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I Introduction

The purpose of this thesis is to introduce a new mathematical
approach to the study of evolution by natural selection. Practically
all of contemporary mathematical evolution theory 1s encompassed by
the field of population genetics, which takes the empirical facts of
Mendelian genetics as given and infers their evolutionary consequences.
The writer nas approached the subject from the opposite direction. This
thesis takes the occurrence of evolution by natural selection as a given
fact, and emphasizes that mere chance could not have produced the highly
adapted organisms we see around us within the limitations of time and
space to which natural selection has been restricted. It then attempts
to infer the properties of a genetic system, and other conditions, which
are necessary and sufficient to allow natural selection to have yielded
products so different from those which would have been yielded by chance
alone.

At the level of broad analogy, evolution by natural selection can
be compared to a guessing game. ZIZach new mutant or recombinant is a guess
at a better adapted genotype, and the environment acts as a referee to
classify each guess as better or worse than the one before. The analogy
can be made more precise and illuminating by a mathematical analysis of
the transfer of information from referee to player in an abstract guess-
ing game. A mathematical model of Darwinian evolution as a kind of guess=-
ing game can then be developed.

The validity of the model is confirmed by the fact that it allows

many of the important empirical properties of genetic systems to be



deduced as necessary conditions of evolution by natural selection. The
model also offers a way of attacking various problems which cannot be

analyzed in terms of population genetics,

Mathematical Approaches to Evolution Theory

Both Charles Darwin and A.R. Wallace credited Malthus' semi-mathe-
ematical "Essay on the Principle of Population" as their inspiration for
the concept of natural selection (Francis Darwin 1887; Marchant 1916).
Although The Origin of Species (Darwin 1859) contains nothing more math-
ematical than a few arithmetical examples of potential population growth,
the theory of natural selection is basically quantitative, and has been
the object of mathematical attack and support since its formulation.

In 1870, for example, Bennett published some calculations intended
to show that many consecutive variations in the same direction would have
to occur before improvements large enough for selection to act would appear.
Wallace (1870) rebutted the argument simply by making different assumptions
about the sizes of variations, their mode of inheritance, and the sensitiv-
ity of selection. As long as little was known about the mechanism of
heredity, nothing conclusive could come from such debate. A more pertinent
argument was presented by Fleeming Jenkin (1867) who showed quite clearly
that selection could not operate on occasional large variations trans-
mitted by blending inheritance. This argument led Darwin to the speculations
on changed conditions of life as a cause of widespread variability which
are so prominent and disturbing in his later works. Although Jenkin intended

to prove the impossibility of effective natural selection, Darwin used

Jenkin's argument and the assumption that natural selection was in fact

operative to mke the first mathematically founded inferences about the
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mechanism of heredity,

Although Darwin's work solidly established the fact that evolution
had occurred, argument about the mechanism continued for decades. None
of the hypotheses brought forward to challenge the hypothesis of natural
selection appear to have been supported by serious mathematical analysis,
however, if one ignores repetitious and irrelevant calculations‘proving
that "chance alone" cannot account for the results of evolution. Neow
Lamarckianism, the Mutation Theory ("which postulated that large mutations,
and not small !continuous variations', were the raw material of evolution,
and actually determined most of its course, selection being relegated to
a wholly subordinate position" (Huxley 1942)), and the numerous meta-
physical theories of directed evolution, rested on qualitative arguments.
Mathematical studies of evolution were devoted almost exclusively to work-
ing out the consequences of selection.

The validity of such studies of course rested on the correctness of
their assumptions concerming the mechanism of heredity. Unfortumtely,
the rediscovery of Mendel's laws did not immediately reform mathematical
evolution theory. In the early decadas of the 20th Century, in the words
of Julian Huxley (1942), evolutioﬁ theory "...had reached its biometric
phase, Tracing its origin to Galton, biometry blossomed under the guidance
of Karl Pearson and Weldon. Unforturately this, the first thorough appli-
cation of mathematics to evolution, ... was for a considerable time rendered
sterile by its refusal to acknowledge the genetic facts discovered by the
Mendelians. Both sides, indeed, were to blame. The biometricians stuck

to hypothetical modes of inheritance amd genetic variation on which to

exercise their mathematical skill; the Mendelians refused to acknowledge



Le

that continuous variation could be genetic, ... or that a mathematical
theory of selection could be of any real service to the evolutionary
biologists."

An essential first step in developing the modern mathematical theory
of evolution, which is a synthesis of Mendelian genetics and the theory of
natural selection, was taken by Hardy (1908) and Weinberg (1908; cited by

Stern 1943). Their publications established the concept of a gene frequency

in a population, and demonstrated that the frequencies of genes and the
characters they influence will not spontaneously change in the absence of
mutation, selection, or migration; in particular, they corrected the pre-
valent misconception that a recessive character tends to decrease in
frequency merely because it is recessive.

The mathematical theory of evolution in almost its modemn form then
appeared with the publications of Fisher (1930), Sewall Wright (1931), and
J.Bs3. Haldane (1932)., (These are chosen as "classical" references; the
work of Wright and of Haldane, in particular, is contained in numerous
papers). These publications laid an astonishingly extensive foundation,
although of course much has been added since. .The subject is adequately
sunnarized by Li (1955) and by Falconer (1960).

Non-genetic approaches to the mathematical study of natural selection
have of course been tried. Those which deal only with attempts to establish
a quantitative way of measuring evolutionary phenomena, such as rates of
morphological change in paleontological series, will be omitted from dis-
cussion.

Thermodynanics, which affords a basis for deducing the direction

which physical and chemical processes will take and the terminal states

they will achieve, has attracted attention from evolutionists. In the form
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of chemical kinetics, it has been useful in permitting inferences about
the conditions required on the surface of the earth for the formation of
those chemical substances and complexes we associate with life (Oparin
1938; Blum 1955; Florkin 1960), but except for Blum's claim to have shown
that organic evolution and the laws of thermodynamics are not incompatible,
its usefulness in discussing the evolutionary process as a whole has not
been demonstrated.

Lotka wrote a number of papers trying to relate natural selection to
the overall energetics of the earth, his basic principle (Lotka 1922) being
that since free energy is the fundamental object of competition in eco-
logical systems, "... natural selection tends to make the energy flux through
the system a maximum". This principle, interpreted to mean that an unused
or inefficiently used source of energy constitutes an unoccupied ecological
niche, has become important in attempts to explain the trophic structure of
commnities, but it has never become incorparated in evolutionary theory in
a form amenable to mathematical analysis.

Population dynamics will perhaps contribute to population geretics by
clarifying the genetic changes to be expected in expanding, shrinking, or
fluctuating populations. Gause (1934) however intended his experimental
and mathematical studies of interspecific competition and predator-prey
relations to contribute to the theory of natural selection in a more fund-
amental way. The principle which bears his name (two or more forms with
identical ecological requirements cannot coexist indefinitely in the same
environment) laid a foundation for rigorous discussion of the notion of an
ecological niche. The subject has been discussed in a mathematical way by
Hutchinson (1957), MacArthur (1957) and Slobodkin (1961), in an attempt to

answer the question “Why are there so many kinds of animals?" (Hutchinson



1959), in other words to give a precise but general statement of the cone
ditions required to permit an additional species to evolve.

Lewontin (1961) pointed out that "population genetics is not genetics
of populations butgenetics in populations", and is not suitable to explain
how populations achieve an adequate degree of outbreeding, rate of re-
combination, and dispersal to allow them to compete successfully with other
evolving populations. He suggested that analysis by Game Theory might
assist in defining the best "strategy" for such situations. His publication
was offered chiefly as a suggestion, not worked out in enough detail to
allow a firm judgement of its value.

Meanwhile a new body of applied mathematics, known as Information
Theory, was growing rapidly. Brillouin (1956) attributes the concept on
which it is based to a 1929 paper by Leo Szilard pointing out that the thermo-
dynamic entropy of a system corresponds to the quantity of information about
the molecular configuration of the system which is not accessible to ine
strumental determination. The early history of the subject is also reviewed
by Quastler (1958). The mathematical basis of information theory was largely
developed by Wiener (1948) and Shannon (Shannon and Weaver, 1949), chiefly
in its application to automatic machinery and to ¢ ommnication systems,
although Wiener and Weaver also discussed its applicability to biological
problems. In a qualitative way, its potential value in genetics was pointed
out by Kalmus (1950).

Attempts to discuss evolution in terms of information theory have been
few in number, if one excludes those whose authors have merely adopted the
terminology of information theory without any attempt at mathematical anal-
ysis. It is noteworthy, for example, that neither of two major symposia

on Information Theory in biology contains a paper on evolution (Quastler
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1953; Yockey, Platzman and Quastler 1958). The first serious discussion
cf evolution in terms of information is by Ashby (1952) who dealt, as an
analogy, with an imagirary chess-playing machine which could "learn" to
outplay its designer. Ashby concluded that mtural selection was a pro-
cess for transforming random "noise" into information. Warburton (1958),
in a very brief communication, concluded that natural selection is a
mechanism for transferring pre-existing information from the environment
to the genetic material of organisms. Kimura (1961), in a mathematically
sophisticated paper, concluded that natural selection creates information
(presumably out of nothing) which is then accumulated by the genetic material
of populations, and estimated its rate of accumulation. These papers will
be reviewed in a later section of this thesis.

The rarity of such publications suggests that great difficulties exist,
some practical and some semantic, in applying the concept of a quantity of
information to evolutionary problems, .Some of these difficulties will be

discussed in Section II of this thesis,

The Need for a_ Supplementary Mathematical Theory of Evolution.

Almost the whole.of modern mathematical evolution theory is therefore
included within the discipline of population genetics, amd deals exclusively
with rates of change of gene frequencies under the influence of mutation,
migration, random sampling, deviations from panmixia, and selection, and
with rates of change of quantitative characters controlled by polygenes.

The theory is essentially a mathematical model of the empirical facts of
genetics, This has well served its original purpose of reconciling Mendel-
ian genetics and Darwinian evolution, but it is far from being a complete

mathematical theory of evolution. It requires to be supplemented by a fresh
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mathematical approach meeting the following requirements:

First, the supplementary theory should be easily interpreted in terms
of information theory, since the concept of a quantity of information is
becoming increasingly important in molecular genetics and as a basis for
interdisciplinary discussions intended to relate different fields of sci-
ence to each other. The question of the source of the large quantities
of informtion carried by the genetic material, for example, must be clearly
resolved before organic evolution can be correctly related to other aspects
of the cosmological process.

Secondly, the theory should permit a discussion of the entire evol-
utionary process, from the origin of life to the present day, including the
period before the complex genetic systems of modern organisms arose, If
possible it should be sufficiently general to serve as a guide for specu-
lation about evolution on cher worlds., If the theory is general enough
for such purposes, it will permit evolutionary phenomena on earth to be dis-
cussed either in terms of the classical particulate gene, a mode of descripe
tion to which natural history and population genetics will perhaps long be
confined by practical difficulties, or in terms of nucleic acid structure
and protein synthesis, a mode‘of description which will become increasingly
important if evolution theory is to be related to modem concepts of gene
structure and function.

To meet the above requirement, the theory must be freed from too rigid
dependence on the empirical facts of genetics as a material basis for a mathe
ematical model, One might hope, indeed, that the theory would permit some

of the empirical facts of genetics to be deduced from its axioms. What is
needed is not a system for deducing the evolutionary consequences of the

facts of genetics -- population genetics already meets this need -- but a
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system for deducing the necessary conditions, some of which will be genetic
conditions, for evolution.

Ideally, the theory should also be useful in discussing evolutionary
interactions between populations which do not exchange genes, i.e. for dis-
cussing the evolutionary development of taxonomic categories above the
species level, and the evolution of genetic systems. It should also permit
an evaluation of the propriety of warious analogies which have been drawn
between organic evolution and other processes, such as learming (Pringle 1956),

and the development of serological immunity (Burnet 1958).

Development of the Present Thesis.

The work leading to the theory presented in this thesis evolved through
three main phases. Initially the writer believed that an adequate supple-
ment to classical population genetics could be developed simply by restating
its principles in termms of information theory. He therefore attempted to
write expressions for such things as the quantity of information carried in
the genomne of an organism, the changes in this quantity resulting from
mutation, etc. At that time he was unaware that a similar attempt had been
made by J.B.S. Haldane (mentioned in Haldane 1953) who presumbly found the
approach unproductive, as did the writer, since he makes no further mention
of it in later papers. The reasons for the difficulties encountered in such
an attempt are made sufficiently clear in Section II of this thesis,

The next phase involved inventing and trying to develop a number of
"mechanical" analogies to organic evolution, The first of these was frankly
patterned after Ashby's (1952) hypothetical chess-playing machine. A number
of authors have published such analogies, which will be mentioned here to

indicate the kind with which the writer worked. Moore (1956) wrote a fanciful
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but fascinating discussion of "artifical living plants", floating factories
carrying their own blueprints stored on tape, and utilizing solar power to
build duplicates of themselves from minerals extracted from the sea, which
could be harvested as a supply of metals., He mentions the possibility that
evolutionary potentialities could be built into such machines, but does not
discuss the matter except to point out that if would be safer not to do so.
To design floating factories which would evolve, but could be guaranteed not
to become dangerous predators on peaceful shipping, would indeed tax the
theoretical urderstanding of contemporary evolutionists.

Friedman (1959) described an imaginary "selective feedback computer!
for designing electrical circuits. The machine would construct a circuit
from a variable combination of components, test it against predetermined
criteria, and by restricting further trials to small random changes in cir-
cuits which had passed the easier early tests would rather quickly "...con-
verge upon a type which passes the greatest number of tests". He pointed
out that the number of trials required to find the best circuit by this proe
cedure is of the order of the logarithm of the number required to find it by
testing random combinations of components, unrelated to those already tested.

Rapoport (1961) analyzed the behaviour of a "perfect learner" which must
learn, by trial and error, to give the correct response to each of a large
set of stimuli. The learner is assumed to make trials in a systematic way,
and to have a perfect memory. More instructive to the evolutionist would be
a "learner" with a very imperfect memory, which learns to give the correct
response (a well adapted phenotype) to a single extremely complex stimulus
(the environment).

Michie (1961) pointed out the analogy between evolution and the process

by which a very simple machine (MENACE; Matchbox Educable Noughts And Crosses



Engine) rapidly "learns" to become unbeatable at the game of noughts and
crosses. Gardner (1962) described a similar but even simpler machine, HIM
(Hexapawn Instructable Matchboxes).

A study of these analogies, and of others invented by the writer, was
instructive in several ways. For example, they made it clear that to proé
duce an extremely imprcbable end result one must accumulate slightly improb-
able events over a period of time. Muller (1929, 1958) had already made
this abundantly clear in a purely biological coatext. Although it lay with-
in his grasp, Muller did not state the fact that such a cumulative process
can yield a highly improbable result in roughly the logarithm ofthe time
required for it to occur by chagce, and Friedman, although he stated this con-
clusion, did not demonstrate it.

Although suggestive, all these analogies reauired too many assumptions
or restrictions peculiar to themselves to be of truly general biological
applicability. The writer gradually became aware, however, that all the
models with which he was working either were guessing games, like Twenty
Questions, or could be readily transformed into guessing games. This realize
ation led him to the third phase, the development of a "Theory of Guessing".
No such formal theory appears to have existed before. It reveals principles
which may be useful in considering any system in which highly improbable end
results must be produced by the accumulation of slightly improbable "improve-
ments" each of which is the result of a sort of trial and error process.

The notion of a quantity of information is central to the theory of
guessing, and a section of this thesis is therefore devoted to introilucing
that concept. The next section discusses guessing games, and is developed
to the point at which a particular kind of guessing game, a "Darwinian game",

can be defined which serves as a useful model of evolution by natural
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selection, Then a section is devoted to fairly detailed analysis of a
Darwinian game which is deliberately and explicitly oversimplified, but
which leads to conclusions relevant to evolulbion theory. This is followed
by a section consisting of examples which illustrate the results of sub-
stituting more realistic though more complex assumptions for the over-
simplified assumptions used in the model which has been analyzed in detail.

Finally, a discussion of the source of genstic information is presented.
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II The Concept of Information

The qualitative notion that genetic material serves as a carrier of
information is fundamental in modermn biology. The most elementary discussion
of molecular genetics mentions the hypothesis that information is coded as
a sequence of base pairs in DNA and is transformed into a sequence of amino
acids in protein molecules. The exact quantity of information carried by
a genome and transformed during the development of an organism is difficult
to compute, but it is universally recognized to be large. One of the major
problems of evolutionary theory is therefore to discern the source of the
large quantities of information carried by the genetic material of modern
organisms, and to describe the process by which it has become incorporated
in that material, This cannot be done without a clear understanding of
the concept of a quantity of information. However, there is no need (in
this thesis) to carry the mthematical development of the subject beyond
an elementary level,

A good starting point is Ashby's (1957) suggestion of defining infor-
mation as a measure of reduction of variety -- a suggestion which simplifies
and clarifies exposition of the subject, but which Ashby unfortunately did

not develop beyond a qualitative level.

Variety and Information.

With any set one may associate a number which measures the variety of
the set, For example, an obvious measure of variety is the number of kinds
of objects in the set. Of particular importance in information theory is

the variety of a set of possibilities. The quantity of information carried by

anything (such as a message or signal) is a measure of the amount by which
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it reduces the variety of some set of possibilities.

For example, imagine that one card from an ordinary deck of 52 has been
chosen and hidden from me, and I wish to know what it is. The set of poss-
ibilities has 52 members. A message informing me that the card is the Queen
of Hearts reduces the number of possibilities to one, and might therefore
be said to carry 52 - 1 = 51 "arithmetic units" of information.

Measuring variety by the number of members in a set has certain un-
desirable mathematical consequences, illustrated by the examples below.,

1. Let the message identifying a card be divided into 2 parts, i.e.

A, The card is a Queen

B. The card is a Heart
Part A reduces the number of possibilities from 52 to 4, ard therefore carries
48 arithmetic units of information. Part B reduces the number of possibilities
from 4 to 1, therefore carrying 3 units. However, if part B is received first,
it reduces the number of possibilities from 52 to 13, i.e. it carries 39 arithe
metic units, and part A then carries 12, 1In either case, A and B together
jointly carry 51 units.

