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Abstract

In this work, we review some of the major results concerning dimension and spectral theory

on self-affine and self-similar fractal sets. After a focused exposition on the underlying

iterated function systems, measure theoretic results are used to determine the Hausdorff

dimension of arbitrary self-similar sets. The dimension is then generalized to classes of

self-affine sets, using the singular value function as well as probabilistic results. A detailed

analysis of the Laplacian is given on the Sierpinski Gasket, to develop extensions of the

classical Szego Limit Theorem. This analysis is predicated upon existence of localized

eigenfunctions, something which cannot be guaranteed on the Koch Snowflake. This work

hence finishes with a review of numerical studies on the Dirichlet and Neumann boundary

value problems for the snowflake domain.
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Abrégé

Dans ce travail, il sera question de certains résultats majeurs sur la dimension et la théorie

spectrale des ensembles fractals auto-affines et auto-similaires. Après une exposition sur la

définition des fonctions itérées sous-jacentes, des résultats de la théorie des mesures sont

utilisés afin de déterminer la dimension Hausdorff d’ensembles auto-similaires arbitraires.

La dimension est ensuite généralisée aux classes d’ensembles auto-affines par le biais de

la fonction valeur singulière ainsi que par des résultats probabilistiques. Une analyse

détaillée du Laplacien est ensuite donnée sur le “Gasket” de Sierpinski afin d’étendre

le théorème classique de Szego sur les limites. Cette analyse repose sur l’existence de

fonctions propres localisées, ce qui ne peut être garanti sur le “flocon de neige“ de Koch.

Ce travail conclut donc sur une revue des études numériques des problèmes aux limites de

Dirichlet et Neumann pour le domaine "flocon de neige".
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Chapter 1

Introduction

This thesis explores the topic of self-similar and self-affine sets, with a focus on dimension

theory as well as the spectrum of the Laplacian on such sets. These fractal sets are a

very rich and beautiful object to study, due to their presence in many fields of research.

Fractals provide a description of many real world objects such as coastlines, mountains,

and rivers. In addition, fractals model many biological objects including blood vessels, the

nervous system, and the human brain. Analysis on fractals has applications in computer

graphics, communications, medical imaging, and economics. Despite such connections to

other fields, the mathematical theory surrounding fractal sets is interesting by itself. In

this thesis, connections will be made between microlocal analysis, graph theory, spectral

theory, and probability.

The second chapter provides the basic infrastructure needed to understand and analyze

fractals. In particular, the various notions of dimension - Hausdorff, Box-Counting, and

Packing, will be introduced. After describing the iterated function systems which define

fractals, the properties of such systems are used to calculate the dimension of self-similar

sets.

In chapter 3, we consider the more general self-affine sets. Via the singular value

function, the dimension of typical self-affine sets is determined, based on the seminal

works of Solomyak and Falconer ([18],[17]). However, there are many exceptional cases,

and thus the second half of this chapter is devoted to the study of such a family of planar

1



sets - Sierpinski Carpets. McMullen’s [16] analysis uses some probability theory notions

and results.

Chapter 4 details the relatively recent papers by Okoudjou et al. on a specific fractal -

the Sierpinski Gasket. After reviewing the well-established theory of the Laplacian on

the gasket, the existence of localized eigenfunctions is used to develop the analogue of

the classical Szego Limit Theorem. This work demonstrates how the spectrum of the

Laplacian can be a critical tool in developing strong theoretical results. Finally, this

chapter culminates with the application of the theory of pseudodifferential operators to

generalize the Szego Limit Theorem.

The fifth chapter of this thesis focuses on the spectrum of the Laplacian on another

specific fractal - the Koch Snowflake. The current most accurate numerical results are

briefly outlined, to give an idea of the behaviour of the spectrum. Unlike the previous

chapter, the theory is much more difficult and underdeveloped, highlighting the criticality

of the localized eigenfunctions. More comments on this issue, and resulting questions will

be explored in the conclusion.
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Chapter 2

Fractals Basics

In this chapter, we present a review of the basic tools needed to understand fractals. This

framework follows that of Chapters 2,3, and 9 of [10].

2.1 Hausdorff Measure and Hausdorff Dimension

We first must introduce the notion of dimension of any set, which is a key property in

being able to understand fractals.

Definition 2.1.1. For U ⊂ Rn nonempty, we define the diameter of U as

|U | := sup{|x− y| : x, y ∈ U}

Definition 2.1.2. Let F ⊂ Rn. If F ⊂ ∪∞i=1Ui where 0 ≤ |Ui| ≤ δ for each i, then we call

{Ui} a δ-cover of F .

Suppose F ⊂ Rn and s ≥ 0. For any δ > 0, we define

Hs
δ(F ) := inf

{
∞∑
i=1

|Ui|s : {Ui} is a δ − cover of F

}
(2.1)

Then, we have the s-dimensional Hausdorff measure:

Hs(F ) = lim
δ→0
Hs
δ(F ) (2.2)
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First, we note that the limit in (2.2) exists for any F ⊂ Rn. Now, from (2.1), it is

clear that for any F ⊂ Rn and δ < 1, Hs
δ(F ) is non-increasing in s. Hence by (2.2), Hs(F )

is non-increasing in s. Moreover, letting t > s and {Ui} be a δ-cover of F , then

∞∑
i=1

|Ui|t =
∞∑
i=1

|Ui|t−s|Ui|s ≤ δt−s
∞∑
i=1

|Ui|s

So we can take infima and get that Ht
δ(F ) ≤ δt−sHs

δ(F ). Letting δ → 0 we see an

important property: if Hs(F ) <∞ then Ht(F ) = 0 for t > s. Hence there is some critical

value of s where Hs(F ) jumps from ∞ to 0, and we call this critical value the Hausdorff

dimension of F , denoted by dimHF (see fig. 2.1 below).

0

0

Hs(F )

∞

sdimHF

Figure 2.1: Plot of Hs(F ) versus s for a set F ⊂ Rn.

Formally, we can write

dimHF = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) =∞} (2.3)

so that

Hs(F ) =


∞ if 0 ≤ s < dimH(F )

0 if s > dimH(F )

and if s = dimH(F ), then Hs(F ) is 0, ∞, or 0 < Hs(F ) <∞.
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2.2 Box - Counting Dimensions

The Hausdorff dimension we introduced in section 2.1 is the principal definition of

dimension for understanding fractals. However, a significant disadvantage of Hausdorff

dimension is that it can often be difficult to compute (for example if the associated IFS,

to be introduced later, does not consist of contracting similarities; see section 2.4 and

section 2.5). Hence, it is useful to introduce another notion of dimension which is widely

used and is relatively easy to calculate - the box-counting dimension.

Let F ⊂ Rn be nonempty and bounded and let Nδ(F ) be the smallest number of sets

of diameter at most δ that cover F . Then, the lower box-counting dimension of F is given

by dimBF = limδ→0
logNδF
− log δ

(a lower limit). Analogously, the upper box-counting dimension

of F is given by dimBF = limδ→0
logNδF
− log δ

(an upper limit). If these two quantities are

equal, then the common value is the box-counting dimension of F :

dimBF = lim
δ→0

logNδF

− log δ
(2.4)

Remark 2.2.1. We assume that δ > 0 is sufficiently small (< 1) so that − log δ is strictly

positive.

There are many equivalent ways of defining the box-counting dimension; namely we can

take NδF to be different quantities. For example, consider the collection of cubes in the

δ-coordinate mesh of Rn; i.e. cubes of form [m1δ, (m1 + 1)δ]× ...× [mnδ, (mn + 1)δ] where

m1, ...,mn ∈ Z. Now, we let N ′δ(F ) denote the number of δ-mesh cubes that intersect F .

The cubes provide a collection of N ′δ(F ) sets of diameter
√
n · δ that cover F . Hence we

have that Nδ
√
n(F ) ≤ N

′

δ(F ). We can take logarithms to get that logNδ
√
n(F )

− log(δ
√
n)
≤ logN

′
δ(F )

− log
√
n−log δ

,

and then limits as δ → 0 to conclude:

dimBF ≤ limδ→0

logN
′

δ(F )

− log δ
(2.5)

and

dimBF ≤ limδ→0
logN

′

δ(F )

− log δ
(2.6)
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Now, we note that any set of diameter at most δ is contained in 3n mesh cubes of side

δ (by choosing a cube containing some point of the set as well as its neighboring cubes).

δ

Figure 2.2: An example for n = 2. The set (shown in blue) of diameter ≤ δ is contained
in 32 = 9 mesh cubes of side δ.

Hence, we have that N ′δ(F ) ≤ 3nNδ(F ) and taking logarithms and the limit as δ → 0

we arrive at the opposite inequalities of (2.5) and (2.6). So we conclude that

dimBF = lim
δ→0

logN
′

δF

− log δ

and hence we can indeed take NδF to be the number of δ-mesh cubes that intersect F .

The purpose of introducing this particular equivalent definition is that it gives meaning to

the name "box-counting" - to find the box-counting dimension of a plane set F , we just

draw a mesh of squares of side δ and count the amount that overlap the set for various

small δ. The number of cubes of side δ that intersect a set F gives an indication of how

"spread out" or irregular the set is when examined at scale δ. The box-counting dimension

reflects how rapidly the irregularities develop as δ → 0.

Another useful equivalent definition is to take NδF to be the smallest number of cubes

of side δ that cover F . This definition will be useful in calculating the box-counting

dimension of the Koch Snowflake (see chapter 5). The fact that this definition is equivalent

follows similarly to the previous mesh definition. We simply note that any cube of side δ
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has diameter δ
√
n and that any set of diameter at most δ is contained in a cube of side δ.

2.3 Packing Measures and Packing Dimension

In the previous section (section 2.2), one may notice that the box-counting dimension was

not defined in terms of measures, as the Hausdorff dimension was. This obviously can

present an issue, since we lose access to powerful measure theory results. To this end,

we shall introduce in this section the Packing Dimension, which acts as a "dual" to the

Hausdorff dimension, due to the inherent dual role that coverings and packings play.

Suppose F ⊂ Rn and s ≥ 0. For any δ > 0, we define

Psδ (F ) := sup

{∑
i

|Bi|s
}

where {Bi} is a collection of disjoint balls with centers in F and radii at most δ. We note

that since Psδ (F ) decreases in δ, we have that the limit limδ→0Psδ (F ) := Ps0(F ) exists.

