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c RESUME 

Cette these est la premiere mesure de spectroscopie des fluctuations d'intensite (SFI) 

de la dynamique d'une transition de type ordre-desordre clans un alliage binaire, 

utilisant des rayons X coherents. Des faisceaux intenses de rayons X coherents de 

quelques pm de diametre sont maintenant produits en filtrant spatialement et en 

frequence des rayons X emis par une source synchrotron de troisieme generation. Des 

patrons de diffraction tachete de la surstructure (100) du Cu3 Au ont ete mesures avec 

un detecteur bi-dimensionel de type CCD. Pour mesurer les fluctuations temporelles 

et spatiales du facteur de structure, la resolution spatiale et la reponse du detecteur 

furent mesurees. 

Nous avons developpe une technique d'application generale, basee sur une com

paraison de la moyenne, variance et correlation spatiale du signal avec des fluctuations 

d'intensite suivant une loi de Poisson. Les correlations spatiales du signal reduisent les 

fluctuations du signal detecte par rapport au bruit de Poisson prevu. Cette technique 

permet de mesurer la fonction de resolution et l'efficacite quantique du detecteur. La 

largeur de la fonction d'autocorrelation spatiale des patrons de diffraction tachetes 

est en accord quantitatif avec la largeur d'un patron de diffraction de Fraunhofer des 

trous, elargi par la fonction de resolution du CCD. Le contraste du patron tachete 

est plus faible que prevu. La grandeur caracteristique des taches et leur contraste 

dependent des proprietes optiques du faisceau et de la taille du trou utilise comme 

prevu. 

Nous avons mesure des patrons tachetes apres une trempe de l't~tat desordonne fee a 
l'etat ordonne £1 2 • Les taches dominantes apparaissent rapidement apres la trempe, 

mais reste fixe clans l'espace reciproque. La croissance des domaines est mesuree 

par un accroissement de l'intensite moyenne et un retrecissement de la largeur du 

pie. Cette dynamique est en accord avec des simulations numeriques du modele A. 

L'amplitude des fluctuations est faible et leur duree est tres longue. Nous avons 

demontre que la SFI est realisable clans une nouvelle bande d'energie. La SFI est un 

nouvel outil pour l'etude des phenomenes hors d'equilibre clans les solides. 

Vlll 



ABSTRACT 

We extended Intensity Fluctuation Spectroscopy (IFS) to atomic scale fluctuations 

using coherent X-rays. Intense beams of coherent X-rays, with diameters of a few J-Lm, 

are now easily produced by spatial filtering of monochromatic X-rays generated from 

synchrotron radiation insertion devices. This thesis is the first X-ray IFS measurement 

on the non-equilibrium dynamics of an order-disorder phase transition in a binary 

alloy. Speckle patterns of Cu3 Au (lOO) were measured with a two-dimensional Charge

Coupled Device detector. To quantify the spatial and temporal fluctuations of the 

speckle pattern, the spatial resolution and the noise of this detector were carefully 

characterized. 

We developed a statistical technique for characterizing position-sensitive detec

tors (PSD), using estimators such as the average, variance, and spatial correlation 

functions. Spatial correlations between pixels reduce the fluctuations of the signal 

when compared to Poisson noise. Using this technique, the resolution function and 

quantum efficiency of two PSD's were measured. The widths of spatial correlation 

functions of static speckle patterns from Cu3Au agree well with the widths of the 

Fraunhofer diffraction of the pinholes used, convolved with the detector resolution. 

The speckle pattern contrast is smaller than expected. The speckle size and contrast 

depend on the incident X-ray optics as expected for X-ray speckle. 

We measure Cu3 Au speckle patterns after a quench from the fee disordered phase 

to the Lh ordered phase. The dominant speckles appear after the quench, and re

main fixed in reciprocal space. The domain coarsening is seen as an overall increase 

in intensity and a sharpening of the diffuse peak. These dynamics agree with numer

ical simulations of model A. Both experiments and simulations show that the time 

fluctuations of the intensity have small amplitudes and very long time scales. This 

differs from equilibrium IFS, where fluctuations amplitudes are as large as the signal. 

We have demonstrated the feasibility of XIFS in Cu3 Au. The use of coherent X-rays 

allows one to measure the ordering kinetics of binary alloys in new ranges of length 

and time scales. 

IX 
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INTRODUCTION 

The development in the last 30 years of high energy synchrotron rings dedicated 

to the production of synchrotron radiation has made possible many exciting new 

fields of science and technology. This high energy physics technology is used today 

by molecular biologists, chemists, physicists, medical doctors and engineers to find 

solutions to both fundamental and applied problems. In the field of solid-state physics, 

these sources have made many X-ray spectroscopy or scattering techniques feasible 

or more powerful. Some examples include time-resolved X-ray scattering, nuclear X

ray scattering, surface X-ray scattering, resonant and non-resonant X-ray scattering, 

Diffraction Anomalous Fine Structure (DAFS), coherent X-ray scattering, as well 

as many more1• This thesis will report on one of these recent developments which 

uses the high brilliance and transverse coherence of synchrotron radiation in X-ray 

scattering experiments. This transverse coherence greatly affects the observed X-ray 

diffraction patterns from disordered materials. 

When coherent light illuminates a material with a random microstructure, a grain

iness in the scattered beam is observed, called speckle. Speckle is a general feature of 

scattered coherent light from a medium where some dielectric constant fluctuations 

are present. It was first observed over a century ago by Exner[3, 4] and Laue[5] on 

Fraunhofer diffraction rings produced by light scattered from small particles. It is 

seen in many experimental systems: in laser light reflected by a rough surface2 , in the 

1 See the wide variety of scientific projects investigated in modern synchrotron radiation f~ilities like 
the European Synchrotron Radiation Facility or the National Synchrotron Light Source in their 
respective Annual Reports [1, 2]. 

2In this case, speckle is considered as a nuisance that must be minimized to reveal the surface profile 
[6]. 

1 
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scattered light from equilibrium density fluctuations in a fluid, and in electron micro

scope images from amorphous semiconductors1
• It is a characteristic of the theoretical 

structure factor of a random system where the fluctuations are caused by phasons in 

a quasi-crystal [8, 9, 10], phonons [11] and charge density waves in a perfect crystal, 

and in simple models of metallic glasses [10]. 

A speckle pattern is caused by coherent interference between all the scattered 

secondary waves randomly phase shifted by different regions of the material. If these 

regions move in time with characteristic time re, then the intensity correlation function 

of the scattered light for a given scattering wave-vector q, < I(q,t)I(q,t + 8t) >t, 

will decay with a characteristic time related to re. Understanding the functional 

dependence of the correlation time on the momentum transfer aliows for the study of 

transport properties of a material. 

For example, the equilibrium intensity fluctuations of dilute spherical particles in 

a simple liquid follow< l(q, t)I(ij, t + 8t) >tcx: 1 + e-ZDq
2
T, where D is the diffusion 

constant of the spheres in the liquid and q is the wavevector [12]. A plot of 1/rc 

versus q2 allows a measurement of the transport properties of the material. Using 

the Stokes approximation, D = kBT/(67rrya), where kB is the Boltzmann constant, 

T the temperature, 'r} the viscosity of the liquid, and a the sphere's average radius 

[12]. Thus by using spherical particles with a known radius a, one can measure the 

temperature dependence of the viscosity by measuring the temperature dependence 

of D, or by measuring the radius of some particle in a solution of known viscosity. 

This time correlation technique, often called Dynamic Light Scattering (DLS), In

tensity Fluctuation Spectroscopy (IFS), or Photon Correlation Spectroscopy (PCS)2 

has been used extensively with visible light to study the dynamics of very slow equi

librium and non-equilibrium fluctuations in transparent fluids, colloids and liquid 

crystals undergoing continuous phase transitions. This technique studies fluctuations 

with frequencies ranging from 10-3 to 108 Hz and length scales ranging between 

2000 A and 20 ttm [14, 13]. It is complementary to inelastic light scattering tech-

1See Ref. [7) and references within. 
2 For an introduction to IFS, see the book by B. Chu[13], and references within. 
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niques like Brillouin and Raman scattering, which study faster processes (107 
- 1014 

Hz) involving respectively acoustic and optical waves in materials. This technique 

has been limited to length scales above 200 nm when using lasers with the shortest 

wavelength available. The largest wavevector observable with visible light scattering 

is qmax = ( 47r /200) nm-I, which corresponds to back scattered light. This technique 

has been recently extended to hard X-rays by using high brilliance second generation 

synchrotron radiation sources, thus improving the technique sensitivity to atomic 

length scales with qmax ~ (47r/0.1) nm- 1
• 

Sutton et al.[15] demonstrated that by appropriately collimating an incoherent 

monochromatic source of X-rays like an X-ray insertion device1, one can get sufficient 

coherent flux to perform IFS at atomic length scales, through opaque materials. This 

first demonstration showed time independent speckle patterns from anti phase domains 

in Cu3 Au (100) [15]. Since this first demonstration, static speckle patterns have 

been observed in different systems: in gold coated diblock copolymer films[16], in 

synthetic multilayers[17], in the superlattice peak of a charge density wave in the 

one-dimensional conductor K0 .3Mo04 [18], and in another binary alloy Fe3Al[19, 20]. 

Sutton et al. also demonstrated the feasibility of X-ray IFS (XIFS) in a study of 

the kinetics of an order-disorder phase transition in Cu3 Au after a quench from the 

high temperature disordered phase to the low temperature ordered phase by measur

ing the fluctuations of the scattered intensity with a scintillation counter [21]. Within 

the last year, XIFS experiments have been performed successfully on the equilibrium 

critical fluctuations of the binary alloy Fe3Al[19] and in equilibrium fluctuations in 

gold colloids[22, 23]. Brauer et al. [19] performed XIFS at atomic length scales, ob

serving intensity fluctuations when the Fe3Al sample was heated above the critical 

temperature of the continuous phase transition. Dierker et al. [22] have measured 

exponential correlation functions, characteristic of the Brownian motion of gold par

ticles in a colloid with excellent signal to noise ratio. Chu et al. [23] also observed 

XIFS on a gold colloid using X-ray produced by a bending magnet beamline, with 

1 An insertion device is a periodic magnetic structure used to generate synchrotron radiation. 
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a coherent flux several orders of magnitude smaller than Ref. [22]. These recent ex

periments show the power and promise of this new field of X-ray scattering. This 

new technique promises to be quite helpful in studying the equilibrium and non

equilibrium dynamics in binary alloys, in amorphous materials and molten metals, 

in liquid crystals, in complex fluids like colloids and polymer blends, in gel networks, 

and in incommensurate systems like charge density wave or ferroelectric systems. 

IFS is well understood for equilibrium fluctuations, but little experimental work 

has been performed using IFS on the non-equilibrium coarsening dynamics of a first 

order phase transition. One of the only other studies of coarsening in a first-order 

transition with dynamic light scattering was done on a binary fluid (conserved order 

parameter), where the intensity fluctuations were studied after quenches into the 

miscibility gap. Kim et al. [24] found that the power spectrum of the scattered 

intensity P(J) measured after the quench was non-Lorentzian, following P(J) ex: 

exp( -1!1/ f 0 ), with fo < 0.1 Hz. This power spectrum appeared to be stationary 

because it was present in the power spectrum of different consecutive subsets of their 

data. Hydrodynamic effects complicated the analysis of the intensity fluctuations in 

this system by increasing the droplet growth exponent by a factor of five, and causing 

oscillation in P(f). 

A simpler system for studying the intensity fluctuations due to the coarsening dy

namics of a first order phase transition would be a system with a non-conserved order 

parameter (NCO P) like a binary alloy. Such a system would be free of hydrodynamic 

effects, and should be easier to understand because of the absence of conservation 

laws. 

This thesis reports on the first study of the ordering kinetics of an order-disorder 

phase transition in a binary alloy with coherent X-rays. We measure the scattered 

intensity fluctuations from the superlattice peak (lOO) of Cu3Au, after a quench from 

the equilibrium disordered state above the critical temperature Tc of the first order 

phase transition, to the degenerate ordered state below Tc. The speckle patterns 

of Cu3Au generated by coherent illumination of the sample are measured with a 
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charge-coupled device (CCD) array. The main advantage of the CCD array is to 

record hundreds of two dimensional speckle patterns, with a spatial resolution which 

matches the fine speckle features, and with a time resolution of tens of seconds to a 

few minutes [25], which is sufficient to measure the speckle pattern dynamics. 

The binary alloy Cu3Au was chosen because it is a classical system for the study 

of a first-order phase transition. It has been studied for over half a century1
. The 

equilibrium properties of this system are analogous to a three dimensional Ising model 

with antiferromagnetic coupling. Furthermore, the non-equilibrium ordering kinetics 

of Cu3Au has been studied extensively with incoherent illumination in recent years [28, 

29, 30, 31, 32, 33]. After a quench through the order-disorder transition, nucleation 

and growth of ordered domains occur2
• After nucleation, the late stage dynamics 

is controlled by curvature driven growth with the average domain size Rd ex t 112 • 

The scaling properties of the incoherent structure factor are well established and are 

universal features of ordering. The spherically averaged structure factor scales as 

S(q,t) =.tdf2J(qt 112), where d is the dimensionality, and f(x) is a universal scaling 

function. 

The theoretical foundation of IFS with non-equilibrium phenomena is not as well 

understood as its equilibrium counterpart. Therefore, it is important both exper

imentally and theoretically to develop an understanding of these phenomena. An

other motivation for this thesis is to investigate the non-self averaging behavior of 

first-order phase transitions[36]. Roland and Grant [36] predicted 1/ f noise in the 

fluctuations around scaling for a macroscopic quantity like the average domain size, 

in analogy with self-organized criticality. This is believed to be a universal feature of 

first-order phase transitions. 

In Chapter 2, we review some of the important concepts of coh~rence and scattering 

with coherent X-rays. Most of this terminology was developed in the last thirty years 

by light scatterers, but may be unfamiliar to scientists specialized in the fields of 

X-ray or neutron scattering. In Chapter 3, we develop statistical techniques for 

1The order-disorder transition in Cu3 Au is discussed in several X-ray scattering books (26, 27] 
2 Excellent reviews are given in Ref. [34, 35]. 
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characterizing position-sensitive detectors (PSD) which were inspired from our data 

analysis of speckle patterns in Cu3 Au. In this work, it was essential to separate the 

noise due to counting statistics from genuine intensity fluctuations, and to develop 

an understanding of the inherent spatial correlations of the detected signal in a PSD 

in order to estimate the speckle size. This work has been published recently [37]. 

Chapter 4 discusses the experimental method used for this work, expanding points 

developed earlier in Chapter 2. In Chapter 5, results from static and time-dependent 

measurements are reported, and compared to numerical simulations. 
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COHERENT X-RAYS 

2.1 Definitions of coherence 

In coherence theory, two types of coherence are discussed: longitudinal and transverse 

coherence. Longitudinal coherence is a wave's property of interfering with a time

delayed copy of itself. Longitudinally coherent light will produce fringes in a Michelson 

interferometer until its two mirrors are separated from each other by a distance much 

larger than the longitudinal coherence length [38] given by 

(2.1) 

where A is the wavelength of the light, and dA/ A is the relative bandwidth of the 

source. Eq. 2.1 follows from the Heisenberg uncertainty principle dvrz ~ 1, where ov 

is the frequency bandwidth of the light and crz = lr, where c is the speed of light 

in vacuum. Stated physically, the longitudinal coherence length is the characteristic 

length along the direction of propagation of a wave packet emitted by a given poly

chromatic source. For a monochromatic wave, l1 is infinite. For a constant relative 

bandwidth dA/ A, lz is proportional to the wavelength used. 

A wave is called transversely coherent if it can produce fringes in a Young's double

slit experiment. The transverse coherence length lt characterizes the loss of coherence 

or of fixed phase relationship between two points on a wavefront. In a Young's double

slit experiment, no interference fringes are seen [38] if the two slits are separated by 

a distance d much larger than the transverse coherence length 

lt = AR8 /2ds = Aj2a, 

7 

(2.2) 
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where Rs is the source to observation point distance, ds is the source size, and a = 
ds/ Rs is the opening angle subtended by the source at the point of observation. 

Stated in another fashion, if one places two pinholes separated by d < lt in front of 

an extended source, the interference patterns generated by each element of the source 

overlap each other, thus interference is visible. For a point source, the transverse 

coherence length diverges. For an extended source, lt increases with increasing A, 

making it easier to observe interference effects at longer wavelengths. The transverse 

coherence length is also inversely proportional to the opening angle subtended by the 

source at the point of observation. 

Formally, a source is coherent when there is a non-zero statistical correlation be

tween electric fields E(rt, t 1) and E(r2 , t 2). The mutual coherence function is defined 

by 

(2.3) 

where the average is taken over time. 

It can be shown [39] that the mutual coherence function far away from an m

coherent source made of independent radiators1 simplifies to the spatial Fourier 

transform of the source intensity profile. Then the complex coherence factor 

where the vector i' is a small vector in the source plane, A is the average wavelength 

of the source, and rl and r2 are two vectors in the plane of observation perpendicular 

to the optical axis of the source and placed at a distance Rs from the source. This 

is called the Van Cittert-Zernicke theorem. It holds for small angles of observation 

such that the transverse distance jf'2 - r1 1 < < Rs, and under quasi-monochromatic 

conditions. This theorem is very useful because it can be used to calculate the fringe 

contrast in a Young's double-slit experiment [39] for most light sources. 

1This assumption characterizes nearly all optical sources other than a laser. It can be applied to 
synchrotron radiation. 
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Following Goodman [39], we define the coherence area by 

(2.5) 

For an incoherent source with a spatially uniform intensity profile, it can be shown 

[39] using the Van Cittert-Zernicke theorem that the coherence area in Eq. 2.5 reduces 

to the product of the two perpendicular transverse coherence lengths of the source 

defined in Eq. 2.2. Eq. 2.5 will be used in section 5.1.2 to calculate the observed 

contrast of our diffraction patterns. 

2.2 Properties of synchrotron radiation 

The use of synchrotron radiation over the past thirty years has revolutionized the 

field of X-ray scattering. Today's range of scientific activities in the X-ray scattering 

community would not be as rich and varied without the use of synchrotron radiation 1 . 

This radiation has several properties which make it ideal for experiments in physics, 

chemistry, biology, medicine, engineering, material science and in the development of 

new drugs and technologies. The photon energy available at a synchrotron ranges 

from the infrared to gamma rays. No other single source is able to cover such a wide 

band of energies. This energy can be easily selected for a given system by the use of 

monochromators and gratings, with a wide range of energy bandpass, JEI E, typically 

between 10-2 to 10-4 . The major improvement over standard laboratory sources 

is the huge increase in intensity, allowing studies of time dependent dynamics and 

spectroscopies on a wide range of time scales (10- 12 - 104 s ), or studies of scattering 

from sample volumes as small as l(t-tm)3 (1011 atoms!), weak scatterers like light 

elements, surfaces and interfaces a few monolayers thick, nuclear charge, or magnetic 

moments. The source divergence is quite small due to the radiation cone which is 

shrunk to an opening angle of 1 I 1, where 1 = E I m0c2 , m0c2 is the rest mass of the 

electron or positron, and E is its total energy in the laboratory frame. Furthermore, 

the source size is small. These two properties yield a large coherent flux which can be 

1 For an introduction to synchrotron radiation, the reader is referred to recent books on the subject 
[40, 41]. 
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used in coherent X-ray scattering experiments and X-ray holography. The incident X

ray polarization can be controlled to produce linear, circular or elliptical polarizations. 

This allows for resonant and non-resonant magnetic X-ray scattering, or circular 

dichroism. Finally, the beam is pulsed, which allows for different spectroscopies and 

excitation modes to be studied. 

The X-ray sources used in this work were insertion devices. An insertion device is a 

periodic magnetic structure inserted in a straight part of the synchrotron ring. These 

devices cause the electron orbit to oscillate as a sine wave. The X-rays generated 

by these oscillations are linearly polarized in the plane of the orbit. Most scattering 

experiments using synchrotron radiation use a vertical scattering plane to reduce 

polarization losses [26]. 

These sources are characterized by a large brilliance or brightness, B, defined as 

the flux of photons per unit of phase space, which is the flux of photons per unit 

of source area per unit of solid angle measured in photons/s/mm2 /mrad2 /0.1 %BW, 

where BW stands for the X-ray bandwidth 8>../ >... For many optical transformations, 

the brightness is an invariant. For example, a mirror can be used to focus the X-ray 

beam to a small spot size, but the beam divergence is increased in proportion, thus 

the product of the spot size times the beam divergence is conserved. In practice, the 

brightness may be lost in absorption by windows, or in optical aberration on optical 

elements like mirrors and monochromators. 

An insertion device is characterized by a deflection parameter 

K = 0:1 = eB>..o/(2rrmoc2
) ~ 0.934B(T).\0(cm), (2.6) 

where a is the maximum deflection angle of the electron trajectory with respect to 

the axis of the insertion device. This angle characterizes the deflection of the electron 

trajectory by the periodic magnetic field B with laboratory frame period >..0 [40]. An 

insertion device with K > 1 is called a wiggler while one with K < 1 is called an 

undulator. 

A wiggler has a very broad energy spectrum similar to a bending magnet spectrum 

[4:1.]. Because the angular deviation caused by a wiggler is quite large compared to 
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the angular cone of the emitted synchrotron radiation, the radiation emitted from 

different periods of the wiggler adds incoherently. Therefore, the peak intensity is 

proportional to the number of magnetic periods N. This device has more operational 

freedom than a bending magnet because the magnetic field can be made as large as 

necessary without changing the electron orbit. 

The radiation emitted by an undulator is quite different from wiggler radiation 

because the radiation emitted from a given period adds coherently with the radiation 

generated at a later time at the subsequent period [41). The brightness is proportional 

to N 2
, and its spectrum is peaked around well defined wavelengths called harmonics, 

functions of >.0 [41]. The wavelengths of these harmonics along a direction parallel to 

the plane of the orbit are 
>.o K 2 

An = 2wy2 ( 1 + 2 (2.7) 

where n = 1, 2, 3 ... [41], and their relative wavelength spread is 

1 
(2.8) 

With current undulator designs, the relative bandwidth of a given undulator harmonic 

is typically in the range of a few percent. 

2. 3 X-ray scattering 

In an X-ray scattering experiment, one measures the differential cross-section of X

rays coherently scattered by the electrons in the material. Using the first Born ap

proximation, the X-ray differential cross-section 

~~ = q,s/ li oc S(q, t), (2.9) 

where q, s is the scattering rate measured in a solid angle dO subtended by the detector, 

Ii is the incident intensity, and the structure factor is 

S(q, t) = lp(q', t)l 2
, where p(ij, t) = j lrp(r, t)e-ilfr. (2.10) 

Here p( q, t) is the Fourier transform of the electronic density, p( r, t), and q = k 1 - ki , 
where k1 and ki are respectively the wavevectors of the scattered and incident X-rays 
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Detector 

dV 

···························~· 

c) 

Figure 2.1: a) The Fraunhofer condition holds for plane wave illumination such that the distance 
source-sample R8 and the distance sample-detector Rd are much larger than the sample size. b) 
The phase difference, in the Fraunhofer condition. The phase difference J = kt · ri - ki · fi, where 
the magnitude ofthe incident and scattered wavevectors lk•l = lktl = 21rj>., and fi is the position 
of the volume element dV in the sample reference frame. c) The Bragg condition. 

with magnitude lk f I = I ki I = 21'1 / >.. The electronic density may change in time. This 

dynamics can be tracked by the time dependence of the structure factor. 

In scattering theory, the first Born approximation [27] assumes weak scattering 

or a small scattering volume. This approximation is also used for the kinematic 

theory of X-ray diffraction. In this treatment, the Fraunhofer diffraction condition 

is assumed which means that the sample is illuminated by plane waves originating 

from a point source, placed far away from the scattering center. It is important to 

stress that in a typical scattering experiment, this condition is not fully satisfied and 

one must correct for the finite source size and input divergence (see Fig. 2.1a). For 

synchrotron radiation, this condition can be more easily satisfied because of the small 

input divergence and source size. In this thesis, the experimental setup is close to the 

Fraunhofer condition. This will change qualitatively the structure factor observed. 

We will discuss this in more detail in section 2.6. 

For a crystal, the electronic density is periodic and has translational symmetry, so 
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that 

(2.11) 

where T is a translation vector obtained by a linear combination of the primitive 

translation vectors ai, and the integers Xi. The crystal electronic density is also 

periodic in Fourier space, with primitive translation vectors 

(2.12) 

(2.13) 

and h, k, l are integers called the Miller indices. Note that the vectors a and bare 

perpendicular, so ai · bi = 21foij, where i,j = 1, 2, 3. Using the fact that the Fourier 

transform of a crystal is also periodic in reciprocal space, it is easy to show1 that 

scattering maxima occur in Eq. 2.10 when the scattering vector if= G. These max

ima are called Bragg peaks. The Bragg condition occurs when the phase difference 

between light scattered from parallel planes of atoms (see Fig. 2.1 b) is a multiple of 

21r. The scattering angle OB, shown in Fig 2.1c, is given by Bragg's formula 

(2.14) 

where eB is the Bragg angle, and dhkl = 21f /IGI. For an infinite crystal, these Bragg 

peaks are Dirac delta functions in reciprocal space, but for a finite crystal of linear 

dimension D, their intrinsic width in reciprocal space is proportional to 1/ D. When 

some disorder with correlation length e < D is present in the sample, the Bragg peak 

width becomes proportional to 1/e > 1/ D. 

In a crystal, since the atomic positions are periodic, the structure factor S( if) in 

Eq 2.10 can be rewritten as a sum of waves scattered by each lattice point in the 

crystal. Then, one finds 

S( if) ex I L F exp( -iij · 7\)1 2
, (2.15) 

i 

1This is derived for example in Chap. 2 in Kittel [42]. 
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where fi are the positions of the lattice points in the scattering volume, and F is the 

form factor of all the atoms in the basis of the unit cell given by 

F = 2::: fi exp( -iif · ri ), (2.16) 
j 

where h and ~ are respectively the usual atomic form factor and position in the unit 

cell for the jth atom in the basis. Note that h is complex, with fi = ftj + ih/. For 

an orthorhombic lattice, it is easy to show [26], by evaluating the sums in Eq. 2.15, 

that the structure factor 

S( ;;'\ = IFI 2 sin2
(Ntalqx) sin

2
(Nzazqy) sin

2
(N3a3qz) 

q} . 2( ) . 2( ) . 2( ) ' sm qxa1 sm qyaz sm qza3 
(2.17) 

where if= (qx, qy, qz), and N1at, Nzaz, N3a3 are the sample linear dimensions. Fig. 2.7 

shows the structure factor of a two dimensional square lattice with lattice constant 

a with 100x 100 atoms. The peak intensity in this approximation is proportional to 

the square of the sample volume, the width of the Bragg peak along q; is the inverse 

of the sample linear size .6.qi ex N~a;, and the scattered integrated intensity over all 

wavevectors is proportional to the sample volume (or the total number of atoms). 

The side lobes in Fig. 2. 7 are the secondary maxima of Eq. 2.17. 