It is desirable to have a convention for measuring variety which makes
the information carried by each of 2 or more independent messages (i.e.
messages in which nothing about message B can be deduced from message A, and
vice versa) independent of the order in which they are received or considered.
This can be done in the present case by using the logarithm of the number of

members in a set as a measure of its variety. The variety of possibilities

is then loglo 52 =1,7160 decimal-units, which is reduced by loglO 13 = 1.1139
units by the message "The card is a Queen" and by log;y 4 = 0.6021 units by

the message "The card is a Heart', regardless of the order of the two messages.

2. Let the message identifying a card take the form "The probability
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is 0.99999 that the card is the Queen of Hearts". This message clearly
carries information in the everyday sense of the word, but it does not reduce
the number of possibilities at all; its sole effect is to distribute the
probability of being the card in question unequally over the members of the
set of possibilities. The difficulty of measuring information in such a
situation can be overcome, while retaining the advantages of a logarithmic
measure, by using a quantity called entropy to measure variety. The entropy,

H, of a set of N possibilities is given by

N .
H= - :E;i pi logppi
1=

where p; is the probability of the i'th possibility, and b is the base to
which logarithms are taken.

Before the message is received, the probability of being the chosen card
is equally distributed over the set of 52 possibilities, and the entropy of

the set of possibilities is therefore
Hy = - 52 (35 logloss) = 1.7160 decimal unit
15 - 52 810'53 = Ll ec unlics,

The message redistributes the probabilities so that

Hy = - 51 (49%%9i loglo=££§%9l) - 0.99999 log;0.99999 = 0.000L
decimal units.

Hence the message carries Hy - Hy = 1.7159 decimal units, or practically
as much information as a message identifying the card with certainty.

Anything which reduces the entropy of a set of possibilities by I units
may therefore be said to carry I units of information. This definition will

be adhered to throughout the present thesis,
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The units in which entropy, and therefore information, are measured
depend on the base chosen for logarithms. If logs are taken to the base

10, entropy ard information are measured in decimal units, or, more usually,

decimal digits (since the entropy of the set of all possible sequences of

n + 1 digits is 1 unit greater than that of the set of sequencesof n digits).
If natural logarithms are used, the units may be called nepits (a contraction

of Naperian digits; Goldman 1953), or natural units. In the literature of

information theory it is conventional to use the base 2 for logarithms; the

units are then called bits, a contraction of binary digits.

A most useful relationship is

N

H = - iZ=l Pi logy pi = logN,
and is a maximum, if p; is constant for all i. The entropy of a set of
possibilities is a maximum if all possibilities are equally probable, and
is equal to the logarithm of the number of possibilities.

If a carrier is to carry I bits of information, the set of possible
carriers must have an entropy of at least I bits, If a receiver is to
receive I bits of information per minute, the set of possible sequences of
states which it can assume in one minute must have an entropy equal to or
exceeding I bits. In communications engineering, therefore, a basic principle
is that the information capacity of a channel, a transmitter, or a storage
device is at most equal to its entropy. A communication system must be able
to carry any one of a set of possible messages, and the engineering problem
is to ensure that an adequate variety of states of the system is in fact
possible. In communication theory therefore, one often reads of the "entropy

of a message'", which is numerically equal to the information content of the
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message, when what in fact is meant is the entropy of the set of possible
messages. This is a frequent source of confusion, leading readers to cone
clude that information is entropy, or entropy is information. The term
"negative entropy" or its contraction, "negentropy", have also become current
as synonyms for information. Information is a difference between two ent-
ropies, and is not entropy any more than a difference between two temperatures
is a temperature, although it is measured in the same units. The confusion
can be avoided by keeping in mind that entropy is a characteristic only of
sets of possibilities, not of real objects.

For example, how much information is carried by the message ABA? This
message has no entropy; it is what it is, and there is no probability that
it is anything else. To estimate its information content, one must know the
entropy of the set of possibilities from which it was chosen. If the set of
possible messages is all sequences of 3 capital letters, ABA carries
log, (263) bits; if lower case letter could be used as well, ABC carries
log, (523) bits; if longer and shorter messages are included in the set of

possibilities, the information carried by ABA is increased,

Biological Relevance,

Most discussions of information theory discuss situations in which the
set of possibilities is easily defined. There is no difficulty in reaching
agreement that the identity of a playing card is one of 52 equally probably
possibilities, though one may hesitate momentarily about whether or not the
deck contains a Joker, Elementary exposiﬁions of communications theory tend
to deal with Morse alphabets -~ dot, dash, letter space, word space =- or
with sequences composed exclusively of capital letters and spaces. Even

when communications theorists deal with frequency-modulated electromagnetic



18.

waves, in which the variety of possible frequencies would appear to be
infinite since frequency is a continuous variable, their first step is to
establish a "band width" which imposes finite limits on the entropy of
possible sequences of frequencies which can occur in a finite period.

The major difficulty in applying information theory to biological
problems lies in the fact that no such clearly delimited sets of possibil=
ities seem to be available, with a few exceptions,

For example, consider an attempt to compute the information content
of a DNA molecule which serves as the genophore of a micro-organism. Let
the molecule be L nucleotide pairs long. At some stage in the life of
the organism, this molecule will replicate itself. The set of possible DNA
molecules of length L has AL members, and if each is considered equally
probable the set has an entropy of 2L bits. The parent molecule therefore
supplies almost 2L bits of information to the daughter molecule -~ almost,
but not quite, since errors in replication may occur; the set of possible
daughter molecules has a large number of members, most of which are of very
small probability.

The DNA molecule 1is also instrumental in synthesizing a large number
of protein molecules, forming what YSas (1958) calls the "protein text",
Assuming that three nucleotide pairs are required to determine an amino
acid, the total length of the protein text is L/3 amino acids. If 20 differ-
ent amino acids occur, the set of possible protein texts has 2OL/3 members,
for a maximum entropy of 1.441 L bits. Therefore, in this context, the DNA
molecule transfers at most 1l.441 L bits of information to the protein come
plement of the organism.

If one takes into consideration the fact that the 20 free amino acids

exist in very different concentrations in the cell, one must consider that
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not all protein texts have equal a pricri probabilities. This reduces the
entropy of the set of possible protein texts, and therefore reduces the
estimted quantity of information supplied by the DNA,

Part of the genophore may constitute regulator and operator genes,
controlling the temporal sequence of protein synthesis. The set of possibil-
ities, among which the genophore determines the one which will be realized,
is then the set of all possible temporal sequences of protein synthesis
under particular external conditions. It is difficult, if not impossible,
to estimate the entropy of such a set of possibilities in any acceptable
way.

Just as the information transferred from DNA to protein was less than
the maximum which could be carried by the DNA, the information transferred
from enzymes to the products of metabolism may be further decreased, due to
the possibility that enzymes differing somewhat in their amino acid composition
may catalyse the synthesis of, for example, identical carbohydrates. The
end product of all such information transfers is that set of properties which
is collectively called the "phenotype" of the organism. A basic question,
of course, is how much information is transferred from the genetic material
to the phenotype. Any meaningful estimate of this quantity would require an
estimate of the entropy of the set of all possible phenotypes -- not, it
must be emphasized, all possible viable phenotypes, or all possible pheno-

types of a given species, but all possible phenotypes., It is hard to imagine

how to attack even the tremendous semantic difficulties which one would need
to overcone before one could begin the quantitative study required for such
an estimate,

"Information content" is therefore not a property of an object, such as

a chromosome, in the way that length or mass is thought of as a property of
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an object; information is a quantitative relation between two sets of
possibilities. The major difficulty in applying information theory to bio=-
logy lies in achieving a suitable compromise between the choice of a set of
possibilities which is easily defined and has an easily computed entropy

but which is of little biological interest, such as the set of all possible
DNA molecules of a given length, and a set of possibilities which is of
fundamental biological importance but cannot be clearly defined in a way which
permips its entropy to be computed, such as the set of all possible pheno-
typese.

Two other basic concepts of information theory must be briefly defined;
redundancy and noise. If the entropy  of a set of possible messages exceeds
the entropy of the set of possible situations of which one is specified by
a message, the set of messages is said to be redundant. A measure of redund-

ancy is

where H2 is the entropy of the set of possible messages, and H; is the
entropy of the set of possibilities from which one must be specified by a
message.

Redundancy may be said to exist in a set of possible messages when the
entropy of the set is arbitrarily reduced below its maximum possible value.
For example, the set of possible English messages (of given length) has a
smaller entropy than the set of possible sequences of letters of the same
length, because of the restrictions imposed by the rules of English spelling
and grammar. One may think of these rules as assigning unequal probabilities

to different sequences of letters, or alteratively, as assigning the same
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meaning ("nonsense}") to a large number of possible sequences. The former
implies a reduction in the entropy of the set of possible messages, the
latter a reduction in the entropy of the set of distinguishable situations at
the receiving end, but either interpretation implies that redundancy exists
in the set of messages.

Redundancy, like information, is a relation between two sets of possibil-
ities. If a triplet of nucleotide pairs is required to specify one amino acid,
DNA displays considerable redundancy during protein synthesis, as there are
6}, possible triplets but only 20 possible amino acids; but a DNA molecule dis-
plays no redundancy when it is thought of as specifying the structure of a
descendant DNA molecule.

Various influences may prevent a message from reducing the entropy of a
set of possibilities to as low a value as it would do in a hypothetical perfect
or ideal communication system. Such influences are collectively called
"noise." For example, noise in the everyday sense of the word may prevent me
from hearing all of a message identifying an unknown card, so that although I
become certain that the card is a Heart, I remain unsure whether it is an Ace
or an Eight; the set of possibilities retains an entropy of 1 bit, although
the message was ideally capable of reducing the entropy to zero. In biological
systems ionizing radiation, traces of toxic substances, amd so on, prevent
a DNA molecule from specifying a protein text with a probability of 1, and
thus constitute noise,

Because of the conceptual and semantic difficulties involved in its use,
the writer has tried to be cautious in applying information theory in this
thesis. The thesis deals with such sets of possibilities as "the set of all
possible living organism", "the genomes of all organisms as well adapted to

their environments as those we see around us", etc. It would obviously be
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extremely dangerous to estimate the entropy of such vaguely defined sets,
and no attempt will be made to do so. There are situations, however, which
are important in the thesis, in which a quantity of information can be
easily and unambiguously defined. For example, if r organisms exist of which
only one can survive as the parent of the next generation, the selective
agency, which determines which shall die and which shall live, can at most
supply exactly log, r bits of information. If care is taken to restrict

its use to similarly clear-cut cases, information theory can be extremely
useful in biology. Often, the exact computation of the redistribution of
probabilities brought about by some act of selection or designation is
extremely difficult, but all that needs to be known can be summed up by com-

puting the maximum quantity of information which the act can transfer.
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III The Analogy between Organic Evolution and a Guessing Game.

A guessing game is a situation involving one or more players and a

referee. In order to win, a player must find a right answer, or one of

several right answers, within T trials. There are N' right answers, collect-

ively forming a set S', about which the player initially knows nothing except

that it is included in a set S, with N members, the initial set of possibilities.
That is, the player initially lacks the information required to deduce a right
answer, and must seek one by guessing. The referee responds to the player's
guesses in a way which conveys information which can be used to reduce the
nunber of trials required to find a right answer below chance expectation.

In some real guessing games, but not all, the referee chooses the right
answer, and is considered to have lost the game if a player succeeds in win-
ning it. This is not a general characteristic of guessing games, however,
and is not an interpretation which can be applied to the physical, biological
or psychological systems which may be analogized to guessing games. In most
guessing games the referee cannot be considered to be an opponent of any of
the players; his position, as the name indicates, is that of a neutral referee,
A guessing game is therefore not a "game" between the referee and the players,
in the technical sense assigned to the word "game" in the Game Theory of wvon
Neumann and Morgenstern (1944).

Later in this thesis some discussion will be devoted to competitive
guessing games, in which there are several players. In a competitive guessing
game the relations between the players may correspond to the relations between
players in a von Neumann Game, but in no case is the relation between any
player and the referee a competitive one,

Notice that no particular restrictions have been put on the physical

nature of systems which can be analogized to guessing games. The player and
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the referee may be people; constrained in their behaviour by the rules of
the game; they may be machines, behaving as they do because of the way they
were designed and built; they may be mechanisms, in the philosophical meanw-
ing of the word, which must behave the way they do because of the relations
between their parts; or they may be imaginary entities which are useful
fictions in describing the behaviour of a system. The restrictions the
model imposes on the system are almost entirely restrictions on the way
information is transmitted from one part of the system to another., Sufficient
information to identify a right answer is initially stored by the referee,
and is not immediately available to the player. It is transmitted to the
player a little at a time, in response to guesses, and thg player stores it
until he has accumulated enough to specify a right answer,

Let us consider organic evolution as a guessing game. The "player®
is an imaginary entity who manufactures living organisms. The original set
of possibilities, S, is all those possible organisms which could have descended
from the first spontaneously generated organism in an infinite universe, in
which selection was inoperative and even the most grotesque and unadapted
forms could survive. The set of right answers, S', includes all those organ;
isms as well adapted to life on Earth as those we see around us which are not
in immediate danger of extinetion.

Each organism manufactured by the player is submitted to the environment,
which "passes" some and "rejects" others, thus serving as a referee to infom
the player whether each one is a good guess or a bad guess, or at least
whether it is better or worse than the previous attempt. ZEach new mutant or
recombinant is indeed a "guess", as the imaginary player does not know whether
the change is an improvement or a defect until the organism has been tested

and reported upon by the referee. In the Darwinian hypothesis, the referece
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informs the player, in effect, "this giraffe is better than that giraffe",
but does not say what kind of superiority it possesses. According to
Lamarckian hypotheses, the referee says, in effect, "this giraffe is unsatis-
factory; try one with a longer neck next time". A Special Creator, of course,
does not need to refer to a referee for informtion at all, but knows the
right answers before the game begins.

Guessing games fall into several categories. The kind which can best
serve as a model of evolution by natural selection may be called a "Darwin-

ian game'. Its characteristics will be outlined in the following pages.

Trivial and mn-trivial guessing games.

A Darwinian game is a non-trivial guessing game.

A guessing game may be trivial for various reasons. It is trivial, for
example, if the referee conveys no information to the player, who must merely
continue guessing until he finds a right answer by blind chance. At the
other extreme, a guessing game is trivial if the referee '"gives away' the
right answer, i.e. supplies so much information at an early trial that the
player can at once deduce a right answer. Guessing games are of interest
only if the referee supplies some information at each trial, but much less
than log (N/N!') units, so that the player must accumulate information over a
series of trials in order to win. This requirement of a non-trivial game is
met by restricting the referee to giving one of a smll set of possible re-

sponses at each trial. E.g., a binary referee, or a referee of order 2,

must give one of only two possible responses, such as "yes" or "no", or
"right" or "wrong",at each trial. Such a referee can supply a mximum of
one bit of information per trial,

It is standard practice in quantitative biology to decide upon some
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value, Pc, as a critical probability in testing whether or not a given
hypothesis is adequate to explain a set of observations, as in choosing

P, = 0,01 as a level of significance when using chi-square to test whether

c
experimental results are adequately explained by a null hypothesis. Now
there is always some small probability of winning a guessing game in T
random guesses, or by running down the list of the first T members of S.
For a given game, if

TN'

T = Fes
it is plausible to postulate that a winning player has won by some such
procedure; it is not necessary to assume that the referee has supplied
information to the player, or to assume that the player has used the infor-

mation if it has been supplied; blind chance is an adequate explamtion

for the player's success. A game which has a probability Pc of being won
by blind chance is a trivial game.

In a non-trivial game, the referee must supply information to the
player. Usually, at any trial after the first, not all possible guesses are
equally valuwable to the playerin eliciting information from the referee.
The player must therefore accumilate information from the referee, and must
use the accumulated information to control subsequent guessing, The way he
does so may be called his strategy. For example, it is generally useless
to repeat a guess already known to be wrong, as this does not give the referee
an oppartunity to supply additional information. It is usually advantageous
for the player to choose each guess so that, as far as he knows, all the
possible responses of the referee are equally probable; in this way he obtains
the maximum quantity of information per trial which the referee can give,

An adequate strategy for a guessing game is one which provides the
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player with

log (PCN/N!)
T units of information per trial, or more, i.e,

which gives him a probability at least equal to the critical probability

of finding a right answer in T trials. The optimum strategy, of course,

is the strategy which minimizes the number of trials required to win the
game, or maximizes the probability of winning it within T trials. One may
loosely call a game difficult if no adequate strategy is very different
from the optimum stratggy, or egasy if the player has a rather wide choice
of adequate strategies.

Mammalian haploid chromosome sets contain about 4 x lO9 nucleotide
pairs. Some of these may carry no genetic information which is transmitted
to the phenotype, some may "say" things in one way which could be said as
well or better in another. Allowing for these possibilities, Muller (1958)
guesses that the probability that a random sequence of nucleotide pairs
would form a genome as well organized and adaptive as that of a higher
organism is roughly 10'2’000’000. If the set S consists of all possible
sequences of 4 x 109 nucleotide pairs, the probability that one taken at
random will be a right answer is therefore about 1 in 102’000’000. If the
Barth consisted entirely of nucleotides, which rearranged themselves in
double chains millions of times per second for billions of years, only
alwout 1079 or 1060 different sequences would have an opportunity to occur.
The chance of a right answer turning up by chance in this number of trials
is negligibly small, The evolutionary "game" therefore cannot be won by
blind chance, and must be non-trivial.,

The important point is that we know a game of this sort has been played

and won, and could not have been won by blind chance., Our task is to elucidate
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the necessary characteristics of an adequate strategy.

An example of a trivial guessing game is the children's game "I Spy".
The referee begins the game by announcing "I spy with my little eye some=-
thing that begins with (for example) 'C!", The player then names objects
until he discovers the right one or gives up; i.e., T depends on the play=-
er's patience. At each guess, the referee responds with "right" or "wrong".

The only strategy available to the player is to maintain a record of
past trials and thus avoid repeating wrong guesses; i.e. to run through the
list of possibilities one at a time. I Spy can therefore only be won if
it is trivial., The referee's response to each guess enables the player to
eliminate that guess, and only that guess, from the set of possibilities,

As each guess is much more likely to be wrong than to be right, the referee,
who is a binary referee, supplies much less than one bit of information per
trial.

To win a non~trivial game the player must be able to eliminate more
than one member of S at each trial (or so redistribute the probability of
being a right answer among the members of S that the reduction in entropy is
equal to that following elimination of several members from the set). Clear-
ly, the player cannot merely eliminate some random collection of possibilites
at each trial; the ones he eliminates must be related in some way to the ones

he has actually gusssed. The set S must therefore be relevantly classifiable,

i,e. divisible into subsets of related members in a way which is relevant to
the probability of each member being a right answer.

