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I Introduction 

The purpose of this thesis is to intro1uce a new mathen~tical 

approach to the study of evolution by natural selection. Practically 

all of contemporary mathematical evolution tneo:r; is encompassed by 

the field of population genetics, which takes the empirical facts of 

Hendelian genetics as given and infers their evolutionacy consequences. 

The writer has approached the subject from the opposite direction. This 

thesis takes the occurrence of evolution by natural selection as a given 

fact, and emphasizes tha.t mere chance oould not have produced the higj1ly 

adapted organisms we see around us within the limitations of time and 

space to which natural selection has been restricted. It then attempts 

to infer the properties of a genetic system, and other conditions, which 

are necessary and sufficient to allmv natural selection to have yielded 

products so different from those which would have been yielded by chance 

alone. 

At the level of broad analogy, evolution by natural selection can 

be cornpared to a guessing gante. Each new mutant or recombinant is a gue ss 

at a better adapted genotype, and the environment acts as a referee to 

classify each guess as better or worse than the one before. The analogy 

can be made more precise and illuminating by a matherratical analysis of 

the transfor of inforwa.tion from referee to player in an abstract guess­

ing game. A mathematical model of Darwinian evolution as a kind of guess­

ing gam.e can then be developed. 

The validity of the madel is confirmed by the fact that it allows 

many of the important empirical properties of genetic systems to be 



deduced as necessar,y conditions of evolution by natural selection. The 

model also offers a way of attacking various problems which cannat be 

analyzed in terms of population genetics. 

Mathema.tical Approaches to Evolution Theory 

Both Charles Darwin and A.R. Wallace credited Malthus' semi-math­

ernatical "Essay on the Principle of Population" as their inspiration ~or 

the concept of natural selection (Francis Darwin 1887; Marchant 1916). 

Although The Origin of Species (Darwin 1859) contains nothing more ma.th­

ematical than a few arithmetical ~ples of potential population growth, 

the theory of natural selection is basically quantitative, and has been 

the abject of mathematical attack and support since its formulation. 

In 1870, for example, Bennett published some calculations intended 

to show that many consecutive variations in the same direction would have 

2. 

to occur before improvements large enough for selection to act would appear. 

Wallace (1870) rebut~ed the argument simply by making different assumptions 

about the sizes of variations, their mode of inheritance, and the sensitiv­

ity of selection. As long as little was known about the mecmnism of 

heredity, nothing conclusive could corre from such debate. A more pertinent 

argument was presented by Fleeming Jenkin (1867) who showed quite clearly 

that selection could not operate on occasional large variations trans­

mitted by blending inheritance. This argument led Darwin to the speculations 

on changed conditions of life as a cause of widespread variability which 

are so prominent and distunbing in his later works. Although Jenkin intended 

to prove the impossibility of effective natural selection, Darwin used 

Jenkin!s argument and the assumption that natural selection was in fact 

operative to IIBke the first mathematically founded inferences about the 



mechanism of heredity. 

Although Darwin1s work solidly established the fact that evolution 

haà occurred, argument about the mechanism continued for decades. None 

of the hypotheses brought forward to challenge the hypothesis of natural 

selection appear to mve been supported by serious ma.thema.tical analysis, 

however, if one ignores repetitious and irrelevant calculations proving 

that "chance alone" cannot account for the results of evolution. Neo­

La.marckianism, the Mutation Theory ( 11which postulated that large mutations, 

and not small 1continuous variations•, were the raw material of evolution, 

and actually determined rnost of its course, selection being relegated to 

a wholly subordinate position11 (Huxley 1942)), and the numerous meta­

physical theories of directed evolution, rested on qualitative arguments. 

~~thematical studies of evolution were devoted almost exclusively to work­

ing out the consequences of selection. 

The validity of such studies of course rested on the correctness of 

their assumptions conceming the mecha.nism of heredity. Unfortunately, 

t~e rediscovery of Mendel' s laws did not immediately reform mathema.tical 

evolution theory. In the early decade.s of the 20th Century, in the words 

o.f Julian Huxley (1942), evolution theory 11 ••• bad reached its bioJœtric 

phase. Tracing its origin to Galton, biometry blossomed urrler the guidance 

of Karl Pearson and Weldon. Unfortunately this, the first thorough appli­

cation of ma.thematics to evolution, ••• was for a considerable tir.ae rendered 

sterile by its refusal to acknowledge the genetic facts discovered by the 

Mendelians. Both sidas, indeed, were to blame. The biometricians stuck 

to hypothetical modes of inherita.nce and genetic variation on which to 

exercise their :mathema.tical skill; the Mendelians refused to acknowledge 



tha.t continuous variation could be genetic, ••• or that a. mathema.tical 

theory of selection could be of any real service to the evolutionary 

biologists. 11 

An essential first step in developing the modern ~athematical theory 

of evolution, which is a. synthesis of Mendelian genetics and the theory of 

naturel selection, wa.s ta.ken by Hardy (1908) and Weinberg (1908; cited by 

Stern 1943). Their publications established the concept of a gene frequensr 

in a population, and demonstrated that the frequencies of genes and the 

characters they influence will not spontaneously change in the absence of 

mutation, selection, or migration; in IJarticular, they corrected the pre­

valent misconception that a recessive cha.racter tends to decrease in 

frequency merely because it is recessive. 

The mathematica.l theory of evolution in almost its modem form then 

appeared with the publications of Fisher (1930), Sewa.ll Wright (1931), and 

J.B.S. Haldane (1932). (These are chosen as uclassical 11 references; the 

work of Wright and of Haldane, in particula.r, is contained in numerous 

papers). These publications laid an astonishingly extensive foundation, 

although of course much ms been adàed since. The subject is adequately 

su%~rized by Li (1955) and by Falconer (1960). 

Non-genetic approaches to the mathematical study of natural selection 

have of course been tried. Those which deal only with attempts to establish 

a quantitative way of measuring evolutiona.r-J phenomena, such as rates of 

morphological change in paleontological series, will be omitted from dis-

eus sion. 

Thermodynro:tics, which affords a basis for deducing the direction 

which physical and chemical processes will take and the terminal states 

they will achieve, ms attracted att-ention from evolutionists. In the form 



of chemical kinetics, it has been useful in perm:itting inferences about 

the conditions required on the surface of the earth for the formation of 

those chemica.l substances and complexes we associate with life (Oparin 

l93S; Blum 1955; Florkin 1960)1 but except for Blum1s claim to have shown 

that or~nic evolution and the laws of thermodynamics are not incompatible, 

its usefulness in discussing the evolutionaFJ process as a whole has not 

been demonstrated. 

Lotka wrote a number of papers trying to relate natural selection to 

the overall energetics of the ea.rth, his basic principle (Lotka 1922) being 

that since free energy is the fundamental object of competition in eco­

logical syste~, "•·• na.tural selection tends to make the energy flux through 

the system a ma.xinru.m". This principle, interpreted to mean that an unused 

or inefficiently used source of energy constitutes an unoccupied ecological 

niche, has become important in attempts to explain the trophic structure of 

communities, but it has never become incorpcrated in evolutionar,y theory in 

a form amenable to mathematica.l analysis. 

Population dyn.amics will pemaps contribute to popula. ti on geœtics by 

clarifying the genetic changes to be expected in expanding, shrinking, or 

fluctuating populations. Gause (1934) however intended his experimental 

and mathematical studies of interspecific competition and predator-prey 

relations to contribute to the theory of natural selection in a more fund­

amental way. The principle which bea.rs his na.me (two or more forms with 

identical ecological requirements cannot coexist indefinitely in the same 

environment) laid a foundation for rigorous discussion of the notion of an 

ecologi.cal niche. The subject ha.s been discussed in a mathematical way by 

Hutchinson (1957), ~~cArthur (1957) and Slobodkin (1961), in an attempt to 

answer the question UWb.y are thére so many kinds of animais?" (Hutchinson 



1959), in other words to give a precise but general statement of the con­

ditions required to permit an additional species to evolve. 

6. 

Lewontin (1961) pointed out that 11 population genetics is not genetics 

of populations butgenetics in populations", and is not suitable to explain 

how populations achieve an adequate degree of outbreeding, rate of re­

combination, and dispersal to allow them to compete successfully with otœr 

evolving populations. He suggested tbat analysis by Game Theory might 

assist in defining the best 11 strategy11 for such situations. His publication 

was offered chiefly as a suggestion, not worked out in enough detail to 

allow a firm judgement of its value. 

Meanwhile a new body of applied mathema.tics, k:nown as Informa.tion 

Theory, was growing rapidly. Brillouin (1956) attributes the concept on 

which it is based to a 1929 paper by Leo Szilard pointing out that the thermo­

dynamic entropy of a system corresponds to the quantity of information about 

the molecular configuration of the system which is not accessible to in­

strumental determination. The early history of the subject is also reviewed 

by Qua.stler (1958). The mathematical basis of information theory was largely 

developed by Wiener Ü94S) and Shannon (Shannon and Weaver, 1949), chiefly 

in its application to autona.tic rnachinery and to c ommunica.tion systems, 

although Wiener and Weaver also discussed its applicability to biological 

problems. In a qualitative way, its potential value in genetics was pointed 

out by Kalmus (1950). 

Attempts to discuss evolution in terms of information theory have been 

few in number, if one excludes those whose authors have merely adopted the 

terminology of information theory without any attempt at mathema.tical anal­

ysis. It is noteworthy, for example, that neither of two major symposia 

on Information Theory in biology contains a paper on evolution (Quastler 



1953; Yockey, Platzman and Quastler 1958). The first serious discussion 

cf evolution in terms of inform9.tion is by Ashby (1952) who dealt 1 as an 

analogy, with an imagi.na.ry chess-playing nachine which could 11 learn11 to 

outplay its designer. Ashby concluded that na.tu:ra.l selection was a pro-

cess for transforming ra.ndom 11noise 11 into information. Warburton (1958), 

in a very brief communication, concluded that natural selection is a 

mecha.nism for tra.nsferring pre-existing information from the environment 
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to the genetic ma.terial of organisms. Kimura (1961), in a mathematically 

sophisticated paper, concluded that natural selection creates information 

(presumably out of nothing) which is then accumulated by the genetic ma.terial 

of populations, arrl estim9.ted its rate of accumulation. These papers will 

be reviewed in a later section of this thesis. 

The rarity of such publications suggests tha.t great difficulties exist, 

sorne practical and sorœ semantic, in applying the concept of a quantity of 

information to evolutionary problems. Sorne of these difficulties t~ll be 

discussed in Section II of ~~is thesis. 

Almost the whole.of modern mathe~tical evolution theory is therefore 

included within the discipline of population genetics, and deals exclusively 

with rates of change of gene frequencies under the influence of mutation, 

migration, random sampling, deviations from panmixia, and selection, and 

with rates of change of quantitative characters controlled by polygenes. 

The theory is essentially a mthe:rœ.tical madel of the empirical facts of 

genetics. This ha.s wel1 served its original pur-pose of reconciling Hendel­

ian genetics and Darw:inian evolution, but it is far from being a complete 

mathema.tical theory of evolution. It req.üres to be supplemented by a fresh 



mathema.tica.l a.pproach meeting the following requirements: 

First, the supplementary theor,y should be easily interpreted in terms 

of information theor.y, since the concept of a quantity of information is 

becoming increasingly important in molecular genetics and as a basis for 

interdisciplinary discussions intended to relate different fields of sci­

ence to ea.ch other. The question of the source of the large qua.ntities 

s. 

of inforrration ca.rried by the geneLic :n3.terial, for example, must be clearly 

resolved before organic evolution can be correctly related to other aspects 

of the cosmologica.l process. 

Secondly, the theory should permit a discussion of the entire evol­

utionary process, from the origin of life to the present day, including the 

period before the complex genetic systems of modern organisms a.rose. If 

possible it should be sufficiently general to serve as a guide for specu­

lation about evolution on other worlds. If the theory is general enough 

for such purposes, it will permit evolutionary phenomena on earth to be dis­

cussed either in terms of the classical particulate gene, a mode of descriP­

tion to which natural history and population genetics will perhaps long be 

confined by practical difficulties, or in terms of nucleic acid structure 

and protein synthesis, a mode of description which will become increasingly 

important if evolution theory is to be rela ted to merl em concepts of gene 

structure and function. 

To meet the above requirement, the theory must be freed from too rigid 

dependance on the empirical facts of genetics as a naterial basis for a math­

ema.tica.l model. One might hope, indeed, that the theory would permit sorne 

of the empirical facts of genetics to be deduced from its axioms. What is 

needed is not a system for deducing the evolutionary consequences of the 

facts of genetics -- population genetics alread.y rœets this need -- but a 



system for deducing the necessary conditions, sorne of which will be genetic 

conditions, for evolution. 

Ideally, the theory should also be useful in discussing evolutiona:cy 

interactions between populations which do not exchange genes, i.e. for dis­

cussing the evolutiona:r"J development of tax.ono;nic categories above the 

species level, and the evolution of ~netic systems. It should also permit 

an evaluation of the propriety of various analogies which have been dra1m 

between organic evolution and other processes, such as learning (Pringle 1956), 

and the development of serological immunity (Burnet 1958). 

Development of the Present Thesis. 

The work leading to the theory presented in this thesis evolved through 

three main phases. Initially the writer believed tr~t an adequate supple­

ment to classical population genetics rould be developed simply by restating 

its principles in terms of information theory. He therefore attempted to 

write expressions for such things as the quantity of information carried in 

the geno:ne of an organism, the changes in this qua.11tity resulting from 

mutation, etc. At that tim.e he was unaware that a similar attempt had been 

made by J.B.S. Haldane (mentioned in Haldane 1953) who presumably found the 

approach unproductive, as did the writer, since he makes no further mention 

of it in later papers. The reasons for the difficulties encountered in such 

an attempt are made sufficiently clear in Section II of this thesis. 

The next phase involved inventing and trying to develop a number of 

umechanical 11 analogies to organic evolution. The first of these wa.s frankly 

patterned after Ashby's (1952) hypothetical chess-playing machine. A number 

of authors have published such analogies, which ~trill be mentioned here to 

indicate the kind with which the writer worked. Moore (1956) wrote a fanciful 



10. 

but fascinating discussion of 11artifical living plants 11 , floating factories 

ca.rrying their own bluepri."lts stored on tape, and utilizi.ng sola.r power to 

build duplicates of themselves from minerals extracted from the sea, which 

could be harvested as a supply of metals. He mentions the possibility that 

evolutiona.rJ potentia.lities could be built into such machines, but does not 

discuss the matter except to point out that if would be sa.fer not to do so. 

To design floating fa.ctories which would evolve, but could be guara.nteed not 

to become dangerous predators on peaceful shipping, would indeed tax the 

theoretica.l urrlerstanding of contempora.ry evolutionists. 

FriedJJla.n (1959) described an imaginary 11 selective feed~)ack co'11puter11 

for designing electrica.l circuits. The nachine would construct a circuit 

from a variable combination of con~onents, test it against predetennined 

criteria, and by restricting further trials to small ra.ndom changes in cir­

cuits which ha.d p9.ssed the easier ea.rly tests would rather quickly 11 .... con­

verge upon a. type which passes tl'~ grea.test nu.rnber of tests 11 • He pointed 

out tha.t the number of trials required to find the best circuit by this pro­

cedure is of the order of the logarithm of the number required to find it by 

testing random combina.tions of components, unrelated to those a.lrea.dy tested. 

Ra.poport (1961) analyzed the behaviour of a "perfect learner" which must 

lea.rn, by trial and error, to give the correct response to each of a large 

set of stimuli. The learner is ass1nned to make trials in a systematic wa.y, 

and to have a perfect memory. More instructive to the evolutionist would be 

a 11lea.rner11 with a very imperfect memory, which learns to gi ve the correct 

response (a well a.da.pted phenotype) to a single extremely complex stimulus 

(the environment) • 

.Hichie (1961) pointed out the a::1alogy between evolution an::i the process 

by which a. very simple machine -(MENACE; Matchbox Educable Noughts And Crosses 
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Engine) ra.pidly 11learns 11 to become unbea.ta.ble a.t the ga.me of noughts a.nd 

crosses. Gardner {1962) described a simila.r but even s:ilzpler machine, HIM 

(Hexa.pawn Instructable Matchboxes). 

A study of these analogies, and of others invented by the writer, vias 

instructive Ln severa.l ways. For example, they made it clear that to pro­

duce a.YJ extremely improbable end result one must accumulate slightly improb­

able events over a period of tirne. Muller (1929, 1958) had already made 

this abundantly clear in a purely biological co:1text. Although it lay with­

in his gra.sp, Muller did not state the fact that such a cumulative process 

ca.n yield a highly improbable result in roughly the logarit.h:n ofthe time 

required for it to occur by chance, and Frie~~n, a.lthough he stated this con­

clusion, did not demonstrate it. 

Although suggestive, a.ll these analogies reqJ.ired too 11any a.ssumptions 

or restrictions peculiar to themselves to be of truly general biolocical 

applicaoility. 'The writer gradually becarre a.ware, however, that all the 

models with which he wa.s working either wwre guessing games, like Twenty 

Questions, or could be readily tra.nsfor.med into guessing ga.mes. This rea.liz­

ation led him to the third phase, the development of a 11Theory of Guessing11 • 

No such forrnal theor,y appears to have existed before. It reveals principles 

which may be useful in considering any systa"1l in which highly improbable end 

results must be produced by the accumulation of slightly improbable 11 improve­

ments11 each of which is the result of a sort of trial and error process. 

The notion of a quantity of information is central to the theory of 

guessing, and a section of this thesis is therefore devoted to intro:iucing 

that concept. The next section discusses guessing g~1es, and is developed 

to the point at which a particula.r ki nd of guessing ga..rne, a 11Darwinian ga.me 11 , 

can be defined itvhich serves as a uséf'ul model of evolution by natural 
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selection. Then a section is devoted to fairly detailed analysis of a 

Darwinian game which is deliberately and explicitly overs~nplified, but 

which leads to conclusions relevant to evolntion t~1eory. This is followed 

by a section consisti...'1g of ex.a..•nples •1hich illustrate th<~ results of sub­

stituting more realistic though more complex. ass~~tions for the over­

siMplified assumptions used in the model which has been analyzed in detail. 

Finally, a discussion of the source of genetic information is presented. 
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II The Concept of Information 

The qualitative notion that genetic material serves as a carrier of 

information is fundamental in modern biology. The most elementary discussion 

of molecular genetics mentions the hypothesis that information is coded as 

a sequence of base pairs in DNA and is transformed into a sequence of amino 

acids in protein molecules. The exact quantity of information carried by 

a genome and transformed during the development of an organism is difficult 

to compute, but it is universally recognized to be large. One of the major 

problems of evolutionary theory is therefore to discern the source of the 

large quantities of information carried by the genetic material of modern 

organisms, and to describe the process by which it has become incorporated 

in that material. This cannat be done without a clear understanding of 

the concept of a quantity of information. However, there is no need (in 

this thesis) to carry the mathematical development of the subject beyond 

an elementary level. 

A good starting point is Ashby's (1957) suggestion of defining infor­

mation as a measure of reduction of variety -- a suggestion which simplifies 

and clarifies exposition of the subject, but which Ashby unfortunately did 

not develop beyond a qualitative leval. 

Variety and Information. 

~vith any set one may associate a number which measures the variety of 

the set. For example, an obvious measure of variety is the number of kinds 

of abjects in the set. Of particular importance in information theory is 

the variety of a set of pqssibilities. The quantity of information carried by 

anything (such as a message or signal) is a measure of the amount by which 
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it reduces the variety of sorne set of possibilities. 

For example, imagine tha t one card from an ordinary deck of 52 bas be en 

chosen and hidden from me, and I wish to know what it is. The set of poss­

ibili ti es bas 52 mernbers. A message inform:ing me that the card is the Queen 

of Hearts reduces the number of possibilities to one, and rnight therefore 

be said to carry 52 - 1 = 51 11arithrnetic units11 of information. 

Measuring variety by the numb er of members in a set has certain un­

desirable mathernatical consequences, illustrated by the exarnples below. 

1. Let the message identifying a card be divided into 2 parts, i.e. 

A. The card is a Queen 

B. The card is a Heart 

Part A reduces the nurnber of possibilities from 52 to 4, and therefore carries 

48 arithrnetic units of infornation. Part B reduces the number of possibilities 

from 4 to 1, therefore carrying 3 units. However, if part B is received first, 

it reduces the number of possibilities from 52 to 13, i.e. it carries 39 aritb­

metic units, and part A then carries 12. In either case, A and B together 

jointly carr.y 51 units. 

It is desirable to bave a convention for measuring variety whicb rnakes 

the information carried by each of 2 or more independant messages (i.e. 

messages in which nothing about message B can be deduced from message A, and 

vice versa) independant of the order in which they are received or considered. 