Another important property of scattered X-rays is the change of state of polariza

tion of the incident beam by the scattering process. X-rays polarized perpendicular 

to the scattering plane, the plane parallel to both incident and scattered wavevec

tors, suffer no loss of intensity while those polarized in the scattering plane suffer a 

cos2 (20B) loss [26]. This effect can be used to make an X-ray polarizer or analyzer 

by scattering from a crystal with 20B = 1'i /2. In the experiments reported here, the 

scattering plane was vertical, and perpendicular to the polarization vector. 

Finally, in X-ray scattering experiments, one needs to select a narrow energy band 

of the incident polychromatic beam. In the hard X-ray region of the spectrum, this is 

done by using Bragg reflection from a nearly perfect single crystal, called a monochro

mator. To understand the wavelength dependence of l1, one needs to understand the 
1The complex term is caused by absorption of the incident or scattered wave. For hard X-rays, 
h l=:::l Z, where Z is the number of electrons in the atom and f2 is related to the mass absorption 
coefficient, Jlm, by f2 = Jlm 2N~>.,.J43], where A is the atomic mass, NA the Avogadro number and 
re= e2 /(47rtomoc2 ) = 2.82 X 10-15 m the classical electron radius[41]. 
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wavelength dependence of 8>./ >. for a single crystal monochromator. It is calculated 

by taking the derivative of Bragg's law in Eq. 2.14 with respect to >.. For a per

fectly collimated polychromatic X-ray beam, it is easy to show [44] that the relative 

bandwidth 

J>.j>. = MJftanO = reN>.2 Re{F}/(7rsin20tanO) ex NRe{F}df.kt- (2.18) 

Eq. 2.18 was simplified by replacing 8() by the Darwin width of an absorbing semi

infinite monochromator crystal with J() = re~:~:;JF} [26], where N is the electron 

density, re is the classical electron radius, Re{F} is the real part of the form factor 

of the Bragg plane, and recalling that sin() = >.j2dhkl· One finds that J>.j >. is weakly 

dependent on wavelength through the wavelength dependence of Re{ F}. Brauer et 

al. [44] also consider the case where the incident X-ray beam has a finite divergence. 

Eq. 2.18 then becomes 8>./ >. = ( 8() + Di)/ tan(), where Di is the input divergence. 

Then the relative bandwidth will be wavelength dependent through the wavelength 

dependence of 0. 

2.4 X-ray scattering from Cu3Au 

The binary alloy Cu3 Au is a classical system for studying the properties of first order 

phase transitions. It has been studied for over half a century, and its equilibrium and 

non-equilibrium incoherent scattering is fairly well understood. Most of the earlier 

X-ray scattering work consisted of measuring the equilibrium properties of the alloy, 

like the equilibrium temperature dependence of the long range order, the anisotropy 

of the Bragg peak in reciprocal space due to the presence of antiphase domains, 

and the diffuse scattering from the short range order fluctuations. Several textbooks 

discuss the scattering from Cu3Au [26, 27]. The focus of research on Cu3Au has 

changed in recent years. For example, some of the work has been focused on studying 

the nature of the phase transition on the surface layers of Cu3 Au single crystals 

(45, 46, 47], while others have studied the non-equilibrium kinetics of Cu3 Au, after a 

quench from its disordered phase to the ordered phase [28, 29, 30, 31, 32, 33]. The 

latter work is motivated by a need to improve our understanding of non-equilibrium 
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Figure 2.2: A schematic plot of the powder dTlr':tl~;)pattern ofCusAu, above and below Tc using 
a = 3.771 A[32], and A = 1.5405 A, with domains below Tc of 100 A. The equilibrium real space 
structure is shown beside. (From Ref. [27]) 

processes. These processes are important in the fabrication of many technologically 

relevant materials. Furthermore, since non-equilibrium processes are quite challenging 

conceptually, much work remains to be done to understand them. 

Cu3Au goes through an order-disorder transition at a critical temperature Tc = 
390°C [26]. Fig 2.2 shows the structure factor for a powder sample and the real space 

equilibrium structure above and below Tc. Below Tc, the structure. is Lh with a basis 

consisting of one Au atom occupying the corner position (0; 0, 0) of the cubic lattice 

with 3 Cu neighbors on the neighboring face center sites (1/2, 1/2, 0}, (0, 1/2, 1/2}, 

(1/2, 0, 1/2} of the unit cell. Above this transition temperature, the structure is fee 

because each atomic species diffuses through the lattice randomly, yielding an effective 

atomic form factor for each site of the basis given by]= 1/4/A.u + 3/4/cu, where 

!Au and feu are the form factors of Au and Cu respectively. The peaks in Fig. 2.2 

which remain unchanged above Tc are called fundamental peaks and are not affected 

by the degree of long range order in the crystal. The peaks that disappear above 

Tc are called superlattice peaks. Following Warren [26], it is easy to show that the 

integrated scattered intensity 

S(h, k, l) = { 16(~ + ~ )2 
for h, k, l all odd or even, 

1/J~w(/A.u - /cu)2
, for mixed h, k, l, 

(2.19) 
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where tPBW is the Bragg Williams order parameter, rangmg between zero in the 

disordered phase, to one in the fully ordered phase. The integrated intensity of 

a superlattice peak is proportional to the square of the order parameter, and to 

the square of the difference between the atomic form factors of Cu and Au. The 

fundamental peaks occur for unmixed h, k, l, and are independent of tPBW· 

Although the long range order disappears above Tc, some weak scattering is still 

observable around the superlattice peak. It is due to the tendency of Au atoms, for 

example, to surround themselves with three Cu atoms as nearest neighbors, causing 

short range spatial correlations in the disordered states which are observable as diffuse 

scattering [27, 48]. 

The ordered state has a four fold degeneracy since the Au atom can occupy any 

of the four sites of the basic unit cell. This degeneracy leads to the formation of 

four competing phases forming large antiphase domains, separated by domain walls. 

There are two types of domain walls in Cu3 Au [30, 32]. Type I domains walls are 

formed by a half-diagonal glide in planes perpendicular to the cubic axes1. They 

have low interfacial energy because they do not require a change of nearest neighbor 

coordination along the interface [32]. Type II walls are formed by a half-diagonal glide 

across planes perpendicular to the cubic axes2
• They have a higher interfacial energy 

because they require a change of nearest neighbor configuration. It is well known 

that these domain walls give rise to an anisotropy in the Bragg peaks of the ordered 

phase. Warren [26] derives the line shape of the superlattice peak, assuming that it is 

caused only by Type I walls, where domains forming along the three crystallographic 

axes are independent of each other, and the probability of crossing a domain wall,/, 

is small. The scattered intensity for planes with Miller index (hkl), where h, k are 

indexes with the same parity is 

{2.20) 

where the Ni are proportional to the sample linear size. This peculiar line shape gives 

1 In the [001] direction, this corresponds to displacing a domain with respect to another by 1/2[110] 
2In the (001] direction, this corresponds to displacing a domain with respect to another by 1/2[101] 
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liO 

Figure 2.3: The superlattice peak in reciprocal Bp~ from Ref. [26]. It is anisotropic because Type 
I walls form in the three crystallographical direction. The fundamental reflections are shown with 
solid circles. 

rise to disks in reciprocal space shown in Fig 2.3. For the ( 100) super lattice peak for 

example, this gives a disk oriented in a plane parallel to the (011), with the narrower 

dimension along the (100). A more detailed lineshape is given in Ref. [30]. 

Recent time-resolved studies of the ordering kinetics of Cu3Au have revealed quite 

rich dynamical features of the ordering and coarsening process. Noda et al. [29] 

found that the structure factors in the later stage can be rescaled by a simultaneous 

renormalization of time and space, with the characteristic length L(t) ex t 112• They 

found that a Lorentzian-square function was a good scaling function for all quench 

depths. They found evidence of an incubation time for the formation of a critical 

droplet size, which later grows to macroscopic size. This incubation time diverges as 

the temperature approaches the critical point. 

Ludwig et al. [30] studied the early stage of the nucleation and growth process 

with a fraction of a second time resolution. They found evidence that the early 

kinetics of the short range order .fluctuations for quench temperatures just below Tc is 

a relaxation to a metastable state, which then slowly decays by nucleation and growth. 

For lower temperatures, the time scales of the two processes become comparable, and 

for Tc- T > 34 K, they found evidence for continuous ordering at a temperature well 

above the classical spinodal temperature. 

Nagler, Shannon et al. (31, 32, 33] identified three distinct kinematic regimes: 

nucleation, ordering and coarsening. A delay in the growth of the integrated intensity 
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was attributed to an incubation time for nucleation like in Ref. [29]. It was found that 

the structure factor crosses over from having a Gaussian line shape during the early 

stage of the ordering process, where the ordered nuclei are small and embedded in a 

disordered matrix, to a Lorentzian-square line shape during the late time coarsening 

process. They found that the anisotropic disk shape reflection sharpens in time with 

the same exponents along the disk plane and through the disk axis. They showed that 

the scaling exponent in the coarsening regime is consistent with the non-conserved 

order parameter (NCOP) exponent n = ~ for curvature driven growth. 

We will study the late stage of the ordering kinetics of the phase transition after a 

quench from the high temperature fee phase to the low temperature phase, and record 

the scattered intensity of the Cu3Au (100) super-lattice peak with a CCD array (see 

Fig. 2.2). 

2.5 Production of coherent X-rays: experimental method 

Before the invention of lasers, incoherent thermal sources were used to produce co

herent illumination. By collimating an incoherent source like a mercury arc lamp [49] 

with a small aperture, a coherent light source can be obtained. The first speckle pat

terns measured with hard X-rays were observed with an incoherent source! This was 

demonstrated by Sutton et al. [15] for an incoherent source of X-rays by limiting the 

beam size to dimensions comparable to its horizontal and vertical transverse coherent 

lengths, lx, ly, given by rewriting Eq. 2.2 as 

[ _ ARs [ _ ARs 
x - 2dsx ' Y - 2dsy ' (2.21) 

where Rs is the distance between the source and the point of observation, while dsx and 

dsy are the horizontal and vertical source size. Fig. 2.4 shows a typical experimental set 

up for such an experiment. Common symbols are defined on page IX for convenience, 

and the particular experimental parameters for the two runs where we collected data 

are shown in Table 2.1. Typical values at wavelength >. = 1.24 A are given in 

Table 2.2. 
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Figure 2.4: The experimental setup. All variables are defined on page IX for convenience, and their 
typical values are given in Table (2.1). The X-rays are generated by a wiggler or an undulator. The 
source x-y slits allow for a change of the coherence lengths by reducing the effective source size. A 
double Si (111) monochromator is set near 7.0 keV to prevent Cu fluorescence. The incident beam 
intensity is monitored by an ion chamber. The collimating pinhole is used to limit the beam size 
to a dimension comparable to the transverse coherence lengths. One of two detectors is normally 
used: a CCD array, or a scintillator masked by a micron size pinhole which is mounted on an x-y 
translation stage. 

Table 2.1: Experimental parameters for the two experimental setups. The horizontal and vertical 
source sizes d311, and d.y are given by their full widths at half maximum (FWHM). The effective 
source size can be reduced by closing some upstream slits placed at a distance Rsw from the source. 

Beamline CHESS NSLS X25 

Source type undulator Wiggler 

EkeV 7.0 6.9 

Rsm 25.8 27.8 

Rslit m 17.8 10.5 

dsx mm 2.55 1.46 

dsy mm 0.167 0.068 

Re cm 6.7 6.75 

Rd m 0.95 1.04 
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In a typical incoherent X-ray scattering experiment with a laboratory source, A = 

1.54 A, ds ~ 1 lOmm, Rs ~ 1m resulting in lt ~ 80-800 A. Limiting the beam size to 

such small length scales would not give any useful coherent flux. Since the beam size at 

the sample position is also a few mm, the speckle pattern is washed out by incoherent 

averaging [10]. Because of the high collimation of third-generation X-ray sources 

and the large source-sample distances, typical coherence lengths are between 1-10 

~-tm. Since these sources are several orders of magnitude brighter than conventional 

sources, one can obtain a coherent beam with sufficient flux by collimating the incident 

beam with pinholes of diameter comparable to lx,y (typically 4- 7~-tm). 

The coherent flux, <Pc, is calculated from the integrated flux going through a rect

angular aperture with height ly and length lx, which accepts the full source divergence 

ax, ay. It is easy to show that 

(2.22) 

where B(A) is the brightness of the source. The relative bandwidth fJAj A selected by 

the monochromator is only weakly dependent on wavelength as shown in Eq. 2.18. 

Therefore the presence of the A 2 term makes these experiments easier to perform 

at longer wavelengths. Typical values of this flux at X25 and CHESS are given 

in Table 2.2. With 1.2 x 106 photons/s, X25 gives a coherent flux comparable to 

a laboratory source. An increase of a factor 500 should be gained by performing 

experiments at the Advanced Photon Source (APS). 

Past and current coherent X-ray experiments can be limited by this small coherent 

Beamline lt ll B <P 

/-liD /-liD phjs 

X25 NSLS 1-25 0.44 3 X 1014 1.2 X 106 

CHESS Undulator 0.6-10 0.44 3 X 1015 1.2 X 107 

APS U ndulator 10-10 0.44 1.5 X 1017 6 X 108 

Table 2.2: Brightness and coherence lengths for different sources at 1.24 A. Brightness measured in 
ph/ s/mm2 jmrad2 jO.Ol%BW. 
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flux. A currently active area of research is investigating ways to improve the flux going 

through the collimating pinhole, by sacrificing some vertical coherence with focusing 

X-ray optics like a mirror [50, 51] or asymmetrically-cut crystals [44, 52]. The idea 

originated from the fact that ly is typically an order of magnitude larger than lx for 

synchrotron radiation, so that if one focuses the X-ray beam in the vertical direction 

until the vertical divergence matches the horizontal divergence, then ly = lx, and 

the coherent flux is increased through the pinhole because of the focusing. These 

techniques are important since they will make it possible to tailor the coherence 

volume lxlylz for a given experiment requiring, for example, a much smaller beam size 

than the smallest of the transverse coherence lengths, or requiring equal horizontal 

and vertical transverse coherence lengths [44]. 

Another approach for improving the scattered intensity is by optimization of the 

product of the coherent flux, cl>c, and the fraction of scattered X-rays with respect to 

energy. One can show1 that the integrated scattered intensity for Cu3Au 

(2.23) 

where '1/J is the order parameter, feu is the complex atomic form factor for Cu, and 

f,lcu3 Au is the absorption length in Cu3Au. Eq. 2.23 depends on the X-ray contrast 

of the two elements Cu and Au. One way to increase the scattered intensity for the 

study of order-disorder transitions is to choose the material with the largest difference 

in atomic number. For the sake of simplicity, let us assume a fully ordered material, 

with '1/J 1, and assume that one can tune the insertion device in such a way that 

B is constant over the wavelength range of interest. Fig. 2.5 shows the approximate 

scattered intensity integrated in q over the (100). The energy in this experiment 

was set to 7 KeV, which is close to the optimal condition for Cu3Au. In a real 

experiment, windows and monochromators may complicate this relationship; thus, it 

is often simpler to measure the scattered intensity in order to optimize it. 

1 One needs to combine absorption effects and the integrated intensity of a superlattice peak in a 
binary alloy found in Eq. 2.19, assuming no polarization losses. 



c 

0 

2: COHERENT X-RAYS 23 

4.0 ..---....------.---...--..,....---.---.------.---. 

3.0 -:::J 

~2.0 
0) - 1.0 

6 8 10 12 14 
Energy (KeV) 

Figure 2.5: The energy dependence of the scattered intensity / 3 calculated from Eq. 2.23. The 
atomic form factors for Cu and Au were taken from Ref. [53], and the mass absorption coefficients 
were calculated from these form factors. The discontinuities are the absorption edges for Cu (near 
9 keV) and Au (near 12 and 13.7 keV). Below, the optical path length difference in Cu3Au 2jtsin2 (JB 

(solid line) and the longitudinal coherence length l1 (dashed line). Here l1 is calculated from Eq. 2.1 
and 2.18, neglecting the weak energy dependence of Re{F} for the Si (111) monochromator (only 
1.5% change over the energy range shown). 

2.5.1 Coherence volume 

The other condition for coherent scattering is that the optical path length differences 

(OPLD) in the sample be smaller than the longitudinal coherence length of the source, 

lz, such that 

(2.24) 

where 8>-..j).. is the relative wavelength bandwidth of the source of radiation [38]. 

For 7.0 keV X-rays, filtered with a Si111 monochromator, J>..j >.. = 1.4 X 10-4 , giving 

lz ~ 0.6 J.Lm. This coherence condition is achieved by using a thin sample, or a sample 

with large enough absorption, or by scattering with a grazing angle of incidence 

[16, 17]. Specialized monochromators can also be used to change the longitudinal 

coherence length. For example, Dierker et al. [22] have used a wide bandpass X

ray multilayer monochromator to select the smallest l1 possible in order to maximize 

the available coherent flux. It is also possible to increase l1 by using higher order 

reflections of Si, or by using high resolution monochromators like those used for 
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CUJAU 

Figure 2.6: The condition for longitudinal coherence. It is satisfied because the optical path difference 
(wider line), 2dz sin 8, is smaller than the longitudinal coherence length. The X-ray penetration 
depth perpendicular to the surface is dz = Jt sin(), where Jt is the sample X-ray absorption length. 
Therefore, the longitudinal coherence condition is rewritten as l1 < 2tt sin2 8. 

Mossbauer scattering or high energy inelastic scattering [54]. 

For Cu3 Au, the absorption length at 1.77 A is J-t = 4.2 J-tm [55]. The difference 

in optical path is illustrated in Fig. 2.6 for a symmetric Bragg reflection. The Bragg 

angle (J = 13.67°, and dz is the X-ray penetration depth in the material perpendicular 

to the surface. The longitudinal coherence condition is fulfilled because the path 

length difference, 2dz sin 0 = 2~-t sin 2 0 = 0.4 7 J-tm, is smaller than l z. Note also that 

for Cu3Au, the OPLD is smaller than lt for all energies below 8.1 KeV or above 9.0 

Ke V as seen in Fig. 2.5. 

The longitudinal coherence condition depends on the angle (J of the reflection. 

Pindak et al. [18] have clearly demonstrated this effect by observing the contrast of 

speckle patterns on superlattice reflections of a charge density wave in K0•3Mo03 • For 

this material, the longitudinal coherence condition is valid for e < 9.5° [18]. They 

demonstrated that speckle is observable for low order reflection with e < 11°' but 

disappears for reflections with (J = 22.5°. 

2.6 Structure factor with coherent X-rays 

Here two models are presented which give the reader a few examples on the present 

and possible uses of coherent X-ray beams. 
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2.6.1 Coherent X-ray scattering for the study of isolated defects or 

artificially made structures 

It is important to realize that the definition of the structure factor must be slightly 

modified to take into account the coherence of the beam. The measured structure 

factor is typically an ensemble average of the coherent structure factor calculated over 

the coherence volume of the source. This ensemble average is typically performed over 

the illuminated volume V > > lxlylz, where the coherence volume is the product of 

the coherence lengths. Mathematically formulated, the structure factor observed in 

a typical X-ray experiment is 

(2.25) 

When the illuminated volume is comparable to the coherence lengths of the source, 

the structure factor becomes sensitive to individual realizations of the ensemble, thus 

becoming sensitive to the exact position of the atoms in the illuminated volume. 

The first theoretical model shown here was suggested in the original demonstration 

of speckle by Sutton et al. [15]. It consists of isolating single defects in a few ttm 

diameter beam to study the detailed microstructure of the material and to improve 

our structural understanding of defects in condensed matter. In typical X-ray exper

iments, one illuminates millions of defects incoherently, since the illuminated area is 

typically 1 mm x 1 mm but the X-ray beam transverse coherence lengths are on the 

order of 1000 A. Since the characteristic length scale of a defect ranges between a few 

A to a few Jtm, the presence of defects is seen only in slight changes of the line shape 

of the Bragg peak which can be hard to interpret as a given defect type. 

As opposed to incoherent experiments, coherent X-ray scattering techniques are 

more sensitive to the exact position of atoms in the scattering volume. It gives a 

structure factor that is very different depending on the type of defects illuminated. 

An example of this sensitivity to disorder is shown in Fig. 2. 7. The structure factor 

of a two dimensional perfect crystal with a square lattice calculated using Eq. 2.17 is 

shown. The calculation is shown for a crystal of 100 x 100 atoms. The peak height 



c 
2: CoHERENT X-RAYS 26 

••••••• • •••••••• ••••••• • •••••••• ••••••• ••••••• ••••••• ••••••• ••••• • ••••• • ••••• • ••••• • ••••• • 

••••••••• • •••••••• • •••••••• • •••••••• • •••••••• • •••••••• • •••••••• ••••••••• • •••••••• ••••• ••••• ••••• ••••• ••••• ••••• 

• • •••••••• • • •••••••• •••••••••••• •••••••••••• •••••••••••• •••••••••••• ••••• •••••••••••• 

•••••••••••••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••••••••• ••••••••• • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • . . . . . . . . .. . . . . . . . . .................. .................. .................. .................. ................... .................... 

(1, 1) 

Figure 2.7: {Top left) The central 20 x 20 atoms in a real space square lattice with lattice parameter 
a, and S(il) centered on the (1,1) (top right). A linear grey scale from 0 to 108 is used to display 
the (1,1). The wave vector range shown from the (1, 1) centered on the middle of the image is 
(27r fa±41f / L, 21r fa±41f/ L), where the sample size L = 100a. (Middle) The central 20 x 20 atoms of 
a real space two dimensional lattice di~torted by an edge dislocation, and S(fJ centered around the 
{1, 0) using the same range as the top image. {Bottom) S(q) centered around the (1,1) and {2,2}. 
The Bragg peaks split into several satellites. The structure factor varies depending on the position 
in reciprocal space. 
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goes as the square of the number of atoms, and its width as the inverse of the sample 

size. The middle image in Fig. 2. 7 shows the real space lattice of a crystal distorted 

by an edge dislocation1
• The structure factor calculated from Eq. 2.15 is also shown 

for the (1,0), (1,1) and (2,2). The original structure factor of the perfect lattice is 

split into satellites of comparable magnitude but weaker intensity than the perfect 

crystal. The splitting of the satellites is on the order of the FWHM of the perfect 

square lattice. In order to look at defects on a quasi-perfect single crystal of Si, one 

would look for structure on an angular scale comparable to the Darwin width of Si. 

By using a high resolution set up, this experiment could be feasible. 

One should note that some experiments have already been done on simple struc

tures, such as two-dimensional gratings and multilayers. Recently, Robinson et al. 

[17] observed speckle from a multilayer of GaAsxAIGaAs1_x· They developed several 

theoretical approaches which could fit the observed random speckles. They found 

that coherent X-ray scattering can be quite a sensitive tool for studying the disorder 

of the lattice orientation on the surface of their multilayers. It appears that it can give 

additional information which cannot be obtained from other experimental techniques. 

Shen et al. [57] studied the structure of a two dimensional grating, using. X-rays 

with a transverse coherence length of the order of one Jlm. They did not match the 

illuminated volume with the transverse coherence length of the source, thus some 

ensemble average was performed. The measured X-ray scattering was modeled ad

equately with the kinematic theory using a sample size given by the transverse co

herence length of the source. They found that the added transverse coherence gives 

microscopic as well as additional mesoscopic information on the grating structure, 

such as its period, width and shape, atomic registry with the substrate, and crystal 

lattice strain. Recently, Tanaka et al. [58] have used the technique demonstrated 

above to measure surface diffusion and strain in the same oxidized grating as in 

1The displacements dr = (dx, dy) for all atoms were calculated by a simple model of an edge 
dislocation, given by Eq. 30.6 in Christian [56]. Here the displacement of the atom at posi
tion r = (x, y) in the crystal is dx b/411'(1 - 11}[2(1 - 11) arctan(y/x) + xyf(x2 + y2)], and 
dy = -b/411'(1 - 11)[(1- 211) ln(x2 + y2) - x2/(x2 + y2 )], using a Poisson Ratio 11 = 1/3, and a 
Burgers vector b a, where a is the lattice parameter. 
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Ref. [57]. 

2.6.2 Scattering from a binary alloy in equilibrium 

We derive next some of the properties of the structure factor S( if, t) obtained with 

coherent light incident on a typical binary alloy like Cu3 Au and Fe3Al, in thermal 

equilibrium below the critical temperature, Tc, of a first order or a continuous phase 

transition. This section is motivated by the need to understand the equilibrium short 

range order fluctuations in equilibrium and non-equilibrium experiments which occur 

within large antiphase domains. This section serves also as a good demonstration of 

equilibrium IFS. The results derived below are valid for a large class of systems like 

magnetic systems and binary alloys belonging to the non-conserved Ising universality 

class. The discussion is limited to the region well above or well below a continuous 

phase transition, outside the critical region1. The properties of the S( if, t) for a system 

in the conserved Ising universality class will be qualitatively consistent with those of 

the non-conserved order parameter, although the exact dynamical properties will have 

a different wavevector dependence due to the conservation laws. 

The theoretical model used for this demonstration is a time-dependent Landau

Ginzburg field theory model called model A in the Hohenberg and Halperin classi

fication scheme [59]. This model describes well the equilibrium and non-equilibrium 

properties of a binary alloy with a non-conserved order parameter [60, 61], where the 

order parameter is proportional to the sublattice concentration of one of the atomic 

species. The equilibrium dynamics of the order parameter is obtained by minimizing 

a coarse-grained free energy F and solving 

o'!f;(r, t) 
ot -M~:+ 17(r, t), (2.26) 

where '1/;( r, t) is the order parameter measured at discrete position r on a square lattice 

and at discrete timet, M is the mobility, and ry(r, t) is a noise term which takes into 

account the coupling of the system to the thermal bath by fast variables. Here, the 

1 For a review of critical dynamics, see Hohenberg and Halperin [59]. 
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noise term is Gaussian and uncorrelated in space and time with 

<'f}(r, t)'fl(;i, t')> = 2kBT M J(r- ;i)J(t- t'), and <'f}{r, t)> = 0, (2.27) 

where kB is the Boltzmann constant, J( x) is the Dirac delta function, and the brackets 

refer to an ensemble average. The free energy functional used is 

(2.28) 

where"'' r, and ware phenomenological constants, with w > 0, and r = r0(T /Tc -1), 

such that r > 0 in the disordered phase above TC) and r < 0 when two ordered 

phases are stable below Tc, and r = 0 at Tc. The gradient term is used to model the 

interfacial free energy between two different phases. In the single phase equilibrium 

above Tc, F has a single well centered at the equilibrium value <t/Y> = 0. Below Tc, 

F has a double well, with symmetric minima at '1/J = ±~. 

Eq. 2.26 can be rewritten as 

&'1/J(r, t) 
-Jt 

(2.29) 

Eq. 2.29 was solved numerically using Euler's method to discretize time and a nearest

neighbor approximation was used for \72 (60]. The simulations were performed in two 

dimensions using periodic boundary conditions, and system sizes of 1282 , 2562 , or 

5122
• For this simulation, the thermodynamic constants were set to one such that 

"' = -r = w = M = 1. To simulate the equilibrium dynamics, one of the phases was 

selected by setting the initial condition '1/J = after which '1/J was updated until 

the system reached equilibrium. After reaching equilibrium, the structure factor was 

simulated with time steps ranging between dt = 0.005 - 0.05. 

