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Abstract 

The hydrocyclone is a continuously operating classifying device that utilises differences in drag 

and inertial forces to separate particles based on size, shape and density. Hydrocyclones are used 

extensively in the mineral processing industry, with their primary use being in closed circuit 

grinding. The importance of their performance on the efficiencies of both the grinding circuit and 

downstream processes has led to their characterisation via empirical models. However, empirical 

models are limited to the range of process conditions used in their creation, and often require 

additional testing to calibrate the results to specific applications. Computational Fluid Dynamics 

(CFD) provides a more fundamental approach to the modelling and prediction of the flow of water 

and particles within the hydrocyclone. A thorough literature review determined that while 

computationally expensive, CFD is able to accurately predict fluid flow and particle classification 

at low solid concentrations (< 10 % by volume). The modelling of high solid concentration slurries, 

which are more consistent with industrial conditions, is currently the focus of many researchers. 

The validation of such models also provides a significant challenge. Due to the opacity of slurries, 

visual or laser diffraction techniques are only able to measure particle velocities in flows with low 

solid concentrations (< 1 % by weight). Positron Emission Particle Tracking (PEPT) is a technique 

that allows for a radioactive particle to be tracked through the triangulation of the emitted gamma 

rays, therefore no optical observation is required. The high particle velocities, coupled with the 

tight curvature, within the hydrocyclone fall outside of the typical dynamic range studied by PEPT, 

which has limited previous PEPT experimentation. The implementation of a new modular positron 

camera design allowed for the creation of a highly sensitive field of view, necessary for the 

tracking of high speed, low activity tracers. The tracking performance of this cross-pattern 

assembly was first analysed to determine the 3D location error and location frequency as a function 

of tracer activity and speed. Using this information, trajectories for particle sizes down to the 106-

212 μm size range were determined, a large improvement when compared with previous studies. 

Results showed that repeatable velocity fields can be produced, which is the first time a velocity 

profile has been reported for the hydrocyclone using the PEPT technique. A CFD simulation of 

the trajectory of a 1 mm quartz sphere was conducted to compare to the results of PEPT. While 

the trajectory was found to closely match that measured by PEPT, the velocity magnitude, and 

therefore residence time, of the particle was found to vary greatly from the measured value. This 

indicated that more work is required to model particle flow behaviour.  
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Résumé 

L'hydrocyclone est un dispositif de classification à fonctionnement continu qui utilise les 

différences de forces de traînée et d'inertie pour séparer les particules en fonction de la taille, de la 

forme et de la densité. Les hydrocyclones sont largement utilisés dans l'industrie du traitement des 

minéraux, leur principale utilisation étant le broyage en circuit fermé. L'importance de leurs 

performances sur les efficacités du circuit de broyage et des processus en aval a conduit à leur 

caractérisation par des modèles empiriques. Cependant, les modèles empiriques sont limités à la 

gamme des conditions des processus utilisés dans leur création, et nécessitent souvent des tests 

supplémentaires afin de calibrer les résultats à des applications spécifiques. La dynamique des 

fluides computationnelle (DFC) fournit une approche plus fondamentale de la modélisation et de 

la prédiction du flux d'eau et de particules dans l'hydrocyclone. Un examen approfondi de la 

littérature a permis de déterminer que, bien que coûteux en termes de calcul, le DFC est capable 

de prédire avec précision le débit et la classification des particules à de faibles concentrations de 

solides (<10% en volume). La modélisation des suspensions à haute concentration de solides, qui 

sont plus compatibles avec les conditions industrielles, est actuellement l’enjeu de nombreux 

chercheurs. La validation de ces modèles constitue également un défi important. En raison de 

l'opacité des suspensions, les techniques de diffraction visuelle ou par laser ne permettent de 

mesurer les vitesses des particules que dans des écoulements à faible concentration de solides 

(<1% en poids). Le suivi des particules à émission de positrons (PEPT) est une technique qui 

permet de suivre une particule radioactive à travers la triangulation des rayons gamma émis, et 

donc, aucune observation optique n'est requise. Les vitesses de particules élevées, couplées à la 

courbure serrée, à l'intérieur de l'hydrocyclone tombent en dehors de la plage dynamique typique 

étudiée par le PEPT, ce qui a limité les expérimentations PEPT faites par le passé. La mise en 

œuvre d'une nouvelle conception de caméra à positron modulaire a permis la création d'un champ 

de vision très sensible, nécessaire au suivi des traceurs à haute vitesse et à faible activité. La 

performance de poursuite de cet ensemble de motifs croisés a d'abord été analysée afin de 

déterminer l'erreur de localisation 3D et la fréquence de localisation en fonction de l'activité et de 

la vitesse du traceur. En utilisant cette information, des trajectoires pour des tailles de particules 

allant jusqu'à 106-212 μm ont été déterminées, une amélioration importante par rapport aux études 

précédentes. Les résultats ont démontré que des champs de vitesse reproductibles peuvent être 

produits, ce qui est la première fois qu'un profil de vitesse a été rapporté pour l'hydrocyclone en 
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utilisant la technique PEPT. Une simulation CFD de la trajectoire d'une sphère de quartz de 1 mm 

a été réalisée afin de la comparer aux résultats du PEPT. Bien que la trajectoire ait été trouvée 

proche de celle mesurée par PEPT, l'amplitude de la vitesse, et par conséquent le temps de 

résidence, de la particule s'est révélée être très différente de la valeur mesurée. Cela indique que 

davantage de travail est requis sur le comportement de l'écoulement des particules. 
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Chapter 1: Introduction 

1.1 Background 

1.1.1 Minerals, Rocks and Ores 

The formations in which metals are found in the Earth’s crust are determined by their reactivity 

with their environment, in particular with oxygen, sulphur, and carbon dioxide. Non-reactive 

metals such as gold and platinum are predominantly found in their native or metallic form. 

Reactive metals, on the other hand, are always found in compound form, such as oxides, silicates 

or sulphides. These naturally occurring chemical compounds are known as minerals. Minerals by 

definition are natural, inorganic substances possessing a defined chemical composition and atomic 

structure. The term mineral processing, however, is often used in a much broader context. It 

includes the processing of any material with economic value that is extracted from the earth, 

including coal, chalk, specific clays, and granite. Such materials are, in fact, rocks, which are not 

homogeneous in chemical or physical composition, but generally consist of a variety of minerals. 

Coal is the exception to this rule as it does not technically meet the criteria of being a rock or 

mineral, as it is made up of organic material. However, for all intents and purposes coal is 

considered an organic sedimentary rock. 

The crustal abundance of metals is relatively low, with copper, the most important non-ferrous 

metal, only accounting for 0.0055 % of the earth’s crust. It is therefore apparent that if the minerals 

containing important metals were uniformly distributed throughout the earth, they would be so 

thinly dispersed that their economic extraction would be impossible. However, due to the action 

of geological events, minerals have concentrated in certain areas and therefore are at a suitable 

level to be profitably extracted, thus becoming an ore deposit. Most ores are mixtures of 

economically extractable minerals and extraneous non-valuable material described as gangue. 

Mineral processing involves the liberation (via size reduction) and separation of the valuable 

material from the gangue. This concentration, often conducted in close proximity to the mine’s 

location, allows for previously uneconomical ore deposits to be upgraded to level deemed useful 

to society (Wills and Finch, 2016). 
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1.1.2 The Basics of Mineral Processing 

The operations of mineral processing can be broken down into three broad categories: 

comminution, separation and product handling (Figure 1.1a). Comminution involves a series of 

size reduction steps, undertaken by multiple crushing and grinding units (Figure 1.1b), to liberate 

the valuable materials from the waste rock (gangue). Liberation, shown in Figure 1.2, is achieved 

when the grinding product is a mixture of relatively pure mineral and gangue particles. 

Figure 1.1: (a) Simplified block flowsheet of mineral processing, with (b) a more detailed flowsheet 

of a typical comminution circuit. Adapted from Wills and Finch (2016). 

Ore, taken directly from the mining process and termed run-of-mine (ROM), is crushed from sizes 

of 1.5 m down to approximately 1-2 cm. Grinding follows crushing, further reducing the size to 

25-300 µm depending on the grain sizes of the valuable material. Grinding is known to be 

extremely energy intensive, consuming up to 50 % of a concentrator’s energy consumption 

(Radziszewski, 2013). Therefore, the objective of comminution is to liberate the valuable 

mineral(s) at the coarsest possible particle size. Once the particles reach the correct size, 

determined by their degree of liberation, they are forwarded to a separation stage. This is achieved 

via classification, using units such as the hydrocyclone. Proper classification will reduce energy 

consumption and improve downstream separation processes (discussed further in Section 2.3).  
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Figure 1.2: Liberation of the components of a binary ore. The diagram shows the relationship 

between size reduction and liberation, where the decreased particle size led to greater liberation of 

the valuable mineral. 

The separation process allows for the valuable material to be removed from the gangue by 

exploiting differences in physical or chemical properties. Froth flotation is the most versatile 

method of mineral concentration. It involves the attachment of mineral particles to air bubbles 

within an agitated pulp, with the valuable material collected in the froth phase. Other common 

physical properties used to concentrate ores include: density (via gravity concentration); magnetic 

susceptibility (via high or low intensity magnetic separators); and electrical conductivity (via 

electrostatic separation). Regardless of the chosen separation process, two outputs will be 

produced: a concentrate stream (with a high concentration of the valuable material) and a tailings 

stream (consisting primarily of waste material). Product handling includes all the additional 

processes needed in the production of a saleable product and for waste removal. This includes 

dewatering and filtering, tailings disposal (back filling), and shipment of concentrates (Wills and 

Finch, 2016). 

1.1.3 Mineral Demand, Depletion and Need for Development 

The practice of mineral processing, in its crudest form, is as old as human civilisation itself. From 

the flint and obsidian blades of the Stone Age, to the uranium ores of Atomic Age, the use of 
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minerals or rocks has had a key role in the development of society as we know it today. Mineral 

production is driven by the continued consumption of said resources in middle to high income 

countries, and by the unprecedented levels required by the rapid development of low income 

countries (Prior et al., 2012). While mineral stocks are unquestionably finite, improved technology 

and rising resource prices have allowed mining companies to produce minerals and metals at 

greater rates than at any other time in history (Mudd, 2010). This current oversupply of raw 

materials, however, masks a persistent underlying global challenge: namely, how to supply raw 

materials to an expanding global population that is expected to reach 8.5 billion by 2030 (Ali et 

al., 2017). This puts increased focus on our future ability to access mineral resources and the 

economic, social and environmental costs of doing so. As high grade, quality deposits continue to 

reach extinction, newly operational deposits are continuing to decline in both grade and quality 

(Figure 1.3). This increases the environmental and processing challenges that comes from issues 

such as ore depth and location, fineness of grain, mineralogy complexity or impurities such as 

arsenic or mercury. This is represented in part by the increase in both processed ore and mined 

waste material (Figure 1.4)  

Figure 1.3: The steadily declining trend for ore grades, based upon data from a variety of base and 

precious metal operations in Australia. Reproduced with permission from Prior et al. (2012).  
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Figure 1.4: The relative quantity of waste rock compared to ore milled for (a) gold and (b) copper, 

which has increased dramatically in the last 20 years. Reproduced with permission from Prior et al. 

(2012). 

1.1.4 Designing the Future – The Need for Computers 

The minerals industry must continue to demand a high level of productivity and efficiency in the 

processing of raw materials. In this mindset, to produce products at the lowest possible 

environmental and economic cost, it is essential that mineral processing and metal production 

companies optimise, as far as possible, every element of their processing plant. The increased scale 

of modern mining sites means that incremental improvement represents a large economic benefit. 

Modern Computational Fluid Dynamics (CFD) is a powerful tool which can be utilised to 

significantly enhance the understanding of various unit operations. The continued advancements 

(b) 

(a) 
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in computational hardware and software, coupled with the increased experience of practitioners 

and expanded literature database, have led to the successful implementation of CFD models in 

many industrial design applications. The ability to accurately model a unit system, such as the 

dense multiphase flow in a hydrocyclone, allows for the assessment of multiple geometrical 

designs and various flow behaviour, without the requirement of expensive material or 

manufacturing costs (Mittoni and Schwarz, 1998). Proper modelling, however, must always be 

used in conjunction with experimentally determined results. It is therefore important to develop a 

range of measurement techniques to study particle and fluid flows to build such databases (Grace 

and Taghipour, 2004). 

1.2 Thesis Objectives 

The primary goal of this research project was to further the accuracy and applications of 

hydrocyclone models. Empirical models have gained widespread use due to their simplicity and 

lack of a better alternative. However, their limited versatility and requirements for additional 

experimental testing means these models can never provide true prediction or optimisation. After 

a comprehensive review of the literature on computational models of hydrocyclones (presented in 

Chapter 3), it was evident that experimental data for particle velocities in high solid content flows 

(< 10 % by weight) was a major area of study missing in the field.  

Positron Emission Particle Tracking (PEPT) was selected as an area of interest, as it allows for the 

tracking of particles in opaque dense flows, not possible via optical techniques. Previous work 

conducted by Radman et al. (2014) demonstrated that the conventional positron camera used for 

PEPT, the ADAC Forte (Parker et al., 2002), was not sensitive enough to capture the high speed, 

curved flow in the hydrocyclone. Therefore, the tracking of particles using a new camera design 

was required. This was accomplished by completing the following sub-objectives: 

1. Design a modular positron camera with a field of view suited to the geometry of the 

hydrocyclone.  

2. Study the location accuracy (three-dimension location error) of the new modular camera 

assembly, for a range of different tracer activities and speeds, by comparing calculated 

trajectories to a known path. 
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3. Determine the optimum processing parameters (for the track code) for a range of different 

tracer activities and speeds, using the location error as a metric. 

4. Produce three-dimensional trajectories and velocity profiles of mineral particles in the 

hydrocyclone. 

The final objective was to create a preliminary CFD model of the hydrocyclone, based upon the 

theory presented in Chapter 3. This entails the two-phase (air-water) modelling of the flow in the 

hydrocyclone, with the addition of a single particle. The experimental results obtained from the 

PEPT experimentation was used to validate the model’s results. 

1.3 Thesis Structure 

The following thesis is structured as a manuscript based thesis. A manuscript thesis is presented 

as a collection of papers written by the candidate, which are either published or to be published. 

As with a traditional thesis an introduction, literature review and conclusions are all still necessary. 

The current chapter contains a brief introduction to mineral processing and outlines the project 

goals and thesis structure. Chapter 2 presents a literature review of classification, with particular 

focus on the hydrocyclone. Chapters 3 to 6 contain the four manuscripts, which in order are: 

Chapter 3: A review of the computational modelling of hydrocyclones – a need for 

understanding and prediction. (To be submitted as: Sovechles, J.M., Sasmito, A.P., Waters, 

K.E., 2017. A review of the computational modelling of hydrocyclones – a need for 

understanding and prediction.) 

Chapter 4: Performance analysis of a new positron camera geometry for high speed, 

fine particle tracking. (Published as: Sovechles, J.M., Boucher, D., Pax, R., Leadbeater, T., 

Sasmito, A.P., Waters, K.E., 2017. Performance analysis of a new positron camera 

geometry for high speed, fine particle tracking. Measurement Science and Technology 28, 

095402.) 

Chapter 5: Improvements in positron emission particle tracking within a hydrocyclone. 

(Submitted to Chemical Engineering Science in September 2017: Sovechles, J.M., 

Boucher, D., Vinnett, L., Pax, R., Leadbeater, T., Langlois, R., Sasmito, A.P., Waters, K.E., 
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2017. Improvements in positron emission particle tracking within a hydrocyclone. Current 

Status – Under review) 

Chapter 6:  A CFD simulation of a single particle’s flow inside a hydrocyclone with 

validation through PEPT (To be submitted as: Sovechles, J.M., Sasmito, A.P., Waters, 

K.E., 2017. A CFD simulation of a single particle’s flow inside a hydrocyclone with 

validation through PEPT.) 

As the four manuscripts are presented as published, the reader should note that some aspects of 

the literature reviews may be repetitious. In between Chapters 3 to 6, linking text is provided to 

help give the reader context for the progression from one chapter to the next. To finish Chapter 7 

provides the conclusions, contributions to knowledge, and suggestions for future work. 

1.4 References 
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Chapter 2: Literature Review - Classification 

2.1 Chapter Overview 

This chapter explores the importance and role of classification in mineral processing, with 

particular interest placed on the hydrocyclone. The performance, characterisation and deficiencies 

of hydrocyclones are also examined. The principles and design of the hydrocyclone was first 

patented in the late nineteenth century, however it was not until the 1950s that it gained widespread 

use as a particle classifier. Prior to this era, gravitational classifiers, such as the rake and spiral 

classifier monopolised particle separation in mineral processing. However, as the demand for high-

capacity and fine grind sizes increased, the application of hydrocyclones in closed grinding circuits 

increased dramatically. This increased use spurred investigations into the separation mechanisms 

that govern hydrocyclones in order to construct predictive models. Flow behaviour such as by-

pass, the fish-hook effect, and short-circuiting were found to cause misclassification of fine or 

coarse particles. This ultimately leads to decreased efficiency in both the size reduction and 

separation stages of mineral processing. The complexity of the turbulent, three-phase system 

within the hydrocyclone has limited performance prediction to empirical models, based on large 

databases of experimental data. The large number of geometrical and operational variables, 

however, means that the empirical models lack true predictive power and often require additional 

testing before being applied. To combat this, theoretically based computational models have 

recently been a focus of study and will discussed further in Chapter 3.  

2.2 Introduction 

Classification refers to sizing operations that exploit the differences in settling velocities exhibited 

by particles of different sizes or phases of different densities. This can include phase separation 

(gas-solid, liquid-solid), density separation (liquid-liquid) or size separation (solid-solid). 

Classification is one of the most important industrial unit processes (Schubert, 2010), with 

applications in the oil, food, paper, and drilling industries. In the case of mineral processing, 

classifiers are primarily used as particle classifiers in closed-circuit grinding, but have found use 

in desliming, degritting, and thickening (dewatering) (Wills and Finch, 2016).  

Heiskanen (1993) defines particle classification as a method of separating particle mixtures into 

two or more products based upon the resulting forces acting on the fine and coarse fractions. The 
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forces acting on a particle can be divided into accelerating forces, such as gravitational or inertial 

forces, and opposing forces, such as drag. Other forces can include buoyancy, particle-particle 

interaction and turbulent forces. The movement of the carrying fluid is often used to obtain a large 

enough difference in the resulting velocities to enable the products to be efficiently separated. This 

carrying fluid can be a liquid or a gas. In mineral processing, this fluid is usually water, and wet 

classification is generally applied to mineral particles that are considered too fine (< 200 µm) to 

be sorted efficiently by screening. Dry classification has some disadvantages such has dust control 

and can only be used when dry grinding takes place (Lynch and Rowland, 2005). Dry grinding is 

still relatively rare in mineral processing, as such this chapter will only discuss wet classification. 

2.3 Importance of Classification in Mineral Processing 

As mentioned previously, mineral processing can be broken down into three principle stages: size 

reduction (liberation), separation and product handling. The last stage of size reduction, grinding, 

was first operated in open circuit (no recirculation) (Lynch and Rowland, 2005). This meant that 

products contained a large fraction of very fine particles, if all the particles larger than the required 

top size were to be eliminated, or too many coarse particles if overgrinding was to be avoided. 

This was a major problem as most downstream separation processes, such as flotation or gravity 

separation, require a specific and narrow particle size range to optimise performance. Figure 2.1 

shows the drop in flotation recovery if particle sizes are two small (< 10 µm) or too large (> 100 

µm).  

Figure 2.1: A typical flotation recovery curve showing the effect of particle size on recovery. 

Adapted from data presented by Gaudin et al. (1931) and Trahar (1981).  
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Closed circuit grinding eliminated this problem by discharging particles from the grinding mill 

before overgrinding occurs, classifying it, and sending the coarse particles back for further 

grinding. An example of the now standard SABC (Semi Autogenous, Ball mill, Crusher) circuit is 

shown in Figure 1.1. The benefits of proper classification can include: improved comminution 

efficiency; improved product (classifier overflow) quality; and greater control of the circulating 

load to avoid overloading the circuit. The improvement in efficiency of the grinding circuit is seen 

as either a reduction in energy consumption or an increase in throughput (capacity). The main 

increase in efficiency is due to the reduction of overgrinding. By removing the finished product-

size particles from the circuit, they are not subject to further unnecessary grinding (overgrinding), 

which would be a waste of comminution energy. This, combined with the recycling of unfinished 

(oversize) particles, results in the circuit product (classifier overflow) having a narrower size 

distribution than is the case for open circuit grinding. This narrow size distribution and restricted 

amount of excessively fine material benefits downstream mineral separation processes. Other 

benefits from proper classification come from reduced particle-particle contact cushioning from 

fines in the grinding mill and less misplaced coarse material in the overflow, which would reduce 

downstream efficiencies. Therefore, classifier performance is critical to the optimal running of a 

mineral processing plant. A simplified summary of this process is presented in Figure 2.2. 

Figure 2.2: Simplified flow diagram of a typical mineral processing plant, showing the importance 

of proper classification.  
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2.4 Types of classifiers 

Wet classifiers can be categorised by many features. The most typical aspect of classifier 

characterisation is the applied force field to the unit: either gravitational or centrifugal. 

Gravitational classifiers can be further separated into two categories, depending on the movement 

of the carrier fluid and the particle settling direction. The first is sedimentation classification, where 

the fluid movement is perpendicular to gravity and thus forms an angular particle trajectory. 

Alternatively, if the fluid movement and particle settling direction are opposite, the unit is defined 

as a hydraulic or counter flow classifier. Both of these concepts are displayed graphically in Figure 

2.3.  

Figure 2.3: Forces affecting settling particle in different types of gravitational classifiers. Adapted 

from Heiskanen (1993). 

The simplest form of sedimentation classifier is the settling cone (shown in Figure 2.4a). Feed is 

distributed into the top of the tank, with the spigot discharge valve, S, initially closed. Large 

particles accumulate in the cone, forming a dense bed, while the fine particles overflow with the 

majority of water. Once the bed is formed, the spigot valve is opened, and sand is discharged at a 

rate equal to that of the input. Classification occurs radially across zone D from the feed pipe to 

the overflow lip. As it relies solely on the force of gravity for separation (non-mechanical), it is 

not suitable for the classification of fine particles. Two other forms of sedimentation classifiers are 

the rake and spiral classifier (Figure 2.4b and Figure 2.4c respectively). The settled particles are 

conveyed up an inclined trough by a mechanical rake or helical screw. These conveying 

mechanisms also act as agitation to help keep the fine particles in suspension. 
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A major disadvantage of mechanical sedimentation classifiers is their inability to produce 

overflows at fine particle sizes and reasonable pulp densities. To produce fine particle separations, 

the pulp is diluted to such an extent that the overflow becomes too dilute for subsequent operations 

and therefore requires thickening. This is disadvantageous as, apart from the increase capital cost 

and space requirements, surface reactions (such as the oxidation of sulphide particles or the 

addition of flocculants) may occur in the thickener, which may affect subsequent processes, 

especially froth flotation. 

Figure 2.4: Principles of operation for: (a) the settling cone (non-mechanical sedimentation 

classifier); (b) rake classifier and (c) spiral classifier (mechanical sedimentation classifiers). 

Reproduced with permission from Wills and Finch (2016). 

Hydraulic classifiers, which typically consist of a series of sorting columns, are characterised by 

the use of water, additional to the feed pulp, introduced in a direction counter to that of the settling 

particles. The continuous increase in size of each sorting column creates a varied rising current, 

ranging from a relatively high velocity in the first sorting column, to a relatively low velocity in 

the last. This produces a series of underflow products, with coarser, denser particles in the first 

underflow and progressively finer products in the subsequent underflows. These features are 

illustrated in Figure 2.5. 

(c) 

(b) 

(a) 
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Figure 2.5: (a) Principles of operation for a hydraulic classifier with (b) representation of spigot 

products. Reproduced with permission from Wills and Finch (2016). 

Gravitational classifiers are best suited for coarser classification, where the influence of gravity is 

more pronounced. Their main benefits include: low energy usage; their ability to give very high 

solids content in the sand fraction; and the independence of cut-size and capacity. This makes them 

useful for dewatering applications. Centrifugal classifiers, on the other hand, have smaller 

footprints and high efficiencies at small particle sizes (< 70 µm). The main centrifugal classifier is 

the hydrocyclone. Hydrocyclones have many advantages over gravitational classifiers, including 

high specific capacity, low investment cost, and simple operation. This has led to their universal 

application in closed circuit grinding, as well as uses in dewatering and desliming. A summary of 

the key features of both gravitational and centrifugal classifiers is shown in Table 2.1. 

Hydrocyclones will be discussed further in Section 2.6. 

Table 2.1: Comparison of key parameters for centrifugal and gravitational classifiers. Adapted 

from Wills and Finch (2016). 

Item 
Centrifugal Classifiers 

(Hydrocyclones) 

Gravitational Classifiers 

(Spiral, Cone, Rake, etc.) 

Footprint (m2) Small Large 

Specific Capacity (t·m-2) High Low 

Particle Cut-size range (µm) Fine to coarse (1 - 300) Coarse (> 70) 

Capacity/Cut-size 

Dependency 
Yes No 

Energy Consumption High (Feed pressure) Low 

Initial Investment ($) Low High 
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2.5 Classification Vs. Screening 

Classification in a fluid medium is not only dependent on the particle size, but specific density and 

shape. Screens, on the other hand, make two-dimensional (width and thickness, but not length) 

size separations according to the size of the openings in the screens’ surface. This means they are 

not directly influenced by the density spread in the feed minerals, giving them a much higher 

separation efficiency when compared to classifiers. With the invention of modern high-frequency, 

vibratory screens, industrial screening has been extensively used for size separations from 300 mm 

down to 250 µm. This eliminated any use for gravitational classifiers for coarse size particle 

separation. For the fine particle range, the selection between screening and classification is 

typically influenced by the large areas of screening surface needed for fine separation, which 

substantially increases the capital cost for high throughput operations. Although there are screen 

types that are capable of efficient size separations down to 40 µm, efficiency in terms of specific 

capacity decreases rapidly with fineness. Therefore, sizing below 250 µm is more commonly 

undertaken by classification, in particular: hydrocyclones.  

Figure 2.6 shows a comparison of the performance curve (performance, or partition, curves are 

discussed in detail in Section 2.6.2) for a screen and hydrocyclone in the grinding circuit of the El 

Brocal concentrator in Peru. The data was gathered at different times to allow for both units to 

operate as the final classification stage (this is the same as the hydrocyclone shown in Figure 1.1). 

As expected, the screens were able to produce a much steeper slope, meaning a higher particle 

separation efficiency. It must be noted, however, that it was at a substantial higher cut-size (~500 

µm) when compared to the hydrocyclone operation (~50 µm). If the cut-size of a screen operation 

is lowered, the particle separation efficiency decreases, illustrated by Figure 2.7. Hydrocyclones 

are therefore still the optimal choice for fine particle sizing in closed grinding circuits. 
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Figure 2.6: Performance curves for hydrocyclones and screens in the grinding circuit at El Brocal 

concentrator, Peru. Adapted from data published by Dündar et al. (2014).  

Figure 2.7: Performance curves for hydrocyclones and screens in the grinding circuit at Cerro 

Lindo concentrator, Peru. Adapted from data published by Dündar et al. (2014). 

2.6 The Hydrocyclone 

2.6.1 Basic design, operation and sizing 

The hydrocyclone is a continuously operating classifying device that utilises differences in drag 

and inertial forces in high speed flows to accelerate the settling rate of particles or liquids. 

Hydrocyclones, often shortened to cyclone, have gained widespread use in number of industries 

since their inception in the 1940’s (Aldrich, 2015), despite the first patent being obtained in 1891 
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(Bretney, 1891). A modern hydrocyclone, shown in Figure 2.8a, consists of two main sections: a 

conically shaped vessel, open at its apex (also referred to as spigot or underflow); attached to a 

cylindrical chamber, which contains a tangential or involute feed inlet. An overflow pipe, namely 

the vortex finder, passes through the roof of the cylindrical section, with the remaining area sealed. 

The feed enters under pressure to the stationary cyclone body, creating a swirling, vortex flow 

pattern, which due to the intrusion of the vortex finder is forced downwards. This minimises the 

short-circuiting of feed directly to the overflow. Once the flow leaves the feed zone, also referred 

to as the cylindrical section, and travels downwards, the increasing constriction in the adjoining 

conical section forces some of the flow to reverse its direction. This forms a secondary upwards-

travelling inner vortex. This flow pattern is aided by the formation of an air core in the low-pressure 

zone along the vertical axis of the cyclone. The air core is created largely from the atmosphere 

through the apex opening, but in part by dissolved air in the feed. The upward rotating flow 

continues to the vortex finder, which both shields the inner vortex from the high inlet velocity and 

stabilises its swirling motion. This double vortex flow pattern is illustrated in Figure 2.8b. 

Figure 2.8: A hydrocyclone showing (a) main components, and (b) principle flows. Reproduced 

with permission from Wills and Finch (2016).  
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Particles within the hydrocyclone’s flow pattern are subjected to two opposing forces: an ‘outward’ 

acting inertial force, and an opposing inwardly acting drag force provided by the carrying fluid. 

The inertial force, sometimes misinterpreted as a ‘centrifugal force’, develops as a particle wishes 

to continue its motion, which at any moment is tangential to the circular path. This force balance, 

shown in Figure 2.9a, is dependent upon mass and surface area, thereby separating particles 

according to their size, specific gravity and shape. Particles with a larger mass, therefore having a 

greater momentum than drag, move to the wall of the cyclone, and migrate down to the apex 

opening. Particles whose inertia is lower in magnitude than the force required to overcome the 

drag of the carrier fluid, migrate toward the zone of low pressure along the hydrocyclone’s vertical 

axis and are carried upwards through the vortex finder to the overflow. There will, naturally, be a 

particle size at which the orbiting radius will coincide with the contour of zero vertical velocity. 

Theoretically this contour is formed at a location between the opposite moving vortices, illustrated 

in Figure 2.9b. This particle size therefore has an equal chance of reporting to either the overflow 

or underflow, and is referred to as the ‘cut-size’. The cut size and the behaviour of particles near 

this size determine the selection and performance of the hydrocyclone and is typically represented 

by a partition curve. 

Figure 2.9: Principles of hydrocyclone separation: (a) forces acting on an orbiting particle in the 

hydrocyclone and (b) distribution of the vertical components of velocity in a hydrocyclone. 

Reproduced with permission from Wills and Finch (2016).  

(a) (b) 
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Theoretically, the cut-size should be determined to a large extent by the diameter of the 

hydrocyclone. Larger hydrocyclones will have their envelope of zero velocity at a greater radius 

than that of a smaller hydrocyclone, and will therefore recover only the heaviest of particles. This 

has also been shown to be true in practice, with hydrocyclones manufactured in a range of sizes. 

The size required for a particular application can be estimated from empirical models, such as that 

proposed by Arterburn (1982). However it is more common to rely on the suppliers’ experience 

and to select the required model by referring to manufacturers’ charts (Arterburn, 1982), which 

show capacity and separation size ranges in terms of cyclone size. A typical performance chart is 

shown in Figure 2.10 (where the D designation refers to cyclone diameter in inches). Alternatively, 

Table 2.2 details a different range of hydrocyclone designs with their associated diameters, 

capacities, pressure drops and cut-sizes shown (Bradley, 1965). 

Figure 2.10: Hydrocyclone performance chart for a Krebs hydrocyclone, where D represents the 

hydrocyclone diameter in inches. Reproduced with permission from Wills and Finch (2016).  
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Table 2.2: Hydrocyclone performance data for a Heyl and Patterson hydrocyclone. Adapted from 

Bradley (1965). 

Diameter 

(mm) 

Capacity 

(m3·s-1) 

Pressure Drop 

(kPa) 

Cut-size 

(µm) 

28 0.2-0.4 276-414 2-10 

76 1-3 138-276 5-20 

203 11-45 138-207 20-80 

356 34-159 103-172 80-300 

610 159-454 69-138 150-500 

914 454-908 28-83 200-600 

 

Hydrocyclone manufacturers only produce a limited range of cyclone diameters. Therefore, in 

order to cover a wide range of cut sizes and flow rates, each cyclone of a given size can be operated 

with different aperture sizes (inlet, overflow and underflow) through the use of interchangeable 

parts. This approach requires an accurate knowledge of how geometric variables affect the 

equipment performance (Castilho and Medronho, 2000). 

2.6.2 Characterisation of hydrocyclone performance 

The analysis of the fluid and particle flow inside a hydrocyclone is undoubtedly a complex 

problem. Hydrocyclone performance is typically characterised by the holistic performance of the 

unit. This includes the ratio of two outlet streams (flow split), the particle size distribution in these 

streams and the pressure drop within the cyclone. While this information does not provide detailed 

explanations of the impact of various geometrical and operational parameters, it does allow for the 

discovery of various phenomena that negatively impact hydrocyclone performance. 

2.6.2.1 Flow Split 

The simplest and most obvious way to measure classification efficiency is to relate the mass flow 

rate of the coarse (underflow) and fine (overflow) fractions. This is defined as the mass flow split, 

and is calculated by dividing the mass flow rate of either outlet streams, depending on the quantity 
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of interest, by the feed. While simple to calculate with experimental data, the actual flow split in 

hydrocyclones is difficult to predict and has been referred to as one of the least understood aspects 

of hydrocyclone operation (Romero et al., 2004).  

2.6.2.2 The Partition Curve 

A much more detailed and precise method of measuring and comparing classifier performance is 

by considering each particle size class separately. The fractional recoveries (probabilities) to the 

underflow of each particle size class is calculated and plotted against particle size, creating a 

‘partitioned’ mass split. The partition curve (also referred to as the performance curve, efficiency 

curve, selectivity curve, or Tromp curve) is the most common method of representing 

hydrocyclone efficiency. A key parameter determined by the partition curve is the cut-size, or 

separation size, which is defined as the size at which 50 % of the particles in the feed report to the 

underflow. This point is referred to as the d50 size, and is the particle size that has an equal chance 

of going to either the overflow or underflow. Figure 2.11 displays the key features of a standard 

partition curve for a hydrocyclone. 

Figure 2.11: Partition curve showing the difference between ideal and real classification, the cut-

size, and the features responsible for the misclassification of particles. 

2.6.2.3 Sharpness of Cut 

Distribution efficiency curves are not easily comparable. Therefore, a sharpness, or imperfection, 

parameter, I, was developed for easier comparison between different partition curves. The value is 

determined by the slope of the central section of the partition curve; by taking the points at which 
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75 % and 25 % of the feed particles report to the underflow. These are the d75 and d25 sizes, 

respectively.  

 𝐼 =
𝑑75 − 𝑑25

2𝑑50
 Equation 2.1 

The closer the slope is to vertical, the lower the value of I, and the greater the classification 

efficiency. Perfect classification would give I = 0; but in reality values range between 0.2 and 0.8 

(Heiskanen, 1993).  

2.6.2.4 By-pass Fraction in Underflow 

When constructing the partition curve for a hydrocyclone, it is observed that as particle size 

reduces the partition value does not appear to approach zero, but instead approaches some constant 

value. This is illustrated in Figure 2.11. To explain, Kelsall (1953) suggested that solids of all sizes 

are entrained in the coarse product liquid, by-passing classification in direct proportion to the 

fraction of feed water reporting to the underflow. The logic for this was that particles with sizes 

analogous to water molecules (approaching zero) would show no tendency to classify (i.e., have a 

zero settling velocity) in the hydrocyclone, and would thus split with the water (Kelly, 1991). This 

analysis was validated by the fact that water injection at the underflow discharge markedly reduces 

the by-pass (Kelsall and Holmes, 1960). 

To correct for this occurrence, the measured partition curve is adjusted based on the fraction of the 

total water which is discharged through the underflow, 𝑅𝑤/𝑢. The corrected curve is calculated by 

Equation 2.2 (Kelsall, 1953; Wills and Finch, 2016): 

 𝐶𝑚𝑖
=

𝑚𝑖 − 𝑅𝑤/𝑢

1 − 𝑅𝑤/𝑢
 Equation 2.2 

where 𝐶𝑚𝑖
 is the corrected mass fraction of a particular particle size reporting to underflow, and 

𝑚𝑖 is the measured mass fraction of a particular size reporting to the underflow. The corrected 

curve describes particle recovery to the underflow by true classification and introduces a corrected 

cut-size term, d50c. Both the actual partition curve and the corrected curve are important as they 

show both the efficiency of the classification action within the hydrocyclone, without the bias of 

the underflow water, and the magnitude of the by-pass, which is to be minimised. 
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2.6.2.5 Fish-hook effect 

In some situations, the by-pass fraction is not consistent, causing an increase in partition number 

as the particle size approaches zero. This is described as "fish-hooking". While not always present 

it has occurred sufficiently often to invite examination (Finch, 1983; Kelly, 1991). There have 

been many theories put forth about the origin of the fish hook effect. Luckie and Austin (1975) 

attributed the fish hook to the internal recycling of fines, therefore increasing the probability of 

reporting to the coarse fraction. Finch (1983) stated that while modelling the device as two 

cyclones in series did simulate the fish-hook, internal recycle seems an unlikely explanation. Finch 

(1983) and others (Del Villar and Finch, 1992; Kelly, 1991) argued against the common 

assumption that bypass is a constant for all particle classes, suggesting that particle entrainment in 

the water recovered to the underflow is size dependent. This means that smaller particles have a 

higher chance of being entrained in the liquid, leading to the hook at fine particle sizes. Despite 

continued literature (Lv et al., 2015; Vakamalla et al., 2014) describing the occurrence of the fish-

hook, others question its significance or even existence. Nageswararao and Karri (2016) stated that 

the fish-hook effect is a consequence of erroneous particle size analyses, and that its practical 

significance is zero. 

2.6.2.6 Short-Circuiting of Feed to Overflow 

Short-circuiting refers to the flow of particles or water directly from the feed inlet to the overflow 

outlet due to the recirculating eddy flows in the feed region, as shown in Figure 2.12. The insertion 

of the vortex finder attempts to avoid the entrainment of feed particles into the overflow stream. 

Kelly (1991) stated that if the vortex finder is operating correctly there will be no short-circuiting. 

However, there is still no standard length for the vortex finder (ranging from 0.33 - 0.67 DC) as it 

depends on geometry, feed particle size and feed concentration; and therefore needs to be 

determined via experimentation (Martínez et al., 2008; Silva et al., 2015). The short-circuiting 

flow is a source of inefficiency since it carries particles directly from the inlet to the overflow 

stream without subjecting the particles to the classifying action of the swirling flow within the 

hydrocyclone. Experimental work by Kelsall (1953) showed that the tested hydrocyclone had 15 

% of the feed water short-circuit directly from the inlet to the vortex finder, and that 15% of the 

feed particles short-circuited, independent of their size. Other authors have also noted its presence 

(Bradley and Pulling, 1959; Martínez et al., 2008; Milin et al., 1992; Silva et al., 2015). 
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Figure 2.12: (a) Flow pattern of eddy flows and short-circuiting. Adapted from Milin et al. (1992) 

and Bradley and Pulling (1959). (b) A diagram of the hydrocyclone showing design features. 

