A PRACTICAL INTERPROCEDURAL ALIAS ANALYSIS
FOR AN OPTIMIZING/PARALLELIZING C COMPILER

by
Maryam Emami

School of Computer Science
McGill University, Montreal

October 1993

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

Copyright © 1993 by Maryam Emami

Abstract

Accurate alias analysis is a crucial phase of optimizing/parallelizing compilers for
languages which support pointer data structures. The result of the alias analysis is
used by most of data-flow analyses and optimization phases in a compiler to produce
cfficient code.

In this thesis, we introduce a new approach for interprocedural alias analysis whicl
determines the explicit points-te relationships between locations in an abstract stack
at cach program point. Two variables have a points-to relationship il one of them
points, or may point, Lo the other one,

To perform our interprocedural analysis, we have designed a new representation to
capture the call-structure of the program, called the invocation graph. This is similar
to the traditional call graph, with some additional properties for the recursive funetion
calls. The invocation graph is used to follow the exact sequence of function calls and
returns in the program. In this manner, the precise information is propagated to/from
a {unction,

This work has been integrated in the McCAT optimizing/paraliclizing compiler
for the C-language. The analysis handles both scalar variables and aggregate data
structures (records and arrays).

The results of the points-to analysis provides a base upon which other interproce-
dural analyses are built. This thesis provides both experimental results and examples
to demonstrate the usefulness of the points-to analysis,

Résumé

L’analyse d’alias est une phase extrémement importante de tout. compitatem de tan
gages supportant les pointeurs de données. Le résultat de cette analyse est en ellet
utilisé par le plupart des méthodes basées sur I'analyse de flots de données ainsi e
de ncmbreuses techniques d’optimisations afin de générer du code elficace,

Dans ce rapport, on introduit une nouvelle approche pour analyscinter procedunale
d’alias permettant de déterminer les relations explicites de type pomdfe sur entic les
éléments d’une pile abstraite & tout instant d’un programme. Deux variables sont
liées par une relation de type poinle sur si 'une d’elles pointe, ou pent ponder, s
’autre,

Notre analyse est basée sur une nouvelle structure de donndes appelée graphi
d’invocation permettant de représenter précisemment la hiérarchic d'appels o de e
tours de fonctions d’un programme. Cette structure est similaire aus traditionnels
graphes d’appels tout en possédant des propriétés additionnelles pour le traitement
des appels récursifs de fonctions. Le graphe d’invocation permet de déterminer la
séquence exacte d’appels/retours de fonctions dans un programme. 11 antorse la
propagation d’une information précise vers (ou a ’extéricur) des lonctions,

Ce travail a été intégré dans le compilateur C McCA'T. La méthode présentée tyaite
de facon détaillée aussi bien les variables scalaires que les structures de donuces plas
complexes de C, telles les tableaux ou les enregistrements.

Le contexie du travail présenté dans cette these est général et pent seivin de
base pour 1'élaboration d'autres méthodes d’analyse inter-procédurales, Ce mannscrit

présente & la fois des travaux expérimentaux ainsi que des exemples décrivant analy e
de type pointe sur développée.

iii

Acknowledgements

I am thankful to Professor Laurie Hendren, my supervisor, for her technical and
financial support throughout the course of my study at McGill. I am gratelul for her

understanding, paticnce, and kindness. She was always there to listen and 1o help.
THANKS a lot Laurie.

[would like to thank W, A. Landi (currently at Siemens Corporate Rescareh) for
all the technical discussions that we had through email and for sending me the results
of his method for comparisons. Further, I would like to thank Bhama Sridharan.
one ol my best friends, for her presence during all the stages of my study and for
her technical support. 1 am thankful to V.C. Sreedhar for his constant support. lle
is the one who will never say no, the one who has an answer for every question. |
am grateful for Ravi Shanker who was there cheer up people with his warm smile. |
am thankful to Chris Donawa, our McCAT and ACAPS administrator, lor his great :
administrative work, I would like to thank Rakesh Ghiya for his friendly attitude and i
all the technical discussions we had. Further, I am thankful to Clark Verbrugge who |
provided the table of his results for the general constant propagation. I am grateful :
for all the people who commented on my thesis and also who provided me with buggy
test programs to test my software, especially V.C. Sreedhar. I would like to say a
special thanks to all the ACPAS members who made such a friendly envivomment to
work together, and, in particular Justiani, Michel Gagne, Chandrika Mukerii. Cecile
Moura, Dhrubajyoti Goswami, Ana Erosa, and Luis Lozano. Special thanks ave also
duc to dear Lise Minogue, the secretary of our department, for her kindness.

Further, I would like to thank Dr. Mehdi Mohageg, Dr. Mahmood Nourbaklish.
and Mr. Eskandar Ilkhan without whose support and help I could never have contin-
ued my studies. I am thankful to my dear parents, and to my dear sister. Mardjan,
for their understanding. I am grateful for Amir Keyvan Khandani. one of my best
friends, for being so patient and supportive.

I thank God who has surrounded me with such nice people.

iv

Dedicated to my mother, Irandokht Yadollahi

EERTY RRY e o A s o

oy MR SERREROEN 1 1 HPERELE A

Contents

Abstract
Résumé
Acknowledgments

1 Introduction

1.1 Alilas Anmalysis0 e e

1.2 Applications of Alias Analysis
1.2.1 Constant Propagation

1.2.2 Reaching Definitions

¢ e e

C Y

DR Y

...................

...................

1.2.3 Replacement of Aliased Variables

1.24 Alias Information in Building the Call-graph
1.3 McGill Compiler Architecture Testbed (McCAT)
1.4 Thesis Contributionso oo i
1.5 Thesis Organization.

2 Background

2.1 An Introduction to FIRST

..................

2.1.1 Motivations for Building FIRST
2.1.2 Modifications to GNU C to Build FIRST

2.2 SIMPLE Intermediate Representation

vi

..................

i

ii

iv

2.2.1 Important Characteristics of SIMPLE
2.2.2 Transformation of FIRST to SIMPLE

223 AnOverviewof SIMPLE

3 Intraprocedural Points-to Analysis for Scalar Variables

3.1 Motivating Example
32 OurApproach
3.3 Rules to Convert Points-to Information to Alius information
3.3.1 Justification of the Proposed Approach
3.4 Notations and Algorithm
3.5 BasicStatements
351 Casel o i
352 Case2 e .
353 Cased e
354 Cased . ..o e
355 CasedH e
356 CaseB vt
3.6 Compositional Control Statements
3.6.1 Points-to Analysis without break and continue . . .
3.6.2 Points-to Analysis with break and continue.
3.7 Summary ... e e e e e e

4 Interprocedural Points-to Analysis for Scalar Variables
4.1 Invocation Graph
4.2 Interprocedural Analysis for Non-recursive Function Calls|

4.2.1 Relationship Between Invocation Graph and hiterprocedinal

Analysis
4.2.2 Map and Unmap Processes .,
423 ReturnStatement. L

4.3 Interprocedural Analysis for Recursive Function Calls

vii

5 Aggregate Structures 102
5.1 Abstract Stack Locations for Arrays and Structures 102
.10 AITAYS « v v v v e e e e e e e g2

5.1.2 Non-recursive Structures oL 103

5.1.3 Recursive Structures o L o1

514 UnionType oo v v v i oo 107

52 Handling Complex Structure References 107
5.3 Doints-to Analysis for Aggregate Structures 109

5.3.1 Interprocedural Points-to Analysis for Recursive Data Strinctines] |5

6 Handling other Pointer Features in C 119
6.1 Pointer Avithmetic oo o o oo Y
6.2 TypeCasting 0 i it i e e 121
6.3 Dynamic Data Structures o o oo 0oL 124

7 Implementation Details and Limitations 125
7.1 Abstract Stack Data Structure, 125
7.2 Some Special Peatures of Our Analysis R Bt
7.3 Some Implementation Details of Map and Unmap Processes 130
7.4 Library Functions e e e e e e 131

8 Experimental Results and Practical Uses of Points-to Analysis 132
8.1 DExperimental Results, P32
8.2 Practical Applications of Points-to Analysis [:39)

8.2.1 Replacement of Indirectly-referenced Variables 139
8.2.2 Dependence Analysis for ALPHA 10
8.2.3 Function Pointer Parameters. R
8.2.4 Generalized Constant Propagation Y
8.2.5 Practical Array Dependence Analysis N