Then we define:

Ps(F ) := inf

{∑
i

Ps0(Fi) : F ⊂ ∪∞i=1Fi

}
(2.7)

, which we call the s-dimensional Packing Measure.

Remark 2.3.1. One can show that Ps(F ) indeed is a measure on Rn.

Now similarly to when we defined the Hausdorff dimension, we shall write

dimPF = inf{s ≥ 0 : Ps(F ) = 0} = sup{s ≥ 0 : Ps(F ) =∞} (2.8)

where dimPF is the Packing dimension of F .

2.4 Iterated Function Systems

Iterated Function systems (or IFSs for short) are important as they allow us to define

fractals and calculate their dimensions in a simple way, as we will see in the next section.
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Definition 2.4.1. Let D ⊂ Rn be closed (often it will be that D = Rn). We call a

mapping S : D → D a contraction mapping (or simply a contraction) if there exists

c ∈ (0, 1) such that for all x, y ∈ D,

|S(x)− S(y)| ≤ c|x− y|

In the case that |S(x)−S(y)| = c|x− y|, we call S a contracting similarity (with ratio

c) and note that in this case S transforms sets into geometrically similar sets.

Definition 2.4.2. An IFS is a finite family of contractions {S1, ..., Sm} (where m ≥ 2).

Definition 2.4.3. A nonempty compact subset F ⊂ D is an attractor for the IFS if

F = ∪mi=1Si(F )

We would like to examine the fundamental property of IFSs. To do so, first we shall let

S denote the class of all non-empty compact subsets of D. Let Aδ = {x ∈ D : |a− x| ≤ δ

for some a ∈ A} be the δ-neighborhood of A. Now, we have a complete metric on S given

by

d(A,B) := inf{δ : A ⊂ Bδ & B ⊂ Aδ} (2.9)

This metric is called the Hausdorff metric or Hausdorff distance on S.

A

B

Bδ

Aδ

Figure 2.3: The Hausdorff distance/metric between A and B is the least δ such that
A ⊂ Bδ and B ⊂ Aδ
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Now, we shall state and prove the fundamental property of IFSs

Theorem 2.4.1 (Fundamental Property of IFSs). Let {S1, ..., Sm} be an IFS. There exists

a unique attractor F for the IFS. Moreover, if we define S on S by S(E) = ∪mi=1Si(E) for

E ∈ S and write Sk for the k-th iterate of S then

F = ∩∞k=0S
k(E) (2.10)

for every set E ∈ S such that Si(E) ⊂ E ∀i.

Proof. First, we note that the mapping S takes elements of S into other elements of S.

Now, for A,B ∈ S we have that :

d(S(A), S(B)) = d(∪mi=1Si(A),∪mi=1Si(B))

≤ max
1≤i≤m

d(Si(A), Si(B))

≤ max
1≤i≤m

cid(A,B)

:= αd(A,B)

where α := max1≤i≤m ci is such that 0 < α < 1. Note that in the penultimate line above,

we have used that the S1, ..., Sm are contractions. Hence we have shown that S is a

contraction mapping on the complete metric space (S, d). By the Banach Fixed Point

Theorem (also known as the Contraction Mapping Theorem), S has a unique fixed point

i.e. ∃!F ∈ S such that S(F ) = F . Hence, F is a unique attractor for the IFS. Moreover,

the Contraction Mapping Theorem tells us that Sk(E)→ F as k →∞. So if Si(E) ⊂ E

for all i then S(E) ⊂ E and Sk(E) is a decreasing sequence of non-empty compact sets

containing F and have intersection that must equal F ; i.e. F = ∩∞k=0S
k(E).

So, each IFS determines a unique attractor, which is usually a fractal. But, how

do we actually compute the attractor of an IFS? It turns out that the mapping S in

theorem 2.4.1 is the key. Recall in the above proof to theorem 2.4.1 that the sequence
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Sk(E) converges to F (the attractor) for any E ∈ S with Si(E) ⊂ E. These increasingly

good approximations Sk(E) to F are called pre-fractals for F if F is a fractal. Now, we

introduce the following notation:

Ik := {(i1, ..., ik) : 1 ≤ ij ≤ m} (2.11)

Then for each k, we have that Sk(E) = ∪IkSi1 ◦ · · · ◦ Sik(E). Moreover, if Si(E) ⊂ E for

all i and x ∈ F (a point), from (2.10) we have that there is a sequence (i1, i2, ...) such

that x ∈ Si1 ◦ · · · ◦ Sik(E) for all k. So we have a coding for x:

x = xi1,i2,... = ∩∞k=1Si1 ◦ · · · ◦ Sik(E) (2.12)

and F = ∪{xi1,i2,...}.

2.5 Self-Similar and Self-Affine Sets

The advantage of IFSs is that it allows us to calculate the dimension of the associated

attractor in terms of the defining contractions of the IFS. Here the contractions S1, ..., Sm :

Rn → Rn will be similarities (hence recalling the previous section, we have |Si(x)−Si(y)| =

ci|x− y| for x, y ∈ Rn where 0 < ci < 1). We introduce the following terminology:

Definition 2.5.1. The attractor for an IFS given by similarities {S1, ..., Sm} is called a

(strictly) self-similar set.

A standard example of a self-similar set is the Sierpinski Gasket (see chapter 4). We

will also need the following definition:

Definition 2.5.2. The contractions Si satisfy the open set condition if there exists a

non-empty bounded open set V such that ∪mi=1Si(V ) ⊂ V , with the union being disjoint.

To prove the main result of this section, we require the following geometrical result,

whose short proof is not of interest:
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Lemma 2.5.1. Let {Vi} be a collection of disjoint open subsets of Rn such that each Vi

contains a ball of radius a1r and is contained in a ball of radius a2r. Then any ball B of

radius r intersects at most (1 + 2a2)na−n1 of the closures V̄i.

Theorem 2.5.1 (Dimension of Self-Similar Sets). Suppose the open set condition holds for

the similarities S1, ..., Sm. If F is the attractor of the IFS {S1, ..., Sm} then dimH F = s

where s is given by
m∑
i=1

csi = 1

Moreover, for this value of s we have that 0 < Hs(F ) <∞.

Proof. Let s satisfy
∑m

i=1 c
s
i = 1. We need both an upper and lower bound on the

s-dimensional Hausdorff measure Hs(F ).

For the upper bound: Let Ik denote the set of sequences (i1, ..., ik) where 1 ≤ ij ≤ m (as

in eq. (2.11)). Also, for any set A and (i1, ..., ik) ∈ Ik, we write Ai1,...,ik := Si1 ◦ · · · ◦Sik(A).

Then, since F is the attractor of the IFS {S1, ..., Sm}, we know that F = ∪mi=1Si(F ) and

hence:

F = ∪IkFi1,...,ik

But, we note that Si1 ◦ · · · ◦ Sik is a similarity with ratio ci1 · · · cik hence:

∑
Ik

|Fi1,...,ik |s =
∑
Ik

(ci1 · · · cik)s|F |s

=

(∑
i1

csi1

)
· · ·

(∑
ik

csik

)
|F |s

= |F |s

where in the last step we have used that
∑m

i=1 c
s
i = 1. So, noting that for any δ > 0 we

can choose k such that |Fi1,...,ik | ≤ (maxi ci)
k|F | ≤ δ, we conclude that Hs

δ(F ) ≤ |F |s and

thus:

Hs(F ) ≤ |F |s

For the lower bound: let I denote the set of infinite sequences (i1, i2, ...) where
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1 ≤ ij ≤ m and let

Ii1,...,ik := {(i1, ..., ik, qk+1, ...) : 1 ≤ qj ≤ m}

be the sequences in I with initial terms (i1, ..., ik). We then define a mass distribution µ on

I given by µ(Ii1,...,ik) = (ci1 · · · cik)s. Note that since
∑m

i=1 c
s
i = 1, we have (ci1 · · · cik)s =∑m

i=1(ci1 · · · cikci)s and hence µ(Ii1,...,ik) =
∑m

i=1 µ(Ii1,...,ik,i). Consequently, µ is indeed a

mass distribution on I (with µ(I) = 1).

Next, we extend µ to a mass distribution µ̃ on F by

µ̃(A) := µ{(i1, i2, ...) : xi1,i2,... ∈ A}

for A ⊂ F (refer to section 2.4 for the definition of xi1,i2,...). Our goal will be to apply the

Mass Distribution Principle (see chapter 6).

Since the open set condition holds for the similarities S1, ..., Sm, we have a non-empty

bounded open set V such that ∪mi=1Si(V ) ⊂ V (disjoint union). Hence ∪mi=1Si(V̄ ) =

S(V̄ ) ⊂ V̄ and so the decreasing sequence Sk(V̄ ) converges to F (recall theorem 2.4.1). In

particular, we have that V̄ ⊃ F and V̄i1,...,ik ⊃ Fi1,...,ik for each finite sequence (i1, ..., ik).

Now let B be any ball of radius r < 1. Truncate each (infinite) sequence (i1, i2, ...) ∈ I

after the first term ik such that

(
min

1≤i≤m
ci

)
r ≤ ci1 · · · cik ≤ r (2.13)

We introduce the notation Q for the set of the (finite) sequences obtained in this fashion.

Note that for every (infinite) sequence (i1, i2, ...) ∈ I, there is exactly one value of k with

(i1, ..., ik) ∈ Q. Now, since the V1, ..., Vm are disjoint, so are Vi1,...,ik,1, ..., Vi1,...,ik,m for each

sequence (i1, ..., ik). Consequently, the collection {Vi1,...,ik : (i1, ..., ik) ∈ Q} is disjoint and

we have that

F ⊂ ∪QFi1,...,ik ⊂ ∪QV̄i1,...,ik

Now, choose a1, a2 such that V contains a ball of radius a1 and is contained in a ball
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of radius a2. Then for all sequences (i1, ..., ik) ∈ Q , Vi1,...,ik contains a ball of radius

ci1 · · · cika1 and is contained in a ball of radius ci1 · · · cika2. So recalling eq. (2.13), Vi1,...,ik

contains a ball of radius (mini ci)a1r and is contained in a ball of radius a2r. Let Q̃ denote

the set of sequences (i1, ..., ik) ∈ Q such that B intersects V̄i1,...,ik . Since we had that

{Vi1,...,ik : (i1, ..., ik) ∈ Q} is disjoint, we can apply lemma 2.5.1 to conclude that there are

at most q := (1 + 2a2)na−n1 (mini ci)
−n sequences in Q̃.

