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Chapter 0. Preamble xiv

Abstract

Magnetic Resonance Imaging (MRI) is an invaluable medical tool in both clinical and

research settings thanks to its multitude of available contrasts, being particularly useful for

soft tissues. Unfortunately, patient motion during MRI can render images unusable,

necessitating re-scans, slowing medical progress, and amounting to an enormous societal

problem. The work presented in this thesis explores the challenge of accounting for motion

in MRI and strives to provide a low-cost solution using a 6-axis Inertial Measurement Unit

(IMU) in conjunction with an array of magnetic field sensors. Design of such an active

electronic tracker system suitable for MRI is presented, including the safety constraints of

such a device from the standpoint of magnetic forces, torques, and radio-frequency (RF)

heating. State-space theory and sensor fusion resolve 6 states (3 orientation and 3 position

coordinates) using a set of sensors with 9 degrees of freedom (3D accelerometer, 3D

gyroscope and 3D magnetometer) for motion-tracking. The work underscores the

importance of regulating the voltage supplied to the magnetic field sensors. Finally, the

investigation introduces a statistical observation approach to Kalman filtering,

demonstrating the promise of such an approach while identifying its challenges. The

here-presented research implies the possibility of resolving position and orientation using

only a 6-axis IMU and the statistical observation Kalman filter. However, further

experiments, developments and calibration are required for the demonstration thereof.
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Abrégé

L’imagerie à résonance magnétique (IRM) est un outil médical inestimable dans la

clinique autant qu’en recherche grâce à sa multitude de contrastes disponibles, utile pour

les tissus mous. Malheureusement, le mouvement du patient pendant peut rendre les

images inutilisables, ralentissant les progrès médicaux et constituant un problème de

société. Le travail présenté dans cette thèse explore le défi de la prise en compte du

mouvement en IRM et s’efforce de fournir une solution à faible coût en utilisant une unité

de mesure inertielle (UMI) à 6 axes en conjonction avec un réseau de capteurs de champ

magnétique. Les méthodes de conception d’un système de suivi électronique actif pour

l’IRM sont présenté, ainsi qu’une discussion sur les contraintes de sécurité d’un tel

dispositif, du point de vue des forces et couples magnétiques, et d’échauffement par

radiofréquence. 6 états (3 coordonnées d’orientation et 3 coordonnées de position) peuvent

être déterminés à l’aide d’un ensemble de capteurs à 9 degrés de liberté (accéléromètre 3D,

gyroscope 3D et magnétomètre 3D) pour le suivi de mouvement. Les travaux soulignent

l’importance de réguler la tension fournie aux capteurs de champ magnétique. Enfin,

l’enquête introduit une approche d’observation statistique du filtrage de Kalman,

démontrant sa promesse tout en identifiant ses défis. La recherche présentée implique la

possibilité de résoudre le mouvement en utilisant uniquement une UMI à 6 axes et le filtre

de Kalman avec observation statistique. En revanche, d’autres expériences, développements

et étalonnages seront nécessaires pour démontrer le fonctionnement.
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Chapter 1

Introduction and Motivation

Patient motion violates many assumptions necessary for MRI spatial encoding, causing

artifacts. These artifacts manifest as ghosting, blurring, geometric distortions or seemingly

degraded SNR [1], affecting the diagnosis quality, necessitating re-scans, and slowing

clinical and investigative progress [3]. While there are optimized pulse sequences that

mitigate motion such as a modified MP-RAGE [4], state-of-the-art motion correction

techniques are prohibitively expensive and require meticulously positioned cameras and

markers. The most promising techniques for maximizing MRI patient throughput are the

prospective motion correction modalities [2, 5–10] because of their ability to continuously

update sequence parameters based on the patient’s position and orientation.

It is estimated that motion in MRI costs 115,000 USD in forgone revenue per scanner per

year [11]. Furthermore, severe motion artifacts rendering MR imaging unsuccessful are so

frequent that an estimated 19.8% of scans are repeated [11]. Usually, this means repeating
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the sequence when motion artifacts are found by technologists, lengthening the exam time.

This slows the diagnostic process, hinders progress in research, and jeopardizes lives when

patients do not receive timely treatment. According to the Canadian Agency for Drugs and

Technologies in Health (CADTH) there were 366 MRI units in Canada as of 2017, assuming

only 1 scanner per unit. This translates to Canadian taxpayers losing over 42 million USD

every year due to motion in MRI. Furthermore, the CADTH estimates that 1.86 million

MRI exams occur annually in Canada, and this figure is always on the rise. Assuming that

correcting motion would increase this figure by 25% (eliminating the roughly 20% rescan

rate) there could be 465,000 more MRI exams per year in Canada. Even if only 1% of these

exams proved to be critical to the patient’s health, this would imply that 4,650 lives could

be saved annually by correcting for motion artifacts. Evidently, motion in MRI remains a

formidable challenge despite the decades of research aimed at correcting it.

This thesis explores the feasibility and efficacy of low-cost MRI motion tracking. The

work reported aims to improve the availability of MRI motion trackers, lightening the

societal burden of MRI motion artifacts. This research contributes to the field in that it is

the first attempt to resolve motion using only low-cost accelerometers, gyroscopes, and

magnetometers. Chapter 2 covers background information on motion in MRI and reviews

the literature on motion artifact mitigation and correction solutions. Chapter 3 describes

in detail the design of a low-cost MRI active motion tracker. Results are discussed in

Chapter 4, while Chapter 5 offers concluding remarks and pointers for future work.
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Chapter 2

Background

As we will demonstrate in this chapter, motion in MRI corrupts images by rotating and

modulating an image in the spatial frequency domain, in the ”k-space”. k-space is the 2D

or 3D spatial Fourier domain in which MRI data is acquired. The integer k represents

the spatial frequency of a discrete Fourier transform. Planar imaging sequences have 2D

k-spaces (representing one frequency-encoding and one phase-encoding direction), whereas,

non-planar imaging sequences (i.e. not slice-selective and containing a second phase-encoding

dimension as a consequence) have 3D k-spaces. k-space is a discrete Fourier transform in

multiple dimensions: every point in k-space corresponds to the magnitude and phase of a

spatial frequency component of an image. As we will explain in the present chapter, k-space

is at the center of the MR imaging process; it explains the basis of motion artifacts, how to

identify them, and how they could be corrected given the parameters of motion.
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2.1 Motion Mitigation

The simplest approach to addressing motion in MRI is motion mitigation (AKA motion

prevention), done in a number of ways [12]:

• Foam restraints/pads mitigate motion by increasing patient comfort and by making

motion somewhat difficult. This is very simple and cost-effective.

• In pediatric MRI, the use of mock scanners that simulate the experience of being in

an MRI can determine whether a child could stay relatively still during the exam.

• Unconsciousness, induced or natural, is an effective means of mitigating motion.

– Sedation (induced) is not an option for most functional scans because it can

change brain activity patterns. Sedation is also costly and carries certain risks.

– Sleep (natural) is used most often when imaging infants, where feeding before the

scan provides natural unconsciousness. However, patients may move while asleep.

• Bite bars are common practice for mitigating motion in animals and were deemed

effective in the early days of MRI but are not used because of their discomfort.

• In abdominal imaging, the non-rigid and non-linear motion caused by breathing is

usually addressed by scanning during a breath-hold. This limits scan times to 10-20

seconds, putting an upper bound on the quality of images (SNR and or resolution).
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• Triggering and Gating are more advanced methods used in cardiac and abdominal

imaging to eliminate breathing and heartbeat artifacts thanks to their periodicity.

Using an ECG to record the heartbeat, for example, either repetitions can be timed to

recur at the same moment in the cardiac cycle (triggering) or the data can be reordered

based on the moment at which it occurred during the cardiac cycle (gating).

2.2 Motion Tracking

No single method of motion tracking has been widely adopted, as they all have their strengths

and weaknesses. Currently, commercial MRI systems use 2 primary forms of motion tracking:

navigators and optical tracking systems [1]. Navigators [13–16] utilize oversampling of k-

space to detect and extract motion, prior to partly correcting for it; this increases scan

times but has the advantage of not requiring any additional hardware. Optical tracking

systems [2,7,8] have become the standard for prospective motion correction since they require

minimal hardware inside the bore; passive markers, containing a distinct geometric pattern,

are placed on the patient and a camera records the motion from a distance to minimize

interference with the scanner. However, optical systems require precise positioning and have

yet to be widely adopted in neuro-imaging, their primary application.

In research, trackers of an electronic nature [5, 6, 17, 18], called active markers, are now

being used for their speed, precision, and convenience. The challenge for active markers lies

in their compatibility with MRI scanners; they must meet the appropriate safety standards
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set forth by the ASTM (American Society for Testing and Materials) and or the ISO

(International Standards Organization) [19]. Removing most electronics from a patient

when they enter the scanner is a necessary safety measure so active markers require special

compliance considerations.

Of primary concern are magnetically permeable materials (such as iron or nickel, the

latter being a very common coating used in electronics) which can lead to translation forces

and torques [19] due to gradients in the magnetic field intensity. (Magnetically permeable

materials experience forces when there is a change in magnetic field intensity over distance,

they will move toward the position and orientation where the magnetic field they

experience is strongest.) In particular, ASTM F2052-06e1 [20] defines the ”standard test

methods for measurement of magnetically induced displacement force on medical devices in

the magnetic resonance environment” which ensure that the translational magnetic forces

pose a negligible projectile risk. Similar considerations are made for magnetically induced

torques in ASTM F2213-06 [21]. However, even trace amounts of ferromagnetic material

can lead to susceptibility artifacts, where the signal is distorted or lost completely near the

permeable object because of the resulting magnetic field non-uniformity. ASTM

F2119–01 [22] defines a ”standard test method for evaluation of MR image artifacts from

passive implants” to mitigate the loss of signal near implants, its methods can be extended

to tracking systems that are fixed to the patient’s body (not implanted). Finally, RF

heating is a concern for the use of electronics in MRI since metallic objects will experience
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eddy currents in the presence of radio waves. ASTM F2182–02a [23] defines standard test

procedures to tackle the RF-heating concern. Altogether, these testing standards ensure

that risks are minimized while allowing active markers to be used in the MR environment.

It is worth noting that the occurrence of severe image artifacts when using active

marker tracking systems can defeat the purpose of said systems. If the artifacts induced by

magnetically permeable materials in the tracker degrade image quality more than the

motion itself then there is evidently no use for such a tracker. Therefore, the minimization

of ferromagnetic materials in active trackers is paramount for both safety and performance.

2.3 Motion Artifacts: Overview

MRI uses precise spatial variations of the magnetic field strength, called gradients or

gradient fields, to encode spatial information. These gradients are pulsed in order to separate

the 3 spatial dimensions. The precise timing and amplitude of these gradient pulses depend

on many factors including the type of sequence (spin echo or gradient echo), the desired

contrast (e.g. Proton Density, T1 weighted, T2 weighted), the specific repetition and echo

times (TR and TE), the role of the gradient (slice selection, phase-encoding and frequency-

encoding/readout), and the k-space sampling trajectory (e.g. cartesian, spiral, radial). Since

the gradient sequence assumes an immobile patient, motion disrupts the spatial encoding

process in multiple distinct ways depending on how and when the motion happens (see

section 2.3.2 for more details).
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2.3.1 Classification and Manifestation of Motion Artifacts

Motion can be categorized along several features, each having a unique effect on the

resulting image, leading to different kinds of artifacts. Godenschweger et al. [1] describe

motion by categorizing it along features of type, occurrence, pattern, and direction as shown

in Fig. 2.1. These motion categories affect how the image should be reconstructed if it

is possible to correct the motion at all. For example, the type of motion, either rigid or

deformable, affects the kind of transformations needed to correct an MR image.

Figure 2.1: Categorization of motion along 4 features: type, occurrence, pattern, and
direction. (Reproduced from Godenshweger et al. [1] with permission granted by the
copyright owner IOP Publishing.)

Rigid body motion is easier to correct because it only requires 1 set of pose parameters

(6 parameters: x, y, z, pitch, roll, yaw) and thus it can usually be corrected using rigid body

transformations (3 translations and 3 rotations). Deformable motion requires at least

twice the number of parameters as rigid body motion; either multiple points need to be
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tracked leading to 6 parameters per point, and 6 additional transformation parameters need

to be added to account for the skews that deformable motion introduces. We will focus on

rigid body motion for simplicity and because it is the kind of motion most important for

neuroimaging. Neuroimaging benefits from the fact that brain structures are confined to the

skull. The head, skull and brain move together in a mostly rigid fashion. However, there is

motion within the brain from the movements of blood and cerebrospinal fluid.

Occurrence (or timing) breaks down into inter-image, inter-scan, and intra-scan.

Inter-image motion is the least disruptive because it happens between image

acquisitions such as between the acquisition of separate slices in 2D slice-selective imaging

(unfortunately, 2D imaging is often interleaved which complicates this issue). This means

that inter-image motion in 2D MRI can usually be corrected by registration such that the

skull (in the case of neuroimaging) is aligned along contiguous slices. In 3D imaging,

inter-image motion can also be corrected through registration, where we need to align the

copies of the object being imaged. (Why collect multiple 2D or 3D images? Multiple

images may be collected to increase SNR through averaging). Inter-scan motion is

motion which occurs between repetitions, i.e. between the echo of one repetition and the

subsequent repetition’s excitation. In 2D Fourier Transform (planar) imaging, for example,

inter-scan motion is disruptive because lines of k-space acquired before and after motion

will have incoherent spatial encodings. To correct for inter-scan motion, the k-space lines

must be translated and rotated according to the parameters of the motion. Simple
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translations could be corrected without the need to acquire more data, by phase shifting

the k-space lines, but rotations must be corrected by rotating lines of k-space which can

easily lead to data loss, as shown in Fig. 2.2 assuming that the motion is in-plane. Finally,

intra-scan motion occurs between the start of excitation and the end of signal acquisition

(echo) making it the most disruptive. Intra-scan motion manifests in many ways depending

on when exactly the motion occurs, that is during which gradient pulses. Assuming the

motion direction is in-plane, intra-scan motion disrupts the phase encoding by exposing a

voxel to a different gradient intensity over time, making the phases inconsistent.

Figure 2.2: Effect of an in-plane rotation by angle α on k-space encoding (reproduced from
Godenshweger et al. [1] with permission from IOP Publishing). Demonstrates how the lines
of k-space acquired after the motion (blue) are rotated relative to those acquired before the
motion (black) which leads to a ”pie-slice” hole in k-space sampling.
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The next feature of motion is pattern categorized into periodic, quasi-periodic,

continuous, and random, as shown in Fig. 2.1. Periodic and quasi-periodic motion,

such as rocking or consistent nodding, creates ghosting artifacts where there are copies of

the image overlaid on each other such as in Fig. 2.3 l); at small magnitudes, this will

manifest as blurred edges and ripples along the direction perpendicular to the motion.

Continuous motion is characterized by a constant translation or rotation through time,

such as a drift in head position. This leads to a smear/blur in the direction of motion such

as in 2.3 j) and k). Continuous rotations manifest similarly by smearing in the direction of

rotation, being more pronounced further from the center of rotation as in 2.3 i). Finally,

random-pattern motion can have characteristics similar to the other patterns. However,

because it contains a stochastic mixture of motions, the artifacts add incoherently so they

blur edges and degrade SNR.

