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The SBe (p,2d) 8Be reaction st incident proton
energies of 46 Mev and 100 YeV has been anulyzed using the
DWBA theory. The finite-range aprvroximation has been
used. The transferred neutrcn vwas ascumed to be bound
by a Woods-Sexcn ictentlal in the target nucleus. The
proton dlstorted waves were generated using the ottlcal
potential obteined from elastic scattering from SBe,
while the deuteron optical vrotential wes obtained by
fitting the angular distributlon of the ground state
transition in the rezction, Transitions to the excited
stataes were analyzed with all potential varameters fixed.
Falrly focd agrresment with experinment has bean cottained.
The spectroscoiic fzcicrs extracted freom the exirerinent
were comuared witrh irevio.s worik ac well as with the
predictions cf vairicus nuclear models, Larpe discre-
ranclss between the exrveriments und the vdredictions of
intermediate courlins shell molel were found, especlally
in tre hirh-lving staztes., The cluster model nrcvided

a ¢uallitative ex:lanstion of the present resultis.
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ABSTRACT

The ‘Be (p,d) 8Be reaction at incident proton
energles of 4£ MeV and 100 MeV has been annlyzed using the
DWEA treory. The finlte-range approximation has been
used, The transferred neutron was assumad to be bound
by a Wocds-Saxon potential in the target nucleus. The
oroten distorted waves were generat=d using the ortical
potential obtained fror 2lustic scuttering from Sme,
while the deuteron optlcal zpetential was cbtzined by
fitting the angular distribution of the ground state
transition in the resction. Transitions to the excited
states were snalyzed with 211 potential parzmeters fixed.
Falirly gecod agreement with experiment has besn obtazined.
The spectrcscoric facteors extracted from the experiment
were comu-red with vrevious work =c well =zs with the
predictiongs of variouas nuclerr mciels., large dlscré-
varcles between the exceriments ani the predicticns of
interredicte ccurling shell nmocdel were found, esvecially
in the high-lying stntes., The cluster rodel provided

a cualiti.tive exnlanaticn of the present resualts.
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CHAPTER 1
INTRODUCTION

For a long time nuclear pick-up and stripping
reactions have been among the principal tools of nuclear
physics. Among other uses, these reactions are iImportant
In the determinztion of spectroscoric data such as nuclear
spins and peritlies and energy level schemes. They are
also useful in testing nucleucr medels and determining
nuclear wzve functions. The latter two uses will be of
main interest in this thesis,

Nuclear reactions are generally characterized
by the bombardment of a target A by a projectile a with
the result that a residual nucleus B and an outgoling.
rarticle b are produced. In abbreviated notation this
can be written A(2,b)B. In this work the primary interest
is with the pick-up re-ctiocn (p,d) which is closely related
to the time-reversed reaction, that is the (d,p) stripping
reacticn,

It is poesible to classify nuclear reactions
further as due tc compound nucleus or direct processes.

A compound nucleus reaction occurs if the incident varticle
is absorbed by the target and undergoes multiple internal
collisions with thé individual particles of the target.

The multiple scattering causes the incident particle to
forget its history, in a sense, which causes the differential

cross section to have a much different angular derendence



n

from that associated with direct reactions. It has been
found that for compound nuclear reactions it is difficult

to calculate matrix elements for the scattering, since the
properties of the intermediate states are very poorly
understood. ©Cn the other hand, calculations for direct
reactions have been done with increasing sophistication

and more gratifying results since at least the early 1950's.
By compzrison to the compound reaction, the direct reaction
is very sirrle. The incident projectile is in the region

of the target for &« short time and interzcts with very few
of the target nucleons. Since there are no intermediate
states formed, th2 matrix elements involve only the states
of the initial and final nuclel and the interscticn responsi-
ble for the reaction.

In the ezrly 1950's Butler (1¢57) prcposed a
method for calculating the reaction matrix elemems which
had the virtues of beinc within the cavabilities of the
czleulating facilitles avallatle at the time and ylelded
values in falr agreement with experiments. With the Butler
theory it was possible to determine the orbital angular
momentum transfer with = fair degree of certainty. This
in turn enabled investigators to determine spins and
parities of numerous states. The Butler theory has the
draw back, that it often overestimates the differential
cross section by as much as an order of magnitude, and
does not give good shape fitting at large angles. Sdme

of this difficulty can be attrlbuted to the use of the



plane wave aporoximation for the incident and outgoing
particles. With the advent of high sveed computers in

the late 1950's, it became practical to use the distorted
wzves apyroximation for the incident and outgoing. perticles.
Since that time numerous imurovements have been made in

the msthods for calculating the matrix elements. Aamong
these 1s the finite-range aporoxination, which will be
discussed in some detail.

Among the 1p shell nuclel much work hus been
done to determine the ground state wave function and
spectroscopic factors for various pick-up and stripping
reactions (Cohen and Kurath, 1967; Kull, 1967; Mac Farlane
and French, 1660; Li and ¥zrk, 196%a, 1969b; Towner, 1969;
Verba, 1967; Marion, 196%; Merlon et al., 1966; Wildermuth,
1662; Jacmart, 1964)., Usually one assumes a model for
the nucleus and tries to make up the wrve function
which predicts energy levels with the correct quantum
nurbers, for instunce. The sime weve function can then
be used to calculate enectroscopic factors which are
consistent with the sssumed model. This 1s essentially
the prcgram followed by Cohen =nd Kurath (1967) in their

calculaticns. Since thelr t:ble became available, &

P

nurber of investigators have useld it 2s a gulde In deter-

mining experimental spectroscoplc factors over =z wide

o

range of energles (Kull, 1967; Li and Mark 1¢6Ca, 19690b;

Towner, 1969; Verba, 1G67).

This thesis 1s arranged into two distinct parts.



The first is concerned with the detalls of the rezction
theory, and the second deals with the actual analysis
of deta from the 9Be(p,d) 8Be reaction at 46 MeV and
100 MeV. Chanters 2 and 3 comprise the first vart, and
they can be broken down further into two relzted problems.
To begin with, the theory is develoved step by ster paying
attention to the assumptions and the essentizl physics
of the problem. The concept of the differential cross
section is discusced, and tha2 physicul necessity of anti-
symmetrization for systems of Fermions and the results
of the process ar: presented. Afterward, the claculaticn
is narroved tc the svecific cuse of scattering between
nucleons whose wave functlions are given in the J T repre-
sentation. A% this point the necessity for spectroscopic
factors becomes apparent and some of the methodology for
czlculating them in the J T representation is explained.
Chapter 3 1s devoted to the second »nreoblem, which 1s the
opractical difficulty of evaluating the transiticn matrix
element. For any reazsonable potential, nelther the distorted
waves nor ths bound stzte neutron w=ve functicn can be
vwritten in closed forrm. For meaningful calculaticns, then,
one must rely on the methode of numerliczl calculus.

The analysls section, Chepter &, involves fitting
?Be(p,d) 88e angular distributions using distort=d waves
for both the proton and deuteron generated with optical
potentials. The quality of the fits 1s discussed, and

experimentzl spectrosconic factors nre extructed for the



ground, 2.90, 16.93, 17.64, 18,15, and 19,05 MeV stutes.
These values are compured to those extracted by Kull (1967)
at 33.6 MeV and Towner (1969) at 155 MeV. 1In zddition,
they are compared to the theoretical values given by

Cohen and Kurath (1867) and Balashov et al. (1565) based

on the intermedizte coupling shell model. In this section,
sever:1l models for 9Be ere discussed and thelr merits are

consgidered in light of the results of thils work.



CEAPTER 2
FCRMALI SM

2.1 DWBA Differential Gross Bection

Calculation of a differentlal cross section
involves the evaluation of a matrix element made up of a
weve function which describes the state of the complete
system, an effective Interaction potential, and the final
state of the outgolng particle =nd the residual nucleus
with no interaction between them. 1In the simplest deriva-
tion of the expression for the differential cross section,
1t is necessary to assume that the asymptotic form cof
the potentizl is proportional to r~B, where n22. However,
for scattering of charged purticles, this is obviously not
a good assumption, since the Coulomb potential has r-1
dependence. The derivation using time dependent perturba-
tion theory (Gell-Mann and Goldberger, 1953) is free from
this restriction, and gives the same result to first order
as does the more restricted derivation. This 1s because
the Coulomb interaction is relatively weak compared to
the nuclear interactions.

The baslc assumption of the time dependent rper-
turbation aprroach is that the Hamiltonlan of a system of
nucleonc can be written in such a way that the interaction
between incident and tirget nuclel apvears as a perturbation.
The main part of the Eamiltonian describes the internzsl

motion of target and prcjectile. By a heuristic argument



1t 1s easy to show that the interacticn energy is smell
compared to the energy of internal motion of the target,
and hence, can be used as a perturbation. A proton, for
instance, interzcts with & target of A nuclecns; the A nucleons
interact among themselves by Al nuclecn-nucleon combinztions.
Since the energy of ezch nucleon-nucleon interaction
should be of nearly the same magnitude, that portion due
to the internal motion would be of the order of (A-1)1
greater than that due to the proton,

In the case of the (p,d) reaction, in which a
neutron in the target nucleus is transferred to the out-
going particle, the Hamiltonlan can be written for the

incident protorn channel as

H=H,+ V. (2-1)
The first term, HEp, includes the interacticn of the A-1
nucleons, called the core, anong themselves, the inter-
acticn of a bound neutron with the nuclecns of the core
and the relative motlon between the incoming preton and
the target nucleus. A less mecdel-derendent description
of Hp 1s that it describes the interzction of the A target
nucleons and the relative motion of tre projectile and the
target. More lmportant than this term 1s the second term,
V, which appears in the matrix element for the differential
cross section, V describes the interaction of the incoming
proton with the A target nucleons in such a wvay thot the

Interzction with the neutron to bte pilcked up appears



separately.

V: VP(‘_ + VW

Here, Vpc i1s the interaction between the incoming proton

(2-2)

snd the core, and Vv 1s the interzction between the proton

n
and the trznsferred target neutron. Cne czn write &

simlilar expressicn for the Hamiltonlan fur the outgolng

deuteron channel.