This can be done in the present case by using the logarithm of the number of 

members in a set as a rneasure of its variety. The variety of possibilities 

is then 1ogl0 52 = 1.7160 decimal units, which is reduced by log10 13 = 1.1139 

units by the message urhe card is a Queen11 and by log10 4 = 0.6021 units by 

the message ttThe card is a Heart11 , regardless of the order of the two messages. 

2. Let the message identifying a card take the form 11The probability 
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is o. 99999 that the card is the Queen of Hearts". This message clearly 

carries information in the everyday sense of the word, but it does not reduce 

the number of possibilities at all; its sole effect is to distribute the 

probability of being the card in question unequally over the members of the 

set of possibilities. The difficulty of rneasuring information in such a 

situation can be overcome, while retaining the advantages of a logarithmic 

measure, by using a quantity called entrow to measure variety. The entropy, 

~' of a set of N possibilities is given by 

N 
H = - 2: Pi lo~pi , 

i=l 

where Pi is the probability of the i'th possibility, and~ is the base to 

which logarithms are taken. 

Before the message is received, the probability of being the chosen card 

is equally distributed over the set of 52 possibilities, and the entropy of 

the set of possibilities is therefore 

H1 = - 52 <i2 log1~) = 1.7160 decimal units. 

The message redistributes the probabilities so that 

• 00001 • 000 01 
H2 = - 51 ( 51 loglO 51 ) - 0.99999 logl00.99999 = 0.0001 

decimal units. 

Hence the message carries H1 - H2 = 1.7159 decimal units, or practically 

as rouch information as a message identi~ing the card with certainty. 

Anything which reduces the entropy of a set of possibilities by! units 

may therefore be said to carry ! units of information. This definition will 

be adhered to throughout the present thesis. 
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The units in which entropy, and therefore information, are measured 

depend on the base chosen for logarithms. If logs are taken to the base 

10, entropy arrl information are measured in decimal units, or, more usually, 

decimal digits (since the entropy of the set of all possible sequences of 

n + 1 digits is 1 unit greater than that of the set of sequencesof n digits). 

If natural logarithms are used, the units may be called nepits (a contraction 

of Naperian digits; Goldman 1953), or natural units. In the literature of 

information theory it is conventional to use the base 2 for logarithms; the 

units are then called bits, a contraction of binary digits. 

A most useful relationship is 

N 

H = - "L 
i=l 

Pi lo~ Pi = lo~N, 

and is a maximum, if Pi is constant for all i• The entropy of a set of 

possibilities is a maximum if all possibilities are equally probable, and 

is equal to the logarithm of the number of possibilities. 

If a carrier is to carry 1 bits of information, the set of possible 

carriers must have an entropy of at least ! bits. If a receiver is to 

receive ! bits of information per minute, the set of possible sequences of 

states which it can assume in one minute must have an entropy equal to or 

exceeding1 bits. In communications engineering, therefore, a basic principle 

is that the information capacity of a channel, a transmitter, or a storage 

deviee is at most equal to its entropy. A communication system must be able 

to carry any one of a set of possible messages, and the engineering problem 

is to ensure that an adequate variety of states of the system is in fact 

possible. In communication theory therefore, one often reads of the nentropy 

of a message 11 , which is numerica.lly equal to the information content of the 
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message, when what in fact is meant is the entropy of the set of possible 

messages. This is a frequent source of confusion, leading readers to con-

elude that information ..!!! entropy, or entropy is infornation. The term 

11negative entropy11 or its contraction, 11negentropy", have also become current 

as synonyms for information. Information is a difference between two ent-

ropies, and is not entropy any more than a difference between two temperatures 

is a temperature, although it is measured in the same units. The confusion 

can be avoided by keeping in mind that entropy is a characteristic only of 

sets of possibilities, not of real abjects. 

For example, how much information is carried by the message ABA? This 

message has no entropy; it is what it is, and there is no probability that 

it is anything else. To estima.te its information content, one must know the 

entropy of the set of possibilities from which it was chosen. If the set of 

possible messages is all sequences of 3 capital letters, ABA carries 

log2 (2&3) bits; if lower case letter could be used as well, ABC carries 

log2 (523) bits; if longer and shorter messages are included in the set of 

possibilities, the information carried byABA is increased. 

Biological Relevance. 

Most discussions of information theory discuss situations in which the 

set of possibilities is easily defined. There is no difficulty in reaching 

agrea1!lent that the identity of a playing card is one of 52 equally probably 

possibilities, though one may hesitate momentarily about whether or not the 

deck contains a Joker. Elementary expositions of communications theory tend 

to deal with Morse alphabets -- dot, dash, letter space, word space -- or 

with sequences composed exclusively of capital letters and spaces. Even 

when communications theorists deal with frequency-modulated electromagnetic 



waves, in which the variety of possible frequencies would appear to be 

infinite since frequency is a continuous variable, their first step is to 

establish a 11band width11 which imposes finite limita on the entropy of 

possible sequences of frequencies which can occur in a f.inite period. 

The major difficrülty in applying information theory to biological 

problems lies in the fact that no such clearly delimited sets of possibil-

ities seem to be available, with a few exceptions. 

For ~~ple, consider an attempt to compute the information content 

of a DNA molecule which serves as the genophore of a micro-organism. Let 

the molecule be 1 nucleotide pairs long. At soma stage in the life of 
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the organism, this molecule will replicate itself. The set of possible DNA 

molecules of length L has 41 members, and if each is considered equally 

probable the set bas an entrop,y of 21 bits. The parent molecule therefore 

supplies almost 2L bits of information to the daughter molecule -- almost, 

but not quite, since errors in replication may occur; the set of possible 

daughter molecules ha.s a large number of members, most of which are of very 

small probability. 

The DNA molecule is also instrumental in synthesizing a large number 

of prote in molecules, forming what Y cas (1958) calls . the 11protein text11 • 

Assuming that three nucleotide pairs are required to determine an amino 

acid, the total length of the protein text is L/3 amino acids. If 20 differ­

ent amino acids occur, the set of possible protein texts has 2aL/J members, 

for a maximum entropy of l.W 1 bits. Therefore, in this context, the DNA 

molecule transfera at most 1.441 1 bits of information to the protein com-

plement of the organism. 

If one takes into consideration the fact that the 20 free amino acids 

exist mn very different concentrations in the cell, one must consider that 



not all protein texts have equal a priori probabilities. This reduces the 

entropy of the set of possible protein texts, and therefore reduces the 

estimated quantity of information supplied by the DNA. 
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Part of the genophore may constitute regulator and operator genes, 

controlling the temporal sequence of protein synthe sis. The set of possibil­

ities, among which the genophore determines the one which will be realized, 

is then the set of all possible temporal sequences of protein synthesis 

under particular e.xternal conditions. It is difficult, if not impossible, 

to estimate the entropy of auch a set of possibilities in any acceptable 

way. 

Just as the infonna.ti.on transferred from DNA ta protein was less tha.n 

the maximum whioh could be carried by the DNA, the information transferred 

from enzymes to the products of metabolism may be further decreased, due to 

the possibility that enzymes differing somewhat in their amino acid composition 

may catalyse the synthesis of, for example, identical carbohydrates. The 

end product of all such information transfera is that set of properties which 

is collectively called the uphenotype 11 of the organism. A basic question, 

of course, is how much information is transferred from the genetic material 

to the phenotype. Any meaningful estimate of this qua.ntity would require an 

estimate of the entropy of the set of all possible phenotypes -- not, it 

must be emphasized, all possible viable phenotypes, or all possible pheno­

types of a gi ven species, but ail possible P~.flOtYJ!es. It is hard to imagine 

how to attack even the tremendous semantic difficulties which one would need 

to overcome before one could begin the quantitative study required for such 

an estimate. 

"Information content" is therefore not a property of an abject, such as 

a chromosome, in the way that length or maas is thought of as a property of 
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an abject; information is a quantitative relation between two sets of 

possibilities. The major difficulty in applying information theory to bio-

logy lies in achieving a suitable compromise between the choice of a set of 

possibilities which is easily defined and has an easily computed entropy 

but which is of little biological interest, such as the set of all possible 

DNA molecules of a given length, and a set of possibilities which.is of 

fundamen tal biological importance but cannat be clearly defined in a way which 

permits its entropy to be computed, such as the set of all possible pheno-

types. 

Two other basic concepts of information theory must be briefly defined; 

redundancy ani noise. If the entrop.y· of a set of possible messages exceeds 

the entropy of the set of possible situations of which one is specified by 

a message, the set of messages is said ta be redundant. A measure of redund-

ancy is 

where H2 is the entropy of the set of possible messages, and H1 is the 

entropy of the set of possibilities from which one must be specified by a 

message. 

Redundancy may be said ta exist in a set of possible messages when the 

entropy of the set is arbitrarily reduced below its rraximum possible value. 

For exa.mple, the set of possible English messages (of gi ven length) has a 

smaller entropy than the set of possible sequences of letters of the same 

length, because of the restrictions imposed by the rules of English spelling 

and grammar. One may think of these rules as assigning unequal probabilities 

to different sequences of letters, or alternatively, as assigning the same 
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meaning ( nnonsense 'u) to a large numb er of possible sequences. The former 

implies a reduction in the entropy of the set of possible messages, the 

latter a reduction in the entropy of the set of distinguishable situations at 

the receiving end, but either interpretation implies that redunàancy exists 

in the set of messages. 

Redundancy, like information, is a relation between two sets of possibil­

ities. If a triplet of nucleotide pairs is required to specify one amino acid, 

DNA displays considerable redundancy during protein synthesis, as there are 

64 possible triplets but only 20 possible amino acids; but a DNA molecule dis­

plays no redundancy when it is thought of as specifying the structure of a 

descendant DNA molecule. 

Various influences may prevent a message from reducing the entropy of a 

set of possibilities to as low a value as it woulà do in a hypothetical perfect 

or ideal communication system. Such influences are collectively called 

11noise. 11 For example, noise in the everyday sense of t'l'le word may prevent me 

from hearing all of a message identifying an unknown card, so that although I 

become certain tha.t the card is a Heart, I remain unsure whether it is an Ace 

or an Eight; the set of possibilities retains an entropy of 1 bit, although 

the message was ideally capable of reducing the entropy to zero. In biological 

systems ionizing radiation, traces of toxic substances, and so on, prevent 

a DNA molecule from specifying a protein text with a probability of 1, and 

thus constitute noise. 

Because of the conceptual and semantic difficulties involved in its use, 

the writer has tried to be cautious in applying information theory in this 

thesis. The thesis deals with such sets of possibilities as 11the set of all 

passible living organismtt, 11the genomes of all organisms as well adapted to 

their environ111ents as those we see around us", etc. It would obviously be 
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extremely dangerous to estimate the entropy of such vaguely defined sets, 

and no attempt will be made to do so. There are situations, however, which 

are important in the thesis, in which a quantity of information can be 

easily and unambiguously defined. For example, if I organisms exist of which 

only one can survive as the parent of the next generation, the selective 

agency, which determines which shall die and which shall live, can at most 

supply exactly log2 r bits of information. If care is taken to restrict 

its use to similarly clear-cut cases, information theor,y can be extremely 

useful in biology. Often, the exact computation of the redistribution of 

probabilities brought about by some act of selection or designation is 

extremely difficult, but all that needs to be known can be summed up by com­

puting the maximum quantity of infor1nation which the act can transfer. 
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III The Analogr between OrBênic Evolution and a Guessing Grume. 

A ~essing game is a situation involving one or more plazers and a 

referee. In arder to win, a player must find a right answer, or one of 

several right answers, within ! trials. There are N' right answers, collect­

ively forming a set .§ 1 , about which the player initially knows nothing except 

that it is included in a set .§, with !! members, the initial set of possibilities .• 

That is, the player initially lacks the infornation required to deduce a right 

answer, ani must seek one by guessing. The referee res ponds to the player 1 s 

guesses in a way which conveys informa.tion which can be used to reduce the 

number of trials required to find a right answer below chance expectation. 

In sorne real guessing games, but not all, the referee chooses the right 

answer, and is considered to have lost the game if a player succeeds in win­

ning it. This is not a general characteristic of guessing games, however, 

and is not an interpretation which can be applied to the physical, biological 

or psychological systems which may be analogized to gQessing g~~s. In most 

guessing ga..'lles the referee cannat be considered to be an opponent of any of 

the players; his position, as the name indicates, is that of a neutral referee. 

A guessing game is therefore not a n game" between the referee and the players, 

in the technical sense assigned to the ward 11 game11 in the Gama Theory of von 

Neumann and Morgenstern (1944). 

Later in this the sis soma discussion will be devoted to competitive 

guessing games, in which there are several players. In a competitive guessing 

gama the relations between the players may correspond to the relations between 

players in a von Newna.nn Grume, but in no case is the relation between any 

player and the referee a competitive one. 

Notice that no p:'lrticular restrictions have been put on the physical 

nature of systems which can be analogized to gQessing games. The player and 



the referee may be people, constrained in their behaviour by the rules of 

the game; they may be machines, behaving as they do because of the way they 

were designed and built; they may be mechanisms, in the philosophie al mean­

ing of the ward, which must behave the way they do because of the relations 

between their parts; or they may be i.maginary entities which are useful 

fictions in describing the behaviour of a system. The restrictions the 

model imposes on the system are almost entirely restrictions on the w~ 

informtion is transmit ted from one part of the system to another. Sufficient 

information to identif,y a right answer is initially stored by the referee, 

and is not immediately available to the player. It is transmitted to the 

player a little at a time, in response to guesses, and thE; pla.yer stores it 

until he has accumulated enough to specify a right answer. 

Let us consider organic evolution as a guessing game. 

is an imaginary entity who manufactures living organisms. 

The 11 player11 

The original set 

of possibilities, ~~ is all those possible organisms which could have descended 

from the first spontaneously generated organism in an infinite universe, in 

which selection was inoperati ve and even the most grotesque and unadapted 

forms could survive. The set of right answers, ~ 1 1 includes all those organ­

isms as well adapted to life on Earth as those we see around us which are not 

in immediate danger of extinction. 

Ea.ch organism manufactured by the player is submitted to the environment, 

which 11 passes 11 some and 11rejects 11 others, thus serving as a referee to inform 

the player whether each one is a good guess or a bad guess, or at least 

whether it is better or worse tl:nn the previous attempt. Each new mutant or 

recombinant is indeed a 11 guess 11 , as the imaginary player does not know whether 

the change is an improvernent or a defect until the organism has been tested 

and reported upon by the referee. Iri the Darwinian hypothesis, the referee 
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inform.s the player, in effect, "this gira.ffe is better tœn that giraffe", 

but does not say what kind of superiority it possesses. According to 

La.marckian hypotheses, the referee says, in effect, "this giraffe is unsatis­

factory; try one with a longer neck next time". A Special Creator, of course, 

does not need to refer to a referee for informti.. on at ail, but knc:Ms the 

right answers before the game begins. 

Guessing games fall into several categories. The kind which can best 

serve as a madel of evolution by natural selection ma.y be called a "Darwin­

ian game". Its characteristics will be outlined in the following pages. 

A Darwinian game is a non-trivial guessing game. 

A guessing game may be trivial for various reasons. It is trivial, for 

example, if the referee conveys no information to the player, who must me rely 

continue guessing until he finds a right answer by blirrl chance. At the 

other extreme, a guessing game is trivial if the referee 11 gives away11 the 

right answer, i.e. supplies so much information at an early trial that the 

player can at once deduce a right answer. Guessing games are of interest 

only if the referee supplies sorne information at each trial, but much less 

than log (N/N 1 ) units, so that the player must accumulate information over a 

series of trials in arder to win. This requirement of a non-trivial game is 

met by restricting the referee to giving one of a small set of possible re­

sponses at each trial. E.g., a binary referee, or a referee of arder 2, 

must give one of only two possible responses, such as 11 yes 11 or 11no 11 , or 

11 rightt1 or 11wrong11 ,at each trial. Such a referee can supply a .rmxi..mwn of 

one bit of inforna. tion per trial. 

It is standard practice in quantitative biology to decide upon sorne 
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value, Pc' as a critical pro~?bility in testing whether or not a given 

hypothesis is adequate to explain a set of observations, as in choosing 

Pc = 0.01 as a level of significance when using chi-square to test whether 

experimental results are adequately explained by a null hypothesis. Now 

there is always some small probability of winning a guessing game in 1 

random guesses, or by running down the list of the first 1 members of §. 

For a given g~~e, if 

it is plausible to postula te tha. t a winning player ha.s won by sorne such 

procedure; it is not necessar,y to assume that the referee has supplied 

inforrœ.tion to the player, or to assu.'ne that the player bas used the infor-

mation if it bas been supplied; blind chance is an adequate explaœ ti on 

for the player1 s success. A game which has a probability P of being won c 

by blind chance is a trivial game. 

In a non-trivial game, the referee must supply information to the 

player. Usually, at any trial after the first, not all possible guesses are 

equally valuable to the player in eliciting information from the referee. 

The player must therefore acc~~late information from the referee, and must 

use the accumulated information to control subsequent guessing. The way he 

does so may be called his strategy. For example, it is generally useless 

to repeat a guess already known to be wrong, as this does not give the referee 

an oppurtunity to supply additional information. It is usually advantageous 

for the player to choose each guess so that, as far as he knows, all the 

possible responses of the referee are equally probable; in this way he obtains 

the maximum quantity of inforn:ation per trial which the referee can give. 

An adeguate s~~~e~ for a guessing game is one which provides the 
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player with 

log (PcN/N 1 ) 

T units of information per trial, or more, i.e. 

which gi ves him a probability at least equal to the critical probability 

of finding a right answer in! trials. The optimwn strategy, of course, 

is the strategy which minimizes the mmt>er of trials required to win the 

game, or maximizes the probability of winning it within ! trials. One may 

loosely call a game difficult if no adequate strategy is very different 

from the optimum strategy, or ~ if the player ha.s a rather wide choice 

of adequate strategies. 

l~lian haploid chromosome sets contain about 4 x 109 nucleotide 

pairs. Sorne of these may carry no genetic information which is transmitted 

to the phenotype, sorne ma.y 11 say11 things in one way which could be said as 

well or better in another. Allowing for these possibilities, Muller (1958) 

guesses that the probability th~t a random seqQence of nucleotide pairs 

would forma genome as w~ll orga.nized and adaptive as that of a higher 

organism is roughly lo-2,000,000. If the set~ consists of all possible 

sequences of 4 x 109 nucleotide pairs, the probability that one taken at 

ra.ndom will be a right answer is therefore about 1 in 1o2,000,000. If the 

Earth consisted entirely of nucleotides, which rearranged themselves in 

double chains millions of times per second for billions of years, only 

about 105° or 1060 different sequences would have an opportunity to occur. 

The chance of a right answer turning up by chance in this nwnber of trials 

is negligibly small. The evolutionary 11 game11 therefore cannot be won by 

blind chance, and must be non-trivial. 

The important point is tha t we J.mow a game of this sort l:ns been pla;yed 

and won, arrl could not have been won by blind chance. Our task is to elucidate 
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the necessar,y characteristics of an adequate strategy. 

An e:xample of a tri vial guessing game is the children 1 s game 11 I Spy''. 

The referee begins the ga.rœ by announcing "I spy with my little eye some­

thing that begins with (for e.xample) 'C"'• The player then na.mes objects 

until he discovers the right one or gives up; i.e., ! depends on the play­

er' s patience. At each guess, the referee responds with "right" or "wrong". 

The only strategy available to the player is to ma.intain a record of 

past trials and thus avoid repeating wrong guesses; i.e. to run through the 

list of possibilities one at a time. I Spy can therefore only be won if 

it is trivial. The referee's response to each guess enables the player to 

eliminate that guess, and only that guess, from the set of possibilities. 

As each guess is rouch more likely to be wrong than to be right, the referee, 

who is a binar,y referee, supplies rouch less than one bit of information per 

trial. 

To win a non-trivial game the player must be able to eliminate more 

than one member of 2 at each trial (or so redistribute the probability of 

being a right answer among the members of 2 that the reduction in entropy is 

equal to tha t following elimination of several members from the set). Clear­

ly, the player cannot merely eliminate sorne random collection of possibilites 

at each trial; the ones he eliminates must be related in sorne way to the ones 

he has actually guessed. The set .§ must therefore be relevantly: _çlas~ift,~ble, 

i.e. divisible into subsets of related members in a way which is relevant to 

the probability of each member being a right answer. 

In any guessing game with a binary referee, therefore, the player's 

procedure can be analyzed into a cyclic repetition of three steps: 

1. Divide the set of possibilities, §, into two classes. 

2. Obtain from the referee a statement of which of the two classes is 
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better, or information from W:lich such a staterœnt can be inferred. If Pi 

is the probability that a member taken at random from the class Ci is a right 

answer, class c1 is better than c2 if pl exceeds p2• I.e., class c1 is 

better if the frequency of right answers among its members exceeds the fre­

quency in c2. 

3. Store the result of the comparison, and repeat the cycle. 

In order to win the game, within .I trials the player must be able to 

delimit a class Q1 for which E' exceeds Pc, where Q1is the logical product 

of the better of each pair of classes compared. 