The last categorization of motion is direction, which is broken down into in-plane and

through-plane. In-plane motion is easier to correct because the excited volume stays inside

the slice plane [12], so it preserves the slice selection of 2D imaging. Thus, in-plane motion

guarantees that the k-space data can be corrected by rotations and translations within the

plane of the 2D slice/image. Through-plane motion, either by rotation or translation,

violates the assumptions made in 2D imaging. In 3D imaging, there is no concept of through-

plane motion because the whole volume is excited, meaning that rotations and translations

are theoretically sufficient to correct motion in 3D imaging (like in-plane motion in 2D).
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Figure 2.3: Examples of motion patterns effect on artifacts: a) Shepp Logan digital
phantom, b) overlaid first and last phantom images of a continuous 10◦ rotation, c)
overlaid first and last phantom images of a continuous vertical translation, d) overlaid
first and last phantom images of a continuous horizontal translation, e) photography-
equivalent with long exposure during rotation, f) photography-equivalent with long exposure
during continuous vertical translation, g) photography-equivalent with long exposure during
continuous horizontal translation, h) photography-equivalent with long exposure during
periodic horizontal translation, i-l) simulated MRI with a linear k-space ordering of the
same motion types as e-h). (Reproduced from Zaitsev et al. [12] with permission granted by
the copyright owner John Wiley and Sons.)
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Figure 2.4: Example of through-plane inter-scan motion and how it affects the
reconstruction of a 2D image/slice by exciting different volumes of tissue, the head in this case
(reproduced from Zaitsev et al. [12] with permission granted by the copyright owner John
Wiley and Sons). The excited slices are shown in the colour corresponding to their respective
RF excitation pulse (red, green or blue). This demonstrates how k-space is sampled in
different slices of the brain when the motion is through the plane of the slice, leading to
inconsistent signals and potential data loss.

In the intra-scan occurrence of through-plane motion, some excited tissue moves out of the

slice and unexcited tissue moves into the slice leading to a corrupted signal that is impractical

to correct. Inter-scan occurrence of through-plane motion leads to the generation of undesired

signals because the excited volume is different for subsequent excitations as shown in Fig.

2.4. Thus k-space reconstruction of the desired slice is disturbed; there will be signal loss

within certain regions of the desired slice while the signal from neighbouring slices will be

included in the current slice [1]. In the inter-image occurrence of through-plane motion,
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data collected for one slice/image may actually correspond to data from other slices, and

the slices may not be contiguous. For example, if a translation by one voxel width occurs in

the slice-selection direction between the acquisition of two slices (inter-image through-plane

translation), there will be one slice that is never imaged while another slice will be imaged

twice. The distinction between in-plane and through-plane motion disappears when using

3D imaging techniques since the entire volume is excited, simplifying correction.

2.3.2 Mathematical and Physical Basis of Motion Artifacts

The Larmor equation describes the relationship between the imposed magnetic field and

the frequency of nuclear precession, in general as a function of time t:

ω⃗(x, y, z, t) = γB⃗(x, y, z, t), (2.1)

where ω⃗(x, y, z, t) is the radial frequency of precession (in radians per second or rad
s ) of a

nucleus in a magnetic flux density B⃗(x, y, z, t) (in Tesla or T) at the position of the nucleus,

and γ is the gyromagnetic ratio of the nucleus of interest being targeted by the MRI ( rad
s·T ).

Generally, the Larmor equation is simplified for the purposes of MRI by recognizing that

the magnetic fields used for imaging are strictly z-directed (concomitant fields are ignored).

ω(x, y, z) = ωz(x, y, z) = γB(x, y, z) = γBz(x, y, z) (2.2)
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Since gradients perform spatial encoding in MRI, we extend the Larmor equation to be

a function of space, accounting for the spatial variations in the magnetic field, as follows:

ω(r⃗) = γ(B0 + G⃗ · r⃗); G⃗ = [Gx, Gy, Gz]T , (2.3)

where r⃗ = [x, y, z]T is the vector defining the Cartesian location of the point of interest

with respect to the isocenter. B0 is the magnitude of the z-directed static magnetic field.

Gx, Gy, Gz are the gradient field components altering the strength of the z-directed magnetic

field in the x, y, and z directions respectively (in T/m). Far from the isocenter r⃗ = (0, 0, 0),

there are concomitant fields but they only change the precession frequency by 52 ppm at 1.5

T with a gradient amplitude of 10 mT/m and a 20-cm distance from isocenter [24] so they

are typically ignored for small to medium imaging volumes.

Since the MRI system will demodulate the received signal with respect to the excitation

frequency ω0 = γB0, we extract the frequency shift imparted by the gradients:

∆ω(r⃗) = γG⃗ · r⃗. (2.4)

This can be integrated over time to get the phase shift due to the accumulated gradients:

∆ϕ(r⃗) = γ
∫

G⃗ · r⃗ dt. (2.5)
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In the case of motion-free imaging, this would be sufficient to design (gradient) pulse

sequences to perform spatial encoding. Spatial encoding works by manipulating the relative

phase ∆ϕ(r⃗) as a function of position r⃗ to produce an echo whose analytical signal represents

a specific spatial frequency component in the k-space of an image. With each repetition,

the variations in the gradient pulses’ intensities or durations will change dephasing between

voxels and k-space can be filled line-by-line. However, the above equation implicitly assumed

that position is not a function of time. To model motion, we must recognize that the phase

shifts (relative to the isocenter) are essentially those of individual voxels (labelled i,j,k to

demonstrate the voxel’s imaging location). We admit that there is dephasing within a single

voxel (intra-voxel dephasing) so the apparent phase of a voxel is essentially the average phase

of said voxel. We must also acknowledge that the positions of these voxels are functions of

time. Hence we can express the phase shift experienced by a voxel as a function of time:

∆ϕijk(t) = γ
∫ t

0
G⃗(t′) · r⃗ijk(t′) dt′. (2.6)

Separating the effects of each gradient and assuming that z is the slice selection (SS)

direction, y is the phase-encode (PE) direction, and x is the read-out (RO) direction. As an

example, a simple 2D gradient echo sequence has the resulting phase at the end of the echo:

∆ϕijk = γ
∫ 2TSS

0
GSS(t′)zijk(t′) dt′ + γ

∫ t+
P E

t−
P E

GP E(t′)yijk(t′) dt′

+ γ
∫ T E+ TRO

2

T E−TRO

GRO(t′)xijk(t′) dt′,

(2.7)
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where TSS is the time for which the slice-selection gradient GSS = Gz is applied, this is

equal to the duration of the RF excitation pulse. Since there is a slice-selection refocusing

lobe, which we assume lasts TSS with an intensity of GSS = −Gz/2, the integral of the slice-

selection component lasts for 2TSS. t−
P E and t+

P E are respectively the starting and ending

times of the phase-encoding gradient GP E = Gy. TE is the imaging sequence’s echo time.

TRO is the duration of the read-out gradient GRO = Gx. Since the read-out gradient has a

negative lobe GRO = −Gx preceding it for refocusing (read-out preparation gradient), we

start the last integral TRO

2 before the start of the read-out at TE − TRO

2 .

As we can see, the net phase accumulated by each voxel is the sum of the integral of

each gradient times the corresponding voxel coordinate as a function of time. In motion-free

MRI, the phase accumulation of all the voxels in the slice selection and read-out directions

are purposefully brought to zero at the echo time (TE) by the refocusing lobes of their

respective gradients. The phase-encode gradient generates phase shifts of varying degrees

at each repetition to sample k-space at the corresponding spatial frequencies. Looking at

the above expression we can see how motion complicates the spatial encoding process, if

not making it completely impossible. We can simplify the effect of motion by making a few

reasonable assumptions:

• Motion is relatively slow compared to the echo time, eliminating the possibility of

intra-scan motion. This is reasonable because common TE for MRI range from a few

ms up to 100 ms. Even 100 ms would correspond to a 10 Hz oscillation, much faster



Chapter 2. Background 18

than anyone can nod their head, for example. (Granted, a fast jerking motion could

approach this time scale and corrupt scans with high spatial resolutions.) This removes

the time dependence for the spatial coordinates.

• Motion is either in-plane or the sequence is a 3D acquisition (i.e. without selective

excitation). This is not necessarily true but accounting for through-plane motion

retrospectively is exceedingly complicated because of missing k-space data.

(However, prospective motion correction solves this by changing the slice plane in

response to the motion.) For convenience, we will assume we are using a 3D

acquisition sequence.

• Phase encoding in 3D happens simultaneously in both phase-encode directions. This

is of little consequence because we assumed slow motion relative to TE.

• The tissue being imaged stays within the scanner’s uniform B0 field region, within the

coils’ sensitive volumes, and within the Field of View (FOV) of the imaging sequence.

As long as the FOV of the imaging sequence has margins of a few centimetres around

the head (for brain imaging), the magnitude of the motion should never cause the head

to leave the FOV, and thus the signal will not be lost or aliased. (A tight FOV and an

uncooperative patient mean that this margin may not be respected in typical clinical

settings but it could be adopted at the cost of longer scan times).

• Gradients rise and fall so quickly that we can assume they are perfect step functions.
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This will allow us to move the gradients outside their integrals as constants over their

respective periods (T ).

Under these assumptions, we can write our equation for phase accumulation in 3D MRI.

Defining a new time quantity tRO as the time from the start of the read-out (equals zero at

the start of the read-out), after the negative preparation lobe of the read-out gradient. A

voxel’s accumulated phase as a function of gradient intensities and spatial coordinates is:

∆ϕijk(tRO) = γTP E[GP E1zijk + GP E2yijk] + γ[tRO − TRO/2]GROxijk. (2.8)

As will be shown in equation 2.11, the dephasing of spins along a given dimension is

proportional to the spatial frequency (k) being sampled in that direction, the above

expression represents how the spatial frequency in the scanner domain, where (i, j, k) have

taken the place of (x, y, z), depends on the position of every voxel at the time of the scan.

The equation for the signal obtained from the scan involves integrating the magnetization

over the whole volume with a modulation term corresponding to the phase offset (∆ϕ), as

follows (note the similar structure to that of a Fourier Transform):

S(t) =
∫

x

∫
y

∫
z

Mxy(r⃗, 0)e−t/T2(r⃗)e−iω0te−iγ
∫ t

0 G⃗(t′)·r⃗ dt′
dz dy dx (2.9)

S(t) =
∫

x

∫
y

∫
z

Mxy(r⃗, 0)e−t/T2(r⃗)e−iω0te−i∆ϕijk(t) dz dy dx, (2.10)
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where S(t) is the time signal available to the scanner’s receive coils (assuming a uniform

sensitivity), T2(r⃗) represents the transverse relaxation time of the tissue at the location r⃗,

and i =
√

−1 is the imaginary unit not to be confused with the voxel indices ijk.

The signal will be demodulated by the scanner at acquisition time so we can remove the

frequency modulation e−iω0t. We can also introduce the spatial frequency coordinates:

kr = γ

2π

∫ t

0
Gr(t′)rijk(t′) dt′ = 1

2π
∆ϕr (2.11)

where r stands in for any spatial coordinate (x, y, or z). This equation shows the

proportionality between the dephasing in a given dimension ∆ϕr and the k-space

coordinate kr in that dimension. The demodulated receiver signal S̄(t) is thus:

S̄(t) =
∫

x

∫
y

∫
z

Mxy(r⃗, 0)e−t/T2(r⃗)e−i2π[kxxijk+kyyijk+kzzijk] dz dy dx. (2.12)

It is vital to realize that the coordinates with subscripts (i, j, k), the coordinates of

the voxels being imaged, are a 3D rotation and translation away from the actual (x, y, z)

coordinates of the scanner (assuming a rigid body motion which is reasonable in neuroimaging

but unreasonable in abdominal imaging). With this insight, we can use the rotation and

translation properties of the Fourier Transform to infer the k-space trajectory with respect to

the position and orientation during the first repetition (the origin of the desired image). For

a change of position ∆r⃗ and orientation ∆θ⃗, the Fourier transform will be modulated by the



Chapter 2. Background 21

translation according to the shift property and rotated in the same direction and to the same

degree as the head is rotated according to the rotational symmetry of the Fourier transform.

Therefore, we can write the new k-space coordinates in the head’s frame of reference (k′) as

a function of the k-space coordinates that the scanner is trying to image (k).

k⃗′ = R(∆θ⃗)k⃗ ⊙ s⃗(∆r⃗), (2.13)

where ⊙ denotes the element-wise multiplication,

s⃗(∆r⃗) = [ei2πkx∆x, ei2πky∆y, ei2πkz∆z]T (2.14)

is the modulation vector representing the translation, R(∆θ⃗) is the arbitrary 3D rotation

matrix (defined in Cole 2015 [25]), and k⃗ = [kx, ky, kz]T are the original spatial frequency

coordinates. While the rotation term changes the coordinates of the acquired k-space data

to fit the pre-motion frame of reference, the modulation term s⃗(∆r⃗) acts as a phase shift to

the image data in k-space (which contains an unchanged magnitude and a modified phase).

As we can see, it is possible to account for motion in the image formation mathematics of

MRI but only with ample details about the pulse sequence and with simplifying assumptions

about the kind of motion (e.g. rigid, involuntary, small magnitude). In this section, we

presented an example of how motion affects MRI acquisition and laid the foundation for a

motion correction algorithm in 3D gradient echo imaging.
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2.4 Solutions Found in the Literature

This section briefly examines solutions to motion in the MRI literature including full

software solutions, and tracking system modalities (optical and active markers). The major

classes of motion correction strategies are retrospective and prospective. Retrospective motion

correction (RMC) is performed after the data has been acquired whereas prospective motion

correction (PMC) happens during the scan itself. Prospective motion correction is more

powerful since it can update the sequence in real-time, potentially enabling lossless imaging.

However, PMC also requires specialized hardware and software capable of capturing motion

at a high speed, relaying that information to the scanner, and adjusting gradients to acquire

the correct line of k-space despite the motion of the patient.

2.4.1 Software Solutions

These techniques do not explicitly track motion but uncover it through redundancy in

the acquired data or elaborate processing techniques. Motion-robust k-space sampling

strategies like MOJITO, PROPELLER, Radial Trajectories, and Spiral Trajectories, seen

in Fig. 2.5, have the common feature of sampling k-space with redundancy built-in. (One

could point out that these techniques are not ”pure software” because they change the

pulse sequence, perhaps ”firmware solutions” would be a more accurate label, but they are

”software solutions” in the sense that they don’t require any additional hardware.) Since

the center of k-space represents the low-frequency information of the image, the position of
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the patient can be extracted from the oversampled k-space center. This allows the data to

be processed after acquisition to correct motion, making these a form of retrospective

motion correction [15]. There is even a form of retrospective motion correction using

Generative Adversarial Networks (deep learning) to solve the problem. [26].

Figure 2.5: Motion-robust k-space trajectories (reproduced from Godenschweger et al. [1]
with permission granted by the copyright owner IOP Publishing).

However, not all software-based approaches are retrospective. Prospective motion

correction can also be done in software using, for example, 3 orthogonal 2D spiral navigator

acquisitions and an extended Kalman filter [27]. These software (or firmware) techniques

are testaments to the immense research interest in machine learning and other adaptive

algorithms for correcting motion. The issues with software correction are:

• Redundant sampling of k-space can lengthen scan times.