H= Ha+W , b= V?c_-t- Ve (2-3)
Here the internzl motion of the deuteron, the A-1 nucleons
in the residual nucleus, and thelr relative notion are
lumped in the unperturbed part, Hd, and the interacticns
of the proton and neutron with the resicdual nucleus are
considered separately and glven by U. By the lavw of con-
servation of energy, the Hamiltonian of the complete system

is

H= Het Voo + Vo= Hat Vo + Viee (2-4)

Gell-Mann and Goldberger (1953) given an expres=-
sion for tre trznsition rate per unit time rer unit finzl

system.

s TP Vo #V, L W) " Sleg,) (oo

() .-
Here, q}fis the exact-state vector given by the Schrodinger

equation
(H-&) ¢= 0o

with the boundary conditicn thzt the soluticn conteains

(2-6)

outgoing spherical proten waves at Infinity; CPA i1s the



\0

wave function for the final system consisting of the out-
going deuteron and the residual nucleus with no interaction

between them and satisfies the Schrddinger equation

(\'\&‘E)CPJ=° (2-7)

The delta function in energy of the initiel and final
channels expresses the conservation of energy in the
reaction., In order to fird the transition probabllity per
unit time, 1ntroduce<3(iﬂ, the number of final states per
unit finzl energy interval in an energy region around Ef.
After integrating over the final energy Ef, the transition
probabllity per unit time is

R;:%I(c?dt V?C.+ V?“\\P?u\>\2 P(E§>. (2-8)

For rarticles with energy p2/2m, the number of states in

a volume element of phase space is

2
(aTk)
The momentum p of the particles lies in the direction
between solid angle L2 and f2+dfl, and the georetricsl
space volume is unity. The number of states in the energy

intervel E to E+dE 1is

N . wmp dL
P(.E)- E = (1“1;)\ . (2-10)

The quantities m and p are respectively the reduced mass

of the outgoing particle from the rezction and the momentum
of this perticle. Pif’ which 1s the probability per unit
time for a transiticn from the lnitizl tc the final state,

can be thcught of as the flux of final stute particles.
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In order to convert this expression into a differential

cross section, it is necessury to consider the incident
particle current intensity. If the incident beam 1is
normalized to a density of one unit per unit volume, and

if ;1 is the velocity of tres porticles, the incident particle
beam intensity 1is vl. Then, the differential cross section

1s defined by

AT = ?\‘
U

1Y

? (2-11)

which lezds to tre expression

ar . + t
an’ %%3‘* % KCPJ Vyc *'VP“\“VPL )>] ) (2-12)

where k; and ke are the wave numbers for the incldent
and outgoling particles, end Fi and Mf are the reduced
masses.
Throughout the derivation, there has been an
assumption that the porticles are spinless. If this is
not the case, and in additicn, neither the incident nor
the cutgoing psrticlec are polarized, it is necessary
to average the cro:zs section over incident spin states
of the target znéd projectile and sur over fiual srin states
of the residuzl nucleus and detected particle. If Ji»
¥

and Jf, Mf are angular momentum guantum numbers for

i
target and residuzl nuclel and Sy, My and S¢y Mp are used

for thz incident and outgeing particle spins, tre differ-

ential cross section can immedlately b= written as follows:

A MMtk | w12
da” (a-uﬁ;\-‘[é (LT;+|)(1;;+|)H§J<CPdIVPc‘i-VP“‘(,k‘)( ))! C (e-13)

LN g
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The quantity <CPdl VPC.*V?“\\K’L > , denoted by
T1f and called the transition amplitude 1s the crux of
the scattering problem. The evaluation of the transition

matrix element, T is not an easy t:sk because it contains

i’
@

4@ ), the exact solution of equation (2-6) with the pre-
scribed boundery cendition. An avrroximation must be made
here. It has been shown by Feshbach (1958) ani Glendenning
(1963) that the potential Ve ¢an be approximated by an

) Y )
optical potential Vp, and the wave function V¢ by XP,
the optical wave function solution of the Schrbdinger

equation

(H?-rVP-E)'K‘,’-O (2-14)
with the boundery conditicn that 1t contulns outgolng
spherical protcen waves. Similarly, U = vpc + vnc is
ep.roximated by az deuteron optical potentiel Vd and <P{
1s replaced by xzﬂ the optical wave function containing

incoming spherical deutron vwaves glven by

(Ha+Vyg-€) Ly=0 (2-15)
This method of evaluating Ty, is called the distorted -
wave - Born - approximation or DWBA (Tobocman, 1961).
The spherical wave boundary conditicns can be explained
by ccemparison to the plane - wave - Born - aporoximation
(PWBA). 1In this case thre incident particle is assumed to
be frez and its motion ie described by a plane wave. There

is alsc g scattered component given by spherical waves

emitted from the scattering center, 1In the infinite
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limit one would expect DWBA and PWBA wave functions to have
the same form, since the distorted weve puarticle 1s free

by the time it travels a large distance. The outgoing
perticle channel 1s the time reversed analog of an incoming
perticle channel., Hence, the asymptotic behavior 1s time
reversed, ttrzt is the sphericzal wave 1s coming in toward
the scattering center. It 1s important to keep in mind

T these wave functions

also contein the Internel structurs of the systems of A

that, due to the presence of HD and H

and A-1 nucleons.

In deriving the optical model wave functicns,
Y-“.“and Zf, two importunt operutors wvere used. These
are the projection operiator P, which when used on an arbi-
trary wave functicn of a system projects out only the
ground state, and lts complerentary oper~tor @, which
projects out the exclted state components of the wave function.
The optical weve functlonfxzqdefined in equation 2-15 1is
gener-ted in such = way, that 1t i1s e pure ground state
weve function. It will be shown loter thot Z:ﬁ, as defined
in equation 2-14 contazins a comvonent corresponding to 2&?.
In the mezntime, the transition amplitude czn be written

as
Te = {8 V+Vn\Lu»
+ < a.\ 1 ¢ (2-16)

r= AV, )a+rP(We)Qr QLVee )P
(2-17)

This expression reduces immediately to

T:*?-(‘ZJE-)‘ v"w.y. &(VPC,)PX%:)> (2-18)
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This 1s the transition arplitude in DWBA.

Physically, the reaction theory as formulated
above assumes the validity of the optical model for pre-
dicting the results of elastic scattering. 1In order to
generate inelastic mstrix elements, a perturbation is
introduced, whlch picks out other exit channels for the
reacticn.

The theory outlined above has been given for
(p,d) reaction, in which a2 neutron is trunsferred from
the target to the Incoming rrojectile. However, because
of time reverszl invarience of nuclear reuctions, the
transition matrix for (dy4p) reaction lezding from the
state f to the state 1 has the same value as that for

(p,d) recction from state 1 to state f (Messieh, 1S66):

SARMRIYRS q’twy: AT @ Ve PIY ) (2-19)

or
t - +)
g W\ ©)

(25 Vene QP 42) "= (57| Vpur Q6PI ),
From the principle of detailed balance (Blatt and Weisskopf,
1052), one can write the differential cross section for
(d,p) recction in terms of (p,d) differential cross section:

é!) ] (5,”(13‘,+l)(;15,+\) ( %-)

LS A? k (27ua) (2sy41) 'd. ' (2-20)

Jp and Jd are the spin cf the nucleus in the proton and

deuteron channels; sp and sq are the proton and deuteron
spins, 2 and 1; k, 2nd kg arc the proton and deuteron
momenta in units of i in the centre - of - mass - systems,
respectively.

For the szke of convenience the calculation
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performed hereafter will be done for the (d,p) reaction,
This 1s done meinly because the computer code was written

for (d,p) matrix element calculation.

2.2 Antisymmetrization

The idea of a target nucleus and a separate
particle called an incident projectile are convenient
fictions introduced to help the physiclists tc describe
the interacticn process. To be more accurate, it is neces-
sary to think of the rezction involving so many identical
fermions. In such a case, the 1ncident and final state
wave functions must be totally antlisymmetrized. Consider
a stripping process, (d,p), in which a deuteron impinging
upon a target nucleus of A nucleons and transferring a
neutron to the target, the initial system consists of two
groups of 2 and A fermions and the final system comprises
of two groups of 1 and A + 1 fermions. If one writes
the initilal and final wave ft,urzcticns,zﬁin and X.‘: » 28 product
wave functions of the internsl moticr of exch group and
the relstive moticn between groups, one must antisymmetrize
the complete wave functioen with respect to interchange of
particles between groups. The totzl number of parmutations
in the system is (A + 2)!, and the numnber of perrutaticns
vhich do not lead to new wave functicns is Al 2! in the
deuteron channel and (A + 1)!11! in the proton channel.
Hence, there are N,=(A + 2)1/a121 and N=(a + 2)1/(a + 1 )11

terms of product wave functions in the totally antisymmetrized.
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initial and final wave functions, respectively., The

transition matrix, Ty g given in equation (2-1¢) becomes

T = _JFMTFI <4%|:.)\ Vi + Q Vee P ALy (2-21)
whereAxf’and 541.:) are the totally antisymmetrized initial
and final weve functlons. 1In the argument presented
above, 1t 1is implicitly assumed that pretons and neutrons
are ldentical pzrticles. To a good approximztion this
is true in the isotoplc spin formalism. Throughout the
calculation the isotopic spin fermalism will be used, and
its Importence will become more apparent in later sections
of this paper.

Consider the general cace of an a-particle
projectile incident on an A-particle target with one particle
stripped. This lerves an (a - 1)-particle outgoing pro-
jectile and an (A + 1)-purticle residuasl nucleus. The
antisymmetlzation glves Ny = (4 + a)l/Al al and Np = (A +a)i/
(A + 1)1(a = 1)1 with the trancition given by (2-21) un-
changed in form. The total number of terms in Typ is
equal to the number of products between the initial and

final state wave functions;

(R*o.)‘. (FHW-)!
Al(aen)! ol (e .

In order for one of these products to be non-vanishing,
the nucleons left In the core of thz residual nucleus
(comprising the initial target nucleus) must match the
nucleons of the target nucleus.

Suprose for a particular term in the initisl
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state wave function particles labeled x, ¥y, and z

aprear in the incident projecticle functicn, and the
target 1s comprised of particles labeled a, b, and c.
There will be terms of the final state wave function
with the outgoine projectile containing particles labeled
Xy, xz, and yz, as well as others containing only one

or none of x, ¥y, and z. The residual nucleus terms cor-
responding to the outgoing particles listed above contain
abcz, abcy, and abcx. Non-vanishing terms of the overlap
integral occur when particles x, y, and 2z are decoupled
from abc and in no other cases for this varticular term
of the initlal state wave function. It is seen that this
gives three terms, which is the number of nucleons in the
incident projectile. By carrying thls ergument to an a-
particle projectile, it is found that the number of non-
vanishing rroducts for ezchk term cf the initial wave
function is a. Hence, the sntisymmetrized transition
arplituds 1s arrived at when the unsymretrized cne is
multiplie® by trke normelizations NiiandwN}Fanﬁ the number
of non-vanishing products, that 1s(NiNf$%1A + a)l/Alal =
a(a + 1),

2.5 Formalism in the J T Representation

Combining the results of DWBA, eaquaticn 2-18,
and antisymmetrization, equation 2-13 becomres

de . M
A'n' AT t‘)‘ (3-'-\"ﬂxzs +|)

ks acaen Z\(x"‘] +Q(V,Jp\zf'\>\l‘ (2-22)
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In order to further specify the optical model wave
functions Y:)and 28, 1t 1s necessary to introduce a

set of coordinate axes. The most convenient set, since
the particle coordinate can be written in separable fashion,
ancd the conventicnal set 1s the center - of - mass axes.
Figure 1a shows the coordinates of the system of particles
in the center - of - mass system for the cdeutercn channel,
and Figure 1b shows the coordinates for the proton channel,
The three vectors i;p » 'y, end R are directed from the
center - of - mass of the target, A, to the proton and
neutron of the incident deuteron and to the center - of -
mass of the deuteron, In Figure 1b, the anzlogous vectors
Fé , F;} , and R are directed from the center - of -
mass of the residual nucleus., Cf the two remaining vectors,
r glves the relative preoton - neutron positions, both
before and efter the neutron ic stripped, and Fé is

the distance between the center - of - mass of 4 and

A + 1 nucleons. At a later stapge of the calculation, the
origin will be shifted as a matter of convenlience in
numerical evaluation. By using the definition of center -
of - mass and the construction of the dlagrams, certain

useful relations are found.

- -t 1

AL A (2-23)

!

§-= % (¥ *?'\s\
e (2-24)
Re4(F+7)=R-2avy

" (2-25)
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FIGURE 1
The coordinates of a system of varticles in the center-
of-rass system for a (p,d) or a (d,v) resction. The

deuteron chrannel is exhibited in part a, and the proton

chznnel in part b,



(a)

(b)
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€z Mat™a & (2-26)
“a
The masses used in eguations 2-25 and 2-26 are the
target, My and a nucleon,mp.
In the J T representation, the dlstorted waves
vhich appear in the transition matrix for the (4,p)
reaction are written as follows (Glendenning, 1963):

M.