viii

8.2.6 Reaching Definition Analysis
8.2.7 Live Variable Analysis
828 LoopUnrolling

9 Related Work

9.1 Historical Background on Alias Analysis

9.2 Comparison v v v v v e e e e

~~~~~~~~~

9.2.1 Alias Representation . . ... ...........

922 Must Aliases . . . . . . . . 0

9.2.3 Interprocedural Analysis

9.2.4 Dynamic Allocation and k-limiting

. e

............

...........

925 TypeCasting ... ...... ... ... ......

10 Conclusions and Future Work

10.1 Summary and Conclusions . . . ... ... ... ..

.....

10.2 FPutureWork . . . . . . . o o o oo

A The SIMPLE Grammar

B The Interprocedure Algorithms

C Rules for the Basic Cases

|19
)
1950

1GS
LON

14

171




List of Figures

L1
1.2
1.3
21
2.2
23
24
2.5

2.6
2.7

2.8
2.9
2.10
2.1
2.12
2.13
2.4
2.15
3.1

Ancxampleof Cprogram. . . . . . . v v o v v v i
An example of the use of alias in building call-graph. . .. ... ...
A general view of McCAT, . . . . . ... oo v i v v i
An example of pointer to array in the C-language. . . . .. .. . . ..
Different cases of tree_nodes with some examples of each case.

An example for the representation of arrays in SIMPLE. . .. . . ..
An example for the representation of structures in SIMPLE, . . . ..

An example to show the limitation in breaking down complicated data

structures, . . ... .. ... .0 b e e e e e e e e
SIMPLE grammar for expressions. . . . .. .. .o v 0o
List of the 15 basic statements. Variables x and y denote varname.
Variables a, b, and ¢ denote val. Variables p and q denote ID, . . . .
The SIMPLE AST for IFSTMT. . .. .. ... ... .. .. .. ..
The SIMPLE AST for FORSTMT. .. ... . .... ... ... ..
The SIMPLE AST for WHILE_.STMT and DOSTMT. . ... .. ..
An example of switch statement in SIMPLE. , ... ... ... ...
An cxample for the connection between the statements. . . . . . . . .

An example for the connection between statements and variables.
An example for the representation of scope in a while statement,
An example for the connection between functions and global variahles,

A motivating example behind our approach to intraprocedural points-
toanalysis, . . .. .. .

41

e i Sty N 1 TR Yot BN I S o 0 BB ST et . T i et

o



3.2  An example of a definitely-points-to relationship. . .. ... ... .. 3
3.3 An example of a possibly-points-to relationship. . . .. .. .. .. N
3.4 General algorithm for intraprocedural analysis. . . . ... ... .. .. a8

3.5 An example where no pointer is involved in the assignment statement, 39
3.6 Algorithm of basic statements for scalar variables. . . . . . . ... .. 1l
3.7 An example of rule 1 in the basic statements.

3.8 An example of rule 2 in the basic statements. .

3.9 A more complicated example of rule 2 in the basic statements, . .. . 1l
3.10 An example of rule 3 in the basic statements. . . ... .. ... ... 15
3.11 An example of rule 4 in the basic statements. . . ... .. .. ... . 16
3.12 An example of rule 5 in the basic statements, . . ... .. ... ... IN
3.13 An example of rule 5 that contains possibly points-to relationship i

the basic statements, . . . . . e e e e e e e "
3.14 An example of rule 6 in the basic stalements. . . ... .. ... ... it
3.15 Algorithm of the compositional control statements. .. . . .. .. .. ¥
3.16 Algorithm of the if statement for points-to analysis. . . . .. .. .. 0
3.17 Algorithm of the while statement for points-to analysis, . . . . . .. o
3.18 Algorithm of the do-while statement for points-to analysis. . . . . . 3%
3.19 The algorithm of for statement for points-to analysis.. . . . . .. .. !
3.20 An example of if statement with a break statement, . . . . . . . .. m

3.21 Algorithm of the whilestatement in the presence of break and continue
statements, ., . . . .0 L o e e M

3.22 Algorithm of the do_while statement in the prescnce of break and
continue statements.. . . . ..., 2

-------------------

3.23 Algorithm of the for statement in the presence of break and continue
statements, .. .. ... oo o (i)

3.24 Algorithm of the switchstatement in the presence of break and continue
statements. .. .. ... .. 0000 L e e e 00}

4,1 An example for the construction of the invocation graph. . . . . . .. i3

Xi

Rl e ey

RN P TER PO

R S I A )

o

b



R e

R hes S ¥

[ R
i

1.2
4.3

14

4.5
1.6
4.7

1.8

4.9

4.10
4.11
4.12
4.13
4.14

4.15

4.16

4.17
4.18
4.19
4.20

8.1
5.2

5.3

An example for the construction of the recursive invocation graph. . .

An example of the construction of the recursive invocation graph using
ourmethod. . . .. .. ... ... ...... e e e e e e

An example for construction of the invocation graph in the presence of
mutual recursion. . . . .o v w e e e e e e

Relationship between program and invocation graph. ... .. ... .
A motivating example for interprocedural analysis. . ... ......

The memory representation without the interprocedural analysis hascd
on a conservative assumption instead. . . . .. ... ... oL

Relationship between program and invocation graph (the nnmbers writ-
ten on the edges show the order of the process). . . . ... ... .. .

The map and unmap process. . . . . . v v v v v v v v
A simple exampleof mapprocess. . . . . ... . o oL
An example of map process where invisible variables are used.

An cxample of unmap process. . . . ... oo .
An example of unmap process in the presence of invisible variables.

An example of our accurate map process when an invisible variable
stands for a structure. .. .. ... o oo

An example of general map process when an invisible variable stands
for more than one variable. . . . . ... .. e e e e e e

An example of our accurate map process when two invisible variables

stand for more than one variable. . . ... .......... ... ..
An example for the third point of the map process. . .. ... .. ..
The algorithm for returnstatement. . . . .. .. ... ... .. ...
An example of returnstatement, ., . . . . ... ... L

An example of the interprocedural points-to analysis with recursive
functioncall. . . . . . o e

An example of structure representation in the abstract stack. .

An example of nested structure representation in the abstract stach. .

An example of the abstract stack representation for invisible variables,

xii

ON

Y

80)

104
1033
101
105




wag 4

St B 2 o A | 0 gt

5.4
5.5
5.6
5.7
5.8

5.9
5.10
5.11
5.12
6.1
6.2
7.1
7.2
8.1
8.2

9.1
9.2
9.3
9.4

9.5
9.6
9.7

The incomplete abstract stack for the structure foo.. . . . .. . . .. L5
The complete abstract stack for the structure foo.. . . . . .. .. .. 106
An example of a recursive data structure, . . . . . ... L 106
The overall view of points-to analysis, . . . . . ... ... ... .. .. 1o
An example of interprocedural points-to analysis in the presence of

recursive data structures, . . .. .. .. L e LS
The points-to information of function main before the map process, . 116
The points-to information of function f after the map process. . . .. 1I7

The points-to information of function £ before the unmap process. .. 17

The points-to information of function main after the unmap process, . IS

An overview of the abstract heap representation.. . . . . ... .. .. b2
An example of dynamic data allocation. ... ... .. ... . ... 121
The data structure of the abstract stack. . . . . ... ... ... ... 127
The data structure of map information (map-info), . . ... ... .. L0
A simple example of dependence analysis. . . . ... ... ... ... oy
An example of extending the invocation graph and points-1o analysis

in the presence of function pointer, . ... .. ... ... ... N R
A general division of alias analysis. . . ... ............ .. 153
Anexampleof ICFG. . . . ... .. ... ... ... . .. ... . 190
A simple C program. . . . . e e e e e 157
A comparison example of alias represcntation and points-to represen-

tation. . .. .. e e e e e e e e e e e 1aS
An example of points-to representation, . . . . ... .. ... ... 151

An example of intraprocedural analysis for Landi and Ryder's method. 162

An example of the usage of the map and unmap information saved in
invocation graph. . . . . . ... ..o 165

xiii

A e e e Vbt o o M,y ik T AR e NI s et B 7 ey ¥ o

m—




Fy WY e

LY By R e W | | e

List of Tables

3.1
3.2
3.3

<t
—

oo
—

8.3

8.4
8.5

8.6

Definitions and notations used in the thesis. . . .. .. .. ... ... 37
All possible Basic Statements. . . . .. .. ... ... .0 0L 3N

Basic statements to be studied in this chapter, when lhs (ov rhs) is of

POIMLEE LYPC. . v v v v v v s e e e e e e e e 39
All possible cases of basic statements which affect the points-to infor-

mation when basic statement is of pointer type. . . . ... . ... .. )
Characteristics of benchmark files., . . . ... .. ... ... ... .. 131

Statistics for the number of indirect reference access in a benchmark.
The first line in cach case is related to cases like *x and (+x).y.z. The
sccond line in each case is related to x[i] [j] when x is a pointer to
array. The third line is the sum of the first twolines. . . . . ... .. 1306

Gencral statistics of the points-to analysis. The first line in cach case
contains the statistics of the definitely-points-to information while the
second line contains the statistics of the possibly-points-to information, 138

The statistic results for indirectly accessed variables. . . . . ... .. 110
Read and Write Sets for statement s relative to point-to information P/11]

Statistics of general constant propagation in the absence (first line)
and presence (second line) of points-to analysis. . . ... . ... .. 1

xiv




Chapter 1

Introduction

New and innovative compiling techniques as well as novel architecture design philoso
phies are required to exploit the ample hardware resources provided by the 1ecent
advances in VLSI technology and architecture design. To provide botly high perlor
mance and cost effectiveness, it is essential that compilation techniques and architee

ture models are developed together, so that the effects of one on the other can he
studied,

Optimizing and/or parallelizing compilers play important role in the desiginof high
performance systems. An optimizing compiler requires detailed and acenrate data
flow analysis in order to perform code-improving transformations and to penerate
efficient code, Data-flow analysis is the process of collecting information such as
the definitions and uses of variables in a program. Al the core ol accurate data
flow analysis, lie effective dependence and alias analysis mechanisms, The ability 1o
accurately disambiguate memory references is critical in determining precise data
dependence between variables used and defined in a program.

An important thrust in architectural improvements in modern avchitectines in
volves increasing parallelism. The availability of parallel hardware is of no nse witly
out the appropriate software to exploit parallelism. In respouse to this requitement.,
great strides have been made in compiler technology to automatically detect paral
lelism and perform transformations to enhance parallelism and minimize dependence
in the code. A major part of such dependency minimization and parallelistn enliee
ment is based on using alias information.

PR

e e




g

g WA T YW

R I I e o P e )

1.1 Alias Analysis

An alias occurs at some program point when two or more names cxist for the same
memory location. The aliases of a particular name at a program point are all other
names that refer to the same memory location at that point. Alias analysis is a
technique that collects the information required to determine which names are aliasc
at each program point.

Traditionally, aliases have heen represented as sets of alias pairs. Figure 1.1 demon-
strates this, using some simple examples. At program point p1 in Figure 1.1(a).4a and
b refers to the same memory locution and therefore #a and b are aliased. This aliasing
is usually represented by the pair <#*a,b>. Figure 1.1(b) illustrates another example
of aliasing where at program point p2, *a, #c and b are sharing the same memon
location. This results in the following alias pairs: {<*a,b>, <xc.b>. <ta.t c>}.

- , int*a,b,*c; a b
et ag s O30
. . ¢c=a; C /
et /p2 ¥ O

(a) (b)

Figure 1.1: An example of C program.

The appropriate alias analysis techniques to detect the aliases that occur in For-
tran, due to call-by-reference parameters have been studied and developed [Bar?s.
Ban79, Mye81, Coo85, CK89]. Unlike the problem of aliasing due only to call-hy-
reference, where aliases are only created by the association of actual arguments with
formal parameters due to procedure call invocations, the aliasing problem in €' is
much more complex. In C, one must consider multi-level reference types such as
int* and int#**, and one must support the & and * operators that allow new aliases
to be created al any point in a program (and not just at procedure call time) in
addition to call-by-reference parameter passing (call by reference in C is achicved by
passing the address of the parameter). The problem of alias analysis in (' can be
separated into the following three sub-problems:

(1) analysis for call-by-reference parameters,
(2) analysis for stack-allocated, non-recursive data structures, and

(3) analysis for heap-allocated, recursive data structures.




In this thesis, we present a novel technique for precise analysis of the first two
subproblems. Alias analysis for heap-allocated objects is more complicated and has
been the subject of some interesting studies in the past [JM81, JM82, LIISS, 1INO.
CWZ90, HHN92a]. The analysis presented in this thesis has been designed to com
plement the path matrix analysis [Hen90, IIN90).

1.2 Applications of Alias Analysis

The presence of pointers and reference parameters makes data-flow analysis imore
complicated. Without accurate alias information, onc nceds to make the woist case
conservative assumptions regarding pointers — any pointer variable can reler 1o am
other variable in the program. Some of the typical analyses that will benefit fronm alias
analysis are: live variable analysis, data dependence analysis, common subespression
elimination, copy propagation, array range checking, constant propagation. dead
code elimination, induction-variable elimination, reaching deflinitions. nse-delinition
chains, and so on.

In the following subsections, we present some examples which benelit from acenrate
alias analysis,

1.2.1 Constant Propagation

Constant propagation is a process of collecting constants at each program point. and
propagating the constants along control flow paths. As an example. consider the
following program:

Constants Constants
int *a, b, ¢, d ; without alias info. with alias info,
c=3; /* gtmt 1 */ {c=3} (c=3}
a= &c ; /* stmt 2 */ {c=3} {c=3}
read(d) ; /* stmt 3 */ {c=3, d=7} {c=3, d=7}

b = *a ; /* stmt 4 */ {c=3, d=7, b=7} {c=3, d=7, b=3}

At statement 1, the variable ¢ gets the value of 3. At statement 2, ra and c hecome
aliased. At statement 3, the variable d gets an arbitrary value, Now let us look at
statement 4 more carefully. Without the alias information, the worst case assunption

ol v i g g v N o

¢ i




FREL AT et e

M R G, PIIRE A MERENEN

ORI e DR

says that #a can refer to any of the variables b, ¢, or d. However, in the case that
we have access to the alias information, by using the fact that *a is identical to <.
we can say that b is equal to the constant 3. This allows the optimizer to replace ra
with the constant 3.

1.2.2 Reaching Definitions

A definition of a variable x is a statement that assigns, or may assign. a value to x.
A definition d is said to reach a point p if there is a path from the point immediately
following d to p. Consider the following example:

int *a, b, c ; Reaching Def. Reaching Def.
without alias info., with alias info.
di: c =3 ; /* stmt 1 %/ {d1} {d1}
d2: a = &c ; /* stmt 2 */ {d1, d2} {d1, 42}
d3: *a = 5 ; /* stmt 3 %/ {d1, 42, d3} {d2, d3}
d4: b= c ; /* stmt 4 */ {d1, 42, 43, 44} {d2, 43, 44}

At statement 2, we get the alias pair <*a,c>, and the definition of c at statement |
reaches this point. If we do not have the alias information at statement 1. we should
assume that the reaching definition of ¢ can be either statement | or statement 3
(becausc *a at statement 3 could be either c or d). But, if we know that *a is aliased
to ¢, we can definitely say that only statement 3 reaches statement 1. Furthermore.
using Constant Propagation at statement 4, we obtain: b= 5.

1.2.3 Replacement of Aliased Variables

If two variables are aliased through all of the execution paths of the program. they
can be replaced by one another. This replacement is a useful tool in most ol the
analyses. In the [ollowing, we will briefly explain the effect of such replacement on
live-variable analysis.

In live-variable analysis, we want to know for a given variable x and program
point p, whether the value of x could be used in some execution path starting at p.
One important use of live-variable analysis is in register allocation. The live-variable
information allows the register allocator to efficiently use the registers for storing the
variables. Consider the following example:

e e e LA



int *a, b, ¢, 4 ; Live-variables
without alias replacement

b=2; /* stmt 1 %/ {}

d=1; /* stmt 2 */ {v}

c=4 ; /* stmt 3 */ {d, b}

printf (“%d", 4, b); /* stmt 4 */ {d, ¢, b}

a=&c ; /* stmt 5 */ {d, c, b}

printf ("%d ", *a); /¥ stmt 6 */ {}

Live-variable is a backward analysis in the sense that the analysis starts from the

last statement of the program and continued to the first statement. Due to this faet,
we start from statement 6 of the given example. Without having the alias information.
the worst case assumption at statement 6 says that *a can be any ol the variahles
b, c, and d. Consequently, at statement 5, all of these variables are live and only
a gets killed. The same set of variables are live at statement 3 while vaviable ¢ gets
killed. Considering these facts, variables b and d are live after statement . Now let
us consider the same example after the replacement of the alias information. s
information results in the replacement of *a by ¢ in statement 6. The same progiam
after this replacement is shown below:

int *a, b, ¢, 4 ; Live-variables
with alias replacement

b = 2; /* stmt 1 */ {}

d=1; /* stmt 2 */ {b}

c=4; /* stmt 3 */ {d, b}

printf ("%d", d, b); /* stmt 4 */ {d, c, b}

a=&c ; /* stmt 5 */ {c}

printf ("%d ", ¢c); /* stmt 6 */ {}

Since ¢ is the unique variable used at statement 6, c is the ouly live variable al
statement 5. Thus, using alias replacements, the live ranges of variables d i b ave
considerably reduced.

1.2.4 Alias Information in Building the Call-graph
The alias information has a special use for Tunction pointers. lnstead of i direet
call to a function, the address of the function can be assigned to a variable of ty)e

function pointer which will be called later. Without having the alias inforniation loi

5

s e i

F g AV S

st A% bl sl ¥

wirg S Ll e e WM




R B

R gl TR LGN AT T ey AN T RIS T s e N by ey

b Dt v

function pointer variables, it is impossible to know which function is being called af
a particular call-site. Due to this fact, the construction of the complete call-graph
is not accurate in presence of function pointers. In order to complete the call-graph.
the worst case assumption has to be taken which in this case says that each call to
a function pointer is equivalent to calling all the possible functions in the program.
This leads to a very inaccurate result, whereas by using alias analysis a far more

precise result will be obtained,

fFO)I( main
- SN
g() | f 9 h

(a) Call graph without

:‘ O alias information

: i

main () { main ,

int (*func_ptr) () ; + ,
{

func_ptr=f; /stmtl* ,

func ptr ( ) : I stmt 2 */ (b) Call g"aph with

) - alias information

Figure 1.2; An example of the use of alias in building call-graph.

Consider the example shown in Figure 1.2. At statement |. *func_ptr and f
become aliased. At statement 2, without the alias information, one must assuine that
the call to func_ptr can be a call to any of the functions £, g, and h. However, with
the alias information in hand, we can restrict this to the set of all functions aliased to
the function pointer (in the given example, only £ is aliased to the function pointer
func_ptr.

1.3 McGill Compiler Architecture Testbed (McCAT)

In order to study quantitatively the effect of various compilation techniques on so-
phisticated architectures, it is necessary to develop a complete compiler-architecture
testbed. Qur alias analysis method has been developed hand-in-hand with the devel-
opment of the McCAT [Sri92, HDE*92] compiler. Figure 1.3 gives a general view of



McCAT system.

The first component of such a testbed is a compiler which supports both high level
and low-level compiler transformations which translate high-level programs to low
level programs suitable for a variety of architecture simulators and real machines, o
example a precise alias analysis is more effective at the higher-level representation.
while instruction scheduling needs to be done on a lower-level representation, On the
other hand, the information collected in the high-level intermediate reprosentation
should be passed to the lower level, to be used by low-level analysis. "T'he second
component consists of architecture simulation tools that process the outpur of the
compiler to produce a variety of performance results. McCA'T" was designed and
developed with the consideration of the above objectives.

The McCAT compiler compiles C programs. C is chosen as the sonrce Langnage.
because of: (i) its wide range of usage, (ii) having a varicty of progrimmming lingiages
features, and (iii) being powerful because of the flexibility of its usage.

To avoid the redundant work of building an efficient front-cnd, the front end o
GNU-C compiler has been used and modified. The source code of GNU-C* compiler
is freely available.

The McCAT compiler first translates the C program into FIRS'T which is a high
level representation of the program. Next, a series of trec transformations are pe
formed on FIRST to create SIMPLE which is a simplified Abstract Syntay Tiee
(AST). SIMPLE forms the intermediate tree representation for analyses aud high
level optimizing transformations.

A more detailed description of McCAT will be presented in Chapter 2. 'The veaders
are referred to [Sri92, HDE*+92] for a complete discussion.

1.4 Thesis Contributions

This thesis reports on a new, general, and accurate alias processing teclimgue that
estimates the alias inforration at each point of a given program. I s analvsis is
performed on the SIMPLE representation of C programs.

Our approach differs from other approaches in that we do not compnte the alias
pairs explicitly. We have chosen an approximation that computes the relationships
between abstract stack locations. The central idea is that since we are dealing with
data-structures that are stack-allocated, we can model the real stack with an ab-
straction of the stack. Using these ahstract stack location, we estimate which stick

o



Front-end

Compiler Processing

* program Structuring

« alias analysis

« dependency analysis

+ high-level loop &
parallelization
transformations

V s register allocation

LAST * instruction scheduling

Native Code
C compiler Generator

RN A Py b
SNy R - T
Xy

oy o

CRESL I I TN

swerscalr Jioid M- §EUE LAST
o

threaded [t interproter

SR

=.Cz « low-level loop transformations

;- Cloretiiess; Pérformanca and Paraltelism Measurements J

Figure 1.3: A general view of McCAT.
8



locations point-to other stack locations. Thus, we call our analysis, points to analvsis
rather than alias analysis. This is a direct and simple approach that gives acemate
results with which we can perform a straight-forward dependence analysis hased on
the reads and writes to the abstract stack locations. Furthermore, this information
about relationships is sufficient to compute the conventional alias inlormation

In summary, the main contributions of this thesis are:

o Design of an accurate interprocedural points-to analysis technique for stack
allocated data-structures (including records and arrays) which forims the hasis
for the design criteria of the intermediate representation SINIPLIS,

o Development and implementation of the analysis on the compinitional contiol
statements, like if, while, switch, for, repeat, break, and continne

o Design and implementation of a general framework to perform interprocedinnal
points-to analysis in the presence of both recursive and non-reenisise provedure
calls.

e Presentation of experimental results indicating the eflectiveness of the analvsis

¢ Discussion of how the points-to analysis has been used to improve main othes
analyses in the McCAT compiler.

It should be mentioned that since we are focusing on structured and stroctinable
programs, any program using gotos in an unrestricted manner must he lirst converted
into an equivalent structured program [Ero93].

1.5 Thesis Organization

Chapter 2 discusses the required background and the McCA'T" testhed, Claprer 4
provides detailed information about the intraprocedural points-to analysis on scila
variables. Chapter 4 is focused on the design of invocation graph and the details
of interprocedural points-to analysis (including recursive function calls). Chapter 5
discusses aggregate structures (record and array types). Chapter 6 discisses oiher
features of the C-language like dynamic data allocation and type casting, Chapter 7
is devoted to some implementation details. Chapter 8 is concerned with the praciical
aspects of our analysis where we give numerical results using standad henclnal, -
and evplain other analyses which are using our result. Chapter 9 presents areview ol
related work. Finally, Chapter 10 contains some concluding remarks aned directions
for the future work.




In most parts of the thesis, we assume that the reader has some understanding of
the C-language.

ol

¢

ST TSR STRRST AR T g T

L

AR G 4 N D) 02 S B BB, 4 282 AT AL AT Y wa 4

oS 0 T

10



Chapter 2

Background

In this chapter, we provide the relevant background material required lor the nn
derstanding of the following chapters. More specifically, we focus on the SIMPLE
intermediate representation. SIMPLE is designed to effectively support varions anal
yses and transformations, in particular alias analysis. This chapter is a summarny ol
the work done by Bhama Sridharan. Readers are referred to [Sri02. 11892, 11D} 0]
for a complete description.

In order to separate the front-end processing from other analyses and oplimiza
tions, the McCAT compiler is designed to support a family of intermediate Leproe
sentation, namely: FIRST, SIMPLE, and LAST (refer to Figure 1.3). These thee
representations can be summarized as follows:

1. FIRST: a high-level Abstract Syntax Tree (AS'T) representation of 1he orig
nal program, FIRST retains program and data declarations as written by e
programmer.

2. SIMPLE: an intermediate AST representation based on FIRST. In SINIPLI-.
complex program statements and expressions arc presented in o simplihied Torm,
SIMPLE is designed for high-level compiler transformations, analvses and opli
mizations,

3. LAST: a low-level AST representation. LAST is designed for vegister allocition,
instruction scheduling, code generation and low-level transformations [Donnd),

Since the analysis reported in this thesis is performed at the SIMPLE level, we
focus on the SIMPLE representation in this chapter. We first give an introduction 1o
‘ the FIRST AST in Section 2.1 and then we explain the SIMPLE ASl it Se tion 2.2,

11

R L U

A



i LA S e e L T T R

R R S L

2.1 An Introduction to FIRST

FIRST is built to separate the front-end processing (e.g. scanning, parsing, and fype
checking) from high-level analysis, optimization and code generation.

The intermediate representation of the original GNU C compiler [Sta90] is based
on the Register Transfer Language (RTL). In the GNU C compiler, the RTL represen-
tation is produced one statement at a time. For each statement, the parser builds an
abstract syntax tree, converts it to RTL, and then frees the corresponding abstract
syntax tree. In this manner, the RTL intermediate code for an entire function is
generated. After optimization of the RTL, assembly code for a program is generated.
one function at a time. For several reasons which are explained in the next section,
FIRST, SIMPLE, and LAST have been designed to replace RTL in McC'\'T compiler,

In Section 2.1.1, the motivation for building FIRST is explained. In Section 2.1.2,
the modifications that have been done to the GNU C compiler in order 10 build
FIRST are given,

2.1.1 Motivations for Building FIRST

o As mentioned before, the GNU C compiler generates the RTL for an entire
function. Then, several intraprocedural optimizations are performed on R0, to
produce the target code for that function. After generating code for a function
or a top-level declaration, all storage used by the function definition is [freed
unless the function is “inlined”. As a result, interprocedural optimization can
not be performed by the original GNU C. Furthermore, as the intermediate code
for the entire program is unavailable, high-level interprocedural analysis and
detailed alias analysis techniques can not be applied.

o High-level compiler optimizations such as loop transformations and arra y opti-
mizations are extremely difficult to perform on the RTL code. This is due 1o the
fact that the identity of loop structures and array references are completely lost
at this low level. For example, it is difficult to perform the array dependence
analysis because the array references are broken down to lower-level statcements.
Similarly, as loops are transformed into blocks with goto’s and labels. high-level
loop transformations are difficult to perform. Retaining the identity of loop
structures and array references enables us to perform a number of high-level
loop transformations which are otherwise far more difficult to perforn.

12




2.1.2 Modifications to GNU C to Build FIRST

In the original GNU C compiler the syntax tree is created up to the expression lovel,
Once the statement has been parsed, the tree nodes representing these expressions
are freed. Since we are interested in building the syntax tree for the entive program,
the parser was modified to retain the tree nodes. The parser is further modilied 10

' continue building the AST for the complete program. The parser now construets the
FIRST tree for the entire program.

In RTL, different kinds of loops are not differentiated from cach other. New nodes
to construct different kinds of loop structures, such as: while-loop. for-loop. and
do-loop constructs, are added to FIRST.

An additional field, the TREE_INFO field, has been incorporated in the hasie
tree_node structure to store the data-flow analysis information.

2.2 SIMPLE Intermediate Representation

The SIMPLE intermediate representation was specifically designed 1o handle high
level data-flow analyses and transformations, and in particular aljas analysis,

In the rest of this section, we give the important characteristics of SINPLI (See
tion 2.2.1), the transformation from FIRST to SIMPLE (Section 2.2.2) and o general
overview of the SIMPLE AST (Section 2.2.3).

2.2.1 Important Characteristics of SIMPLE

Compositional Representation: The SIMPLE representation is a compositional
representation of the program where the control flow is explicit. Iur example,
it is possible to analyze a while loop by analyzing only its components. namely,
the conditional expression and the body. This gives the opportunity for ahis
analysis to take a compositional approach in the implementation. ‘I his kind
of compositional representation has three advantages: (1) the Now of contiol s
structured and is explicit in the program representation, (i) structnred analy-
ses tools supporting such techniques can be used to analyze all the contiol-flow
constructs, and (iii) it is simple to find and transform groups of nested loops.
It should be noted that in addition to ordinary compositional constructs such
as conditionals and loops, the compositional approach directly support the com-
monly used break and continue statements for loops, and the return tatement

13

L e

3y b e



sk St B it b B

for procedures and functions. However, unrestricted use of goto is not com-
positional and cannot be supported directly. Any program with unstructured
control flow must he converted into an equivalent program with structured con-
trol flow [WO75, Bak77, Amm92]. The McCAT compiler overcomes the prob-
lem associated with goto statements by transforming unstructured programs to
structured program through a process called restructuring [Ero93).

Explicit Array and Structure References: The identity of array and structure
references is retained, i.e., the array and structure references are not broken down
into a serics of lower-level statements that perform address computations. This is
required to make full use of high-level information such as array dimension. array
size, pointer types, and recursive structure types. Without this information. alias
analysis could not collect the alias information related to arrays and structures,
This information is essential in array dependence analysis [Jus93].

Types and Typecasting: The exact type information and type casting is also ve-
tained. Often alias analysis takes advantage of type information to provide more
accurate results. For example, if there are no type casts available. it can bhe
inferred that a variable of one type cannot be aliased to a variable of another
type using type information. A more advanced example is the use of recursive
types for dynamically-allocated pointer structures [HN89, Deu92}.

Pervasive Data-flow Information: It is possible to transmit important data-llow
information collected at a higher-level intermediate representation to a lower-
level, and thus improve the effectiveness of the low-level transformations. l'or
example, alias analysis information collected at a high-level can be used to per-
form better dependence analysis, and therefore better instruction schednling, at
a lower-level,

Simple to Analyze: The intermediate representation is simple enough so that it
could be analyzed in a straightforward manner. To simplify accurate analysis
of such a program, one needs to break down complex structures and statements
into simpler cases. In SIMPLE, there are a small number of basic statements
all at a level at which structured analyses rules can be easily specified. i.c. at a
level most suitable to perform alias analysis. Further, one is able to represent
any complicated C statement or expression as a sequence of these hasic state-
ments. Similarly, the conditional parts of while-loops, for-loops. do-loops aud
if-statements are simple expressions. Any complicated expression is simplified

when represented in the intermediate form. This results in a reduced nuber of

possible cases and allows the alias analysis to define a general rule for cach case,
Furthermore, in C, side-effects can occur in many places where one expects an

14




expression, In this simpler form, statements that can have side-cffects are clearly
separated. This assure the generality of rules that we provide for alias analy«is,
Clear Semantics: SIMPLE has clear and obvious semantics, One part of this pro
cess is clarifying some of the implicit meanings in C programs. Consider the
example shown in Figure 2.1. The statement b = a means “assign the addvess

main(){
int *b, al7] ; ab[ol b’
b=a;

} a]

Figure 2.1: An example of pointer to array in the C-language.

of the first item of a to b”, and not “assign the value of a to b ax one wonld
expect for a scalar assignment. These two interpretations of the sime statement
can make a difference in alias analysis. For example, in the first case ¥a wonld
be alias to b, while in the second case, the alias information would not change,
These implicit semantic rules in C are made explicit in SIMPLI.

Interprocedural Analysis: SIMPLE rctains all the information ahout the complete
program, so that interprocedural data-flow and alias analysis can he performed.
This is particularly important when we have noi-scientific code composed of
many small and possibly recursive procedures.

2.2.2 Transformation of FIRST to SIMPLE

The following are some of the transformations that have been done to transform
FIRST to SIMPLE. The detailed explanation is given in Section 2.2.3,

o Complex variable names are split up whenever it is possible.
e Loops, switches and conditionals are transformed into SIMIPLE forniat.

o Assignment statements and expression statements are broken down into 3-addiess
code format.

A complete grammar for SIMPLE is given in Appendix A. In the nest section, a
brief overview of SIMPLE is given.

15

Sk b T o

o bl s ket

4 e B B e




[T

g O PO TR T

Y e TR

2.2.3 An Overview of SIMPLE

SIMPLE is basically a simplified form of FIRST. It is built of a trec_node structure.
Tree_nodes arc varied according to the data type and expression. They are built of
the following two major parts:

I. The first part is common to all the tree.nodes. Following is the list of the
corresponding major fields:

e Trecuid : contains a unique identification integer for the corvesponding
tree_node.

e Tree.type: points to the type of the tree_node.

e Trec_code: contains an enumerated type integer which gives the name of the
tree_node.

o Trec.info: points to an array of pointers which holds data-flow information.

2. The second part of tree_nodes is dependent on the corresponding tree_code, For
example, a node with tree.code MODIFY_EXPR (modify expression) has two
fields to hold the left and right hand sides of an assignment, while IF_STNT (il
statement) has three nodes to hold condition expression, then-body. and clsc-
body.

Tree_nodes are classified into seven basic types. Different cases together with some
examples for each case are shown in Figure 2.2, In the rest of this chapter. we explain
] ]
these different basic cases.

|Constant Nodes|

These nodes represent constants in C-language. They have the common suflix
_CST. Following are the examples given in Figure 2.2:

¢ INTEGER.CST: its value can be any integer constant (e.g. 7).

o REAL.CST: its value can be any float number (e.g. 5.7).

o STRING.CST: its value can be any string constant (e.g. “ahc”).

Type Nodes

As mentioned before, treetype is one of the fields in the common part of cacl)
node. This field points to a node of type “type node” which contains the type of
the corresponding node. Type nodes have the common suffix “TYPE. Some of the
different kinds of type nodes are listed in the following:

16




T TEAR T e T ey

| Tree_nodes I

o t
Constant | Auxiliary i
Nodes NOdeS i
INTEGER_CST TREE_LIST
STRING_CST
REAL_CST |
; Statement
Type Nodes i Nodes
O 4
INTEGER_TYPE EXPR_STMT i
ARRAY_TYPE IF_STMT ;
RECORD_TYPE FOR_STMT i
POINTER_TYPE WHILE_STMT i
FUNCTION_TYPE CASE_STMT !
RETURN_STMT :
Variable Eéiﬁfession
Declaration Nodes !
Nodes iy '
4 MODIFY_EXPR ;
VAR_DECL \ CALL_EXPR :
FUNCTION_DECL ADDR_EXPR :
PARM_DECL Beference Nodes l PLUS_EXPR
FIELD_DECL a SO-EXPR
TYPE_DECL (typedef) ARRAY_REF -
COMPONENT_REF
INDIRECT_REF

Figure 2.2: Different cases of tree_nodes with some examples of cach  asc.

17

e



o INTEGER_TYPE: used for integer basic type. VOID_TYPE, REALTYPE. and
CHAR_TYPE are other examples of basic type.

o ARRAY_TYDPE: used for specifying the array type. Among other ficlds. this
node contains the dimension of the array. The tree_type field of this node points
to the type of the array which can be any valid type.

o RECORD_TYPE: used as the type of a structure variable, It has a pointer to the
fields of the corresponding structure. Each of the fields is built of a FIELD_DIC'L
node. This will be explained shortly.

o POINTER_TYPE: used for the pointer type. The tree_type field of this node is

another “type node”. For example, if variable a is of type int*. the type of a
would be POINTER.TYPE of type INTEGER_TYPE.

o FUNCTION_TYPE: used for functions. The tree_type field of this node is an-
other “type node” which contains the type of the corresponding function, For

example, if a function is of type void, the type of the related FUNC*TTON_TY P}
would be VOID_TYPE.

| Variable Declaration Nodes]|

These types of nodes which have the common suffix _DECL, represent vaviables
declaration. All of these nodes have a field “name” which contains the nanie of the
corresponding variable. These nodes also contain some other information which are
beyond our discussion. The treetype field (a field of the common part) contains the
type of corresponding variable. Following are some examples of the declaration nodes:

o VARDECL: used for any global or local variable.

o FUNCTIONDECI: used for the function declaration. One of its fields is a
pointer to the list of formal parameters,

o PARAM_DECL: used for formal parameters of a function declaration.
o FIELD.DECL: used for the fields of a structure.

o TYPE_DECL: used to represent a type defined by the user, using the typedef
command.

| Reference Nodes|

The more common cases of these nodes are listed in the following. They have the
common suffix .REF. Readers are referred to the subsequent part for some examples.

o ARRAY_REF: used for representing arrays (e.g. afi][5]).

18




¢ COMPONENT_REF: used for vepresenting structures (e.g. a.h.¢),
¢ INDIRECT.REF: used for representing the indirect access to a variable (¢.p. va).

Variables are either scalar or aggregate (array and structure). Since scalar vari
ables are straight forward (they are of either VAR_.DECL or PARM_DECL tree node
type), we explain the aggregate variables. We first show how variable references are
represented and then we show how the complicated cases are broken down into sinipler
ones,

The example presented in Figure 2.3 is devised to illustrate array relerences in
SIMPLE. Assignment statement 1 (S1) is equivalent to t = &a[0]. This ~tatement

main(){ t/ \&
int a[10], *t, p, q ; |
char *str ; a
int b[58]1[7] ; @S 1
t = a; /* S1 %/
p=tl2] ; /* 52 *x/ =
q=al1]l; /*3s3 %/ 7N
str = "abc" ; /* S4 %/ p  ARRAY_REF
b[21[i] =6 ; /* S5 %/ A\
} t 2
(byS2
= - /N
/N /. ARRAY_REF 6
qQ  ARRAY_REF ot o PN
&/\1 { ARRAY REF
l nabcn /\
& 2
2 :
b
()83 (d)S4 () S5

Figure 2.3: An example for the representation of arrays in SIMPLI..

implicitly assigns the address of a to t. Since one of the goals in the design of SINPLE
is to have clear semantics, the address operator is made explicit in the SIMPLE, AST,

19

| kit ] bt 1 DA SRR S M| il




This is represented in Figure 2.3(a). As it is shown in statements 2 and 3. the syntax
of accessing an array through a pointer to an array (t[2]) and the actual array (af1])
look exactly the same, but, semantically they are different. The address of t[2] is
computed by increasing the contents of t by 2, while the address of al1] is compnted
by increasing the address of a by 1. SIMPLE clarifies this difference by adding an
address operator before the array reference. This is shown in Figures 2.3(b) and (c).
At statement 4, a string constant "abc" is assigned to variable str. Since a string
is actually treated as an array, it will also have an address operator as shown in
Figure 2.3(d). Finally, Figure 2.3(e) shows the representation of a two-dimensional
array.

In SIMPLE, diffcrent fields of a structure are connected through a ("OMPO-
NENT_REF node. An example of the SIMPLE tree for variable d.c.n is shown
in Figure 2.4.

struct cat{
int a ;

struct cat *next ; / \
}; ¢ COMPONENT_REF 1
struct foo
=
int b ; / \

struct cat c ; COMPONENT_REF a
Ya; AN
d c

d.c.a=1;

Figure 2.4: An example for the representation of structures in SIMPLI.

Now that the representation of arrays and structures is clarified, we show how the
complicated data structures, which are a combination of arrays and structures {c.g,
a.b[4].c), are broken down into simpler cases. This is done as long as the meaning
of the variable reference is not lost. For example: a.b.c, a, a[5]1[i], (ia).b,
(*xa).b.c are some basic cases which can not be broken down.

The example in Figure 2.5 is devised to show why cases like (*a) .b can not he
further broken down. The replacement of statement 1 by statement 2 and 3 does not
give the same result. At statement 1, variable (*a) .b modifies the location x.b while
at statement 3, temp0.b is the variable which is modified. Since these two cases are
not identical, (¥a).bor (xa).b.c can not be broken down.

20




struct foof{

int b ;
} x, *a ;
; a
x'r(\am() - D
xb=7
x.b=5;
a = &x ;

(*a).b=7 ; /* S1 »/
}

{b) The stack representation ol

a) The origi rogram, g
(@) riginal C progra the original prograun.

struct foo{

int b ;
} x, *a ;
main()
{ a
s : B
x.b=5;
a=&x ; xh=5
{ ’ temp0
tempO0.b =7
struct foo templ ;

tempO = *a ; /% S2 %/
temp0.b = 7 ; /* S3 */

}

(d) The stack represeniation ol

(c) The modified G program. the modified programn

Figure 2.5: An example to show the limitatior in breaking down complicated data
structures.

21




Bk A

In the following, we represent some simple examples of valid conversions in SIM-
PLE (the left sample is a C language statement and the right one is the same state-
ment as represented in SIMPLE).

lixample 1:
x = a[6].b.c =

Example 2:

temp0 = &a[5]
x = (*temp0).b.c

temp0 = (*a).b

X = a->b~->c = X = (*tempO)-C

Example 3:

) . temp0 = &a.b ‘
x = a.b[i = x = temp0[5]
Example 4: ‘

temp0 = &a.b
templ = &tempO[i]

x = a.bl[i].c.d[2][j].e = temp2 = &(*templ).c.d
temp3 = &temp2[2][j]

x = (xtemp3).e

Expression Nodes

Referring to the SIMPLE grammar shown in Figure 2.6, an expression is built of