• High processing power is required to achieve the more elaborate of the correction

algorithms such as Generative Adversarial Networks [26].
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• Navigators can affect the available contrast of the sequence by altering the time between

repetitions and by reducing the longitudinal magnetization [28] because of their added

excitations. Navigator sequences can be carefully designed to keep this effect to a

minimum (roughly 3% contrast difference with parent sequence [28]).

2.4.2 Hardware Tracking Modalities

These techniques use some kind of device or physical arrangement (such as a camera

and optical marker) to determine position and orientation at any given time. These are

particularly challenging to implement given that the MRI is a hostile environment to virtually

all electronics. Furthermore, the high field strength and RF power in an MRI make any

metallic device a potential safety hazard. Electronic trackers are therefore built with caution

to the dangers of a scanner or trackers employ optics to circumvent the hassle.

The promising research of van Niekerk et al. [5, 6, 17] featured active markers using the

static magnetic field, inertial measurement units, and gradient pulse sensors to capture

motion and prospectively correct it. Gholipour et al. [14] used a magnetic field sensor

attached to the head to track motion for brain imaging. Accelerometer-based motion

correction specifically adapted for correcting respiratory motion [18] has also been used.

For now, optical motion correction appears to be the most popular in research [2, 7, 8].

Optical motion trackers are composed of a camera and a marker with an optical pattern

such as the one in Fig. 2.6.
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Figure 2.6: Optical tracking system for prospective motion correction from Todd et al. [2].
(Reproduced in accordance with the associated Creative Commons CC-BY Licence.)

The vast majority of hardware tracker technologies do not penetrate the clinical sphere,

let alone the commercial sphere. Unfortunately, the translation from research devices to

commercial products is necessary if we want to tackle the societal consequences of motion

in MRI. The literature seems to point to high cost and difficult integration as the main

impediments to active marker motion correction. The high cost (on the order of $10,000+)

should not be such an impediment because of the relatively larger cost of a scanner (on

the order of $1 million+). However, the lack of generalized motion correction solutions

(e.g. applicable to both rigid and non-rigid motion) means the purchase of multiple motion

correction solutions is necessary, inflating costs. If the cost of primitive motion trackers could

be reduced significantly, then the cost of specialized motion tracking systems could also be

reduced. Hence, we aim to design a low-cost active motion tracker, a primitive building

block for future systems. The next chapter explores our design process for such a device.



26

Chapter 3

Methods in Design of a Low-Cost
Active Tracking System

3.1 Conception of an Active Tracking System

This section introduces a low-cost active tracking system composed of an Inertial

Measurement Unit (IMU: senses 3D acceleration and 3D angular velocity), a

Magnetometer Array (set of Hall-Effect sensors), and an Arduino MCU with a WiFi

module for communication. This active marker device records the sensor data and

communicates it to an external computer in the control room for processing. Fig. 3.1

demonstrates the optimal solution that this project aims to approach: a prospective

motion correction system that can relay pose estimates to the MRI host computer in

real-time to update sequence parameters, accounting for head motion in neuroimaging.
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Figure 3.1: Functional system diagram describing a prospective motion correction system:
motion is recorded by the tracker and relayed through WiFi to the control room where the
data can be processed to allow the host computer to update sequence parameters. Since
the magnet room is surrounded by RF shielding, WiFi communication is best accomplished
through a gap in said shielding, in practice this is a waveguide built into the magnet room.

As mentioned in the previous section, the central challenges of active motion tracking

systems that our design aims to overcome are:

• The high cost of components in active trackers. Particularly, magnetic field sensors

(magnetometers) like the MV2 (starting at a unit price of roughly $900 CAD, see

https://www.metrolab.com/products/magvector-mv2/ for more details), used by van
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Niekerk et al. [5, 6, 17], are expensive because of the large dynamic range required to

sense the main MRI B0 field (± 3 Tesla over a 180-degree rotation in a 3 Tesla scanner).

• The necessity of non-imaging Gradient Navigator pulses for localization such as in van

Niekerk et al. [5, 6, 17]. This requires custom gradient sensing coils on the tracker and

the insertion of pulses into the imaging sequence [29] which is inconvenient and can

reduce the available turbo factor (slowing the imaging speed).

As a minimally viable solution, we aim to design a device capable of tracking motion

accurately in the scanner for the duration of the longer exams (on the order of one hour).

If we can produce this at a low cost (with components totalling less than $100) without

the need for specialized sequences, this would be a large step towards a low-cost highly-

integrable motion correction system. For simplicity, we will focus on building a device

capable of performing motion correction retrospectively. If we succeed, then the low-cost

prospective motion correction, our ultimate goal, will be within our grasp.

3.2 Hardware of the Tracking System

The first part of our solution is the construction of a device capable of accomplishing the

tasks described previously: collecting data reflecting position and orientation metrics, and

communicating said data wirelessly to an external computer for processing. For the collection

part, we identified 2 types of sensors that deliver unique information about the device’s
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pose: an Inertial Measurement Unit (IMU) and a set of Hall-Effect sensors. Because of the

strong magnetic fields present in an MRI, it becomes evident that any tracking modality

must either be unaffected by magnetic fields or must use magnetic fields to perform their

sensing. The static magnetic field’s intensity, uniformity and stability in an MRI make

it an ideal reference for tracking movement. Much like the use of the Earth’s magnetic

field in Global Positioning Systems (GPS), our magnetic field sensors will use the scanner’s

magnetic field as a point of reference for orientation tracking. On the other hand, the Micro-

Electro-Mechanical System (MEMS) IMU is a device that can estimate the acceleration and

rotational velocity independent of magnetic fields. It was reported by van Niekerk et al. [5,17]

and van der Kouwe [29] that MEMS accelerometers provided much the same information

as the navigator gradient sensing but the MEMS device’s weak interactions with gradient

fields could cause problems. However, Chen et al. [18] succeeded in making a MEMS-IMU-

based respiratory motion tracker for the MR environment. Because of their common use in

smartphones, IMUs are produced en masse at a low cost. This makes IMU-based sensors an

attractive technology for our low-cost motion tracker.

3.2.1 Micro-Controller with Integrated IMU and WiFi Module

The centrepiece of our device is the Arduino RP2040 Micro Control Unit (MCU). The

IMU (LSM6DSOX) is an integrated part of the MCU, using the I2C bus to communicate

with the device’s 32-bit processor core. The LSM6DSOX is a 6-axis IMU capable of 3-D
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Figure 3.2: IMU detectable measurements consist of 3 linear accelerations (in gravitational
constants: g’s) and 3 angular velocities (in degrees per second: dps). Reproduced from the
LSM6DSOX datasheet.

acceleration measurements and 3-D gyroscopic measurements (axes shown in Fig. 3.2) at

programmable refresh rates and dynamic ranges. The Arduino RP2040 also contains an

integrated NINA WiFi module and antenna (based on the ESP 32 MCU) that also uses

an I2C bus to communicate with the device’s core. Importantly, the Arduino RP2040 also

has 6 available Analog to Digital Converter (ADC) channels that will be used to sample the

Hall-Effect sensors. Finally, the Microcontroller has an internal Buck converter that converts

DC voltages of 4-12 V to a regulated 3.3 V output used by the digital system (processor and

peripherals). We will use this Buck converter because our device will be battery-powered,

using a stack with an unregulated open-circuit voltage that can vary between roughly 6 and

8 V. The Buck converter is hence necessary to provide the digital systems with a regulated,

nominal operating voltage of 3.3 V.
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Conveniently, the Arduino RP2040 integrates several necessary components, simplifying

our design process. In a future iteration, when we try to miniaturize our device, we will

need to source parts separately to minimize the part count and device footprint, but during

prototyping, we accept a larger device for the time and convenience it affords.

3.2.2 Hall-Effect Magnetometer Array

A particularity of our design is the use of monolithic Hall-effect sensors which are

relatively low cost compared to the magnetometer MV2 used by van Niekerk et al. [5,6,17].

Therefore, we chose to try to design a multi-axis magnetometer specifically for this

application since the state-of-the-art MV2 may not be necessary to extract the required

information. Instead of using an expensive 3D magnetometer with a dynamic range of up

to 10 Tesla, we are using 6 low-cost ($7 CAD each) linear magnetometers with dynamic

ranges of up to 1 Tesla. As we will demonstrate, constraints on the magnitude of motion in

MRI allow us to track the orientation (pitch and roll) of the head within ±45◦ of rotation,

which is ample dynamic range since typical patients do not move deliberately during MRI

but have small, involuntary movements. However, in extreme patients (e.g. Parkinson’s,

pediatric, or cognitively impaired) the motion may exceed this dynamic range.

The main challenge that using monolithic components elicits is that the lowest sensitivity

Hall sensors on the market (MLX90251) reach a saturation flux density at Bsat ≈ 0.8 T. This

means that, in a 3-Tesla scanner, the sensor would be in saturation for most orientations. To
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put this into tangible numbers, we need to consider the apparent flux seen by the sensors.

We will call this Bn, the normal component of the main MRI magnetic field (B0) incident

on the Hall-Effect plane. For this purpose, we will explain the Hall Effect simultaneously.

3.2.2.1 Connecting Magnetic Fields to Measurable Voltages

Figure 3.3: (Left) The Hall effect produces a net voltage due to Lorenz forces acting on
charges travelling perpendicular to a magnetic field. (Right) The angle of the Hall sensor
surface with respect to the incident field changes the induced voltage by changing the normal
component of the B-field.

The Hall Effect is a phenomenon whereby charges moving in a current-carrying conductor

produce a voltage in the direction perpendicular to both the current and magnetic field

direction, as shown in Fig. 3.3. Starting from Lorentz force in the absence of an external

electric field, the general equation of a Hall-Effect sensor is:

VH = qv⃗ × B⃗ = I⃗

ρT
× B⃗ = IBn

ρT
= ksBn; Bn = B0sin(θ), (3.1)
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where ks is the sensitivity coefficient which accounts for the free charge density ρ [C/m3],

the thickness of the current sheet T (thickness through which the B-field traverses [m]) and

the current magnitude I (in Amperes [A]). The minimum sensitivity of the MLX90251 is 2.6

V/T. B0 is the magnetic flux density, represented by the MRI’s main field since the gradients

can only vary the field strength by roughly 100 mT at most (assuming 200 mT/m gradients

with a maximum distance from the isocenter of 0.5 meters) while the main field is 3 T.

What this means for our sensing apparatus is that the Hall sensors will saturate at a

specific angle (θsat) depending on the saturation voltage of the sensor, which is a function of

the sensors supply voltage (VDD).

θsat = sin−1(Bsat/B0); Bsat = fVDD/ks, (3.2)

where Bsat is the field strength that would saturate the sensor [T], which in turn is a

function of the saturation fraction f [unitless or V/V] and the sensitivity ks [V/T]. To

model saturation correctly, we must first discuss our power supply and the I-V

(current-voltage) characteristics of the MLX90251.

3.2.2.2 MLX90251 I-V Characteristics

The datasheet of the MLX90251 provides a graph of the I-V characteristics of the device

from which we can devise an equivalent circuit model that approximates the device. Reading

points off the curve, shown in Fig. 3.4, and performing a pseudoinverse regression, we find
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the optimal coefficients (a and b) matching the following equation, which corresponds to a

diode-resistor pair:

IDD = aVDD + b =⇒ IDD = (VDD − Vf )/R. (3.3)

Figure 3.4: I-V characteristics of the MLX90251 Hall-effect sensor. The zoomed-in plot
on the right at 25 ·C was used as data points for the linear regressive circuit model since
the datasheet states the range of operation as roughly 4.5 V to 6 V. Reproduced from the
MLX90251 datasheet.

The two-parameter linear regression returned a model consisting of a series resistance

and a diode, wherein R = 665 Ω is the resistance and Vf= 0.897 V is the forward voltage
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drop of the “diode”. We were thus able to model how the sensor would respond to supply

voltage fluctuations around its nominal 5 V operating voltage. We used this model to ensure

the sensors can be supplied from an unregulated battery voltage. It turned out that the

battery’s internal resistance combined with the on-state resistance of our charge-discharge

controlling relays lead to the output of our 2 × 3.7 V battery supply (VDD)) being roughly

5 - 5.2 V, well within the operating voltage of the Hall sensor. (More detail on the charge

controlling relays can be found in the Printed Circuit Board subsection). Therefore, we

simply supplied the magnetometer array with the dual battery stack.

3.2.2.3 MLX90251 Dynamic Range

As for the output of the MLX90251, the datasheet states that in the ≥ 10kΩ pull-down

load configuration the voltage output swing is in the 2 - 96% range of VDD. Since the

quiescent point of the sensor (when no field is present) is 50% VDD, that leaves +46% and

-48% VDD for Hall-induced voltages. Taking the smaller of these two figures (46%), we can

determine that the f parameter (saturation fraction) can be set to 0.46.

To determine the Hall sensors’ dynamic range, we need to quantify how the source

resistance (Rs from the internal battery resistance and the relay on-state resistance) and

the current demands of the MCU (IMCU which is drawn through the internal buck

converter) will affect the voltage seen at the sensors’ supply. We experimentally determined

the source resistance to be 30 Ω and the current demands of the MCU to be 27 mA,
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Figure 3.5: Equivalent circuit of power supply connected to magnetometer array, modelled
as 6 diode-resistor pairs, and the buck converter of the MCU, modelled as a current sink.

summarized in Fig. 3.5. Combining equations 13 and 14 with the equivalent circuit shown

in Fig. 3.5, we can write an equation that relates the battery voltage to the saturation

angle. For 6 sensors (with IV characteristic defined by Vf and R) and 1 buck converter

drawing IMCU connected to a battery stack with an open circuit voltage of VOC and

internal combined source resistance Rs, it can be shown that the saturation angle (θsat) is:

θsat = sin−1
(

fVDD

ksB0

)
; VDD = VOC + 6RsVf/R − IMCURs

1 + 6Rs/R
. (3.4)

Inserting the appropriate values (B0 = 3 T, ks = 2.6 V/T, Rs = 30 Ω, R = 665 Ω, Vf =

0.897 V, f = 0.46, IMCU = 27 mA), we can approximate the sensor supply voltage VDD and

saturation angle θsat for various open-circuit battery stack voltages VOC . Plugging in the

extreme battery conditions of charge 8 V and discharge 6.8 V (± 0.6 V about the nominal
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VOC = 7.4 V), we see that 16.8◦ < θsat < 20.2◦. While with the nominal 7.4V, θsat = 18.5◦.

Therefore, we need many sensors to cover a significant area since each hall device is only in

its linear range for ±θsat, yielding a nominal dynamic range of DR = 37.0◦.

Figure 3.6: Magnetometer array diagram demonstrating how the 6 Hall sensors can be
used to cover pitch and roll inside the total dynamic range (TDR), which depends on the
overlap angle (OL). Note: Yaw cannot be determined by the magnetometer array since the
main magnetic field is z-directed so all yaw angles look identical.

Therefore, by placing 3 sensors along the device’s x-axis and 3 along the y-axis, we can

cover a total dynamic range (TDR) of possible pitch and roll orientations depending on

the angular offset between Hall-sensors as shown in Fig. 3.6. For simplicity, we will offset

the axes of the magnetometers in steps of roughly 30◦ (allowing overlap OL, see Fig. 3.6),
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resulting in a total dynamic range of:

TDR = 3DR − 2(DR − 30◦) = DR + 60◦. (3.5)

In the end, we see that the overlap (OL) in individual magnetometer DRs reduces the

overall TDR but ensures that the TDR is continuous at any above-mentioned battery voltage.