So, noting that if xi1,i2,... ∈ F ∩ B ⊂ ∪Q̃V̄i1,...,ik then there is a k with (i1, ..., ik) ∈ Q̃,

we have that:

µ̃(B) = µ̃(B ∩ F )

= µ{(i1, i2, ...) : xi1,i2,... ∈ F ∩B}

≤ µ{∪Q̃Ii1,...,ik}

≤
∑
Q̃

µ(Ii1,...,ik)

=
∑
Q̃

(ci1 · · · cik)s

≤
∑
Q̃

rs

≤ qrs

where in the penultimate step we have used (2.13). Hence we can finally apply the Mass

Distribution Principle (see theorem 6.0.3) to arrive at

Hs(F ) ≥ µ̃(F )

q
=

1

q
> 0

and dimHF = s (note that it is easily seen that µ̃(F ) = 1).

Self-similar sets are actually a particular case of an important class of sets called

self-affine sets.

Definition 2.5.3. An affine transformation S : Rn → Rn is a transformation having
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form

S(x) = T (x) + b

, where T is a linear transformation on Rn represented by an n × n matrix, and b is a

vector in Rn.

Definition 2.5.4. The attractor for an IFS given by affine contractions {S1, ..., Sm} is

called a self-affine set.

Unlike similarities, these affine transformations contract with differing ratios in different

directions. The dimension of the resulting self-affine sets will be explored in the next

chapter.
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Chapter 3

On the Dimension of Self-Affine Sets

In the previous chapter, we established the dimension for the attractor of an IFS consisting

of similarities, and briefly commented on the more general class of attractors - namely

self-affine sets. A natural question then is whether we can establish a similar formula for

the dimension of arbitrary self-affine sets.

3.1 Dimension via the Singular Value Function

Ideally, one would like to generalize theorem 2.5.1 to self-affine sets. However, this is

not so straightforward. To illustrate the difficulties which may arise, we begin with a

simple example which shows discontinuous behavior of the dimension. Let S1, S2 be affine

contractions on R2 that map the unit square onto the rectangles R1 and R2, where each

rectangle has sides of length 1
2
and ε for 0 < ε < 1

2
. Rectangle R1 is against the y-axis,

and R2 is a distance 0 ≤ λ ≤ 1
2
from the y-axis (refer to fig. 3.1).

If we let F be the attractor for the IFS {S1, S2}, one can easily show that for λ > 0,

we have that dimHF ≥ 1. However, for λ = 0, we have that dimHF = log 2
− log ε

< 1. Hence,

we have affine transformations that can be varied in a continuous way, but the dimension

of the resulting self-affine set does not change continuously. This just scratches the surface

of the difficulties with this problem, as one can imagine worse behaviour for more involved

sets.

Nevertheless, in this section we shall determine the dimension of self-affine sets which
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1

R1 R1

R2 R2

ε

ε

1/2

1/2

λ

1/2

ε

1/2

ε

λ > 0 λ = 0

Figure 3.1: The contractions S1 and S2 map the unit square to the rectangles R1 and R2.
The case for both λ > 0 and λ = 0 is shown.

are attractors of the affine contractions Si(x) = Ti(x) + bi (i = 1, ...,m), for almost every

(b1, ..., bm). We shall follow the works of Falconer [17] and Solomyak [18]. To this end, we

begin with two definitions:

Definition 3.1.1. Let T be a linear, non-singular contraction on Rn. Then, the singular

values 1 > α1 ≥ α2 ≥ ... ≥ αn > 0 of T are defined in 2 equivalent ways:

1. They are the positive square roots of the eigenvalues of T ∗T . Here T ∗ denotes the

adjoint of T .

2. Letting B denote the unit ball in Rn, the singular values are the lengths of the

principal semi-axes of the ellipsoid T (B).

Remark 3.1.1. Considering the second part of the above definition, the singular values are

clearly related to the contraction in different directions by T .

Definition 3.1.2. For 0 ≤ s ≤ n, the singular value function is given by:

ϕs(T ) := α1α2 · · · αr−1α
s−r+1
r

where r ∈ Z is such that r − 1 < s ≤ r.

We note that by definition, ϕs(T ) is continuous and decreasing in s. In addition, we

have submultiplicity: for fixed s and linear mappings T & U , we have that ϕs(TU) ≤
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ϕs(T )ϕs(U). Now, letting Ik denote the set of all sequences (i1, ..., ik) where 1 ≤ ij ≤

m , j = 1, ..., k, we define the sums
∑s

k :=
∑
Ik ϕ

s(Ti1 ◦ · · · ◦ Tik). These sums are

submultiplicative in k, since for s fixed:

s∑
k+l

=
∑
Ik+l

ϕs(Ti1 ◦ · · · ◦ Tik+l
)

≤
∑
Ik+l

ϕs(Ti1 ◦ · · · ◦ Tik)ϕs(Tik+1
◦ · · · ◦ Tik+l

)

=

(∑
Ik

ϕs(Ti1 ◦ · · · ◦ Tik)

)(∑
Il

ϕs(Ti1 ◦ · · · ◦ Til)

)

=
s∑
k

s∑
l

where in the second line we have used the submultiplicity of the singular value function.

Hence, we know that (
∑s

k)
1
k converges to some

∑s
∞ as k →∞. But since ϕs is decreasing

in s, we have that
∑s
∞ is decreasing in s. So, provided that

∑n
∞ ≤ 1 , there exists unique

s such that 1 =
∑s
∞ = limk→∞(

∑s
k)

1
k . We denote such s as d(T1, ..., Tm), and note that

we can equivalently write:

d(T1, ..., Tm) = inf

{
s :

∞∑
k=1

∑
Ik

ϕs(Ti1 ◦ · · · ◦ Tik) <∞

}

We are now ready to introduce the main result of this section:

Theorem 3.1.1. Let F be the attractor for the IFS {S1, ..., Sm} where Si = Ti + bi

(i = 1, ...,m) are affine contractions on Rn. Then, dimHF ≤ d(T1, ..., Tm). Moreover, if

the contraction ratios are less than 1
2
(i.e. if |Ti(x)− Ti(y)| ≤ c|x− y| for all i = 1, ...,m

with 0 < c < 1
2
), then dimHF = d(T1, ..., Tm) for Lebesgue almost every (b1, ..., bm) ∈ Rnm.

Remark 3.1.2. Initially, Falconer [17] proved the result for contraction ratios strictly less

than 1
3
. Solomyak [18] then later extended the bound to 1

2
. We also note that due to

Przytycki and Urbanski [19], the bound 1
2
is sharp.

Here we shall only prove the bound dimHF ≤ d(T1, ..., Tm). To that end, let B ∈ Rn

be a ball that is large enough such that Si(B) ⊂ B for all i = 1, ...,m. Let δ > 0, and
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take k sufficiently large such that |Si1 ◦ · · · ◦ Sik(B)| < δ for each (i1, ..., ik) ∈ Ik. By the

work done at the end of section 2.4, we know that

F ⊂ ∪IkSi1 ◦ · · · ◦ Sik(B) (3.1)

Now, let α1, ..., αn denote the singular values of Ti1 ◦· · ·◦Tik . We know that Si1 ◦· · ·◦Sik(B)

is just a translation of the ellipsoid Ti1 ◦ · · · ◦ Tik(B), which has principal axes of lengths

α1|B|, ..., αn|B|. Hence, Si1 ◦ · · · ◦ Sik(B) is contained in a rectangular parallelepiped P ,

which has sides of lengths α1|B|, ..., αn|B|.

Now, for 0 ≤ s ≤ n and r ∈ Z such that r−1 < s ≤ r , we can divide the parallelepiped

P into at most (
2α1

αr

)(
2α2

αr

)
· · ·
(

2αr−1

αr

)
≤ 2nα1 · · ·αr−1α

1−r
r

cubes which have side length αr|B| < δ. Therefore, we can cover Si1 ◦ · · · ◦ Sik(B) by

cubes Ui having |Ui| < δ
√
n. Also,

∑
i

|Ui|s ≤ 2nα1 · · ·αr−1α
1−r
r αsr|B|s

= 2n|B|sϕs(Ti1 ◦ · · · ◦ Tik)

where in the last line we have used the definition of the singular value function. So, taking

these covers of Si1 ◦ · · · ◦ Sik(B) for each (i1, ..., ik) ∈ Ik, and recalling (3.1), we have that:

Hs
δ
√
n(F ) ≤ 2n|B|s

∑
Ik

ϕs(Ti1 ◦ · · · ◦ Tik)

However, as δ → 0 , we must have that k → ∞ and hence by the above and the

definition of d(T1, ..., Tm), we have that Hs(F ) = 0 for s > d(T1, ..., Tm). So, dimHF ≤

d(T1, ..., Tm) as desired.
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3.2 Dimension of Sierpinski Carpets

In the previous section, we have determined the dimension of typical self-affine sets.

However, there are many exceptional cases. Hence in this section, we determine the

Hausdorff dimension of an important family of planar sets called Sierpinski Carpets, which

are generalizations of the Cantor set in two dimensions. We shall follow the framework of

the seminal work by McMullen [16].

To define Sierpinski Carpets, we begin by letting n > m, and letting R denote the

set consisting of pairs of integers (i, j) where 0 ≤ i < n , 0 ≤ j < m. Then the (general)

Sierpinski Carpet is the plane fractal:

SC :=

{(
∞∑
k=1

xk
nk
,
∞∑
k=1

yk
mk

)
: (xk, yk) ∈ R ∀k

}

Letting r := |R|, we note that SC = ∪ri=1Fi(SC), where the Fi are affine transformations,

contracting SC by a factor of m vertically and n horizontally. Hence, the SC is a true

self-affine set in the sense introduced in section 2.5.

Remark 3.2.1. If we had that n = m, then the resulting SC would be a self-similar set.

We would like to determine dimH(SC). To do so, we begin with carefully selected

rectangles:

Rk(p, q) :=

[
p

nl
,
p+ 1

nl

]
×
[
q

mk
,
q + 1

mk

]
where l := bk lognmc ∈ Z is such that n > mk

nl
≥ 1. So we have coverings C = {Rk(p, q)}

of SC, and we introduce the integers Nk := # of Rk′(p, q) ∈ C with k′ = k. Our first

lemma then expresses the dimension of SC in terms of coverings by the specific rectangles:

Lemma 3.2.1. The s-dimensional Hausdorff measure Hs(SC) = 0 iff for any ε > 0,

there exists a covering C = {Rk(p, q)} of SC such that

∑
k

Nk
1

msk
< ε

Although we do not prove this lemma, we note that it is fairly straightforward if we
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note that m−k ≈ |Rk(p, q)| (where | · | denotes diameter) and we recall the definitions

introduced in section 2.1.