rhs when rhs is either unary_expr or binary_expr. We first consider unary_expr
and then binary expr. Among unary.expr, we are particularly interested in the 1,
& operators, and call_expr because of their effect in alias analysis. Some examples
are given in the following to clarify the grammar for unary_expr.

Fxample 5 (on * operator):

= b - temp0 = *b

a= a = *temp0
Example 6 (on * operator):

temp0 = b.c

a = *(b.c) = a = *temp0

The address operator is also one of the cases that can not always be simplified
(because the meaning of the expression might change). Therefore, a complex variable
name may appear after ‘&’ operator. As an example, &(a.b) or &(*a.b) must remain
unchanged.

Example 7 (on & operator):

temp0 = (*b).c

a = &(b->c->d) = a = &((*temp0).d)

22



expr modify_expr

| rhs

modify_expr : varname ‘=’ rhs
| *#? ID ‘=’ rhs

rhs : unary_expr
| binary_expr

unary_expr : simp_expr
| ‘# ID
| ‘&’ varname
| call_expr
| unop val
| ¢(’ cast ‘)’ varname
/* ‘cast’ stands for valid C typecasts */

simp_expr : varname | CONST

call_expr : ID ‘(’ arglist ‘)’

arglist : arglist °,’ val ] val
unop: l+) l t_) l t l t~)
binary_expr : val binop val

binop : relop

l () I (] ‘ /1| e
Aot | e
l (S %) l tay

relop: (g l (g | () l [

' (=) | f1=)
val : ID | CONST
varname : arrayref /*ARRAY_REF+/

| compref /*COMPONENT_REF+/
| ID

Figure 2.6: SIMPLE grammar for expressions.

The actual parameters of a function call (call expression) are simplilicd to simple
variables (ID) or constants. Some examples of CALL_EXPR ave given in the followine

Example 8 (on function call):
f( 3, &a, *b) =

Example 9 (on function call):

£f( a.b, c[7], "abc") =

temp0 = &a
templ = *b
f( 3, temp0, templ)

temp0 = a.b
templ = c[7]
temp2 = "abce"

£( tempO, templ, temp2)

Note that since string constant “abc" is considered as an array. it is replaced by o

temporary variable.

As it is shown in the grammar represented in Figure 2.6, the hinai exprosaons
(binary_expr) are in 3-address code format. This is shown in the followmg ¢vample

23




T R

Example 10 (on 3-address code format):
temp0 = *b

a= (*b) + C /d = temp1=c/d
a = temp0 + templ
One of the objectives of SIMPLE is to produce a clear definition for each expression
or statement. Therefore, SIMPLE transforms the conditional, compound and logical
expressions into a series of simpler statements. Following are some examples to show
this transformation.

Example 11:

if Ca>b)
(ad>b)? a : b=¢ = asec
else
b=c
Example 12
b=c
a= b = C # a= b
Example 13:
temp0 = (b != 0);
if (temp0)
a=b&kc+d = temp0 = (c != 0);

a = tempQ + d ;

| Statement Nodes|

In the following, we study different types of statements in SIMPLI., These ave
basically divided into two major groups:

e Basic statements: are the expressions followed by ‘;’ (e.g. modily expressions
and function calls).

e Compositional control statement: are all the conditional statements (e, 1f
statement), and loop statements (e.g. while statement).
Basic Statements:

Different types of basic statements in a C-program can be replaced by one or more

of the 15 basic statements given in Figure 2.7. The node related to basic statements
in SIMPLE is EXPR.STMT.

24

twiln o wsanrbind




AL RIS

Ll

@ NI ey

e sy g g

1. x = abinop b wherebinop is any binary operation
2. %p = abinopb
3. x = unopa where unop 1s any unary operation
4. »p = unop a
b, x =y

6. »p =
7. x = t(args) where args is a possibly empty hist of arquments
8. *p = <f(args)
9. x = (cast)b where cast is any lypecas!

10, *p = (cast)b

1. x = &y

12, *p = @y

13. x = »q

14. *p = xq

16, f(args)

Figure 2.7: List of the L5 basic statements. Variables x and y denote varname.
Variables a, b, and ¢ denote val. Variables p and q denote ID.

Compositional Control Statements:

In SIMPLE, compositional control statements consist of: the if statement (H7STNMT).

for loop (FOR.STMT), while loop (WHILE.STMT), do loop (DOSTMT). switch
(SWITCH.STMT), case (CASE_.STMT), default (DEFAULT_STMT), break
(BREAK_STMT), continue (CONTINUE_STMT), and return (RETURN.NTMT)
statements, The flexibility of C-language allows the programmers to write the conmpo
sitional control statements in a complicated manner. SIMPLE changes theiv syntay
to a restricted format. In the following, we explain each of the above cases:

if statement: The grammar of if statement is as follows:

stmt:  IF ¢(° condexpr ‘)’ stmt
| IF ¢(’ condexpr ‘)’ stmt ELSE stmt

The graph representation of if statement in SIMPLE AS'T" is shown in Figure 2.8
(the else-body will be NULL if the else part does not exist). Clearly the “condexpr’
is already being simplified. Following is an example of if statement:

Example 14:

b=sc+d
if (a=b=c+d,d>a) - a=b
{...} if (d > a)
{...}

for loop statement: The grammar of a for loop is as follows:

25

e e e e e

<
i R N s A

R R i

o e EA Rl s e 8 S o 5

Tt e il ees e e



R

[ P e T T S A e v

R Pt IR P IIRAT o |

s, Dgh it 3

T R PR 3

R

IF_STMT

/1N

cond  then-body  else-body

Figure 2.8; The SIMPLE AST for IF.STMT,

FOR_STMT

AR

init-stmt cond  iter-stmt  body

Figure 2.9: The SIMPLE AST for FOR_STMT.

FOR ‘(’ expr %' condexpr ‘;’ expr ‘)’ stmt

The graph representation of for statement in SIMPLE AST is shown in Migure 2.9,
Only one initial statement and iteration statement is allowed. If more than one is
used, it is moved outside of the loop. This is shown in the following example:

Example 15:

i=1
for (i=1,j=1 ; j<10 ; i++,j++) for (j=1 ; j<10 ; j=j+1)
{
stmts ; = stmts ;
} i=1i+1;
}

If there is more than one iteration statement, in order to get the correct answer, the
iteration statement(s) (in this case i=i+1) should be moved to the end of the for loop,

The conditional expression should be also in 3-address code format. Iollowing
example is devised to show this fact.

26

D R R e M ST Y

3 Fir

4 e Sl




s

R e L e

B £k Al ok fd ok e e o

Example 16:

i=1
j=1
for (i=1,j=1 ; it+j<k ; i++,j++) for (:::I;g::;)- tempO<k ;
{ = {
stmts ;
stmts ;
} i=41+1;
j=j+1;
}

For all loop constructs, the continue statement indicates that flow of control
moves to the beginning of the loop. Therefore, the newly added statement(s) to
the end of the loop will not be executed. To solve this problen, the newly adeded
statement(s) should be also added before each continue statement. An esample of
this case is given in the following:

Example 17:

for (i=1 ; i<10 ; i=i+1)

{
for (i=1 ; i<10 ; j++,i++) if (cond)
{ {
if (cond? = J'=J'+1;
continue continue
stmts ; }
} stmts ;
J' = J + 1 ;
}

The break statement moves the flow of control to the end of the loop, i this case,

the iteration statement(s) is not executed and, therefore, nothing should he done T
the break statement.

while and do-while statements: The grammar of while and do loop statements i
as follows:

stmt: WIIILE ¢(’ condexpr ‘)’ stmt

stmt: DO stmt WHILE *(’ condexpr *)’

The graph representation of while and do-while statements are shown in IFig-
ure 2.10. Aswhile and do-while statements are similar to for statement. we do not
give any further examples for them.

27

U e b i, B i B B KA S R e 9 M AR A e B B a0 f e ROl m




WHILE_STMT DO_STMT
cond body cond body

Figure 2.10: The SIMPLE AST for WHILE_STMT and DO.STMT.

switch and case statements: These statements can be more complicated than other
ones. This happens because the body of different case statements can he partially
shared. This results in the following two problems: (i) the statement sequence may
be labeled with more than one case label, (ii) the flow of control into and ont of the
: switch statement may not be regular (for example, one may have a case label in the
middle of statement sequence). In SIMPLE, each statement sequence hegins with
one more case labels and ends with either a break, continue, or return statement.
Readers are referred to Appendix A for the corresponding grammar. An example of
simplifying a switch statement is given in example 18 of Figure 2,11,

Example 18:

R PP o B o ok o Syiee 38 g % 1

switch(a)
switch(a) t case 1:
{ case 2:
1 case 1: stmtd :
: caseszgt1 . stmt2 ;
) .
: case 3: br?ak ’
: smt2 case 3:
s ! = stmt2 ;
' default: break :
‘ stmt3 case 4: ’
break ; stmtd
. ?
cases:&t4 ) break ;
} ! default:
stmt3 ;
break ;
}

Figure 2.11: An example of switch statement in SIMPLF.

28

PR



Auxiliary Nodes

Among the auxiliary nodes, we explain the TREE_LIST. This node is nsed to
create lists of different SIMPLE statements. An example is shown in Iigure 2,12
Statements are linked through TREE_CHAIN field while the TREE_VALUIL field

points to each statement,
D D

] | |
stmtl ; T}’ Til

™
stmt2 ;
stmt3 ; m //Stmi3\

TC : TREE_CHAIN field
TV : TREE_VALUE field

Figure 2.12: An example for the connection between the statements,

A new scope is defined by another TREE_LIST node. If it has some viniables,
the TREE.PURPOSE field points to the list of variables in that scope. Otherwise,
this field would be NULL. TREE.VALUE field points to the list of statements i the
scope. Figure 2.13 shows this fact (the newly added parts are shown in hold [aee),

{ TP/ v
int vari, 7 ~ e
var?2 ; ‘@ -—TC —--TC ~(Tree_LisT)
| |
stmti ; v TV

{
v
| | J
stmt2 ; ii
stmt3 ; AA&L @ stmt3
TC : TREE_CHAIN field

TV: TREE_VALUE field
TP : TREE_PURPOSE field

Figure 2.13: An example for the connection between statements and variables,
This construction is done recursively for all statements and functions. It ineludes
the scope appearing in the body of loops and conditions, Consider the example shown

in Figure 2.14. The body of the while statement is defined in a new scope. Therefore,

29

e

e W sl |

et LA ot e

] Ak EI0E

i




ORI LS IS I TG
<

L

a new TREE_LIST node is defined for this scope (shown in bold face).

vhile (cond) /
{ TP

stmtl ; /

stmt2 @

TC : TREE_CHAIN field
TV : TREE_VALUE field
TP : TREE_PURPOSE field

Figure 2.14: An example for the representation of scope in a while statement.

The next step is to provide a connection between functions and global variables, A
iree node called AST.DECL.NODE is used for this purpose. Each AST_DICL_NODI.
is related to a function or global variable, its AST_DECL_PTR field points to the Tune-
tion declaration or global variable declaration, its AST.DECL_.BODY points to the
body of the function in case of function, or to NULL in case of global variable, and
its TREE_.CHAIN node points to the next AST_DECL_NODE. The example shown
in Figure 2.15 clarifies this connection. By having the head of AST_DECL.NODI-.
one has access to the whole SIMPLE tree. The head of the tree in the example of
Figure 2.15 is called ‘decl list’.

30




SR W

int var3
float var4d ;

£Q)
{ f_body }

char varb ;

main() {
int vari,
var2 ; /
IS ("
stmtl ; \ s
stmt2 AST: AST_DECL_NODE vart "TC"@
} P: AST_DECL_PTR var | 1
B: AST_DECL_BODY v v
TC : TREE_CHAIN field | |
TV: TREE_VALUE field
TP: TREE_PURPOSE field m
Figure 2.15: An example for the connection between functions and global vaniables,

decl ll st

R

31

R

i v, ool AL L ool kS0 bt ol 24

i oo’ Lk o it

R




P —

T T T I TN N LT

e sy 8 g, W AR SR

5 e

R e e e

Chapter 3

Intraprocedural Points-to Analysis
for Scalar Variables

In this chapter, we present a detailed explanation of our method for collecting the
intraprocedural points-to information for stack-allocated data structures in the (' lan-
guage. This concerns the points-to analyses for the programs where no function calls
and aggregate structures (e.g. arrays and structures) are present. This presentation
forms the basis for extending the analysis to interprocedural analysis (C'hapter 1) and
handling aggregate structures (Chapter 5).

This chapter is structured as follows, In Section 3.1, we present a simple example
to explain our motivation behind the proposed approach. This example is intended 1o
prepare the reader for the main approach which will be explained in Section 3.2, The
relationship between our approach and alias information is explained in Section 3.3,
In Section 3.4, we discuss our notations together with the main algorithm. The details
of basic statements and compositional control statements are explained in Sections 3.5
and 3.6, respectively. Finally, a summary of the chapter is given in Section 3.7.

3.1 Motivating Example

Figure 3.1(a) shows a simple C program. As explained in Chapter 2, a C-program is
represented in the SIMPLE AST format where all the analyses are performed. Alter
simplification, we obtain the version shown in Figure 3.1(b). Note that the statement
xxx = 5 in Figure 3.1(a) is changed into an equivalent form composed ol statements
4 and 5 in Figure 3.1(b).

32




Figure 3.1 exemplifies our abstraction of intraprocedural analysis at cach state
ment. Notice that we use abstract stack location and memory representation to
illustrate the value of each variable. After processing statement 1, variable z pets
the value of constant 1 (Figure 3.1). After processing statement 2, location x points
to location y (Figure 3.1(d)). After processing statement 3, by following the link in
abstract stack or memory representation, we can see that *x is equivalent to y, Using
this fact, we conclude that the location y in the abstract stack points to the location z
(Figure 3.1(e)). After processing statement 4, tempO gets the same value as vx which
is equivalent to y. This means temp0 points to the same location as y is pointing
to, namely z (Figure 3.1(f)). Finally, after processing statement 5, hy following the
abstract stack, we see that *xtemp0 is the same as location z. Using this fact. z pets
the value of constant 5 (Figure 3.1(g)).

This example shows how we follow the abstract stack location to colleet the infor
mation about the points-to relationships betwcen the variables.

In the next section, we explain our approach in more detail,

3.2 Our Approach

From the discussion in the previous section, we see that our approach uses points to
relation as the abstraction to describe the relationship between locations in the ab
stract stack. It is based on a structured analysis which approximates the relationships
between abstract stack locations. At each program point, we collect the points-toin
formation abstracting relationship between each pair of the abstract stack locations,
say x and y. For such pair, one of the following relationships hold:

1. If the contents of the stack location x definitely points to the stack location y af
a given program point, we say that x definitely-points-to y. ‘I Lis is denoted
as (x,y,D). Figure 3.2 shows an example.

2. If the contents of the stack location x possibly points to the stack location y it
a given program point, we say that x possibly-points-to y. This is denoted s
(x,y,P). Figure 3.3 shows an example.

3. The contents of stack location x does not point to stack location y.

33

0 cnt v s b Bty




L L

Lk o i

pidie d sl S P

. main
main () { 0 X
{ int "*x,'y,z; It X,y 2 Z 1
R A it *temp0; om0
z“‘;‘, z=1; /* stmt 1%/
X=ay. X=&y; I stm2 N
,{"‘8‘5"‘_ *x=82; /" stmt 34/ '
X=9, temp0="x; /*stmt4?
} ‘temp0=5; /*stmt5*/ temp0
} ]
(a) The main example (b) The simplified version {c) After processing stmt1
X ; X X lp X
y y y y
Z=1 Z=1 7 Z= 1 2 zZ=5 7
temp0 temp temp |/ temp

X 2 X,y z

-0 ‘M OO (] T 5

temp0 D temp0 D tempO temp0 /

{d) After processing (o) After processing {f) After processing (9) After processing
stmt2 stmt3 stmt4 stmts

Figure 3.1: A motivating example behind our approach to intraprocedural points-to
analysis.

3.3 Rules to Convert Points-to Information to Alias informa-
tion

As explained briefly in the introduction, traditionally alias pairs were used as an
abstraction to determine the relationships between memory locations. Iu this section,
we show how to transform points-to relationships to alias pair relationships. The rules
for converting points-to relationships to alias pair relationships are:

1. A relationship of the form (x,y,rel), where rel is either D or P, is considered to
be equivalent to <*x,y>. For example, in the program:

34




Memory Representation Abstract Stack Represeptation

Figure 3.2: An example of a definitely-points-to velationship.

int *x,vy,2z

it <cond > .
X=8y :

e'se (X»Y.P) (X»Z-P) 3
Xu&2 H
Exmaple Notation :

‘o
I' \\ X -_‘,I
y ®~,
duluk —

Memory Representation Abstract Stack Representalion

Figure 3.3: An example of a possibly-points-to relationship.

int *a, b;
a=%&db ;

we say that a points-to b, or equivalently, *a is aliased to b.
2. For each relationship of the form <x,y>, apply the ‘4’ as long as the 1vpe of
variable allows. For example in program:

int *%%ka, **b;
a=&b ;

35



by applying the first rule, we obtain <xa,b>, and by applying the sceond rule
we obtain: <s*a, *b>and <sxxa,xxh>.

3. Apply the commutative rule! and, the transitive closure? on the result of cach
alias pair obtained so far. This has to be done recursively until no new pairs
can bhe generated. For example in (x,y,rel) and (z,y,rel), using the [first rule
we can obtain: <*x,y>, <*z,y>. Then, by applying the commutative rule on
the second pair, we get: <*x,y>, <y,*z>. Finally, using the transitive closure
results in <*x,*z>,

Note that the commutative rule does not give a new pair. Ilowever. it provides
a different way of looking at the pairs which will eventually help ns to apply the
transitive closure.

Here is a more complicated example which uses all these three rules together:

int **d,

&a ;
= &c ;
&c ;

*a, *b, c

[

L= 20 - I > 1

Dur result: (d,a,D) (a,c,D) (b,c,D)

Applying rule(1): <*d,a> <*a,c> <*b,c>

Applying rule(2): <*d,a> <#kd,*a> <*a,c> <*b,c>

Applying rule(3): <xd,a> <xxd,*ad <*a,cd> <xb,c> <kxd,c>
<ka,*b> <x*d,*bd>

We conclude that, in general, the alias information can be casily obtained [rom
our more concisely represenived points-to relationships.

In cach points-to relationship (x,y,rel), the type of x is always a pointer to
the type of y*. As a result of this, the definitely-points-to and possiblyv-poiuts-to
relationships are neith :r commutative nor transitive,

3.3.1 Justification of the Proposed Approach

Our reasons behind using the proposed approach are as follows:

laopb=>bopa.
2aopbAdbopc=>aopec.
JAn exception to this rule is the special case of type casting which will be discussed in Chapter &

36




1. It is straight-forward and easy to understand because it is similar in nature 1o

the way in which variables are actually stored in the stack.

2. It gives accurate results with which we can perform an ellicient dependence
analysis using the reads and writes to the abstract stack locations,

rized in Table 3.1.

3. It provides sufficient information about the alias pairs in a compact wan

3.4 Notations and Algorithm

The definitions and notations which will be used throughout this thesis are <t

*
&

rhs

Ths

v

A
base-type
ptr-type
rell od rel2

indirect reference in the C-language, e | 1x
address operator in the C-language, e g . L x
right-hand side of an assignment.

left-hand side of an assignment.

for all

and

int | float | char | void | efe.

ptr-type #| base-type «

merge two relationships using the following table

Slolr
DWyDlP
PIP|P

Table 3.1: Definitions and notations used in the thesis,

In general, each statement is either a basic statement or a compositional contiol
statement. In the intraprocedural analysis, the definitely-points-to velationships are
generated /resolved by the basic statements. The data flow merge forced by compo
tional control statements like loop and conditionals, due to unkinown How of contial
causes the appearance of possibly-points-to relationships.

Figure 3.4 gives an overall view of the algorithm for the intra-proceduial ponn-
to analysis. The algorithm for basic statements (basic_points_to) is discisaed
Section 3.5 (Figure 3.6). The algorithm for compositional <ontiol statcment~ oo
trol_points.to) is discussed in Section 3.6 (Figure 3.15).

e b w5 i Le v




ohsidat s e — 12

/* Gwen a basic statement and inpul information, return the oulpul
* information (where input.in is the poinis_to relationships) */
points_to (S,input) =
if basic_statement(S) then
/* S is basic statement »/
return(basic_points_to(S,input));
clse if control_statement(S) then
/* S is a compositional control statement /
return(control_points_to(S,input));
else
return(input) ;

Figure 3.4: General algorithm for intraprocedural analysis.
3.5 Basic Stateinents

The simplifying process reduces the many different cases that one may encounter in
a typical program (refer to Figure 2.7) to the eight types of basic statements listed
in Table 3.2. Case 2, 6 and 7 are discussed in this chapter, case 4 and 8 are discussed
in Chapter 4, and case 1 and 3 are discussed in Chapter 5. Note that casc 3 does not
introduce any points-to information and consequently is not of any concern to s,

(1) (2) @) (4)
x=abinopb | x=y | x=casty f(args)
*x = abinopb | *x=y | *x = cast y

(5) (6) @) (8)

X =unop a X = &y x =&y x = f(args)
¥X=unopa | *xXx=xy | *x=~&y | xx=f(args)

Table 3.2: All possible Basic Statements.

The type of the variables plays an important role in our approach to points-to
analysis. A basic statement will be studied only if it is involved in an assighment
with a pointer type variable. Let us consider the example illustrated in Figure 3.5,

Since *x and *y, in statement *x = %y, are not of pointer type. this statement
y y P ¥l

does not make any difference in the points-to information. Therefore. it is not of

concern to us. Now consider the example:

38

e Ty e PSS s kot i



AT P RN T TR I AT e T e e

ST AP SR AT T

ot 1 e

int *x,'y

*x='y; /* Stack shows that this
assignment means

Xt=yt®
X y
x L
e
x1 y1
y p
i
Memory Representation Abstract Stack Representation

Figure 3.5: An example where no pointer is involved in the assignment statement .,

int *x, **y ;

In this example, since variables x and *y are of pointer Lype, alter the exeention

of statement x = xy, the points-to information of x will be affected (x points to the

same location as *y is pointing to). Therefore, this statement should be considered
in the points-to analysis.

We have classified all the cases studied in this chapter according to 1he hasic
statements and the type information. These are summarized in Table 3.3,

Table 3.3: Basic statements to be studied in this chapter, when Ths (or 1hs) is of
pointer type.

The algorithm for the basic statements of scalar variables is given in Figire 3.6
(we will discuss arrays and structures in Chapter 5). Each entry in the Table 3.3 lias
a corresponding rule in the function basic_points_to. In each case, we compute: (i) 1he

39

.
et (i S TL AR gk e




[+ Given o basic statement and inpul information, relurn the oulpu
* mformation (inpul.an 1s the points_to relationships) */
hasic_points_to (S,input) =
if (! pointer_type(S))
return( input ) ;
clse case S of
[* rule 1 x/
<x =&y >
{ kil = { (x,x1,rel) | (x,x1,rel) € input };
gen = { (x,y,D) };
return( gen U (input — Kkill) );

}
/* rule 2 x/
<X=y >:
{ kil = { (x,xl,rel) | (x,x1rel) € input };
gen = { (x,ylyrel) | (y,yl,rel) € input };
veturn( gen U (input — kill) );

[* rule 3 %/
< X = xy >
{ kill = { (x,x1,rel) | (x,x1,rel) € input };
gen = { (x,y2,rell pa rel2) | (y.yl,rell), (yl,y2,rel2) € input}:
return( gen U (input — kill) );

}
[% rule 4 %/
< xx = &y >
{ kill = { (x1,x2,rel) | (x,x1,D), (x1,x2,rel) € input };
change = (input — { (x1,x2,D) | (x,x1,P), (x1,x2,D) € input})
U { (x1,x2,P) | (x,x1,P), (x1,x2,D) € input};
gen = { (xl,y,rel) | (x,x1,rel) € input};
return( gen U (change - kill) );
}
Jx rule 5 %/
<¥X =Yy >
{ kill = { (x1,x2rel) | (x,x1,D), (x1,x2,rel) € input };
change = (input — { (x1,x2,D) | (x,x1,P), (x1,x2,D) € input})
U { (x1,x2,P) | (x,x1,P), (x1,x2,D) € input};
gen = { (xl,ylrell >a rel2) | (x,x1,rell), (y,yl,rel2) € input};
return( gen U (change — kill) );

/* rule 6 %/
< *X = *y > !
{ kill = { (x1,x2,rel) | (x,x1,D), (x1,x2,rel) € input };
change = (input - { (x1,x2,D) | (x,x1,P), (x1,x2,D) € input})
U { (x1,x2,P) | (x,x1,P), (x1,x2,D) € input};

gen = { (x1,y2,rell pa rel2 pa reld) | (x,x1rell), (y,yl,rel2), (yly2reld) € input}.

return( gen U (change — kill) );

/+ any other sumple statement */
< _ > : raturn(input);

Figure 3.6: Algorithm of basic statements for scalar variables.
40




reaeny

points-to information which gets killed, (ii) the changes in the points-to intormation
where some definitely-points-to relationship becomes possibly-points-to, and, (iii) the
points-to information which is generated. Then, we return input (the original set
of points-to relationships) while updating the information by removing the killed
information, incorporating the changes, and adding the newly ereated information,
In the next sections, we examine each case in detail. 'To facilitate the nnderstanding,
we use a simple pointer type, int* or int*x.

3.5.1 Casel

This is the case denoted as rulef in Figure 3.6.
int *x, y ;
x =y ;

The rules applied in this case are as follows:

kill = { (x,xLrel) | (x,x1,rel) € input }

gen = { (x,y,D) }
return( gen U (input - kill) ) ;z

Referring to Figure 3.7, we see that alter processing the statement x = &y. x
should point to the location y. This means that all the relations in whicl x points
to a variable should be removed from the points-to information (kill sc1). ‘I'ion.
x definitely-points-to y is the unique element of the newly generated sot (gen set). ;
Finally, by removing the kill set and adding the gen set to inpul set (the original et
of information), we obtain the new set of information. :

3.5.2 Case 2
This case is denoted as rule2 in Figure 3.6. g
int *x, *y ;
x = y ]

The rules applied in this case are as follows:

41

e e e o A St e o



int *x,y

x= 8y

lBefore Statement | After Statement I

g O’ *‘S\D’

Memory Representation Mamory Representation
X X
X1 X1
Abstract Stack Representation Abstract Stack Representation :
(x,x1,D) (x,y,D) .:
Points 4o Information Points-to Information ;

Figure 3.7: An example of rule 1 in the basic statements.

kill = { (x,x1,rel) | (x,x1,rel) € input }

gen = { (x,yl,rel) | (y,yl,rel) € input }
return( gen U (input - kill) )

b s e R BT s S CAITEA tta s der b e Mot AN o ot

After processing the statement x = y, x gets changed. This is showu in Fignre 3.8
Therefore, we should remove all the relations in which x points to a variable x1 [1om
the points-to information (kill set). Then make x point to the same location as y is
pointing to (gen set). The new set of information can be obtained by removing the
kill set from the input set and adding the gen set.

A more complicated, self explanatory example is given in Figure 3.9

3.5.3 Case 3

This case is denoted as rule? in Figure 3.6.

42



W T v

I

int *x,'y

Xy
I Before Statement I | After Stateme;\f I
X y X y
x1 yi X9 D y1
Memory Represeritation Memory Representation
—x_ 1 X
x1 L’ x1
x o o
yi E y1 >
Abstract Stack Representation Abstract Stack Representation
(x,x1,D)(y,y1, D) (x,y1,D)(y.y1, D)

Figure 3.8: An example of rule 2 in the basic statements,

int *x, **y ;

x=*y;

The rules applied in this case are as follows:
kill = { (x,x1,rel) | (x,x1,rel) € input }
gen = { (x,y2,rell sarel2) | (y,yl,rell), (y1,y2,rel2) € input}
return( gen U (input - kill) )

Referring to Figure 3.10, after processing the statement x = +y, x should point 10
the same location as *y is pointing to. This means that all the relations in which x
points to a variable, should be removed from the points-to information (kill set) and x

43

i

Al e

355 bbb B

Mo s 4 i |



R A Rl O VT

S AR IO BRI AT o

int "x , ny

X=y

[Betore Statement.
X y X y
x1 y x1 y1
x2 y2 x2 y2
Memory Representation Memory Representation
= x
x ] x1
x2 ? x2
y y
y1 1
y2 y2
Abslract Stack Representation Abstract Stack Representation
(x.x1,D)(x1,x2 D) {x.y1,D)(x1,x2, D)
(y.y1,D0)(y1,y2, D) (y,y1,D)(yt,y2,D)
Points-fo Information Balnts-to Information

Figure 3.9: A more complicated example of rule 2 in the hasic statement s,
g

should point to the same location as y is pointing to. If y definitely-points-to location
y1, and y1 definitely-points-to location y2, we can say that x definitely-points-10 y2
(because it is guaranteed that *y points to y2). If one of these relationshi ps is possibly-
points-to, then x possibly-points-to y2 (because it is not guaranteed that +y points
to y2). The new set of information can be obtained by removing the kil set [rom the
original set of information and adding the gen set.

3.5.4 Case 4

This case is denoted as rulef in Figure 3.6.

44

™

N




int *x, 'y

iy
Before Statement | [Atter Statement I
y y
X y1 X y1
”E y2
Memory Representation
X
x1
——
"
Abstract Stack Repregentation
(x,x1,D)(y,y1,D) (x,y1,D){y.y1,D)
(y1,y2,D) {yl1.y2,D)
Polnts-to Information Paints-to Information

Figure 3.10: An example of rule 3 in the basic statements.

int **x, y ;

*xX = &y ;
The rules applied in this case are as follows:

kill = { (x1,x2,rel) | (x,x1,D), (x1,x2,rel) € input }

gen = { (x1,y,rel) | (x,x1,rel) € input}

changed.input = (input - { (x1,x2,D) | (x,x1,P), (x1,x2,)) € input })
U { (x1,x2,P) | (x,x1,P), (x1,x2,D) € input}

return( gen U (changed_input - kill) )

45




Referring to Figure 3.11, after processing the statement #x = &y, il x definitely-
points-to x1, the modification of location x1 is guaranteed and we remove the re-
lations in which x1 points to a variable from points-tq information (Mill set). If x
possibly-points-to x1, changing of x1 is not guaranteed. In this case, we change all
the definitely-points-to relationship of x1 into possibly-points-to ( changed_inpul set),
If x definitely-points-to x1, then x1 definitely-points-to y. But, if x possibly-points-to

x1, then x1 possibly-points-to y. So, the way that x1 points to y depends on the way

that x points to x1 (gen set). Finally, by removing the kill set from the changed_inpul
set and adding the gen set to it, we obtain the final information.

int *"x,y
'x- &y
LBefore Statement LAfter Statement
X X
X1 x1
X2 D y X2 D y
Memory Representation Memory Representation
X
x1 X1
X2 | | X2 |
y
Abstract Stack Representation e tio
(x,x1,D)(x1,x2,D) (x.x1,D)(x1,y,D)
Points-to Information Points-to Information

Figure 3.11: An example of rule 4 in the basic statements.

46

T e




3.5.5 Case b

This case is denoted as rule5 in Figure 3.6,
int **x, *y ;
*X =y

The rules applied in this case are as follows:

kill = { (x1,x2rel) | (x,x1,D), (x1,x2,rel) € input }

gen = { (x1,yl,rell va rel2) | (x,x1,rell), (y,yl,rcl2) € input}

changed.input = (input - { (x1,x2,D) | (x,x1,P), (x1,x2,D) € inpnt})
U { (x1,x2,P) | (x,x1,P), (x1,x2,D) € input}

return( gen U (changed_input - kill) )

Figure 3.12 and Figure 3.13 help in understanding the analysis, After processing,
the statement *x = y, the kill set and the changed.inpul set are computed in the
same way as in case 4. If x has a points-to relationship rel/ with x1 and y has o
points-to relationship rel2 with y1, then x1 will have a points-to relationship of the
form rell va rel2 with y1. This relationship says that x1 definitely-points-to y1if e //
and rel2 are of definitely-points-to type, otherwise, x1 possibly-points-to y1. Finally.
by removing the kill set from the changed-input set and adding the grn et to it we
obtain the final information.

3.5.6 Case 6

This case is denoted as rule6 in Figure 3.6.

int **xx, *xy ;
*x = *y ;

The following rules are applied in this case:

kill = { (x1,x2,rel) | (x,x1,D), (x1,x2,rel) € input }
gen = { (x1,y2,rell va rel2 oa reld) | (x,x1,rell), (y,yl,rel2), (yl.v2.reld)
€ input}

47

T ——_——m

[N SR e W TEE R R B S ST

shwey




int **x, "y

x= y
[Taelore Statementl | After Statement
X X
x1 E y X1 y
Memory Representation Memory Representation
x1 x1
X2 X2
y y
1 L
Abstract Stack Representation Abstract Stack Representation
(x.x1,D)(x1,x2,D) (x,x1,D)(x1.y1,D)
(VW‘»D) (yvy1lD)
Polnts-to Information Eoints-to Information

Figure 3.12: An example of rule § in the basic statements.

changed_input = (input - { (x1,x2,D) | (x,x1,P), (x1,x2,D) € input })
U { (x1,x2,P) | (x,x1,P), (x1,x2,D) € input}
return( gen U (changed.input - kill) )

Relerring to Figure 3.14, after processing the statement *x=xy, the kil set and
the changed_input set ave computed in the same way as in case 4. If x has a points-to
relationship rell with x1, y has a points-to relationship rel2 with y1. and y1 has
a points-to relationship rel® with y2, then x1 will have a points-to relationship of
the form {rell va rel2 0a reld} with y2. This relationship says that x1 dehnitely-
points-to y2 if rell,rel2 and rel3 are all of definitely-points-to type. otherwise, x1
possibly-points-to y2. Finally, by removing the kill set from the changcd_inpul set.
and adding the gen set to it, we obtain the final information.

48




oA v e T

ron N AR £ 00 ) AR ks L1 7 50 B 1§

Int **x.'y

.x=y

[ Before Statement | ﬁﬁ;r Statement I
0

x1 y X1 [:l y

X

Memory Representation Memory Reprosentation

X ) X W

x1 x1 f\\

X2 X2

y y l'

yi ] ’

|
Abstract Stack Reprasentation Abstract Stack Reprasentaion

(x,x1, P) (x1,x%2, D) (x,x1,P) (x1,%2,P)
(y.y1.D) (xt,y1, P} (y,y1,D)
Points-to Information Paints-10 Information

Figure 3.13: An example of rule 5 that contains possibly points-to relationship in the
basic statements.

3.6 Compositional Control Statements

In the previous section, we presented our analysis method for simple statements,
In this section, we extend our method to programs that include control stavements,
SIMPLE supports the following control statements: if, for, while, do-while,
switch, continue, and break (note that return statement appears in inferproce
dural analysis, therefore it is explained in Chapter 4). To simplify the explanation,
we first consider compositional control statements without the presence of break and
continue statements. Then, the more general case containing break anl continue
statements is studied. To support control statements such as conditionals and loops.

49




int **x . ny

"x'-.:'y
X Y X y
x1 n x1 y1
x2 y2 X2D y2
. Memory Representation Memory Representation
\ |
\ : >
x1 x1
‘ X2 X2
| ..
£ y Y.
, — i
~ 2l e
Abstract Stack Representalion Abstract Stack Representation
{(x,x1,D){x1,x2, D) (x,x1,D)(x1,y2, D)
(V-W'D)(“-XZ- D) (Yvy1vo)(y1vy2|0)
| Poinis-to information Ecinis-to Information
i Figure 3.14: An example of rule 6 in the basic statements,

we need to define the following two concepts: (i) merge between sets. aned (ii) lixed-
point computation.

The concept of merge between definitely-points-to and possibly-points-to relation-
ships was defined in Table 3.1. Here we extend this definition to the case of merging,
two sets of relationships. This is denoted as Merge(S1, S2) where SI and 82 are
the scts of the relationships to be merged. The definition is as follows:

Definite-set = {(x,y,D) | (x,y,D) € (51 N S2) }
Possible-set = {(x,y,P) | (x,y,rel) € (S1 U S2) A (x,y,D) ¢ Definite-set }
Merge(S1, S2) = Definite-set U Possible-set

where ‘rel’ is cither D or P. Here is an example:

Sl = { (a,al,D), (b,b1,D), (c,c1,D) }
S2 = { (a,al.D), (b,b1,P) }

50




Definite-set = { (a,al,D) }
Possible-set = { (b,b1,P), (c,c1,P) }
Merge(S1, S2) = { (a,al,D), (b,b1,P), (¢,c1,P) }

Note that the relationship (a,al,D) is in the Definite-set becanse “a” and “al” have a
definitely-points-to relationship in both S1 and 52, The relationship (B} i in
the Possible-set because ‘b’ and ‘b1’ have definitly-points-to relationship in S1 hu
they have possibly-points-to relationship in §2. The relationship (¢.c1.P’) i~ in the
Possible-set because the relationship between ‘c’ and ‘cl” is in S| and not in 82

The concept of fixed-point computation is defined in conjunction with the anal
ysis of loops and recursion. We say that a fixed-point is reached when analyvsis ol the
loop-body in two successive iterations coes not result in any new information.  \n
example of fixed-point will be given later in our discussion concerning while loop

Figure 3.15 gives an outline of the algorithm for the analysis ol the control state
ments. Each of the function calls will be discussed in detail in the rest of (his section,
Note that in SIMPLE, the expressions in conditionals and loops are side effecr Nee,
so we ignore them during the analysis. For the same rcason, the expression of the
switch statement is also ignored.

3.6.1 Points-to Analysis without break and continue

if statement:

For the if statement, we propagate the input to both the then-body and the else
body. After processing both parts, we merge the information to get the new input
“set. In the absence of the else-body, the output of clse-body is the same as the put
to the if statement. Therefore, the output of the then-hody is merged with the
input to the if statement. The corresponding algorithm (denoted as process il
Figure 3.15), together with its graph representation, is given in Figine J.10 Note
that the parameter in is a structure that contains the points-to information and
other fields which are useful during the analysis (c.g. the fields related 1o hreak and
continue that is explained in Section 3.6.2).

while statement:

In general, the body of a while-loop, depending on the while-loop condition -
executed forn = 0,1,2,... times. As we are not sure about the exact nnmber of the
iterations, we have to approximate the output of our analysis. The first approxnnation
corresponds to the initial stage before starting the iterations. In this case the onrpn

51




/* Gwen a basic statement and inpul information, return the output
* information (inpul.in 1s the poinls_to relationships) /
control_points_to (S,input) =
case S of
< IF(cond,s_then,s_else) > :
return(process_if(cond,s_then s_else,input));

< SWITCH(expr,caselist) > :
return(process_switch(expr,caselist,input));

< WHILE(cond,s_body) > :
return(process_while(cond,s_body,input));

< DO(s_body,cond) > :
return(process_do(s_body,cond,input));

: < FOR(s_init,cond,s_iter,s_body) > :
f return(process_for(s_init,cond,s_inter,s_body, input));

< BREAK > :
return(process_break(input)) ;

< CONTINUE > :
return(process_continue(input)) ;

TR

<_ >

-—

] return(input) ;

Figure 3.15: Algorithm of the compositional control statements,

et At s o b o S

I e LT N O

process_if(cond, then_body, else_body, in) {
outl = points_to(then_body, in) ; in
out2 = points_to(else_body, in) ;

return(merge_info(outl, out2)) ; ‘
) <Gond — |

merge_info(inl, in2) { in in
out = inl ; ..
/* merge the points—to information then_body else_body
* field of the two given nput +/ i
out.in = Merge(inl.in, in2.in) ;
return(out) ; out1 out2

o Lol b bbb

' Figure 3.16: Algorithm of the if statement for points-to analysis.

52




T PN P 1

S AR U M e Y SRR

PRI

is the same as the input. The second approximation is obtained by merging the

following sets of information:

o the previous approximation,

¢ the output obtained from processing the while-body with the previous approxi
mation as the input.

This process is repeated until a fixed-point is reached, The corvesponding algo

rithm (denoted as ‘process_while’ in Figure 3.15), together with its graph representa-

tion, is shown in Figure 3.17.

process_while(cond, body, in) {

last_in = in ;

out = points_to(body, in) ;

in = merge_info(in, out) ;
} while (last_in != in) ;

result = in ;
return(result) ;

out

Figure 3.17: Algorithm of the while statement. for points-to analysis.

Following example demonstrates the process of finding the lixed-point of & while-

loop. The information represented for each statement, is after processing the state
ment. The following shows the fixed-point calculation for a while-loop:

53

)

St

it Wi s i ok

'
e L



TR

T g ] e

T v e S T R T

int *a, *b, c, d ;

I s |
:

First approximation

b= & ; /* s1 */ {(b,c,D)}
vhile (cond){ /* s2 */ {(b,c,D)}
a=>b; /* 83 */ {(b’c:D)’ (a)C:D)}
b=4&d; /* 84 */ {(b,d,D), (a,c,D)}
} /* 86 */ {(b,c,P), (b,d,P), (a,¢c,P)}
Second approximation
/* sl */ {(b,C,D)}
/* 82 «/ {(b,c,P), (b,4,P), (a,c,P)}
/* 83 */ {(b’C,P)’ (b’dlp)’ (a,C,P), (a’d’p)}
/* s4 */ {(b,d,D), (a,c,P), (a,d,P)}
/* 85 */ {(b,C,P), (bpd’P)) (a,c,P), (a:d:P)}
Third approximation :
/% 51 %/ {(b,c,D))
/* 82 ¥/ {(b,c,P), (b,d4,P), (a,c,P), (a,d,P)} i
/% 83 %/ {(b,c,P), (b,4,P), (a,c,P), (a,d,P)} |
/* 84 x/ {(b,d,D), (a,c,P), (a,d4,P)} g
/* 85 */ {(b,c,P), (b,d4,P), (a,c,P), (a,d4,P)} :

The input to the loop at each iteration is the set represented at statement 2 and
the corresponding output is the set represented at statement s5. We observe that
after the third iteration the information does not change anymore (fixed-point of the
loop). Therefore, the final points-to information is the information obtained at this

stage.

do-while statement

The do-while statement is similar to the while-loop with the difference that the
body of the do-while is processed for n = 1,2, .. times. This means that the body
will be processed at least once. Therefore, the first approximation to the do-loop
is what we have after analyzing the loop-body once. The corresponding atgoritin
(denoted as ‘process.do’ in Figure 3.15), together with its graph representation, i
given in Figure 3.18.

54




;

:
:

g

3
4
E
3
4
.
;
:

process_do(cond, body, in) { in
out = points_to(body, in) ; L
in = out ;
{ body
last_in = in ;

out = points_to(body, in) ;
in = merge_info(in, out) ;

} while (last_in != in) ; @

result = in ;
return(result) ;
} result

Figure 3.18: Algorithm of the do-while statement lor points-to analysis,

for statement:

The for statement is also similar to the while statement. The difference is that
the initial statement has to be processed before processing the hody and the iteration
statement has to be processed after processing the body. The corresponding algovithm
(denoted as ‘process_for’ in Figure 3.15), together with its graph representation, is
given in Figure 3.19. If it can be determined at compile time that the {or loop will
iterate at least once, then a more accurate answer might be obtained hy proressing,
the body once before computing the fixed point.

+ in
process_for(init_stmt, cond, iter_stmt, body, in) { (init_stmt

in = points_to(init_stmt, in) ;

last_in = in ;
outl = points_to(body, in) ;
out2 = points_to(iter_stmt, outl) ;
in = merge_info(in, out2) ;
} while (last_in != in) ; result body

result = in ;

return(result) ; outt
}

iter_stmt
1T P

Figure 3.19: The algorithm of for statement for points-to analysis.

55

2y b Swin e b

e s i



L

3.6.2 Points-to Analysis with break and continue

In this section, we present our analysis for programs with break and continue state-
ments. First, let us recall the semantics of break and continue. Execution of a
break statement terminates the execution of the closest while, do-while, for or
switch statement. Then, the program control is immediately transferred to the point
just after the body of the corresponding statement.

Execution of a continue statement terminates the execution of the hody of the
closest while, do-while, or for statement. Then, the program control is imine-
diately transferred to the beginning of the body and the execution continues {rom
that point with a re-evaluation of the loop condition, In the case of the for-loop. the
iteration expression is also re-evaluated.

Note that the continue statement has no interaction with the switch statement,
The continue statement within the body of a switch statement actually helongs to
the closest while, do-while, or for loop.

In our analysis, we handle break and continue statements as follows: \We deline
two structures, called the break-list and continue-list, to collect the points-to
information at break points and at continue points encountered during process-
ing the wvhile, do-while, for, and switch statements, Whenever we cncounter
a break/continue statement, we save the corresponding points-to information in
break-list/continue-1list and pass BOTTOM as the output where BOT'T'OM
denotes no information. Propagating BOTTOM corresponds to taking paths in the
program that would never occur in any execution (dead-code). Any statement with
the input BOTTOM, produces BOTTOM as the output. The merge rule for BOT-
TOM is as follows:

Merge(S1, BOTTOM) = Merge(BOTTOM, S1) = S|

The intuition behind this rule is that a path resulting in BOTTOM corresponds to an
impossible execution path and, consequently, can be ignored in the merge, I'his fact
is represented in Figure 3.20. The input to the if is called im, and the result of then
statements (S1 and S2) is represented as out1 and the result of else statement (S3)
is represented as out2. After processing the break statement, BOTTOM is passed as
the result. This path is not a valid path, therefore only the path coming from $3 can
reach to this point. That is why the input to S4 can be only out2. In other words,
that is why the merge of out2 and BOTTOM is out2.

In the following, we explain how to use the information gathered in the break-1ist

56



gt AL s T

T e TS IO

main() {

L in
while(condl) { -wl
if (cond2) L cond |

s2 ; [ 81 ] | 83
break ; [
} [s2 |
else{ an
s3 ; " out2
} | break |
sS4 ; AN
} BOTTOIYI
W,
| 84

Figure 3.20; An example of if statement with a break statciment,

and in the continue-list in our analysis. Let us first consider the continue-list.
Recall that a continue statement takes the program control back to the heginning,
of the corresponding loop. This means that we should merge the following three sers
to get a new approximation (each of these sets can be a new input to the loop):

o the previous approximation (the first approximation for while statciment is the
input set, for for statement is the result after processing the initial statement,
and for do-while is the result after the first process to its hody.).