“ o~ P .
AR ARG ALY S 4 ?T;,T;( R)

M
9 LY e &)yl Ve *(a+)
19 ¥y (Refp) Xy, Ty
? s P 'J“ Yo (" 1’1" . (2-28)
@ ©
The functlons ¥y and 4? describe the moticn of the deuteron

(2-27)

and proton as guartlcles undergoing elastlc scattering
by a central optical potenticl appropriate to the channel
in question. The form of ths potentials will be discussed
in more detall later.

Internal structure of the target and residual
nuclei is contained in the functions ‘ﬁ;x(A) and
fégA + 1). The various indices represent the number of
nucleons (A, A + 1), the nuclear spin (Ji' Jf) and 2-
component (M3, Mg), and the isospin (Ti’ T,). The re-
raining weve functions in ecuztions 2-27 and 2-28 describe
the proton and deuteron. Specifically, the spins are
contained in Z,H‘, and 'Z.,':', ths isospins in 'T:‘and "ﬁ/\:'
and the deuteron internal spatial wazve function in qZ§F).
For the deuteron, the wave functions are written exvlicit-
ly as follows (Nigam and Roy, 1S867):

R _ L i y B xS
. 'FEHSIW s || pad X, A (2-29)
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-] "‘.’. -
e i-b g bloos[ T T W - 1 Y]

(2-30)
h =¥ -Av
= | JLp(x4pd( " & -e
(P"-(")'p--c{ FXH } — (2-31)

In equetion 2-31, the quantities « and ﬁ are constants
characteristic of the Hulthén potential and the Hulthén
wave function for the deuteron (Buttle and Goldfarb,
1064).

If one depicts the strinping process as such
that the residual nucleus of (A + 1) nucleons can be
made up of the initial target of A nucleons coupled to
the stripped neutron in a specific singcle particle orbit,
the wave function of the final stzte may be expanded in
terms of states arising from the vector coupling of the
states of A tarret nucleons to the states of the stripped
particle (Glendenning, 1963):

‘4-’,?;.*(:&“):}[;:,3‘;(&7.;w;n)&ég;cmjw.-)\:r‘ Me)

x{TeMr t &1 T ) W s (R) Yorjt (2-32)

The coupling 1s subject to the restricticns that triangle
inequalities exist among the spin quantum numbers (1 & 3),
(Jc J Jg)y anc (T, 3 Tf). The quantity pﬂj is the over-
lap integrel between ‘ﬂ;& and the various wave functloens
qﬁtk vector cocurled te the single particle neutron
wave functions \Yv\}.jt .

Although there 1s sumration over numerous
indices in the generzl exrpression of equaticn (2-32),
in practice, there are often a smaller number of terms than

1t would seem at first glance. For lastagnce, if Jf is O,
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J can have only one vxzlue, thazt 1s Jc. Also, ) is limited
by the meximum orbitel angular momentum of the stripped
neutron, so the number of v~lues of Jg s limited. 1If
the neutron is stripped into one single particle orbit
only for a given transition, 1 is limited to one vzlue,
end J iIs limited to & maximum of two values. Hence,

Jc has a maxirum of two values.

Now ccnsider the effect of substitution of
ecuation 2-32 in the expression for the trznsition ampli-
tude given in equaztion (2-18). The transition matrix for
(d,p) becomes

ez -PplT T = M L
T"‘ {l T,,¢:l Q’I‘T‘.)&sﬂ:‘;ﬂt‘ 1) \T‘M‘><T° Mr" t s \'E MT;>

x{ %c‘( Ee":;)xv':' Y'I:? v‘::“n(‘“ q)n!.;t | Vou + Q(vpa)P

Wy = - Y M
|4, ) Puedy LM Yol (m).
The first term of the potentizl does not operate on either
Mi M
4". or f s, SO0 these two functions muy be conjugated
LT Y

(2-33)

out. The only non-vanishing tern occurs when Jc = Ji,

Tc = Tl’ and Mc =M that is, vhen the state of the

g
core In the residual nucleus corresponds to the target
ground stsate. This corresponds to the ussumption that

the core 1s undisturbed cdurine the rescticn. Since 4%?&
is escsentially z ground stcte wove function, the projection
operator @, then, causes the matrix te vanish when it is
avplied to qﬁ:;l. This 1s expected becaus= the second

term of Tif corresponds to ccre excitation. Since this

possibility i« smsll, iIn the simple plck-up or stripping

formalism, the second term of the potentisl is ignored.
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The perturbstion, then, 1s considered to be due entirely
to the proton - neutron interaction in the deuteron. Now,

the transition amplitude can be more simply expressed.

T
\f, Z. . : M . . . o ‘—
A ,’Pz,( e Tey 3 ';) (T M ;W‘,\Tf, "\4>< ‘»“1-‘«.%.\%"1'4)(2_34)

CY = ot He - -
x ) Y
<q‘? (hh"f)lv., 'T'/:" “l"ujtl Vpn.\ \P.\ Cey,R) ‘PJ,LF))L\N‘% ‘-)
The bound neutron wave function can be further
decomposed (Glendenning, 1663) to show explicitly the spin
and orbitel angular momentum coupling.

q’\\l}t =N§.\u§1 W, {\Msl ;H,> L* CPM(.V,)'M:,‘ Y A

(2-35)
S TRV T Y, a0
The wave function Myytea) is the radial pert of the single
particle wave function for the neutron bound in an orbital
with n r«dial nodes and orbital angular momentum 1. The
potential must be centrel to get spherical harmonics, and
the method of calculating WUu.gel) will be discussed In chapter
3.
Substituting ecustions 2-2¢, 2-30, and 2-35

into 2-34, the transition amplitude becomes.

T2 -\-)

¢ u_““ " (‘ R AATE LIS W
“SFsrr

T Htu.l 1T MK R wy 't‘*s\‘)‘“')( X 1 Py 1 Ms \ \y.a,)

X<W (hh uv\LLVh\YVAi x Zv\ ‘Yv‘u) 7‘\/""(‘-) lvrw

H’A (g B) Py 2, Z,f:'_’[ TotaT, LT T, 6l) , (2-36)

]
The factor =% comes from the Clebsch - Gordon coefficient
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for isospin in equation 2-30. Various simplificztions
are immediztely apparent, For instance, the potential
vpn 1s assumed tc be spin and isospin independent for
thlis calculation, so the spin and isospin wave functions
can be immediztely conjugated out. A new gquantity B}T*
(Glendenning, 1963) 1is defined, and the transition ampli-
tude may then be written as

‘: "‘F E" 3-&1-\ (5). ‘<-'r\. M's S W \I; ﬂ;)(Td MT;tl\]T;

“S

") (2-37)
XLy % ms] ) g WA prp Smesh i |

Bt it

. (2-38)
\JIE:_<\PU %) @anv,“\“?" (g R) Pat®)),

To find the differentlizl cross secticn, it 1s necessary
to perform a rather tedious calculation of the square

modulus of Tif summed over the initisl and finsl spin

orientations.
CITyl™: (Ting, LT My Z {GERER) F‘"'P B*‘BM"‘
b 2 LTj) g “"g
Frie Mime I"H"il“‘:"\s
X(I’M{_\;y. M ) M ><T Ml 3\».,\3.?1;,)(3 'wc \X “‘ W‘s)

k{lw, 1.“*5\)‘“5)( L M iwg | |r~&><“"il‘b‘*? t“‘)
(2-3¢9)

The intermedizte steps of this calculaticon appear in
Appendix A. Substituting thre result of appendix A into
eguation 2-22 and using $§ =1 and a = 2 for the deuteron,
the differential cross section for the (d,p) reaction is

written as



Av 1 pipy Ry (aTn) {T;
ASL Z (an k)" ‘!" T+ MT t "le HT)

Z (R T 8™
xx.'“g #1817 185

(2-40)
A quantity called the spectroscopic factor (Mac Farlane
and French, 1960; Glendenning, 1°63) is defined as
J(‘Q= %—Xu;)'—‘- <A+l)\ﬁ;i\z'. (2-41)

This quantity 18 further explored in the next section, but

it shoul?d te noted that at this point the differential

cross section has been reduced to the product of two factors,
the first <4(2) involves the spin geometry and the second
\Q:ﬂt involves the reaction dynemics. The next section

is devoted to the calculation of spectroscopic factors

in the shell model, and the third chapter expleins the

T
detalled numerical integr:tion of |84

2.4 The Spectroscopic Factor in the Shell Yodel J T Representation

The spectroscoplc factor 1s dependent on the
overlap integral between the nuclear wzve functions in
the initizl z2nd finsl states. Hence, it depends on the
nuclear rodel which generates the wave functions, and,
for this reason, it can be used as a test of the validity
of a2 specific model of a nucleus. The forralism has been

treazted in detail elsevwhere (Mac Farlane andé French, 1660),
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so only the outlines will be given here.

In the previous section, @); wes introduced zs
an expansion coefficient of qﬁ?ﬁﬂ%ﬂin terms of states
arising from the vector coupling of (K:.::(ﬂ) to %x‘,t , the

complete wave function of the bound neutron.

g,;f <‘ﬂ-::-:Lau\| [. ‘rxf{.‘(h) ® "F“,qt T"T“H‘> (2-42)
This is possible as long as ‘Y::f”@%:,'h forms a complete
Hilbert space and is independent of the nuclear model used
to generate the wave functicns. In what follows, the
overlep integral will be evaluated using shell model j-]
coupling base functions. In this model a single particle
orbit is designated by (n 1 j t) or simply (J). If there
are n particles occupying the single purticle orbit j,
they are denoted by (J)n. A system of particles occupylng
a set of single particle orbits is czlled a configuration.

To evalucte {3;; , 1t 1s convenlient to use the
technique of fractional parentage expsnsion., The tech-
nique 1s essentially a method for antisymmetrizing a system
of n identical particles with reference to a set of base
functions representing a system of n - m identical particles,
vhere m¢n. The relevance to strippinr z2rd plck-up reactions
is apparent. Consider, for instance, a terget nucleus
vhose ground state, q@?it“)is a member of the (J)© con-
flguration. When a nuclecn is stripred into the orbit j§,
the final state,‘ﬂ;;yfq, is & member of the (j)n+1 con-

figuraticon., The antisymmetrized finel state wave function
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cen then be expanded in terms of the vector coupling of
8ingle particle states, }, to the various possible (j)n

configurations.

M, Neple? « ne ! T
Pt LIGTNT T ras] LYn @ ™) o)

The quantity [ (" 77, ), T T \ 3@ 75 Te]  1e called
the coefficient of fractionzl parentage or cfp (de-Shalit
and Talmi, chap. 33, 1963), and it has the following

property:

e Y
guw land . o\ B -
TT:,,[‘)\ LTI E] = L. (2-44)
Substituting equation 2-43 into equation 2-42 and carry-
ing out the integration, one finds, since the c¢fp 1s a

real quantity (de-Shalit znd Talmi, chap.33, 1963),

- 3" M : {
@1-,-[1.)) TeT 5T M T ] (2-45)
Reference to equstion 2-41 immediately leazds to a velue

for the spectroscopic fzctor.