If the referee is of order greater than 2, let us say of order ~' the 

player may divide the set of possibilities into ~ classes at each repétition 

of the cycle. 

Guessing games fall into two major categories, question games and trial­

and-error games. A Darwinian game is a trial...and-error ga.me. 

A question ga.me is a guessing garœ in which each guess constitutes a 

question about a whole class of possibilities, and the referee 1s responses 

explicitly apply to whole classes. A familiar example of a question ga:rne is 

Twenty Questions. In this game, the referee announces whether the right 

answer is animal, vegetable, or mineral. The player then asks such questions 

as 11 Is the subject a real animal? ••• a living animal? ••• a human being? ••• a 

Cana.dian statesma.n?", etc., to which the referee answers either 11 yesu or "no". 

The game rests on the fact that the set of possibilities can be complete­

ly classified in a dichotomous WJY, and the right answer must belong either 

to the class named or its complementary class. The player's stra.tegy is to 

try to choose each question in such a way that "yes 11 arrl 11no11 are equally 



probable, thus eliciting the maximum of one bit of information from the 

binary referee, so that at each trial he can eliminate a whole class, con­

taining about half the remaining possibilities. If T)>log2 (PeN), this 

strategy is adequate. 
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The important point is that in a question game, any classification of 

the members of S is a relevant classification. The player is therefore 

perfectly free to classify the set of possibilities as he likes, and should 

have no difficulty in meeting the strategically desirable aim of comparing 

two nearly equal classes at each trial. Question garnes therefore tend to 

lack variety and interest from the mathematical point of view. 

Trial-and-error games are those in which the player is restricted to 

naming (or producing) individal members of the set 2, and the referee~s 

responses apply explicitly only to the individu.a.ls na.med. In trial-and­

errer ga.rœs the player nrust be able to dra.w inferences from the referee 1 s­

state.rœnts about individuals to larger classes which these individuals 

represent. It is the player1 s inability to make such inferences validly 

which renders I Spy a trivial game. 

Evolution by natural selection must be analogized to a trial-and-

errer game. The referee does not report on entire classes of possible organ­

isms presented to it in the abstract; it merely passes or rejects those part­

icular individuals which actually come into existence ani are exposed to the 

environment. A Darwinian game, therefore, is a trial-and-error game. 

In a trial-and-error game, the referee 1s response to each gpess con­

stitutes a comparison between individuals, from which the player infers a 

comparison between classes. A bina.:Î:'y referee, which is restricted to giving 
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one of only two possible different responses, can only give a series of 

responses which constitute a series of comparisons between individuals if 

the indi viduals, which are members of the set .§., can be ordered in sorne wa.y. 

An ordering relation is .. any 2-termed, asymmetric, transitive, non-

reflexive relation (Langer, 1953), su ch as 11 ••• exceeds ••• 11 , 11 ••• is north of ••• 11
1 

11 ••• is closer to 2f than ••• 11 • If the members of the set §. are connected by 

an ordering relation, a ~ can be assigned to each member of_§. If there 

are as many ranks as .§. has members, and only one rnenber per rank, §. is a 

cornpletely: ord.e~ set. If there are fewer ranks tha.n members, so tmt 

sorne members have the same rank, §. is an incompletely ordered set. The 

integers can be completely ordered by the relation 11 ••• exceeds ••• 11 ; words 

can be completely o rdered by the re la ti on 11 ••• alphabetically precedes ••• n; 

points on a plane can be incompletely ordered by the relation 11 ••• is farther 

north than ••• 11 • 

In any guessing game, the set .§. can be at least incompletely ordered 

by sorne such relation as 11 ••• is better than ••• 11 • There nru.st be sorne way of 

ra.nking each possibility as 11better11 or 11worse11 tha.n other possibilities, 

with the right answers ha.ving the highest rank. This relation will serve 

to divide .§. into at least two ranks, as the set of possibilities must con­

tain both right answers ani wrong answers, and the right a.nswers are obviously 

11better than" the wrong answers. This relation (or similar ones, such as 

11 ... is bet ter adapted than ••• 11 in biology) may be called the prima.ry ordering 

relation of the set .§., which serves to assign a prima.r,;y: ra~ to each member. 

The player of course must not know the prima.ry rank of any mamber of§, 

except insofar as he can infer it from information received from the referee. 

The members of§ may or may not also be connected by secondar.r ordering 

relations, which can be known to the ·player without giving away the right 



answer. If the set of possibilities consists of all the integers from 1 

to 1010, for exa.mple, the player can obviously assign a secondaryrank to 

each possibility, since he knows what numbers are bigger than others, but 

he cannot assign a primary rank to each number until he learns from the 

referee that certain numbers are better than others. 

The referee in a trial-a.nd-error game must therefore perform one of 

four possible kinds of comparison: 
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1. He might com:p9.re the secondary ra...'1ks of two guesses ( 11x1 is larger 

than x2
11 ). This information, however, is already available to the player 

and its reiteration by the referee is useless. 

2. He might compare the primary rank of each guess with the primary 

rank of the right answer. This is equivalent .to a simple statement tha.t 

each guess is either right or wrong, as in I Sp,y, and cannot supply enough 

information to per.mit the player to win a non-trivial game. 

3. He might com:p9.re the secondary rank of each guess with the second­

acy rank of tm right answer ( 11 the number you have guessed is too large 11 ). 

Responses of this kind can supply useful information to the player. For 

example, let 2 be the set of integers from 1 to N, inclusive. If the play­

er1s first guess is N/2, and the referee 1s response is 11too large", the 

player can infer wi th certainty that the right answer lies between 1 and N/2, 

i.e. he can exclude half the possibilities after a single trial. 

A referee who compares the secondary rank of each guess with the second­

arJ rank of the right answer may be called a secondary refer~e. 

4. He might comrare the primary ranks of two guesses ("this guess is 

better than the last one 11 ). Such a referee could be called a prima.ry refe~_e._ 

but will be called a selector in this thesis, for biological reasons. 

The set of all possible organisms probably cannot be secondarily ordered 
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in a.ny complete wa.y, a.lthough its members could be pa.rtia.lly ordered by size, 

for example. The set of a.ll possible DNA molecules could be seconda.rily 

ordered in a.n 11a.lphabetica.l11 arrangement by a.dopting a. suita.ble convention 

for listing the four possible nucleotide pairs in a. fixed order. Nevertheless, 

there is no rea.son to consider the possibility that the referee in the evol­

utiona.ry 11 ga.m.e 11 conveys any information to the player about the relati va 

secondary ra.nk:s of ea.ch guess and the right answer. The environment would 

see.m not to supply information of the form 11 this gira.ffe 1 s neck is too short", 

or 11this dinosa.ur is too big", and it certainly does not supply information 

of the form 11this genophore alpha.betically precedes the fittest possible geno­

phore11. The environment supplies information only in the form ''this organism 

(or population) is fitter tha.n tmt orga.nism", where the relation 11 ••• is fitter 

than ••• 11 , or 11 ••• is better adapted than ••• " is a prinary ordering relation. 

The referee in a Darwinian game is a selector. 

Relevant and Irrelevant Class!(ica.tions. 

At his first trial, the player must divide the set .§. into two classes 

(if the referee is a binary referee, or ideally into ~ classes if the referee 

is of arder ,r), which can be compared by the referee. At the next trial, he 

must divide the better of thase two classes into two classes, which can be 

compa.red by the referee, and so on. The members of.§. must therefore be class­

ifiable in a hierarchy. The members of.§. can be completely classified in a 

hierarchy of ~ levels, in which the entire set 2 forms the class at level o, 
if they can be so distributed among classes that: 

l. There are more classes at leval i + l than at level i. 

2. The members of any given class a.t leval i + 1 are either ail included 

in or all excluded from any given class at level i. 
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3. The members of any gi ven class at level i + 1 are all inc1uded in 

one class at level i; and any given class at 1evel i inc1udes all the manbers 

of at least one class at level i + 1. 

4. Each class at level ,& contains only 1 member. 

If any class at 1evel 1 contains more than 1 member, the hierarchy serves 

to c1assify the set incompl~t~fZ• 

E.G. the integers from 1 to 16 can be comp1etely c1assified in the hier­

archy shown in Figure 1. The classic examp1e of a hierarchy is the taxonomie 

hierarchy in which organisms are systematically classified; it is an incom­

p1ete classificat.ion, as each class at the lowest leve1 (subspecies) contains 

many indi viduals • 

A degenerat_! hierarchy is a hierarchy in which all classes but one at 

each 1evel contain only one member. In I Spy the player classifies the set 

of possibilities in a degenerate hierarchy, as in Figure 2. It is useless 

for the player ta classify .§. in a degenerat.e hierarchy unless the game is 

trivial. 

At each trial, therefore, the player knows that the right answer is a 

member of a particular class, Cij' on the i 1 th level of the hierarchy (or, 

more generally, the pl.ayer knows tha t the probable frequency of right answers 

is higher in the class Cij than in any Gther class a.t level !). His procedure 

is therefore to divide the class cij into 2 (or~) daughter classe~ at level 

i + 1, and obtain a comparison of the daughter classes from the referee. The 

better of the two -- the class C(i + l,x) with the hig}ler probable frequency, · 

of right answers -- becomes the next class to be divided. 

A hierarchical classification is relevant in a given game if: 

1. Each division (or most divisions), in which any daughter class con­

tains a right answer, divid~s the right answers unequally between the daughter 



Figure 1 A complete classification of the integers from 

1 to 16 in a hierarchy of four levels. 





Figure 2 A partiaJ. classification of objects beginning 

with C, in a degenerate hierarchy, such as might 

be used in I Spy. 



objects beginning with C 

this chair all else 

thjs chair that chair all else 

tlîis chair tMt chair the cat all elsa 

th:\.s chair that chair the cat the all else . 
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classes. 

2. The best of the daughter class~s,iJl the one with the highest fre­

quency of right answers, can be identified with a high probability by the 

referee 1 s response to the guess. 

The first of these requirements will be met by any hiera.rchical class­

ification; if li is much larger tha.n 1:!', division of .§ by any criteria will 

give rise to classes containing no right answers at levels which will be 

reached within a few trials. In question games, the second requirement is 

fulfilled by the rules of the gama. Hence, as has been stated before, any 

hierarchical classification is relevant in a question game. 

In a trial-and-error game with a secondar,y referee, the second require­

ment is met by the properties of ordered sets; having learned, for exarnple, 

that the guess x1 is larger than the right answer, the player can infer with 

absolute certainty that the class "numbers smaller tha.n x1
11 is better tha.n 

the class 11numbers as large as or larger than x1
11 • Any classification of .§ 

in which each ~lass is divided into two daughter classes of secondar,r rank 

respectively higher and lower tha.n some chosen member of the class is a 

relevant classification. Because a relevant classification is always obvious, 

and the optimum strategy is also obvious, trial-and-error games with secondar.y 

referees lack variety and are of little mathematical interest. 

In a trial-and-error game with a selector, the player cannot make log­

ically rigorous inferences about classes from the referee 1s responses compar­

ing the prima.ry rmks of two guesses, simply because, by definition, the player 

cannot know what system is being used by the referee to assign primary ranks to 

the members of S. For e:xample, suppose the player must find an integer, _!, 

between 0 and lolO. The player may assQ~e that since x1 is better than another 

guess x2, ,! is numerically closer to xl th;:m to ~· If this assumption is 
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correct -- if the referee is in fact ranking guesses by their numerical prax­

imity to 25: -- the players best next guess is a member of the class containing 

~ and bo'lU'lded by the number (x1 + x2)/2. The assumption may be wrong, how­

ever; the referee oould conceivably be assigning a score to each number, con­

sisting of the sum of the prime factors it shares with 25: minus the sum of 

the prime factors it does not share, and ranking the n~~ers by their scores. 

If so1 the player will be unable to win the game if his classification of 2 

is based on size. 

Nevertheless, tc win a non-trivial game, the player must be able tc 

classify .§. in such a way that he can correctly ass'l.l.l:!e that if an arbitrary 

or random individual from classCi is of higher pri:rm.ry rank than one from 

class Cj, the probability exceeds 1/2 that the frequency of right answers 

among the members of Ci is higher than among the me.mbers of Cj. 

For ~nple, consider a game in which 2 consists of sixteen things, 

labelled abcd •• • p, which the player can classify as in Figure 3. The beat 

member of the set is .E• The player is allowed four trials; i.e. he may name 

four pairs of members to be com);Qred by the selector. How must the members 

of .§. be primarily ranked to yield a 50% probability that the better individual 

in the fourth trial is the best individual in the set? 

If at the fourth trial the player must choose between the two members of 

C3g1 he is certain to make the correct choice; if he must choose between the 

manbers of any ether class at level 3, he is certain to choose an individual 

which is not the best of the set. Therefore, the player must have a total 

probability of 1/2 of choosing the correct branch at ever-<J fork in the line 

leading to c3g, which means that he must have an average probability consider­

ably larger than 1/2 of making the right choice at each of the three forks. 

If the members of C24 are ranked within the class C24 in the ord.er m = 2, 



Figure 3 A complete classification of 16 objects 

labelled a,b,c •••• p, in a hierarchy of four 

levels. For discussion, see p. 36. 
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n = 3, o = 1, p = 4, and the player randomly or arbitrari1y chooses a member 

from each of c37 and C38 for the se1ector to compare, the probabi1ity that 

the better of the two individua1s cornes from the better of the two classes 

is on1y 1/2. I.e. the probabi1ity that the player will .make the correct 

choice among the two subclasses of C24 is only 1/2, and to lave a total 

probability of 1/2 of making the correct choice at ail three forks, the play­

er would have to be certain of choosing correctly at the two higher forks. 

This imp1ies that every member of C24 must be higher in rank than every mem­

ber of c23, and every member of c12 must be higher in rank tm n avery member 

of c11• On the other hand, if the manbers of C24 are ranked w:i.thin that class 

in the order m = 1, n = 3, o = 2, p = 4, the probability is 3/4 that the 

better individual cornes from the better class, and the restrictions on rank­

ing within the larger classes can be somewhat relaxed. The reader may wish 

to study Table 1, which shows sorne primary ranking systems which give the 

player a 50% of finding the best member of 2 on the fourth trial, and sorne 

which do not. 

This example, wi th the small set of sixteen possibilities, hardly offers 

a fair illustration of the way the primary ranking scheme must be related to 

the classification of the set if the game is to be won. After ail, the play­

er is permitted to name eight manbers of the set, and therefore has a 50% 

probability of naming the right one by blind chance; only those relations 

between ranking and classification which give a probability greater than 50% 

are really of interest, Consider, however, a set § containing 21000 members, 

dichotomously classified in a hierarchy of 1000 levels, with only one right 

answer. The player can follow a line to an individual member in 1000 trials, 

naming at most 2000 individuals a.s he does so; the probability that one of 

the 2000 will by chance be the right answer is negligibly sma.ll. To have a 



TABLE 1 

THE PRO:aAdiLITY, P, OF IDI@'ITJ!.X~r~q 

Primary Ranking Systems 

------------~----- ------·-------
a b c d e f g h i j k 1 m n o p P 

----------~--- ·--~-~. -- -· ~-·-~---------------
1 

1 

1 

1 

1 

1 

1 

1 

1 

5 

5 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 

4 5 6 7 $ 9 

4 5 6 7 $ 9 

4 5 6 7 8 9 

4 9 10 11 12 5 

4 5 6 7 $ 9 

4 9 10 11 12 5 

10 12 13 14 15 16 

10 11 12 13 15 14 16 

10 13 14 11 12 15 16 

6 7 $ 13 14 15 16 

10 13 14 11 15 12 16 

6 7 8 13 15 14 16 

2 

2 

2 

6 

6 

3 4 9 

3 4 5 

3 4 5 

7 $ 9 

7 8 9 

10 11 12 5 6 13 14 7 8 15 16 

6 7 8 9 10 11 12 14 15 13 16 

6 7 8 li u D ~ 9 W U ~ 

10 11 12 1 2 3 4 13 14 15 16 

10 11 12 1 2 3 4 13 15 14 16 

1 

3/1-~ 

3/4 

3/4 

9/16 

9/16 

9/16 

1/2 

1/2 

1/2 

3/8 

5 6 7 8 9 10 11 12 1 2 3 4 14 15 13 16 1/4 

8 9 10 11 12 13 14 15 7 6 5 4 3 2 1 16 1/65536 

1 1 1 1 1 1 1 1 2 2 2 2 3 3 4 5 1 

-----~-· ···- -·- .. ·- ....... --------------~--- ---
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probability Pc of fïnding the right answer in 1000 trials, he must classify 

2 in such a way that the probability of choosing the correct branch at each 

fork on the line to the right answer has a geometrie rrean of at least 

~· In other "WOrds, at every fork on the line, the members of 

the better class must practically all be higher in rank than the members of 

the other class. 

'fhe situation becomes more complicated if.! exceeds the number of levels 

in the hierarchy, so the player can to sorne extent go back and try again if 

he ma.kes a mistake; if there are several right answers; or if the player 

retains the better of the two guesses from one trial for comparison with 

each new guess at the next trial. 

If .! is large enougn, and his first series of b trials (where b is the 

number of levels in the hierarchy in which the player has classified §) fails 

to yield a right answer, the player may begin a gain, using a different system 

of classification. Nevertheless, in any moderately difficult game, the play-

--==,. er cannot repeat the game using more t:te.n a few systems of classification., 

If the player is to win a difficult non-trivial trial-and-error game in which 

the referee is a selector, therefore, the referee must assign primar3 ranks 

to the members o! .§ in a wa.y tha.t ma.kes sorne "natural", 11 obvious 11 , li simple", 

or "objective" system of classification relevant. The ga.me cannot be won if 

the referee merely a.ssigns ra.nks to the me.'"Ilbers of 2 in an arbitrary or 

random way. 

The data of paleontology suggest that the referee in the evolutionary 

game fulfills this requirement. Entire classes, orders, and families of 

organisms have become extinct, their places being taken by new groups of corn-

parable taxonomie rank which undergo an adaptive radiation. The alrnost com-

plete replacement of Chondrostean fishes by Holostean fishes, followed by 
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the almost complete replacement of the latter by Teleostei, is a classic 

exarnple (Ramer 1945; Colbert 1955). Such instances suggest that the tax-

anomie hierarchy used by paleontologists, which is a 11natural11 classification 

based aL~ost entirely on the morphology of structures hard enough to becorne 

fossils, is a relevant classification. Of course one would hope it would 

be. If it were irrelevant, one would expect individual species within 

larger taxa to have becorne extinct with no particular correlation with tax-

anomie categories, so that modern organisms would include an apparently 

randorn sarnple of species from all taxa which have existed. 

Storage of Da;t:,a. 

In any non-trivial guessing game the player must accumulate information 

over a series of trials, and utilize it to control subsequent guessL~g. He 

must therefore be able to retain sorne kind of records of past trials, the 

function of which is to allow him to determine which class should be divided 

at the next trial. Let us restrict the kind of data he can store to records 

of two forms: 

1. Records of one or more past guesses, with the referee 1s response 

to each. 

2. A t-record, i.e. a record of the number of previous trials. 

A complete record of all past guesses and their outcomes is obviously 

adequate to permit the player to identify the class next to be divided. 

More complex situations arise when the player can store records of only a 

sma.ll number of past guesses. In such situations, the t-record may be valu-

able, as it identifies the level in the hierarchy of classification on v1hich 

the class to be divided lies. 
-

The only case which must be considered here is a trial-and-errer game 



with a selcctor. If the player is restricted to keeping a ·record of only 

one past guess, this must be the best of the guesses presented to the 

selector at the last trial; the best past guess is always a member of the 

class to be divided. A t-record, which \vill infarm the player wmt level 
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the class to be divided is on, then serves to identify the class to be divided. 

In organic evolution, the only "records" available to the irnaginary 

player are the actual organisms which Vfere passed by the selector in the 

last trial. Rejected organisms or genotypes leave no record; they are lest 

vdthout trace as far as the player is concerned, although sorne of them may 

leave records discernible to human paleontologists. Dead or sterile organ­

isms mve no influence on later geœrat-ions. The irnaginary player has no 

memory; his sole record of the trial just concluded is the actual organisms 

which passed. The player has no record even of the number of past trials; 

the genetic material of an organism bears no explicit record of the dura­

tian of its histor,y. 

In a Darwinian game, the only data stored by the player consists of 

the best past guess; in particuJ~r, he cannot retain a t-record. 

Perfect and Imperfect Referees. 

Sorne furtrer possible complications must be mentioned before a math­

ematical analysis of organic evolution in terms of guessing garres can be 

carried out. 

A perfect refere~ is one who always gives a truthful response to a guess; 

an imperfect referee is one who sometbnes gives a false response. Clearly, 

if a binary referee is to convey any infornBtion at al.l to the player, he 

must give a truthful response more than mlf the time. Operatiomlly, one 

would recognize an imperfect referee by calling upon him to make the same 



comparison repeatedly, and observing whether his response wae always the 

same. 