We also note that there will be at least 1 sensor in each set (x- and y-arrays) which will be in

saturation at any given pitch and roll. The x-array can determine the roll, while the y-array

the pitch if and only if: |θpitch|, |θroll| < TDR/2 = θsat + 30◦. Since the main magnetic field

is oriented along the z-axis, all yaw angles look identical, thus the yaw cannot be determined

from a magnetic field sensing array.

3.2.3 Printed Circuit Board

In order to interconnect all the necessary components, we designed a Printed Circuit

Board (PCB), shown in Fig. 3.7, with sections accomplishing specific purposes, as follows.

• Connect the appropriate pins of the Arduino RP2040 MCU. Connecting: the 5V USB

input to the charging circuit, the buck converter to the batteries for wireless operation,

connect the ADC channels to the output of the Hall sensors.

• Control the charging and discharging of the batteries through relays that are triggered

by the presence of the 5V USB input, as shown in Fig. 3.8.
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• Prefilter the Hall sensor voltages using an RC filter to account for the sampling rate

of the ADC, avoiding the aliasing of signals.

We will briefly summarize our design process for the aforementioned systems in this section.

Figure 3.7: 3D view of printed circuit board virtual rendering. The dimensions of the
board are roughly 4.5 cm × 4 cm × 2 mm.

3.2.3.1 MR Environment’s Impact on PCB

The PCB was made with special attention to the length of the traces, a standard practice
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for all PCBs. This is even more important for our application because the MRI’s main

magnetic field and gradients could induce voltages in the traces when the device moves. For

a square trace loop (number of turns N = 1) with a width/length of x we can show, through

Faraday’s law, the magnitude of the induced voltage ϵ (for simplicity we assume a sinusoidal

pattern of loop motion though this assumption is inconsequential to the magnitude):

ϵ = −N
dΦ
dt

= −B0
dA

dt
= −B0

d

dt
x2sin(ωt + ϕ0) = −B0ωx2cos(ωt + ϕ0), (3.6)

where Φ is the magnetic flux through the loop [Wb], A = x2 is the area contained by the

loop [m2], ω is the angular velocity of the loop caused by the motion of the head [rad/s], and

ϕ0 is the arbitrary initial phase [rad]. To get an idea of the maximum magnitude of induced

voltages we will set the cosine term to 1, corresponding to the position of the greatest rate

of change of the magnetic flux. The resulting induced voltage magnitude in a 3 T B-field for

a loop width of 5 cm rotating at π/2 rad/s (upper bounds on x & ω) is:

|ϵmax| = B0ωx2 = (3 T)
(

π

2 rad/s
)

(0.05 m)2 = 11.8 mV. (3.7)

As we can see, even for the largest possible trace on our device combined with a head

movement faster than what we would expect from someone trying to stay still, the magnitude

of induced voltages is relatively insignificant.

We must also consider the possibility of gradient-induced voltages on our PCB. The
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maximum gradient slew rate of the Siemens MAGNETOM Prisma 3T MRI in our research

institute is 200 T
m·s . Assuming we are far (e.g. 1/4 m = 25 cm) from the isocenter, where

the gradient swing is at its maximum, we can expect to see a rate of change of the magnetic

field of 200(1/4) = 50 T/s corresponding to an induced voltage magnitude of:

|ϵgrad| = |dBA

dt
| = A

dB

dt
= (0.05 m)2(50 T/s) = 125 mV. (3.8)

This figure is more significant than the B0-induced voltage but is still relatively small

considering that it would only affect the longest traces which are mainly power rails on the

order of 5V. Truthfully, the most sensitive traces are those associated with the Hall sensors

which have maximum lengths of 1.5 cm and a maximum thickness (through the PCB) of

2 mm. This corresponds to a maximum gradient-induced voltage of (0.015)(0.002)(50) =

1.5 mV. This is well below the noise floor and so can be deemed insignificant.

The final environmental concern for our PCB is RF-induced heating. The most significant

part of the PCB for RF-induced heating is in the copper pours used for creating power planes

and a ground plane. In our 4-layer PCB (we have a 2-layer version but it contains only 1

ground plane and is thus less susceptible to RF heating) we have 3 copper pours that occupy

the whole area of the board (4.5 cm × 4 cm). The RF heating depends on the skin depth

of the RF wave at the appropriate frequency, the Larmor frequency f of a proton at 3 T is

128 MHz. The skin depth of copper δ is calculated by:
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δ =
√

1
πσeµmf

= 5.8 µm, (3.9)

where σe = 58 MS/m is the electrical conductivity of copper at 20◦C, and µm = µ0 =

4π × 10−7 H/m is the magnetic permeability of copper (roughly that of free space).

Since our board contains 2 copper pours of thickness 17.5 µm and 1 pour of thickness

43.2 µm we can establish that the RF power incident on its surface will be absorbed, because

the combined thickness (2*17.5 + 43.2 = 78.2 µm) exceeds 13 times the skin depth. The

power dissipated as heat P is proportional to the area of the pour A and the incident RF

power S such that P = SA. Since RF power is limited by the Specific Absorption Rate

(SAR) which has a typical maximum of 4 W/kg. For a large patient weighing 100 kg, this

would translate to a time-averaged 400 W of absorbed RF power from PB1 . Assuming that

absorbed power accounts for only 40% of the transmitted power, we can estimate that the

RF transmission has a total power of PB1 = 1 kW. Since the B1 field is circularly polarized

within the transverse plane to produce a flip angle, the Poynting vector is (longitudinally)

z-directed. Therefore the incident power density is the RF power divided by the circular

cross-section of the cylindrical bore, as shown below. Finally, the maximum RF power

deposited onto the PCB is the incident (z-directed) power density times the area of the PCB

pours.

PP CB = SB1AP CB = PB1

Abore

AP CB = PB1

xl

πr2 , (3.10)
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where x and l are the width and length of the PCB’s broad surface, and r is the radius of

the MRI bore. For the Siemens MAGNETOM Prisma 3T MRI in our research institute, the

bore diameter is 60 cm (so the radius is 30 cm). With the stated dimensions of our PCB (4.5

cm × 4 cm) and the RF power of 1000 W, we can estimate the rate of RF power deposition

into our PCB as 6.37 W (worst case assuming the device is oriented with its broad side

facing the z-direction).

The possible temperature increase of the PCB will be determined by its ability to dissipate

some of that heat to the ambient environment. The amount of heat power (Q/∆t) that can

be dissipated to the environment depends upon the following equation:

Q

∆t
= kA(Ts − Ta), (3.11)

where k ≈ 398 W
m·K is the thermal conductivity of the copper, A is the area that can dissipate

heat which is the total area of all PCB faces A ≈ 2wl, Ts is the surface temperature, and

Ta ≈ 20◦C is the ambient temperature in the MRI. Setting this power equal to the power

deposited to the PCB by the RF field, we obtain:

PP CB = 6.37W = kA(Ts − Ta). (3.12)

Solving for the surface temperature will give us the equilibrium temperature of the

PCB copper, and thus the maximum possible temperature that can be reached during an
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indefinite-length 1000 W RF transmission. We find Ts = 24.4◦C which is evidently a safe

amount of heating, the PCB’s own electronics will lead to more heating. We assume this

amount of heating is safe for the patient since the temperature of the copper will remain

near the ambient temperature, not nearly enough to cause burns.

3.2.3.2 Charging Control Circuitry

Figure 3.8: Circuit design of a solid-state relay-based charging controller for the wireless
MRI motion tracker. The 3 relays are configured such that the batteries are connected in
parallel when charging (when the 5V USB input is present) while the batteries are connected
in series when the USB input is disconnected.
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The fact that our device needs to be wireless obviated the need for a charging control

circuit. Since the batteries we are using come with a battery protection circuit built-in, all

we needed to do was set up a relay triggering system that would place the 2 batteries in

parallel when charging, i.e when the 5V USB input was present, and in series when running

on battery power. The final circuit is shown in Fig. 3.8. This enabled our Hall sensors to

receive their nominal 5 V source voltage from 3.7 V batteries without a boost converter.

3.2.3.3 Hall Sensor Anti-Aliasing Filter

The final part of our PCB design is the RC filter that will band-limit the Hall voltage

signals to the bandwidth of the ADC (sampling at Ts = 9.6 ms intervals, corresponding to

∼104 Hz sampling frequency). An added complication is that the Hall signals, which can

reach 5V, must be voltage-divided before the ADC in order to coincide with the dynamic

range of the ADC. The analog reference for the 4 ADCs on the RP2040 is 3.3 V while for the

2 ADCs on the ESP32 WiFi module it is 1.3 V. Therefore, we will use a voltage divided RC

filter of the form shown in Fig. 3.9 where the ratio RB : RB +RA will be different depending

on whether the ADC of interest is the RP2040’s or the ESP32’s.

The important consideration for anti-aliasing is that the time-constant τ = ReqC is more

than 5 times the sampling period (this is known as the 1% settling time), where Req is the

equivalent resistance seen by the capacitor, i.e. the parallel combination RA//RB.
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ReqC = RARB

RA + RB

C ≥ 5Ts (3.13)

Figure 3.9: Anti-aliasing step-down filter between the Hall sensor output (left) and the
ADC input (right).

Since we require non-magnetic components, we are limited in our choices and we simply

found component values that met our constraints. We chose C = 100 nF for all ADC

channels, RA = RB = 1 MΩ for the RP2040 channels, and RA = 4.22 MΩ & RB = 820 kΩ

for the ESP32 channels. These values ensured that the voltages supplied to the ADCs were

within their dynamic range while also satisfying equation 3.13.

3.3 Software of the Tracking System

The software can be segmented into 3 separable but interrelated tasks: Hall array pitch

and roll estimation, IMU position and orientation estimation, and sensor fusion.
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3.3.1 Hall Voltage Conversion to Pitch and Roll Estimates

The Hall sensor array described in section 3.2.2 will provide us with valuable information

regarding the orientation of the tracking device. As we saw, the Hall sensors can use the main

MRI field as a reference through which we can determine the pitch and roll of the device.

However, the voltage output of each Hall sensor depends on the voltage rail delivered to the

device which is unfortunately not regulated. Therefore, we need to pre-process the data we

acquire from the Hall array before we can use its data to determine the pitch and roll.

The first step is to equalize the channels by applying a gain to each channel according

to the resolution and the voltage divider circuits that were placed on the PCB, as shown in

section 3.2.3. The channels connected to the ADC of the RP2040 are corrected by multiplying

by a factor of (LSB: Least Significant Bit):

G1 = 3.3V
212 − 1

1MΩ + 1MΩ
1MΩ = 1.612 mV/LSB, (3.14)

considering a 12-bit resolution across a 3.3 V range. While the channels connected to the

NINA WiFi module’s ESP32 ADC are corrected by a factor of:

G2 = 1.3V
212 − 1

4.22MΩ + 820kΩ
820kΩ = 1.951 mV/LSB, (3.15)

considering a 12-bit resolution across a 1.3 V range.

The two gain correction factors can be stacked into a gain correction vector where the
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second and third channels correspond to the ESP32’s ADC.

G⃗ = [G1, G2, G2, G1, G1, G1] (3.16)

In this way, the voltage at the output of the Hall sensors V⃗H can be estimated by the

element-wise multiplication (⊙) of the vector of Hall array ADC measurements ¯⃗
VH such that:

V⃗H = G⃗ ⊙ ¯⃗
VH . (3.17)

The next pre-processing step is to adjust for the supply voltage being fed into the Hall

sensors, known as VDD in section 3.2.2. As the batteries discharge there will be an exponential

decay on the voltage supplied to the sensors, making VDD impossible to estimate a priori.

The value of VDD can be estimated simply by assuming that at least one of the sensors in the

array will be saturated at any point in time (this can be guaranteed if one sensor is tipped

to face the full force of the MRI’s main field). According to section 3.2.2, the sensor will

saturate near Vmax = 0.96VDD and the quiescent point of the sensor output is at V0 = VDD/2.

Therefore, the Hall voltage deflections away from the quiescent point can be defined as:

∆V⃗H = V⃗H − V0



1

...

1


= V⃗H − VDD

2



1

...

1


= V⃗H − max(V⃗H)

2(0.96)



1

...

1


. (3.18)
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Finally, we can identify the best sensor data to use in each array (x and y) by considering

that the sensor’s reading will be most accurate near the center of its linear range. Therefore,

for each of the arrays, we can determine the optimal voltage deflection to use according to

the minimum absolute value of the voltage deflection. For the x-array:

∆Vxi
= min(|∆V⃗Hx|) (3.19)

where ∆V⃗Hx is the subset of Hall sensor deflections coming from the x-axis array, and i is

the index of the sensor that meets the above optimization. The equation for the y-array is

equivalent, with the index j replacing i.

∆Vyj
= min(|∆V⃗Hy |). (3.20)

The last step which was introduced in section 3.2.2 takes the optimal Hall voltage

deflection of each array and computes the pitch and roll as follows:

P̂ ≡ θ̂pitch = sin−1
(

∆Vxi

ksB0

)
− ϕi (3.21)

R̂ ≡ θ̂roll = sin−1
(

∆Vyj

ksB0

)
− ϕj, (3.22)

where ks is the sensitivity of the Hall sensor (2.6 V/T), B0 is the main field strength (3 T),

and ϕi is the phase offset of the sensor at index i as discussed in section 3.2.2. P̂ and R̂
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indicate an estimated value.

Using the accelerometer readings, we can also obtain an estimate of the device’s yaw Ŷ .

In fact, there are two equations that allow us to estimate the yaw using the estimates of

pitch or roll plus the acceleration due to the gravity on one of the axes.

Ŷ1 = sin−1
(

gx

cos(R̂)

)
(3.23)

Ŷ2 = sin−1
(

gy

cos(P̂ )

)
, (3.24)

where gx and gy are the accelerations due to gravity on the device’s x and y axes respectively,

in ”g’s”. Given our pseudo-stationary application, the accelerometer readings ax/9.81 and

ay/9.81 are suitable estimates of gx and gy. In the end, we can combine both estimates to

obtain an optimal estimate Ŷ .

Ŷ = 1
2
(
Ŷ1 + Ŷ2

)
(3.25)

3.3.2 IMU Theory and Pose Estimation

The data acquired by the accelerometer and gyroscope (IMU) are inertial measurements,

i.e. they use a mass experiencing acceleration to determine readings. Linear acceleration

estimates in x, y and z directions are intuitively inertial values. The gyroscope uses the

centripetal acceleration resulting from rotational motion to determine angular velocity in

the pitch, roll, and yaw directions.
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The acceleration measurement a⃗m of the IMU is the sum of acceleration due to gravity

g⃗, the Coriolis acceleration a⃗c, and motion-related acceleration a⃗net. The acceleration due to

gravity depends, in fact, on the orientation of the device. Therefore, the gravitational term

is shown as a function of the orientation vector θ⃗ whose elements are pitch, roll, and yaw.