,3(1‘)) £ (we) [(])“ T Te,y, Tt 3’;')';]2' (2-43)
Here, A has been replzced by n, the nuzber of active
nucleons participatins ir the recction. The gpectro-
scoplic fzctor for the pick-up rexction is found by merely
interchanging the subscripts 1 and f in equuticns 2-43
through 2-446, Equztlion 2-44 le:ds tc the important sum

rule (French and Mac Farlene, 1960).

TET“X(XS) = W+l (2_47)
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Normally, the nuclear wave functlions are more
complicated than tre simple (J)° configuration. For
instznce, & target nucleus ground state of the form
\(Sﬂﬂ‘j;ﬂ (}d“‘qleiBTlTi> m2y have a nucleon stripped
into the 32 orbital, which gives a final state

‘“ -“\-l &
\(h)'j}T}ljl)Tijaa'The overlep integrzal is given by

4

French and Mac Farlane (1¢60) znd Glendenning (1963).

'/L
_____“" % . [ N
fe; = [,‘,mltq,)“ T, TT I ]
' (% -
X [(23"00(:LT.',+I)(.‘2.T'+()(1T,_‘-|)] W(J‘ LI T‘,‘ ]"’3:) (2-48)

XWETL T T T'T0)
Where W is the Racch coefficlent (Brink and Satchler, 1968;

Edmonds, 1960).
In the more general case, the nuclear states
can be constructed as a linear combinatlion of configurations

(French ana Mac Farlane, 1G60).

. I
‘ﬂ&&”‘EKr¢n#”

(2-45)
e ¥y
\'YI;T’(M-I) = % K,, 4’:‘7{_(““))
Where K are the amplitudes for ecch configurcticn. In
this czse, ﬂxiis given by
R > H -
{5;,) ~ K'*Kv< ¢§1}(“ﬂ) ) ¢Iﬂ(“)®)> (2-50)
ru)
o By
and
=
X(Qi)t(wi'l)lﬁ,ql . (2-51)

A closer examinaticn of eguztion 2-48 lsads to

some helpful intultlon concerning the construction of



nuclear staztes. For the ground state of light nuclei,
closed orbitals are filled in such a way that both J4

anc T1 are O. Thls means that the spin and 1lsospin of

the grcund state ls determined by the configuration of the
outermost nucleons. For n nucleons, and for a given set

of available orbitals, it is possible, in some cases,

that the sprin-related guantum numbers of certain observed
states of a nucleus coculd not be reproduced, especially

1f the active nucleons are restricted to those available

in the outermost shell. In a more refined cszlculation,

it might be possible to generste the proper spin-related
guantum numbers, but, especially for high lylng states,

it might not be possible tc reproduce the excitzticn
energy. The nucleons in the inner orbitzls are more tightly
bound than those in the outermost; and, hence they require
more energy tc remove them from thelr orbitals, So it is
most probable that these nucleons are actively invelved

In the construction of highly excited states. Construction
of these states, then, involves the core excitetion

which was ruled cut where QQ&QP was deleted fror the matrix
element in equstion 2-33. The assumption can te restated
in terms of the characteristics of wave functions: For
low-1lying states of the residual nucleus, the ccmponents

of the wave function corresponding to core excitation

have neglegible emplitudes. Cn the other hend, in highly
exclted states, where core excitgtion amplitudes &re not
neglegible, the rezction theory, as here forrulated 1is

inadequate.

When both Jy and T1 are O, the spectroscopic
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factor takea an especially simple form.

t

,2(1) )= V\;.[Cjt)“c‘rx'&, j.,T'Tl I}(j‘)"" I7 '] (2-52)
It is important to note that there are no quantities in
this expression which refer to the closed orbitals. For
the purposes of the cazlculation, iIn the aprroximation that
there are no ccre excitations, tre only effect of the inner
nucleons 1is in the kinemetic part.

At the beginnlng of thls section, it was stated
that the spectroscopic factor can be used tc test nuclear
models, It should now be clear how this is done. The
spectroscopic fzctor is sensitive to the different components
which can be edded to the initial state wave function.

The amplitudes can be arrived at, for instance, by fitting
the states with the amplitudes as parameters. The same
sort of thing con be done for the finul state wave
function., However, it 1s possible thet a srecific wave
function could fit the nucleear stztes, but predict spectro-
scoplc factors of entirely the wreng magnitude., If this
were the case, it would be zn indicztion of 2 breakdoun

in the model. Alternztively, agreement between experiment-
2l ané theoreticel spectroscopic fzctor is a particl con-
firration of the model.

For the work carried out here, only light nuclei
whose outer nucleons occupy the 1p shell are dealt with,
The cfp's for these nuclel have been computed by several
authors; in L-S coupling by Jahn and van Wieringen (1950
and 1951) and by ¥ac Farlane ané French (1960), snd in

J=) coupling by Flowers (1952) end Edmonds and Flowers (1G652).
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The spectroscopic fectors extr-cted in tkls work will
. be compared with those calculated by Cohen and Kurath

(1967).
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CHAPTER 3
METHCDS OF NUMERICAL CCMPUTATICN

3.1 The Radial Integral

From the definition given in eguation 2-38,
the reaction dynamics fuctor, which conteins the angular
distribution in the transition amplitude can be written

explicitly in the form

B*"‘") IRV S N
* Juu J“V“AT\P (k""!)Y;(ﬁ\)“M(;fa\

* Vpn®) B2 ¥ (R, B . (3-1)
This is & six dimensiocnal integral which must be simplified
before it czn be evaluated.
From the geometry of the reaction (Figure 1)
and relations 2-23 through 2-26, it is possible to make
the following substitutions.

ReFuete (3-2)

?;: AV + ©
{3-3)

where ¥'= e /wmg and A=Ma/Mp. . Here, the subscripted
resses refer to the proton (p), deuteron (d), target (A),
and residual nucleus (A + 1). With the substitutions of
equations 3-2, 3-3 and transforming the variables Vpand &,
to¥.2nd ¥ , zn intarmadiste integral is defined, which
will beused for some of the simplifications in later

sections of this chapter

'r.u'-,,)sj A “P;')('t,,‘-—«.zv-..)v“m Py#) ‘i’"’m,z«m.\, (5ot
-4

end

Wu__ o R
By _é___L_ja«“ TCR) Y5y W oy, (3-5)
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Two common approximations often used in evalu-
ating equation 3-4 are the zero range approximation and
the finite range approximation. Both of these will be
discussed in this chapter. First, though, it is necessary
to discuss the method of generating the distorted waves,
?f°*'and ‘ﬁf*’, and the rudial part of the bound neutron

. »*
weve function Uu .

3.2 The Distorted Waves

o ¢ev
The distorted waves, Tp and Y4 , are assumed

to be generated by a Schrddinger equation similar to

equations 2-14 and 2-15, with optical potentials vp and

Vd, respectively. It 1s further assumed that the optical
O %

potentials are central, so the distorted waves W and

)
& can be expanded in terms of the spherical harmonics

(Bassel et al., 1962).

(SR
S ANC IR AL ———‘L—‘Z Y(vBY(k,\LL'\V(\t@\m\ (3-6)

AACENET ot 2'. Y&W AR MATCR I

Note that the distcrted w ves are expanded in terms of
Fh only and not r. This is possible since in both ap-
proximztions used to evaluste equaticn 3-5 the integra-
tion over r is performed first, and the distorted waves
will not be introduced in expanded form until thils is

done,

In either the incident or outgoing channel,
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the Schrddinger equaticn used to generate the distorted
waves can be written as follows:
.——.\.k- Vc, \ -
[dv ¢ ’t'w- y; Ve \-+}‘P(kgv)=° (3-8)

where Vc’ Vo, and B are tre Coulomb potential, opticel

op
potential, and the reduced mass, respectively. The
Coulomb potential 1s assumed to be that for a polnt source
up to 2 specified distance ,R,, from the origin. Inside
that distonce, the charge distributicn 1s assum=d to be

isotropic and the potential function is given by (Houdayer,

Vo= BEiet ¢y Re

321" L= v /3rd]  ©<Re, o)
The potential VOp iz an optical potenticl of the form
(Houdayer, 1969),
Vip= Ve F,m-(ﬁ_t)‘\r,,.:: & R i
| Wy Fyto- 1t a Wh & F,,m}) (3-10)

vhere

\

- em———————=eT
Fx (r= L+ e(\‘"ﬂx)/d-;t p)

(3-11)
which is the VWoods-Saxon form factor. The quantity Ry

Is 2 messure of the potential well radius, zné 1s tzken

to be Ry=r, Av’, vhere 4 1s the nuclear muacs number, and

By i1s the diffuseness parameter, which determines the

slope of the potential well., For small &y the slope
aprroaches infinity, that 1s, a square well, and as &y

aprroaches infinity, the slope becomes O, For intermediate
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values of 8y the well shape is simlilar tc that of the
harmonic oscillator well. The four terms given in equation
3-10 are the real potential (Vo), the spin-orbit potential

(v

so), and the imaginary volume (W&) and imaginary surface

(Wa) potentials. The four quantities in parentheses are
the well depth parzmeters for ezch of th: potentlals.
For the deuteron channel, the spin-orblt term is set
equal tc zero. The effect of this assumption will be
discussed later.

The nuclear potential is short-ranged, so the
asymptotic form of the raudlal part of the distorted waves
is similzr to the Coulomb wave function (Abramowitz and
Stegun, 1965; Bassel ef al., 1962),

W ) > e ™ [ FL () * Co Ho Ceur)]
~ il-— [e""“‘“‘"'l‘ e 2 —Lﬁh)'ea: Lx..vr\.\e_; (ur-q;fz\l.il \.wh.)}

v
The constantol.and Cy contain, respectively, the Cculomb
an? nuclear potential phase shifts, GL=4r3F(1+L*ﬂuL and

Cf e}KLsiw\<L , where K 1s the nuclear phase shift.
The Coulomb parameter, s i‘t,_e‘p;/ﬂ’ ki . HLis & linear
combination of the regular (Fl) and irregular (GL) Coulomb
vave functicns, Hy = Gl_+ iFq. If botk tre Coulomb and
nuclezr potentlals ars 0, the Coulomb wave functicns
reduce to the sphericsl Bessel an? Kankel functicns, and
vhen these are substituted into equation 3-6 or 3-7, the
expansions becore the standard ones for plane waves,

This, of course, confirms that the distorted wive approximation
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converges to the plane wave approximsticn in the limit of
small distorting potentials.,

In order tc generate the wave functicne numericelly,
the following apvroximation is used (Smith, 1¢45; Milne,
1662):

/4 "
VY (e+8)-2 Y, (r)+\|’ (r-&) o W lre8) + lo‘ﬂg) *\k_"(‘,_g)
81 [ & "(3-13)
This leads to the iteration formula

¥ (e+8)= [_n—lo ?‘L’lq’ () - ic«-c‘)‘l’ Ce-8)
Flr+8)
where § 1s the increment in r and

“) =z |- '-P()
Lk '% ey (5-15)

The boundary conditlione zre that ‘KL°)=O, and trat st &

(3-14)

sufficlently lurge value of r, ¥(¥) matches the wsynptotic
value of the Coulomb wave function given in eguztion 3-12.
In fact, the calculaticn is performed by generating qitr)
starting from tre origin and normxalizing tc the vzlue

of the Coulomb wave functicn at two adjacent points at

l:—;I‘E‘;e r.