Now, recalling that r = |R|, we can write the enumeration (xi, yi)
r−1
i=0 for R. Let

Sr :=
∏∞

1 {0, 1, 2, ..., r − 1}. We then have a surjective map ψ : Sr → SC given by

(i1, i2, i3, ...) 7→ (
∑∞

k=1

xik
nk
,
∑∞

k=1

yik
mk

). We shall write:

p :=
l∑

j=1

x̃jn
l−j (0 ≤ x̃j < n, l = bk lognmc)

q =
k∑
j=1

ỹjm
k−j (0 ≤ ỹj < m)

Then we can define:

Ak(p, q) := {(i1, i2, ..., ik) : xij = x̃j for j = 1, .., l and yij = ỹj for j = 1, ..., k}

Bk :=
∞∏
k+1

{0, 1, ..., r − 1}

Hence, we have sets of the form Ak(p, q)×Bk ∈ Sr which under the mapping ψ correspond

roughly to the Rk(p, q) ∈ SC. Additionally, we have coverings C = {Ak(p, q)×Bk} of Sr,

and we introduce the integers Nk := # of Ak′(p, q)× Bk′ ∈ C with k′ = k. Our second

lemma then expresses the dimension of SC in terms of coverings of Sr:

Lemma 3.2.2. The s-dimensional Hausdorff measure Hs(SC) = 0 iff for any ε > 0 ,

there exists a covering C = {Ak(p, q)×Bk} of Sr such that

∑
k

Nk
1

msk
< ε

Proof. Since

Ak(p, q)×Bk ⊂ ψ−1(Rk(p, q)) ⊂ ∪i=−1,0,1 j=−1,0,1Ak(p+ i, q + j)×Bk

we can pass between covers of Sr and SC by modifying Nk up to a bounded constant.

Then by lemma 3.2.1, we are finished.
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The main reason we have done this is that coverings of Sr by cylinders (Ak(p, q)×Bk)

are easier to study than coverings of SC by rectangles (Rk(p, q)). To that end, we now will

briefly analyze the size of the cylinders. As before, we write the enumeration (xi, yi)
r−1
i=0 for

R. Then, for i = 0, 1, ..., r − 1 we define ai := # of j such that yi = yj . So the cardinality

of Ak(p, q) is ail+1
ail+2
· · · aik for any (i1, ..., ik) ∈ Ak(p, q). We note that n > m and hence

l = bk lognmc < k.

We shall now let

δ := logm

(
m−1∑
j=0

t
lognm
j

)
(3.2)

where tj is the number of i such that (i, j) ∈ R (our final goal will be to show that δ is

actually equal to dimH(SC)). We can then write mδ
=
∑r−1

i=0 a
lognm−1
i . So if we let

bi :=
a

lognm−1
i

mδ
(3.3)

we can use the bi to define a measure; let µ be the unique probability measure on the

Borel subsets of Sr which satisfies: for any (i1, ..., ik), we have that µ((i1, i2, ..., ik)×Bk) =

bi1bi2 · · · bik . This unique probability measure exists as a consequence of Kolmogorov

Extension Theorem.

Now, we define the sequence of functions fk on Sr, given by:

fk(i1, i2, i3, ...) :=

[
(ai1ai2 · · · aik)lognm

ai1ai2 · · · ail

] 1
k

Lemma 3.2.3. If z ∈ Ak(p, q)×Bk, then µ(Ak(p, q)×Bk) = (fk(z)m−δ)k.

Proof. For each (i1, i2, ..., ik) ∈ Ak(p, q), by definition we have that

µ((i1, i2, ..., ik)×Bk) = bi1bi2 · · · bik

=
(ai1ai2 · · · aik)lognm

(ai1ai2 · · · aik)(mδk)

However, recall that the cardinality of Ak(p, q) is ail+1
ail+2
···aik for any (i1, ..., ik) ∈ Ak(p, q).
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Hence:

µ(Ak(p, q)×Bk) = (ail+1
ail+2

· · · aik)
(ai1ai2 · · · aik)lognm

(ai1ai2 · · · aik)(mδk)

=
(ai1ai2 · · · aik)lognm

(ai1 · · · ail)
m−δk

= (fk(z)m−δ)k

where in the last line we have used the definition of the fk.

Lemma 3.2.4. We have that for all z ∈ Sr, limk→∞fk(z) ≥ 1. Also, fk → 1 almost

everywhere (with respect to µ).

Proof. First, we shall simplify the problem. Note that we may write fk(z) = hk(z)gk(z)lognm

where

gk(i1, i2, ...) :=
(ai1ai2 · · · aik)

1
k

(ai1ai2 · · · ail)
1
l

hk(i1, i2, ...) := (ai1ai2 · · · ail)( 1
l
)(lognm− l

k
)

Moreover, since 1 ≤ ai ≤ n we have that 1 ≤ hk ≤ nlognm− l
k . Then since

lognm−
l

k
= lognm−

bk lognmc
k

→ 0

as k → ∞, we deduce that hk(z) → 1. So , we only need to show that for all z ∈ Sr,

limk→∞gk(z) ≥ 1 and gk → 1 almost everywhere (with respect to µ).

For the first part, fix z = (i1, i2, ...). Since l = bk lognmc < k and 1 ≤ ai ≤ n, it is

clear that:

limk→∞gk(z) = limk→∞
(ai1ai2 · · · aik)

1
k

(ai1ai2 · · · ail)
1
l

≥ 1

For the second part, note that the functions (i1, i2, ...) → bik (k = 1, 2, 3, ...) are iid

random variables with respect to µ. Hence by the Strong Law of Large Numbers, the

sequence (bi1bi2 · · · bik)
1
k (k = 1, 2, 3, ...) converges for almost every (i1, i2, ...) ∈ Sr. Writing

22



gk as

gk(i1, i2, ...) =

(
(bi1bi2 · · · bik)

1
k

(bi1bi2 · · · bil)
1
l

)(lognm−1)−1

(recall the definition of the bi in (3.3)) , we thus have that gk → 1 almost everywhere.

The idea now is to use the first part of the previous lemma 3.2.4 to bound the dimension

of SC from above by δ (recall the definition (3.2)):

Lemma 3.2.5. We have that dimH(SC) ≤ δ.

Proof. Let ε > 0 and Ck be the nonempty sets of form Ak(p, q)× Bk with fk(z) > m−ε

(for z ∈ Ak(p, q)×Bk). These sets are disjoint, and by lemma 3.2.3:

µ(Ak(p, q)×Bk) = (fk(z)m−δ)k > m−(δ+ε)k

Recalling that µ(Sr) = 1, we then must have that the cardinality of Ck, denoted by Mk,

is < m(δ+ε)k.

Now for any z ∈ Sr, by lemma 3.2.4 we have that limk→∞fk(z) ≥ 1 > m−ε. Hence,

any z ∈ Sr is covered by Ck for infinitely many k, and consequently C := ∪k≥KCk forms

a covering of Sr for any choice of K. In particular, we shall take K large enough so that∑
k≥Km

−εk < ε. Then, the Nk associated to C (as seen in lemma 3.2.2) satisfy:

∑
k

Nkm
−(δ+2ε)k =

∑
k≥K

Mkm
−(δ+2ε)k

<
∑
k≥K

m(δ+ε)km−(δ+2ε)k

=
∑
k≥K

m−εk

< ε

So by lemma 3.2.2 we are finished.
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The second part of lemma 3.2.4 then allows us to bound the dimension of SC from

below by δ:

Lemma 3.2.6. We have that dimH(SC) ≥ δ.

Proof. Let β < δ. We shall first show that there is ε > 0 such that
∑

kNkm
−βk > ε for

any covering C of Sr. To that end, let EK := {z ∈ Sr : fk(z) < mδ−β ∀k ≥ K}. We have

that mδ−β > 1 and also by lemma 3.2.4, we know that fk → 1 almost everywhere. Hence,

we may pick K such that µ(EK) > 0.

Now, take ε := min{µ(EK),m−βK} > 0 and let C be any covering of Sr. We first note

that if Nk 6= 0 for some k < K then we have
∑

kNkm
−βk > m−βK ≥ ε. Hence, from now

on we assume that Nk = 0 for all k < K.

Now, for elements of C with Ak(p, q) × Bk ∩ EK 6= ∅, we have that (where z ∈

Ak(p, q)×Bk ∩ EK):

µ(Ak(p, q)×Bk) = (fk(z)m−δ)k

< (mδ−βm−δ)k

= m−βk

where in the first line we have used lemma 3.2.3. Then since C covers EK , we conclude

that
∑

kNkm
−βk > µ(EK) ≥ ε. The purpose of this is that by lemma 3.2.2, we have that

Hβ(SC) 6= 0, where our β < δ is arbitrary. So our result follows.

Combining the results of lemma 3.2.5 and lemma 3.2.6, we arrive at the final conclusion

of this section:

Theorem 3.2.1 (Dimension of Sierpinski Carpets). The Hausdorff dimension of SC is

given by

dimH(SC) = logm

(
m−1∑
j=0

t
lognm
j

)

where tj is the number of i such that (i, j) ∈ R.
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Chapter 4

The Sierpinski Gasket

In this chapter we focus on a single fractal - the Sierpinski Gasket. After reviewing

the spectral properties of the Laplacian on the Sierpinski Gasket, we use the existence

of localized eigenfunctions to develop analogues of the Szegö Limit Theorem (following

[2],[9]).

4.1 Construction

The Sierpinski Gasket (SG) is a fractal having an overall shape of an equilateral triangle,

which is subdivided recursively into smaller equilateral triangles (see figure below). It is a

typical post-critically finite fractal, but is special in that it has a well developed theory

of the Laplacian. Here we shall describe the SG via an approximation from within by a

sequence of graphs.

To that end, let 
F1(x) := 1

2
x

F2(x) := 1
2
x+ (1

2
, 0)

F3(x) := 1
2
x+ (1

4
,
√

3
4

)

be contractions on R2. We will need the following definition: for ω = (ω1, ..., ωm), the

set Fω(SG) := Fω1 ◦ ... ◦ Fωm(SG) where ωi ∈ {1, 2, 3} is called an m−cell.