o the output obtained from processing of the loop-body with the previons approx
imation as the input.

e all sets of information stored in the continue~list. Note that ecach ol these
sets is a potential input to the loop and corresponds to a path in the hody that
was terminated by a continue statement.

This process is repeated until a fixed-point is reached.

Unlike the continue-1ist, the break-1ist does not participate in the fixed-poini
calculation. In the case of the break-1ist, we merge the final approximation afier
reaching a fixed-point (for loops) with each set of the information contained in the
break-list. The reason behind this approach is that each set of information in the
break-1ist is a potential output of the statement.

57

i

iy 1 e

ERR B LT VN

e o




T R WY

S

bt el
'

The corresponding algorithms for break and continue (denoted as process_hreak”

and ‘process_continue’ in Figure 3.15) are:

process_break(in) {
[* break_lst field contain the merge of all the information
* reaching lo the break statements related to a loop %/
in.break_lst = merge_info(in.break_lst, in) ;
return(BOTTOM) ;

}

process_cont(in) {
/* cont_lst field contain the merge of all the information
* reaching lo the continue statemenis related to a loop */
in.cont_lst = merge_info(in.cont_lst, in) ;

return(BOTTOM) ;

Figures 3.21 to 3.24 illustrate the algorithm together with a graph representa-

tion of the while, do-while, for, and switch statements containing break and
continye,

3.7 Summary

In this chapter, we discussed the intraprocedural points-to analysis for scalar vaui-

ables. The analysis rules for basic statements and compositional control statemoents

were described in a structured and compositional way. We also described a systen-
atic strategy to handle the analysis of control statements with break and continue
features embedded, The algorithm devised for points-to analysis can he nsed as a
model to design structured algorithms for other flow analyses. In the next chapter.
the interprocedural aspects of calculating points-to information are discusscil.

58

C o ETT T A T Lo

el e s R AR, B D b it



i

e AN RE W

e e B g T R

g w W gt apend ATyl T,

process_while(cond, body, in) {

{
last_in = in ;
out = points_to(body, in) ;
[* get the continue list +/
cont_lst = in,cont_|st ;
outl = merge_info(out, cont_lst) ;
in = merge_info(in, outl) ;

} while (last_in != in) ;

break_lst = in.break_lst ;
result = merge_info(in, break_lst) ;
return(result) ;

Figure 3.21: Algorithm of the while statement in the presence of break and continue

statements,

process_do(cond, body, in) {
/% the body is processed al least once */
out = points_to(body, in) ;
/* get the continue list x/
cont_lst = in.cont_lst ;
in = merge_info(out, cont_lst) ;

last_in = in ;
out = points_to(body, in) ;
/* gel the continue list x/
cont_Ist = in.cont_lst ;
outl = merge_info(out, cont_lst) ;
in = merge_info(in, outl} ;

} while (last_in != in) ;

D-mmmmmm

.y
w

<
=

break_lst = in.break_lst ;
result = merge_info(in, break_lst) ;
return(result) ;

}

Figure 3.22: Algorithm of the do_while statement in the presence of break and

continue statements.

b9

continue
break

continue

in
.

. --d break

continue

~ < break

continue

o ol b e bt Wt B AR Tt e 5 A el et




process_for(init_stmt, cond, iter_stmt, body, in) {
in = points_to(init_stmt, in) ;

last_in = in ;
outl = points_to(body, in) ;
/* get the continue list +/

. cont_lst = in,cont_lst ;

out2 = merge_info(outl, cont_lst) ; 4 break

: outd = points_to(iter_stmt, out2) ; )

in = merge_info(in, out3d) ; ) continue N
} while (last_in != in) ; ¢ 4 break N
"‘a’ \

break_lst = in.break_lst ; continue § )
result = merge_info(in, break_lst) ; resul Y

return(result) ;

iter_stmt |

out3

Iligure 3.23; Algorithm of the for statement in the presence of break and continue

TR SRR T
f

statements.
. in
' ' . in in in
process_switch(expr, caselist, in) { _/ /
for each case in caselist do
tmp = points_to(case_body, in) ;
case- f| case- default-
. body1 body2
break_lst = in.break_lst ; o/ % body
result = break_lst : Rt
return(result) ; |
break break | break
3 RS y
A Y \ ’
N \ ’
\\\ ) lzl
‘\ ‘l ’/'
VA
result

Figure 3.24: Algorithm of the switch statement in the presence of break and
. continue statements.

60

O S

. et

b [ A briorily 9 A I B 4T b T e




AW T LT PRI R TR RIS T D eIpOhAT W S A Al ST T DIRTRLAT RS TR T A e e

Chapter 4

Interprocedural Points-to Analysis
for Scalar Variables

This chapter is concerned with the interprocedural abstract stack analysis whicliis the
process of collecting the points-to information in the presence of function calls, This
is more complicated than the intraprocedural abstract stack analysis discussed in the
previous chapter because it takes care of: (i) the renaming process between formal
parameters and actual parameters of pointer-type, (ii) the effect of Minetion calls on
the points-to information involving global variables, (iii) the points-to information

for variables of pointer-type which are returned by a function, and (iv) the elleet of

recursive function calls.

To perform the interprocedural analysis, we make use of a special representation for
the interprocedural structure, namely the invocation graph. We first explain the con
struction of the invocation graph in Section 4.1. Then, we discuss the interprocedural
analysis. Since the methods for recursive function calls are more complicated. we lirst
consider the interprocedural analysis without the presence of recursive function calls
in Section 4.2, Then, the recursive function calls are included in Scction 4.3.

4.1 Invocation Graph

In this section, we explain the construction of the invocation graph in the presenee of

both recursive and non-recursive function calls. The construction of the invocation
graph is independent of points-to analysis and can be used by any other analysia,
Before presenting the details, let us first explain the following terminology: If a
function £ calls another function g, £ is called the caller and g is called the callee,

61

»
vt e el st SR M oA RIS s e 33y




L e e e T R
Y s T T ~

An invocation graph captures the activation order and structure of function calls
in a program. Our invocation graph is made up of: (i) a set of nodes representing
function call instances, and, (ii) a set of edges specifying the callee-caller relationships
hetween functions.

The following are three major reasons for using an invocation graph:

1. Our invocation graph is specially useful in the presence of recursive Tunction
calls. This is discussed in Section 4.3.

2. By using an invocation graph one can save the analysis information of cach
call separately, This can be used for the optimization purposes, Readers are
referred to the section “future work” in Chapter 10 for further information on
this subject.

3. Theinvocation graph can be used in conjunction with function-pointers. Readers
are referred to the Section 8.2.3 for further information on this subject.

In the case of non-recursive function calls, the invocation graph is in the form of an
ordinary tree while for recursive function calls it is a tree with some implicit back-
edges. We first explain the non-recursive invocation graph and then extend it 10
include recursive calls.

The nodes in a non-recursive invocation graph are called ordinary nodes and the
edges are called calling arcs. To build a non-recursive invocation graph, for cach fune-
tion, we collect the list of all the functions who gets called by that function, Then. we
recursively construct the invocation graph starting from the main by linking the calle
and the callee functions. Consider the example shown in Figure 4.1. Figure 1.1(h)
shows the list of functions called by each function. For example, function maan calls
three functions, £(), g(), and h(). The construction of the invocation graph can
be understood by following the steps shown in Figure 4.1(c).

Next, we construct an invocation graph for a program with a recursive lunction call
using the same steps as explained before. Consider the example given in IMigure 1.2,
Using the previous method, we obtain an infinite call to function £. This is shown in
Figure 4.2(c).

To solve this problem, the number of function calls has to be approximated. I s
is achieved by cutting down the infinite number of the calls to the function £() into
two calls: (i) the first appearance of the function call in the invocation graph. namely
recursive node denoted as £-R, and (ii) the second appearance of the function call
in the invocation graph, namely approrimate node denoted as £-A. To set up the
correspondence between an approximate node and the corresponding recursive node,

62

e R g e e T T

R R

LA




main () Func Func-list

(a) C program

main ()
{
£0);
J Func Func-list
main() f
0 (o
if(...)
fO);
)
(a) C program (b) 'Func' is the function name and

‘Func-list' is the list of functions
who get called by ‘Func'

{ main() t->g-s>h
£(); f{) h->h
g0); g()
h(); h()
l-( ) (b) ‘Func' is the function name and ‘Func-list' is
( the list of functions who get called by ‘Func’
h();
h();
}8 O main main  main main main main
{ ] /N /I
) f f f 9 f g h
h() | /\
{ h h h h h h h

(c) The steps of generation of invocatin graph from leit to right

Figure 4.1: An example for the construction of the invocation praph.

main  main  main  man

I

o !
| |
1

I

f

(c) The steps of generation of
invocation graph from left
to right

Figure 4.2: An example for the construction of the recursive invocation giapl.

a link is established from the approximate node to the recursive node in the o atjon
graph. Figure 4.3 shows the extended invocation graph for the example ol Fignie 12,

Now that the idea is clear, we give the formal definition and a precise algorithin.
A call is recursive if it has already occurred once in the call-chain from the rool, In
. the presence of a recursive function call £, the following steps are taken:

63




by A L Sy

main ()

{
£(); Func Func-list main  main  main
} main() 1
f() f f i-R
fO) v .
{ !
if(...) f-A
£C);
}
(a) C program (b) ‘Func' is the function name and () The steps of generation of
‘Func-list is the list of functions invocation graph from left

who get called by ‘Func’ to right

Figure 41.3: An example of the construction of the recursive invocation graph using,
our method.

1. Change the first occurrence of £ from ordinary to recursive node £-R.

2. Create an approximate node for the recursive call £, denoted as £-A, and connect
it to the current place (the caller’s node in the invocation graph) by a calling
arc.

3. Connect the approximate node £-A and its corresponding recursive node £-R by
an approzimale arc.

In the following, we explain the construction of the invocation graph in the presence
of mutual recursion, using the example shown in Figure 4.4(a). Figure Ld(h) shows
all the steps of this construction. The new modifications at each step are shown using
bold face notation. Since function main calls £, we create two ordinary nodes for main
and £ and connect them by a calling arc. When £ calls g, we create another ordinary
node for g and connect it to £ by a calling arc. Now g calls £ recursively. Since £ has
already occurred once in the call-chain from the root, we do the following: (i) change
the first occurrence of £ to a recursive node denoted as £-R, (ii) create an approzimate
node for £ denoted as £-A and connect g and £-A by a calling arc, and (iii) connect the
approximate node £-A and its corresponding recursive node £-R by an approximate
arc. Approximate arcs are shown by dotted lines in Figure 4.4. Similarly. functions
h and w call themselves recursively. So, we convert the first occurrence ol h and w to
h-R and w-R, create new nodes h-A and w~-A, and connect them by approximate ares
to h-R and w-R, respectively.

The depth-first algorithm for building invocation graph is given in Appendix B,

Each node in the invocation graph {except main) corresponds 1o a call-site in the

64

- e

AT




LTy R P T

Ty

e e AL B R e = e % o ey e ]

main main main main main
¥ ¥ ¥\
main( t f -R R h
£O); v y Ly
| h(); g : ) -
fi \ ,*A \\ v
g() - f-A
)
gl 0 :
f(); main main main
¥ ¥\ ¥\ f/ ’;R
f-R h f-R h - )
w(); hl v v “ ¥ ¥ 1’4 \ \/ ‘\
) (g w i g wR Lo Wl
wi ! t v * vy )
w(); \ \ \ v ! ‘LA WA
h(); t-A tA WA/ v
] h.A ’

(a) The C program (b) All the steps while building the ivocation graph for the given program

Figure 4.4: An example for construction of the invocation graph in the presence of
mutual recursion.

program and each function call in the program corresponds to a wnigue path in the
invocation graph. This fact is shown in the example of Figure L5, This example
pose the question that how the same function call g() (in the body of £0)) points
to two different nodes in the invocation graph. In order to maintain a oneto one
relationship between the paths of invocation graph and the call sites. one should heep

track of (i) the invocation graph node related to corresponding caller (lor exanple

the £ nodes from the invocation graph) and (ii) the corresponding call wnnnber (lor
example function g is the first function call in the body of function £. therelore the
call number in one).

In the subsequent section, we explain how the invocation graph is used in inter
procedural analysis.

65

J e A T R VS




Al it S A

main () { LT .

- ~
£« - '
f()::”"-.., 7 main )k

) R ¥

£O( my \f
O~ mn

] = .\ = ~ \“J ¢

8() 'N’\, g

T me s

Figure 4.5: Relationship between program and invocation graph.
4.2 Interprocedural Analysis for Non-recursive Function Calls

In this section, we discuss interprocedural analysis in the presence of non-recursive
function calls. Interprocedural analysis captures points-to information across [une-
tions affected through both function parameters and global variables,

We first give a motivating example to demonstrate the need for the interprocedural
analysis. Figure 4.6 represents a program that indirectly swaps two variables. The
memory representation of main before calling function indirect_swap. the memory
representation of indirect.swap before it is processed, and the memory repiesenta-
lion of main after the call to indirect._swap is processed, are shown in Figure LG(a).
(b), and (c), respectively. The variable y1 which points to the location z1 hefore
the call to the function indirect_swap in main, points to the location z2 alter this
call is completed. This is due to the fact that the memory location y1 is accessible
through the pointer dereference *a (although y1 is not in the scope of the function

indirect.swap). The points-to relationship for the variable y2 changes in a similar
way.

Two important observations can be made here:

1. A function call can considerably affect the points-to relationships holding in the
caller.

2. The program variables, whose points-to information can be modified Iy o fitne-
tion call, need not lie in the scope of the callee.

The above two possibilities make interprocedural analysis necessary for collecting
accurate points-to information.

66

I




x4 y1 21
int *m ; H o

main()

{ X2 y2 22
int *xx1, *yl, 21 ; [
int **x2, *y2, 22 ;
(a) The memory representation of main( ,
x1 = &y1 ; betore tunction call indirect_swap().
1 = &z1 ;
y a yi 21
x2 = &y2 ; D_-—’[ i_"—’
y2 = &22 ; b y2 22
indirect_swap(x1,x2) ; L ‘
}

(b) The memory representation of indireet_swap(),

void indirect_swap(a, b) before the execution of the function hody

int *%a, **b ;

{ x1 y1 Al
int *temp ; T
temp = *a ; x2 y2 22
*a = ¥b ; L
*b = temp ;
} (c) The memory representation of man() , after

returning from the call to indirect _swap().

Figure 4.6: A motivating example for interprocedural analysis,

A conservative approach:

In the absence of interprocedural analysis, safe conservative assumptions need 10 he
made about the effects of a function call on the points-to information in the caller. 'The
minimum requirements for any such approximation is to assume that the following
types of variables can point to any variable in the scope of the callec:

1. Pointer variables which are global in scope.

2. Pointer variables whose address is passed as a parameter to the callec,

3. Pointer variables accessible through one or more levels of derelerena of an
variable of the above two types.

67

I AN 3 b

el




-

e

EREETar T

As type casting is permitted in C, we have to assume that these pointer variables
can point to any variable, irrespective of its type, in the scope of the callee.

Using these assumptions, the memory representation after the call to the function
indirect_swap is estimated as shown in Figure 4.7. The relationships from/to m

m
- o - -
__—"‘ ;I *\\
- ~

P P ~

’ P \ ~
’ Y ~
’ ’ \ \

Figure 4.7: The memory representation without the interprocedural analvsis hased
on a conservative assumption instead.

are caused by the fact that m is a global variable and therefore can he offceted by
any function call. The possibly-points-to relationship between the poinfer variablos
of the same level, e.g. (y1,y2,P), can be caused by type casting, Since the addroess
of varjables x1 and x2 are not accessible in function indirect_swap. their points-to
information does not change.

We conclude that the conservative approach introduces substantial imprecision i
the points-to information. This imprecision accumulates with frequently oceurring
function calls in C-programs. Thus, the need for interprocedural analysis is evident,

Our approach using the invocation graph:

We have alrcady discussed our representation for the invocation graph which cap-
tures the interprocedural structure of the program. The invocation graph is a basic
requirement for interprocedural analysis as it makes both the interprocedural pro-
gram paths and the nature of function calls, explicit. The usage of invocation grapl
in our analysis is explained in Section 4.2.1,

For interprocedural points-to analysis, we need to propagate points-to information
from a call-site to the entry of the corresponding function. As this propagation
progresses, we modify the points-to information to take care of the following:

1. The renaming of variables caused by parameter passing.

68

P R U

et i e




2. The possibility of accessing a variable inside the callee whicl is not in { he seope
of callee (as shown in the indirect swap example).

Next, the body of the function is analyzed using this points-to information. Ihe
information computed during this analysis is returned to the call site. Due to e
above-mentioned factors, this information has to be modified again, The map and un
map processes, explained in Section 4.2.2, are designed to perform proper propagation
of points-to information from the caller to the callee and vice versa.

After simplification, the occurrence of a function call is limited (o one of {he
following cases when each argument, arg;, is a scalar variable or a constant:

L. f(a'rgla arga, .., argn)
2. a = f(argy, argy, ..., arg,) and return(var)

In the following sections, we discuss the first case in detail. T'he second case. whicl
is obtained by adding some slight modifications to the first case. will ho dise tiased 1
Section 4.2.3.

4.2.1 Relationship Between Invocation Graph and Interprocedural A nal-
ysis

As mentioned before, our interprocedural analysis follows the sequence of lunetion
calls. This means that for each function call, analysis procceds from the call site 1o
the analysis of the body of the callee and then returns to the call-site.

The relationship between our analysis with invocation graph is explained by stody-
ing the example given in Figure 4.8, Analysis of the program starts fhom 1he main
function. For each function, the intraprocedural analysis is done nuntil we reach o
function call (in this case £()). Then, the analysis procceds via the invocation praph.
If the corresponding invocation graph node is an ordinary node (other kind of nodes
will be discussed in Section 4.3), the body of the callec (£) is analyzed and the re
sult is returned through the invocation graph to the call-site upon completion. Nle
that, the analysis continues in the body of the caller (main) until reaching another
call (£()). Analysis continues in this fashion until all statements of ¢aller (main) have
been analyzed. The movement to/from the invocation graph is shown as the Ll
of the links between the invocation graph and the program in Figure 1~

Using this method, we can be sure of the following points:

1. The points-to information coming from different call-sites will not be used at (e
same time to collect new points-to information.

69

Lt ey i e

O A W i b B




{a) The source code ( b)) Invocation graph

Figure 4.8: Relationship between program and invocation graph (the numbers written
on the edges show the order of the process).

2. The points-to information always returns to the appropriate unique call-site,

4.2.2 Map and Unmap Processes

We characterize the interprocedural analysis by the following steps:

e Map process: is a process that compares all the actual and formal parameters
and sets all the possible points-to information for formal parameters. 1t does the
same thing for the global variables.

¢ Function process: is the intraprocedural analysis for the body of the callee. The
input to this process is the absiract stack as created by the map process,

e Unmap process: is a process which takes the resulting abstract stack from the
function process and unmaps the variable names - changing the names in the
callee back to the names in the caller.

Figure 4.9 shows a graph representation of the map and unmap processes,

The interprocedural points-to algorithm is represented in the following:

70



Map Process

Caller

Function
Process

Unmap Process

Figure 4.9: The map and unmap process.

/* Given a basic statement and wmput wmformabion, velurn the oulpul
* information (inpul.in 1s the pownts_lo relatronships) +/
points_to (S,input) =
if basic_statement(S) then
/* S is basic stalement x/
return({basic_points_to(S,input));
else if control_statement(S) then
/* S is a composstional control statement */
return(control_points_to(S,input));
else if func_call(S) then
/% S is a call expression slatement x/
return(func_points_to(S,input));
else
return(input) ;

The algorithm for ‘basic_points_to’ and ‘control_points_to’ was given in Cliaplier 3.,
The algorithm for ‘func_points.to’ in the absence of recursive function calls is given in
the following (the algorithms for ‘map.process’ and ‘unmap_process® whicl are nsed
here will be explained later in this chapter). The algorithim of ‘func_points 16" in the
presence of recursive function calls is given in Section 4.3.

71




o S € PRI Ty P )

WA L AR AN R

/*
*
*
*
*
*
»
*
*
*
¥
*

*

Function name : func_points_to
Purpose : find out the points—to information after
processing a non recursive function call, using
the input information to the call.
Parameters : call_expr_node —— the call node in caller
in_data —— the input information to
‘call_expr node’ before it is processed.
Note that the field '.in’ represents the
points—to relationships,
Return : out_data —— the output information of caller |
afler processing function call

+/

func_points_to( call_expr_node, in_data)

{

[+ get the related invocation graph node to the callee by using the
invocalion graph node of caller (‘in_data.cur_ig_node’) and
related call number of callee (‘call_expr_node.call_expr_num'),
For example, if ‘f{a)’ ia the third function call in the body of 'y,
the related invocation graph node to callee ‘f(a)’ is the third chid
of the related invocation graph node of caller ‘g’ */
ig_node = get_related_ig_node( in_data.cur_ig_node,
call_expr_node.call_expr_num) :

* O ¥ ® W

/* get the function node of the callee from the ‘call_expr _node' x/
func_node = get_func_node( call_expr_node) ;

[+ gel the list of arguments (actual parameters) +/
arg_lst = get_arg_lsi( call_expr_node) ;

/* ‘map_process’ maps the points—to information (‘in_data.in’), relurns

+ the mapped points—lo information (func_in_data.in’) and the map

* information (‘map_info’) »/

[map_info, func_in_data.in] = map_process( func_node, arg_lst, in_data m) .

[+ save the map information and the entry points—to relatsonships m the
* invocalion graph node related to the function call, */
rave_in_info( ig_node, map_info, func_in_data.in) ;

[+ get the body of the callee »/
func_body = get_func_body( func_node) ;

[+ if the invocation graph node is an ordinary node (non—recursive), analys
* the body of callee and return oulput information in ‘func_out_data’ «/
if (is_ordinary_node(ig_node))

func_out_data = points_to( func_body, func_in_data) ;

2




I i e ke S I e T R E

[+ save the result of the points—to analysis of callee m the related
* invocation graph node «/
save_out_info( ig_node, func_out_data.in) ;

/* the unmap process gets the points—to mformation of callir

* and callee and returns the new set of points—to mformatran

* for caller (‘.in’ is the field related to points—to mfo).+/
out_data.in = unmap_process( in_data, func_out_data.in, map_info) ,

return( out_data) ;

As mentioned before, the following two cases complicate the map and the mmap
‘ processes.

1. The renaming process between the actual and formal paramecters. | his s oy
plained in the next two sections.

ETEE

2. The accessibility of the variables which are not in the scope of the callee (Hough

indirect reference). To solve this problem, we introduce the concept of Tursible
f Variables'. These are names used for the variables that arc not in the scope of
a function but are accessible trough indirect reference. The invisible variahles of
! x with type int** are 1.x and 2.x with types int* and int, respectivels,

The following example explains the use of invisible variables.

main(){
| int *a, b, *c, d ; /* stmt 1 */
| a=£&b ; /* stmt 2 */
f(a) ; /* stmt 3 */
¢ =& ; /* stmt 4 */
f(c) ; /* stmt & */
} /* stmt 6 */
£(x) /* stmt 7 */
int *x ; /* stmt 8 */
{ 1}

After processing statement 2, we get (a,b,D). As the result of the call to fundtion f
at statement 3, x gets a copy of the contents of a. This means that x should point to

‘ ! A similar notation of non-visible variables is given in {LR92).

73

.-

PP T T

e bt bt b e ow S e



a8 gl ST, NP -, MR A TSR iy S TR I R
! 5 g

the same location as a is pointing to, namely b, Even though b is not in the scope of
function £, the memory location represented by b is still accessible in the function £
through the indirect reference *x. Since we deal with locations of abstract stack, we
need a name corresponding to the location b. There are two solutions to this problem:

(i) Having a location in the callee for each possible access to a variable even if the
variable is not in the scope of the callee, For the above example, we should have
abstract stack locations for variables b and d because they will be used by the
calls to £ at statements 3 and 5.

(ii) Introducing invisible variables and using them instead of the variables which
are not available in the scope of callee. In the above example, x ha» only one
invisible variable namely 1.x with type int. At the call in statememt 3. the
invisible variable 1_x stands for the local variable b and leads to the relationship
(x,1.x,D) as the result of the map process. At the call in statemem 5. the
invisible variable 1_x stands for the local variable d and resolves the relationship
(x,1x,D) as the result of the map process.

The following are the advantages of using the invisible variables instead ol the
local variables of the caller in the abstract stack:

1. Adding the local variables to the abstract stack location of the callee increases
the size of the abstract stack. In the above example, without using invisible
variables, we would need two locations for b and d in the abstract stack ol £,
Using the invisible variable 1_x is sufficient to handle both of these cases (in the
first call 1.x stands for b and in the second call it stands for d). This results in
a more compact representation for the points-to information.

2. The points-to information of each function call can be reused by keeping track of
the input-output sets of points-to information of each function. If an input set
has already occurred and an output is computed for it, in the second appearvance
of the same input, we can use the already computed output. The input-output
information of each call is saved in its related invocation graph node. I the above
example, the input to the function £ in both cases is the same. Consequently.
there is no need to process the second call to £, if the output of the first call is
already available. On the other hand, as we have two different locations for b
and d in the abstract stack for £, it becomes necessary to process both function
calls to £. Although this could have been possible if a function is called by the
same parameters (e.g. if the second call to £ was £(a)), but it can be done more
often while using invisible variables.

T4




AL ey 2 U Mt B oL MR S ST T A, O R r £

S T YR mEREE S T T s A T

3. Adding the local variables can result in a problem in the case of recursion. This
happens because the number of iterations in a recursive function is not knowu,
In this case, we select a finite number of invisible variables using the type of
arguments and global variables,

To make sure that each accessible variable has a location in the abstract stack.
we generate names for all the possible locations that each indirection of a formal
parameter or global variable may need to access,

A set of relationships between local variables in the caller and invisible variables
in the callee is kept for the unmap purposes. This set is called map.info. lu the
presence of possibly-points-to relationship, an invisible variable may stand for mor o
than one variable, The details will be explained in subsequent sections,

In the following sections, we describe: (i) a general algorithm for map PEOCeSS,
(ii) a general algorithm for unmap process, and (iii) our accurate algorithim for the
map and unmap processes,

Map Process

The idea of the map process was explained in the previous section. I general,
one can devise different algorithms for the map process. In this section, we present
general, and straight-forward algorithm for the map process. Later, this is oxtended
to a more accurate method.

Consider the case that the function £ is called as £ ( arg;, argy,..., arg,) and
is defined as £( param;, param,,..., param,). As in the C-langnage. parametoers
are always passed by value, to get the equivalent abstract stack links for caeh fori]
parameter param;, we consider the parameters as:

param; = arg; ;

param; args ;

param, = arg, ;
The rule determining the points-to information is similar 1o the case lor bisic
statements which was described in Chapter 3. This rule specifics that param, should

point to the same location as arg; is pointing to. In the present case. we have 1wo
additional features for this rule which are as follows:

(i) For multi-level pointers, the rule extends the points-to relationship 1o cach of
the corresponding lower level of dereference that is of pointer type. For example,
if arg; is of type int#¥, the rule should also apply to *param, = *arg,.

75




RIS R

R T L T e T e e

(ii) The invisible variables are used instead of the variables which are not in the
scope of callee.

Since a global variable might point to a local variable of caller which is an invisible
variable for callee, the map process should be applied to global variables as well. This
is achieved by applying the assignment var; = var; to all the global variable var, in
the same way as was explained for the function parameter. In this assignment, the
global variable var; appearing in the lhs (left hand side) is related to the scope of the
callec and the global variable var; appearing in rhs (right hand side) is related to (he
scope of the caller (each function has its own abstract stack).

In the case that an actual parameter or a global variable points 1o a location which
is not in the scope of callee, we use the related invisible variable and set its related
location in a set called map_info (this set is later used by the unmap process). I the
location is already assigned to an invisible variable, we just use that invisible variablo.
The reason behind not redefining an invisible variable is to avoid a situation whore
one real stack location is usad for two or more different abstract stack locations.

The general algorithm for the map process is as follows:

76

R




L Al L ]

TN gn W er G AN, MR et

oy

Function name : map_process
Purpose : finding the points—to information of callee,
and the corresponding map information using
the points—to information of calley,
Parameters : func_node —— the function declaration node of called
arg_lst —— argument list

caller_in —— the pownts—to information of culler
Return : map_info —— a set of relationship between visible
variables of callee and local variables
of caller.
callee_in —~ the points—to information entering to callee

. ¢

map_process( func_node, arg_lst, caller_in)

{

/* nitialization »/

map_info = { }

callee_in = { } ;

param_lst = get_param_lst( func_node) ;

[+ doing the map process for each parameler */
for each ’param_ i’ in ’param_lst’ and ‘arg i’ in ‘arg.lst’ dn
/¥ ‘callee_in’ and '‘map_snfo’ will be updated. The argument
+ corresponding lo 1 is the depth of the pointir type. For
* the first call, depth 13 1. */
[map_info, callee_in] =
map_func{ param_j, arg_i, callee_in, caller_in, 1, map_into) .

[+ doing the map process for each global varable +/

for each global variable 'var_i’ do
[* ‘callee_in’ and ‘map_info’ will be updated. The wrgument
% corresponding to 1 1s the depth of the pomter lypc, Fo
* the first call, depth is 1. x/
[map_info, callee_in] =
map_func( var_i, var_i, callee_in, caller_in, 1, map_mfo) .

return( [map_info, callee_in]) ;

77

g b




/*

* Function name : map_func

* Purpose : assigning the points—to information of caller_var
* to callee_var (considering the invisible

* variables). This function is recursively called
* to assign the points—to information of all the
* indirectly accessible variables through caller_var.
+ Parameters : callee_var —— the variable in callee

* caller_var —— the related variable in caller
* callee_in —— points—to information of callee

* caller_in —— points—to information of caller

* depth —— the depth of current invisible variable

* (for the first call, it is 1),

* map_info —— the sel of map information

* Relurn : map_info —— the updated set of map information

* callee_tn ~— the updated set of points—to information

* of callee

* */

map_func( callee_var, caller_var, callee_in, caller_in, depth ymap_info)

{

[+ if ‘callee_var’ is not of pointer—type, there is no need of
* poinls—to analysis (no extra points—to relationship can be
* generated) x/

if !(is_pointer_type(callee_var))

return([map_info, callee_in)) ;

PRI 0 AL DA S PTG D8 4 A SRR e 1 T

¥

for cach ‘x’ such that a relationship ‘(caller_var, x, rel)' cxists do
[+ ‘rel’ can be either definitely—points—to or possibly—points—to +/
{
if (is_in_callee_scope(x))
{
/* add the same type of relationship to ‘callee_in’ x/
callee_in = callee_in U {(callee_var, x, rel)} ;

[+ recurswvely check all the relationship of the variables

+ which can be derwwed from ‘caller_var’. In this cast.

* ot 18 all the varables that ‘z’ ponts to.

* As ‘r’ is one level deeper, depth is increased by onc +/
[map_info, callee_in] =

map_func( x, x, callee_in, caller_in, depth+1) :

78




else{ /+ varable ¢’ is not in the scope of callee x/

/* look at ‘map_info’ set to check if an invinble variable

* is already assigned to the varwable ‘v’ +/

if (exist_invisible_for( x, map_info))
[* if an invisible variable is already assigned to varably
* 'z, get that variable and use the same name +/
x_invisible = get_invisible_var( x, map_info)) ;

else{ /+ an invisible variable does not exist for 'r's/
/* get an invisible variable for ‘v’ uswg ‘depth’
+ and ‘callec_var’, If the name of variable *callee_var’
* i3 ‘data’ and ‘depth’ 1s 1, the mvwible varable
* would be ‘I_data’, for ‘depth’ 2, the wmmsible var bl
* would be '2_data’, and so on. */
x_invisible = define_invisible( callec_var, depth) ;

[* set the equivalency of ‘r_invisible’ and ‘v' n th
* ‘map_info’. This information is nsed by the wnmap processy)
add_map_info( x_invisible, x, map_info) ;

}

/* add the relationship ‘rel’ between ‘callee_var’ and the
* nvisible variable ‘z_invisible’ in ‘callec_in’, +/
callee_in = callee_in U {(callec_var, x_invisible, rel)} .

/* recursively check all the relationship of the varrabl: «
+ which can be derived from ‘caller_var’. In this case,
* it is all the variables that ‘z’ points lo.
* As ‘z’ s one level deeper, depth 1s increased by one 1/
[map_info, callee_in] =
map_func( x_invisible, x, callee_in, caller_in, depth-+1) .
}
}

return([map_info, callee_in]) ;

In the following, we further explain the general map process using o exannples
which are devised to give a clear idea of the concept.

Consider the example given in Figure 4.10. At statement |, hefore the PIOC eSS
of function £, we get {(a, y, D), (x, y, D)} (refer to Figure 4.10(a)). We firsi apply
the map process on the parameters. To do this, we add the points-to telationship
resulting from m = a to the set of the points-to information of callee, ‘Il 1neans
that m should point to the same location as a is pointing to. As the resnlt. we ohtann

79




int *x, y ;

main()
X
{ ; 2
int *a ; a >
a =&y ;
:(:)&Y ; /% stmti +/ (a) Abstrack stack of main () at statement 1
; s
} !
X
£ (m) y g
int *m ; /* stmt2 */ m
{
(b) Abstrack stack of £( ) at statement 2
}

Figure 4.10: A simple example of map process,

the relationship (m,y,D). Next, we perform the map process on global vanables Tns
results in the relationship (x,y,D) for callee. The final result of 1ap process 1< <o
in Figure 4.10(b).

Figure 4.11 shows another example that makes use of the invisible variables e
main program under consideration and its simplified version (obtained by passins
through the simplifier program) are shown in parts (a) and () of this hewme  \.
already mentioned in Chapter 2, an address operand can never appear as a parancter
in the SIMPLE AST. This fact is shown in statement | of Figure [.11(h). In this e,
the address operand will be moved out by defining a new variable (in this case tempo)
and using it as a replacement. At statement 1, before the process of fnnction £ we gt
{(x, ¢, D), (a, b, D), (temp0, b, D)}. The corresponding abstract stack repres cntation
is shown in Figure 4.11(c). At this point, the map process is performed on b tion
parameters and global variables. We first apply the map process 1o the twa i tion
parameters, m and n. This is described in the following:

1. We should add the points-to information resolved fromm = a to the ot of the
points-to information of callec (£). This means that m should pont to the e
location as a is pointing to. This results in the relationship (nih 1) Siee
variable b is not in the scope of function £, we do not want 16 use the nome b
the analysis of £. Rather, at this point, we use the invisible varrable 1 m s tead
of b. We also note in the map_info set that 1m and b are equvalent V. 1he
final result of this step, we get the relationship (m,1a0.1)) Since 1 m - ot of

80




X
[od
e
b

int **x ;
1nt *k*x ; main() a 2
main() { temp0
{ int *a, b,
int *a, b, *c, d ; (c) Abstrack stack of main ()
xc, d ; 1t *temp0 ; at statement 1
a = &b ; a=&b ; 1xx>
x = &c ; x = &c ; 7 x @
c = &d ; c = &d ; m >
f(a, &b) ; temp0 = &b 1m >
} f(a, temp0) ;/*stmt 1%/ L
} (d) Abstrack stack of f (
f(m, n) at statement 2
int *m, *n ; f(m, n)
{ int *m, *n ; /*stmt 2%/ 1X & ¢
} £ 2x o d
} I_m = b
(e) The map information
(map_info)
(a) A C-program (b) The simplified version

Figure 4.11: An example of map process where invisible variables are nsed

pointer-type, this step is completed.

2. We should add the same points-to information resolved from n = temp0 1 his
means that n should point to the same location as temp0 is pointing to | his
results in the relationship (n,b,D). Once again, we want to express this relation
ship in terms of the names in the scope of function £. However. in this case. as
it is not the first occurrence of b, the invisible variable 1.m already stands fo
variable b. 'Therefore, we can use 1.m instead of b (there is no need 1o define
another variable). As the final result, we get the relationship (n.l_m.1). Sinee
1.m is not of pointer-type, this step is completed.

Now, we apply the map process to the global variable x resulting in (x.c.1)}. In this
. case, ¢ is not in the scope of £, and. consequently, it is the first time that ¢ is used in

81




the map process. Due to this reason, we use another invisible variable 1 x and add 1
to the et of map_1nfo. This results in (x,1.x,1). Since 1.x is of pointer type (ant)
the map process continues to a lower level. Because 1.x is equivelent to ¢, 1 x pomts
to the same location as c is pointing to. The variable c definitely-points tod bt d i~
not in the scope of function £ and also is not already assigned to an invisible vaahle
In this case, another invisible variable has to be used, namely 2 x. he cquivalence
of 2.x and d is added to man_info. This resolves the relationship (1 v.2 x.D1 \s 2 x
is not of pointer-type, the process is completed at this point. Figure 111D shows
the abstract stack after the completion of map process and Figure L1{e) shows 1he
corresponding map.info set.

Unmap Process

In this section, we explait: the general unmap process and the use ol wnvsible
variables. In the next section, we extend the unmap process 1o a more accnrate
method.

As mentioned before, wiien the map process is completed, the hody ol the callee
will be processed (intraprocedural analysis). After that, the nnmap process ietnnn.
all the changes to the caller. In other words, the unmap process npdates the abstiact
stack of caller according to the changes occurring in the process of callee The niap
information (map_info) collected from map process is used for this updatine pu pos
The relationship between local variables of caller and invisible vaniables of callee are
kept in the map_info set.

Assume that caller_input is the set of points-to information of caller £ pust helore
the function call to g, and callee_output is the set of points-to information ol callec
g after the process of g is completed. We want to apply the unnap process 1o the
two sets caller_input and calleeoutput and thereby compute the caller output,
set which is the points-to information of £ after the process of callee g iv conipleted
Following is the general algorithm of uninap process:

82




uminap_process( caller_input, callee_output, map_info)

! kill = {(x, y, rel) - (x, y, rel) € caller_input A
(x_map, y_map, rel) ¢ callee_output}
gen = {(x, y, rel}) : (x_map, y_map, rel) € callec_outpui}
caller_output = gen U (caller_input — kill)
return(caller_output)
}

where x/y is in the scope of caller (£) and x.map/y_map is its related variable e the
callee (g). If x/y is in the scope of the callee (g), x-map/y.map is the same as v/,
Otherwise, it can be found from the map_info set. Basically, the above procedne
removes all the changed information from points-to set of caller and adds the new
information to it. The following are some examples to clarily the corresponding
algorithm.

Consider the example given in Figure 4.12. As it is shown in Figure 1.12(a). theie

int *x, y ; X %
main() y >
{ a a
0 (@) At statement 1 (c) At statement 3
£() ; /% stmt 1 %/ a) At statemen c) At statemen
he call o f fter the cal to f
a=x; /% stmt 3 */ before the call to after the cal to
3 /* stmt 4 */
£() X X
a
x =&y ;
’ /* stmt 2 +/ (b) At statement 2 (d) At statement 4

Figure 4.12: An example of unmap process.

is no points-to information that holds before the call to function £ at statciment 1.
. Due to this fact, the map process does not pass any information to the fnnction £

83




At statement 2, we get (x,y,D). The corresponding stack representation s shown
Figure 4.12(b). Now is the time for the unmap process which is applied thionnh
computing the sets mentioned in the above algorithm. The involved sets are o
follows:

callerdnput = { }
callee_output = {(x,y,D)}
kill = { }

gen = {(x,y,D)}
caller_output = {(x.y,D)}

Note that since x and y in the set caller_input are in the scope ol main then
mapped variables do not change. As a result, gen set holds the relationship (v v 1)
The result of unmap process is shown in Figure -L.12(c). Finally, after the execntion ol
statement 3, we get (a,y,D) (since x definitely-points-to y, a also definitely pomnts 1o
y). This is shown in Figure 4.12(d). This example shows that the numap process s
essential in the case that no invisible variable is available. The example v e 113
shows the importance of the invisible variables in the unmap process

The points-to information available before the function call £ ot statement |-
shown in Figure 4.13(a). The result of the map process of function s shown
Figure 4.13(b). The abstract stack representation at statement 3 alter processim
the body of £, is shown in Figure 4.13(c). The map information saved inmap 1mfo .
shown in Figure 4.13(¢). The following are the involved sets computed wor e anmap
process:

callerinput = {(a,b,D), (b,c,D)}

callee_output = {(m,l.m,D), (I.mx,D), (n,x,D)}
kill = {(b,c,D)}

gen = {(b,x,D)}

caller_output = {(a,b,D), (b,x,D)}