3.3 The Bound State Neutron Wave Functicn

The r:dial neutron wrve functicn WUpye) is generasted

using the Schrdiinger eguaticn
].;_ PR- 2 Vi) - A | gt <o,

where the potentiul V(rn) is of the s.re foru as the one
given in eguation 3-10, except thaut there is ro imaginary

term. Since there is no Coulomb potenticl, and =ince the
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neutron is bound, the asymptotic form of VUyweltis given
by lettingt'andvzgo to 0 in equation 3=-12, and by letting
k go to ik (Smith, 1G65).

V@AK, + A%A) ke
\ L

The wzve function is gener:ted numerically starting from
the asymptotic vzalue and golng toward the origin uslng

the numericcl differentiation approximation

"
Ung(r) & Unp Lre§) = 2 Una () & wwplr-8 .
St
The spin-orbit potential parameters s=re held fixed, but

(3-18)

the rezl well depth is viaried so the wave function meets

the boundary ccnditicn at the origin.

3.4 The Zero-Range Approximution

The zero-range airproximation is the mauthematical
expresszion of the assurption that the transition rmatrix
element is neglegible except when the neutron and proton
cocrdinates of the deuteron coincide. The assumption 1s
expressed by replacing the product of Vpu(¥) ¢2LF) in

equaticn 3-4 by 38(?-), where

- ) '
%gj&r V‘m(v)cpd.(" ) (3-19)

1s z constant correcticn factor, which is the zero-momentum
component of the Fourier transform of Vpw® @4_("'). If the
spin-dependence of the proton-neutron interzction is
igncred, and only the s-wave part of the deuteron wave
function 1s considered, the Hulthéh wsve functicn (ecuation-

2-31) and Hulthén potential can be used in the integral
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of equation 3-19 (Buttle anc Goldfarb, 1964).

=-t‘ 1.’d1' (=2
Veu ';;'((g >W> (3-20)
where
Y
as (B)" pema, (3-21)

In equeations 3-20 and 3‘21.rL15 the reduced nmass cf the
deuteron, and Bd 1s the deuteron binding energy.
When ths integration of equztion 3-4 is per-

formed, the intermediate integral, I(Fh), takes the form

Tes § K%, A50 YR ) 520
when I(r,) is introduced into equuticn 3-5 and the expansions
in spherical harmonics given in equations 3-6 and 3-T7 are
employed, the angular pzrts of the integr:tion can be per-

forred leaving ornly a r:dlal integral

hg¥ ’
B" = -&—‘ﬂ— Z, LL‘-LP.X(Q.L‘jl) < \-‘ Mj. 1 "’\N\‘.\LP °>
krk‘: L? Ld. (3_23)

)4
Lpo) |(La-wa)l ™ \‘f" * )
X(LJ.O ‘QO\ P ) v 'PLiﬁ &v\: h?(k'x"n\ uv‘x‘."u) q)l-&(k‘(‘“\,
The integral cen be evaluated numerically using the trape-

zoidal rule (Smith, 1665; Nilne, 1G62).

jir“ U{:z:,m) uﬁm) 4’:‘(“ 4%) (3=24)
S ejé L!:_‘;’?',\;e)uf,_qe) ‘lff:(je)
where € is the increment,
The effect of the zero-range aprroximution is
to maxe the incident =nd outgolng purticle coordinate
vectors parczllel, that is ?;:XF . In some cases, the
zero-range theory tends tc overestimate th= differential

cross secticns. This preblem is thought (Li, 1967) to be



due to & tendency for the theory to overestimete the
contribution to the integral from inside the residuzal
nucleus. To correct for this, an approximation called
the finite-range approximation is introduced. The effect
of this 1s to reduce the overall magnitude of the cross-
section, while retaining much of the simplicity of the

zero-range approximation,

3.5 The Finite-Range Approximetion

In equation 3-1¢, 1t is noted that g 1s the

~

zero-momentun component of the Fourier transform of
Veu () q)*"a For the zero-range approximztion,
Vo (7)) P48 is assumed to be sharply peaked at r=0,
so the §-function is employed. The Fourier transform of
the ¥-function is a constant, and similarly, g is &
constant. If one were to assume that the sharpness of the
peak was less than that warranted by the §-function ap-
proximation, the Fourler trensform of V}mcf) 41(?) would
not be given by a constant. However, for small distances
from r=0, it would be safe to zssume the Fourier transform
is a slowly varying function of momentum.

In equation 3-4, it is possible to expund the
disteorted waves in a Taylor series about r=0, since
V‘M(;) (¥ 1s a short range function, and there is

no need to know the properties of the distorted waves for

large Tr. The Taylor expansion leaves I(Fn) in the form

Iu-mf,u- Voul® P00 e,"‘wt}"'Z:r ICAS /A W )
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The integral can be evaluated by noting that K is
independent of r (Buttle and Yoldfarb, 1¢64). This,

then, is the Fourier transform of V"(.ﬂ CP,\(.F> , and
should be a smcothly varying function of K. Using this
property, the integral is evaluated by Buttle and Goldfarb
(1964) and 11 (1967). The result is

- iz .2 Vo 2 (213 _ ™
::au-,\h(u_;p_) _«_\,c_rr%& /;.;4-}2‘; P (RepR Y (5,5, (3-26)

The operator K12 is defined as

S o R SV TR ST (3-27)

where Kn2' Kpg, and Kd2 are defined by the Schrodinger

equations

{ K\:"' %(Bd.-r v“cLFn)) } \Ph)sjt(\'“§= o} s

(3-23)
T -3 - I, ~ -
{Kp- ) _%(V&"‘)' Et\} ‘1”? Clep,ATu)=0, (3-29)
and
VoA - @), ~ _\ _ =30
{.Kd a‘-(VL(Vu)'EQ} 4 (kg ,v0) =0 (3-30)
In equations 3-28, 3-2%, and 3-30, vnc(;h) 1s the potentizl

for the bound neutron, and Vi(Fﬁ) and Vf(Fﬁ) are, respective-
ly, the optic:l potentials for generzting the distorted
wzves in the incident znd outgolng channels,
The dlistorted waves c:n be expanded as they
were in section 3.4, and the same angular integral can be

performed. 1If E(Kl) is defined

3t "
gl () e =
oK,
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the matrix element can be written

Br"‘= a7 gLy £
Reka § I-PZLA @Lar1y (L wy Lowy | Ly 0) (525
*{Lao Lo ) LPO).U-J;N‘)\, P

Wy, - O
V(cgtng! La o) S&‘f.\ 3 (K‘) l"1»5 Iy xv‘h) uf\x(\'“) \P::(.k A"v-) .

The remaining tzsk is to evaluate the rudial integral

using tre method menticned et the end of section 3.4.
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CHAPTER 4
o 8
ANALYSIS OF THE REACTION “Be(p,d) Be

4,1 Method of Analysis

The experimental data to be analyzed are the
9Be(p,d) 8Be reaction obtained at proton energiles of 46 MeV
(Verba et al., 1967) and 100 MeV (Mark, 1965; Lee et al.,
1967). These data are reproduced for convenience in
tables 4-1 and 4-2., Compuring the (p,d) datz with the
partial energy level scheme of 8Be 1in figure 2 (Lauritsen
and Ajzenberg-Selowe, 1966), it is evident that some
comment 1s necessary. Verba et ai. observed six deuteron
groups corresvonding to the states listed in table &4-1,

The experiment was done with an energy resolution of +
.1MeV. 1In addition, ther observed a smell group at 11.4 MeV
end another at 24,5 MeV. Kull (1967) has done the same
experiment et 33.5 ¥eV, and his observations agree for

the most part with Verba's. They both find that the 16.63
MeV state 1is excited only about 5% compared to the 16.93 MeV
state. Eoviever, the state which Verba identifies as 19,08
MeV, Kull identifies as 19.22 MeV. Nelther author mentions
any contribution from the broad 18.9 NeV state which appears
in the energy level dlagram. For the purpose of this analysis,
Verba's designation of the 1SMeV deuteron group as result-
ing ffom the excitation of thz 19.05 MeV state in 8Be

will be assumed. The data from Lee et al. using 100 MeV

protons were taken with energy resolution of 1.9 MeV. The
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TABLE 4-1

Differential cross sections from - Be (p,a) Bﬁé gt 46 Mev.2

Ground state 2.90 MeV state 16.93 MeV state
e dr/da 8cr dwr/an ) der/dn
(d%@.) (mb/sg ( gg.) (mb/sg (d8¢.) (mb/sp)
15.0 3.55 1£.3 7.07 15.8 4,77
17.3 2.76 17.6 4,93 18.3 4,53
20.3 2.13 20,6 4,28 213 3.73
23.2 1.58 23.5 3.20 24,3 2.73
29.0 82 29.5 2.40 30.3 1.52
34,8 54 35.1 2.08 36.3 t.23
40.5 335 40,8 1.55 42,2 1.27
46,7 208 45,5 1.32 43 .1 1.12
£2.0 1106 52.2 Y £3.9 . 787
57.5 .062 £7.8 4T3 59.7 A5G
63 .5 067 53.3 592 65.3 310
62.0 043 58.8 ALY 70.9 .284
T74.0 03¢ T4,2 .230 76.5 .269
TS¢.5 037 79.6 168 81.9 272
84,5 .040 84,8 125 37.2 .238
¢0.0 .02 ¢0,0 JA37 ¢2.05 162
100.0 0082 107.,2 0670 102.56 .104
105.0 L0047 105 .1 .03¢C 107.5 0037
110.0 .0C45 110.0 .0261 112.4 0722
11C.5 .0057 116.5 0272 117.2 0564
124,C 0027 123.c 0zase 125.4 L0768
12¢.5 0061 137.3 02EC 128.3 L0575
133.5 ele:S! 13C.5 L0547
133.0 L0037

<
c.

Verba et al., 1967.



LOUE

0324
0350
L0180
0243
.0:80
L0211
0132
00248
0161
L0110
.0150
.0106
.00¢1
L0124

10.05 MeV state

0
(G8g.)

12.3
1£.4
16.0
183.4
21.5
24,5
30.6
36,5
4o 6
43,5
4,4
0.2
71.5
82.5

83.1

103.3

de/d0,

(mb/sp-

1.64
1.5¢
1.35
1.46
1.27
1.15
.583
55T
Niels
<440
« 307
167
01 18
.0376



c
Differentizl cross sections from -Be (p,

Ground state

45,256k
50.5504
57.5307
63.039¢
6¢.9585
74,2766
85.1345

a)¥ark, 1565; Lee et al., 1$67

d.
tl ey

1.6203
1.1184
L4111
2272
.133¢
.107¢
07023
L0361
.027G¢
01661
.01083
0036107
.0C4303
003148
001530

45

TABLE 4-2

2.9C MeV state

C)
(Gee.)

£.824¢
o, 3508

e

14,01¢1
13.715¢
23.3882
30.1571
38.0237
41,5836
45 . 354C
£0,6337
ET7.6500
53,1686
70.0S00
T4 41638
8%.3375

ar/dR,
(mb/sr

3.00S7
2.266
1.3541
.3320

.£556

.3123
2256
<1334
.08¢33
L0534
.02¢19
.018¢6
011564
.0087¢T7
LOC4111

A

-

)

8Be at 100 vev.2

16-20 Mev states

)
(3@3.)

£.8ec2
C.,4737
14,197
12.652
23.5¢22
30.5322
38,4852
Lz ,0852
45 ,36¢38
51.237¢
£3.3157
53,9109
TC.860¢
E.2124
36,1847

de/a
(;47533

5.3117
3.6262
¢ 4435
1 0589
9723
5718
2420
JEES
.1073
07896
L045CT
.02612
.01375
.0C5¢08



FIGURE 2
A vartial diagram of the known energy levels of bBe.
See lauritsen and Ajzenberg-Selove (1665) for the com-

zlete diagram.
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deuteron group labeled 16-20 MeV presumatbly conteins
contributions from many levels of 8Be in that energy
region., For the purpose of this anzlysis it has been
essumed that the mejor components are due to the 16.93,
17.64, 18.15, and 19.05 MeV states as observed by Verba
end Kull.