To understand the static and dynamic properties of the equilibrium order parame

ter, let us study the disordered state. Above Tc, one can neglect the cubic non-linear 

term in Eq. 2.29. Then, the dynamics of the order parameter is given by a stochastic 

linear equation, which can be easily solved. Taking the Fourier transform of Eq. 2.29, 

on finds 

J'ljJ(ij,t) = -M(r "'q2 )'1jJ(ij,t) +ry(ij,t). 
Jt 

(2.30) 
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From this equation, one sees clearly that large time fluctuations of the order parameter 

will be exponentially damped with correlation time 

(2.31) 

Long wavelength fluctuations of the order parameter have slower decay rates than 

shorter wavelength fluctuations. This will be important for understanding the time 

correlation of the structure factor discussed later. Below Tc, a similar treatment can 

be done by a Taylor expansion of 1/J in Eq. 2.29 around its equilibrium value '1/J = 

±)-rfw. Then one finds Tc = K;f~r· Note that for a conserved order parameter, 

the long range diffusion yields an extra q2 dependence in the denominator, thus Tc 

diverges at low if [12]. 

Following Eq. 2.10, the structure factorS( if, t) = '1/J( if, t)?j;*( if, t), where 1/J( if, t) is the 

Fourier transform of the order parameter. The time independent ensemble averaged 

structure factor is the well known Ornstein-Zernicke structure factor given by 

S(ii) 
{ 

+
18

R 2 for T > T c, r Kq 

hRJ(ifJ + K-q;'!:2r forT< Tc, 
(2.32) 

where hR and fsR are respectively the peak intensities of the long range order and 

short range order. 

Note that to obtain Eq. 2.32, an ensemble average over all possible configurations 

was done. If one looks at the structure factor of the instantaneous atomic configu

ration S(ij, t), one does not simply observe a Lorentzian. Fig 2.8 shows S(if, t) for a 

typical binary alloy in equilibrium below Tc, numerically simulated with model A. Re

gions with large intensity are next to regions with low intensity, with a characteristic 

size of one pixel in the image, corresponding to 

~q = 21rj L, (2.33) 

where L is the sample linear dimension. The equilibrium fluctuations of the scalar 

order parameter add a random modulation to the ensemble averaged structure factor 

in Eq. 2.32. A slice through the structure factor is shown next in Fig 2.9 for qy = 0. 
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qy 

Figure 2.8: The instantaneous structure factor S(if, t) for a typical binary alloy below Tc for a 
given timet. A linear grey scale between 0 and 4 is used to display S(if, t). A slice through the 
origin of reciprocal space is shown in Fig. 2.9. The large spatial fluctuations with a characteristic 
length of 1 pixel are speckles, caused by the short range order equilibrium fluctuations. In a typical 
incoherent scattering experiment, the large spatial fluctuations disappear, and one observes that S(if} 
is a smoothly varying function of if, independent of the exact atomic arrangement. The coherent 
illumination allows one to measure the time fluctuations of the structure factor in equilibrium by 
studying the time fluctuations of the speckle pattern. 
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Figure 2.9: An horizontal slice for qy = 0 th~~gJ ~eUclnter of Fig. 2.8 is shown with squares. The 
ensemble averaged structure factor defined in Eq. 2.32, observed in a typical incoherent experiment, 
is shown for comparison. The Bragg peak corresponding to the long range order is not seen because 
it is four orders of magnitude larger than the short range order diffuse peak. The structure factor 
at a later time t = 5 is also shown with triangles. A constant of 6 was added to the second slice 
for clarity. The speckle patterns shown differ because they depend on the exact arrangement of the 
atoms in the scattering volume which changes in time. 

Note the large contrast in the structure factor. The most probable value is zero! The 

spatial fluctuations of S( if, t) are as large as the ensemble averaged structure factor 

shown with a smooth solid line. 

Fig. 2.8 and 2.9 show that the structure factor of a material with a random atomic 

configuration is also random! It is a well known property of the structure factor1 

in Eq. 2.10. For many people, this may come as a surprise, but this is observed 

regularly in light scattering experiments, and was first observed more than a century 

ago in the light scattering from small particles [3, 4, 5]! This effect is the same one 

that causes laser speckle from reflected or transmitted light on the rough surfaces 

of optical elements [6]. It is not observed in standard X-ray or neutron scattering 

experiments because the beam is incoherent. In general, the speckle contrast is lost 

because the sample is illuminated by many coherence volumes, or because the detector 

1 For example, on page 552 of Numerical Recipes [62], it is shown that the standard deviation of the 
power spectrum is equal to its average. Since the structure factor is the power spectrum for spatial 
fluctuations, the fluctuations in the structure factor are as large as their average! Crystallographer 
have also derived an exponential probability distribution of S(if) for random reciprocal vectors [63]. 
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Figure 2.10: The complex scattering amplitude F(ij) = Li fie-if·r; for ten atoms for a given ij, based 
on Fig. 4.2 in Ref [39]. As the number of atoms goes to infinity, the real and imaginary parts of 
F(ij) become independent Gaussian random variables. The dashed line is the resulting scattering 
amplitude, and the square of its magnitude is the structure factor S(ij). 

resolution is insufficient to see the phenomena. 

A speckle pattern is caused by coherent diffraction from random inhomogeneities 

in the material adding constructively or destructively, yielding a random structure 

factor. The speckle pattern is associated with the exact spatial arrangement of atoms 

in the scattering volume. This makes the .structure factor sensitive to the individual 

realizations of a given statistical ensemble of atomic arrangements. This sensitivity 

is shown clearly in Fig. 2.9 since the speckle pattern for time t = 0 completely differs 

from the speckle pattern at later time t = 5. 

Note also that if the crystal is perfectly ordered, the scattering is narrow and 

strong but only one speckle is observed. If the scattering is broad, many speckles are 

observed but the intensity of each speckle is small. For example, Fig. 2.9 is a sum of 

a narrow and broad component. The Bragg peak at q = 0 subtends only one speckle. 

The scattering from the short range order fluctuations subtends many speckles, but 

its structure factor is four orders of magnitude smaller than the Bragg peak. 

A speckle pattern is characterized by large spatial fluctuations from the ensemble 

average. This property follows from the definition of the structure factor in Eq. 2.15. 

We can represent Eq. 2.15 as a sum of random vectors in the complex plane. This 

is shown in Fig. 2.10 using ten atoms. Assuming that the phase factor q · fi samples 
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uniformly a range of phase difference from 0 to 271", one can show [64], by invoking 

the central limit theorem, that the real and imaginary part of the complex scattering 

amplitude are independent Gaussian random variables. Since S( if) is the sum of the 

squares of the real and imaginary scattering amplitudes, which are two independent 

Gaussian random variables, it can be shown1 that p(S) follows a negative exponential 

probability distribution 

(S( -;:-.) = exp( -SjS(q)). 
P qJ S(if) (2.34) 

This distribution has a large contrast? defined as the ratio of its rms fluctuations over 

its average, us/ S = 1. 

By observing the structure factor at a given wavevector, one can measure the 

equilibrium fluctuations of the alloy. This is shown in Fig 2.11(a). Note the large 

fluctuations of the structure factor as a function of time. The amplitudes of the time 

fluctuations are as large as the average scattering. The structure factor fluctuates in 

time with a characteristic time scale which can be determined by the time correlation 

function of the time dependent structure factor. By calculating the time correlation 

function of S(ij, t), 

( 
.... ) 

1 
_ <S(ij,t)S(ij,t + r)>t- <S(ij,t)>; 

92 q, T - - <S(ij, t)>t ' (2.35) 

we can measure the characteristic time of the fluctuations. 

Fig 2.11(b) shows g2 for four given wavevectors. The time correlation function de

cays faster for larger lii1, because short length scale fluctuations are intrinsically faster 

than long length scale fluctuations. The correlation functions shown in Fig. 2.11(b) 

were fitted to exponential decays 92( r) -1 = exp( -r /re)· The inverse of the fitted cor

relation time is shown in Fig. 2.11 (c), where 1/ Tc = 4 + 2q2• One expects the structure 

factor fluctuations to decay with 1/rc = M(2q2 -4r) below Tc, and 1/rc = M(2q2 +2r) 

above Tc. The factor two comes from the fact that we are measuring intensity fluc

tuations and not amplitude fluctuations3
. This is the expected result for light with a 

1See section A.l for more details on the probability distribution of speckle. 
2See for example section 4.2 in Goodman [39] or section 5.9 in Frieden [64]. 
3This factor of two is present in homodyne scattering. Homodyne refers to a scattering condition 
where the scattered beam interferes with itself. See Ref. [12], page 60 for more detail. 
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Figure 2.11: (a) The time fluctuation of the equilibrium structure factor displayed for four different 
wavevectors. The simulation was performed with the thermodynamic constants "' = -r w = 
M = 1. In order to distinguish each wavevector, a constant (4,8,12) was added to the slices at 
increasing wavevectors. In an incoherent experiment, only the ensemble average is observed, thus 
the structure factor is constant in time. With coherent illumination, the structure factor at the 
four chosen wavevectors fluctuates in time with a characteristic time re, which can be measured by 
a time correlation function defined in the text, and shown in (b). The characteristic time for the 
smallest wavevector (solid line) is 0.255, while it is 0.07 for the largest wavevector (dot-dashed line). 
The early decay of 92 was fitted to 92(r) -1 = exp(-r/rc). (c) The inverse of the least-squares fit 
correlation time 1/rc versus q2 • As discussed in the text, it clearly fits 4 + 2q2 • 
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Figure 2.12: The probability density of the scattered intensity S( q') for a binary alloy in equilibrium 
below Tc. S(q') was simulated with model A. The squares and triangles are respectively the proba
bility density of S(q') for the smallest and largest tfin Fig 2.11. The simulation results are in perfect 
agreement with the exponential distributions drawn with solid and dot-dashed lines, discussed in 
the text. An exponential distribution implies that S(q') is non-self-averaging. The inset shows that 
the probability density of S(q 0) is nearly Gaussian, showing the scattered intensity self-averages 
for if= 0. 

Lorentzian spectrum. Here r = -1, M 1, "" = 1, in agreement with the fits. For 

systems with a conserved order parameter where the intensity fluctuations are caused 

by diffusion, the inverse of the correlation time 1/rc = 2q2 M(r + Kq2
) above Tc. The 

extra q2 dependence comes from the added conservation law. 

Fig 2.12 shows the equilibrium probability density of the scattered intensity, p(S), 

calculated for model A below Tc. The probability density of S( ij) for two wavevectors 

is shown. The solid lines are p(S) = exp(-;/J;S>) , where p(S) and the ensemble aver

age of the equilibrium intensity, <S>, are calculated over 214 independent measure

ments of S( if, t), separated from each other by several correlation times. As discussed 

above, the scattered intensity in equilibrium is non-self-averaging1 for if=/::. 0. Note 

that although the order parameter in equilibrium is self-averaging [65], the scattered 

intensity is not. 

As shown in the inset of Fig 2.12, the probability density of S(ij = 0) is well 

1 A thermodynamic variable whose relative fluctuations vanish in the thermodynamic limit is called 
self-averaging. Here the time fluctuations of S(q, t) are as large as the time average of S(q') even in 
the thermodynamic limit. 
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fitted to a Gaussian, with p( S) exp( -o.s(S-<S> )
2 
/u~) where the standard deviation 

J21l'O'~ ) 

of the scattered· intensity crs = 2583, and the average intensity <S> = 96622 is 

calculated from the data. Recall that S(q 0) = (J 1/J(i)di)2 M 2
, where M is 

the magnetization of the system. The magnetization is an extensive quantity that 

self-averages [65]. In equilibrium, once the system has chosen one of its two possible 

phases, the relative fluctuations of the magnetization are quite small, and vanish in 

the thermodynamic limit. This explains the sharp probability density of S(q= 0). 

In thermal equilibrium above Tc, where the average magnetization is zero, it can 

be shown relatively easily that 

p(S) = { 
~ exp( -~), for q # 0 

~exp(-:S), for q= 0, 
(2.36) 

where S is the equilibrium structure factor found in Eq. 2.32. In the derivation 

of Eq. 2.36 for q = 0, one uses the facts that the probability density of M is a 

Gaussian centered at zero, and that f0
00 p(S)dS = f~co p(M)dM. At q = 0, this 

probability distribution has an averageS, and a standard deviation J'[S. Above Tc, 

the fluctuations of S( if) do not vanish in the thermodynamic limit. 

The previous figures in this section have shown the statistics of the instantaneous 

scattered intensity, S ( q, t). In all scattering experiments, the structure factor must 

be integrated over some exposure time T, and over some volume in reciprocal space. 

Both spatial and temporal resolution affect the statistics of the measured intensity. 

Let us first study the effect of integrating the scattered intensity over some arbi

trary exposure time. The time--averaged structure factor is defined by 

S(q,t) =loT S(ij,t+t')dt'. (2.37) 

Fig 2.13 shows the ratio of therms fluctuations of S, crt 8 , over the ensemble average 
' 

of S, <S(q, t)>t, as a function of q2 for several T's. Here the ensemble average of S 

is calculated by 

<S(ii,t)>t= ~f,s(ij,ti), 
•=1 

(2.38) 
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Figure 2.13: The ratio of the standard d~iati~~·~-/he time-averaged intensity S over the en
semble average. The data in Fig 2.1lb were integrated over different exposure times r = 
0.025, 0.125, 0.625, 3.125. Then S was ensemble averaged to calculate its mean and variance. The 
error bars were calculated with Eq. A.32, derived from standard error analysis. 

and the variance of S, by 

(2.39) 

where i = 1, 2, 3, ... , N, and ti+I ti = r. In Fig 2.13, the integration times used to 

calculate S(if,t) are r = 0.025,0.125,0.625,3.125. 

For small exposure times, r < < re, the probability density of S is nearly equal to 

the probability density of the instantaneous intensity S(t). This is shown in Fig. 2.13, 

since cr8 j <S> is nearly equal to the ratio for the instantaneous intensity crs/ <S> = 1 

for the data with r = 0.025. For larger exposure times the ratio departs from unity, 

and one can show1 asymptotically for r > > Te that 

(2.40) 

Note that the ratio r /re= Ne, the number of coherence times in one exposure time. 

Eq. 2.40 states that the second moment of the integrated intensity follows the central 

limit theorem for larger, since crtsf<S>t ex 1/~. The solid line in Fig 2.13 is the 
' 

1The treatment in this section follows closely section 6.1 in Goodman [39]. The factor two in Eq. 2.40 
and 2.41 is due to our definition of the correlation time in Fig. 2.11. 
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exact treatment found in Goodman [39] for a Lorentzian spectrum, valid for any r, 

where 

O"t,S (2rc 1(2rc)2 [ ( I ) _, = - + - - exp -r Tc 
<S(q, t)>t T 2 T 

(2.41) 

The agreement between the simulation results and Eq. 2.41 is excellent and well within 

error1• The wavevector dependence is due to the q-dependence of the correlation time, 

which ranges from 0.25 to 0.125 for q2 between 0 and 4 (see Fig 2.11). Finally, note 

that the point at the origin is due to the long range order peak which is self-averaging, 

thus O" I <8> = 0.0. 

Finally, in any coherent scattering experiment, the detector area may average 

several speckles. This averaging reduces the spatial contrast of the speckle pattern. 

In section A.1, it is shown that the probability distribution of the spatially averaged 

scattered intensity sharpens when N speckles are averaged in a given detector area. 

The resulting spatial contrast of the scattered intensity is reduced from one, for perfect 

resolution, to 11 .JN for poorer resolution. Spatial averaging is often used in optics 

to remove speckle from images obtained by the reflection of light on a rough surface. 

1Some approximate expressions are derived in the first appendix on how to calculate the error bars 
for different functions of the estimated mean and variance. Here, the error bars were derived in 
Eq. A.32. The error bars calculated in Eq. A.32 represent quite accurately the random error caused 
by evaluating the average and variance with a finite N. 
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CHARACTERIZATION OF POSITION-SENSITIVE DETECTORS 

The advent of high intensity X-ray synchrotron sources coupled with the development 

of X-ray position-sensitive detectors (PSD) has allowed us to study time-resolved 

non-equilibrium dynamics in solid-state systems. For example, one-dimensional PSD 

have been used to study the isothermal crystallization of metallic glasses by measur

ing structure factors with a time resolution of a few milliseconds [66], and to study 

the early stage dynamics of order-disorder transitions in Fe3Al [67] and Cu3Au [10]. 

Two-dimensional PSD have been used to study the dynamics of a first order phase 

transition in Cu3 Au with coherent X-rays [15, 21, 25] and to determine strain kinetics 

in InxGal-xAs quantum wells [68]. 

To obtain meaningful quantitative data from a PSD, one must know whether the 

response of the detector is linear with respect to the number of incident photons, 

measure the uniformity of response over the detector area, and determine the noise, 

the resolution function, and the detective quantum efficiency. For coherent diffraction 

experiments[15, 25), the full spatial resolution of the detector is required, and spa

tial and temporal correlation of the signal are the quantities to be measured. Thus 

correlations inherent to the detector have to be exactly known. 

In this chapter, we show how the response of a PSD can be characterized by 

comparing measured averages, variances and pixel-to-pixel correlation functions to 

the expected statistical estimators for Poisson counting statistics. Similar techniques 

have been used previously to measure the detective quantum efficiency of a detector 

[6e, 70], or to evaluate the linearity constant between the PSD signal and the number 

of detected photons [71, 72]. Significant spatial correlation exists between neighboring 

40 



0 

3: CHARACTERIZATION OF POSITION-SENSITIVE DETECTORS 41 

pixels for a typical PSD (see Fig. 3.2 and 3.10). We show how to extract the resolution 

from the measured correlation function. The effect of a finite detector resolution, 

which induces spatial correlations between neighboring pixels of a PSD, reduces the 

noise of the PSD when compared to expected Poisson noise. This must be taken into 

account in the evaluation of the detective quantum efficiency. 

In section 3.0.3, we first discuss the case where each pixel of the detector is inde

pendent of its neighbors. Then, we generalize this technique to include the spatial 

correlation that may be present in a real one- or two-dimensional detector. Finally, 

two examples are given: section 3.0.4 gives the characterization of a X-ray sensitive 

linear photodiode array similar to the one used previously in our group [10, 66, 67], 

and section 3.0.5 describes a more general treatment for the two-dimensional charge 

coupled device ( CCD) used in this work. This section is the first detailed study of 

the spatial resolution function of position-sensitive detectors (PSD) in our group. It 

was published recently [37]. 

3.0.3 Description of the technique 

Description of the detection process 

Solid-state PSD are typically made of an array of Si photodiodes or MOS capacitors, 

which can be used as integrating detectors for X-rays. Two modes of operation of 

solid-state X-ray detectors are generally used: direct X-ray illumination or optical 

coupling using light produced in an X-ray fluorescent material. Direct illumination 

of the detector gives the full spatial resolution of the pixels, while optical coupling 

increases the detective quantum efficiency for harder X-rays and allows for changes 

in the effective detector area by appropriate lenses. In this thesis, we use direct 

illumination of the PSD. For silicon, 3.6 eV are required to create an electron-hole 

pair [73]. A photon in the range of 5-20 keV will generate thousands of electron

hole pairs, some of which are then collected on the Si diode capacitance. After a 

preset exposure time T, the collected charge is measured, amplified, digitized and 

finally cleared for the next integration. The digitized signal V(r, t) is an integer 
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number measured in analog-to-digital units (ADU). Here r is a discrete one- or two

dimensional vector pointing to the center of a given pixel of the PSD, and t refers 

to the integration between time t and t + T. The variables used are summarized 

on page IX. The number of ADU per detected photon is determined by the gain of 

the digitizer circuit. A so-called dark pattern must be taken without illumination 

to subtract an offset signal from the data, which may vary from pixel to pixel. To 

relate the detected signal to the incident intensity, one has to measure the detector 

linearity, uniformity, noise, resolution and detective quantum efficiency. 

Illuminating the detector with a spatially uniform source of light or X-rays allows 

one to test the uniformity of the detector response. To generate this uniform source, 

we scatter a beam of monochromatic X-rays from an amorphous sample (e.g. a piece 

of polyimide[71, 74] or polystyrene) and place the detector far away from the sample. 

To test linearity, one varies the incident flux of photons and the integration time 

independently to see whether the number of photons incident on the surface of pixel 

r, integrated between t and t + T, ni(r, t), is the only relevant quantity. One must 

find a function that relates the detected signal V to ni so that V= f(ni)· In general, 

f may not be linear. Therefore to linearize the detector's signal, one would apply the 

inverse of f to V. Details of this treatment are given in section 3.0.5. 

We assume that the noise in the signal V has two sources: counting statistics of 

the photons and an "electronic" noise from the detection process. Naturally, the noise 

due to counting statistics depends on nd, the number of detected photons, rather than 

on ni. In general <nd(r, t)>t = a(f')<ni(f', t)>t, where a(f') is called the detective 

quantum efficiency of a pixel centered at r, as defined in Ref. [69, 70]. Here the 

brackets refer to a time average. One finds that a< 1 because photons are absorbed 

or reflected before they reach the detection volume, or because they pass the detection 

volume without detection. We show how nd(f', t) may be determined by analyzing 

the fluctuations in the signal V(r, t) for equivalent exposures. 



0 

3: CHARACTERIZATION OF POSITION-SENSITIVE DETECTORS 43 

Technique for characterizing independent linear detectors 

The detector characterization technique is based on the following idea. Due to the 

nature of the detection process, nd obeys Poisson statistics, so the mean and variance 

of nd are equal. (see Appendix A.l) If we assume linearity and neglect any electronic 

noise contribution from the detector electronics, the signal in a detector is given by 

V = knd, where k is the calibration constant, equal to the average number of ADU 

per detected photon. By measuring N patterns, we can calculate the signal mean 

and variance from their definitions on page IX. <V>t = k<nd>t is the mean signal. 

The variance of V, Sf.v, is equal to k2Sf.na' and for Poisson noise, Sf.nd <nd>t· 

So the ratio S[v/<V>t = k allows us to measure the calibration constant. Unless 
' 

otherwise stated, the terms mean and variance used in this paper refer to the unbiased 

estimators of the true mean and variance of a given variable. Here we assumed that 

the signal V in a given pixel is independent of the signal in its nearest neighbors, and 

that the standard deviation of the number of photo-electrons created per detected 

photon is much smaller than its average [71]. What follows is a generalization of this 

idea by considering other noise sources and couplings between detectors. 

For a real PSD, we found that the ratio k increases as <V>t approaches zero, due 

to electronic noise contributions to the variance. This intensity dependence can be 

removed by including in V the detected photons and the electronic noise contributions 

so that 

V(i, t) = k(r)nd(i, t) + Ve(i, t), (3.1) 

and on average 

<V(i, t)>t = k(i)<nd(i, t)>t· (3.2) 

Note that here the value of k may vary between different pixels. Ve is the electronic 

noise signal, and we assumed <Ve>t ~ 0, which is assured by the subtraction of the 

dark pattern described earlier. We assume both Ve and nd are independent random 

variables. The physics of this noise is discussed in detail elsewhere [70]. Here we are 

only interested in the mean and variance of the noise, which are measured separately 
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with the source of X-rays turned off. The time averaged variance of V(r, t) is 

Sf,v(r') = k2 (r')Sf,n)rJ + Sf,vJi) 2k(r)covt(nd(r, t), Ve(r, t)), where (3.3) 

1 N 
COVt(A, B)= N- 1 ?:(A(ti)- <A>t)(B(ti)- <B>t) 

~=1 

(3.4) 

is the covariance of two random variables A and B. From the assumption of in

dependence, covt(nd, Ve) ::::i 0. Dividing Eq. (3.3) by Eq. (3.2), and recalling that 

Sl,nd(r) = <nd(i, t)>t for a Poisson distribution (see Appendix A.1), one finds that 

k(r) = Sl,v(rJ- Sl,vJi). 
<V(r, t)>t 

(3.5) 

To determine an estimate of the ratio of ADU to detected photons for each pixel, 

one evaluates the mean and variance for each pixel based on N scans, subtracting a 

measured dark variance Sf,ve from the signal variance. The subtraction of Sf,ve in Eq. 

(3.5) makes the ratio k intensity independent for a real PSD, as the average signal 

goes to zero. Once k(r) is known, a(r) can be calculated after measuring ni(r, t) with 

a detector with near unit quantum efficiency. The detective quantum efficiency may 

then be calculated as 

a(r) = <V(r, t)>t . 
k(r)<ni(r, t)>t 

(3.6) 

The spatial variations ofthe detector array appear as variations in k(r), or detector 

to detector variations. In order to determine whether these fluctuations are significant, 

the error in k( r) expected from Poisson and electronic noise has to be considered. The 

uncertainty in the determination of k(r') depends on the number of measurements N. 

From standard error propagation analysis (see the derivation in the Appendix), we 

estimate the expected error ink, ak(r), by 

(3. 7) 

Here, we used Si,v- Sl,ve k<V>t to simplify Eq. (A.30). Nd is the number of scans 

used to determine the average dark pattern. Eq. (3. 7) is made of four terms: the first 

term 2/(N- 1) is the error due to counting statistics (see Eq. (A.27)) and the last 

three terms containing Sl,ve and Stve are due to the electronic noise. 
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To minimize the error, one should takeN as large as possible to reduce the error 

due to counting statistics. This is achieved by taking a small exposure time r. As r 

and V approaches zero, the minimum error is reached when both noise contributions 

to ak are equal. For smaller r, ak increases due to the electronic noise. As a rule of 

thumb, one should measure Nd = N dark patterns, so that the average dark pattern 

is measured precisely. To get a relative precision € = ak/k, one should choose r such 

that the detected signal V::.::::: Sl,ve { 1 + Sl,v)k2 }, and measure N::.::::: 4/e2 scans with 

and without X-rays. 

For count rates available at synchrotron sources, one may find that the signal 

obtained for the finest time resolution r is always much larger than the dark noise. 

Then fewer dark patterns need to be measured. For large signals <V>t >> ..fS[ 
and for N >> Nd, ak ::.::::: kJ2/(N -1) + S~j(Nd<V>t). When <V>t >> Vm = 
Js~"N/(2Nd), ak::.::::: kJ2/(N -1), and counting statistics is the dominant contribu

tion to the error. In Fig. 3.1b for example, the signal in the central pixels of the array 

is within this limit since Vm = 66 ADU. For V< Vm, ak is dominated by the detector 

electronic noise. 

As mentioned above, this treatment assumed that each pixel is independent of its 

neighbors. If this is not true, this correlation reduces the variance, and k( r) is not 

the number of ADU per detected photon. This case is discussed next. 

Treatment including pixel-to-pixel correlations 

To understand the effect of couplings between detectors, we consider first a toy model 

for a one-dimensional PSD, where two neigh boring pixels share some fraction x of their 

signals. Following the previous notation, replacing r by an integer index i, the signal 

in the ith pixel, V( i, t), is defined by 

V(i, t) = (1- x)knd(i, t) + xknd(i + 1, t), (3.8) 

where k is the number of ADU per detected photon, and nd(i, t) is the number of 

photons measured by an independent detector if x was zero, and it is assumed that 

0 :::; x :::; 0.5. The case for x f:. 0 occurs in real PSD because the charge created by 
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photons is shared by adjacent pixels. This coupling affects the statistics of the signal. 