2.6.3 Factors affecting hydrocyclone performance 

The hydrocyclone geometry consists of many parameters that may be used to alter performance, 

including the hydrocyclone (DC), inlet (DI), overflow (DO), and underflow (DU) diameters; the 

length of the cyclone (LC) and vortex finder (LV); and the cone angle (θ) (as seen in Figure 2.12b). 

When coupled with the numerous operating variables, such as feed pressure, particle size 

distribution and pulp density, the number of experiments needed for proper optimisation becomes 

a significant challenge. It is therefore common to simplify the geometry by using ratios of the 

different geometrical properties in relation to the diameter of the hydrocyclone. Most 

hydrocyclones operating in industry are a result of these suggested ratios. Outlined below is the 

general behaviour of some of these factors.  

2.6.3.1 Cyclone Diameter 

The diameter of the hydrocyclone is taken as the diameter of the cylindrical section. Theoretically, 

the hydrocyclone diameter, along with the feed pressure and flow rate, controls the radius of orbit 

and thus the inertial forces acting the particles. In general, the smaller the diameter of the 

hydrocyclone the smaller the cut-size. This is paid for by an increased energy requirement 

(pressure) at the same flow rate, or a smaller flow rate per hydrocyclone at the same pressure 

0requirement. Some investigators have concluded that the inlet and outlet diameters (feed, apex 
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and vortex finder) are the critical design variables, and that the cyclone diameter has no effect on 

the cut-point. The authors argue that the cyclone diameter is merely the size required to 

accommodate the correct size apertures, and that for geometrically similar cyclones the partition 

curve and cut-size is only a function of the feed material characteristics (Lynch et al., 1974; Lynch 

et al., 1975; Rao et al., 1976). The phrase ‘geometrically similar hydrocyclones’ refers to the 

necessity to observe geometrical similarity between the different design parameters in order to 

maintain performance. This means smaller diameter hydrocyclones will also have comparatively 

smaller aperture diameters and therefore it is difficult to determine the true effect of cyclone 

diameter (Bradley, 1965; Wills and Finch, 2016). 

The range of hydrocyclone diameters used in industry has an upper limit, because with increasing 

particle sizes the need for the increased inertial forces (energy input) diminishes (when compared 

to gravity). The difficulties of handling large particles in suspension, and the severe abrasion, 

would also contribute to this upper limit (which is approximately 2.3 m) (Gupta and Yan, 2006). 

At the other end of the spectrum, difficulties in the construction and manifolding together of many 

very small diameter cyclones (needed to give capacities of practical interest) restricts sizes below 

10 mm. There is also evidence for which tests with a 4 mm diameter unit gave inferior 

classification ability relative to the 10 mm size (Bradley, 1965). The relationship between 

hydrocyclone diameter and cut-size (for geometrically similar hydrocyclones) has been estimated 

by many authors (Bradley, 1965; Flintoff et al., 1987; Heiskanen, 1993). The relationship is given 

as d50 ∝ Dc x, where x varies from 1.18-1.875.  

2.6.3.2 Feed Inlet Diameter and Type 

The area of the inlet determines the entrance velocity, therefore controlling the pressure drop, 

separation size and capacity. It is quite evident that a lower inlet velocity decreases the inertial 

forces and this gives a coarser cut size, smaller pressure drop and decreased capacity. Kelsall 

(1953) measured the feed flow rates for a range of inlet diameters at various pressure drops (Figure 

2.13). He showed that the injection of momentum (calculated as total flow rate multiplied by inlet 

velocity) increased to a maximum as feed diameter increased but then decreased with further 

increases in diameter, suggesting that the feed aperture should be chosen based on this maximum. 

It was theorised that this optimum feed diameter resulted in an average inlet velocity 

approximately the same as the tangential velocity at the same radius. This would reduce ‘wasted’ 



27 

energy as excessive turbulent mixing would decrease, and particle separation would be more 

efficient. This symmetry was found to occur at an inlet diameter of Dc/3.7 by Bradley (1965), but 

was argued to be too close to the maximum allowable diameter to avoid direct impingement of the 

feed stream on to the outside wall of the vortex finder. The full range of inlet diameters measured 

from industrially operating hydrocyclones extended from Dc/3 down to Dc/15, however values 

ranging from Dc/6 and Dc/7 are more common (Bradley, 1965). Inlet diameters for four well-

known families of hydrocyclones are shown in Table 2.3. 

Figure 2.13: Injected momentum (calculated as inlet velocity multiplied by total throughput) as a 

function of feed diameter for various pressure drops. Adapted from data publish by Kelsall (1953). 

Table 2.3: Inlet diameter proportions of well-known families of hydrocyclones. Adapted from data 

published by Bradley (1965), Castilho and Medronho (2000), Plitt (1976) and Silva et al. (2012). 

Hydrocyclone Type Bradley Plitt Krebs Rietema 

Vortex Finder Diameter Dc/7 Dc/7 Dc/3.7 Dc/3.6 

The geometry of the feed inlet is also important, as it helps determine the turbulence in the feed 

zone. The inlet typically develops from a circular to rectangular cross section at the entrance to the 

cylindrical section of the cyclone. This helps to spread the flow along the wall of the chamber, 

reducing turbulent eddies as the feed mixes with the developed flow and has been shown to 

improve separation efficiency (Kelsall, 1953). Feed entries are available in four main four forms: 

outer wall tangential; centre line tangential; involute; and top entry (Figure 2.14). This list ranges 

from least to most expensive to manufacture but also lowest to highest performance ability. Top 
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feed and involute entries minimise turbulence and reduce wear by slowly conforming the feed 

conditions to that of the hydrocyclone body, and so can be seen in designs such as Weir’s CAVEX© 

and Krebs’ gMAX© units (Wills and Finch, 2016). 

Figure 2.14: Feed entry designs for hydrocyclones. 

2.6.3.3 Vortex Finder Diameter and Length 

There are two important factors in deciding the optimal diameter of the vortex finder: the short-

circuiting flow (Figure 2.12); and the locus of zero vertical velocity (Figure 2.9). Firstly, the vortex 

finder must not be larger than the diameter of the locus of zero vertical velocity. This causes a 

collapse of the normal patterns of inward radial flow (Bradley and Pulling, 1959). At the other 

extreme, it appears to be undesirable to have the overflow diameter smaller than the position of 

the maximum tangential velocity. In doing so, it allows for the short-circuiting particles to have an 

increased resistance (by the increasingly large tangential velocities) and therefore greater chance 

of being re-entrained into the main flow pattern (Bradley, 1965; Kelsall, 1953). This sets a 

maximum and minimum limit of Dc/2.3 and Dc/8 respectively, however many designs tend to 

favour the smaller end of the range with a view to minimising the loss of coarse particles to 

overflow (Bradley, 1965). The effect of overflow diameter on pressure drop and water split to the 

underflow is not typical taken into account when selecting the optimum diameter (Bradley, 1965). 

It is known that both water split to underflow and pressure drop decrease (this is equivalent to an 
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increase in capacity for a given pressure drop) with increasing overflow diameter, which are both 

favourable outcomes (Wang and Yu, 2008). These considerations were taken into account in the 

case of Rietema (1961) and Plitt (1976), hence why their optimum diameter is markedly different 

from the others.  

For the vortex finder length, the effects on both coarse and fine particle classes must be considered. 

The main purpose of the intruding vortex finder is to allow an opportunity for the re-entrainment 

of the particles in the short circuit flow. As most coarse particles discharged in the overflow stream 

are due to short-circuiting, increasing the length of the vortex finder allows more time for the re-

entrainment of the coarse particles and increases their separation efficiency. Alternatively, finer 

particles which are discharged through the overflow have passed down the cyclone, outside the 

locus of zero vertical velocity. In the lower regions of the cyclone, they are then carried inwards 

by the water radial velocity components and join the high velocity upward flow near the central 

air column. For shorter vortex finders, particles have an extended time to be pushed outside of this 

upward vertical flow and re-circulate with the feed, causing only the finest particles to be collected 

(increasing the separation efficiency) (Kelsall, 1953). An optimum length therefore exists, 

dependent upon the desired cut-size and partition curve. A range of typical values for both vortex 

finder length and diameter, of well-known families of hydrocyclones, can be found in Table 2.4. 

Table 2.4: Vortex finder diameter proportions of well-known families of hydrocyclones. Adapted 

from data published by Bradley (1965), Castilho and Medronho (2000), Plitt (1976) and Silva et al. 

(2012). 

Hydrocyclone Type Bradley Plitt Krebs Rietema 

Vortex Finder Diameter Dc/5 Dc/2.5 Dc/6.3 Dc/2.9 

Vortex Finder Length Dc/3 Dc/3 - Dc/2.5 

2.6.3.4 Apex or Spigot Diameter 

In general, a decrease in the underflow diameter will increase the cut-size. This restriction 

increases both the particle density and the radial velocity around the apex region, which in turn 

increases the amount of material recirculating upwards towards the vortex finder. As there is a 

greater amount of particles and water exiting out of the vortex finder, only the very coarse particles 
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exit via the underflow, increasing the cut-size. Limiting the fraction of water in the underflow also 

increases the separation efficiency, as explained in Section 2.6.2.4. Therefore, it is suggested that 

cyclones should be operated at the highest possible underflow density, or the smallest possible 

apex diameter.  

An important consideration for determining the smallest possible apex diameter is the behaviour 

of the underflow discharge or spray. Hydrocyclone performance is very sensitive to the shape of 

the underflow spray; thus the shape has long been suggested as a performance monitoring tool 

(Dubey et al., 2016; Neesse et al., 2004). The discharge can be categorised into three main shapes: 

roping, spraying and an intermediate zone considered to be correct operation (Figure 2.15). Roping 

is initiated by excessive particle crowding in the conical part of the hydrocyclone, which occurs 

when the apex diameter is too small. This causes a high solids content stream of pulp to exit the 

underflow. As air is no longer able to enter the apex, the air core disappears, oversized material 

exits via the overflow and separation efficiency decreases. On the other hand, if the apex diameter 

is too large the underflow will be excessively dilute resulting in a wide angled spray pattern. The 

additional water will increase the by-pass fraction, carrying unclassified fine solids that would 

otherwise report to the overflow. The best separation efficiency is therefore obtained by ensuring 

the underflow spray is as close to the roping discharge regime as possible, while still maintaining 

an air core (Neesse et al., 2004). While the underflow diameter is important, operating 

hydrocyclones will typically have interchangeable apex pieces that are changed to meet the desired 

performance. Therefore, their diameter is not considered in the design process (Bradley, 1965). 

Figure 2.15: Nature of underflow discharge: (a) correct apex size - proper operation, (b) apex too 

small - “roping” leading to loss of air core, and (c) apex too large - “spraying” which leads to lower 

sharpness of separation. Reproduced with permission from Wills and Finch (2016).  
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2.6.3.5 Cone Angle, Hydrocyclone Length 

In general, an increase in the length of the hydrocyclone decreases the cut size. The cone angle 

and length of the cyclone are explicitly linked, with an increase in cone angle decreasing the length 

of the cyclone. The length of the cylindrical section can also increase overall length, without 

changes to the angle of the conical section. It has also been shown that an increase in the overall 

length of a hydrocyclone gives an increase in both capacity (by reducing the pressure drop) and 

efficiency (Ghodrat et al., 2014a). The increased separation efficiency stems from the increased 

particle residence time, allowing more time for a particle to separate into the correct zone for 

classification. The optimal cone angle and cylindrical section length is one of the least well defined 

aspects of hydrocyclone design (Bradley, 1965). Table 2.5 presents a list of suggested values for 

hydrocyclone length and cone angle. 

Table 2.5: Overall length and cone angle proportions of well-known families of hydrocyclones. 

Adapted from data published by Bradley (1965), Castilho and Medronho (2000), Plitt (1976) and 

Silva et al. (2012). 

Hydrocyclone Type Bradley Plitt Krebs Rietema 

Length 6.85*Dc 3*Dc 5.874*Dc 5*Dc 

Angle 9° 12° for Dc < 250 mm 

20° for Dc > 250 mm 

12.7° 20° 

2.6.3.6 Inclination of Hydrocyclone  

In general, an increase in inclination increases the separation efficiency. For small hydrocyclones, 

the large inertial forces exhibited on the particles means the direction of gravity has little effect on 

the overall force balance. Therefore, inclination has little effect on separation efficiency in these 

cyclones. Large cyclones, however, have been shown to be affected by the degree of inclination: 

especially when treating minerals with a high density difference. Authors (Hochscheid, 1987; 

Verde et al., 1991) have shown a significant reduction of misclassified fines (-74 µm) to the 

underflow, when 500 mm cyclones were inclined to almost horizontal. This is due to the decreased 

water split to the underflow, and the decreased downward force on the fine particles (Heiskanen, 

1993). 
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2.6.3.7 Feed Rate (Capacity) and Pressure Drop 

The pressure drop (or loss) across the hydrocyclone determines the cut-size and capacity for a 

given hydrocyclone geometry. The pressure drop is a key requirement for the design of the 

pumping system for a given capacity or to determine the capacity for a given installation, and so 

is often estimated empirically. In practice, the pressure drop is determined from a pressure gauge 

located immediately before the feed entry. However, the pressure drop is equivalent to feed 

pressure only under free discharge conditions, and so in some cases outlet pressures (typically 

overflow) are also needed (Bradley, 1965). The relationship between pressure drop, capacity and 

cut-size is shown in Figure 2.16. The practical limits for pressure drop ranges from around 35 kPa 

(below this, the instability of the air core begins to effect performance) to 350 kPa (where wear 

from friction and pumping costs start to impede the economics of performance).  

Figure 2.16: Effect of pressure on capacity and cut-point of hydrocyclone. Reproduced with 

permission from Wills and Finch (2016). 

2.6.3.8 Pulp Density (Viscosity) 

Slurry rheology is a very important variable in any particle classifier. For hydrocyclones an 

increase in the feed pulp density (viscosity) increases the cut-size, as shown in Figure 2.17. The 

high solids concentrations in the rotating mass of fluid reduces the rotational movement, and 

therefore the inertial forces acting on the particles, causing an increase in cut-size (Bradley, 1965; 

Wills and Finch, 2016). The decrease in friction also causes a reduction in pressure drop (for 

constant feed rate); or an increase in feed rate (for constant pressure drop). Another effect of the 

increased feed pulp density is a reduction in the sharpness of the separation. This due to the 

increase in hindered settling, which reduces a particles ability to move into the correct 

classification zone (Heiskanen, 1993). 
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Figure 2.17: Effect of feed solids concentration on cut-point of hydrocyclone. Reproduced with 

permission from Wills and Finch (2016). 

2.6.4 Mathematical Models of hydrocyclones  

The qualitative description of swirling turbulent flows is a naturally complex problem. When the 

continuous phase is loaded with a dispersed phase the complexity of the problem is increased 

further, as the interactions between the two phases need to be adequately modelled. Numerous 

models have been proposed to estimate the relationships between the key input variables (operating 

and geometric variables) and the measured outputs (namely cut size, pressure drop, flow split 

ratio). These include purely empirical models, calibrated against large databases of experimental 

data, as well as semi-empirical models based on theoretical assumptions. These relationships have 

been shown to be useful for the design and selection of hydrocyclones, however they are inherently 

limited in scope. An undesired consequence is that any extrapolation of results to a different 

geometry or operating condition must be made with extreme caution. There is still no widely 

accepted model to allow for proper optimisation of hydrocyclones, with many applications still 

relying on performances of other installations to guide selection. Below is a summary of 

underlying principles in the most common hydrocyclone models. 

2.6.4.1 Equilibrium Orbit theory 

One of the longest standing theoretical models was the equilibrium orbit theory put forth by 

Bradley (1958, 1965). It is based on the assumption that there is a location in the hydrocyclone, 

for each particle, where the outward acting inertial forces and the inward acting drag forces are in 

equilibrium. Those particles orbiting at the radial distance that coincidences with the locus of zero 
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vertical velocity will have equal probability of reporting to both products, and therefore represent 

the cut-size. The existence of the locus of zero velocity, the basis of the model, has been shown to 

exist (Marins et al., 2010). However, several key assumptions made about the flow within the 

hydrocyclone, including laminar flow, free settling conditions and Stokesian particle slip velocity 

have all been criticised. While this model does describe some of the process trends well, it cannot 

be used directly in design or operational situations. Mueller and Bohnet (1998) extended this model 

to incorporate a large number of additional parameters, for implementation in hydrocyclone 

design. However, this model includes a number of empirical friction factors, for the cyclone inlet, 

cyclone top, conical section and walls, which are difficult to predict without experimental data. 

2.6.4.2 Residence Time Theory 

Another theoretical approach, which was first proposed by Rietema (1961), is the Residence Time 

Theory. This model is not concerned with particular flow phenomena within the hydrocyclone, 

instead, it proposes that the cut size is equal to the size of particle which can just traverse the 

distance to the cyclone wall region within the residence time (if injected at the centre point of the 

feed inlet). While this approach is not common, Dwari et al. (2004) did propose an updated version 

of the model. The authors found the predicted cut-size varied by up to 40 % from the measured 

values. This error could be attributed to the questionable assumptions that the turbulent eddy 

diffusion has a negligible effect on the separation and the particles’ Reynolds number are so low 

that Stokes aw for the free flow velocity applies (Dwari et al., 2004). 

2.6.4.3 Crowding Theory 

Crowding Theory (Bloor et al., 1980; Fahlstrom, 1963; White, 1991) is based on the observation 

that for a cyclone operating at high feed concentrations (above 20 % by volume), the cut size is 

primarily determined by the discharge capacity of the spigot; and the feed size distribution. The 

theory states that when the underflow area becomes too crowded with particles the discharge 

capacity has been reached, forcing additional particles to exit via the overflow. This controls the 

cut-size. The spigot discharge capacity, however, is effected by feed rate (pressure drop) and the 

outlet and inlet dimensions of the hydrocyclone (Slechta and Firth, 1984). These complex 

relationships between the geometrical properties of the hydrocyclone and the spigot discharge 

capacity must first be established, before cut-size can be considered. Therefore, there are still no 

simple correlations for cut-size based upon this theory, limiting its practicality (Svarovsky, 1990). 
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2.6.4.4 Turbulent Diffusion Theory 

The Turbulent Diffusion Theory (also referred to as the Turbulent Two-Phase Flow Theory) 

attributes separation to the turbulent cross flow moving in perpendicular direction to the force 

field. The model based on this theory, put forth by the Forschunginstitut Aufbereitung research 

group and most recently described by Schubert (2010), predicts the cut-size for cyclone operations 

in both dilute and dense particle concentrations. This theory, however, assumes a homogenous 

turbulence field which is not representative of the real conditions in a hydrocyclone (Chen et al., 

2000). 

2.6.4.5 Empirical Models 

Unlike the above semi-empirical models, empirical models are not based on any specific theory of 

hydrocyclone operation and are derived by fitting models to experimental data. This involves the 

development of a set of regression equations for the chosen performance characteristics (both 

operational and geometrical). The Plitt and the Nageswararao models, are the two most widely 

used hydrocyclone models (Nageswararao et al., 2004; Narasimha et al., 2010; Wills and Finch, 

2016), most likely due to the ease in which these models can be incorporated into spreadsheets. 

This means they are particularly useful for industrial scale simulation studies of comminution and 

classification circuits using dedicated computer simulators such as JKSimMet (Nageswararao et 

al., 2004) and MODSIM (King, 2012; Nageswararao et al., 2004), or the flowsheet simulator Limn 

(Hand and Wiseman, 2010). 

In 1962, a small group at the University of Queensland initiated research on the control, modelling 

and optimisation of mineral processing plants; with the modelling of industrial cyclone classifiers 

being an integral part of the project (Nageswararao et al., 2004). The first ever comprehensive 

model for the description of the performance of industrial hydrocyclones and its application at 

Mount Isa Mines were significant outcomes (Lynch and Rao, 1968). Further research (Lynch et 

al., 1975; Marlow, 1973; Nageswararao, 1978) resulted in the formulation of the Nageswararao 

model, published in its most recent form by Nageswararao et al. (2004). This model consists of 

four basic equations: flow rate (given feed pressure); water recovery to the underflow; volumetric 

recovery of feed slurry to the underflow, and corrected cut point. The model is known to under-

predict water recovery values in the low water recovery region and under-predicts the cut size in 

the fine particle size region. This is a particular problem at low feed concentrations, and arises 
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partly because this region is outside the range of the data set originally used to fit the model 

(Narasimha et al., 2010). 

Combining the first industrial database for hydrocyclones generated by Rao (1966), with his own 

laboratory data, Plitt (1976) developed an alternative general purpose cyclone model, revised by 

Flintoff et al. (1987). The model, based on the results of 297 experiments, provided an empirical 

equation for direct calculations of corrected cut size, sharpness of separation, flow split and 

throughput. The large, and varied, data set for which Plitt based his studies on, meant the equations 

were capable of covering a large range of operating variables. However, Plitt maintained the 

assumption that his model could predict cyclone performance independent of feed material 

characteristics (Nageswararao et al., 2004). This was later revised by the inclusion of a feed 

calibration factor, which needs to be determined based upon experimental data as without this 

there is a large associated error, with the accrued errors being as great as ± 50 % (Kelly and 

Spottiswood, 1982).  

A comprehensive review of both models was presented by Nageswararao et al. (2004). The authors 

found that both models were still heavily reliant on material constants, obtained via 

experimentation. Figure 2.18 also shows the large variability in the predicted flow split and water 

recovery when compared to the data these equations were based upon, further illustrating the error 

associated with these models.  

Figure 2.18: (a) Prediction of the flow split using the Plitt and Nageswararao models compared to 

the data of Plitt (1976) and (b) prediction of the water recovery to the underflow using the 

Nageswararao model and data of Rao (1966). Reproduced with permission from Nageswararao et 

al. (2004).  

(a.) (b.) 

Model 

Model Nageswararao 

Plitt 
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2.6.4.6 Model Summary 

All models are subject to the limitation that they are merely approximations of the physical reality, 

based on simplifying assumptions or hypotheses and (usually) process measurements. Errors in 

any measured data used for evaluating model parameters will also be carried forward into the 

model, and hence into the simulation results. As a consequence, the model predictions from any 

model will never be perfect (Nageswararao et al., 2004). Chen et al. (2000) undertook a 

comprehensive study comparing seven of the main empirical and semi-empirical hydrocyclone 

models used to size and select hydrocyclones in industrial applications. These models included 

semi-empirical models based upon the equilibrium orbit theory, turbulent diffusion theory, and 

residence time theory; as well as the empirical model of Plitt. The authors concluded that these 

models often have limitations due to the specific system the model development was based on. 

(Nageswararao et al., 2004) states that their model was based upon data collected from a 

hydrocyclone operating as a classifier in a closed grinding circuit, and so therefore when the 

cyclone is used as a thickener, washer, or if the feed solids concentration is low (20 % by weight) 

the reliability of predictions is doubtful. 

Due to the complexity of hydrocyclone operations, most of the existing models are a combination 

of ‘sub models’, each describing a certain property in a cyclone operation. With these different 

considerations, assumptions and adjustable parameters, it is possible to select a combination of 

parameters to fit any particular set of hydrocyclone data very well, within ± 5 % (Chen et al., 

2000). However, this method may not necessarily be suitable for another system; or even the same 

system operated under different conditions. As yet, there is no one model that can reliably simulate 

the majority of current hydrocyclone operations. This has led to the use of Computational Fluid 

Dynamics (CFD) in an attempt to create a more fundamental model of the hydrocyclone. This will 

be the focus of the following chapter. 
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Chapter 3: A review of the computational modelling of 

hydrocyclones – a need for understanding and 

prediction 

3.1 Abstract 

The application of computational fluid dynamics (CFD) to model the flow within a hydrocyclone 

is continuing to grow in popularity. This chapter presents an amalgamation of previous literature 

on CFD modelling of hydrocyclones, to act as a guideline for future studies. Areas of focus include: 

turbulence and multiphase modelling in the hydrocyclone; boundary conditions; mesh 

development; numerical discretisation schemes and convergence criteria; initialisation procedures; 

and model validation. It is well understood that the modelling of the turbulence within the 

hydrocyclone is significant, with numerous studies comparing the performance of the k-ε models, 

the Reynolds Stress Model (RSM) and the Large Eddy Simulation (LES) model. The LES model 

has unanimously been shown to be the most accurate turbulence model, in particular when 

predicting the tangential velocity components. However, due to the large computational expense 

of the LES model the RSM is often used, as it still provides reasonable predictions at a lower 

computational cost. The air core, a feature of the hydrocyclone which has a large impact on its 

performance, has been shown to be modelled well with both the Volume Of Fluid (VOF) model 

and Mixture model. The simulation techniques for two-phase (water-air) flows appear to be well 

understood as numerous publications have shown CFD to accurately predict the water split, 

pressure drop, air core diameter and velocity components when compared to experimental 

measurements. Current research is focused on the modelling of high solid concentration flow, 

which are more in line with industrial conditions, and this type of simulation has not yet been 

validated to the same degree as the two-phase simulations. This is primarily due to the lack of 

experimental data of particle flow in high solids concentration, an area of study which should be 

focused on in the future.  

3.2 Introduction 

The hydrocyclone is a continuously operating classifying device that utilises differences in drag 

and inertial forces in high speed flows to accelerate the settling rate of particles or liquids. 

Hydrocyclones, often shortened to cyclone, have gained widespread use in a number of industries 

since their inception in the 1940’s (Aldrich, 2015). This is primarily due to their low capital and 
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operational cost, simple design, large throughput relative to size, and low maintenance (Wills and 

Finch, 2016). Industrial applications include the removal of sand, staples or other contaminants in 

paper mills; particle classification in closed grinding circuits in mineral processing plants; and the 

separation of oil and water in the oil industry. 

In a hydrocyclone, a conically shaped vessel that is open at its apex (also referred to as spigot or 

underflow), sits below a cylindrical section, which contains a tangential or involute feed inlet. The 

feed enters under pressure to the stationary body, creating a swirling, vortex flow pattern, which 

is forced downwards due to the intrusion of the vortex finder. This minimises the short-circuiting 

of feed directly to the overflow. Once the flow leaves the feed zone, also referred to as the 

cylindrical section, the constriction in the adjoining conical section forces some of the flow to 

reverse its direction. This forms a secondary upwards-travelling inner vortex. Along the vertical 

axis exists a low-pressure zone, created by the vortexing feed. As the apex is open to the 

atmosphere an air core develops along this central axis. Air entrained in the feed is also said to 

contribute to this phenomena (Wills and Finch, 2016). 

Particles within the hydrocyclone’s flow pattern are subjected to two opposing forces: an 

‘outward’ acting inertial force, and an opposing inwardly acting drag force provided by the 

carrying fluid. The inertial force, sometimes misinterpreted as a ‘centrifugal force’, develops as a 

particle wishes to continue its motion, which at any moment is tangential to the circular path. This 

force balance is dependent upon mass and surface area, thereby separating particles according to 

their size, specific gravity and shape. Particles with a larger mass, and therefore having a greater 

momentum than drag, move to the wall of the cyclone, and migrate down to the apex opening. 

Particles whose inertia is lower in magnitude than the force required to overcome the drag of the 

carrier fluid, move towards the zone of low pressure along the hydrocyclones vertical axis and are 

carried upward through the vortex finder to the overflow. There will naturally be a particle size at 

which these forces are approximately equal. This is referred to as the ‘cut-size’ and represents the 

particle size which has a 50 % chance of reporting to either the overflow or underflow. The cut 

size and the behaviour of particles near this size determine the selection and performance of the 

hydrocyclone and is typically represented by a partition curve. 

The qualitative description of this swirling turbulent flow is a complex problem. When the 

continuous phase is further loaded with dispersed phases, the complexity increases further as the 
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interrelations between the two phases need to be adequately modelled. This has meant that 

performance prediction and selection of hydrocyclones for industrial applications is typically 

based upon empirical models (Marins et al., 2010). These models are based on a phenomenological 

description of the process, including effects from operating conditions and geometric parameters, 

with the numerical constants determined from a large database of experimental results. While these 

models have gained widespread use in industry, their application in situations where the process 

conditions are outside of the initial database of experiments can lead to loses in performance. 

Examples of this include the Nageswararao model (Nageswararao et al., 2004), which under 

predicts the water recovery at low water recovery rates and the cut size in small hydrocyclones 

(Narasimha et al., 2010). 

Alternatively, more fundamental models, based upon Computational Fluid Dynamics (CFD), can 

be used to predict hydrocyclone performance. Modelling is not without its difficulties, however, 

as the dominance of turbulent length scales on particle classification; and the multiphase 

interactions between particles, carrier fluid, cyclone walls and the air core all need to be suitably 

modelled. In recent years, with the advancement of computational hardware, and the associated 

improvement in software capabilities, the interest in computational models of hydrocyclones has 

increase significantly. Figure 3.1 shows a clear upward trend in the number of journal publications 

related to hydrocyclone or cyclone modelling (which includes gas cyclones or dense medium 

cyclones) since 1995. With previous review papers Nowakowski et al. (2004) and Narasimha et 

al. (2007) published more than ten years ago, this growth has made it important to collate and 

analyse the vast amount of published information and results to ensure that hydrocyclone models 

continue to progress. 



46 

Figure 3.1: Number of journal papers publish since 1995 that contain the key words hydrocyclone 

and CFD or cyclone and CFD based off a science direct search. 

The modelling of hydrocyclones is computationally expensive, and so has limited the optimisation 

of different factors or choices inside the model. To help alleviate this issue, this chapter aims to 

collect and assess all the published information on hydrocyclone modelling. This will clarify areas 

which need further study, reduce superfluous repetition of known correlations, and to obtain 

consistency in fields where the optimal parameters are known. Areas of focus include: 

• Turbulence and multiphase modelling in the hydrocyclone 

• Boundary conditions 

• Mesh development 

• Numerical discretisation schemes and convergence criteria 

• Initialisation procedures 

• Model validation 
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3.3 Turbulence Modelling in the Hydrocyclone 

All flows encountered in engineering practice can be divided into three flow regimes: laminar, 

turbulent, or a transitional phase between the two. Laminar flows are characterised by smoothly 

varying velocity fields in both time and space, in which individual layers (or ‘laminae’) of fluid 

slide past one another without generating cross currents (Versteeg and Malalasekera, 2007). 

Industrial hydrocyclones, however, typically operate at velocities where the flow is turbulent 

(Narasimha et al., 2006a). Turbulence is observed in fluids at moderate to high Reynolds numbers 

(> 4000), and describes a three-dimensional, unsteady, random state of motion. The flow reversal 

and separation near the underflow; the strong swirling motion; and the free surface of the air core 

all introduce anisotropy and strain into the turbulence. This makes the modelling of turbulence 

particularly difficult. 

Turbulence is, in principle, described by the Navier-Stokes equations, however in most cases the 

computational requirements to resolve the wide range of scales in both time and space by Direct 

Numerical Simulation (DNS) far exceeds the current level of computing power. Therefore 

estimates, or averages, must be applied to the Navier-Stokes equations to filter out all (Reynolds 

Averaged Navier-Stokes (RANS) equations), or at least parts (Scale-Resolving Simulation (SRS) 

models), of the turbulent spectrum. These averaging processes introduce additional unknown terms 

into the transport equations (Reynolds Stresses and Fluxes) that need to be provided by suitable 

turbulence models (turbulence closures). 

No single turbulence model is universally accepted as being superior for all classes of problems. 

The choice of turbulence model for a particular application will be guided by the established 

practice in the field but is dependent upon factors such as the physics of the flow; the required 

level of accuracy; the available computational resources; and the time available for the simulation. 

The choice of turbulence model is therefore a trade-off between simulation time/power and 

accuracy. Below outlines some of the most popular choices of turbulence models for 

hydrocyclones, followed by a review of the comparative turbulent model studies found in 

literature. The detailed mathematics and principles of the turbulence models are described in detail 

elsewhere (Versteeg and Malalasekera, 2007). 
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3.3.1 The k-ε Turbulence Models 

The most widely used turbulence models in industrial CFD applications are the two-equation 

models (Versteeg and Malalasekera, 2007). They solve two additional transport equations and 

model the Reynolds Stresses using the Eddy Viscosity approach. The standard k-ε model (Launder 

and Spalding, 1974) falls into this category, solving partial differential equations (PDEs) for the 

turbulent kinetic energy, k, and its dissipation rate, ε. Due to its economic use of computational 

power and reasonable accuracy in a wide range of applications, this turbulence closure was 

favoured in early hydrocyclone models (Dai et al., 1999); simulations with limited resources (Gao 

et al., 2011; Sripriya et al., 2007); or complex multiphase models (Narasimha et al., 2005; Swain 

and Mohanty, 2013). However, one of the underlying assumptions of the k-ε model is that the 

turbulent viscosity is isotropic, meaning the ratio between the Reynolds stress and the mean rate 

of deformation (strain) is the same for all directions (based on the Boussinesq approximation). The 

turbulence also is assumed to be isotropic as only one scalar velocity fluctuation is modelled. These 

assumptions are known to be unrealistic for swirling turbulent flows (Narasimha et al., 2006a; 

Versteeg and Malalasekera, 2007). Several authors have since shown that the k-ε model is not 

suitable for modelling turbulence in hydrocyclones (Bhaskar et al., 2007a; Fraser et al., 1997; He 

et al., 1999; Ma et al., 2000; Mousavian et al., 2009; Petty and Parks, 2001; Suasnabar, 2000). To 

overcome these inefficiencies, several modifications to the standard k-ɛ model have been proposed. 

An example of this is the curvature correction factor, which has been implemented (Fraser et al., 

1997; He et al., 1999) to help model the curved flow in a hydrocyclone.  

A more sophisticated approach is the RNG k-ɛ model, which gets its name from the statistical 

technique from which it is based, namely the renormalisation group theory. Similar in form to the 

standard k-ɛ model, it includes several refinements that make it more suitable for modelling the 

turbulence in the hydrocyclone. This includes an additional term in the dissipation rate ɛ equation, 

which significantly improves the accuracy in rapidly strained flows. The effect of swirl on 

turbulence is also included, via a swirl factor, enhancing accuracy for swirling flows (Gupta et al., 

2008). This has been shown to provide an increased accuracy over the standard k-ɛ model (Gupta 

et al., 2008; Safa and Soltani Goharrizi, 2014). Many others, however, have shown that it is still 

unable to fully describe the turbulent flow within the hydrocyclone, with some authors noting the 

models’ inability to form an air core in conditions where more sophisticated turbulences models 

do (Bhaskar et al., 2007a; Delgadillo and Rajamani, 2005; Narasimha et al., 2006a; Suasnabar, 
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2000; Vakamalla and Narasimha, 2017). It should be noted that while it is possible to use the 

curvature correction for the RNG k-ɛ model, it is not recommended, as it already contains terms to 

include rotational or swirl effects. 

3.3.1.1 Model Constants 

A summary of the model constants reported in literature for the k-ε and RNG k-ε models is shown 

in  Gupta et al. (2008) and Narasimha et al. (2005) both outlined the use of the default model 

constants when utilising the k-ε model. Suasnabar (2000), however, studied the effect of the 

different model constants and concluded that C2ε has a significant effect on the predicted axial and 

tangential velocities. The optimum value was determined to be 1.36. Modifications to the values 

for the Cµ and Prandtl Number ε parameters were also shown to improve results, although to a 

much lesser extent. Suasnabar (2000) noted that while these adjustments improved predictive 

accuracy, their true predictive power is limited, as they were chosen empirically to fit only one 

particular data set. This statement is supported by the work of Dai et al. (1999), who concluded 

that values of Cµ = 0.085, C1ε = 1.62 and C2ε = 1.79 were best suited for their experimental data. 

Suasnabar (2000) also found that to improve predictions the swirl constant in the RNG k-ε model 

needed to be increased from the default value (0.07), which is defined for weakly to moderately 

swirling flows. However, beyond a certain point (0.10), further increases caused numerical 

instability. 

Table 3.1. Gupta et al. (2008) and Narasimha et al. (2005) both outlined the use of the default 

model constants when utilising the k-ε model. Suasnabar (2000), however, studied the effect of the 

different model constants and concluded that C2ε has a significant effect on the predicted axial and 

tangential velocities. The optimum value was determined to be 1.36. Modifications to the values 

for the Cµ and Prandtl Number ε parameters were also shown to improve results, although to a 

much lesser extent. Suasnabar (2000) noted that while these adjustments improved predictive 

accuracy, their true predictive power is limited, as they were chosen empirically to fit only one 

particular data set. This statement is supported by the work of Dai et al. (1999), who concluded 

that values of Cµ = 0.085, C1ε = 1.62 and C2ε = 1.79 were best suited for their experimental data. 

Suasnabar (2000) also found that to improve predictions the swirl constant in the RNG k-ε model 

needed to be increased from the default value (0.07), which is defined for weakly to moderately 
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swirling flows. However, beyond a certain point (0.10), further increases caused numerical 

instability. 

Table 3.1: Model Constants for the k-ε and RNG k-ε models (grey cells represent default 

values). 

Turbulence 

Model 

Reported Constants 

References 
Cµ C1ε C2ε 

Prandtl 

Number k 

Prandtl 

Number ε 

Swirl 

Factor 

k-ε 

0.09 1.44 1.92 1 1.3 - 

(Gupta et al., 2008; 

Mousavian et al., 

2009; Narasimha et 

al., 2005; Swain and 

Mohanty, 2013) 

0.105  1.36  1.7 - (Suasnabar, 2000) 

0.085 1.62 1.79   - (Dai et al., 1999) 

RNG k-ε 
0.0845 1.42 1.68 - -  

(Delgadillo and 

Rajamani, 2005) 

   - - 0.10 (Suasnabar, 2000) 

3.3.2 Reynolds stress model (RSM) 

The Reynolds stress model (RSM) is one of the most complex RANS turbulence models. Also 

referred to as the second-order or second-momentum closure model, the RSM solves transport 

equations for each of the six independent Reynolds stresses (Elsayed and Lacor, 2010). This 

enables the model to account for complex interactions in turbulent flow fields, such as the 

directional effects of the Reynolds stresses. Effects of streamline curvature, swirl, rotation, and 

rapid changes in strain rate are modelled in a more rigorous manner than the k-ε models, making 

the RSM a more suitable turbulence model for the hydrocyclone. The added calculations do come 

at a significantly higher computing cost. 

The RSM is generally accepted as the simplest model that can predict the anisotropic turbulence 

behaviour seen in the hydrocyclone (Versteeg and Malalasekera, 2007). Even though it has been 

shown to be not as accurate as the LES model (discussed below) it represents a good compromise 

between computational accuracy and expense. This has led to widespread application of the RSM 

for modelling turbulence in the hydrocyclone (Bhaskar et al., 2007b; Cui et al., 2014; Cullivan et 

al., 2003; Cullivan et al., 2004; Davailles et al., 2012a; Davailles et al., 2012b; Dlamini et al., 

2005; Ghodrat et al., 2014a; Ghodrat et al., 2014b; Ghodrat et al., 2016; Hwang et al., 2013; 



51 

Hwang and Chou, 2017; Kuang et al., 2012; Leeuwner and Eksteen, 2008; Olson and Van Ommen, 

2004; Schuetz et al., 2004; Slack et al., 2004; Suresh et al., 2010; Vakamalla et al., 2014; 

Vakamalla et al., 2017; Wang and Yu, 2006; Wang et al., 2007; Wang and Yu, 2008; Xu et al., 

2012; Xu et al., 2013; Yang et al., 2010). 