In this analysis the transferred neutron ves
assumed initially to be bound in a Saxon-Woods pctential
of the form of equation 3-10 (with the imaginary part set
equal to 0) in the target nucleus. The bound state of the
neutron must be such that when it is coupled to the final
state in the resicduzl nucleus the initial state of the
terget is reproduced. The neutron potential well para-
meters used are given in table 4-3, The potential depth
Vo has been adjusted to glve the correct neutron binding
energy vwith respect to the ground stute of the residual
nucleus.

The easiest method for obtaining the incoming
and outgolng éisteorted waves would be tc use the optical
potentiasl derived from fitting the elastic scattering
data of protons from 9Be and of deuterons from 8Be.
However, deuteron data were not avallable since 83e is
unstable. Hence, a more complicated method has been
adopted to obtain the guteron optical potential. First,
the proton potential is obtzined by fitting the elastic
scatterings data, as mentiocned above. Then, using this

proton potential, the deuteron potentlal is generated by



e

TABLE 4-3
Neutron potential parameters.2
rozrso a =g o Vo
1.36 0.55 51.7¢

e)

11 and Yarx, 166%a
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fitting the experimental angular distribution for the
ground state transition in the gBe(p,d) 8Be reaction.
Cnce the opticel potential is found, znalysis for the
excited state trensitions may be carried out with all
parameters fixed.

Both the optical model and the DWBA conmputer
codes were written by Dr. T.Y. Li in thls labtoratory.
The entire calculation was performed using the IEM
360/75 computer in the ¥cGill Computing Center. Details
for operating the optical model code can be found in the
thesis of Houdayer (1906¢) and for the DWBA code in appendix
B of this work. The search subroutine used in both codes
has been explained by Houdayer.

The automatic senrch subroutine operates by

2
minimizing the cuantity Z, which is defined as

X
N erp heo
z= £ T(m)—VbeA 4
) (4-1)
- AC(e) |,

where q'%éf) and O‘%o'f) are, respectively, the observed and

the calculated differential cross se¢ctions at center-of-

mass angle §;, and A¢ﬁ%}1s the error quoted for the data
point. Since the optical potential 1s known tc be ambiguous
in the sense that severel different potentials can glve

an adegquate fit to the data, the absorprtion cross section,

0h » 1s calculated in the cntical nmcedel code. The alm

1s to compare the cnlculated volue to the observed value

as an additional criterion tc distinguish the best potential.

At each energy, two sets of proton optical varameters
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were found using the potential given in equation 3-10,

In one set, the imaginary term had WV=O, and in the other
WD=O. These parameter sets are called, respectively, the
surface imaginary and the volume imaglnary sets. 1In all
cases, the Coulomb potential radius varameter, RC’ vie s
1.89 fm, the value quoted by L1 z2né lark (1963).

Table 4-4 shows the proton opticel potential
varameters found to give the best fit to the data. The
100 MeV sets were found by 11 and Nark (1668). For the
46 MeV data, essentially the same search procedure was
followed as for the 100 MeV dzta. In the latter case,
however, the search was initlated using the 100 eV para-
meters, First, the potential depths were varied with all
the geometrical parameters fixed. Then, individually the
restrictions on the georetricel parameters were relaxed
until a minimun value for szms rezched with nine para-
meters being varied. Figure 3 shows the two theoreticel
fits to the 46 MeV elastic scatterins datc,

Satchler (1€67) huc alsc anzlyzed ths 486 MeV
elzstic scattering data using gnoptical mcdel code. He
observed that when the geometricxzl varameters in the
imaginary votential were virisd independently of those in
the real potential, the radius paremster of the former
tended to become larger than the one in the latter. A
simllar phencmenon was observed in potential Pt, but
not as strikingly as those given by Satchler. As a check

on the optical parzmeters, they were used to calculate the
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TABLE 4-4
Proton charnel ontical parameters from e (r,p) 9Be.

Potential Energ r v ki
orents (ace\refy ($m) a(L‘Em) (fev) (fm) (fm) ?ﬁev)

P1 46 1.150 .74 34,74 1.31 .79 13.72
2 45 1.145 .76 42,41 .82 B4
F3 100% 1.457 .69  15.70 1.34 .51 13.41
P4 100% 1.3585 ,67 16.77 1.38 .6

*

G cnle O exrot Z/N

Potential £ vV
emIET 89y B8) ®%) By o)

P1 1.052 583 10.63 440° (uoob 2.8
P2 1.024 420 5,14 426 g 400° LT
P3 1.035 364 §.76 243 231 1.6
P 1.2S4 LED 7,05 2ED a3 1.5

%)Li and Mark, 186638
)Carlson et al., 1637

W
(BeV)

17.09

553



FIGURE 3
Optical medel fitting of the 46 MeV elastic scattering
data. The solid curve is potential P1, and the dushed

curve 1s vetential P2.
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42 MeV preton polarizetion data from 9Be.

The fit was poor, which has alsc becn noted by
Satchler. This peculliar behavior of the optical model fit-
ting of 9Be might reflect something pzrticular in the

structure of 9Be (L1 and ¥ark 1¢68).

4,2 Results and Compuriscon With The Experiments

For each set of proton parameters, a deuteron
surface imaginary varameter set was found using the DWBA
code with the finlte~range aprroximation. TFor thic cal-
culation, the spin-orbit courling rotential was assumed
to be O in both channels. The (p,2) ground state transition
anFuler Jdlstribution was fitted by supplylng a theoretical
value for the spectroscoplc fector (Cohen and ¥urath, 1967)
in order to obtain order-of-nmagnitude agreement with
experiment. The resulting culculated value is then normal-
1zed to the observed differentizl cross section.

The 9Be ground state with spin and parity
J1r= 3/2_ wes assuned to be prinicrally of the shell model
conficuration (18)4(1}3)5 and the pick-up preocecs is expected
to tzle »lace in the 1p shell., For this cazlculstion 1t
vas assumed that only the 1=1 nucleonc were afected in
the (p,d) rezction. This le.dés to the possibility of
J=14 5=z or 3/2 for the total angular momentum of
the picked-up neutron. For the transition toc the ground
state (0%) of 8Be, only J = 3/2 1s allowed.

The calculazted anpular distribution for the
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ground state transition at 445 MeV incident energy with
the two different combinations of proton and deuteron
optical votentizls arrears in fipures 4 and 5. Analysis
of the same transition at 100 MeV incident energy gave
the fittings shown in figures 6 and 7. Generally, the
fits to the ground state are falrly good, ani at ench
energy, they are similar to each other apart from a small
difference in absolute normalization. In each case, the
calculated curve hss been normalized to the experiment:zl
voints, anc tre root-mean-scuare devigtion from the mean
normalization has been calculated, The mean normalization
and its deviaticn were used to extract the srectroscopnic
factors, which will be discussed in the next section.

The deuteron opticsl potentials obtzined from
the ground state tronsiticn at 46 MeV and 100 MeV incident
energy are piven in tcble. 4-5, The Coulomb rudius was
taken to be RC = 1.4 fm. Althourh the deuteron parameters
at each energy show ¢« certain amount of internal consistency,
there seems to be some voriability between the sets. At
100 MeV r  is significantly smaller than that at 46 Mev.
Also, while r

and ap are about the same size at 46 MeV,

D
rD is definitely larger than ap at 100 Yev.

To anz1lvze ths exclted states' transitions,
the deuteron ontical notentials extrzcted from the ~round
stute transition were used. In every case except the 16,05

MeV state (3%), the contributions from both 3} = 5 and 3/2

plck-up were exvected; for the 19,05 MeV state, only
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FIGURE 4
Angulzr distribution for the ground steate transiticn,

showing the fit obtained using potential 4dWy.
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FIGURE 5
Angular distribution for the ground state transition,

showing the fit obtalned using potential 4SWD.
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FIGURE 6
Angular distribution for the ground state transition,

showing the fit obtained using potential 1OOWV.
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FIGURE 7
Angular distribution for tre grcound state transition,

showing the fit obtained using notential 1OOID.
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TABLE 4-5

Deuteron chanrel optical paramesters from “Be (p,d) 8Be.

Deut zron Preton Energy r a VQ
Potential DPotentiazl (¥eV) (?m) (?m) (Fev)
46“V P1 45 1.212 W45 2.63
LoW P2 46 1.176 .54 36.7°
100Wy, P3 100 514 .51 50.€0
1OOWD P4 100 .34C 22 £1.1%
Deutercn r & Wp 7f7N

Potentiel (Pm) (Fm) (FeVv)

45wv 1.1456 1.20 1t1.22 6.3

460 JOTT . G¢ 14,63 F.2

100Wy 1.656 W35 18.30 1£.¢

100wy, 1.5 0T 18.03  11.S
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3 = 3/2 was ellowed. To =nalyze transitions to the excited
states in which both j = 4 an¢ 3/2 are allowed, the
theoreticel relative spectroscoric factors as glven by
Cohen and Kurath (1967) have been used. The differential
cross sections for a glven transition were calculated
separately for J = ; and 3/2 components, and then, the

sum of the two components, weirhted by the relative
spectroscopic factors for J = ; and 3/2 rick-up, was
normalized to the experimental d=tz, The ansular distribu-
tions for the excited states arc given in figures 3 through
21,

For the 100 YeV data, the observed deuteron
group in the excitation energy region from 16 to 20 MeV
has been assumed to result mainly from the excitation of
the four states (16.S3, 17.64, 18.15, and 19.05 MeV) as
observed by Verba at 46 MeV. The calculated engular dis-
tributions for this group of deutesrons were obtsined by
simply adding the contributions from the four states
mentioned above using the theoretlcazl spectrescopic
factors given by Cohen and Kurath., The fits in both cases
(figures 20 =and 21) were survrisingly good considering
the complexity of the experimentel date,

Compzrison of the figures 4 through 21, shows
that feor a given pair of potentiuls, the calculated zngular
distribtions are quite similar in shape. However, the
mzgnitudes before normalization are somewhat different.

These differences fall within the rodrmean-squere deviations,



FIGURE 8
Anguler distribution for the 2.9 ¥eV state transition,

showing the fit obtained using potential 45Wy.
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FIGURE 9
Anpulur distritution for the 2.0 YeV state transition,

showing the Tit obtsined usins rotsntial 46WD.
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FIGURE 10
Angular distribution for the 16.93 ¥eV state transition,

showing the fit obtalned using potential 46W,.
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FIGURE 11
Anpuler distribution feor the 15.¢3 MeV state transition,

showirng the fit ottalned using potential 46WD.
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FIGJRE 12
Angulzr distrivution for thz 17.64 teV state transition,

showing the it obtained using pctenticl 46‘.'IV.
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FIGURE 13
Anculer distribtution for the 17.64 ¥eV state transition,

showing the it obtained using notential 46WD.
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FIGURE 14
Anguler Zistritution for the 13.15 MeV stzte transition,

showing the it obtained using notential 46wv.
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FIGIRE 15
Anguler distribution for the 13.15 VeV state transition,

showing the fit obtalned using potential 46WD.
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-

FIGURZ 1¢
Angular distribution for the 18.05 IeV state transition,

showing the fit obtzined using potenticl 46Wv.
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FIGURE 17
Angul-or distritvution for:the 1¢.,05 MeV state transiticn,

showing the Tit obtalned using potential 46Wp.
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FIGURE 18
Anguler distribation for tre 2.¢ VeV state transition,

showing the 71t obtalned usling petential 1COW.
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FIGURE 10
Angulur distribution for the 2.¢ VeV state transition,

chowins~ the fit cotolned using potentlial IOOWD.
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FIGURT 20
Angpular distribution for the 15-20 eV states transitions,

showing tre fit cbteined using potential 10CWy.




dcr/ dfl cm (mb/sr)

10~

1072

1073

®Be (p,d) ®Be
E, = I00Mev

100 Wy

L:t  16-20MeV

I I T N N W |

1

|
60 80 100

8cm (DEGREES)

120

140



FIGURE 21
Angulur distritution for the 12-2C MeV st:tes transitions

showine the it obtalined using votentlal IOOWD.
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though. Hence, there is no inconsistency between the
pairs of potentizls.