In any guessing game with a binary referee, therefore, the player's
procedure can be analyzed into a cyclic repetition of three steps:

1. Divide the set of possibilities, S, into two classes,

2. Obtain from the referee a staiement of which of the two classes is



29.

better, or information from which such a statement can be inferred. If p;
is the probability that a member taken at random from the class Cy is a right
answer, class C1 is better than 02 if Py exceeds p,. I.e., class C1 is
better if the frequency of right answers among its members exceeds the fre-
quency in 02.

3. Store the result of the comparison, and repeat the cycle.

In order to win the game, within T trials the player must be able to
delimit a class Q' for which p' exceeds P,, where C'is the logical product
of the better of each pair of classes compared.

If the referee is of order greater than 2, let us say of order r, the
player may divide the set of possibilities into r classes at each repétition

of the cycle.

Question Games and Trial-and-Error Games,

Guessing games fall into two major categories, question games and trial-

and-error games. A Darwinian game is a trial-and-error game,

A question game is a guessing game in which each guess constitutes a
question about a whole class of possibilities, and the referee'!s responses
explicitly apply to whole classes. A familiar example of a question game is
Twenty Questions. In this game, the reféree announces whether the right
answer is animal, vegetable, or mineral. The player then asks such questions
as "Is the subject a real animal?...a living animal?...a human being?...a
Canadian statesman?", etc., to which the referee answers either "yes" or 'no'".

The game rests on the fact that the set of possibilities can be complete-
ly classified in a dichotomous wgy, and the right answer must belong either
to the class named or its complementary class. The player's strategy is to

try to choose each question in such a way that "yes" and "no" are equally
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probable, thus eliciting the maximum of one bit of information from the
binary referee, so that at each trial he can eliminate a whole class, con-
taining about half the remaining possibilities. If T>log, (PCN), this
strategy is adequate.

The important point is that in a question game, any classification of
the members of S is a relevant classification. The player is therefore
perfectly free to classify the set of possibilities as he likes, and should
have no difficulty in meeting the strategically desirable aim of comparing
two nearly equal classes at each trial. Question games therefore tend to
lack variety and interest from the mathematical point of view.

Trial-and-error games are those in which the player is restricted to
naming (or producing) individal members of the set S, and the referee's
responses apply explicitly only to the individuvals named, In trial-and-
error games the player must be able to draw inferences from the referee's”
statements about individuals to larger classes which these individuals
represent. It is the player's inability to make such inferences validly
which renders I Spy a trivial game.

Evolution by natural selection must be analogized to a trial-and-
error game. The referee does not report on entire classes of possible organ-
isms presented to it in the abstract; it merely passes or rejects those part-
icular individuals which actually come into existence ard are exposed to the

environment. A Darwinian game, therefore, is a trial-and-error game.

Primary Referees (Selectors) and Secondary Referees.

In a trial-and-error game, the referee's response to each guess con-
stitutes a comparison between individuals, from which the player infers a

comparison between classes. A binary referee, which is restricted to giving
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one of only two possible different responses, can only give a series of
responses which constitute a series of comparisons between individuals if

the individuals, which are members of the set S, can be ordered in some way.

An ordering relation is any 2-termed, asymmetric, transitive s DNON=
reflexive relation (Langer, 1953), such as "...exceeds...", ".,.is north of,..",
".s.is closer to x than.,.". If the members of the set S are connected by
an ordering relation, a rank can be assigned to each member of S. If there
are as many ranks as S has members, and only one member per rank, S is a

completely ordered set. If there are fewer ranks than members, so that

some members have the same rank, S is an incompletely ordered set. The

integers can be completely ordered by the relation ",,.exceeds..."; words
can be completely ordered by the relation "...,alphabetically precedes...";
points on a plane can be incompletely ordered by the relation "... is farther
north than..."%.

In any guessing game, the set S can be at least incompletely ordered
by some such relation as ",..is better than...'. There must be some way of
ranking each possibility as "better" or "worse" than other possibilities,
with the right answers having the highest rank. This relation will serve
to divide S into at least two ranks, as the set of possibilities must con-
tain both right answers and wrong answers, and the right answers are obviously
"better than" the wrong answers. This relation (or similar ones, such as

",...is better adapted than.,." in biology) may be called the primary ordering

relation of the set S, which serves to assign a primary rank to each member,

The player of course must not know the primary rank of any member of S,
except insofar as he can infer it from information received from the referee.
The members of S may or may not also be connected by secondary ordering

relations, which can be known to the player without giving away the right
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answer., If the set of possibilities consists of all the integers from 1

to 1010, for example, the player can obviously assign a secondaryrank to

each possibility, since he knows what numbers are bigger than others, but
he cannot assign a primary rank to each number until he learns from the
referee that certain numbers are better than others.

The referee in a trial-and-error game must therefore perform one of
four possible kinds of comparison:

1. He might compare the secondary ranks of two guesses ("xl is larger
than x2"). This information, however, is already available to the player
and its reiteration by the referee is useless.

2. He might compare the primary rank of each guess with the primary
rank of the right answer. This is eguivalent to a simple statement that
each guess is either right or wrong, as in I Spy, and canngt supply enough
information to permit the player to win a non-trivial game,

3. He might compare the secondary rank of each guess with the second-
ary rank of the right answer ("the number you have guessed is too large").
Responses of this kind can supply useful information to the player, For
example, let S be the set of integers from 1 to N, inclusive. If the play-
erts first guess is N/2, and the referee's response is "too large", the
player can infer with certainty that the right answer lies between 1 and N/2,
i.e. he can exclude half the possibilities after a single trial.

A referee who compares the secondary rank of each guess with the second=-

ary rank of the right answer may be called a secondary referee,

L., He might compare the primary ranks of two guesses ("this guess is

better than the last one"). Such a referece could be called a primary referee
but will be called a selector in this thesis, for biological reasons,

The set of all possible organisms probably cannot be secondarily ordered
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in any complete way, although its members could be partially ordered by size,
for example. The set of all possible DNA molecules could be secondarily
ordered in an "alphabetical" arrangement by adopting a suitable convention
for listing the four possible nucleotide pairs in a fixed order. Nevertheless,
there is no reason to consider the possibility that the referee in the evol-
utionary "game" conveys any information to the player about the relative
secondary ranks of each guess and the right answer. The environment would
seem not to supply information of the form M"this giraffe's neck is too short',
or "this dinosaur is too big", and it certainly does not supply information

of the form "this genophore alphabetically precedes the fittest possible geno-
phore", The environment supplies information only in the form "this organism
(or population) is fitter than that organism", where the relation"...is fitter
than...", or ",..is better adapted than..." is a primary ordering relation,

The referee in a Darwinian game is a selector.

Relevant and Irrelevant Classifications.

At his first trial, the player must divide the set S into two classes
(if the referee is a binary referee, or ideally into r classes if the referee
is of order r), which can be compared by the referee. At the next trial, he
must divide the better of these two classes into two classes, which can be
compared by the referee, and so on. The members of S must therefore be class-

ifiable in a hierarchy. The members of S can be completely classified in a

hierarchy of L levels, in which the entire set S forms the class at level O,
if they can be so distributed among classes that:

1. There are more classes at level i + 1 than at level i.

2. The members of any given class at level i + 1 are either all included

in or all excluded from any given class at level i.
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3. The members of any given class at level i + 1 are all included in
one class at level i; and any given glass at level i includes all the members
of at least one class at level i + 1,

4. Each class at level L contains only 1 member.

If any class at level L contains more than 1 member, the hierarchy serves

to classify the set incompletely.

E.G. the integers from 1 to 16 can be completely classified in the hier-
archy shown in Figure 1. The classic example of a hierarchy is the taxonomic
hierarchy in which organisms are systematically classified; it is an incom-
plete classification, as each class at the lowest level (subspecies) contains
many individuals,

A degenerate hierarchy is a hierarchy in which all classes but one at
each level contain only one member. In I Spy the player c}assifies the set
of possibilities in a degenerate hierarchy, as in Figure 2, It is useless
for the player to classify S in a degenerate hierarchy unless the game is
trivial.

At each trial, therefore, the player knows that the right answer is a
member of a particular class, Cij’ on the i'th level of the hierarchy (or,
more generally, the player knows that the probable frequency of right answers
is higher in the class C;; than in any dther class at level i). His procedure

dJ
is therefore to divide the class Cjj into 2 (or r) daughter classes at level

i + 1, and obtain a comparison of the daughter classes from the referee. The
better of the two -- the class C(i + 1,x) with the higher probable frequency -
of right answers -- becomes the next class to be divided.

A hierarchical classification is relevant in a given game if:

1. Each division (or most divisions), in which any daughter class con-

tains a right answer, divides the right answers unequally between the daughter



Figure 1 A complete classification of the integers from

1 to 16 in a hierarcay of four levels,
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Figure 2 A partial classification of objects beginning
with C, in a degenerate hierarchy, such as might

be used in I Spy.



objects beginning with C

this chair all else
this chair that chair all else
this chair that chair the cat all else

this chair  that chair the cat  the coffeepot all else
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classes.

2. The best of the daughter classes,i. the one with the highest fre-
quency of right answers, can be identified with a high probabllity by the
referce!s response to the guess,

The first of these requirements will be met by any hierarchical class-
ification; if N is much larger than N', division of S by any criteria will
give rise to classes containing no right answers at levels which will be
reached within a few trials. In question games, the second requirement is
fulfilled by the rules of the game. Hence, as has been stated before, any
hierarchical classification is relevant in a question game.

In a trialeand-error game with a secondary referee, the second require-
ment is met by the properties of ordered sets; having learned, for example,
that the guess X is larger than the right answer, the player can infer with
absolute certainty that the class "numbers smaller than x;" is better than
the class "numbers as large as or larger than X;". Any classification of §
in which each €lass is divided into two daughter classes of secondary rank
respectively higher and lower than some chosen member of the class is a
relevant classification. Because a relevant classification is always obvious,
and the optimum strategy is also obvious, trial-and-error games with secondary
referees lack variety and are of little mathematical interest,

In a trial-and-error game with a selector, the player cannot make log-
ically rigorous inferences about classes from the referee's fésponses compar-
ing the primary ranks of two guesses, simply because, by definition, the player
cannot know what system is being used by the referee to assign primary ranks to
the members of S. For example, suppose the player must find an integer, x,
between 0 and 10L0. The player may assume that since Xj is better than another

guess Xp, X is numerically closer to xj than to x,. If this assumption is
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correct =-- if the referee is in fact ranking guesses by their numerical prox-
imity to x -- the players best next guess is a member of the class containing
X and bounded by the number (x.l + xz)/2. The assumption may be wrong, how-
ever; the referee could conceivably be assigning a score to each number, con-
sisting of the sum of the prime factors it shares with X minus the sum of

the prime factors it does not share, and ranking the numbers by their scores.
If so, the playe; will be unable to win the game if his classification of S
is based on size.

Nevertheless, to win a non-trivial game, the player must be able to
classify S in such a way that he can correctly assume that if an arbitrary
or random individual from classC; is of higher primary rank than one from
class Cj, the probability exceeds 1/2 that the frequency of right answers
among the members of Ci is higher than among the members of Cj'

For example, consider a game in which S consists of sixteen things,
labelled abcd...p, which the player can classify as in Figure 3. The best
member of the set is p. The player is allowed four trials; i.e. he may name
four pairs of members to be compared by the selector. How must the members
of S be primarily ranked to yield a 50% probability that the better individual
in the fourth trial is the best individual in the set?

If at the fourth trial the player must choose between the two members of
C3g, he is certain to make the correct choice; if he must choose between the
members of any other class at level 3, he is certain to choose an individual
which is not the best of the set. Therefore, the player must have a total

probability of 1/2 of choosing the correct branch at every fork in the line

leading to 038’ which means that he must have an average probability consider
ably larger than 1/2 of making the right choice at each of the three forks.

If the members of Cpj are ranked within the class Cp, in the order m = 2,



Figure 3 A complete classilication of 16 objects
labelled a,b,c....p, in a hierarchy of four

levels. For discussion, see p. 36.
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n = 3; o=1, p= 4, and the player randomly or arbitrarily chooses a member
from each of 037 and C3g for the selector to compare, the probability that
the better of the two individuals comes from the better of the two classes

is only 1/2. I.e. the probability that the player will make the correct
choice among the two subclasses of Cp) is only 1/2, and to lave a total
probability of 1/2 of making the correct choice at all three forks, the play-
er would have to be certain of choosing correctly at the two higher forks.
This implies that every member of Cp) must be higher in rank than every meme
ber of 023, and every member of C;, must be higher in rank than every member

of C On the other hand, if the members of Cp4 are ranked within that class

11°
in the orderm =1, n = 3, 0 = 2, p = 4, the probability is 3/4 that the
better individual comes from the better class, and the restrictions on rank-
ing within the larger classes can be somewhat relaxed. The reader may wish
to study Table 1, which shows some primary ranking systems which give the
player a SO%“of finding the best member of S on the fourth trial, and some
which do not.

This example, with the small set of sixteen possibilities, hardly offers
a fair illustration of the way the primary ranking scheme must be related to
the classification of the set if the game is to be won. After all, the play-
er is permitted to name eight members of the set, and therefore has a 50%
probability of naming the right one by blind chance; only those relations
between ranking and clgssification which give a probability greater than 50%

2100O members,

are really of interest, Consider, however, a set S containing
dichotomously classified in a hierarchy of 1000 levels, with only one right
answer. The player can follow a line to an individual member in 1000 trials,

naming at most 2000 individuals as he does so; the probability that one of

the 2000 will by chance be the right amswer is negligibly small. To have a
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probability Pc of finding the right answer in 1000 trials, he must classify
S in such a way that the probability of choosing the correct branch at each
fork on the line to the right answer has a geometric mean of at least

000/ P.. In other words, at every fork on the line, the members of
the better class must practically all be higher in rank than the members of
the other class.

The situation becomes more complicated if T exceeds the number of levels
in the hierarchy, so the player can to some extent go back and try again if
he makes a mistake; if there are several right answers; or if the player
retains the better of the two guesses from one trial for comparison with
each new guess at the next trial.

If T is large enough, and his first series of L'trials (where L is the
number of levels in the hierarchy in which the player has classified S) fails
to yield a right answer, the player may begin again, using a different system
of classification. Nevertheless, in any moderately difficult game, the play-
er cannot repeat the game using more than a few systems of classification,.
If the player is to win a difficult non-trivial trial-and-error game in which
the referee is a selector, therefore, the referce must assign primary ranks
to the members of S in a way that makes some "natural", "obvious", "simple",
or "objective" system of classification relevant. The game cannot be won if
the referee merely assigns ranks to the members of S in an arbitrary or
random way.

The data of paleontology suggest that the referee in the evolutionary
game fulfills this requirement. Entire classes, orders, and families of
organisms have become extinct, their places being taken by new groups of come
parable taxonomic rank which undergo an adaptive radiation. The almost com-

plete replacement of Chondrostean fishes by Holostean fishes, followed by
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the almost complete replacement of the latter by Teleostei, is a classic
example (Romer 19453 Colbert 1955). Such instances suggest that the tax-
onomic hierarchy used by paleontologists, which is a "natural! classification
based almost entirely on the morphology of structures hard enough to become
fossils, is a relevant classification. Of course one would hope it would

be, If it were irrelevant, one would expect individual species within
larger taxa to have become extinct with no particular correlation with tax-
onoitic categories, so that modern organisms would include“an apparently

random sample of species from all taxa which have existed,

Storage of Data,

In any non-trivial guessing game the player must accumulate information
over a series of trials, and utilize it to control subsequent guessing. He
must therefore be able to retain some kind of records of past trials, the
function of which is to allow him to determine which class should be divided
at the next trial. Let us restrict the kind of data he can store to records
of two forms:

1. Records of one or more past guesses, with the referee's response
to each.

2. A t-record, i.e. a record of the number of previous trials,

A complete record of all past guesses and their outcomes is obviously
adequate to permit the player to identify the class next to be divided.

More complex situations arise when the player can store records of only a
small number of past guesses. In such situations, the t-record may be valu-
able, as it identifies the level in the hierarchy of classification on which
the class to be divided lies.

The only case which must be considered here is a trial-and-error game
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with a selector., If the player is restricted to keeping a ‘record of only
one past guess, this must be the best of the guesses presented to the
selector at the last trial; the best past guess is always a member of the
class to be divided. A t-record, which will inform the player what level
the clags to be divided is on, then serves to identify the class to be divided.

In organic evolution, the only "records" available to the imaginary
player are the actual organisms which were passed by the selector in the
last trial. Rejected organisms or genotypes leave no record; they are lost
without trace as far as the player is concerned, although some of them may
leave records discernible to human paleontologists. Dead or sterile organ-
isms leve no influencec on later generations. The imaginary player has no
memory; his sole record of the trial just concluded is the actual organisms
which passed. The player has no record even of the number of past trials;
the genetic material of an organism bears no explicit record of the dura-
tion of its history.

In a Darwinian game, the only data stored by the player consists of

the best past guess; in particular, he cannot retain a t-record.

Perfect and Imperfect Refereese.

Some further possible complications must be mentioned before a math-
ematical analysis of organic evolution in terms of guessing gares can be
carried out.,

A perfect referee is one who always gives a truthful response to a guess;

an imperfect referee is one who sometimes gives a false response. Clearly,

if a binary referee is to convey any information at all to the player, he
must give a truthful response more than m1f the time., Operationmally, one

would recognize an imperfect referee by calling upon him to make the same
gn P Y P



comparison repeatedly, and observing whether his response was always the
same.

The quantity of information supplied per trial by an imperfect binary
referee is 1 = ( p loggp + (1 - p) logy, (1 - p)) bits, where p is the
probability that the referee's response is true. A single response by an
imperfect referee does not permit the player to exclude any class of mem-
bers from the set of possibilities, but does reduce the entropy of the set
of possibilities by distributing the probability of being a right answer
unequally over its members.

In organic evolution, the selector is an imperfect referee; otherwise
every genotype in competition with a superior genotype would lave a selection

coefficient of 1.

Competitive Guessing Games.

A gnessing game may have several players in competition with each
other. If each player's aim is merely to be the first to win the game,
analysis of the situation involves only an elucidation of the optimum
strategy, and therefore adds nothing to what has been said above about non-
competitive games. The situation is of interest if, from time to time
during the course of the game, some of the players are eliminaled before
any of them has found a right answer,

The simplest case arises in trial-and-error games with selectors, in
which the players to be eliminated are those with the best past guesses of
lowest primary rank, i.e. those who are still farthest away from finding a
right answer.