The quantity of information supplied p3 r trial by an imperfect binary 

referee is l - ( p log2p + (1- p) log2 (1 - p)) bits, wbere pis the 

probability that the referee 1s response is true. A single response by an 

L~perfect referee does not permit the player to exclude any class of mem­

bers from the set of possibilities, but does reduce the entropy of the set 

of possibilities by distributing the probability of being a right answer 

unequally over its members. 
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In organic evolution, the selector is an irnperfect referee; otherwise 

every genotype in competition vlith a superior genotype would rave a selection 

coefficient of 1. 

Competitive Gue:?.§_ing Game.s .• 

A @lessing game may hs.ve several pla.yers in competition with each 

other. If each player' s aim is merely to be the fkst to vlin the game, 

analysis of the situation involves only an elucidation of the optimwn 

strategy, and therefore adds nothing to what has been said above about non­

competitive garres. The situation is of interest if, from time to time 

during the course of the game, sorne of the players are eliminat.ed bei'ore 

any of the..11 has found a right answer. 

The simplest case arises in tria 1-and-error games with selectors, in 

which the players to be eliminated are those with the best past guesses of 

lowest primary rank, i.e. those who are still fartbest away from finding a 

right answer. 

One must distinguish carefully between a. system which can best be 

analogized to a competitive guessing gaJne, arrl one which can best be anal-



ogized to a game with a single player 1vho is permitted to :mke several 

simultaneous guesses. The distinguishing feature is tha t competitive 

players do not receive information in response to each oth0r 1 s gœ sses, 

but only in response to their own. A player in a competitive game does 

not know <ihether his competitor 1 s best last guess is better tha.n his own 

until he finds himself eliminated from the grune. A single player making 

multiple guesses, however, may submit as his nex.t group of guesses some 

sort of mixture or combination of what he believes to be the best features 

of all the guesses passed by the referee at the last trial. 

Both kinds of situation arise wha.YJ. organic evolution is considered as 

a guessing game. A single Mendelian population can be represented by a 

single player, making many guesses simultaneously. If the referee 1 s re­

sponse to these gue sses informs him that organisms carrying an allele a 11 

are fitter than those carrying an allele a', he may include a 11 and exclude 

a' from all, or most of his future guesses. A competing population, re­

productively isolated from this one, represents a competitive player who 

must discover the superiority of a 11 over a 1 for himself, quite independ­

ently of its discovery by the first player. 

Sorne aspects of competition betww~n players may lend themselves to 

analysis by the Theory of Ga.mes; the optimum strategy, >-lhich leads one 

to the right answer most rapidly, is not always the same as the strategy 

which maximizes the probability of rermining one or two jumps ahead of 

one 1 s competitors. It must be emphasized, hmrever, t!:l.at the relation 

betiveen a player and the referee is not a competitive one, and cannat be 

analyzed by Game Theory. 

42. 
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General. 

The preceding discussion has been confined to those aspects of guessL~g 

ga~es which are important in setting up a. madel of organic evolution. 

During the prelimina.ry stages of the work, hOivever, the writer necessa.rily 

exa.rnined ether aspects of ether kinds of guessing ga.mes. These suggest tl:n t 

the subject of gùessing g~res in ~eneral may be of interest to mathematicia.ns, 

and perha.ps to scientists seeking matha~tica.l models for a. va.riety of phys­

ical, biologica.l, psychologica.l, and econome systems. The present thesis, 

however, is intended to deal with Da.rwinia.n systems, and the only kind of 

guessing grune which needs to be considered is a. Da.rwinian gaine. This section 

ca.n therefore be adequa.tely recapitulated by the following two definitions: 

A Darwinian s;y:ste,E is any system which cru-1 be usefully analogized to 

a Darwinian guessing game. 

A Darwinian guessipg ~~ is a non-trivial trial-and-crror sxne in 

1·1hich the referee is a selector, an::l in v1hich the data stored by the player 

can consist only of a record of t.he guesses to which the referee asslgœd 

highest prirnary rank at the last trial; in part.icu.l.'tr, the pla.yer ca'1not 

keep a t-record. 

To permit simple cases ta be analyzed first, certain options will be 

retained in this definition: a Darwinian ga.me may have either a. perfect or 

an imperfect referee, and it may be a competitive or a. non-cw1petitive game. 

Permutable ansl_N.on-permutab.he. HiE_r.?..:r:cJ1i.e.s.. 

At each trial the player uses sorne criterion to divide a class into 

daughter classes. If the size of the daughter classes deviates greatly from 

equality, the information the player can receive 1-then tàe referee c::;;apa.res 

them "\'lill be too srœ.ll in quantity to permit him to win the game. He must 
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therefore be capable of choosing a criterion of division which vdll result in 

an adequate approxirration to equal sized daughter classes. 

liith sorne sets of criteria of division, this requirernent ca.n be met only 

if the criteria are used in a fixed order. Consider, for example, a dichoto­

mous classification by size of the integers from 1 ta 1024. If the criterion 

11larger or not larger tha.'î. 4" is used at any leval before the eighth, it 

serves to divide a class into two very unequal p3.rts. SimiJarly, if the cri­

terion ."dog or non-dog11 \'lere used t:.oo early in classifying the set of living 

organisms, it would serve to divide a class into two verJ unequal 1~rts, and 

to reduce the quantity of information obtainable from the referee 1 s compar­

ison of the two daughter classes. A hierarchy in which the quanti ty of 

informa.tion obtainable per trial reduced by using criteria of division in 

any but one order may be called a non-perrrrutable hiorarchy. 

On the other hand, consider the set of sixteen objects, each of which is 

either round or square, solid or hollow, black or white, and wooden or plast:d:c. 

Any of the criteria of division (colour, shape, etc.) will di vide this set 

into two equal classes, and any of the other criteria will divide either class 

into two equal daughter classes. Either of the classifications shawn in 

Figure 4, and many others as well, ,,.rould be equally useful as a classification 

of the set in a guessing game. A hierarchy in which the quantity of inform­

ation obtainable per trial is not affected to any important extent by using 

the criteria of division in different orders may be called a permutable hier­

archy. 

In a Darwinian game, the player can keep a record only of the best past 

guess. This is always a member of the class which should be divided next, 

but it is also a member of some class at every level of the hierarchy. As 

he has no t-record, therefore, the player cannat identify the class to be 

divided, nor infer what level in the hierarchy it is on. He must the refore 

be free to use criteria of division which could be usefully used on any level 



Figure 4 Two of the rnany possible permutations of a 

perrnutable hierarchy. 
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in the hierarchy; as he has no record of rejected past guesses, however, 

he does not know what criteria of division r~ve already been used, hence, 

he must be free to use any criterion of division on any level in the hier­

archy. Therefore, a pl.ayer can \'lin a Darwinian ga.."lle only if he can classify 

~' the set of possibilities, in a permutable hierarchy. 

In a permutable hierarchy, if one follows a line to any member of the 

set one is confronted by the same series of criteria of division at the 

forks, although they do not necessarily occur in the same order on any two 

lines (see Figure 4). Therei'ore, each criterion occurs once in each line, 

and there are as many criteria as there are levels in the hierarchy. The 

criteria of division may be listed in so:rœ fixed, though arbitrary, order 

and an ordinal number 1, 2, ••• i, ••• L, assigned to each. Each crite~lon 

gives rise to a sma.ll number, not exceeding the order .!: of the selector, 

of alternatives. Let the i'th criterion of division give rise to ki alter­

natives. Then any member of the set of possibilities, ~' can be represented 

by a sequence of 1 places in which the i 1th place can be filled by any sym­

bol from an alphabet of ki symbols, and the alphabet available to fi~ the 

j'th place is not altered by the previous filling of any other place. For 

example, any of the set of sixteen objects described above, each of t~ich 

must be round (R) or square (r), solid (S) or hollow (s), black (B) or white 

(b), ani wooden (W) or plastic (w), can be represented by a sequence of four 

symbols, each of which is taken from an alphabet of t1'1o symbols. In the 

sequence RSBW, any symbols can be replaced by their alternatives and the 

sequence still represents a memocr of tie set. If there were defects in the 

permutability of the classification -- if any criterion used at one level 

divided a class in a ratio different from that in which it would divide a 

class at another level -- this would not be true. Deviations from complete 



permutability would result in the absence of sorne members fram the set of 

possible sequences. Gi ven a sequence of symbols representing a member of 

a permutably classifiable set, one my freely change any symbol without 

necessarily changing any other, and the altered sequence continues to re-

present a member of the set. 

In any Darwinian game, therefore, § can be represented by a set of 

L k n. 
1. 

sequences of symbols, each 1 Sj~bols long, with the i 1tn place filled 

by a symbol from an alphabet of ~ symbols. 

The set of all known organisms, classified by the phenotypic criteria 

used by systema.tist.s, certainly dœs not fall into a permutable hiera.rchy. 

No one knows whether the set of all possible organis1ns could be permutably 

classified, and it is hard to imagine how the question could be decided. On 

the other hand the set of all possible geno:nes, each considered as a linear 

sequence of nucleotide pairs, would obviously be classifiable in a permutable 

hierarC:my if ail possible sequences were the sa.me length (and if RNA viruses 

were ignored), as any nucleotide pair can presumably be changed without a 

necessar,y change in any other. Differences in the length of the nucleotide 

sequence from species to species is a complication which cannat be ignored 

indefinitely, but it can be ignored until simpler cases have been examined. 

Notice tha t the model lends itself equally well to analysis of evolution 

using the 11 classical11 concept of the genome as a series of independant loci, 

in which the i'th locus c&~ be filled by any of ~ different alleles. 

A fundamental characteristi c of a Darwinian game is tha. t the set of 

possibilities, ~ can be represented by the set of all possible sequences of 

1 places in which the !,1 th place can be filled by any symbol from an alpha­

bet of ki symbols, and the alphabet available to fill each place is not 

altered by the previous filling of any other place. The assumption that the 



genetic material could be represented by such a linear sequence of symbols 

was made by the writer in several earlier models of natural selection, and 

justified by analogywith empirical genetics. Here, however, it bas been 

shown to be a necessarv condition for evolution by selection. 

47. 



IV An Analysis of Simple Darwinian Games 

The ranking system adopted by the selector, ani the size of the 

alphabet available ta fill each place in the sequences which represent 

the set of possibilities, have fundamentally important effects on the 

courae of a Darwinian game. Nevertheless, many of the conclusions ta 

be drawn from an analogy between organic evolution and a Darwinian game 

can be illustrated by games in which these two factors are kept as sim­

ple as possible. This section will therefore be devoted ta discussion 

of variations on a game in which ~ consists of all possible sequences 

1 places long with an alphabet of two s.ymbols available ta fill each 

place, in which there is only one right answer, and in which the referee 

nominates the symbol filling the i'th place in the right answer as the 

correct i'th symbol, and ranks the possible sequences by the number of 

correct symbols each contains. 

In organic evolution, there are four symbols available to fill each 

place in the genetic material, if one uses the DNA molecule as a madel, 

or a variable number of "alleles" if one treats the genetic material as 

a sequence of classical loci. There are many 11 right answers 11 , alli the 

environment ranks genotypes in a much more complex way. One will there­

fore expect the present model to lead to incorrect conclusions from time 

to time, but each such error should be explicitly attributable to one or 

more of the oversimplified assumptions stated above, and should be capable 

of correction by substituting more realistic though more complex assumptions. 

At each trial the player must submit his best past guess (BPG) and an 

altered copy of it ta the selector. There are many ways in which an altered 

copy could be prepa.red, but (unless otherwise stated) let us here assume 



the one most amenable to mathematical analysis. Let the player delete 

~ symbols from randomly chosen places in the BPG, and replace them by ~ 

symbols chosen at random from the appropriate alphabets. Let us say he 

deletes rn symbols forming the deleted set sd, and in their places inserts 

~ symbols forming the inserted set si• Sometimes, of course, the same 

symbol will occur in both sd and si, so that in general the next guess 

will differ from the BPG in fewer than ill places. 
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At a given stage in the game let us say that the BPG contains W = wL 

incorrect symbols, and R = (1 - w)L correct symbols. 

The Simplest Possible Darwinian Game. 

The simplest possible case is that in which a single player submits 

his BPG and one altered copy of it to a perfect selector at each trial. 

The probability that a symbol in sd is correct is (1 - w). The 

probability that a symbol in si is correct is 1/2. A ~will occur if 

and only if si contains more correct symbols than sd• The size of the gain, 

measured by the increase in ~' is the difference between the number of 

correct symbols in si and the number in sd. For any value of m, therefore, 

Qm, the expected gain per trial can be calculated from a table like Table 

2, in which: 

1. The probability p(x) that si contains x correct symbols is given 

at the head of each column; 

2. The probability p(y) that sd contains y correct symbols is given 

at the left of each row; 

3. The difference (x - y) is given in the body of the table, when it 

is positive; 

4. ~ = ~p(x). p(y).(x- y) for all positive values of (x- y). 



Table 2 Iviethod of calculating the exact value of the 

expected gain per trial, am, for a given value 

of m (number of symbols deleted and inserted) 

and~ (frequency of incorrect symbols). 

See p. 49. 
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Nore forma.lly, 

For example, from Tables 3, 4, 5 and 6, it can be computed that: 

~ = w/2; 

G3 = (3w + 9w2 )/B; 

G4 = ( w + 6~ + ~ - w4) /4; 

and so on. 

If m is large, this form of computation becomes impractical. How-

ever, if .!!! is large both ! an:l. Ji. will be approximately normally distributed, 

and so will (x - y). In a normal distribution with unit variance, let 

ct> 

P(u) = eT .r.Lv f
-\1')., 

lL 

i.e. P(u) is the one-tailed normal probability integral, as given for 

example in Table Ill of Fisrer and Yates (1957). 

Let P-l (p) represent that value of ~ for which P(u) = p; i.e. 

p-1 (p) is tffit nonnal deviate which is exceeded by a fraction .E of the 

population. p-1 (p) is closely related to the probit of .:e, but because of 

the way probits are conventionally tabulated P-
1

(p) can be more conven-

iently evalllllt&d byfinding p in the body of a table of the normal probab­

ility integral and reading the corresponding value of p-1 (p) from the 

margins of the table. E.g. Fisher and Yates 1 Table Ill shcws that p-1 (0.30854) 



Tables 3, 4, 5, 6 
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= 0.5 and, conversely, P(0.5) = 0.30854. 

If m is large, the number of correct symbols, ~~ in the inserted set 

has a mean m/2 and variance m/4; the nurnber of correct symbols in the 

deleted set r~s a mean (1 - w)m and variance mw(l - w); and their differ­

ence, (x - y) has a mean m(w - 1/2) and a standard deviation 

A gain occur s only wh en (x - y) > o, i.e. wh en (x - y) devia tes from 

its mean by 
m(i-w) 

u = standard deviations. 
\jrn@+w(1-ry] 

Therefore the fre-

quency of a gain is given by 

f = P(u) = P 
[ 

m(i -w) J 
\)m&+w(l-w)J 

51. 

Those members of a population which exceed the mean of the j)Opulation 

by more than u standard deviations, exceed it on the average by 

standard deviations. 

Therefore, when m(x - y) exceeds zero, its mean size is 

where 

u = 
m (j;-w) 

and 



and since u = m (i-w) 
(f 

Gm = P(u)o-{ P_, & P(u)J - u] 
Though crunoersome in appearance, this expression can fairly readily 

be evaluated by reference to a table of the one-tailed normal probability 

integral. 

Gm is displayed graphically as a function of (1 - w) for various 

values of~ in Figure 5. 

Figure 5 can serve as a basis for several biological3..y suggestive 

conclusions. 

First, whether ~ remains constant throughout the course of the game 
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or changes with t:ime in such a way that Gm ahfays has i ts maximum possible 

value, the rate of increase in J!, the nUtllber of correct syJ1bols, decreases 

as 1f increases. If m is constantly 1, for example, 

dR = 
dt • 

. ·1 1 b . . . ,_1 th lat. d'VI -H . f t . th umb Sm ar y, eg1n..'11ng Wl"v1 e re 1on dt = 2L , 1 _ 1s e n er of 

p3.st trials, one obtains by cross-multiplyj:·1g, integrating bath sides, taking 

antilogs, and settling the constant of integration = 1/2, since itl/L = 1/2 

when t - 0, 



Figure 5 The effect of changingm, the number of deleted 

and inserted symbols, on the relation between ~' 

the frequency of incorrect symbols, and Gm, the 

expected gain per trial, in a simple Darwinian 

game. 
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The number of incorrect symbols, W, therefore 11deca.ys 11 ex.ponentially 

like atoms in a radioactive substance. 

Therefore, although this particular guessing game is a greatly over­

simplified model of organic evolution, it serves to suggest that evolution 

must have been a great deal faster, in sorne sense, in its earliest stages 

than it is now. Of course this is wha.t one l"lould expect, on the common 

sense basis that as organisms become more highly adapted, it becomes 

increasingly difficult for them to become still more highly adapted. Among 

the most primitive organisms, shortly after the first self-reproducing 

structures ha.d somehow been spontaneously generated, even a large random 

change had a fairly high proba.bility of being a biologica.l improvement. 

Among horses, butterflies, and jellyfish, however, most random changes 

must render their victims less adapted, and large changes are almost always 

deleterious. 

Simpson (1944) has attempted to explain the many gaps between large 

taxonomie groups, such as orders, in the fossil record by postulating that 

11 ••• the basic differentiation of each order took a much shorter time tha.n 

its later adjustment, spread, and diversification. In the magnitude of 

structural cmnge involved, this basic rart is comparable, on the average, 

to the subsequent changes ••• The change, for instance, from a carnivore or 

insectivore to an early cetacean is much more profo~~ than the recorded 

change from early to late cetaceans ••• It follows that the basic differen­

tiations must have proceeded, on the average, more rapidly than the later 

recorded evolution, almost surely twice as fast and probably more, quite 

possibily ten or fifteen ti:nes as rapidly in sorne cases." Concerning the 

wing of bats, Simpson states 11 ••• its recorded rate of evolution is effective­

ly zero. The bat•s wing has not essentially progressed since the Middle 



Eocene ••• Extrapolation of this rate in an endeavour to estimate the time 

of origin from a. normal ma.mma.lian manus might set that date before the 

origin of the earth. n 

54. 

Simpson attempts to explain this more rapid evolution in the early stages 

of newly arising orders by va.rious assumptions about the structure of the 

populations involved. Possibly, however, at least part of the phenomenon can 

be explained as a. result of the fact that almost any change in the wing of 

a ma:l.em bat is sure to be detrimental, but the imperfect wings of those 

Eocene insectivores which were just beginning to flutter from branch to 

branch must have been much more easily and rapidly improvable by random 

alterations. 

A second conclus ion to be drawn from Figure 5 is tha t the optimum 

strategy in a Da.rwinian gar.ae requires !!! to decrea.se with time. The player, 

however, has no record of the number of trials he has made, and therefore 

cannat adjust!!! to its apt~~ value (that which maximizes Gm) at each 

stage in the game. The only strategy available to a single player is to 

choose a value for!!! and retain it as a constant throughout the ~ae. If 

the game is difficult, !!! liDlSt be sma.ll. 

Now imagine that the game is being pla.yed competitively. There are 

several players, and from time to time one or more of them, those with the 

BPG1 s of lowest rank, are expelled from the game. If the players have chosen 

different values of ~' and if eliminations take place early and often, the 

players who survive the eliminations will be ones who have chosen large 

values of m' and therefore have the highest expected rates of ~in early in 

the g~~e. These players, however, will be unable to go on and find the right 

answer wi thin the required nmnber of trials, a~ a large value of .li will per­

mit only very slow progress later in the game. 



Organic evolution can be analogized to a competitive Darwinian game, 

in which the players are reproductively isolated populations of organisms 

in competition with each other. Very early in evolution, if one such pop­

ul~tion adopted the strategy of changing several places at once in the 

sequence of nucleotides making up its genome, it would improve more rapidly 

than competing populations and eliminate them if competition was severe. 

Later, however, the surviving population would be able to improve only very 

slowly, and could not give rise to the highly adapted orga.."lisms we see 

about us. In other words, the strate~; leading to most rapid early improve­

ment would lead to extremely slow la ter improvement, but one would expect 

the fast starters to eliminate the slow starters, so that the survivors of 

the earliest period of evolution would be ill-suited for rapid later evol­

ution. 

One can suggest three hypotheses as an escape from this problem: 

a). Only one kind of primitive organism existed, which just by ctance 

l.'fas a 11 slow starting11 type capable of fairly ra.pid evolutionary progress 

continuing for a long time. 

b). Several populations of e arly organisms existed, but they were 

isolated geographically or ecologically, or for other reasons did not come 

into competition wi th each other until the 11 slow starters11 had bad time to 

catch up and surpass the fast starters. 

c). _!!!, which is a sort of index of mutation size and mutation fre­

quency cornbined, is to sorne extent a genetic variable itself, so that a 

population with large .!!! which survived early competition would in turn give 

rise to several populations with different values of,!!!, of which the one 

best suited for that stage of the evolutionary process vmuld in turn survive, 

to give rise to further populations differing in the value of .!!!• 
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The third of these hypotheses seems the most attractive. 