A downside to the RSM is that it can suffer from convergence problems due to the numerical issues 

associated with the coupling of the mean velocity and turbulent stress fields through source terms. 

Multiple authors have noted a reduced rate of convergence when using the RSM model. Bhaskar 

et al. (2007b) and Slack et al. (2004) required a large number of iterations (6000-8000), beyond 

normal convergence criteria, for the solution to stabilise. While Schuetz et al. (2004) required an 

initialisation of a laminar flow field, before implementing the RSM, to ensure convergence. 

3.3.2.1 Modelling the Pressure-Strain Term 

The pressure-strain interactions constitute one of the most important elements in the RSM, 

however remain the most difficult to predict (Versteeg and Malalasekera, 2007). Cullivan et al. 

(2003) stated that the pressure-strain term is expected to be significant for high swirl flow, which 

features significant anisotropy, and therefore careful consideration should be given to its 

modelling. The authors compared the predictions of the linear (LPS) and quadratic pressure-strain 

(QPS) model and concluded that the quadratic pressure-strain correlation of Speziale et al. (1991) 

was a minimum order of accuracy for the RSM. Alternatively, Brennan (2006) stated that the 

simpler LPS correlation, with the wall reflection effects included, predicted similar velocity values 

to the QPS once the air core had been established. Narasimha et al. (2006a) agreed with this 

finding, showing that the LPS and QPS models predicted similar velocity profiles and air core 

structures, which were both found to be less accurate than the large eddy simulation model 

(discussed in Section 3.3.3). Dlamini et al. (2005) also commented on the importance of the 

pressure-strain term, but found the QPS to induce solution instability, therefore requiring the use 

LPS. This uncertainty has meant that both the LPS (Chu et al., 2012; Kuang et al., 2012; 

Mousavian et al., 2009) and QPS (Cullivan et al., 2004; Vakamalla et al., 2017; Vakamalla and 

Narasimha, 2017) have been used in hydrocyclone modelling. 

3.3.2.2 Model Options and Constants 

Brennan (2006) , Dlamini et al. (2005), and Kuang et al. (2012) all reported the use of the RSM 

(LPS) with the standard wall functions for the near-wall treatment and the wall reflection effects 
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option. Suasnabar (2000), however, found that the inclusion of the wall reflection term in the RSM 

had a negative impact on the predicted velocity components. While this was the only work to 

directly compare results from both methods, the model was very simplified (with an assumed solid 

air core), as such additional study is recommended. Brennan (2006) also studied the effect of the 

two adjustable pressure-strain constants (C1PS and C2PS) in the LPS model, in an attempt to 

increase the accuracy of the RSM model. It was found that changing C2PS from the default value 

of 0.6 to 0.9 improved both the axial and tangential velocity predictions. Further increases damped 

the Reynolds stress components in the axial direction, impacting negatively on predictions. C1PS 

was decreased down to 1.0 from 1.8 (default) but was found to have little effect on the predict 

velocities. For the QPS model, both Cullivan et al. (2003) and Vakamalla et al. (2017) achieved 

reasonable results with the use of the default values for all constants. 
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3.3.3 The Large Eddy Simulation (LES) Model 

It is understood that the behaviour of large and small scale turbulent eddies is markedly different. 

Smaller eddies are nearly isotropic and have a universal behaviour for turbulent flows at 

sufficiently high Reynolds numbers. Alternatively, larger scale eddies are more anisotropic as their 

behaviour is dictated by their interaction with the mean flow; the geometry of the problem domain; 

the boundary conditions; and body forces (Versteeg and Malalasekera, 2007). In many flows these 

larger turbulent scales carry out most of the turbulent mixing of momentum and mass. Following 

this logic, the LES model (which falls within the SRS category) resolves the difficult to predict 

large turbulent eddies, while modelling the behaviour of the small-scale eddies. This limits LES 

to transient simulations and is recommended for 3D grids (Narasimha et al., 2007). 

This more fundamental approach should in principle give more accurate mean flow predictions 

than the RANS models. The LES model has been shown to accurately predict the velocity 

components in the hydrocyclone, particularly the peak tangential velocity, when compared to other 

turbulent models (Banerjee et al., 2016; Brennan, 2006; Brennan et al., 2007; de Souza et al., 

2012; Delgadillo and Rajamani, 2005; Karimi et al., 2012; Lim et al., 2010; Narasimha et al., 

2006a; Narasimha et al., 2012a; Vakamalla and Narasimha, 2017). Many authors have 

recommended that LES is the most appropriate turbulence model to capture all the unsteady 

aspects of hydrocyclone flow structure because the simulation technique preserves the unsteady 

nature of the 3D large-scale structures of the flow (Banerjee et al., 2016). Predicted  values for 

water split (Brennan et al., 2007; Narasimha et al., 2006a), air core size (Delgadillo and Rajamani, 

2005; Narasimha et al., 2006a; Vakamalla et al., 2014), pressure drop (Marthinussen et al., 2014), 

and particle separation efficiencies (Brennan et al., 2007; de Souza et al., 2012; Delgadillo and 

Rajamani, 2005; Marthinussen et al., 2014; Narasimha et al., 2012a; Vakamalla et al., 2014; 

Vakamalla and Narasimha, 2017) have all been shown to be in close agreement with experimental 

data. The is attributed to the influence of the time dependent large scale turbulent oscillations that 

impact the formation of the air core as well as the mixing and re-entrainment of particles, which 

is not considered when modelling the mean flow (Brennan et al., 2007; Slack et al., 2000). 

This added accuracy does come at a significant computational cost (Slack et al., 2000) (discussed 

more in Section 3.5.1). Along with the additional calculation requirements, the application of LES 

to any flow requires particular care regarding mesh quality and refinement, the order of numerical 
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schemes and the time step size (de Souza et al., 2012). Smaller eddies are separated via spatial 

filtering, which typically removes all eddies finer than the associated grid size (as any finer detail 

would be lost anyway). This requires LES models to have substantially smaller grid sizes than 

other turbulence models, to enable to capture of the relevant turbulent scales. Smaller time steps 

are also required to ensure turbulence scales are fully developed and not damped out (Narasimha 

et al., 2006a). 

3.3.3.1 Subgrid-Scale Models 

The modelling of the small scale turbulent eddies is achieved through subgrid scale models. Karimi 

et al. (2012) compared three different subgrid methods: the Smagorinsky-Lilly model, the WALE 

model and the dynamic kinetic energy model. Results from all three subgrid models were shown 

to match closely with the experimental data, suggesting that uncertainties owing to the subgrid 

model used are small and can be ignored. However, the Smagorinsky-Lilly model was shown to 

slightly outperform the other two models, with an average difference from the tangential velocity 

of 6.4%, 10.9% and 10.1% for the Smagorinsky, WALE and kinetic energy models, respectively. 

The Smagorinsky-Lilly model is simple in structure, and so adding to its accuracy, has become the 

most prevalent choice of subgrid model (Banerjee et al., 2016; Brennan, 2006; Brennan et al., 

2007; de Souza et al., 2012; Delgadillo and Rajamani, 2005, 2007; Marthinussen et al., 2014; 

Narasimha et al., 2006a; Narasimha et al., 2010; Narasimha et al., 2012a; Vakamalla and 

Narasimha, 2017). The constant for the Smagorinsky-Lilly model, Cs, has been reported to perform 

well at its default value of 0.1 (Brennan et al., 2007; Narasimha et al., 2006a), however, a 

parametric analysis has not been conducted, likely due to the computational expense of the LES 

model. 

3.3.4 Comparative studies of turbulence models 

The selection of the turbulence model for hydrocyclone modelling is undoubtedly an important 

decision. Table 3.2 summarises some of the published comparative studies on turbulence models. 

It is clear that as models incorporate more fundamental approaches, which comes at significant 

computational expense, predictions are improved. This is most apparent with the peak tangential 

velocity component and the air core diameter. The hydrocyclone’s complex flow pattern requires 

the explicit resolving of the turbulent eddies, which the LES model provides. However, the 

approximations of the RSM have been shown to provide a computationally cheap way of providing 
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relatively accurate predictions for engineering applications. This should be considered to be the 

minimum order of accuracy for modelling hydrocyclone flow turbulence, as simpler models 

provide erroneous results.  

The Detached Eddy Simulation (DES) turbulence model, which was not discussed earlier, is a 

combination of a RANS turbulence model and LES. The RANS model is applied in regions where 

the turbulent length scale is less than maximum grid dimension (such as near the wall region) and 

the LES model is applied in the regions where the turbulence length scales are greater than grid 

dimension. As this model is a hybrid, the computation time and grid levels are expected to be lower 

than a purely LES turbulence model. The accuracy of the DES turbulence has been shown to be 

lower than that of the RSM (Vakamalla and Narasimha, 2017; Xu et al., 2009), and therefore it 

has not gained widespread use in hydrocyclone modelling. 
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Table 3.2: Summary of literature on the comparison of turbulence models in hydrocyclones, with 

models ranked based upon their predictive performance. 

Authors 

Turbulence Model Ranking 

Major Conclusions 
k-ε 

k-ε 

RNG 
RSM DES LES 

Vakamalla and 

Narasimha 

(2017) 

5 4 2 3 1 

• Compared air core diameters, velocity components, and 

water split values 

• No air core formation with the k-ε models 

• DES performed poorly   

• LES was much better at predicting peak tangential 

velocities. For all other things RSM and LES were close.  

• Larger cyclones could use RSM 

Bhaskar et al. 

(2007a) 
3 2 1   

• Compared water throughput and split values for different 

apex diameters 

Narasimha et 

al. (2006a) 
 3 2  1 

• No air core formation with the k-ε models 

• LES predicted air core diameter more accurately than RSM 

• LES peak tangential velocity much better than RSM  

• Axial very similar for LES and RSM 

Delgadillo and 

Rajamani 

(2005) 

 3 2  1 

• No air core formation with the k-ε models 

• LES predicted the axial and tangential velocity 

components, air core diameter, pressure drop, and flow 

split much more accurately than RSM and k-ε 

Mousavian et 

al. (2009) 
2  1   

• Compared axial and tangential velocity components, RSM 

was much better  

Brennan 

(2006) 
  2  1 

• Compared axial and tangential velocity components  

• LES was better at predicting the peak tangential velocities, 

but other results were fairly similar 

• Adjustment of parameters in RSM model was able to 

increase accuracy of peak tangential velocity predictions 

Xu et al. 

(2009) 
 4  2 3 1 

• Compared air core diameters, velocity components, 

pressure drop, and water split values 

• No air core formation with the k-ε model 

• LES, DES & RSM were close for all tested components 

Slack et al. 

(2000) 
  2  1 

• Compared axial and tangential velocity components  

• RSM is suitable for inexpensive estimations but LES is 

best. 

Suasnabar 

(2000) 
3 2 1   

• Compared axial and tangential velocity components 

• Adjusted constants for k-ε models and still could not 

simulate RSM behaviour, the peak tangential velocity 

being the main difference 
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3.4 Multiphase Modelling of the Hydrocyclone and its Interphase Transfer 

3.4.1 Introduction to Multiphase Modelling 

Multiphase modelling refers to the prediction of flows in which there are two or more phases. 

While the physical phases of matter are defined as gas, liquid, and solid, the concept of phase in 

multiphase modelling has a much broader meaning. In this case, a phase is defined as an 

identifiable class of material that has a particular inertial response to, and interaction with, the 

flow. For example, particles that are made up of the same material but have different sizes can be 

treated as different phases because each size range of particles will have a particular response to 

the flow field. For modelling the hydrocyclone, phases include the water carrier fluid, the dynamic 

air core, and the solid particle phase (which can be made subdivided further into multiple different 

phases depending on the composition, size and density range tested). The complexity in 

hydrocyclone modelling is in part due to these complex multiphase interactions. 

There are currently two main approaches for the numerical calculation of multiphase flows: the 

Lagrangian or Eulerian approach. Put simply, the Lagrangian method follows a quantity of interest 

(for instance a particle) as it moves throughout, and interacts with, the whole domain. The Eulerian 

method, however, focuses on a single area of a domain (a cell) as flow moves in and out of it. The 

water and air phases are only solved using the Eulerian approach, via either the Mixture, Volume 

Of Fluid (VOF), or Eulerian models. Particles can be modelled via the Eulerian approach, using 

either the Mixture or Eulerian models, or the Lagrangian technique, using the Discrete Phase 

Model (DPM). A brief description of these models is provided below. 

3.4.1.1 The Volume Of Fluid (VOF) Model 

The VOF model is designed for the modelling of two or more immiscible fluids, where the position 

of the interface between the fluids is of interest (such as the air core in a hydrocyclone). It therefore 

cannot, on its own, be used to determine particle flows. A single set of momentum equations is 

shared by all the fluids, making it very computationally efficient, and the volume fraction of each 

of the fluids in each computational cell is tracked throughout the domain. The volume fraction is 

then used to determine the air-water interface. One issue with the VOF can be the numerical 

diffusion of the air-water interface, however, this can be managed using the appropriate 

discretisation schemes (discussed further in Section 3.6.2.2). More details about the VOF model 

can be found elsewhere (Hirt and Nichols, 1981). 
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3.4.1.2 The Mixture Model 

In the Mixture model, unlike the VOF model, phases are treated as interpenetrating continua. This 

means the model can be used to model two or more phases (either fluid or particle). Like the VOF 

model the governing equations of mass and momentum conservation are solved only for the 

mixture of liquid, air and solids. Phase segregation is accounted for by including a drift velocity 

component, meaning phases can move at different velocities. The mixture model assumes that the 

primary phase is the continuous fluid phase and the volume fraction of each phase present in the 

mixture is given according to the continuity equation, considering the relative drift velocity among 

phases (Brennan et al., 2007). The Mixture model is also sometimes referred to as the simplified 

Two Fluid Model (TFM) or the Algebraic Slip Model (ASM). More information on the mixture 

can be found elsewhere (Manninen et al., 1996). 

3.4.1.3 The Eulerian Model 

The Eulerian model is the most fundamentally correct but computationally expensive multiphase 

model. Momentum and continuity equations are solved for each phase and, like the Mixture model, 

the phases can be liquid, gas or solid.  

3.4.1.4 The Discrete Particle Model (DPM) 

The Discrete Phase Model (DPM) allows for the modelling of a discrete particle phase in a 

Lagrangian frame of reference. Individual particle trajectories are calculated by integrating the 

force balance on particles. Forces can include the discrete phase inertia, hydrodynamic drag, 

buoyancy and gravity. The DPM can be used to predict the effects of turbulence on the dispersion 

of particles due to turbulent eddies present in the continuous phase for both steady and unsteady 

flows, with the interaction of the particles on the continuous phase able to be included or excluded. 

As particle-particle interaction is not included in the DPM, only dilute flows should be modelled 

using this technique. Computational requirements also scale with the number of modelled particles 

and with the large number of particles in high solids concentration flows (~109 for a single process 

unit) this type of modelling is currently impractical (Kuang et al., 2012). 

3.4.2 Air-core Modelling 

Most hydrocyclones operate with a central air core. The swirling flow within the hydrocyclone 

creates a low-pressure zone along the vertical axis. This draws air from the underflow opening, 

which is open to atmosphere. Several authors have noted its impact on the efficient operation of 
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the hydrocyclone (Davailles et al., 2012a; Delgadillo and Rajamani, 2009; Dlamini et al., 2005; 

Doby et al., 2008; Gupta et al., 2008; Sripriya et al., 2007). The presence of the air core reduces 

the effective area available for the fluid to exit through the underflow, which effects both the 

pressure drop and water flow split. A more in depth explanation of the air core can be found 

elsewhere (Doby et al., 2008; Neesse and Dueck, 2007). 

3.4.2.1 Simplifications of the Air-core 

The modelling of an additional phase in an already complex flow has proven to be a 

computationally expense task (Davailles et al., 2012a; Karimi et al., 2012). There is also some 

doubt to the validity in the coupling between turbulent and multiphase models, due to the lack of 

validation on benchmark two-phase flows (Banerjee et al., 2016; Davailles et al., 2012a). This has 

meant that multiple studies have been reported on hydrocyclone flow without simulating the air 

core features (Banerjee et al., 2016; Bhaskar et al., 2007a; 2007b; Dlamini et al., 2005; Hwang et 

al., 2013; Murthy and Bhaskar, 2012; Swain and Mohanty, 2013) or by considering the air core as 

a hollow or metal tube with a set diameter (Davailles et al., 2012a; Evans et al., 2008; Sripriya et 

al., 2007). When conducting single phase simulations the air core is often assumed to be 

represented by the low pressure core at the centre of the hydrocyclone (Banerjee et al., 2016; 

Bhaskar et al., 2007b). 

Davailles et al. (2012a) evaluated the differences in simulated results between a ‘real’ air core 

modelled using the multiphase model VOF and a ‘fake’ cylindrical air core of an assumed 

diameter. The cylinder, set at a fixed location centred around the vertical axis, had a shear free 

boundary condition applied to the interface between the modelled domain and the hollow tube 

(meaning there is no resistance between the fluid phase and the cylinder’s boundary). This 

approach aimed to reduce the computational expense associated with the additional phase 

(reducing simulation time by almost half). Results showed that the simulations with the hollow 

tube did not perform as well as the modelled air core, however, the results were still in reasonable 

agreement with the experimental data. Another conclusion made by the work was the importance 

of correctly matching the diameter of the hollow tube to that of the actual air core. This was done 

by testing multiple diameters and comparing the water split values to experimental values to 

determine the correct diameter. This added workload somewhat defeats the sole purpose of this 

method, which was to reduce computational expense. Other authors (Evans et al., 2008; Sripriya 
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et al., 2007) have conducted simulations in which the air core was replaced by a steel rod insert 

(meaning a non-slip boundary was imposed). This was not focused on reducing computational 

time but instead increasing the performance of the hydrocyclone by reducing the amount of 

turbulence caused by the fluctuating air core. It was determined that the metal insert did help 

improve the performance of the hydrocyclone, however; Evans et al. (2008) also mentioned that 

this improvement was dependent on correctly sizing the metal rod. 

Karimi et al. (2012) compared the difference in the predicted tangential and axial velocities from 

single phase (water) simulations (using the LES turbulence model and assuming no air core 

formation), and two-phase simulations (using LES-VOF). The authors found a clear improvement 

in the quantitative agreement between the numerical predictions and experimental measurements 

for both velocity components. It was noted, however, that the increase in accuracy (43.4% error 

down to 26.3% at Plane 60 and from 49.1% to 42.5% at Plane 120) came at a significant 

computational cost, suggesting that single phase tests provide computationally inexpensive and 

reasonably accurate predictions of the flow patterns in a hydrocyclone. Mousavian et al. (2009) 

also noted an increase in accuracy with the modelling of the air core. Results for particle separation 

efficiencies and tangential and axial velocity components were both shown to improve with the 

addition of the air core (using RSM-VOF). 

3.4.2.2 Applications of the VOF Model 

The application of VOF model in hydrocyclone simulations typically falls into three main 

categories. The first is its use in two phase flows (air-water), where it has been shown to accurately 

predict the air core diameter with both the LES and RSM turbulence models (Cui et al., 2014; 

Leeuwner and Eksteen, 2008; Narasimha et al., 2006a; Xu et al., 2013). Results from Delgadillo 

and Rajamani (2009), using the LES model, showed that the VOF model was able to accurately 

predict the air core diameter (and therefore the water split) for a range of different hydrocyclone 

geometries and fluid viscosities. The second application is when modelling particle flow via the 

Lagrangian Discrete Phase Model (DPM). The DPM can be coupled with the VOF model, and has 

been used to predict particle trajectories in hydrocyclones by incorporating drag, gravity, buoyancy 

(pressure gradient) and ‘centrifugal’ forces (Delgadillo and Rajamani, 2005, 2007; Wang and Yu, 

2006; Wang et al., 2007; Wang and Yu, 2008; Xu et al., 2012). Its last common application is 

when it is used as a precursor to the mixture model in complex three phase flows (Chu et al., 2012; 
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Ghodrat et al., 2016; Ji et al., 2017; Vakamalla et al., 2014; Vakamalla and Narasimha, 2017; 

Vakamalla et al., 2017). In simulations with high solids content the particle must be modelled via 

the Eulerian approach. This is not possible using the VOF model, therefore it is used as a 

computationally cheap and accurate way to initialise the air-water system before particles are 

added to the simulation. It should also be noted that the surface tension between air and water 

needs to be applied when using the VOF model, with a value of 0.078 N·m-1 being standard 

(Narasimha et al., 2006a; Vakamalla and Narasimha, 2017). 

3.4.2.3 Applications of the Mixture Model 

As previously mentioned, the primary use of the mixture model for air core development is when 

modelling particulate flows above 10 % solids by weight. It has been successfully used to model 

the air core in slurries with particle concentrations ranging from 10 to 30 % by weight (Brennan, 

2003; Brennan et al., 2007; Ghodrat et al., 2013; Ghodrat et al., 2014b; Ghodrat et al., 2014a; 

Ghodrat et al., 2016; Ji et al., 2017; Kuang et al., 2012; Narasimha et al., 2012a; Olson and Van 

Ommen, 2004; Slack et al., 2004; Vakamalla et al., 2014; Vakamalla and Narasimha, 2017; 

Vakamalla et al., 2017). There are two approaches used to model the air core when using the 

Mixture model. The first is to disable the slip velocity calculations, meaning the slip velocity is 

always zero for the air phase. This in effect means the air phase is being solved via the VOF model 

(Brennan et al., 2007; Narasimha et al., 2012a; Vakamalla and Narasimha, 2017; Vakamalla et al., 

2017). The second is to assign an air bubble diameter (assuming the bubbles to be rigid spheres). 

The appropriate bubble diameter has been reported to be 1 × 10-5 m (Ghodrat et al., 2014b; Ghodrat 

et al., 2016; Kuang et al., 2012) or 1 × 10-4 m (Brennan, 2006), which was determined by 

comparing the air core diameters to that of the VOF model. The drag law used for the bubbles was 

the Schiller and Naumann drag law (Ghodrat et al., 2014b; Ghodrat et al., 2016; Kuang et al., 

2012). 

3.4.2.4 Comparison between Mixture and VOF Models 

Brennan (2006) compared the performance of both the Mixture and VOF models with the RSM 

and LES turbulence models. The authors found that the predicted tangential and axial velocity 

components were virtually identical. A similar conclusion was also made by Kuang et al. (2012) 

and Ghodrat et al. (2016), who also found both models to predict similar pressure drops and water 

split ratios. As both of these models have been able to accurately predict the air core formation 
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there has been no requirement to use the more sophisticated and computationally expensive 

Eulerian model to simulate the air core. 

3.4.3 Particle Modelling 

3.4.3.1 Low vs High solid concentration flows 

Particle modelling can be divided into two main areas: low solids concentration modelling and 

high solids concentration modelling. For low particle concentration flows the DPM (also referred 

to as the Lagrangian Particle Tracking (LPT) method); a TFM (either the Eulerian or Mixture 

Model); or the Discrete Element Method (DEM) can be used to model particle flow. Both the TFM 

and DEM are explained in detail by Zhou et al. (2010). The DPM is suited to systems where the 

dispersed phases are dilute and particles interact mostly with the fluid without significantly 

changing the fluid transport properties, as particle-particle interactions and the effects of the 

particle volume fraction on the liquid phase are neglected (Narasimha et al., 2007). It has been 

shown to accurately predicted particle flow in systems with solid concentrations under 5 % by 

volume (Delgadillo and Rajamani, 2005, 2007; Hwang et al., 2013; Wang and Yu, 2006; Wang et 

al., 2007; Wang and Yu, 2008; Xu et al., 2012) and due to its low computational demand has 

meant it is the default choice when modelling low solids concentration flows. As mentioned earlier 

the force balances can include the discrete phase inertia, hydrodynamic drag, buoyancy and 

gravity. In all referenced cases, the pressure gradient force (buoyancy) and gravity were applied, 

the turbulent dispersion was set to the discrete random walk model, and the drag was calculated 

using Equation 3.1. In Equation 3.1, 𝜇 represents the fluid viscosity (for low solids density 

mixtures this is assumed to be equal to water), and 𝑑𝑝, 𝑅𝑒𝑝, and 𝜌𝑝 represent the particle’s 

diameter, Reynolds number and density respectively. In the referenced papers, no information was 

given for the calculation of the drag coefficient (𝐶𝐷). This is a significant omission and should not 

be continued in future publications.  

 𝐹𝐷 =
18𝜇

𝑑𝑝
2𝜌𝑝

𝐶𝐷

𝑅𝑒𝑝

24
 Equation 3.1 

For high particle concentration flows, the Mixture model has been shown to be an adequate 

selection (Brennan, 2003; Brennan et al., 2007; Ghodrat et al., 2013; Ghodrat et al., 2014b; 

Ghodrat et al., 2014a; Ghodrat et al., 2016; Ji et al., 2017; Kuang et al., 2012; Narasimha et al., 
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2012a; Olson and Van Ommen, 2004; Slack et al., 2004; Vakamalla et al., 2014; Vakamalla and 

Narasimha, 2017; Vakamalla et al., 2017). Narasimha et al. (2012a) noted that the key to modelling 

classification in a cyclone is to calculate the drift velocity of the dispersed phase relative to the 

mixture. The authors made two modifications to the default slip velocity calculation: a shear 

dependent lift force based on the work of Saffman (1965) and a gradient of granular pressure (as 

calculated by the granular options) to model the Bagnold (1954) dispersive forces. This was first 

undertaken by Narasimha et al. (2006b) when modelling a dense medium cyclone, noting that the 

lift force coefficient needed to be increased substantially over the value used by Saffman to achieve 

accurate results. The lift force has also been implemented by other authors (Vakamalla and 

Narasimha, 2017; Vakamalla et al., 2017). 

There are multiple drag laws that have been applied for the modelling of particles with the mixture 

model, including the Schiller Naumann drag law with an additional correction for hindered settling 

based on the Richardson and Zaki (1954) drag coefficient (Narasimha et al., 2012a; Vakamalla et 

al., 2014; Vakamalla and Narasimha, 2017; Vakamalla et al., 2017); the Gidaspow et al. (1992) 

drag law (Brennan et al., 2007); and the Ergun and Wen–Yu correlation (Ghodrat et al., 2014b; 

Ghodrat et al., 2016; Kuang et al., 2012). There does not appear to be any consensus as to which 

drag law is most suited to modelling the particle motion in a hydrocyclone, and to the authors’ 

knowledge no study on various drag laws has been completed in hydrocyclone flow. 

The implementation of viscosity effects also becomes important as particle loading increases. It is 

well understood that the particles will impact the apparent viscosity of the fluid. Several authors 

(Brennan et al., 2007; Ghodrat et al., 2014b; Kuang et al., 2012) have applied a solid viscosity 

term consisting of a collisional viscosity (arising from particle momentum exchange due to 

transition and collision) and a kinetic viscosity. This solid viscosity was then added to the fluid 

viscosity to create a mixture viscosity. For particle collisions, a restitution coefficient of 0.9 (which 

is the default value in Fluent) has been used (Ghodrat et al., 2014b; Kuang et al., 2012; Vakamalla 

and Narasimha, 2017); whereas for collisions with the walls of the hydrocyclone, a value of 0.3 

has been reported (Hwang and Chou, 2017). Narasimha et al. (2012a) used a modified viscosity 

model which contained a correction factor for the influence of fine particles (below 53 µm) which 

was calibrated based upon experimental data. Comparing with experimental data showed that the 



64 

fines correction factor improved simulation accuracy. This technique has since been used 

elsewhere (Vakamalla et al., 2014; Vakamalla et al., 2017; Vakamalla and Narasimha, 2017). 

3.4.3.2 Comparison of the LPT and Mixture models 

Kuang et al. (2012) compared the particle recovery to the underflow predicted from the LPT 

method (via the DPM) and the Mixture model. Results showed that both methods could accurately 

predict the particle separation behaviour, when compared to experimental results, at a particle 

concentration of 4.11 % by volume. However, when modelling the separation behaviour with a 

feed solids concentration of 7.04 % by volume, the results predicted by the LPT model deviated 

significantly from the experimental results. Alternatively, the Mixture model was able to 

accurately predict the separation behaviour at the higher solids concentration. This confirms the 

suitability of the Mixture model over the DPM for high solids flows. It should be noted that due 

to the different materials of the tests (limestone – 2700 kg·m-3 vs coal – 1400 kg·m-3) the weight 

fraction of the lower volume fraction test was higher than that of the high-volume fraction test, 

approximately 10.7 % compared to 9.6 %. This confirms that it is the volume density of the 

particles which defines the particle-particle interaction threshold. Many authors quote weight 

fractions when simulating particle flows in the hydrocyclone, which may be misleading. 

Vakamalla and Narasimha (2017) also compared the performance of the DPM and Mixture model 

for a hydrocyclone with a feed solids concentration of 27.2 % by weight. The standard mixture 

model predicted particle separation values closer to that of the DPM, however, a modified Mixture 

model (accounting for the increased slurry viscosity and hindered settling rates that occur in high 

solid content flows) was able to match the experimental data much more closely than both the 

DPM and standard Mixture model. This demonstrates the importance of viscosity and settling rates 

when modelling high solids content flows. 

3.4.3.3 Particle sphericity  

Typically, for simplicity, particles are modelled as perfect inert spheres (Chu et al., 2012; 

Vakamalla and Narasimha, 2017). While this may not match reality, there have only been limited 

studies to validate the use of any other value. Olson and Van Ommen (2004) compared a shape 

factor of 1 (perfect sphere) and 0.8 to experimental data and found that the lower shape factor 

produced results closer to those of the measured data. Vakamalla et al. (2017) also used a particle 
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sphericity of 0.8 to account for the effect of particle shape on the drag force and to simulate realistic 

behaviour of particles, however, this approach was not validated. 

3.4.3.4 Phase Coupling and Interactions 

When modelling a discrete phase, such as particles in the hydrocyclone, the degree of interaction 

between the phases can be divided into three categories. The first is to predict the discrete phase 

patterns based on a fixed continuous phase flow field, meaning the particle’s effect on the fluid is 

ignored. This uncoupled approach, referred to as one-way coupling, is not suited to flows where 

the particle loading is significant enough to impact the carrying fluids flow pattern. It is therefore 

limited to use in dilute particle streams (< 5 % by volume) (Delgadillo and Rajamani, 2005).  

Alternatively, a coupled approach can be used where the effect of the discrete phase on the 

continuum is included, termed two-way coupling. In this coupled approach, the continuous phase 

flow pattern is impacted by the discrete phase and vice versa. Calculations alternate between the 

continuous phase and discrete phase equations until a converged coupled solution is achieved. This 

is inherently more accurate but computationally expensive. Mousavian et al. (2009) investigated 

the effects of both one-way and two-way coupling on the simulation accuracy of a hydrocyclone 

modelled with a feed inlet volume fraction of 10 %. The goal was to determine, at this particle 

concentration, if the discrete phase had a measurable effect on the continuous phase. A comparison 

of the particle classification curves for the two coupling techniques, to the experimental results 

presented by Bhaskar et al. (2007b), showed that the two-way coupling technique provided better 

results than the one-way coupling. It was concluded that the increased concentration of particles 

in the apex region led to improper definition of the flow pattern in this area for the uncoupled case, 

which clearly affects the underflow flow rate and particle classification. 

For high particle concentration flows, particle-particle interactions become significant and should 

also be included. This type of modelling is referred to as four-way coupling. This type of modelling 

is computationally very expensive, which has limited its application in hydrocyclone modelling 

(Swain and Mohanty, 2013). Chu et al. (2009) applied four-way coupling in the modelling of a 

dense medium cyclone using DEM. However, as this method, like any Lagrangian technique, 

requires the modelling of potentially billions of individual particles, a simplified parcel–particle 

technique was applied. 
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3.5 Boundary Conditions and Computational Requirements 

3.5.1 Computational Time and Memory  

The computational expense to conduct simulations on the multiphase, highly turbulent flow pattern 

within the hydrocyclone is extremely large. Simulation times from one week up to two months 

have been reported (Brennan et al., 2007; Delgadillo and Rajamani, 2005), even when conducting 

runs on computer clusters such as the National Computational Infrastructure in Australia (Ghodrat 

et al., 2014b; Ghodrat et al., 2016; Ji et al., 2017) or the University of Queensland Silicon Graphics 

Origin 3000 (Brennan, 2003). The largest influences on solution time are turbulence model choice; 

the addition of a secondary or tertiary phase; and the mesh size. Narasimha et al. (2006a) noticed 

a considerable increase in processing time of 50 % when comparing RSM and LES models, with 

Brennan (2006) also noticing a similar trend. Karimi et al. (2012) reported an increase from 34 h 

to 136 h when moving from a single-phase water simulation, to the addition of air as a secondary 

phase. With respect to mesh, Ghodrat et al. (2014b) stated that an increase in mesh size from 

100,000 to 195,268 increased simulation time from 1 week to three weeks respectively. 

3.5.2 Two-Dimensional Vs Three-Dimensional Analysis 

It is well understood that the complex nature of the flow and the asymmetric feed inlet means that 

the modelling of hydrocyclones in three dimensions is required (Cullivan et al., 2004; Mousavian 

et al., 2009). The large computational time needed for three-dimensional models, however, ensures 

that their application to industrial processes is far from occurring. Nageswararao et al. (2004) 

estimated that computational models of hydrocyclones were not going to be practically useful until 

2029. Schuetz et al. (2004) concluded that future work should entail the use of the older style two-

dimensional simulations as this dramatically reduces the calculation time. Pressure drop and 

velocity profiles were obtained and shown to be in close agreement to the experimental results, 

providing evidence that crude two-dimensional models could be used in industrial applications in 

the near future. 

3.5.3 Boundary Conditions 

When solving the Navier-Stokes and continuity equations, appropriate initial conditions and 

boundary conditions need to be applied in order to form a well-posed mathematical model of the 

hydrocyclone (Versteeg and Malalasekera, 2007). Boundary conditions specify the flow variables 

at the boundaries of the physical model and, for the hydrocyclone, consist of the feed inlet; the 
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overflow and underflow outlets; and the wall of the hydrocyclone. The following sections outline 

the application of different boundary conditions for the hydrocyclone. 

3.5.3.1 Feed inlet  

The reported inlet boundary conditions for the feed have included velocity inlet, mass flow rate 

and pressure inlet conditions. Uniform velocity and mass flow inlets are by far the most common 

inlet conditions, with authors using measured flow rates as a metric for input values (typically 

converting mass flow rates to velocities via the surface area of the feed inlet). Pressure inlet 

boundary conditions for the feed are far less common, with only a few published cases (Banerjee 

et al., 2016; Bhaskar et al., 2007a). This is a more fundamental technique as industrial 

hydrocyclones are controlled via feed pressure, meaning predictions can be directly correlated to 

industrial processes.  

For the k-ε and RSM turbulence models additional turbulence conditions are required for the 

boundary conditions For the feed inlet, turbulence intensity values of 5 % (Elsayed and Lacor, 

2010; Karimi et al., 2012) and 10 % (Cullivan et al., 2003; Vakamalla and Narasimha, 2017) have 

been reported. As for the length scale, Cullivan et al. (2003) used a value of 0.01 m (with a 24.5 

mm diameter feed inlet), while Suasnabar (2000) and Elsayed and Lacor (2010) stated that a length 

scale 0.07 times the inlet width should be used (Elsayed and Lacor (2010) used a 40 mm wide by 

100 mm rectangular feed inlet). The volume fraction of air in the feed is set to 0 (Brennan et al., 

2007; Cui et al., 2014; Mousavian et al., 2009). 

3.5.3.2 Pressure outlets  

The selection of the overflow and underflow outlet boundary conditions is a straight-forward 

choice. All referenced hydrocyclone models utilise the pressure outlet condition, with the gauge 

pressure set to 0 (atmospheric pressure). Multiple authors have noted that a radial pressure gradient 

is established at the two outlets, due to the swirl generated in the hydrocyclone flow field (Bhaskar 

et al., 2007a; Cullivan et al., 2004; Dlamini et al., 2005; Murthy and Bhaskar, 2012; Slack et al., 

2004; Swain and Mohanty, 2013). Dlamini et al. (2005) also noted that if a constant pressure is 

specified at the discharge orifices, the swirl is artificially suppressed and the internal hydrocyclone 

flow structure adversely influenced. This is accounted for by allowing for radial pressure 

distribution across the hydrocyclone discharge orifices (zero at centre, radially increasing to reflect 

local swirl prediction) (Cullivan et al., 2004). 
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The air back flow volume fraction is typically set to 1.0 (equivalent to setting water to 0) (Brennan 

et al., 2007; Leeuwner and Eksteen, 2008; Mousavian et al., 2009; Narasimha et al., 2010; 

Narasimha et al., 2012a; Vakamalla et al., 2014; Vakamalla and Narasimha, 2017; Vakamalla et 

al., 2017). This enables the simulation to generate an air core by drawing air in through the 

overflow and underflow outlets when the swirl generates a region of negative pressure along the 

vertical axis. This can either be done for initialisation, or after the water phase has had time to 

equilibrate. Backflow direction is commonly specified as normal to the boundary zones (Bhaskar 

et al., 2007a; Murthy and Bhaskar, 2012) and backflow turbulence intensity has been assigned a 

value of 5 % (Karimi et al., 2012) and 10% (Bhaskar et al., 2007a; Murthy and Bhaskar, 2012; 

Vakamalla and Narasimha, 2017) for the overflow, and 10 % for the underflow (Bhaskar et al., 

2007a; Karimi et al., 2012; Murthy and Bhaskar, 2012; Vakamalla and Narasimha, 2017). 

Some authors specified a flow split for the overflow and underflow boundaries, based upon 

measured data (Hwang et al., 2013; Hwang and Chou, 2017; Marthinussen et al., 2014). Cullivan 

et al. (2003) criticised this practice, stating that by defining the flow split the system becomes over 

constrained. The authors went on to state that while the pressure outlet boundary conditions for 

the underflow and overflow are not ideal, they represent a best estimate at the present time. Their 

main concerns included the rapid expansion of the flow exiting through the underflow, which 

indicates that a significant pressure drop may occur in this vicinity; and that the outlet conditions 

are the reflective type rather than the transmissive type. It was suggested that mesh refinement 

adjacent to the outlets should be conducted, to reduce the size of the numerical boundary layer. 