One must distinguish carefully between a system which can best be

analogized to a competitive guessing géme, and one which can best be anal-



ogized to a game with a single player who is permitted to make several
simultaneous guesses. The distinguishing feature is that competitive
players do not receive information in response to each other's gwesses,
but only in responde to their own. A player in a competitive game does
not know whether his competitor's best last guess is better than his own
until he finds himself eliminated from the game. A single player making
multiple guesses, however, may submit as his next group of guesses some
sort of mixture or combination of what he believes to be the best features
of all the guesses passed by the referee at the last trial.

Both kinds of situation arise when organic evolution is considered as
a guessing game. A single Mendelian population can be represented by a
single player, making many guesses simultaneously. If the referee's re=-
sponse to these guesses informs him that organisms carrying an allele a"
are fitter than those carrying an allele a', he may include a" and exclude
a'! from all, or most of his future guesses. A competing population, re-
productively isolated from this one, represents a competitive player who
must discover the superiority of a" over a' for himself, quite independ-
ently of its discovery by the first player.

Some aspects of competition between players may lend themselves to
analysis by the Theory of Games; the optimum strategy, which leads one
to the right answer most rapidly, is not always the same as the strategy
which maximizes the probability of remining one or two jumps ahead of
one's competitors. It must be emphasized, however, that the relation

between a player and the referee is not a competitive one, and cannot be

analyzed by Game Theory.
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General.

The preceding discussion has been confined to those aspects of guessing
games which are important in setiing up a model of orgenic evolution.
During the preliminary stages of the work, however, the writer necessarily
examined other aspects of other kinds of guessing games. These suggest that
the subject of guessing games in general may be of interest to mathematicians,
and perhaps to scientists seeking mathematical models for a variety of phys-
ical, biological, psychological, and economic systems. The present thesis,
however, i1s intended to deal with Darwinian systems, and the only kind of
guessing game which needs to be considered is a Darwinian game. This section
can therefore be adequately recapitulated by the following two definitions:

A Darwinian system is any system which can be usefully analogized to

a Darwinian guessing game.

A Darwinian guessing game is a non-trivial trial-and-crror game in

which the referee is a selector, amd in which the data stored by the player
can consist only of a record of the guesses to which the referee assigred
nighest primary rank at the last trial; in particular, the player cannot
keep a te-record.

To permit simple cases to be analyzed first, certain options will be
retained in this definition: a Darwinian game may have either a perfect or

an imperfect referse, and it may be a competitive or a non-conpetitive game,

Permutable and Non-permutable Hierarchies

At each trial the player uses some criterion to divide a class into
daughter classes. If the size of the daughter classes deviates greatly from
equality, the information the player can receive when the referes coupares

them will be too small in guantity to permit him to win the game. He must
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therefore be capable of choosing a criterion of division which will result in

an adequate approximation to equal sized daughter classes,

With some sets of criteria of division, this requirement can be met only
if the criteria are used in a fixed order. Consider, for example, a dichoto-
mous classification by size of the integers from 1 to 1024, If the criterion
"larger or not larger than A" is used at any level before the eighth, it
serves to divide a class into two very unequal parts. Similarly, if the cri-
terion "dog or non-dog" were used too early in classifying the set of living
organisms, it would serve to divide a class into two very unequal mrts, and
to reduce the quantity of information obtainable from the referee's compar-
ison of the two daughter classes. A hierarchy in which the quantity of
information obtainable oer trial is reduced by using criteria of division in

any but one order may be called a non-permatable hierarchy.

On the other hand, consider the set of sixteen objects, each of which is ,
either round or square, solid or hollow, black or white, and wooden or plastic,
Any of the criteria of division (colour, shape, etc.) will divide this set
into two equal classes, and any of the other criteria will divide either class
into two equal daughter classes. Zither of the classifications shown in
Figure L, and many others as well, would be equally useful as a classification
of the sel in a guessing game. A hierarchy in which the quantity of inform-
ation obtainable per trial is not affected to any important extent by using
the criteria of division in different orders may be called a permutable hier-
archy.

In a Darwinian game, the player can keep a record only of the best past
guess. This is always a member of the class which should be divided next,
but it is also a member of some class at every level of the hierarchy. As
he has no t-record, therefore, the player cannot identify the class to be

divided, nor infer what level in the hierarchy it is on. He must therefore

be free to use criteria of division which could be usefully used on any level
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Two of the many possible permutations of a

permutable hierarchy.
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in the hierarchy; as he has no record of rejected past guesses, however,

he does not know what criteria of division have already been used, hence,

he must be free to use any criterion of division on any level in the hier-
archy. Therefore, a player can win a Darwinian game only if he can classify
3, the set of possibilities, in a permutable hierarchy.

In a permutable hierarchy, if one follows a line to any member of the
set one is confronted by the same series of criteria of division at the
forks, although they do not necessarily occur in the same order on any two
lines (see Figure 4). Therefore, each criterion occurs once in each line,
and there are as many criteria as there are levels in the hierarchy. The
criteria of division may be listed in some fixed, though arbitrary, order
and an ordinal number 1, 2, ...1,...L, assigned to each. ZKach criterion
gives rise to a small number, not exceeding the order r of the selector,
of alternatives. Let the i'th criterion of division give rise to k; alter-
natives., Then any member of the set of possibilities, S, can be represented
by a sequence of L places in which the i'th place can be filled by any sym-
bol from an alphabet of k, symbols, and the alphabet available to fill the
j'th place is not altered by the previous filling of any other place. For
example, any of the set of sixteen objects described above, each of which
must be round (R) or square (r), solid (3) or hollow (s), black (B) or white
(b), and wooden (W) or plastic (w), can be represented by a sequence of four
symbols, each of which is taken from an alphabet of two symbols. In the
sequence RSBW, any symbols can be replaced by their alternatives and the
sequence still represents a member of ths set. If there were defects in the
permutability of the classification -- if any criterion used at one level
divided a class in a ratio different from that in which it would divide a

class at another level -- this would not be true. Deviations from complete
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permutability would result in the absence of some members from the set of
possible sequences. Given a sequence of symbols representing a member of
a permutably classifiable set, one may freely change any symbol without
necessarily changing any other, and the altered sequence continues to re-
present a member of the set,

In any Darwinian game, therefore, S can be represented by a set of

%T ki sequences of symbols, each L symbols long, with the i'th place filled
by a symbol from an alphabet of ki symbols.,

The set of all known organisms, classified by the phenotypic criteria
used by systematists, certainly does not fall into a permutable hierarchy.

No one knows whether the set of all possible organisms could be permutably
classified, and it is hard to imagine how the question could be decided. On
the other hand the set of all possible genomnes, each considered as a linear
sequence of nucleotide pairs, would obviously be classifiable in a permutable
hierarchy if all possible sequences were the same length (and if RNA viruses
were ignored), as any nucleotide pair can presumably be changed without a
necessary change in any other. Differences in the length of the nucleotide
sequence from species to species is a complication which cannot be ignored
indefinitely, but it can be ignored until simpler cases lmve besen examined,

Notice that the model lends itself equally well to analysis of evolution
using the "classical" concept of the genome as a series of independent loci,
in which the i'th locus can be filled by any of k; different alleles.

A fundamental characteristic of a Darwinian game is that the set of
possibilities, S can be represented by the set of all possible sequences of
L places in which the i'th place can be filled by any symbol from an alpha-
bet of ki symbols, and the alphabet available to fill each place is not

altered by the previous filling of any other place. The assumption that the
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genetic material could be represented by such a linear sequence of symbols
was made by the writer in several earlier models of natural selection, and
justified by analogy with empirical genetics. Here, however, it las been

shown to be a necessary condition for evolution by selection.
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IV An Ana;ysis'of Simple Darwinian Games

The ranking system adopted by the selector, and the size of the
alphabet available to fill each place in the sequences which represent
the set of possibilities, have fundamentally important effects on the
course of a Darwinian game., Nevertheless, many of the conclusions to
be drawn from an analogy between organic evolution and a Darwinian game
can be illustrated by games in which these two factors are kept as sim-
ple as possible. This section will therefore be devoted to discussion
of variations on a game in which S consists of all possible sequences
L places long with an alphabet of two symbols available to fill each
place, in which there is only one right answer, and in which the referee
nominates the symbol filling the i'th place in the right answer as the
correct i'th symbol, and ranks the possible sequences by the number of
correct symbols each contains.

In organic evolution, there are four symbols available to fill each
place in the genetic material, if one uses the DNA molecule as a model,
or a variable number of "alleles" if one treats the genetic material as
a sequence of classical loci. There are many "right answers", and the
environment ranks genotypes in a much more complex way. One will there-
fore expect the present model to lead to incorrect conclusions from time
to time, but each such error should be explicitly attributable to one or
more of the oversimplified assumptions stated above, and should be capable
of correction by substituting more realistic though more complex assumptions.

At each trial the player must submit his best past guess (BPG) and an
altered copy of it to the selector. There are many ways in which an altered

copy could be prepared, but (unless otherwise stated) let us here assume
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the one most amenable to mathematical analysis. Let the player delete

m symbols from randomly chosen places in the BPG, and replace them by m
symbols chosen at random from the appropriate alphabets. Let us say he
deletes m symbols forming the deleted set sy, and in their places inserts

m symbols forming the inserted set s;. OSometimes, of course, the same

symbol will occur in both S4 and s;j, so that in general the next guess
will differ from the BPG in fewer than m places.
At a given stage in the game let us say that the BPG contains W = wL

incorrect symbols, and R = (1 - w)L correct symbols,

The Simplest Possible Darwinian Game.

The simplest possible case is that in which a single player submits
his BPG and one altered copy of it to a perfect selector at each trial.

The probability that a symbol in s, is correct is (1L - w). The
probability that a symbol in s; is correct is 1/2. A gain will occur if
and only if s; contains more correct symbols than sy, The size of the gain,
measured by the increase in R, is the difference between the number of
correct symbols in sy and the number in sj. For any value of m, therefore,

Gy, the expected gain per trial can be calculated from a table like Table

2, in which:

1. The probability p(x) that s; contains x correct symbols is given
at the head of each column;

2. The probability p(y) that sy contains y correct symbols is given
at the left of each row;

3. The difference (x - y) is given in the body of the table, when it
is positive;

he Gy = ZE:p(x). p(y).(x = y) for all positive values of (x - y),



Table 2 Method of calculating the exact value of the
expected gain per trial, Gy, for a given value
of m (number of symbols deleted and inserted)

and w (frequency of incorrect symbols).

See p. 49.
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More formally,

DI T O o R Gl PEE

y<x

For example, from Tables 3, 4, 5 and 6, it can be computed that:

Gy = w/2;
Gy = (W + w)/2;
Gy = (3w + W)/8;

G, = (w+ 6w + 2w - wh) /b3

and so on,
If m is large, this form of computation becomes impractical. How-
ever, if m is large both X and y will be approximately normally distributed,

and so will (x - y). In a normal distribution with unit variance, let

I z
P(u) = e .dv

i.e. P(u) is the one-tailed normal probability integral, as given for
example in Table II1 of Fisher and Yates (1957).

Let P-l (p) represent that value of u for which P(u) = p; i.e.
P'l(p) is that normal deviate which is exceeded by a fraction p of the
population, P"l(p) is closely related to the probit of p, but because of
the way probits are conventionally tabulated P-l(p) can be more conven-
iently evalwated byfinding p in the body of a table of the normal probab-
ility integral and reading the corresponding value of P’l(p) from the

margins of the table. E.g. Fisher and Yates' Table IIl1 shows that P'l(O.3085h)



Tables 3, 4, 5, 6 Data for calculating Gy, Gp, G3, Gy
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1 0
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2 0
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2 | (aw)? 0
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T4TLE 5

x
3 2 1 0
probatilityl 1/8 3/8 3/8 1/8
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1| 31w 2 1 0
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= 0.5 and, conversely, P(0.5) = 0.30854.

If m is large, the number of correct symbols, X, in the inserted set
has a mean m/2 and variance m/L; the number of correct symbols in the
deleted set has a mean (1 - w)m and variance mw(l - w); and their differ-

ence, (x - y) has a mean m(w - 1/2) and a standard deviation

=t /m [+ wi-w)]

A gain occurs only when (x - y) Do, i.e. when (x - y) deviates from

its mean by

L.
m (% W) s :
- standard deviations. Therefore the fre-

C VeE]

quency of a gain is given by

nfh-v)
Vo)

f=Plu) =P

Those members of a population which exceed the mean of the jpopulation

by more than u standard deviations, exceed it on the average by

-
P [% P(u):l standard deviations.

Therefore, when m(x - y) exceeds zero, its mean size is
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Hence G = Fg = Pw) m(-;:_w)+ o P-'I:-'i P(u)]

and since u

o - PP, P(u)] -u

Though cumbersome in appearance, this expression can fairly readily
be evaluated by reference to a table of the one-tailed normal probability
integral.

G, is displayed graphically as a function of (1 ~ w) for various
values of m in Figure 5.

Figure 5 can serve as a basis for several biologically suggestive
conclusions.

First, whether m remains constant throughout the course of the game
or changes with time in such a way that G, always has its maximum possible
value, the rate of increase in R, the number of correct symbols, decreases
as R increases. If m is constantly 1, for example,

dR
an - g =
dt 1

w_L-R
2

Similarly, beginning with the relation.%g = 5% 5 if t is the number of
past trials, one obtains by cross-multiplying, integrating both sides, taking
antilogs, and settling the constant of integration = 1/2, since W/L = 1/2

when t - O,

Nll
et

=
o= = o
> €



Figure 5 The effect of changing m, the number of deleted
and inserted symbols, on the relation between w,
the fregquency of incorrect symbols, and G, the
expected gain per triagl, in a simple Darwinian

game .
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The number of incorrect symbols, W, therefore "decays" exponentially
like atoms in a radioactive substance.

Therefore, although this particular guessing game is a greatly over=-
simplified model of organic evolution, it serves to suggest that evolution
must have been a great deal faster, in some sense, in its earliest stages
than it is now. Of course this is what one would expect, on the common
sense basis that as organisms become more highly adapted, it becomes
increasingly difficult for them to become still more highly adapted. Among
the most primitive organisms, shortly after the first self-reproducing
structures had somehow been spontaneously generated, even a large random
change had a fairly high probability of being a biological improvement.
Among horses, butterflies, and jellyfish, however, most random changes
must render their victims less adapted, and large changes are almost always
deleterious.

Simpson (1944) has attempted to explain the many gaps between large
taxonomic groups, such as orders, in the fossil record by postulating that
",..the basic differentiation of each order took a much shorter time than
its later adjustment, spread, and diversification. In the magnitude of
structural change involved, this basic part is comparable, on the average,
to the subsequent changes... The change, for instance, from a carnivore or
insectivore to an early cetacean is much more profound than the recorded
change from early to late cetaceans... It follows that the basic differen-
tiations must have proceeded, on the average, more rapidliy than the later
recorded evolution, almost surely twice as fast and probably more, quite
possibily ten or fifteen times as rapidly in some cases." Concerning the
wing of'bats, Simpson states ".,.its recorded rate of evolution is effective-

ly zero. The bat's wing has not essentially progressed since the Middle
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Eocene... Extrapolation of this rate in an endeavour to estirate the time
of origin from a normal mammalian manus might set that date before the
origin of the earth."

Simpson attempts to explain this more rapid evolution in the early stages
of newly arising orders by variocus assumptions about the structure of the
populations involved. Possibly, however, at least part of the phenomenon can
be explained as a result of the fact that almost any change in the wing of
a madern bat is sure to be detrimental, but the imperfect wings of those
Eocene insectivores which were just beginning to flutter from branch to
branch must have been much more easily and rapidly improvable by random
alterations,.

A second conclusion to be drawn from Figure 5 is that the optimum
strategy in a Darwinian game requires m to decrease with time. The player,
however, has no record of the number of trials he has made, and therefore
cannot adjust m to its optimum value (that which maximizes G ) at each
stage in the game. The only strategy available to a single player is to
choose a value for m and retain it as a constant throughout the game. If
the game is difficult, m must be small,

Now imagine tmat the game is being played competitively. There are
several players, and from time to time one or more of them, those with the
BPG's of lowest rank, are expelled from the game., If the players have chosen
different values of m, and if eliminations take place early and often, the
players who survive the eliminations will be ones who have chosen large
values of m, and therefore have the highest expected rates of gain early in
the game, These players, however, will be unable to go on and find the right
answer within the required number of trials, as a large value of m will perw

mit only very slow progress later in the game,
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Organic evolution can be analogized to a competitive Darwinian game,
in which the players are reproductively isolated populations of organisms
in competition with each other. Very early in evolution, if one such pop-
ulgtion adopted the strategy of changing several places at once in the
sequence of nucleotides making up its genome, it would improve more rapidly
than competing populations and eliminate them if competition was severe.
Later, however, the surviving population would be able to improve only very
slowly, and could not give rise to the highly adapted organisms we see
about us. In other words, the strategy leading to most rapid early improve-
ment would lead to extremely slow later improvement, but one would expect
the fast starters to eliminate the slow starters, so that the survivors of
the earliest period of evolution would be ill-suited for rapid later evol-
ution.

One can suggest three hypotheses as an escape from this problem:

a). Only one kind of primitive organism existed, which just by chance
was a '"slow starting" type capable of fairly rapid evolutionary progress
continuing for a long time.

b). Several populations of early organisms existed, but they were
isolated geographically or ecologically, or for other reasons did not come
into competition with each other until the "slow starters" had had time to
catch up and surpass the fast starters.