Given a t-record, an intelligent player could compute the value of ~ 

to use for most rapid progress. The ima.ginar'J players in a competitive 

Darwinian gaine have no t-recoros, and cannet do this. The only source of 

information available for assistance in finding the best mutation size is 

therefore the selector. Selection must therefore go on not only between 

alternative guesses nade by the sarœ player -- i.e. between individuals 

within a population -- but between players as well, i.e. between whole pop­

ulations. 

A good strate,gy in a Darwinian game can therefore be discovered by a 

sort of second order Darwinian game, in which each guess is a player in the 

ordinary game. One cannet continue to expand indefinitely in this way, 

however. Each guess in the evolutionary gare is an organism; billions of 

organisms exist simultaneously, each with an average duration of perhaps 

only a few hours, so th1.t an enormous number of guesses can have been na.de 

in the few billion years the game has gone on. Each guess in the second order 

game is a population, of which perhaps only a few hundred million can exist 

simultaneously, and with an average duration of perhaps many years. The 

possible number of guesses which might have been made in a third order game, 

in which each trial involves a population of populations, is again much 

smaller. One must keep in mind that by choosing between two second or third 

order guesses, the selector does not supply any sort of super-information; 

at most it provides one bit of inforna tion. The discovery of a good value 

for~ may be the result of selection between populations; the discover~ Of 

a good method of controlling the variation of~ might, just possibly, be the 

result of selection between populations of populations; but the discovery of 

a genetic mterial whose own structure serves to control the para.meters of 



its variability must have been mostly a matter of blind chance. 

A third conclusion suggested by Figure 5 is that mutation size, in 

addition to mutation frequency, is an important parameter in assessing 

the effect of a mutagenic agent. In higply evolved organisms (those in 

which (1 - w) has a high value) the probability that a mutation is delet-

erious increases rapidly \vith the size of the mutation. 11Size11 in this 

57. 

c ontext of course means the size of the change in the gene tic na terial it-

self; the number of nucleotide pairs disarranged, for example. The fact 

that mutations with large phenotypic effects are more likely to be delet-

erious than those with small phenotypic effects has long been accepted, 

but the classical concept of the gene does not allow one to distinguish 

mutations of different genotypic sizes, except in the case of chromosomal 

aberrations. 

An important quantity to be calculated in a Darwinian game is the actual 

number of trials required to win the ga.me. Whether or not each guess leads 

to an improvement is a matter of chance. One may therefore suspect that if 

several players operate at once, independently of each other (neither com­

peting nor exchanging information) one of them may win in considerably 

fewer trials than the expected nurnber required by an average player. To 

test this suspicion requires determination of the variance of ~ in a pop-

ulation of independant players. 

Assuming tha t each player retains a constant value .!!! = l, and tha t each 

player begins the ga1:te with a random sequence of 1 symbols, for each player: 

Probability that the i 1th symbol is initially incorrect = 1/2. 

Probability that the i 1th symbol, if initial1y incorrect, is not 

corrected at the first trial = L - 1/2 • 
L 

Probabili ty- tha t the i 1 th symbol, if ini tial1y incorrect, rerra.ins in-



correct after the t'th trial = (L - 1/2) 
L 

t 

• 

The probability that the i 1th symbol is incorrect after t trials is 

1 (L - 1/2 t therefore 2 1 ) • 

If Yf. is the nurrber of incorrect symbols in the BPG, the mean (W) and 

standard deviation ( C1" w) of Yf. after 1 trials are 

W = ~tLL~)-r; + /{(L~l}- j_(L~~rt: 
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When 1 is large and ! therefore srrall, t~e number of incorrect symbols 

approaches a Poisson distribution with œan and variance W =o-.:; = { ( L~ ±)t • 
Bence, if .!! independant players are operating, there exists an even 

* chance tha.t one will win when t = t such that 

-w 
e =_L n 

. 
' 

W = log n (where 11log11 without subscript mea.ns natural logaritrun). 

( 

1 _)t* 
~ L~~~ =log n 

t* = log L - log 2 _-:.log log n 

log L - log (L -±) • 

d log J..s _ 1 
Since dL - T: , if L is large log L - log (L - T):::::: ~IL ; 

hence t* = 2L(log L - log 2 - log log n). 

Only if log .!! is of the order of 1 (where .!! is the number of independ­

ant players) is t* appreciably reduced below the number of trials required by 

a single player to win. But if log .!! is of the order of 1, !! is of the same 
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L arder as e • The total number of members of §, the set of possibilities 

one of which is the right answer, is 21 • Renee, many players acting simul-

taneously but independently will discover the right answer in an appreciably 

shorter time than a single player only if the number of players is an 

appreciable fraction of the total number of possibilities among which the 

right answer lies. Biologically, this implies that a large population of 

organisms which are neither interbreeding, cooperating, nor competing with 

each ether will not yield highlyadapted forms much more rapidly than a 

single lina of organisms. 

An interesting expression arises if one repeats the above computation 

for the case of a player who always changes a single symbol, at every trial; 

i.e. who does not take the symbol to be inserted at random from the approp-

riate alphabet, thus failing to rœ.ke the new guess differ from the BPG in 

half the trials, but specifically inserts the alternative to the deleted 

symbol. The mean and variance of !! can be calculated in a mannar parallel 

tc the case above, yielding 

- 2. L (L- 9-t W = O'w := ·-;._ T , if W is large; and 

= log n. 

From the identity 

- 2 [---=--1 
ZX+I 

it follows that log (__k_) is a trifle larger than 1 , if L is very large. 
1--1 L-i 

Hence t* ~ (L -~)(log L - log 2 - log log n). 



Notice ~~at b = lo~N = H, where ! is the number of possibilities in 

the original set of possibilities, §, and fl is the entropy of § in bits. 

Therefore, very roughly, 

tk = H log H. 
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It can easily be shawn that if the player could retain complete records 

of ail past trials, he could 'ovin this ga~œ with certainty in.!:! trials. The 

deficiencies in his data storage facilities increase the time required to 

win by a factor of about logH, and do not permit the player to be certain 

of winning in any number of trials. 

Nevertheless, to achieve a 50'-fo probability of winning this game by 

blind chance would require 2H-l guesses. If .!:! is large, the difference 

between H log H and 2H-l is the difference between plausibil.ity and silliness. 

In a mathematical model of a physically real Darwinian system, it is plaus-

ible to irœ.gine that the 11 player11 may make 230,000,000,000 trials, but 

ridiculous to imagine that he may make 29,999,999,999. 

A Game Permitting ~~ny Sim~~~neo~~Tr~. 

,!, the total number of tr:ials the player is pennitted to rm.ke in a 

Darwinian g:une, may consist of two components, T5 , the number of simultan-

eous trials he may nake, and T , the number of consecutive trials he may 
- c 
make. If the game is to be non-trivial, the product TsTc must of course be 

ver.y much smaller than !, the total number of members in the set of possibil-

ities. 

Simultaneous trials are in general less useful to the player than the 

same nurnber of consecutive trials. If there are 1012 possibilities, for 

exa.rnple, the player may easily be able to win in 106 consecutive trials, 

but cannot win if he IID.lSt make 106 guesses ali at once. In real Darwinian 
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systems, however, Tc is lirnited by the amount of time available to the 

player, and Ts by the amount of available space, and _the two are independ­

ant; reducing Tc does not compensatorily increase T8 , A species which 

fails to expand to fill its available habitat does not receive an increase 

in the number of generations available for its evolution as a reward. The 

player in a Darwinian game should therefore use a strategy which utilizes 

the available number of simultaneous triàls as effectively as possible. 

If the selector is of arder greater than 2, it is clearly an advantage 

to the player to be able to rrake as many guesses per comparison as the 

arder of the selector. In general, however, the arder of the selector will 

be considerably snaller than T8 • It is therefore important to discuss the 

possibility of a procedure in which it is useful to make a number of guesses 

which exceeds the arder of the selector at each comparison. 

It has already been shawn above that running T8 independant games 

simultaneously (each with a binary selector) only very slightly reduces the 

expected number of consecutive trials required to find the right answer. 

!t may be stated without proof that running T5/r independant games simul­

taneously, each with a selector of arder ~' has a similarly unimportant 

affect. 

Let us therefore consider a game wi th a selector of order .!:• A per-

fedt selector of arder r. will reject all but the b est mEIDÏ:)er of a group of 

r. sequences simultaneously presented to it, or all but the best n/r members 

of a group of n sequences. The player must therefore submit ~ sequences 

to the selector at each comEërison, and a comparison will be considered to 

comprise (r - l) trials. m retains its former meaning as the number of sym­

bols deleted and replaced in each altered copy of the BPG; 1. is the probability 

that an al tered copy is higher in rank than the BPG; and _g is the average 
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nuuber of c!l:>rrect symbols by which an imp:roved sequence exceeds ~' the number 

in the BPG. 

Without attempting a detai led proof, which seems unnecessary and would 

be complicated by the need for exactitude where approxirrations will be given 

below, the writer may state the following conclusions: 

If .f < r:l when !!! has that value which maxllnizes Gm for a binary 

selector, the optimum strategy is to retain the same value of !!! for the higher 

value of ..!:• The expected rate of gain per comparis<2!! is then very nearly 

(r - 1) times ae large as with a binary selector, and the expected rate of 

gain per trial is practically unchanged. 

If .f> r:l when m has the value which maximizes Gm for a binary 

selector, the optim~~ ~trategy is to increase m until .f = r:l. The expected 

rate of gain per comp:~.rison is then larger than with a binary selector, 

though by a factor of less than (r - 1), and the expected rate of gain per 

trial is decreased. The reason is simply that an increase in ~ decreases .f 

by a larger factor than it increases ~· 

These conclusions rest on the faot that it is never an advantage to 

obtai. n more than one improved sequence per comp:~.rison,~ as only one can be 

retained. If .f is so large that more than one improved sequence occurs at 

a comparison, the optimum strategy req.lires an increase in m, decreasing f 

to the value at which only one improvement occurs per comp:~.rison, but in-

creasing the average magnitude of the improvements which occur. The compli-

cations required for exactitude arise from the fact that if f is in the 

.. 't f 1 f . 1 VJ.CJ.nJ .. y o -
1 

, or a g:Lven va ue of m, more than one improven-ent will 
r-

inevitably occur at sorne comparisons and none at others. To optirnize the 

value of!!! requires finding that value of .f which minimizes the joint effect 
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of these two deviations from expectation. To do so is mathematically 

difficult, and would not alter the approximations given above enough to 

affect their usefulness. 

An important problem arises if the player may submit .!! >.! sequences 

to the selector at each comparison. The selector, of order .r, passes the 

best n/r sequences from the group. The player then has two possible courses: 

a) Choose one of the passed sequences to be stored as the BPG, and 

discard the ethers. Since this choice must be nade without guidance from 

the selector, it is effectively at random, and the result is exactly the 

same as if the player submitted only.! sequences of which the selector 

passed only one. 

b) Store all n/r passed guesses a$ BPGs. If.!! is already as large 

as the rules of the game permit (i.e. ~ = T5 ), the player can then make 

only (r - 1) copies of each BPG for submission to the selector. 

The latter obviously the only one of the t\<TO alternatives which can 

conceivably give the player an advantage from using more than.! sequences 

per comparison. 

As a simple case, assume that .!h the number of correct symbols per 

BPG, is already so large that when .!!! has its optimum value the probability 

of a gain larger than one correct symbol is negligible. Assume also that 

1 is so large that a swall increase in E does not appreciably change f• 

Assume too that the player changes.!!! symbols in each altered copy of a BPG, 

i.e. does not merely delete .!!! symbols and insert .!!! chosen at random, but 

inserts m alternative symbols, so tba.t the copy actually differs from the 

BPG at .!!! places. 

At a given comp3.rison, the number of altered copies of BPGs submitted 

to the se1ector is n(r-1 ) • Among these
1 

fn(r-1 ) will be improvements, 
r r 



and will be stored as BPGs of rank R+l. A further improvement, i.e. a 

sequence of rank R+2, can occur anly among copies of BPGs of rank R+l. 

fn(r-1..22 
At the next comparison, therefore, r opportuni~~~?-L~~ im~~v~-

ment will occur. and f
2
n{r-l)

2 
BPGs of rank R+2 will be stored. , r ~a 

f3n(r-1)3 
similar argument, at the third comrarison r BPGs of rank R+3 

will be stored. 

The outcome is clear. If f)' /:1 1 a situation will soon be reached 

in which an improverœnt is made and stored at every comparison, no rra tter 

1 
what value .!1 may have (as long as n .> r). If f < r-l , a situation lvill 

soon be reached in which at every oomparison on~ one BPG exists among 

copies of which opportunities for improvernent can arise. This situation 

too will arise no matter what value n may have; a large value of n may 

delay it, but cannat prevent it. The remaining .!1 - 1 BPGs are then use­
r 

less, contributing nothing to the speed at which the game can be won. It 

would appear that the expected rate of gain per comparison can be only 

transiently increased by an increase in n/r, the number of BPGs stored 

(or, in biological ter.ms, the size of the breeding population). 

If f < r:l , however, the re is a procedure by which the player can 

ma.ke good use of the possibility of submitting sinrultaneous guesses. It 

consists of submitting some true copi~s of each'BPG to the selector at each 

comparison, along with a nwriber of altered copies; let us say, ..s:_ true 

copies and r-e altered copies. If one of the BPGs is super.ior to the 

ethers -- let us say it has a rank R + 1 -- the result of this stratagem 

is that after one comparison, there will exist ..s:_ BPGs of ,rank R+l, c2 

after two comparisons, and so on, until all of the n/r BPGs have a. rank 

of R+l, and are true copies of the first to a.chieve tm t rank, or until 

a sequence of rank R+2 arises among the altered copies of the BPGs of 
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rank R+l. In other \<VOrds, aniinproved sequence will proliferate geometrically, 

at the expense of those which have not improved, until true copies of it 

constitute the entire "breeding population" or until a further improvement 

arises among its altered 11descendants 11 • 

In the first comp3.rison after a BPG of rank R+l has been stored, (r-e) 

opportunities for improvement will occur; c(r-c) opportunities will occur 

at the next comparison, c2 (r-c) at the next, and so on. This geometrie 

increase in the number of opportunities for improve1nent ca.n continue, how­

ever, only until the nurnber of PBGs of rank R+l reaches n/r, after which 

opportunities for improvement occur at a constant rate ~ per comparison. 

The faster the nuniber of opportunities grows during the geometrie phase, 

the more slowly it grows during the linear phase. 

Figure 6 shows the way opportunities for improvement accumulate in 

the case in which n = 10,000, and ! = 10, for various values of ~· If ! 

is rather large, so that an improvement vTill be expected to occur about 

once in 1,000 opportunities, the optimum value of ~ appears to be about 8; 

i.e. the 11mutation rate 11 , (r-c)/r, should be lm'l. If! has certain inter­

media te values, so that an improvement will be e.xpected once in about 10,000 

o:pportunities, it appears that ~ should J:a.ve an intermediate value of about 

5. If ! is very small, so that 100,000 or more opportunities must accumulate 

before an improvement is expected, ~ must be sma.ll, i.e. the mutation rate 

should be high. At intermedia.te values of f (in the neighbourhood of 

1/10,000) choice of the wrong value of ~ may increase the number of compar­

isons required to find an improvement by a factor of about 2, but the same 

sort of deviation from the optimal strategy may increase the tim: require­

ments by a much larger factor if ! is rouch smaller than 1/10,000. 

The exact value of ~' as a function of Q, !' and !, which minimizes 



Figure 6 The accumulation of opportunities for improve­

ment in a Darwinian game in which 1,000 BPGs 

are st.ored at. each comparison, and .2. true copies 

and (10 - c) altered copies of each are submit.ted 

to the selector at each c omparison. 
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the expected number of comparisons required to find an improvement, is 

difficult to compute. Nevertheless it is clear that if r< 1
1 , an im-

r-

provement cannot be expected to occur until about -log f comparisons 
log r 

have taken place. The time required for an improverrent to occur will be 

a minimum wh en .!! is of the arder of 1/ f; longer times will be required if 

.!! is smaller than t :1i.s, but shorter times will not be expected if .!! is 

greater than 1/f. 

Let us now try to place a biological interpretation on these results. 

It must be emphasized that this game is a model of a hypothetical population 

of completely asexual organisms, in which all deaths and sterility are 

selective; no such thing as random death or accidentai failure to reproduce 

occurs. 

n/r, in this model, is the size of the reproductive population, each 

member of which produces I offspring. Since the population is fixed at a 

maximum size of Q, r-1 offspring per parent must die before the next act of 

reproduction. As all death is selective, therefore, r-1 serves as a measure 

of the severity of selection. With a perfect selector, the severity of 

selection increases directly with the reproductive rate of the population. 

r;c is the rrrutation rate, the fraction of offspring differing from their 

parents. 

Early in evolution, while the population was still so imperfectly adapted 

to its environment tha. t a high probability existed of an improvement occurring 

a.mong the offspring of a single parent, such a population would evolve fa.stest 

if its mutation rate were high: r-l • During this period, evolutionary pro­
r 

gress would go on just about as rapidly with a breeding population of only 

one as it would in a much larger breeding population. This suggests the spec-

ulation that early evolutiona.ry progress may ha. ve taken place as readily in 
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splash pools by the seashore, in damp places under rocks, and so on, as in 

the great bulk of the ocean. Improvement may have been as fast in each of 

innumerable small populations as in a single large population, and, in the 

fonner, would be accompanied by tremendous diversification as well. 

As the population became better adapted, the probability that a muta-

tian would be an improvement would decrease until an advantageous mutation 

could no longer be regularly expected to occur ar.J.ong the offsprlng of a 

single p:~.rent. The rate of evolut.i::mary improvement would then inevitably 

fall, but i ts decrease could be retarded an:l reduced by a reduction in the 

mutation rate, which would permit those advantageous mutations which did 

occur to proli:'erate geometrically. During this period it would become an 

advantage for the breeding population to increase, u':'ltil the total number 

of offspring per generation was approximately of the arder of the reciprocal 

of the probability that a single mutation would be advantageous. A larger 

breeding population would confer no additional advantage. 

Eventually, as the adaptedness of the population continued to increase, 

the population would attain its maximum possible size, and the probability 

that a mutation would be advantageous would fall below the reciprocal of the 

population size. At this stage, it would be advantageou..s for the mutation 

rate to begin to rise again, although it should never return ta its earliest 

high value of'r.;..l. 
r 

Throughout the process, an increase in the n~~er of offspring per parent 

can lead to a proportional increase in the rate of improveinent, as long as 

the number of offspring per parent does not exceed the reciprocal of the prob-

ability of an advantageous mutation. At no stage in tne process, however, 

does an increase in the size of the breeding population result in a pro-

portional increase in the rate of increase of adaptedness. 

It is hard to say how far these conclusions could be applied to a more 
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realistic population model. They do rrake it clear, however, that repro­

ductive rate, mutation rate, and mutation size must be independently adjust­

able if organisms are to achieve anything like the optimal evolutionary 

strategy made possible by large population sizes. 

A Game with an Imperfect Selector. 

To be a more realistic model of natural selection, a Darwinian game 

must incorporate an imperfect selector. An imperfect selector is one which 

does not always repeat the same response when called upon to repeat the 

same comparison, i.e. which indicates that sequence A is better than sequence 

B at one trial, but indicates that B is better than A at another. Clearly, 

if the selector is to supply any information at all to the player it must 

give the correct or true response more than half the time. 

The simplest case is a game with a binary selector, called upon to 

compare the BPG with a single variant at each trial. Let the probability 

that the selector will correctly pass the better of the two sequences at 

each trial be ~' and the probability that it will erroneously pass the worse 

of the two sequences (which will then be stored as the BPG) be (1-p) = q. 

Let the player make his guesses differ from the BPG at a single place. Then 

the probability is w/2 that a variant is better than the BPG, and (1-w)/2 

that it is not as good. Therefore: 

The probability that a varlimt is not as good as the BPG and is passed 

by the selector = pw/2; 

The probability that a variant is not as good as the BPG, but is never-

theless passed by the selector = q(l-w)/2. 

The BPG will be expected to improve until!! reaches that value at which 

guesses worse than the BPG are being retained as frequently as guesses better 



than the BPG, i.e. unti1 

pw = (1-p)(1-w), 

...E.... = 1-w 
1-p w ' 

i.e., un til R = pL. The rank of the BPG will ri se to a value of pL, and will 

then f1uctuate about that value, but cannet rise consistently above it. 

The behaviour of an imperfect selector of higher than binary order, or 

in a game in which several BPGs are stored per comparison, is more complicated. 

It seems to be most easily approached through a modification of Fisher!s 

(19.30) 11 fundamental theorem of œ.tural selection11 : the rate of increase in 

fitness of any organism at any time is equal to its genetic variance in fitness 

at that time. 