The Coriolis acceleration component, which is the cross-product of angular and translational

velocity, encapsulates the perceived acceleration experienced in a frame of reference when

it rotated about an axis that is not the axis along which it is travelling. Thus, Coriolis

acceleration is the result of the velocity direction changing with respect to the device’s

reference frame. Since our device is designed for a pseudo-stationary application, we expect

that the Coriolis component of acceleration will be negligible since the velocities will be very

small. Furthermore, if the device is truly stationary, then the net acceleration should also

be negligible. Therefore, the accelerometer’s measurement will be dominated by gravity.

a⃗m = a⃗netb
+ g⃗ + a⃗c = a⃗netb

+ g⃗(θ⃗) + 2ω⃗ × v⃗ ≈ a⃗netb
+ g⃗(θ⃗) ≈ g⃗(θ⃗), (3.26)

where the subscript ’b’ on the net acceleration indicates that it is in the IMU’s ”body” frame

of reference. We will need to account for the fact that the acceleration and radial velocity

sensed by the IMU are with respect to the tracker’s ”body” frame of reference, not the

scanner’s absolute frame of reference.

The definition that we use for the gravity vector g⃗(θ⃗) stems from the decision to align

with the scanner’s reference frame. Hence, at θ⃗ = 0⃗ (in line with the scanner’s reference
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frame) the gravity should be along the IMU’s y-axis (later this is referred to as the v-axis to

distinguish it from the global y-axis). This yields the following definition (in m/s2):

g⃗(θ⃗) = g⃗([P, R, Y ]) = 9.81 [cos(R)sin(Y ) cos(P )cos(Y ) cos(R)sin(P )]T . (3.27)

Unfortunately, the measurement that we obtain from the IMU will be contaminated with

noise, will likely contain a constant offset drift term, and will likely contain a scaling error.

Therefore, we could choose to write the accelerometer measurement as:

ˆ⃗am = A(⃗anetb
+ g⃗(θ⃗)) + a⃗drift + q⃗, (3.28)

where q⃗ is a noise component coming from a random process which we will define later, a⃗drift

is the accelerometer’s fixed offset or drift, and A is the scaling constant, ideally equal to 1.

The gyroscope measures the angular velocity (of gyration) in a similarly noisy process

to the accelerometer. The main difference is that the gyroscope doesn’t have any ”gravity

analog” in the sense that there is no constant term which must be removed to get at the

underlying inertial measurement. The gyroscope’s measurement can be expressed simply as:

ˆ⃗ωm = ω⃗b + r⃗, (3.29)

where r⃗ is an additive noise (not to be confused with a position vector) and ω⃗b is the true
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underlying angular velocity (a vector because it contains rates of gyration in the pitch,

roll and yaw directions) in the IMU’s body frame of reference. We are not including any

normalization constant or drift term in the gyroscope’s measurement since the Hall sensor

array will provide a means to correct these without explicitly defining them.

3.3.2.1 Aside: Frames of Reference and Rotation Matrices

Our system must deal with two frames of reference: the IMU’s ”body” frame of reference

and the scanner’s ”global” frame of reference. The global frame of reference is the scanner’s

because we ultimately want to measure the motion of a patient with respect to the scanner.

Furthermore, our Hall sensors will use the scanner’s z-directed main field B0 to determine

pitch and roll angles. Lastly, we can choose to align our global y-axis with the direction of

gravity, which is supposed to be orthogonal to B0 (assuming that the scanner is level with

respect to gravity and that the B0 field is horizontal). The scanner’s reference frame is thus

fixed in space. On the other hand, the IMU and tracker have their own reference frame

which depends on the orientation of the device with respect to the scanner’s reference frame.

We will call the IMU’s reference frame the ”body” in accordance with the literature on

IMU-based motion tracking [30–32] and the related Global Positioning System (GPS) theory.

We will refer to this body reference frame as the UVW frame of reference to differentiate it

from the scanner’s proper XYZ frame of reference. The angular velocities in the body frame

of reference will still have directions called pitch, roll and yaw but will be given the subscript
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’b’ to denote their definition within the body frame of reference.

When the IMU measures acceleration or angular velocity, it does so in whatever

orientation it is in at the time of the measurement. Therefore, it may read an acceleration

due to gravity of 9.81 m/s2 along its ”z-axis” (actually the w-axis) but according to the

scanner’s frame of reference, the gravity of 9.81 m/s2 is on the global y-axis. This would

imply that the IMU is actually rotated -90 degrees in the pitch direction (aligning the

w-axis with the global y-axis). Defining a rotation matrix for this case is simple enough

since it is a rotation around a single axis. However, when dealing with a rotation around

an arbitrary axis, we must define a rotation matrix that takes as input the current

orientation θ⃗ and generates a matrix that rotates the XYZ coordinate frame to the UVW

coordinate frame. Since it should be a proper rotation, i.e. the matrix has a norm of 1 and

is full rank, the transpose of the matrix that satisfies a⃗UV W = R(θ⃗)⃗aXY Z will also satisfy

a⃗XY Z = RT (θ⃗)⃗aUV W . Cole 2015 [25] proves that a rotation of magnitude (angle of the

rotation) θ around an axis defined by the unit vector u⃗ is defined by the following matrix:

R(u⃗, θ) =


cos(θ) + u2

x(1 − cos(θ)) uxuy(1 − cos(θ)) − uzsin(θ) uxuz(1 − cos(θ)) + uysin(θ)

uyux(1 − cos(θ)) + uzsin(θ) cos(θ) + u2
y(1 − cos(θ)) uyuz(1 − cos(θ)) − uxsin(θ)

uxuz(1 − cos(θ)) − uysin(θ) uyuz(1 − cos(θ)) + uxsin(θ) cos(θ) + u2
z(1 − cos(θ))


(3.30)

where ux, uy, uz are the elements of the unit vector u⃗. Intuitively, we can obtain the angle θ
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from the orientation vector θ⃗ according to the Euclidean norm:

θ = ∥θ⃗∥ =
√

P 2 + R2 + Y 2, (3.31)

where P, R, Y represent the elements of θ⃗: pitch, roll and yaw respectively. The axis of

rotation’s unit vector u⃗ is obtained by normalizing the orientation vector θ⃗:

u⃗ = θ⃗

θ
= θ⃗

∥θ⃗∥
. (3.32)

Using this definition of the rotation matrix, we can move between the body UVW and

global XYZ reference frames according to the equation:

a⃗ = RT (θ⃗)⃗ab = RT (u⃗, θ)⃗ab, (3.33)

where the subscript ’b’ indicates the body’s UVW reference frame and no subscript indicates

a vector in the global XYZ reference frame. While we show this equation for converting an

acceleration vector a⃗, the same transformation applies to any vector, including the angular

velocity vector ω⃗.

3.3.2.2 Inertial Measurement-Based Tracking Dynamics

The dynamics of motion tracking from the IMU data can be expressed as a double integral
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of the net acceleration to obtain the position, and a simple integral of the angular velocity

to obtain the orientation. Specifically, the gyroscopic orientation estimate is:

ˆ⃗
θG(t) =

∫ t

0
ˆ⃗ω(τ) dτ + θ⃗0, (3.34)

where θ⃗0 is the initial orientation, most often set to 0⃗ unless the initial orientation is known.

Considering the digital nature of our tracking system and the reference frame of inertial

measurements, this equation is expressed conveniently as a discrete-time difference equation:

ˆ⃗
θG[n] = TsRT (θ⃗[n − 1]) ˆ⃗ωb[n] + θ⃗[n − 1], (3.35)

where Ts is the sampling period, which determines the time-step width of our digital

integration, and RT (θ⃗[n − 1]) represents the rotation matrix according to the most recent

knowledge of the orientation. This method of estimating orientation is obviously quite

simple, however, it is plagued by the problem of drift in the measurement. In other words,

the mean of the noise term r⃗ (introduced in equation 3.29) is non-zero which leads to

unbounded estimates of pitch, roll and yaw from this estimate. Fortunately, the

observations of orientation obtained from the Hall sensors will be enough to eliminate drift

while incorporating the gyroscope’s measurements into a statistically optimal estimate.

(More on the sensor fusion approach can be found in section 3.3.3.)
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The equation describing the accelerometer-based position estimate is:

ˆ⃗p(t) =
∫ t

0

∫ τ

0
ˆ⃗anet(τ ′) dτ ′dτ + p⃗0, (3.36)

where p⃗0 is the initial position, usually set to 0⃗ since we can reference the position to the

starting position of the device. ˆ⃗anet is the estimated net acceleration of the device which,

according to equation 3.28, is determined by removing the acceleration due to gravity from

the measurement, with the Coriolis and drift acceleration if known. As such, we write a set

of discrete-time difference equations to express our position estimate’s evolution over time:

ˆ⃗p[n] = Ts
ˆ⃗v[n] + ˆ⃗p[n − 1] (3.37)

ˆ⃗v[n] = Ts
ˆ⃗anet[n] + ˆ⃗v[n − 1], (3.38)

where the net acceleration estimate ˆ⃗anet is moved into the scanner’s frame of reference by a

rotation matrix R(θ⃗[n]). Ignoring the drift and Coriolis acceleration terms:

ˆ⃗anet[n] = RT (θ⃗[n]){ˆ⃗am[n] − g⃗(θ⃗[n])}. (3.39)

Unfortunately, the position estimation is complicated by several factors:

• the net acceleration term depends heavily upon the quality of the orientation estimate

meaning that error propagation is very likely,
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• there is no external and objective observation of position that we can use to (in)validate

the accelerometer’s estimate like the Hall array can do for the gyroscope, and

• ˆ⃗am likely contains a drift acceleration a⃗drift, i.e. a constant offset in the measurement,

and a non-linearity A as shown in equation 3.28.

It will be possible to mitigate some of these problems in the following sections (sensor

fusion, adaptive filtering, and calibration) but their consequences will persist.

3.3.3 Sensor Fusion for Optimal Orientation

The idea of sensor fusion is relatively simple: use statistics to combine two noisy

estimates into an optimal estimate. For our purposes, this entails combining the

orientation estimates obtained from the gyroscope and Hall arrays through a

statistically-informed weighted average.

The gyroscopic orientation estimates ˆ⃗
θG[n] from equation 3.35 has a mean error and

variance that can be measured by recording the gyroscope readings over a few minutes while

the device is left perfectly stationary. If the gyroscope were perfect, it would record a speed

of 0 rad/s at all times. However, in reality, the gyroscope has a non-stationary drift or bias

term that leads to a non-zero mean value plus some noise variance that makes the readings

fluctuate about that mean. As such, it will be necessary to quantify the mean and variance

of the gyroscope readings to determine the optimal sensor fusion weight.
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In theory, the Hall sensor array estimates P̂ and R̂ from equations 3.21 and 3.22 should

not have any bias after they have been calibrated to their appropriate phase angles ϕi & ϕj,

i.e. their errors are the result of noise variance alone. We can also include the estimate of

yaw Ŷ that is obtained by cross-referencing the Hall sensors’ data with the accelerometer’s

data. However, Ŷ will have a different noise variance from P̂ and R̂ because of the different

methods of obtaining them. All these can be estimated by recording the Hall sensors’ outputs

while the device is stationary, then calculating the noise variance. The variance of the Hall

voltages will translate near-linearly to the variance of the estimates since we are using the

Hall sensors with the smallest absolute value of voltage deflection, according to equations 3.19

and 3.20. The small angle approximation of sine, which has a less than 1% error for angles

of magnitudes less than 0.244 radians or 14.0 degrees, is sin(θ) = θ, so we can understand:

sin(θ + ϕi) = ∆VHi

ksB0
≈ θ + ϕi, (3.40)

and therefore the variance of the Hall sensors determines the estimates’ variance:

V ar(θ + ϕi) ≈ V ar

(
∆VHi

ksB0

)
. (3.41)

Therefore, the variance of the Hall sensors’ estimates for pitch and roll (in radians) is

approximately equal (but upper-bounded) by the variance of VH in volts divided by ksB0 =

(2.6V/T )(3T ) = 7.8V . The variance of the yaw estimate is complicated by the cascade of
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operations leading to the estimate, however, we will assume that it has the same variance as

the pitch and roll for simplicity.

3.3.3.1 Minimum Mean Squared Error - A Priori Orientation Fusion Pipeline

The optimal weight γ for sensor fusion of the form x̂ = γx̂1 + (1 − γ)x̂2 is the one that

minimizes the error e = x − x̂ for all observations. Assuming that the optimal filter is the

one that Minimizes the Mean-Squared Error (MMSE), we find that the goal is to minimize

the expected value of the squared error, i.e.:

min arg γ

(
E
[
(x − γx̂1 − (1 − γ)x̂2)2

])
. (3.42)

Expanding the above equation and assuming that the noise in the estimates x̂1 and x̂2

are independent of each other and independent of the true state x we get:

E[e2] = µ2
x + σ2

x + γ2(µ2
x̂1 + σ2

x̂1) + (1 − γ)2(µ2
x̂2 + σ2

x̂2)

− 2γµxµx̂1 − 2(1 − γ)µxµx̂2 + 2γ(1 − γ)µ2
x̂1µ2

x̂2 ,

(3.43)

where µ and σ represent the mean and standard deviation of the signal in their subscript.

First, we must recognize that the mean values of the state x (representing the orientation

θ⃗) and the Hall sensor’s estimate x̂1 are both equal to zero (or specifically 0⃗). However, the

mean value of the gyroscopic estimate x̂2 is non-zero because of the sensor’s bias. Then, we
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can take the derivative with respect to γ to perform the optimization.

d

dγ
E[e2] = 2γσ2

x̂1 − 2(1 − γ)(µ2
x̂2 + σ2

x̂2) = 2γ(σ2
x̂1 + µ2

x̂2 + σ2
x̂2) − 2(µ2

x̂2 + σ2
x̂2) (3.44)

Setting the above equation equal to zero we will find the MMSE optimal weight γ is:

γ̃ =
µ2

x̂2 + σ2
x̂2

σ2
x̂1 + µ2

x̂2 + σ2
x̂2

. (3.45)

We note that this is indeed a minimum since the derivative of equation 3.44 with respect

to γ will be positive, meaning that the expected error is concave-up and thus the extrema is

a minimum. We also note the intuitively satisfying form of this result: the weight of estimate

x̂1 is proportional to the MSE (error power) expected from estimate x̂2.

Figure 3.10: Signal pipeline for obtaining optimal orientation estimates. Summary of the
Hall array algorithm, the gyroscopic algorithm, and their fusion. The optimal Mean-Squared
Error (MSE) weight γ of each estimate (P, R, Y) is defined in the present section.
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3.3.3.2 Kalman Filter Formulation of Orientation Fusion

An alternative to the MMSE sensor fusion discussed above is the Kalman filter. Kalman

filtering is one of the most used solutions in the literature on IMU-based motion tracking

and GPS [33, 34]. The Kalman filter is a state-space formulation for optimal statistical

filtering; it has the benefit of remembering all the past values of inputs while using a finite

memory [34]. We will briefly explain how Kalman Filtering can be applied to our situation

of motion tracking.

The Kalman filter begins with a state-space model of the system whose states are being

estimated. In our case, the orientation (pitch, roll, and yaw) of the system are the states

being estimated, these will be encapsulated into the vector estimate ˆ⃗
θ. Next, we define the

interaction between the present states and the future states; this will be encapsulated into

the state transition matrix F according to:

ˆ⃗
θ[n|n − 1] = F ˆ⃗

θ[n − 1|n − 1] + Bu⃗[n], (3.46)

where the indexing [n|k] refers to conditional probability, i.e. the state estimate at time n

given the observations up to and including time k. Finally, we must identify the input to

the system u⃗[n] and how it will interact with the states; this is encapsulated in the input



Chapter 3. Methods in Design of a Low-Cost Active Tracking System 63

matrix B, which will be a function of time in our case. The resulting state space system is:

ˆ⃗
θ[n|n − 1] = I3

ˆ⃗
θ[n − 1|n − 1] + TsRT (θ⃗[n − 1]) ˆ⃗ωb[n] + ν⃗[n], (3.47)

where I3 is the 3x3 identity matrix, ˆ⃗ωb[n] is the gyroscope’s measurement/estimate of the

angular velocity in the IMU/body reference frame, ν⃗ is the stochastic disturbance to the

system which is not explicitly used in the prediction but is used in the statistical model, and

RT (θ⃗[n−1]) is the rotation that converts vectors from the body reference frame to the global

one. Note the interchangeability between the above equation and equation 3.35. The above

equation is referred to as the prediction phase of the Kalman filtering process: estimating

the next state from the previous one given the measurable input signal u⃗[n] = ˆ⃗ωb[n].