¢c). m, which is a sort of index of mutation size and mutation fre-
quency combined, is to some extent a genetic variable itself, so that a
population with large m which survived early competition would in turn give
rise to several populations with different values of m, of which the one
best suited for that stage of the evolutionary process would in turn survive,

to give rise to further populations differing in the value of m.
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The third of these hypotheses seems the most attractive,

Given a t-record, an intelligent player could compute the value of m
to use for most rapid progress. The imaginary players in a competitive
Darwinian game have no t-records, and cannot do this. The only source of
information available for assistance in finding the best mutation size is
therefore the selector. Selection must therefore go on not only between
alternative guesses made by the same player -- i.e. between individuals
within a’population -- but between players as well, i.e. between whole pop=-
ulations,

A good strategy in a Darwinian game can therefore be discovered by a
sort of second order Darwinian game, in which each guess is a player in the
ordinary game. One cannot continue to expand indefinitely in this way,
however. Bach guess in the evolutiomary gare is an organismj; billions of
organisms exist simultaneously, each with an average duration of perhaps
only a few hours, so that an enormous number of guesses can have been made
in the few billion years the game has gone on. BEach guess in the second order
game is a population, of which perhaps only a few hundred million can exist
similtaneously, and with an average duration of perhaps many years. The
possible number of guesses which might have been mde in a third order game,
in which each trial involves a population of populations, is again much
smaller. One rmst keep in mind that by choosing between two second or third
order guesses, the selector does not supply any sort of super-information;
at most it provides one bit of information. The discovery of a good value
for m may be the result of selection between populations; the discovery of
a good method of controlling the variation of m might, just possibly, be the
result of selection between populations of populations; but the discovery of

a genetic material whose own structure serves to control the parameters of



57

its variability must have been mostly a matter of blind chance,

A third conclusion suggested by Figure 5 is that mutation size, in
addition to mutation frequency, is an important parameter in assessing
the effect of a mutagenic agent. In highly evolved organisms (those in
which (1 - w) hes a high value) the probability that a mutation is delet-
erious increases rapidly with the size of the mutation., "Size" in this
context of course means the size of the change in the genetic material it-
self; the number of nucleotide pairs disarranged, for example, The fact
that mutations with large phenotypic effects are more likely to be delet-
erious than those with srmll phenotypic effects has long been accepted,
but the classical concept of the gene does not allow one to distinguish
mutations of different genotypic sizes, except in the case of chromosomal
aberrations,

An important quantity to be calculated in a Darwinian game is the actual
number of trials required to win the game. Whether or not each guess leads
to an improvenent is a matter of chance. One may therefore suspect that if
several players operate at once, independently of each other (neither com-
peting nor exchanging information) one of them may win in considerably
fewer trials than the expected number required by an average player. To
test this suspicion requires determination of the variance of W in a pop-
ulation of independent players.

Assuming that each player retains a constant value m = 1, and that each
player begins the game with a random sequence of L symbols, for each player:

Probability that the i1'th symbol is initially incorrect = 1/2,

Probability that the i'th symbol, if initially incorrect, is not
corrected at the first trial =1L E 1/2 .

Probability that the i'th symbol, if initially incorrect, remains ine
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.
correct after the t'th trial = (L - 1/2) .
L

The probability that the i'th symbol is incorrect after t trials is

1 - t
therefore 3 (L_ELQ) .

If W is the number of incorrect symbols in the BPG, the mean (W) and

standard deviation (O ) of W after t trials are

T
= _Lfi-£\ + V/L(A:it_“L_QLEZt
Z L ) - 2\ L zZ\ L

When t is large and W therefore small, the number of incorrect symbols

- 1
approaches a Poisson distribution with mean and variance W = O'\:,' = ...l'_(___&_)

2

Hence, if n independent players are operating, there exists an even

chance that one will win when t = tﬁ such that

.-W ’
€ =w

W o= log n (where "log" without subscript means natural logarithm).

L(1-3 )
= 7-) = log n
2 L
tt . logl -1log 2 - loglogn
log L = log (L --i—)
dlogL _ i | ]
Since al, =T , if L is large logl - log (L -—z)zi—f H

hence t¥ = 2L(log L - log 2 - log log n).

Only if log n is of the order of L (where n is the number of independ-
ent players) is tk appreciably reduced below the number of trials required by

a single player to win. But if log n is of the order of L, n is of the same
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order as eL. The total number of members of S, the set of possibilities

one of which is the right answer, is 2L. Hence, many players acting siml-
taneously but independently will discover the right answer in an appreciably
shorter time than a single player only if the number of players is an
appreciable fraction of the total number of possibilities among which the
right answer lies. Biologically, this implies that a large population of
organisms which are neither interbreeding, cooperating, nor competing with
each other will not yield highly adapted forms much more rapidly than a
single line of organisms.

An interesting expression arises if one repeats the above computation
for the case of a player who always changes a single symbol, at every trial;
i.e. who does not take the symbol to be inserted at random from the approp-
riate alphabet, thus failing to make the new guess differ from the BPFG in
half the trials, but specifically inserts the alternative to the deleted
symbol. The mean and variance of W can be calculated in a manner parallel

tc the case above, yielding

— \
W =02 = %(LT:") , if W is large; and

L/ \t®
2 'If“ = Jog n.

From the identity

x+1) o j i i '
IOg(x) 2 [Z)H—I +3(z7(+l)3 +5’(z>r+u)5+‘J ?

it follows that log ( L > is a trifle larger than

s if L is very large.

-

A
Hence t¥ =~ (L -4)(log L - 1og 2 - log log n).
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Notice that L = log2N = H, where N is the number of possibilities in
the original set of possibilities, S, and H is the entropy of S in bits.
Therefore, very roughly,

tﬁ = H log H.

It can easily be shown that if the player could retain complete records
of all past trials, he could win this game with certainty in H trials. The
deficiencies in his data storage facilities increase the time required to
win by a factor of about logH, and do not permit the player to be certain
of winning in any number of trials.

Nevertheless, to achieve a 50% probability of winning this game by
blind chance would require 2H-l guesses. If H is large, the difference
between H log H and 2H-l is the difference between plausibility and silliness.
In a mathematical model of a physically real Darwinian system, it is plause
ible to imagine that the "player" may make 230,000,000,000 trials, but

ridiculous to imagine that he may make 29’999’999’999_

A Game Permitting Many Simultaneous Trials.

I; the total number of trials the player is pemitted to mke in a
Darwinian game, may consist of two components, Tg, the number of simultan-
eous trials he may make, and Tc’ the number of consecutive trials he may
make. If the game is to be non-trivial, the product TSTc must of course be
very much smaller than N, the total number of members in the set of possibil-
ities.

Simultaneous trials are in general less useful to the player than the

same number of consecutive trials. If there are lO12 possibilities, for

6

example, the player may easily be able to win in 10~ consecutive trials,

but cannot win if he must make lO6 guesses all at once, In real Darwinian
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systems, however, T, is limited by the amount of time available to the
player, and Tg by the amount of available space, and.the two are independ-
ent; reducing T, does not compensatorily increase Ty, A species which
fails to expand to fill its available habitat does not receive an increase
in the number of generations available for its evolution as a reward. The
player in a Darwinian game should therefore use a strategy which utili;es
the available number of simultaneous tridls as effectively as possible.

If the selector is of order greater than 2, it is clearly an advantage
to the player to be able to make as many guesses per comparison as the
order of the selector. 1In general, however, the order of the selector will
be considerably smller than Tg. It is therefore important to discuss the
possibility of a procedure in which it is useful to make a number of guesses
which exceeds the order of the selector at each comparison.

It has already been shown above that running T, independent games
simultaneously (each with a binary selector) only very slightly reduces the
expected number of consecutive trials required to find the right answer.

It may be stated without proof that running Ts/r independent games simul-
taneou§ly, each with a selector of order r, has a similarly unimportant
effect,

Let us therefore consider a game with a selector of order r. A per-
fedt selector of order r will reject all but the best member of a group of
r sequences simultaneously presented to it, or all but the best n/r members
of a group of n sequences. The player must therefore submit r sequences
to the selector at each comparison, and a comparison will be considered to

comprise (r - 1) trials. m retains its former meaning as the number of sym-

bols deleted and replaced in each altered copy of the BPG; f is the probability

that an altered copy is higher in rank than the BPG; and g 1s the average
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number of correct symbols by which an improved sequence exceeds R, the number
in the BPG.

Without attempting a detailed proof, which seems unnecessary and would
be complicated by the need for exactitude where approximations will be given
below, the writer may state the following conclusions:

If _i_'<-;]_“—l when m has that value which maximizes G, for a binary
selector, t_;'ne optimum strategy is to retain the same value of m for the higher

value of r. The expected rate of gain per comparison is then very nearly

(r = 1) times as large as with a binary_selector, and the expected rate of
gain per trial is practically unchanged.

If i);}_’-i when m has the value which maximizes G, for a binary
selector, the optimum strategy is to increase m until f = }%—f" The expected
ra,fe of gain per comparison is then larger than with a binary selector,
though by a factor of less than (r - 1), and the expected rate of gain per
trial is decreased. The reason is simply that an increase in m decreases f
by a larger factor than it increases g.

These conclusions rest on the fact that it is never an advantage to
obtaln more than one improved sequence per comparigon, as only one can be
retained. If f is so large that more than one improved sequence occurs at
a comparison, the optimum strategy requires an increase in m, decreasing f
to the value at which only one improvement occurs per comparison, but ine
creasing the average magnitude of the improvements which occur. The compli-
cations required for exactitude arise from the fact that if f is in the
vicinity of r—:-L-]-. s for a given value of m, more than one improvement will

inevitably occur at some comparisons and none at others. To optimize the

value of m requires finding that value of f which minimizes the joint effect
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of these two deviations from expectation. To do so is mathematically
difficult, and would not alter the approximations given above enough to
affect their usefulness.

An important problem arises if the player may submit n > r sequences
to the selector at each comparison. The selector, of order r, passes the
best n/r sequences from the group. The player then has two possible courses:

a) Choose one of the passed sequences to be stored as the BPG, and
discard the others. Since this choice must be made without guidance from
the selector, it is effectively at random, and the result is exactly the
same as if the player submitted only r sequences of which the selector
passed only one,

b) Store all n/r passed guesses as BPGs, If n is already as large
as the rules of the game permit (i.e. n = Tg), the player can then make
only (r - 1) copies of each BPG for submission to the selector.

The latter is obviously the only one of the two alternatives which can
conceivably give the player an advantage from using more than r sequences
per comparison.

As a simple case, assume that R, the number of correct symbols per
BPG, is already so large that when m has its optimum value the prcdbability
of a gain larger than one correct symbol is negligible. Assume also that
L is so large that a small increase in R does not appreciably change f,
Assume too that the player changes m symbols in each altered copy of a BFG,
i.e. does not merely delete m symbols and insert m chosen at random, but
inserts m alternative symbols, so that the copy actually differs from the
BPG at m places.

At a given comparison, the number of altered copies of BPGs submitted

to the selector is _{1_(%-_1_2 . Among these, ﬂl—(-;—.'-]-‘)- will be improvenrents,
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and will be stored as BPGs of rank R+l. A further improvement, i.e. a

sequence of rank R+2, can occur only among copies of BPGs of rank R+l.

fnfr-l}2

r

2 2
ment will occur, and £_2££:ll_ BPGs of rank R+2 will be stored. By a
f3 -1 3
£20(r-1)7 BPGs of rank R+3

r

At the next comparison, therefore, opportunities for improve-

similar argument, at the third comparison
will be stored.

The outcome is clear. If f)’;%i » a situation will soon be reached
in which an improvement is made and stored at every comparison, no matter
what value n may have (as longas n > r). If £ < ;%Ej, a situvation will
soon be reached in which at every ocomparison only one BPG exists among
copies of which opportunities for improvement can arise. This situation
too will arise no matter what value n may have; a large walue of n may
delay it, but cannot prevent it. The remaining % ~ 1 BPGs are then use-
less, contributing nothing to the speed at which the game can be won., It
would appear that the expected rate of gain per comparison can be only
transiently increased by an increase in n/r, the number of BPGs stored

(or, in biological terms, the size of the breeding population).

1
r-l ?

make good use of the possibility of submitting simultaneous guesses. It

If £1< however, there is a procedure by which the player can
consists of submitting some true copies of each BPG to the selector at each
comparison, along with a number of altered copies; let us say, c true
copies and r-c altered copies. If one of the BPGs is superior to the
others -- let us say it has a rank R + 1 -- the result of this stratagem

is that after one comparison, there will exist c BPGs of rank R+l, c2
after two comparisons, and so on, until all of the n/r BPGs have a rank

of R+l, and are true copies of the first to achieve tlmt rank, or until

a sequence of rank>R+2 arises among the altered copies of the BPGs of
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rank R*1l. In other words, animproved sequence will proliferate geometrically,
at the expense of those which have not improved, until true copies of it
constitute the entire “breeding population® or until a further improvement
arises among its altered "descendants",

In the first comparison after a BPG of rank R+1 has been stored, (r-c)
opportunities for imprcvement will occur; c(r-c) opportunities will occur
at the next comparison, cz(r-c) at the next, and so on. This geometric
increase in the number of opportunities for improvement can continue, how-
ever, only until the number of PBGs of rank R*l reaches n/r, after which
opportunities for improvement occur at a constant rate cn per comparison.
The faster the number of opportunities grows during the geometric phase,
the more slowly it grows during the linear phase.,

Figure 6 shows the way opportunities for improvement accumulate in
the case in which n = 10,000, and r = 10, for various values of c. If f
is rather large, so that an improvement will be expected to occur about
once in 1,000 opportunities, the optimum value of ¢ appears to be about 83
i.e. the "mutation rate", (r-c)/r, should be low. If f has certain inter=
mediate valﬁes, so that an improvement will be expected once in about 10,000
opportunities, it appears that c should have an intermediate value of about
5, If f is very small, so that 100,000 or more opportunities must accumulate
before an improvement is expected, ¢ must be small, i.e. the mutation rate
should be high. At intermediate values of f (in the neighbourhood of
1/10,000) choice of the wrong value of ¢ may increase the number of compar-
isons required to find an improvement by a factor of about 2, but the same
sort of deviation from the optimal strategy may increase the time require-
ments by a much larger factor if f is much smaller than 1/10,000.

The exact value of ¢, as a function of n, r, and f, which minimizes



Figure 6

The accumulation of opportunities for improve-
ment in a Darwinian game in which 1,000 BPGs

are stored at each comparison, and ¢ true copies
and (10 - c) altered copies of each are submitted

to the selector at each comparison.
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the expected number of comparisons required to find an improvement, is
difficult to compute. Nevertheless it is clear that if f<(-;%i , an ime
provement cannot be expected to occur until about :%%g—g comparisons
have taken place. The time required for an improvement to occur will be
a minimum when n is of the order of 1/f; longer times will be required if
n is smaller than t1is, but shorter times will not be expected if n is
greater than 1/f.

Let us now try to place a biological interpretation on these results,
It must be emphasized that this game is a model of a hypothetical population
of completely asexual organisms, in which all deaths and sterility are
selective; no such thing as random death or accidental fal lure to reproduce
occurs.,

n/r, in this model, is the size of the reproductive population, each
member of which produces r offspring. Since the population is fixed at a
maximum size of n, r-l offspring per parent must die before the next act of
reproduction, As all death is selective, therefore, r-l serves as a measure
of the severity of selection. With a perfect selector, the severity of

selection increases directly with the reproductive rate of the population.

-C . . . .
I;— is the mutation rate, the fraction of offspring differing from their
parents,

Early in evolution, while the population was still so imperfectly adapted
to its environment that a high probability existed of an improvement occurring
among the offspring of a single parent, such a population would evolve fastest
if its mutation rate were high: Iil . buring this period, evolutionary pro-
gress would go on just about as rapidly with a breeding population of only

one as it would in a much larger breeding population. This suggests the spec-

ulation that early evolutionary progress may have taken place as readily in
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splash pools by the seashore, in damp places under rocks, and so on, as in
the great bulk of the ocean. Improvement may have been as fast in each of
innumerable small populations as in a single large population, and, in the
former, would be accompanied by tremendous diversification as well.

As the population became better adapted, the probability that a muta-
tion would be an improvement would decrease until an advantageous mutation
could no longer be regularly expected to occur among the offspring of a
single parent. The rate of evolutionary improvement would then inevitably
fall, but its decrease could be retarded and reduced by a reduction in the
mutation rate, which would permit those advantageous mutations which did
occur to proliferate geometrically. During this period it would become an
advantage for the breeding population to increase, until the total number
of offspring per generation was approximately of the order of the reciprocal
of the probability that a single mutetion would be advantageous. A larger
breeding population would confer no additional advantage.

Bventually, as the adaptedness of the population continued to increase,
the population would attain its maximum possible size, and the probability
that a mutation would be advantageous would fall below the reciprocal of the
population gize. At this stage, it would be advantageous for the mutation
rate to begin te rise again, although it should never return to its earliest
high value of*zil.

Throughout the process, an increase in the number of offspring per parent
can lead to a proportional increase in the rate of improvement, as long as
the number of offspring per parent does not exceed the reciprocal of the probe-
ability of an advantageous mutation. At no stage in the process, howsver,
does an increase in the size of the breeding population result in a pro-
portional increase in the rate of increase of adaptedness,

It is hard to say how far these conclusions could be applied to a more
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realistic population model. They do make it clear, however, that repro-
ductive rate, mutation rate, and mutation size must be independently adjust-
able if organisms are to achieve anything like the optimal evolutionary

strategy made possible by large population sizes.

A Game with an Imperfect Selector.

To be a more realistic model of natural selection, a Darwinian game
must incorporate an imperfect selector. An imperfect selector is one which
does not always repeat the same response when called upon to repeat the
same comparison, i.e. which indicates that sequence A is better than sequence
B at one trial, but indicates that B is better than A at another. Clearly,
if the selector is to supply any information at all to the player it must
give the correct or true response more than half the time.

The simplest case is a game with a binary selector, called upon to
compare the BPG with a single variant at each trial. Let the probability
that the selector will correctly pass the better of the two sequences at
each trial be p, and the probability that it will erroneously pass the worse
of the two sequences (which will tnen be stored as the BPFG) be (1-p) = q.
Let the player make his guesses differ from the BPG at a single place. Then
the probability is w/2 that a variant is better than the BPG, and (1-w)/2
that it is not as good. Therefore:

The probability that a vardant is not as good as the BPG and is passed
by the selector = pw/2;

The probability that a variant is not as good as the BPG, but is never-
theless passed by the selector = q(l-w)/2.
The BPG will be expected to improve until w reaches that value at which

guesses worse than the BPG are being retained as frequently as guesses better
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than the BPG, i.e. until

pw = (1-p)(1-w),
p _ 1w
lep w ?

i.e., until R = pL. The rank of the BPG will rise to a value of pL, and will
then fluctuate about that value, but cannot rise consistently above it.

The behaviour of an imperfect selector of higher than binary order, or
in a game in which several BPFGs are stored per comparison, is more complicated.
It seems to be most easily approached through a modification of Fisher!s
(1930) "fundamental theorem of matural selection": the rate of increase in
fitness of any organism at any time is equal to its genetic variance in fitness
at that time.