The fitness, f, of a type of organism is the ratio of its frequency in 

the next generation to its frequency in the present generation. In a Darwinian 

game, it ma.y be defined as the average mmber of sequences of a gi ven kind 

stored as BPGs out of ~ identical copies submitted to the selector. The fit-

ness of a sequence ma.y therefore range from 0 to ~' and the mean fitness of 

all sequences submitted to the selector at a given comparison is F = 1. 

One may demcnstrate Fisher's theorem thus (following Li 1955): 

Considera set of guesses of fitness F1, F2, ••• Fi ••• , with frequencies 

r1 , t 2 , ••• fi ••• , where 

by 

'f·F· = F = 1. L.:. ~ ~ 

'l'he variance in fitness = V = Ifi(Fi - 1)2 = LfiFi2 - 1. 

After selection, f{, the new frequency of BPGs of fitness Fi, is given 
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Hence the new mean fitness = ~ri Fi = l fiF~ , 

and the increase in mean fitness ; ~ F = LfiF~ -l = V. 

Hence, the increase in mean fitness is equal to the variance in fitness. 

For the purposes of this thesis, let us extend Fisher1s theorem by 

defining the superioritx, Zi, of the i 1th kind of sequence, as 

zi = Fi - 1. 

'fhe superiority, zi, of the i'th kind of sequence, is therefore the 

number of additional BPGs of the i 1th kind expected to be stored, over and 

above the one previously stored, for each I sequences of the i 1th kind 

presented to the selector. The mean superiority, Z, of all guesses pre-

-sented to the selector is of course Z = O, and Zi cannot be less than -1 

nor greater th~n I-1. 

If guesses of superiority Zi have frequency fi, BPGs of sup3riority 

Zi will be stored with frequency fi(l + Zi)• It follows that the changes 

due to selection are: 

= ~ f·Z~ L ~~ 

If the frequency distribution of guesses with various superiorities 

presented to the selector is given, these relations l}llow the frequency dis-

tribution of the BPGs which will be stored to be computed in detail. Notice 
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that the selector always increases tne average superiority, but may increase 

the mean squared superiority, decrease it, or leave it unchanged, depending 

on whether or not the frequency distribution is skewed. If a series of 

comparisons is made without mutation, so tha t every guess presented to the 

selector is a true copy of a BPG, the improvement,À z, nade at each 

comparison may be larger than, sma.ller than, or the same as the iraprovawnt 

made at the previous comparison. 

If -z o z2 · · · z3 t the d third t ts f == , . . , . . , e c., are seco n , , e c. momen o 

the frequency distribution. 

----:2 
true. Nevertheless, .. Z, 

If Z ; 0, this simple reJa tion is no longer 

ZJ, etc. are still simple properties of the 

distribution, and in fact must be calcuJated before the moments can be 

found. 

In a Darwinian game, the superiority of a sequence must be an increasing 

function of its rank. Let us say that if a sequence of ra~~ ~ bas a super-

iority Zi' a sequence of rank R+l ha.s a superiority of Zi + ai, and a 

sequence of rank R-1 has a superiority Zi - bi• Notice that if ai +bi = r, 

the selector is perfect. An imperfect selector therefore is one in which 

ai and bi have small values. 

Consider a set of BPGs in which Z = z, where ~ is a small positive 

quantity to be defined below. Take those BPGs, formL~g a fraction fi of 

the entire set, in which Z = zi. Among the copies of these submitted to the 

selector: 

a fraction .!:::2. w are of supe rio ri ty Zi + ai 
r 

. 
' 

a fraction .!::=2. (l-w) are of superiority Zi - bi 
r 

. c f a fractlon r are 0 superiority zil 

. 
' 



where r-e +-r 
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[ wai - (1-w) = o, 

= -z. 

~ is therefore the quantity by which mutation reduces the mean super-

iority of the guesses below the mean superiority of the BFGs from which they 

were dari ved. Notice tha t as !! becomes smaller, i.e. as the mean ·rank of 

the BPGs increases, ~ assumes progressively larger values, if other things 

rerna.in equal. As a population beco:rœs more highly adapted, mutation occurring 

at a constant rate exerts an increasingly severe effect on its mean superiority. 

Among the BPGs, z2 = f·Z·. - t= 2 
J. J. 

Among the guesses submitted to the selector, 

= ~ L fi zi + r;c L fi t zf + 2Zi [ w(ai + bi) - bij + w(aÎ: - bf) + bf} 

='Di~ + ";
0 L fi { 2Zi [ w(ai + bi) - bi] + w(af - bÎ) + bÎ } • 

Hence mutation changes z2 by 

Now, ai must in general nearly equa1 bi' since 

ai = bi + 1 

A1so, since 2J'izi = z, the mean value of 2Zi must tend to increa.se 

as !! decreases. 



Hence, by inspection, the quantity by which mutation changes 

will tend to assume decreasing negative values as JI becomes srnaller. 

Among the BPGs, 

and by a s:imilar procedure, it can be shawn tm t mutation tends to change 

z3 by the quanti ty 
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r;c ~ fi r 3~ [w(ai +bi) -bi] + 3Zi [w(af - br) + ti}+ w(a? + bf_)-bf) 

This quantity, too, will tend to attain progressively more extreme 

negative values as JI becomes smaller. 

As ~ decreases in size, therefore, mutation ba.s the following affects 

on the distribution of superiority among the guesses submitted to selection: 

a) It tends to produce progressively larger decrements in mean super-

iority, thus increasing · the increment in superiority which must be produced 

by selection if selection is to recoup the losses due to mutation. 
__.;,. 

b) it tends to reduce z2, the quantity by which selection can increase 

the mean superiority. Unless 7 exceeds A (the decrement in mean fi tness 

produced by mutation), the selector cannat pass a set of sequences in which 

the mean superiority exceeds tha. t of the set of BPGs from which the gue sses 

\'Tere derived. 

c) It tends to skew the distribution toward the left. If the distribution 

becomes skewed to the le ft (i.e. if i t ini ti ally had no skew to the right), 

then selection as well as mutation will tend to reduce z2, still further 

reducing the ability of the selector to restore the mean superiority lost by 

mutation. 

The analysis of these relations has not yet been completed. Neverthe-

less, enough has been stated here to justii'y the tentative hypothesis that 

as w becomes small, the distribution of superiority among the BPGs rnay reach 
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a condition in w:hich is small, z3 is negative, etc., and the selector 

is unable to add more to the :rœan superiority than mutation subtracts from 

it at each comparison., Irnprovement, the increase in the mean rank of the 

BPGs, could not continue once such a situation was established. 

'rhe Value of R.!':..coxnbina. tian. 

The difficulties facing the players in the ~es described above all 

stem from the fact that in preparing an altered copy of a BPG, the deleted 

symbols are drawn at random from a population in which the frequency of 

correct symbols (l-w), but the insertcd symbols which replace them are 

drawn from a population in which the frequency of correct symbols is only 

1/2. Consequently, any change in B!: which increases the sizes of those gains 

which occur, simultaneously and usually disproportionately reduces the 

probability of any gain at all. If the selector is imperfect, any system 

of mutation which increases the dispersion of superiority among the guesses 

necessarily also causes a decrease in mean superiority. As a result there 

are severe restrictions on the rate at which improvement can go on, and if 

the selector is imperfect there are limits beyond v.rhich improvement cannet 

be carried. 

The re one, and only one, escape from these restrictions. Somehow 

the player must be permitted to draw the inserted s:ymbols from a population 

of symbols in which the frequency of correct symbols is (l-w). Only one 

such population of symbols exista; the other BPGS, in a game in which the 

number of guesses submitted to the selector per comparison exceeds the arder 

of the selector. 

Any system of guessing in which each guess submitted to the selector 

consists of a combination of parts from two or more BPGs may be called .!:§:.• 

combinat ion. 
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Consider two BFGs 1 symbols long containing R1 and R2 correct symbols, 

respectively, and \i1 and w2 incorrect symbols, where (R1 + R2);Q = R , and 

(W1 + w2)/2 =W. Recomb:Lnation between the two is carried out by combining 

1/2 symbols from each to form the recombinant. The expected number of correct 

-symbols in the recombinant is R and the expected nll.1Iber of incorrect symbols 

is -~'l. Among a number of recombinants formed in this way between the same two 

parent BPGs, the ranks of the recombinants will be symmetrica.lly distributed 

around their mean R in such a way tha.t, if Q is the deviation of a recombin-

ant from the mean, 

from which it follows by simple substitutions that 

2 - - ,,2 
D = w (1 - w)1 J\l 

Since the mean value of x;_ is one, it follows that the ra.nks of the 

recombinants are syrrrrnetrica.lly distributed a.round the mean rank of the two 

parent BPGs with variance w(l - ~)1. 
~ 

If the BPGs have a mean rank R, and a variance in rank J., and recombine 

in random pairs, the ra.nks of the recombinants will be distributed arou...'1d 

values of R having a mean 1?:' and variance 2V/4, or V/2. If Y.. is very large 

relative to w(l - w)1, recombination alone, without mutation or selection, 

will tend to reduce Y.. by about half at each repètition, a~til Y.. approaches 

w( 1- w):t,. On the other hand if J.. is smaller than w(l - w)L, recombination 

alone will raise its value to w(l - w)1 in a single step. Recombination 

therefore will tend to produce a set of guesses with a variance in rar~ 

w(l - w)L, with the same mean rank as the BPGs from which they were derived1 



and with ranks distributed sy:mrœtrically a bout the :nean, at ever;/ co;n­

parison. The distribution of fitness or superiority among the guesses 

will depend on the details of the relation between rank and superiority, 

but one would generally expect the mean superiority of the guesses to be 

the same as the mean of the BPGs. 

The advantage of recombination over mutation as a mechanism for de­

riving guesses from BPGs is therefore tmt it produces guesses with a 

rather large variance in rank but with the same mean rank as the BPGs. 

A fairly large gain can therefore be rr.a.de at every compa.rieon. Mutation, 

on the bther hand, either yields guesses with a very small variance in 

rank, or guesses with a mean rank far below themean rank of the BPGs. In 

either dase a gain can be expected infrequently, if w is small, and large 

gains. are extremely rare. 
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The disadvantages of recombination as a n:echanism for deriving guesses 

from BPGs are serious, however. Obviously recombination cannet produce 

new symbols. If none of the set of sequences with which the player started 

the garœ contained the correct i 1 th s;ymbol, no recombinant can ever contain 

it and the game cannot be won. 

Secondly, imagine that each sequence consists of several segments, 

which are interchanged between BPGs in recornbination. Then if 

sequence 1: A1B1c1n1 ••• 

and sequence 2: A2B2C2D2 ••• 

recombine to produce four recombinants, of which the selector passes two, 

half the kinds of segments present in the BPGs must be absent from the 

passed guesses which form the next set of BPGs, if the selector is perfect. 

Half the remaining kinds must be lost at the next comparison, and sc on. 

An imperfect selector will tend to produce the same result, though perhaps 
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more slowly. -z2, and he nee the ra te of improvement, increases wi th the varia nee 

in rank of the guesses presented to the selector. The variance w(l - w)L 

calculated above rests on the asswnption that the recorr~ining BPGs are ~-

related, i.e. that the probability of one parental BPG containing the correct 

i 1 th symbol depends solely on~' and is independent of whether the other 

parental BPG contains the correct i 1th symbol. Two BPGs are related, however, 

if they have one or more 11ancestral" BPGs in comrnon, and there will therefore 

exist a 11correlation between recombining BPGs 11 exactly analogous to Wright's 

(1922) "correlation between uniting garnetes 11 • Such correlations must come 

to exist unless the nurrher of BPGs with which the player started the game 

was of the order of N, the teta~ number of possibilities, and we have excluded 

this case by assuming that the game is non-trivial. To discuss this matter 

further here would me rely be a repetition in unfamiliar terminology of the 

theory of inbreeding. 

If the selector is imperfect, the super.iority of a sequence, Zi, is not 

in fact the absolute increase in frequency per comparison of the i 1 th kind 

of sequence but the statistical expectation of its increase. In a finite 

population of BPGs, actual quantities will vary around their expectations. 

If guesses are derived from BPGs by recombination an inevitable result is 

that sorne segments of sequences will be lost in spite of being better than 

the segments which a re retained. The frequency and magnitude of such contra-

dictions of expectation will increase as the nunJber of BPG decreases. This 

is the phenomenon of random fixation or 11 drift11 (wright 1931). 

In arder to procure those correct symbols which were absent from his 

initial set of guesses, and to replace those which are lest by inbreeding or 

drift, the player must utilize beth mutation and recombination to derive 
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guesses from his BPGs. 

The Relation of Darwinian Cames to Population Genetics. 

This analysis of Darwinian games appears to have led into population 

genetics through the back door. Population genetics has of course already 

demonstrated that the major features of Mendelian genetic systems are 

sufficient conditions for evolution by natural selection. This examination 

of Darwinian games indicates that many of them are also necessar.y conditions. 

If living organisms exist on l'iars, for example, (an idea which is made ver.y 

plausible by Salisbury, 1962) one may be confident that the JV..artian organisms 

will have genetic systems analogous to those of earthly organisms in many 

ways, even though they may have a radically different biochernical basis. 

The following conditions must be met if a difficult üarwinian game.is 

to be won: 

First, the members of the set of possibilities must be capable of being 

represented by linear sequences of symbols, in which the alphabet available 

to fill the i 1th place is not changed by the previous filling of other places. 

Except for mechanical reasons, however, it does not matter whether the poss­

ibilities are sequences of nucleotides in nucleic acids, amine acids in poly­

peptides, magnetic impressions on spools of tape, or letters on paper. 

Second, these sequences must duplicate themselves with mutations. At 

least in the ]a ter stages of the process, each mutation ::rust be small, chang­

ing only one or a few s;ymbols. It does not natter -v1hether t~1e production of 

such changes is left to random external causes, or whether they are 11 deliber­

ately11 produced during the copying process; in ei ther case, the lack of 

adequate records forbids a syste:na.tic series of changes, and the mutations will 

appear to be random and undirected. 
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Third, if the selector is imperfect, the game cannot proceed ver,y far 

unless a fairly large population of such sequences exists, and each produces 

true copies of itself as well as mutated copies. As a result, advantageous 

mutations will tend to proliferate exponentially at the ex:pense of the 

parental sequences. 

Finally, progress with an imperfect selector also appears to require a 

process of recombination between sequences, so that each sequence has two 

(or more) parents. This inevitably lead to analogues of such familiar gene­

tic phenomena as inbreeding, drift, and so on. 

The study of guessing §ames adds a dimension to population genetics, 

however, by indicating the ways in which the evolutionary process will change 

over long periods of t ime. The optimum population size for progressive evol­

ution, the severity of the deleterious affects of mutation, the frequency of 

advantageous mutations, and even the necessity of recombination are all 

functions of the length of the evolutionary history of a population, and 

this is a quantity of which population genetics takes no account. 
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V Sorne Add.itional~C..2,_1!!Qle::dties in Darwinian Ga.mes 

Discussion of the Darwinian games chosen as examples in the previous 

section sheds no ligot on sorne problems of evolution, and actually suggests 

false conclusions about others. For ex.a.mple, it suggests tlnt recombination 

should by preference take place between the most distantly related parents 

available, although we know that in organic evolution selection has tended 

to erect barriers preventing recombination beyond the limits of the species. 

This deficiency of the model is obviously due to its explici t assumption 

that there is only one 11 right answer" toward which the evolutionary player 

is striving. It and other defects could be corrected by introducing a number 

of further complications into the model. Flost of these would fall u.'1der one 

of the following categories: 

1. Larger alphabets and unequal alphabets. 

2. The existence of more than one right answer. 

3. !-1isleading ranking systems, involving 

a. Interaction between symbols, 

b. Unequal weighting of different places in the sequence. 

4. Indirect selection. 

5. Secular changes in the selector. 

Darwinian games in which more than two symbols are available to fill 

each place in the sequence should be studied. Of special interest would be 

a game with four symbols available for each place, corresponding to the four 

nucleotide pairs in the ~1/atson-Crick model of DNA, and a game with different 

nunibers of symbo available for each place, corresponding to the different 

numbers of alleles available to fill different loci in classical genetics. 
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The subject is a large one, however, and will :.>e omitted from this thesis. 

A ten-symbol alphabet allows a particularly simple model of a Darw-inian 

game to be construdted, which will be used in sorne eY.amples belm-T. The 

initial guess is a ten-digit sequence from Fisher and Yates 1 (1957) table 

of random numbers, for exam.ple 0 3 4 7 4 3 7 3 8 6. 111-iutations" can also 

be read from the table, 9, 7 being interpreted as 11 insert 7 in the ninth 

place" and 0, 7 as 11 insert 7 in the tenth place". A ranking system nrust be 

set up to decide whether the "parent" or 11 offspring" sequence is to be re-

tained as the basis for the next trial. 

For example, the following game simply ranks sequences in arder of size. 

Underlined symbols are 11advantageous nrutations". 

t 
0 0 3 4 7 4 3 7 3 8 6 

3 0!:±47437386 

4 0 4 4 7 4 1 7 3 8 6 

6 ~ 4 4 7 4 7 7 3 8 6 

••• 

179 9 9 9 9 9 8 9 ~ 9 8 

215 9 9 9 9 9 2 9 8 9 8 

300 9 9 9 9 9 9 9 8 9 2 

572 9 9 9 9 9 9 9 2 9 9 

This example strikingly illustrates how the frequency of favourable 

mutations decreases in the la ter stages of the game; the last two imp:rove-

men ts in this sequence required more time than all previous irnp:roverœnts 

cornbined. Nevertheless, the right answer was found in 572 trials; one >-Tould 

expect to need 5 x 109 trials to find it by blind chance. 

Closely related to unequal alphabets is the complexity introduced by 
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unequal probability of mutation at different places in the sequence, and 

unequal probabilities of substitutions, i.e cases in which one symbol is 

more likely than anot3er to be inserted in a given place. .tvlodels in the 

style of the game recorded above could be made to include such complications, 

but a more direct analytically mathematical approach should not be difficult, 

and would be more infornative. 

The process of selection becomes rather illore complex if more than one 

right answer exists. Imagine that the right answers in the grune above, for 

example, were 

0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 

8 8 8 8 8 8 8 8 8 8 

9 9 9 9 9 9 9 9 9 9 • 

The Best Past Guesses ï'iould soon become divisible into a 11high11 group and 

a 11 low11 group, between which recombination would be undesirable. Recombin­

ation between the 11811 group and the 11 9" group would he useful for a longer 

time, until sequences like 

9 8 8 9 9 9 7 8 9 6 

began to appear. 

A more interesting situation arises when the selector does not norrdnate 

a definite set of right answers, but establishes certain relations among 

sequences which, if met, make all of them right answers. Let the selector 

call two ten-digit sequences right ans\'lers if the sum of the figures filling 

the same place in each is ten. There are 8,888,888,889 possible pairs meet­

ing the criterion, but as there are 1020 possible pairs altogether the chance 
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of finding one by pure luck is remote. A record of such a gama is given 

below~ 

t 
3* 7* 3 0 0 3 4 7 4 8 6 

3 6 9 6 4 7 3 6 6 1 

1 0 3 4 7 4 3* 7* 3 7 6 
3 6 9 6 4 7 3 6 6 1 

3 0 ~· ~ 7 4 3* 7* 3 7 6 
3 6 4 7 3 6 6 1 

6 0 4. 4 7 4 311. 7* 3 7 6 
6 6 9 6 4 7 3 6 6 1 

11 2 4* 4 7 4 3* ~ 3 7 6 
b 6 9 6 4 7 3 6 6 1 

12 2 4* 4 7 4* 3* 7 .. 3 7 6 
6 6 9 6 6 7 3 6 6 1 

24 2 4* 4 7 4* 3* 7* 3 7 6 
6 6 9 6 6 7 3 6 !± 1 

27 2 4* 4 2 4* !- r;t 3 7 6 
6 6 9 6 6 7 3 6 4 1 

28 2 4* 4 2 4* !- 7* 3 7 6 
1 6 9 6 6 7 3 6 4 1 

45 2 4* 4 ~· 4* 3* 1* 3 7 6 
7 6 9 6 7 3 6 4 1 

46 2!' 4. 4 4* 4* 3/r 7 .. 3 7 6 
8 6 9 6 6 7 3 6 4 1 

62 tr 4* 4/r 4* 4* 3* 7* 3 7 6 
8 6 6 6 6 7 3 6 4 1 

etc. 

The asterisk (k) indicates pairs of symbols with sums equal to 10. 

Apparently it would take no longer to find two 11mutually adapted11 

sequences than to find a single right answer. In the former case, however, 

nobody -- not even the selector, if the selector is a person -- can 

predict the nature of the products which will be produced by selection. 