3.5.3.3 Wall functions 

The walls of the hydrocyclone are uniformly designated as the stationary wall boundary condition, 

with a no slip shear condition (Banerjee et al., 2016; Cui et al., 2014; Cullivan et al., 2004; Dlamini 

et al., 2005; Evans et al., 2008; Gao et al., 2011; Hwang et al., 2013; Hwang and Chou, 2017; 

Karimi et al., 2012; Kępa, 2013; Leeuwner and Eksteen, 2008; Lim et al., 2010; Marthinussen et 

al., 2014; Mokni et al., 2015; Narasimha et al., 2012a; Swain and Mohanty, 2013; Zhang et al., 

2017). For the k-ε and RSM turbulence models the wall roughness height and roughness constant 

are required. No mention of these terms in any of the referenced material suggests that these values 

remain at the default values. Standard wall functions are also used to approximate flow variables 
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in the near-wall region when using the k-ε and RSM models (Dlamini et al., 2005; Ji et al., 2017; 

Murthy and Bhaskar, 2012; Swain and Mohanty, 2013) 

3.6 Numerical Method and Simulation Conditions 

The accuracy of any simulation depends on the mesh quality, refinement and independence; the 

order of the numerical discretisation schemes; the chosen convergence criteria, and time step 

independence (de Souza et al., 2012; Zhu et al., 2012). This section will discuss the application of 

these parameters with regards to hydrocyclone modelling. Unless stated otherwise, all comments 

will be made based on a 3D simulation using the double precision, pressure-based solver. 

3.6.1 Mesh Development and Independence studies 

The partial differential equations that govern fluid flow are not usually amenable to analytical 

solutions, except for very simple cases. Therefore, in order to analyse fluid flows, flow domains 

are split into smaller subdomains or cells. The governing equations are then discretised and solved 

inside each of these grids (typically via the finite volume method). The accuracy of a CFD solution 

is governed by the number, type and arrangement of cells in the overall domain or grid (Ghodrat 

et al., 2016). In general, both the accuracy of a solution and its cost in terms of computer hardware 

and convergence time are dependent upon the fineness of the grid. Optimal meshes are often non-

uniform: finer in areas where large variations occur from point to point and coarser in regions with 

relatively little change. As there are no automated mesh production procedures, over 50% of the 

time spent in industry on a CFD project is devoted to the definition of the domain geometry and 

grid generation, further highlighting its importance (Versteeg and Malalasekera, 2007).  

3.6.1.1 Types of Meshing 

Meshes can be classified based upon the type of elements present or the connectivity of the mesh, 

being structured or unstructured. While structured meshes reduce computational memory, as they 

can be stored as arrays, they sometimes produce skewed or elongated cells. Therefore, unstructured 

meshes are the predominant choice for cyclone modelling. As for the various types of elements 

they include tetrahedrons, hexahedrons, pyramids or triangular prisms (wedges). Tetrahedral 

meshes, due to the nature of their shape, cannot be aligned with the direction of flow. This can 

lead to false diffusion in strongly convective flows, such as in a hydrocyclone (Patankar, 1980). 

Tetrahedral meshes have therefore been deemed unsuitable in the discretisation of the 
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hydrocyclone geometry (Bhaskar et al., 2007b; Mousavian et al., 2009; Murthy and Bhaskar, 

2012; Slack et al., 2004) and so have had limited use (Bhaskar et al., 2007a; Noroozi and 

Hashemabadi, 2011; Swain and Mohanty, 2013). For some complex or acute inlet geometries (in 

particular the point where the inlet joins the cylindrical cyclone), however, tetrahedral meshes are 

sometimes necessary to improve the quality of the mesh in these regions (Gupta et al., 2008; 

Leeuwner and Eksteen, 2008). In general the most common type of mesh for the hydrocyclone 

geometry is the unstructured hexahedral mesh (Delgadillo and Rajamani, 2005; Ghodrat et al., 

2013; Leeuwner and Eksteen, 2008; Slack et al., 2004; Wang and Yu, 2006, 2008; Xu et al., 2013; 

Zhang et al., 2017) as this element type allows for the alignment of the cell with the primary flow 

direction. This typically entails the combination of structured hexahedral grid in the outer region 

of the cyclone, and a unstructured hexahedral grid for the inner air-core region (removing the 

occurrence of skewed or elongated cells at the centre) (Schuetz et al., 2004). 

3.6.1.2 Mesh Refinement 

In order to achieve enhanced capture of the flow features inside a hydrocyclone and reduce 

numerical error, mesh refinement is necessary in certain critical regions (Murthy and Bhaskar, 

2012). These areas include: near the cyclone walls; around the air-core; within and near the vortex 

finder; the feed inlet and surrounding area; and the apex region. 

Boundary layer mesh has been implemented by numerous authors (Bhaskar et al., 2007b; Cullivan 

et al., 2003; Ghodrat et al., 2013; Ghodrat et al., 2014b; Ghodrat et al., 2016; Ji et al., 2017; Kuang 

et al., 2012; Safa and Soltani Goharrizi, 2014; Schütz et al., 2009; Wang and Yu, 2006; Wang et 

al., 2007; Wang and Yu, 2008; Xu et al., 2012; Zhang et al., 2017) in an attempt to get a better 

definition of the velocity near the cyclone walls as the flow usually varies more significantly there 

(Ghodrat et al., 2014b; Ghodrat et al., 2016). Contrary to this, Slack et al. (2004) states that 

boundary layer resolution is not critical when modelling cyclones as the turbulence is generated in 

the main flow. However, they then go on to state that the boundary layer mesh helps resolve the 

velocity profile in the narrow annular gap that may form at the underflow due to the development 

of the air core. Accurate modelling of the underflow region is critical as it controls the air core 

formation, water flow split and particle classification. Multiple authors have implemented mesh 

refinement in this region, with Mousavian et al. (2009) and Bhaskar et al. (2007b) further limiting 

the aspect ratio to under 10. This aspect was also highlighted by Brennan (2006) who graded the 
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grid radially near the underflow so that a fairly coarse grid existed in the region expected to be 

occupied by the air-core but the grid was fine around the wall region. Other authors have stated 

that their grids were refined where there was high pressure, phase or velocity gradients. This refers 

to the region around the central air core (Hwang et al., 2008; Hwang et al., 2013; Mousavian et 

al., 2009; Noroozi and Hashemabadi, 2011) or around the vortex finder (Bhaskar et al., 2007b; 

Cullivan et al., 2003; Ghodrat et al., 2013; Ghodrat et al., 2014b; Ghodrat et al., 2016; Ji et al., 

2017; Kuang et al., 2012; Safa and Soltani Goharrizi, 2014; Wang and Yu, 2006; Wang et al., 

2007; Wang and Yu, 2008; Xu et al., 2012; Zhang et al., 2017). 

In some cases, the geometry of the cyclone is changed to simplify the simulation or increase 

numerical stability. An example of this is the feed inlet which is sometimes simplified to a 

rectangular shape of the same surface area, even if in reality it is a circular shape or has a 

constriction that narrows from a circular to rectangular shape (Kuang et al., 2012; Vakamalla and 

Narasimha, 2017).  

It is also known that with LES an overall finer mesh size is needed. Grid resolution must be high 

enough to compute the scales up to the inertial range of the energy spectrum (de Souza et al., 

2012). Brennan (2006) reported that for a hydrocyclone simulation using the LES turbulence 

model a mesh size an order of magnitude larger than the equivalent RSM turbulence model 

simulation was needed. This is seen as a significant draw back to the LES model. 

3.6.1.3 Mesh Independence and Quality Analysis 

The number of discrete elements used to approximate the continuous solution will affect the 

accuracy of the model. As the mesh size decreases, the numerical error decreases and the results 

will approach that of the analytical solution. However, this increased accuracy is paid for in 

computational expense. It is therefore necessary to optimise the grid size to obtain a solution that 

minimises computational power while producing a solution within an acceptable level of tolerance. 

This is done through a mesh independence study, where a particular quantity of the model’s 

solution is compared at a range of mesh sizes. An example of this is shown in Figure 3.2, where 

the tangential velocity of water as a function radial position in the hydrocyclone was compared. It 

was determined that mesh sizes above 550 000 cells gave similar results and no appreciable 

increase in accuracy was achieved (Banerjee et al., 2016). Other authors have conducted similar 

studies with comparisons of axial and tangential velocities being the most prevalent (Bhaskar et 
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al., 2007b; Brennan, 2006; Cui et al., 2014; Vakamalla et al., 2014). As for accepted levels of 

change between grid sizes, Evans et al. (2008) reported a maximum difference of 4.8 % between 

the selectivity curves determined by consecutive grids as the criteria for mesh convergence. 

Alternatively, Zhu et al. (2012) required a threshold of 0.5 % between grids for the time-averaged 

overflow mass flow rate. 

Figure 3.2: Effect of mesh resolution on the tangential velocity in a hydrocyclone at different radii. 

Reproduced with permission from Banerjee et al. (2016). 

The inherent inaccuracies in CFD modelling, caused by the discretisation of a continuous domain, 

are not often quantified due to the absence of an accepted metric and the additional computational 

resources required. (Karimi et al., 2012) studied these inaccuracies and concluded that the Grid 

Convergence Index (GCI) was a practical method to estimate the numerical uncertainty of a certain 

mesh size. The GCI compares the discrete solutions of at least three different mesh sizes and 

determines the influence of the grid on the final solution. An example of this is shown in Figure 

3.3, where the greyed region represents how far the numerical solution is from the asymptotic 

value and indicates how much the solution would change with further grid refinement. Results for 

tangential velocities were able to show that for the central air core and wall regions the differences 

981 000 
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between the simulated and experimentally measured data was not due to the mesh characteristics. 

This meant effects from other sources, such as the chosen multiphase model or wall boundary 

conditions, were a determining factor. Results for axial velocities, however, showed that in their 

case grid refinement around the walls and at the outer boundary of the air core region did improve 

results. This aligns with the information detailed in Section 3.6.1.2, which outlines the importance 

of mesh refinement near the wall and air core region. While this approach is an ideal way to study 

the effects of mesh size, it is very computationally expensive and so is rarely done. 

Figure 3.3: Comparison of the predicted axial velocity to experimental data. Greyed region 

represents the GCI error bars, which represent the amount of variance caused by the mesh density. 

Reproduced with permission from (Karimi et al., 2012). 

The quality of the mesh is not only dictated by its size, as the smoothness, aspect ratio, and 

skewness will also have an effect and should be monitored (Hwang et al., 2013). Smoothness is 

determined by the ratio of size between adjacent cells, with values close to unity being ideal. The 

aspect ratio is defined as the ratio of the longest to shortest side in a cell, and, to ensure best results, 

should be close to 1. For hydrocyclone modelling, Leeuwner and Eksteen (2008) stated that an 

unstructured hexahedral mesh is more tolerant of high aspect ratios. However, this only applies if 
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the flow is aligned in the direction of the stretching, and there is no strong flow variation. Several 

authors have expressed that the maximum aspect ratio in the spigot region should be restricted to 

under 10 (Bhaskar et al., 2007b; Mousavian et al., 2009; Murthy and Bhaskar, 2012). 

Mesh skewness has a significant impact upon numerical stability and accuracy (Cullivan et al., 

2003). It determines how close to ideal (i.e. equilateral or equiangular) a face or cell is. Typically, 

skewness is presented as a distribution of values, calculated from each cell, ranging from 0 to 1, 

with values closer to 0 being preferred. Karimi et al. (2012) presented values of mesh skewness 

(shown in Table 3.3) by determining the percentage of cells with a skewness less than 0.2. This is 

the only reported data of skewness in hydrocyclone meshes. Future reports should include the 

number of cells with a skewness above 0.85, as it is the highly skewed cells that cause numerical 

inaccuracies. 

While the importance of the chosen mesh on the CFD solution is well understood, in hydrocyclone 

modelling very few authors detail mesh quality characteristics or independence studies. Some 

authors have even explicitly stated the lack of a mesh independence study, due to the lack of 

computational resources (Cullivan et al., 2003; Cullivan et al., 2004; Swain and Mohanty, 2013).  

Table 3.3: Mesh properties reported by Karimi et al. (2012), with accompanying computational 

expense for an Intel Corei7 CPU 1.6 GHz workstation using ANSYS FLUENT 12.1 (note 

computational time was for single phase water tests, multiphase (air-water) simulations increased 

computational time by a factor of 4). 

Mesh Type Size Interval 

(mm) 

Number of 

Cells 

Cells with skewness 

under 0.2 (%) 

Computational 

Time (hours) 

Hexagonal 6.0 3460 74.65 1.48 

Hexagonal 3.0 13,578 89.19 2.67 

Hexagonal 1.5 983,642 94.32 157.23 

3.6.2 Solution Methods 

3.6.2.1 Pressure-Velocity Coupling 

Velocity fields are calculated through the simultaneous solving of the momentum and continuity 

equations. For incompressible flows, the coupling or linking between pressure and velocity 

introduces a constraint in the solution of this flow field. This can be done in one of two ways. The 
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first, is the predictor-corrector (or guess-check-improve guess) approach, which means that once 

the correct pressure field (calculated iteratively in a sequential manner) is applied in the momentum 

equations, the resulting velocity field should satisfy continuity. The most popular choice of 

algorithm for pressure-velocity coupling in hydrocyclone modelling, SIMPLE (Semi-Implicit 

Pressure Linked Equations), is an example of this iterative method. The SIMPLE algorithm is 

relatively straightforward and has been successfully implemented in numerous CFD procedures, 

hence its popularity. In some cases, extensions of the SIMPLE algorithm such as SIMPLEC 

(SIMPLE-Consistent) (Cullivan et al., 2004; Dlamini et al., 2005; Evans et al., 2008) or PISO 

(Pressure-Implicit with Splitting of Operators) (Zhu et al., 2012) have also been used in cyclone 

modelling. These extensions offer increased convergence rates for relatively uncomplicated 

problems (laminar flows with no additional models enabled) in which convergence is limited by 

the pressure-velocity coupling (SIMPLEC) or for transient flow calculations, especially when one 

wants to use a large time step (PISO). For problems that require small time steps, such as when 

using the LES turbulence model, using PISO may result in an increased computational expense 

and therefore should not be used. This could explain the limited use of these extensions in 

hydrocyclone modelling. While the above segregated or decoupled methods can be used for VOF 

and mixture multiphase models if the Eulerian multiphase model is chosen, a coupled scheme must 

be used. The Phase Coupled SIMPLE algorithm is the standard choice and has been applied to 

hydrocyclone modelling (Swain and Mohanty, 2013). The coupled algorithm solves the 

momentum and pressure-based continuity equations together, which provides a robust and more 

accurate result when compared to the segregated algorithms but is therefore more computationally 

expensive with slower convergence rates. 

3.6.2.2 Spatial Discretisation 

Firstly, gradient selection is required as they help calculate values of the scalar at the cell faces 

from the stored values at the cell centres. The selection of gradients for hydrocyclone modelling 

to this author’s knowledge has not been mentioned in any of the referenced material. Based on 

theory, however, the recommended method is the Least Squares Cell-Based gradient evaluation as 

it combines both increased accuracy over the Green-Gauss Cell-Based gradient evaluation and 

decreased computational expense when compared to the Green-Gauss Node-Based method. Future 

papers could include this detail to confirm its application for hydrocyclone modelling. As for the 

choice of the pressure interpolation scheme, it is relatively straight forward. The PRESTO 
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(PREssure STaggering Option) scheme is recommended for high swirl numbers, high-Rayleigh-

number natural convection, high-speed rotating flows, and flows in strongly curved domains. This 

has led to its unanimous use in hydrocyclone modelling (Mousavian et al., 2009; Murthy and 

Bhaskar, 2012; Zhu et al., 2012). 

The selection of a discretisation scheme for the convection terms of each governing equation is 

also required. This can include terms such as volume fraction, momentum or turbulent kinetic 

energy. The accuracy of various schemes can be thought of in terms of Taylor series truncation 

errors (TSTE): first order schemes are very stable and obey the transportiveness requirement but 

have lower accuracy which makes them prone to numerical diffusion errors. Higher-order schemes 

involve more neighbour points and reduce the discretisation errors by bringing in a wider 

influence. For simulating complex rotating or swirling flows, such as those found in 

hydrocyclones, higher order discretisation schemes are recommended in order to reduce the effects 

of false or numerical diffusion. (Bhaskar et al., 2007a; Mousavian et al., 2009; Murthy and 

Bhaskar, 2012; Noroozi and Hashemabadi, 2011; Slack et al., 2004) This includes discretisation 

schemes such as QUICK (quadratic upstream interpolation for convective kinetics) or the third-

order MUSCL scheme (Monotonic Upstream-centred Scheme for Conservation Laws). The 

QUICK scheme is typically more accurate on structured meshes aligned with the flow direction 

but is only applicable to quadrilateral or hexahedral meshes, defaulting to second-order upwind 

discretisation scheme in other cells. The MUSCL scheme does not have this limitation. While 

these higher order discretisation schemes are widely used (QUICK being the most prevalent), some 

authors have published models using lower discretisation models such as the second order upwind 

scheme (Brennan, 2003; Karimi et al., 2012; Schuetz et al., 2004; Wang et al., 2007; Xu et al., 

2012), the power law scheme (Gupta et al., 2008) or the first order upwind scheme (Swain and 

Mohanty, 2013). Lower order schemes help reduce computational time by increasing the 

convergence rate, which is sometimes necessary in complex simulations, while for large mesh 

sizes or steady state solvers lower order discretisation schemes are sometimes necessary to obtain 

a converged solution. The results obtained using the first order upwind or power law scheme, 

however, where not validated experimentally and so this practice is questionable. Lim et al. (2010) 

stated that the application of the second-order upwind scheme produced numerical results that 

were in poor agreement with their experimental measurements. This led to the use of the higher 

order QUICK scheme which then led to more accurate results. 
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In some specific cases the aforementioned schemes are unavailable for selection or are not the 

optimal choices. When using the VOF multiphase model, the selection of the discretisation 

schemes available for volume fraction depend on the type of interface modelling. For 

hydrocyclones, the modified HRIC (High Resolution Interface Capturing) and QUICK schemes 

have been shown to predict essentially the same water velocities, but the HRIC option allows for 

a sharper resolution of the air/water free surface and so should be selected (Brennan, 2006). 

Another case is when choosing the discretisation scheme for momentum when using the LES 

turbulence model. The bounded central differencing scheme is the default and has been used by 

numerous authors (Brennan et al., 2007; Narasimha et al., 2012a; Vakamalla et al., 2014; 

Vakamalla and Narasimha, 2017). Brennan et al. (2007) found that at coarser grid sizes the third-

order MUSCL scheme gave better predictions of the velocities than the bounded central 

differencing scheme on a coarse grid, but on a finer grid (recommend for LES simulations) both 

discretisation schemes gave similar velocity predictions 

3.6.2.3 Temporal Discretisation 

For transient simulations, the governing equations must be discretised in both space and time. 

Slack et al. (2000) used a second-order implicit transient formulation. This scheme uses 

information from the two adjacent time steps to calculate the time derivative. A first order implicit 

formulation has also been reported to be used (Swain and Mohanty, 2013); however this practice 

is questionable. 

3.6.3 Steady State vs Transient Solutions (Time Steps) 

Hydrocyclones have been shown, both experimentally and by CFD analysis to have a number of 

unstable flow features particularly in the low-pressure central core (Slack et al., 2004). In steady 

state simulations a transient pattern will occur in the velocity and pressure fields that can be 

detected by a cycling in the residuals (Dlamini et al., 2005; Schuetz et al., 2004; Slack et al., 2004). 

This means that while a steady state solution can be used to initialise a system (discussed further 

in Section 3.6.5), a transient solution is required for improved definition of the air core as well as 

the velocity and pressure fields (Dlamini et al., 2005; Slack et al., 2004). For transient solutions, 

relevant time steps must be chosen so that the simulation accuracy and computational expense are 

at an acceptable level. A general rule for CFD modelling is to ensure that the time step of the 

simulation is defined such that Courant number (C) is less than 1 according to Courant–Friedrichs–
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Lewy (CFL) stability condition (Anderson, 1995). Higher numbers signify that the flow speed is 

too fast to be calculated at that time step size or at that grid size This method has only been reported 

to be used by Vakamalla et al. (2014) who varied time steps between 1.0 × 10-5 and 5.0 × 10-5 s to 

ensure this condition was met. Alternatively, time step dependence studies can be completed which 

determine how results change with various time steps (Kuang et al., 2012; Wang and Yu, 2006; 

Wang et al., 2007; Xu et al., 2012; Xu et al., 2013; Zhu et al., 2012). This is by far the most reliable 

technique but can be time consuming. Typical values for the time step range from 5.0 × 10-4 down 

to 1.0 × 10-5 s, with lower values typically reported when using the LES turbulence model. 

3.6.4 Judging Convergence – Residuals and Quantity Balancing 

The residual is one of the most fundamental measures of an iterative solution’s convergence as it 

directly quantifies the error in the solution of the system of equations. The residual measures the 

local imbalance of a conserved variable in each control volume. Therefore, every cell in the model 

will have its own residual value for each of the equations being solved. While there are no universal 

metrics for judging convergence, for hydrocyclone models, RMS residual levels of 10-3 appear to 

be considered to be the minimum level of acceptable convergence (Dlamini et al., 2005; Gupta et 

al., 2008; Noroozi and Hashemabadi, 2011). While this is considered sufficient, residual levels of 

10-5 and 10-6 are considered to be more tightly converged and so are much more common (Bhaskar 

et al., 2007a; Evans et al., 2008; Hwang et al., 2013; Hwang and Chou, 2017; Karimi et al., 2012; 

Leeuwner and Eksteen, 2008; Lim et al., 2010; Mousavian et al., 2009; Sripriya et al., 2007; 

Vakamalla and Narasimha, 2017; Xu et al., 2016; Zhu et al., 2012). 

While the monitoring of residuals allows for a transient solution to progress from one time step to 

the next, it is still necessary to determine when a final steady state solution has been achieved. This 

type of steady state convergence is determined by monitoring relevant integrated quantities such 

as: pressure drop; net mass flow rate between feed, overflow and underflow; or tangential and axial 

velocities (Brennan et al., 2007; Ghodrat et al., 2014a; Vakamalla and Narasimha, 2017; Zhu et 

al., 2012). Figure 3.4, reproduced from Vakamalla and Narasimha (2017), is an example of this 

type of monitoring and shows that even though oscillations do occur the solution has reached a 

steady value. Ensuring that these values have reached a steady solution means that results are based 

upon a single repeatable value. Resultant values should then be averaged over a set number of 
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iterations after convergence is reached. This is suggested to be 1000 iterations (Delgadillo and 

Rajamani, 2007) or two seconds of simulated time (Vakamalla and Narasimha, 2017). 

Figure 3.4: Variation of (a) net mass flow rate and (b) mean tangential and axial velocities with 

simulation time in the 75 mm hydrocyclone. Reproduced with permission from Vakamalla and 

Narasimha (2017). 

3.6.5 Solution Initialisation and Controls 

Before starting any CFD simulation an initial estimate for the solution flow field is needed. The 

uniqueness of a result depends on the choice of boundary conditions, physical data and numerical 

settings. Therefore, initialisation should not affect the final results, meaning that regardless of how 

the case is initialised, the same results should be obtained once steady state convergence has been 

reached. Initialisation will, however, affect the time taken to reach convergence. There have been 

a wide range of initialisation techniques used for hydrocyclones. If studying the steady state 

operation of the cyclone (pressure drop, classification behaviour, velocity profiles), initialisation 

of the computational domain has been conducted using a hydrocyclone full of water at rest and 

atmospheric pressure (Cullivan et al., 2003; Davailles et al., 2012a; Mousavian et al., 2009; 

Murthy and Bhaskar, 2012; Swain and Mohanty, 2013); or with the properties of the feed inlet 

(Karimi et al., 2012; Vakamalla and Narasimha, 2017). To complement the no-flow initial 

condition the turbulence kinetic energy and dissipation rate are recommended to initialized, when 

applicable, as 0.001 m2·s-2 and 0.1 m2·s-3 respectively (Cullivan et al., 2003). Cullivan et al. (2003), 

after using high speed video, also came to the conclusion that the initial water-filled condition was 

appropriate for the numerical prediction of air-core inception and development, since the air was 
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first flushed from the hydrocyclone before air-core development occurs. Alternatively, Cui et al. 

(2014) stated that the domain must be initially filled with air to simulate the start-up conditions of 

an actual operation, if studying the formation of the air core. 

As discussed previously, hydrocyclone modelling is severely limited by the computational expense 

of the simulations. Brennan (2006) detailed a simulation strategy to help reduce the time needed 

for a simulation to reach completion. It began by first simulating a water only case, with the 

backflow air volume fraction set to zero for the overflow and underflow boundary conditions, 

using a steady solver and the standard k-ε turbulence model. These simplifications, ran for 

approximately 200 iterations, allowed for a better initial approximation of the pressure and velocity 

flow fields within the hydrocyclone without the increased computational expense of added phases 

or complex turbulence models. The turbulence model was changed to a more accurate but 

computationally expensive model, such as the LES or RSM model, and continued using the steady 

solver for a further 25 iterations. This solution can be used for the initialisation of simulations with 

various model parameters. The simulation was then changed to the unsteady solver and continued 

until a central axial core of negative pressure was formed. The back-flow air volume fraction on 

both the overflow and underflow boundary conditions was then set to 1 and the simulation was run 

using the unsteady solver until convergence. While this methodology does not represent the real 

transient conditions in a hydrocyclone, as the back-flow air volume fraction is 1 from start-up, the 

final converged solution was shown to be independent of this initialisation procedure. This method 

has been employed by other authors (Dlamini et al., 2005; Leeuwner and Eksteen, 2008; 

Mousavian et al., 2009) and extended further by Brennan et al. (2007). They used a coarse grid 

(56,000 cells) for the initialisation procedure and a finer grid (450,000 cells) to obtain a more 

accurate final solution. Other simplifications include incrementally increasing the hydrocyclone 

inlet speed up to the required speed, or assuming a laminar flow to determine an initial guess of 

the pressure and velocity fields (Schuetz et al., 2004).  

Under-relaxation factors help stabilise numerical simulations by limiting the change in the 

solution per iteration. This dampening, however, can give false confidence when observing 

residuals, further highlighting the need for the monitoring of key parameters. Ideally, under-

relaxation factors should not be lowered from the default values provided by the software 

package (such as ANSYS), however if a simulation is diverging, variations in the under-
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relaxation values may be necessary. Swain and Mohanty (2013) relied on varying the under-

relaxation values for the velocity and the volume fraction between 0.05 and 0.2 and for pressure 

between 0.05 and 0.6, to get a converged solution. This was most likely necessary as they used 

first-order discretisation with a tetrahedral mesh which would lead to numerical diffusion. 

Dlamini et al. (2005) also required the use of relaxation factors as they relied on the steady state 

solver to initialise their flow field, following the procedure of Brennan (2006). It was concluded 

that under-relaxation factors of 0.35 and 0.5 for the momentum and turbulent viscosity equations 

respectively was required to stop divergence. Dlamini et al. (2005) and Cullivan et al. (2003) 

also concluded that for improved stability when initialising simulations using the RSM 

turbulence model, the linear pressure-strain (LSP) model should be used for the first few 

iterations. If possible, the quadratic pressure-strain (QSP) can then be used once a crude flow 

structure is established for which the turbulence and pressure and velocity fields are more in 

balance. 

3.7 Validation of Hydrocyclone Models 

The validation of computational models is crucial to the confidence and wide spread acceptance 

of their predictions. Validation can be divided into two main disciplines: local (microscopic) or 

global (macroscopic) behaviour. Global validation describes comparing behaviour of the entire 

flow domain, whereas local validation involves the comparison of characteristics at individual 

locations. Global validation parameters for the hydrocyclone include measurements such as flow 

split to the underflow, pressure drop, or particle separation efficiencies. This type of experimental 

data is typically simple to obtain and allows for the validation at a range of process conditions. 

However, global data cannot fully explain the intricate flow interactions with different geometrical 

features, which effect flow phenomena such as short circuiting, the by-pass or supposed fish-hook 

effect. It is clear that the fundamental behaviour, such as water and particle velocity fields, air core 

diameter, or solids concentration fields, are needed to ensure that the model is correctly capturing 

the behaviour inside the hydrocyclone. This type of validation requires point by point comparison. 

This data is much more difficult and time consuming to obtain, particularly particle flow in dense 

medium flows, and requires specialised equipment. The most common data set used by all 

modellers is that obtained by Hsieh (1988), in a 75 mm hydrocyclone, with numerous authors 

citing this work to avoid the complex measurements required for local validation (Brennan, 2006; 
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Brennan et al., 2007; Davailles et al., 2012a; Delgadillo and Rajamani, 2005; Ghodrat et al., 2016; 

Ji et al., 2017; Karimi et al., 2012; Kuang et al., 2012; Narasimha et al., 2006a; Vakamalla and 

Narasimha, 2017; Wang and Yu, 2006; Wang et al., 2007). Below outlines some of the most 

common validation techniques for the hydrocyclone, broken up into validation of the three phases: 

water, air and particles. 

3.7.1 Water flow validation 

3.7.1.1 Global Validation 

The flow rate of water through the hydrocyclone (when velocity or pressure inlet boundary 

conditions are applied), the pressure drop and the volume split ratio (when not already specified) 

can be used to validate water flow. The water volume split ratio is typically defined as the 

percentage of feed water that exits via the underflow. Prediction of the water split via CFD is often 

reported to be very close to the measured values (within 10 %) (Banerjee et al., 2016; Bhaskar et 

al., 2007b; Davailles et al., 2012a; Ghodrat et al., 2016; Kuang et al., 2012; Narasimha et al., 

2006a; Olson and Van Ommen, 2004; Vakamalla and Narasimha, 2017; Wang et al., 2007). Wang 

and Yu (2006) compared water flow splits for different cyclone diameters, cylindrical lengths and 

conical lengths to the empirical models of Plitt (Flintoff et al., 1987; Plitt, 1976). This was then 

extended to hydrocyclones with different vortex finder diameters and lengths (Wang and Yu, 

2006). The CFD predictions correlated well with the results from the Plitt model; however, when 

compared to the experimental data of Hsieh (1988) the CFD predictions were marginally closer. 

This suggests that CFD is a good tool for predicting water splits in hydrocyclones. Murthy and 

Bhaskar (2012) and Bhaskar et al. (2007a) noted, however, that for water splits above 50 % 

(meaning more water to the underflow), predictions are not as accurate as those below 50 %. 

Murthy and Bhaskar (2012) also compared experimentally measured water throughput rates to the 

predicted values for a range of feed velocities. As the feed inlet velocities were set from the 

experimental data it was a very close match, as expected. Alternatively, Bhaskar et al. (2007a), 

who used a pressure inlet boundary condition, found that the water throughput was sensitive to the 

chosen turbulence model, with error values of around 20 % for the k–ε model, 15 % for the RNG 

k–ε model and 8% for the RSM. This suggest that while setting the inlet pressure is a more 

desirable approach, it does produce another level of complexity. 
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Pressure drop represents the difference in pressure between the feed and outlet streams. For a 

hydrocyclone with its apex open to atmosphere, this is equivalent to the feed pressure. Again 

pressure drop has been reported to be closely predicted by CFD models (to within 10 %) (Ghodrat 

et al., 2016; Kuang et al., 2012; Olson and Van Ommen, 2004; Wang et al., 2007). As with flow 

split Wang and Yu (2006, 2008) compared pressure drop to the Plitt model, and found that the 

predictions are quantitatively comparable.  

3.7.1.2 Local Validation 

There are three velocity components within the hydrocyclone: the tangential, radial and axial 

velocities. Velocity measurement techniques such as Laser Doppler Velocimetry (LDV) and 

Particle Image Velocimetry (PIV) provide useful tools for the measurement of water flow in 

hydrocyclones. Wang et al. (2016) summarised the application of LDV and PIV in hydrocyclones. 

The authors stated that due to the difficulty in measuring the radial components of the flow, it is 

often omitted. Hsieh (1988) cited fluctuations of the air-core as the primary reason for the inability 

to measure the radial velocity. Therefore the comparison of just the measured tangential and axial 

velocities to those predicted via computational models is common (Brennan, 2006; Cui et al., 

2014; Davailles et al., 2012a; Delgadillo and Rajamani, 2005; Delgadillo et al., 2013; Ghadirian 

et al., 2013; Ghodrat et al., 2016; Karimi et al., 2012; Kuang et al., 2012; Lim et al., 2010; 

Mousavian et al., 2009; Narasimha et al., 2006a; Slack et al., 2004; Vakamalla and Narasimha, 

2017; Wang and Yu, 2006; Wang et al., 2007; Xu et al., 2012; Zhang et al., 2017). The data of 

Hsieh (1988), obtained via LDV, is by far the most frequent data set used by modellers for 

validation. Ghodrat et al. (2016) compared their modelling results, as well as water velocity 

predictions from multiple other authors, to the work of Hsieh (1988). It was evident that the axial 

velocities, over the whole radius of the hydrocyclone, can be accurately predicted using either the 

RSM or LES turbulence model. However, for the tangential velocities, the models varied in 

accuracy. Around the interface between the liquid and air core, the peak tangential velocities are 

often underestimated, with LES models showing the highest accuracy. Near the wall region the 

velocities also exhibited some inaccuracies, under predicting the velocities, when compared to the 

measured results. Over a majority of the hydrocyclone radius, however, the tangential velocities 

are well predicted. 
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While authors typically just compare velocities over a single one dimensional line (at a given 

height and plane), some compare velocity vector fields over an entire two dimensional plane. Cui 

et al. (2014) and Lim et al. (2010) compared simulated velocity vector fields to PIV measurements 

and showed that the flow direction of the captured vortexes are very similar. Non-ideal short 

circuiting flow near the inlet; large vortices at the interface between the cylindrical and conical 

sections; and highly asymmetric flow patterns in the bottom of the cyclone were all present in both 

the simulated and measured flow fields (Lim et al., 2010). It is clearly evident that the fundamental 

flow behaviour of water, while complex, can be modelled accurately through the use of 

sophisticated techniques such as the LES or RSM turbulence models. 

3.7.2 Air-Core Validation 

The validation of the air core diameter is crucial to determine the overall flow structure generated 

inside the hydrocyclone (Mousavian et al., 2009). The air-core is an important process parameter 

used to assess the stability of cyclone performance and is sensitive to almost all operating 

conditions and design parameters (Vakamalla et al., 2014). The proper resolution of the air core 

has been shown to help produce more accurate velocity profiles (Karimi et al., 2012; Mousavian 

et al., 2009), and water flow splits (Vakamalla and Narasimha, 2017).  Vakamalla et al. (2014) 

obtained experimental data of the air-core diameter at different hydrocyclone inclinations using 

Electrical Resistance Tomography (ERT) and High-Speed Video (HSV) for the purpose of CFD 

validation. Using an average air core diameter, the authors found that the CFD results closely 

matched those from the HSV for all tested inclinations. The ERT measurements were shown to 

over-estimate the air core size, which was attributed to its numerical diffusivity and limitation of 

inherent reconstruction algorithms. Lim et al. (2010) used images obtained from PIV experiments 

to compare the air core at various heights. It was found that despite the highly unsteady and 

fluctuating structure of the air core, which is well recognised to be difficult to model, there was a 

close quantitative agreement (average error of 7.7 %). Other authors have also used air core 

diameters as a metric to assess the performance of turbulence models (Delgadillo and Rajamani, 

2005; Narasimha et al., 2006a; Vakamalla and Narasimha, 2017), or empirically based prediction 

models (Narasimha et al., 2012b). 

A few authors have modelled the flow domain of the hydrocyclone transiently, to investigate the 

dynamics of the hydrocyclone start-up and the mechanisms of air-core inception and development. 
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Cui et al. (2014) compared the results from high speed video and a transient simulation of the air 

core formation. Qualitative results showed that their CFD simulation was able to mimic the 

formation of the air core from an air filled hydrocyclone to fully developed air core (after 1.7 s of 

real time flow). Wang et al. (2007) noticed a similar behaviour, with the hydrocyclone filling from 

the underflow upward. The simulations showed that eventually all air is expelled through the 

overflow and, after approximately 2 s, the air core becomes relatively stable. Other authors have 

also been successful in the simulation of air core formation (Leeuwner and Eksteen, 2008; Lim et 

al., 2010; Xu et al., 2012; Xu et al., 2013). 

3.7.3 Particle flow validation 

Nowakowski et al. (2004) summarised particle validation techniques for hydrocyclones, stating 

that for meaningful validation, the measurements of both detailed internal flow fields (for 

confidence in the fundamental prediction) and overall separation efficiencies are needed. Davailles 

et al. (2012b) also expressed the need for both levels of validation, as processes at both the 

macroscopic and microscopic scales have some influence on the hydrocyclone’s behaviour. 

3.7.3.1 Global Validation 

The ultimate goal of any hydrocyclone model is it correctly predict the separation efficiency for a 

given set of conditions. This is typically represented by a partition curve which displays the 

fraction of feed particles, of a particular size, reporting to the underflow. Partition, or separation 

efficiency, curves are extensively used for the validation of particle flow. Hwang et al. (2013) 

compared separation efficiencies for different inlet velocities, and while the predicted efficiencies 

for particle sizes close to the cut size were accurate, other values were predicted poorly. Similar 

behaviour was also seen by Vakamalla et al. (2014) and Bhaskar et al. (2007b). Others have shown 

simulated results to closely match the measured values over the whole range of the partition curve 

(Bhaskar et al., 2007a; Brennan et al., 2007; Delgadillo and Rajamani, 2005; Hwang and Chou, 

2017; Narasimha et al., 2005; Olson and Van Ommen, 2004; Wang et al., 2007; Xu et al., 2012). 

Partition curves have been used as a validation tool over a wide range of solids concentrations, 

ranging from low (~ 1 % by weight); medium (~ 10 %) (Bhaskar et al., 2007a; Brennan, 2003; 

Davailles et al., 2012a; Kuang et al., 2012; Slack et al., 2004; Vakamalla et al., 2014; Zhang et 

al., 2017); and high (up to 50 %) concentrations (Davailles et al., 2012b; Ghodrat et al., 2016; 
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Narasimha et al., 2012a; Vakamalla and Narasimha, 2017). For high solids concentrations, the 

partition curve represents a simple, and sometimes only, form of experimental validation. 

While the behaviour over the whole tested size range is of importance, the partition curve is 

sometimes simplified to the presentation of just the cut size. Wang and Yu (2006, 2008) compared 

the cut sizes calculated from CFD models for hydrocyclones with different vortex finder diameters 

and lengths; cyclone diameters; and cylindrical and conical lengths, to those predicted by the Plitt 

model. While the results showed that CFD could closely mimic the various trends seen in the 

results from the empirical model, the overall magnitudes were vastly different (errors of around 

50 %). As both results were not compared to actually measured data, it is difficult to truly 

understand the extent of the errors. Murthy and Bhaskar (2012) compared the predicted cut size 

via CFD to actual measured results for a range of different design and operating parameters and 

found that the greatest error was approximately 20 % (representing a difference of only 3.5 µm). 

Similar accuracy was also noted by Bhaskar et al. (2007a). 

3.7.3.2 Local Validation 

Several authors have expressed the need for local validation of particle flow through the direct 

comparison with measured velocity or concentration fields (Cullivan et al., 2004; Davailles et al., 

2012b; Nowakowski et al., 2004; Vakamalla and Narasimha, 2017). However, this type of 

comparison is rare as the measurement of slurry velocity profiles or solids spatial distribution 

anywhere inside the hydrocyclone is an experimentally challenging task (Davailles et al., 2012b) 

and can be expensive (Vakamalla and Narasimha, 2017).  