For a spatially uniform exposure, <nd(i, t)>t and <nd(i + 1, t)>t are the same within 

counting statistics, and <V( i, t)>t equals on average knd, where nd is the mean of the 

probability density of nd. For two independent Poisson distributed random variables, 

nd(i, t) and nd(i + 1, t), with <nd(i, t)nd(i + 1, t)>t= <nd(i, t)>t<nd(i + 1, t)>t= ni, 
the variance of V( i, t) is 

By letting x = 0, we recover the case discussed in section 3.0.3. For a finite x, the 

variance is always smaller than the variance of uncoupled detectors as (1- x? x2 ~ 

1 for 0 ~ x ~ 0.5. Now Sf.v(i)/<V(i, t)>t k{(1- x)2 + x2
}, so that from a 

measurement of this ratio alone, k cannot be extracted. A second measurement is 

needed in order to solve fork and x. 

The resolution function could be measured to determine x, by illuminating only 

one pixel with a source which is smaller than the pixel size. For a PSD, this re

quires collimating the X-ray beam through a pinhole with a diameter of only a few 

micrometers, and scanning the pinhole over the detector area. This technique may 

be difficult to apply, because one needs an intense X-ray source to generate a us

able micrometer beam and a translation system with micrometer resolution. The 

measurements of pixel-to-pixel correlation offer a useful alternative for measuring the 

resolution function. In this model, the measured covariance of V ( i, t) and V ( i + 1, t) 

is given by 

COVt(V(i, t), V(i + 1, t)) = <V(i, t)V(i + 1, t)>t-<V(i, t)>t<V(i 1, t)>t 

x(1 - x )k2nd, (3.10) 

which gives k = (2covt+Sl,v )/<V>t and x = 1/2-1/2j(Sf.v- 2covt)/(Sf.v + 2covt). 

Next nearest neighbor pixels can also be coupled due to the diffusion of photo

electrons far away from the absorption site. To measure these distant correlations, a 
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general correlation function between V(r, t) and V(r + l, t) is defined as 

C(r, l) covt(V(r, t), V(r + l, t)) 
Jst,v(fJSt,vW + l) 

47 

(3.11) 

where the averages and variances are defined on page IX, and l is the relative dis

placement between the pixels. Two limiting cases in this definition may be calculated 

easily. For large l, V(r, t) and V(r + l, t) are independent, and C(r, .l) = 0. For 

l = 0, C(r, 0) = 1 since the numerator becomes identical to Slv· If the signal 
' 

between neighbors is not independent, one finds in general -1 < C(r,.l) < 1. 

To estimate the resolution function and its effect on the measured noise, we now 

include all pixel-to-pixel couplings. Developed for shot noise processes [64], the model 

describes a stochastic process created by random superposition of a constant response 

function h( ;i) for each photon 1 • The function h( ;i) describes the spread of the signal 

in the detector. The measured signal at pixel r, V(r, t), is a sum of disturbances 

which hit the detector at random positions fi, 

na 

V(r,t) = l:h(fi f). (3.12) 
i=l 

In our case, nd is the number of detected photons between time t and t + r, sampled 

from a Poisson distribution. The fi are chosen from a uniform distribution since the 

signal is assumed to be spatially uniform. The model can be generalized to include 

spatial variations in the incident signal (64], and the results will not depend on the 

fact that h may vary with each photon if the variance of h is small enough. The 

model further assumes that h( ;i) is the same for each pixel and that the signal in a 

given detector is not correlated in time. A complete derivation of the moments of V 

is given in detail in Ref. [64]. It is shown that 

dj .... --d <V(r, t)>t = <nd(r, t)>t1/ L h(r')dr' , (3.13) 

1 In a real PSD, h may depend on where the photon is absorbed on the area of the pixel, and 
on how deep it is absorbed. Furthermore, the probability for a photon of being absorbed varies 
exponentially with depth. Here we assume the response h independent of the exact position of the 
photon absorption. This is the simplest model for describing the spread of the signal to several 
pixels. It could be generalized in a straightforward manner. 
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Si,v = <V2 (r', t)>t- <V(r, t)>; = <nd(T, t)>tl/ Ld j h2(iJ)dTJd, (3.14) 

.... .... -# -;. -+d 
C(-. 3.) = <V(r, t)V(T + Ll, t)>t- <V(r, t)>; = f h(r')h(r' + Ll)dr' 

r, S2 ..... .....d ' 
t,V J h2(r')dr' 

(3.15) 

where Ld is the linear size or area of a detector in d = 1, 2 dimensions. <V(r, t)>t, Srv 
' 

and C(r, .6.) can be estimated from repeated measurements, and <nd>t can be solved 

from these equations with an appropriate model for h(iJ). Choosing h(TJ) = kJ(iJ), 

we recover Eq. (3.5) from the ratio of Eq. (3.14) and (3.13). Here, the model is 

further simplified by assuming that h( iJ) is discrete, and replacing integrals by sums. 

To recover Eq. (3.9,3.10) from Eq. (3.13-3.15), let h(O) = k(1- x), h(1) = kx, and 

h(iJ) = 0, for liJI > 1. Using the measured spatial autocorrelation function, one can 

often evaluate the resolution function h(iJ) by inverting Eq. (3.15). From Eq. (3.13), 

one can calculate nd from <V(r, t)>t· Then Eq. (3.6) becomes 

Ld<V>t 
(3.16) 

Good statistics for the measured autocorrelation functions can be in principle ob

tained by correlating the signal from thousands of scans. If no time correlation exists 

and one expects the detectors to be almost identical, one can save this effort by 

taking a spatial average and variance over detectors of a single uniform scattering 

pattern instead of time averages. One can get excellent statistics from a single scan 

of a 500 x 500 CCD array by averaging over the 250000 pixels. In the two examples 

discussed next, direct measurements showed no time correlation of the signals. For 

our detectors, we found that a time average and a spatial average are quantitatively 

similar, both for means and variances. Time averages or spatial averages can thus be 

interchanged for convenience. 

3.0.4 Characterization of a linear PSD 

The photodiode array used contains 2048 rectangular pixels with 25pm wide and 

2.0mm high active areas. The resolution is specified as 1.5 pixels wide so there will be 

some correlation between pixels. It is operated at -40° C, cooled by a Peltier stage, 

to reduce the electronic noise. The array is operated by a Princeton Instrument 
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I EG&G Reticon 2048SA U-822. I TI 4849 CCD. 

Array size 2048 pixels. 390 by 584 pixels. 

Pixel dimension 25jtm wide, 2.0mm high. 22.4 X 22.4 jtm. 

Specified resolution 1.5 pixels. 2 pixels. 

Characteristic length diffusion length 50jtm. depletion layer 12jtm. 

Window 250jtm Be window, 1jtm Si02 overcoat. 250jtm Be window. 

Amplifier gain 1 ADU /1300 electrons. adjustable. 

Readout time 4jtsfpixel, 8ms for the array.- 6 J.ls/pixel, 1 s for the array. 

Readout noise < 1.2 ADU rms. 20 electrons/pixel. 

Integration time 8ms to two hours. a few J.lS to minutes. 

Table 3.1: Position-sensitive detector characteristics 

STlOOO controller and the data were transferred to a IBM PC 386-AT through a 

custom designed I/0 board from PI. Software is provided with the package to control 

the data acquisition parameters, store the data and visualize the data. Scans can 

be accumulated by a 32 bit register and pixels can be grouped to increase the scan 

rate while sacrificing the spatial resolution. Further characteristics of the detector 

are summarized in Table 3.1. 

Fig. 3.1 shows some experimental data obtained for the linear array. As defined 

on page IX and Eq. (3.5), the mean, variance and ratio of variance over mean of V 

are plotted for every 20th pixels of the array at two different X-ray energies, 6.93 and 

8.05 keV. The first data set was obtained by scattering 6.93 keV X-rays onto a Bragg 

peak of Fe3Al, constant in time. 100 scattering patterns were averaged. Note that the 

mean is quite smooth (i.e well defined to within 0.3%) but that the fluctuations on 

the variance are substantial ( 14%). For N = 100 measurements, the relative error on 

the mean is *' with nd ~ 1000, while the relative error on the variance is fiJ;. 
The error bars on the ratio were calculated from Eq. (3.7). A least squares fit of k(r) 

to a constant, weighted with error bars calculated from Eq. (3.7), yields k = 0.682 

and a x2 of 1.1. 
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Figure 3.1: a) time averaged signal <V { f') >t, variance Sf v (r), and calibration constant k = 
Sfvf<V(f}>t versus pixel number for 6.93 keV X-rays, N'= 100, Nd = 1. The error bars for 
th~ mean, variance and ratio are calculated from formulas discussed in section 3.0.3 and the ap
pendix. b) same as above, but with 8.05 keV X-rays, N 8000, Nd = 1. 
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Figure 3.2: Spatial average of C(i, Ll), as defined in Eq. 3.11, versus Ll. Each point was calculated 
from an average over all pixels of C(i, A), shown in the inset for Ll = 1. 

To determine the uniformity of k(f}, 8000 patterns were measured and analyzed. 

Fig. 3.lb was obtained by scattering 8.05 keV X-rays, coming from of an X-ray tube 

with a Cu target and aGe {111) monochromator set on Cu Ka. The beam covered 

approximately half of the array. The small tails on the average are due to diffuse 

scattering. Note the logarithmic axes for the mean and the variance; the signal varies 

over three orders of magnitude but the ratio is essentially independent of signal level. 

A dark variance of 1.1 ADU2 causes the large fluctuations in k(f) when the X-ray 

signal is comparable to the electronic noise signal. Measuring more dark patterns 

(larger Nd) would reduce the error on k. A least-square fit of the ratio to a constant 

between pixel 650 to 1400 gives k=O. 792 and a x2 of 2, indicating the possibility 

of systematic variations in pixels with an rms amplitude of 2%. Note that a large 

number of identical exposures have to be analyzed to detect fluctuations this small. If 

signal variations between pixels of the order of a few percent are important, then these 

fluctuations have to be taken into account by using a different calibration constant 

for each pixel. Note that the number of electron-hole pairs created is proportional to 

the photon energy. This is reflected in the two different values of k, 0.682 and 0. 792, 

at 6.93 and 8.05 keV respectively. 
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The inset of Fig. 3.2 shows the autocorrelation function of V(r, t) as calculated 

from Eq. (3.11) for nearest neighbor coupling(~= 1). Here rhas been replaced by 

an integer index for the one dimensional detector. The spatial average of the correla

tion function, <C(i, 1)>i = 0.2201 0.0004. The spatial variance of the correlation 

function, Sf c = (1.21 ±0.06) X 10-4 , agrees well with the expected variance (see [62] p 
' 

626) of 1/N, where N is the number of scans averaged. Within error, C(i, 1) is equal 

for all pixels. For larger ~' we found <C(i, 2)>i = 0.0319, <C(i, 3)>i 0.0062, 

<C(i,4)>i = 0.0012 and <C(i,5)>i = 0.0004, all measured within ±0.0004. The 

technique is very sensitive, since we can measure very small correlations between 

pixels separated by 100 p,m. Fig. 3.2 shows <C(i,~)>i versus ~. The decay of 

the correlation function is approximately exponential, which is consistent with the 

diffusion of the electric charge to neighboring pixels [75]. 

As discussed in section 3.0.3, the resolution function h(i') is evaluated from Eq. 

(3.13-3.15), based on the assumption that only h(O), h( -1) and h(1) are non-zero, 

and that h( -1) = h(1) = h1. Replacing the integrals by sums in Eq. (3.13-3.15), one 

finds that 

k Sl,v = (h~ + 2hi) = 0.792, and 
<V>t (ho + 2hl) 

(3.17) 

. (2hohl) 
<C(z, ~ = 1)>i = (h5 + 2ht) = 0.2201, (3.18) 

which gives h0 = 0.947 and h1 = 0.107. To transform the signal V to detected 

photons, one must divide V by J h(T)dr = h0 + 2h1 = 1.16 instead of by k. The above 

model reproduces the essential features but does not give the next nearest neighbor 

correlation correctly. With this model, <C(i, 2)>i = hif(h~ + 2ht) = 0.012, which is 

lower than the observed correlation. This can be fixed by extending the range of the 

response function to the third neighbor 1 . 

The detective quantum efficiency was evaluated by measuring ni with a scintillation 

1The simplest model fitting all data points requires four parameters. By including h 2 and ha in the 
model, we can solve simultaneously the equations for the ratio and for the five correlation functions 

. . s:v h2 ±2h2 + 2h 2 

usmg a non-hnear least squares fit program. Eq. (3.17) becomes k = <V'>;' = ho+2h, + 2h
3 

-

0 792 Eq (3 18) l·s rewr1'tten <C(• A - 1)>· - 2hoh'±2h,h2f2h2 ha 0 2201 and so on One then . ) . . ., .u. - • - h2 ±2h2 t2h 2 t2h2 • , • 
0 1 2 3 

finds ho = 0.964, h1 = 0.108, h2 = 0.0095 and ha= 0.002. 
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counter masked by a 1.3 mm hole, and then <V>r- was measured by centering the 

height of the PSD behind this hole. Using Eq. (3.16), we find a= 37±2% for 8.05 keV 

X-rays. This can be compared to the expected detective quantum efficiency estimated 

for transmission through the 250 J.lm Be window of the detector, transmission through 

an additional 1 J..lm Si02 overcoat and the fraction of absorbed X-rays in the electron 

diffusion length of the Si, tsi, 

(3.19) 

Using the mass absorption coefficients1 1.1,36.4,64.7 cm2/g for Be, Si and Si02 re

spectively at 8.05 ke V, and densities of 1.85, 2.32, 2.21 g/ cm3 , and a diffusion length 

tsi = 50J1m as specified by the manufacturer2
, this estimate gives a 

agrees reasonably well with the measured value. 

3.0.5 Characterization of a CCD array 

50%, and 

The principle of photon detection of a CCD is similar to the linear array described 

in section 3.0.3. In a CCD, the detected charge is stored in MOS capacitors and read 

by a series of parallel row transfers and serial pixel-to-pixel transfers. For coherent 

X-ray experiments [15, 25], we used a virtual phase architecture TI 4849 chip, with 

390 x 584 22.4 J.lm wide square pixels. The depletion depth of the chip is 12 J..lm, 

which gives a sufficient detective quantum efficiency for direct X-ray illumination. 

Further detail is given in Table 3.1 and elsewhere [76, 77, 78, 79]. To characterize 

the detector, measurements were made at the high brilliance wiggler beamline X25 at 

NSLS with a Si (111) monochromator set at 7.0 keV. Fig. 3.3 shows the experimental 

set up. 

The ratio k = S'/tv/<V>r- is shown in Fig. 3.4 as a function of <ni>r· For a 
' 

detector with a linear response, k is a constant, independent of ni. We were quite 

surprised to see a non-linear relationship for k because the response to visible light 

1The constants were obtained from an online database called the Nuclear Data Center, at Brookhaven 
National Laboratory. To get data, telnet to bnlnd2.dne.bnl.gov, username nndc, and search the X
ray absorption database. 

2See the technical information sheet on the RL2048S Solid State Line Scanner 2048 Elements, EG&G 
Reticon, 345 Potrero Avenue, Sunnyvale, California 94086-4197 
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CCD array or scintillator 

7 ke V photons 

Ion chamber 
Amorphous scatterer 

Figure 3.3: Experimental set up for the characterization of the CCD array. The X-ray beam was 
scattered with a piece of polystyrene to produce a spatially uniform exposure[71, 7 4]. The detector 
was centered at a scattering angle of 28 = 23° and placed 1.04 m from the center of rotation. ni 

could be varied by detuning the monochromator, and therefore modifying the incident flux, or by 
varying the integration time T from 1 to 240 s. An ion chamber was used to monitor the incident 
intensity on the sample, and a scintillation detector, masked with a 4 mm circular aperture, was 
placed at the CCD position and allowed us to determine ni. This way, the scintillator signal was 
used to calibrate the ion chamber signal (Imon). Using the ratio of areas and counts, the count rate 
per pixel was obtained, based on Imon· The highest count rate was 1 photon/(22.4 p,m) 2 /sec. 

had been measured to be linear to within 0.5% [76, 77, 78, 79). It was later discovered 

that an inappropriate amplifier was responsible' for the non-linearity. When recently 

tested with the correct operating electronics, the response to X-rays was linear. Since 

the model used in section 3.0.3 assumes linearity, it will be generalized below to 

include a non-linear response. 

A treatment for non linear detectors 

In many X-ray scattering experiments, one needs to determine ni instead of nd. This 

is done by calibrating the response of the PSD, V, for different ni. Fig. 3.5 shows the 

mean of the CCD response over a region of 100 x 100 pixels, <V>r, versus ni. The 

calibration was checked ten days later and remained mostly unchanged. The response 

of the detector depends only on ni, since all the data points with an equal integrated 

flux Imon7 fall on the same line in Fig. 3.5 although they differ widely in exposure 

times and incident flux. Several functions were tried to obtain an analytic relation 
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Figure 3.4: k = S'f.,vf<V>r versus the incident integrated intensity on the detector <ni>r· The 
average and variance were calculated over a region of 100 by 100 pixels. The solid line is a least 
squares fit. 
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Figure 3.5: Spatial average of the signal V(r, t) over a region of 100 by 100 pixels versus the number 
of photons incident on the surface of a pixel <ni>r· Two data sets taken ten days apart (squares and 
triangles) are shown. The solid line is a least squares fit to the first calibration with ni = 0.35 V0 84 • 

This function is applied to the measured signal to linearize it. V was less than 75% of the saturation 
value for all points. 
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Figure 3.6: The spatial variance of the linearized data measured in a region of 100 by 100 pixels 
versus the linearized signal. One would expect the variance S'/r v• to go as <n;>; in the case of a 
simple Poisson law (solid line). The dotted line is 1.63<n;>p. ' 

for the CCD response. The solid line in Fig. 3.5, 

(3.20) 

is the best least squares fit found. This function allows one to linearize the measured 

signal V with sufficient accuracy. 

The linearized signal, v*, is defined by v* = f- 1(V). It has the same units as ni, 

but its statistic is different from the Poisson statistic of ni. In order to determine the 

noise in the linearized signal, we evaluated the spatial variance of v*, s;v., in a region 
' 

of 100 x 100 pixels versus ni (see Fig. 3.6). The solid line is the relation expected for 

a Poisson distribution (S~v• = <ni>r-), while the dotted line is S';v. = 1.63<ni>r· 
' ' 

The variance is larger because the spatial resolution of the CCD is larger than the 

area of a pixel, and a is smaller than one. 

Fig. 3.7 shows averages of a single exposure of V(r, t) taken over columns and 

rows of the detector. Pixels which are in the rows 110 to 480 and columns 10 to 380, 

which represent most of the detector area, are used for the averages. The mean is 

uniform in both directions with rms fluctuations of 2 %. Fig. 3.8 shows a bitmap of the 
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Figure 3.7: (a) Signals summed over 370 rows (top) and 370 columns. 
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variance Sf.v, calculated from 23 frames, each exposed for 1 s. The variance is uniform 

over the whole detector area, except for a few bad columns in the parallel transfer 

direction (y axis), where the variance is significantly lower. Pixels in columns 26-

28,72-73,181-182, 208-209, have 40 to 80% less than average variance. This is shown 

in Fig. 3.9, where the average of Slv over row 420 to 520 is displayed as a function 
' 

of the horizonta1 position. A similar average of <V>t is shown for comparison. The 

mean only fluctuates by a few percent. It is important to measure the noise of each 

pixel to fully characterize the detector. 

The resolution function is extracted from the spatial correlation C(l), defined by 

C(l) = <(v*(r,t)v*(r+~,t)>r--<(v*(f',t)>~, 
srv•(t) 

) 

(3.21) 

where the displacement LS. is measured in units of pixels. This definition is similar to 

Eq. 3.11. Sufficiently good statistics can be achieved based on a single exposure of the 

CCD. A fast calculation algorithm may be used 1
. Knowledge of C(l) is necessary 

for coherent X-ray experiments, where one is interested in the speckle size, which is of 

the order of the pixel dimensions [25]. Fig. 3.10 shows two slices of C(Ll.x, Ll.y ), where 

1 We use a standard fast Fourier transform (fft) algorithm to calculate the spatial autocorrelation 
function, described in Ref. [62], Chapter 12. C(l) = ffr 1(fft(v*)fft*(v*)), where fft(v*) is the 
complex fft of v*. 
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Figure 3.8: Time averaged variance S'j v ('F) of the pixels in row 20 to 520 and column 10 to 380. 23 
exposures of one seconds each were av~raged . An inverted grey scale is used to display the data. On 
the top scale, the spatial average and the standard deviation of St v ( r') are marked . Note that the 
variance is relatively uniform except for pixels in certain columns , ~here the variance is much lower . 
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Figure 3.9: Average of S[v(iJ, calculated over a column between row 420 and 520 of the CCD, 
shown versus the index or' the column. The pixels in columns 26 to 28, 72 to 73, have much lower 
variance than other pixels. <V>t is shown for comparison. The mean shows typical behavior for 
these columns. It is important to measure the variance of the signal of each pixel when one performs 
intensity fluctuation spectroscopy with a CCD. 

the first index refers to the columns and the second to the rows of the CCD array. 

The correlation function C(Ll, 0) decays more slowly than C(O, .6.), i.e the resolution 

is worse along the serial transfer direction than along the parallel transfer direction. 

The correlation coefficient~ are non-zero for the nearest and next nearest neighbors 

ofC(O,O), with C(1,0) =0.52±0.05, C(0,1) = 0.12±0.01 and C(1,1) = C(-1,1) 

0.07 0.02. Note that C(l) = C( -l), based on Eq. (3.21). Thus the resolution 

function has a range of one to two pixels. Using the simplest model, we choose h(r) to 

be non zero only for the nearest neighbors, i.e. h(O, 0) = h00 , h(1, 0) = h( -1, 0) = h10 

and h(O, 1) = h(O, -1) = h01 • We choose to normalize the integral of h(r) to unity, 

assuming that one photon will be distributed amongst several pixels so that 

hoo + 2hw + 2hot = 1. 

From Eq. (3.15), the correlation function of this disturbance gives 

2hoohw 
C(1, 0) = h2 2

h2 h2 = 0.52, and 
00 + 10 + 2 01 

2hoohot 
C(O, 1) = h5o + 2hto + 2h5t = O.l2. 

(3.22) 

(3.23) 

(3.24) 
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Figure 3.10: Two perpendicular slices of the space autocorrelation function, defined by Eq. (3.21), 
for uniform scattering data. C(A, 0) for the serial transfer direction (circles) and C(O, A) for the 
parallel transfer direction (squares) are shown versus A. The error bars are slightly larger than 
the size of the squares. The correlation decays to 0 in about two pixels along x, the serial transfer 
direction, and in one pixel perpendicular to it. 

Solving Eq. (3.22-3.24), we find h00 = 0.563, h01 = 0.042, h10 = 0.177. A larger 

fraction of the signal leaks to the nearest neighbors along the serial transfer direction. 

The resolution function alters the variance of the number of detected photons. 

From Eq. (3.13,3.14), one finds 

s~ 
/{9 = r,nc~ = h~0 + 2h~0 + 2h~ 1 = 0.38. 

<nd>r 
(3.25) 

Without leakage, Ks = 1, so that the variance is smaller than what one expects from 

Poisson noise by a factor K 8 • Using <nd(rJ>r = a<v*(r)>r, assuming that a is the 

same for each pixels, one gets 

S2 2s2 K * rnd =a rv* = sa<v >r· 
' ' 

(3.26) 

From a Taylor expansion of the linearization function, v* = f- 1(V), one obtains 

(3.27) 

where S~,v• is the variance of the linearized data. Recalling that for the linearization 

function, dv* jdV = B<v*>r/ <V>r and substituting Eq. (3.27) into Eq. (3.26), one 
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gets 
S~.v _ Ks<v*>r 

<V>r a<V>r(dv*jdV)2 
Ks<V>r 

- ' a<v*>rB2 
(3.28) 

where B is the exponent of the power law fit in Fig. 3.5 equal to 0.84. This equa

tion includes three different contributions in the ratio: the smearing from the finite 

resolution, the non-linear behavior and the detective quantum efficiency. For a linear 

detector (B = 1), with a resolution of one pixel area (Ks = 1), Eq. (3.28) becomes 

equivalent to Eq. (3.6). Therefore 2-~r is not constant (see Fig. 3.4), since ~~~~ 
is non-linear. Fitting the measured CCD response in Fig. 3.4 to Eq. (3.28) gives a 

detective quantum efficiency a= 0.22. Eq. (3.19), with the values /-tSi = 94.9 cm2 jg, 

f.LBe = 1.6 cm2 jg, tsi02 = 0 J-tm and tsi = 12 pm, gives a = 0.22, which agrees well 

with the measurement. Furthermore, Eq. (3.26) gives Ks/a = 1.5, which corresponds 

to the ratio of s~.v* I <v*>r in Fig. 3.6. 

3.0.6 Discussion 

One must carefully characterize the response of a current state-of-the-art PSD to ob

tain quantitative information. For example, in the intensity fluctuation spectroscopy 

experiments reported in this thesis, it is essential to distinguish the noise of the de

tector from measured scattered intensity fluctuations, and we must know the spatial 

correlations of the detector's resolution function quite accurately. We have shown 

that we can characterize a PSD by measuring means, variances, and spatial auto

correlation functions and comparing these measurements to the statistical estimators 

expected for a Poisson distribution. The technique can measure the resolution func

tion, and gives an estimate of the detective quantum efficiency. It is easy to implement 

and can be very sensitive when enough scans are averaged. The mean and variance 

arrays are easily calculable in real time by storing only three arrays in memory1. 

The technique can also handle detector non-linearities. Before this study, previous 

10nly three arrays are required. Storing the first pattern as an offset array V(t 0 ), we store in two 

arrays the difference A1 =I:!~~ (V(t;)- V(to)) and the square of the difference A2 =I::~~ (V(t;)
V(to))2. Then, the mean <V>t = Al/N + V(to) and the variance Slv = (A2- AUN)/(N- 1). 
This algorithm minimizes the roundoff error (see Ref. [62] p 613), a~d minimizes the disk space 
required for the c~libration. Similar sums can be taken for calculating the correlation function in 
Eq. 3.11. 
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work in our group assumed that linear PSD have a resolution of one pixel. In future 

high resolution experiments, the finite resolution of the detector should be taken into 

account. 

A simple extension of the technique would be to measure the decay of the time 

correlation function of the CCD signal, when the detector is optically coupled to an 

X-ray fluorescent material. The advantage of using the correlation function here is 

that no special hardware, such as a fast shutter, is required for the experiment. 
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EXPERIMENTAL METHOD 

4.1 Beamline characterization and optics 

The experiments reported in this thesis were performed at the National Synchrotron 

Light Source (NSLS) at Brookhaven National Laboratory and at the Cornell High 

Energy Synchrotron Source (CHESS) during a test of the Advanced Photon Source 

(APS) undulator. Fig 2.4 shows a typical experimental setup. 

The X25 beamline has been described in detail elsewhere [80, 81]. In short, the X

rays are generated by a 27 pole hybrid wiggler with a peak field of 1 T, installed on a 

straight section of the 2.5 GeY NSLS storage ring. This wiggler source is characterized 

by a deflection parameter K = 12.3, a characteristic opening angle K/1 = 2.5 mrad, 

and a critical energy of 4.6 keY. With a ring current of 230 mA, this source generates 

a total power of 1.8 kW. For our experiment, the gap was set at 24 mm. 