Organic evolution involves a combination of these tvro kinds of 11 right 

ansvters11 • Certain requirements must be met by any organism which is to 

live on land, and can be met in rather few ways: these constitute a sort 

of 11 fixed 11 part of the criteria of a right answer. However, living on land 

in the presence of grass arrl wolves is a different matter from living on land 

in the presence of leopards and banana trees. All organisms must be adapted 

to their inorganic environments, and organisms living together must be mutu­

ally adapted to each other as well. The development of photosynthesis, the 

colonization of fresh water and land, and adaptation to deserts and cold 

climates have been major developments in evolution, but so have the rise of 

grass-eating cursorial herbivores, the mutual adaptations of hosts and para­

sites, and the co-ordinated evolution of insects and flowerlng plants. The 

model suggests that the latter kind of evolution would go on just as rapidly 

as the former, but that its course is much less predictable. 

Each 11 right answer11 is an organism adapted to a particular ecological 

niche. Elucidation of the number of right answers which may exist, and the 

relationships between them, therefore lies within the field of modern math­

ematical ecology, which is concerned with the diversity of niches, the trophic 

structure of communities, and so on. Given a satisfacto~ analysis of these 

problems, the study of Darwinian games with multiple right answers might be 

of considerable aid in understanding the phenomena of adaptive radiation and 

s pecia ti on. 

Misleading Ranking SIStems. 

By keeping the context of the i 1 th place (i.e. the symbols filling all 

other places) constant, and systematically trying each of the ~ symbols 

available in the i 1th place, one may order the i 1th alphabet, ranking its 



symbols from worst to best. The ranking system of the selector is then 

non-misleadi..Q_g if and only if the order of each alphabet is unchanged by 

a change in context. For exronple, if 9 9 9 is the right answer, 9 is 

clear ly bet ter than 7 in the second place in the context 9 ••• 9. If the 

sequence 7 7 7 is better than the sequence 7 9 7, the ranking system is 

misleading since in a changed context the order of the symbols availa.ble 

for the second place is cha.nged. A misleading ra.nking system ahm.ys 

tends to retard progress in a Darwinian ga.Be, since the player may dis-

card the correct i 1th sJmbol midway through the ~e, and then have to 

rediscover it la ter. ivith a non-misleading ranking system (and a perfect 

selector, and~= 1) the player will always keep the correct i 1th symbol 

as soon as he happens to try it. 

A misleading ranking system is alwa.ys the result of interaction 

between places in the sequence, i.e. of the fact tmt the ordering by 

rank of the synibols availa.ble to fill the i 1th place depends on the sym­

bols alrea.dy filling other places. Notice tha.t the variety of symbols 

a.vailable to fill the i 1 th place is not affected by the previous filling 

of ether places, only the order in which the ~ symbols will be ranked by 

the selector. 
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The weight of the i'th place in a sequence is the maximum qua.ntity by 

which the rank of a sequence may be changed by changing the symbol filling 

the i 1th place. If ten-digit nurnbers are ranked by size, for example, the 

first place has a weight of 9 x 109, while the last place has a weight of 

only 9. l'his is an example of unegual 1.v-eighting of places. The first 

game recorded in this section of the thesis utilizes such unequal weighting, 

•~ich however did not cause interaction between places and therefore did 

not result in a miSleading ranking system. Under certain conditions, un-



equal weighting can cause interaction and produce a misleading ranking 

syste..'ll, although not ali instances of interaction are caused by unequal 

weighting. 

Interaction with Egual Weighting. 

Considera game using ten-digit sequences, in which the rank~ of 

each sequence is the sum of the absolute differences between adjacent 

digits. The two sequences of highest rank, R = 81, are then 

0 9 0 9 0 9 0 9 0 9 

and 9 0 9 0 9 0 9 0 9 o. 

The actual course of such a game, using Fisher and Yates 1 Table XXXIII 

(III) is: 

t R 

0 2 2 1 7 6 8 6 5 8 4 20 

1 ~ 2 1 7 6 8 6 5 8 4 27 

9 9 2 1 7 6 8 6 5 8 g 29 

14 9 2 1 7 6 8 1 5 8 2 34 

23 9 2 1 7 2 8 1 5 8 2 43 

25 92.,27381582 45 

35 9 2 9 7 3 8 1 5 8 Q 47 

39 9 2 9 7 3 8 Q 5 8 0 49 

40 92973805~0 51 

52 9 2 9 7 Q 8 0 5 9 0 57 

128 9 Q 9 7 0 8 0 5 9 0 61 

148 90970!2.0590 63. 

The sequence obtained oh the 148 1th trial cannot possibly be im-

proved by a mutation affecting only one place. The fourth and eighth 

86. 
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places in the sequence have both beomce irrelevant to its rank, and may be 

filled by any s;ym.bol without increasiP.g or decreasing the rank of the 

sequence. The sequence in effect worked its way into an evolutionary 

blind alley, from which it could escape on~ by a large mutation changing 

places 5, 6 and 7 all at once, or by recombination with another different 

sequence. 

Interaction due to Unegual Weighting. 

A simple but important rule about the weighting of places in the 

sequence follows from a consideration of the way ten-d.igi t sequences can 

be ran_'k:ed. 

In general, let 9 represent the best symbol at each place, 8 the next 

best, and so on, and 0 the worst. If the set is completely ordered (in 

1ol0 ranks) it follows that if the first place (from the left) is the 

place of greatest weight, and the second place is the place of next great-

est weight, and so on, and if each sequence is read as a number, the rank-

ing system must be misleading if any sequence has a rank exceedil1g its 

number. Hence, the weight of the place with greatest 1r1eight cannet 

exceed 9 x 109, the next highest weight cannet exceed 9 x 108, and the 

n'th highest weight cannet exceed 9 x 1010-n. 

The result can be generalized. A set of sequences of 1 places, each 

of which may be oc cu pied by any of ! symbols, and which are completely 

ordered by prinary rank., is misleadingly ra.nked if the weight of the place 

with the n 1th largest weight exceeds (k .. l)kL-n. 

'fhe sarre proposition is true of a set of sequences which are incom-

pletely ordered by primary rank; the ra.nking system is misleading if the 

n 1 th largest weight exceeds (k .. l)k1-n; but sorne even more strict con-
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straint must apply, and the writer 1s analysis has not yet gone far enough 

to allow hL~ to state it. Consider the following game, for example, in 

which the right answer is 6 3 5 9 4 0 4 0 3 2, and sequences are considered 

as ten-digit numbers ranked in inverse arder of their absolute deviation 

from the right answer. Ranking is incomplete (7 .3 5 ••• has the same rank 

as 5 3 5 ••• ). The weights of places meet the restriction stated above, but 

the ranking system is still obviously misleading. 

Right answer: 6 3 5 9 4 0 4 0 3 2 

t 

0 0347437386 

3 OJ±47437386 

4 0447417386 

6 §.447477386 

Previously, every increase in a digit after the first was an improvernent. 

A change in the first digit has reversed this, and now a decrease is an 

improvement in every digit after the second. A non-misleading ranking 

system cannat lead to such reversals of the direction of selection at 

certain places. 

7 6 4 4 7 4 7 §. 3 8 6 

8 6 4 4 7 4 g 6 3 8 6 
••• 

55 6 4 1 2 3 0 i 3 2 1 

56 62_12305321 

A change in the second digit has again reversed this tendency, and it now 

becomes an improvement for digits after the second to increase. 

59 6 3 1 2 3 J± 5 3 2 1 

62 6 3 §. 2 3 4 5 3 2 1 

Once more the na'Tiber has become too large, and .furtrer improvements will 



come from reducing the digits to the right of the third place. It also 

clear that no single change which inserts the correct symbol in either the 

third or fourth place is an improvement; bath would have to occur together 

if the change was to be retained. The sequence is approaching an evolution-

ary cul-de-sac. 

71 6 3 6 2 3 4 Q 3 2 1 
••• 

214 6 3 6 0 0 0 0 0 1 0 

237 6 3 6 0 0 0 0 0 0 0 

No change in a single digit can improve this sequence; the player cannat 

find the right answer. He has been misled by the ranking system. 

Another game, using the same initial sequence but using section II of 

the table of random numbers as a source of 11mutations 11 led to the result 

6 4 0 0 0 0 0 0 0 0 

which also cannat be :i.mproved by any single change. 

The selector in organic evolution has obviously used a misleading 

ranking system. Gene interaction, much of it associa ted with unequal 

selective weighting of loci, is a familiarphenomenon. The complexities 

which arise from dominance and recessiveness, special kinds of gene inter-

action which occur only in diploids, h:l.ve not even been mentioned in this 

thesis, although they forrn much of the subject matter of population genetics. 

Gana s like the ones recorded above could be made .immensely complex, 

in an attempt ta incorporate all the complexities of real genetic systems. 

Such games could of course only be played on an electric computer. Various 

workers have programmed electronic computers to mimic complex situations 

in population genetics, involving the affects of linkage and epistasis on 

selection. The writer shares with Martin and Cockerham (1960) the view 
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that such models, wheth3 r sinple or complex, are useful for discovering 

where present theory breaks down, and for obtaining suggestions about the 

effects of various parameters, but that a thorough understanding of the 

system requires a formulated analytical theory. In the present stage of 

development of Guessing Theor,r, the slinple pencil and paper modela recorded 

above are probably more instructive than more complex and therefore more 

confusing models would be. 

Many groups of organisms appear to have evolved into evolutionary 

cul-de-sacs. The gigantic Titanotheres, the Irish elk, and the several 

independently arisen series of Gryphaea-type oysters, are examples in which 

species or larger groups have become extinct after a ~riod of 11 ortho­

genetic11 evolution during which they seerned to flourish. Sorne such instan­

ces may be the result of secular changes in the selector (see below), but 

others are undoubtedly due to the misleading nature of the ranking system 

imposed by the environment. Analysis of the ways in which ranking systems 

can be misleading may therefore be informative in the study of extinction. 

It may be valuable, too, in clarifying the roles of hybridization, non­

adaptive diversification resulting from drift in fragmented populations, 

etc., as possible means of escape from the traps set by a misleading 

selector. 

Indirect Selection. 

Lima-de-Faria (1962) has pointed out that natural selection must have 

sorne effect at the level of the molecular structure of the genetic nnterial. 

11Every structural feature of the chromosome and every chromosomal property 

which has been carefully investigated, reveals a distribution along the 

chromosome according to a defined pattern of organization. 11 Hence ••• 11it 
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is logical to conclude tha.t a structural or molecular rearrangement can 

only survive if it confonns to the organized system of interactions already 

present in the chromosorœ body. 11 

This kind of situation, in which the selector acts directly on the 

sequence of symbols fonning each guess, may be called direct selection. In 

organic evolution, however, the selector is more commonly considered to act 

on the phenotJ~' which is a transformation of the genotype; i.e., the 

selector acts indirectl:y:, comp:Lring guesses only after each has been sub­

jected to a process of transformation. There must be certain constraints 

on the kinds of transformations which are permissible if a difficult Darwin­

ian game is to be won. 

The transformation of the genotype into a phenotype may be thought of 

as a process of decoding the genetic rraterial. Fran this point of view the 

subject has received a vast amount of attention in recent years (reviewed by 

Crick 1963; Jukes 1963). 

The sequence of symbols forming the genetic na terial may be called the 

~ message, and the resultant phenotype called the clear message. The 

rela.tionship between code and clear messages can be discussed in a general 

way in terms of two properties of the code, its redundanc;y; and its complex­

ity. 

The code is redu_~dant there are more possible code messages than 

clear messages, and ambiguous if there are more possible clear messages than 

code messages. The DNA-protein code appears to be redunda.nt, since each of 

20 different amino acids is coded for by more than one triplet of nucleotide 

pairs. The affect of a redundant code in a Darwinian grune with an indirect 

selector is the sarœ as the effect of a smaller alphabet. For example, if 

the code sequence 6 3 5 9 4 0 4 0 3 2 is decoded into E 0 0 0 E E E E 0 E 



92. 

(Even, Odd, etc.) before selection, ti~ course of the game will be exactly 

the same as if the alphabets available to fill the places in the code sequence 

consisted only of two symbols, insteaà. of ten. 

The complexity of a code is a measure of the size of the dictionary re­

quired to translate code messages into clear messages. The code is of min­

imum complexity when the number of entries in such a dictiona.ry is equal to 

the number of symbols in the code alphs.bet, arrl is of maximum complexity 

when the nurnber of entries in the dictionary must equal the number of possible 

code messages. The substitution ciphers used by schoolboys, in which, for 

e:xample M =A, N = B, 0 = c, etc., are codes of minimum complexity. The DNA­

protein code is of greater, though small, complexity; a dictionary of 64 

entries is required although the code alphabet has only four symbols. 1'/ritten 

languages are codes of great complexity; a French-English dictionary requires 

thousands of entries. Commercial telegréphic codes are codes of maximum com­

plexity, and every possible message must be listed in the dictionary. 

The complexity of the code is important in a Darwinian ga.me with an in­

direct selector. As the code bec.omes more complex, the relation between the 

size of a change in the code message and the size of a change in the clear 

message becomes more complex and may approach apparent randomness.. ln a 

schoolboyt s cipher, changing a single symbol in the code message always changes 

a single symbol in the clear message. In the DNA-protein code, changing a 

single nucleotide pair may or may not change more th3.n one amino acid. Chang­

ing a single letter in a French ward may change every letter in its English 

translation (~in =bread, Eêix = peace). In the later stages of a Darwinian 

game the player must control the size of the changes in the guesses on which 

the selector acts, but he can exert this control over the clear messages only 

by controlling the sizes of the changes he rnakes in the code messages. For a 



Da:rwinian garne to be won, therefore, there must be a rather low ma.xirnu.m 

lirnit on the complexity of the code. 

A cornplex code alwa.ys leads to symbol interaction, and therefore to 

a rnisleading ranking system.· 

9.3. 

Discussions of developmental genetics in terms of a process of de­

coding have been confined to the synthesis of the protein text, because of 

the ease with whië'h the structure of either DNA or a polypeptide can be 

represented s~nbolically as a sequence of symbols. This unfortunately leads 

to the notion tha t i ts prote in text is the phenotype of an organism (Leder­

berg 1960). From an evolutionist's viewpoint this notion is reasonable 

enough if selection is exerted only by chemical rneans, as by antibiotics 

or absent nutrients in the medium in which micro-organisms are grown, and 

the biochanistr-.r of the organism is the only aspect of its phenotype which 

matters. For higher organisms, however, physiology, anatomy, and behaviour 

are also selectively relevant. The notion of development as a decoding of 

the genetic material is difficult to apply to these aspects of the pheno­

type, which cannat be abstractly represented by sequences of symbols. Never­

theless,one can state that the processes of devà.opment :nust be so organized 

that in general, and on the average, a small genetic change causes only a 

small change in any selectively important phenotypic variable. 

Secu.lar Changes in the Selector. 

The attempt to construct a complete analogy between a Darwinian game 

and the process of organic evolution is furthe r complicated by the fact tha. t 

in organic evolution, the selector changes its ranking system as time goes 

on. Mountain building and erosion, and climatic changes, including glacial 

periods, are obvious examples of such secular dhanges, which are not caused 
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by evolving organisms but which affect their adaptedness to the environ­

ments in which they live. The more indirect effects of organisms on each 

other might be treated in the same way, mathematically; the axe, the plough, 

and the spraying r:achine have evolutiona.ry effects which might better be 

analogized to the effects of earthquakes and glaciers than to the slow inte.J:'oo 

action over millions of years between predators and their prey or hasts and 

their parasites. The photosynthetic transforrration of a reducing atmosphere 

into an oxidizing atmosphere is also a phenomenon of such magnitude, and 

involving so many kinds of organisms, that it might more easily be treated 

as a secular change in the environment than as the interaction of organisms 

with each other. 

The prediction or description of secular changes in the environment 

does not lie within the field of mathernatical evolution theory. The contri­

bution of a theory of Darwinian garœ s to their study would consist chiefly of 

an investigation of the rates of change whic.!J must not be exceeded if the 

overall adaptedr.tess of the fauna and flora is not to d ecrease because of the 

change. 
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VI The Source of Genetic Information 

The question of the source of the large quantities of inforrra tion 

carried by the genetic ma.terial of living organisms is one of profound 

importance to biology and philosophy. It has been answered in several -~~ys 

since the concept of information became well enough defined to allow the 

question to be asked in that form. 

The central assumption throughout this thesis was pointed out previously 

in a brief communication (~arburton 1958): a selector is a source of inform­

ation, and the process of selection is a process of transferring infornation 

from the selector to a receiver. In a Darwinian garoo, information is trans­

mitted from the referee, who originally stores it, to the player, who stores 

it in the form of his best past guess. In organic evolution, the selector 

is the environment, and natural selection is a process for transferring 

information from the environment to the genetic material. 

A simple illustration may clarify the notion of a selector as an inform­

ation source. Imagine that a teletype machine has been modified so that it 

generates a random sequence of letters and sp:~.ces, and that a man with a 

switch determines t>Jhich of these will be allowed to pass out along the wire 

and which will not. By operating his switch, the man can send a roossage 

(such as 11 The card is the Queen of Hearts 11 ) along the wire. What is the 

source of the information in the rœssage? Obviously, the man wi th the switch, 

in whose brain the inforrration must mve been stored. If the man operated 

the teletype machine directly, he could choose the message to be sent fra.'ll 

a hypothetical set of possibilities, existing only in his rnind. Operating 

solely as a selector,howevcr, he can choose only from the set of real possibil­

ities generated by the rrachine; the teletype rrachine is not a source of inform-
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ation, but a necessary source of variety from which the selector can choose. 

Similarly, in organic evolution, mutation and recor~ination are not sources 

of information, but sources of variety. The environm.ent. is the source of 

information, but since it acts solely as a selector, it c&~not choose among 

sorne hypothetical set of possibilities but only among the real entities pro­

duced by the variety source. 

Other writers have explained the source of genetic information in other 

ways. 

One possible answer to the question of the origin of an entity is to 

deny that the entity exists. Elsasser (1958) devoted several chapters of 

his book to an attempt to demonstrate that living organisms possess no struc­

tures capable of storing large quantities of information, and must develop 

and function without the benefit of stored inforrœ.tion, controlled by 11bio­

tonic laws 11 which are not the laws of physics, though they are necessarily 

compatible \Üth the laws of physics. Such a hypothesis esca~s from the 

problem of the source of genetic inforrœ.tion by denying that genetic inform­

ation exists. Elsasser 1 s views have been thoroughly rebutted by Raven (1962). 

Raven 1s arguments are elegant and detailed. Here it is enough to mention 

that he shows tha.t chromosmo.al DNA and the cortex of the fertilized egg are 

both capable of carrying tremendous quantities of infor.rra. tion. 

Raven (1962) devotes only a few lines to the origin of genetic in­

formation. 11So, when we say tha t all order in living organisrns is a con­

sequence of previous order, ••• it follows that ••• the idea of living organ­

isms not possessing tbis intrinsic arder is inconceivable. Order is a 

necessary requisi te of a 11 life • 11 

11 We may understand how the intrinsic order of living organisms, once 

generated, vtas perpetuated and transmitted throughout the generations. If 
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we admit, in accordance with the neo-Darwinian thesis, that occasional errors 

in t;he process of the conversion of arder could acquire survival value, and 

in this way be perpetuated, 1re may account for the differentiation of the 

numerous forms of life in the course of evolution. But our equation gives 

no clue as regards the first appearance of organismic arder. The only thing 

we can say is: if we want to adhere to a scientific explanation of the 

origin of life, we must pres~~e that this arder was derived, sorrBhow or 

other, from the primordial negentropy of the universe. At present we can 

only conjecture as ta the way in which this has occurred. 11 

In short, Ra ven seeks to push the source of gene tic information back in 

time ta the mysterious origin of life. His statements seem to imply tm t 

the entire process of evolution has added no inforrna.tion (or if one wishes, 

11 order11 ) to living organisms, but bas me rely variegated them. This is a 

conclusion with which almost atl evolutionists will heartily disagree. In 

blunt language, almost any DNA molecule presumably contains enough 11 order11 

to duplica.te itself, and hence be called 11living11 or nearly so, in the luke­

warm soup of the primordial ocean, but only a very special DNA molecule can 

be the genome of as highly adapted an organism as a bird, a tapeworm, or an 

oak. This 11 specialness11 -- the œrrower and narrower restriction of the 

set of acceptable possibilities -- has been brought about, literally bit by 

bit, by billions of generations of selection. 

KiliDlra (1962) concluded that inforrration is created by the process of 

natural selection, and accu.11UJ.a ted by the genetic na terial. In other words, 

genetic information has no source, in the sense of a ~evious carrier from 

which it bas been transferred to the genetic material, but has been created 

out of nothing. The meaning of this notion of 11 creating11 information is 

not clear. 
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Kimura remarks, 11~fua.t is the source of such genetic information? If 

the Lamarckian concept of the inheritance of acquire characters were accepted, 

one might be justified in saying that it was acquired from the envirorunent. 