The LDV and PIV techniques, as for fluid flow, can be used to determine the flow of particles 

inside the hydrocyclone. However these techniques have been shown to only be effective in flows 

with less than 1 % solids by weight (Chu et al., 2002; Fisher and Flack, 2002; Zhang et al., 2011), 

which is not consistent with industrial conditions. The measurement of velocity profiles in high 

solid concentration flows prohibits the application of laser or visual tracking methods due to light 

extinction. Therefore the development of tomographic techniques such as nuclear magnetic 

resonance, ultrasound, Electrical Impendence Tomography (EIT), or Positron Emission Particle 

tracking (PEPT) is required to ensure predictions of the complex high solids flow are properly 

validated. Nowakowski et al. (2004) described the principle behind EIT, suggesting that the 

technique provides potential for the measurements of particle concentration fields. A drawback to 
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this technique, however, is the requirement of the detailed knowledge of the inter-relation between 

particle concentration fields and size distributions to the bulk conductivity. 

In one of the few applications of local validation, Vakamalla and Narasimha (2017) compared 

CFD results for mean density contours to experimental results obtained via Gamma Ray 

Tomography (GRT). The results showed very similar behaviour for the 40 % (by weight) slurry. 

This was, however, for a 350 mm dense medium cyclone. While this provides some added insight 

to the inner flow behaviour of the modelled cyclone, it still does not allow for the validation of the 

particle velocities, which are integral to classification behaviour. Positron Emission Particle 

Tracking (PEPT), described in detail by Parker et al. (1993) and more recently by Leadbeater et 

al. (2012), is a technique that can provide three dimensional trajectories of particles in high solid 

concentration, opaque flows. While early studies were limited in nature (Chang et al., 2011; 

Radman et al., 2014), Chapters 4 and 5 will show that detailed trajectories and representative 

velocity profiles can be obtained for real mineral particles down to approximately 100 µm in 

diameter. While the current database is very limited, this technique provides researchers a valuable 

tool for obtaining particle velocities and residence times in high solid concentration flows. This 

information is easily obtainable from CFD models, with multiple authors having already presented 

particle trajectories (Evans et al., 2008; Hwang et al., 2013; Hwang and Chou, 2017; Slack et al., 

2004; Vakamalla et al., 2017) or velocity field plots (Ji et al., 2017). 

3.8 Conclusions and Future Direction 

It is clear that in many cases the most appropriate model for simulating the flow within the 

hydrocyclone is known. However, these are often complex formulations and the associated large 

computational expense requires the implementation of simplifications to allow the simulation to 

be undertaken in a reasonable time frame. In some cases, these simplifications are sufficient, such 

as the Mixture and VOF models (compared to the Eulerian model) for simulating the air core. 

Removing the air core, while not as accurate, can also be used to provide engineering estimations 

with less computational expense. In comparison, the turbulence within the hydrocyclone has been 

conclusively shown to require the added accuracy that comes with the RSM and LES models and 

should not be modelled with the simpler k-ε turbulence models. While the RSM is not as accurate 

as the LES model, it is much less computational expensive and so is often used in complex 

multiphase simulations. With the development and growing accessibility of high power computing 
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clusters these limitations will continue to diminish, and simulations will be allowed to use more 

fundamental principles. 

High order discretisation schemes and hexahedral meshes are required to reduce the numerical 

diffusion. Mesh quality is also critical for the proper resolution of the flow domain, with suggested 

areas of refinement including the apex and vortex finder regions, and around the air core. The 

presentation of more detailed mesh statistics including aspect ratio and skewness distributions will 

help determine appropriate minimum requirements for mesh quality. 

CFD has been conclusively shown to be an accurate method for the simulation of two phase air-

water flows, as both the water and air flow within the hydrocyclone have been well validated with 

both global and local comparison to experimental data. Future study will focus on the addition of 

particle flow, with the flow of particles in high concentration slurries representing the most 

significant challenge. Corrections for slurry viscosity, hindered settling and lift forces have all 

been used to help model the complex particle interactions. To date particle modelling in the 

hydrocyclone has only been validated through separation efficiency data (global). This is in part 

due to the difficulty in the measurement of particle velocities in high solid concentration flows. In 

the review by Nowakowski et al. (2004), the authors stated that the development of experimental 

techniques to provide solids concentration profiles or velocity fields, while a significant challenge, 

should be an area of focus. This statement is still valid. Recent studies have shown the applicability 

of tomography techniques, such as PEPT, as a useful tool for the acquisition of particle velocity 

data. This will allow for more rigorous validation of particle flows in hydrocyclones.  
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Linking Paragraph between Chapter 3 and Chapter 4 

A key conclusion from the review of CFD modelling of the hydrocyclone was the lack of particle 

velocity data in opaque, high solid concentration flows. Positron Emission Particle Tracking 

(PEPT), explained in detail in the following chapter, provides a unique tool for the visualisation 

of particle flow in opaque slurries. PEPT has been used to validate the particle flow predicted from 

CFD models in a range of other unit operations, including a mixing vessel (Boucher et al., 2015), 

stirred grinding mill (Jayasundara et al., 2011), tumbling mill (Mayank et al., 2015) and fluidised 

bed (Link et al., 2008). All these units contain conditions suited to particle tracking via PEPT; 

having relatively low speeds, large particle sizes (allowing for large tracer activities), and a closed 

domain. This allows for very detailed, time averaged velocity flow fields to be produced. The 

hydrocyclone represents a significant challenge. The high particle velocities (up to 8 m·s-1), small 

residence times (less than 1 s), tight curvature, and small particle sizes (low particle activities) all 

make particle tracking difficult within the hydrocyclone. Two previous studies have been 

conducted on PEPT in the hydrocyclone (Chang et al., 2011; Radman et al., 2014), however, both 

were limited in scope and did not produce any significant particle velocity data. Radman et al. 

(2014), showed that the ADAC Forte positron camera, the standard camera used for PEPT 

measurements, was not able to capture the particle flow in enough detail to obtain velocity profiles. 

Chapter 4 outlines the application and characterisation of a new PEPT camera made up of modular 

detector blocks. The detectors were assembled to create a highly sensitive field of view that 

matched the geometry of the hydrocyclone. 
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Chapter 4: Performance Analysis of a New Positron Camera 

Geometry for High Speed, Fine Particle Tracking 

4.1 Abstract 

A new positron camera arrangement was assembled using 16 ECAT951 modular detector blocks. 

A closely packed, cross pattern arrangement was selected to produce a highly sensitive cylindrical 

region for tracking particles with low activities and high speeds. To determine the capabilities of 

this system a comprehensive analysis on the tracking performance was conducted to determine the 

3D location error and location frequency as a function of tracer activity and speed. The 3D error 

was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 

4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m·s−1. For lower activity tracers 

(< 10−2 MBq), the error was more sensitive to increases in speed, increasing to 28 mm (at 4 m·s−1), 

indicating that at these conditions a reliable trajectory is not possible. These results expanded on, 

but correlated well with, previous literature that only contained location errors for tracer speeds up 

to 1.5 m·s−1. The camera was also used to track directly activated mineral particles inside a two-

inch hydrocyclone and a 142 mm diameter flotation cell. A detailed trajectory, inside the 

hydrocyclone, of a −212 + 106 μm (10−1 MBq) quartz particle displayed the expected spiralling 

motion towards the apex. This was the first time a mineral particle of this size had been 

successfully traced within a hydrocyclone, however more work is required to develop detailed 

velocity fields. 

4.2 Introduction 

The positron emission particle tracking (PEPT) technique was designed to study particle dynamics, 

granular systems and multiphase flows (Parker et al., 1993). Derived from the medical diagnostic 

tool Positron Emission Tomography (PET), PEPT allows for a radioactively labelled particle to be 

traced as it moves within a set field of view. Isotopes with proton rich nuclei are created via direct 

activation or ion exchange techniques. These isotopes decay via positive beta emission which is 

shortly followed by the annihilation of the emitted positron with a surrounding electron. This 

annihilation produces two gamma rays which are constrained to having equal and opposite 

momenta, and are therefore emitted back to back (180°±0.5°) (Charlton and Humberston, 2000). 

The detection of both gamma rays, termed a coincidence, and processing of multiple such 
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coincidences, allows for the triangulation of a particle’s location in space and hence determination 

of its trajectory in three dimensions. 

The gamma-radiation emitted from the radioactive source particle is of relatively high energy and 

can penetrate a considerable amount of material. This allows for the detailed study of particle 

behaviour in three dimensions while in dense, opaque systems and through solid vessel walls 

(Leadbeater et al., 2012). This advantage over conventional optical or laser diffraction tracking 

methods has meant that PEPT has been utilised to study a variety of process equipment. Fluidised 

beds (Laverman et al., 2012), stirred (Jayasundara et al., 2011) and tumbling mills (Morrison et 

al., 2016; Volkwyn et al., 2011), and mixing vessels (Guida et al., 2009) have all had particle flow 

fields well characterised using PEPT. These unit operations have been the primary focus of initial 

PEPT studies as the particle behaviour and characteristics (being low speeds, high residence times, 

and large particle sizes) are conducive to a high tracking rate and statistically meaningful, time 

averaged data. Recently, however, the PEPT technique has been employed in more difficult unit 

operations such as hydrocyclones (Chang et al., 2011; Radman et al., 2014), spiral concentrators 

(Boucher et al., 2016) and flotation cells (Cole et al., 2014); with the latter being the most advanced 

due to its higher residence times. The high particle speeds, low residence times (requiring a large 

amount of recirculation or multiple particle tracking), and small particle sizes has limited the 

gathering of statistically meaningful data, with velocity and location details typically being 

represented by a single pass rather than time average velocity fields. 

For challenging process units, activation and triangulation techniques and detector set-up must be 

improved to increase the location rate and the positional accuracy and precision of the tracer 

particles. There are two fundamental ways to improve the accuracy and precision of particle 

tracking: the first is to improve the particle’s activation level, and the second is to capture more of 

the radiation released by the radioisotope. If direct activation and breakage is used for the creation 

of fine (< 1 mm) mineral tracer particles, in the manner detailed by Boucher et al. (2014), particle 

activation is highly variable and therefore cannot be reliably depended upon. In this sense, 

constructing a positron camera that has a large detector face area (with its associated volumetric 

component) in a small volume should increase the rate of detection. Radman et al. (2014) showed 

that for the high particle speeds (> 2 m·s-1) experienced in the hydrocyclone, the conventional 

positron camera used for PEPT (ADAC Forte) is not suitable for producing detailed trajectories. 
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There also exists some misconceptions on the relevance of certain errors on tracer locations. For 

example, Chang et al. (2011) reported that because they have a low location error for a stationary 

tracer, they could be confident in the trajectory of a very fast moving tracer moving within a 

hydrocyclone. To attempt to clarify any misconceptions, the purpose of this work was to first detail 

the error analysis technique used for a new modular PEPT detector configuration, focused on errors 

at high tracer speeds and a discussion on error. Some examples of improvements obtained from 

tailoring the detection camera design to the geometry of the process unit is also included. 

4.3 Experimental 

4.3.1 Determining Tracer Location – The PEPT Algorithm 

For a particle to be tracked, the simultaneous (coincident) detection of both gamma photons, 

created by the aforementioned annihilation event, is required on a continuous basis. This back to 

back photon trajectory is defined as a Line of Response (LoR). The annihilation event, and 

therefore the position of the radioisotope source, is assumed to lie along or near this line 

(neglecting scatter). It should be noted that the annihilation photons are emitted from the point at 

which the positron annihilates with an electron, and this may in principle be some distance from 

the point at which the original radioactive decay occurred (at the particle’s surface). The maximum 

range of the 18F positrons is approximately 1 mm in quartz (distance from emission site to 

annihilation site), but the mean distance is much less (Parker et al., 1993). The maximum range 

for 18F positrons in water, the other dominant medium the positron could travel through, is 2.4 mm 

and the mean is 0.6 mm (Bailey et al., 2006). While this seems like a large source of error, the 

random direction of the positron emission should average the particle location to the centroid of 

radiation source. This distance is relatively small when compared to other common nuclides, such 

as 68Ga, which has maximum positron range of 8.2 mm in water and a mean of 2.9 mm. The shorter 

distance travelled by the positrons of 18F, along with its half-life of 110 minutes (a practical length 

for experimental runs), makes it an ideal nuclide for PEPT.  

Ideally with just a single radioactive particle within the field of view, all of the recorded LoRs 

should intersect at the position of the particle, within the minimum sphere of confidence. This 

sphere of confidence, or location error, is estimated based upon the particle size; the distance the 

positron travels before annihilation; the angle of the back to back gamma photons; and the 

resolution of the camera (crystal size and detector distance and alignment). In reality, some of the 
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detected events are corrupt, and are uniformly broadcast across space, creating a background noise 

in the signal and increasing the location error of the tracer. Corrupt events can be due to Compton 

scattering; but a majority come from simultaneous detection of two unrelated photons. This is 

termed a random coincidence and occurs when two (or more) uncorrelated gamma rays are 

detected within the coincidence window. This occurs when the activation level of the source is too 

high for the detector geometry and therefore photons from different interactions can be received 

within the same timing window. For reference, the coincidence window for the modular positron 

detector, described in Section 4.3.2, is 12 ns.  

An iterative triangulation algorithm termed track, developed at the University of Birmingham, is 

used to identify and reject these corrupt events and to determine the location of the tracer particle 

(Parker et al., 1993). After data acquisition of a full experiment, a number of consecutive LoRs, 

N, are selected and an initial tracer location estimate is calculated which minimises the sum of the 

perpendicular distance between all the LoRs in the set N. Those LoRs that are furthest from this 

point are assumed to be corrupt events and are subsequently removed. The minimum distance 

between all remaining LoRs is then recalculated. This process continues until only a predefined 

fraction, f, of lines remain from the initial set of events. 

A supplementary technique, referred to as the sliding window technique, can be used to artificially 

increase the number of perceived locations. This works by reprocessing some of LoRs already 

used to calculate the previous location (Figure 4.1). For instance, if N is set to 500 and S, the 

number of slides per set of LoRs, is set to 2, the first location will use line 1-500, the second 250-

750, the third 500-1000, etc. This technique is advantageous when processing data of tracers 

travelling at high velocities or with low activities. The LoRs of a moving particle will not converge 

upon a single point but rather spread across the path of the tracer (Leadbeater et al., 2012). The 

resultant convergence points are then an average of the LoRs used, therefore reusing lines enables 

a higher location frequency, spread across the tracer path. A schematic of this process is shown in 

Figure 4.1. 

Although simplistic in nature, this approach does need significant post processing to obtain the 

most optimal inputs to produce an accurate and detailed particle trajectory. Values for the initial 

set of events N, fraction of lines retained, f, and number of slides per number set, S, are all variable 

depending upon particle activation, speed, camera geometry, etc. In theory, stationary or slow 



106 

moving tracers should be more accurately located using large numbers for N, whereas at high 

speeds, large values of N should cause higher location errors and minimise trajectory features (e.g. 

reducing the perceived radius of a tracer moving in a circular motion). The track code is limited 

to inputs of N ≤ 5000, S ≤ 5000 and f values ranging between 0 and 100 (which represents the 

percentage of lines kept). While the track code is the original and most prominent PEPT algorithm, 

new approaches based off PET technology have been recently published (Bickell et al., 2012; 

Wiggins et al., 2016). 

Figure 4.1: Diagram showing how LoRs are first segregating into groups, using various N and S 

parameters, followed by a representation of the 3D location triangulation process condensed to 2D 

(determined by f). 
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4.3.2 PEPT Detection Cameras – Positron Cameras 

The test work for this project was undertaken at the Positron Imaging Centre at the University of 

Birmingham, UK. At this location there are currently two types of radiation detection cameras in 

operation. Most conventional PEPT imaging is conducted using the ADAC Forte (ADAC 

Laboratories, USA - later acquired by Philips) dual-headed gamma camera operating in 

coincidence mode, as described by Parker et al. (2002). For this camera the intrinsic efficiency for 

detecting annihilation photons is around 25% giving raw data acquisition rates up to 100 kHz 

(Leadbeater et al., 2012). This camera, although well established and characterised, does not allow 

for high tracking rates in unit operations with geometries unsuited to the parallel nature of the two 

large detector heads. 

To address this, a modular camera system, containing modules of four blocks of ECAT951 

detectors (Siemens, USA), has been developed to allow for specific detector geometries that can 

be tailored to the specific unit operation to be studied. These modular positron cameras are 

described in detail by Leadbeater and Parker (2011), Leadbeater et al. (2011) and Parker et al. 

(2009). Each detector block is segmented into an 8×8 array of high efficiency Bismuth Germanium 

Oxide (BGO) crystals (crystal pitches are 6.25 mm transverse and 6.75 mm axial with 30 mm 

depth). The intrinsic efficiency of the modular cameras is around 45 %, an intrinsic step change in 

performance over the ADAC camera. Coupled with the parallel nature of the data handling 

systems, has meant the raw data acquisition rates are significantly higher than for the ADAC 

camera. The maximum data acquisition rate for the modular system is 4 MHz, however this is 

rarely achieved due to the dependence upon particle activity, detector geometry and intrinsic 

efficiency. Theoretically, with an increase in acquisition rates, the particle location rate and 

precision can both be increased. In practice, however, although higher location rates are typically 

observed, the precision is limited by the ability to position the individual modules accurately in 

comparison to their defined position and orientation in the data processing software (Leadbeater 

et al., 2012). 

It was decided that for detailed trajectories of low activity or high speed tracer particles the best 

detector arrangement was a coupled cross pattern (Figure 4.2a), as recommended by Leadbeater 

and Parker (2011). To determine the spatial dependence of the sensitivity of this camera geometry, 

a Monte-Carlo simulation (Figure 4.3) was conducted (Leadbeater et al., 2011). It ensured that the 
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closely packed modular assembly created a highly sensitive cylindrical region approximately 100 

mm in diameter and 400 mm in height. The assembly was made up of sixteen individual detector 

modules, with each of the four groups containing modules stacked in a 2x2 grid. A restriction was 

imposed that only allowed the detector groups opposite one another to record coincidence events. 

This enforced that the gamma radiation originated within the region between the detectors (not 

accounting for scatter or random coincidences), as shown in Figure 4.2b. While individual photons 

were still detected from outside the highly sensitive zone, which will contribute to random 

coincidences, this limitation helps reduce the coincidence processing dead-time and the number of 

random coincidences. 

Figure 4.2: The cross pattern modular camera design showing (a) the physical setup (dimensions in 

mm) and (b) the field of view with various particle locations in the 1. Undetectable zone 2. Low 

detection zone and 3. Highly sensitive zone.  
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Figure 4.3: The modular assembly sensitivity profiles in the (a) xz and (b) xy plane: derived from a 

Monte-Carlo simulation (scale represents absolute efficiency for coincidence detection). 

4.3.3 Constrained Trajectory Setup 

Before any trajectories or velocity fields can be meaningfully presented, any detector arrangement 

must first be analysed in order to determine the location error at various speeds and particle 

activity. To do this a particle with a known trajectory must be used. In this instance, a planar 

circular path was created by fixing a tracer particle to the edge of one of the six paddles of a 

standard two-inch Rushton impeller, as detailed by Boucher et al (2016). It is known that the 

accuracy of locating a particle is not only dependent upon its speed, but also the curvature of its 

trajectory (Parker et al., 1993). Therefore a small radius was chosen (25.4 mm radius compared to 

95 mm chosen by Parker et al. (1993); or 120 mm and 38 mm by Cole et al. (2012)) as this 

coincides with the motion likely to be captured inside the camera. The impeller, attached to a 

digital mixer (Caframo, BDC 1850, Canada), allowed for various speeds to be tested at each tracer 

activity level. The tested parameters are shown in Table 4.1 and Table 4.2. The activity of the three 

highest activity tracers were measured with a CRC-25PET ionisation chamber (Capintec, USA). 

For the tracer with the smallest activity, an uncertainty in the exact activity arose due to it being 

under the detectable limits of the ionisation chamber (3.7 × 10-2 MBq). Therefore the activity was 

measured with a T401 contamination monitor (Tracerco, UK). However, the activity was large 

enough to overload this sensors upper limit (4.0 × 10-3 MBq), creating the range seen in Table 4.1. 

As the Tracerco T401 uses a flat pancake probe, which can at most cover one hemisphere of the 

released radiation (if directly on top of the tracer particle), it is likely that the particles activity was 

at least twice the reported lower boundary. 

a) b) 
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The impeller head was completely submerged in a 200 mm diameter water filled bucket at a depth 

of approximately 100 mm from the water’s surface (Figure 4.4). This was to simulate the shielding 

of the source particle that would occur when tracking in aqueous systems. The expected locations 

over time were assumed to form a sinusoid of various amplitudes in the in the x, y and z axes when 

plotted against time. The amplitude in each axis will be dependent upon the rotational plane of the 

impeller. As the plane of rotation was perpendicular to the vertical axis of the modular detection 

system, the y axis will have an amplitude equal to zero, and the amplitude for the x and z axis 

should be equal to the impeller radius. 

Table 4.1: Tested tracer activities  

*Uncertainty caused by measurement technique of the lowest activity tracer. 

Tracer Activity (MBq) 

4.0 × 10-3 – 3.7 × 10-2* 

3.7 × 10-1 

3.3 × 100 

1.1 × 102 

 

Table 4.2: Tested tracer speed parameters, including the revolutions per minute set on the mixer and the 

equivalent impeller tip (particle) speed. 

Revolutions 

per minute 

Impeller Tip 

Speed (m·s-1) 

0 0.00 

25 0.07 

125 0.33 

250 0.67 

500 1.34 

1000 2.67 

1500 4.01 
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Figure 4.4: Representation of the particle location on the Rushton impeller inside the modular detector 

assembly (dimensions in mm). 

4.3.4 Trajectory Error Analysis Code Development 

An analysis of the raw data, obtained from the rotating impeller tests, is needed to determine the 

optimum input parameters for the track code for each corresponding speed and tracer activity level. 

The metric for this was minimising the three dimensional location error. This error represents the 

radius of the aforementioned sphere of confidence, which incorporates all inaccuracies involved 

in locating a tracer via PEPT. A script was developed (found in Appendix B.1) that allowed for 

the automated input of multiple combinations of N, f, and S values into the previously described 

traditional track algorithm. This process produced a set of locations for each set of N, f, and S 

values. The range of values for each parameter is shown in Table A.1.1 in Appendix A.1.  

Following this, a subsequent script was compiled (found in Appendix B.2) that allowed for each 

tracer location data set to be automatically imported; compared to the known particle trajectory; 

have the distance from this trajectory, or residuals, calculated; and the location error recorded. To 

begin, a section of the trajectory was selected for each independent axis, equating to ten 

wavelengths or impeller rotations. A sinusoidal function with a fixed amplitude was then fit to the 

data, via the nonlinear least-squares solver method in Matlab©. The amplitude was initially allowed 

to vary for each data set, as implemented by Cole et al. (2012). In this case, the amplitude was 

determined by the average circular path created from the locations over the ten impeller rotations. 

Y 

X 

Z 
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This process could not, however, allow for a large range of N values to be tested. It was found that 

as the value of N was increased, the perceived amplitude (or impeller radius) was reduced to 

unrealistic values, due to the averaging of points over a curved path (Parker et al., 1993). 

Therefore, the amplitude in the x and z axis was set as the measured impeller diameter, further 

imposing a realistic trajectory, which was determined to be 25.9 mm (25.4 mm impeller radius 

plus 0.5 mm tracer radius). This was found to closely match the asymptotic value (as N approached 

the lower range of tested values) of the amplitude when plotted as a function of N. The frequency 

of the sinusoidal wave was estimated based on the impeller speed but allowed to vary due to 

inconsistencies created by the variability of the mixer motor rotation. This meant that the variable 

frequency could be used as a parameter check, to ensure the real trajectory was representative. The 

fitted frequency for data with low location rates will tend vary to better fit the locations, reducing 

the perceived location error. Values with a difference greater than 1 % from the recorded impeller 

speed were flagged and constrained to have a frequency equal to the impeller speed. 

For the tests where the tracer particle was stationary, a straight-line fit (in the form 𝑥, 𝑦, 𝑜𝑟 𝑧 =

𝑚𝑥,𝑦,𝑜𝑟 𝑧 ∙ 𝑡𝑖𝑚𝑒 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) was used as the theoretical trajectory of the x, y and z coordinates 

when plotted against time. An analysis of the calculated gradient ensured the tracer location was 

consistent throughout the whole time interval chosen to be analysed. Optimum parameters were 

not comprehensively investigated for the stationary tracers as large values of N will always give 

the smallest location errors for a stationary particle. Values of f between 0.35 and 0.60 gave very 

similar location errors, however 0.50 gave the lowest location error. Therefore, the parameters N 

= 5000, S = 5000, and f = 0.50 gave the lowest location error within the allowable track parameter 

range for stationary cases. 

In both stationary and moving data sets the residuals were determined and plotted for each ten 

wavelength sample. The residuals were defined as the perpendicular distance (with regards to time) 

from the calculated tracer positions and the fitted sine curve. Under the assumption that the 

residuals are inherently random, a Gaussian distribution curve was fit to a histogram of the 

residuals. The mean, which should be close to zero, was used to confirm that there was no 

systematic offset caused by improper fitting of the known trajectory. The overall reported location 

error was equal to two standard deviations from the mean. This represents the region for which 

approximately 95 % of all residuals should lie within, and comparatively where 95 % of all 
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locations should occur. An example of this process, for the 3.7 × 10-1 MBq tracer, is shown at two 

different tracer speeds in Figure 4.5 and Figure 4.6. It is common to present location error as either 

the Root Mean Squared error (RMS) (Boucher et al., 2016; Cole et al., 2012) or, equivalently, one 

standard deviation (Parker et al., 1993). Although it is relatively simple to convert between these 

values, to ensure the error was not under estimated two standard deviations was chosen. 

The three-dimensional location error was calculated using the standard distance formula shown in 

Equation 4.1. If the actual particle location is taken as the origin, with the coordinates (0, 0, 0), the 

axial errors can be used to calculate the total error in three dimensions (Equation 4.2). 

 𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 Equation 4.1 

 3𝐷𝑒𝑟𝑟𝑜𝑟 = √(𝑥𝑒𝑟𝑟𝑜𝑟)2 + (𝑦𝑒𝑟𝑟𝑜𝑟)2 + (𝑧𝑒𝑟𝑟𝑜𝑟)2 Equation 4.2 
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Figure 4.5: An example of the script output for the 3.7 × 10-1 MBq tracer particle moving at 0.67 

m·s-1 which shows: (a) the tracer trajectory with fit (in x-axis); (b) the residuals or location errors 

for each single location (in x-axis); and (c) the distribution of these location errors, with fitted 

Gaussian distribution curve and standard deviation shown (in x-axis). The distribution of errors in 

the (d) Z-axis and (e) Y axis are also included for comparison.  

a) 

 

 

 

b) 
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Figure 4.6: An example of the script output for the 3.7 × 10-1 MBq tracer particle moving at 4.01 

m·s-1 which shows: (a) the tracer trajectory with fit (in x-axis); (b) the residuals or location errors 

for each single location (in x-axis); and (c) the distribution of these location errors, with fitted 

Gaussian distribution curve and standard deviation shown (in x-axis). The distribution of errors in 

the (d) Z-axis and (e) Y axis are also included for comparison.  

a) 
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4.4 Results and Discussion 

Once the trajectory error analysis was complete, the location error for all combinations of N, S and 

f parameters could be compared. Plotting the three-dimensional location error against location 

frequency, allowed for the most simplistic selection of the optimum parameters. Figure 4.7a shows 

the location error for each N, S and f combination, for a particular tracer activity and speed. The 

curve which describes the minimum location error for a particular location frequency, follows a 

distinct trend. For low location frequencies, the error is restricted to a minimum value (due to 

system properties), while at high location frequencies location error is sacrificed for any further 

increase in location rate.  Location error is typically reported as a single number, defined by the 

input parameters chosen, however, Figure 4.7 shows that both the location frequency and error can 

be manipulated based upon the desired outcomes of the tracking data. For this analysis, it was 

decided that the point at which the location frequency is maximised, without any loss in location 

precision, would be selected. This point is distinguished as the triangle in Figure 4.7 and is at the 

inflection point of the bottom curve. In this instance, the parameters that gave this location 

frequency and error were N = 400, S = 400 and f = 0.55.  

Figure 4.7: (a) Location frequency vs three dimensional location error for all combinations of N, S 

and f parameters for the 3.7 × 10-1 MBq tracer particle moving at 0.67 m·s-1 and (b) a simplified 

version showing trends for f and S parameters while other parameters are kept constant.  

a) b) 
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Figure 4.7b also shows some example trend lines for the f or S parameters, while the other 

parameters are kept constant. This illustrates that increasing S allows for a higher location rate 

without any increase in location error. To better understand what effect N and f had on the location 

error and frequency, contour plots were produced, as seen in Figure 4.8. The location frequency 

plot shows that as f increases and N decreases there is a higher tracking rate (moving from bottom 

right [dark region] to top left [light region] of figure). The effect of N is straightforward to 

understand, if there are fewer number of lines grouped together there will be more individual 

locations recorded. The reason for the location frequency increase, with increasing f is more 

complex. Firstly, this occurrence is only in cases where the value of S is not equal to one. For cases 

of S=1, f does not have any effect on location rate. This is shown in Figure 4.7b by the vertical line 

of square symbols where the location error varies for various f values, but no change in location 

rate is seen. For other cases (S≠1), the location rate increases with increasing f because there are 

fewer duplicated tracer locations, which are automatically removed by the track code. Duplicated 

locations occur when reusing a large portion of LORs (the purpose of S) and the addition of any 

new LORs are discarded without any effect on the triangulation process. For instance, if using 

N=500 and S=500, after each single line addition a new location is calculated. If this single added 

line is not part of the triangulation process (determined by f), along with the removed line not being 

a part of the previous triangulation, then the location would be duplicated. The number of duplicate 

locations decreases as we increase the chance of the new line being a part of the triangulation 

process (large values of f). Therefore, f is not increasing the actual location rate, but instead it is 

increasing the number of unique locations. This gives the appearance of a higher location rate, 

however, the location rate would be equal for all values of f if duplicate points were not removed 

by the track code. This again is shown in Figure 4.7b where an increase in f increases the location 

rate, while also having an effect on location error. 
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Figure 4.8: Effect of N and f parameters on (a) location frequency and (b) error for the 3.7 × 10-1 

MBq tracer particle moving at 0.67 m·s-1. 

The location error, also shown in Figure 4.8, constricts the choice of N and f parameters. The dark 

region, centered at N = 500, shows the area at which there is the lowest error. The location of this 

region is dependent upon the tracer particle’s speed and activity. In general, however, high values 

of f will cause more scattered or random coincidences to be included in the triangulation, therefore 

causing biases away from the true particle location. Conversely, if the value for f is too low, the 

statistics of the triangulation process becomes dominated by Poisson noise (Leadbeater et al., 

2012). Leadbeater et al. (2012) states that there is an optimum value of f for each system (camera 

geometry, detector material, electronics, signal processing, etc.) and tracer activity (scattering, 

attenuating, associated and random coincidences, etc.). In this case enough corrupt events are 

rejected whilst retaining enough events to reduce the statistical noise. Table 4.5 provides the 

optimum parameters for each particle speed and activity, and shows that the optimal value for f is 

dependent upon particle activity.  

The effects of N are dependent upon the tracer speed. For stationary tracer particles, the precision 

in each location can be made arbitrarily small provided N is sufficiently large (Chang et al., 2011; 

Leadbeater et al., 2012). There is little need to optimise N for stationary particles, as larger values 

for N will always produce more time averaged accurate locations. For moving tracers, however, 

the LoRs in each set of N are spread along the particle trajectory and therefore will not converge 

to a single location. High values of N will tend to remove or reduce features of the trajectory, such 

as the curvature, as larger portions of the trajectory are averaged to a single location. Low values 

a) b) 
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of N will incur more statistical variance as scattered or random coincidences become more 

prevalent. These ranges will change depending upon the amount of LORs captured per distance 

travelled. This is seen in Table 4.5, where optimal N values decrease for increasing speed and with 

decreasing activity. The optimum conditions taken from Figure 4.7 (N = 400, S = 400 and f = 0.55) 

can be obtained by combining the results of the two contour plots shown in Figure 4.8. The 

selection would need to minimise error, and therefore be in the aforementioned dark region 

centered at N = 500 (Figure 4.8b), whilst maximising the location rate (top left region – Figure 

4.8a). This would mean the selection would be in the top left corner of the dark region, which 

corresponds to N = 400 and f = 0.55. 

This process was completed for all tracer activities and speeds, with the resultant three dimension 

location errors, location frequencies and optimal track code parameters shown in Table 4.3, Table 

4.4, and Table 4.5 respectively. The individual axial errors, that the total error was calculated from, 

can be found in Tables A.1.2-A.1.4 (Appendix A.1) .The trend seen in the three dimensional error 

is primarily due to statistics, and is well described elsewhere (Parker et al., 1993). When processing 

faster moving, or lower activity, tracers the amount of LoRs used per location must be less as the 

distance travelled per detected coincidence is lower. Therefore, the resultant locations are more 

effected by random coincidences.  

Due to the high sensitivity of the modular positron camera design, experiments conducted with the 

110 MBq tracer particle were seen to overload the detection and data acquisition systems (i.e. two 

unrelated LoRs were detected in a coincidence window and incorrectly grouped). To triangulate a 

position both ends of a single LoR must be correctly attributed to one another. If it is not possible 

to distinguish between consecutive individual LoRs, a common occurrence at high tracer activities, 

the detection system will incorrectly group unrelated LoRs, creating a signal dominated by 

randomly distributed noise (Leadbeater et al., 2011). This was the case for the 110 MBq tracer, as 

locations close to the known trajectory could not be achieved. More tests will have to be conducted 

to determine the exact tracer activity at which these randomly distributed signals dominate true 

LoR coincidences. 

Comprehensive studies of location errors, as a function of speed and tracer activity, for different 

PEPT cameras are not common. Numerous authors have presented errors based upon stationary 

tracer particles, (Chang et al., 2011; García-Triñanes et al., 2016; Leadbeater and Parker, 2011). 
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While some authors use this to characterise different features of PEPT tracking (error from linear 

module displacement; error from relative position in field of view; etc.), it is not particularly 

relevant for particle tracking as the error cannot be extrapolated to moving particles. As Leadbeater 

et al. (2012) states, and the data presented in Table 4.3 shows, the location error of a stationary 

particle is independent from the tracer activity, and is purely dependent upon the spatial resolution 

of the camera and the parameters used in the track algorithm. This is contrary to what García-

Triñanes et al. (2016) states, that processed data of a stationary particle has been shown to correlate 

with processed data from a moving particle.  

There also exists some confusion as to what location error truly represents. This confusion stems 

from the track code, which outputs an “error” of each individual tracer location. This “error” is 

defined as the average of the perpendicular distance from each LoR to the final location point. This 

should only be used as a guide to estimate optimal N and f parameters, as large distances between 

the set of LoRs could mean random coincidences are being used in the triangulation process. This 

“error”, however, cannot be presented as a location error as seen in some cases (Chiti et al., 2011; 

García-Triñanes et al., 2016), since the location error can only be obtained by comparing the 

calculated locations to a known trajectory.  

Cole et al. (2012) conducted a study on location errors for fine tracer particles, with low activity, 

in an ECAT ‘EXACT3D’ (Model: CTI/Siemens 966) camera in the laboratories of PEPT, Cape 

Town (South Africa). The data, presented in Table 4.6, shows that the values for the three-

dimensional location error is relatively close to those presented in this work (when comparing data 

from similar speed and activity levels). The location errors presented by Boucher et al. (2016) who 

conducted a similar project in the ADAC Forte camera at Birmingham (UK) and a modular 

ECAT951 Ring Assembly are also shown in Table 4.6. Both Cole et al. (2012) and Boucher et al. 

(2016)  did allow the known trajectory to vary slightly by not fixing the amplitude of the sine 

function, which could underestimate the error to varying degrees. This could explain the 

surprisingly low location error reported by Boucher et al. (2016) (particularly for the ADAC 

results, considering the tracers low activity), which  does not seem to correlate with the results 

presented in this chapter. Figure 4.9 displays the three dimensional location error data at various 

speeds from this work, as well as the work of Cole et al. (2012) and Boucher et al. (2016). The 

data has been grouped into various tracer activity ranges to allow for comparison, while also 
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allowing for extrapolation of errors between the tested velocities. The location frequency in the 

present case, however, is an order of magnitude bigger than that reported by Cole et al. (2012) and 

Boucher et al. (2016). This improvement in location frequency, without any loss in location error, 

is evidence of the increased performance of the system. This increase was attributed to the closely 

packed camera geometry and the optimisation of the track code parameters.  

Table 4.3: Three-dimensional location errors (mm) for each speed and tracer activity. 

Location Errors (mm) 

Impeller Tip 

Speed (m·s-1) 

Tracer Activity (MBq) 

4.0 × 10-3 - 3.7 × 10-2 3.7 × 10-1 3.3 × 100 

0.00 0.54 0.52 0.54 

0.07 8.27 1.72 1.24 

0.33 9.51 1.85 1.48 

0.67 10.74 2.76 2.46 

1.34 12.61 3.27 2.56 

2.67 16.94 5.42 2.46 

4.01 27.84 7.51 4.33 

 

Table 4.4: Location rate (Hz) for each speed and tracer activity, with the associated coincidence rate for 

each tracer activity included as reference. 

Location Rate (Hz) 

Impeller Tip 

Speed (m·s-1) 

Tracer Activity (MBq) 

4.0 × 10-3 - 3.7 × 10-2 3.7 × 10-1 3.3 × 100 

0.00 1,989 5,158 14,528 

0.07 1,916 5,442 21,903 

0.33 1,927 4,884 20,428 

0.67 1,730 5,320 20,476 

1.34 1,754 5,138 20,685 

2.67 1,682 5,382 20,178 

4.01 1,976 5,723 20,624 

Coincidence 

Rate (Hz) 21,000 41,000 114,000 
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Table 4.5: Optimum track code parameters for each speed and tracer activity. For each case N is the first 

number and f is the second number. S is not shown as it was equal to N in all cases. 

Optimum track code parameters (N | f ) 

Impeller Tip 

Speed (m·s-1) 

Tracer Activity (MBq) 

4.0 × 10-3 - 3.7 × 10-2 3.7 × 10-1 3.3 × 100 

0.00 5000 | 50 5000 | 50 5000 | 50 

0.07 400 | 45 2800 | 55 5000 | 70 

0.33 100 | 45 800 | 50 3500 | 65 

0.67 100 | 40 400 | 55 2000 | 65 

1.34 100 | 40 250 | 50 1000 | 65 

2.67 100 | 35 100 | 45 600 | 65 

4.01 50 | 45 100 | 45 250 | 65 

 

Table 4.6: Three dimensional location errors and location frequencies for various tracer speeds and 

activities taken from data presented by Cole et al. (2012) and Boucher et al. (2016). (*Activity measured 

as counts per second with a flat probe radiation detector) 

Camera Type Fluid 

Medium 

Speed 

(m·s-1) 

Activity 

(MBq) 

3D Location 

Error (mm) 

Location 

Frequency (Hz) 

Cole et al. (2012) 

ECAT 

‘EXACT3D’ 

(Model: 

CTI/Siemens 

966) 

water 0 5.0 × 10-2 6.51 16 

water 0.10 5.0 × 10-2 7.69 15 

air 0 6.0× 10-2 10.89 23 

air 0 4.9 × 10-1 4.98 71 

air 0.98 4.5 × 10-1 4.14 72 

air 1.43 6.0 × 10-2 14.28 19 

Boucher et al. (2016) 

ADAC 

air 0.28 2,600* 7.6 12.4 

air 0.14 2,300* 5.8 5.6 

air 0.03 2,100* 3.6 1.5 

Modular 

ECAT951 Ring 

Assembly 

air 0.38 850* 6.4 10.0 

air 0.19 710* 3.8 8.6 

air 0.04 620* 3.2 7.3 
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Figure 4.9: Tracer speed (m·s-1) vs three-dimensional location errors (mm) for various activities. Data 

represented by triangles depicts tracers with an activity under 6.0 × 10-2 MBq; circles represent activities 

between 3.7-4.5 × 10-1 MBq; and squares an activity of 3.3 × 100 MBq. Specific activities for the data of 

Cole et al. (2012) and Boucher et al. (2016) are presented in Table 4.6. 