In recent years several nmodels have been
proposed to exrlain the rexction 9Be(p,d) 8Be. For the

0.0, 2.9 and 11.4 MeV states of 8

Be, VWildermuth (1€62)
hos wroposes 2 cluster model in which two e-particles in
Be appear in the 0%, 2%, 4% rotation=1 sequence. In
9Be, the additional neutron is loosely bound to the o=
particles, and c:n bte easily picked up lezding tco the
excitation of the states of 85e (Tacmart et al., 1964).
For the next rrour of states, from 16.63 to 1¢.22 MeV,
this simrle rnodel brezks down. At 1T7.252 and 18.8%6 Nev
8Be rezches the thresholds for break up into 711 4+n and
7Be 4n, respectively, (Lauritsen and Ajzenberg-Selove, 10656).
Yarion (1965) has proposed thot the 2% doublet at 16,63

and 16.93 MeV can be constructed fror relsatively wvure

single particle cluster stitec: Yamely, the 106.65 ¥eV

stete 15 written p + 7Li(gs) and tre 16,93 ¥eV n + [Be(gs).
(@)
Consider tne ground state of "Re tc be rswvresented by

730, respectively, byast and X+ He,

Arden ¢ and 7L1 and
If the neutron is picked up from one of the W=-purticles,

only sﬁe =nd never t can be forred. Fence, the 16.63 MeV state
should not be excited. In fact, the experimentzl results

seen to berr out this cornclusion (Marion et al., 1966;

Kull, 16¢67; Verba et zl., 1967). &s = further extension

of this model Marion (1965) proposed similar conficur.tions
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for the 1* doublet at 17.64 znd 18.15 leV. Eowever,

the magnitudes for the cress secticns to these states
are quite similar (Kull, 1967; Verba et 2l ., 1967),
which casts doubt on thelr interpretztion a2s pure single
perticle cluster states.

A consecuence of Marion's interpretation of
the 156.63 and 16.63 YeV states is that they have isospin
mixing of T = O end 1, For the nearly pure singlzs particle
states th-ot Merion postulates, the mixture should be
2lmost ecqual for each value of T. It is =zlso thought
(Kull, 1967) that the 1% doublet (17.64 and 13.15 MeV)
and 2 possitle 3% doublet ( 16.05 and 19.22 MeV) should
exhibit isospvin nmirxing., For this reason, the cnalysis
of the states of the region 16.63 - 16,22 VeV was performed
allowing different mixtures of iscsiin from pure T = O
to pure T = 1 to te incorroratel intc the calculated
differential cross sections.

Tebles 4-6 znd 4~7 show the spectroscopic factors
extraected from fitting the two sets of dztz, Also, the
intermedizte courling shell model srectrosccric factors
of Cohen zni Kurath (1667) and Palashov et al., (1965)
are displayed fer ceomparicon. In thz case of the 16.C3
toc 19,05 eV stztes, spectiroscoric fretors were calculated
zssuning voilh pure T = 1 and pure T = 0. Hence, the
values for thesc states can easily be found if the proper

isospin mixture is known. In the case of the 16-20 MeV



Spectroscoric factors

TAELE 4-6

theoretical results,

eytracted in

this work, compared to

o~
seve U1 e B g Potential
c.0o ot 0 JT244.204  JT2kw.224 46y
2. 2% 0 J14E4,033 1.5414.375 1.735+.375
16,83 2% 0 .2354.,104 ,C3T4.435 1.2234,435
1 03701.163 3.253:101‘4 1.2111.48C
17.64 1% 0 .2114.,117 .0734.043  ,20C+.125
1 .417+.231  J434x.261  L284%x.112
18,15 1* 0 .109+4.07% .0404.02¢ .15C+.004
1 . 217T+.157  .226%.154 .143+,075
19.05 (3) O CA454 167 LE4E4.107
1 1.53%44.5C0 5484,1C7
0.0 ot 0 .6604.224 L6604 .224 L6y
2,0 2% 0 .126+.031 1,4244.354 1,54G4+,355
16,83 2+ 0 ,2064.0867 .880+.279 1.0664.237
1 .323%.105 2.8454.,S23 1.,056+.310
170'3L 1+ O .1861-079 -oégi OEE OL.,—"" .034
1 -3711-156 .J:?i 153 'C’Di O‘,
13,18 1% 0 ,0064.C60 .0354.022 ,1314.054
1 1814.120 1SC+.125  ,1304.0568
16,08 (3) © £2C+.128  .£2C4.12E
1 1.587+.374 520,125
0.0 ot © L5002 L3560
z.¢ 2t 0 .0588% .56663 .13
16.¢3 2% 0 .0830C 3438 345
1 .18238 1.3431 401
17.54 1% 0 ,0423 L0156 .C3¢
1 QEC \E 03091 01§8
18.12 1Y 0 .0423 0155 .05¢
1 .2S65 «30¢1 .163
16.08 (3) © L1076 .13
1 .£250 o

&)Cohen and Xurath, 1957
b)Balashov et al.,
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TABLE 4-7

Spectroscoplic factors extracted in

this work.

|
State J T ‘jvv <JV1, J Potential
0.0 ot o© .602+.418 .602+.418 10CWy
2.6 2% 0 .1134.053 1.2764.602 1.388+.604
16,93 2+ 0 .1814.043 .7554.172 .936+.173
1 .283+.065 2.4S84.570 .C263.191
17.64 1% 0 .282+4.,064 .1044.02k ,386+4.059
18.15 1+ 0 ,282+.064 .1044.024 ,3854.,05¢
1 JE40¥,125  B73+.131  .3T4+.060
10,05 (3) O© .3254.07T4  .3254,074
1 .CTS+.223 .3254.074
0.0 ot 0 6Ths 160 (65T44.190 100Wy,
2.¢ 2% 0 .0%4+.033 1.070+.373 1.1654.37%
16,03-2% 0 .0084+.024 .40C+.102 .507+.121
1 .154%,033 1.35%4.327 ,5032,113
17.54 1% 0 ,152+4.033 .0554+.C14 ,208+.040
1£.15 1% 0 ,1524.033 .,0%54.,014 ,2034.040
1,05 (3) © JAT5%.044 1754 ,044
2%+ .132  .1764,044



group 2t 1C0 MeV, the analysis 1s not very dependable.
Besides the assumption that j = s and 3/2 components

of the scatterins follow the recletive values from Cohen
and Kurath, it wzs necessary to assume that the relstive
strengths among the four states could be found using

the values given by Cohen znd Xurath. In additicn, the
four contributins states were added together assuming
elther pure T = O or pure T = 1,

Comparing the extricted speciroscopic fouctors
to Cohen and Kurath's, it 1s apparent that there ara large
differences. For the ground stute, the values agree
within the ascigned error. However for the excited
states, the extracted valuss are in many cases from two
to five times larger than Cohen and Yurath's values. 1In
the case of the ground stete, one would exrect agreement
with CChen und Kurath since their vzlue vwas used in the
serrch to cbtain order-of-magnitude apgreement with the
data. If txe intermedicte ccupling model used to compute
the spectroscepic vzlues were a cood descrintion of 9Be,
there should be fair agreaient between the computed ond
extracted values for the excited stetes. The lack of
such cgreemant casts doubt on the vilidity of the model.
Similerly, comparison with Balashov's values for
shovs nmarked discrepaacy between the extracted and predlcted
results. It seems that neither intermediate counling

calculation reflects the structurc of 9Be very accurately.



100

Two other investigators have extracted svectro-
8

scopic factors from “Be(p,d) OBe st 33.6 MeV (Kull, 1967)
and 155 ¥eV (Towner; 196C¢). Tuatle 4-8 shows the results

of this wcrx compred tc those of Towner., The guantity
glven as .-X is a&/,«-xfybfcr T = 0 and i’(&m&h\for T=1,

For the ground &and 2.¢ MeV stuztes, the extracted values

are in fair agresment, but for the higher states, the
results of this vwori: ars systemztically higher tran those
extracted by Towner. Kull apnears to get falrly good
agreement with» Cohen ani Kurath by caulculzting his spectro-
scoric factors with icsospin mixing included. Frem the figure
showing hies fit to the ¢ground state tronsiticn, it appears
that the quzlity of fitting in nhis worit and in this one

are comparable., In conclusion, it would seem that the
regults nresented rerz or= lec: enccurcging for Cohen und
Kurcth's model than are trhose of either Kull or Touner.

It is important tc note that the experimental results
enalyzed by Towner covered an angular ronge from about

4° to 35° | This makes his analysis less relizble,
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TARLT 4-8

Srectroscoric f=ctors extrzcted by Towner (166G) for comparison
to the velues given in tables 4-6 znd 4-7.

state ¥ T
0.0 oY 0 .50+4.14

2.¢ 2 0 .¢Cs.17

054i012
15,63 2+
17.54 1%

.08+.06
13.1¢ 1+
1¢.08 (3)

0174*.03
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CHAPTER 5
CCNCLUSIOCN

A DWBA computer code hazs been developed by
Dr. T.Y. LI for use in calculating the angular distri-
bution in (p,d) and (p,o) rezctions. The code has the
advantage of being fairly simnle to operste without
detzlled knowledge of its construction and gilves results
in agreement with trose obtzined from similar anclyses,

The first pzrt of this paper denls witk the
formzlism of direct recction theery zprlied tc the pick-up
and sirippins reacticns. Soma2 of the bsic concepts involved
in calculoting spectrosconic fuctors in the J T representa-
tion arz clsc discussed., Since the basic preoblem of

DWBA Is to gener.te and integrate over th2 distortec w.ves

N

and bound state wave function, = ccod deel of tlre iIs svent

pu

on the numerical analysis of these functlins. Speci:zl
attention ls psid to the zero-ranre znd finite-range av-
oroximaticns.

After the threory his been exn»lained, it ic used
toc aralyze angular distritutiorns Trom 9'Be(p,d) 8Be at
45 ¥eV and 100 MeV. Proton crtical potentisle were obtained
from elastic scatterir~ data zind deuteron ortical potentials
were found by ortimizine the fitting to the angular die-
tribution of the ground state tr nsiticon in the (»,d) reaction.
The potentiuls thuc obtalned are in gensral acreement with

the results of optic2l model znalvsis at otrer energles,
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These potentials were used to 2nalyze the transitions

to the excited states. The quelity of fits to the various
states observed in the reaction ig fairly esood. From
these fits 1t has been possible to extruct a falirly
extensive table of spectroscopic factors, which arnne:irs

in tztles 4-6 and 4-7. The extructed resulis =zre comp-red
to those of Towner (1962) and Kull (1667). Both these
authors claim fair arreerment with the intermedi:te coupl-
ing calculzticns done by Cohen and Kurath (1667). The
present worli is compsred wlth Towner's resultc in table
4-8 =nd sizaible discrepancy has been observed except for
the ground and 2,90 MeV states, Compurison with Cohen
and Kurath's values for the spectroscopic factors leads

to some doubte about the vnlidity of thelr modsl for “Be.
The same statement apnlles tc the egiculzticn of Balashov
et al. (196%).