The ‘kill’ set is {(b,c,D)} because (b,¢,DD) is in the caller but its telated poant 10
relationship which is (1.m,2.m,D} is not in the callee. The “gen” <ot s (1, . 1)}
because (1.m, x, D) is in callee but its related points-to information v caller vl
(b, x, D), is not available. Note that the relation (m,l_m,D) i in callee hut <nice mos
not in the scope of main and it is not in the map_1nfo set, it has novelated relation iy

in the caller. Also, (n,x,D) is in the callee but, since n is local to the callee, 1t has e
related relationship in the caller. The final result is shown in Figuie | 130

84




. X
int x ; m >
a
main() 5 > 1_m
2_m
{ c =
int **a, *b, c ;
a = &b ; (a) At statement 1 {c) At statement 2
b = &c ; =
f(a) ; /* stmt 1 */ = X
} /* stmt 4 * Tm g g 9
f(m) 2m —
int *¥m ; /* stmt 2 */ n
{ (b) At statement 2 (d) At statement 4
int *n ;
n = &x ; n o b
*m = &x ; 2m o ¢
} /* stmt 3 */

(e) Map Information ( map_info )

Figure 4.13: An example of unmap process in the presence of invisible variables

Through this example, we see that variables which are not in the scope ol a funetion
may get changerl through a pointer variable. One can not take care of this side eflect
without using tie map information (map_info).

In the next section, we extend the map and the unmap processes 1o more accirate
methods which are implemented in this thesis.

Extended Map and Unmap Processes

The map/unmap algorithm plays an important role in the accuracy of the inter-
procedural analysis. We have designed an accurate map/unmap algorithim hased on
the [ollowing two facts: (i) It is safe to say that an invisible variable represents more
than one variable. However, since this may result in some extia possibly pomt-to
relationships, we would like to reduce the number of such cases. (i) |wo abstiact
stack locations are not allowed to represent the same variable and such cases should
be avoided.

The following are the major points of these algorithms which will he subsequenty
discussed in this section:




1. If a variable is a pointer to a structure, it should have a lugher prionty i the
map process. Note that structures are explained in Chapter 5 o the case ol
having difficulty understanding this part, it might be beneticial to retin to this
section after reading Chapter 5.

2. In the map process, the definitely-points-to relationships have higher poonin
than possibly-points-to relationships.

3. In the map and unmap processes, as far as it is possible, definiteh pomnts to
relationships are not changed to possibly-points-to.

The first point concerning our map/unmap process is related to pointers to st
tures. The goal is to avoid cases that two invisible variables stand o the same
location in the abstract stack. When a variable y points-to an invisible variable of
structure type 1_y with fields .£1 and .£2, if 1_y stands for strncture vanahle o
the caller, clearly 1_y.f1 stands for a.f1 and 1_y.£2 stands for a.£2 1o order (o
make sure that no other invisible variable is alrcady standing for a.£1 and a.12 we
give a higher priority to pointers to structures. We first assign names lor the iy isible
variables of structure type (at this level we do not assign the points-to mtormation)
Then, we apply the map process to all the pointer type variables. Tn this nianmer we
guarantee that the double naming for the fields of a structure can not appear s
point is essential for the correctness of the concept of invisible variables, 11 this pont
is not considered, two invisible variables can stand for one variable which contiadicrs
the main concept. This point is explained in the ¢ zample given in Fignee |11

At statement 1 of Figure 4.14, if ¢ is processed before a. we get two invisihle
variables 1_x and 1_y. £1 standing for the variable b.£1. While in onr map process.,
the naming of variable a (a pointer to structure) is applied first. T'his vesults in the
map information represented in Figure 4.14(e). Then, the map process is applied 1o
c and a. Variable ¢ has a definitely-points-to relationship with b.f1. Since name
1.y.f1 stands for b.£1, the relationship (x,1.y.f1,D) is resolved and the poblen of
having another name (1_x) for b.£1 can not appear anymore. ‘I he related alistiac

stack representation and map information for this example are givenin Figme 11104
to 4.14(e).

The second point of our map/unmap process is related to the hind of pomis to
relationship (definitely or possibly). In the map process algorithin explamed carhi,
there is a potential of changing definitely-points-to relationships to possibly porits 1o
and/or generating scme extra points-to information. This happens when an nvisible
variable, e.g. 1.x, stands for more than one variable and a points-to relation-lny,
to 1_x is generated because of a relationship to one of the variables that 1 % staud-

86




typedef struct{ _ 1xx
int f1, - > ; >
t2 b Ty
} FOO ; b1 ) Ty
c 1_y.12>
int *z ; F4 z
, 12 1 x
main() { (a) At statement 1 before (c) At statement 5
FOO *a, b ; the call to ().
int *c ; -
1_x 2
a = &b ; y ) b )
c = &b.f1 ; 11_v“ b.fi
, : L b.f2
f(c, a) ; /* stmtl */ 1—:12 C / )
} /% stmt2 */ = c
1.x 12z
£ ) (b) At statement 3 (d) At statement 2
int  *x ; /* stmt3 */ B
FOO *y N —-——-1_), vy b
{ 1yt & bf
z = &(y->£2) ; /* atmtd */ 1y2e> bi2 |
} /* stmt5 */

(e) Map Information ( map_info )

Figure 4.14: An example of our accurate map process when an invisible vatiable
stands for a structure,

for (not to all the variables that 1_x stands for). An example of (his inaccuracy i
represented in Figure 4.15.

The points-to information available before the function call £ at statement 2 is
shown in Figure 4.15(a). The result of the map process of function £ is shown iy
Figure 4.15(b). Since b definitely-points-to ¢ and 1.a represents ¢ and d (shown in
Figure 4.15(e)), the relationship between b and 1_a is established. The fact that the
invisible variable 1_a stands for more than one variable (in this case ¢ and d) and b
points-to 1-a but not to all the variables that 1_a stands for (in this case b points-to ¢
and not to d), results in some inaccuracy. After the unmap process. the relat onships
(b,e,P) and (b,d,P) are propagated to the function main and ieplace (ha.D) | he

B7




a k a - .
. i_a \\\\ i1 a |4
int *a, *b ; ) \| Y 5 A
main() { 1b ) ') 1b
, .
int ¢, d, e , C fa z
d L~ w >
if (...) (a) At statement 2 before (c) At statement 5
a = &c ; the call to f().
else
a=4&d ; 1a -‘? ,’A 12]
b = &c ; /% stmtl */ 2 = o |12
b L I' b 3
QO ; /* stmt2 */ b S e IO
} /* stmt3 */ z \\\& c |# )
£() /* stmt4d */ w ol d e
{
int *z, v ; {b) At statement 4 (d) At statement 3
z = &w ; 1a o ¢d I
} /* stmt5 */ »

(8) Map Information ( map info )

Figure 4.15: An example of general map process when an invisible variable <t Jon
more than one variable.

result of unmap process is represented in Figure 4.15(d). As the tesult. the de hintels
points-to relationship (b,c,D) is replaced by possibly-points-to relationship ol an
extra triple is generated.

In order to reduce the number of such cases, we associate only one varrable 1
an invisible variable (as long as it is possible). This is achieved in on tiap proce..
by giving priority to the order of processing the parameters of a function \We [
apply the map process to the pointer parameters and global variables whiclh have
definitely-points-to relationship, and then to the pointer parameters and elobal van
ables which have possibly-points-to relationship. Using this method on the carnple
of Figure 4.15, the global variable b will be processed before a. s the re-nlt of 1he
map process, 1.b represents ¢, and 1.a represents d. The relationships alter the niap
process of function £ are as follows:

{(b,1_b,D}, (a,1.b,P), (a,1_a,P)}

88




In this case, the unmap process does not change the points-to information of the

caller ({(b,e,D), (a,c,P), (a,d,P)}).

‘T'his improvement is not always applicable. When the following two cases exist at
the same time, one can not avoid the generating of extra triple(s):

I. two invisible variables, 1.a and 1.b, stand for more than one variable. and.

2. there is a variable that points-to both of the invisible variables (1.a and 1.b)
and not to all the variables that 1_a and 1_b stand for.

In the example of Figure 4.15, this case appears by the replacement of statcement |
with the following statements:

it (...)

b = &c ;
else

b = &e ;

The related abstract stacks and map information of this case are represented

Iigure 4.16.

Combining the first and second points of our map/unmap process 1esulbt in the
following priority for map process:

I. map naming process for definitely-points-to relationship to structure variabloes,
2. map naming process for possibly-points-to relationship to stincture vanables
3. map process for definitely-points-to relationship.

1. map process for possibly-points-to relationship.

It should be mentioned that for each of these cases all the variables that o Datain-
cter or global variable is pointing to are recursively processed to make suie that all
the indirectly accessed variables are checked. Therefore, all the velationships 1elated
to parameters and global variables are processed four times. Consider the following
cxample:




{1 a
4
,? 1_a a f. a t.
I,' b M ia 1_a :
RN A b [ b_ 1]
‘o ’; b |4 1D |4
“» d ’ z z
e | w w >
(a) At statement 2 before (b) At statement 4 (c) At statement 5
the call to f().
1 a
" 1_a
/ E q
I,|\ 1b 7\ 1__3 Co C.d
NN e /2 )‘\. b e |
\\) d ‘/’,
e |4~
(d) At statement 3 (e) Map Information ( map nfu)
Figure 4.16: An example of our accurate map process when two i ible v ralile

stand for more than one variable.

main() {
int **a, *b, ¢ ;

if (...)
a = &b ;
b=c;
f(a) ; /* stmtl: {(a,b,P), (b,c,D)} */
}
f(int **x) /* stmt2:  {(x,1_x,P), (1_x,2_x,D)} */
{
}
The points-to infoimation before the function call £ is tepresented at tatc |
The points-to information after the map process is represented at statenent * L
third step of our map process, the relationship (1.x,2_x,D) is gencrated winel i,

rectly resulting from (a,b,P). In the fourth step of our map process, tie relation by,

90




(x,1.x,P’) is generated which is directly resulting from (a,b,P).

‘The third point of our map/unmap process has the same goal as the second point
which is keeping the definitely-points-to relationships as long as possible. 11ns case
18 telated to multi-level pointers when the following two cases are valid at 1he ~ame
time:

[. Aninvisible variable 1_x of pointer type stands for more than one vanahle e.e

a and b, and, |

2. a and b have definitely-points-to relationship with some other variable(s) (o.o
il they both definitely-points-to c).

Since a variable (in this case 1.x) can not have a definitely-points-1o 1elationslip
with two variables, such a relationship should be replaced by possibly-pomts-to. 1 i
replacement can be avoided when the variables that 1_x definitely-points-16 are 1ep
resented by a unique variable or by a unique invisible variable. An examnple of this
case is given in Figure 4,17,

int *y ; a X
main() { [:J ‘
1nt **a, *b, *c, bi, cl ; AN '
b - W\ C 1.x y
1if (...) Lo
a =4%&b ; b1 c1 2 x l
else Lo
a = &c ;
b = &bl ; (a) At statement 1 before (b) At statement 2
¢ = &cl ; thecallto f.
f(a) ; /* stmtl */
} T_i( = bc
f(ant **x) { /* stmt2 x/ 2. x = b1,c1g
y = *x -
} (c) Map Information ( map_into )

Figure L.17: An example for the third point of the map process

The memory representation before/after the map process and the map mlotimation
are shown in PFigure 4.17(a) to (c). Variable 1.x stands for two vartables b and ¢
which have a definitely-points-to relationship with b1 and c1. respectivelv. Sinece 2.x
represents both b1 and c1, we keep the definitely-points-to relationship hetween 1.x

91




and 2_x. By applying a proper unmap process, we avoid generating extia milorination

like (b,c1,D) .

Our unmap process does not, affect the definitely-points-to mtonmation of the caller
that already exists in the callee. This is shown in the ‘gen’ set ol the lolowine nnmap
process.

/* our accurale unmap process x/
unmap_process( caller_nput, callee_output, map_info)

{
kill = {(x, y, rel) . (x, y, rel) € caller_mput A
(x_map, y_map, rel) ¢ callec outpur}
gen = {(x, y, P) (x_map, y_map, P) € callee output} 11
{(x, y. D) : (x_map, y_map, D) € callec_ourpur
(x, y, D) & caller_input)
callei_output = gen U (caller_mput — all)
return(caller_output)
}

The precision of this new condition is obvious when an invisible varable
for only one variable. Following is an informal proof for the conectness of thi new
condition in our unmap pro<ess when an invisible variable stands lor ore than one
variable: If there is no change in the points-to relatioaship ol an mvisible vanabl
say 1.x, the unmap process is correct (because it will not chauge the pornts 1o mntor
mation of caller). Otherwise, since an invisible variable is not directhy acce ble e
corresponding change has to be done through an indirect teference, sav vz Snie 1 4
stands for more than one variable, x and 1.x has a possibly-pomts 1o 1clation Iy,
Therefore, any change of 1_x (*x), changes all its definitely-points to velation oy 1
possibly-points-to (this is a basic points-to rule, tefer to Chapter 3) b the o asnplb
of Figure 4.17, if *x changes, the relationship (1.x,2_.x,1)) changes to (8 2 1)\
the result, the newly change in the unmap process will not he applicable We oo
clude that the new changes of the unmap process are only lor the ca o =l 1he
definitely-points-to information is not changed in the callee,

The algorithm for the precise map process is given in Appendi 13

92




4.2.3 Return Statement

All our previous discussions concerning function calls were based on the form £( var,,
vary, ect.). In this section, we discuss the form x = £( var,, var,, ect.). |his
form happens along with at least one occurrence of return statement in the hody of
function £ (c.g. return(var)).

lor cach function £ returning a pointer-type variable, we define a global vaiiable
returnf with the same type as £f. Using this newly defined variable. we t1cat (the
C-program is not changed) return(var) as:

returnf = var ;
return ;
and we treat x = £f( var,, var,,..., var,) as:
f( var,, var;,..., var,) ;
x = return_f ;

‘The above lines are processed in the usual way as described helore (note that x can
be replaced by #x). The return statement is similar to break statement in tlie scise
that it returns the control to the caller. To process the return statement. we nse
the structure return-1ist which is a list of points-to information 1caching return
statements. The following should be done in the presence of a return statcment:

e Merge the points-to information entering to a given return statement with the
corresponding return-list.

e Pass BOTTOM as the output. In this case, BOTTOM means that the <tate-
ments after return does not contain any valid information. In other words 1he
are dead code.

At the end of each function, we merge the points-to set reaching the end of function
with the information saved in return-1ist. This would be the merge of all potential
outputs.

Figure 4,18 shows the corresponding algorithm together with a graph reprosenta-
tion of return statement.

Figure 4.19 illustrates an example of return statement. Figures 1.19(a) and (b)
are the main program and its simplified version. The simplifier replaces the addiess
operand occurred in a return statement by a newly defined vatiable. in this case
tempO and templ at statements 4 and 8. Figure 4.19(c) to (n) shows the altract

93




mn

v

process_return(in) { , return (var1)
result_list = merge_info(result_list, in) ; )/
4
} return(BOTTOM) ; / roturn (var2)
A

[
/4 roturn (var 3)
t s 4

result *———uJ

Figure 4.18: The algorithm for return statement

stack corresponding to each statement during our analysis. We explain sone o these
cases in detail. After the execution of the statement 4, location £ return pomt . to the
same location as temp0 is pointing to (Figure 4.19(1)). This information 1~ saved
return-list and BOTTOM is returned (Figure 4.19(g)). I'he information entermg
statement 6 is the same as the information entering statement. 2 (Fignve 1L19(h)). | he
same process as explained above is repeated for the return appeating at statement s
This is composed of saving the information in return-list and passing BO 1 1O\
Statement 10 contains the merge of the information at statements 3 and 9 \When the
process of the function is completed, we merge the final result (Fignre 1190k )y witl
the points-to information in return-list (Figures 4.19(f) and (i)} s el
the points-to information shown in (Figure 4.19(1)). Now we fieat stateiment

a=f() ; /+ stmt12 «/
as if it were composed of the following two statements:

() ; /* stmti12a */
a = return_f ; /* stmt12b */

The result after unmaping of the function f is shown in Figure 1L190m) 1 he Lot -tep
is the process of statement 12b. When the process of statement 120 s completed o
the points-to information of return_f has no further nse, it will he removed [ he
final result is shown in (Figure 4.19(n)).

94




int x, y ;

main()
{
it x, y ; int *a ; /* stmt 1 x/
main() a=f() ; /* stmt 12 */
{ }
int *a ; int *£()
a=f(Q; {
} int *tempO, *templ ;
int *f£()
{ if (x == 1) /* stmt 2 */
if (x == 1) {
return(&y) ; temp0 = &y ; /* stmt 3 %/
return(temp0) ; /* stmt 4 */
else } /* stmt & */
return(&x) ; else{ /* stmt 6 */
templ = &x ; /* stmt 7 x/
} return(templ) ; /* stmt 8 */
} /* stmt 9 */
/* stmt 10 */
} /* stmt 11 %/
(a) A C-program (b) The simplified program
return_f return_f return_f return_f
return_f X X X ) X
X
y ternpo ternpo > teympo > BOTTOM tezugo
a temp1 temp1 temp1 temp1
(©)Stmt1  (d)Stmt2  (e) Stmt3  (f) Stmt 4 @) Stmt5  (h) Stmt 6
return_f return_f > return_f :\.
X X X return_f [+ | return_f{
X 4! X
terynpo teynpo BOTTOM tern@ y 4 y :\\
temp1 temp1 temp1 a a F.!
(k) Stmt 9 and
(i) Stmt 7 (i) Stmt 8 Stmt 10 (1) Stmt 11 (m)Stmt12a  (n) Stmt 12b

Figure 4.19: An example of return statement.

95



4.3 Interprocedural Analysis for Recursive Function Calls

Now that the process of non-recursive function calls has been completed. we discnss
the processing of recursive function calls. The recursive calls are more complicated
because the number of iterations is not known.

The difference between recursive and non-recursive calls in our analvsis is relled ted
in the corresponding invocation graphs. Recall from Section 1.1 that the wvocation
graph is composed of three different kinds of nodes, ordinary nodes. recisive nodes,
and approximate nodes; whereas edges could be cither calling cdges or approsnuate
edges. If the invocation graph node corresponding to a function call is an ordima
node, we apply the map process, analyze the body of the callee, merge the ot
with the return-1list, and perform the unmap process, as explamed i Section |

If the invocation graph node corresponding to a function call is a recmsine node
a fixed-point has to be found. A fixed-point for a recursive node 15 reached when,
(i) there is only one input to the recursive node (otherwise the inputs are merged and
the process of the body restarted), (ii) the input does not generate o diflerent ontpn
from the previous iteration to the recursive function. This is the same idea as the
fixed-point for while loop statement.

Unlike recursive and ordinary nodes, an approximate node does not canse a prog e
to the body of the function. It just approximates the output. Il the pnt (1n) to
an approximate node (f) is already entered to the recursive node. it means that this
input is already processed, therefore, the related output will he taken. otherwise 1
is a new possible input to f implying that £ should be processed acceordimels

The process of recursive calls does not make any difference in tiap awd ninnap
processes. The only difference is in the way that we treat 1ecisive/apposimnate
node in the invocation graph (every call has to pass through invocation grapl)

Now that the idea behind our approach is explained, in the followine v oo plamn
our algorithm.

If the call node corresponding to the function call is a recursive node. we Lave
to iterate until a fixed-point is reached. We have a list of input-ontput pans ol
information stored in a recursive node. These pairs correspond to all the different
types of inputs and outputs which can possibly occur during one iteration ol the lraed
point calculation. In each iteration, we check if there is more than one it 1o the
node under consideration. If the answer is positive, then we conclude that a e -
call is found with an input not included in the current approximation of inpnr [t
case, we merge all these inputs, store this newly merged input in the tree aud <tan

96




again with the newly merged input. If there is a single input-output pair left. and that
output and the newly created output from the most recent iteration are not the same
(fixed-point is not reached), we merge the two outputs, store the newly merged ont put
in the tree, and start again with the input available in the input-output pair. Finally.
when a fixed-point is reached, there is a single input-output pair which coriesponds
to a superset of all the input-output pairs possible for this function. Intuitively. this
pair summarizes all the possible input-output pairs of the invocation graph.

If the call node corresponding to the function call is an approximate node. we
find its corresponding recursive node in the invocation graph. We check the list of
input-output pairs to see if an output exists for this particular input. Il it docs. we
just return this output. Otherwise, we store this new input in the recursive node
and return BOTTOM. Here, BOTTOM has essentially the same properties as the BOTTOM
described in the previous chapter. In specific, it means that we still do not know the
output for this particular input.

Gieneral algorithm for the appearance of a call expression is as follows.

97




/*

* Function name : func_pomnts_to

* Purpose : find oul the pomts—to information after

* processing function call (that can be a recurswwe call),
* using the wnput mformation to the call

* Parameters : call_erpr_node —— the call node n calles

* in_data —— the input information to

* ‘call_ezpr_node' before st 1s processed
* Note that the field ‘n’ represcnts the
* pomts—to relationships.

*+ Return : oul_data —— the output smformation of caller

* after processing funchon call

* 4/
func_points_to( call_expr_node, in_data)

{

/* get the related snvocation graph node to the callce by wsing the
invocation graph node of caller (‘in_data.cur_sg_node’) und
related call number of callee (‘call_erpr_node.call_eapr_num’).
For erample +f ‘f(a)’ 13 the third function call wn the body of 4",
the 1elated nvocation graph node to callee ‘f(a)’ 1s the thnd hild
of the related wnvocation graph node of caller ‘g’ +/

ig_node = get_related_ig_node( in_data.cur_ig_node,

L R K 2R R

call_expr_node call_expr_num)

[+ get the function node of the callee from the ‘call_erpr_nodi’ +/
func_node = get_func_node( call_expr_node) ;

/* get the list of arguments (actual paramelers) */
arg_lst = get_arg lst( call_expr_node) ;

[* ‘map_process’ maps the powts—to information (‘m_data '), 1elurns

+ the mapped pownts—to nformation (‘func_m_data ') and the wap

* nformatton (‘map_info’). */

[map_info, func_in_data.in] = map_process( func_node, arg_Ist, i data inlo)

/* save the map mformation and the entry powmts—to r1clationships 1 e
* tnvocation graph node related to the function call (the oulput ports o
* relationships 13 saved as BOTTOM). +/

save_in_info( ig_node, map_info, func_in_data.in) ;

/* get the body of the callee. */
func_body = get_func_body( func_node) ;

98




switch (get_mode( ig_nodc)){ /* check for the mode of the tnvocation qiaph node +/
case "“ordinary':
/* tf the nvocation graph node 1s ordinary , analyze the body of callic +]
func_out_data = points_to( func_body, func_in_data) ;
[+ merge the result with all the possible output from return statcment +/
func_out data = merge_info( func_out_data, return_lst) ;
break ;
case "approximate':
[+ get the recursive node to the approzimate node, by following
* the appromsmale arc. */
recursive_node = ig_graph.approximate_arc ;
[+ scarch for ‘func_in_data.wn’ in ‘recursive_node’. If ol 1s
* found (\f ‘func_in_data.an’ 13 a subset of already exist
* mpul), relurn the related output. Otherwise relurn BOTTOM
+ and save ‘func_in_data.an’ in the ‘recursie_node’ as a new
+ possthle entry. */
func_out_data.in = search_info( recursive_node, func_in_data )
break ,
case "recursive'.
[* process the body of the callee. %/
func_out_data = points_to( func_body, func_in_data) ;
[+ merge the result with all the possible output from return stalecment 1/
func_out_data = merge_info( func_out_data, return_lst) ;
[* the pownts—to mformation from the previous steration 15 BOI [ OV
* (because no previous ileration exmst for the first wteration) +/
ig_output = BOTTOM ;
[+ check for the fized—point. A fired—pomnt 13 reached when the e
* 18 one enlry to the wnvocation graph node and for u grwen mipul
* the output 1s not changed compare to the previous tteration 1/
while (( num_inputs_in( ig_node) > 1) ||
{ 1g_output not contained in func_out_data.in})
{
if ( num_inputs_in( ig_node)) > 1) {
[+ therc 13 more than one wnput. Merge all the mputs anid
+ save the resull in ‘func_in_data.sn’, and 1 the
* 'tg_node’ as the nezxt wmput. */
func_in_data.in = ig_lst_merge( get_inputs_from( 1g_nodc))
[+ save new mput—output (func_sn_data.in,BOTTOM) i the wy_nodi 1/
save_ig_node( ig_node, func_in_data.in, BOTTOM) .
}
else
[+ therc 13 a different oulput compare to the previous
* tleration. So merge them. x/
ig_output = Merge( func_out_data.in, ig_output) ,
[+ process the body for the next iteration x|
func_out_data = points_to( func_body, func_in_data) ,
func_out_data = merge_info( func_out_data, return_lst) .

99




[+ save the pomnis—to result of analysis of callee, mto reluted
* nvocation graph node «/
save_out_info( ig_node, func_out_data.in) ;

[+ the unmap process get the pomts—to information of callo

+ and callee and returns the new set of powts—to mformation

* for caller (“.in’ 1s the field related to points—to mfo) +/
out_data.in = unmap_process( in_data, func_out_data.in, map_imlo) .

return( out_data) ;

An example is given in Figure 4.20. The process starts from the main luneton, | e
intraprocedural analysis is done until reaching the function call £(a) which invohes
the map process. The set of points-to information is saved in the related node nr the
invocation graph (£-R). This is shown in Figure 4.20(b). The information available
at statement 1 is shown in Figure 4.20(c). The recursive call £(n) nvokes the map
process again. The information after the map process is saved in the related invocation
graph node (f-A) as shown in Figure 4.20(d). The ‘In’ set of £-R is scarched tor the
‘input’ set of £-A. Since it is not found, the ‘input’ set will he saved 1 the Tn st
of f-R (this is considered as a possibly new input), and BOTTOM will he vetinned
Figure 4.20(e) shows the result after unmaping. The process will he continmed by
following statements 2 and 3. Since the ‘In’ set of £-R has more than one wet we
merge all the elements in ‘In’ set of £-R. The processing of function £ is restarted witl,
the result of the merge as a new input (refer to Figure 4.20(1)). ‘I'he intrapiocedinal
analysis is continued until reaching the recursive call to £(n). Set {(x.2.D). (1.1}
is the result of map process. A more general case of this set (which 15 {(a. v.1)).
(m,y,P)}), is available in the ‘In’ set of £-R. Therefore, we return the velated ontput
which in this case is BOTTOM. The process continues by staterents 2 and 3 [
points-to information reaching the end of the function £, which is denoted as ontpnt
is shown in Figure 4.20(g). At this iteration, there is only one element left i the In
set. But, since the ‘output’ set from Figure 4.20(g) is different hom the Out’ e
of £-R (which is BOTTOM), we assign ‘output’ to the ‘Out’ sct of £=R as 1he new
output. Then, we start the third iteration. Figure 4.20(h) represents the mlormation
at this stage. The same process, as explained for other iterations. has to he done
once again. The final result is shown in Figure 4.20(i). There is onlv one <ot the
‘In’ set, and the ‘output’ set is same as the ‘Out’ set. Conscquently. the fieil pomn
is reached and ‘output’ set is returned as the result of the recursive funetion 7

100




int*xy;
f (m)
int*m;
{
int‘n;
if (y == 1)
{

n=_8y,;
I'stmt1*/
f(n);
r'stmt2*/

}
} /*stmt3*/

main () {
int*a;
X=8y;
t(a);
}
(a) The C program

main

f' o In={{(x,y. D))
14 i Out = BOTTOM
\

M-A
output = {(x, y, D)}

(b) first iteration

main

fl R In ={{(x, y, D)}}
4" out=BOTTOM

\
Y{-A
output = {(x, y, D), (n,y, D)}

(c) at stmt 1

main

" o =%, y, O
14 - Out = BOTTOM
\

Vi-A In={{(xy D), (my, D)}}
Out = BOTTOM

Output L] {(X. Y, D)v (ml Y, D)}
(d) after map process

main

| e g, y, DI (%, v, D), (my. 0N

I4f'R Out = BOTTOM

“1.a In={(xy. D) (m.y. D)}
Out = BOTTOM

output = BOTTOM
(e) after unmap process

main

f'R In = {{(x, y, D), (. y. P)}
I4 "N QOut= BOTTOM

‘\ f-A In= {{(X. Y, D)» (m, y, D)}}
Out = BOTTOM

output = BOTTOM
(f) second iteration

main
| In={{(x,y, D), (m, y, P)}}
41-R out-BoTTOM
“ f-A In= {{(xl Yy D)v (m, Y, D)}}
Out = BOTTOM
output = {(x, y, D), (m, y, P)}
(9) at stmt 3

main
| 0y, D .y, P
41-R out={ix,y, D), (m, y, P)}
\ f-A In = {{(x, y, D), (m, y, D}}}
Out = BOTTOM
output = {(x, y, D), (m, y, P)}
(h) third iteration

main

’|R In = {{(x, y, D), (m, y, P)}}
4 I Out = {(x, y, D), (m, y, P)}

“1-A In={{(x.y,D), (m,y, D)}
Out = {(x, y, D), (m, y, P)}
output = {(x, y, D), (m, y, P)}
(i) The fix-point information

Figure 1.20:  An example of the interprocedural points-to analysis with recnsive
function call. 101




Chapter 5

Aggregate Structures

Our analysis concerning scalar variables was presented in Chapters 3 and 1 I
order to analyze real C-language benchmarks, one should also constder arravs and
structures. In this chapter, we explain how these more general cases ave haudled, \We
first discuss the abstract stack representation for non-scalar variables 1 Section 7
Then, in Section 5.2, we explain how updating structured vatiables s telated to the
updating of their components. Finally, in Section 5.3, we give the hasie rules o
calculating the points-to relationship of cach possible case.

5.1 Abstract Stack Locations for Arrays and Structures

The major difference between aggregate structures and scalar varrables s that ap
gregate structures are composed of many stack locations. Qur objective s 1o have o
name for each location in the abstract stack. We explain our abstiact stack repreen
tation for arrays in Section 5.1.1, for non-recursive structures! in Scection 312 o
recursive structures in Section 5.1.3, and for union type in Seetion 5 1 |

5.1.1 Arrays

An array is a sequence of variables of the same type. In our analvsis we con ider ol
the elements of an array as one location in the abstract stack, 'Ihas. the pond- 1o
analysis finds the relationships between entire arrays, and this niformation - vhen

1A structure is non-recurswve if none of its fields (directly or mdirectly) pomnts 1o the same syt by e
is called a recursive structure. Linked list is an example of secursive stincture

102




used in the array dependence tester which reasons about locations within the ai-
rays [Ban76, Wol89, ZC90]. Our points-to analysis is in fact a pre-processing step lor
a practical array dependence analyzer which computes dependences for airay variables
in nested loops [Jus93).

5.1.2 Non-recursive Structures

Unlike in the case of arrays, each element of a structure is explicitly accessible (¢.p.
a.h). This makes structures more complicated than arrays. Each possible access to a
field of a structure should have a unique location, and consequentlv a unique name.
in the abstract stack.

In order to have a unique location for all the possible fields of a stiuctwe iy
the abstract stack, we enumerate the fields of the structure. In the example given
in Figure 5.1(a), all possible ways to access the structure root (the root of data
structure) are root, root.field1, and root.field2. The corresponding abstiact
stack representation is shown in Figure 5.1(b).

struct {
it xfleldl; oot Taid]
float field2 ; root.field2
} root ;
(a) The C-program (b) The abstract stack representation

Figure 5.1: An example of structure representation in the abstract <tack,

In the case of a nested structure, this process should be done recursivels nntil all
the possible accesses to a structure are considered. Figure 5.2 represents an example
of a nested data structure along with its related abstract stack representation.

What we explained is sufficient for any structure variable which is local 1o a fine-
tion but it is not sufficient for global variables and actual parameters ol stictine
type that have a field of pointer type. Assume that a is a global variable or actial
parameter of structure type that has a field of pointer type b. Location a.b can pornt
to the location(s) that are not in the scope of that function. Therelote. there are not
enough names in the abstract stack for accessing *(a.b). To solve this problem. we
use the concept of invisible variables for structures.

The concept of invisible variables for structures is similar to the corresponding

103




typedef struct{
int **sub_fieldl ;
float sub_field2 ;

root
} FOO ; oot field
root.field2
struct { root.field2.sub_field1
int *fieldl ; root.field2.sub_field2
FOO field?2 ; root.field3
char **field3 ;
} root ;
(a) The C-program (b) The abstract stack representation

Figure 5.2: An example of nested structure representation in the abstract stack

concept for scalar variables which was discussed in Chapter 1. For cach actual pa
rameter or global variable of structure type which has a field of pointer type we add
all the invisible variables of corresponding field to the abstiact stack, For example
the invisible variables corresponding to variable x.y with type 1ntvy are x 1y and
x.2.y with type int* and int, respectively.

Figure 5.3 shows a C-prcgram and its corresponding abstract stachs. Ihe mvisihle
variables corresponding to iunctions main and £, with their related types. e shown
in Figures 5.3(a) and (b), respectively. Using the invisible vatiables, we gnarantee
that any combination for the access to a structure will have a location i the abeiad
stack.

Without having a specific strategy for recursive dala structures. tlis constinction
method results in infinity. The proposed strategy for handling this problemy eiven
in the next section.

5.1.3 Recursive Structures

Some data structures are defined recursively. This means that thev have a ficld windls
points to the same data structure (directly or indirectly). Linked Tist is the simple
example of a direct recursive data structure. We explain our strategy in the desien
of the abstract stack for the recursive data structures using the hnked st o mple
A linked list is typically defined as:

104




typedef struct{
int *x*xz ;
int w ; a FOO*

} CAT ;

Related type-

(a) Abstract stack of main()
typedef struct{

int x ;
CAT »y Related type:
} FOO ; m FOO"
1_m FOO
main(){ 1_mx int
FOO *a ; 1.m.y AT
imiy CAT
o Tmiyz int™
f(a) ; imiylz int”
} 1_miy2 2 int
1_miyw int
voad f(m)
FOO *m ; (b) Abstract stack of f()

{1}

Figure 5.3: An example of the abstract stack representation for inyisihle vatialsdes,

struct foo {

int data ;
struct foo *next ;
} cell ;

Using the method given in the previous section, we first need to constract the
locations shown in Figure 5.1. The process of attaching the ficlds of the <trncim

Related type:
cell struct foo
cell.data int
cell.next struct foo*
cell.1_next struct foo

Figure 5.1: The incomplete abstract stack for the structure foo

foo to the location cell.1next results in an infinite loop. This is duc to the fact
that there will be always a location with the type of structure foo. 1 he solution 1o
' this problem is as follows: Each time that we add a new invisible variable of stricinge

106




Related type
» cell
cell.data §truct foo
cell.next int .
-{ cell.1_next struct foo
~ struct foo

type, we first check the type of the previously added ficlds. 11 the v pe alieady evise
a flag will be set and the new invisible variable points to the cotrespondine location
in the abstract stack. Figure 5.5 shows the abstract stack for the above example A

Figure 5.5: The complete abstiact stack for the stinctine foo

the type of cell.lnext already exists (struct foo), we do not huther ade 1l 1l

of structure cell.l _next.

} An example of a multi-level structure is shown in Fignte 5.6(a).
| stacks corresponding to functions main and £ are shown in Figinies 5 60a and
|

respectively.

struct cat_type {
struct foo_type

s

struct foo_type{
int
struct cat type
struct foo_type

s

main()
{
struct foo_type

f(x) ;
}
f(z)

struct foo_type z ;

{...}

*bb ;

*cc ;
aa ;
*next ;

X, 5

y

y.cc
y.aa
y.aa.bb
y.next
X

X cC
x.aa

X aa.bb
x.next

(a) Abstract stack

of main()

-
a1

Rz

Z CC

Z aa

21 cc

Zaabb

Fhe oot

e

- {zaal bh

2 next

(b) Abstract ¢

of {1,

Figure 5.6: An example of a recursive data stinctin

106

{z 1 next

ek




In this way, we are actually approximating a recursive data structure 1o he conm-
posed of one cell with a pointer pointing back to itself.

5.1.4 Union Type

Union type variables are not considered in our present version. However. since these
are an extension to structures, they can be easily included using the same method,
This is achieved by attaching all possible reference names to a union type vaiiable.
The only difference between unions and structures is that in the case of unions more
names are created. We plan to include unions to our analysis as patt of o Inture
work.

5.2 Handling Complex Structure References

A complex structure reference is a variable of structure type. Such variables can
appear in a basic statement (e.g., a = b when a and b are of structure typej. o1 as a
parameter of a function (e.g. £(a) when a is of structure type). In this section. we
show how our analysis for complex structure references is converted into o sequence
of simpler statements that involve only simple structure references. 'l hen. i the nest
section, we explain our rules to get points-to information for the basic cases imolving
structure references. We first explain it for the case of intraprocedural andalvais (hasic
statements) and then for interprocedural analysis (function calls).

A basic statement is of structure type if its left hand side (1hs) and right hand
side (rhs) are of structure type. Each basic statement of structuie type s comerted
into several simpler basic statements. This is achieved by attaching the hiclds of the
structure to the variables appearing in lhs and rhs. If the newly gencrated hasie
statement is of structure type, the same process will be repeated 1ecnrsivelv, Finally.
we get a set of basic statements of either basic type (integer type. float 1y pe. ¢t
or pointer type. Then, we apply our basic rules to each of the newly generated hasi
statements which are of pointer type. This is shown in the following exanmple:

107




void main() {
struct foo{
int *subfieldl ;

}a, b;
struct{
float *fieldl ;
int field2 ;
struct foo *field3 ;
}x, *y ;
a=b; /x stmt 1 %/
X = %y ; /% stmt 2 %/
Statement | is of structure type. ‘This statement is treated as equivalent 1o 1he

following basic statement:
a.subfieldl = b.subfieldl ;

Statement 2 is also of structure type. This statement is treated 1o he equivalent to
the following three basic statements:

x.fieldl = *y.fieldl ; /* stmt 2a */
x.field2 = *y.field2 ; /* stmt 2b */
x.field3 = *y.field3 ; /* stmt 2¢c */

The newly generated basic statement 2a is of pointer type and one of the hase
cases. Statement 2b is of basic-type and therefore it does not mahke any dilference i
the points-to information. Statement 2¢ is of structure type, and. consequentls, 1he
breaking down process is performed which results in the following basic statenent

x.field3.subfieldl = *y.field3.subfieldl ;

The above basic statement is of pointer type and one of the basic cases A there an
no more basic statements of structure type left, the process is completed

For interprocedural analysis, the process is the same as explained n Chapter |
The only difference is in assigning the actual parameters to formal parametars 1 g
function is called as f(avar,, avar,, ...) and defined as £ (fvar,, fvar,, ). v

108




should compute the points-to information resolved from:
fvar, = avar,

fvar; = avary

If any of the above statements is of structure type, we should do the same thing as
we did for the basic statements of structure type. This means that for each equation
fvar, = avar, of structure type with n fields £;, £3,..., £,, we should add the points-
to relationships obtained from the following statements:

fvar,.f; = avar,.f;

fvar,.f2 = avar,.f,

fvar,.f, = avar,.f,

The same process will be repeated for any newly generated basic statement which
is of structure type.

We conclude that the problem of intraprocedural and interprocedural points-to
analysis for complex structures can be broken into smaller problems concerning hasi
statements of pointer type with aggregate structures in lhs and rhs. In the nest
section, we explain how these basic statements can be solved.

5.3 Points-to Analysis for Aggregate Structures

In the previous sections, we explained the stack representation for aggregate data
structures. In this section, we expand our points-to analysis for aggregate stiuc-
tures. Figure 5.7 shows an overall view of our points-to analysis. The only case that
aggregate structures can affect interprocedural analysis is when a paramcter 15 of
structure type. In Section 5.2, we showed that this case can be divided into somie ha-
sic cases and then the general interprocedural rules given in Chapter | will he applied.
The intraprocedural analysis is divided into two major groups: (i) basic statements.
(ii) compositional control statements. As compositional control statements are in-
dependent of the type of data structure, there is no need to consider them in this
chapter. Consequently, it is sufficient to find a solution for all the basic statements.
Table 5.1 summarizes all basic statements that affect points-to relationships (when
the statement is of pointer type). This is a generalized version of the Table 3.3 whicly

109




Points-to Analysis

/

Intraprocedural interprocedural
Analysis Analysis

/ \ (e.g. 1 (x))

Basic Compositional Control
Statements Statements

(e.g. x="y) (e g. if, while, break)

Figure 5.7: The overall view of points-to analysis.

is only for scalar variables. The cases which are denoted by the hold face notation
correspond to the entries of Table 3.3.

Lihs | rhe—[| &y [ &ylil [&y D] v [Vl [yb [ *y TGDDIC P & (n) b [ Lt |

X 11 12 |13 21 ]22[23] 3.1 32 33 7 7
x[i] 14| 15 | 16 || 24 (25|26 34| 35 3.6 7 T
x.a 1.7 18] 19 {27 28|29 37| 38 39 75 76
*x 41] 42 [43 [ 5152|5361 62 6.3 x| NV
(*x)a | 44| 45 | 46 || 54 |55|56( 64| 65 6 6 s N
px)i]? || 47| 48 | 49 || 5.7 |58 (59 67| 68 69 50 St

Table 5.1: All possible cases of basic statements which affect the points to mformation
when basic statement is of pointer type.

The different kinds of basic statements that can affect points-to analysis are divided
into eight cases which are numbered from 1 to 8 in Table 5.1. Fach case. which s
divided into some subcases, has its own gencral rule which applics 1o botl scalan
variables and aggregate structures. The left hand side number in cacli entiv of the
table corresponds to the case and the right hand side number cortesponds 1o the
subcase. For example, the entry 7.3 refers to subcase 3 of casc 7. ‘lo imciease the
readability of the table, multi-indices such as x[i;][ig)[. . J[i.] ave represented as one
index such as x[i;], also multi-fields such as x.f;.f;...f, are represented as one held
such as x.f; in the table. This abbreviation does not impose any hmitation on the
generality and one can easily replace the abbreviated representation hy s original
form.

2(xpy)|i] is the semantic representation of py[j] where 'py' is a pointer to an array. ‘This s not a valid <vnras
C-language. We just use this notation to differentiate between pointers to arrays and orchniny wirass

3&(»py)[i] is the semantic representation of &pyj} where ‘py' is a pointer to an artay We pist tse this notation
to differentiate between pointers to arrays and ordinary arrays.

110



The following is the list of aggregate structures that can appear in a basic state-
ment. We first expiain the effect of each of the aggregate structures and then give
the rules corresponding to each case.

L. zfi][iz]{. . ][ia] and &z][is][i2][. . .][in]

In this representation, ‘z’ is explicitly defined as an array. Although in ow
abstract stack there is only one location related to each access of an array.
we treat the first element of an array differently from other elements (the first
clement is used when indices ¢, to i, are equal to zero). The reason behind
this approach is that the analyses which needs to know when a pointer variable
points to the beginning of the array and when it may point to somewhere m
the middle of the array. This is particularly important for the array dependence
module which needs to ensure that pointers to arrays point to the heginning of
an array.

In the following example after processing statement 1, we would say that b
definitely-points-to a if i is zero, otherwise, we would say that b possibly-points.