4.5 Applications 

4.5.1 Hydrocyclone trajectory 

Typically used as a classifying device, the hydrocyclone separates particle based on size, shape 

and density. The high particle velocities (up to 8 m·s-1) seen within a hydrocyclone have limited 

previous PEPT studies to relatively large particle sizes due to the high activation requirement. 

Tracers created via direct activation have only provided trajectories at a particle diameter of -

2000+1700 µm, which had an activity of 1 × 104 MBq (Radman et al., 2014). Tracers created via 

ion exchange (indirect activation) have been tracked at approximately 390 to 700 µm in diameter, 

with the associated activity ranging from 1.67 to 5.33 × 101 MBq (this uncertainty is due to the 

< 10-2 MBq 

~10-1 MBq 

 ~100 MBq 
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actual size and activity of the tracer particle, whose trajectory was published, not being presented) 

(Chang et al., 2011).  

For the work presented in this chapter, the tracer particles were activated via the direct labelling 

technique using a cyclotron beam as described by Fan et al. (2006). The activated particles were 

initially between 1180 and 1700 μm in diameter due to practical handling considerations (Fan et 

al., 2006). Smaller tracers were created via breakage of the initial large particle, followed by 

screening and selection as detailed by Boucher et al. (2014). The cyclone apparatus consisted of a 

two-inch diameter Salter hydrocyclone (SC224-P) (shown in Figure 4.10). The total height of the 

hydrocyclone was 375 mm; the apex and vortex diameters were 9.4 and 14 mm respectively; and 

the tangential feed inlet was rectangular, 12 x 5 mm in size. For simplicity, a single tracer particle 

in water was used rather than a dense slurry. Prior to adding the tracer, the system was operated 

until the pressure stabilised at 30 PSI by adjusting the bypass valve. A closed system allows for 

the tracer particle to be re-circulated multiple times over its lifetime, which then develops an 

average flow pattern. In this case, the particle only recirculated three times through the cyclone 

before breaking into smaller fragments. This is well below the typical 30 minutes plus data 

acquisition time in most PEPT applications. 

Figure 4.10: The two-inch hydrocyclone inside the modular camera assembly (overflow piping removed 

for picture clarity).  
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The trajectory of a -212+106 µm diameter quartz particle, with an activity of 3.7 × 10-1 MBq, is 

shown in Figure 4.11b. A tracking rate of 2540 Hz was achieved using the parameters of N = 250, 

f = 50 and S = 250. These parameters were chosen based upon the average speed of the tracer 

particle, which was approximately 1.5 m·s-1. In a hydrocyclone, the cut-size defines the particle 

diameter at which the particle has a 50 % chance of reporting to the underflow or overflow. In this 

case, the size of the quartz tracer was above the cut-size of the two-inch hydrocyclone (cut-size ~ 

10 µm), i.e., under the experimental conditions the tracer particle should report to the underflow. 

This trajectory clearly shows the spiralling motion of a particle caught in the outer vortex of the 

cyclone and, as expected, exiting out the underflow. For comparison, a previous trajectory of a 

similar sized quartz tracer, published by Radman et al. (2014), showed very little detail of the 

particles trajectory (Figure 4.11a). The activity of the tracer particle was not reported, however the 

track code parameters were N = 10, f = 0.05 and S = 1 (these parameters were not optimised and 

therefore could have affected the quality of the reported trajectory). This figure shows the clear 

improvement in the PEPT scientific method and technology over recent years, in particular the 

higher sensitivity of the more modern ECAT951 detectors; improved data acquisition electronics; 

and the flexibility of the modular camera design (Leadbeater and Parker, 2009; Leadbeater and 

Parker, 2011; Leadbeater et al., 2011; Parker et al., 2009). While the improvement is substantial, 

there is still some deficiencies in the track. The feed and apex zones are not clearly defined as they 

are at the extremities of the field of view of the camera, where less radiation is captured. A larger 

field of view would allow the complete trajectory through the cyclone to be captured. 

Alternatively, simply shifting the cyclone up or down, to center the feed or apex in the field of 

view, would allow the behaviour in either of these regions to be focused upon. 
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Figure 4.11: Comparison of (a) a previous track in a hydrocyclone (Radman et al., 2014), to (b) the track 

of a -212+106 µm quartz mineral tracer completed in the modular assembly. 

4.5.2 Flotation track 

Another application of the cross pattern modular assembly was to capture the behaviour of mineral 

particles within an operating lab-scale flotation cell. Boucher et al. (2017) were able to use directly 

activated mineral tracers, both hydrophobic and hydrophilic, to study the particulate flow patterns 

within a 142 mm diameter mechanical flotation cell. This was the first time that particles with real 

bulk mineral properties and surface chemistry were tracked in a flotation cell at a size range 

typically seen in industrial flotation cells. Although the single trajectories of a tracer particle can 

be of interest, it is often more informative to convert the trajectory data into time averaged flow 

fields (Morrison et al., 2016). This can only be achieved after a sufficient amount of experimental 

data has been acquired, and is possible using curve fitting and binning, as described in detail by 

a) b) 
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Morrison et al. (2016). This is a current limitation in process units such as the hydrocyclone, 

however, for flotation this practice is standard. Figure 4.12 displays the velocity magnitudes and 

flow field of a -106+90 µm diameter quartz particle in the flotation cell (Boucher et al., 2017). 

These results, obtained from a fitted trajectory of the raw data points, show the typical double 

recirculation pattern (above and below the impeller) seen in cylindrical mixing containers, and can 

be used to validate theoretical modelling to within the experimental error. The activity of the 

particle was between 4.0 × 10-3 – 3.7 × 10-2 MBq (due to reasons discussed earlier), resulting in a 

three dimensional error, in the case of the tracer moving at the impeller speed, of approximately 

12.6 mm. For the region of low speed outside of the impeller region, the error was approximately 

9.5 mm. While this number seems relatively large, when compared to the 2 mm bin size, this error 

represents the error of the raw data.  The fit, reported by Boucher et al. (2017), was applied to the 

constrained trajectory data and the three dimensional location error was lowered to 8.5 mm for a 

tracer speed of 0.33 m·s-1. This is primarily due to the reduction of noise in the fitted data when 

measured against the raw data obtained from the track code. This process was also completed for 

the higher speed tracer (1.34 m·s-1), at the same activity range, however the resultant error was not 

significantly different from the location error of the raw data. This is most likely due to the 

dominance of the error due to the under estimation of the curvature (more apparent at high tracer 

speeds) compared to the error from scatter or noise. More work is needed in optimising trajectory 

fits, as this could further reduce the measured location error and give more confidence in PEPT 

tracking. The effect of bin averaging could also be tested to determine if errors can be further 

reduced. 
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Figure 4.12: Velocity magnitude (a) and field (b) for a -106+90 µm directly activated quartz tracer inside 

of a mechanical flotation cell. Reproduced with permission from Boucher et al. (2017). 

4.6 Conclusions 

This chapter describes the successful assembly, and performance analysis, of a new PEPT modular 

detector system made up of 16 ECAT951 detectors. The high coverage of detectors in a small 

region meant a large percentage of emitted radiation can be captured, producing very high tracking 

rates when compared to similar experiments in other detector systems. A comprehensive error 

analysis method was developed to ensure the best combinations of N, f and S were used to 

determine a moving particles location with a minimum error. The three dimensional location error 

for stationary particles was constant for all tracer activities tested, with a value of approximately 

0.54 mm. For moving particles, the location error, based off a comparison to a known trajectory, 

a) b) 
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was highest for low activity levels and high speeds and was shown to be unrelated to that of the 

stationary tracers of the same activity level. Error ranged from 4.3 mm to 27.8 mm at the highest 

tracer speed tested (~ 4 m·s-1) depending on the activity (4.0 × 10-3 - 3.3 × 100 MBq). The 

corresponding location rates ranged from ~2,000 Hz to ~ 20,000 Hz for the same tracer activity 

range. 

With the use of this new modular assembly, a substantial improvement was seen in the recorded 

trajectory of a -212+106 µm quartz tracer travelling within a two-inch hydrocyclone. As only a 

few single passes could be recorded, more improvement is required to develop particle velocity 

fields. Another application of this camera arrangement was the production of populated velocity 

fields for -106+90 µm mineral tracers in a 142 mm mechanical flotation cell, possible due to the 

longer tracer residence time in the cell. This work extends the capabilities of PEPT in the study of 

real mineral particles to under 500 µm in size, travelling at speeds over 1 m·s-1, which has 

previously been limited by the low activity of small tracers (< 500 µm) created via direct activation. 

In the future, analysis of location error of new modular systems should be carried out using a tracer 

moving in a known trajectory in all three dimensions. This would allow for errors in all axes to be 

calculated without bias. As well as speed and activity, various amplitudes would also ensure 

absolute confidence in the reported error for a range of particle trajectories. An alternative to the 

track code used in this work would also be beneficial as it would reduce the time needed to 

optimise the input parameters for each tracer speed and activity and open new data treatment 

possibilities. 
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Linking Paragraph between Chapter 4 and Chapter 5 

Chapter 4 detailed the performance of the cross-pattern camera assembly. Results indicated that 

the trajectories of tracers with an activity greater than 0.37 MBq can be accurately determined at 

speeds up to 4 m·s-1. This led to the primary goal of this work, which was the measurement of the 

trajectories of real mineral tracers inside of a hydrocyclone. The data processing technique and 

final velocity profiles are presented in the following chapter. As results from previous studies on 

PEPT in the hydrocyclone have been insufficiently detailed, it was imperative to study the location 

error of the new camera system to ensure confidence in the measured trajectories. Tracers with an 

activity below 0.37 MBq were not studied as the measured location error was too large to ensure 

an accurate trajectory was determined. Without this error analysis, and the associated optimum 

process parameters, it would be impossible to obtain meaningful data from any trajectories within 

the hydrocyclone. This is highlighted in Section 5.4.1, which outlines the differences in trajectories 

when using various track code input parameters. A comparison between the ADAC Forte camera 

and the modular camera assembly is also included in Chapter 5, which demonstrates the step 

change in performance achieved in this work. The Matlab script that was used to produce the 

results found in Chapter 5 can be found in Appendix B.3.  
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Chapter 5: Improvements in Positron Emission Particle within a 

Hydrocyclone 

5.1 Abstract 

Current understanding of the particulate flow within a hydrocyclone is limited. Computational 

modelling aims to alleviate this problem; however, validation of particle flow is also limited. Due 

to the opacity of slurries, visual or laser diffraction techniques are only able to measure particle 

velocities in flows with low solids concentrations (< 1 % w/w), which are not consistent with 

industrial conditions. Positron Emission Particle Tracking (PEPT) is a technique that allows for a 

radioactive particle to be tracked through the triangulation of the emitted gamma rays, therefore 

no optical observation is required. The high particle velocities within the hydrocyclone fall outside 

of the typical dynamic range studied by PEPT, which has hitherto limited PEPT experimentation. 

The implementation of a modular positron camera design allowed for the creation of a highly 

sensitive field of view, necessary for the tracking of high speed, low activity tracers. This cross-

pattern assembly allowed for the capture of highly detailed particle trajectories within the 

hydrocyclone for particle sizes down to the 106-212 μm size range, a large improvement when 

compared with previous studies (Chang et al., 2011; Radman et al., 2014). Results show that 

repeatable velocity fields can be produced, which is the first time a velocity profile has been 

reported for the hydrocyclone using the PEPT technique. 

5.2 Introduction 

The hydrocyclone is a continuously operating classifying device that separates particles based on 

their size, shape and density. The first patent for a hydrocyclone can be traced back to the late 

nineteenth century, however it was not until the 1940s that it gained wide spread use in industry 

(Aldrich, 2015). The simple design, low cost, easy operation, and low maintenance of 

hydrocyclones, when compared to other classification equipment, has made them a popular 

selection for the separation of solids and liquids. Hydrocyclones are currently used in a number of 

mineral processing applications, with their main use being in closed circuit grinding. This role is 

critical for circuits that involve a concentration stage, as it controls both the feed size to the 

concentration stage (effecting the concentration efficiency) and the amount of material sent back 

for further grinding (effecting energy usage). Therefore, the separation efficiency of the 
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hydrocyclone can have a large impact on plant performance. Other uses of hydrocyclones include 

desliming, liquid clarification, degritting, and thickening operations. 

In a hydrocyclone, slurry enters through a tangential feed inlet, creating a vortex in the stationary 

body with a low-pressure zone along the vertical axis. The particles are subjected to two opposing 

forces: an ‘outward’ acting inertial force, and an opposing inwardly-acting drag force provided by 

the carrying fluid. Separation occurs in the radial direction, with larger, denser material migrating 

to the outer wall of the hydrocyclone chamber, while the smaller, less dense material moves toward 

the low-pressure zone of the inner axis (Wills and Finch, 2016). Flow in the cyclone is 

characterised by two vortices that flow in opposite directions. The feed is initially forced 

downward due to the extension of the vortex finder into the feed zone, creating the primary 

downward vortex. As this flow leaves the cylindrical section of the feed zone, and enters the 

conical section, the increased radial restriction causes a majority of the water flow and the smaller, 

less dense material to invert their direction. This creates a secondary upward vortex that travels 

upwards towards the vortex finder. The heavier material tends to travel along the outer boundary 

of the primary vortex and therefore continues to travel downwards towards the underflow (Brennan 

et al., 2007). These features are shown visually in Figure 5.1. 

Figure 5.1: A diagram of the hydrocyclone showing: (a) the main geometric components, and (b) the 

formation of the double vortex flow pattern. Reproduced with permission from Wills and Finch (2016).  



136 

Mechanically hydrocyclones are simple, having no moving parts; however, their complex internal 

flow is highly turbulent and performance is therefore difficult to model and predict. They are 

typically characterised by their holistic performance, e.g. sharpness of separation, the overflow 

particle size distribution, and the overall pressure loss. Early semi-empirical models, based upon 

the equilibrium orbit theory (Bradley, 1965) and the residence time theory (Rietema, 1961), helped 

provide a fundamental understanding of key principles of how hydrocyclones work. These models 

were not used in industry however, as they did not incorporate the effects of all design features. 

More recent strictly empirical models, such as those presented by Flintoff et al. (1987) and 

Nageswararao et al. (2004), characterise a number of variables and are easily incorporated into 

spreadsheets, and so are particularly useful in process design and optimisation. This has meant that 

all the models commonly used in industry, for the selection of hydrocyclones, are still essentially 

empirical in nature. This leads to problems when extrapolating results, from the empirical test 

regime, to geometries or operating conditions outside the specific systems used for model 

development (Chen et al., 2000; Kraipech et al., 2006). 

In recent years, the development of predictive models for the hydrocyclone, based on a more 

fundamental treatment of the laws governing flow, has been the goal of many researchers. With 

the ever increasing power of modern computers, computationally expensive techniques, such as 

Computational Fluid Dynamics (CFD) and discrete element method (DEM), can be used as a cost 

effective way to design and test a range of new hydrocyclone geometries. While these techniques 

provide great versatility, they are not without difficulties. The fundamental principles that these 

models are based on, which includes effects of turbulence; formation of the air-core; and viscosity 

considerations in high solids content slurry flow (which is non-Newtonian in nature), need to be 

subjected to thorough validation with rigorous experimental data (Marins et al., 2010). 

The separation mechanisms inside the hydrocyclone are governed by the three velocity 

components of the flow field, which in decreasing magnitude are the tangential, axial, and radial 

velocities (Fisher and Flack, 2002). Although complex in nature, the study of the microscopic 

processes inside a hydrocyclone are essential to its further development. Particle and fluid tracking 

techniques also provide a unique tool for the validation of computational models. The two main 

techniques used to study the velocity fields in the hydrocyclone are the Phase Doppler Particle 

Analyser (PDPA) or Laser Doppler Velocimetry (LDV) techniques; and the particle image 
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velocimetry (PIV) technique. PDPA and LDV use the frequency difference between the light from 

an illumination source (a laser) and the light scattered by moving particles to estimate velocity, 

whereas PIV cross-correlates consecutive photo frames. 

While the PDPA and LDV methods provide average velocity fields, PIV allows for an individual 

particle of a dispersed phase to be tracked in space and time, i.e. Lagrangian tracking. By obtaining 

the trajectory, it can be seen how a particle reacts to, and interacts with, the flow around it under 

specific conditions and any local instabilities can be observed in detail (Chang et al., 2011). Wang 

et al. (2016) reviewed the measurement of the three velocity components in hydrocyclones using 

these techniques. The authors stated that when using PDPA or LDV, the radial velocity component 

was difficult to measure accurately and therefore it was often omitted. It is also extremely time 

consuming to develop three dimensional flow fields, using PDPA or LDV, as they are single point 

measurement techniques. Wang et al. (2016) presented a new PIV technique, using a three camera 

system, which allowed for the three dimensional tracking of a 100 µm particle with a spatial 

resolution of 2 mm. 

A significant drawback to PDPA, LDV, and PIV is that they all rely on optical tracking or laser 

diffracting techniques, which limits the particle tracking to translucent systems. Several authors 

have noted this limit to be approximately 1 % solids by weight (Chu et al., 2002; Fisher and Flack, 

2002; Zhang et al., 2011). This has restricted velocity studies to predominately small, neutrally 

buoyant particles to estimate the velocity fields of water. 

The three-dimensional tracking of single particle flow in opaque slurries, allows for more relevant 

information to be captured for the validation of multiphase computational models. The positron 

emission particle tracking (PEPT) technique was developed at the University of Birmingham (UK) 

in the 1980s (Hawkesworth et al., 1986; Parker et al., 1993) and has been previously described in 

detail by Leadbeater et al. (2012). The technique is based on the same principles as positron 

emission tomography (PET), which is an imaging tool used predominantly in the medical field. 

PEPT differs from PET by tracking an individual particle labelled with a positron emitting 

radionuclide. The gamma-radiation emitted from the positron source can penetrate a considerable 

amount of material, allowing for the detailed study of opaque systems. 
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In PEPT, the tracer particle is labelled with proton rich isotopes, which rapidly decay via positive 

beta emission (emitting positrons). Annihilation of each positron occurs shortly after, producing 

two γ rays (511 keV each) which are constrained to have equal and opposite momenta and are 

therefore emitted back to back (180° ± 0.5°) (Charlton and Humberston, 2000). Simultaneous 

(coincident) detection of both gamma photons defines a Line of Response (LoR) along the photon 

trajectory. After a number of LoRs have been recorded, an iterative triangulation algorithm is used 

to remove corrupt events and calculate the point which minimises the distance to all the remaining 

lines. This point is assumed to be the location of the tracer at that specific time. This process is 

described in detail by Parker et al. (1993). 

The PEPT technique has been applied to a range of unit operations. In mineral processing, particle 

behaviour in tumbling (Govender et al., 2013) and stirred mills (Jayasundara et al., 2011), flotation 

cells (Boucher et al., 2017; Waters et al., 2008), spirals (Boucher et al., 2014; Boucher et al., 2016) 

and hydrocyclones (Chang et al., 2011; Radman et al., 2014) have all been investigated using 

PEPT. Typically, unit operations that involve residence times over 10 seconds; operate with 

particle sizes over 1 mm (allowing for more active tracers); or have particle speeds less than 1 m·s-

1 are more suited to PEPT. These conditions allow for the production of time averaged, well 

populated flow fields. Under optimum conditions, PEPT can track a particle moving at 1 m·s-1 

with up to 1000 locations per second and a three dimensional location precision of approximately 

1 mm. The work presented here has conditions far from the quoted optimum operating regime 

(Leadbeater et al., 2012). 

Trajectories obtained from low activity tracers (0.37 MBq) moving at high speeds (> 4 m·s-1) is 

currently at the boundaries of the PEPT technique’s capabilities, with the accuracy and precision 

of these trajectories needing stringent validation via a location error analysis. This has limited 

hydrocyclone tracking to single passes of radiochemically produced synthetic tracer particles (0.7 

mm) or large (2 mm) real mineral tracer particles produced via direction radiation. To date there 

have not been any published velocity profiles for the hydrocyclone using PEPT. 

This chapter expands on current PEPT practices by studying the flow of high speed, low activity 

tracer particles. A comparison between an ADAC Forte PET scanner (Parker et al., 2002) and a 

customised modular camera assembly was conducted to determine whether the increased density 

of detector heads and their proximity to the equipment would allow for accurate trajectories to be 
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recorded. The basis for the modular camera system used in this work was developed by Leadbeater 

(2009) Leadbeater and Parker (2011). Results include the presentation of trajectories and velocity 

profiles for real mineral tracer particles flowing within a two-inch hydrocyclone. All PEPT 

experimentation was carried out at the Positron Imaging Centre at the University of Birmingham 

(UK). 

5.3 Experimental  

5.3.1 Creation of tracer particles 

The tracer particles were activated via the direct labelling technique using a 35 MeV 3He beam, 

produced by the MC40 cyclotron located at the University of Birmingham, as described by Fan et 

al. (2006). Two types of materials were used for the creation of tracers: quartz mineral particles 

(ArcelorMittal Exploitation Minière, Canada) and synthetic glass beads. Quartz is a favourable 

material to study as it contains the oxygen atoms required for the production of the proton rich 

isotope, 18F, and is the major gangue material for most mining operations. The activated quartz 

particles were required to initially be approximately 1 mm in diameter due to practical handling 

considerations, heat dissipation and beam focusing in the cyclotron (Boucher et al., 2017; Fan et 

al., 2006). As the trajectories of smaller particle sizes were desired (to achieve results closer to 

industrial conditions), the larger particles (once activated) were broken, followed by screening and 

selection as detailed by Boucher et al. (2014). As screens were used to separate particles, only the 

size classes of the tracers are known. However, as particles were chosen based upon their activity, 

and activity is linked to the surface area of the radiated particle, it is likely that most tracers are at 

the upper limit of the size range reported. Properties of the tracers used in this chapter can be found 

in Tables A.2.1-A.2.3 in Appendix A.2. 

Direct activation was chosen over other methods, such as ion-exchange resin tracers, as this 

technique allows for tracer particles with the exact composition of real ore to be tracked. A down 

side of direct activation, however, is the weakening of the mineral tracers. This was attributed to 

the thermal stress the particles went through inside the cyclotron (Boucher et al., 2017), where 

impurities in the crystalline structure could cause micro fractures. This meant the quartz particles 

consistently, and relatively quickly (1-10 individual recirculations), broke into multiple smaller 

fragments during experiments, therefore making the subsequent data collection useless. Due to the 

limited supply of activated particles (four per three hour cyclotron run) this greatly hampered the 
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amount of data collection, which is required for reliable, well populated velocity fields. As a way 

to improve the total acquisition time, a 1 mm glass bead was also studied. Although this could not 

be broken into smaller sizes, the durability of the synthetically made bead meant that more passes 

could be recorded per experiment. 

5.3.2 Positron Cameras - ADAC Forte Camera 

The ADAC Forte camera (ADAC Laboratories, USA - later acquired by Philips), described in 

detail by Parker et al. (2002), comprises of a pair of standard clinical gamma cameras operating in 

coincidence. Figure 5.2 displays the camera with the hydrocyclone apparatus in place. Each head 

consists of a sheet of thallium-doped sodium iodide scintillator (with an area of 500 × 400 mm2 

and thickness of 16 mm) backed by an array of 55 photomultiplier tubes. The intrinsic efficiency 

for detecting incident 511 keV gamma photons is approximately 23 % with raw data acquisition 

rates up to 100 kHz (Leadbeater and Parker, 2013). The ADAC Forte camera is well characterised 

and requires no auxiliary work before operating. It is therefore the standard positron camera used 

in most conventional PEPT imaging at the Positron Imaging Centre. However, the inflexibility of 

the detector restricts tracking rates in unit operations with geometries unsuited to the parallel nature 

of the two large detector heads. This coupled with its low intrinsic efficiency limit the ability of 

tracking fast, low activity tracers, with activities of approximately 3.7 MBq or below considered 

insufficient to produce useful trajectories (Leadbeater et al., 2012). For the high speeds in the 

hydrocyclone, however, Radman et al. (2014) have shown that even tracer activities up to 1 GBq 

produce low quality trajectories. 
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Figure 5.2: The hydrocyclone apparatus in the ADAC Forte camera. 

5.3.3 Positron Cameras - Modular detector assembly 

Recently, at the Positron Imaging Centre, a modular camera system has been developed from parts 

of an ECAT 951 PET scanner (Siemens, Germany), described in detail by Leadbeater and Parker 

(2011). The system consists of a number of detector modules which can be arranged in a custom 

geometry with a field of view (FOV) tailored to the specific application. Tracking small, low 

activity tracers, moving at high speeds requires the detection of a large percentage of the emitted 

radiation. Therefore, to increase sensitivity, detector blocks should be closely packed. After 

considering various designs, 64 detector blocks were used in a coupled cross pattern (Figure 5.3). 

This assembly produces a highly sensitive cylindrical FOV at the intersection of the four detector 

groups, which is approximately 100 mm in diameter and 390 mm in height (optimised for the 

hydrocyclone geometry). Before assembling the modular detector geometry, Monte Carlo 

simulations of the detection area were created, as per those described in Leadbeater and Parker 

(2013), to assess the sensitivity and uniformity of the field of view. The results of these simulations 

and more detail about the cross-pattern set-up is presented elsewhere (Section 4.3.2). The modular 

Detector Heads 
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400 mm 
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detectors are also constructed with bismuth germanium oxide scintillator crystals, which has a 

significantly higher intrinsic efficiency (around 40%) when compared to the ADAC camera. This 

aids in the detection of a higher percentage of incident radiation. 

Figure 5.3: The cross pattern modular camera design showing (a) the CAD design with FOV (dimensions 

in mm) and (b) the two-inch hydrocyclone inside the assembly (overflow piping removed for picture 

clarity). 

5.3.4 Hydrocyclone apparatus and operating procedure 

The apparatus consisted of a two-inch (50.8 mm) diameter hydrocyclone (Salter Cyclones Ltd, 

England), a diaphragm pump, water tank and pressure gauge. A diagram of the apparatus is shown 

in Figure 5.4. The total height of the hydrocyclone was 350 mm; the apex and vortex diameters 

were 9.4 and 14 mm respectively; and the rectangular feed inlet was 12 x 5 mm in size. The size 

of quartz tracers were all well above the cut-size of the hydrocyclone (~10 μm), and therefore were 

expected to report to the underflow. Cut-size represents the size for which 50 % of the particles in 

the feed report to the underflow. 

Prior to adding the tracer to the water tank, the system was operated until the pressure stabilised at 

207 kPa. This was controlled by adjusting the bypass valve. The closed system allowed for the 

tracer particle to be re-circulated multiple times over its lifetime, which built up an average flow 

pattern. Modifications to the feed entry, pressure gauge, pump entry and exit piping, water tank 

and valves were required to minimise locations where the tracer could become stagnant. Even after 

(b) (a) 
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these modifications, however, on some occasions the particle did manage to become trapped and 

the system needed restarting. To simplify this process, it was decided to conduct tests of a single 

particle in water. While this does not utilise the main benefit of PEPT, being the observation of 

particle flow in opaque slurries, the main objective of this work was to explore the capabilities of 

PEPT tracking. Therefore, the tracking of particles in slurries was left for future studies. 

Figure 5.4: Flow diagram of the recirculating hydrocyclone set-up. 

5.4 Data Processing 

The PEPT technique involves a large amount of post processing to determine trajectories or 

velocities. The electronics of the PEPT detector system records, in real time, the x, y, z coordinates 

of the two detection points (detectors A and B) of the emitted gamma radiation, and the time at 

which this detection occurs, i.e. (t; xA, yA, zA; xB, yB, zB). These x, y, z coordinates are taken as the 

central position of the excited crystal elements and allow for the creation of a Line of Response 

(LoR) in three-dimensional space but does not determine the particle location. A schematic of the 

steps taken to process the raw data is shown in Figure 5.5, with detailed explanations provided 

below. As the process conditions within the hydrocyclone (high speeds, low activity tracers) are 

at the edge of current PEPT capabilities, obtaining useful data proved a significant challenge. 

Hydrocyclone 

P 

Bypass Valve 

Diaphragm Pump 

Pressure Gauge 

Water Tank 

Overflow 

Underflow 



144 

Figure 5.5: Schematic showing the steps involved in the data processing procedure under taken in this 

work. 

5.4.1 Determining tracer location and optimising track code parameters 

Particle locations were determined via the PEPT algorithm first described by Parker et al. (1993). 

This triangulation technique, hence referred to as the track code, is based on the premise that for a 

given number of chronologically recorded events, N, all LoRs should intersect at a single point in 

space, which is taken to be the location of the tracer. In practice, however, LoRs do not intersect 

perfectly since a proportion of the LoRs are corrupted by phenomena such as Compton scattering 

or the detection of uncorrelated gamma rays in coincidence. Therefore, a point is calculated that 

minimises the sum of perpendicular distances between all of the LoRs. Lines furthest from this 

point, considered to be corrupt, are then removed and the minimum distance point is recalculated. 

This iterative process continues until only a predetermined fraction of lines, f, remain. In addition 

to this, a third parameter, S, can be used to determine the fraction of lines that are reprocessed 

when calculating consecutive locations. This is beneficial when processing data of tracers 

travelling at high velocities or with low activities. A detailed explanation of these parameters is 

presented in Chapter 4. 

3D spatial coordinates of the two detection points and 

time of each LoR are recorded 

(t; xA, yA, zA; xB, yB, zB) 

Birmingham PEPT algorithm determines tracer locations 

Particle trajectory estimated based upon tracer locations 

Quantities of interest (velocities, acceleration) are 

calculated based on fitted trajectory 

Live recording 

Post-processing 

Average quantities are calculated via binning - based on 

the ergodic assumption 

Individual passes are separated and back-ground noise 
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The current implementation of the algorithm requires the user to specify N, S and f. These 

parameters have a significant effect on the locations output by the track code. For instance, a large 

value of N is required for statistical purposes, however, too high a number of N means large 

distances are travelled by the tracer within the group of processed LoRs, which minimises 

trajectory features. An example of this can be seen in Figure 5.6, which shows the difference in 

locations determined by various track code parameters for the same tracer moving within a 

hydrocyclone. While this is an extreme example, it does show the limitations of not knowing the 

optimum input parameters, as trajectories may appear to be smooth but still be incorrect. All the 

optimum track code parameters used for this work were based upon the parameters reported in 

Chapter 4, where the various parameters’ effects on the location uncertainty for a given tracer 

activity and speed were studied. In the case of Figure 5.6, the values of N = 250, S = 250, and f = 

65 gave the lowest location uncertainty as the tracer had an average speed of approximately 4 m·s-

1 and an activity of approximately 3.7 MBq. 

Figure 5.6: X-axis coordinates for a hydrocyclone trajectory, showing the effect of the track input 

parameters on the output locations. In this case the optimum input parameters were N=250, S=250, and 

f=65.  

N=2000, S=2000, f=35 

N=100, S=1, f=10 

N=250, S=250, f=65 
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5.4.2 Data Clean-up 

It was evident that in several tests there was an increased amount of background noise recorded, 

in comparison to other tests. An example of this is shown in Figure 5.7. This occurrence was more 

prevalent in longer running tests, or in tests conducted shortly after a previous test. As the water 

was replaced between tests, the increased noise was attributed to the contamination of the 

hydrocyclone itself. The high levels of abrasion known to take place within the hydrocyclone likely 

caused a transfer of the radiated tracer particle’s surface to the walls of the cyclone. This smearing 

creates a dispersed field of gamma emitting sources, increasing the signal to noise ratio and 

therefore the difficulty in post processing. To remove the unwanted data the difference in activity 

between the tracer particle and the back-ground radiation was used. Location rates in the modular 

camera ranged from 43,000 to 4000 Hz for tracer activities of 18.9 to 0.37 MBq (represented by 

the 1 mm glass bead and 106-212 µm tracers respectively). Once the approximate location rate 

was determined for a single pass, the entirety of the test was scanned for time intervals with lower 

location rates and the data removed. Particle breakage also needed to be considered when 

processing the data. This was detected by the occurrence of low activity passes, termed ghost 

passes, or those recorded back to back (< 1 second of recirculation time). 
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Figure 5.7: Comparison between the raw and processed data for a 106-212 µm quartz tracer. Location 

frequency was used to differentiate between the background noise and the signal. 

5.4.3 Trajectory Smoothing Technique 

When processing data obtained from a low activity tracer, the measured locations will contain a 

large amount of variability, as the number of LoRs used per location must be small. This situation 

is particularly relevant for tracers moving at high speeds, and in the case of the hydrocyclone 

speeds are often above 3 m·s-1. For a particular tracer activity and speed, there will be an associated 

three-dimensional location uncertainty represented by an ellipsoid (which is spherical when all 

dimensional uncertainties are equal). For a trajectory, this uncertainty represents a cylinder 

wrapped around the measured tracer trajectory (Boucher et al., 2017). The true trajectory of the 

particle can theoretically be anywhere inside of this cylinder. Therefore, the data smoothing or 
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fitting technique should aim to maintain the low frequency behaviour of the trajectory, while 

removing the high frequency features which fall within the undetectable limit of the positron 

cameras. This may remove small scale motion caused by turbulence or particle collisions, which 

is of interest. However, due the spatial resolution of the camera, these features are currently 

indistinguishable from the fluctuations caused by location uncertainty. 

In this work, individual runs were first separated and then a smoothing function was applied to 

each axis independently. The fit used was the smoothing splines function inside of Matlab©. The 

smoothing spline s, which is a piecewise third order polynomial, is constructed by minimising the 

function shown in Equation 5.1. This is referred to as a Tikhonov regularisation and aims to 

minimise both the residual error and the complexity of the solution, which is represented by the 

roughness or the intensity of fluctuations (Forney and Rothman, 2012).  

 𝑝 ∑ 𝑤𝑖(𝑦𝑖 − 𝑠(𝑥𝑖))
2

𝑖

+ (1 − 𝑝) ∫ (
𝑑2𝑠

𝑑𝑥2
)

2

𝑑𝑥 Equation 5.1 

In Equation 5.1, the positional data points in the X, Y or Z axes are represented by 𝑦𝑖 and their 

corresponding time is represented by 𝑥𝑖. The relative weights of each location can be specified by 

wi. As the sensitivity of the modular camera varies, the recorded location rate in different regions 

of the FOV also changes. In order to standardise the fit across the entire pass, a weighting function 

was used to equalise the relative significance of each time domain. This meant that locations 

obtained at lower location rates were given higher weights to ensure that the fit did not incorrectly 

smooth trajectory features. The comparative influence of the residuals and roughness is controlled 

by the smoothing parameter p, which is defined between 0 and 1. When p=0 a least-squares 

straight-line fit is produced, while p=1 produces a cubic spline interpolant. The value of p used for 

all data sets was 0.999999, which was concluded to effectively balance the residual error (keeping 

it within the measured location error) and smooth any unrealistic variations in trajectory. An 

example of this process can be seen in Figure 5.8. The smoothing equation was discretised using 

the same location rate as the initial data set and the corresponding velocities for each location were 

calculated using the respective equation’s derivative. 
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Figure 5.8: Smoothing of the raw data set for a single pass of a 355-500 µm quartz tracer in the 

hydrocyclone. The greyed region represents the average location uncertainty detailed in Chapter 4 (equal 

to one standard deviation). 

5.4.4 Averaged Quantities – Lagrangian to Eulerian particle tracking 

Single trajectories, while they can provide some useful information, are hard to compare 

quantitatively with other data types. To allow for comparison with data from computational 

models, the end objective of this work, velocity fields are a more useful metric. It is therefore 

necessary to convert the data from the Lagrangian reference frame of single passes, to the fixed 

Eulerian reference frame. This is achieved through the ergodic assumption: that a single particle’s 

behaviour, over a length of time, is representative of the behaviour of all particles with the same 

properties (size, shape, density, etc.). In other words, a tracked particle will exhibit all possible 

Insert 1 Insert 2 

1 

2 
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combinations of position, momentum, etc. if recorded for a sufficiently long period of time 

(Morrison et al., 2016). Therefore, the measured properties of a given discrete volume, termed 

voxel, represents the proportional behaviour of any particle, of the same type, in that zone 

(assuming statistical relevance). 

One issue with the hydrocyclone results is the likelihood of obtaining a sufficiently large quantity 

of data points in each voxel, which is needed to obtain acceptable accuracy (Leadbeater et al., 

2012). There is a limited number of passes for each experiment due to particle breakage and 

contamination of the hydrocyclone itself. To compensate for this, the volume of the hydrocyclone 

was divided by using a 2 mm by 2 mm grid rotated around the central axis, as seen in Figure 5.9. 

Therefore, each two-dimensional pixel in the velocity profiles, represents an annular prism centred 

at the vertical axis of the hydrocyclone. Locations, once converted into cylindrical coordinates, are 

grouped into their corresponding voxels and their velocities can then be calculated and averaged. 

The size of the particle, compared to the cut-size, ensures its location is predominately at the outer 

perimeter of the hydrocyclone. While this helps improve the location density in the measured 

regions, this limits the particle velocity fields to a small volume space. 

This method assumes that a particle’s behaviour is a function of the particle’s distance from the 

centre axis of the hydrocyclone, and its vertical position within the hydrocyclone. To test this 

assumption the distribution of velocities in each voxel were studied. It was determined that a 

majority of the voxels exhibited a Gaussian distribution, with some examples shown in Figure 5.9. 