The fitness, F, of a type of organism is tae ratio of its frequency in
the next generation to its frequency in the present generation. In a Darwinian
game, it may be defined as the average number of sequences of a given kind
stored as BPGs out of r identical copies submitted to the selector. The fit-
ness of a sequence may therefore range from O to r, and the mean fitne§s of
all sequences submitted to the selector at a given comparison is F=1,

One may demcnstrate Fisher's theorem thus (following Li 1955):

Consider a set of guesses of fitness Fy, Fop, «..F; ..., with freguencies

fl’ .f2,000 fi teoey Whem

ZEg-=F=1; |

The variance in fitness =V = Zfi(Fi - 1)2 = XfiFiz -1,
After selection, f{, the new frequency of BPGs of fitness Fj, is given

by t
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i jz: : 21_ A
Hence the new mean fitness = fi F, = £iF1 »

and the increase in mean fitness ; ACS'F = :E:IiFf -1 =V,
Hence, the increase in mean fitness is equal to the variance in fitness.
For the purposes of this thesis, let us extend Fisher!s theorem by

defining the superiority, Z;, of the i'th kind of sequence, as

Z; =TF4 -_1.

The superiority, Z;, of the i'th kind of sequence, is therefore the
number of additional BPGs of the i'th kind expected to be stored, over and
above the one previously stored, for each r sequences of the i'th kind
presented to the selector. The mean superiority, 2, of all guesses pre=
sented to the selector is of course 7 = 0, and Zj cannot be less than -1
nor greater than r-l.

If guesses of superiority Zj have frequency fi, BPFGs of superiority
Z; will be stored with frequency fj(1 + Z;). It follows that the changes

due to selection are:

Zfi(l + Zi)zi = Zfizi + ijZ%
A FA ij??

AZfiz§ = Zfizf

AT g -y o

If the frequency distribution of guesses with various superiorities

z

L}

presented to the selector is given, these relations gllow the frequency dis-

tribution of the BPGs which will be stored to be computed in detail. Notice



that the selector always increases the average superiority, but may increase
the mean squared superiority, &ecrease it, or leave it unchanged, depending
on whether or not the frequency distribution is skewed. If a series of
comparisons is made without mutation, so that every guess presented to the
selector is a true copy of a BPG, the improvement,A-Z', mde at each
comparison may be larger than, smller than, or the same as the improvement
made at the previous comparison.

If Z = 0, . ng, fligg; etc., are the second, third, etc. moments of
the frequency distribution. If 7 0, this simple relation is no longer
true. Nevertheless, . ng; fgj; etc. are still simple properties of the
distribution, and in fact must be calculated before the moments can be
found.

In a Darwinian game, the superiority of a sequence must be an increasing
function of its rank. Let us say that if a sequence of rank R has a super-
lority Zi’ a sequence of rank R+l has a superiqrity of Z; + a;, and a
sequence of rank R-1 has a superiority Zy - bj. Notice that if a; + bi = I,
the selector is perfect. An imperfect selector thersfore is one in which
ay and by have small values.

Consider a set of BPGs in which Z = z, where z is a small positive
quantity to be defined below. Take those BPGs, forming a fraction f; of
the entire set, in which Z = Zi’ Among the copies of these submitted to the
selector:

a fraction Eig w are of superiority Z; +a; ;

a fraction-%?g (1-w) are of superiority Zi -bs

. c
a fraction 7

7 are of superiority Z;,
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1]
O
- .

where Zfi { Z; + 1;79- way - (1-w) bi]

r=c '
i.e. T £ w(aj + by) - by = oZ,

2z 1is therefore the quantity by which mutation reduces the mean super-
iority of the guesses below the mean superiority of the BFGs from which they
were derived. Notice that as w becomes smaller, i.e. as the mean rank of
the BPGs increases, 2z assumes progressively larger values, if other things
remain equal. As a population becomes more highly adapted, mutation occurring v
at a constant rate exerts an increasingly severe effect on its mean superiority.

Among the BPGs, 78 = Zfizi.

Among the guesses submitted to the selector,

T2 ¢ 2 rec / 2
2 =x Zfizi YT Zfi [w(zi +a; )" + (1-w) (23 - bi)z_J
= § ) nr? e ES 2_fi {z;-% + 223 [W(ai +bi) - bi] + w(af - bf) + b%}
2  T=C .
=Zfizi + 225 gy { 224 l:w(ai +by) - bi] + w(a? - b%) + b? } .

r—

Hence mutation changes 22 by

T-C ' 2
—-r— Zfi {ZZi [w(ai + bi) - bi] + w(ai - bi) + b%}.

Now, a; must in general nearly equal bi’ since

ai-—-b

i+ 1
Also, sinqe Zf‘izi“ = 2, the mean value of 2Z; must tend to increase

as W decreases.
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Hence, by inspection, the quantity by which mutation changes Z
will tend to assume decreasing negative values as w becomes smaller,
3.5 3
Among the BPGs, z = fizi >
and by a similar procedure, it can be shown that mutation tends to change

—

23 by the quantity

I=c Zfi 322 ij(ai +by) - bi] + 324 [w(a§ -b%) + bﬁ] + w(ad + b%)-bi
This quantity, too, will tend to attain progressively more extreme
negative values as W becomes smaller,
As w decreases in size, therefore, mutation has the following effects
on the distribution of superiority among the guesses submitted to selection:
a) It tends to produce progressively larger decrements in mean super-
iority, thus increasing  the increment in superiority which must be produced
by selection if selection is to recoup the losses due to mutation.

—

b) it tends to reduce 22, the quantity by which selection can increase
2

the mean superiority. Unless Z° exceeds z (the decrement in mean fitress
produced by mutation), the selector cannot pass a set of sequences in which
the mean superiority exceeds that of the set of BPGs from which the guesses
were derived.

c) It tends to skew the distribution toward the left. If the distribution
becomes skewed to the left (i.e. if it initially had no skew to the right),
then selection as well as mutation will tend to reduce -—;E, still further
reducing the ability of the selector to restore the mean superiority lost by
mutation.

The analysis of these relations has not yet been completed. Neverthe-

less, enough has been stated here to justify the tentative hypothesis that

as w becomes small, the distribution of superiority among the BPGs may reach
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a condition in which 22 is small, Z3 is negative, etc., and the selector
is unable to add wore to the mean superiority than mutation subtracts from
it at each comparison, Improvement, the increase in the mean rank of the

BPGs, could not continue once such a situation was established.

The Value of Recombination,

The difficulties facing the players in the games describea above all
stem from the fact that in preparing an altered copy of a BPG, the deleted
symbols are drawn at random from a population in which the frequency of
correct symbols is (1-w), but the inserted symbols which replace them are
drawn from a population in which the frequency of correct symbols is only
1/2. Consequently, any change in m which increases the sizes of those gains
which occur, simultaneously and usually disproportionately reduces the
probability of any gain at all., If the selector is imperfect, any system
of mutation which increases the dispersion of superiority among the guesses
necessarily also causes a decrease in mean superiority. As a result there
are severe restrictions on the rate at which improvement can go on, and if
the selectpr is imperfect there are limits beyond which improvement cannot
be carried,

There is one, and only one, escape from these restrictions. Somehow
the player must be permitted to draw the inserted symbols from a population
of symbols in which the frequency of correct symbols is (l-w). Only one
such population of symbols exists; the other BPGS, in a game in which the
number of guesses submitted to the selector per comparison exceeds the order
of the selector,

Any system of guessing in which each guess submitted to the selector

consists of a combination of parts from two or more BPGs may be called re~

combination,
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Consider two BFGs L symbols long containing Rl and R, correct symbols,

respectively, ar}d Wy and W, incorrect symbols, where (Rl + Rz)ﬁ= R » and

(wy + W,)/2 = W. Recombination between the two is carried out by combining
L/2 symbols from each to form the recombinant. The expected number of correct
symbols in the recomoinant is R and the expected nunber of incorrect symbols
is W. Among a number of recombinants formed in this way between the same two
parent BPGs, the ranks of the recombinants will be symmetrically distributed
around their mean R in such a way that, if D is the deviation of a recombin-

ant from the mean,

oW ‘

from which it follows by simple substitutions that
D% =% (1 - W)L )(i .

Since the mean value ofXQ:L is one, it follows that the ranks of the
recombinants are symmetrically dist;'ibuted around the mean rank of the two
parent BPGs with variance w(l - W)L,

If the BPGs have a mean ra.nk/R\, and a variance in rank V, and recombine
in random pairs, the ranks of the recombinants will bg distributed around
values of R having a mean’® and variance 2V/4, or V/2. If ¥V is very large
relative to w(l - ;)L, recombination alone, without mutation or selection;,
will tend to reduce V by about half at each repetition, until V approaches
;-v'( 1- w)L. On the other hand if V is smaller than -v?(l -;)L, recombination
alone will raise its value to W(1 - W)L in a single step. Recombination
therefore will tend to produce a set of guesses with a variance in rank

w(l - w)L, with the same mean rank as the BPGs from which they were derived,
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and with ranks distributed symmetrically aboub the mean, at every com-
parison., The distribution of fitness or superiority among the guesses
will depend on the details of t he relation between rank and superiority,
but one would generally expect the mean superiority of the guesses to be
the same as the mean of the BFGs.

The advantage of recombination over mutation as a mechanism for de-
riving guesses from BPGs is therefore tlat it produces guesses with a
rather large variance in rank but with the same mean rank as the BFGs.

A fairly large gain can therefore be nade at every comparison. Mutation,
on the other hand, either yields guesses with a very small variance in
rank, or guesses with a mean rank far below themean rank of the BPGs. In
either case a gain can be expected infrequently, if w is small, and large
gaing are extremely rare.

The disadvantages of recombination as a mechanism for deriving guesses
from BPGs are serious, however. Obviously recombination cannot produce
new symbols. If none of the set of sequences with which the player started
the game contained the correct i'th symbol, no recombinant can ever contain
it and the game cannot be won.

Secondly, imagine that each sequence consists of several segments,
which are interchanged between BPGs in recombination. Then if

sequence 1: AlBlClDl"'
and sequence 2: A2B202D2...
recombine to produce four recombinants, of which the selector passes two,
half the kinds of segments present in the BPGs must be absent from the
passed guesses which form the next set of BPGs, if the selector is perfect.
Half the remaining kirmds must be lost at the next comparison, and so on.

An imperfect selector will tend to produce the same result, though perhaps
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more slowly.,

——

Zz, and hence the rate of improvement, increases with the variance
in rank of the guesses presented to the selector. The variance ;(l - ;)L
calculated above rests on the assumption that the recombining BPGs are un-
related, i.e. that the probability of one parental BPG containing the correct
i'th symbol depends sclely on W, and i1s independent of whether the other
parental BPG contains the correct i'th symbol. Two BPGs are related, however,
if they have one or more "ancestral' BFGs in common, and there will therefore
exist a "correlation between recombining BPGs" exactly analogous to Wright's
(1922) "correlation between uniting gametes". Such correlations must come
to exist unless the number of BPGs with which the player started the game
was of the order of N, the total number of possibilities, and we have excluded
this case by assuming that the game is non-trivial. To discuss this matter
further here would merely be a repetition in unfamiliar terminology of the
theory of inbreeding.

If the selector is imperfect, the superiority of a sequence, Z;, is not
in fact the abseolute increase in frequency per comparison of the i'th kind
of sequence but the statistical expectation of its increase. In a finite
povulation of BPGs, actual quantities will vary around their expectations.
If guesses are derived from BPGs by recombination an inevitable result is
that some segments ©f sequences will be lost in spite of being better than
the segments which are retained. The frequency and magnitude of such contra-
dictions of expectation will increase as the number of BPG decreases. This
is the phenomenon of random fixation or "drift" (wright 1931).

In order to procure those correct symbols which were absent from his
initial set of guesses, and to replace those which are lost by inbreeding or

drift, the player must utilize both mutation and recombination to derive
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guesses from his BPGs.

The Relation of Darwinian Games to Population Genetics.,

This analysis of Darwinian games appears to have led into population
genetics through the back door., Population genetics has of course already
demonstrated that the major features of Mendelian genetic systems are
sufficient conditicns for eveolution by natural selection. This examination _
of Darwinian games indicates that many of them are also necessary conditions,
If living organisms exist on Mars, for example, (an idea which is made very
plausible by Salisbury, 1962) Ane may be confident that the Martian organisms
will have genetic systems analogous to those of earthly organisms in many
ways, even t hough they may have a radically different biochemical basis.

The following conditions must be met if a difficult Darwinian game: is
to be won:

First, the members of the set of possibilities must be capable of being
represented by linear sequences of symbols, in which the alphabet available
to fill the i'th place is not changed by the previous filling of other places.
Except for mechanical reasons, however, it does not matter whether the poss=-
ibilities are sequences of nucleotides in nucleic acids, amino acids in poly-
peptides, magnetic impressions on spools of tape, or letters on paper.

Second, these sequences must duplicate themselves with mutations. At
least in the later stages of the process, each mutation must be small, chang-
ing only one or a few symbols. It does not matter whether the production of
such changes is left to random extermal causes, or whether they are "deliber-
ately" produced during the copying process; in either case, the lack of
adequate records forbids a systematic series of changes, and the mutations will

appear to be random and undirected,
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Third, if the selector is imperfect, the game cannot proceed very far
unless a fairly large population of such sequences exists, and each produces
true copies of itself as well as mutated copies. As a result, advantageous
mutations will tend to proliferate exponentially at the expense of the
parental sequences.

Finally, progress with an imperfect selector also appears to require a
process of recombination between sequences, so that each sequence has two
(or more) parents. This inevitably lead to analogues of such familiar gene-
tic phenomena as inbreeding, drift, and so on.

The study of guessing games adds a dimension to population genetics,
however, by indicating the'ways in which the evolutionary process will change
over long periods of time. The optimum population size for progressive evol=
ution, the severity of the deleterious effects of mutation, the frequency of
advantageous mutations, and even the necessity of recombination are all
functions of the length of the evolutionary history of a population, and

this is a quantity of which population'genetics takes no account.
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V Some Additional Complexities in Darwinian Games

Discussion of the Darwinian games chosen as examples in the previous
section sheds no light on some problems of evolution, and actually suggesis
false conclusions about others. For example, it suggests that recombination
should by preference take place between the most distantly related parents
available, although we know that in organic evolution selection has tended
to erect barriers preventing recombination beyond the limits of the species.
This deficiency of the model is obviously due to its explicit assumption
that there is only one "right answer" toward which the evolutionary player
is striving. It and other defects could be corrected by introducing a number
of further complications into the model. DMost of these would fall under one
of the_following categories:

1. Larger alphabets and unequal alphabets.

2. The existence of more than one right answer.

3. M@sleading ranking systems, involving

a, Interaction between symbols,
b. Unequal weighting of different places in the sequence.
4e Indirect selection.

5. Secular changes in the selector.

Larger Alphabets and Unequal Alphabets.

Darwinian games in which more than two symbols are available to fill
each place in the sequence should be studied. Of special interest would be
a game with four symbols available for each place, corresponding to the four
nucleotide pairs in the Watson-Crick model of DNA, and a game with different
numbers of symbols available for each\place, corresponding to the different

numbers of alleles available to fill different loci in classical genetics.
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The subject is a large one, however, and will ose omitted from this thesis.

A ten-symbol alphabet allows a particularly simple model of a Darwinian
game to be construdted, which will be used in some examples below. The
initial guess is a ten-digit sequence from Fisher and Yates'! (1957) table
of random numbers, for example O 3 4 7 4 3 7 3 8 6., "Mutations" can also
be read from the table, 9, 7 being interpreted as "insert 7 in the ninth
place" and O, 7 as "insert 7 in the tenth place". A ranking system must be
set up to decide whether the "parent" or "offspring" sequence is to be re-
tained as the basis for the next trial.

For example, the following game simply ranks sequences in order of size,

Underlined symbols are "advantageous mutations'.

0347437386
OLLTL3T3ESE
OLLTLTT3BE
6LLTLTT3BE

o B~ W Oler

179 9999989898
215 99999998928
300 999999989239
572 9999999299

This example strikingly illustrates how the frequency of favourable
mutations decreases in the later stages of the game; the last two improve-
ments in this sequence required more time than all previous improvements
combined., Nevertheless, the right answer was found in 572 trials; one would
expect to need 5 x 107 trials to find it by blind chance.

Closely related to unequal alphabets is the complexity introduced by
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unequal probability of mutation at different places in the sequence, and
unequal probabilities of substitutions, i.e cases in which one symbol is
more likely than another to be inserted in a given place. Models in the
style of the game recorded above could be made to include such complications,
but a more direct analytically mathematical approach should not be difficult,

and would be more informative.

More than One Right Answer.

The process of selection becomes rather more complex if more than one
right answer exists. Imagine that the right answers in the game above, for
example, were

00000000O0C0O0
1111111111
8888888888

9999999999 .

The Best Past Guesses would soon become divisible into a "high" group and
a "low" group, between which recombination would be undesirable. Recombine
ation between the "8" group and the "9" group would be useful for a longer
time, until sequences like
9889997896
began to appear.

A more interesting situation arises when the selector does not nominate

a definite set of right answers, but establishes certain relations among

sequences which, if met, make all of them right answers. Let the selector

call two ten-digit sequences right answers if the sum of the figures filling
the same place in each is ten. There are 8,888,888,839 possible pairs meet-

ing the criterion, but as there are 1020 possible pairs altogether the chance
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of finding one by pure luck is remote. A record of such a game is given

belows
L & ok
0 03 4 7 L *7E3 g ¢
36 96 L 736 6 1
1 03 4 7 4 373 7 6
36 96 L4 736761
3 o &y 74 FAK3 7 6
369 6 4L 73661
6 o0 Xy 74 FAE3 7 6
6 6 9 6 4 7 3 6 61
11 2 &y 7 4, EE3 7 6
6 6 9 6 L 736 61
12 2 ¥y, 7 1 xEARS 7 6
6 6 96 67356 61
2 2 ry o7 xAES 7 6
66 96 67 36 4 1
27, 2 By o2 FRE A3 7 6
6 6 9 6 6 7 3 6 4 1
28 o &y 2 FEA3 7 6
76 9 6 6 7 3 6 L 1
w2 Xy O E kR 3 g g
7 6 9 6 6 7 3 6 L 1
16 Zali T SR L
8 6 96 67 3 6 4 1
62 XK E K KRk 5 g g
8 6 6 6 6736 41
etc,

The asterisk (&) indicates pairs of symbols with sums equal to 10.
Apparently it would take no longer to find two "mutually adapted

sequences than to find a single right answer. In the former case, however,

nobody -- not even the selector, if the selector is a person -- can

predict the mature of the products which will be produced by selection.
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Organic evolution involves a combination of these two kinds of "right
answers". Certain requirements must be met by any organism which is to
live on land, and can be met in rather few ways: these constitute a sort
of "fixed" part of the criteria of a right answer. However, living on land
in the presence of grass and wolves is a different matter from living on land
in the presence of leopards and banana trees. All organisms must be adapted
to their inorganic enviromments, and orga;isms living together must be mutue
ally adapted to each other as well. The development of photosynthesis, tne
colonization of fresh water and land, and adaptation to deserts and cold
climates have been major developmeﬁts in evolution, but so have the rise of
grass-eating cursorial herbivores, the mutual adaptations of hosts and para-
sites, and the co-ordinated evolution of insects and flowering plants. The
model suggests that the latter kind of evolution would go on just as rapidly
as the former, but that its course is much less predictable.