The next step in the Kalman filter is the observation of the states. The observation

process is defined by an output matrix H according to ˆ⃗z[n] = H ˆ⃗
θ[n|n − 1]. In our case, the

actual observation is performed by the Hall sensor array, returning an estimate of pitch, roll,

and yaw ˆ⃗
θH [n]. Therefore, the observation matrix H is also an identity matrix:

ˆ⃗z[n] = ˆ⃗
θG[n] = I3

ˆ⃗
θ[n|n − 1] + υ⃗[n], (3.48)

where ˆ⃗
θG[n] is the predicted observation according to the information obtained by the

gyroscope and state-space system, and υ⃗ is the measurement noise that we explore in the

statistical update sequence. This predicted observation can then be compared to the actual
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observation z⃗ = ˆ⃗
θH [n] of the orientation coming from the Hall array and accelerometer.

Note that the observation z⃗ has no hat because it is the true observed state but not

necessarily the true state since it is contaminated with noise. The error between the

predicted observation and the true state observation is therefore stated as follows:

e⃗[n] = z⃗[n] − ˆ⃗z[n] = ˆ⃗
θH [n] − ˆ⃗

θG[n]. (3.49)

This step is known as the update phase of the Kalman filter. We will define statistical

matrices to update our state estimate according to the above error.

The initial covariance of the state estimates P0|0 = cov(ˆ⃗
θ[0]) can be set to a matrix of

zeros if the initial state is known [34]. In our application, we will initialize our device in the

θ⃗[0] = 0⃗ position with near absolute certainty so that we can make P0|0 = O3, a 3x3 matrix

of zeros. The second necessary initialization is the covariance of the system disturbances

Q = cov(ν⃗), this is effectively the same as the covariance of the accelerometer noise q⃗ in

equation 3.28, thus we can estimate it from a stationary accelerometer recording. The final

initialization is the covariance of the measurement noise R = cov(υ⃗) which can be estimated

using the samples of the Hall voltages during a stationary period of time. The same logic

as that used in equation 3.41 applies here. We expect that R will be a diagonal matrix, i.e.

the noise in the pitch, roll and yaw estimates are independent of each other. For the best

results, both the Q and R matrices should be determined empirically through experiments,
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using the covariance of ˆ⃗
θG[n] and ˆ⃗

θH [n] respectively during a stationary period of time.

After initialization, we can perform the statistical analysis as follows:

Pn|n−1 = FPn−1|n−1FT + Q (3.50)

Sn = HPn|n−1HT + R (3.51)

Kn = Pn|n−1HT S−1
n (3.52)

Pn|n = (I − KnH)Pn|n−1, (3.53)

where the subscripts in Pn|n−1 indicate, for example, the covariance of the state estimate

at time n given the observations up to time n − 1. The new variables Sn and Kn are the

covariance of the measurements and the Kalman gain respectively, at time n. Using the

statistically optimal Kalman gain we can update our state estimate according to [34]:

ˆ⃗
θ[n|n] = ˆ⃗

θ[n|n − 1] + Kne⃗[n]. (3.54)

In this way, the Kalman filter uses the statistical properties of the state space and its

measurements to construct an optimal estimate of the state encompassing all of the sensor

readings up to and including the latest measurements. We note that the behaviour of the

filter will depend heavily upon the accuracy of the noise covariance matrices Q and R.
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Therefore, special attention should be paid to determining the best possible estimates of

these matrices, and caution should be exercised.

3.3.4 Adaptive Filtering for Optimal Position Prediction

As alluded to in equation 3.26, the acceleration that we expect to see in a

pseudo-stationary application such as ours (one where the motion is very small and heavily

constrained) is almost exclusively the acceleration due to gravity. Because of this feature,

we can implement an adaptive filter that will shape the input accelerometer signals to

make them fit the expected gravity given the orientation estimate. First, we will

demonstrate a Least Mean Squared (LMS) filter formulation. Then, we will demonstrate

how a Kalman filter could be extended to this purpose.

3.3.4.1 Gravity-Residual Least Mean Squares Adaptive Positioning Filter

The general formulation of a Least Mean Squared (LMS) Filter is:

min arg h̃[n](E[e2]). (3.55)

In other words, minimize the expected value of the squared error by finding the optimal

filter impulse response h̃[n]. The error e is defined as the difference between the desired

output signal and the estimated signal. In our case, the desired output signal is the gravity

vector g⃗(θ⃗[n]) which is assumed to be accurate despite the fact that it depends upon the
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orientation θ⃗[n] which is itself an estimate, as discussed in the previous section. The

estimated signal is the filtered accelerometer measurement. Because the LMS filter is

intended for uni-dimensional signals, i.e. a set of values over time, we must split our LMS

problem into the UVW spatial dimensions, in the IMU’s reference frame. Hence, we will

really be implementing 3 separate LMS algorithms in parallel, one for each dimension.

Therefore, the error of the u-axis is expressed as follows:

eu[n] = gu(θ⃗[n]) −
M−1∑
m=0

h̃u[m]au[n − m], (3.56)

where M is the order of the adaptive LMS filter, and the subscript u represents the first

dimension of the IMU accelerometer, effectively the IMU’s local x-axis. We note that the

same equation applies to the v-axis and w-axis of the IMU. For simplicity, we may want to

express the above equation’s convolution in vector form, such that the impulse response and

accelerometer readings are vectors. The resulting equation is:

eu[n] = gu(θ⃗[n]) − ˜⃗
hT

u a⃗u[n], (3.57)

where the impulse response vector of the u-axis filter is

˜⃗
hu =

[
h̃u[0] ... h̃u[M − 1]

]T
, (3.58)
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and the u-axis acceleration measurement vector is

a⃗u[n] = [au[n] ... au[n − M − 1]]T . (3.59)

The LMS algorithm uses the error e and learning rate α to descend the gradient toward

the optimal filter weights according to the following equation [34]:

˜⃗
h′

u = ˜⃗
hu + α eu[n] a⃗u[n]. (3.60)

Figure 3.11: Signal processing pipeline summarizing the adaptive position estimation.
The adaptive filters (one for each axis, identified by an arbitrary index ’i’) applied to the
accelerometer measurements use the net body-frame acceleration as the error signal since
the expected value of the net acceleration is zero.

The learning rate α is a hyper-parameter to this adaptive filter. Making α larger will

make the filter more responsive to changes in the underlying system dynamics, but making

it too large will lead to instability. If α is too small, the LMS filter may not converge to the
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optimal weights within the necessary time horizon.

The central benefit of filtering the acceleration input signal with an adaptive LMS filter is

the empirical grounding of the algorithm. Filtering in this fashion will shape the frequency

content of the acceleration measurements according to an empirical set of observations,

instead of using a heuristic (for example low-pass of an arbitrary cutoff frequency) as is

often the case.

Since the expected value of the acceleration is equal to the gravity vector, we expect

this LMS filter to deliver a reasonable estimate of the true acceleration. In theory, the LMS

filter should eliminate drift because its objective is to drive the net acceleration toward zero.

Furthermore, the LMS filter could eliminate a scaling error by adjusting the sum of the

filter impulse response terms to something approaching A−1 from equation 3.28. That is, we

expect:
M−1∑
m=0

h̃[m] = A−1. (3.61)

3.3.4.2 Kalman Filter for Position Estimation

Analogous to how we could perform orientation sensor fusion using an a priori minimum

MSE algorithm or a Kalman filter in section 3.3.3, we can use a Kalman filter to estimate

position instead of the gravity-residual adaptive filter method. Here, we will describe the

state-space model necessary to construct a position-estimating Kalman filter in our pseudo-

stationary application. Similar to equations 3.37 to 3.39, position tracking dynamics are
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described by the following state-space system, like the form in equation 3.46:

p⃗[n]

v⃗[n]

 =

 I3 TsI3

O3 I3


p⃗[n − 1]

v⃗[n − 1]

+


T 2

s

2 RT (θ⃗[n])

TsRT (θ⃗[n])

 a⃗netb
, (3.62)

where a⃗netb
= ˆ⃗am[n] − g⃗(θ⃗[n]) is the net acceleration in the IMU’s frame of reference, or the

accelerometer reading minus the expected gravity. p⃗ = [x, y, z]T represents the position of

the device, while v⃗ represents its velocity. The above equation could be expressed as the

prediction phase of the Kalman filter by replacing indices: n with the conditional index n|n−1

and n − 1 with the conditional index n − 1|n − 1. We could also add the disturbance/noise

term like ν⃗ in equation 3.47, the covariance of which is needed for the Kalman algorithm.

In truth, we don’t have any means to measure/observe this system because the only

sensor that contains information pertaining to translational motion is the accelerometer,

which is already the input. Since we have no way of observing either the velocity or position,

we can only provide the Kalman filter with an approximation of the state. Considering

what we know about our application, we posit that we could provide the Kalman filter

with an ”observation” that indicates no motion, i.e. the velocity and position are zero in

all dimensions. This may seem like it would only lead to the Kalman filter ignoring the

acceleration. However, much like the gravity-residual adaptive filter method, this technique

exploits our statistical knowledge of the underlying process. We know that the device is

unlikely to move significantly from its starting position, therefore, the mean value of position
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and velocity is a zero vector 0⃗. We suspect that this approach will mitigate drift by steering

the Kalman filter toward the no-movement state. The predicted observation of the system

ˆ⃗z[n] is therefore:

ˆ⃗z[n] =


ˆ⃗p[n|n − 1]

ˆ⃗v[n|n − 1]

 = H

p⃗[n|n − 1]

v⃗[n|n − 1]

 ; H = I6, (3.63)

where H is the observation matrix. We note that there is an observation noise associated with

the above equation, similar to υ⃗ in equation 3.48, that makes our observation inaccurate. In

our case, we know that our pseudo-observation of the state is inaccurate. However, we know

that it is close to the mean value of the state because the patient would be staying relatively

still in the MRI. This statistical observation (or pseudo observation) approach forces us to

consider the ”observation noise” as the variance from the zero states.

Other than the changes to the dynamic system and observation system matrices F, B, H,

the Kalman filter algorithm runs exactly as described in section 3.3.3.

3.3.5 Calibration and Sensor Characterization

The device calibration is relatively simple: place the tracker in a known orientation in the

scanner bore and record measurements from all sensors (accelerometers, gyroscopes, and

magnetometers) while the device is stationary, repeat for at least 3 orientations. This

procedure will primarily serve to find the precise angle of the Hall sensors relative to the

PCB surface, which are shown as 30◦ intervals in Fig. 3.6. Another purpose of this
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procedure is to determine the statistics of our measurements (e.g. mean, variance,

covariance, error...) which are used in the sensor fusion algorithms discussed in section

3.3.3. This sensor characterization will be done for the accelerometer, gyroscope, and Hall

sensors during a stationary time interval (effectively obtaining the sensors’ zero-input

responses). Finally, calibration could provide a reasonable estimate of the optimal adaptive

filter impulse response h̃[m], however, the non-stationary nature of the accelerometer noise

prohibits this approach.

3.4 Testing Methods

Testing of our device centred around a 3D-printed mould with known position and

orientation waypoints as shown in Fig. 3.12. Having this kind of test mould removed the

significant experimental error that would have occurred if we used a ruler, protractor, and

grid paper to record positions and orientations. In this way, the 3D CAD design guaranteed

a certain precision in the ground truth to which we will compare our predictions.

Since we could not know the tracker’s exact pose at all times, we had known positions

and orientations for a set of waypoints that lasted a predetermined amount of time. We

synchronized the periods of motion (when the pose is unknown) and the periods of rest (when

the pose is known) using a built-in LED indicator on our tracker. A red LED indicated that

the device should be stationary at the waypoint, while a blue LED indicates that the device

can move from one waypoint to the next. In this fashion, we tested the tracker’s prediction
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Figure 3.12: Rendering of the 3D-printed testing mould made in FreeCAD. The slots
are sized to fit the tracker PCB snugly and spaced by known distances & known angles to
evaluate performance accurately. The hooks at the top were sized to fit into an existing
Siemens head coil holder such that it is fixed to the scanner through the head coil.

accuracy by comparing the known waypoint pose to the predicted pose during the periods

of rest. The testing procedure is summarized as follows (see the accompanying Fig. 3.13):

1. place the tracker at a predetermined waypoint (the t0 − t1 pose)

2. trigger the sensor data collection, the red LED should turn on

3. leave the tracker at the waypoint until the LED turns from red to blue

4. move the tracker to the next predetermined waypoint (t2 − t3) pose, the LED should

be blue during the (t1 − t2) transition period

5. leave the tracker at the waypoint until the LED turns from red to blue
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6. repeat steps 4 & 5 as desired to test the tracker’s performance as time goes on

Once the data was collected according to the process defined above, we computed the

pose estimates over time according to the algorithms described in the previous sections

(specifically figures 3.10 and 3.11). Comparing the pose estimates during the stationary

periods to the known waypoint poses, we determined the tracker’s mean-squared error.

Finally, we tested the severity of magnetic susceptibility artifacts created by our device

through the imaging of a spherical phantom. Ultimately, a motion tracker used for artifact

correction is only worthwhile if it does not produce severe artifacts of its own.

Figure 3.13: Plot illustrating our ground truths for an arbitrary motion pattern across 3
waypoints. While we only show x and Roll for simplicity, these plots of the known pose are
extended to all 6 degrees of freedom. The red sections in the plot are known positions and
orientations, while the red LED is on, to which we will compare our predicted pose. The
blue sections are transition regions where the pose is not known, while the blue LED is on,
therefore no comparison is made with the estimates.
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Figure 3.14: Pictures of the actual 3D-printed testing kit when attached to the Siemens
head coil housing (with the actual coil removed). The bottom left shows the tracker inserted
in the back-center slot, which we used as the starting point of our motion experiments.
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Chapter 4

Results and Discussion

In this chapter, we will discuss the results of our previously explained design. We will start

by showing the results of the Hall sensors, discussing how their readings were influenced by

other systems on the PCB, and proposing hypotheses for the observed data. Second, we will

examine the gyroscope data and determine the statistical parameters of its measurements.

Third, we will examine the accelerometer data and determine its statistical parameters.

Fourth, we will show and discuss the results of our signal processing pipelines, evaluating

their performance. We will show how the Kalman filter can perform without any actual state

observations, what we call statistical or pseudo observations, though the performance will be

hindered. Finally, we will explain why our design creates magnetic susceptibility artifacts in

the scanner and how a future iteration may avoid these.
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4.1 Hall Sensor Array Data

The measurements obtained by our MCU’s ADCs show a Hall voltage reading that decays

over time as the batteries discharge. We had planned to account for this by scaling the

measurements with the value of a saturated sensor, as described in equation 3.18 but, as

shown in Fig. 4.1, the Hall array outputs were unexpectedly flat. When inside the scanner

and moved to different angles, we expected the Hall sensors to output a wide range of

voltages, 0-5 V.