This indicated that each voxel is accurately represented by the mean and standard deviation 

profiles, as seen in Figure 5.9. The high standard deviation in some voxels in the feed zone, which 

coincided with non-Gaussian distributions, was due to the asymmetrical variances caused by the 

feed inlet. However, for simplicity these imperfections were ignored. 
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Figure 5.9: (a) Schematic of the 2 mm by 2 mm toroid bins used for creating the averaged velocity 

profiles; (b) the mean velocity magnitude and (c) standard deviation profiles for a 355-500 µm quartz 

tracer particle; and (d) examples of the velocity distributions within the voxels.  
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5.5 Results and Discussion 

5.5.1 Comparison of ADAC and Modular Cameras 

Figure 5.10, Figure 5.11 and Figure 5.12 display a direct comparison between trajectories obtained 

from the ADAC Forte camera (Figure 5.10 and Figure 5.11) and the cross-pattern modular 

assembly (Figure 5.12). Figure 5.10 and Figure 5.12 show a comparison of two tracers with a 

similar activity, while Figure 5.11 and Figure 5.12 compare the recorded locations of a 1 mm glass 

bead tracer in each camera. The most obvious difference is the large increase in location rate when 

using the modular camera (from 400 Hz in the ADAC to 120 000 Hz in the modular). A particles 

radial position within a hydrocyclone is an essential parameter when determining its behaviour, as 

it will determine both its classifying outlet and its general path within the cyclone. It is therefore 

critical to obtain a large number of locations so that the radial path of the tracer can be determined 

accurately. This is even more relevant for the underflow area, where small changes in radial 

position should lead to vastly different vertical velocities, as the conical constriction causes 

particles to recirculate upward. It is clear that the trajectories measured in the ADAC Forte camera 

lack the location rate required to produce accurate velocity profiles. This is more apparent at the 

two extremities of the hydrocyclone, where it is impossible to determine the likely trajectory. 

Another important factor to consider is the reduced location precision in the secondary horizontal 

axis, represented by the Z-axis in this case. The ADAC Forte Camera is unable to obtain equal 

tracking accuracy in both planes due to the parallel nature of the two detector heads. The radius of 

the spiralling particle appears to grow to a maximum at the middle of the cyclone before reducing 

again, which does not conform to the expected trajectory. This anomaly is due to the increased 

sensitivity at the middle of the detector FOV, meaning more LoRs are obtained and a more accurate 

trajectory is recorded. This lack of accuracy in the Z-axis effects the calculation of three 

dimensional trajectories, as well as radial and angular velocities. The cross-pattern modular camera 

therefore has a distinct advantage, as it allows for equal tracking in both horizontal axes. 



153 

Figure 5.10: Location coordinates as a function of time for a 500-600 µm quartz particle in the ADAC 

Forte camera. Tracer activity was measured as 21.5 MBq, which led to a location rate of 240 Hz. 

Figure 5.11: Location coordinates as a function of time for a 1 mm glass bead quartz particle in the 

ADAC Forte camera. Tracer activity was measured as 48.8 MBq, which led to a location rate of 410 Hz.  
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Figure 5.12: Location coordinates as a function of time for a 1 mm glass bead in the Cross-pattern 

modular camera. Tracer activity was measured as 18.9 MBq, which led to a location rate of 120 000 Hz. 

5.5.2 Three dimensional trajectories 

Figure 5.13 displays three dimensional trajectories, coloured by velocity, for a 106-212 µm quartz 

particle, 355-500 µm quartz particle, and 1 mm glass bead. These trajectories are based upon the 

filtered and fitted locations, not the raw data. The trajectories show the typical swirling motion 

associated with the hydrocyclone (Figure 5.1). The glass bead has a much larger number of 

revolutions inside the hydrocyclone, which corresponds to a longer residence time when compared 

to the real mineral tracers (0.44 s compared to 0.36 s). This counters the theoretical assumption 

that a larger particle will have a smaller residence time. The high activity of the glass bead tracer 

meant that only a single run could be recorded before the noise caused by erosion occurred, and 

so no meaningful conclusions can be made. 



155 

Figure 5.13: Single 3D trajectories for a (a) 106-212 µm quartz particle; (b) a 355-500 µm quartz 

particle; and (c) a 1 mm glass bead tracer all coloured by velocity magnitude. 

5.5.3 Velocity Profiles 

Figure 5.14 displays the mean velocity magnitude for five separate 355-500 µm quartz tracers. The 

results from the five experiments are shown to illustrate the repeatability of the velocity 

measurements. Run 3 varies significantly from the remaining four runs, likely due to the lower 

(a) (b) 

(c) 
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location rate (10 500 Hz) compared to the other runs (> 21 300 Hz). Therefore, the average velocity 

field was calculated based upon the data collected in Runs 1, 2, 4 and 5. The velocity field displays 

the typical behaviour of a particle within a hydrocyclone. Initially, in the feed pipe, the particle 

moves slowly (1 m·s-1) but accelerates significantly in the constriction of the feed zone, up to 

speeds of 7 m·s-1. The particle slowly decelerates and then reaches a constant speed through a 

majority of the cyclone body. 

Figure 5.14: Velocity profiles for a 355-500 µm quartz particle inside the hydrocyclone.  

Run 1         Run 2        Run 3       Run 4      Run 5    Average 
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Figure 5.15 displays the various other properties of the particle trajectories for all combined runs 

of the 355-500 µm tracers (excluding Run 3). This includes the calculated standard deviation of 

the mean velocity magnitude; the average number of locations per voxel in each separate run; and 

the mean radial, vertical and angular velocities. The same repeatability was observed for all 

velocity components and therefore only the averaged fields are shown. The calculated standard 

deviation was lower in the middle of the hydrocyclone where the sensitivity of the modular camera 

is at its highest and there were a large number of recorded locations. The feed and underflow zone 

had the highest standard deviation as these zones were at the extremities of the camera’s FOV, 

which is shown in the lower number of locations per voxel. These zones are also more turbulent 

and therefore may not be properly represented in an averaged velocity field. Both the radial and 

vertical velocity remains consistent throughout the hydrocyclone suggesting that the flow in the 

outer wall region is relatively smooth in nature. As expected the angular velocity increases as the 

particle travels towards the centre of the hydrocyclone, as seen in the conical restriction. 

Figure 5.16 and Figure 5.17 shows the same properties for four 106-212 µm tracer particles. In 

this case, the results from Run 4 were removed from the averaging process. The difference in the 

measured velocity profile was again attributed to the tracer’s low activity (see Table A.2.2 in 

Appendix A.2). The overall lower activity when compared to the 355-500 µm tracers meant that 

the location uncertainty is higher (7.51 mm compared to 4.33 mm). This in turn led to an increased 

standard deviation and a greater variance in the measured locations. In terms of the measured 

velocity, the 106-212 µm tracers displayed a similar behaviour and magnitude to the 355-500 

particles, showing a constant radial and vertical velocity with and increasing angular velocity when 

moving inward. The results from the three velocity components, namely the tangential, axial and 

radial velocities are all similar in magnitude to those reported by Wang et al. (2016). As previously 

mentioned, the authors reported the velocities of a 100 µm particle (specific density of 1.6) 

captured inside of a 35 mm hydrocyclone, which is similar to the conditions of this work. The 

measured radial velocity varied between –0.63 m·s-1 (inward) and 0.51 m·s-1 (outward); the axial 

velocity in the outer wall region varied between –0.47 and -1.0 m·s-1 (downward); and the 

tangential velocity ranged from 2 to 4 m·s-1. These ranges correspond closely with the velocities 

displayed in Figure 5.15 and Figure 5.17, which further validates PEPT as a technique for the 

measurement of particle velocities within the hydrocyclone as well as the data processing 

procedure outlined in this work.  
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Figure 5.15: The standard deviation, mean number of locations per voxel, and the radial, vertical and 

angular velocities for a 355-500 µm tracer particle inside the hydrocyclone.  
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Figure 5.16: Velocity profiles for a 106-212 µm quartz particle inside the hydrocyclone. 

Run 1    Run 2     Run 3      Run 4      Average 
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Figure 5.17: The standard deviation, mean number of locations per voxel, and the radial, vertical and 

angular velocities for a 106-212 µm tracer particle inside the hydrocyclone. 

5.6 Conclusions 

The tracking of mineral particles in opaque flows through PEPT represents a significant but 

worthwhile challenge. Obtaining particle velocity profiles, at conditions close to industrial 

operation, is critical for the future development and validation of computational models. The 

sensitivity of the ADAC Forte camera has been shown to be too low for the tracking of low activity 

(<50 MBq) particles travelling at speeds over 3 ms-1. The cross-pattern modular camera represents 

a step change in tracking performance for low activity, high speed tracers inside the hydrocyclone. 

This improvement in trajectory quality allowed for the calculation of velocity profiles, a first for 
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the hydrocyclone using the PEPT technique. Tracking of particles down to 106-212 µm was also 

possible, a significant improvement on trajectories previously published. Future testing will aim 

to study particle flow in hydrocyclones operating with high solid content slurries, while also trying 

to study particle sizes close to the cut-size of the chosen hydrocyclone. It is likely that a larger 

hydrocyclone, with a larger cut-size, will be required for this to be achievable. The improvements 

presented in this work are not limited to the study of opaque flows in the hydrocyclone. It 

demonstrates that the measurement of particle flows in any unit operation can be improved by 

using a detector apparatus tailored to its specific geometry. 
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Linking Paragraph between Chapter 5 and Chapter 6 

Chapter 6 presents the formulation of a CFD model of the two inch hydrocyclone with validation 

through PEPT, which represents the culmination of the work presented in Chapters 3, 4 and 5. The 

CFD simulation’s structure follows the guidelines outlined in Chapter 3, and so much of the 

detailed reasoning behind model choices are omitted. The computational fluid dynamics (CFD) 

package Fluent© (ANSYS Inc., USA) was selected as the modelling software, and all simulations 

were conducted through McGill University's centre for High Performance Computing (HPC), 

which is a part of the Compute Canada national HPC platform. 

The primary purpose of the particle trajectories and velocity profiles obtained in Chapter 5 is for 

the validation of future CFD models. The error analysis performed in Chapter 4, also provided 

confidence in the data measured with the PEPT technique, which is crucial in the development of 

any new characterisation tool. Therefore the PEPT data will form the primary method for model 

validation, a first for hydrocyclone modelling.  
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Chapter 6: A CFD Simulation of a Single Particle’s Trajectory 

inside a Hydrocyclone with Validation through PEPT 

6.1 Abstract 

A Computational Fluid Dynamics (CFD) model of the hydrocyclone, simulating the trajectory of 

a single 1 mm quartz particle in a two phase (air-water) flow, was created. The turbulence within 

the hydrocyclone was modelled using the Large Eddy Simulation (LES) model, which has been 

shown to be the most accurate turbulence model for hydrocyclone simulations. The air core was 

modelled using the Volume Of Fluid (VOF) model and the particle addition was carried out using 

the Discrete Phase Model (DPM). Comparison of the simulated water split ratios and mass flow 

rates to experimental data demonstrated that the model was capable of accurately predicting the 

global water flow. The tangential and axial velocity components of the air-water mixture were 

compared to literature and was shown to be similar in magnitude. The particle’s trajectory was 

compared to a trajectory of the same particle type measured via the Positron Emission Particle 

Tracking (PEPT) technique. Results showed that while the trajectories were comparable, the 

velocities of the simulated particle were much higher than those measured by PEPT. This lead to 

the simulated particle having a residence time less than half that of the experimental particle track. 

The difference was attributed to the near wall velocity resolution and the particle’s interaction with 

the wall. This work highlights the need for further study of the simulation particle velocities in the 

hydrocyclone. 

6.2 Introduction 

Hydrocyclones are used extensively in the chemical, petroleum and mineral processing industries 

to remove or classify particles in particle laden fluid flows (Brennan, 2006). The popularity of 

hydrocyclones is primarily attributed to its apparently simple design and operational features. In 

reality, however, the particle separation mechanisms in the hydrocyclone are very complex 

(Vakamalla and Narasimha, 2017). Particles are separated by the balance of inertial forces 

(provided by the swirling water flow) and the counter acting drag forces. A typical hydrocyclone 

consists of a cylindrical chamber, where the feed enters tangential to the stationary body, attached 

to a conical section. The growing restriction in the conical section causes a majority of the water 

flow to reverse its direction, meaning only the coarsest material will continue its path out of the 

underflow. Finer particles will move with the water into the inner vortex, which continues upward 
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towards the overflow (Wills and Finch, 2016). The vortexing flow also creates a low-pressure zone 

along the central vertical axis that entrains air from the underflow (which is opened to the 

atmosphere) and forms an air core. This air core formation is crucial to the efficient operation of 

the hydrocyclone (Davailles et al., 2012; Delgadillo and Rajamani, 2009; Dlamini et al., 2005; 

Doby et al., 2008; Gupta et al., 2008; Sripriya et al., 2007). 

Hydrocyclone operation typically suffers from two inherent deficiencies. The first is the short 

circuiting of coarse particles along the boundary layer of the vortex finder, ending in the 

misclassification of coarse particles in the overflow stream. The second is the by-passing of fine 

particles to the underflow stream. Particles under a certain size do not possess sufficient drag force 

to resist moving with the fluid medium, and therefore, the amount of fines reporting to the 

underflow is proportional to the fraction of feed water reporting to the underflow (Delgadillo and 

Rajamani, 2007). 

This misclassification of both fine and coarse particles understandably has a negative impact on 

performance, and so much effort has gone into optimising the hydrocyclone geometry and 

operating conditions to minimise these features. Empirically based models, such as those presented 

by Flintoff et al. (1987) and Nageswararao et al. (2004), were the first models to appear in literature 

and have since gained widespread use in the design and selection of industrial hydrocyclones, in 

part due to the ease in which they can be implemented into flow sheet simulation packages 

(Delgadillo and Rajamani, 2005). While these models are capable of predicting cut-size, pressure 

drops, and water flow splits within a reasonable degree of accuracy, they are only accurate within 

the limited range of experimental data from which the model parameters were developed. 

Extrapolating trends outside of the tested regimes requires the model to be calibrated with 

experimental data obtained close to the conditions in which the hydrocyclone will be used. 

However, the number of experiments needed for proper calibration is impractical in many 

situations, and therefore the performance of industrial scale hydrocyclones is often not optimised 

(Banerjee et al., 2016). 

To gain a better understanding of the geometrical and operating parameters and to provide true 

predictive capabilities, a more fundamental model of the hydrocyclone, based on physical 

principles, is essential. Computational fluid dynamics (CFD) provides the tools required to obtain 

a solution for the internal flow field. In the past decade considerable progress has been made in 
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the mathematical modelling of hydrocyclones with CFD (see Chapter 3). Previous CFD models 

have been used to study the effect of a range of different geometrical properties on the 

classification efficiencies of particles, including the vortex finder length and shape, feed inlet 

design, conical section length and shape, and apex diameter. While this has provided insight into 

the interactions of these components, most of these simulations have been carried out in low solid 

concentration flows due to the difficulties in modelling high solids content slurries. This has 

limited their applicability to industry. 

While recent models have begun to simulate the flow of high solid concentration slurries (Ghodrat 

et al., 2016; Kuang et al., 2012; Vakamalla and Narasimha, 2017), which is more in line with 

industrial conditions, validation techniques for the complex particle flow are limited. The opaque 

nature of the particle laden flow makes visual and laser diffraction techniques invalid. Therefore, 

to date only global validation via particle separation curves has been used. This does not help 

validate the internal flow profiles which help determine the cause of the particle’s behaviour within 

the hydrocyclone. The aim of this chapter is to use experimental particle velocity data to validate 

the flow of a single particle in a hydrocyclone, simulated using the CFD package Fluent© 16 

(ANSYS, United States). The particle’s properties will be validated with experimental data 

obtained from the positron emission particle tracking (PEPT) technique, presented in Chapters 4 

and 5. 

6.3 Simulation Method 

6.3.1 Turbulence Model 

When modelling hydrocyclones, turbulence plays a crucial role in predicting an accurate velocity 

flow field, air-core diameter and thereby particle separation efficiency. Therefore, the selection of 

an appropriate turbulence model is very important. The turbulence model chosen for this work was 

the Large Eddy Simulation (LES) model. Fundamentally, LES is based on the theory by 

Kolmogorov (1941), who noted that large turbulent eddies are typically geometry dependent, while 

the smaller scale eddies are more universal in nature. This feature allows one to explicitly solve 

the large eddies, while simulating the small eddies using a subgrid-scale (SGS) model. Although 

this makes the model computationally expensive, when compared to the Reynolds Averaged 

Navier-Stokes (RANS) equation based turbulence models, it has been shown by numerous authors 

(Banerjee et al., 2016; Brennan, 2006; Brennan et al., 2007; de Souza et al., 2012; Delgadillo and 
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Rajamani, 2005; Karimi et al., 2012; Lim et al., 2010; Narasimha et al., 2006; Narasimha et al., 

2012; Vakamalla and Narasimha, 2017) to be the most accurate model to capture the turbulent 

fluctuations in the hydrocyclone. 

In the LES model, a filtering operation (determined by the cell volume) is applied to the governing 

Navier–Stokes equations to remove the small scale eddies. The resulting equations are of the 

standard form, but contain the stress tensor term, 𝜏𝑖𝑗
𝑠𝑔𝑠, which arises from the residual motions 

caused by the smaller eddies. The final LES model equations are given in Equation 6.1 and 6.2, 

where the quantities with an overbar denote the filtered quantities which are resolved. 
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𝛿𝑡
+

𝛿(𝜌�̅�𝑖�̅�𝑗)

𝛿𝑥𝑗
= −

𝛿�̅�

𝛿𝑥𝑖
+ 𝜌𝑔𝑖 +

𝛿

𝛿𝑥𝑗
(𝜇

𝛿�̅�𝑖

𝛿𝑥𝑗
) −

𝛿𝜏𝑖𝑗
𝑠𝑔𝑠

𝛿𝑥𝑗
 Equation 6.2 

The residual stress tensor is modelled following the Boussinesq eddy viscosity assumption, 

producing Equation 6.3. The turbulent viscosity was modelled with the Smagorinsky–Lilly model, 

as this is the simplest method and has also been shown to be the most accurate SGS model for 

hydrocyclone simulations (Karimi et al., 2012). It calculates the SGS eddy viscosity algebraically 

from a length scale 𝐿𝑆 and the mean local strain rate (Equation 6.4). The length scale is normally 

equal to a third power of the finite volume of each cell (in regions of high turbulence) but also 

contains a correction for cells close to the wall regions (Equation 6.5). The model constant 𝐶𝑠 was 

set to 0.1 as implemented by previous hydrocyclone models (Brennan et al., 2007; Narasimha et 

al., 2006). More details about the LES model can be found elsewhere (ANSYS, 2016; Versteeg 

and Malalasekera, 2007) 

 
𝜏𝑖𝑗

𝑠𝑔𝑠 −
1

3
𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜇𝑡,𝑠𝑆𝑖𝑗 Equation 6.3 

 
𝜇𝑡,𝑠 = 𝜌𝐿𝑆 |√2𝑆�̅�𝑗𝑆�̅�𝑗| Equation 6.4 

 
𝐿𝑆 = min (𝜅𝐷𝑤, 𝐶𝑠𝑉𝑔

1
3) Equation 6.5 
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6.3.2 Multiphase Model 

The air-core was modelled using the Volume Of Fluid (VOF) model. This method has been widely 

used when modelling the air core in two-phase or low solid concentration flows (Cui et al., 2014; 

Delgadillo and Rajamani, 2007; Leeuwner and Eksteen, 2008; Narasimha et al., 2006; Wang and 

Yu, 2008; Xu et al., 2013) due to its cheap computational expense and proven accuracy. The 

volume fraction of each phase is calculated using the continuity equation (Equation 6.6), where 𝛼𝑘 

is the volume fraction of phase 𝑘 (which varies between 1 and 0) and 𝑢𝑖 is the velocity component 

in the direction 𝑖. This is used to track the interface between the air core and the water. 

A single momentum equation is solved throughout the domain (Equation 6.7), with the resulting 

velocity field being shared by the two phases. This momentum equation is dependent on the 

volume fraction of fluid phase with the properties 𝜌 and 𝜇. The average density and viscosity are 

calculated using Equation 6.8 and Equation 6.9 respectively. The surface tension between air and 

water was also incorporated as a source term in the momentum equation (Vakamalla and 

Narasimha, 2017). A constant value of 0.078 N·m-1 was used. 

 
𝛿(𝜌𝑢𝑗)

𝛿𝑡
+

𝛿(𝜌𝑢𝑖𝑢𝑗)

𝛿𝑥𝑗
= −

𝛿𝑝

𝛿𝑥𝑗
+ 𝜌𝑔𝑗 +

𝛿

𝛿𝑥𝑗
𝜇 (

𝛿𝑢𝑖

𝛿𝑥𝑗
+

𝛿𝑢𝑗

𝛿𝑥𝑖
) Equation 6.7 

 𝜌𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 𝛼𝜌𝑤𝑎𝑡𝑒𝑟 + (1 − 𝛼)𝜌𝑎𝑖𝑟 Equation 6.8 

 𝜇𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 𝛼𝜇𝑤𝑎𝑡𝑒𝑟 + (1 − 𝛼)𝜇𝑎𝑖𝑟 Equation 6.9 

The particle trajectory was modelled using the Discrete Phase Model (DPM). The DPM allows for 

the simulation of a discrete particle phase in a Lagrangian frame of reference. The individual 

particle’s trajectory was calculated via a force balance, which included the discrete phase inertia, 

hydrodynamic drag, buoyancy and gravity (Equation 6.10 and 6.11). The drag coefficient from 

Equation 6.11 was selected based on the spherical drag law, where 𝑎1, 𝑎2, and 𝑎3 are constants 

based on the work of Morsi and Alexander (1972) (Equation 6.12). The additional force term 𝐹𝐵 

represents the contribution from both the virtual mass force and pressure gradient force, which is 

recommended to be implemented when the fluid to particle density ratio is larger than 0.1 

 
𝛿𝛼𝑘

𝛿𝑡
+ 𝑢𝑗

𝛿𝛼𝑘

𝛿𝑥𝑖
= 0 Equation 6.6 
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(ANSYS, 2016). As the injected inert particle was silica, with a density of 2650 kg·m-3, the ratio 

is approximately 0.38 and therefore both forces were incorporated into the DPM. The virtual mass 

factor constant was kept at the default value of 0.5. The turbulent dispersion was predicted using 

the stochastic tracking model with the discrete random walk model enabled. This includes the 

effect of instantaneous turbulent velocity fluctuations on the particle trajectories, important when 

modelling the hydrocyclone. 

The main assumptions behind the DPM is that the particle-particle interactions and the effects of 

the particle volume fraction on the liquid phase are negligible, meaning it should only be used to 

model low solids concentration flows. The DPM has been shown to accurately predicted particle 

separation in systems with solid concentrations under 5 % by volume (Delgadillo and Rajamani, 

2005, 2007; Hwang et al., 2013; Wang and Yu, 2006; Wang et al., 2007; Wang and Yu, 2008; Xu 

et al., 2012). As only a single particle is modelled, the dispersed phase volume fraction is virtually 

zero. Coupled with the low computational demand of the DPM, this model is the most suitable 

selection. 

6.3.3 Mesh Structure and Qualities 

The hydrocyclone geometry modelled in this work is based upon the two-inch hydrocyclone 

manufactured by Salter Cyclones© (England). The total height of the hydrocyclone was 375 mm; 

the apex and vortex diameters were 9.4 and 14 mm respectively; and the tangential feed inlet was 

rectangular, 12 × 5 mm in size. The geometry and mesh are shown in Figure 6.1. The mesh 

contested of 281,532 cells, broken down into 224,275 hexahedral cells, 57,017 tetrahedral cells 

and 240 pyramidal cells. Hexahedral cells were chosen to mesh the main body of the hydrocyclone 

as this element type allows for the alignment of the cell with the primary flow direction, reducing 

numerical diffusion. Although tetrahedral cells are not recommended for discretising the 

 𝛿𝑢𝑝

𝛿𝑡
= 𝐹𝐷(𝑢𝑚𝑖𝑥𝑡𝑢𝑟𝑒 − 𝑢𝑝) +

𝑔(𝜌𝑝 − 𝜌)

𝜌𝑝
+ 𝐹𝐵 

Equation 6.10 

 
𝐹𝐷 =

18𝑢𝑚𝑖𝑥𝑡𝑢𝑟𝑒

𝑑𝑝
2𝜌𝑝

𝐶𝐷

𝑅𝑒𝑝

24
 Equation 6.11 

 𝐶𝐷 = 𝑎1 +
𝑎2

𝑅𝑒𝑝
+

𝑎3

𝑅𝑒𝑝
2 Equation 6.12 
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hydrocyclone (Bhaskar et al., 2007b; Mousavian et al., 2009; Murthy and Bhaskar, 2012; Slack et 

al., 2004), the complex top entry inlet geometry required tetrahedral cells to improve the quality 

of the mesh in this region. This procedure has been successfully used elsewhere (Gupta et al., 

2008; Leeuwner and Eksteen, 2008). 

The mesh characteristics for all three mesh types can be found in Figure 6.2 and Figure 6.3. 

Skewness values ranged from 0.001 to 0.85 for all mesh types, while aspect ratio ranged from 1 to 

13.7. Ideally values for aspect ratio should be below 10 (Bhaskar et al., 2007b; Mousavian et al., 

2009; Murthy and Bhaskar, 2012) and skewness below 0.85, as higher values can cause numerical 

inaccuracies. As a large majority of the cells had a skewness value below 0.7 and a skewness value 

below 6, the mesh quality was deemed satisfactory. A mesh independence study was conducted in 

which the mesh was refined to over two million cells. The predicted values for the overall water 

split ratio and tangential velocity components were used as metrics to determine whether any 

significant difference occurred at the smaller mesh size. As the predicted values differed by less 

than 5 %, the larger mesh size was used to help alleviate the computational expense of the LES 

model. 
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Figure 6.1: Hydrocyclone mesh, with close ups of the feed area and underflow zone. 
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Figure 6.2: Cell aspect ratio distribution for the hydrocyclone mesh. Relative mesh volume 

represents the volume of each mesh type in relation to its overall mesh volume, which was 96 %, 

0.1%, and 3.9 % for hexahedral, pyramidal, and tetrahedral cells respectively. 

Figure 6.3: Cell skewness distribution for the hydrocyclone mesh. Relative mesh volume represents 

the volume of each mesh type in relation to its overall mesh volume, which was 96 %, 0.1%, and  

3.9 % for hexahedral, pyramidal, and tetrahedral cells respectively.  
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6.3.4 Solution Initialisation and Methods 

All simulation methods were based upon the review presented in Chapter 3. Both the overflow and 

underflow boundary conditions were set as pressure outlets with the back-flow air volume fraction 

set to one and the radial equilibrium pressure distribution applied. The feed boundary condition 

was set as a mass flow inlet, which was set at the experimentally measured flow rate of 969 g·s-1. 

Under relaxation values were left unchanged and, in general, high order discretisation schemes 

were selected to reduce the effects of numerical diffusion (Bhaskar et al., 2007a; Mousavian et al., 

2009; Murthy and Bhaskar, 2012; Noroozi and Hashemabadi, 2011; Slack et al., 2004). A 

summary of the simulation methods can be found in Tables 6.1 to 6.5. 

The initialisation procedure undertaken in this paper was based upon the work of Brennan (2006). 

First a single phase (water) simulation was run using a steady state solver, with the RNG k-ε 

turbulence model and the air backflow volume fraction set to zero for the overflow and underflow 

boundary conditions. This allowed for a better initial approximation of the pressure and velocity 

flow fields within the hydrocyclone without the increased computational expense of added phases 

or complex turbulence models. The turbulence model was then changed to the LES model, which 

requires the unsteady solver, and the air backflow volume fraction at both outlets was set to one, 

allowing the air core to form. The simulation was run until the mass flow rates at the underflow 

and overflow stabilised (typically taking 1 s of simulation time, which is equivalent to 

approximately two residence times). Once stabilised the particle was added (at the centre of the 

feed area), and the simulation continued until the particle had exited the domain.  

Table 6.1: Simulation conditions – Solution Methods 

Solution Methods 

Pressure-Velocity Coupling SIMPLE 

Spatial Discretisation 

Gradient Least Squares Cell Based 

Pressure PRESTO! 

Momentum Bounded Central Differencing 

Volume Fraction Modified HRIC 

Transient Formulation Bounded Second Order Implicit 

 



176 

Table 6.2: Simulation conditions – Multiphase Model 

Multiphase Model 

Volume Fraction Formulation Implicit 

Volume Fraction Cut-off 1 × 10-6 

Interface Modelling Sharp 

Table 6.3: Simulation conditions – Simulation Parameters 

Simulation Parameters 

Time Step 1 × 10-5 

Residual Convergence criteria 1 × 10-5 

Under Relaxation Values Default 

Table 6.4: Simulation conditions – Particle Injection 

Particle Injection 

Physical Models 
Virtual Mass Force 

Pressure Gradient Force 

Particle Type Inert Silica 

Particle Diameter 1 mm 

Particle Density 2650 kg·m-3 

Particle Shape Spherical 

Drag Law Parameters Spherical 

Turbulent Dispersion Discrete Random Walk Model 

Table 6.5: Simulation conditions – Boundary Conditions 

Boundary Conditions 

 Feed Inlet Overflow Underflow 

Boundary Type Mass Flow Inlet Pressure Outlet Pressure Outlet 

Mass Flow Rate (kg·s-1) Water - 0.969 - - 

Gauge Pressure (Pa) 0 0 0 

Air Volume Fraction 0 1 1 

Feed Direction 

/Backflow Direction 

Normal to 

Boundary 

Normal to 

Boundary 

Normal to 

Boundary 

Special Features - 
Radial Pressure 

Distribution 

Radial Pressure 

Distribution 
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6.4 Results and Discussion 

6.4.1 Water flow split measurements 

Both the underflow and overflow water mass flow rates were measured using the hydrocyclone 

apparatus detailed in Chapters 4 and 5. A comparison between the experimentally measured mass 

flow rates and those predicted by the CFD model can be found in Table 6.6. The feed was 

reconstituted based on the measured values of the overflow and underflow. The predicted flow 

rates were similar to those measured experimentally, with the underflow difference falling within 

the measurement error. The percentage of water that reported to the underflow (termed water split 

ratio) also closely matched the measured value. 

Table 6.6: Comparison of predicted and measured mass flow rates for water, where CI stands for 

confidence interval. 

 
Measured 

(g·s-1) 

Measurement 

Error (95 % CI) 

Predicted  

(g·s-1) 

Difference between 

predicted and 

measured 

Feed 969 - - - 

Underflow 206 7.8 % 191 7.3 % 

Overflow 763 3.1 % 801 5.0 % 

Water Split Ratio 21.3 % - 19.7 % - 

6.4.2 Comparison of tangential velocities to literature 

While the global validation of the water flow is necessary, the local validation of the velocity 

components is more important. The internal water flow fields have not been measured for the 

hydrocyclone studied in this chapter, therefore a comparison to models conducted with similar 

hydrocyclone geometries was performed. Figure 6.4 and Figure 6.5 show the tangential and axial 

velocity components over a single horizontal plane, 0.015 m below the bottom of the vortex finder. 

The results are compared to the simulation of Banerjee et al. (2016). While their results cannot 

provide the validation that experimental values could, it still provides a metric to determine the 

accuracy of the internal flow phenomena. The magnitude of both velocity components appear to 

match those reported by Banerjee et al. (2016), with the tangential velocity components showing 

a similar trend. When comparing the axial velocities, both simulations determined the locus of 

zero vertical velocity to be at comparable radial positions, however, the overall trends do not match 

closely. 
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Figure 6.4: Comparison of the tangential velocity components as a function of radial position to 

those of Banerjee et al. (2016) 

Figure 6.5: Comparison of the axial velocity components as a function of radial position to those of 

Banerjee et al. (2016) 
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6.4.3 Particle trajectory comparison to PEPT.  

The trajectory of the single quartz bead measured by the PEPT technique and predicted by the 

CFD technique are shown in Figures 6.6 and 6.7 respectively. It is evident that the two particle 

trajectories are similar in nature. A key deficiency in the particle trajectory predicted by the CFD 

simulation is the overall particle residence time. The measured residence time was more than 

double the predicted particle residence time. This is due to the high velocity magnitude of the 

simulated particle. Figure 6.8 shows the particle’s velocity magnitude as a function of height in 

the hydrocyclone. Both the simulation and PEPT results shown a decrease in velocity once leaving 

the feed zone and then a steady increase in velocity towards the underflow zone. While the results 

from the CFD simulation have a similar trend to the PEPT data, the magnitude of the velocities is 

significantly different. As the particle is much larger in diameter than the hydrocyclone cut-size, 

which is 10 µm, the particle spends most of its time at the outer wall boundary. Therefore, the 

inaccuracies in the simulated velocities could be attributed to the near wall velocity resolution or 

an increased friction between the particle and the wall.  

Figure 6.6: Particle location data as a function of residence time for the 1 mm quartz bead as 

measured via PEPT.  
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Figure 6.7: Particle location data as a function of residence time for the 1 mm quartz bead as 

predicted via CFD. 

Figure 6.8: A comparison of the velocity magnitude predicted by CFD and measured by PEPT as a 

function of vertical position (the most negative values represent the bottom of the hydrocyclone).  
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6.5 Conclusions 

A CFD simulation and validation study of a two-inch Salter hydrocyclone has indicated that the 

water distribution values, in terms of throughput and split, closely match the experimental results. 

The tangential and axial velocity components of the mixture at a single horizontal plane were 

shown to be similar to those reported in literature. These results validate the use of the LES and 

VOF models to simulate the turbulence and multiphase interactions, respectively, within in the 

hydrocyclone. The simulated particle trajectory of a 1 mm quartz sphere was found to match the 

trajectory measured using the PEPT technique, however, the velocity magnitude was significantly 

different. With the flow of the air-water mixture appearing reasonable, the differences were 

hypothesised to be due to the near wall velocity resolution or an increased friction between the 

particle and the wall. Future work will focus on further validating the air-water flow by measuring 

the air core diameter and local velocity components to ensure that the particle flow is not biased 

by an incorrect fluid flow. It is clear that more research is needed to model the complex particle 

interactions within the hydrocyclone if detailed particle trajectories are to be simulated. 
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6.6 Nomenclature 

𝐶𝐷 Drag Coefficient 

𝐶𝑠 Smagorinsky Lilly constant 

𝑑𝑝 Particle diameter 

𝐷𝑤 Distance to the closest wall 

𝐹𝐵 Buoyancy Force 

𝐹𝐷 Drag Force  

𝑔 Gravity 

𝐿𝑆 Length scale of the SGS stresses 

𝑅𝑒𝑝 Relative Reynolds Number 

𝑆𝑖𝑗 Mean strain rate 

𝑡 Time 

𝑢𝑖 i component of velocity 

𝑉𝑔 Volume of finite grid cell 

𝑥𝑖 i coordinate 

Greek Symbols  

𝛼𝑘 Volume fraction of phase k 

𝛿𝑖𝑗 Kronecker delta 

𝜅 von Kármán constant 

𝜇𝑡,𝑠 SGS eddy viscosity 

𝜌 Density 

𝜏𝑖𝑗
𝑠𝑔𝑠 Turbulent or SGS stress tensor 

𝜏𝑘𝑘 Isotropic part of the SGS stresses 
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Chapter 7: Conclusions, Contributions, and Future Work 

7.1 Conclusions 

The results from the PEPT experimentation, presented in Chapters 4 and 5, demonstrated that it is 

a suitable technique for the tracking of particles in the hydrocyclone. The new cross-pattern 

modular assembly, made up of 16 ECAT951 detectors, produced very high tracking rates when 

compared to similar experiments in other detector systems. This was attributed to the high surface 

area density of the detectors, which in turn meant a large percentage of emitted radiation was 

captured. An error analysis of the detector arrangement showed that the three-dimensional error 

was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 

4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m·s−1. For lower activity tracers 

(< 10−2 MBq), the error was more sensitive to increases in speed, increasing to 28 mm (at 4 m·s−1), 

indicating that at these conditions a reliable trajectory is not possible. These results expanded on, 

but correlated well with, previous literature that only contained location errors for tracer speeds up 

to 1.5 m·s−1. A qualitative comparison to the work of Radman et al. (2014), indicated that there 

was a significant increase in quality of the measured trajectory of a 106−212 μm quartz particle in 

the hydrocyclone. This improvement in trajectory quality allowed for the calculation of velocity 

profiles, a first for the hydrocyclone using the PEPT technique. The measured velocities were 

shown to closely match previous literature that used high speed video analysis. This further 

validated PEPT as a technique for the measurement of particle velocities within the hydrocyclone 

as well as the outlined data processing procedure. The improvements presented in this work are 

not limited to the study of opaque flows in the hydrocyclone, as shown by the flotation experiments 

detailed in Chapter 4. The thesis demonstrates that the measurement of particle flows in any unit 

operation can be improved by using a detector apparatus tailored to its specific geometry.  

A review on the use of CFD for modelling the hydrocyclone indicated that it was a useful tool for 

simulating the flow within the hydrocyclone. Two phase water and air in the hydrocyclone has 

been shown to be accurately modelled via CFD. The modelling of particle flow, particularly in 

high solid concentration flows, is less established. Validation of particle velocities has not yet been 

achieved through CFD. The simulation of the particle showed that while an accurate trajectory can 

be achieved, the velocity magnitude was significantly different to the experimentally measured 
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value. This shows that further work is required in the simulation of particle velocities within the 

hydrocyclone.  

7.2 Contributions to Original Knowledge 

The main contribution to original knowledge from this work was to prove the capabilities of the 

PEPT technique in applications with high speed, small diameter tracers. This involved being the 

first to publish tracer location errors at speeds over 1 m·s-1 and provide track code parameters for 

a range of different tracer activities and speeds. By validating the location accuracy of the detector 

system at high tracer speeds and low activities, this work has extended the ability of PEPT to 

produce reliable particle trajectories of real mineral particles under 500 μm in size, travelling at 

speeds over 1.5 m·s−1. This has previously been limited by the low activity of small tracers (< 500 

μm) created via direct activation. Using the PEPT technique three-dimensional particle trajectories 

and velocity profiles were, for the first time, presented in the hydrocyclone for two particle size 

fractions: 106-212 µm and 355-500 µm. These results will be beneficial for the validation of 

particle flow simulations in the hydrocyclone in the future. 

7.3 Considerations for Future PEPT Experimentation in the Hydrocyclone 

There were several experiences which if learnt from, can improve PEPT experimentation in 

hydrocyclones in the future. Below is a list of the key findings: 

• The breakage of real mineral tracers, due to weaknesses created during the direct activation 

process, limits the acquisition time. This reduces the accuracy of time average velocity 

profiles. The use of sturdier, synthetic tracers (such as glass beads) would be a significant 

improvement, as it would allow for longer tests and a higher tracer activity (for the same 

particle size). These tracers would need to be created via indirect activation techniques as 

the current limit in particle size for direction activation is approximately 1 mm, which is 

larger than the desired tracer size. It should be noted that the smaller particles (~100 µm) 

were less prone to breakage. 

• It was concluded that the abrasion of the tracer particles on the internal walls of the 

hydrocyclone led to increased noise in the data. While this effect would be reduced if the 

particle spent less time at the cyclone wall (such as using a tracer under the cut size of the 
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hydrocyclone), a simple solution could be to implement a rotating test schedule with 

multiple hydrocyclones. 

• Results showed that the flow in the main body of the cyclone is relatively consistent, 

whereas in the feed and underflow zone the results were not as uniform. The high speed in 

the feed zone and the tight curvature and reversal of flow in the underflow zone creates a 

large amount of turbulence in these regions. This unpredictable flow makes them the most 

significant areas to study via the PEPT technique. The detector arrangement used in this 

work was not optimised for the capture of the flow in the feed and underflow regions as 

both zones were at the edge of cameras sensitivity limits. To rectify this the geometry 

should be changed in future testing. The addition of an additional two detector modules to 

each of the four blocks would increase the height of the FOV making the two extremities 

of the hydrocyclone still within the high sensitivity zone of the detectors. If the number of 

modules is restricted, the module blocks (from the current arrangement) could be separated 

into two groups of four, each group centred around the feed and underflow regions. Both 

methods would allow for greater resolution in the feed and underflow regions. It is not 

recommended to run separated tests focused on various regions of the hydrocyclone.  