The characteristic distances at X25 are shown in Table 2.1. To control the coher

ence lengths, two sets of upstream slits at 10.5 m from the source could be closed to 

reduce the effective source size. A double Si(111) monochromator was used to select 

6.9 keY X-rays. The monochromator was slightly detuned from the Bragg condition 

to filter the third harmonic out. Two types of incident intensity monitors were used: 

an air filled ion chamber and a film of polyimide oriented at 45 o from the incident 

beam, which scatters X-rays into a scintillation counter. Since the absorption length 

of 6.9 KeY X-rays in air is of the order of 0.5 m, vacuum flight paths were used to 

reduce X-ray absorption. 

To ensure that the beam incident on the sample remained approximately defined 

63 
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by the pinhole diameter, we placed the sample in the near field diffraction region of 

the pinhole [82] such that the pinhole to center of rotation distance 

(4.1) 

where D is the pinhole diameter. For the smallest pinhole used, D = 3.5 Jlm and 

,\ 1. 797 A, which gives the condition Re < 6.8 cm. The input pinholes were placed 

at Re = 6. 75 cm, which is well within the near field of the pinhole diffraction pattern 

for the measurements done with the 7.5, 15, 33 Jlm pinholes, but is on the edge of this 

region for the 3.5 Jlm pinhole. This is the closest distance achievable for our X-ray 

oven. 

To determine and control the transverse coherence lengths, one must know the 

source size accurately. At X-25 the source size was measured by scanning the upstream 

x-y slits (see Fig. 2.4) to cut the beam totally while recording the intensity at the 

sample position behind a 3.5 Jlm pinhole. The beam profile is obtained by taking 

a derivative of the signal. The beam profile is then least-squared fitted using a 

Gaussian at the slit position, 10.5 m from the source. The horizontal and vertical 

fitted widths1 are respectively ax 0.386 mm, ay = 0.0179 mm at 6.9 keV. Since 

the point of observation is 27.8 m from the source, the source size near the wiggler is 

ax = 0.62 and ay= 0.0288 mm. 

The CHESS synchrotron ring was operated at 5.437 GeV, with a maximum current 

of 100 mA [83]. The undulator was a prototype of the APS undulators. This undulator 

is made of 123 magnetic poles with 3.3 cm periods, and its fundamental energy can be 

tuned from 4.3 to 7.9 keV [83]. The undulator gap was set at 2.3 cm in order to tune 

to the 7 keV fundamental. The double Si (111) monochromator was set to diffract 

7.0 keV X-rays. Since the source horizontal size dsx = 2.55 mm is approximately twice 

larger at CHESS compared with X25, a 0.4 mm horizontal slit was placed 17.8 m from 

the source to limit the horizontal source size. 
1The Gaussian fit used was I(x) !0exp(-.5(x- x0 ) 2 Ju;)), where x0 is the peak center, U:c the 
width, and la the peak intensity. 
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Figure 4.1: The X-ray oven. 

4.2 Sample preparation and sample furnace 

65 

The sample preparation at the Oak Ridge National Laboratories has been previously 

described in detail [31, 32]. The sample surface normal is oriented along the [100]. A 

vacuum sample chamber was designed to heat the sample to elevated temperatures 

and to prevent its oxidation. The sample furnace essential element is a 6!1 pyrolytic 

Boron Nitride coated pyrolytic graphite heater1 mounted on a water cooled Cu heat 

sink which gives sufficient cooling power to quench the sample rapidly. The sample 

was mounted on the heater using stainless steel clamps screwed on the Cu block. With 

this design, quench rates of a few Kelvin per second could be easily attained. The 

maximum temperature reached by this oven could be adjusted by thermally insulating 

the back of the heater and the Cu heat sink with varying thicknesses of mica. The 

mica limits the heat flow to the heat sink and increases the temperature difference 

between the heater and Cu block. A commercial proportional temperature controller 

(Omega CN8031) was used to maintain the set point temperature constant to within 

0.1 °C using a standard proportional, integral and differential control loop. Two type

K thermocouples recorded the sample temperature and the control temperature. A 

1The heater is a 2 cm diameter Boralectric™ PBN/PG resistance heating element, purchased from 
Union Carbide Coatings Service Corporation, P.O Box 94924, Cleveland, OH, USA, 44101-4924. 
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standard cold junction compensator (Omega-CJ-K) was used to set the ice point 

reference of the sample thermocouple. The thermocouples were held in contact with 

the sample by the clamps. The X-rays could penetrate the sample chamber through 

a 180 degree Be window, 0.015 inch thick1• A DC power supply, controlled by the 

temperature controller through an operational amplifier input, generated a current 

from zero to six A which is required because of the small heater resistance. 

4.3 Scattering geometry 

Fig. 4.2 shows the scattering geometry for this experiment. The CCD or the scintil

lator is mounted on a standard 4 circle Huber diffractometer, computer controlled to 

scan the three sample angles 8, c/J, and x, and the central detector angle 28, which 

defines, with the incoming beam direction, the scattering plane. The scattering plane 

is verticaL The sample is mounted on the c/J circle of the diffractometer, and the four 

angles are set for the ( 100) reflection. 

Because the CCD is able to measure outgoing wavevectors in two directions, we 

use the central pixel to define a scattering plane. Thus, 28 .L is the angle perpendicular 

to the plane, and 2811 is in the plane. Here 2811 is like the usual detector angle. In 

Fig. 4.2, 8i is the angle of incidence of the X-ray beam with respect to the surface. 

Following Ref [16], one can show that the components of the scattering wavevector 

if= k1 - ki in the sample coordinates are 

qx = ksin28..L ~ kx'/Ra, 

qy = k( cos 28 ..L cos(28u - 8i) -cos 8i) ~ k( cos(28B + y' / Ra - 8i) -cos 8i), ( 4.2) 

qz = k( cos 28 .L sin(28u - 8i) +sin 8i) ~ k(sin(28B + y'f Rd - 8i) +sin 8i), 

where k = 211" /A. The sample x-axis is oriented along the theta axis of rotation, 

while the z-axis is oriented along the surface normal. The x' and y' axes are the pixel 

coordinates in the detector plane, centered on the Bragg angle 2(}B· 

1This Be thickness absorbs 11% ofthe 7 KeV X-rays. 
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(100) CCD 

Figure 4.2: The scattering geometry. The Cu3 Au (lOO) is along the z-axis. The angle of incidence 
Bi and the scattered angle 01 are measured with respect to the sample surface. The angle 2011 is the 
usual detector angle. 

4.4 Data treatment 

The scattered X-rays were measured with the CCD described in Chapter 3. The 

data acquisition was stopped regularly to record a dark pattern without X-rays. This 

dark pattern slowly drifted in time over several hours and was monitored regularly. 

For the data acquired at X-25, this drift was correlated with an NSLS lab cooling 

water temperature drift\ which affected the CCD chip temperature because this 

water cooled the CCD Peltier stage2 • This drift was of the order of one or two X-ray 

photons, but could easily be corrected by subtracting the most recent dark pattern. 

Furthermore, the four corners of the CCD were masked by lead to absorb all incident 

X-rays, so these areas were used to keep track of the drift in the dark pattern. 

At X25, the detector signal was calibrated against a scintillation detector with 

a quantum efficiency of nearly 100%, in order to correct the detector non-linearity. 

After a dark signal subtraction, the detected signal was rescaled with this calibration 

using Eq. 3.20. 

During the CHESS experiment, one of the CCD amplifiers was different than 

during the X25 experiment. For a given incident count rate and exposure time, if one 

assumes that the raw data measured at CHESS only differs from the X25 calibration 

1 For example, it has been shown that the temperature drift in the cooling water at NSLS affects the 
bending magnet alignment causing orbit motion[84]. 

2This problem has since been fixed by cooling the Peltier stage with a recirculating temperature
controlled water bath. 
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Figure 4.3: The measured CCD signal variance versus the mean. The calibration at X25 and CHESS 
are respectively shown with squares and triangles. The solid line represents the CHESS data rescaled 
by a factor 2.2 for the mean and (2.2) 2 for the variance. 

by a multiplicative constant, one can use Eq. 3.20 to rescale the CHESS data into 

photons. It is shown in Fig. 4.3 that this constant is a = 2.2 so that the signal at 

X25, Vx, is equal to a Vc, where Vc is the signal at CHESS, and the variance at X25, 

S_i is equal to a2Sb: This rescaling is excellent for count rates above 160 ADU. As 

shown in the inset, some difference is seen for small count rates. 

To compensate for the slow decay of the incident synchrotron radiation intensity, 

the signal was scaled to the incident beam intensity measured by an air filled ion 

chamber beam monitor1
• After linearization and normalization to the incident inten-

sity, the floating point signal was multiplied by a factor 100 and then saved into a 

two byte short integer array for further analysis. 

4.5 Pinhole construction 

The pinholes were made by laser drilling through 50 Jlm thick Pt foils 2 . The pinholes 

used are really pinhole tunnels because their diameters are smaller than their 50 Jlm 

thickness. The foils were glued on a 1.0 mm thick Ta mount, pierced with a hole of 

diameter Dm = 0.5 mm. The ratio of transmitted intensity through a pinhole of diam-

1This detector measures the ionized current between two high voltage electrodes due to the photo
ionization of gas molecules. This signal is proportional to the incident intensity when there is no 
dielectric breakdown of the gas. 

2The pinholes were manufactured by Optimation Hole division, 123 Nashua Rd, suite 172, London
berry, NH 03053, USA, (603)623-2800 
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eter D over the transmitted intensity through the Pt foil is D2 /[D:n exp( -J.tPtPPtt)], 

where the density of Pt PPt = 21.41 g/cm\ the Pt thickness t = 50 f1m, and the 

mass absorption coefficient of Pt f1Pt 292 cm2/g at 7.0 keV. This design was found 

to work well at 7 keV, since for the smallest pinhole used, D = 3.5 J.tm, this ratio 

is 1.8 x 109 . With approximately 3 x 105 photons/s passing through the pinhole, 

1.7 x 10-4 photons/s would be transmitted through the foil! It was found later that 

this design can be further improved by re-orienting the pinhole with respect to the 

axis of symmetry1. Finally one should note that one can use slits to limit the sample 

size instead of pinholes2
• 

4.6 Demonstration of coherence: Fraunhofer diffraction 

pattern of a pinhole. 

To demonstrate that a hard X-ray beam generated by a second generation synchrotron 

source is transversally coherent, one would perform a Young's double-slit experiment. 

Since the transverse coherence length of synchrotron sources at the sample position 

is only a few f1m, we would have to make two pinholes, separated by a few f1m, 

each having a one 11m diameter. Since this is difficult to achieve experimentally3, 

it is easier to observe the Fraunhofer diffraction pattern of a single pinhole. If the 

transverse coherence lengths lx or ly are too small compared to the pinhole diameter D, 

then no diffraction pattern would be observed. Otherwise, the Fraunhofer condition 

1 Recently, we found that the axis of maximum transmission through the pinholes was not exactly 
adjusted with the surface normal of the foils. The pinholes were mounted on a goniometer and 
centered by rocking the angle of incidence of the incoming radiation. We found that the axis of 
maximum transmission for the 3.5 pm and 7.5 pm pinholes was tilted by 4.3 and 3° respectively 
with respect to the axis perpendicular to the mount. An increase in flux of a factor 5 was found for 
the 3.5 pm pinhole. The pinholes were remounted to fix this problem. 

2Dr Doug Abernathy has done some recent work on this at ESRF using sharpened Huber slits to 
observe Fraunhofer diffraction patterns. It seems possible to control these slits accurately and 
reproducibly. 

3The first observation of Fraunhofer diffraction patterns with hard X-rays from a rectangular 25 pm 
wide slit was made by Mancini and Bilderback[85]. Recently, Ferrer et al. [86] observed a Fraunhofer 
diffraction pattern of an effective slit made by an X-ray mirror. In a more recent experiment at ESRF, 
Comin et al. also observed Young's double-slit interference fringes at the surface diffraction beamline 
(bl13) of ESRF, using 4.73 KeV X-rays incident on two 0.5cm grazing incidence mirrors separated 
by 1 cm, which acted like double slits. 
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Figure 4.4: Fraunhofer diffraction patterns of a 7.5 t-tm pinhole resolved with a 8.5 t-tm pinhole, 
placed 1.12 m behind the first pinhole. The experiment is performed with 7 keV X-rays, at a ring 
current of 200 mA. The pinhole was scanned vertically or along 2811 (Left). A least-squares fit of 
the Fraunhofer diffraction pattern of a pinhole to Eq. 4.3, with D = 5.9 t-tm is shown with a solid 
line. (Right) A detector scan in the horizontal, i.e. along 28 .L. The fringe contrast is worst along 
20 .L, and the FWHM of the peak is wider than the least-squares fit with D = 5.9 J.tm. As expected, 
the fringe contrast is better along 2811 than along 28 .L, because the vertical transverse coherence 
length is 22 times larger than the horizontal one. 

is satisfied and fringes would be observable. 

Fig 4.4 shows Fraunhofer diffraction patterns observed at NSLS X-25. This was 

observed with 1. 77 A X-rays incident on a pinhole with D = 7.5 J-tm, placed 28 m 

from the source. The X-rays were detected with a scintillator masked by a 8.5 J-tm 

pinhole placed 1.12 m from the pinhole. Two scans along 2811 and 28 .L are shown. 

The contrast is excellent, revealing fringes observable over four orders of magnitude. 

Recall that the detected intensity of a Fraunhofer diffraction pattern of a circular 

pinhole, measured by a point detector, is [39] 

IoA2 4Jr(1rDr) 
I ( r) = ).. 2 R~ ( a ) 2 , 

(4.3) 

where x and y are respectively the horizontal and vertical displacements from the 

peak center in the detector plane, Rd is the distance between the detector and the 

pinhole with r = Jx 2 + y2 << Rd, 10 is the incident intensity on the pinhole and 

A is the pinhole area. The factor A2 j(>-.Rd) 2 normalizes the integrated intensity to 

f0
00 2rrr/(r)dr = l 0A. This relation assumes a plane wave illumination of the pinhole 
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generated by a point source placed far away from the first pinhole. The first zero of 

this function occurs at r = 1.22>.Rd/ D. Its FWHM is 

FW H M = 1.0288>.Rd . 
D 

( 4.4) 

The measured FWHM in Fig 4.4 are respectively 0.0298 mm and 0.0374 mm. Using 

Eq. 4.4 with Rd = 1.121m, one finds D = 6.9 and 5.5 pm, which is in good agreement 

with the 7.5 pm diameter estimated by transmission. A plot of the theoretical Fraun

hofer diffraction pattern of a circular pinhole convolved with the detector resolution is 

shown in both figures. The fit integrates Eq. 4.3 numerically over the detector pinhole 

area. Six parameters are used: a peak intensity, an input pinhole diameter, a center 

position, a fixed detector pinhole diameter of 8.5 pm, a constant background, and a 

linear slope in the background. For the slice along 2011, the central fifteen data points 

are well fit, but the calculated fringes are out of phase with the data. For the slice 

along 20 1., the data are broader than the fit, and the fringe contrast is worse than the 

fringe contrast along 2011· The phase shift in the fringes and the assymmetric FWHM 

could be caused by averaging many horizontal coherence lengths in the pinhole diam

eter, and by spatial fluctuations on the incident intensity profile (see Fig. 4. 7). When 

this occurs, more complicated forms of the theoretical diffraction must be used, like 

in section 5.7 of Ref. [39] and in Ref. [87]. 

We also observed these Fraunhofer diffraction patterns with the CCD detector. 

Using the parallel detection properties of the CCD and its time resolution, one can 

get more instantaneous properties of the diffracted beam and can test easily for source 

stability and motion. If the source moves or some upstream optical element moves, 

it is easy to track with the detector. This is a big advantage of the CCD over 

the scanning pinhole assembly used in the previous figure. Fig 4.5 shows the time 

average of the CCD data using an input pinhole diameter D = 3.5 11m and a distance 

pinhole-CCD, Rd = 1.04 m using 6.9 keV X-rays. The CCD was exposed for two 

seconds, and thirty six files were averaged. As seen in the two perpendicular slices 

in the figure, the central 7 x 7 pixels are reasonably fit by the Fraunhofer diffraction 
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pattern of a circular pinhole, convolved with the detector's resolution 1 derived in 

Eq. (3.12). The error bars of the data were calculated using the estimated variance 

and Eq. (A.14). The fit shown is a non-linear least-squares fit, with a x2 = 14.4, 

D = 2.57 J.-Lm and a dark count of 0.25 photons/2secjpixel. This high value of x2 

is probably caused by several effects, like a non-circular pinhole2
, a finite source size 

which does not satisfy perfectly the Fraunhofer condition of a point source and an 

approximate resolution function. This fit has a smaller x2 than the fits in Fig 4.4, 

which were an order of magnitude larger. Since the ratio D flx is smaller for the 3.5 J.-Lm 

pinhole, the Fraunhofer diffraction condition is more closely matched with a smaller 

pinhole. Finally, each scan of the CCD was fit to the model. Fifty one patterns were 

collected with a cycling time of 10.4 s. The fit centers were constant to a fraction 

of a pixel size except in one of the scans where the peak center moved by two pixels 

(45 J.-Lrad) in the vertical. This sudden motion was seen in only one of the fifty one 

scans and seems to be characteristic of the stability at X-253
. This angular motion 

would correspond to a source motion of 2 x 22.4J.-Lrad x 27.8 m = 1.2 mm which is 

too large for a vertical source motion. It is most likely caused by some motion of the 

monochromator, which results in an angular shift. 

4. 7 Incident X-ray beam structure and stability 

Fig. 4.6 shows the time fluctuations of the incident beam at X-25 measured by an 

ion chamber monitor placed before a 3.5 J.-Lm pinhole. The time fluctuations of the 

total transmitted count rate measured with a scintillation detector placed behind 

the pinhole are also shown. The relative fluctuations of the detector and monitor 

signals are respectively 3.5 and 2 %. The detector signal fluctuations are larger than 

the monitor signal. Furthermore, the fluctuations in the ion chamber monitor signal 

1The calculated signal is integrated over the area of a pixel. Then it is smeared according to Eq. 3.12. 
20ne can see that the data are not quite circularly symmetric. Furthermore, two stripes are observed 
in the tails of the diffraction pattern. These stripes are not clearly seen in the previous figure, but 
they are easily seen far away from the peak. 

3 Prof. Steve Dierker mentioned that their group also observed a similar phenomena at X-25 in their 
small angle scattering data from gold colloids. 
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Figure 4.5: A grey scale of the CCD data (top left) for the central 20x20 pixel of the CQD. The grey 
scale is logarithmic as shown in the legend in photons/2sec/pixel. Each pixel subtends 22.4 Jlrad. 
To the right, a least-square fit to a Fraunhofer diffraction pattern of a circular pinhole convolved 
with the detector resolution discussed in the text. Below, two perpendicular slices of the data (with 
squares) and fit (solid line). 
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Figure 4.6: (Top) Time fluctuations of the total flux transmitted through a 3.5 J.tm pinhole. The 
upstream slits were wide open for this measurement. (Bottom) The ion chamber monitor signal at 
X-25 before the pinhole. Fluctuations with a period of 62.5 s are present in the incident beam and 
the transmitted beam. 

and the transmitted beam through the pinhole in Fig. 4.6 are anti-correlated. This 

is very likely a sign of angular fluctuations in the incident beam, modified by the 

transmission through the pinhole. A Fourier analysis1 of these fluctuations for the 

monitor reveals a fundamental period of 62.5 s, with some longer time scales with 

periods of 100 s. The detector signal shows, in addition to the frequencies found in 

the monitor signal, faster fluctuations with a period of 31.25 s, which is the second 

harmonic of the fundamental. These fluctuations appeared also in the beam position 

monitor signal. 

Another group has observed incident intensity fluctuations at X-25 at about 25 

Hz. Because, the shortest exposure was 120 s, we integrated over much of these 

fluctuations, reducing the amplitude of the fluctuations. 

Fig. 4. 7 shows two scans of the spectrometer table revealing some random structure 

modulating the incident beam at X-25. These length scales are approximately 20 and 

1The power spectrum of the signal was calculated numerically. The power spectrum is the square of 
the Fourier transform. 
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Figure 4.7: The horizontal and vertical structure of the incident beam measured by scanning the 
spectrometer table perpendicular to the incoming beam direction. The detector was placed behind a 
3.5 p.m pinhole. Scanning the spectrometer table moves the pinhole along the structure modulating 
the incident beam. Note that the step size is the same for both plots. This structure is narrowest 
in the vertical. 

40 pm in the vertical and horizontal respectively. This spatial structure is time 

independent. It is believed that the structure is due to either the monochromator 

crystal or to some Be window upstream of the pinhole. This structure in the incident 

beam was observed at CHESS, X25 and ESRF1• During the experiment, the incident 

collimating pinhole was set on a fiat region of this structure. 

4.8 Temperature calibration and beat treatment 

Fig. 4.8 shows a plot of the integrated intensity over an area of 380 x 190 pixels, 

as the sample is disordered from below to above Tc. The critical temperature of 

the order-disorder transition in Cu3Au is Tc = 391 1 °C. It compares well with 

the critical temperature of 390°C found in the literature2 • Before a quench, the 

1 Recently, it was found that the structure in the incident beam at ESRF was due to the small angle 
scattering from the monochromator Be window. This was observed on a microfocus beamline. They 
found that the structure observed was imaged from the Be window. By polishing this window, they 
also showed that the structure disappeared. 

2See Warren[26], Chapter 12 
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Figure 4.8: Left: Integrated intensity of S(ii) over an area of 380 x 190 pixels centered on the Cu3Au 
(100) reflection versus temperature. The inset is the integrated intensity over the parasitic peak 
discussed in the next section. Its temperature behavior is the same as the (100) peak. Right: The 
quench profile for Run 21. The temperature read by the second thermocouple is displayed as a 
function of time after the quench. The sample was annealed near 440 °C and quenched abruptly to 
its final temperature. The inset shows that after an initial undershoot of 2.5 °C, the temperature is 
stable to within a fraction of a degree over sixteen hours. 

sample was annealed above Tc to remove any long range order. At X25, the sample 

was annealed at 440°C and then quenched rapidly to its final temperature. Both 

quenches reported in this thesis for the X25 experiment were made at the same final 

set point temperature T = 370 °C, or t = Tc- T 21 °C. The temperature after an 

initial undershoot of approximately 2.5 °C was constant within ±0.5 oc for 20 hours 

(See a typical quench profile in Fig. 4.8). 

At CHESS, the sample was annealed slightly above Tc and quenched to a final 

temperature oft = 22 °C. After an initial undershoot of 3 oc, the second thermometer 

drifted up by 5 oc during the 10 hour experiment although the setpoint temperature 

stayed constant. If this temperature drift is characteristic of the illuminated area, 

this could affect the kinetics of the ordering process. 

4.9 Setting the angle of incidence ()i 

Below Tc, for (} set at the Bragg condition, the structure factor consisted of a narrow 

peak superimposed on a broad order-disorder peak of Cu3Au (100). The narrow 
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component would move across the detector plane by scanning the angle of incidence on 

the sample. Changing f)i by an angle .D. moved this peak in 20 by 2.6.. The integrated 

intensity in this peak was maximized when 0 was set to the Bragg angle, while the 

broad order-disorder peak became weaker at the Bragg condition. A radial 0-20 scan 

along the (100) had a FWHM of .6.0 = 0.1 °. Furthermore, this peak disappeared 

above Tc, which implies that it must be related to the order-disorder phase transition 

in_ Cu3 Au, and not to something like an oxide peak. Using dqfq = tan- 1(0).6.0, 

with 0 = 14.54°, one finds that this scattering could be caused by a surface layer 

approximately 500 A thick. In the experiments reported next, the Bragg angle was 

offset by 0.1 °, in order to look only at scattering from the bulk sample. Some fraction 

of the signal on the (100) is lost because of this offset. 
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RESULTS 

5.1 Static speckle patterns 

Fig. 5.1 shows an image of a speckle pattern of Cu3Au, measured with D = 7.5 p,m. 

The sample was kept at room temperature where the dynamics is frozen. The data are 

characterized by three well separated length scales: the speckle size and the domain 

sizes. It is well known that Cu3 Au superlattice peaks are disks in reciprocal space 

(See section 2.4). In the far field diffraction plane, regions of high intensity are next 

to regions of low intensity, with a typical speckle size of la, which is on the order of 

the FWHM of the Fraunhofer diffraction pattern of ·the pinhole given by [15] 

ls 
~ 1.0288>.Rd 
·- D (5.1) 

Here Rd = 1.04 m is the pinhole-detector distance, >. = 1. 797 A and D is the input 

beam collimator diameter. The speckle angular size is given by a relative change of 

optical path length equal to ..\[15). Here, la is 25 p,m or approximately a pixel wide. 

Note also that for a perfectly coherent incident beam, the speckle size goes to zero 

in the limit where the scattering volume goes to infinity. Therefore, it is possible to 

wash out the contrast if the speckle size becomes smaller than the resolution of the 

detector. It is important to match the detector resolution with the speckle size. 

In the far field diffraction, the speckle pattern adds a random fluctuating envelope 

to the (100) superlattice peak caused by coherent diffraction from X-rays scattered 

from different antiphase domains. They are called antiphase domains because type I 

and 11 domains walls cause 1r phase shifts in the scattered light from the (100) since 

these walls are created by a relative displacement of (1/2,0,1/2)a, where a is the lattice 

78 
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0 30 60 photons 

Figure 5.1: A speckle pattern of CuaAu (100) measured at room temperature after the sample was 
ordered for 16 h at 373°C. The scattered intensity in the central 200x 100 pixels is displayed using 
the grey scale legend. The beam was collimated with a 7.5 p.m pinhole and the pattern was integrated 
for 2 minutes. The data are scaled for beam intensity decay to a beam current of 200 mA. Below, 
two slices are shown, one along 2E>u with S.q = (O,~qu) and one along 2E>.L with S.q = (~q.L,O). 
The error bars are given by approximately v'l.63v*, as shown in Fig 3.6. To reduce the error bars, 
several scans can be averaged {see Fig 5.2). The spatial fluctuations are clearly above counting 
statistics. 
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constant. The superlattice peak characteristic angular size .6. ~ >..Rd/ RD, where RD 

is the average radius of an antiphase domain in Cu3 Au. In Fig. 5.1, .6. is of the order 

of 30 to 60 pixels, therefore the average domain size ranges from 1400 to 2800 A. The 

optimum condition for observing speckle occurs when .6. is of the order of a few ls 

so that the number of speckles measured by the CCD is of the order of ( D / RD )2 • 

When RD > D, one simply observes the Fraunhofer pattern of the pinhole because 

the sample has no disorder. This was observed in Ref. [15] on a perfect crystal of Si. 

If the diffuse scattering is too broad, more speckles are observed, but the scattered 

intensity is smaller. With current X-ray sources, one must prepare samples carefully 

to observe speckle. Future third generation synchrotron sources should allow for a 

greater variety of samples to be studied. 

Another characteristic. property of speckle is its very large contrast, defined as the 

ratio of the standard deviation of the spatial fluctuations over the spatial average. 