to a.
main() {
int a[7], *b ;
int 1 ;
b = &al[i] /* stmtl */
}

The replacement of arrays by scalars in a basic statement docs not make any
difference to our points-to rules when the first index of an array is used. |If
the middle index is used, the corresponding relationship should he changed to
possibly-points-to.
The notation &z[iy][iz][. . ][i,] refers to the address of the abstract stack location
related to ‘z’.

2. (*2)i] iz][. . Jfin] and &((*2)[ir][iz]]. . J[in])
In the C-language, there are two ways to access an array. Firsl is a direct
access which is done through the name of the array, e.g. al1] where a is an
array. Second is an indirect access which is done through a pointer to an arrax.
e.g. pali] where pa is a pointer to array(s). These two ways of accessing ate
syntactically the same, however they have a complete different mecaning aid arc
represented differently in SIMPLE (as explained in Chapter 2). I'he notation
pali] means the i’th element of variable(s) that pa points-to. \We nee the
notation (*pa) [i] to represent the actual meaning of pa[i].

111




This case behaves the same as the general category *x when (he fiest nides of
an array is used. When the middle element of an array is used, it helayes difler
ently. In case of indirect reference to arrays, two factors should be considered.
(i) the use of the first index of the array, (ii) the possibly /definitely points to
relationship of the array pointer to other variable.

3. Z.fl.fg. . .fn and &Z.f].fg. . .fn

Variables of this form have a unique location in the abstract stack. I e only
difference with scalar variables is that they have a more complicated nane, Ve
finding their location in abstract stack, they are treated in the same way as scalar
variables.

4. (*2)41.0. . £, and &(*2).01.6. . .0,

This case is similar to *z. The only difference is that to get the actial location
one should attach fields .f, .f. . .f, to the variable(s) that z pomts to

In the rest of this section, we give the detailed rules for the cases 18 and 5.1 o
Table 5.1. These cases are selected to explain the idea. Some more rules are eiven
Appendix C. We use the following notations in conjunction with these tiles

o D: represents definitely-point-to relationship.
o P: represents possibly-point-to relationship.

® 04 : represents merging which is defined in Table 3.1.

o first_elem: is defined to distinguish the first element of an arrav. 1 he detintion
is as follows:

first_elem([i1][i2)[. . J[i.])= { D if ii=ip=...=i,=0

P otherwise
In case of scalar variables, first_elem is always D.

e input: the points-to relationships at the entry point of a basic stateinen

e gen: the newly generated points-to relationship(s) by a basic statenient

e kill: the points-to relationship(s) that are killed in a basic statement

o changed_input: is an updated version of ‘input’ where some of the defintels

points-to relationships are changed into possibly-points-to.

Case 1.8: The general format of this case is:

112




struct{
int *a ;
}x

int y[size] ;

x.a = &y[3] ;
‘The rules applied in this case are as follows:

kill = { (x.a,x1,rel) | (x.a,x1,rel) € input }
gen = { (x.a,y, first_clem([j])) }
return( gen U (input - kill) )

Consider the following example:

main(} {
struct{
int *f1 ;
} x, xz
int y[70], w ;

zZ = &x ; /* stmt 1 x/
(*z) .f1 = &w ; /* stmt 2 x/
x.f1 = &y[0] ; /* stmt 3 */

}

Case 1.8 appears at statement 3. Using the given rules, the sets related 1o this
statement arc as follows:

input = {(z,x,D), (x.f1,w,D)}
kill = {(x.f1,w,D)}
gen = {(x.fl,y,D)}
output = {(z,x,D), (x.f1,y,D)}

Case 8.4: The general format of this case is:

113




struct foo{
int *a ;

} o*x

int *py ;

(*x).a = &(*py) [j] ;
The rules applied in this case are as follows:

kill = { (x1.a,x2,rel) | (x,x1,D), (x1.a,x2,rel) € input }
gen = { (xl.a,yl,rell >a rel2 o« first_elem([j])) | (x,x1,rell), (pyay Lael2) mpnt )
changed.input = (input - { (x1.a,x2,D) | (x,x1,P), (xl.a,x2.D) « mput )
U { (xL.a,x2,P) | (x,x1,P), (xL.a,x2,D) € mpnt }
return( gen U (changed_input - kill) )

Consider the following example:

f(float b, int i) {
struct{
float *a ;
} *x, z ;
float *py, w[70] ;

X = &z ; /* stmtl */
if (b == 0) ;

z.a = &b ; /* stmt2 */
py = &w([0] ; /* stmt3 */

(*x).a = &pyl[i] ; /* stmt4 */
}

Case 8.4 appears at statement 4. Since py is a pointer Lo an aray. we tieal &pyla)
as &(*py) [i]. Using the given rules, the sets related to this stateinent ave as follow -

input = {(x,z,D), (z.a,b,P), (py,w,D)}
kill = {(z.a,b,P)}

gen = {(z.a,w,P)}

changed input = input

output = {(x,2,D), (z.a,w,P), (py,w,D)}

114




5.3.1 Interprocedural Points-to Analysis for Recursive Data Structures

In this section, we explain the interprocedural analysis in the case of a 1ccnrsive
data structure. The major point is that, when an invisible variable. say 1.x. is of
recursive data structure type, all the instances resolved from 1_x are represented In
1x. This compact representation can result in some imprecision. This is shown in
the example given in Figure 5.8 Readers can skip the rest of this section withont
losing the continuity.

typedef struct foof{

typedef struct foof{ int data ;
int data ; struct foo *next ;
struct foo *next ; } FOO ;
} FOO ;
FOO *a, d ;
FOO *a, 4 ;
main()
main() {
{ FOO b, ¢ ;
FOO b, ¢ ; a=2&b ; /* stmt 1 %/
a = &b ; b.next = &c ; /* stmt 2 */
b.next = &c ; £() ; /* stmt 3 */
£QO ; }
} £0O
£() {
{ FOO *tempO ;
a->next->next = &d ; temp0 = (*a).next ; /* stmt 4 */
} (*temp) .next = &d ; /* stmt 5 */
}
(a) The C-program (b) The simplified version

Figure 5.8: An example of interprocedural points-to analysis in the prosence ol e
cursive data structures.

The points-to information at statement 3 of Figure 5.8 (before the function call)
is shown in Figure 5.9. The points-to information are shown in the followine three
different formats: (i) abstract stack representation, (ii) memory representation. and
(ii1) points-to triples.

The map process should pass the information concerning the global vanables 1o
the function £. From the relationship (a,b,D), we resolve (a.a_1.D)) for hmetion f
(because b is not in the scope of £). From the relationship (b.next.e.D). we 1esolve

115




a

b.data
b.next

e
c.data
c.next

{(a,b,D),
(b.next,c, D)}

(a) Abstractstack  (b) Memory representation (c) Pomts-to triple
representaion

Figure 5.9: The points-to information of function main before the map proce <.
"]

the relationship (1.a.next,l_a.l_next,P). Note that as variable ¢ s not i the woope
of function f, we have incorporated the new invisible variable (1 o | westy | he
reason that the definitely-points-to relationship in caller main is clhianged 1o possibly

points-to relationship in callee £ is that the location I_a is of 1ecimsive stinctune
type (explained in Section 5.1.3), and, consequently, has the potential of standis
for more than one stack location. As a result, the points-to relationships related 1
this type of location must be possibly-points-to relationships. 1iguie 510 show s the
corresponding points-to information. Figure 5.10(b) shows the wav that we conside
the memory locations. This is called as the ‘simulation of memory location where
the word ‘simulation’ reflects the fact that it is different from the wav that the aetinal
memory looks like.

Statement 4 resolves the relationship (temp0,l_a.l_next,I’) Stateiment 5eler . 1o
location (xtemp) .next and location xtemp refers to 1_a. 1 next. \s it i~ liown
Figure 5.11(a), this location does not have any other ficlds, However as this location
is related to the recursive data structure 1_a, it will take the next ficld corre spondine
to 1.a. That is why we get the relationship (1_a.next,d,P) (the teasou lor havine o
possibly-points-to relationship is already explained). The points to imlotmation alte
finishing the process of function £ and before unmap process is shown i Frome 51

Next, we apply the unmap process. Since locations 1.a and 1 a.1 nezt  tand
for variables ¢ and b, respectively (the corresponding information 1~ saved 1 1he
map-info and is represented in Figure 5.10(d)), we get the relationships (1ne o )
and (b.next,d,P). The location 1_a.next also stands for location 1 a.1 next, next
(because it is a recursive data structure). This fact resolves the relationshups ¢ ne 10 12

116




Y
Y

a
1

1:a.data
1_a.next

L4

41 _a1_nexty¥

d

temp0

P

’

(a) Abstract stack
representaion

1_a 1_a.1_next

(b) Simulation of memory
representation

{(a,1_a, Dy,
(1_a.next, 1_a.1_next, P)}

(c) Points-to triple

[ 1.a = b
1_a.i_next => ¢

(d) Map information

Figure 5.10: The points-to information of function £ after the map process

-

1
'
)
1

r—"

1_a.data
1_anext b~
1_a.1_nextlg "
d o

'

’
X
temp0

(a) Abstract stack
representaion

d

Ju

I

1_ '1a1next

(b) Simulation of memory
representation

{(a,1_a, D),
(1_a.next, 1_a.1_next, P)
(1_a.next, d, P)
(temp0, 1_a.1_next, P}}

(c) Points-to triple

Figure 5.11: The points-to information of function £ before the unmap proess,

and (c.next,d,P). The final points-to information of function main is <hown in Iie-

ure 5.:2




a
'\
d R
b K
b.data ,/\
b.next }_ )
c N
c.data S
c.next |-

(a) Abstract stack
representaion

Figure 5.12: The points-to information of function main after the mimap poor

b o
ey - Y.
FERES
‘\ III
d ./
\ N
1

{b) Memory representation

118

{(a,b,D),
( b.next, c, P)
(b.next, d, P)
(cnext,c, P)
(cnext d, P)}

(c) Points-to triple:




Chapter 6

Handling other Pointer Features
in C

In the previous chapters, we discussed points-to analysis in detail. In the C-language
there are many other kinds of pointer manipulation that can effect points-1o analy sis.
In this chapter, we briefly discuss these cases and give a simple solution lo1 them.
"These solutions have been implemented to enable us to perform experiments on «
reasonable set of henchmarks. In Section 6.1, we discuss the pointer arithmetic, in
Section 6.2 we explain our analysis for type casting, and in Section 6.3, we consider
heap-allocated data structures.

6.1 Pointer Arithmetic

The C-language allows arithmetic operations on variables having pointer-type IHere
is a simple example of this case:

int *a, i ;
a=a+1;

[ most cases, instead of increasing the array index. a pointer to array is increased, In
other words, arithmetic operations are used to access different clements ol an array
Due to this fact, we treat the arithmetic operations achieved on the pointer to array~
differently. We basically divide different cases into the following two hasic gromnps.,

119




1. The arithmetic operation involves a pointer to a variable which is not ol aira

type. In this case, there is no limitation in the corvesponding anthmete oper

ations. The only potential problem is that we may access the wione meinon
location. Since there is no consistent way of following the varables alier the
arithmetic operations, we use the worst case assumption. 'his assumption sa-

that the pointer variable has a possibly-points-to relationship with all the van
ables of its scope.

2. The arithmetic operation involves a pointer to a variable of wiiay type 11 the

pointer x points-to the array a, the corresponding relationship s divided 1o the
following two subgroups:

(a)

x definitely-points-to a. "This case happens when location x pomt 1o 1
first element of array a. If we have an arithmetic operation on x then x oo
not point to the first element any more. In this case, the delitely pomt 1o
relationship should be changed to possibly-points-to I'he followne 1+
example:

main() {
int *x, al7] ;

x = &al0] ; /* stmtl %/
x=x+1; /*x stmt2 */

}

After processing statement I, we get the relationship (v Do e e nl
while processing statement 2 results in the relationslip (v o 1Y)

x possibly-points-to a. This case happens when location x pomnt 1o one ol
the elements of the array a (not the first one), o1 when we e a contrnl
statement. Obviously, after performing an arithimetic operation on oz
either of these two cases, we still do not know which element ol wirar o
pointed to by x. This means that the corresponding velation iy v,
unchanged. [lere is an example of this case:

main() {
int *x, al[7], 1 ;

&alil ; /* stmtl */
x + 1 ; /% stmt2 */

L
non

}

After processing statement 1, we get the relationship (v Py o< 1he 10 ul
The process of statement 2 does not make any difference v the il 1o ah

120




In accessing the arrays, we assume that the index expression is within the cotrespondd-

ing boundaries.

6.2 Type Casting

Type casting in the C-language allows one to assign variables of different types to
cach other. Since the type of a basic statement is a determining lactor in deciding
whether that statement should be considered in the points-to analysis o1 not. type
casting plays an important role in this analysis. In the C-language. the programmer
is allowed to change the types with no limitation. This flexibility of the (“lanenage
necessitates special precautions in the analysis.

Any type casting appearing as an argument in a function call is 1emoved by the
simplifier program (by using a temporary variable). Thus all arguiments match the
type of their corresponding formal parameter. Furthermore, any type casting appear-
ing in the left hand side of an assignment statement is moved to the right hand side
of the assignment. As a 1csult, type casting is an issue only in the intrapiocednral
analysis.

Define the pointer-level of a variable x, denoted as pointer-lerel(r). as the mastni
number of indirect references that x may have. For example, the pointer-level of x and
y with types float* % * and int are 3 and 0, respectively. The points-t1o 1elationship
(x,y,rel) is devised in such a way that the type of the variable x is alwavs a pornter
to the type of the variable y. In other words:

pointer-level(x) = pointer-level(y) + 1, and, type (*x) = t\pe (y)

The only exception is in the presence of type casting, where one may lave points-
to relationship between variables of different type and pointer-level. Tn this case
assuming a points-to relationship (x,y,rel), any of the following relationships Letweer
x and y can appear:

e pointer-level(x) = pointer-level(y) + 1, and, type (¥x) # type (y)
There might be a points-to relationship between the variables of correct dilfercence
on pointer-level, but with different base-type. Consider the following example:

121




typedef struct{
int a ;
} FOO ;

float y ;
FOO *x ;
x = (FOO *) &y ; /* stmt 1 */

Here, x has the type FO0* while y has the type float. Alter processie state
ment 1, we get the relationship (x,y,D).
e pointer-level(x) = pointer-level(y)
There might be a points-to relationship between the variables of the saine pomnteo
level. Consider the following example,
int *x
float *y ;
x = (int*) &y ; /* stmt 1 */

Here, pointer-levels of x and y are equal to I. After processing staternent 1w
get (x,y,D).

e pointer-level(x) < pointer-level(y), or, pointer-level(x) > (pomter beveliyr o 1)
There might be a points-to relationship between the vagiables of dhilerent pomio
level. Consider the following example,

int *x, **xy ;
x = (int*) &y ; /% stmt 1 */

Here, x has the type int* and y has the type int++. After processim - 1ate
ment 1, we get the relationship (x,y,D).

There are special cases of type casting that are more complicated to andle | he-e
cases happen when user forces a base-type (e.g. int, float,ctc.) vartable 1o wet the
address of another variable. In other words, user pushes a non-pointer varrable o et
the address of another variable. Following shows an example of this casc

main() {

int a, b ;
a = (int) (&b) ;

122




In this example, we should get (a,b,D). At present, we do not handle statements
which have a lhs of scalar type. Our analysis can be easily extended to take care of
this case, however, we are not sure if it is worthwhile.

6.3 Dynamic Data Structures

In this section, we discuss the last possible case that results in a points-to relationship.
"This is the points-to information obtained from the heap allocation. There are some
library functions in the C-language which get a location of a given size from the heap
and assign it to a variable during the execution time. The following is an exanmple

int *x ;
x = (int*) malloc (sizeof(int)) /* stmt 1 */

After the execution of statement 1, a heap location of size ‘integer” will he assigned
to the variable x, This means that x is pointing to a location in the heap. \s there is
no consistent way for using the heap, it is considered as a bunch of memon locations
with no specific type which can be pointed to by any type of variable: o1 can pomnt to
any type i variable. Figure 6.1 is devised to explain our way of looking at the licap

vari \4 _—»vard
—» var4
var2 —>| Heap
\vars

Figure 6.1: An overview of the abstract heap representation.

To incorporate heap into our analysis, we define a single location in the abstiac
stack, called heap, which has no specific type. This location represents the whole heap
This approach of approximating the heap as one location introduces conscivative
approximations for relationships within the heap. However, these relationships can
be further refined by a heap points-to analysis that is run after the stach points-to
analysis [Ghi93]. As we have found that it is very rare to have pointers hack hom the
heap to the stack, this division into stack and heap analysis phases is very reasonable,
All the points-to relationships dealing with heap location are of type possibly -point -
to. The reason is that we do not exactly know which location of heap is considered
This idea is further explained using the example given in Figure 6.2(a).

123




typedef struct foo{

int a ;
int *b ;
} FoO ;
void main() heap  [¥-
{ x |’
FOO *x ; Y . -
int *y ;
x = (FOO*) malloc (sizeof(F00)) ; /* stmtl */
y =& (*x).a ; /* stmt2 */
}
(a) The C program (1) The related st

stach

Figure 6.2: An example of dynamic data allocation,

In this example, statement 1 allocates some memoty locations ltony heap \s
the result, we get the relationship (x,heap,P). The &(xx).a at statement 2 < a lo
cation in the heap. Due to this fact, after processing this statement. we wet the
relationship (y,heap,P). The final stack representation of this program s shown i
Figure 6.2(b). Functions causing the heap allocations arc: malloc. calloc. valloc.
realloc, memalign, mallopt, and alloca. The same process as explamed above lias
to be done for them.

124




Chapter 7

Implementation Details and
Limitations

In this chapter, we explain some details of our implementation. This is composed of-
our data structure for the abstract stack representation in Section 7.1. sonme special
features of our analysis in Section 7.2, some details of map and unmap processes in
Section 7.3, and finally the library functions in Section 7.4.

7.1 Abstract Stack Data Structure

The concept of an ‘abstract stack’ is introduced in the previous chapters. In tlhis
section, we explain its actual data structure and the reasoning behind this implenen
tation.

For several reasons which will be explained later, we use a bit matrix data ~tructire
for our abstract stack representation. As a bit matrix requires an artay ol a fized
size, we first pass through the program to collect the variables corresponding to cach
function. To minimize the size of the bit matrix, we collect only the variables which are
involved in points-to analysis. These are: (i) the actual/formal parameters of pointer
types, and (ii) the variables appearing in the lhs/rhs of the assigniment statements
represented in Table 5.1. Each function has its own bit matrix whete the size of this
matrix depends on the number of collected variables. If a global vatiable x is one
of the collected variables of any of the functions, it should be also included in the
collected variables of all other functions (because it is indirectly accessible by those
functions). After collecting the variables for each function, we perform the points-to

125




analysis starting from the main function. This analysis is composed of the (ollowing
steps:

1. Building the points-to bit matrix for the function main using the collected vari
ables,

2. Calling the ‘points-to’ function (given in Chapter 1).

Each index of a bit matrix represents a variable in the related function, e
global variables keep the same index in all the bit matrices. There are two 1y pes of
bit matrices, one for definitely-points-to relationships and the other one for possibiy
points-to relationships. If the (i,3)’th element of the definitely-points to it matis
is equal to 1, it means that the variable corresponding to the 1°th clement has o
definitely-points-to relationship with the variable corresponding to the 3 th element
If the content of the (i, j)’th element in both definitely-points-to and possibly points
to bit matrices is equal 0, it means that the variables related to 1 and 3 have no
relationship.

Figure 7.1 shows a graph representation of the corresponding data stictine Sinee
dynamically allocated functions (like malloc) are costly, the whole memon requned
for the complete data structure (as represented in Figure 7.1) is computed and allo
cated only once. The necessary links are computed by performing some anthinet s
operations involving sizes of the ficlds.

The following are the advantages of using the bit matrix data strocture

¢ Memory Space: As a single bit is used to indicate if two vatiables are 1elated
or not, we are using the minimum space for our representation. For exanple,
if there are 60 variables in a function which are involved in points 1o analyis
and an integer is composed of 32 bits, the related bit matiices are two arrass of
integer type with 60 rows and 2 columns (this can be further inproved 1o a I
2 matrix).

e Speed: Th: operations are fast and cfficient because they ave niainly composed
of bit operations. Some examples are given in the following:

— The merge of two matrices is the ‘logical or’ of the two.

— One may need to access the (i,j)th element of a hit matiin i this cave,
index i provides a bit vector to look for the index 3. The integer pait of
the ratio of j to the number of bits per word (in this case 32) vives 1he
actual column number for j. The remainder in dividing 3 by 32 gives the
bit number in that column. For example, for j = 65, the column nnmber 1

126




al_blk

[size {AL_BLK_S1ZE(al_blK)}
info {AL_BLK_INFO(al_blk, i)}

-The variables written in small case are the
names of the fields (e.g. val).
- The names written within { } are the names

of the macros to access that field.

- The arrow links correspond to pointers.

- The indented variables (e.g. 'field’ in 'var')
are the fields of structures (e.g. 'field’ is a
field of ‘var')

Variables Vector

T T al_vars fields of 1th vanable

field {AL_VARS_FIELD(al_vars)}

next {AL_INFO_STR_PTR(al_blk, i)} 1

val {AL_INFO_VAL{al_blk)} N AL_VAL_MAYBE(al_blk, 1, )}

et
definitely ce | ] ”

" [ possibly ik
k

var next {AL_VARS_NEXT(al_vars)} —»
field {AL_INFO_VAR(al_blk, i)} / flag {AL_VARS_FLAG(al_vars)}

AL_VAL_SURE(al_blk, 1, k)
Figure 7.1: The data structure of the abstract stack.

2 and the bit number in 1. This means that the first bit in (1,2) th element
of the corresponding bit matrix is demanded. Masking is used to access a
given field. An array of masks is defined to speed up the accessing process
The size of this array (maximum number of masks) is equal to the numbie
of bits per integer (in this case 32).

To determine if xa and *b refer to the same locations, one needs onhy to know
if two array pointers are pointing to the same array(s). In this case. a logical
‘xor’ operand is used. If the result of ‘xor’ of the rows which are related 1o
the pointer variables is 0, we conclude that the variables are pointing 10
the same location(s). This is particularly useful for the arrayv dependency
module that needs to know if two array pointers point to the same aviay

o Accessibility: Since we need to frequently check the points-to information. it
is important to have a fast access from a variable to its index in the hit matii
and vice versa. In our case, this is quite fast because there is a cortespondence
between each index of the bit matrix and a variable node in the tree,

127



7.2 Some Special Features of Our Analysis

e As the result of points-to analysis is used by other analyses. the related o
mation should be saved for later use. The corresponding bit matrices are saved
at the statement level. If a function is called more than once, 1o save some
space, the information from different calls is first merged together and then the
result is saved. Therefore, the possibly-points-to information mav be due 1o the
merge between two different calls and not due to a loop or to a condition. 1|
space were not an issue, one could casily save the points-to information for cach
statement separately (each containing the related invocation graph node), We
are planning to further investigate this issue in our future work, Prosenthy, the
points-to information can be used in one of the following fwo way s

1. Other analyses are done simultaneously with the points to analysis. In this
way, those analyses obtain the precise points-to information, 'l disadyan
tage of this approach is that it is more complicated from the nnplement ation
point of view.

2. Other analyses are done after the points-to analysis is completed. | he wl
vantage of this approach is that the implementation is straight forward, Tty
disadvantage is the possibility of getting more possibly-points to 1elation
ships.

¢ As mentioned before, the points-to information is saved for cach statement | he
sequence of statements that do not affect the points-to analysis have the sane
points-to information. To save some memory space, this sequence ul <tatement .
point to the sanic bit matrix.

¢ Our method can perform some correctness checking for the progranm s
normally done at run-time. These checks produce some erion/warinng nicasages
to the user. For precise checking, we initialize all the pointer vitiables to pot
to NULL at the beginning of each function. The following is the list of the ¢ ks
which are performed:

1. If the user applies an indirect reference operand to a variable whicly deh
nitely points to NULL, an error message together with the coresponding
line number is reported and that line is ignored. ‘Ihe [ollowinie e 1w
examples of this case:

128




main() { main() {

int **xa, c ; int **a, ¢ ;
*a = &c ; if (...)
} *a = &c ;
}

In these examples an error message appears for statement *a = &c. The
error occurs because a does not point to any variable (it definitely points to
NULL) and, consequently, *a does not exist.

If the indirect reference operand is applied to a variable that possiblv points
to NULL, it is not guaranteed to be an error. To clarily this point. consider
the following example:

main() {
int #**a, *b, c ;
if (...)
a=&b ;
if (...) /* s1 %/

At st, we get (a,b,P), (a,NULL,P). Although at s2, *a might he NULLL.
but since this is not definite, no message is given.

2. Il there is an arithmetic operation on a pointer variable which is not pointing,
to an array, the worst case assumption is made, that is, the variable points
to all other variables of its scope. As such arithmetic operation night he
due to a programming error, a warning message is gencratce,

e Since system commands are not part of the C-language, they are not supported
by our analysis, ¢.g., exit(). This means that our analysis may bhe overly
conservative since we could include non-realizable paths after the exit ().

o Union type variables are not considered in the present version of our analy s,
However, since these are an extension to structures, a possible solution i< given
in Section 5.1.4.

o Functions with a variable number of parameters are not considered

129




7.3 Some Implementation Details of Map and Unmap Pro-
cesses

As it was mentioned in Chapter 4, the map information (map-1nfo) is used to sve the
relationship between the invisible variables of callee and the local variables of caller.
The data structure of map-info is a two dimensional linked list which is represented
in Figure 7.2.

map_lInfo

var_index {MAP_INFO_VAR(map_info)}
related_var_index {MAP_INFO_REL_VAR(map_info)}
next {MAP_!NFO_NEXT(m?p__info)}

'

Vi

rel_var

index {REL_VAR_INDEX(rel_var)}
'lnext {REL_VAR_NEXT(rel var)] -—n

-The variables written in small case are the names of the fields (e.g. var_index)

- The names written within { } are the names of the macros to access that field

- The arrow links correspond to pointers.

- Following is a description of ‘map_info' (map information) fields:
var_index : is the index of an invisible variable in callee
related_var_index : is a pointer to the variable(s) in caller which are representad by ‘var indox’
next . is the pointer to the next invisible variable

- Following is a description of ‘rel_var (related variables) fields.
index : is the index of a variable in caller
next : is the pointer to the next variable in caller

Figure 7.2: The data structure of map information (map 1nfo)

Any interprocedural analysis that uses the points-to information. 1y e 1o
access the invisible variables. Therefore, we need to save the map information, ol
lowing shows an example of constant propagation where the map inforation 1 i-e,

130




main()

{
int *a, b ;
a= &b ;
f(a) ;
}
void f(ant *x)
{
*x =1 ; /* stmt 1 */
}

Since at statement | we have (x,1x,D), after constant propagation 1 x i ~ct
equal to constant 1. After returning to the main function, we should cond lude that b
is equal to constant 1. This can be done only if we know that 1_x is equivalent to b

The map information (map-info) related to each function call is saved in e
related node in the invocation graph. This information can be casily used by other
analyses.

7.4 Library Functions

All the library functions except those listed in the following are side effect oo
malloc, calloc, valloc, realloc, memalign, mallopt, alloca

"The above functions generate a points-to relationship between variables and the heap
which is discussed in Chapter 5. Note that function alloca allocates a location from
stack and releases it after returning from the function. In this case. we stll give the
points-to relationship to heap, because it does not change the generality ol the heap
analysis. Note that we do not handle memcpy because we believe it is 1arcly nsed 1o
affect the points-to information. However, we will send a message 1o the nser, 1l this
case happens frequently, we can casily handle it.

131




Chapter 8

Experimental Results and
Practical Uses of Points-to
Analysis

In this chapter, we demonstrate the effectiveness of our points-to analysis b ponl
ing some experimental results. We also discuss how other analvses nnplenented
the framework of the McCAT compiler benefit. from our points to mtornation | he
experimental results obtained by running the analysis on some standard benchiah
are presented in Section 8.1. In Section 8.2, we discuss other analvses whiel ot
currently using the results of our analysis.

8.1 Experimental Results

This section contains our experimental results on some standard henchnl, 1.
ble 8.1 contains the following information about the bend himark files

1. Benchmark: is the name of the benchmark
2. Lines: is the number of lines in the benchmark including all the comment hine

3. #tof stmt in SIMPLE: is the total number of C-statements i the SINPLE 1o,
resentation, excluding the comments

4. #of func: iz the number of functions in the benchmark

5. Min #of var: is the minimum number of variables among all abtiact 1al,
(this also includes the invisible variables and all the fields i case ol o tincrane

132




6. Max #of var: is the maximum number of variables among all abstiact stacks
(this also includes the invisible variables and all the fields in case of a stinetnie )

7. Description: is a brief description of the benchmark

Note that each function has its own bit-matrix where the size of the matiix depends
on the total number of variables involved in the points-to analysis. The columns *Min
#tol var’ and ‘Max #of var’ give an idea of the size of this matrix. The largest
bit-matrix size for the given benchmarks is equal to 187 (for the program “config’).
Assuming that cach word is composed of 32 bits, only six words are needed to store
one row of this bit matrix. Seven programs need a maximum of one word. five need
two words, and the rest need four to six words. The smallest size of the bit-matiis
is one word for fourteen of the benchmarks and two words for the remaining thiee.
Considering that these numbers include all the invisible variables and all the possible
combinations of structures, the required memory size is quite small.

All pointer type variables are initialized to NULL. This initialization i ieases
the number of points-to relationships. Since these relationships are not necessarily
initialized by the user, the points-to information contributed by this initialization
is not counted. The relevant statistics is provided in Tables 8.2 and 8 3. \We it
analyze Table 8.2 which cssentially contains the number of indireet 1eferences m «
program. This table represents the actual use of points-to information and contains
the following items (from left to right):

I. Benchmark: is the name of the benchmark

2. #of ind ref for Def rel: is the number of indirect references that have definitel
points-to relationship.

3. #toflind rel for 1 Pos rel: is the number of indirect references that have only one
possibly-points-to relationship with other variables.

1. #of ind ref for 2 Pos rel: is the number of indirect references that have 1wo
possibly-points-to relationships with other variables.

5. #of ind ref for 3 Pos rel: is the number of indirect references that have thce
possibly-points-to relationships with other variables.

0. #of ind ref for > 4 Pos rel: is the number of indirect references that have fom
or more, possibly-points-to relationships with other variables.

7. #of ind ref: is the total number of indirect references in the hendhmark

8. Avg: is the average number of variables that an indirect reference s pomting
to. This is computed by dividing the number of definitely /possibly-points-to

133




~n:‘\u‘llpllun

A genetic algorithm nnplenientarion to foa won
Indirectly swaps two pomter vanabbo cwith nooon

Indireetly swaps two portor varnibdes wirli conedy
|

The C versson of the Lavnons T oo Lo o b

Checks all the features of the ¢ ) TR

One of the files of GNE C fioe wobiv a1 the
top tevel of col It parses commmd ve s opuns
files, mvohes the vanons passes i the poper o

der, and records the tiie used T vl T
Hmiessages and low levabinn vt toomnnalloe el

UNIX utlity program bor compre  anenngness ol

A unified version Tor all Tost aloonit b foa

Anmnplementation of a hash tabl

This progriun creates two AHSKE o whn b con
tawms the tru> ontputs and te orhor iy wliney te
outputs are not cortuptad with the probalalin
given m the input The valucs ol the MTISR S
compared tosee tf the intioduecd crior T can

This program is copied o advaneccd € juogianm
mingon the IBM pe Llis cro < nolonnnee poogranm

Stanford baby benchnraeh o Boan Johm Hep
nessy This file anclodes Ponn (e viemtation pen
erator), ‘Intunn’ (itegor soatos mdvpde o) N
(matree muodtiphicr for veal wanle ey Cpuen (=
queens problemn), Tower (tower ol Hanenr e
stve program ), Puzzle, Bubhle (<ony Qo feoit
Tree (sort, using dynanne daa toocte ) ) o

Benchmark | Lines #of Fof | Min | Max
stmt in | func | #of | #of
SIMPLE var | var
genetic 506 449 18 28 H4
ng
swapl 25 25 3 3 8
dition
swap?2 30 28 K] 3 8
dry 826 206 | 13| 21| 43| Dimystone henchmatk
intmm 71 44 5 4 10 | Integer matus multipheo
clinpack 1231 919 11 101 106
Linpack
config 2279 45: 52 I8 187
toplev 1637 8 K¥| 13 97
handled here
compress 1923 1275 11 11 176
the files
mway 699 871 23 ol | 125
partition
hash 256 110 5 15 30
misr 276 235 5 10 44
celed themselves
xref 146 137 7 25 60 | Thi
builds a tree of itens
stanford 885 848 48 31 14
(Fast Founer ‘Translorin
fixoutput 400 382 5 15 29 | A simple translato
allroots 225 245 6 2 8

Find all the roots of 4 pody ol

Table 8.1: Characteristics of benchmark files.

134




relationships by the number of indirect references. For example. this nmber for
the ‘genetic’ benchmark is equal to: (5+33+2%2+2*3)/42=1.11.

An indirect reference can appear in the form of *x, (*x).y.z, and x[1] [3] (when
x is a pointer to array). We have collected three rows of information for cach henh-
mark. The first row in each case is related to the indirect references of the forn.
*x and (+x) .y.z. The second row in each case is related to the semantically indi-
rect references of the form x[2]1 (31 ((*x) [i]1[j1). This information is particulary
important in the array analysis. The third row in each case is the sum of the first
two rows. The results in this table are generally quite impressive. This indicates the
effectiveness of our point-to analysis. Following are some specific conelusions derned
from this table.

o The average number of variables that an indirect reference is pointing to s ¢uite
close to one, where one indicates the best possible case. The overall ayvcrave is
cqual to 1.04.

¢ Overall, 47.10% of the points-to relationships are definitely-points-to.

e The number of indirect references of the form x[1] [3] (when x is a pointer 1o
an array) that have a definitely-points-to relationship, plays an important 10le
in array dependence analysis. For most of the benchmarks. specially “linpack”
and “stanford”, this is a large number compared to the total number.

e There is no case with more than four possibly-points-to relationships and there
is only one case with three possibly-points-to relationships.

Table 8.3 contains the general points-to information. The numerical results repie-
sent the sum of the points-to information for all the program points after o anali~is
is completed. This table is composed of the following items (from left to 1ieht):

. Benchmark: is the name of the benchmark

2. Total: is the total number of points-to relationships of all the statcments in the
corresponding benchmark

3. Max per stmt: is the maximum number of points-to relationships pet statement

1. Avg per stmt: is the average number of points-to relationships per statenient

5. From parm: is the number of points-to relationships from a parameter to «
variable

6. To parm: is the number of points-to relationships from a variable to a pataineter

7. From invi var: is the number of points-to relationships from an invisible variable
to a variable

135




Bench- #of ind ref | #ol ind ref | #ofind ref | #of ind rel Fofmd el | Lot gof | W
mark for Def rel | for 1 Pos rel | for 2 Pos rel | for 3 Pos rel | for > 1 "o~ rel md ae
0 6 0 0 0o ] 1}
genetic 5 27 2 2 0
5 33 2 2 0 1 11
8 0 0 0 0 !
swapl 0 0 0 0 0
8 0 0 0 0 \ 1 oo
4 0 4 0 0 )
swap2 0 0 0 0 0
4 0 4 0 0 N 10
2 32 1 0 0
dry 11 0 0 0 0
13 32 1 0 0 i Pl
0 3 0 0 0
intmm 2 0 1 0 @)
2 3 1 0 0 N LIS
7 0 0 ) I -
clinpack 123 16 4 0 0
130 16 4 0 1] 1o 1ty
9 33 0 0 0
config 0 0 0 0 0
9 33 0 0 i] N I 1)
0 0 0 0 0
toplev 0 15 0 0 1]
0 15 0 0 1] K 1 an
0 20 0 0 0
compress 0 7 0 0 1]
0 27 0 0 1] 2 | (10
3 14 0 0 0
mway 24 0 5 0 0
55 14 5 0 0 h b
7 7 0 0 n
hash 0 0 0 0 0
7 7 0 0 0 It I o
1 8 27 0 N
misr 3 0 0 0 {)
4 8 27 0 {] b [
0 20 9 0 0
xref 0 2 0 0 ]
0 22 9 0 0 11 I 2o
6 35 1 0 " :
stanford 61 0 2 0 0
67 35 2 1] t 1N T
5 1 0 0 0 ;’
fixoutput 0 2 0 0 i
5 3 0 0 0 w {06
0 0 0 0 0 |
allroots 0 18 24 0 0 i
0 18 24 0 ““4 )2 i; [

Table 8.2: Statistics for the number of indirect reference access in a benelimark. | he
first line in each case is related to cases like *x and (*x).y.z. The second he
each case is related to x[i] [3] when x is a pointer to array. 'The thivd hoe 1+ 1he
sum of the first two lines.

136




8. To invi var: is the number of points-to relationships from a variable to an invisible
] variable

9. From struct: is the number of points-to relationships from a structuwie to a
variable

10. To struct: is the number of points-to relationships from a variable to a stiuctuie
I1. From heap: is the number of points-to relationships from heap to a variahle

12. To heap: is the number of points-to relationships from a variable to heap

It is seen that sometimes we get large values. This is partially because the same
information is counted for many statements. Here are some comments on these nun-

bers:

o The substantial number of points-to relationships from a parameter to a variable
emphasizes the necessity of the interprocedural point-to analysis.

* An interesting observation is that we have not encountered a single instance
where a pointer points to a parameter variable.

o Another interesting observation is that there are very few cases of an hnvisible
variable pointing to other variables. The few encountercd cases happen when
one has a parameter (or global variable), say x, which is a multi-level pomter
type and *x is an invisible variable which points to another variable, Unlike this
case, our statistics shows that it is quite probable that a parameter (o glohal
variable) points to a variable which is not in the scope of that function. |his
conclusion is derived from the numbers in the ‘To invi var’ column in lahle 8.3,

e There are not many relationships from/to variables of structure tvpe to other
variables.

o Another important result is that there are no points-to relationships ftom «a
dynamically-allocated location (we use the location *heap’ for all of them) to any
stack-resident variable. This ineans that pointers in heap-allocated objects only
point to other heap-allocated objects. This observation supports o approacl
of separating the points-to analysis of stack-allocated and lcap-allocated data
structures, and developing different abstractions for the two cases. Fuither. the
substantial number of points-to relationships to heap, underlines the henelits
achievable from a powerful heap analysis.

137




Bench- Total | Max | Avg [ From | To [ From [ To | From To | om Lo
mark per | per | parm | parm | invi invi | struet | struet | heap | heap
stmt | stmt var var )

genetic 339 9 — 29 — - o
1889 12 4 99 — — - - N i
swapl 60 5 2 8 - 8 19 7
swap?2 26 2 — 8 — - 8
59 4 2 — — 8 11 i
dry 294 7 1 102 — - 68
814 13 3 61 - - 27 |
intmm 59 4 1 16 — -
66 3 1 24 - —_ -
clinpack | 13394 66 14 | 1299 — — | 1307
4907 29 5 207 — — | 665 i
config 33030 24 7 91 — — 91 IR
96196 95 21 — — — - 1 200 I
toplev 996 5 1 — - — D
2799 12 3 — — - ~ 0
compress | 4815 14 3 - — —
17694 66 13 511 - - | 630 ol (183
mway 10708 48 12 967 — - | 1044
5733 28 6 78 - - 173
hash 405 12 3 63 — - 90
371 10 3 — - - - Fon
misr 780 12 3 229 - — | 236
1046 13 4 18 - 128 114 165 | i
xref 1 T — — — ~ — ]
45 1 — 25 — - -- )
stanford 654 5 — 538 — - | 235 i |
89| 6| —| 15| - - : |
fixoutput [ 741 ] 1 — —~ ) l
36| 12| 8| —| ~| | - ] |
all 164 2 — 159 — - 159 '
605 4 2| 420 — -— | 210 1 a0

Table 8.3: General statistics of the points-to analysis. The first line i cacly caae
contains the statistics of the definitely-points-to information while the second e
contains the statistics of the possibly-points-to information.

138




8.2 Practical Applications of Points-to Analysis

Points-to analysis acts as the initial step for many other analyses performed by the
McCAT compiler and improves their accuracy. In the following, we briefly explain
somne of these analyses which are developed by other members! of our rescarch group.
We summarize the impact of accurate points-to information on their methods.

Section 8.2.1 discusses the replacement of indirectly referenced variables with their
actual variable. Section 8.2.2 is on dependence analysis for the ALPIIA repiesenta-
tion [[1GS92]. Section 8.2.3 is on extending the invocation graph (relatively points-to
analysis) in the presence of function pointers parameter [Ghi92]. Section 8.2.1 is un
generalized constant propagation [LH93]. Section 8.2.5 is on array dependence analy-
sis [Jus93]. Section 8.2.6 is on reaching definition analysis [Sri92]. Section 8.2.7 i~ on
live variable analysis [Sri92]. Section 8.2.8 is on loop unrolling which is implemented
as a course project by M. Tarocci and C. Pateras.

8.2.1 Replacement of Indirectly-referenced Variables

In accessing an indirect reference variable (e.g. *a), different analvses behave dilfer-
ently depending on having possibly-points-to or definitely-points-to relationship. 1o
avoid redundant checking, we can replace an indirectly access variable, say *x with «
variable y when they have the relationship (x,y,D), and y is not an invisible variable.
The fact that replacement is not done for an invisible variable does not mean that
they can not be useful. As an example, they are useful for register allocator when the
life time of keeping a variable in a register can become longer for definitely-points-to
variables. They will be also useful in propagating any data flow information from
callee to caller.

Table 8.4 represents some statistics on benchmarks of Table 8.1. I'he fitst columu
is the total number of indirectly reference pointer variables that have definitel -points-

to relationship with any variable. While the second column represents total number of

indirectly reference pointer variables that have definitely-points-to relationship witls
regular variables. This number shows how many cases of indirect references can be

replaced by their points-to variable. One can increase this number by the use of

function inlining?. This is due to the fact that callee has access to a local vaiiable x