Bach "right answer'" is an organism adapted to a particular ecological
niche. Hlucidaltion of the number of right answers which may exist, and the
relationships between them, therefore lies within the field of modern mth-
ematical ecology, which is concerned with the diversity of niches, the trophic
structure of communities, and so on. Given a satisfactory analysis of these
problems, the study of Darwinian games with multiple right answers might be
of considerable aid in understanding the phenomena of adaptive radiation and

speciation.

Misleading Ranking Systems.

By keeping the context of the i'th place (i.e. the symbols filling all
other places) constant, and systematically trying each of the k; symbols

available in the i'th place, one may order the i'th alphabet, ranking its
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symbols from worst to best. The ranking system of the selector is then

non-misleading if and only if the order of each alphabet is unchanged by

a change in context. For example, if 9 9 9 is the right answer, 9 is
clearly better than 7 in the second place in the context 9...9. If the
sequence 7 7 7 is better than the sequence 7 9 7, the ranking system is
misleading since in a changed context the order of the symbols available
for the second place is changed. A misleading ranking system always
tends to retard progress in a Darwinian game, since the player may dis-
card the correct i'th symbol midway through the game, and then have to
rediscover it later. With a non-misleading ranking system (and a perfect
selector, and m = 1) the player will always keep the correct i'th symbol
as soon as he happens to try it.

A misleading ranking system is always the result of interaction
between places in the sequence, i.e. of the fact that the ordering by
rank of the symbols available to fill the i'th place depends on the sym=
bels already filling other places. Notice that the variety of symbols
avallable to fill the i'th place is not affected by the previous filling
of other places, only the order in which the k; symbols will be ranked by
the selector,

The weight of the i'th place in a sequence is the maximum quantity by
which the rank of a sequence may be changed by changing the symbol filling
the itth place. If ten-digit numbers are ranked by size, for example, the

9

first place has a weight of 9 x 107, while tne last place has a weight of

only 9. This is an example of unequal weighting of places. The first

game recorded in this section of the thesis utilizes such unequal weighting,
which however did not cause interaction between places and therefore did

not result in a misleading ranking system. Under certain conditions, un-
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equal weighting can cause interaction and produce a misleading ranking
system, although not all instances of interaction are caused by unequal

weighting.

Interaction with Equal Weighting.

Consider a game using ten-digit sejuences, in which the rank R of
each sequence is the sum of the absolufe differences between adjacent
digits. The two sequences of highest rank, R = 81, are then

0909090909
and 9090909090,
The actual course of such a game, using Fisher and Yates' Table XXXIII

(III) is:

Jet
=

0 22176865814 20
1 9217686581, 27
9 9217686582 29
14, 9217681582 34
23 9217381582 43
25 9297381582 L5
35 9297381580 47
39 9297380580 49
O 9297380590 51
52 9297080590 57
126 9097080590 61

U8 9097090590 63,

The sequence obtained oh the 148'th trial cannot possibly be im-

proved by a mutation affecting only one place. The fourth and eighth
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places in the sequence have both beomce irrelevant to its rank, and may be
filled by any symbol without increasing or decreasing the rank of the

sequence. The sequence has in effect worked its way into an evolutiomary
blind alley, from which it could escape only by a large mutation changing
places 5? 6 and 7 all at once, or by recombination with another different

sequence.

Interaction due to Unequal Weighting.

A simple but important rule about the weighting of places in the
sequence follows from a consideration of the way ten;digit sequences can
be ranked.

In general, let 9 represent the best symbol at each place, 8 the next
best, and so on, and O the worst. If the set is completely ordered (in
1010 ranks) it follows that if the first place (from the left) is the
place of greatest weight, and the second place is the place of next great-
est weight, and so on, and if each sequence is read as a number, the rank-
ing system must be misleading if any sequence has a rank exceeding its
number. Hehce, the weight of the place with greatest weight cannot
exceed 9 X 109, the next highest weight cannot exceed 9 x 108, and the
n'th highest weight cannot exceed 9 x 1010-D,

The result can be generalized. A set of sequences of L places, each
of which may be occupied by any of k symbols, and which are completely
ordered by primary rank, is misleadingly ranked if the weight of the place
with the n'th largest weight exceeds (k - l)kL-n.

The same proposition is true of a set of sequences which are incom-
pletely ordered by primary rank; the ranking system is misleading if the

n'th largest weight exceeds (k - l)kL'n; but some even more strict cone
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straint must apply, and the writer's analysis has not yet gone far enough
to allow him to state it. Consider the following game, for example, in
which the right answer is 6 3 5 9 4 0 4 0 3 2, and sequences are considered
as ten-digit numbers ranked in inverse order of their absolute deviation
from the right answer. Ranking is incomplete (7 3 5 ...has the same rank
as 53 5...). The weights of places meet the restriction stated above, but
the ranking system is still obviously misleading.

Right answer: 6359404032

t
0O 0347437386
3 O0LLTL37386
L OL4LT7TKLTT386
6 bLLTLTT386

Previously, every increase in a digit after the first was an improvement.
A change in the first digit has reversed this, and now a decrease is an
improvement in every digit after the second. A non-misleading ranking
system cannot lead to such reversals of the direction of selection at
certain places.
7 6LLT7TLT6E386
8 6447426386
55 6412305321
56 6312305321
A change in the second digit has again reversed this tendency,.and it now
becomes an improvement for digits after the second to increase,
59 6312345321
62 6362345321

Once more the number has become too large, and further improvements will
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come from reducing the digits to the right of the third place. It is also
clear that no single change which inserts the correct symbol in either the
third or fourth place is an improvement; both would have to occur together
if the change was to be retained. The sequence is approaching an evolution-
ary cul-de-sac.,

71 6362340321

o

21, 6360000010
237 6360000000

No change in a single digit can improve this sequence; the player cannot
find the right answer. He has been misled by the ranking system.

Another game, using the same initial sequence but using section II of
the table of random numbers as a source of "mutations" led to the result

6400000000
which also cannot be improved by any single change.

The selector in organic evolution has obviously used a misleading
ranking system. Gene interaction, much of it associated with unequal
selective weighting of loci, is a familiar phenomenon. The complexities
which arise from dominance and recessiveness, special kinds of gene inter-
action which occur only in diploids, lave not even been mentioned in this
thesis, although they form much of the subject matter of population genetics.

Games like the ones recorded above could be made immensely complex,
in an attempt to incorporate all the complexities of real genetic systems.
Such games could of course only be played on an electric computer. Various
workers have programmed electronic computers to mimic complex situations
in population genetics, involving the effects of linkage and epistasis on

selection. The writer shares with Martin and Cockerham (1960) the view
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that such models, whether simple or complex, are useful for discovering
where present theory breaks down, and for obtaining suggestions about the
effects of various parameters, but that a thorough understanding of the
system requires a formulated analytical theory. In the present stage of
development of Guessing Theory, the simple pencil and paper models recorded
above are probably more instructive than more complex and therefore more
confusing models would be,

Many groups of organisms appear to have evolved into evolutionary
cul-de-sacs. The gigantic Titanotheres, the Irish elk, and the several
independently arisen series of Gryphaea-type oysters, are examples in which
species or larger groups have become extinct after a period of "ortho-
genetic" evolution during which they seemed to flourish. Some such instan-
ces may be the result of secular changes in the selector (see below), but
others are undoubtedly due to the misleading nature of the ranking system
imposed by the environment. Analysis of the ways in which ranking systems
can be misleading may therefore be informative in the study of extinction.
It may be valuable, too, in clarifying the roles of hybridization, non-
adaptive diversification resulting from drift in fragmented populations,
etc., as possible means of escape from the traps set by a misleading

selector,

Indirect Selection.

Lima-de-Faria (1962) has pointed out that natural selection must have

some effect at the level of the molecular structure of the genetic material.

"Every structural feature of the chromosome and every chromosomal property
which has been carefully investigated, reveals a distribution along the

chromosomeraccording to a defined pattem of organization." Hence ... "it
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is logical to conclude that a structural or molecular rearrangement can
only survive if it conforms to the organized system of interactions already
present in the chromosome body."

This kind of situation, in which the selector acts directly on the

sequence of symbols forming each guess, may be called direct selection. In

organic evolution, however, the selector is more commonly consideredto act
on the phenotype, which is a transformation of the genotype; i.e., the
selector acts indirectly, comparing guesses only after each has been sub-
jected to a process of transformation. There must be certain constraints

on the kinds of transformtions which are permissible if a difficult Darwine
ian game is to be won,

The transformation of the genotype into a phenotype may be thought of
as a process of decoding the genetic material. Fram this point of view the
subject has received a vast amount of attention in recent years (reviewed by
Crick 1963; Jukes 1963).

The sequence of symbols forming the genetic material may be called the
code message, and the resultant phenotype called the clear message. The
relationship between code and clear messages can be discussed in a general
way in terms of two properties of the code, its redundancy and its complex-
ity.

The code is redundant if there are more possible code messages than
clear messages, and ambiguous if there are more possible clear messages than
code messages. The DNA-protein code appears to be redundant, since each of
20 different amino acids is coded for by more than one triplet of nucleotide
pairs. The effect of a redundant code in a Darwinian game with an indirect
selector is the same as the effect of a smaller alphabet. For example, if

the code sequence 6 3 59 4, 0 4 03 2 is decoded into EOOOEEEEOE
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(Even, Odd, etc.) before selection, the course of the game will be exactly
the same as if the alphabets available to fill the places in the code sequence
consisted only of two symbols, instead of ten.

The complexity of a code is a measure of the size of the dictionary re-
quired to translate code messages into clear messages. The code is of min-
imum complexity when the number of entries in such a dictionmary is equal to
the number of symbols in the code alphabet, and is of maximum complexity
when the number of entries in the dictionary must equal the number of possible
code messages. The substitution ciphers used by schoolboys, in which, for
example M = A, N =B, 0 = C, etc.,, are codes of minimum complexity. The DNA-
protein code is of greater, though small, complexity; a dictionary of 64
entries is required although the code alphabet has only four symbols. Written
languages are codes of great complexity; a French-Bnglish dictionary requires
thousapds of entries. Commercial telegrgphic codes are codes of maximum com-
plexity, and every possible message must be listed in the dictiomry.

The complexity of the code is important in a Darwinian game with an in-
direct selector. As the code becomes more complex, the relation between the
size of a change in the code message and the size of a change in the clear
message becomes more complex and may approach apparent randomness. In a
schoolboy's cipher, changing a single symbol in the code message always changes
a single symbol in the clear message. In the DNA<protein code, changing a
single nucleotide pair may or may not change more tlan one amino acid. Chang-
ing a single letter in a French word may change every letter in its English

translation (pain = bread, paix = peace). In the later stages of a Darwinian

game the player must control the size of the changes in the guesses on which

the selector acts, but he can exert this control over the clear messages only

by controlling the sizes of the changes he makes in the code messages. For a
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Darwinian game to be won, therefore, there must be a rather low maximum
limit on the complexity of the code.

A complex code always leads to symbol interaction, and therefore to
a misleading ranking system.

Discussions of developmental genetics in terms of a process of de=-
coding mave been confined to the synthesis of the protein text, because of
the ease with which the structure of either DNA or a polypeptide can be
represented symbolically as a sequence of symbols., This unfortumately leads
to the notion that its protein text is ths phenotype of an organism (Leder-
berg 1960). From an evolutionist's viewpoint this notion is reasonable
enough if selection is exerted only by chemical means, as by antibiotics
or absent nutrients in the medium in which micro-organisms are grown, and
the biochemistry of the organism is the only aspect of its phenotype which
matters. For higher organisms, however, physiology, anatomy, and behaviour
are also selectively relevant. The notion of development as a decoding of
the genetic material is difficult to apply to these aspects of the pheno-
type, which cannot be abstractly represented by sequences of symbols. Never-
theless,one can state that the processes of devdopment must be so organized
that in general, and on the average, a small genetic change causes only a

small change in any selectively important phenotypic variable.

Secular Changes in the Selector.

The attempt to construct a complete analogy between a Darwinian game
and the process of organic evolution is further complicated by the fact that
in organic evolution, the selector changes its ranking system as time goes
on. Mountain building and erosion, and climatic changes, including glacial

periods, are obvious examples of such secular dhanges, which are not caused
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by evolving organisms but which affect their adaptedness to the environe
ments in which they live. The more indirect effects of organisms on each
other might be treated in the same way, mathematically; the axe, the plough,
and the spraying rachine have evolutionary effects which might better be
analogized to the effects of earthquakes and glaciers than to the slow inter-
action over millions of years between predators and their prey or hosts and
their parasites. The photosynthetic transformation of a reducing atmosphere
into an oxidizing atmosphere is also a phenomenon of such magnitude, and
involving so many kinds of organisms, that it might more easily be treated
as a secular chqnge in the environment than as the interaction of organisms
with each other.

The prediction or description of secular changes in the environment
does not lie within the field of mathematical evolution theory. The contri-
bution of a theory of Darwinian games to their study would consist chiefly of
an investigation of the rates of chahge which must not be exceeded if the
overal} adaptedness of the fauna and flora is not to d ecrease because of the

change,
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VI The Source of Genetic Information

The question of the source of the large quantities of information
carried by the genetic material of living organisms is one of profound
importance to biology and philosophy. It has been answered in several ways
since the concept of information became well enough defined to allow the
question to be asked in that form.

The central assumption throughout this thesis was pointed out previously
in a brief communication (Warburton 1958): a selector is a source of informe
ation, and the process of selection is a process of transferring information
from the selector to a receiver. In a Darwinian game, information is trans-
mitted from the referee, who originally stores it, to the player, who stores
it in the form of his best past guess. In organic evolution, the selector
is the enviromment, and natural selection is a process for transferring
information from the environment to the genetic material.

A simple illustration may clarify the notion of a selector as an inform-
ation source. Imagine that a teletype machine has been modified so that it
generates a random sequence of letters and spaces, and that a man with a
switch determines which of these will be allowed to pass out along the wire
and which will not. By operating his switch, the man can send a message
(such as "The card is the Queen of Hearts") along the wire. What is the
source of the information in the message? Obviously, the man with the switch,
in whose brain the information must have been stored. If the man operated
the teletype machine directly, he could choose the message to be sent from
a hypothetical set of possibilities, existing only in his mind., Operating
solely as a selector,however, he can choose only from the set of real possibil-

ities genérated by the machine; the teletype machine is not a source of informe
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ation, but a necessary source of variety from which the selector can choose,
Similarly, in organic evolution, mutation and recombination are not sources
of information, but sources of variety. The envircnment is the source of
information, but since it acts solely as a selector, it cannot choose among
some hypothetical set of possibilities but only among the real entities pro=-
duced by the variety source.

Other writers have explained the source of genetic information in other
ways.

One possible answer to the question of the origin of an entity is to
deny that the entity exists. Elsasser (1958) devoted several chapters of
his book to an attempt to demonstrate that living organisms possess no struc-
tures capable of storing large quantities of information, and must develop
and function without the benefit of stored informatiocn, controlled by "bio-
tonic laws" which are not the laws of physics, though they are necessarily
compatible with the laws of physics. Such a hypothesis escapes from the
problem of the source of genetic information by denying that genetic informe
ation exists., Elsasser's views have been thoroughly rebutted by Raven (1962).
Raven's arguments are elegant ;nd detéiled. Here it is enough to mention
that he shows that chromosomal DNA and the cortex of the fertilized egg are
both capable of carrying tremendous quantities of informtion.

Raven (1962) devotes only a few lines to the origin of genetic in-
formation. "So, when we say that all order in living organisms is a cone
sequence of previous order, ... it follows that ... the idea of living organ-
isms not possessing this intrinsic order is inconceivable. Order is a
necessary requisite of all life,"

"We may understand how the intrinsic order of living organisms, once

generated, was perpetuated and transmitted throughout the generations. If
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we admit, in accordance with the neo-Darwinian thesis, that occasional errors
in the process of the conversion of order could acquire survival value, and
in this way be perpetuated, we may account for the differentiation of the
numercus forms of life in the course of evolution. But our equation gives
no clue as regards the first appearance of organismic order. The only thing
we can say is: if we want to adhere to a scientific explanation of the
origin of life, we must presume that this order was derived, somehow or
other, from the primordial negentropy of the universe, At present we can
only conjecture as to the way in which this has occurred."

In short, Raven seeks to push the soufce of genetic information back in
time to the mysterious origin of life. His statements seem to imply that
the entire process of evolution has added no information (or if one wishes,
"order") to living organisms, but has merely variegated them. This is a
conclusion with which almost ail evolutionists will heartily disagree. In
blunt language, almost any DNA molecule presumably contains enough "order"
to duplicate itself, and hence be called "living" or nearly so, in the luke=
warm soup of the primordial ocean, but only a very special DNA molecule can
be the genome of as highly adapted an organism as a bird, a tapeworm, or an
oak. This "specialness" = the rarrower and narrower restriction of the
set of acceptable possibilities -- has been brought about, literally bit by
bit, by billions of generations of selection.