Remark 4.1.1. We have that dimH(SG) = log 3
log 2

since the solution to
∑3

i=1(
1
2
)s = 1 is
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Figure 4.1: The Sierpinski Gasket.

s = log 3
log 2

. See theorem 2.5.1

Remark 4.1.2. We equip the SG with a probability measure µ that assigns measure 3−m

to each m-cell. This will become important later.

Now, let V0 := {(0, 0), (1, 0), (1
2
,
√

3
2

)}, which forms the boundary of the SG. Let

Vn := ∪3
i=1FiVn−1 , n ≥ 1

Our sequence of graphs {Γm} with vertices in Vm and edge relation x ∼m y is obtained

inductively : we let Γ0 be the complete graph on V0 and x ∼m y iff x and y belong to the

same m−cell.

Γ0 Γ1 Γ2

Figure 4.2: The first three graphs which approximate the Sierpinski Gasket
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4.2 Theory of the Laplacian on SG

In this section, we define the Laplacian on the Sierpinski Gasket as a renormalized limit

of graph Laplacians, and examine its spectrum. We start with the graph Laplacian ∆m

on the graph Γm, which is given by

∆mf(x) =
∑
y∼mx

f(y)− 4f(x)

where x ∈ Vm \ V0. Then, our Laplacian on SG is simply the renormalized limit

∆ :=
3

2
lim
m→∞

5m∆m

In [5], a full description of the spectrum of the Laplacian ∆ on the SG is presented,

and here we recall the main results. For each Dirichlet eigenvalue λ of ∆, there is an

integer j ≥ 1 such that if u is an eigenfunction corresponding to eigenvalue λ and k ≥ j,

then u|Vk is an eigenfunction of the graph Laplacian ∆k with eigenvalue γk. The integer j

we shall refer to as the generation of birth. Moreover, the only possible values of γj are

2, 5, 6, and further values for k > j are obtained by the following equation:

γk =
1

2

[
5 + εk

√
25− 4γk−1

]
(4.1)

where εk ∈ {−1, 1}. The relation between λ and γk is given by

λ =
3

2
lim
k→∞

5kγk (4.2)

The upshot is that convergence in (4.2) tells us that εk = 1 for at most a finite number of

k values. This allows us to define the generation of fixation l:

l := min{k : εk = −1}

So, the spectrum of ∆ is completely determined by the spectrum of the graph Laplacian.

The generation of birth j and generation of fixation l are critical, as they determine the
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size and multiplicity of an eigenvalue. Namely, there exists a constant κ such that the

1
2
(3m+1 − 3) smallest eigenvalues of ∆ have size at most κ5m and generation of fixation

l ≤ m. Moreover:

Theorem 4.2.1 (Spectrum of Laplacian on the Sierpinski Gasket).

1. The so called "2-series eigenvalues" are the eigenvalues obtained from (4.1) & (4.2)

with j = 1 and γj = 2. Each 2-series eigenvalue has multiplicity 1.

2. The "5-series eigenvalues" are the eigenvalues obtained from (4.1) & (4.2) with any

j ≥ 1 and γj = 5. There are 2m−j 5-series eigenvalues for each 1 ≤ j ≤ m, each

with multiplicity 1
2
(3j−1 + 3). For each 5-series eigenvalue, there is a basis for the

corresponding eigenspace in which all but two of the basis functions have support in

a collection of (j − 1)-cells arranged in a loop around a hole of scale at least (j − 1)

in the SG. There is one eigenfunction per hole and a total of 1
2
(3j−1 − 1) holes.

3. The "6-series eigenvalues" are the eigenvalues obtained from (4.1) & (4.2) with any

j ≥ 2, γj = 6, εj+1 = 1. There are 2m−j−1 6-series eigenvalues for each 2 ≤ j < m

and 1 for j = m. Each 6-series eigenvalue has multiplicity 1
2
(3j − 3). For each

6-series eigenvalue, there is a basis for the corresponding eigenspace that is indexed

by points in Vj−1 \ V0, and in which each basis element is supported on the union of

the two j-cells that intersect at the corresponding point in Vj−1 \ V0.

4.3 Szegö Limit Theorem on the SG

Using our full description of the spectrum of the Laplacian on the SG seen in theorem 4.2.1,

we proceed to develop the Szegö Limit Theorem.

4.3.1 Special Case

First we shall develop the Szegö Limit Theorem on the Sierpinski Gasket for a specific

case (for a quick introduction to the classical Szegö Limit Theorem, see Appendix A) .

Namely, we will only be looking at a single 5-series or 6-series eigenspace of the Laplacian.
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We will first need a preliminary definition: we say that a function is localized at scale

N if its support is contained in a single N -cell. Now, let λj denote a 6-series eigenvalue

with generation of birth j ≥ 2, and denote its corresponding eigenspace by Ej. Let EN
j

be the span of the eigenfunctions (corresponding to λj) that are localized at scale N < j.

We have that:

dim(EN
j ) := dNj

=
1

2

(
3j − 3N+1

)
where we have used theorem 4.2.1. The dimension of the complementary space (in Ej) is

then αNj = 1
2
(3N+1 − 3) and the number of eigenfunctions supported on a single cell is

mN
j = 1

2
(3j−N − 3) (since there are 3N cells having scale N).

Remark 4.3.1. We can deduce the same information for a 5-series eigenvalue; in this case

we will have dNj = 1
2
(3j−1 − 3N), αNj = 1

2
(3N − 3), and mN

j = 1
2
(3j−N−1 − 1).

Now, for each N -cell, apply Gram-Schmidt to orthonormalize the eigenfunctions

supported on the cell. Taking the union over the N -cells, we obtain an orthonormal basis

{ũk}
dNj
k=1 for EN

j (note that eigenfunctions on seperate cells are orthogonal). If we add

the remaining basis elements vk of Ej (so the vk are not localized at scale N) and apply

Gram-Schmidt again, we obtain an orthonormal basis {uk}
dj
k=1 = {ũk}

dNj
k=1 ∪ {vk}

αNj
k=1 for

Ej.

Remark 4.3.2. We let dj := dim(Ej).

For a real valued function f on the SG, we let [f ] be the operator corresponding to

pointwise multiplication by f . Also, for g ∈ L2(SG), we have

Pjg(x) :=

dj∑
k=1

〈g, uk〉uk(x)

=

dj∑
k=1

gkuk(x)

In other words, Pj is the projection of L2(SG) onto Ej. We can now state the following
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lemma which we will later need:

Lemma 4.3.1. Consider the simple function f =
∑3N

k=1 ak1Ck on the SG, where ak > 0

and Ck is an N-cell. Then,

lim
j→∞

1

dj
log detPj[f ]Pj =

∫
SG

log f(x)dµ(x)

and for j large,
1

dj
log detPj[f ]Pj −

∫
SG

log f(x)dµ(x) = O

(
1

dj

)
Proof. Note that

Pj[f ]Pj =

Rj 0

0 Nj


is a dj×dj matrix where Rj is a dNj ×dNj matrix that corresponds to the localized part, and

Nj is a αNj × αNj matrix corresponding to the nonlocalized part. Since 〈Njg, g〉 ≤ ||f ||∞

for all g ∈ Ej with ||g||2 = 1, we have the following (to be used later in this proof as well

as in the next theorem):

log detNj ≤ αNj ||f ||∞ (4.3)

Now, note that Rj is a block diagonal matrix whose blocks are mN
j ×mN

j matrices

that correspond to a single N -cell Ck. Hence the blocks are just akImNj (where In is the
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n× n identity matrix). So we have:

log detPj[f ]Pj = log detRj + log detNj

= log

 3N∏
k=1

a
mNj
k

+ log detNj

= mN
j

 3N∑
k=1

log ak

+ log detNj

= mN
j 3N

 3N∑
k=1

3−N log ak

+ log detNj

= dNj

 3N∑
k=1

3−N log ak

+ log detNj

where in the last line we have used that dNj = 3NmN
j . Dividing by dj, we arrive at:

1

dj
log detPj[f ]Pj =

dNj
dj

3N∑
k=1

3−N log ak +
1

dj
log detNj

=
dNj
dj

∫
SG

log fdµ+
1

dj
log detNj

where we recall that we have equipped the SG with a probability measure µ that assigns

measure 3−m to each m-cell.

But, dj − dNj = αNj , and hence we obtain:

1

dj
log detPj[f ]Pj −

∫
SG

log fdµ = −
αNj
dj

∫
SG

log fdµ+
1

dj
log detNj (4.4)

Finally, recalling (4.3) and using (4.4), we conclude that:

∣∣∣∣ 1

dj
log detPj[f ]Pj −

∫
SG

log fdµ

∣∣∣∣ ≤ αNj
dj

(|| log f ||1 + ||f ||∞)

= O

(
3N

3j

)
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Now with the lemma in hand, we prove the main result of this section:

Theorem 4.3.1 (Szegö Limit Theorem on SG - Single Eigenspace). Let f > 0 be

continuous on the SG. Then,

lim
j→∞

1

dj
log detPj[f ]Pj =

∫
SG

log f(x)dµ(x)

Proof. Since the SG is compact, we have m := minx∈SG f(x) > 0. Hence letting ε > 0, by

continuity there exists N and a simple function fN =
∑3N

k=1 ak1Ck (see previous lemma)

such that ||f − fN ||∞ < min{m
2
, εm

2
, 1

2
}. Thus, we have that

1− ε ≤ f(x)

fN(x)
≤ 1 + ε (4.5)

and

log(1− ε) ≤ log

(
f(x)

fN(x)

)
≤ log(1 + ε) (4.6)

Now,

Pj[f ]Pj =

Rj η

0 Nj


is a dj × dj matrix where Rj is a dNj × dNj matrix that corresponds to the localized part,

and Nj is a αNj × αNj matrix corresponding to the nonlocalized part. By the previous

lemma and (4.5), we have that

∣∣∣∣∣ 1

dj
log detRj −

dNj
dj

∫
SG

log fNdµ

∣∣∣∣∣ ≤ 2ε (4.7)

Also, (4.6) implies that

∣∣∣∣∫
SG

log fdµ−
∫
SG

log fNdµ

∣∣∣∣ ≤ 2ε (4.8)
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Hence if we use the bound log detNj ≤ αNj ||f ||∞ (see (4.3)), we have that:

∣∣∣∣ 1

dj
log detPj[f ]Pj −

∫
SG

log f(x)dµ(x)

∣∣∣∣ ≤
∣∣∣∣∣ 1

dj
log detRj −

dNj
dj

∫
SG

log fNdµ

∣∣∣∣∣
+

1

dj
log detNj +

∣∣∣∣∫
SG

log fN − log fdµ

∣∣∣∣+
αNj
dj

∣∣∣∣∫
SG

log fNdµ

∣∣∣∣
≤ 4ε+

1

dj
log detNj +

αNj
dj

∣∣∣∣∫
SG

log fNdµ

∣∣∣∣
≤ 4ε+

αNj
dj
||f ||∞ +

αNj
dj
|| log f ||1

≤ 4ε+ 3N−j(||f ||∞ + || log f ||1)

where in the second inequality we have used (4.7) and (4.8) .