of caller (which is not in the scope of callee) through a pointer px. If the function call
from caller is replaced by its body, this limitation in scoping does not exist am more.

'Except the method in Section 8.2 1 which is due to the author.
*Replacing a function call by its body.

139




Benchmark | #indirect ref to Findireet ref to

regular & invisible | regular variables
variables

genetic 5 )

swapl 8 1

swap?2 4 0

dry 13 9

intmm 2 2

clinpack 130 0

config 9 0

toplev 0 0

compress 0 0

mway 55 0

hash 7 0

misr 4 0

xref 0 0

stanford 67 51

fixoutput 5 bt

aliroots 0 0

Table 8.4: The statistic results for indirectly accessed variables,

8.2.2 Dependence Analysis for ALPHA

In this section, we briefly present the work of lHendren, Gao, and Sicedhar on A1,
PHA [HGS92]. ALPHA is an intermediate representation that allows one to perform
sparse analyses. The first step in constructing ALPHA is to generate vead /wiite et .
for each statement using the points-to information. The read/wiite set speaties all
the abstract stack location read/written at each statement in SIMPLLL ‘The wav 10
generate this information for pointer variables is to follow the links in the alstiac
stack of the points-to analysis. This is done using the rules given in ‘Table N 5 where
s is a statement, PI is the points-to information, Wy(s, P1)/Wy(s. 1) 1 the pos
sible/definite write at s with PI as input, R(s,PI) is the read set at s with 2] o
input, Py(z, PI)/Py(z, PI) is the set of variables that a definitely /possibly-pomnts 1o
in PI,and P(y, PI) is the set of variables that « definitely/possiblv-ponts toan 17/

The example represented in Figure 8.1(a) shows a C-program. IMigmie S 1{h) shows
its SIMPLE representation, Figure 8.1(c) shows the related abstract stack, and g,
ure 8.1(d) shows the read/write set related to each statement. Now we hive a close
look at statement 4. Clearly temp0 will be in the read set. All the location( j 1l
tempO is pointing to will be in the write set, in this case variable c.

140




5 Wo(s, PI) | Wa(s, PI) R(s, PI)
x=y ¢ {x} {v}

x = unop y ¢ {x} {r}

x =y binop z ¢ {x} {y.2}

> =y Py(z, PI) | Py(z,PI) {x,y}

#x = unop y Py(z,PI) | Pa(z,PI) {x.y}

*x = y binop z || Py(z, PI) | Pa(z,PI) {x,y, tt 2}

x = &Ry ¢ {x} ¢

x = sy ¢ {x} {y} U P(y, P

Table 8.5: Read and Write Scts for statement s relative to point-to information 1/

main() {
main() { int *#a, *b, ¢ ;
int *»a, *b, ¢ ; int tempO ;
a= &b ; a=g&b ; /* stmtl */
b= ke ; b= & ; /* stmt2 */
*%3 = 7 ; temp0O = *a ; /% stmt3 */
} *temp0 = 7 ; /% stmt4d */
}
(a) A C-prograin (b) The SIMPLE representation
S Write(S) | Read(S)
g P: a = &b {a) o
z b = &¢ {v} o
Tomp0 temp0 = #a || {temp0} | {a. b}
*temp0 = 7 {c} {tempo}

{c) Stack Matrix (d) Read/Write Sets
Figure 8.1: A simple example of dependence analyvsis.

Once the read/write set is computed for each statement, exposure analyse « ave pei-
formed. Exposure analyses, which consist of willbe_read, willbe_written. was_1cad an
was_written, identify program points where a-nodes are introduced. |he a-nodes
essentially capture data-dependences crossing different control regions. Infotnially,
a-nodes are like identity assignments (e.g. x = x). Once a-nodes are inserted. de-
pendence analysis is performed to generate dependence information and the 1esultin o
representation is called the ALPHA representation.

The accuracy of dependence information depends on the points-to inloiation.
Without points-to information, one has to make conservative assumptions regarding

141




the dependence information and this in turn generates a *denser” ALPLA dependene
representation.

8.2.3 Function Pointer Parameters

The presence of function pointers complicates the interprocedural analysis. Fune tion
pointers are special pointer variables which point to functions. These are relerended
at run time to call the pointed-to functions. Unlike a normal [unction call. o call
through a function pointer can not be bounded to a unique function at compilation
time. The function invoked from such a call-site depends on the acddiess contained
in the function pointer when program execution reaches that point. |hus dillciem
functions can be invoked from the same call-site in different exceutions of the prostan,
Under these circumstances, the invocation graph becomes a dynaimic properiy ol the
program and can not be constructed by a simple pass through the prograim

However, a precise and safe static approximation of the invocation graph can still
be obtained using flow-analytic techniques. The key idea is that the set of hinetions
invocable from a function pointer call-site is identical to the set of fine tions that the
function pointer can point to at the program point just before the call-site 11 the con
plete points-to information for each function pointer is available at the o tesponding,
function pointer call-site, the invocation graph can be effectively constincted, Tn 1l
case, different interprocedural analyses can be efficiently performed. ‘Lo provide pre
cise and useful information, points-to analysis itself needs to he inter procedinal | he
problem is how to build the invocation graph for points-to analysis 11scll

The solution lies in updating the invocation graph while performing the pomts
to analysis. First, the invocation graph is constructed using the notmal deptly fn
algorithm described in Chapter 4. This construction is left incomplete at the points
where a function-pointer-call is encountered. Next, points-to analvsis is petfornied
using this incomplete invocation graph. Once encountering a function poniner «all
all the functions it can point to according to the current points-to wlormation e
determined. The invocation graph is updated accordingly to indicate that all 1 hese
functions are invocable from the given call-site. The points-to anahvsis assiiies all
these functions to be invocable from the call-site under consideration and merees
their output points-to sets to compute the points-to information at the program point
after this call. Thus the points-to analysis keeps updating the invocation graph. while
calculating the points-to information, and constructs the complete imvocation graph
to be used by other interprocedural analyses.

Consider the example shown in Figure 8.2. Without pomnts-to mformation. the

142




actual function call(s) for fp at statement $2 is not known, therefore, a conserative
approach should be taken which says that £p can be all the possible functions in the
program (in this case f and g). The related invocation graph for the worst case is
represented in Figure 8.2(a). Figure 8.2(b) represents the invocation graph decorated
with the points-to information after the completion of points-to analysis. .\s it is
shown in this figure, in case of having more than one possible case for a function
pointer, the result from different calls should be merged. This merging results in
some extra points-to information that will propagate an inaccurate result throughont
the analysis.

main main - {(x,y.P), (a.b,P)}
int *x, y ; ‘ l
int *a, b ;
f x.y.P), (ab,P
main() { ’,'E‘ /Q\ {(x.y.P). (a.b,P)}
void (*fp) () ; s A + A
S1: fp = . P 9 h 9 h
- TPTEB {cy.D)}  {(ab.D))
52: 1pQ) ; (a) Invocation (Inv.) graph (b) Inv. graph and points-to information
} for concervative approach, for concervative approach
g()
{ i
X = &y ; main main main {(X,y,D)}
} | ! f
h() M P P {(xy.0)
{ {
a= &b 9 g {(xy.D)f
} () Incomplete (d) Complete inv. graph () Complete inv graph
inv. graph at Statement S2, plus points-to info

Figure 8.2: An example of extending the invocation graph and points-to analvsis in
the presence of function pointer.

Using the points-to information, the invocation graph is completed at the same
time as the points-to analysis. First an incomplete invocation grapl is built. as it is
shown in Figure 8.2(c). Next, points-to analysis is performed. After cncounte ing the
function pointer call £p() at statement S2, the points-to information ([p.g.D) s used
for updating the invocation graph, by adding the call g as the child of fp. 1 he result
is represented in Figure 8.2(d). Next is to follow the newly added call 1o contimne
the points-to analysis. This results in a more accurate points-to information that is

143




represented in Figure 8.2(e).

Note that the structured nature of points-to analysis plays an important role
efficient handling of function pointers without requiring any extra pass thiongh the
program. More details can be found in [Ghi92).

8.2.4 Generalized Constant Propagation

Generalized constant propagation is an analysis that attempts to deternime what
range of values each variable can get at each point in a given program. Lach time o
variable is assigned a value, the value so given (if it is not user-input) is « hinc tion ol
existing variables. Thus, since most programs contain a liberal sprinkling of constants
throughout, and provided one defines appropriate semantic functions lor cacl possible
operation, it should be possible to determine the set of the range of values cach
variable could contain at any point in its lifetime in any conceivablerin ol 1he pProgian
by performing a top-down semantic analysis of the program.

If one is to apply semantic functions to compute possible values, one of conae
needs to know the possible values of the variables serving as input. as accnately o
possible. For example, if it is known that a could have any value in the tange ol
[0,3] and b could have any value in the range of {1,2], then a+b can he ain valne
in the range [1,5]. The range [1,5] is calculated from the above values nsing the
semantic function corresponding to simple addition of integers. However. given the
ubiquity of indirect referencing in popular languages such as ¢ and Pascal. such
information may not even be readily available, let alone accurate, In these cases, there
are two options: (i) either one assumes the worst case assumption for cacl derelercne
variable (i.e., that each dereference variable could assume any value its 1y pe allows).
or (ii) one makes use of points-to analysis to determine which viriables might e
the result of each dereference. In the former case, the quality of the inlonnation
gathered via generalized constant propagation is substantially 1educed. wo the Late
method is naturally preferable. Points-to analysis, then, is of particular wportanee |
generalized constant propagation is to be useful for analyzing any non tisial progan:
in such pointer-based languages.

We show the effect of points-to analysis in two examples, one with pomts to o
mation and one without. In order to understand the examples, we define the followine
notations:

o GCP comments: represents the information available after the statement wonld
have been executed.

144




o + Inf: means + infinity.

o var:[vall,vai2] : means that ‘var’ can get the values between *vall® and “val2",

The following represents a small program with the result of general constant prop-
agation after cach statement of the program. After processing statement S1. count
gets the constant zero. The range of ptr is positive numbers, because ptr is a pointer
variable and pointers can hold only addresses (which are always a positive number ).
Since variable i is not assigned to any value, it can be any value. If the points-to
relationship is not available at statement S3, the worst-case assumption sayvs that
*ptr can be cither i or count. Therefore, the constant 1 should he added in the
range of the variables that they can get. This results in increasing the 1ange of the
variable count and leaving the value of 1 unchanged (because infinity plis one i <till
infinity).

/* WITHOUT points-to information */
int main() {
int i ;
int *ptr ;
int count ;

S1: count = 0 ;
/* GCP = {count:[0,0],ptr:[0,+Inf],i: [-Inf,+Infl} */

S2: ptr = &i ;
/* GCP = {count:[0,0],ptr:[0,+Inf],i: [-Inf,+Inf]l} */

S3: *ptr = 1 ;
/* GCP = {count:[0,1],ptr:[0,+Inf],i: [-Inf,+Infl} */

}

The following shows the result of the same program while points-to inforniation 1~
available. At statement $3, the points-to relationship is (ptr.1,D). therelore *ptr is
cquivalent to i. The result of general constant propagation would be that count i
constant zero and i is constant one.




/* WITH points-to information */
int main() {
int i ;
int *ptr ;
int count ;

S1: count = 0 ;
/* GCP = {count:[0,0],ptr:[0,+Inf],1: [-Inf,+Infl} */

S2: ptr = &i ;
/* GCP = {count:[0,0],ptr:[0,+Inf],1: [-Inf,+Inf]} */

S3: *ptr = 1
/* GCP = {count:[0,0],ptr:[0,+Inf],i:[1,1]} */

This simple example shows the strong affect of points-to information on seneral
constant propagation.

Table 8.6 represents the statistical result of general constant propagation m the
presence and absence of points-to analysis. This table contains the followine o
mation about the benchmark files:

Benchmark: is the name of the benchmark

Exact const: is exact constants, like [3,3]

Bounded ranges: both ends of the range are constant, like [0.10)]
Half ranges: one end of the range is infinite, like [2,Inf)

Unbounded ranges: both ends of the range are infinite, like | Inl Inl]

Range instances (total of the above 4)

NS o e WD

Description: is the description of the benchmark

Referring to Table 8.6, it is observed that the presence of points 16 anals s hos
generally resulted in a noticable improvement. In specific, there is o large difference
between the values of exact constant which is the most important constant imlora
tion in a program.

146




Benchmark Exact | Bounded Half | Unbounded Range Description
const ranges | ranges ranges | instances
spanning 74 81 0 26267 26422 M spanning,
84 93 648 25597 26422 circle caleulation
Jsorts 1 0 29 3765 3795 | 3 Sorts: Bubble, Quich.,
2 3 204 3586 3795 Quick (Median of 33)
determinant 20 18 77 3375 3490 Matrix deterimmant
57 113 159 3161 3490 calculation
knight_tour 19 87 650 2362 2488 | Recursive Kmight < tour
30 248 0 2210 2488 solution calenlation |
root..complex 9 15 46 17548 17618 Complex 1001~
59 159 215 17185 17618 of poly nonialks
heap_sort, 34 68 20 6257 6379 Heap st
103 89 82 6105 6379 o
Mersenne_prime 54 104 141 2006 3205 Mersenne prines |
61 240 157 2747 3205 R
2s0rts 13 8 9 2457 2487 [ 2 Sori~ Bubble Quidh ]
21 12 79 2375 2487

Table 8.6: Statistics of general constant propagation in the absence (first line) and
presence (second line) of points-to analysis.

8.2.5 Practical Array Dependence Analysis

This analysis determines whether dependences exist between {wo stbscripled 1ofr-
ences to the same arrayin a loop nest. This is a two-step process. The list step s

to set up a system of dependence equations and inequalities. In the second phase.
decision algorithm determines if the system has a solution [BCS6]. The goal of the
dependence testing is to disprove dependence of array subscripted paits as tany as
possible and as ecarly as possible. If dependence exists, it tries to find dislance and

direction vectors®. There are three cases where pointer alias information is 1~cd In
array dependence analysis. These are listed in the following:

¢ To distinguish a good-loop* in the program. If « loop is not a good-loop  the
dependence analysis does not continue.

At statement S1, there is a relationship (a,b,D). Therefore the modilication to *a
is independent of loop index i, consequently, the following loop is a goud-loop.

3Distance and direction vectors represent the access pattern between loop itetations

YA good-loop is a loop-nest with no statcments in between two loop statements and loop mdices not i d

the loop body.

147




main()

{
int w(100] ;
int *a, b, i ;

a=&b ;
for (i =1; i <=99 ; ++i )
{
Si: *3g = i % 2 ;
wlil = wli+1];
}

}

However, in the lack of points-to information, any loop with a modilication 1o
an indirect reference would not be considered as a good-loop

o To replace, if necessary, any indirect reference variable with its corresponding
points-to variable(s) along the backward analysis path. This replacenient o1
used to increase the possibility of a successtul canonical transjormation why
is a transformation that converts array subscript expressions nito canonn ul
expressions®.

In the lack of this information, one can not continue the backward analy «is when
an indirect reference variable is found. Therefore, the canonal Torn can ot b
constructed.

¢ To detect whether two pointer references point to the sanie array 1efeience o
a pointer reference points to an array reference. I'his detection micreaa < 1
number of array pairs to be analyzed by practical aviay dependence teaer Iy
the following example, without points-to information, one could not dete ot tha
s[i+1] (from statement S1) and a[i+1] are the same location, | hercore . one
should take the conservative assumption that says: s can 1eler 1o any aia
consequently, a is dependent on all the arrays in its curient scope (band o)

%A canonical expression is a subsciipt expression that can be expressed as o linear Cafbuie ) icreay o 1oy 1oy,
variables

148




main()

{
int al100], b[50], c[7];
int 1i;
iant *s;
s =a ;
for (i =1 ; i < 100 ; i++)
S1: al1] = s[i+1];
}

Readers are refer to [Jus93] for more details on this analysis.

8.2.6 Reaching Definition Analysis

Reaching definitions have been formally defined in [ASUSG] as: \ definidion of a
variable r is a statement that assigns, or may assign a value to r. .\ dehnition
reaches a point p, if there is an execution path immediately following J to p such
that d is not ‘killed’ along that path. This is a forward analysis where a prosian is
analyzed from top to bottom [ASUSG).

In the case of pointers, points-to information is used to make reaching delinition
information as accurate as possible. Consider the following exaniple:

S1: *t = 3;
S2: ~==>

When S1is reached, all the variables that t points-to are considered. 1t dehimitel -
points-to a variable, say a, it is concluded that the definition S1 of a delinitely-1caches
S2. If t possibly-points-to some variables, say a and b, then it is concluded that 1he
definition 81 of both a and b possibly-reaches S2.

If the points-to information were not available, then all the variables of the cinent
scope would be considered to possibly-reach to S2.

The genceral case of this analysis together with an example is given in Chapter 1.
Readers are referred to [Sri92] for more details.

149




8.2.7 Live Variable Analysis

A variable r is live at a point p in the program if the value of .+ at p could he rsed
along some execution path in the program starting at point p [ASUSG|. o~ duwvie
live-variable analysis, at every point in the program, the set of variables that aie
live at that point in the program are computed. This is a backward analvsis (the
program is analyzed from bottom to top) and is ahsolutely essential for optinizations
like register allocation.

For pointers, the points-to information is used to determine liveness accmately.
Consider the following example:

{-== ‘a’ is definitely-live
S1: oo, = %t

When the statement S1 is reached, all the points-to information of t are considered
If t definitely-points-to a variable, say a, then it is concluded that hoth t and a we
definitely-live at S1. If t possibly-points-to some variables, say a and b. then it -
concluded that a and b are possibly-live and t is definitely-live at S1.

If the points-to information were not available, then all the variables of the corent
scope would be considered to be possibly-live at §1. This increases the live 1anoes of
variables and, hence, makes the register allocation less efficient.

Another example of this analysis is given in Chapter 1. Readers are el ta [Sri)
for more details.

8.2.8 Loop Unrolling

Loop unrolling refers to the process of making one or more copies ol the loop hody
whereby the loop control must be suitably modified. Loop unvolling s many ad
vantages including: increasing the number of instructions that cau be schednled
a basic block, decreasing the unnecessary data movement i a inemors linoandn
architecture, reducing loop overheads, ctc.

One of the conditions for loop unrolling is that the loop indes should not he
modified inside the body of the loop. Without points-to information. it i~ difhicnlt 1o
know whether any pointer (whose dereference is being modified in the hody of the
loop) is indirectly pointing to a loop index or not. For example. consider the followme
program:




main()

{
int a[100], b[100] ;
nt *x, y ;
x =&y ;

for (i=1;1<100 ;i=1i+1){
ali] = b[1-1]
S1: *x = *x + i ;

}
Without the points-to information, it is not safe to unroll the loop. hecanse 1x
could be i. With points-to information, it is trivial to notice that at statement St
the points-to relationship is (x,y,D), and the loop can be unrolled as shown below,

main()

{
ant a[100], b[100] ;
int *x, y ;
X =&y ;

for (i=1;i¢<99;i=1i+2)¢{
ali] = b[li-1] ;
*xX = *xx + i ;
ali+1] = b[i] ;
*X = *x + 1 + 1 ;




Chapter 9

Related Work

As mentioned in the introduction, two variables a and b are considered 1o he ahsed
at a program point p, if they refer to the same memory location s s repie
sented as <a,b>. There are two gencral approaches to solve the aliastig problem
(i) automatic alias analysis in which no input is needed from the programimer al
alias analysis is done by the compiler during the optimization phase. awd (1)
rective code annotations in which the programmer provides some information ahont
the properties of pointer-based data structures to enable powertul compiler optoniza
tions [HHN92a, HHN92b]. In this thesis, we have focused on the first approah,

In this chapter, we first give the historical work that has heen done i the area
of automatic alias analysis, in Section 9.1. Then, we focus on the comparson ol
our work with the latest work that has been done on interprocedinal alinsine i 1he
presence of pointers by Landi and Ryder [Lan92, LR92], in Section 9.2

9.1 Historical Background on Alias Analysis

An alias analysis is needed for different cases in a programming languaee Fiome 9 |
shows a general division of these cases.

Traditionally, the alias analysis methods have focused on calcnlating the alioee
generated by the association of actual arguments with call-by-1eference paramnetor s
This sort of aliasing is characteristic of languages like Fortran and has the folowine
important properties: (i) only call-sites contribute to the creation of aliases. and (1) a
alias relation valid at the entry of a procedure holds throughout its bods. \ppropriate
techniques for computing such aliases have been developed and described 1Ba 7~

152




Call-by-reference

Automatic
alias analysis Stack-allocated structures

Pointers

Heap-allocated structures

Figure 9.1: A general division of alias analysis.

Ban79, Mye81, Coo85, CK89]. Most of these analyses collect the alias inlormation
in two passes over the program: (i) an introductory pass to compute all the obyions
aliases generated at call-sites, (ii) a propagation pass to propagate the aliases thiougl
the call-graph of the program.

Unlike the call-by-reference mechanism, the presence of pointers considerably «on-
plicates the problem of alias computation. This is due to the following factois

¢ In addition to the call-sites, the alias information can be affected by anv prosian
statement modifying a pointer variable.

e In the presence of multi-level pointers, a function can change the alias inforina-
tion of pointer type variables that are not in its scope. The indireet swap of
two-level pointer type variables (given in Section 4.2) is an example of this case

Further, there are nu:zaber of features particular to the C-language that make this
problem even harder. Such features include: pointer arithmetic. pointers to arrays.
and type casting. The complications introduced by these features ha e been explained
in Chapter 6.

As shown in Figure 9.1, pointers can be classified into two broad categoties, | he
basis for this categorization is the location of the pointer target in the memor orga-
nization. A pointer is categorized as stack-directed, if it points to a menion object
resident on the stack. Similarly, a pointer is classified as heap-directed. il it points
to an object allocated in the heap. Stack-directed pointers have the nice property
that their target always possesses a unique compile-time name. This docs not hold for
heap-directed pointers as all the objects in the heap are anonymous. In this thesis, we
have focused on the analysis of stack-directed pointers, with our points-to abstiaction
designed to exploit their special property. A good deal of work has heen done on the

153




analysis of heap-directed pointers [JM81, JM82, LHSS, HNY0, C'WZ90, ITIIN924]. We
now compare our work with the previous works keeping this distinetion in nind

Weihl [Wei80] gave an algorithm for interprocedural data-flow analysis in the pres
ence of pointers. He considers programs with procedure variables and label variables
Therefore, the complete control flow information is not available to hin. He fist
calculates the alias information generated by cach relevant program statement, mnde
pendent of other statements. Then, he performs a transitive closure on this o
mation to obtain the set of aliases that can be valid in the progiam nnder analysis
This information is not program-point-specific (is not related to a specilic pomt i
the program), but is program-specific (is related to the whole program)  he alias
information computed by such a flow-free analysis would he very imprecse Conader
the following example:

int *a, b, c ;

a
a

&b ;
&c ;

Using Weihl’s technique, one gets the alias pairs <xa,b> and « va.c - 1o he valid
for this program. Clearly, the first pair does not hold at the end ol the program
segment, but this can not be recognized by his analysis. FFurther, he does |1t ime!

Chow and Rudmik [CR82] also developed an alias analysis algonithi for then
CHILL Compiling System. They do not perform a flow-free analysis like \Weihl. b
instead collect program-point-specific aliases. Hlowever, they handle only sinele ley el
pointers. Further, they use the notion of a supergraph which is obtamed by ke
together the condensed flow graphs (flow graph containing only the nodes relevant 1o
alias analysis) of individual procedures, for interprocedural analysis  They pertorm
intraprocedural analysis on this supergraph to achieve the effects of miterprocedunal
analysis. This approach, however, leads to the incorrect pairing of calls and 1etin-
and makes their analysis imprecise. They also do not handle stinctures and o

Coutant [Cou86) follows the same method as Weihl, of computing program specili
aliases as opposed to program-point-specific aliases. However, she handles inltn les el
pointers, structures and arrays, more precisely. It is not clear how she would hanedle
recursive data structures. She mentions that program-point-specific alias calenlation
did not prove to be worth the computational effort in her implementation bt -

Vk.hmiting specifies the depth of the pointers which are considered [Lan92, LRY2] For o snmple af | 2 ey
represents =»x, = » »xx, and etc. Therefore, if k-hmiting is used, one obtains less accurate results for pomtors soth g
than k indirections.

154




does not provide any relevant data. She also suggests the use of pragmas to help the
compiler do a better analysis.

Cooper [Coo89] described an alias analysis algorithm in his Master thesis. 1lis
algorithm maintains explicit path information in the form of alias histories to ensure
correct pairing of calls and returns. This method would give precise results. hut does
not seem to he feasible for implementation.

In the following section, we first give an introduction to Landi and Ryder’s work
and then compare their work with ours.

9.2 Comparison

In Landi and Ryder’s analysis [Lan92, LR92), a program is represented as an fulei-
procedural Clontrol Flow Graph (ICFG). An ICFG is the union of control-Hlow graphs
of each function with edges from each call-site to the entry of callce and hom the
exit of callee back to the call-site. Each call-site is replaced by two nodes. a call nod:
and a return node. Fach function has an entry node and an cril node. there is an
edge from each call node to the entry node of related function (which is unigne). and
there is another edge from each exit node to the related return node(s). 11 a lunction
is called more than once, its exit node would have more than one successor. \s it s
shown in Figure 9.2, there are two edges from exit node of function £ to the call-site
nodes of function main,

Two variables @ and b have may alias relationship, represented as <a.h>. al a
program point n, iff there exists a path, nyny...n in the ICFG, on which « and b 1efet
to the same location after execution of the program point n where ny is the entiy
node of the function main.

Two variables a and b have must alias relationship, at a program point w. il los
all the paths nyny...n in the ICFG, @ and b refer to the same location alter execntion
of the program point n.

Their may alias relationship is based on the following may-hold information
may-hold(n,, AA, PA),
where n, is a node in ICFG, AA is a set of aliases, and P: is a may alias pan

(c.g. <a,b>). May-hold(n,, AA, <a,b>) is true, iff <a,b> holds on some path ffom
entry(n,), the entry node of the procedure containing n,, to n, assuming there is o

155



(EntrY o )

int *a ; a=8b )

nain() { Eony,
int b, ¢ ; .')

Callm

a=#&b ; L I
£0) ; Retumm x-a ]
a= & ; )
£0)

} . CL‘E CExt

£0O {

Figure 9.2: An example of ICFG.

path from the entry node of main function to eniry(n,) on which the assimned ahas
set AA holds. Having may-hold information, may aliases can he compnted nmine the
following formula:

may-alias (n,) = {PA |3 (AA) may-hold (n,, AN, I’/A)  Truc)

Landi and Ryder’s algorithm first collects the obvious may-hold \nforination. ¢ o
<#a,b> for a = &b (alias introduction), then collects the complete mav hiokd infor
mation using a worklist technique, and finally computes the may aliases from ma
hold information using the above formula. Further, they restiict the cordinaliny o
assumed-alias sets to a maximum of one.

In the following sections, we compare our method with Landi and Rvder i hod
by discussing alias representation in Section 9.2.1, must aliases 1 Section 92 20 i
terprocedural analysis in Section 9.2.3, dynamic allocation and k-linitme in Se
tion 9.2.4, and type-casting in Section 9.2.5.

156




9.2.1 Alias Representation

We collect the alias information in the form of points-to pairs instead of exhanstive
alias pairs like Landi and Ryder. Consider the simple example presented in Figure 9.3,

int **a, *b, ¢ ; b

a=%b ; a . ¢,

b = &c ; D > >
Figure 9.3: A simple C program.

In points-to analysis, we get {(a,b,D), (b,c,D)} as the result. while Landi and
Ryder get the following:

{<*a,b>, <xxa,xb>, <x*a,c>, <*b,c>}

It is evident that points-to pairs represent the alias information in a mor ¢ compact and
informative manner than alias pairs. The example in Figure 9.1 also demonsttates
this point?>. Further, when alias pairs are generated exhaustively, some additional
pairs might be reported while handling multi-level pointers. Consider the lollowine
example:

int **%a, b ;
a=#&b ; {<*a,b>, <*xa,*b>}

Landi and Ryder’s analysis would give the alias pair <**a,*b>, which is 1edundant
as b has still not been assigned the address of a memory location. Our poilits-to
analysis gives the precisc information that a points-to b and b does nof point to
any memory location. This also enables us to detect errors in programs. catsce by
dereferencing a pointer without assigning it the address of a valid memor location,
Readers are referred to Chapter 7 for further details.

Morcover, points-to abstraction is a natural representation for calenlat ing depen-
dence information. This has been demonstrated in [HGS92]. The authors uscd the
points-to information to build read and write sets for each statement. ‘I hese sels
actually consist of the reads and the writes to the abstract stack locations. | sing
the read/write sets, it is straight-forward to calculate data dependencies hetween
statements.

¢Acknowledgment: We are thankful to W. A. Landi who provided us with his results mentioned i Vigoie

157




Consider the calculation of these sets for the statement | of Figure 9 1{a). From
the points-to information (y,z,D), it can be easily determined that statement | reads
the stack location y and writes to the stack location z.bb. However, with the alias
pair representation, it would be necessary to inspect all the alias pairs involving y anl
its aliases to compute this information. This would be a considerably mote expensive
task (specially for multi-level pointers e.g. (**x).bb).

main()
{
struct{
int *aa ;
int bb ; YD
} kkkw, kkx, *y, z ; ; N
) 7 W
v o= ax z.aa
x =&y ; z.bb >
y = &z ;
(*y).aa = &((*y).bb) ;
(*y).bb = 10 ; /% stmtl */

(a) A C-program with its related abstract stack representation

{<(*¥u)->bb, *(y->aa)>, <z,%y>,

<(**w)->bb,*(z.2a)>, <y, *x>, <(#*w)->bb,*((*x)->aa)~,
<2z ,%%x>, <X, *W>, <*((*x)->aa), (*x)->bbs,
<y,**w>, <*(z.aa),y~->bb>, <#((**w)->aa),y->bb>,
<(*x)->bb,*((**w)->aa)>, <*(z.aa),z.bb>, <*((**y)->aa),z.bb>,
<*(z.aa), (*x)->bb>, <x(y->aa), (#x)->bb>, <*((*x)->aa),y->blL>,
<*(y->aa),y->bb>, <(*#%w)->bb,*((**u)->aa)>, <z, *+u>,
<x((*x)->aa),z.bb>, <*{y->aa),z.bb>}

(b) The result of alias analysis using the Landi and Ryder's approach
{(z.aa,z.bb,D), (y,z,D), (x,y,D), (w,x,D)}
(c) The result of points-to analysis using our approach.

Figure 9.4: A comparison example of alias representation and points 1o 1vepresenta
tion.

Finally, alias pairs can always be generated from points-1o pairs. nsime thie conve
sion algorithm given in Section 3.3.

However, points-to representation can provide extra alias inforniation m ceitam

158



cases. Consider the example given in Figure 9.5.

int **a, ¥b, ¢ ;

if (¢)
a = &b H {--- {(aub:D)}
else
b = &c 3 === {(b;C:D)}
S1: <¢--- {(a,b,P), (b,c,P)}

Figure 9.5: An example of points-to representation.

Landi and Ryder’s result at program point S1 would be {<#a.b>. <iia.ihz.
<*h,c>}. If one wants to convert our points-to information to their alias pairs. one
would get the set {<*a,b>, <x*axb>, <*b,c>, <¥xa,c>}, with the extia alias pair
<#*x*a,c>. This happens because it can not be detected that the points-to paits (a.li.P)
and (b,c,P) are propagated to S1 from different paths and transitive closiie operation
should not be applied on them.

Similarly, there are cases where points-to abstraction eliminates extrancons alias
information, while Landi and Ryder’s alias pairs can not. Consider the tollowing
example:

The alias Memory
anformation representation
int **x, *y,
z, W ;
S1: = &y ;  {<xx,yd>, <kkx, xyd} x=>y
S2: y =&z ; {<kx,y>,<ekx, ky>, <Ky, 2>, <kxx, 2>} x=>y->z
S3: y =&w ;  {<Okx,y>, Okkx, ky>, Ry, WD, <kx, 2>, x=>y->u
Chokx ,wd}

When statement S2 is processed, the alias pair <**x,z> is generated by the m-
teraction of the alias pair <*x,y> and the assignment y = &z. .\t statement 33.
the address of w is assigned to y, therefore, <*x,2> is not valid anymore. Landi and
Ryder’s analysis fails to detect this case, because while propagating <**x.z> thiough
S3, they do not have the information that this alias pair was generated becanse of
<x*y,z> being valid. While, if alias pairs are generated from the points-to iulormation

159




available after processing S3, this alias pair will not be generated. .\ sunilar ohserva
tion was made in [CBC93]. They use the notion of transitive reduction which s quite
similar to our points-to abstraction.

9.2.2 Must Aliases

The concept of may alias is equivalent to our possibly-points-to telationship, and
the concept of must alias is equivalent to our definitely-points-to relationship. Must
aliases are not mentioned in {LR92], although they arc mentioned in [Lan92). How
ever, they consider the calculation of must aliases separately from that of mav alinses
While we use must alias information to improve the precision of niay alias conpn
tation for multi-level pointers by obtaining better kill information. as explamed in
Chapters 3, 4, and 5.

In [CBC93], it is mentioned that the extraneous alias information elimmated
transitive reduction can be equivalently removed using must alias mtormation How
ever, in certain cases, extraneous pairs which can not be removed by using transitine
reduction, can be removed by using must alias information. This is demonstiated
the following example:

The alias information Memory
(without transitive closure) representat lon
int **xx, *xy,
Z, W,
S1: x = &y ; {<*x,y>} X=>y
S2: y = &z ; {<*x,y>,<*y, 2>} X=>y=>2
S3: *x = &w ; {<*kx,y>,<ky, w>, <y, 2>} x=>y=>u

At statement S3, if it were not known that x definitely points to y (i . #x 15 ot
alias of y), we would not be able to kill the points-to relationship (y->z) (wlhich can
be killed due to the assignment *x = &w), and get the precise mfonation x=->y->u
The extraneous pair <*y,z> in the transitively reduced alias information refloor thy
fact.

Further, must-alias information is very uselul for other analyses like constant prop
agation, register allocation, and dependence analysis, as explained in Cliapter s

160




In the presence of multi-level pointers, calculation of must aliases would he quite
complicated using the worklist technique of Landi and Ryder. This complexity is due
to the fact that the information is processed in random order.

9.2.3 Interprocedural Analysis

Landi and Ryder represent the interprocedural structure of the program as an 1CFG
and use the conditional approach based on assumed aliases to perform interprocednral
analysis.

We use the SIMPLE representation in conjunction with the invocation graph {as
explained in Chapter 4), where each call-site (related to a given call chain) in the
program has a scparate invocation graph node associated with it. For cach call. we
visit the called function, analyze its body in the context of the call. and retinn the
information to the call-site currently under consideration.

Our approach leads to the following advantages over Landi and Rydei™s technigue.

e The alias information from function exit points, always gets propagated 1o the
correct call-site. It is never propagated along unrealizable intetprocedinal paths®,

To alfect the correct pairing of calls and returns, Landi and Ryder associate an
assumed-alias set with each alias pair, at call-sites. To avoid the exponential
growth of this set, they restrict its cardinality to a maximum ol one. In the
presence of multi-level pointers, this restriction can lead to the propagation of
information to unrelated call-sites. Consider the example given in IYignie 9.0,
At statement S5, the alias pair <s*a,y> results from the interaction of the
assignment b = x and the alias pairs <*a,b> and <x*x,v> holding at program
point 3, with <*a,b> and <*x,y> as the assumed aliases. respectivelv Now,
the assumed alias set for <#*a,y> should include both of these alias pans. Since
the cardinality of the assumed alias set is restricted to at most one. Landi and
Ryder propose to randomly pick one of the pairs. In case, <*a.h> is chosen as
the assuimed alias pair <s*a,y> would be propagated to both the call-sites 81
and S2, as <*a,b> is valid al both these call-sites. However. it should not be
propagated to the call-site S2, as the other alias pair <#x.,v> is not valid there
Our analysis would propagate it only to the call-site 81, because it wonld analy /e
the body of function g() separately for the two calls.

SA path is realizable iff 1t is a path in the program and whenever a procedwie on this path tctarns v retns 1o
the call-site which invohed it [Lan92, LR92]

161




int **a, *b ;

int *x, y, z ; h()

main() {

{ a=&b ;
£O ; S2: gO) ;
h() ; }

} g0

£Q) {

{ S3:
a=&b ; 54. b=x;
X = &y ; S5:

Si: g ; }

}

(a) A C-program

fO)( g hoyy
a=&b; S3: <« (83,<*a,b>,<*a,b>) - &h,
x=&y; | 183,<*x,y>,<*x,y>/ S2 k.
SL g0); S4: b=x;
) S5: <«— {S5,<*a,b><*x,y>,<**a,y>) .
)
<**aq,y> <H*ray>
(b) The graph representation of intiaprocedural analy <
Figure 9.6: An example of intraprocedural analysis for Landi and Ryeler et

¢ Our analysis always ensures that two alias pairs propagated 1o o <tatement 1.
two different calls, are not simultancously used to generate a new alia- e |l
is made possible by the structured nature of our analysis. ‘Il ¢ act inlommat o
for the current call is kept in a special data structure (stack mater ) which o
used for the analysis. This information is also simultancously mereed vl 1l
pre-existing information saved in the statement nodes.,

Landi and Ryder’s worklist technique fails to ensure the aboye senton (| ol
For the example given in Figure 9.6, their analysis wonld ifer the o 1t of

162




the alias pair <**a,y> at statement 5. This is resolved from the interaction of
the assignraent statement S4, and the alias pairs <xa,b> and <+x.v> holding
at statement 83. But it is possible that these alias pairs get propagated to 83
from two different call-sites and never exist together. In that case. the alias pan
<*xa,y> would not be valid at S5 in any program execution. I'hey don’t have
a mechanism to detect such cases, and safely give the imprecise information.

'The structured nature of our points-to analysis, provides an opportunity to pei-
form other data flow analyses simultaneously with it. This would enable other
analyses to use the precise alias information available during points-to analysis.
instead of the final merged information. To clarify this point. we demonstrate
(i) the results of performing constant propagation after the completion ol points-
to analysis, and (ii) the results of performing constant propagation in conjune tion
with points-to analysis. Consider the following example:

int *a ;
int b 1;
int ¢ 5
int x, y,
main() {

S1: a =&b ;

S2: £ ;

S3: x =y ,; <=--{<x,b,P>,<x,c,P>}

S4: a = &c ;

S5: £() ;

S6: z=y,; <==--{<2z,b,P>,<z,c,P>}
}
O A{

S7: y = *a ; <--- {<y,b,P>,<y,c,P>}
}

The arrow links represent. the constant propagation information. <x,y,D> means
that variable x is definitely equal to variable y. <x,y,P> means that vatiable x
is possibly equal to variable y. For case (i), since the merged information fo
points-to analysis is used, y is either b or ¢ (the constant propagation information
saved at S7). Therefore, x and z can not be concluded to be constant. Below . we
show the same information, but for the case that constant propagation i~ done
simultancously with points-to analysis.

N

{<x,1,P>,<x,5,P>}

{<z,1,P>,<z,5,P>}

{<y,1,P>,<y,5,P>}

int *a ;

163




int b =1 ;

int ¢c =5 ;

int x, y, 2z ;

main() { main() {
S1: a= &b ; a=&b ;
S2: £0 £O
S3: x=y; <---{(x,b,D} = {(x,1,D)} X =1 :
S4: a= & ; a = &¢
S5: 0O O
S6: z=y; <---{(z,b,D)} = {(z,5,D)} z =5,

} }

£0O { £ {
57: y = *a ; y = ‘*a

} }

In this case, statement S3 is processed when the points-to mformation s (a b 1))
and therefore, y at 87 would be equal to b, which is constant 1 {his wives o
more precise information about x at statement 83, that results i the dedie tron
fact that x is constant 1. Similarly, at statement S6, we: get precise mformation
because we have (a,c,D)). This statement also resolves z as benmg the constant

Our interprocedural analysis can be easily extended to handle finction pomters
without incurring any additional cost. This is facilitated by the stinctured natne
of our points-to analysis and the powerful representation of the niterprocednral
structure of the program by the invocation graph. The detailed aleontlnn i
described in [Ghi92], and a brief summary is provided in 8 2.3,

By using invocation graph, we are able to save some important propeitic. ol cacly
call in the corresponding invocation graph node. These are deserhed hellov

— The relationship between the invisible variables of the callec, anel 1he calle
variables (map information of each call). This is a useful mlonnation for
other analyses [HEGV93].

As an example, consider the constant propagation analvsis for the ¢
ple represented in Figure 9.7. Assume that this analysis starts alter the
completion of points-to analysis. Using statement 85 aud the v lation oy
(x,1x,D), one can deduce that the invisible variable 1 x 18 contam I
ter returning to the call-sites S1 and S3, one needs to know the varabler
represented by 1.x in the caller, so that the constant inlormation can
propagated. Using the map information related to S1/83. we 1o ol thha

164




at b/c is constant 7 at $2/S4. Therefore b/c can be replaced by constant 7
at statement S2/S4.

main() {

int *a, b, ¢, d ;

a=&b ; ()
S1: f(a) ; main
S2: d=5bD H /
a = &c ; \
S3: f(a) ; t(a) f(a)
54‘} d=c; (1x = b} (1x = ¢
f(int *x) {
S5: *x = 7 ; <--- (x,1_x,D)
}

Figure 9.7: An example of the usage of the map and unmap information ~ived 1
invocation graph.

- The input and output points-to information for each node of invocation
graph can be saved in a data base, so that if a function is called for the
second time with the same input, there is no need to recalenlate the ont Pt
for it.

e Qur invocation graph is also suitable for procedure cloning [CHTK92]. This -
volves duplicating the body of a function with a different name (l.e. making its
clone), and replacing some calls to this function, with a call to its clone, | his
techuique is useful when the data flow information propagated from two differ-
ent calls to a function is significantly different. In this case. if the inlotmation
from one of the calls is propagated to the clone, the imprecision 1esult ing from
merging significantly different information can be avoided. To replace a hinction