The contrast depends on two experimental conditions: the incident beam resolution 

and the detector resolution. A large number Ns of independent speckles in a detector 

area reduces the contrast by a factor 1/ ~for a perfectly coherent incident beam. 

Approximating the speckle area, As, by a disk of radius equal to the first zero of the 

Fraunhofer diffraction pattern of the pinhole, 

(
1.22>-.Rd) 

2 

As 1r D , (5.2) 

one finds the number of speckles in a detector area Ad 

Ad AdD2 

Ns = As = 7r(l.22>..Rd)2 • 
(5.3) 

Since Ns ex D 2
, the contrast is proportional to 1/ D for a fixed detector area, thus 

increasing the pinhole diameter reduces the contrast. 

The incident beam resolution is related to the degree of coherence of the beam, 

measured by the ratio of the beam size over the transverse coherence lengths l:r;, ly. 

Here, the sample size is controlled by the collimating pinhole diameter D. Increasing 

l:r;,ly or reducing D improves the contrast. A useful parameter for determining the 

contrast is the number of coherence areas Ac = l:r;ly in the collimating pinhole area 
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given by 

(5.4) 

The contrast increases as Ne decreases. 

To demonstrate these concepts, we performed an experiment which consisted of 

changing lx and D independently. The horizontal transverse coherence length lx was 

increased by closing the source x-y slits, thus reducing the effective source size d8 (See 

Fig 2.4). Only lx was changed because the horizontal source size of synchrotron radi

ation is typically an order of magnitude larger than the vertical source size, resulting 

in lx being the smallest of the two coherence lengths. 

Fig. 5.2 shows slices of the speckle pattern for different D and source sizes. This 

experiment was performed at X-25, with a ring current ranging from 210 to 150 mA. 

The CCD was oriented at the time with its poor resolution direction along 2911. The 

horizontal source size was reduced by closing the upstream slits which are 10.5 m from 

the source, from an opening of 2 mm to 0.31 mm. This reduced the incident intensity 

by approximately 2/3. The CCD was exposed for 30 to 240 s. To improve the counting 

statistics, many scans were averaged for a total time ranging from 20 minutes to an 

hour. Slices through the time averages along 291.. and 2911 are shown. As expected 

theoretically, the speckle pattern spatial fluctuations increase as D is reduced while 

keeping lx constant, and are increased when the source size is reduced keeping D 

constant. The error bars are much smaller that the spatial fluctuations of the signal 

for all optical conditions. This will be shown later with Fig 5.9. Note that here 

the peak average count rate is proportional to the pinhole area and slit opening. 

The contrasts along both scan directions are very similar. Some of the scans along 

2911 may have less contrast than their respective scans along 29 1.. because the CCD 

resolution is poorer along this direction. 

Fig 5.1 and 5.2 show that the contrast and speckle size of the observed speckle 

pattern are qualitatively consistent with the theoretical properties of speckle. To 

measure these properties quantitatively, in the next two sections we develop tools 

which will help to measure the contrast and speckle size of a given speckle pattern. 
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Figure 5.2: Slices along 2E>.L and 2E>n of the time averaged speckle pattern of Cu3 Au (lOO) at 300 K, 
where no coarsening dynamics is expected. The labels indicate the pinhole diameter used and status 
of the upstream slits: narrow (N) or wide (W). The setup with D = 3.5 p.m and narrow slits was 
not measured because of the long integration time needed. The error bars were calculated from 
Eq. A.14 using the measured variance of N exposures. As discussed in the text, the contrast is 
reduced when the diameter of the collimating pinhole D is increased at constant incident source 
size, and is increased by reducing the source size at constant D. Scans along 281. and 2811 have 
very similar contrasts. 
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These tools could not be used as effectively without a two dimensional data set. This 

is the main advantage of measuring speckle patterns with a CCD. Here, one can calcu

late different statistical estimators which describe quantitatively the speckle pattern 

properties. These estimators will have excellent statistics because the CCD records 

2.2X 105 pixel elements simultaneously, compared to one element for a standard detec

tor. For example, Fig 5.1 would have taken 666 hours of valuable synchrotron beam 

time to record by scanning a scintillation counter over the same area, or 3.3 hours 

by scanning a 25 Jlm slit in front of the one-dimensional linear diode array discussed 

earlier in section 3.0.4. 

5.1.1 Measuring speckle size 

To quantify the three length scales of speckle patterns, we will use a more general 

form of the spatial correlation introduced earlier in Eq. 3.21. The crosscorrelation 

function of the scattered X-rays is defined1 by 

f(Sq,t,.6.t) =< v*(ij,t)v*(ij+Sq,t+.6.t) >if· (5.5) 

The linearized signal v*, defined in Eq. 3.20, is measured at wavevector if and timet, 

where qij and tk are discrete due to the nature of the detection process. The integers i 

and j are indexes for the rows and columns of the CCD; v* is integrated from t to t+r. 

Let us first understand the autocorrelation function by setting .6.t to zero. An image 

of f(Sq, t, 0) is shown in Fig. 5.3 for a typical speckle pattern measured with a 7.5 Jlm 

pinhole. Two perpendicular slices of r are also shown in Fig. 5.4. The autocorrelation 

consists of two peaks with well separated length scales. One peak has a width of the 

order of tens of pixels, caused by the envelope of scattering previously discussed. The 

central peak is related to the speckle pattern convolved with the detector's response 

autocorrelation. As shown in the inset of Fig. 5.4 and the enlarged central peak area 

in Fig 5.3, the scattering is well correlated on a distance of 1-2 pixels. 

1It is calculated numerically by r(Li'q,t,6.t)::: jjr1(fft(v(t))fft*(v(t + dt)), where the fft is a 
spatial Fast Fourier Transform. It can be calculated also directly by evaluating the sums described 
on page IX. Both methods are equivalent. 
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0 37 >65 (photons2) 

-128 128 

72 (photons2 ) 

Figure 5.3: A typical autocorrelation function f(Aq, t, 0) of the {lOO) superlattice peak of Cu3Au. 
A linear grey scale between 0 and 65 photons2 is used for displaying r, and a pixel subtends a 
llqp = 7.53 X w-5 A. Below, the central 7 X 7 pixels of r with its color legend. The central peak is 
related to the speckle size convolved with the detector pixel to pixel correlation. 
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Figure 5.4: Two slices of f(6.q, t, 0) are shown. A cut along 2011 is shown with a dashed line with 
Aq = (0, 6.), and a cut along 20.t with Aq = (6., 0) is displayed with a solid line. The width of the 
diffraction pattern is about twice as narrow along 28u. This difference is explained in section 2.4, 
where it is shown that the structure factor is pancake-like in reciprocal space. The inset shows the 
peak near Aq ~ 0. The width of the peak is narrower along 2011 because the detector resolution is 
better in this direction. Note that the autocorrelation is symmetric with respect to the origin by 
definition. 

To understand r(LS_'q, t, 0) quantitatively, let us first illuminate the detector with 

a spatially uniform source of incoherent X-rays with spatial average <v*>il· We have 

shown in section 3.0.5, Fig 3.10, that 

fv( <v*>, LS.'q)- <v*>} ~ 

1.63<v*>if, for LS.'q = 0, 

0.85<v*>q', for LS_'q = (~qp, 0), 

0.2<v*>if, for S:q = (0, l:l.qp), 

0.13<v*>il, for S:q = (2~qp, 0), 

O.ll<v*>q, for S:q = (±~qs, ±~qp), 

0 otherwise. 

(5.6) 

Here ~qp is the magnitude of the wavevector difference between two nearest neighbor 

pixels. Using s: .. il ~ 1.63<v*>il, it is easy to derive Eq. 5.6 from Eq. 3.21. The 

detector autocorrelation fv is due to the spreading of the electric charge from a 

detected photon over several pixels. Fig. 5.5 and 3.10 show slices along ql. and qll 

of fv for a spatially uniform detected beam. The CCD has a narrower resolution 
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Figure 5.5: With squares, a typical slice ofthe autocorrelation function rD = <v* (q, t)v* (q+~q, t+ 
~t)>q for ~t = 0 measured by illuminating the detector with spatially uniform incoherent X-rays is 
shown. rD has been normalized to <v*>2 , the square of the spatial average of v*. The amplitude of 

the peak is 1 +:!.~},where S~,"· is the spatial variance of v*. A slice of the cross correlation function 

of two successive scans of the CCD detector is also shown with triangles, showing no correlation. 
When one needs to evaluate the speckle size, the cross correlation function has the advantage of 
removing the Poisson term in the right hand side of Eq. 5.6. 

along the parallel transfer direction, here referred to as qll. This explains why the 

width of the speckle contribution is different in the qJ.. and qll directions in the inset 

of Fig. 5.4. If the detector is illuminated with a speckle pattern, r(LS'q, t, 0) will 

contain a contribution due to the Poisson noise in the measured v* coupled to the 

finite resolution of the detector, and one from the high contrast speckle pattern. To 

measure the speckle contribution, we must subtract this Poisson contribution from 

the detected correlation function, i.e. 

(5.7) 

where r s is the speckle contribution. This treatment can be simplified further if we 

cross-correlate two successive speckle patterns, by approximating 

fs(~?,t,O) ~ r(~q,t,~t) =< v*(q,t)v*(q+LS'q,t+~t) >q, (5.8) 

where ~t is small compared to the time scale of any intensity fluctuations. In our 

case, this is a valid assumption since the dynamics is frozen for a sample at room 

temperature. Then the variance term in Eq. 5.6 due to Poisson noise disappears 
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Figure 5.6: Comparison of Eq. 5.7 (t~a~gl~~ ~~tl E\~ ~.~ (sluares) along 28n for a static speckle 
pattern of Cu3 Au. The autocorrelation calculated from Eq. 5.5 is shown for comparison with circles. 
Note that the speckle pattern remains constant for 135 s since both equations yield the same r,. · 

because v*(q, t) and v*(q, t + 6-t) are independent. The treatment is also simpler 

since we do not need to take into account the Poisson contribution caused by the 

couplings between neighboring detectors, or pixels. 

As shown in Fig 5.5, the cross correlation of two spatially uniform patterns does 

not show the excess correlation at 6-q = 0, ±1, ±2 6-qp. There is no memory between 

different scans of the CCD detector. Furthermore, this tool is quite powerful in 

detecting any scattered beam motion. Fig. 5.6 shows the equivalence between Eq. 5. 7 

and Eq. 5.8. This also shows that the speckle pattern is unchanged after 135 s, which 

is a sign of good mechanical and optical stability of the experimental setup over this 

time period. Note that the Poisson and detector contribution in Eq. 5.7 could be also 

taken out by averaging the signal over N independent scans of the detector and then 

calculating r s with 

fs(~q, t, D)~ <<v*(ij + ~q, t)>t<v*(ij, t)>t>q· (5.9) 

In Eq. 5.6, the right hand side would then be divided by N because the error on a 

time average is reduced by v'N, thus reducing the Poisson contribution. 

Using Eq. 5.8, we can now estimate the speckle size in Fig. 5.1 and 5.2. If one 
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assumes a point source illumination of the sample, the speckle size should be inversely 

proportional to the beam size. Fig 5. 7 shows the crosscorrelation of two subsequent 

speckle patterns shown for different optical conditions. The correlation function was 

calculated using a window of 256 by 512 pixels which covers most of the data. Two 

effects are observed. As the pinhole diameter increases, the speckle size is reduced 

and the autocorrelation function becomes resolution limited. For example, for the 

wide open slits, the peak along 2811 subtends 9 points for the 3.5 Jlm pinhole but only 

4 points for the 33 Jlm pinhole. Another indication of the resolution limit is seen for 

the data with narrow slits, since for D 15 and 33 Jlm, the peak is the narrowest 

along 28 J., the direction of high resolution on the CCD. 

Another feature in Fig. 5. 7 is the baseline shifts. For example, the crosscorrelation 

decays from a maximum of 2.9 to 2.6 forD = 3.5 p,m (W), but decays from 3.93 to 3.6 

for D = 7.5 Jlm (W). This baseline shift is caused by a change of the FWHM of the 

(100). This change of FWHM was measured by fitting the data to a two dimensional 

Gaussian later introduced in Eq. 5.11. It was found that the (100) is wider for smaller 

pinholes. For example, the fitted widths o-11 and o-J. decrease by 19 % when the input 

pinhole diameter is increased from D = 3.5 to 33 Jlm with wide open upstream slits. 

It is shown in section A.3 that the maximum of the spatial autocorrelation function 

for a two dimensional Gaussian representing the incoherent scattering is inversely 

. proportional to the product of the fitted widths o-J. and o-11. In Fig. 5.8, the baseline 

of the correlation function, taken as the value of the crosscorrelation function along 

20 ..L after the decay due to speckle, is plotted versus the inverse of the product of the 

fitted widths. The baseline shift is proportional to 1/(o-J.o-11), in good agreement with 

the prediction found in Eq. A.35. 

This dependence of the FWHM of the Cu3 Au (lOO) on the pinhole diameter D is 

very surprising. It is present in both data sets with open and closed upstream source 

slits. No coarsening dynamics occurred during this experiment since the sample was 

at 300 K. These measurements were performed with record incident and scattered 

wavevector resolutions. These measurements are micro-diffraction experiments on 
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Figure 5.7: The effect of varying the collimating pinhole diameter, D, and the horizontal source 
size on the speckle size. The solid and dashed curves are respectively slices of the cross-correlation 
function between two subsequent exposures of the CCD along 2911 and 29 .L for wide (first column) 
and narrow source slits (second column). The speckle size increases as D is reduced for a given slit 
setting. Far away from tl.if = 0, the correlation function decays faster along 2911 because the peak is 
narrower along this direction. The autocorrelation of a Fraunhofer diffraction pattern of a circular 
pinhole, convolved with the detector resolution is shown in the third column. The peak height and 
baseline were adjusted to match the values found in the data set with narrow slits along 28 .L. The 
pinhole diameter varies from 3.5 to 33 Jl.m, and slices along 29 .L and 2911 are shown respectively 
with dashed and solid lines. The spatial autocorrelation function of an ideal Fraunhofer diffraction 
pattern of the pinhole is in goqd agreement with the observed autocorrelation of speckle patterns 
for narrow slits. 
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Figure 5.8: The inverse of the product of the fitted widths u .L and un versus the maximum of the 
correlation function. L.1. and Lu are the dimensions of the rectangle in reciprocal space used to 
calculate the crosscorrelation function. 

very small volumes of Cu3Au. Since the FWHM decreases with increasing D, we 

speculate that by illuminating a larger volume of the sample, more large antiphase 

domains become fully illuminated. Therefore, a larger illuminated volume would 

better sample the large domain tail of the domain size distribution, resulting in a 

decrease of the average domain size measured by the FWHM of the peak. 

This effect is reminiscent of another effect observed in single crystals of Cu3 Au and 

Fe3Al. We have observed that by illuminating different parts of the sample with a 

given pinhole diameter1
, the intensity and FWHM of the superlattice peak varies. To 

optimize the scattering condition, we move the collimating pinhole over the crystal 

until a well ordered volume is found. 

Since Sutton et al. [15] showed that the speckle size is proportional to the FWHM 

of the Fraunhofer diffraction pattern of a pinhole (see Eq 5.1), a natural way to 

understand the behavior of Fig 5. 7 is to use the auto correlation of the diffraction 

pattern of a pinhole as a theoretical estimate. The third column of plots in Fig. 5. 7 

shows the expected autocorrelation function of a Fraunhofer diffraction pattern of a 

circular pinhole, illuminated by a point source placed far away from the pinhole. The 

diffraction pattern was convolved with the detector resolution discussed in Chapter 3 

1The collimating pinhole can be moved easily using two perpendicular high resolution Klinger motors. 
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and then autocorrelated. For large D, the speckle size is larger along 2811 than 28 .L, 

which implies that the speckle peak becomes resolution limited like the experimental 

data for narrow slits. The theoretical model better fits the data with narrow slits 

because the experimental condition is closer to the theoretical assumptions. Some 

differences between the data and theory are observed for D 3.5 J-tm, where the 

measured correlation function for the data with wide open slits decays faster than 

the model. The meq.sured data are narrower than the model. Perhaps some of this 

difference is caused by the fact that the Cu3A u illuminated area is larger than the 

pinhole area since the sample is nearly outside the near-field ·diffraction of the 3.5 J-tm 

pinhole (see section 4.1). 

The other noticeable effect is that closing the horizontal slits reduces the FWHM 

horizontally. For a given diameter D, slices along 28.L becomes narrower than those 

along 2811. This effect is small but does not depend on the method of calculation. 

The same result is also obtained using Eq. 5.9 on the data of Fig 5.2, or by cross 

correlating other sets of subsequent files. This is consistent with the FWHM of the 

diffraction pattern being input divergence limited when the slits are wide open, to 

becoming diffraction limited for narrow slits. The horizontal FWHM of the source 

image in the detector plane for wide slits, .6.111 , is approximately equal to dsxRd/ Rs, 

where the horizontal FWHM of the source dsx = 0.91 mm and the distance slit

pinhole Rs = 17.3 m. Here .6.x =55 and 19 pm for wide and narrow slits respectively. 

Adding this geometrical optics effect to the FWHM of the diffraction pattern for a 

7.5 J-tm pinhole shown in Eq. 4.4, gives an approximate FWHM of 55+ 24 J-tm, and 

19+24J-tm for the wide and narrow slits respectively. This predicts a 45% reduction of 

the FWHM of the speckle size by closing the horizontal slits. The measured reductions 

in the FWHM along 2E>.L in Fig. 5.2 are 20, 45 and 55 % reductions for the 7.5, 15 

and 33 J-tm pinhole respectively. The difference between the measured and predicted 

change for the 7.5 J-tm pinhole may be caused by the resolution of the detector which 

has not been included in the calculation. Note that these effects will be easier to see 

in future experiments, by choosing a CCD array with finer resolution, or by placing 
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the detector two or three meters away from the pinhole. 

5.1.2 Contrast 

We measure the contrast of the speckle pattern by 

Ct(A, if) = Slv• (if) - <S~v• >A 
<v*(q,t)>~ 

92 

(5.10) 

where the spatial variance S~,v• (if) and mean <v*( q, t)> A are evaluated at a given 

time, on a small area in q-space, A. The contrast might depend on the size of the area 

chosen, and on the average q vector at the center of A. For an ideal speckle pattern, 

one expects the contrast to be independent of the reciprocal space position. A very 

large window would increase the contrast artificially because the peak line shape 

varies across A. A very small window would poorly sample the spatial fluctuations. 

For the measurement shown next in Fig 5.9, a rectangular window with a width of 

20 pixels along 28u and height of 40 pixels covering approximately 25 %of the Cu3 Au 

peak FWHM was chosen to match the Cu3Au peak asymmetry1. Using Eq. 5.3, 

with a detector area As = (22.4 pm) 2
, one finds that the window chosen includes 

approximately 30 independent speckles for the 3.5 pm pinhole and 2700 for the 33 pm 

one. Thus for a given window size, we expect the standard deviation of the measured 

contrast for a small pinhole to be larger than for a large pinhole because one samples 

more independent speckles in the latter experimental condition. 

In Eq. 5.10, Sl v• (if), the variance calculated from a time sequence of measurements 
' 

at ij, is a Poisson noise contribution subtracted from S~ v•· Because we do not expect 
' 

any dynamics from the sample, s; v* is due to counting statistics, incident beam 
' 

intensity fluctuations and any electronic noise from the detector. With this definition, 

when the scattering is incoherent and no speckle is present, the contrast goes to 

zero since the spatial fluctuations should be equal to the spatial average of the time 

fluctuations in Eq. 5.10. 

Fig. 5.9 shows the speckle pattern contrast for various pinhole diameters and two 

upstream horizontal slit settings shown in Fig 5.2. The contrast increases as D 
1 A square window of 20 x 20 pixels gave similar results. 
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Figure 5.9: The contrast as a function of the collimating pmhole diameter D, as computed from 
Eq. 5.10. Two data sets are shown for open horizontal slits (2mm) and closed horizontal slits 
(0.31mm). Closing the horizontal slits increases the contrast for a given D because it increases the 
horizontal coherence length l.,. 

is reduced, and increases as lx is increased. This is consistent with the statistical 

properties of speckle. Note also that the contrast in Fig. 5.9 is proportional to the 

amplitude of the decay of the crosscorrelation function in Fig. 5.7. For example, for 

D = 3.5 pm (W), the crosscorrelation in Fig. 5.7 decays from a maximum of 2.9 to 

2.6, thus )(2.9- 2.6)/2.6 = 0.34, which compares reasonably well with a contrast of 

0.28 found in Fig. 5.9. 

The measured contrast for Cu3Au seems lower than expected. The contrast for 

an ideal speckle pattern is one. Let us calculate, for example, the contrast for D = 

7.5 J-tm, and closed horizontal slits. At NSLS, the vertical coherence length is much 

larger than D. The horizontal transverse coherence length is lw = >.Rs/2ds, where 

Rs is 17.3 m, >. = 1.797 A, and ds = 0.3lmm. Here lx = 5 J-tm is smaller than the 

pinhole diameter D, thus some contrast is lost in the horizontal. One expects the 

contrast to drop from one to ~ Jlxf D = 0.82. In Cu3 Au, the longitudinal coherence 

condition is satisfied, so no contrast should be lost. Another loss of contrast will be 

caused by averaging many speckles in a detector area. Using Eq. 5.3, the number 
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of speckles in the effective detector area, assumed to be approximately two pixels 

along the serial transfer direction and one pixel along the parallel transfer direction 

of the CCD, using Rd = 1.04 m is N8 = 0.35! Thus the speckles are much larger 

than the detector area. One would expect a contrast of 0.82 for this measurement. 

The measured contrast is a factor two lower than expected. This is consistent with 

the results of Fraunhofer diffraction of the pinholes found in Fig. 4.4 and 4.5. For 

example, the fringe contrast is lower than expected in Fig. 4.5. Some loss of contrast 

could be due to the longitudinal coherence condition (See Fig. 2.6). For a semi

infinite crystal, a small fraction of the scattered intensity will come from the bulk 

of the crystal below one X-ray absorption depth. For these X-rays, the longitudinal 

coherence condition will not be met, thus reducing the contrast. Finally for large 

pinhole diameters, one would expect the spatial structure on the incident beam in 

Fig. 4. 7 to affect the spatial coherence of the beam. 

One should note that the speckle pattern contrast in Fe3Al (!, ! , ! ) is comparable 

to the one measured in Cu3 Au. We measured recently a contrast of 0.36 for a static 

speckle pattern of Fe3Al generated with nearly ideal coherent illumination [88]. 

5.2 Ordering kinetics of an order-disorder phase transition 

The data presented next will cover quenches performed at X25 and CHESS. Two 

sets of experiments were performed at X25: the so called run 21, obtained with a 

collimating pinhole diameter D = 7.5 Jlm and an exposure time r = 120 s, and 

run 24 obtained with D = 15 Jlm and r = 60 s. To test the beam stability, we 

also performed an experiment with the sample at T = 300 K, where the domains 

are frozen using the same parameters as run 21. At CHESS, run 113 was obtained 

with D = 7.5 Jlm and r = 114 s. These experimental conditions are summarized in 

table 5.1. 

Fig. 5.10 shows the data for three subsequent times after the quench in run 21. The 

data are displayed with a linear grey scale between 0 and 35 counts/120s, and scaled 

to a synchrotron ring current of 200 mA. For t = 50589s, the maximum intensity 
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0 17.5 35 counts/120s 

Figure 5.10: S(q, t) fort = 1.2, 2.49, 5.06 x 104 s after the quench for run 21. The data are displayed 
with a linear grey scale shown above. The data span a wavevector range from the center of an image 
of ±0.0136 and ±0.00678 A -l along 201.. and 2011 respectively. As the domains grow in time, the 
superlattice peak intensity increases and the peak becomes narrower in reciprocal space. 
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Table 5.1: Summary of the experimental parameters for different experiments. The cycling time t:.t 
is the sum of the exposure time T and the dead time. The experiments at X25 were performed with 
wide open upstream horizontal slits to optimize the scattered intensity. The contrast dependence on 
the sample temperature and pinhole diameter is also shown. It was calculated using Eq. 5.10 over 
a square of 20 x 20 pixels centered at t:.2(J .1.. = t:.2(JII = 0. The contrast is temperature independent 
for the temperatures studied in Cu3 Au. 

: Experiments I T ( s) I D..t ( s) j D (pm) I T (K) I Contrast 

Run 22 120 135.3 7.5 300 0.262 ± 0.005 

Run 21 120 135.3 7.5 643 0.26 ± 0.01 

Run 24 60 75.4 15 643 0.166 ± 0.006 
: 

Run 113 114 120.6 7.5 643 0.27 ± 0.01 
I 

detected is 78 counts/120s, but less than 2 %of the pixels have a count rate exceeding 

35 counts/120s. These pixels are also displayed in black. Slices along 2(} .1.. and 2(}11 are 

shown in Fig. 5.11 for these three different times. As expected from the coarsening of 

domains, the Bragg peak sharpens along 2(} .1.. and 2(}11, and the peak intensity increases 

monotonically with increasing time. The solid lines in Fig. 5.11 are least-squares fits 

to a Gaussian defined by 

s (~ t) =I (t) (- (ql.- Ql.(t))2- (qll- Qu(t))2) 
f q, max exp 2o'1_(t) 2urr(t) ' (5.11) 

where lmax(t) is the time dependent fitted peak intensity and Q .1..( t) and u l.(t) are the 

fit center and width along 2(} l.. These least-squares fits were performed on an area 

covering a large fraction of the two-dimensional data set1
• These fits were used to 

estimate the incoherent structure factor and to give a smooth average of the structure 

factor which could then be used in the measurements of the time fluctuations. Note 

that an elliptical average of the structure factor with respect to the center of mass 

could also have been used to define a local average. We chose the fits because they 

have no random spatial fluctuations. 

1 The two-dimensional data set was fitted using a standard non-linear fitting routine, transforming 
the data into a one dimensional vector and using the independent coordinate to encode the position 
of the pixel on the CCD. Typically, a rectangular region of the CCD with 220 by 360 pixels was 
used along 2011 and 20 .1.. respectively. The data were equally weighted for the fit. A small region 
surrounding the parasitic peak was discarded because it dominates the scattering at early times. 
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Figure 5.11: Slices of S(ij,t) along 20.l and 2811 for the three different times in Fig. 5.10. To 
distinguish the data sets, a constant of 25 and 65 counts/120s was added to the data at time 
t = 2488ls and t = 50589s respectively. The solid lines are least-squares fits introduced in Eq. 5.11. 
These fits are used as a local average for the spatial and temporal fluctuations. 

Fig. 5.12 shows the time dependence of the five fit parameters for the data. The 

peak intensity Imax at the end of run 21 is 88% of Imax for run 22. The peak intensity 

of run 24 is approximately seven times larger than for run 21, and its calculated 

integrated intensity is approximately five times larger than run 21 at the same time 

after the quench. The CHESS data are nearly 3.5 times more intense than run 21, 

and for an identical beam current of 200 mA, run 113 is seven time more intense than 

run 21. Note that an undulator was used at CHESS rather than a wiggler, and that 

the CHESS synchrotron ring energy is twice that of the NSLS ring. 

In Fig. 5.12, the time average1 of the fit center along 20.1. is <QJ..>t = 209.1 ± 7.6, 

199.5 ± 0.6, 198.8 ± 3.4, and 242.8 ± 2. 7 pixels for run 21, 22, 24, 113 respectively. 