Kimira (1962) concluded that information is created by the process of
natural selection, and accumulated by the genetic m terial. In other words,
genetic information has no source, in the sense of a previous carrier from
which it has been transferred to the genetic material, but has been created
out of nothing. The meaning of this notion of "creating" information is

not clear.
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Kimura remarks, “"What is the source of such genetic information? If
the Lamarckian concept of the inheritance of acquire characters were accepted,
one might be justified in saying that it was acquired from the environment.
However, since both experimental evidence and logical deductions have entirely
failed to corroborate such a concept, we must look for its source somehwere

else." This is clearly a non sequitur. Lamarckianism implies some sort of

direct transfer of information from the enviromment to the genetic material

of an organism., There is no evidence that any such direct transfer occurs.
However, the environment acts as a selector, and a selector is a source of
information; the process of selection is not a process of creating information,
but of transferring it from the environment to the genetic material. The
dismissal of Lamarckianism does not imply that the environment is not the
source of genetic information, but only that this information has been trans-
ferred by a Darwinian mechanism, not a Lamarckian mechanism,

Ashby (1952) argued that noise serves as a source of information in
evolution; natural selection is a process for transforming noise into
information. The random variations to which genomes are subject may be con-
sidered noise, and selection reveals the changes which are improvements and
retains them. The conclusion, that information is here being manufactured
out of noise, was concurred with by J.B.S. Haldane (1953). Hick (1953)
quickly contradicted this hypothesis, pointing out that the noise source in
Ashby!s model was simply a device for ensuring that, in time, all possible
states of the system will occur. A noise source, in other words, is merely
a variety ggnerator, like the randomized teletype in the author's analogy
givenabove, A variety source is a necessary part of a system in which a
selector is to supply information, since the selector can choose only among

‘possibilities which really exist, not among potentialities. A noise source
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cannot supply information, however., It is conceivable that a randomized
teletype machine would sometimes produce true statements, such as "The
card is the Queen of Hearts", but these would fail to carry information
simply because they would be indistinguishably mixed with staterents like
"The card is the Ace of Spades", "The Heart is the Card of Queens", "To=
morrow is Tuesday", and "All the previous statements are untrue'.

Ashby (1952) also expressed the idea that the environment imposes a
very simple rule, "The dead shall not breed", ard the process of selection
then consists of working out the consequences of this simple axiom. Ashby's
opinion was that the body of inferences drawn from the axiom contains far
more information than the axiom itself. The fact is, of course, that this
"rule" is imposed as much by the structure of the English language as by
any real physical system. The environment imposes an immensely more come-
plex set of rules of the form "Organisms of the following genctypes are
forbidden to breed:...".

A closely analogous idea was expressed by Waddington (1961) who wrote
"The type of phenomena which we are confronted with in embryonic development
should be compared with the elaboration of a whole corpus of theorems in
Buclidean geometry or in arithmetic from certain axioms. In this sense the
whole of formal mathematics is a set of tautologles. Are we to conclude
that their information content is no more than that of the axioms from which
they are deduced?"

The answer to this query is "Yes; and no'. Euclid's contribution to
mathematics did not consist of deducing all the consequences of his axioms,
but of carefully selecting a peculiarly elegant and interesting set of con-
sequerces asworthy of deduction. It is rather painful to imagine an unfore

tunate :mthematician trying to deduce all the consequences of Eculid's
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axioms. First, perhaps, he would prove that if two straight lines inter-
sect at an angle of 1", opposite angles are equal; he might then go on to
angles of 2", 3" and so on. If ever he completed tais series (which would
still lsave an infinite number of propositions of the same form unproved)

he might go on to three intersecting straight lines. He would certainly
never reach Pythagoras!' theorem, or any other conclusion of interest. Formal
mathematics contains more information that its axioms because it consists of
a relatively small set of deductions carefully selected from the enormous
and decidedly uninteresting set of all possible deductions.

It is therefore hard to see exactly what Waddington inay lave meant by
his remark. Either developmental mechanisms are mechanisms for working out
all the consequences of some set of axioms, or they are that plus a mechanism
for sorting the useful consequences from the others. In either case, either
the axioms or the axioms plus the rules defining usefulness jointly contain
all the information embodied in the end result. Zither the rule "The dead
whall not oreed", or that and a set of rules determining which organisms
shall be dead and which shall not, contain all the information required to
"design" a viable and fertile organism.

Having examined all of these alterratives and found them wanting, the
writer sees no reason to change his opinion of 1958. Natural selection is
a process by which informatiog is transferred from the envirorment to the
genetic material of organisms.

A consequence of tnis deduction is that the genetic material of organ-
isms can be considered as coded descriptions of the environments in which
they evolved. (One must be extremely wary of the "nothing but...!" fallacy
(Julian Huxley, cited by Simpson 1949) in this context, however.) A detailed

description of the anatomy and chemistry of the organisms inhabiting some
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region of space allows one to infer much about the geology, climate and
topography of the region, the texture and composition of its soils, the
chemistry of its waters, and the purity of its air. If we knew how to
decode them, a list of the genotypes of its inhabitants would presumbably
permit the same inferences. The genetic material of organisms is in fact
a coded description of their environments.

Inferences cannot be made with equal precision in the other direction;
a detailed description of a newly discovered continent would not allow one
to make anything but rather general predictions about the probable nature
of its fauna and flora. This is partly because the process of evolution
is incomplete, and its exact direction has been determined by chance at
many points, so that'the genetic material of organisms is a sort of randomly
abridged description of their enviromments. Now an abridgment of a book,
in which, say, half the words have been omitted at random, will allow one
to describe the unabridged original in considerable detail, but the origimal
does not allow one to make anything but probabilistic statements about the
abridgment., The difficulty of inference from envirornment to organisms is
also a result of the fact that faunas and floras consist of mutually adapted
organisms. The environment does not determine the nature of each organism
in detail, but only the nature of the relations between them.

The expected objection to this interpretation of evoluticn is that the
environment, the inorganic world in general, is "disorderly", "unorganized",
"simple", and so on, and cannot possibly contain or ever have contained as
much information as the genetic material of the highly organized, orderly,
and complex living organisms which now inhabit it.

In spite of innumerable attempts to define them, these words retain

rather vague meanings. They may even be more emotive than descriptive in
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some contexts. While this is true it is useless to use them in an essentially
quantitative argument. It can at least be pointed out, however, that geol-
ogists, geographers, geomorphologists, physical oceanographers, climatologists,
meteorologists, and pedologists might object to having the systems they study
dismissed as "simple" and "disorderly". Perhaps one can truthfully say

that a plant or an animal contains more "order!" or "complexity", if one must
use such words, than the same weight of rock or sea water, but this does

not disagree with the writer's nypothesis that natural selection is a mech-
anism for trans-coding information from a large, highly redundant carrier

(the inorganic environment) to a carrier of molecular dimensions in which it
is much more compactly coded.

The strongest argument for the idea that genetic information was pre-
viously stored in the structure of the inorganic world rests on a consider=-
ation of the requirements which must be met by the selector in a Darwinian
game which can be won. The environment has sometimes been compared to a
sieve in the action it exerts on living organisms, separating the fit from
the unfit. Now a sieve, or some other very simple mechanical device, may
often serve as a secondary referee in a guessing game, but a selector must
be a far more complex mechanism than a secondary referee. A secondary
referee applies the same criterion repeatedly; if the same guess is repeated,
the same response will always occur. A selector applies different criteria
at different trials, changing its criteria by a sort of feedback mechanism
so that it becomes progressively "tougher" as the candidates it has already

passed become progressively better. Archaeapteryx was passed when it had

only reptiles witn which to compete, but it would no doubt be rapidly elim-

inated by competition with modern birds. A selector cannot simply divide

the set of possibilities into two classes,-but must order them in a large
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number of ranks,

Now one may order a set of things in several ranks in many different
ways., The selector in organic evolution, however, must not merely have
ranked the possibilities, but must have ranked them in a way which allowed
the player to win. This imposes severe constralnls on the kind of ranking
system the selector may have used. To allow organic evolution to occur,
the environment must use a "special" kind of ranking system. The environ-
ment must therefore be a "special® kind of environment.

Two objects can be ordered in 2 ranks in 2 ways, and in 1 rank 1 way,
for a total of 3 ways of ranking 2 objects. Three objects can be ordered
in 3 ranks 6 ways, in 2 ranks 6 ways, and in 1 rank 1 way, for a total of
13 possible ways of ranking 3 objects, Similarly, 4 objects can be ranked
in 81 ways, 5 objects in 621 ways, and 6 objects in 10, 823 ways. For com-
parieon, notice that 56} is only 720. The number of different ways in which
N objects can be ranked cannot easily be computed, but it is certainly far
greater than Ni. If the player is to win a Darwinian game, however, the
selector must rank the members of the set of possibilities in such a way
that almost any permutation of the hierarchy in which tne player classifies
the possibilities is a relevant classificavion and is ab worst only slightly
misleading. In short, the selector is free toc rank the members of the set
in only a minute fraction of the number of ways they could be ranked. If
one assumes that there is a possible selector for every possible ranking
system, it follows that only a small fraction of all possible selectors will
permit the player to win a Darwinian game. To define (or design and construct)
a selector which will permit a Darwinian game to be won therefore requires a
large amount of information.

It will require a much more detailed analysis to place the foregoing
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argument on a quantitative basis, and to estimate the quantity of information
which must be carried by the selector in a Darwinian game. The writer suggests
as a tentative hypothesis that the quantity equals or exceeds the quantity
which can be accumulated by the player, i.e. the quantity required to specify

the right answer,
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Scientific Value of the Theory

This thesis is not offered as a completed mathematical theory of
evolution. Many aspects of the mathematical model described in it have
been only mentioned, as suggestions for future investigation. Neverthe=-
less enough has been said to indicate that the concept of a Darwinian
game, which formalizes the way information is transferred and stored in
systems evolving by selection, gives rise to a mathematical model which
permits quantitative discussion of the conditions which must be met by
any system in which large quantities of information are to be transferred
in a limited time by selection.

A study of Darwinian games with imperfect selectors shows that the
set of possibilities must be able to be represented by a set of linear
sequences of symbols, and that a winning player's strategy must include
the use of large populations, guesses which reproduce themselves with
small "mutational" changes, a rather low and controllable mitation rate,
and recombination. This result -- the inference that some of the major
features of genetic systems are necessary conditions of evolution by
selection, not merely sufficient conditions -~ is a useful confirmation
of the validity of the model.

Darwinian games therefore lead to a sort of generalized population
genetics, independent of the physical or chemical nature of the evolving
"ouesses", Practically, this result is of limited value, at least until
living organisms or something like them are discovered on other worlds.
Population genetids is a well developed branch of mathematics, and is
capable of solving its own problems without translating them into Guessing

~

Theory.
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Theoretically or philosophical 1y the result is of greater importance.
It shows that the major generalizations of population genetics are in-
dependent of the physical basis on which population genetics has been built.
The ma jor features of genetic systems are not by-products of the chemistry
and physics of nucleic acids and proteins, but are necessary properties of
all systems evolving by natural selection. To exemplify the reductionist
approach to biology, Simpson (1962) quotes this statement (which is para-
phrased and may therefore distort the intent of the original): "Genetics,
the central discipline of biolcgy, has as its ultimate subject a group of
chemical compounds. Genetics requires knowledge of the physical sciences
but no other knowledge in the field of biolaegy itself", Cn the contrary,
much can be inferred from the central fact that biology deals with entities
which have evolved by natural selection, and these inferences can be made
with no knowledge of the chemical compounds of which organisms are composed.

These remarks are not.meant to belittle the contributions which molec-
ular biology will make to evolution theory. After all, questions of alpha-
bet size, symbol interaction, the redundancy and complexity of the genetic
code, etc., must all be answered by molecular genetics. They are meant to
belittle the attitude that evolution theory has nothing fundamental to
contribute, and its practitioners are merely wasting time until someone is
able to "reduce" their discipline to biochemistry. To reduce evolution theory
to the chemistry of DNA would be an interesting philosophical exercise, but
not much more, because the basic principles and mathematical regularities
of evolution theory would remain the same whether it was reduced to DNA,
magnetic tape, or ink and paper.

In addition to permitting this‘phiIOSOphical conclusion about population

genetics, the analysis of Darwinian games supplements population genetics as
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a mathematical approach to the study of evolution. Its value rests largely
on the fact that rank,one of the fundamental quantities entering into every
equation, is a quantity representing the adaptedness of the evolving organ-
isms., The basic feature of organic evolution is an increase in the adapted-
ness of organisms, but no quantity representing adaptedness enters iato the
formulation of classical mathematical studies of evolution.

Adaptedness must be clearly distinguished from fitness. The fitness
of a kind of organism is a measure of its proliferative ability compared
to its contemporary competitors. The mean fitness of all living populations
of organisms is approximately one, and the mean fitness of all earlier pop=-
ulations was also approximately one, The adaptedness of an organism may
be thought of as a measure of what its fitness would be if it were somehow
placed 1in competition with all its own ancestors. It may also be thought of
as the inverse of the probability that an organism spontaneously generated
in some chance waywould be as fit as or fitter than the organism in question.
Adaptedness might be measured, in principle and possibly in practice, by
the probability that a random mutation is selectively disadvantageous.

J.B.S. Haldane (1954) has pointed out that most of mathematical evolution
theory deals with forces which are very nearly in equilibrium. Indeed,
most of the text of books like Li (1955) and Falconer (1960) is devoted to
calcula ting the conditions under which the genetic structure of a population
will achieve equilibrium or fixity. Fisher's (1930) "fundamental theorem
of natural selection" yields a measure of the rate of change of fitness in
a population, but in order bto avoid the conclusion that every organism is
undergoing a population explosion, the application of this theorem always
involves the assumption that the average fitness of a population is "re-set!

at about unity in each generation by density-dependent controlling factors

of population size., Adaptedness, therefore, is the only important quantity
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entering into mathematical evolution theory which increases taroughout
the entire evolutionary process, never achieving equilibrium or fixity
except as a result of defects in the genetic mechanism of the evolving
organisms.

The inclusion of a parameter representing adaptedness in the math-
ematical expressions describing the course of a Darwinian game allows
inferences about the way the process of natural selection would change with
time. As adaptedness increases, mutations must become smaller, and if the
selector is imperfect breeding populations rust bemme larger, the mutation
rate must be small and adapted to population size, and recombination becomes
necessary. The rate of increase in adaptedness decreases as adaptedness
increases,

Furthermore, the parameters desdribing mutation size and rate, pop-
ulation size, etc., must lie within increasingly narrow limits if evolution
is to continue as adaptedness increases. The genetic mechanism itself must
therefore have evolved in order to meet these increasingly severe demands.
This probably occurred by competition between populations. However, those
genetic systems best suited for rapid evolution while adaptedness was still
small would be badly suited for continuing progress later in the process.
It therefore appears that the parameters of the genetic system must them-
selves be genetically controlled to some extent, and must be continual ly
ad justed by selection.

The analysis of Darwinian games relates evolutionary genetics more
closely to modern ecology than population genetics has been able to do.

The stﬁdy of niche diversity, competitive exclusion, the trophic structure
of ecological commnities, and so on, is essentially an attempt to find the

number of "right answers'" existing in a Darwinian game and the relation-

ships between them. If the results of such investigations can be inath-



109.

ematically formulated in a suitable way and incorporated in a Darwinian
game, they will lead to a potentially valuable mathematical model of the
processes of adaptive radiation and speciation.

A model of natural selection based on Guessing Theory also seems to
be more directly related to molecular genetics than population genetics
does. The complexities due to symbcl interaction and unequal selective
weighting of mitationalsites can be investigated either from the viewpoint
of classical genetics or that of molecular genetics, but the questions of
code redundancy and complexity, and symbol interaction due to the complex-
ity of the code, must be investigated by molecular genetics. The nature
of the genetic code is a subject which does not seem very relevant to
classical population genetics, but it will be basic to any attempt to work
oul a detailed model of organic evolutlon taking account of indirect
selection.

The writer therefore contends that the study of evolution has a most
useful role to play as a framework for unifying the many fields of biow
logical investigation into a single comprehensive science, and for relat-
ing them to the inorganic sciences.

In the writer's opinion, however, the most interesting conclusion of
this thesis is the answer it provides to the question of the origin of
genetic information. As Raven (1962) said, it "was derived, somehow or
other, from the primordial negentropy of the universe". However, we need
not merely conjecture as to'the way this has occurred; we have known the
basic principles since 1859, The conclusion that natural selection is a
process which transfers information from the environment to the genetic
material of organisms thereflore serves to relate organic evolution to the

history of the universe as a whole,
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Summary

Organic evolution can be analogized to a guessing game in which a player
draws guesses from an initial set of possibilities known to include the right
answer, and submits them to a referee who passes the best of the submitted
guesses and rejects tine others. As a record of the previous course of the
game the player can retain only the guesses last passed by the referee; he
cannot maintain a record of the number of trials which have occurred. The
total number of guesses the player may submit is much smaller than the number
of possibilities.

If the player is to find the right answer, it must be possible to re-
present each possibility by a linear sequence of symbols in which the alpha-
bet from which the i'th symbol must be chosen is unchanged by the previous
filling of other places in the sequence. The player must prepare new guesses
by changing a number of symbols in the past guesses; this number must be
small, or must decrease as the game progresses. If the referee sometimes
makes errors, the player must submit large numbers of guesses at once, must
reduce the "mutation rate" so that a large fraction of new guesses are
identical to the past guesses, and must utilize a kind of "recombination"
among past guesses to prepare new ones. Influences analogous to inbreeding,
genetic drift, etc., then act to complicate the player's strategy. The model
therefore leads to a sort of generalized population genetics, which is~in-
dependent of the physical mature of the sequences representing guesses,

A basic parameter in the model is the rank assigned to each guess by

the referee. This represents a measure of the adaptedness of an organism,

a quantity which does not occur in classical population genetics. Roughly,



it is a relative megsure of the fitness an organism would possess in come
petition with its ancestors. As rank increases the requirements of a winning
strategy become increasingly stringent. The rate of increase in rank becomes
smaller as rank increases,

Complications are added if the ranks of guesses are influenced by inter-
action between symbols, and if the "selective value" of different places in
the sequences representing guesses are different. The model relates the
genetic theory of natural selection closely to modern ecology, by lending
itself to discussion of cases in which there are several right answers which
are not uniquely defined, but are defined by the relationships between them,
corresponding to the mutual adaptations which must exist among the members
of an ecological system. It also closely relates natural selection and
molecular genetics, by permitting discussion of indirect selection. In-
direct selection exists when the referee does not directly judge the sequences
representing guesses (the genotypes), but judges transformations of them
(phenotypes). The course of the game is then‘strongly influenced by the
redundancy and complexity of the genetic code,

The model is basically a formalization of the way information is trans-
mitted from the referee, who originally stored it, to the player, who stores
it as his best past guess, in a particular kind of guessing game. Thus it
represents the way natural selection serves to transmit information from the
environment to the genetic material of evolving organisms. The source of
genetic information is therefore the environment. Natural selection has
not created information, but has transferred it f rom the environment, trans-
formed it, and concenprated it in a smaller mterial carrier, the genetic

material of organisms,
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