4.3.2 Full Result

Now, instead of focusing on a single eigenspace as in the previous section, here we will

look at all the eigenvalues up to a certain value Λ. Hence we shall fix the scale N , and let

EΛ denote the span of the eigenfunctions corresponding to eigenvalues λ for which λ ≤ Λ.

Similarly to before, we let dim(EΛ) = dΛ and PΛ be the projection of L2(SG) onto EΛ.

We have the following:

Theorem 4.3.2 (Szegö Limit Theorem on SG). Let f > 0 be continuous on the SG.

Then,

lim
Λ→∞

1

dΛ

log detPΛ[f ]PΛ =

∫
SG

log f(x)dµ(x)

Proof. Let ε > 0. First, note that PΛ[f ]PΛ forms a block diagonal matrix MΛ with one

block Mλ per eigenvalue λ. Moreover, log detMΛ =
∑

λ≤Λ log detMλ. From theorem 4.3.1,

if λ is a 6-series or 5−series eigenvalue with generation of birth j > N , we have that

∣∣∣∣log detMλ − dλ
∫
SG

log fdµ

∣∣∣∣ ≤ 4εdλ + 3N (||f ||∞ + || log f ||1) (4.9)

Let SN denote the set of eigenvalues λ ≤ Λ with generation of birth j > N . Summing
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over the eigenvalues and noting that 1
dΛ

∑
{λ∈SN} dλ ≤ 1, from (4.9) we conclude that

∣∣∣∣ 1

dΛ

log detMΛ −
∫
SG

log fdµ

∣∣∣∣
≤ 4ε+ (||f ||∞ + || log f ||1)

3N

dΛ

∑
{λ∈SN}

1

+

 ∑
{λ/∈SN}

dλ
dΛ


Looking at the above, it is clear that we need to find both the number of λ ∈ SN ,

as well as the sum of the dλ for λ /∈ SN . The key tool we will use is the theory of the

Laplacian on the SG developed in section 4.2 (namely theorem 4.2.1). First, let m ∈ N be

such that κ5m−1 ≤ Λ < κ5m (note that if N ≥ m, then SN is empty, hence we suppose

that N < m).

For λ ∈ SN such that λ ≤ κ5m, by theorem 4.2.1, we have that:

∑
{λ∈SN}

=
m∑

j=N+1

2m−j +
m∑

j=N+1

2m−j−1

= O(2m−N)

Hence, we have that:
3N

dΛ

∑
{λ∈SN}

= O

(
3N

dΛ

2m−N
)

(4.10)

Now, for λ /∈ SN (having generation of birth j ≤ N), theorem 4.2.1 gives:

∑
{λ/∈SN :λ≤Λ}

dλ ≤
∑

{λ/∈SN :λ≤κ5m}

dλ

= 2m−1 +
N∑
j=1

2m−j−1(3j−1 + 3) +
N∑
j=2

2m−j−2(3j − 3)

= O(2m−N3N)

i.e. ∑
{λ/∈SN}

dλ = O(2m−N3N) (4.11)

Hence, we can put everything together (also noting that dΛ ≥ 1
2
(3m − 3) since
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Λ ≥ κ5m−1) to get:

∣∣∣∣ 1

dΛ

log detMΛ −
∫
SG

log fdµ

∣∣∣∣ ≤ 4ε+ (||f ||∞ + || log f ||1)

(
C

(
3

2

)N−m)

= 4ε+ C̃

(
3

2

)N−m

where in the first line we have used (4.10) and (4.11). But since ε > 0 is arbitrary and

Λ→∞ iff m→∞, we conclude that

lim
Λ→∞

1

dΛ

log detPΛ[f ]PΛ =

∫
SG

log f(x)dµ(x)

4.4 Extension to Pseudo-Differential Operators

In this section, we would like to replace [f ] (pointwise multiplication by f) with a

pseudo-differential operator, following [9].

4.4.1 Defining pseudo-differential operators on the SG

First, we shall note that the IFS defining the SG can be generalized via the contractions

{Fj(x) = 1
2
(x − aj) + aj} where j = 1, 2, 3 and the {aj} are not co-linear in R2. Now,

as in the previous section, we equip the SG with a probability measure µ that assigns

measure 3−m to each m-cell. In addition, we shall introduce the symmetric self-similar

resistance form E (see [13]), which is a Dirichlet form on L2(µ). By standard theory on

such forms (see [14]), there exists a negative definite self-adjoint Laplacian ∆ defined by

E(u, v) =

∫
(−∆u)vdµ

for all v in the domain of E with v(aj) = 0 (j = 1, 2, 3). We shall refer to this as the

Dirichlet Laplacian. This Laplacian indeed coincides with that of the previous section,

for which we have described its spectrum. Now, the spectrum of −∆ (we shall write
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sp(−∆)) can be written as sp(−∆) = {λ1 ≤ λ2 ≤ ... ≤ λn ≤ ...} where limn→∞ λn =∞.

We let {ϕn}n∈N be an orthonormal basis of L2(µ), where ϕn is an eigenfunction with

corresponding eigenvalue λn.

Remark 4.4.1. We shall let D denote the set of finite linear combinations of the ϕn. Note

that D is dense in L2(µ).

To define pseudo-differential operators on the SG, we shall briefly recall the theory

developed in [15], splitting into constant and variable coefficient cases:

Constant Coefficient Pseudo-Differential Operators

For p : (0,∞)→ C, let

p(−∆)u :=
∑
n

p(λn)〈u, ϕn〉ϕn (4.12)

where u ∈ D. This defines an operator on L2(µ) which we refer to as a constant coefficient

pseudo-differential operator. By the Spectral Theorem , if p is bounded then p(−∆)

extends to a bounded linear operator on L2(µ). If p is a 0-symbol (the precise definition

is given in [15]), then p(−∆) is an order 0 pseudo-differential operator. In addition, by

Theorem 3.6 of [15], we know that p(−∆) is a singular integral operator on L2(µ) and

hence extends to a bounded operator on Lq(µ) for q ∈ (1,∞).

Variable Coefficient Pseudo-Differential Operators

For p : SG× (0,∞)→ C measurable, we let

p(x,−∆)u(x) :=
∑
n

∫
SG

p(x, λn)Pλn(x, y)u(y)dµ(y) (4.13)

where u ∈ D and {Pλn}n∈N denotes the spectral resolution/projection of −∆. This defines

what we refer to as a variable coefficient pseudo-differential operator. If p is a 0-symbol,

then by Theorem 9.3 of [15], p(x,−∆) extends to a bounded operator on L2(µ). Moreover,

by Theoreom 9.6 ([15]), p(x,−∆) extends to a bounded operator on Lq(µ) for q ∈ (1,∞).
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4.4.2 Extended Szegö Limit Theorem on the SG

In this subsection, we aim to generalize theorem 4.3.1 and theorem 4.3.2. As in section 4.3,

for an eigenvalue λ of −∆, we shall denote its corresponding eigenspace by Eλ. We let Pλ

denote the orthogonal projection onto Eλ and dλ := dim(Eλ). Similarly, we let EΛ denote

the span of the eigenfunctions corresponding to eigenvalues λ for which λ ≤ Λ. Lastly, we

let dim(EΛ) = dΛ and PΛ be the orthogonal projection onto EΛ.

Now, we fix p : SG× (0,∞)→ R measurable and let p(x,−∆) be defined by eq. (4.13).

We also impose that p(·, λ) is continuous for all eigenvalues λ (of −∆) and that there

exists a continuous map q : SG → R such that the limit limλ∈sp(−∆),λ→∞ p(x, λ) = q(x)

exists and is uniform in x. In all of the following, we may take ||p||∞ > 0, otherwise the

results are trivial.

We begin with a Lemma whose proof can be found in [9].

Lemma 4.4.1. For all Λ > 0, the eigenvalues of PΛp(x,−∆)PΛ are contained in a

bounded interval [A,B].

Now,

Lemma 4.4.2. Let Λ > 0. Let p : SG× (0,∞)→ R be a bounded measurable function

such that p(·, λ) is continuous for all eigenvalues λ. Then, the map on C[A,B] given by

F 7→ 1

dΛ

TrF (PΛp(x,−∆)PΛ)

is a nonnegative continuous functional. A and B are given by lemma 4.4.1.

Proof. The map is trivially non-negative and linear. Moreover, since PΛL
2(SG) is finite

dimensional, we immediately get continuity.

Special Case

Here we are in the setting of section 4.3.1, hence we let λj denote a 6-series eigenvalue

with generation of birth j ≥ 2, and denote its corresponding eigenspace by Ej. Recall

that letting dim(Ej) = dj, we have an orthonormal basis {uk}
dj
k=1 = {ũk}

dNj
k=1 ∪ {vk}

αNj
k=1
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for Ej. We note that as remarked in section 4.3.1, the same can be deduced for a 5-series

eigenvalue, hence the following two results hold for 5-series eigenvalues with similar proofs.