Other investigators h=ve huas some success using
various cluster arrancerments to describe 9Be. Jecnart
(1C64) uses two a~-varticles with = loosely bound neutron
to describs the energy levels of 9Be. Maricn (1665) and
Mfarion et al. (1966) have been successful in describing

9Ee(p,d) 8Be transiticas to the 16,63 and 156.93 MeV states

-3

using the cenfiguretions p + 7Li({:s) and n + /Be(ess).

This model alsc rives isospin mixing for T =0, eand 1 in

the states, which seems tc be r:ascnatle. The rair of states
at 17.64 and 13,15 MeV has teen tentativelr identified with

similar confipur-ti-ns invelving the Tirst excited states
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of 711 and 7Be. These designaticns, however, hive not
met with as much successz as the otkers. Generally speak-
ing, the cluster aporozch seems in some resnects to be
more suiltabtle then the shell model. It would te interest-
ing to see whit kind of spectroscoric factors such a model
yields.

Since tle mesent work was bepun, the DWBA code
has been exponded by Dr. T.Y. L1 tc include spin-orbit
potentizls in beth channels with a search facility in the
deuteron channel. A very rough preliminary calcul=ticn
indicates th-t furtier investigscticon of this modification
could be fruitful. In addition, th2 optlczl meolel ccde
hi:s been modified so thot thz real and srin-orbit diffuse-
nesses ara coupled to the rezl and spin-orbit radii through
tre size of the root-mean-square nuclecr radius. Thers
hos not yet been time to investirzte trz effect on the
guality of fiitine of threse additicnal construints, but
it is hoped thrzt this will soon te possibla, In addition,
there are further date from '°0(p,d) '90 «t 100 MeV to be
anglyzed. This wvorlk should te completed within the next

few months an?1 th= results can be rade known,
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APPENDIX 4
SIMPLIFICATICN CF IT°

Simplification of equation 2-3G involves the
use of the symmetry and orthcgcnality relations for the
Clebsch-Gordon and Wigner coefficients (Brink and Satchler,
1¢63). Each of the three pairs of Cletsch-Gordon coef-
ficients must be treated separately and in the order
showvn in what follows.
First,
hz.-n<3‘;ﬂ$[‘$;n; ;'Mj')<11 My jW\j‘I;ﬂ;) =G‘_J_:P,‘(- J))l Wi,
o - 2 Ta-1)
Now that the ecualities j=J)' and mJ:mJ' have been found,
the rest is ewsy. Directly, one sees that ithe sum over
projectile sypins leads to
2 Sepehad k0l b = E s

Thls reduction leads te the eiuality mg=m 'y so finslly

S
the last pair of coefficients can te simplified.

{ / \ . \ lifl) g .{ .
L . » - - t -
“Zj.“s(j— W \.‘“51)"‘\) ><)V*) \1\«1 (Y “‘55" (u"' ﬁ! M‘m} (A 3)
When all these simplifications are substituted into

equation 2-3C, the new exyressiocn is

'L3<T’H.L‘L 3 H- 17T, . @M‘Q
méd-r“, - i < ;. l 4 tj-) C 4#1?&16&' l g l (a-4)
Ecuation 2-40 is found ty adding ithe results of anti-

symmetrizaticn and using the definition of the differ-

entizl cross section.,
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APrENDIX B
USE CF TH=Z DWEA CCMPUTER CCDE

The DWBA code is designed for use on the IBM
350 series of compuaters., It requires 220 XK memory to
run, Below will be listed a card-br-card outline cf the
input data, followed by a list of the optlions acvallable
with the cocde.

Card #1: Format 3F10.,3
T(1)-laboratory energy of the incident particle,
glven in NMeV.,
T(2)-3-value if the reaction, given in Yev.
T(4)-Nass of the target nucleus, given in ANMU.
T(20)-Mass of the incident rerticle, given in
AMU.

T(21)-Vass of the outgoing particle, given in

T(3)=Charse number (Z) of the target.

STEC R-Thecretical scectroscornic factor.

BZTAa-Defermaticn parumeter for : deforned
Woods-Saxon potentizl, It may be elither vositive or neg-
ative, and is © fer no deformaticn.
Caerd #2: TForizt CF10.3

T(2z)-ress of the stripped or picked-up part-
icle, given in AMU.

T{24)-Charre nuzber for the outgoing particle.

T(2%)-Crarce number for the incident particle.
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T(€)=-Crbital angular momentum of the bound
state of the bound particle.

XR(1)-Radius parameter for the Woods-Saxon
pctential of the bound pvarticle, given in fm.

XA(1)-Difuseness parameter the Woods-Saxon
potential of tre bouné narticle, given in fm.

T(3)-2Jp+1/27341. It is necessary only in
(d,p) calculztions, but shoull not be set to O.

T(13)-Calls finite-range or zero-r=:nge option.
It must be small, about ,000001, See more detalls under
options.
Card #3: Torrat SF10.3

T(14)-vaximurn number of partial waves to be
used., As many ac EC zertial waves are cvellable,

T(15)-Number of radial nodes in the bound
state wave function, not counting the origin.,

T(15)-Increment used in intsgration. Increments
of about .1fm heve proven sstisfectory in the rast.

T(17)-Wave numter used in the (»,&) reaction.
Use .231505/fm,

T(1¢)-Square well radius used in the (v,w)
rezction., Use 2,7335fm.

T(1C)=-Wave nurbker r.luted to the squure well
depth used in the (u,¥) reaction. Use .B8135/fr,

T(23)=-8inding energy of either the deuteron
or the w-particle, depvending on the reaction. It is
given in YeV,

XwU-Sirple hermonic oscillator parameter used

in the (p,o) r=action. Use .0S4Z2C,
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Card #4: Formut 8F10.3

TY1-Coulomb radius fcr the incident particle,
cilven in fw.

TY2-Coulomb radius for the outgoing porticle,
given in fm.

XV(1)-Suin-orbit well depth for the bound part-
lcle, given 1in Yev.

T(10)~Interior cutoff radius of the bound part-
icle. It 1s neot used, so set to C.

T(%)-umber of the experirental pcint tc which
the cross secticns ore normrlized., It can range from 1
to the muximum number of data points used in the calculation.

T(11)=-Set tc C.

T(12)-Set to O. Neither this nor the item
above are any longer necessary in the nregrar.

RCX=-Zoulcmb rudius of theé bouné particle.
Card #5: TFermat 4F10.3

This card contains the Wocds-Saxon racdius para-
meters fcr both crannels, eilven in fm, as well zs the
diffusenesses, also in fm, for the recl potentizl term.
The order is incident channel racdlius, outgoins channel
racdius, ircident channel diffuseness, anéd outroing channel

d

[N

ffuseness,

3

Card #06: Format 4F1C.3

)
3

The same order az used in card #5 1is used to
display the impasinary ncoctential radii and diffusenesses,

For further details, see the options.
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Card #7: Format 6F10.3

The potential depths for both channels are
read in in the order incident channel rezl, outgoing
chznnel real, incldent volume imaginary, outgoing vclume
imeginary, incident surface imaginnry, and outrgoing
surface imeglinary. All notentials are read in with pos-
itive signs, and those not Involved must be set to O,

The order of cards given so far aprlies if there
Are no:data. If there are data, cards numbered 4z and
4b are inserted between cards 4 and 5, and 3, ¢, andiC
cceme after 7.

Card sphe: Format I4

This card merely indicates the number of exp-
erimental points listed on the card(s) which follow.

Card #4t: Format CF8.0

Data are listed on 2s many cards as ls necessary
at three vcints to the card. The listing 1s angle in
derrees, cross section in mb/sr, and error for the measure-
ment in mb/sr.

Card #3: Format I4

Indicate the number cf points desired in the
zutometic search. If none, put C; if more, there is no
upper limit excert the numter the coumzuter will zccept. Fer
sufficiently larre values, for instance 100, tke jcb will
run until zllocated time is used.

Card #¢: Format 17I3

Indicate which paremeters are to be varied in
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the automatic search. The code 1s 1 for a parameter to
be varied independently, O for a perameter not to be varied,
and -N for a parameter to take the value assigned to
parameter N. The seventeen svaces of I forsat are al-
lotted, cne to a parameter in the following order:
1-% are allotted to radius parameters. Bound particle,
incident channel real, incldent channel imaginary, out-
going channel real, «nd outgoing channel imaginary. 6-10
are allctted to the diffusenesses using the same order
as used for the radii. 11-17 are allotted to the pot-
ential parareters in the order dound purticle spin-
orbit, incldent channel real, incident channel volure
imaginary, outgoing chanrel real, outgoing channel volume
imaginary, incident channel surface imuginary, and out-
going channel surface im:glnary.
1 Card #10: Format I3

Indicate the nurber of independently varied

raraceters., If a number on card 9 1ls negative, the par-

ameter is not independently warled,

CFTICHNS

Card #t:

T(1)-If necztive, the set of data ‘in which it
avrears is the last to be read. When the calculution is
completed, the job is finished,

T(4) and T(20)- In cenjunction with XR(1)

from card 2, these parameters indicate which of the reactions
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(p,d), (d,p), and (p,%) is to be celculated., If T(&)

is positive, the (p,X) reacticn is done; if T(4) is
negative and XR(1) is pcsitive, (d,p) is calculated; and

if 7(4) is negative and XR(1) is negztive, (p,d) is cal-
culated. Wwhen (p,®) is done T(20) must be negative for
7Li(p,x)x because of the use of Boson rather than Fer-
rion statistics. For every other case, T(20) is vositive.

SPICTR-IT this is rositive, X¥is calculated
after nermelizing the calculited unguler distribution:
to the data. If it is negative,X?is calculated before
normalizeticn,

Card #2:

T(S)-Indicate j=l+s when this is positive, :nd
j=1-5 when this is negative.

T(8)-No data need be suprlied if this is pos-
itive. The angul:=r distribution 1s the ccleculuted at S
intervals from O -180 . If T(3) is nerative, experi-
mental Jdata must be supplied.

T(13)-For positive v.lues, tre finite ranre
aprroxination 1s used; for negstive values, the zero-
range aniroximcation is used,

Card #3:

T(17)-%When the (v,x) recction is calculated,
sirple harmeonic oscillator wave functions are used in
the finite r-nge calculaticn if T(17) is negative. For

rositive values, sauare well wave functions are used.
’
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Card #4:

RCX-If this is positive, ussume RCX takes on
the value of the incident channel real radius. 1If it
1s negative, the mazpgnitude of the stated value of RCX
1s used. This is only importint in the (p,) rezction,
since the neutron is not charged.

Card #5:

oﬁtgoinp chennel diffusceness~When it is vosi-
tive, the imeginary volume purameters are set equal to
the real parameters, not including the well denths.
When it is nepative, the imaginary surface aund volure
geometrical varameters are set equal. In the negative

vtion it is possible to distingulish volume and surface

imsginary marameters as they are entered on cards 5 and 6.