A motion of one pixel is equal to an angular motion of ~ 22 11rad. The fit center is 

most stable for run 22 at T = 300 K. During run 21, Q 1. drifts by twenty pixels, or 

1 The early changes in the fit parameters before t ~ 2000 s were discarded from the time average 
because the scattering is weak at early times resulting in poorer fits. The error bars quoted are the 
standard deviation of the fit parameters. 
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Figure 5.12: (Top left) The fitted peak intensity Imarc for the experiments at X25 and CHESS. The 
CHESS and X25 data were scaled to a ring current of 100 and 200 mA respectively. (Top right) 
The calculated integrated intensity. (Middle left) The fit center Q .L. The data for run 24 and run 
21 were offset by ten and thirty five for clarity. (Middle right) The fit center Qu. (Bottom left) The 
fitted widths 0' .L and O'U are shown respectively with solid and dotted lines. The inset shows the 
widths for run 22 on a linear scale. (Bottom right) The ratio O'.J../0'11. 
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approximately 0.4 mrad, while Q .L changes abruptly after a monochromator tweak at 

t = 5.11 x 104 s. For run 24, some oscillations are seen near t = 4.1 x 104 s. These 

oscillations correlate with the beam position monitor. 

The time averages of Qu in Fig. 5.12 are <Qu>t = 298.2 ± 1.8, 317.8 ± 0.4, 

332.3 1.4, and 308.2 ± 1.4 for runs 21, 22, 24, 113 respectively. It is most stable 

for run 22. The steps seen in Qll for run 113 are slight motions occurring after a new 

synchrotron fill at CHESS. The fit center Qll tends to be more stable than Q .L for all 

the experiments reported at CHESS and X25. Since 20 .L is measured in the horizontal 

plane, the fact that the motions are greater along 20 .L may be due to larger incident 

beam motion horizontally than vertically1. 

As expected from the domain coarsening in the late time regime, the widths of the 

(100) in Fig. 5.12 follow a power law in both directions. For run 21, a fit of the widths 

to a power law, a(t) ex: t-n, yields n = 0.43 0.01 and 0.45 0.01 for a .L and all 

respectively. For run 24, a .L ex: t-(o.4l±o.ol), and all ex: r<0•438±o.oos). The fitted widths 

along a .L are less reliable at early times for runs 21 and 24 because 20 .L was aligned 

on the serial transfer direction of the CCD. The fit becomes poorer at early times 

because a large fraction of the scattered intensity is outside the detector window, 

and count rates are low. As seen in Fig. 5.12, the ratio of a .L/ all is approximately 

two for the data recorded at X25, and it is weakly time dependent. This weak time 

dependence implies that the difference in the exponent of the power law for (j .l and an 
is significant. For run 113, the time dependence of the ratio is caused by a temperature 

drift of the sample of 5°C over the total time of the experiment2• 

The expected growth exponent for Cu3 Au is 1/2 [29, 31, 32, 33], thus our mea

sured exponents are slightly below the exponents observed by others. The coarsening 

dynamics are slower along 20 .L for all the experiments performed. Previous work re

ported the same exponents in both directions. Since this experiment was optimized 

1 At X25, it was observed that vertical motion is more constrained than horizontal motion because 
the two monochromator crystals are set to diffract at a given wavelength and a narrow range of 
incident angle [50]. A horizontal motion is not affected by such constraints. 

2This temperature drift was measured in the second thermocouple used to record the sample tem
perature (See section 4.8). 
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to measure intensity fluctuations, and not growth exponents, these differences are 

not really surprising. It is possible that some residual non-linearities of the detector 

could slightly change these exponents. These fit parameters along with the contrast 

discussed next in table 5.1 describe the spatial dependence of the structure factor. 

The time dependences of runs 24 and 113 are not shown here because they are 

quite similar to the ones shown in Fig 5.10 and 5.11 for run 21. Run 113 and run 

21 have identical contrast within error (see Table 5.1). The main difference between 

the data for run 21 and run 24 is a difference In contrast due to the different pinhole 

diameters used. The contrast is temperature independent within error for runs 21 

and 22 since they have the same D. Furthermore, the contrast measured at 300 K in 

Fig 5.9 using D = 15 f.im and wide open horizontal slits is 0.177 ± 0.005, in agreement 

with the contrast measured for run 24. 

Since very little thermal diffuse scattering is observed in Cu3 Au before a quench at 

the annealing temperature T = 440°C1
, and no thermal diffuse scattering is observed 

above Tc as shown in Fig. 4.8, the observed contrast must be dominated by the speckle 

pattern created by domain walls for the observed temperature in Cu3 Au. 

Fig. 5.13 shows the time evolution of a single row of the CCD in run 21 along Jq.1 

for il2011 = 0. After the quench, speckles appear at fixed Llq.1, and their intensity 

grows monotonically in time. Some speckles can be seen in the figure as early as 

1.2 x 104 s and remain present until 5.8 x 104 s, for a total time of over thirteen 

hours. The monochromator reset occurring near t = 5.11 x 104 s affects the speckle 

pattern. Some speckles disappear, others appear, while some of the most intense 

remain present. The presence of the speckle over such an extended period was quite 

surprising initially. We were expecting to see dynamics with much shorter time scales 

than 104 s, as for a typical equilibrium IFS experiment. This difference between 

equilibrium and non equilibrium will be explained in more detail in the next section. 

Fig. 5.14 shows a time series for run 22. This experiment was performed to test the 

1 Before a quench, an upper limit for the diffuse scattering at T = 440°C is 0.2 counts/120s/pixel at 
200 mA. This upper limit is on the order of the dark pattern fluctuations. 
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Figure 5.13: Time evolution of a single row with ~2011 = 0. The grey scale displays the normalized 
data in counts/2min at 200 mA. The white horizontal lines are measurements of the dark pattern. 
The graininess on short time scales is caused by intensity fluctuations due to counting statistics. 
The spatial fluctuations along ~qJ. are speckles. After the quench at t = 0 s, speckles appear 
at fixed wavevectors, and their intensities grow monotonically. During the dark pattern at time 
t = 5.11 x 104 s, the monochromator was reset. After the monochromator reset, many speckles 
appear and disappear. 
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Figure 5.14: Time evolution of a single row with .6.2911 = 0 for run 22. The grey scale displays 
the normalized data in counts/2min at 200 mA. Most speckles are present over 2.6 x 104 s. Some 
instability is present near t = 1.1 x 104 s. Many speckles change or move around this time. The 
monochromator was readjusted near t = 2.16 X 104 s to reproduce similar conditions as run 21. The 
effect of the adjustment appears less pronounced than in run 21. Most speckles remain unchanged. 
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beam stability, since the domain motion is frozen at room temperature. Most of the 

speckles remain present over seven hours. Some instability occurs near t = 1.1 x 104 s. 

During this time, the sample temperature fluctuated by 2.1 oc over 2300s. This 

temperature change is caused by temperature fluctuations in the laboratory cooling 

water, which was used to cool the oven. A change of 2.1 °C expands the Cu sample 

post in a direction perpendicular to the scattering plane by 2.2 J.Lm, which is is about 

30 %of the pinhole diameter used1 . Thus, this instability could be caused by the effect 

of this temperature fluctuation on both the oven and on the beamline components. 

The monochromator was reset at t = 2.16 x 104 s. The effect of the monochromator 

tweak on the speckle pattern appears less pronounced than in run 21. In run 21, we 

tweaked the monochromator in order to regain some incident intensity because the 

ratio of beam monitor to synchrotron ring current was dropping rapidly. There was 

no such drift in run 22. 

Fig. 5.15 shows a time series of a row of the CCD with ~2611 = 0 for run 24. 

Speckles appear as early as t = 1.44 x 104 s and some are still present after 7.1 x 

104 s, or 16 hours. An instability occurs around t = 4.1 X 104 s and lasts until 

t 4.8 x 104 s. It correlates with fluctuations of the fit center along 26 .L shown 

in Fig. 5.12. These fluctuations move the fit center by approximately ±7 pixels, or 

approximately ±150 J.Lrad. This instability is caused by instabilities in the beamline, 

since these time fluctuations are also seen in a beam position monitor. Since the 

pinhole diameter is twice as large as in run 21, the incident intensity is larger and the 

relative time fluctuations on time scales of tens of minutes are smaller than in run 

212 . The spatial fluctuations are reduced because of the smaller contrast observed (see 

Table 5.1). These two effects result in a smoother image than Fig. 5.13 or Fig. 5.14. 

Note that we tweaked the monochromator several times during this run, but no effects 

are noticeable on the time series. It appears that for the data collected at X25, the 

1The Cu sample holder was 6.5 cm high. Using an expansion coefficient of 16.5 x 10-6/K, and the 
quoted temperature change, one finds a motion of 2.2 !Jm. 

2 A careful analysis comparing the measured variance for a small number of subsequent scans N ~ 10 
with the calculated variance expected from counting statistics calculated using the calibration curve 
found in Fig. 3.6 revealed that the short time fluctuations on the order of 25 min are due to Poisson 
noise and some incident beam fluctuations. 
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Figure 5.15: A time series of run 24, with .a2011 = 0 lasting for nearly 20 hours. A linear grey scale 
from 0 to 135 counts/60s scaled to a maximum synchrotron ring current of 200 mA is used to display 
the data. 
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Figure 5.16: A time series of run 113. A single row of the CCD oriented for .6.28 J. = 0, along 2811 is 
shown. Gaps in the data occur during two synchrotron ring fills. Note that the if axis orientation of 
this figure is perpendicular to the previous time series shown. 

speckle pattern is almost always unchanged after a monochromator reset. 

Fig. 5.16 shows a time series of S( ij, t) for run 113, along if= ( qll' q1. = 0). Speckles 

appear as early as thirty minutes after the quench, and some of them are still present 

at t = 3.4 x 104 s. The shortest fluctuation time observed in Fig. 5.16 is approximately 

two hours. There may be signs of faster dynamics on this data set, when compared 

to the data from runs 21 and 24. 

To investigate in more detail the time fluctuations of S(ij, t), the time dependence 

of the signal in several pixels is shown next for representative data sets. Fig. 5.17 
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shows S(ij, t) vs t for twenty five pixels well separated from each other in Fig. 5.13. 

The error bars were calculated1 from the calibration curve in Fig. 3.6, and scaled 

appropriately to take into account the decay of the synchrotron ring current. The 

solid line is the fitted intensity SJ(ij, t) for the given pixels calculated from Eq. 5.11. 

This measurement is very different from a measurement performed with incoherent 

X-rays, where one expects the fluctuations of the data around the fit to be only due 

to counting statistics. The time fluctuations of the structure factor with respect to 

the fit are clearly above the fluctuations due to counting statistics. Note that the 

signal in each pixel has a unique random dynamics. This is what one expects in 

an IFS experiment. For some pixels, the structure factor remains always above or 

below the fit. For many pixels, the structure factor crosses SJ( ij, t), from values lower 

than Sh to values higher than S1 at a later time. Fluctuation times range from 

several thousands of seconds to tens of thousands of seconds. The jump in S(ij, t) 

near t = 5 x 104 s is due to the monochromator reset. These data are representative 

of the time fluctuations of S( ij, t) measured after a quench. 

The data in run 22 were taken after run 21 to test the stability of the experiment 

by scattering from a sample with frozen domain dynamics. The time dependences 

of twenty five independent pixels in Fig. 5.14 are shown in Fig. 5.18. Apart from a 

random offset due to the finite contrast, the structure factor fluctuates significantly 

from the fit. The time fluctuations near 1.1 x 104 s are caused by the instability dis

cussed before. Because of the presence of these time fluctuations when the coarsening 

dynamics is frozen, the beamline X25 did not have the time stability required at the 

time of the experiment2 to clearly separate intrinsic time fluctuations of S( ij, t) due 

to the coarsening dynamics of Cu3Au, from those caused by beamline instabilities. 

1 Given a, the ratio of the monitor count to the monitor count measured for a ring current of 200 mA, 
the error on the structure factor S(ij, t) = av* (if, t) is us = J u3 + a21.63v*, where u~ is a dark 
electronic contribution to the variance measured in a region of the CCD masked by lead, and v* is 
the linearized CCD signal. Here us is the standard deviation of S{ ij, t), calculated by a sum of the 
variances from electronic noise and Poisson noise. 

2Since then, much work has been done at X25 to understand the long time stability of beamline X25 
[50]. The instabilities seem to be caused by changes in the power loading of the monochromator 
due to the decay of the synchrotron ring current. Feedback techniques are under consideration to 
improve the long term stability at X25 [50]. 
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Figure 5.17: Slices of Fig. 5.13 along the time axis for run 21, with dqll = 0. Twenty five different 
pixels are shown, starting from dq.L = -9.04 x IQ-3 A -l at the lower left corner, to dq.J. = 9.04 x 
10-3 A -l on the top right corner, each separated by 7.53 x 10-4 A-l. The solid line is the fitted 
structure factor for a given pixel. To improve the statistics, the signal was averaged in time by 
five scans, and in space by summing the signal from two neighboring pixels along 2() J.. Each pixel 
behaves differently. Often, the data go from being smaller than the fit to being above it. 
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Figure 5.18: Slices along the time axis of Fig. 5.14 in run22, for dqll = 0. Twenty five different pixels 
are shown, starting from dH = -9.04 x 10-3 A -l at the lower left corner, to dql. = 9.04 x 10-3 A -l 

on the top right corner, each separated by 7.53 x 10-4 A-t. The solid line is the fitted structure 
factor for a given pixel. To improve the statistics, the signal was averaged in time by five scans, and 
in space by summing the signal from two neigh boring pixels along 20 ..l· Due to some instabilities, 
the structure factor also fluctuates significantly from the fit. 
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To conclude this section, we found that the measured spatial contrast for Cu3 Au 

(100) is temperature independent for the temperatures measured in these experi

ments. This shows that the speckle pattern is caused by antiphase domains, since the 

change in thermal diffuse scattering does not affect the contrast. 

In all the exp_eriments reported here (see Fig. 5.13-5.16), the dominant speckles 

appear shortly after the quench at fixed q, and the intensity of the speckles grows 

monotonically in time. This is an important aspect of IFS in binary alloys out of 

thermodynamic equilibrium. After a quench and for a given set of initial conditions, 

scattering maxima appear at fixed, but random wavevectors. Different fixed wavevec

tors would be chosen by the system in another quench. 

In the coarsening regime, the overall peak intensity of the speckle pattern grows 

with time, and the peak sharpens as the domains grow. A scaling function estimated 

by Gaussian least-squares fits of the whole speckle pattern describes well the sharp

ening of the structure factor. As expected, the widths along 20 .L and 2011 are scaling 
1 

approximately as r'i. 

Recall that from scaling arguments, the long time behavior of the structure factor 

S(q, t) ex R(t)df(ifR(t)), where f is a scaling function, R(t) ex tt is the average 

domain size, and d = 3 is the dimension of the system. An important feature of the 

measured speckle pattern is that it cannot be rescaled with such a scaling function 

since the speckles are fixed in reciprocal space, and any scaling function f would move 

individual speckles towards the center of the Cu3Au (100) peak. Thus, the presence 

of speckle explicitly breaks simple scaling of the structure factor which is ubiquitous 

in phase transitions. 

Although this appears surprising, one should recall a few important points about 

XIFS and scaling. The observation of speckle is a finite size effect. Two independent 

lengths scales are present here: the average domain size and the ..scattering volume. 

Strong scattering is observed in the experiment when the average domain size is a 

small fraction of the sample size. This strong scattering is measured at low wavevec

tors J3.q < 1/ Rv, which corresponds to the large domains. The slow dynamics of large 
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domains explains why the individual speckles for small wavevectors change slowly in 

time. Furthermore, scaling in first order phase transitions implies an ensemble av

erage over independent quenches or initial conditions. Here, the structure factor is 

calculated from a single quench! The ensemble average removes the speckles in the 

structure factor. These facts explain why these observations were never noted before. 

Note that although the speckle pattern does not follow simple scaling, the average 

scattering does scale as shown with the Gaussian fits. The power of XIFS is in the 

measurement of subtle changes of the speckle pattern. We believe that subtle time 

correlations of the domain structure can be obtained from a single quench on a sample 

size of a few J.Lm. Much work remains to be done in this direction. 

The time fluctuations of the structure factor with respect to a least-squares fit 

representing the sharpening of the domain distribution are clearly above counting 

statistics. Unfortunately as seen in Fig. 5.18, the long term stability of the experiment 

was not sufficient to establish whether these observed fluctuations are intrinsic to the 

coarsening dynamics or not. The main conclusion of this work is that the amplitude of 

the time fluctuations of the intensity are small, and that their time scales are very long. 

As shown in Fig. 2.13 and is well known from light scattering, the amplitude of the 

fluctuations in thermal equilibrium equals the size of the signal. If such fluctuations 

would have been present in this non-equilibrium experiment, they would have been 

easy to measure with the count rates observed. 

5.2.1 Numerical Simulations of model A 

The behavior described above agrees with the numerical simulation of model A. 

Fig. 5.19 and 5.20 show the results of a numerical simulation for three different times 
-

after a quench at t = 0. The parameters of the simulation were the same used in the 

equilibrium simulation in Eq. 2.29 with M = -r = w = K = 1.0, with a Gaussian 

noise strength 2kBT M= 0.1 (see Eq. 2.2~). The time interval between two iterations 

of the simulation was dt = 0.05, and the spatial increment dx = 1. The system was 

quenched with a random initial configuration generated with white noise ranging from 

-0.05 to 0.05 corresponding to the high temperature state. The images on the left 
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Figure 5.19: The order parameter (left} 1/J(r, t} and the structure factor S(q, t) (right) for three 
different times t after the quench. A linear grey scale was used to display the order parameter from 
1/J = -1.2 (white) to 1.2 (black), and from 0 to 0.003 for the structure factor. The order parameter 
spatial dependence is shown for a system of 512 x 512. The central 128 x 128 elements of the structure 
factor are shown. The central pixel in these images corresponds to q = 0. Speckle is caused by the 
coherent diffraction from the random domains shown. As the domains grow, the structure factor 
sharpens and its intensity increases. 
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Figure 5.20: Slices of S(q, t) for model A, for times t = 5, 10, 20, 40,80 after the quench. The solid 
line is used as a guide to the eyes. The structure factor grows by a factor 8 and the peak sharpens. 
Most speckles remain fixed in q, and their intensities fluctuate slowly. The dashed lines are fits 
described in the text. 

in Fig. 5.19 show the time dependence of the order parameter for a simulation size of 

512 x 512. In the coarsening regime for model A, it is well known that a simultaneous 

rescaling of length and time by factors of two and four respectively yields comparable 

domain structures [60]. In Fig. 5.19, for example, by rescaling one quarter of the 

512 x 512 system at time t 10 by a factor two, one would find that the domain 

structure of the rescaled system appears similar to the non-rescaled system at a later 

timet= 40. 

On the right of these images, the structure factor calculated from Eq. 2.10 is 

shown with a linear grey scale. Fig. 5.20 shows slices of S( ij, t) with if= ( 0, qy) and 

time t = 5, 10, 20, 40, 80. As observed in our experiments, speckle is present in the 

simulation. In order to reduce the speckle in the structure factor, most theoretical 

work performs either averages on an ensemble of independent initial conditions, or on 

several wavevectors with identical magnitude ll/1 = q. By performing these averages, 

one looses much of the information on the fluctuations of the order parameter during 
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Figure 5.21: (Left) The time dependence of the two perpendicular fitted widths rfx and r111 • The 
widths are measured in units of the wavevector resolution Ll.q 211" I L, where L is the system size. 
The inset shows the time dependence of the ratio of r1 I1J I rr 11 • The ratio of the fitted widths is below 
unity at late times indicating a slight difference between the exponents of the widths. (Right) The 
peak intensity, Imax· After a transient, the system crosses over to scaling after timet ::::::l 7. The inset 
shows the integrated intensity for the fit Imaxrf:::tTy vs time. 

the quench. 

The domain coarsening in Fig. 5.19 and 5.20 is seen by a sharpening of S(if, t) and 

an increase in the intensity of the peak. The dashed line in Fig. 5.20 is a least-squares 

fit of the structure factor to a Gaussian defined in Eq. 5.11. In analogy with the CCD 

data, this fit is used to define a local average for the fluctuations. 

Fig. 5.21 shows the time dependence of the fit parameters. The center of the fit 

was fixed at if= 0. A plot of the fitted widths O'z and u11 is shown. A fit of each width 

to a power law in the coarsening regime, i.e. from t = 7 to 95, gives O':r: ex t-0.4t and 

0' 11 ex t-oAo. This difference is real since the ratio of u x J 0' 11 decreases as t increases 

(See the inset). It is amusing to note that these power law exponents are similar to 

the data. 

A plot of the fitted peak intensity, Ima:r:, is also shown as a function of time after the 

quench. The peak intensity, after a transient which last until t ::::::: 7, becomes a power 

law. This is consistent with the coarsening of domains. A fit of the peak intensity 

from t = 7 to 95 gives Ima:r: ex t0
•
86

• The inset shows the calculated integrated intensity 
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of the fitted Gaussian lmaxCTxCTy. It is time dependent in the nucleation regime, but 

slows down after t R:j 7. In the coarsening regime, it is slightly time dependent since 

the sum of the exponents from the widths and peak intensity does not add up to zero. 

The magnitudes of these exponents are significantly lower than the expected ex-
I d 

ponents for model A. For model A, one expects crx ex: r2, crx/ cry = 1, and lmax ex: t'I, 

with d = 2 dimensions. The expected results are obtained from an ensemble aver

age of many quenches with different initial conditions, and the structure factor is 

circularly averaged. It is well known that one must average several quenches to get 

adequate statistics for these parameters. These differences in the magnitude of the 

exponents, and the anisotropy of S( if, t) are consistent with the poor sampling of 

phase space for a single quench. 

Fig. 5.22 shows a time series of S(if,t) for if= (qx,O). The time dependence is 

shown here for 100 wavevectors using the grey scale shown. From the definition of the 

structure factor, the figure is symmetric with respect to the origin if= 0. Recall that 

the fluctuation time in equilibrium for model A is Tc = M(2qL4r), which ranges from 

Tc = 0.25 to 0.08 as shown in Fig. 2.1lc. The fluctuations on Fig. 5.22 are several 

orders of magnitude slower than the equilibrium fluctuations of the short range order. 

At low momentum transfer, the fluctuation times are much larger than the simulation 

time shown, but for large qx, fluctuations are observable on time scales ranging from 

R:j 2 to 60, which is still much larger than Tc. This is shown in more detail in Fig. 5.23, 

where slices for several qx are shown. The solid line is the simulation data, and the 

dashed line is the Gaussian fit, with parameters shown in Fig. 5.21. The sudden rise 

and decay of the fit for a given qx gives us a characteristic time for the coarsening 

dynamics at a given qx. For low qx from 0 to 20, the simulation time is comparable 

to the coarsening time, but for higher qx, some intensity fluctuations are seen above 

the fit with time scales of the order of D.t = 20. 

The time correlation of these fluctuations has not been investigated further. More 

work remains to be done in this area. We urge theorists to investigate the intensity 

fluctuations of the structure factor without performing spherical averages, because it 



0 

5: RESULTS 

80 

60 

40 

20 

-45 -30 -15 
qx 

0 15 
(a.u} 

115 

30 45 

Figure 5.22: A time series of S(ij,t), for if= (qx,O) after a quench at t = 0. The component qx is 
measured in units of t:::..q = 2rr/ L, where L = 512 is the system size in Fig. 5.19. Note that a speckle 
at qx = 7 has a wavelength >. = 2rrfqx = L/7. The fluctuations of the structure factor for model 
A are much slower than the equilibrium fluctuations discussed in Chapter 2 because the dominant 
speckle correspond to the Fourier modes associated with the long wavelength domain structure in 
the sample. As seen in Fig. 5.19, this overall domain structure changes very slowly. 
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Figure 5.23: S(ij, t) vs t for several qx ranging from 0 to 40. The solid line is the simulation data, 
and the dashed line is a least-squares fit to a Gaussian discussed in the text. 

is now possible to measure these fluctuations with coherent X-rays! This time corre

lation function should provide additional information on the dynamics of ordering. 

In conclusion, we find that the numerical simulation of model A is in good qual

itative agreement with the measurements in Cu3 Au. The simulation shows that the 

dominant speckles are fixed in reciprocal space and their intensities slowly increase 

in time. Fig. 5.22 shows that the long-lived speckles correspond to long wavelength 

fluctuations associated with the domain structure. It is clear from Fig. 5.19 that a 

large fraction of the overall domain structure correlates with itself at later times. This 

explains why the time fluctuations of the speckle pattern from Cu3 Au (lOO) and for 

the theoretical simulation are much longer than the typical fluctuation times found 

in equilibrium. 

Note that it is not essential to use a detailed model of Cu3 Au with a more physical 

Hamiltonian to understand the data. The small system size for the simulation (Here 

512 x 512) will always be much smaller than the experimental system ( 4.4 x 1012 

unit cells!)~. The essential features are present in the simple model shown here. This 

1The illuminated volume in our experiment is D( 81~98 )(J.tsinOB) = D 2J.t, where D = 7.5 J.tm is the 
collimating pinhole diameter, J.t = 4.2 J.tm is the absorption length of X-rays in Cu3Au at 7 keV. 
Dividing this volume by the lattice cell volume (3.711 A) 3

, we find that our illuminated volume 
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slow dynamics of speckle after a quench from the disordered equilibrium phase to the 

ordered phase will be present in any model and depends only on the presence of an 

extended domain structure whicn persists over an extended time. For example, we 

expects the dynamics of speckle in model B to be even slower than model A, because 

of the smaller growth exponent in model B (1/3 instead of 1/2). 

More theoretical work remains to be done to make some prediction on the time 

correlation function. Due to long time instabilities in the beamline at X25, these 

experiments should be performed again at the new third generation sources like ESRF 

and APS in order to study the detailed time dependence of the speckle pattern. 

Recently, we have demonstrated that the Troika beamline at ESRF is sufficiently 

stable to perform IFS on Fe3Al near its critical point [19}. Because of the small 

contrast of the time fluctuations of S(ij, t) in these systems, the increase in coherent 

flux should allow one to measure more subtle fluctuations of the structure factor. 

corresponds to 4.4 x 1012 unit cells. 
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CONCLUSIONS 

We have shown that one can produce a beam of coherent X-rays by spatially fil

tering an incoherent beam of monochromatic X-rays to dimensions smaller than its 

transverse coherence lengths using small pinholes with diameters of a few J-tm. A 

second generation synchrotron radiation source like beamline X-25 at NSLS provides 

a sufficient coherent flux to perform coherent X-rays scattering experiments. 

When a coherent beam is scattered from a disordered sample, a graininess in the 

structure factor is observed, called speckle. The speckle pattern is sensitive to the 

exact arrangement of the atoms in the illuminated volume. If the state of disorder 

of the sample changes with time, the speckle pattern will fluctuate in time. An 

analysis of the time correlations of the scattered light at a given wavevector allows 

a direct measurement of the dynamics of the system, in and out of thermodynamic 

equilibrium. 