Let Pj denote the projection onto Ej . Then, the matrix Γj := Pjp(x,−∆)Pj is dj × dj

with entries

γj(m, l) :=

∫
p(x, λj)um(x)ul(x)dµ(x)

We can now state the following lemma which we will later need:

Lemma 4.4.3. Consider the simple function f =
∑3N

i=1 ai1Ci on the SG where Ci is an

N-cell. Then, for all k ≥ 0,

lim
j→∞

1

dj
Tr(Pj[f ]Pj)

k =

∫
SG

f(x)kdµ(x)

Proof. First, note that if k = 0, since Tr(IEj) = dj the result is trivial. Hence, we shall

let k > 0 and fix j > N . As in lemma 4.3.1, we have that

Pj[f ]Pj =

Rj 0

0 Nj


is a dj × dj matrix where Rj is a dNj × dNj matrix that corresponds to the localized part,

and Nj is a αNj × αNj matrix corresponding to the nonlocalized part. So,

Tr(Pj[f ]Pj)
k = Tr(Rj)

k + Tr(Nj)
k (4.14)

Now, note that Rj is a block diagonal matrix whose blocks are mN
j ×mN

j matrices

that correspond to a single N -cell Ci. Hence the blocks are just aiImNj (i = 1, ..., 3N) and
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therefore:

Tr(Rj)
k =

3N∑
i=1

mN
j a

k
i

= dNj

3N∑
i=1

aki
3N

= dNj

∫
SG

f(x)kdµ(x)

where we recall that dNj = 3NmN
j . On the other hand, since each element in Nj is

smaller in absolute value than ||f ||∞, we conclude that

|Tr(Nj)
k| ≤ (αNj )k||f ||k∞

So,

1

dj
Tr(Pj[f ]Pj)

k −
∫
f(x)kdµ(x) =

1

dj
[Tr(Rj)

k + Tr(Nj)
k]−

∫
f(x)kdµ(x)

=
dNj
dj

∫
SG

f(x)kdµ(x) +
1

dj
Tr(Nj)

k −
∫
SG

f(x)kdµ(x)

= −
αNj
dj

∫
f(x)kdµ(x) +

1

dj
Tr(Nj)

k

where in the first line we have used (4.14), and in the last line we have used that

dj − dNj = αNj . Finally:

∣∣∣∣ 1

dj
Tr(Pj[f ]Pj)

k −
∫
f(x)kdµ(x)

∣∣∣∣ ≤ αNj
dj

∫
|f(x)|kdµ(x) +

(αNj )k

dj
||f ||k∞

So we have proved the result since f is bounded on the compact SG and limj→∞
(αNj )k

dj
= 0

for all k > 0.

Now with the lemma, in hand, we prove the extended version of theorem 4.3.1:

Theorem 4.4.1. Let p : SG× (0,∞)→ R be a bounded measurable function such that

p(·, λ) is continuous for all eigenvalues λ. Assume that the limit limλ∈sp(−∆),λ→∞ p(x, λ) =
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q(x) exists and is uniform in x. Then, for all k ≥ 0,

lim
j→∞

1

dj
Tr(Pjp(x,−∆)Pj)

k =

∫
SG

q(x)kdµ(x) (4.15)

Hence, for any continuous F supported on [A,B] (where A, B are as in lemma 4.4.1) we

have that

lim
j→∞

1

dj
TrF (Pjp(x,−∆)Pj) =

∫
SG

F (q(x))dµ(x) (4.16)

Proof. First, we shall note that if k = 0, since Tr(IEj ) = dj , the result is trivial. Hence, we

shall let k > 0 and suppose that ∃C > 0 such that p(x, λ) ≥ C for all (x, λ) ∈ SG× (0,∞).

In addition, let ε > 0 be such that ε < C
2
.

Since λ 7→ λk is uniformly continuous on [A,B], there exists 0 < δ < ε such that if

|λ− λ̃| < δ then |λk − (λ̃)k| < ε. We shall come back to this later.

Now, since we have that q is continuous, there exists a simple function fN =
∑3N

i=1 ai1Ci

where the Ci are N -cells, such that ||q − fN ||∞ < δ
2
. Thus, since µ(SG) = 1, we have:

∣∣∣∣∫
SG

q(x)kdµ(x)−
∫
SG

fN(x)kdµ(x)

∣∣∣∣ < ε (4.17)

Now by uniform convergence, there exists J ≥ 1 such that ||p(·, λj)− q(·)||∞ < δ
2
for

all j ≥ J . Hence, for all x ∈ SG and j ≥ J we have that:

C

2
≤ fN(x)− δ ≤ p(x, λj) ≤ fN(x) + δ (4.18)

By lemma 4.4.3 (increasing J if necessary), we have that for all j ≥ J ,

∣∣∣∣Tr(Pj[fN ]Pj)
k

dj
−
∫
SG

fN(x)kdµ(x)

∣∣∣∣ < ε (4.19)

So now, let j ≥ J . (4.18) implies that 0 ≤ Pj [fN−δ]Pj ≤ Pjp(x,−∆)Pj ≤ Pj [fN+δ]Pj .

Hence, letting σjm denote the eigenvalues of Pjp(x,−∆)Pj and σjm,N denote the eigenvalues

of Pj[fN ]Pj, we have that |σjm − σ
j
m,N | < δ for all m = 1, ..., dj. However, then recalling
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the remarks in the second paragraph of this proof, we have that:

∣∣(σjm)k − (σjm,N)k
∣∣ < ε ∀m = 1, ..., dj (4.20)

So finally, since Tr(Pjp(x,−∆)Pj)
k =

∑
m(σjm)k and Tr(Pj[fN ]Pj)

k =
∑

m(σjm,N)k we

have that:

∣∣∣∣Tr(Pjp(x,−∆)Pj)
k

dj
−
∫
SG

q(x)kdµ(x)

∣∣∣∣ ≤ ∣∣∣∣Tr(Pjp(x,−∆)Pj)
k

dj
− Tr(Pj[fN ]Pj)

k

dj

∣∣∣∣
+

∣∣∣∣Tr(Pj[fN ]Pj)
k

dj
−
∫
SG

(fN(x))kdµ(x)

∣∣∣∣
+

∣∣∣∣∫
SG

(fN(x))kdµ(x)−
∫
SG

q(x)kdµ(x)

∣∣∣∣
≤

∣∣∣∣∣
∑dj

m=1

[
(σjm)k − (σjm,N)k

]
dj

∣∣∣∣∣+ ε+ ε

≤ 3ε

where in the last two lines we have used (4.19),(4.17), and (4.20). In conclusion,

we have shown that (4.15) holds. For (4.16), we simply use lemma 4.4.2 and apply

Stone-Weierstrass Approximation Theorem.

Full Result

Now, we are ready to develop the full result, namely the extended version of theorem 4.3.2.

Theorem 4.4.2. Let p : SG× (0,∞)→ R be a bounded measurable function such that

p(·, λ) is continuous for all eigenvalues λ. Assume that the limit limλ∈sp(−∆),λ→∞ p(x, λ) =

q(x) exists and is uniform in x. Then, for any continuous function F supported on [A,B],

we have:

lim
Λ→∞

1

dΛ

TrF (PΛp(x,−∆)PΛ) =

∫
SG

F (q(x))dµ(x) (4.21)

where A,B are from lemma 4.4.1.

Proof. In this proof, we shall let gob(λ) denote the generation of birth of the eigenvalue λ.

41



Now, by the finishing remarks in the proof of theorem 4.4.1, we know by Stone-Weierstrass

that is suffices to show the following:

lim
Λ→∞

1

dΛ

Tr(PΛp(x,−∆)PΛ)k =

∫
SG

q(x)kdµ(x)

Well, for k = 0, it holds trivially, hence we shall let k > 0 and ε > 0. First, note

that Tr(PΛp(x,−∆)PΛ)k =
∑

λ≤Λ Tr(Pλp(x,−∆)Pλ)
k and dΛ =

∑
λ≤Λ dλ. Now, by

theorem 4.4.1 (recalling that it holds for both 5 and 6-series eigenvalues) there exists

J > 1 such that if λ is a 6-series (or 5-series) eigenvalue with gob(λ) ≥ J then:

∣∣∣∣Tr(Pλp(x,−∆)Pλ)
k

dλ
−
∫
SG

q(x)kdµ(x)

∣∣∣∣ < ε (4.22)

For Λ > 0, let ΓJ(Λ) denote the set of eigenvalues λ ≤ Λ such that gob(λ) > J .

Similarly, let Γ̃J(Λ) denote the set of eigenvalues λ ≤ Λ such that gob(λ) ≤ J . We remark

that since 2-series eigenvalues have generation of birth equal to 1, ΓJ(Λ) consists only of

5 and 6 -series eigenvalues. Now, fixing Λ1 > 0 such that ΓJ(Λ1) 6= ∅ and Γ̃J(Λ1) 6= ∅ we

have for all Λ > Λ1:

∣∣∣∣ 1

dΛ

Tr(PΛp(x,−∆)PΛ)k −
∫
SG

q(x)kdµ(x)

∣∣∣∣
≤ 1

dΛ

∑
λ∈ΓJ (Λ)

∣∣∣∣Tr(Pλp(x,−∆)Pλ)
k − dλ

∫
SG

q(x)kdµ(x)

∣∣∣∣
+

1

dΛ

∑
λ∈Γ̃J (Λ)

∣∣∣∣Tr(Pλp(x,−∆)Pλ)
k − dλ

∫
SG

q(x)kdµ(x)

∣∣∣∣
For convenience, we shall let the first term above be denoted by A and the second by B.

First we deal with term A. Well, by (4.22), we have that

A ≤ ε

dΛ

∑
λ∈ΓJ (Λ)

dλ ≤ ε (4.23)
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Now for term B we recall the proof of theorem 4.3.2, which implies that

lim
Λ→∞

∑
λ∈Γ̃J (Λ) dλ

dΛ

= 0

Hence there exists Λ2 > Λ1 such that if Λ > Λ2 then:

∑
λ∈Γ̃J (Λ) dλ

dΛ

<
ε

||p||k∞ + ||q||k∞
(4.24)

So, since Tr(Pλp(x,−∆)Pλ)
k ≤ dλ||p||k∞ and µ(SG) = 1 we get for Λ > Λ2:

B ≤ (||p||k∞ + ||q||k∞)

∑
λ∈Γ̃J (Λ) dλ

dΛ

< ε

where we have used (4.24). Bringing it all together, we arrive at:

∣∣∣∣ 1

dΛ

Tr(PΛp(x,−∆)PΛ)k −
∫
SG

q(x)kdµ(x)

∣∣∣∣ ≤ A+ B

≤ ε+ ε
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Chapter 5

The von Koch Snowflake

In this chapter, we examine another specific fractal - the Koch Snowflake. After reviewing

the basic properties of the snowflake, we present numerical results which demonstrate the

behaviour of the eigenfunctions of the Laplacian on the snowflake domain.

5.1 Construction and Basic Properties

The Koch Snowflake is a fractal composed of three Koch Curves glued together in a

triangle. Each Koch Curve is obtained by starting with a line segment (we shall take the

segment to have length 1), and dividing it into thirds. From the middle third, we draw

an equilateral triangle of side length 1/3 pointing outwards. We then delete the middle

third of the original line segment (thus deleting the base of the new equilateral triangle).