Figure 4.1: Raw Hall voltage signals, estimated according to equation 3.17. Note the
appearance of spikes in the sensed voltages, these will be discussed in the present section.

Unfortunately, the sensor outputs stayed near their quiescent point for almost the entire
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duration of every experiment. As shown clearly in Fig. 4.2, there were instances where a

sensor would output a large voltage fluctuation from the quiescent point but these events

were sporadic and did not correlate significantly with the tracker orientation, nor could these

events be reliably reproduced. We suspect that the spikes are caused by a combination of

the sensors momentarily responding to the field and an induced voltage caused by movement

in the magnetic field. Otherwise, it is impossible to obtain such readings since our battery

pack only has a nominal open circuit voltage of 7.4 V.

Figure 4.2: Zoomed-in figure of the Hall voltages seen in Fig. 4.1. Note the unexpected
magnitude of the red waveform, as the Hall sensors can only output a voltage up to their
power supply rail, 7.4 V absolute maximum in our case. The voltage overshoot is anticipated
to have resulted, in part, from induced voltages from motion in the magnetic field.

Without suitable data from the Hall array, we are unable to perform the math outlined
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in section 3.2.2 to resolve the pitch and roll of the device. This makes it nearly impossible

to test and evaluate the subsequent stages of our signal-processing pipeline.

Figure 4.3: Estimated Hall voltage deflections with exponential smoothing filter during
moving and resting intervals. The short intervals are resting periods of 4.8 s (500 samples
at 9.6 ms) and the long intervals are moving periods of 9.6 s (1000 samples at 9.6 ms).

When we noticed how insignificant the Hall Voltage fluctuations were, we aligned all the

x-axis and y-axis sensors to perform array averaging, with the aim to uncover some pattern

in the Hall voltage signals. Then, we applied a smoothing filter to the x-axis and y-axis Hall

voltages for denoising before removing the signals’ trendline using linear regression with first-

and zero-order terms. The resulting waveforms overlaid with vertical lines indicating the

moving and resting periods are in shown in Fig. 3.18. We note that there were fluctuations
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that correlated strongly with the onset of the moving and resting periods, the waveform

tended high during the moving periods and low during the resting periods.

Seeing the uncanny correlation of the Hall voltages with the onset of the red LED and

blue LED (resting and moving) periods, we realized that this correlation with the moving

and resting periods was simply an artifact of our unregulated power supply fluctuating as

a result of changing current demand. Upon examining the Arduino RP2040 datasheet we

found that the red LED and blue LED have the same series resistance of 330 Ω connecting

them to the Arduino’s regulated 3.3 V power supply. However, red LEDs and blue LEDs

require different voltage levels (forward voltages) to emit their respective frequencies of light.

Since blue light is more energetic, the blue LED will have a larger forward voltage drop than

the red LED. We confirmed this by looking at the RGB diode’s datasheet (the SMLP34RGB)

which states that the red LED’s forward voltage is 2.1 V while the blue LED’s is 3.0 V. This

means that the red LED will draw more current than the blue, thus lowering the power

supply’s terminal voltage when the red LED is on, leading to the low signal amplitude at

the output of the Hall sensors. We confirmed this hypothesis by replacing the red LED

period with the green LED whose forward voltage is 3.1 V (much closer to the blue LED’s).

That experiment showed no voltage fluctuations correlating with the moving and resting

periods. Therefore, we speculate that all the other observed variance in the Hall voltages

are a product of noise and bear no relation to the orientation of the device as we had hoped.

Our main explanation for the unexpected Hall voltage waveforms is that the unregulated
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power supply’s voltage dropped below the Hall sensors’ cut-off voltage of 4.5 V (according

to the MLX90251 datasheet). Our experimental analysis of the current demand shown in

Fig. 3.5 was based on observations of the tracker running without the ADCs sampling

the voltages coming from the Hall sensors. As such, the current demand of the MCU was

greater than the 27 mA we anticipated. Admittedly, this was a critical oversight. Since the

current demand of the MCU was greater, the voltage supplied to the Hall sensors (the power

supply’s terminal voltage) fell from 5 V to around 4 V. We confirmed this hypothesis with

a multimeter, finding that the unregulated power supply was responsible for disabling the

Hall sensors by bringing their supply below their under-voltage threshold of 4.5 V. In future

iterations, it will be paramount to regulate the Hall sensor supply voltage. We have not used

a voltage regulator (in this work, a boost converter) to avoid adding inductors to our device

since they would create magnetic fields and likely contain iron or nickel.

Despite our lack of concrete data for the Hall sensor arrays, we will report on the statistics

of the Hall voltage signals to inform the techniques such as sensor fusion in section 3.3.3 which

require second-order statistics. Fig. 4.4 shows the estimated PDF. The best fit is a normal

distribution, however, the Hall voltages seem to move steadily toward lower values as the

batteries discharge, shown in Fig. 4.5, skewing the distribution. This also demonstrates the

importance of powering the Hall sensors with a regulated power supply. We expect many

sources of noise contributing to the variance of these signals, hence we are considering the

central limit theorem in our assertion that the noise of the Hall voltages will approximate a
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Figure 4.4: Estimated Probability Density Functions (PDF) of the filtered Hall sensor
voltages, described approximately by a normal distribution. We note that this estimated
PDF fits the x-axis data (bottom graph) relatively poorly while fitting the y-axis data (top
graph) nicely.
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normal distribution. The standard deviation of the Hall voltages is necessary for estimating

the MSE of Hall-voltage-inferred orientation estimates. Since the data is relatively noisy,

we applied an exponential smoothing filter with a time-constant of 192 ms, the standard

deviation came to under 10 mV for the x-array and 1 mV for the y-array.

Figure 4.5: Plot of the Hall sensor voltage deflections as the batteries discharge. We note
the decrease in the signal as time goes on, this would inevitably lead to a distorted PDF.
We note that the decline in voltage is more pronounced in the x-axis array.

The reason for the different behaviour of the Hall voltages across the x-axis and y-axis

arrays seems to stem from a relatively poor power supply distribution on our PCB. In short,

the Hall sensors’ power supply was closer to the y-axis sensors, making their voltages overall

larger and less susceptible to voltage regulation issues. We show the trend in Fig. 4.5 to

demonstrate why the x-axis PDF in Fig. 4.4 departs significantly from a normal distribution.



Chapter 4. Results and Discussion 84

We opted to only include data after the 400-second mark in order to avoid skewing the PDF.

We note that, because of the voltage regulation issue, the more accurate estimate of noise in

the Hall-effect measurements comes from the y-axis PDF, i.e. a 1 mV standard deviation.

4.2 Gyroscope Data

Figure 4.6: Example of the gyroscope readings during a test of the sort described in section
3.4 and Fig. 3.13. The labels ”RP” indicate the resting period.

The gyroscope (a subsystem of the LSM6DSOX IMU) provided us with three-dimensional

radial velocity measurements. We can see from the time-domain plot in Fig. 4.6 that the

gyroscope readings are relatively still during the periods of rest. However, they often have

non-zero quiescent radial velocity readings during these supposedly resting periods. These
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non-zero readings are a form of drift but they are not necessarily constant over time, meaning

that the gyroscope drift is a non-stationary process. A constant offset of this sort is non-

stationary when its value changes over time, making it tremendously difficult to correct.

Figure 4.7: Example of the gyroscope readings during a 20-min stationary rest condition
test. Note the non-zero mean values (bias) and the moving trendlines of the measurements.

We extracted the parameters of the gyroscope noise/error by recording their

measurements under a stationary rest condition, see Fig. 4.7, which is effectively the

zero-input response of the gyroscope system. We note that the readings do not have

zero-mean values, a further indication of their drift. Furthermore, the pitch readings in

particular seem to oscillate around an exponentially decaying trendline settling around the

400-second mark, a further indication that the drift is not a stationary random variable.
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There is a high amplitude fluctuation around the 200-second mark, we suspect this was

caused by a stray vibration disrupting the measurements. Therefore, we computed the

statistical characteristics of the gyroscope from the steady-state portion of the Fig. 4.7

signals. The steady-state portion was considered as the 400-second mark onward since the

exponential transient is complete by the 400-second mark and there are no stray vibrations

thereafter. By performing our statistical analysis on this region we are avoiding the

skewing that an exponential decay would introduce to our histogram. Furthermore, the

stray vibration would lead to outliers being included in the statistical analysis.

Figure 4.8: Example of the normally distributed PDF estimate of the gyroscope
measurement noise. We note the Gaussian curve fit.

The statistical properties of the gyroscope readings are summarized by the estimated PDF
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plot in Fig. 4.8. The gyroscope measurement noise is defined very well by a Gaussian/Normal

distribution. The root-mean-squared average radial velocity of all channels, having a non-

zero value due to drift, is approximately 5.45 mrad/s. Then, the average standard deviation

of the gyroscope noise is approximately 0.397 mrad/s. These can be combined to form the

mean-squared error according to the formula MSE = µ2 + σ2 = 29.9 µrad2/s2. Therefore,

the RMS error is 5.47 mrad/s, significantly larger than the noise value of 1.31 mrad/s in

the datasheet of the LSM6DSOX but within the same order of magnitude. We suspect the

reason for this discrepancy is the imperfect experimental condition, namely the presence of

mechanical and acoustic vibrations in the environment would logically increase the variance

of the measurements. Whereas the datasheet figure was likely obtained in conditions where

most vibrations were eliminated, such as on a gyroscopically stable plate.

4.3 Accelerometer Data

The accelerometer (a subsystem of the LSM6DSOX) provided us with 3-dimensional

acceleration measurements. We can see from the time-domain plot in Fig. 4.9 that the

accelerometer readings are relatively still during the periods of rest. However, they

occasionally present a non-zero value relative to the global mean because of a differing

orientation changing the extent to which each axis experiences gravity.
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Figure 4.9: Example of the accelerometer readings during a test of the sort described in
section 3.4 and Fig. 3.13. The labels ”RP” indicate the resting period.

As with the gyroscope, we extracted the parameters of the accelerometer noise by

recording their measurements while at rest, see Fig. 4.10. We removed the mean value of

the signals, which means that any constant drift is not visible. However, we can see that

the readings oscillate around transient mean values, demonstrating that the drift is a

non-stationary random variable. There is a high amplitude fluctuation around the

200-second mark, corroborating the gyroscope’s measurements of a stray vibration. As

with the gyroscope, we computed the statistical characteristics of the accelerometer from

the steady-state portion of the Fig. 4.10 (after the 400-second mark) signals to avoid

skewing our PDFs.
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Figure 4.10: Example of the accelerometer readings minus their means during a 20 min
stationary rest condition test. Note the decaying trendline of the y and z measurements.

The statistical properties of the accelerometer readings are summarized by the estimated

PDF plot in Fig. 4.11. The accelerometer measurement noise is defined very well by a

t-distribution. The average standard deviation of the accelerometer noise is approximately

6.50 mm/s2. This value is slightly larger than the noise value of 4.95 mm/s2 obtained

from the datasheet of the LSM6DSOX (computed for the 104 Hz sampling frequency, 52

Hz bandwidth, ± 2 g, i.e. ± 19.62 m/s2 dynamic range settings we used). As with the

gyroscope, our experimental estimate of the noise is likely overestimating the figure because

there are vibrations in the environment. The datasheet’s noise figure should represent the

noise of measurements in the absence of external vibrations, which we could not guarantee.
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Figure 4.11: Estimate of the t-distributed PDF of the accelerometer measurement noise.

4.4 Signal Processing Pipelines

In this section, we will report and discuss the performance of our signal-processing

pipelines where applicable. The first 2 subsections will focus on the orientation prediction

task, while the last 2 subsections will be on the position prediction task. As discussed in

section 4.1, the Hall-effect array could not be used because of problems maintaining the

power supply from the battery pack. Therefore, our results in this section will be hampered

by the lack of reliable orientation data. We will demonstrate how the gyroscope and

accelerometer data’s 6 degrees of freedom can theoretically be used for pose estimating
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(which has 6 degrees of freedom) but they lack enough information to reliably resolve the

pose of the device. This is an example of the importance of redundancy in data: with only

the minimum necessary data, one cannot accurately predict the states of a system unless

the sensors are near-perfect.

4.4.1 A Priori Orientation Sensor Fusion

Unfortunately, due to the lack of reliable Hall sensor data, we cannot properly evaluate

the performance of the a priori sensor fusion algorithm. We could only test the performance

on a set of synthetic Hall-array orientation estimates which would reflect the ground truth of

orientation plus an additive noise component. In this setup, the noise of the Hall estimates

of orientation θH follows from the variance determined through the statistical analysis in

section 4.1 combined with equation 3.41:

V ar(θH) = MSE(θH) ≈
(

1 mV
7.8 V

)2

= 16.4 nrad2 (4.1)

Then we can use the gyroscope readings’ MSE from section 4.2 to determine the θG MSE:

MSE(θG) = T 2
s MSE(ωG) = (9.6 ms)2(29.9 µrad2/s2) = 2.76 nrad2 (4.2)
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This provides us with the a priori optimal sensor fusion weight estimate:

γ̃ = MSE(θG)
MSE(θG) + MSE(θH) = 2.76

2.76 + 16.4 = 0.144 (4.3)

Since the MSE of the gyroscope’s prediction is smaller than the Hall sensors’, the sensor

fusion favours the gyroscope’s estimates. However, the performance of this algorithm cannot

be truly evaluated without Hall sensor data. Therefore, we will forgo the evaluation of this

algorithm, as it would be a purely contrived example.

4.4.2 Orientation Kalman Filter

This section will demonstrate the performance of the Kalman Filter for determining

orientations in a trial of the sort laid out in section 3.4 (moving the tracker through a set of

known waypoints). Despite the lack of reliable Hall sensor data, we can apply the Kalman

filter algorithm to the gyroscope’s data. Instead of providing true observations of the system

states, we will use the statistical observation scheme analogous to the one outlined in section

3.3.4.2. In this way, we will drive the system to the no-movement orientation defined by

the initial orientation that is determined in the calibration phase (the first 1̃5 s when the

device is stationary and the accelerometer can estimate the orientation through the measured

gravity). The initial orientation θ0 is the observation passed to the Kalman filter at every

step of the algorithm. The result is an estimate of the orientation change shown in Fig. 4.12.
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We estimated the value of the Q matrix (system disturbance covariance) from the

statistical analysis in section 4.2 just like in equation 4.2. This includes the mean value in

addition to the variance because the mean also degrades the estimates. In theory, the

stochastic signals of the Kalman filter model are supposed to be zero-mean, so we will

expect some bias in our estimates. However, the mean value of gyroscope readings (the

drift) is non-stationary, therefore even the mean value can be viewed as a variance present

at a much lower frequency. As such, we estimate that Q = 2.76 nrad2 I3.

The optimal observation noise matrix R was determined through trial and error because

there is no appropriate metric to use. We are not actually observing the state but driving

the algorithm toward the no-movement state. This means that we cannot really ascribe any

empirical value to the variances. Therefore, all we can do is posit a reasonable variance

and refine it through trial and error. It turns out that a good estimate of the observation

variance is R = ( 3π
100)2 rad2 I3. In other words, the observation noise that yielded reasonable

orientation waveforms was of a 0.36-degree ( 3π
100 rad) standard deviation.

