (SM Figure 4a). It is concerning that two models with 
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almost the same quality fit can produce substantially different BMDs; this may be an inherent 

limitation to using parametric models for BMD analysis. When there were differences in the 

best-fitting model type, FastBMD tended to find higher quality model fits more often than 

BMDExpress (SM Figure 3a, SM Figure 4d), although BMDExpress does perform slightly better 

at computing BMDs from Poly2 fits.  

 

BMDExpress and FastBMD both implement the modeling philosophy that is outlined in the NTP 

approach to transcriptomic dose-response modeling. Even though the NTP recommendations are 

quite detailed, there are still practical design choices that must be made when implementing the 

statistical workflow, for example which non-linear parameter search algorithm to choose or how 

to break ties between model fit AIC scores. For many of these decisions, there isn’t a clear 

choice that performs best in all scenarios. However, despite small implementation differences 

like these, FastBMD and BMDExpress returned the exact same best-fit model for 76% of fitted 

models. When considering both the number of times that both software did not find any model 

and when the software returned the same model across all 24 datasets, FastBMD and 

BMDExpress produced the same results for >99% of the probes.  
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SI FOR CHAPTER 6 
 
Supporting Information 1. Raw RNAseq processing instructions. 

For ‘raw RNAseq processing’, users can click  the appropriate button on the main page, which 

will permit the analysis of their raw data through the Galaxy for Raw Data section of 

EcoToxXplorer [https://galaxy.ecotoxxplorer.ca; which uses our in-house customized Galaxy 

server (Afgan et al. 2018)]. After completing registration, users can upload their data (fastq.gz, 

which can be seen under the shared data section), and then choose the ultra-fast 

pseudoalignment-based method (Kallisto) or the classical spliced aligner (HISAT2) to map raw 

RNAseq data against different species.  In the Kallisto workflow, the raw data are subjected to 

Trim Galore (Galaxy version 0.4.3.1) 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove adapter sequences.  

After this step, trimmed data are mapped to a transcriptome index and read counts for each 

sample are quickly estimated through the pseudoalignment approach of Kallisto (Bray et al., 

2016).  In the HISAT2 workflow, the raw data are subjected to Trim Galore as above-mentioned 

and trimmed data are mapped to the defined genome with the related annotation file (GTF or 

GFF) by HISAT2 (Kim et al., 2015) (Galaxy version 2.1.0).  Read counts for each sample are 

obtained using HTSeq with the intersection-strict mode (Galaxy version 0.9.1) (Anders, Pyl, & 

Huber, 2015).  At the end of both workflows, the read counts for all the processed samples are 

provided in a single tab file.  Further details are described in a tutorial in the Galaxy for Raw 

Data section (https://galaxy.ecotoxxplorer.ca), which also allows users to check the data quality 

with FASTQC (Galaxy version 0.72) 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
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Supporting Information 2. Representative examples of micro and macro features of 

EcoToxXplorer.ca identified through design thinking activities. 
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Supporting Information 3. Evolution of the EcoToxXplorer homepage. 

Circa 2017: 

 
 
Circa 2018: 

 
 
Circa 2019: 

 
 
Current (since 2020): 
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Supporting Information 4. Summary of current species annotation libraries in EcoToxXplorer.  

Note, these will be updated over time with additional species and information to be added. 

Species Data type ID type Functional Annotation  
Coturnix 
japonica (JQ; 
Japanese quail) 

qPCR, 
EcoToxChip 
(v0.1, v1), 
RNA-seq, 
microarray 

Ensembl gene ID, Entrez 
gene ID, Official gene 
symbol 

KEGG (pathways, module, 
process), EcoTox (module, 
process), Gene ontologies  

Pimephales 
promelas 
(FHM; Fathead 
minnow) 

qPCR, 
EcoToxChip 
(v0.1, v1), 
RNA-seq, 
microarray 

Ensembl gene ID, Entrez 
gene ID, Official gene 
symbol, RefSeq gene ID, 
Ensemble Transcript ID, 
Ensemble Protein ID, 
Uniprot protein ID, 
Agilent-019597 FHM 
Denslow (8x15K) 

KEGG (pathways, module, 
process), EcoTox (module, 
process), Gene ontologies 

Xenopus laevis 
(XL; African 
clawed frog) 

qPCR, 
EcoToxChip 
(v0.1), RNA-
seq, 
microarray 

Ensembl gene ID, Entrez 
gene ID, Official gene 
symbol 

KEGG (pathways, module, 
process), EcoTox (module, 
process), Gene ontologies 

Oncorhynchus 
mykiss (RT; 
Rainbow trout) 

RNA-seq, 
microarray 

Ensembl gene ID, Entrez 
gene ID, Official gene 
symbol 

KEGG (pathways), Gene 
ontologies 
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Supporting Information 5. Effects of normalization on density (raw plot A to normalized plot B) 

and PCA (raw plot C to normalized plot D). 

 
 
 
 
 
 