Recursively doing this results in the Koch Curve:

Level 0 Level 1

Level 2 Level 3

Figure 5.1: The first few iterations of obtaining a Koch Curve.
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Formally, the Koch Curve is the attractor of the IFS



F1(x) =

1
3

0

0 1
3

x

F2(x) =

 1
6

−
√

3
6

√
3

6
1
6

x+

1
3

0


F3(x) =

 1
6

√
3

6

−
√

3
6

1
6

x+

 1
2

√
3

6


F4(x) =

1
3

0

0 1
3

x+

2
3

0


The Koch Snowflake thus is an equilateral triangle, whose three sides are developed as

Koch Curves.

Figure 5.2: The Koch Snowflake. The three Koch curves which form the snowflake have
been given different colors.

A first property of the Koch Snowflake is that it has a finite area:

Theorem 5.1.1 (Area of Snowflake). The area of the classical Koch Snowflake of side

length one is A = 2
√

3
5
.

Proof. We start with the level zero/iteration zero snowflake; i.e. just an equilateral triangle

of side length one - the area is A0 =
√

3
4
. Now, at level m, we have added 3 · 4m−1 triangles.
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Moreover, the area of each triangle added at level m is 1
9
the area of the triangle added at

level m− 1. Hence, the area of each triangle added at level m is 1
9m
A0. So, the total new

area added at level m is (1
9
A0)(3 · 4m−1) = (4

9
)mA0.

3
4
. Hence, we calculate the area of the

level m snowflake:

Am = A0

(
1 +

3

4

m∑
k=1

(
4

9

)k)

= A0

(
1 +

1

3

m−1∑
k=0

(
4

9

)k)

= A0

(
1 +

1

3
· 9

5

(
1−

(
4

9

)m))
= A0

(
1 +

3

5

(
1−

(
4

9

)m))
= A0

(
8

5
− 3

5

(
4

9

)m)

Finally, the area of the Koch Snowflake is

A = lim
m→∞

Am =
8

5
A0 =

8

5

√
3

4
=

2
√

3

5

Despite having finite area, the Koch Snowflake has infinite perimeter:

Theorem 5.1.2 (Perimeter of Snowflake). The perimeter of the classical Koch Snowflake

of side length one is infinite.

Proof. At each level , the number of sides of the snowflake is multiplied by 4, hence the

number of sides of the level m snowflake is 3 · 4m. However, the length of each side at

level m is 1
3m

. Hence, the perimeter of the level m snowflake is (3 · 4m)( 1
3m

) = 3 · (4
3
)m.

But as m→∞, this quantity tends to infinity.

Theorem 5.1.3 (Dimension of Snowflake). The box-counting dimension of the classical

Koch Snowflake of side length one is log 4
log 3

Proof. We consider a Koch Curve, so a third of the boundary of the snowflake. If we take

boxes having side length 1
3
, we need 3 total boxes to cover the curve. Now, if we take
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boxes of side length 1
9
, we will need 4 · 3 = 12 boxes to cover the curve. Continuing this

process, we have that the number of boxes of side length 1
3n

necessary to cover the curve

is Nn = 3 · 4n−1. Hence using the last equivalent definition of box-counting dimension

introduced in section 2.2, we have that

dimB = lim
n→∞

logNn

− log( 1
3n

)

= lim
n→∞

log(3 · 4n−1)

n log 3

= lim
n→∞

log 3 + (n− 1) log 4

n log 3

= lim
n→∞

(
log 3− log 4

n log 3
+
n log 4

n log 3

)
=

log 4

log 3

5.2 Theory of the Laplacian on Snowflake

Let Ω ⊂ R2 be such that ∂Ω is the Koch snowflake. In this section, we shall briefly

summarize the numerical results in [11] , [12] concerning the eigenvalue problems

∆u+ λu = 0 in Ω , u = 0 on ∂Ω

(i.e. with Dirichlet boundary conditions) and

∆u+ λu = 0 in Ω ,
∂u

∂ν
= 0 on ∂Ω

(i.e. with Neumann boundary conditions).

Recall that the eigenvalues of the Laplacian may be written as 0 ≤ λ1 ≤ λ2 ≤ ...→∞

with corresponding eigenfunctions {ϕk}∞k=1. It is important to first remark that the object

of study for this section is fundamentally different than that of the previous chapter

(the Sierpinski Gasket). Here we are considering a domain whose boundary is fractal, as
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opposed to working strictly on a fractal itself. Hence, the key observation of the previous

chapter (the localization of eigenfunctions on cells) cannot be used. Instead, to study the

eigenvalues/eigenfunctions on the snowflake domain, Neuberger et al. approximate the

Laplacian by a symmetric matrix (a discretized Laplacian) and numerically compute the

eigenvalues and corresponding eigenfunctions of the Laplacian matrix via ARPACK. The

results can then be extrapolated for grid spacing tending to 0.

For the Dirichlet boundary conditions, the eigenfunctions from a one dimensional

eigenspace exhibit D6 symmetry:

Figure 5.3: The 6th eigenfunction ϕ6 on the Koch Snowflake with Dirichlet boundary
conditions. Figure is due to Strichartz and Wiese [11].

Eigenfunctions from a two dimensional eigenspace however are symmetric under

reflections:

Figure 5.4: The eigenfunctions ϕ4, ϕ5 on the Koch Snowflake with Dirichlet boundary
conditions. Figure is due to Strichartz and Wiese [11].

For the Neumann boundary conditions, the eigenfunctions from a one dimensional

eigenspace also exhibit D6 symmetry as in the Dirichlet case. Eigenfunctions from a two

dimensional eigenspace however exhibit symmetric properties:

48



Figure 5.5: The eigenfunctions ϕ4, ϕ5 on the Koch Snowflake with Neumann boundary
conditions. Figure is due to Strichartz and Wiese [11].
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Chapter 6

Conclusion

Starting with the basic infrastructure, this thesis provides an introduction to analysis on

fractal sets that is relatively self-contained. The dimension theory of such sets is built

up and motivated to introduce the works of Solomyak, Falconer, and McMullen, which

determines the Hausdorff dimension of general classes of self-affine sets. Two ubiquitous

fractal sets are then examined in depth from a spectral theory viewpoint. The technical

results by Okoudjou et al. on the Sierpinski Gasket were reviewed, which develop analogues

and extensions of the Szego Limit Theorem. This highlights the importance of localized

eigenfunctions in developing strong theoretical results on fractal sets.

To this end, a natural research question concerns whether or not such limit theorems

may exist for more general classes of fractals. The existence of localized eigenfunctions of

the Laplacian seems to be sufficient, and conditions for such existence may be found in

[6], giving merit to this question.

In addition to this question, the author of this thesis is particularly interested in the

spectral gap of the Laplacian on fractals. The size of the first eigenvalue of the Laplacian

has already been examined on surfaces including the sphere, torus, projective plane,

surfaces of genus 2, and the Klein bottle. The analogous problem on fractals seems to be

a promising research direction, and may be approached perhaps via approximations by

discrete graphs.

The author hopes that this thesis has motivated interest in analysis on fractals, by
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detailing strong theoretical results that have recently been developed. The thesis also

should be helpful for its expository content on fractals, as well as its application of various

tools from a range of mathematical disciplines.

Appendix A: Classical Szegö Limit Theorem

Let φ : T→ C be a complex-valued function defined on the complex unit circle T. We

define the Fourier coefficients of φ by

φ̂(n) :=
1

2π

∫ 2π

0

φ
(
eiθ
)
e−inθdθ

The Szegö Limit Theorems (first proved by Gábor Szegö) concern the limiting behaviour

of the determinants of the Toeplitz matrices Tn(φ) defined by Tn(φ) = (φ̂(j − k))n−1
j,k=0.

Namely, if we define the geometric mean of φ as

GM(φ) := exp

[
1

2π

∫ 2π

0

log φ(eiθ)dθ

]

then the first Szegö Limit Theorem is as follows:

Theorem 6.0.1 (Szegö Limit Theorem 1). Let φ > 0 with φ ∈ L1(T). Then,

lim
n→∞

detTn(φ)

detTn−1(φ)
= GM(φ)

Under the additional assumption that the derivative of φ is Hölder continuous of order

α > 0, we have the second (also called the "strong") Szegö Limit Theorem:

Theorem 6.0.2 (Strong Szegö Limit Theorem). Let φ > 0 with φ ∈ L1(T) and suppose

that the derivative of φ is Hölder continuous of order α > 0. Then,

lim
n→∞

detTn(φ)

(GM(φ))n
= exp

[
∞∑
k=1

k|(l̂og φ)(k)|2
]

The majority of the proofs of the classical Szegö Limit Theorems are quite long and

rather indirect. The first clear proof was due to H. Widom (see [1]), who used ideas from
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operator theory to generalize the theorems to matrix-valued functions. Namely, if we let

H(φ) = (φ̂(j + k+ 1))j,k≥0 be the Hankel matrices and write φ̃(z) = φ(z−1), Widom made

great use of the following identity:

Tn(φψ)− Tn(φ)Tn(ψ) = PnH(φ)H(ψ̃)Pn +QnH(φ̃)H(ψ)Qn

where Pn(f0, f1, ...) = (f0, ..., fn, 0, ...) and Qn(f0, f1, ...) = (fn, ..., f0, 0, ...).

Appendix B : The Mass Distribution Principle

Definition 6.0.1. A mass distribution µ is a measure on a bounded subset of Rn for

which 0 < µ(Rn) <∞.

Theorem 6.0.3 (Mass Distribution Principle). Let µ be a mass distribution on F and

suppose that for some s , there exists c > 0 and δ > 0 such that µ(U) ≤ c|U |s for all sets

U with |U | ≤ δ. Then we have that

Hs(F ) ≥ µ(F )

c

and dimHF ≥ s.

Proof. Let {Ui} be any δ-cover of F . Then, using the monotonicity and subadditivity of

measures we have:

µ(F ) ≤ µ(∪∞i=1Ui)

≤
∞∑
i=1

µ(Ui)

≤ c
∞∑
i=1

|Ui|s

where in the last line we have used that µ(Ui) ≤ c|Ui|s (recalling that |Ui| ≤ δ). Hence,

taking infima we obtain Hs
δ(F ) ≥ µ(F )

c
, and therefore conclude that Hs(F ) ≥ µ(F )

c
. Lastly,

since µ(F ) > 0 we have that dimH(F ) ≥ s.
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