The resulting orientation waveforms are shown in Fig. 4.12. We note that the Kalman

filter succeeded in estimating near-constant orientation during the resting intervals.

Removing the drift in gyroscopic measurements and correctly identifying the resting

intervals is a satisfying result considering that we did not provide any state observations.

To our satisfaction, the Kalman filter still differentiated the different roll angles that we

introduced with our testing mould.
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Figure 4.12: Example of the Kalman Orientation Estimation Filter during a test run of
the sort described in section 3.4: the tracker is moved through waypoints of varying position
and orientation (mainly roll). Note that the short vertical line intervals are the rest periods.

Unfortunately, the angles predicted by our Kalman filter are not accurate. As shown in

Fig. 4.13, the estimates fall short of the actual roll angle systematically. We note that the

θ0 angle is 0 degrees but the estimate settles at roughly 0.5 degrees, demonstrating a slight

bias. We also note that the degree of underestimation is more severe for the larger angles.

Specifically, the estimate on the first step is roughly 57% of the actual angle, roughly 49%

on the second step, and finally, 40% on the third step. This shows a nonlinear response to

angle changes which could potentially be corrected by applying the inverse nonlinear

operation to the estimates. However, the filter would obviously perform best if it were
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given real observations from a functional Hall array for example. The reason for the

systematic underestimation seems to stem from the pseudo observation we are performing.

As we consistently reinforced the no-movement observation to the Kalman filter algorithm,

it reduced the state estimate to find the statistical mid-point between the pseudo

observation we provided and the gyroscope’s correct estimate of movement. Since the

Kalman filter fuses the gyroscope-generated prediction with the zero-movement pseudo

observation, the result is a state estimate that is increasingly attenuated at larger

orientation changes, as the ”observation” becomes more and more of an underestimate.

Figure 4.13: Kalman filter’s roll estimate error during a test run of the sort described in
section 3.4. The red lines are the actual orientations that the staircase-shaped blue Roll
estimate curve should approach during the rest periods. Note that the estimate falls short
of the real value by a larger and larger proportion as the angle increases from θ0 to θ3.
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Overall, we see that the Kalman filter is a highly effective strategy for orientation

estimates. Unfortunately, we were not able to provide the appropriate input data, in the

form of orientation observations, for the Kalman filter to realize its full potential.

4.4.3 Gravity-Residual Adaptive Position Filter

The main reliable way we can test this approach without the Hall array data is to see how

it performs during a stationary period of time. The average accelerometer reading provides

the ground truth for the orientation in this experiment, given that the device is stationary

so all other accelerations are negligible. Under this rest condition, we can evaluate the

gravity-residual algorithm’s performance using the final position estimate. The final position

estimate is a reflection of the drift according to p⃗(t) =
∫ t

0
∫ t′

0 a⃗driftdt′′dt′ = 1
2t2a⃗drift, therefore:

a⃗drift = 2
t2 p⃗(t) = 2p⃗f

N2T 2
s

(4.4)

where t is the time, p⃗f is the final position, N is the number of samples in the record length,

and Ts is the sampling period. This assumes that the drift is constant for the duration of

the recording; alternatively, this is the mean value of the drift over the record length.

If the gravity-residual filter works properly, it should eliminate drift and result in a final

position very close to the starting position. Unfortunately, as we can see in Fig. 4.14, the final

position after 2 minutes (120 seconds) is on the order of 20 meters in the x and y dimension.
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Figure 4.14: Example plot of the gravity-residual adaptive filter run for a 2-minute
stationary test. The filter used was 64 samples long with a learning rate α of 2 · 10−4.
Note the extremely large x-position estimate, an indication that the filter was not effective
at removing drift.

We also note that the x-position estimate swings more severely to nearly 50 meters from the

starting position during the record length. However, we can see that the algorithm works to

some extent because the position is not a monotonically-increasing quadratic with respect

to time, as it would be if no drift correction algorithm were applied. The fact that the x and

y position moves away from the starting point and then comes back towards it could be a

manifestation of the non-stationary drift, i.e. the drift changes with time.

We elected to use a learning rate α of 2 · 10−4 with the 64-sample adaptive filter because

it was the maximum learning rate that did not lead to instability. Instability was detected
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whenever the position estimates grew unbounded, leading to position estimates near the

maximum double floating-point value of 10308 or became ”NaN” (”Not a Number”). We

note that the maximum learning rate is inversely proportional to the number of samples.

Therefore, longer adaptive filters require lower learning rates to avoid instability.

Overall, the performance of the gravity-residual adaptive filter is unsatisfactory since a

stationary test should be where it performs best. Yet, our experiments show that the gravity-

residual adaptive filter is unable to eliminate drift even in this ideal scenario. An alternative

approach could be to formulate this LSE filter as an offline/non-causal filter, effectively

determining the filter weights through a linear regression (or preferably a pseudoinverse)

using the whole record length. The performance might be improved if the filter weights can

take into account all of the observations in this way. However, such an offline/non-causal

(non-real-time) algorithm would limit the tracker to strictly retrospective motion correction.

4.4.4 Position Kalman Filter

Much like the Orientation Kalman Filter in section 4.4.2, we can devise a Kalman filter

to estimate the position as a function of time. Again, instead of providing true observations

of the system states, we will use the statistical observation scheme outlined in section 3.3.4.2.

This will drive the system to the no-movement state defined by a vector of zeros.

We estimated the value of the Q matrix (system disturbance covariance) from the

statistical analysis in section 4.3. This does not include the mean value because the mean
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error of the accelerometer (the drift) is mixed in with the acceleration due to gravity and

thus can’t be reliably estimated. Hence, we estimate that the variance of the system

disturbances is dominated by the variance of accelerometer noise V ar(a) = (6.50 mm/s2)2.

We can then compute the velocity and position variances as V ar(v) = T 2
s V ar(a) and

V ar(p) = (0.5T 2
s )2V ar(a). Therefore, the disturbances’ covariance matrix is approximately:

Q = (6.50 mm/s2)2


1
4T 4

s I3 O3

O3 T 2
s I3

 (4.5)

The optimal observation noise matrix R was determined through trial and error, again,

because there is no appropriate metric to use. We are driving the algorithm toward the

no-movement state. This means that we cannot really ascribe any empirical value to the

variances. However, there is a structure to be followed in the selecting of values for R.

Similar to the disturbance covariance matrix, the observation matrix should be of the form:

R = σ2
o

T 2
s I3 O3

O3 I3

 (4.6)

where σo represents the standard deviation of the observation noise. The matrix structure

involving the appropriate time-scale factor T 2
s ensures that the variance of the position

is scaled appropriately relative to the velocity. To get a realistic waveform, we found an

observation standard deviation of σo = 5 cm/s was appropriate.
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Figure 4.15: Example of the Kalman Position Estimation Filter during a test run of the
sort described in section 3.4: the tracker is moved through waypoints of varying position
and orientation. ”RP” indicates the resting periods.

The resulting position waveforms are shown in Fig. 4.15. We note that the Kalman

filter succeeded in estimating near-constant positions during the resting intervals. Removing

the drift from acceleration measurements and correctly identifying the resting intervals is

a satisfying result considering that we did not provide any state observations, just like in

the orientation estimation section. Unfortunately, it seems that the Kalman filter did not

differentiate between the positions correctly. In fact, the Kalman filter inverted the scale in

a non-trivial way. The positions of a large change in the z-direction were shown to be close,

while the positions that were close were shown to be far, see Fig. 4.16.
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Figure 4.16: Kalman filter’s z-position estimate relative to the starting position during a
test run of the sort described in section 3.4. The red lines are the actual positions that the
staircase-shaped estimate curve should approach during the rest periods (RP). Note that the
actual z-positions in chronological order are: -40.0, -28.7, -18.2, -8.9, and 0.0 millimetres.

As shown in Fig. 4.16, the estimates do not correspond to the actual positions. The

staircase-shaped curve should be ascending (from left to right) but it is descending. It is

unclear why the shape of the curve would be inverted in such a way, it may be partially

caused by errors in the orientation estimates as shown in figure 4.13. We suspect that there

may be an error with respect to the reference frame, which might explain such an inversion of

distances. However, no errors were found in the MatLab script after a thorough examination.

Overall, we see that the Kalman filter is an effective strategy for drift correction. We
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were not able to demonstrate the Kalman filter as a functional approach to position tracking.

These results may stem, in part, from the pseudo-observation scheme we used; however, the

errors of the orientation Kalman filter were not so severe under the same conditions. The

poor performance may be the result of a sub-optimal application of the Kalman filter to the

position-tracking problem and error propagation from the orientation estimates.

4.5 Device-Induced Susceptibility Artifacts

It is important to discuss the impact that placing an electronic device in the MRI

scanner can have on image quality. Particularly, placing a ferromagnetic material changes

the static B0 field strength across inside the sensitive volume of the scanner, manifesting as

a susceptibility artifact. The local strength of the B0 field is changed because the presence

of a ferromagnetic material warps the direction of the field by presenting it with a

low-reluctance path. According to equation 2.1, the fluctuations in B-field caused by

magnetic materials will change the resonance frequency of the protons in proximity to the

device. This change in resonance frequency leads to a disruption of spatial encoding and

even a loss of signal in that region.

In our case, it was difficult to avoid nickel-coating on the contacts of some surface mount

device (SMD) electrical components, most of our components were nickel free but some had

trace amounts. Furthermore, a couple of inductors on the RP2040 MCU, used for power

supply regulation, contained ferrite cores. The ferrite core inductors were desoldered and
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replaced with non-ferromagnetic inductors. Finally and most importantly, the micro USB

charging port of the device (a part of the RP2040) contains a nickel charge plate. We tried

to find a replacement for this part but it seems that nickel charge plates are ubiquitous for

USB connectors. All of these factors combine to create susceptibility artifacts of the sort

shown in Fig. 4.17.

Figure 4.17: T2-weighted turbo spin-echo sequence image of a spherical phantom
(composed of NiSO4 × 6H2O dissolved in distilled water to a 1.25:1000 weight-ratio) when
the tracker is placed on its ”forehead”. Note the warping of the phantom near the top of the
image; the phantom no longer appears smooth and the MR signal is lost near the device.



Chapter 4. Results and Discussion 104

As we can see from Fig. 4.17, a future iteration of this device would require the

replacement of the USB charging port with a non-ferromagnetic alternative. We note that

other components may contribute to the susceptibility artifact but attraction tests with a

permanent magnet demonstrated that the USB connector was by far the largest source of

ferromagnetism. If the connector were replaced, we need to consider how to charge the

device and how to program the device. Charging can be easily replicated, but

programming through the serial connection may prove more challenging.
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Chapter 5

Conclusions and Future Work

The work presented in this thesis is motivated by the importance of motion in Magnetic

Resonance Imaging as a societal and economic problem. We estimated a 57 million CAD

(42 million USD) annual cost associated with the elimination of 465,000 scans because of

motion artifacts in MRI, and the annual number of scans is increasing. We highlighted that

most solutions are too expensive or cumbersome to incite wide adoption and indicated that

a low-cost active-tracker method has the most potential to address this challenge.

The background introduced the artifacts in Magnetic Resonance Imaging (MRI), the

mathematical basis of motion artifacts in MRI and the various manifestations of motion in

an image. We explained how motion (rotation and translation) in, non-selective, 3D MRI

changes the k-space trajectory by means of rotating and modulating k-space with respect to

the scanner’s frame of reference. We discussed the loss of selective excitation when motion
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is through-plane in 2D MRI. We explained how k-space over-sampling software techniques

provide motion mitigation, their primary disadvantage being increased scan times. Finally,

we discussed the tracking solutions present in the literature from passive/optical trackers to

active electronic marker systems.

In response to the challenge, this thesis outlined methods in the design of a low-cost

active MRI motion-tracking system composed of an Inertial Measurement Unit (IMU) and

a set of Hall-effect magnetometers. We defined the system-level picture of our problem:

capture motion and wirelessly relay its parameters in real time to a computer in the control

room. We used a microcontroller with built-in Wi-Fi and Inertial Measurement Units, plus

a Printed Circuit Board (PCB) for connecting the batteries and Hall-effect sensors. We

explained the required precautions entrained by the MR environment, including the forces

on ferromagnetic materials and the RF heating risks with conductors. We presented the

signal processing used to determine the position and orientation of the device from first

principles. To this end, we explained our use of a priori sensor fusion, Kalman filtering, and

adaptive-residual filters. We introduced the notion of statistical observation which allowed

us to use a Kalman filter in the absence of a state observation measurement. Finally, we

presented our testing methods, including a 3D-printed mould with slots fitted to our tracker’s

dimensions.

The results of the presented investigations can be summarized as follows. We found

that powering the Hall effect sensors from an unregulated supply is not acceptable, leading
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to an absence of reliable magnetic field data. This oversight proved to be a critical mistake

as it hindered our tracker from performing as intended. Initially, we felt that using a boost

converter to power our sensors was an unacceptable option since it would likely introduce

stray magnetic fields to the MRI by way of an inductive element, not to mention that most

inductors contain at least trace amounts of ferromagnetic materials. In conclusion, using a

boost converter is the most reasonable way to ensure the proper functioning of our Hall

sensors. We analyzed the statistical characteristics of all our sensors by recording their

zero-input responses (i.e. when the device was not moving). We found the related Mean

Squared Error (MSE) of our sensor’s state estimates and used them to define our signal

processing parameters. The gravity-residual adaptive filter was not effective in eliminating

drift from our pose estimates. However, we demonstrated that a Kalman filter with

statistical observations (as defined in section 3.3.4.2) was effective in eliminating drift from

our pose estimates. Unfortunately, the estimates produced by a Kalman filter with

statistical observations followed a non-linear relationship with respect to the actual states.

In short, the Kalman filter with statistical observations eliminated drift completely, and

provided an orientation estimate that appears to be useful in the recovery of the true

orientation but provided position estimates that could not be resolved to the ground truth.

The first step in the future work that could follow that of this thesis begins with an

implementation of a regulated power supply (boost converter from the battery’s range to 5

V) for the Hall sensors. This would enable us to use our system as intended. However,
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given the promising results from the statistical observation Kalman filter, we could envision

a system that does not require any magnetic field sensors and only uses an IMU to track

pose. This direction would facilitate the miniaturization of the device since it would only

require a Microcontroller Unit, an Inertial Measurement Unit, a Wi-Fi module, and a

battery. However, such a direction requires the resolution of the non-linear relationship

between orientation estimates and ground truths shown in section 4.4.2. Furthermore,

future work includes determining the complex relationship between position estimates and

ground truths shown in section 4.4.4. We suspect that the inclusion of functioning Hall

sensors would improve the performance of the system since they would provide

much-needed corroboration of orientation estimates, improving the orientation estimate

accuracy. With better orientation estimates, we also expect better position estimates since

the latter depends on the former to remove acceleration due to gravity from the

measurements. No matter the direction of future work, it will be necessary to remove all

ferromagnetic materials from the tracker to eliminate the susceptibility artifacts,

specifically replacing the USB connector of any MCU with a non-ferromagnetic alternative.

This will involve a custom charging and programming port because virtually all USB

connectors contain a nickel charge plate. Finally, we suggest that the ideal solution would

not only contain the Hall sensors to observe the orientation but would include a fourth

sensor capable of observing the position. In this way, the Kalman filters for orientation and

position could be used as intended by their prediction-observation workflow.



109

Bibliography
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