call with a call to its clone, we simply need to modify the invocation eraph node
corresponding to it. Further, a clone for the function ccutaining this call. also
needs to be developed. This process would continue recursively till the 1oot ol
the invocation graph is reached.

9.2.4 Dynamic Allocation and k-limiting

To handle recursively defined dynamic data structures, Landi and Ryder nse the
notion of k-limited object names. They limit the number of dereferences permissible

165




in any object name to some constant k. They provide the alias information i the
form of alias pairs between these names, which gives a very imprecise prcture of e
y A | l

heap.

A different abstraction is required to properly handle the altasing, for dyvnanncally
allocated objects. Presently, we use a single location called theap™ moour abstiact
stack for the points-to analysis. All heap-directed pointers point to this location
Development of appropriate abstractions for heap analysis, based on the path matn
model proposed in [Hen90], is currently under development [Ghi93]. There is no need
to use k-limiting for abstract stack analysis, as the number of ohjects on the stack
would always be finite and compile-time determinable.

9.2.5 Type Casting

Landi and Ryder do not haundle type casting. It is a frequenth used feature of the
C-language and needs to be taken into consideration. We handle a wide variely of
type casting as explained in Section 6.2. The only case that, we do not handie, 1+ w hen
the type is transformed to/from a scalar variable, as shown in the loHowine esample

int *a, b, ¢ ;
b = (int) (&c) ;
a = (int*) b ;

This sort of type casting can also be handled, but it would mahke the analy <. Jpen
sive. Further, this case does not occur frequently in real C! prograis

The most recent algorithm for flow-sensitive interprocedural alias anals sis e
been presented in [CBC93]. Intraprocedurally, their algorithin is sinnlar to that of
Landi and Ryder, with the exception that they use a sparse 1epresentation «alled
Sparse Evaluation Graph, instead of control flow graph. To cnsuie the How of 1
formation along realizable paths during interprocedural analysis. thev assoriate fv
items of information with each alias pair: (i) the call-site from which the alyas [l
is propagated, and (ii) a source alias set, which is the set of aliases that e (he
alias pair through the call. The call-site information alone is not snfhcient 1o, (O
gate aliases along realizable interprocedural paths. Besides, unless thie Lecp sonre
alias sets of exponential size, our analysis would give more precise 1esults, [ ey alei)
proposed the schemes of using transitive reduction and must alias infornation. to

4 A flow-sensitive interprocedural analysis is an analysis which makes use of the imtvaproscdinal contiol B, o
mation associated with individual procedures,

166




improve the precision of alias analysis. We have already discussed these issues in the
previous sections,

167




Chapter 10

Conclusions and Future Work

10.1 Summary and Conclusions

The optimization phase is one of the crucial phases of a compiler  [n order 1o ol
effective results in this phase, one needs sophisticated flow analysis 1o hnrgpnes 1o
collect accurate information about the various variables and aggregate iy
used by a program. In the presence of pointer type variables, the petlonnane ol
most of the analyses depends on the accuracy of alias analysis.

In this thesis, we discussed an accurate and practical alias analysis algorithiny that
collects the points-to relationship between variables instead of explicit alias inlon
tion in the form of exhaustive alias pairs. Our analysis is focusced on stack allocated
data structures. We consider single and multi-level pointers, aggregate stnchine.
(arrays, structures, and pointers to arrays), type casting, and avithieti aperation
on pointers. The algorithm has been implemented in the framework of the M€\ |
compiler, and is being used by several high and low-level analyses

For a given program, we first build the invocation graph with a special 1o prewen
tation for recursive function calls. Then, we perform the interprocedinal pomt- 1o
analysis in two phases: (i) a first pass over the program to collect all the var il
relevant to our analysis (this is done to minimize the size of onr Bit wratiis data 1
ture), (ii) a second pass to collect the points-to information by developing and n o
an explicit rule for each possible statement. We handle function calls Ly follow e
the actual program execution paths using our invocation grapl.

The results of points-to analysis is used when there exists an inedirect 1o ferene
(e.g., *x) in the program. Our experimental results over some standard bene bl -

168




show that the average number of variables that a pointer type variable points to. is
very close to unity (1.04). In other words, an indirect reference *x is in almost all
cases, cither possibly or definitely aliased to a single variable. We also conclide 1hat
around 47% of all the points-to relationship are definitely-points-to, this relationships
are very valuable for any analyses. These results are due to our accurate analysis
methods.

10.2 Future Work

There is a considerable scope for further work in the following directions:

o Exicnsion to dynamic data structures: Our analysis is designed for stack-hased
variables. Presently a single location is used to represent all the dynamicalis
allocated objects in order to be able to handle benchmarks. An approptiate ah-
straction to handle dynamic data structures is currently heing deyeloped. hased
on the path-matrix medel proposed in [Hen90, Ghi93)].

e Procedure cloning using points-to information: When the points-to inlotination
propagated {rom two different calls to a function is significantly dilfcrent. the
information from one of the calls can be propagated to a clone of the lind tion.
In this way, the imprecision resulting from merging significantly different infor
mation can be avoided. As the input to a function for each call is <aved 1 o
invocation graph, this feature can be easily added to our analysis

o Precise saved information: Presently, the merged information gathered dining
different passes to a function is saved in each statement node of the program
under analysis. This leads to some imprecision caused by the merge. o ordenr to
get the exact result, one can save the points-to information at cach statement for
different passes, separately along with the related invocation graph node Since
cach node in the invocation graph represents a call-chain, and it is mnique for
cach call, keeping this extra information is sufficient to differentiate points-to
information of different calls. Therefore, the only cost would he the size of data
If this size is not an issue, this extension can be naturally added to our analy<is

o Lixtension to our array analysis: Presently, we use one location in our aletiact
stack for an entire array. However, we treat an array differently depending on,
if the address of its first element or some other element is assigned 1o a pointer.
We further plan to refine this scheme and use two locations for cach array. One

169




for the first element and one for the other elements. In 0w method a possibly

points-to relationship! for an array occurs due to: (i) a merge at the jom e
of compositional control statements, or (ii) assigning the addiess ol an element
of the array, which is not its first element, to a pointer. Curtently . we van no
distinguish whether a possibly-points-to relationship for an array 15 cansed In
(i) or (ii). While in the proposed method the other array element will he used
for case (ii). Therefore, the distinction between this two cases would be possible

e Array parameters: In the C-language, when an array is passed as a paraineter,

it is changed to a pointer variable in the callee. Therefore, one can not know il o
pointer variable is a pointer to array or not. Using our analvsis. we can hnd ont
if a pointer points to an array. We can also provide the range of the pomted 1o
array. This can be done using our invocation graph and the map mloration
which is saved in cach node of the invocation graph. Suppose a pornter varahle
x points-to a variable y. If y is in the scope of the callee, one can casily hnow i
it is an array and also what is its range. Otherwise, it is an nivisible varable”
and the map information saved in each invocation graph node can be el 1
get the equivalent variable(s) for this invisible variable.
The result of this extension would be useful in handling pointer anithinet,
since we handle arithmetic operation on pointers 10 arrays more preciseh than
on pointers to scalar variables. Further, this information is very uselnd for arias
dependence analysis.

¢ Union type: Our analysis can be casily extended to handle union tvpe. \We i
need to generate names for all the possible access to a union 1y pe

e Points-to information saved in invocation graph: The abstiact stack vepreccn
tation before and after processing a function call, is saved in cacli node ol an
invocation graph. This information can be used as a data base. to reduce the
passes to a function call. If an input abstract stack has already occnnred aned an
output abstract stack is computed for it, in the second appearance of the ae
input, one can use the already computed output.

! Refer to Chapter 3 for definition.
2Refer to Chapter 4 for definition.

170




Appendix A

The SIMPLE Grammar

all_stmts : stmtlist stop_stmt
| stmtlist

stmtlist : stmtlist stmt
| stmt

stmt : compstmt

expr ;'

IF ‘(’ condexpr ‘)’ stmt

IF ‘(’ condexpr ‘)’ stmt ELSE stmt

WHILE ‘(’ condexpr ‘)’ stmt

DO stmt WHILE ‘(’ condexpr )’

FOR ‘(’exprseq ‘;’ condexpr ‘;’exprseq ‘)’ stmt
SWITCH ‘(’ val ‘)’ casestmts

€.
s

compsmt : ‘{’ all_stmts ‘}’

| { p
| ‘{’ decls all_stmts ‘}’
| “{’ decls ‘}’

/** decls denotes all possible C declarations. The only difference 1s that*x*/
/** the declarations are not allowed to have initializations in them. *k/

condexpr : val

171




| val relop val

exprseq : exprseq ‘,’ expr
| expr

casestmts : ‘{’ cases default‘}’
l (;J
| )y

cases : cases case
| case

case : CASE INT_CONST‘:’ stmtlist stop_stmt
default : DEFAULT ‘:’ stmtlast stop_stmt

stop_stmt : BREAK ‘;°
| CONTINUE ;’
| RETURN *;’
| RETURN val *;’
| RETURN ‘(’ val )’ *;°’

expr : modify_expr

| rhs
modify_expr : varname ‘=’ rhs
| ‘«? ID ‘=’ rhs

rhs : unary_expr
| binary_expr

unary_expr : simp_expr
| ‘%> ID
| ‘&’ varname
lcall_expr
| unop val
| “(’ cast ‘)’ varname

172




/** cast here stands for all valid C typecasts **/
S1mp_expr : varname

| INT_CONST

| FLOAT_CONST

| STRING_CONST
call_expr : ID ‘(’ arglist ‘)’

arglist : arglist ‘,’ val
| val

binary_expr : val binop val
binop : relop
R B R AN T Y
R 2 N R RS S A )
relop : ‘<’ | =2 | ) | =2 | (== | (1=
varname : arrayref
| compref
| ID

arrayref : ID reflist

reflist : ‘[’ val ‘]’
| reflist ‘[’ val ‘]’

val : ID
| CONST

173




compref : ‘(’ ‘%’ ID ‘)’ ‘.’ 1dlist
| idlist

idlist : idlist ¢.’ ID
| ID

174




Appendix B

The Interprocedure Algorithms

This appendix is devoted to: (i) the depth-first algorithm for building imvocation
graph, and, (i) the precise map process algorithm. These are given in the followmg:




* Funchion name * burd_snvocahion_graph

+ Puipose : bulding an mvocation graph for the proqam

+ Parameters : mamn_func —— the node rcduted to ‘mamn’ fundction
* m the program

* Return : mut_1g_node —— the root of mvocation graph

*

v/

build_invocation_graph( main_func)

{
[* budd the first invocatton graph node related to the ‘mamn’ fundtion
* which, at this pomt, has nesther parents noy chiddren v/
init_ig_node = make_ig_node ( wull, man_func) ,

[* get the list of the functions that get called by the v v
imt_func_Ist = get _func_lst{ mam_fund) ,

[* generate the 1cst of the mvocalion graph +/
gen_agl nit_g_node, mut_lunc_1st))

return( init_ig_node) ,

/* -

* Funclion name gen_ig

* Purpose : recurswely bwld the mvocation qraph, m depth fust

* manner

* Paramcters . wg_node —— the curient snvocateon qraph node

* Junc_lst —— the st of Junctions called by 1l

* 1edated function fo ‘u_node”

* vy

gen_ig( ig_node, func_lst)

for cach function call ‘func? in the ‘func_lst’ do
/* makhc a new wmvocation graph node related Lo funclion fam
* and assign ‘ag_node " as ats parcnt xf
new_tg_node = mahe_ig_node( 1g_node, func) ,
[+ getting the hst of funcirons thal ‘func’
new_func_lst = get_func_Ist{ func) |

v calling o f

/¥ call the same function 1ecwswely to budd the meocation
* graph in the depth=—fust manner +/
gen_ig( new_ag_node, new_fanc_Isty

176




make_ig_node( parent_ig_node, func_call)

{

Function name : mahe_tg_node
Purpose : allocate an mvocation graph node covicsponding to fun, o all
and define ‘parent_tg_node " as the parent
Parameters . parent_sq_node —— the parent node of newly qeneraded
mrocatlion graph node
func_call —— the function call reluted to the nonly
generated mmvocatson graph node
Return : new_ig_node —~ a newly generated wmvocalion graph nod.
— o/

/% assign the related function call to ncw_1g_node ' +f
new_1g_node func = func_call |

[+ assign the parent (for the 1ool ‘parent’ would be null) +)
new_ig_node parent = parent_ig_node

/* add the newly generated node as the chald of the pareat nods

* (1f the ‘parent_1g_node’ 1s not the root).
+ Note: the mvocation graph 1s an wmwvocation trce wrth <o
*  backward edges. For the efficrency purpose, an anvocalion tie,

* s amplemented as a binary tree, each node has one ld and
*  one siblmg The sibling of a node has the same parent as

*  the node Followng shows an caample of thes vopreseatation
* mamn I

* /1A —— aepresented a4y ——>

* f g h f_ag_h

*x It 18 only for the case of understanding that we
* do nol limut the number of chaldren of a node «f
if ( parent_ig_node '= null}

add_child( parent_ig_node, new_ig_node)

/* check sf the function call ‘func_call’ w a 1ecursioe call )
recursive_node = get_recursive_fune( new_ig_node) |

if (recursive_node == NULL)
new_ig_node mode = "ordinary" ,
else{

/* the func call 18 a 1ccurswe—call +f
new_ig_node.mode = "approximate" ;
recursive_node.mode = recursive" ,
new_ig_node.appioximat _edge = recursive_node

}

return (new_ig_node) ,

177



> ® b & w w

*

{

Function nnme : qet_rerursive_func

Purpose : check af the given function call relaled to ‘cg_node

15 a recursive call (it aiready occurs i the path back

to the 100t of mvocation graph).
Paramelers  (g—node —~ current wmvocation graph node
Retwin  NULL 13 returned of the related function to ‘cg_node’

dots not

oceur tn the path back to the root of the invocation qraph,

othevwise, the related mvocalion graph node 1s 1cturndd.

get_recursive_fune( cg_node)

[+ gt the function call velated to the ‘cg_node” %/

func = cg_node func

[+ check all the path back to the root of mvocation graph,
* to check of the same function call has alicady occunied )

while (cg_node parent != NULL){

«g_node = cg_node.parent ;

if (cg_nade func == func)
retwrn (cg_node) ;

return (NULL) ,

1

1

8

¥/



/*

*
*
*
*
*
*
*
*
*
*
*

Function name : map_process
Purpose : our accurate map process

Parameters  func_node —— the function declmation node of «alle
arg_lst —— argument hst
caller_in —— the pomts—to information of callc
Return  map_info —— a sct of relationship between mrasible
vartables of ca'lee and local varvables of alle:
callee_tn —— the points—to mformation entersng to callic

Note- throughout this algorsthm we use D for definately—pomts to il
P for possibly—points—~Lo relationshy
v/

map_process( func_node, arg_lst, caller_n)

{

/* mmtichzation */
map_info = { } ;
callec_in = { } :

map_func_ptr = 0, [+ a function poiter */

[+ the accurate map process s done i fowr stages “muap fune plr o
* powhing to the 1clated function that has o be called m cach sl

/% first step: qioing names to mwmable vanables of stinetiun Luypn

* accessible thiough D relatronships. */

map_func_ptr = &map_nanung_defimtely_struct_process |

[map_info, callee_in] =

map_step( func_node, arg_lst, caller_in, map_info, callee_m, map lun

[+ second step: gruing names lo muvsable vavsables of structuie Ly

* accessible thiough P velalronships. +/

map_func_ptr = &map_naming_possibly_struct_process |

[map_info, callee_m] =

map_step( func_node, arg_lst, caller_in, map_info, callee_in, map fun

/* thud step: gring names to wmvisible vanables accessble tiough

* D relationships, and setting all the D relationshaps of callee +f
map_func_ptr = &map_definitely_process |

[map_info, callee_m] =

map_step( func_node, arg_lst, caller_in, map_info, callee_m. map tuu

[* fourth step. qrving names to muisible vanables acce sable though
* P rclationshaps, and setting all the P relationshaps of callee o/
map_func_ptr = &map_possibly_process |

fmap_mfo, callee_in] =

map_step( func_node, arg_lst, caller_in, map_info, callee_in, imap fune

return( [map_info, callee_in}) ,

179

Pl

ey

Py

ey




/*
+« Funclhion name map_step
* Purpose : this 13 an intermediate step for the map process to apply

* different steps of the map process.

+ Parameters . func_node —— the funclion declaration node of callcc

* arg_Ist —— argument hst

* caller_sn —— the poinis—tlo information of caller

* map_nfo —— a set of relationship between inwnsible

» variables of callee and local variables

* of caller.

* callee_tn ~— the poinls—to informahion entering lo callie
* map_func_ptr —— a pomnter to the function that has to
* be called an the map_step

* Return map_info —— the updated version

* callece_in —— the updated version

* */

map_step( func_node, arg_Ist, caller_n, map_func_ptr)

{

param_lst = get_param_lst( func_node) ;

{+ domng the map process for each pownter type parameter +/
for cach ’param_i’ in ’param_1st’ and 'arg_i’ in 'arg_lst’ of pomtr 1vpe o
[* ‘callee_in’ and ‘map_info’ will be updated. The argument
# conesponding to 1 s the depth of the ponter type For
+ the first call, depth s 1 x/
[map_info, callee_in] =
map_func_ptv( param_i, arg_i, callee_in, caller_in, 1, map_mfo)

[+ domq the map process for each global variable of pownter type */
for cach global variable *var_i’ of pointer type do

/* ‘callce_wn’ and ‘map_info’ will be updated. The argument

* corresponding to 1 s the depth of the powmnter type. For

x the first call, depth 1s 1. */

[map_nfo, callee_in] =

map_func_ptr{ var_, var, callee_in, caller_in, 1, map_info) .

return( {map_mfo, callee_mj) ,

180




/*

* Function name : map_dcfinitely process

* Purpose + map the munsible names and the pomnts—to relationships
* resolved from the D relationshap(s) of ‘caller_var’

* Thas function 1s recursively called to assign the 1)

* relationshaps of all the iduwectly accessible vanable s

* through ‘caller_v .

* Purpose : map the mnwmsible names and the D 1elationships

* resolved from ‘caller_var'. This funclion 14 rccwravely
* called to assign the D information of all the

* indirectly accessible variables through caller_vay

* It also updates the map information

* Parameters * callee_var —— the vaniable wn callee

* caller_var —— the related variable m calles

* callec_in —— pomnts—to wformation of callee

* caller_in —— powmts—to mformation of caller

* depth —— the depth of currenl mwmsible vanable

* (for the first call, it 18 1),

* map_tnfo —— the set of map mformation

* Return : map_mnfo —— the updated set of map mformation

* callee_in —— the updated set of pownts—to wmformation
* of callee

*

SV

map_definitely_process( callee_var, caller_var, callec_in,
caller_in, depth ;map_inlo)

for each ‘x_caller’ that relationship ‘(caller_var, x_caller, 1el)' «v-1 do
/* ‘rel’ can be either D or P x/
{
[* check 3f a D relationship with a variable causts +/
if (caller_var, x_caller, D)
{
if (depth > 1)
/* only i the first call ‘depth’ 13 1| Swnce paramcters i o
* are passed by value, they should not be mapped to cuch othe
x When ‘depth’ 1s more than 1, variables aie oo solved fron
* a parameter and should be mapped */
add_map_info( caller_var, callee_var, map_mfo) ,

if (is_in_callee_scope(x_caller))

x_callee = x_caller ;
else{ /* varable ‘r_caller’ 1s not m the scope of vallic 4

181




[+ look al ‘map_wmfo’ set to check 1if an muvisible varinble
* 18 already assigned lo Lhe varable ‘c_caller’ «/
if (exist_invisible_for( x_caller, map_info))
[+ f an inwisible variable 1s already assigned to vanable
* ‘z_caller’, get that vanable and use the same name for
* the mwsible variable. */
x_imvinible = get_invisible_var( x_caller, map_info)) -

else{ /+ an nwnsible variable does not exst for ‘1_caller v/
/* get an snuvisible varable for ‘r_caller’ using ‘depth’
x and ‘vallee_var’. If the name of variable ‘callee_var’
+ 18 ‘daVa’ aad ‘depth’ s 1, the muisible variable
* would %e ‘f_data’, for ‘deplh’ 2, the mnvisible varvinbls
« would b ‘2 _dala’, and etc. »/
x_mvisible = define_invisible( callec_vai, depth) .

[* set the equivalency of ‘z_invisible’ and ‘a_callc) "
* ‘map_info" This tnformation 18 uscd by wnmap piocesss
add_map_info{ x_invisible, x_caller, map_mlo) .

)

x_callee = x_invisille ;

[* add a relationship betaven ‘callee_var’ and ‘xr_callec 1
‘callec_in'. Since this fanclion s a recurswve function,

*

* ‘callee_var ' could be an nvisible variable that ahicady has
+ some other 1elationshep. Therefore, we can not sunply assign
« the relatwonshap (callee_var, r_callee, D). /

/¥ check of ‘callee_var® has a D relationship wnth a variable
+ creepl ‘r_callee' [
if (exist_another_definitely_points—to( callee_in, callee_var ~_callci))

/* This case appears when ‘callee_var’ 1s an mnsible
vantable (which can not happen n the first call to tn
function) und stends for more ths. one varwable, « ¢«
and ‘b, that one of them has a D relationship with
variable other than ‘r_callee’. Since D should be alway
umque, we should change other D relationships 1o I’

* relationshap and assign a P relationship betwcen

* ‘callee_var' and ‘r_callec’ +/
change_D_relation_to_P_relation( callee_in, callec_vai) .
callee_in = callee_in U {(callee_var, x_callee. P)} :

* * * * *

}
clse
callee_in = callee_in U {(callee_var, x_callece, D)}




}

[+ recursively check all the relationships of the varables which «on

*+ be derwed from ‘caller_var’. In this case, ‘r_caller’ 1s the fisi

+ of such varwablcs

* As ‘r_caller’ 13 one level deeper, depth s sncreased by one v
{map_info, callee_in] =

map_definitely_process( «_callee, x_caller, callee_in, caller . depthiy i)

if (is_struct_type( x_caller))
/* of ‘x_caller’ 13 of structure type, all s fieclds has 1o b
*# processed, because they nught be of pomnter type +/
for each field ‘fi’ of ‘x_caller’
{
x_callee = get_related_callee_vanable(x_caller, caller

callee_m, map anlo b

/% 1 1epresents the depth. 1 1s chosen because the depth of
+ wnnsible varable 1clated to a ficld should be startod

* from one */

[map_info, callec_in] =

map_definitely_process( x_callee, x_callor, callee . callbr i 1y

return([map_info, callec_in]) ;

183




/4
+ Function name . map_possibly_process

+ Purpose  map the muiable names and the pomts—io relationships
resolved from the P orelationship(s) of ‘caller_var'

Thas funclion s recurswely called to assign the P
relationships of all the wdirectly accessible variables
through ‘caller_var’,

Parameters  same as function ‘map_definitely_process'

Beturn same as function ‘map_definitely _process’

Notc Swinee thes functon 1s simlar to ‘snap_defimtely process .
we do not erplamn the common parts

L . I B R R I S 3

map_possthly_process( callee_var, caller_var, callee_in,
caller_n, depth ,map_info)

for cach ‘x_caller’ that relationship ‘(caller_var, x_caller, rel)’ (\inl do
[+ ‘rel’ can be cather D or P relationship, +/
{

[+ chedk of a P orelationship with a variable erists */

if (caller_var, x_caller, P)

{

if (depth > 1)
add_map_info( caller_var, callee_var, map_info) .

if (1s_in_callee_scope(x_caller))
x_callee = x_caller ,
else{ /+ varable r_caller’ 13 not 1 the scope of callce /

if (exist_invisible_for( x_caller, map_info))
w_invisible = get_invisible_var( x_caller, map_mfo))

else{ [+ an mwmsnible variable does not exrt for *1_calles +/
_invisible = define_visible( callee_var, depth)
add_map_info( x_invisible, <_caller, map_mfo) .

}

x_callee = _invisible

184



add a 1elutionship between callee_var’ and _callee 1
‘callec_an’ Since thas function v a vecursioe fundfion
‘callee_var’ could be an muorable varsable that has alieady

taken some D relatsonship  There fore, we can not sunply assign
the relationshup (callee_var, r_callce, P) +f

L K B R .

[* check of a D relationshp ensts for ccallee_var® +/

if (exist_defimtely_points—to( callee_m, callee_var))
/¥ This can happen when ‘callee_var' 15 an mvrsible variable
+ that stands for more than one vartable where one of them
+ has already a D relatsonshap  Stuce D should b always
* unique, we should change the abveady cvst D vcdutionshy.
* to a P relaionship «f
change_D_telation_to_P_telation( callee_tn, calloc vay)

/* add the new selationshap mn callee_an' +f
callee_in = callee_in U {(callee_var, v_calle, 1)} .

[map_info, callee_in] =
map_possibly_process( x_callee, x_caller, callee i, caller i dopthg 1)

if (1s_struct_type( x_caller))
for ecach field ‘i’ of ‘x_caller’
{
x_callee = get_related_callee_vanable(x_callcr, caller i
callee_ e map o 1y
[map_tufo, callec_in] =
map_possibly_process{ x_callee, <_caller, callee m, calloe w1

}

return({map_info, callec_m]) ,

185




[+
’
N
*
*
*
*
'
*

¥

Function name  map_nammg_defimtely_struct_proce ss
Purpose . assignang names for mwvisible variables of structure type
which already have a D relatrionship This function s sccursivdly
callcd 1o assign names for all the structure type variables
Parameters  same as function ‘map_definitely process’,
Return . same as function ‘map_definitely process’
Note: Sinee this function as stmilar to map_definstely_process, we do
notl erplasn the common parts.

*/

map_nammg_deintely_struct_process( callee_var, caller_var, callee_in,

caller_in, depth .map_info)

for cach *x_caller’ with the relationshap ‘(caller_var, x_caller, rel)’ o
[+ ael’ can be cather D or P orelabonship., +/
{
[+ check of a 1) aelationslap with a structure type variable erists */
if ((caller_var, x_caller, D) and (is_struct_type( x_callr,))
{
if (is_in_callec_scope(x_caller))
x_callee = x_caller ,
else{ [+ vanable ‘r_caller' 13 not in the scope of callee «/
if (exist_mvisible_for( x_caller, map_info))
x_invisible = get_invisible_var( x_caller, map_infc)) .
else{ /+ an muvisible variable does not erst for ‘r_callc) ¥/
<_invisible = define_invisible( callee_vai, depth) ,
[+ sel the cquivalency of ‘r_inusible’ and ‘r_callcs i map_info -
* anformation 18 used by unmap process. It also scls the cquiralouiy of
+ all the ficlds of ‘r_imvinmble’ and ‘r_caller’, */
add_map_mfo( x_mvisible, x_caller, map_info) ,

}

x_callee = x_invisible ;

}

[map_mnfo, callec_m] =
map_nanung_defimtely_struct_process( x_callee, <_caller, callee_mn, caller_m o prh1.
i (is_struct_type( x_caller))
for cach field ‘fi’ of ‘x_caller’
{
v_callee = get_telated_callee_variable(x_caller, caller_in, callec_in map mlo b
[map_info, callee_in] =
map_nammg_definitely_struct_process( x_callee, x_caller, callee_in callir i 1

}

return([map_wfo, callee_m]) ,

186




/*
*
*
*

*
*
*
*
*
*
*

*

Function name  map_naming_possibly_styuct_process
Purpose  assigning names for mmable variable s of struciune type
that a P arelationship to them erst This function 1s
recuravely called to assign names for all the steucture by
variables,
Parameters  same as function ‘map_definstely_process’
Return . same as function ‘map_defimtely_process’
Note: Since this function s sinilay to map_definite ly_process and
map_namang_defintely stiuct_process, we do not ciplam the
common parts

Y

map_naming_possibly_struct_process{ callee_var, caller_var, callee_m,

caller _in, depth ,map_inlo)

for each ‘x_caller’ that relationship ‘(caller_var, x_caller, tol)’ «viot (s
[* ‘rel’ can be either D or P ielationship /)
[+ check of a I* relationshup wath a structwre type variable «ists 1/
if ({caller_var, a_caller, P) and (w_stinct_tvpe( x_caller))
if (is_in_callee_scope{x_caller))
x_callee = x_caller ,
else{ /+ vartable ‘r_caller’ 1s not m the scope of callee s/
if (exist_invisible_for( x_caller, map_info))
x_invisible = get_mvisible_var( «_callet, map_into})

clse{ [+ an mviable varable does not cxal for 4 _calles s/
x_invisible = define_invisible( callee_var, depth)
add_map_mfo( x_nvisble, x_caller, map_nfo) .

}

x_callee = x_uvisible

}

!
[map_nfo, callee_in] =
map_naming_possibly _struct_process( x_callee, x_caller, callee_wn callor o 3 pthoeo 1y
if (1s_struct_type( x_caller))
for cach field ‘fi’ of ‘x_caller’
{
w_callee = get_related_callee_varable(x_caller, caller m cabllie an vnape e
[map_info, callec_mn] =
map_namng_possibly_stiact_process( x_callee, x_caller calbee o caller

}

return([map_info, callee_mn]) .

187



Appendix C

Rules for the Basic Cases

)y

In this appendix, we give some of the basic rules which were discussed it Section 5. )
For the sake of conciseness, we just explain one subcase (or two subcases il necessary )
LA Rl rn [

I'he case numbers 1efer to Table 5.1.

Case 2.5: T'he general format of this case is:
int *x[sizel], *y[size2] ;
x[1] = y[3]
The vules applied in this case are as follows:
kill = { (x,x1,D) | (x,x1,D) € input A first_elem(x[i]) = 1 }
gen = { (x,yLrel oo first_elem({i]) va first_elem([j])) | (v.v1.rel) € inpur |
changed_input = (input - { (x,x1,D) | (x.x1,D) € input A fust_clem([ijy Pl

U { (x.x1.P) | (x.x1.,P) € input A first_clem([i})= '}
return( gen U (changed_input - kill) )

Consider the following example:

188



f(int 1) {
int *x[70], *y[50] ;
int a, b ;

x[0] = &a ; /* stmtl */
yli]l = &b ; /* stmt2 */
x[0] = y[0] ; /* stmt3 */

¥

Case 2.5 appears at statement 3. Using the given rules, the sets related 1ot
ment are as follows:

input = {(x.a.D). (y.b,P)}
kill = {(x,a.D)}
gen = {(x,h.P)}
changed input = input
output = {(x,b,P), (v,b,P)}
Case 3.2: The general format of this case is:

struct{
int *b ;
Y ory
int *x ;
x = (*xy).b ;
The rules applied in this case are as follows:

kill = { (x,xl.rel) | (x,xl,rel) € input }
gen = { (x,y2rell 0a rel2) | (y,yLrell), (y1.byy2,0el2) ¢ it |
return( gen U (input - kill) )

Consider the following example:

189

date




main()

{

struct{

int *f1 ;

}oxy, z

int *x ;

int a ;

z.f1 =&a ; /* stmt 1 %/

y = &z ; /* stmt 2 */

x = (xy).f1 ; /* stmt 3 */
}

Case 3.2 appears at statement 3. Using the given rules, the sets related to this state
ment are as lollows:

input = {(z.f1,a,D), (v,2,D)}

kill = { }

gen = {(x,a,D)}

output = {(x,a,D), (».f1,a,D), (v,2,D)}
Case 4.4: The general format of this case is:

struct{

int *a ;
3 o*x
int y ;

(*x).a = &y ;
The rules applied in this case ave as follows:

kill = { (xLax2rel) | (x,x1,D), (x1.a,x2,rel) € input }

gen = { (xLay,zrel) | (x.x1,rel) € input}

changed.nput = (input - { (xL.a,x2,D) | (x,x1,P), (xl.a,x2.1)) € input})
U { (x1.a,x2,P) | (x,x1,P), (x1.a,x2,D) € input}

return( gen U (changed_input - kill) )

Consider the following example:

190



main()
{
structq{
int *f1 ;
}oex, y
int a ;
x = &y ; /* stmt 1 */

(*x) .f1 = &a ; /* stmt 2 */
}

Case 4.4 appears at statement 2. Using the given rules, the sets telated to 1l
ment are as follows:

input = {{x,y,D)}

kill = { }

gen = {(y.f1,a,D)}

changed_input = input = {(x,y,D)}
output = {(y.f1,a,D), (x,y,D)}

Case 5.6: The general format of this case is:

structq{
int *a ;
int *b ;
}o*x, y

(*x).a = y.b ;
The rules applied in this case are as follows:

kill = { (xl.a,x2,rel) | (x,x1,D), (x1.a,x2,rel) € input. }

gen = { (xl.ayl,rell sarcl2) | (x,xL,rell), (y.byl,rel2) € inpnt )

changed.input = (input - { (xL.a,x2,D) | (x,x1,P), (xb.a.x2.0)) ¢ gt
U { (xLa,x2,P) | (x,x1,P), (x].a,x2,1)) € inpnt}

return( gen U (changed_input - kill) )

Consider the following example:

191




main()

{
struct{
int *f1 ;
int *£2 ;
} xx, y, z ;
int a ;

y.f2 = &a ; /* stmt 1 */
if (...)
x = &z ; /* stmt 2 */
(*x) . f1 = y.£2 ; /* stmt 3 */
}

Case 5.6 appears at statement 3. Using the given rules, the sets related to 1l statc
ment are as follows:

input = {(x,2,1’), (y.{2,a,D)}

kill = { }

gen = {{z.fl,a,P)}

changed_input = input = {(x,z,P), (y.{2,a,D)}
output = {(z.f1,a,P), (x,2,P), (y.12,a,D)}

Case 5.7: The general format of this case is:

int **px , *y ;

(»px)[i] = y ;
The rules applied in this case are as follows:

kill = { (x1,x2,0) | (px,x1,D), (x1,x2,D) € input A first_clem([i]})=D |
gen = {(x1,ylrell ba rel2 o< first_elem([i])) | (px.x1.rell), (y.a Lrel2) € miput |
changed-input = (input - { (x1,x2,D) | [(px,x1,P), (x1,x2.D) € input].
[(px,x1,D), (x1,x2,D) € input A first_elem([i])=P] }
U { (x1,x2,P) | [(px,x1,P), (x1,x2,D) € input]v
[(px,x1.D). (x1,x2,D) € input A first_elem([i])=P] }
return( gen U (changed_input - kill) )

192



Consider the following example:

f(int i) {
int **px, *y, z ;
int *a[70], b ;

ali] = &b ; /* stmtl */
px = &al[0] ; /* stmt2 */
y = &z ; /* stmt3 *x/
px[0] =y ; /* stmtq */
} )
Case 5.7 appears at statement 4. Since px at statement | is a POILET TG an annan
we treat px[0] as (*px) [0]. Conscquently, statement is of the type 3 5 1 qp e

given rules, the sets related to this statement are as follows.
input = {(a,b,P), (px,a,D), (y,2,1)}
kill = {}
gen = {(a,z,P")}
changed input = input
output = {(a,b,P), (a,2,P), (px,a,D), (y,2,)}
Case 6.2: The general format of this case is:
structq{
int *b ;

} oxy
int **x ;

*x = (*y).b ;
The rules applicd in this case are as follows:

kill = { (xL,x2rel) | (x,x1,D), (x],x2,rel) € input }
gen = { (x1,y2rell o< rel2 oa reld) | (x,x1rell), (y,ylrel2). (v 1 a2l
€ input }
changed-input = (input - { (x1,x2,D) | (x,x1,P), (x1,x2,D) € mput })
U { (x1,x2,P) | (x,x1,P), (x1,x2,D) € input}
return( gen U (changed_input - kill) )

193




Consider the following example:

main()
{
struct{
int *f1 ;
}oxy, z;
int *%x ;

int *a, b, ¢ ;

z.f1 = &c ; /* stmt 1 */

y = &z ; /* stmt 2 %/
a=#&b ; /* stmt 3 */
af (...)

X = &a ; /% stmt 4 *x/
*x = (*xy).f1 ; /% stmt 5 */
}

(Case 6.2 appears at statement 5. Using the give rules, the sets related (o this state-
ment are as follows:

input = {(z.fl1,¢,D), (y,2,D), (a,b,D), (x,a,P)}

kill = { }

gen = {(a,z.f1,P)}

changed.input = {(2.l1,¢,D), (y,2,D), (a,b,P), (x,a,P)}
output = {(a,z.f1,P), (z.f1,¢,D), (y,2,D), (a,b,P), (x,a.P)}

Cases 7 and 8 did not appear in the previous chapter because they can not he
broken down in to smaller cases (the reason was explained in Chapter 2).

Case 6.3: The general format of this case is:

int **x, **py 5

*x = (*py) [1];
The rules applied in this case are as follows:

kill = { (x1,x2rel) | (x,x1,D), (x1,x2,rel) € input }
gen = { (x1,y2,rell b4 rel2 ba rel3 oq first_elem([i])) |
[(x.x1,rell), (py,ylrel2), (y1,y2,rel3) € input] }

194




changed_input = (input - { (x1.x2.D) | (x.x1,P), (x1.x2.D) ¢ mput})
U { (x1,x2,P) | (x,x1,P), (x1,x2.D) € input }
return( gen U (changed_input - kill) )

Consider the following example:

f(int i) {
int **x, **py ;
int *z, w ;
int *al[70], b ;

x = &z ; /* stmtl */
z = &w ; /* stmt2 */
py = &al[0] ; /* stmt3 */
a[0] = &b ; /* stmtd */
*x = pyli]l ; /* stmt5 */
}
Case 6.3 appears at statement 5 in the form of py[1]. Since py s o pomnter 1o an

array, we treat this statement as *x=(xpy) [1]. Using the given toles, the wete velaned
to this statement are as follows:

input = {(x,2,D), (z,w,D), (py,a.D), (a,b,D)}
kill = {(z.w,D)}

gen = {(z,b,P)}

changed input = input

output = {(x,z,D), (2,b,P), (py,a,D), (a,b,D)}

Case 7.1: The general format of this case is:

struct{

int *b ;
;T oxy
int *x ;

x =& (xy).b;
The rules applied in this case are as follows:

Liit = { (x,x1,rel) | (x,x1,rel) € input }

195




gen = { (x,yl.b,rel) | (y,yl,rel) € input}
return( gen U (input - kill) )

Consider the following example:

main()
{

struct{

int f1 ;

Y xy, 2 ;

int *x ;

y = &z ; /* stmt 1 */

x =& (xy).f1 ; /* stmt 2 */
}

Case 7.1 appears at statement 2. Using the above rules, the sets related to this state

ment are as follows:
| input = {(y.z,1)}
{ kill = { }
gen = {(x,z.[1,D)}
output = {(x,z.f1,D), (y.z,D)}

Case 8.1: The general format of this case is:

structq{

int b ;
}oxy
int *%xx ;

*x = & (*y).b ;
The rules applied in this case are as follows:

kill = { (xl.x2rel) | (x,x1,D), (x1,x2,rel) € input }
gen = { (xlyl.b.rell oa rel2) | (x,x1,rell), (y,y1,rel2) € input}
changed_input = (input - { (x1,x2,D) | (x,x1,P), (x1,x2.D) € input }
U { (x1.x2,P) | (x,x1,P), (x1,x2,D) € input }
‘ return( gen U (changed_input - kill) )

196




Consider the following example:

main()
{
struct{
int *f1i ;
int £2 ;
}oxx, y, *2, w ;
int a, b ;
x =&y ; /* stmt 1 */
y.fl = &a ; /% stut 2 */
if (...)

z = &w ; /* stmt 3 */
w.f1 = &b ; /* stmt 4 */
(*x) .f1 = & (*z).f2 ; /* stmt 5 */

}
Case 8.1 appears at statement 4. Using the above rules, the sets velated o thy rat

ment are as follows:
input = {(x,y,D), (y.[1,a.D), (z,w.P), (w.l1,b,1})}
kill = {(y.f1,a,D)}
gen = {(y.fl,w.f2,P)}
changed_input = input

output = {(y.11,w.2,P), (x,y,D), (#,w,P), (w.I1,b,D)}

197




Bibliography

[Amm92] 7. Ammarguellat. A control-flow normalization algorithm and its coniples

[ASUBG]
[Bak77]
[Ban76)

[Ban79]

[Bar78]

[BCS6]

[CBCY3]

[C11K92]

[CK8Y]

iy, IKEE Transactions on Software Enginecring, 18(3):237 251, 19492
A. V. Abo, R. Sethi, and J. D. Ullman. Compilers— Principles, Itchmgu s,
and Tools. Addison-Wesley Publishing Co., 1986.

B. Baker. An algorithm for structuring flowgraphs. JAC V. 2101105 |20,
1977.

U. Banerjee. Data dependence in ordinary programs. Master's thesis
University of Illinois at Urbana-Champaign, 1976.

J. P. Banning. An eflicient way to find the side effects of procedine calls
and the aliases of variables. In Conference Record of the Surth Annual A¢ '\
Symposium on Principles of Programming Languages. ACN SIGACT and
SIGPLAN, January 1979.

J. Barth. A practical interprocedural data flow analysis algorithim om-
munications of the ACM, 21, 1978.

M. Burke and R. Cytron. Interprocedural dependence analysis and pai-
allelization, In Procecdings of the SIGPLAN ’86 Sympostum on Conpie
Construction, pages 162-175, Palo Alto, California. June 23 27 1986
ACM SIGPLAN. Also in SIGPLAN Notices, 21(7). July 1986

J. D. Choi, M. G. Burke, and P. Carini. Efficient flow-sensitive interpro-
cedural computation of pointer-induced aliases and side effects. Tn Con-
Jerence Record of the Twentieth Annual ACM Symposium on Principle~ of
Programming Languages, pages 232-245, January 1993.

K. D. Cooper, M. W. Hall, and K. Kennedy. Procedure clonine. In Po-
ceedings of the IEEE"92 International Conference on Compuler { anquag
pages 96-105, April 1992,

K. D. Cooper and K. Kennedy. Fast interprocedural alias analvsis. In
Conference Record of the Sixteenth Annual ACM Symposium on Prine iples

198



[Coo85]

[Coo89]

[Cou86)

[CR82]

[CWZ90]

[Deu92]

[Don93]

[Ero93]

[Ghi92]

[Ghig3]

[HDE+92)

of Programming Languages, pages 19-59, Austin, Texas, Januwary 113
1989. ACM SIGACT and SIGPLAN.

K. Cooper. Analyzing aliases of reference formal parameters. o Con
ference Record of the Twelfth Annual ACM Sympostwm ou Pronciplis of
Programming Languages, pages 281-290. ACN SIGACT and SIGPT AN
January 1985.

B. G. Cooper. Ambitious data flow analysis of procedural progianis \lax
ter’s thesis, University of Minnesota, May 1989,

D. 8. Coutant. Retargetable high-level alias analysis. In Confo rence Record
of the Thirteenth Annual ACM Symposium on Prineiplis of Pvogiamming
Languages, pages 110 -118, January 1986.

A. L. Chow and A. Rudmik. The design of a data How analvser In
Proceedings Oflhe A C/WS[GPLAN.S'ymp().s"lum on ('nm/)//: 1 Clanstiuclion
pages 106-113, June 1982.

D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of ponters and
structures. In Proceedings of the SIGPLAN 90 Confeicuce ou 1'ogiam
ming Language Design and Implementation, pages 296 310 \\ hive Pla-
New York, June 20-22, 1990. ACM SIGPLAN. Alsoin SIGPE VN Nodwe s
25(6), June 1990.

A. Deutsch. A storeless model of aliasing and its abstiactions usine e
representations of right-regular equivalence relations. In Procccdings of the
IEEE’92 International Conference on Compuler Languages. Npual 199

C. M. Donawa. A structured approach for the design and wiplementa
tion of a backend for the McCAT C compiler. Master's thess eyl
University, expected December 1993,

A. Erosa. A program structurer for the McCAT ' compiler Naaer -
thesis, McGill University, expected December 1993,

R. Ghiya. Interprocedural analysis in the presence of function ponter .
Technical report, McGill University, December 1992 ACAPS Techinneal
Memo 62.

R. Ghiya. Practical techniques for interprocedural heap anahvar  Repor
for 308-622B project with Prof. (i. Gao, 1993.

L. J. Hendren, C. Donawa, M. Emami, G. R. Gao. Justiion and 13 Siid
haran. Designing the McCA'T' compiler based on a fannly of tincined

199




intermediate representations. In Fifth Workshop on Languages and (‘om-
pilers for Parallel Computing, pages 261-275. Yale University. 1992, \lso
available as ACAPS Technical Memo No. 46.

[HEGVY3] L. J. Hendren, M. Emami, R. Ghiya, and C. Verbrugge. A practical in-

[Hen90]

[11€S92]

[1THN924]

terprocedural analysis framework for C compilers. Technical report. 1993,
ACAPS Technical Memo 72.

L. J. Hendren. Parallelizing Programs with Recursire Dala Stiuclurcs,
PhD thesis, Cornell University, January 1990.

L. Hendren, G. R. Gao, and V. C. Sreedhar. ALPIIA: A family ol
structured intermediate representations for a parallelizing ¢ compiler.
ACAPS Technical Memo 49, School of Computer Science. Mo Gill {i-
versity, Montréal, Québec, November 1992.

L. J. Hendren, J. Hummel, and A. Nicolau. Abstractions for 1¢cuisive
pointer data structures: Improving the analysis and tiansformation ol
imperative programs. In Proceedings of the SIGPLAN 92 Confeicne
on Programnung Language Design and Implementation. pages 219 200,
San Francisco, California, June 17-19, 1992. ACM SIGPLAN Al in
SIGPLAN Notices, 27(7), July 1992.

[HITIN92b] J. Hummel, L.J. Hendren, and A. Nicolau. Applying an abstiact data

[1INSY]

[1IN90]

[11592]

[JMS1]

[IM82]

structure description to parallelizing scientific pointer programs. In /710-
ceedings of the 1992 International Conference on Parallcl Proce ssing. S
(“harles, Illinois, August 17-21, 1992,

L. J. llendren and A. Nicolau. Interference analysis tools for patallelis-
ing programs with recursive data structures. In Confercnce Procecdimgs,
1989 International Conference on Supercomputing, pages 205 21 1. Chete,
Greece, June 5-9, 1989. ACM.

L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data
structures. IEEE Transactions on Parallel and Distyibuted Systc . 1(1).
January 1990.

L. Hendren and B. Sridharan. The SIMPLE AST - McC'.\'T compiler
Technical report, October 1992. ACAPS Design Note 36.

N. D. Jones and S. Muchnick. Flow analysis and optimization ol LISI-like
structures. In Program Flow Analysis, Theory, and \pplications. pasces
[02-131. Prentice-Hall, 1981. Chapter 4.

N. D. Jones and S. Muchnick. A flexible approach to interprocedural data
flow analysis and programs with recursive data structures. In Couforonce

200




[Jus93]
(Lan92]

[LHSS]

[LH93]

[LR92]

[Mye81]

[Sri92]
[Sta90]

[Wei80]

[WOT5]

[Wol89]

Record of the Ninth Annual ACM Symposium on Principles of 'vogram
ming Languages, pages 66-74, 1982,

Justiani. An array dependence framework for the McCAT ¢ complen

Master’s thesis, McGill University, expected December 1993

W. A. Landi. Interprocedural Aliasing in the Prosence of Pomter o 'hD
thesis, Rutgers University, 1992.

J. R. Larus and P. N. Hilfinger. Detecting conflicts between stiocture
accesses. In Proceedings of the SIGPLAN 88 Confcrcnee on 'voyram-
ming Language Design and Implementation, pages 21 31, Ntlanta. Geo

gia, June 22-24, 1988. ACM SIGPLAN. Alsoin SIGPL AN Nolio. 400
July 1988.

C. Verbrugge L. Hendren. Generalized constant propagation  \CAP'S
Technical Memo 71, School of (‘fomputer Seience. MGl T niver gy
Montréal, Québec, expected September 1993,

W. Landi and B. G. Ryder. A safe approximate algorithun lor interpro
cedural pointer aliasing. In Procecdings of the 1992 ACM Sy po~inn ou
Programming Language Design and Implementation. 1992,

E. W. Myers. A precise inter procedural data flow algonthim  fu on
ference Record of the Eighth Annwal ACM Symposcum on [ incipli~ of
Programming Languages. ACM SIGACT and SIGPLAN Jaany 1951

B. Sridharan. An analysis framework for the McC Al compiler N\l 1oy
thesis, McGill University, Montréal, Québec, 1992,

R. M. Stallman. Using and porting the GNU CC. Tedmical veport i
Software Foundation, Cambridge, Massachusetis, 1990,

W. Weill. Interprocedural data flow analysis in the presence of ponters
procedure variables and label variables. In Conforcnee tecord of the Ser
enth Annual ACM Symposium on Principles of Programmming | anguage -

ACM SIGACT and SIGPLAN, January 1980).

M. H. Williams and H.L. Ossher. Conversion of nnstiuctuped How diaoran
to structured form. Comput. .J., 21(2), 1975.

M. J. Wolfe. Optimizing Supercompilers for Supcicomputors  Pirma
London and MIT Press, Cambridge, MA, 1989, In the serie- Receardly
Monographs in Parallel and Distributed Computing. Revised verson ol 1
author’s Ph.D. dissertation, Published as Technical Report UL CDHOS |
82-1105, University of Illinois at Urbana-Champaign. 1952,

201




[7,C90] H. Zima and B. Chapman. Supercompilers for Pavallel and Vector Com-
pulers. ACM Press, New York, 1990.

202