Hovrever, since both experimental evidence and logical deductions have entirely 

failed to corroborate such a concept, we must look for its source somehwere 

else. 11 This is clearly a non sequitur. Larnarckianism implies sorœ sort of 

direct transfer of information from the envirorunent to the genetic material 

of an organism. There is no evidence that any such direct transfer occurs. 

However, the environment acts as a selector, and a selector is a source of 

information; the process of selection is not a process of creating inforn1a.tion, 

but of transferring i t from the environment to the gene tic rœ. te rial. The 

dismissal of Lamarckianism does not imply that the environJnent is not the 

source of genetic information, but only that this information bas been trans­

ferred by a Darwinian mechanism, not a Lamarckian mechanism. 

Ashby (1952) argued tm t noise serves as a source of infor:rœ.tion in 

evolution; natural selection is a process for transforming noise into 

information. The random variations to which genomes are subj ect :rœ.y be con­

sidered noise, and selection reveals the changes which are improvements am 

retains them. The conclusion, that infonnation is here being manufactured 

out of noise, l~S concurred with by J.B.S. Haldane (1953). Hick (1953) 

quickly contradicted this hypothesis, painting out that the noise source in 

Ashby1 s model was sinply a deviee for ensuring that, in time, all possible 

states of the system will occur. A noise source, in other words, is merely 

a variety generator, like the randomized teletjrpe in the author's analogy 

given a bove. A variety source is a necessary part of a system in which a 

selector is to supply information, since the selector can choose only among 

possibili ties which really ex:ist, not among potentialitie s. A noise source 
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cannat supply informa. tian, ho1:.rever. It is conceivable tha t a randomized 

teletype machine would sometimes produce true statements, such as "The 

card is the Queen of Hearts 11 , but the se would fail to carry inforrœ.tion 

simply because they would be indistinguishably mL--ced v.rith staterrents like 

"The card the Ace of Spades 11 , 11The Heart is the Card of Queens", 11 To-

rnorrow is Tuesday11 , and 11All the previous statements are untrue 11 • 

Ashby (1952) also expressed the idea that the environment imposes a 

very simple rule, "The dead sha.ll not breed11 , arrl the process of selection 

then consista of working out the consequences of this simple axiom. Ashby 1s 

opinion was that the body of inferences drawn from. the axiom contains far 

more information than the axiom it.self. The fact is, of course, tmt this 

11ruleu is imposed as much by the structure of the English language as by 

any real physical system. The environment imposes an irrunensely more com-

plex set of rules of the form 11 0rganisms of the following genotypes are 

forbidden to breed: ••• ''. 

A closely analogous idea was expressed by \'laddington (1961) who wrote 

"The type of phenomena which we are confronted with in embryonic development 

should be comps.red with the elaboration of a whole corpus of theorems in 

Euclidean geometry or in arithmetic from certain axioms. In this sense the 

whole of formai mathema.tics is a set of tautologies. Are vw to conc1ude 

that their information content is no more tian that of the axioms from vrhich 

the<J are deduced? 11 

The answer to this query is 11 Yes; and no 11 • Euclid' s contribution to 

mathematics did not consist of deducing all the consequences of his axioms, 

but of carefully selecting a peculiarly elegant and interesting set of con-

sequences asT•Jortl':y of deduction. It is rather painful to imagine an unfor-

-
t una te ,;n the:11a tician trying to de duce all the consequences of Eculid' s 
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axioms. First, perhaps, he would prove that if two straight lines inter­

sect at an angle of 1 11 , opposite angles are equal; he might th en go on to 

angles of 211 , 311 and so on. If ever he completed tiis series (which \"fould 

still leave an infinite number of propositions of the sarre form unproved) 

he rnight go on to three int.ersecting straight lines. He would certainly 

never reach· Pythagoras 1 theorem, or any other conclusion of interest. Forrnal 

mathematics contains more information t.l-J.at its axioms because it consists of 

a relatively srna.ll set of deductions carefully selected frœn the enormous 

and decidedly uninteresting set of all possible deductions. 

It is therel'ore hard to see exactly v1ha t ~'laddington may m ve meant. by 

his rerna.rk. Either developnental mechanisms are mechanisms for working out 

all the consequences of sorne set of axioms, or they are that plus a mechanism 

for sorting the useful consequences from the others. In either case, either 

the a.."'Cioms or the axioms plus the rules defining usefulness jointly contain 

all the information e:nbodied in the end result. Either t:.he rule "The dead 

whall not breed", or that and a set of rules determining which orga.nisms 

shall be dead and which shall not, contain the information required to 

11 design 11 a viable and fertile organism. 

Having examined ail of these altt::!rna tives ard found t:.hem wanting, the 

writer sees no reason to change his opinion of 1958. Natural selection is 

a process by which information is transferred from the environment to ·t:.he 

genetic material of organisms. 

A consequence of this deduction is that the genetic Hl terial of organ­

isms can be considered as coded descriptions of the environments in i"lhich 

they evol ved. (One must be extremely wary of the 11nothing but ••• 11 fallacy 

(Julian Huxley, cited by Simpson 1949) in context, however.) A detailed 

description of the anatomy and chemistry of the organisms inhabiting seme 
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region of space allows one to infer much about the geology, climate and 

topography of the region, the texture and composition of its soils, the 

chemistry of its waters, and the purity of its air. If we knew how to 

decode them, a list of the genotypes of its inhabitants would presurnbably 

permit the same inferences. The genetic material of organisms is in fact 

a coded description of their environments. 

Inferences cannet be made with equal precision in the ether direction; 

a detailed description of a newly discovered continent would not allow one 

to make anything but rather general predictions about the probable nature 

of its fauna and flora. This is partly because the process of evolution 

is incomplete, and its exact direction has been determined by chance at 

many points, so that the genetic material of organisms is a sort of randomly 

abridged description of their environments. Now an abridgment of a book, 

in which, say, half the words have been omitted at random, will allow one 

to describe the unabridged original in considerable detail, but the original 

does not allow one to make anything but probabilistic statements about the 

abridgment. The difficulty of inference from environment to organisms is 

also a result of the fact that faunas and noras consist of mutually adapted 

organisms. The environment does not determine the nature of each organism 

in detail, but only the nature of the relations between them. 

The expected objection to this interpretation of evolution is that the 

environment, the inorganic world in general, is 11disorderly11 , 11unorganized11 , 

11 simple 11 , and so on, and cannet possibly contain or ever have contained as 

much information as the genetic ma.terial of the highly organized, orderly, 

and complex living organisms mich now inhabit it. 

In spite of innumerable attempts to define them, these words retain 

rather vague rœanings. They may even be more emotive than descriptive in 
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sorne contexts. While t:üs is true it is useless to use them in an essentially 

quantit:.ative argument. It can at least be pointed out, however, tha t geol­

ogists, geographers, geomorphologis ts, physical oceanographers, elima tologists, 

meteorologist,s, and pedologi.sts might abject to havi.ng the systems they study 

dismissed as 11 simple" and 11disorderly11 • Perha ps one can truthfully say 

that a plant or an animal contains more 11order11 or "complexity11 , if one must 

use such words, than the sarœ weight of rock or sea 1r1ater, but this does 

not disagree with the writer• s nypothesis that natural selection is a rnech­

anism for trans-coding information frorn a la.rge, highly redundant carrier 

(the inorganic environment) to a carrier of molecular diraensions in which it 

is much more compactly coded. 

'The strongest argument for the idea tha t genetic informa. tio n was pre­

viously stored in the struct1..lre of the inorganic world rests on a consider­

ation of the requirements which must be met by the selector in a Darwinian 

game which can be won. The environment has so:retimes been comps.red to a 

sieve in the action it ex.erts on living organisms, separating the fit from 

the unfit. Now a sieve, or so:ne other very siaple mechanical deviee, may 

often serve as a secondary referee in a guessing game, but a selector must 

be a far more complex. rnec:1anism than a secondary referee. A secondary 

referee applies the same criterion repeatedly; if the same t}less is repeated, 

the same response will always occur. A selector applies different criteria 

at different trials, changing its criteria by a sort of feedback mechanism 

so tha t it becorres progressively 11 tougher11 as the candidates it ms already 

passed become progressively better. Archaeapteœ was p9.sseù. vlhen it had 

only reptiles with which to compete, but it would no doubt be rapidly el.L1l­

ina·ted by competition v-Ii th modern birds. A selector cannot simply di vide 

the set of possibilit,ies into two classes,-but must arder them. in a large 
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number of ranks. 

Now one may arder a set of things in several ranks in many different 

ways. The selector in organic evolution, however, must not merely have 

ranked the possibilities, but must have ranked them in a way which allowed 

the player to win. This imposes severe constral':1ts on the kind of ran.king 

system the selector may have used. To allow organic evolution to occur, 

t,he environ.'llent .:nust use a "special" kind of ranking system. The environ­

ment must therefore be a 11 special11 kind of environment. 

Two abjects can be ordered in 2 ranks in 2 ways, and in 1 rank 1 way, 

for a total of 3 v·mys of ranking 2 abjects. Three abjects ca.n be ordered 

in 3 ranks 6 ways, in 2 ranks 6 ways, and in l rank 1 way, for a total of 

13 possible ways of ranking 3 abjects. Similarly, 4 abjects can be rankeù 

in 81 ways, 5 abjects in 621 ways, and 6 abjects in 10, 823 ways. For com­

parison, notice tmt 6l is only 720. The number of different ways in \'llüch 

.N abjects can be ranked cannat easily be computed, but i t is certainly far 

grea ter than 1:!1. If the player is to win a Darwinian game, however, the 

selector must rank the members of the set of possibilit:Les in such a way 

that alm.ost any permutation of the hierarchy "Which t~1e player classifies 

the possibilities is a relevant clas:Jifica.(;i·m and is a.t worst only slightly 

misleading. In short, the selector is free to rank the members of the set 

in only a minute fraction of the number of ways they could be ranked. If 

one assumes that there is a possible selector for ever,y possible ranking 

system, it follows that only a small fraction of all possible selectors will 

permit the player to win a Darwinian game. To define (or design and construct) 

a selector which will permit a Darwinian game to be won therefore requires a 

large amount of information. 

It will require a much more detailed analysis to plaàà the foregoing 
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argument on a quantitative basis, and to estimate the quantity of information 

which must be carried by the selector in a Darwinian game. The writer suggests 

as a tentative hypothesis that the quantity equals or exceeds the quantity 

which can be accumulated by the player, i.e. the quantity required to specify 

the right answer. 



Scientific Value of the Theorx 

This thesis is not offered as a completed mathematical theory of 

evolution. Hany as~cts of the ma.thema.tical model described in it have 

been only mentioned, as suggestions for future investigation. Neverthe­

less enough has been said to indicate that the concept of a Darwinian 

game, which forma.lizes the way information is transferred and stored in 

systems evolving by selection, gives rise to a mathematical model which 

permits quantitative discussion of the conditions which must be met by 

any system in which large quantities of information are to be transferred 

in a limited time by selection. 

A study of Darwinian games with imperfect selectors shows tha.t the 

set of possibilities must be able to be represented by a set of linear 

sequences of symbols, and that a winning player1 s stra.teg;y must include 

the use of large populations, guesses which reproduce themselves with 

sma.ll 11mutational11 changes, a rather low and controllable mùtation rate, 

and recombination. This result -- the inference that sorne of the major 

features of genetic systems are necessary conditions of evolution by 

selection, not merely sufficient conditions -- is a useful confirmation 

of the validi ty of the model. 
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Darwinian games therefore lead to a sort of generalized population 

genetics, independant of the physical or chemical nature of the evolving 

11 guesses". Practically, this result is of limited value, at least until 

living organisms or something like them are discovered on otœr worlds. 

Population genetids is a well developed branch of mathema.tics, and is 

capable of solving its o'Wt'l problems without translating them into Guessing 

Theory. 



106. 

Theoretically or philosophically the result is of greater importance. 

It shows that the major generalizations of population genetics are in­

dependent of the physical basis on which population genetics has been built. 

The major features of genetic systems are not by-products of the chemistry 

and physics of nucleic acids and proteins, but are necessary properties of 

ail systems evolv:ing by natural selection. To exemplify the reductionist 

approach to biology, Simpson (1962) quotas this statement (which is para­

phrased and may therefore distort the intent of the original): 11Genetics, 

the central discipline of biology, has as its ultimate subject a group of 

cherrical compounds. Genetics requires knowledge of the physical sciences 

but no other knowledge in the field of biolillgy itself11 • On the contrary, 

much can be inferred from the central fact that biology deals with entities 

which have evolved by natural selection, and these inferences can be made 

with no knowledge of the chemical compounds of which organisms are composed. 

These remarks are not,me.arî;t to belittle the contributions which molec­

ular biology will make to evolution theo~J. After all, questions of alpha­

bet size, symbol interaction, the redundancy and complexity of the genetic 

code, etc., must all be answered by molecular genetics. They are meant to 

belittle the attitude that evolution theory has nothing fundamental to 

contribute, and its practitioners are merely wasting tina until so:neone is 

able to 11reduce 11 their discipline to biochemistry. To reduce evolution theory 

to the chemistry of DNA 'WOuld be at1 interest.ing philosophical exercise, but 

not much more, because the basic principles and mathematical reg~larities 

of evolution theory would remain the same whether it was reduced to DNA, 

magnetic tape, or ink and paper. 

In addition to permitting this philosophical conclusion about population 

genetics, the analysis of Darwinian grunes supplements population senetics as 
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a mathematical approach to the study of evolution. Its value rests largely 

on the fact that rank,one of the fundamental quantities entering into every 

equation, is a quantity representi~g the adaptednes~ of the evolving organ­

isms. The basic feature of organic evolution is an increase in the adapted­

ness of organisr~, but no quantity representing adaptedness enters into the 

formulation of classical na.thematical studies of evolution. 

Adaptedness must be clearly distinguished from fitness. The fitness 

of a ki.nd of organism is a measure of its proli:'erative ability compared 

to its contemporary competitors. The mean fitness of all living populations 

of organisms is approximately one, and the mean fi tness of all ea.rlier pop­

ulations was also appro.xima.tely one. The adapt.edness of an organism may 

be thought of as a measure of wh3.t its fitness would be if it were somehow 

placed in competition vii th all i ts own ancestors. It may also be thought of 

as the inverse of the probability th3.t an organism spontaneously generated 

in s01œ chance wayvould be as fit as or fitter than the organism in question. 

Adaptedness might be measured, in principle and possibly in practice, by 

the probability that a random mutation is selectively disadvantageous. 

J.B.S. Haldane (1954) has pointed out that most of mathematical evolution 

theory deals with forces which are very nearly in equilibrium. Indeed, 

most of the text of books like Li (1955) and Falconer (1960) is devoted to 

calcula ting the conditions under which the genetic structure of a population 

will achieve equilibrium or fixity. Fisher' s (1930) 11 fundamental theorem 

of natural selection" yields a measure of the rate of change of fitness in 

a population, but in arder t.o a void the conclusion tha t every organism is 

undergoing a population explosion, the application of this theorem always 

involves the assuillption that the average fitness of a population is 11 re-set 11 

at about unity in each generation by density-dependent controll.ing factors 

of population size. Adaptedness, therefore, is the only important quantity 



entering into ma.thema.tical evolution theory which increases th.roughout 

the entire evolutionarJ process, never achieving equilibrium or fixity 

except as a result of defects in the genetic mechanism of the evolving 

organisms. 
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The inclusion of a parameter representing adaptedness in the rna.th­

ematical expressions describing the course of a Darwinian ga...-ne allows 

inferences about tl-le way the process of natural selection would change with 

time. As adaptedness increases, mutations must become smaller, and if the 

selector is imperfect breeding populations must berome larger, the mutation 

rate must be sma.ll and adapted to population size, and recombination becomes 

necessa~J. The rate of increase in adaptedness decreases as adaptedness 

increases. 

Furthermore, the para...rneters desdribing mutation size and rate, pop­

ulation size, etc., must lie within increasingly narrow limits if evolution 

is to continue as adaptedness increases. The genetic mechanism itself must 

therefore have evolved in order to rneet these increasingly severe dema.nds. 

This probably occurred by competition between populations. However, those 

genetic systems best suited for rapid evolution while adaptedness vias still 

small would be ba.dly suited for continuing progress later in the process. 

It therefore appears tha.t the parameters of the genetic system must them­

selves be genetically controlled to sarre extent, and must be continually 

adjusted by selection. 

The analysis of Darwinian games relates evolutionary genetics more 

closely to modern ecology than population genetics has been able to do. 

The study of niche diversity, competitive exclusion, the trophic structure 

of ecological commu.nities, and so on, is essentially an attempt to find the 

number of 11 right ansvTers 11 existing in a Darwinian game and the relation­

ships between them. If tre results of such investigations can be lflath-



ematically formulated in a suitable way and incorporated in a Darwinian 

game, they will lead to a potentially valuable mathematical model of the 

processes of adaptive radiation and speciation. 
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A model of natural selection based on Guessing Theory also seems to 

be more directly related to molecular genetics than population genetics 

does. The complexities due to symbol interaction and unequal selective 

weighting of mutationalsites can be investigated either from the viewpoint 

of classical ~netics or that of molecular genetics, but the questions of 

code redundancy and complexity, and symbol interaction due to the complex­

ity of the code, must be investigated by molecular genetics. The na ture 

of the genetic code is a subject which does not seem very relevant to 

classical population but it will be basic to any a tte.mpt to work 

out a detailed r.mdel of organic evolution taking acc~unt of indirect 

selection. 

'l'he writer therefore contends that the stud;~,r of evolution has a most 

useful role to play as a frameworl-:: for unifying the many fields of bio­

logical investigation into a single comprehensive science, and for relat­

ing the:.n to the inorganic sciences. 

In the writer 1 s opinion, however, the most interesting conclusion of 

this thesis is the answer it provides to the question of the orig::in of 

genetic information. As Ra.ven (1962) said, it 11was derived, somehow or 

other, frœn the primordial negentropy of t.~e universe 11 • However, we need 

not merely conjecture as to the \vay this has occurred; we have known the 

basic principles since 1859. The conclusion that natural selection is a 

process l-t"lich transfers information from the environment to tne genetic 

material of organisms therefore serves to relate organic evolution to the 

history of the universe as a whole. 
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Summa.:rz 

Organic evolution can be analogized to a guessing game in which a player 

draws guesses from an initial set of possibilities known to include the right 

answer, and submits them to a referee who passes the best of the submitted 

guesses and rejects the others. As a record of the previous course of the 

game the player can retain only the guesses last passed by the referee; he 

cannat rnaintain a record of the number of trials which have occurred. The 

total number of guesses the player may submit is much smaller than the number 

of possibilities. 

If the player is to find the right ansvTer, it must be possible to re­

present each possibility by a linear sequeme of symbols in which the alpha-

bet from which the i 1 th symbol must be chosen is unchanged by the previous 

i'illing of other places in the sequence. The player must prep..1.re neiv guesses 

by changing a nu.11ber of symbols in the past guesses; this number must be 

srrall, or must decrease as the game progresses. If the referee sornetimes 

rnakes errors, the player must submit large numbers of guesses at once, must 

reduce the "mutation rate 11 so that a large fraction of new guesses are 

identical to the past guesses, and nmst utilize a kind of 11 recombination11 

among past guesses to prepare new cnes. Influences analogous to inbreedL~g, 

gene tic drift, etc., then act to complicate the play er 1 s strate gy. The model 

therefore leads to a sort of generalized population genetics, which is in­

dependent of the physical nature of the sequences representing guesses. 

A basic parameter in the model is the rank assigned to each guess by 

the referee. This representa a measure of the adaptedness of an organism, 

a quantity which does not occur in classica.l por;ulation genetics. Roughly, 
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it is a relative measure of the fitness an organism would possess in com­

petition with its ancestors. As rank increases the requira~ents of a winning 

strategy become increasingly stringent. The rate of increase in rank becomes 

smaller as rank increases. 

Complications are added if the ranks of guesses are influenced by inter­

action between symbols, and if the 11 selecti va value" of different places in 

the sequences representing gues ses are different. The model relates the 

genetic theory of natural selection closely to modern ecology, by lending 

itself to discussion of cases in which t,here are several right answers which 

are not uniquely defined, but are defined by the relationships between them, 

corresponding to the mutual adaptations which must exist ~~ong the members 

of an ecological system. It also closely relates natural selection and 

molecular genetics, by permitting discussion of indirect selection. In­

direct selection exists when the referee does not directly judge the sequences 

representing gues ses (the genotypes), but judges transformations of them 

(phenotypes). The course of the game is then strongly influenced by the 

redundancy and complexity of the genetic code. 

The model is basically a formalization of the way infornation is trans­

mitted from the referee, who originally stored it, to the player, who stores 

it as his best past guess, in a particular kind of guessing game. Thus it 

represents the way natural selection serves to transmit information from the 

environment to the gene tic rra teri al of evol ving orga.nisms. The source of 

gene tic information is therefore the environment. Natural selection has 

not created infor.rration, but bas transferred it from the environment, trans­

formed it, and concentrated it in a srnaller rraterial carrier, the genetic 

material of organisms. 
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