This thesis is the first study of the ordering kinetics of first order phase transitions 

in a classical binary alloy with a non-conserved order parameter, using coherent hard 

X-rays. One of the important contributions of this thesis has been to develop tech

niques to measure the speckle patterns produced by coherent X-ray scattered from a 

binary alloy with a two-dimensional CCD detector, as well as techniques to analyze 

these patterns. 

In Chapter 3, the development of techniques based on statistical estimators like 

the mean, variance and spatial correlation function has been essential in our under

standing of the noise, quantum efficiency, and spatial resolution of the CCD. The use 

of spatial correlation functions to measure the resolution of the CCD is an original 
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contribution [37]. The spatial autocorrelation function of the signal generated by a 

spatially uniform incident beam is broadened by the spread of the detected electrons 

to several nearest neighbor pixels. By assuming an identical response for each de

tected photon, the resolution function can be extracted from the measured correlation 

function. The spatial extent of the resolution function reduces the spatial or temporal 

variance of the signal when compared to the variance due to Poisson noise. This effect 

must be accounted for in the calculation of the quantum efficiency. These techniques 

can be applied to any typical one and two-dimensional position-sensitive detectors, 

and can also characterize non-linear detectors. 

Section A.2 also contains central and original derivations, which have been used 

throughout the thesis to calculate error bars of various functions of the estimated 

average, <V>, and variance, S~, of the signal V. We have shown that by combining 

standard error analysis with the variances and covariance of <V> and S~, one can 

approximate the standard deviation of several functions of the estimated mean and 

variance J( <V>, s~ ). We derived, for example, the error on the contrast J s~ I <V>2 

and on the ratio S~ I< V>. This ratio of variance over mean is an important quantity 

which can be used to calibrate a detector, or to determine whether or not the observed 

time fluctuations of the signal are above the fluctuations expected from counting 

statistics. 

The development of the detector characterization techniques was based on spatial 

correlation functions introduced to measure the speckle size of Cu3Au speckle pat

terns. Using spatial correlation functions, it was shown that this detector has a suffi

cient spatial resolution to measure speckle patterns of Cu3 Au (100). The speckle pat

tern properties were studied by changing the horizontal transverse coherence length, 

and the illuminated sample area. The speckle size was measured by the width at 

small displacements of the spatial crosscorrelation function of two subsequent scans 

of the CCD. The speckle width is reduced when the illuminated sample area is in

creased, until the speckle size is comparable to the resolution of the CCD. Then the 

widths become resolution limited. Increasing the horizontal coherence length reduced 
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the speckle size horizontally. Because the CCD resolution is anisotropic and broader 

than one pixel, and because the beam is partially coherent, the effect of different 

optical conditions requires subtle analysis. A theoretical model based on the autocor

relation function of the Fraunhofer diffraction pattern of the pinhole convolved with 

the detector resolution is in good agreement with the observations. Some difference is 

seen between the model and the data for the smallest pinhole D = 3.5 J.Lm. Perhaps 

this indicates that the illuminated sample area is larger than the pinhole area, since 

the sample is placed at the limit of the near-field diffraction of the pinhole. Note 

that these effects should be easier to resolve if the angular resolution of the detector 

is improved, whether by choosing a detector with finer spatial resolution, or placing 

the detector further away. 

The contrast of the speckle pattern was also measured by subtracting the expected 

Poisson noise contribution from the spatial fluctuations. The contrast is reduced as 

expected when the input beam diameter increases, and when the ups~ream source size 

is increased. The measured contrast is smaller than expected. We discussed some of 

the possible causes for this difference earlier. 

These measurements of the contrast and speckle size are major contributions of 

this thesis. It is the first detailed quantitative analysis of X-ray speckle. The mea

surements on static speckle from Cu3Au agree well with the well known properties 

of speckle. Because the CCD detector can measure thousands of independent speck

les simultaneously, the contrast and autocorrelation functions can be measured quite 

accurately. The calculation algorithm are also simple to implement. This work has 

some applications in microscopy, like atomic force and electron microscopy. For ex

ample, it is straightforward to measure the average domain size in an image with the 

autocorrelation function. 

We measured the time fluctuations of the structure factor for the (lOO) superlattice 

reflection of Cu3 Au after a quench from the disordered phase to the ordered phase. 

Soon after the quench, speckles appear at fixed positions in reciprocal space. Their 

intensities grow like the average scattering from antiphase domains. The overall 
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sharpening of the structure factor and the increase in peak intensity can be measured 

by least-squares fits of the whole speckle pattern. The widths and peak intensity of 

the Gaussian fits follow power laws, as expected from the coarsening of domains. 

The approach we took to study the time fluctuations is to look at the time fluctua

tions with respect to a time-dependent growing average, provided by two-dimensional 

fits. By studying the statistics of the relative fluctuations with respect to the fit, one 

can test whether these fluctuations are above counting statistics or not. The inter

ested reader will find some of our experience gained in analyzing the time fluctuations 

in equilibrium and out of equilibrium compiled in section A.4. For the X-25 data, the 

time fluctuations on a time scale of one half hour are within the expected fluctuations 

due to Poisson noise of the detected photons and incident intensity fluctuations, thus 

the speckles are constant over this time scale within fluctuations due to counting 

statistics. Intrinsic fluctuations with larger time scales due to the coarsening dynam

ics cannot easily be separated from fluctuations caused by beamline instabilities at 

present. 

The amplitude of the time fluctuations of the data is small, and consistent with 

theory. As opposed to an IFS experiment performed in thermal equilibrium (see 

Fig. 2.13), the relative amplitude of these fluctuations is much smaller than 100 %and 

the fluctuation times are long. This makes quantitat~ve analysis particularly difficult 

because of the limited count rate and the beamline instabilities. If the amplitude of 

these fluctuations had been larger, the time fluctuations would have been more easily 

measured. We believe that the small size of the fluctuations is an important property 

of the speckle patterns generated by the non-equilibrium growth which produced the 

domain structure. 

This observation is qualitatively consistent with a numerical simulation of model 

A. After the quench, speckles appear at fixed ij, and their dynamics are slow. This 

observation is consistent with the simple picture that the speckle pattern is dominated 

by the scattering from large domains which slowly grow at the expense of small 

domains. This dynamics makes the small domains disappear, leaving the macroscopic 
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domain arrangement over the sample size changing slowly with time (see Fig. 5.19). 

Fourier modes representing the domain structure changes only slowly because the 

macroscopic domain structure correlates with itself for long times. 

The last conclusion of this thesis is that individual speckles remain fixed in recip

rocal space after the quench. This observation violates simple minded scaling in the 

experimental data and the numerical simulation. Although the speckle pattern does 

not scale, the overall scattering sharpens as expected for scaling. This persistence 

of speckle seems to be a general property of the structure factor of non-equilibrium 

growth measured with coherent light, for both conserved and non-conserved order pa

rameters. These experiments started out as a way to test some of the ideas of Grant 

and Roland [36]. There is good reason to believe that these types of measurements 

will lead to a deeper understanding of this type of phenomena, but much work still 

need to be done. This XIFS work has also generated a lot of interest in the visi

ble IFS community, and many experiments are underway to study non-equilibrium 

phenomena. 

To measure the time fluctuations in more detail, longer experiments with higher 

incident coherent flux are planned in the future. A factor of 100-1000 in intensity is 

accessible by using the new undulator facilities such as the ESRF or the APS. This 

increase in flux would allow to reduce the error bars in Fig. 5.17 by a factor of more 

than ten, and enables smaller changes of the structure factor to be measured. As 

demonstrated recently [19], these beamlines are also more stable in terms of beam 

intensity and position. Ideally, one should also look for systems with faster intrinsic 

dynamics than Cu3 Au, and samples which scatter isotropically1 . 

Improvements in detecting scheme are also achievable. For example, very low noise 

two dimensional gas detectors with nearly unit quantum efficency (a factor 4 larger 

than the detector used in this experiment) are under development at the ESRF, and 

should be operational within the next year. These detectors allow measurements 

1 For example, although an Fe3Al sample scatters less that a Cu3Au one due to smaller scattering 
contrast, it scatters isotropically in 2811 and 28 J., making it possible to ensemble average correlation 
functions with the same I~· This should improve the statistics of the correlation function and allow 
for the measurement of the wavevector dependence of the correlation function [89]. 
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of the time arrival of each photon, and have very low dark noise. Similarly, CCD 

performance can be improved by using low noise detectors, with a CCD chip having 

a larger depletion layer. A larger depletion layer is found in EEV chips, for example 

(90], and this increases the quantum efficiency for hard X-rays. At 7 keV, the EEV 

chip has a quantum efficiency of 50 %, which is a factor two better than the chip 

used here. Another approach with CCDs is to couple the array optically with an 

X-ray sensitive phosphor which greatly enhances the quantum efficency but reduces 

the CCD resolution. By placing such a detector a few meters away, the resolution 

should be sufficient to resolve speckle patterns. A completely different approach with 

CCDs should be used when the count rates are low. For low count rates, it is possible 

to detect single photons events. This removes most of the electronic noise in the data, 

and in principle allow subpixel spatial resolution! 

These measurements are some of the first results using this newly developed scat

tering technique. As a feasibility experiment, our measurements on Cu3 Au were a 

success! We demonstrated that the experiment can be performed, and pointed out 

some of the major problems encountered on second generation synchrotron sources. 

These results have important applications in the design of the next generation of 

beamlines optimized to produce coherent X-rays. These measurements are also excit

ing because they give new insights on the dynamics of phase transitions not available 

before. Beside our IFS results, the simple example of coherent X-ray scattering from 

an isolated edge dislocation was given in Chapter 2. This proposed experiment is 

already feasible with existing sources. 

Coherent X-ray scattering will be a powerful technique at the newly commissioned 

third generation synchrotron sources, and many group are developing strong scientific 

programs in this field. Because the coherence lengths of synchrotron radiation are on 

the order of the microstructure of many materials, coherent X-rays will be a tool of 

choice to investigate disorder in these materials. 
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A.l Some useful probability distributions 
A Poisson distribution is discrete. The probability of measuring n events is 

(A.l) 

The mean and the variance are f."· Higher central moments are ( x - J.L )3 = J.L, and 
(X - f." )4 = 3j.t2 + f."· 

A Gaussian distribution is continuous, with probability density 

1 (x-J.L) 2 

p(x) = m= exp[ 
2 2 

]. (A.2) 
v 2rra a 

The mean is J.L and the variance is o-2
• Higher moments are ( x - J.L )3 - 0 and 

(x- J.L) 4 = 3o-4
• 

A chi-square random variable is given by 

M 

x2 = l:(Yi- YiY· (A.3) 
i=l 

It is the sum of the squares of M Gaussian random variable y;, with average Yi and 
standard deviation a. The probability density of this random variable is 

(AA) 

The average is M a 2 and the vari~nce 2M a 4
, with a contrast j2Tii. 

The chi-square distribution is the probability distribution followed by speckle 
statistics for M=2. For speckle, the scattered intensity I = Re{ E}2 + Im{ E}2, 
i.e. the sum of the squares of the real and imaginary part of the Gaussian scattered 
electric field E. Here the electric field is linearly polarized. For M = 2, Eq. AA is an 
exponential with average 1 = 2o-2 and standard deviation a 1 = 2a2 • The fluctuations 
of the scattered intensity are as large as the mean! 

When a detector averages several speckles because its area integrates over many 
speckles, Eq. AA is also the distribution which approximately describes the scattered 
intensity I. The probability density of the scattered intensity is 

(A.S) 
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where Ns is the number of independent speckle in the detector area, or the ratio of 
the detector area over the speckle area introduced in Eq. 5.3, and I is the average 
intensity. This is known as the gamma probability density [39]. For Ns = 1, it reduces 
to the exponential distribution we derived earlier in Eq. 2.34. Its average is I and its 

-2 

variance is ~.,so that the contrast 7 = k· 

A.2 Error analysis 
One often wants to evaluate the uncertainty in the estimated average <x> and vari
ance S2 of a random variable X, with theoretical mean 1-' and variance u 2 • Assuming 
that the probability density p( x) of the random variable X is stationary, the true 
mean and variance of p( x) are defined by 

x = j_: xp( x )dx = !-£, and (A.6) 

(x -!-£)2 = j_: (x -!-£)2p(x)dx = u2
, (A.7) 

with f::'oo p( x )dx = 1. The discussion below is limited to distributions with finite !-£ 
and u 2 . The statistical estimators of the mean <x> and variance S2 are defined by 

1 N 
<x> N I: Xi, and 

i:;::l 

(A.8) 

2 1 ~( )2 S = N _ 1 ~ Xi - <x> , 
1:;:::1 

(A.9) 

where Xi is a measured outcome of the random variable X, chosen from the same 
probability distribution p(x). The estimators <x> and S 2 are unbiased estimators 
of the mean and variance and on average are equal to 1-' and u 2

• The uncertainties 
in these statistical estimators depend on the number of random events observed, N. 
For small N, the fluctuations in the measured or estimated value are comparable to 
the expected value. Therefore, its dependence on N must be well characterized. 

The uncertainty on the mean is well known and goes as J u 2 j N [64]. For a Gaussian 

distribution, the uncertainty on the variance is J2/(N -l)u2 [64]. In section A.2.1, 
we derive a general relation for the uncertainty of the estimated variance, and apply it 
to the Poisson distribution. In error propagation analysis, one may want to evaluate 
the uncertainty in a function of the mean and variance /( <x>, S 2

) as required in 
section 3.0.3. To evaluate the error in /, one uses the uncertainty in <x> and S 2 , 

and needs to know the covariance between <x> and S2 . A general expression for 
this covariance is derived in section A.2.2, and a derivation for Eq. (3. 7) is shown in 
section A.2.3 and A.2.4. 
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A.2.1 Uncertainty in the measured mean and variance 
It is important to note that <x> and S 2 are themselves random variables since they 
are functions of several random variables. A useful estimator of the uncertainty of 
these new random variables is their standard deviations u<x> and u8 2 defined in Ref. 
[64] by 

u~x> = <x>2 <x>2
, and (A.lO) 

2 - -=-2 u82 = S4 - S2 , (A.ll) 

where the horizontal line refers to an average over the joint probability distribution 
of the random variable <x>, a function of N random variables Xi, i.e. <x> = 
f <x>(x1, ... , XN)p(xi, ... , XN )dx1 ... dxN. u<x> and u82 are the standard deviations of 
the probability densities of <x> and S2

• TheN dependence in Eq. (A.10-A.ll) is 
not explicitly written in order to keep the notation simple. From Eq. (A.8), recalling 
that Xi p,, it is easy to show that <x> = p,. In order to simplify the algebra below, 
we introduce a new variable Yi = Xi - p,, so that Yi = 0 and yf u2 • One can now 
rewrite Eq. (A.10) , using Eq. (A.8) and square it to get 

2 1 ~-
er <x> = N 2 _L....t YiYi · 

t,J=l 

(A.12) 

Assuming that each Yi is independent, i.e. 

- r 2 
YiYj = UijO' ' (A.13) 

where dij is a Kronecker delta, and replacing Eq. (A.13) in Eq. (A.l2), one gets 

0'2 
2 

cr<x> = N' (A.14) 

which is a well known result valid for any N, and any probability distribution with 
finite mean and variance, given that no correlation exists between the Xi's. This result 
states that the probability density of <x>, p( <x> ), is narrower than p(x) by a factor 

1£. 
In Eq. (A.ll), the S 2 term can be evaluated by substituting Xi by Yi and replacing 

Eq. (A.8) into Eq. (A.9). Then, one finds 

1 (N 1 N ) 
sz = N - 1 ~ y[ - N .?: YiYi . 

t=l t,J=l 

(A.l5) 

Taking averages on both sides of Eq. (A.15), and evaluating the sums with Eq. (A.13), 
one finds S2 = u2, as stated before. The N - 1 denominator comes from the fact that 
there is one less degree of freedom used to evaluate the mean. Taking the square of 
Eq. (A.15), and taking averages on the right and left hand side of the equation, one 
finds 

(A.l6) 
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Evaluating the averages recalling that Yi = 0 and YiYj = Oij<J'2 , one finds 

{ 
y4 , fori= j, N terms, 
a\ fori ::j:. j, N(N- 1) terms, 

{ 

y4 for i = j = k, N terms, 
YfYjYk = a 4

: fori ::fj = k, N(N 1) terms, 
0, otherwise, 

{ 

y4 fori= j = k = l, N terms, 
YiYjYkYl = a.4: for i = j ::f. k = l, 3N( N - 1) terms, 

0, otherwise. 
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(A.17) 

(A.18) 

(A.l9) 

Here, the nth order central moment is defined by yn = f ynp(y)dy. Using Eq. (A.17-
A.19) to evaluate the sums in Eq. (A.16), and replacing Eq. (A.16) into Eq. (A.ll), 
one finds 

2 ]ji(N 1)+a.4(3 N) 
asz = N(N- 1) (A.20) 

This result depends on the fourth order central moment of the distribution, y4 , and 
the standard deviation, 0'. For a Gaussian distribution, (see section A.1) y4 = 3a4 

and Eq. (A.20) gives as expected a~ = N~l a 4
• For a Poisson distribution on the 

other hand, y4 = 3p,2 + fl which yields 

(A.21) 

Note that for p, < 1, the second term is an important correction and a Gaussian 
approximation would underestimate the error on the variance. For large means, Eq. 
(A.21) becomes identical to the error for a Gaussian with variance equal to the mean, 
as expected since the Poisson distribution crosses over to such a Gaussian for large 
means. Finally, note that since in general p(S2 ) is not Gaussian, one cannot easily 
quantify the confidence limits of S 2

, but can nevertheless calculate its variance. 

A.2.2 Correlation of the sample mean and variance 
One might think that there is no correlation between the estimator of the mean <x> 
and the estimator of the variance S 2

• The independence of the estimated mean and 
variance is discussed in several statistical books for Gaussian distributions [73, 64]. 
The measure of correlation between the measured mean and variance, the covariance, 
is defined as 

(A.22) 

since <y>a2 = 0. Evaluating the averages as in Eq. (A.17-A.19), one finds 

__ { y3, fori= j = k, N terms, 
YiYjYk = 0, otherwise. (A.23) 
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The same results holds for YiY]· Replacing those in Eq. (A.22) and simplifying, one 
gets 

(A.24) 

where y3 is the 3rd order central moment of the distribution. Thus, the covariance 
depends on N, and on how symmetric with respect to the mean is the probability 
distributed. The estimated mean and variance are independent only as N goes to 
infinity, or if y3 = 0. For a Gaussian distribution, the covariance is zero because 
odd powers of the central moments are zero. For a Poisson distribution, y3 = J.t (see 
Appendix A.l) and 

cov( <x>, S 2
) = ~. (A.25) 

A.2.3 Evaluation of the error on a function of 8 2 and <x> 
From standard error propagation analysis [73], one can readily calculate the uncer
tainty of a function f( <x>, S2

) <S:>. It is given by 

a] "" a~ a~x> 2cov(S2
, <x>) - """' - + -- - ----''--"":=::---"-f2 S22 <x>2 <x>S2 ' 

(A.26) 

where the terms on the right hand side have been calculated above. The approximate 
sign comes from the fact that a 1 is derived from a first order Taylor expansion of f 
around its average. Replacing the uncertainties and covariance derived previously for 
a Poisson distributed random variable X in Eq. (A.14) ,(A.21), (A.25), one finds 

(A.27) 

The result is independent of the mean J.t· By averaging N independent measurements, 
one can measure f accurately. On the other hand, if the signal is Gaussian distributed, 

2 

the covariance term in Eq. (A.26) would be zero, and one gets Jf ~ N:_t + J.L~~· 
Depending on the mean and variance of the distribution, the second term may be 
important. 

A.2.4 Including electronic noise for an X-ray detector 
For an X-ray detector, Eq. (A.27) is not sufficient to estimate the errors on k, defined 
in Eq. (3.5), because for weak signals, the electronic noise will contribute significantly 
to O"k. Ve, the dark electronic noise, increases the relative error on the time averaged 
mean <V>t and variance S{v when the contribution from the detected photons 

' approaches zero. To find O"k, the standard deviation of k, we can simply replace in 
Eq. (A.26) <x> by <V>t, and S2 by S~v-a~e' where u~e is the theoretical variance 
of the electronic noise probability distribution. Then the first term of Eq. (A.26) can 
be rewritten as 
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2 1 2ute = + -- + ---:=::::::=---
N- 1 Nnd (N- l)(Sl,v- u~J2 • 

(A.28) 

To obtain this relationship, we used the equation u~ -(12 = u~2 and Eq. (3.3), and 
t,V Ve t,V 

assuming that Ve follows Gaussian statistics. The first two terms are the detected 
photon contributions which are included in Eq. (A.27), and the last term is due to an 
error on the evaluation of the dark variance. Next, we can evaluate the second term 
of Eq. (A.26) using Eq. (3.3), 

(A.29) 

where nd and <V>t are the hypothesized means of the number of detected photons 
and of the detector signal, while u~d and u~" are the theoretical variances of nd and 
of the dark electronic noise. The first term in this equation comes from the statistics 
of the detected photons and is already included in Eq. (A.27). The second term 
explains the increased uncertainty in k for small signals due to the electronic noise. 
The third term is due to the statistical error in the measurement of the dark pattern 
subtracted from V, where Nd scans are averaged without X-rays. To minimize the 
error, one should choose Nd = N. Finally, the last term in Eq. (A.26) is unchanged 
from the Poisson case because the dark signal and the detected photon signal are not 
correlated. Collecting terms, we find 

U~ 2 ( 1 ut e ) U~" ( 1 1 ) -~ + + -+-
k2 N- 1 (Sl,v- u~J2 <V>/ N Nd . 

(A.30) 

It is therefore easier to measure k when <V>t and Sl,v are much larger than u~e· 

To evaluate uk for a given experiment, one would replace u~,, Sf.v and <V>t by the 
experimentally measured values Sl,v"' Sl,v and <V>t· 

Note that the error analysis approach developed above can be extended to other 
problems, such as the evaluation of the error on the measured contrast in optics if 
the signal is not Gaussian distributed. It is also useful to estimate the errors in our 
coherent X-ray experiments. 

For example, the error on the measured contrast for the time-averaged scattered 
intensity in section 2.6.2 is derived with the same technique. In section 2.6.2, the 
contrast is defined by 

Ct = JS'i. 
<x> 

(A.31) 

Neglecting the term for the correlation between the estimated mean and variance, it 
is easy to show that the error on the contrast 

1 Ct2 

2(N -1) + N' (A.32) 
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Here, the error on the estimated variance asz was approximated by the error for 
Gaussian statistics. 

A.3 Derivation of the autocorrelation function for a Gaus-
. 

s1an 
If one assumes that the structure factor is a smoothly varying function of q, one 
can understand quantitatively the q dependence of the crosscorrelation function (see 
Eq. 5.5) which is caused by the presence of antiphase domains. 

Let us study the autocorrelation function by choosing dt 0 in Eq. 5.5. For the 
two dimensional Gaussian function defined in Eq. 5.11, one can show that its spatial 
autocorrelation function calculated by a two dimensional integral over a rectangle in 
reciprocal space with edges L1. x £11 is 

<v*(q, t)v*(q + dq, t)>q = max exp(--1.) exp(--) erf( ) + erf( ) .... 7ra1.a11J2 -dq2 -dql
2
1 [ £11 + dqil £11- dqil l 

4 L 1. L11 4ai 4a" 2a11 2a11 

x [erf( L1. + dq1.) + erf( L1.- dq1. )] , (A.33) 
2a1. 2a1. 

where Imax is the peak intensity, and a 1. is the Gaussian width along 2fh. The 
error functions are present because of the finite size of L1. and £11. For a small 
displacement with ldq1.i << L1. and ldqul << L1b the autocorrelation in Eq. A.33 is 
also approximately a two dimensional Gaussian with width along 2fh equal to J2a 1.. 

In Fig. 5.5-5. 7, the autocorrelation is normalized by the square of the spatial 
average. For a two dimensional Gaussian, the spatial average of the linearized signal 
IS 

* 27ra l.alllmax f( L1. ) f( Lu ) <v >ii= er er . 
L1.L11 2J2a1. 2J2a11 

(A.34) 

Thus the normalized autocorrelation function for small displacement ldq1.l < < L 1. 
and ldqlll < < Lu is approximately 

(A.35) 

Note that the maximum of the normalized autocorrelation is inversely proportional 
to the product of the widths a .Lall. 

A.4 Tools for time fluctuations analysis 
Here are some of the tools that might be useful for simple analysis of time fluctuations 
for XIFS in systems in thermal equilibrium and out of equilibrium. In equilibrium, to 
make sure that the time fluctuations are larger than the fluctuations due to counting 
statistics and electronic noise, one can measure the fluctuations of the structure factor 
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with respect to its long time average, and compare these fluctuations to those caused 
by Poisson noise. We define the ratio of these two quantities as 

R( .... t) = St,s( if) 
q, <S(if, t)>t' (A.36) 

where St,8 is the variance and <S(if, t)>t the time average of the structure factor 
S(if, t) measured from a sequence of N measurements. In deriving Eq. A.36, the 
detector is assumed to have unit quantum efficiency and a spatial resolution much 
smaller that the speckle size. With such a detector, the expected variance from 
Poisson noise is simply equal to the time average <S(if, t)>t· Note that we have 
already derived this equation earlier since this is simply the equation for k in Eq. 3.5 
for a detector without electronic noise! If the fluctuations are only caused by Poisson 
noise, R = 1, and its error bars are given by Eq. A.27. A ratio greater than unity 
implies that the fluctuations are significantly larger than fluctuations due to counting 
statistics. 

In an intensity fluctuation spectroscopy experiment, one wants to know what is 
the standard deviation of the structure factor corrected for trivial fluctuations due to 
counting statistics1

. This standard deviation of S( if, t), O't,s is simply 

at,s(if) = j(R(if)- l)<S(if, t)>t· (A.37) 

Therefore, the relative fluctuation of the structure factor is simply the ratio of Eq. A.37 
over the time average <S(if,t)>t equal to 

O"t,s( if) 
-

<S(if,t)>t 
R(if)- 1 

<S(if,t)>t. 
(A.38) 

If the ratio R( if) = 1.1 and the time average of the structure factor is 10 counts, 
then the relative rms fluctuation of the signal with respect to its time average is 

Jo.l/10 = 10 %. 
Out of equilibrium, since the time average of S(if, t) changes in time, Eq. A.36 

must be modified to take this into account. We have found it useful to measure the 
fluctuations of the speckle pattern with respect to two dimensional least-squares fit 
of the whole speckle pattern. A natural variable to study fluctuations is 

( .... ) S(if,t) 
1} q, t = s (.... ) - 1. 

I q,t 
(A.39) 

Here ry is the relative difference between the structure factorS( if, t), and the fit S1( if, t). 
Assuming for simplicity that the detector is ideal, the expected standard deviation of 
1} IS 

(A.40) 

1 An excellent introduction on the subject can be found in Chapter 9 of Goodman [39]. 
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To calculate whether the fluctuations of ry( ij, t) are above its expected error bars, we 
define the ratio 

-a ( ;;'\ s;,n (if) 
... "11 q, = <u~(ij, t)>t (A.41) 

Here the variance of ry, Si,
11

, and the time average of the calculated variance u~, 
<u~(ij, t)>t, can be calculated from N subsequent measurements. The ratio Rn(if, t) 
is a two dimensional array in our measurements. 
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