• Throughout this work, only particles much larger than the hydrocyclone’s cut size were 

tracked using the PEPT technique. This meant that particle velocities could only be 

determined in a small area of the hydrocyclone (the outer wall region). The volume 

occupied by a particle could be increased by either decreasing the size of the tracked 

particle or increasing the cut size of the hydrocyclone. As the particle size is limited due to 

the required activity strength, a larger diameter hydrocyclone is recommended. This should 

be the focus of future work, as tracking particles above, below and near the cut size of a 

hydrocyclone would provide great insight into its classification mechanics. 
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7.4 Suggestions for Future Work 

Now that the PEPT method has been established for the tracking of particles in the hydrocyclone, 

future testing should include the acquisition of trajectories from different sized particles over a 

range of different solid concentrations. As mentioned, the particle size range should cover particle 

sizes above and below the cut size of the hydrocyclone to ensure that particle velocities inside the 

inner vortex can be studied. Several improvements can be made to the fundamental aspects of the 

PEPT technique. While not focused on in this thesis, improvements to the track algorithm, the 

direct activation of sub 1 mm particles, and the development of more sensitive camera 

arrangements or materials, would all lead to more accurate trajectories. These features will never 

be truly optimised and so will always be the focus of future study. For CFD models, more focus 

should be put into the validation of the internal particle flow. This will require the testing of 

parameters such as wall friction models, particle shape factors, and near wall velocity resolution. 
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Appendix A: Supplementary Data 

Appendix A.1: Supplementary Results from Chapter 4 

Table A.1.1: Range of tested values used for N, S and f parameters 

 

  

Parameter Tested Values 

f 5 - 95 (at an increment of 5) 

N  
20, 50, 100, 250, 400 - 3000 (at an 

increment of 200) 

S (N=20) 1, 2, 4, 10, 20 

S (N=50) 1, 2, 5, 10, 50 

S (N=100) 1, 2, 4, 10, 20, 100 

S (N=250) 1, 2, 5, 25, 50, 250 

S (N=400) 1, 2, 4, 8, 40, 400 

S (N=600) 1, 2, 4, 12, 30, 600 

S (N=800) 1, 2, 4, 8, 40, 800 

S (N=1000) 1, 2, 5, 10, 50, 1000 

S (N=1200) 1, 2, 3, 6, 12, 60, 1200 

S (N=1400) 1, 2, 4, 7, 14, 70, 1400 

S (N=1600) 1, 2, 4, 8, 16, 80, 1600 

S (N=1800) 1, 2, 4, 9, 18, 90, 1800 

S (N=2000) 1, 2, 4, 10, 20, 100, 2000 

S (N=2200) 1, 2, 4, 11, 22, 110, 2200 

S (N=2400) 1, 2, 4, 6, 12, 24, 120, 2400 

S (N=2600) 1, 2, 4, 8, 13, 26, 130, 2600 

S (N=2800) 1, 2, 4, 7, 14, 28, 140, 2800 

S (N=3000) 1, 2, 3, 6, 15, 30, 150, 3000 



192 

Table A.1.2: X-axis location errors (mm) for each speed and tracer activity. 

Impeller Tip 

Speed (m·s-1) 

Tracer Activity (MBq) 

4.0 × 10-3 - 3.7 × 10-2 3.7 × 10-1 3.3 × 100 

0.00 0.25 0.27 0.33 

0.07 5.85 1.24 0.90 

0.33 6.80 1.00 1.03 

0.67 7.67 1.46 1.73 

1.34 8.87 2.50 1.31 

2.67 11.29 3.88 1.01 

4.01 19.14 5.59 2.74 

 

Table A.1.3: Y-axis location errors (mm) for each speed and tracer activity. 

Impeller Tip 

Speed (m·s-1) 

Tracer Activity (MBq) 

4.0 × 10-3 - 3.7 × 10-2 3.7 × 10-1 3.3 × 100 

0.00 0.23 0.33 0.29 

0.07 0.96 0.84 0.38 

0.33 1.82 0.96 0.45 

0.67 1.88 1.22 0.42 

1.34 2.01 1.13 0.79 

2.67 2.40 1.87 0.91 

4.01 4.48 2.37 1.40 

 

Table A.1.4: Z-axis location errors (mm) for each speed and tracer activity. 

Impeller Tip 

Speed (m·s-1) 

Tracer Activity (MBq) 

4.0 × 10-3 - 3.7 × 10-2 3.7 × 10-1 3.3 × 100 

0.00 0.42 0.29 0.31 

0.07 5.77 0.86 0.78 

0.33 6.39 1.22 0.98 

0.67 7.28 1.99 1.70 

1.34 8.74 1.80 2.05 

2.67 12.40 3.30 2.05 

4.01 19.71 4.42 2.74 
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Appendix A.2: Supplementary Results from Chapter 5 

Table A.2.1: Information for the 355-500 µm diameter quartz particles. 

 

Table A.2.2: Information for the 106-212 µm diameter quartz particles. 

 

Table A.2.3: Information for the 1 mm glass bead. 

  

Run 

Number 

Tracer Activity 

(MBq) 

Number of 

Individual Passes 

Average Location 

Rate (Hz) 

track code 

parameters 

1 3.85 8 52 500 
N = 250, 

 S = 250 f = 65 

2 1.92 10 21 300 
N = 250, 

 S = 250 f = 65 

3 0.74 6 10 500 
N = 250, 

 S = 250 f = 65 

4 4.63 8 54 600 
N = 250, 

 S = 250 f = 65 

5 2.78 9 24 800 
N = 250, 

 S = 250 f = 65 

Run 

Number 

Tracer Activity 

(MBq) 

Number of 

Individual Passes 

Average Location 

Rate (Hz) 

track code 

parameters 

1 0.55 7 6 200 
N = 100, 

 S = 100 f = 45 

2 0.44 21 5 800 
N = 100, 

 S = 100 f = 45 

3 0.37 27 3 800 
N = 100, 

 S = 100 f = 45 

4 0.30 40 3 600 
N = 100, 

 S = 100 f = 45 

Run 

Number 

Tracer Activity 

(MBq) 

Number of 

Individual Passes 

Average Location 

Rate (Hz) 

track code 

parameters 

1 18.9 1 120 000 
N = 400, 

 S = 400 f = 65 
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Appendix B: Matlab Code 

Appendix B.1: Matlab Code for Automated Parameter Input into the track Code 

%run mc 
clear all; clc; close all; 
%base data file 

  
bd{1} = '1'; %First event 
bd{2} = '999999999'; %last event 
bd{3} = 'F'; %Fixed/variable 
bd{4} = '250'; %Events/slice (N) 
bd{5} = '1'; %Locations/slice (S)  
bd{6} = '5'; %Fopt percentage of lines kept per slice (F) 
bd{7} = '300'; %X,Y,Z cutoff (max detectable volume) 
bd{8} = '400'; %Y cutoff 
bd{9} = '1500'; %Z cutoff 
bd{10} = '50'; %Max allowable error (E) 
bd{11} = 'defname.txt'; %file to ouput to 
bd{12} = 'A'; %Ascii or Binary 

  
S01 = [1 2 4 10 20]; 
S02 = [1 2 5 10 25 50]; 
S03 = [1 2 4 10 20 100]; 
S04 = [1 2 5 25 50 250]; 
S05 = [1 2 4 8 40 400]; 
S06 = [1 2 4 12 30 600]; 
S07 = [1 2 4 8 40 800]; 
S08 = [1 2 5 10 50 1000]; 
S09 = [1 2 3 6 12 60 1200]; 
S10 = [1 2 4 7 14 70 1400]; 
S11 = [1 2 4 8 16 80 1600]; 
S12 = [1 2 4 9 18 90 1800]; 
S13 = [1 2 4 10 20 100 2000]; 
S14 = [1 2 4 11 22 110 2200]; 
S15 = [1 2 4 6 12 24 120 2400]; 
S16 = [1 2 4 8 13 26 130 2600]; 
S17 = [1 2 4 7 14 28 140 2800]; 
S18 = [1 2 3 6 15 30 150 3000]; 

  
%filename structure = trends18Feb14_121704.txt 

  
aa = dir('*.da*'); 
len_aa = length(aa); 

  
filenames_selected = []; 
fn = []; 
fnn = []; 
mcRT = []; 
counter = 0; 
for i=6:7 %length(aa) 
    filename = aa(i).name; 
    counter = counter+1; 
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    filenames_selected = [filenames_selected; filename]; 
    mcR = []; 
    for N=[20, 50, 100, 250, 400:200:3000] %1000 50 
        if N==20; 
           S=S01; 
        elseif N==50; 
            S=S02; 
        elseif N=100; 
            S=S03; 
        elseif N==250; 
            S=S04; 
        elseif N==400; 
            S=S05; 
        elseif N==600; 
            S=S06; 
        elseif N==800; 
            S=S07; 
        elseif N==1000; 
            S=S08; 
        elseif N==1200; 
            S=S09; 
        elseif N==1400; 
            S=S10; 
        elseif N==1600; 
            S=S11; 
        elseif N==1800; 
            S=S12; 
        elseif N==2000 
            S=S13; 
        elseif N==2200; 
            S=S14; 
        elseif N==2400; 
            S=S15; 
        elseif N==2600; 
            S=S16; 
        elseif N==2800; 
            S=S17; 
        else 
            S=S18; 
        end           

            
            for S %10 2 
                for F=5:5:95 %40 5:10:45 
                   inserts = ['_N' num2str(N) '_S' num2str(S) '_F' num2str(F) 

'_E' char(bd(10))]; 
                   s1 = regexprep(filename, '.d', [inserts '.']) 

  
                   %insert new values into data array to be written 
                   bd{4} = num2str(N); %Events/slice (N) 
                   bd{5} = num2str(S); %Locations/slice (S) 
                   bd{6} = num2str(F); %Fopt percentage of lines kept per 

slice (F) 
                   bd{11} = s1; %file to ouput to 

  
                   %write file to be used by mc 
                   fileID = fopen('data.txt','w'); 
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                   formatSpec = '%s\n'; 
                   for row = 1:12 
                        fprintf(fileID,formatSpec,bd{row}); 
                   end 
                   fclose(fileID); 
                   %close written file 

  
                   %run mc 
                   %[status, result] =  system('mc CAL_MM_01.da01 < 

data.txt') 
                   s = ['[status, result] =  system(''' 'mc ' filename ' < 

data.txt''' ');']; 
                   eval(s); 

  
               %get data from results string (includes some error checking) 
                   qAver = regexpi(result, 'Averages'); 
                   averages = result(qAver+9:qAver+9+53); 
                   A = sscanf(averages, '%f %f %f +/- %f %f %f'); 
                   if length(A) ~= 6 
                       for zzz = length(A)+1:6 
                           A = [A; -1]; 
                       end 
                   end 

  
                   qsd = regexpi(result, 'standard deviations:'); 
                   sds = result(qsd+20:qsd+20+53); 
                   B = sscanf(sds, '%f %f %f +/- %f %f %f'); 
                   if length(B) ~= 6 
                       for zzz = length(B)+1:6 
                           B = [B; -1]; 
                       end 
                   end 

  
                   qD = regexpi(result, 'D='); 
                   dvalue = result(qD+2:qD+2+8); 
                   CC = sscanf(dvalue, '%f'); 
                   if length(CC) ~= 1 
                       CC = -1; 
                   end 

  
                   qdelta = regexpi(result, 'delta:'); 
                   delta = result(qdelta+6:qdelta+6+18); 
                   C = sscanf(delta, '%f +/- %f'); 
                   if length(C) ~= 2 
                      C = [C; -1]; 
                   end 

  
                   qNE = regexpi(result, 'No of events used'); 
                   NE = result(qNE+17:qNE+17+9); 
                   D = sscanf(NE, '%f'); 
                   if length(D) ~= 1 
                       D = -1; 
                   end 

  
                   qNLE = regexpi(result, 'No of locations expected'); 
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                   NLE = result(qNLE+24:qNLE+24+7); 
                   EE = sscanf(NLE, '%f'); 
                   if length(EE) ~= 1 
                       EE = -1; 
                   end 

  
                   qNLA = regexpi(result, 'No of locations actual'); 
                   NLA = result(qNLA+22:end); 
                   FF = sscanf(NLA, '%f');; 
                   if length(FF) ~= 1 
                       FF = -1; 
                   end 

  
                   mc_results = [N; S; F; str2num(char(bd(10)));  A; B; C; 

CC; D; EE; FF]; 
                   mcR = [mcR mc_results]; 

  
                end 
            end 
    end %of N loop 

     
    mcRT = [mcRT mcR]; 

     
    s2 = regexp(filename, '.d', 'split'); 
    fn = [fn s2(1)]; 
    fnn = [fnn s2(2)]; 

     

   
end %of outside loop (filenames) 

  
sizeR = size(mcR) 
sizeRT = size(mcRT) 
aaa = reshape(mcRT,sizeRT(1),sizeR(2),sizeRT(2)/sizeR(2)) 
size3d = size(aaa) 
if length(size3d) == 2 
    size3d(3) =1; 
end 

  
labels = [{'N'} {'S'} {'F'} {'E'} {'aveX'} {'aveY'} {'aveZ'} {'EaveX'} 

{'EaveY'} {'EaveZ'} ... %10 
          {'sdX'} {'sdY'} {'sdZ'} {'EsdX'} {'EsdY'} {'EsdZ'} ... %6 
          {'delta'} {'Edelta'} {'D'} {'NoEvents'} ... %4 
          {'Loc Exp'} {'Loc Act'} {'Loc E-A'}]; %3 

  
for i=1:size3d(3) 
    h = figure(1000+i) 
    for j=1:size3d(1) 
        subplot(5,5,j) 
        plot(aaa(j,:,i)) 
        ylabel(labels(j)) 
    end 
    subplot(5,5,j+1) 
    plot(aaa(j-1,:,i)-aaa(j,:,i)) 
    ylabel(labels(j+1)) 
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    saveas(h,char( strcat(fn(i),'_',fnn(i), '_fig', num2str(1000+i), '.fig') 

)) 
end 

  
%save the stats file and figure 
s2 = regexp(filename, '.d', 'split'); 
ffn = s2(1); 
save(char(strcat(ffn,'_',s2(2), '_data_stats.mat')),'sizeR', 'sizeRT', 

'size3d', 'aaa') 
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Appendix B.2: Matlab Code for Analysing Fixed Trajectory Data 

%By Josh Sovechles, Darryel Boucher and Randolph Pax 2016 
clear all; clc; close all; 

  
rpm = 1500; 
Hz = rpm/60; 
amplitude = 1; 
slidewindsize = 10; 
incre_wave = 2; 

  
windowFlag = 1; 
pauseFlag = 0; 
pausetime = 0.2; 
aa = dir('*.a07'); 

  
outvv = []; 
for bigiter = 1:length(aa) 
    filename = aa(bigiter).name; 
%Initialization 
%-------------------------------------------------------------------------% 

  
%Load data set (file provided by TRACK.EXE without any header information) 
%----------------------------------% 
%[Tini, Xini, Yini, Zini, Nbevent, Error] = 

textread('CAL_MM_01_N50_S17_F25_E5.a02', '%f %f %f %f %f %f', 

500000,'headerlines', 16); %500 000 is max number of row to be read. 
[Tini, Xini, Yini, Zini, Nbevent, Error] = textread(char(aa(bigiter).name), 

'%f %f %f %f %f %f', 5000000,'headerlines', 16); %500 000 is max number of 

row to be read. 

  
%T: Time (ms) 
%X: X axis coordinate (mm) 
%Y: Y axis coordinate (mm) 
%Z: Z axis coordinate (mm) 

  
% Data preparation 
%-------------------------------------------------------------------------% 
Tini=Tini/1000; %From (ms) to (s). 
id=find(Tini); 

  
%Center view on geometry 
%----------------------------------% 
Xtranslation=-0.5; %Translation on X axis (mm) 
Ytranslation=64.3; 
Ztranslation=-8.45; 
Xini=Xini+Xtranslation; 
Yini=Yini+Ytranslation; 
Zini=Zini+Ztranslation; 

  
%Rotate locations to align x, y, z axis to geometry 
%----------------------------------% 
thetaX=0/180*pi(); %Rotation angle on X axis (deg/180*pi()=rad) 
thetaY=0/180*pi(); 
thetaZ=0/180*pi(); 



200 

  
RX = [1,0,0;0,cos(thetaX),sin(thetaX);0,-sin(thetaX),cos(thetaX)]; % Rotation 

matrix on X 
RY = [cos(thetaY),0,-sin(thetaY);0,1,0;sin(thetaY),0,cos(thetaY)]; 
RZ = [cos(thetaZ),sin(thetaZ),0;-sin(thetaZ),cos(thetaZ),0;0,0,1]; 

  
Locations=[Xini Yini Zini]; %Creation of a matrix to be rotated 
Locations=Locations*RX; %Applying the rotation around X axis 
Locations=Locations*RY; 
Locations=Locations*RZ; 

  
Xini=Locations (:,1); %Replacing with the new rotated coordinates 
Yini=Locations (:,2); 
Zini=Locations (:,3); 

  

%Motion calculations and cyclindrical coordinates 
%-------------------------------------------------------------------------% 
Rini=(Xini.^2+Zini.^2).^(1/2); %Radius determined around Y (the vertical 

symetry axis) 
Thetaini=atan2(Zini,Xini); %atan2 gives the four quadrant tangent inverse 

angle in the interval [-pi, pi]. 

  
Tdiffini=diff(Tini); %Getting the Time difference between subsequent 

datapoint 
Xdiffini=diff(Xini); 
Ydiffini=diff(Yini); 
Zdiffini=diff(Zini); 
Rdiffini=diff(Rini); 
Thetadiffini=diff(Thetaini); 
for i=1:length(Thetadiffini) %Loop to fix the angle difference 
    if Thetadiffini(i)<=(-pi()) 
        Thetadiffini(i)=Thetadiffini(i)+2*pi(); 
    elseif Thetadiffini(i)>=pi() 
        Thetadiffini(i)=Thetadiffini(i)-2*pi(); 
    else 
    end 
end 

  
Tini(length(Tini))=[]; % making every array the same length 
Xini(length(Xini))=[]; 
Yini(length(Yini))=[]; 
Zini(length(Zini))=[]; 
Rini(length(Rini))=[]; 
Thetaini(length(Thetaini))=[]; 
id(length(id))=[]; 

  
%Speed calculations 
%----------------------------------% 
vXini=Xdiffini./Tdiffini/1000; %Calculate velocity in X axis in m/s 
vYini=Ydiffini./Tdiffini/1000; 
vZini=Zdiffini./Tdiffini/1000; 
vXYZini=(Xdiffini.^2+Ydiffini.^2+Zdiffini.^2).^(1/2)./Tdiffini/1000; 
vRini=Rdiffini./Tdiffini/1000; 
vAngularini=Thetadiffini./Tdiffini; 
vThetaini=Rini.*vAngularini; 
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%Keep only part of the data set 
%----------------------------------% 
Tmin=20; %Remove value with T value lower than (s) 
Tmax=50; %Remove value with T value higher than (s) 
tT=(Tini>=Tmin) & (Tini<Tmax); 

  
Xmin=-500; %Remove points with X value lower than (mm) 
Xmax=500; %Remove points with X value higher than (mm) 
tX=Xini>=Xmin & Xini<Xmax; 

  
Ymin=-500; 
Ymax=500; 
tY=Yini>=Ymin & Yini<Ymax; 

  

Zmin=-500; 
Zmax=500; 
tZ=Zini>=Zmin & Zini<Zmax; 

  
Select=ones(size(Tini)); %Creating a array with true (1) for each existing 

locations 
Select=Select.*tT.*tX.*tY.*tZ; %Applying the condition to convert from true 

(1) to false (0) if locations to be rejected 
Select=Select>0; 

  
T=Tini(Select); %Switching to T instead of Tini (Tini is kept as unfiltered 

data) 
X=Xini(Select); 
Y=Yini(Select); 
Z=Zini(Select); 
id=id(Select); 
R=Rini(Select); 
Theta=Thetaini(Select); 

  
Tdiff=Tdiffini(Select); 
Xdiff=Xdiffini(Select); 
Ydiff=Ydiffini(Select); 
Zdiff=Zdiffini(Select); 
Rdiff=Rdiffini(Select); 
Thetadiff=Thetadiffini(Select); 

  
vX=vXini(Select); 
vY=vYini(Select); 
vZ=vZini(Select); 
vXYZ=vXYZini(Select); 
vR=vRini(Select); 
vAngular=vAngularini(Select); 
vTheta=vThetaini(Select); 

  
%Data set basic info 
%-------------------------------------------------------------------------% 
nbLocini=length(Tini); 
nbLoc=length(T); 
sampleT=max(T)-min(T); 
locrate=nbLoc/sampleT; %Location frequency calculation 
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T1=[T;mean(T)]; 
T2=[mean(T);T]; 
Tdelta=T2-T1; 
MeanTdelta=mean(Tdelta); 
StdTdelta=std(Tdelta); 

  
X1=[X;mean(X)]; 
X2=[mean(X);X]; 
Xdelta=X2-X1; 
MeanXdelta=mean(Xdelta); 
StdXdelta=std(Xdelta); 

  
Y1=[Y;mean(Y)]; 
Y2=[mean(Y);Y]; 
Ydelta=Y2-Y1; 
MeanYdelta=mean(Ydelta); 
StdYdelta=std(Ydelta); 

  
Z1=[Z;mean(Z)]; 
Z2=[mean(Z);Z]; 
Zdelta=Z2-Z1; 
MeanZdelta=mean(Zdelta); 
StdZdelta=std(Zdelta); 

  
XYZdelta=(Xdelta.^2.+Ydelta.^2.+Zdelta.^2).^(1/2); 
MeanXYZdelta=mean(XYZdelta); %Average distance between subsequent locations 
StdXYZdelta=std(XYZdelta); 

  
%Display info 
disp(['Initial number of locations: ',num2str(nbLocini)]) 
disp(['Final number of locations: ',num2str(nbLoc)]) 
disp(['Sample time (s): ',num2str(sampleT)]) 
disp(['Location rate (Hz): ',num2str(locrate)]) 
disp(['Mean delta subsequent locations (mm): ',num2str(MeanXYZdelta)]) 
disp(['Std dev delta subsequent locations (mm): ',num2str(StdXYZdelta)]) 
% disp(['Number of passes: ',num2str(pcount)]) 

  
% % %Display locations 
% % %------------------------------------------------------------------------

-% 
% % figure(01) %X, Y, Z, T values 
% %  
% % subplot(3,1,1) 
% % plot(T,X,'-bo','LineWidth',1,'MarkerSize',5); 
% % xlabel('T (s)','FontSize',20); 
% % ylabel('X (mm)','FontSize',20); 
% % grid on 
% % set(gca,'FontSize',20) 
% %  
% % subplot(3,1,2) 
% % plot(T,Y,'-bo','LineWidth',1,'MarkerSize',5); 
% % xlabel('T (s)','FontSize',20); 
% % ylabel('Y (mm)','FontSize',20); 
% % grid on 
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% % set(gca,'FontSize',20) 
% %  
% % subplot(3,1,3) 
% % plot(T,Z,'-bo','LineWidth',1,'MarkerSize',5); 
% % xlabel('T (s)','FontSize',20); 
% % ylabel('Z (mm)','FontSize',20); 
% % grid on 
% % set(gca,'FontSize',20) 
QQ=Y; 
%--------------------------CURVE FITTING------------------------- 
T=T-Tmin; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if rpm~=0 
    FFT = abs(fft(QQ)); 
    FFTlength = length(FFT); 
    FFTSkip = 3; 
    FFT2 = FFT(FFTSkip:(FFTlength/2)); 
    MaxFFT = (max(FFT2(:,1))); 
    PosMax = find(FFT2(:,1) == MaxFFT)+FFTSkip-1; 
    PosMax2 = PosMax*2;                           %Possible position of 

second peak 

    
    if PosMax2<(FFTlength-5) 
        FFT3 = FFT(PosMax2-2:PosMax2+2); 
        MaxFFT2 = (max(FFT3(:,1))); 
        PosMax3 = find(FFT2(:,1) == MaxFFT2)+FFTSkip-1;        %Actual 

position of second peak 
        PeakRatio = MaxFFT2/MaxFFT; 
    else 
        FFT3 = FFT(PosMax2-2:FFTlength); 
        MaxFFT2 = (max(FFT3(:,1))); 
        PosMax3 = find(FFT2(:,1) == MaxFFT2)+FFTSkip-1;        %Actual 

position of second peak 
        PeakRatio = MaxFFT2/MaxFFT; 
    end 

     
    figure (1111) 
    plot(FFT); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
        %[b,a] = butter(4,12/1201,'high'); 
         %X = filter(b,a,X); 
%XM=X-mean(X)-0.5; 
figure (02) 
subplot(2,1,1) 
% if to define default Hz for stationary case%%%%%%%%%%%%%%%%%%%%%%%%%% 
if rpm == 0 
    Hz = 1; %making the first time selection work for stationary calib. 
end 
Tlength = length(T); 
qqq = find(T > 1/Hz,1); 
kkk = qqq; 
if kkk<150 
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   if kkk<100 
       if kkk<50 
       kkk=50; 
       end 
   else   
      kkk=100; 
   end 
else 
    kkk=150; 
end 
endindex = qqq; 
startindex = 1; 
deltaindex = qqq*slidewindsize;  %sliding window analysis 
deltaindex2 = qqq*incre_wave; %incremental analysis 
Tsmall=T(startindex:endindex); 
QQsmall=QQ(startindex:endindex); 
x0 = [0.1 1 Hz]; 
x1 = [0.1]; %inital guess for second sine 
x2 =[0]; %1]; % for the stationary case 
xs = [2000 0.1 3]; 
endFlag = 0; 
sigmav = []; 
Stdev = []; 
while (endFlag == 0) 
    if endindex == length(T) 
        endFlag = 1; 
    end 

     

    

     

    if rpm == 0 

                         
        % Initial Guess for single sine function  
        fun = @(xx,Tsmall)xx(1)*Tsmall+xx(2); 
        %fun = @(xx,Tsmall)Tsmall-Tsmall; 
        coeff = lsqcurvefit(fun,x2,Tsmall,QQsmall); 
        %xx = coeff; 
        %newx = 

xx(1)*sin(xx(2)*2*pi*T+xx(3))+xx(4)*sin(2*xx(2)*2*pi*T+xx(5))+xx(6); 
        newx = fun(coeff,Tsmall); 
        subplot(3,1,1) 
        plot(Tsmall,QQsmall,'.',Tsmall,newx,'r') 

  
        subplot(3,1,2) 
        WWW=newx-QQsmall; 
        WWWmax=max(WWW); 
        WWWmin=min(WWW); 
        WWWrange=WWWmin:0.1:WWWmax; 
        WWWStd=std(WWW); 
        WWWmean=mean(WWW); 
        WWWguas=normpdf(WWWrange,WWWmean,WWWStd); 
        plot(Tsmall,WWW) 

  
        subplot(3,1,3) 
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        [yh,xh] = hist((newx-QQsmall),kkk/2); 
        yh=yh/(sum(yh)); 
        funN = @(xs,xhh)abs(xs(1))/sqrt(2*pi)/abs(xs(3))*exp(-0.5*((xhh-

abs(xs(2)))/abs(xs(3))).^2); 
        coeffN = lsqcurvefit(funN,xs,xh,yh); 
        coeffN(3)= abs(coeffN(3)); 
        plot(xh,yh,'.',xh,funN(coeffN,xh),'r'); 
        hold on 
        plot(WWWrange,WWWguas,'b'); 
        text(1,max(yh)*0.9,['sigma= ' num2str(coeffN(3))]) 
        hold off 
        x2 = coeff; 
        sigmav = [sigmav coeffN(3)]; 
        Stdev = [Stdev WWWStd]; 

         
        if coeffN(3) > 2 
            coeffN(3)=0.8; 
        end     

         
    else 

         
        % Initial Guess for single sine function 
        if endindex == qqq; 
            fun = @(xx,Tsmall)amplitude*sin(xx(3)*2*pi*Tsmall+xx(2)); 
        else 
            % fun = @(xx,Tsmall)xx(1)+amplitude*sin(xx(2)*2*pi*Tsmall+xx(3))+ 

(amplitude*PeakRatio)*sin(2*xx(2)*2*pi*Tsmall+xx(4)); 
             fun = @(xx,Tsmall)amplitude*sin(xx(3)*2*pi*Tsmall+xx(2))+ 

(amplitude*PeakRatio*0)*sin(2*xx(3)*2*pi*Tsmall+xx(4)); 
             x0 = coeff; 
             x1 = []; 
        end 

  

            

             
        coeff = lsqcurvefit(fun,x0,Tsmall,QQsmall); 

         

                 
        newx = fun(coeff,Tsmall); 
        subplot(3,1,1) 
        plot(Tsmall,QQsmall,'.',Tsmall,newx,'r') 

  
        subplot(3,1,2) 
        WWW=newx-QQsmall; 
        WWWmax=max(WWW); 
        WWWmin=min(WWW); 
        WWWrange=WWWmin:0.1:WWWmax; 
        WWWStd=std(WWW); 
        WWWmean=mean(WWW); 
        WWWguas=normpdf(WWWrange,WWWmean,WWWStd); 
        plot(Tsmall,WWW) 

  
        subplot(3,1,3) 

  
        [yh,xh] = hist((newx-QQsmall),kkk/2); 
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        yh=yh/(sum(yh)); 
        funN = @(xs,xhh)abs(xs(1))/sqrt(2*pi)/abs(xs(3))*exp(-0.5*((xhh-

abs(xs(2)))/abs(xs(3))).^2); 
        coeffN = lsqcurvefit(funN,xs,xh,yh); 
        coeffN(3)= abs(coeffN(3)); 
        plot(xh,yh,'.',xh,funN(coeffN,xh),'r'); 
        text(1,max(yh)*0.9,['sigma= ' num2str(coeffN(3))]) 
        hold on 
        plot(WWWrange,WWWguas,'b'); 
        hold off 
        xs=coeffN; 
        coeff = [coeff x1]; 
        sigmav = [sigmav coeffN(3)]; 
        Stdev = [Stdev WWWStd]; 

         
        if abs(coeff(3) - Hz) > 0.05 
            coeff(3)=Hz; 
        end   
        if coeffN(3) >2 
            coeffN(3)=0.8; 
        end   
    end 

     
    %xx = coeff; 
    if endindex == qqq; 
        endindex = endindex + 1; 
    else 
        endindex = endindex + deltaindex2; 
    end 

     

    endindex = min(endindex,length(T)); 

     
    if windowFlag == 1 %moving window analysis 
        if endindex - startindex > deltaindex 
            startindex = endindex-deltaindex; 
        end 
    end 

     
    Tsmall=T(startindex:endindex); 
    QQsmall=QQ(startindex:endindex); 

     
    if pauseFlag == 1 
        pause(pausetime) 
    end 
end %while 

     
    if rpm~=0 
        if windowFlag==1 
            sigmav(1:3) = []; 
        else 
            sigmav(1:8)=[]; 
        end 

         
    figure(333);  
    plot(sigmav); 
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    end 

     
    if rpm~=0 
        if windowFlag==1 
            Stdev(1:4) = []; 
        else 
            Stdev(1:8)=[]; 
        end 
    end 

     

     
    ss1 = regexp(aa(bigiter).name,'_N','split'); 
    ss2 = regexp(ss1(2),'.a','split'); 
    ss3 = ss2{1,1}(1); 
    ss4 = regexp(ss3,'_S','split'); 
    NNs = ss4{1,1}(1); 
     NN = sscanf(char(NNs),'%f'); 
    ss5 = ss4{1,1}(2); 
    ss6 = regexp(ss5,'_F','split'); 
    SSs = ss6{1,1}(1); 
     SS = sscanf(char(SSs),'%f'); 
    ss7 = ss6{1,1}(2); 
    ss8 = regexp(ss7,'_E','split'); 
    FFs = ss8{1,1}(1); 
     FF = sscanf(char(FFs),'%f'); 
    EEs = ss8{1,1}(2); 
     EE = sscanf(char(EEs),'%f'); 

     
    if rpm==0  
        outv = [NN SS FF EE min(sigmav) qqq min(Stdev) WWWStd WWWmean coeff 

coeffN]; %(((coeff(3)-Hz)^2)/Hz)]; 
        outvv = [outvv; outv]; 
    else 
        outv = [NN SS FF EE min(sigmav) qqq min(Stdev) WWWStd WWWmean coeff 

coeffN (((coeff(3)-Hz)^2)/Hz) locrate]; 
        outvv = [outvv; outv]; 
    end 

     
    if windowFlag==1 
      save('windowYY5.txt', 'outvv', '-ascii') 
    else  
      save('incremental.txt', 'outvv', '-ascii') 
    end 

      
end %bigiter 
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Appendix B.3: Matlab Code for Analysing Hydrocyclone Trajectory Data 

%By Joshua Sovechles & Darryel Boucher, 2016 

  
%INITIALIZATION 
%-------------------------------------------------------------------------% 
clear all; clc; close all; format shortEng; 

  
%Load location data set (file provided by TRACK.EXE) - 1 000 000 is max 

number of row to be read and headliners removes written information in each 

file 
%----------------------------------% 
[T, X, Y, Z, Nbevent, Error] = textread('HY_21_K02_N100_S100_F45_E50.a01','%f 

%f %f %f %f %f',1000000,'headerlines',16);  
Traw=T; % T: Time (ms)  
Xraw=X; % X: X axis coordinate (mm) 
Yraw=Y; % Y: Y axis coordinate (mm) 
Zraw=Z; % Z: Z axis coordinate (mm) 

  
T=T/1000; %From (ms) to (s). 
id=find(T); 

  
%%%%%%%%%%%SWITCHES%%%%%%%%%%%% 
% 1 = On / 0 = Off --- Determine what features of the code you wish to use 
SwitchInitialDataFix=0; 
SwitchDataRefinement=0;     % Turn off when using SwitchReuseDataFiltered 
SwitchSplitPass=0;          % Turn off when using SwitchReuseDataFiltered 
SwitchManuallyremovedata=0; % Turn off when using SwitchReuseDataFiltered 
SwitchReuseDataFiltered=1;  % Turn on once you have already filtered your 

data once 

  
SwitchDataFit=0;             % Turn off when using SwitchReuseDataFit 
SwitchReuseDataFit=0;        % Turn on once you have already fit your data 

once 

  
SwitchVelocityCalculations=0; 
SwitchToroidBinning=0;      % SwitchVelocityCalculations should also be 

turned on when this is used 
SwitchVolumetricBinning=0;  % SwitchVelocityCalculations should also be 

turned on when this is used 
SwitchFigures=0; 
SwitchMovie=0; 
%%%%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%%%% 

  
% Data Refinement Inputs 
Xtranslation= -10; %Field of view translation X - making the origin the 

centre of your equipment 
Ytranslation= 200; 
Ztranslation= 1; 
Xrotation= 0; %Field of view rotation around X 
Yrotation= 0; 
Zrotation= 0.95; 
StartTime= 0; % Start time for data analysis 
EndTime= 500; 
MaxXvalue= 100; % Max range of field of view X 
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MinXvalue= -100; % Min range of field of view X 
MaxYvalue= 400; 
MinYvalue= 0; 
MaxZvalue= 100; 
MinZvalue= -100; 

  
% Pass Split Inputs 
PassMinNumLoc=100; %Minimum Number of Locations per pass 
MaxNumLocations=10000; %Maximum Number of Locations per pass 
MinNumberofPass=8; %Minimum Number of Passes (can set at zero if unsure - 

just used for process speed) 
MaxTimeInterval=0.01; %Max Time between consecutive points to be kept 
RemData=[1.984 2.37; 113.456 113.785; 122.97 123.312; 132.895 133.32; 
        141.9 142.255; 160.325 160.72; 168.183 168.52; 182.18 182.6]; 

  

%Fitting Inputs 
IntervalLength=0.01; % Seconds  
IntervalOverlap=0.25; %Fraction 
NumberofPolynomialPieces=8; 
OutputLocationRate=10000; % Hz 
MinNumberofPointsPerSegment=50; %If number of data points is below this 

number there will be no fit for this interval 
OrderofSpline=4; %Order of the spline 4=cubic spline, 2=linear 

  
% Binning Inputs 
BinSize=2; %(mm) - Bin size for output graphs  
BinAngle=2; % (°) - Bin angle in degrees for volumetric binning output graphs 
MinNumPtsBin=0; % Minimum Number of points needed in each bin 

  
%%%%%%%%%%%%%%%%%% END INPUTS %%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%% LOAD PREFILTERED DATA %%%%%%%%%%%%%%%% 
if SwitchReuseDataFiltered==1; 
    if SwitchDataRefinement==1; 
        disp(['SwitchDataRefinement must be turned off if reusing already 

filtered data.']) 
        return 
    else 
        if SwitchSplitPass==1; 
            disp(['SwitchSplitPass must be turned off if reusing already 

filtered data.']) 
            return 
        else 
            if exist('Datafiltered.mat', 'file') == 2 

                 
                %[T, X, Y, Z] = textread('Datafiltered.mat','%f %f %f 

%f',1000000); 
                

load('Datafiltered','T','X','Y','Z','nbpass','pT','pX','pY','pZ','n'); 
                figure (01) 
                plot(T,X,'bo','LineWidth',1,'MarkerSize',3); 
                title('Processed Data') 
                xlabel('time (s)','FontSize',20) 
                ylabel('x coordinates (mm)','FontSize',20) 
                axis([StartTime EndTime MinXvalue MaxXvalue]) 



210 

                 
                disp(['Number of passes: ',num2str(nbpass)]) 

                 
            else 
                % File does not exist. 
                disp(['File does not exist, rerun with SwitchDataFit turned 

on.']) 
                return 
            end 
        end 
    end 
end 

  
%%%%%%%%%%%%%%%% END LOAD PREFILTERED DATA %%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%% DATA PREPARATION%%%%%%%%%%%%%%%%%%%% 

  
if SwitchDataRefinement==1 

  
%Center view on geometry - Translation of X, Y, & Z axis (mm) 
X=X+Xtranslation; 
Y=Y+Ytranslation; 
Z=Z+Ztranslation; 

  
%Rotate locations to align x, y, z axis to geometry (degrees) 

(deg/180*pi()=rad) 
thetaX=Xrotation/180*pi(); 
thetaY=Yrotation/180*pi(); 
thetaZ=Zrotation/180*pi(); 

  
RX = [1,0,0;0,cos(thetaX),sin(thetaX);0,-sin(thetaX),cos(thetaX)]; % Rotation 

matrix on X 
RY = [cos(thetaY),0,-sin(thetaY);0,1,0;sin(thetaY),0,cos(thetaY)]; 
RZ = [cos(thetaZ),sin(thetaZ),0;-sin(thetaZ),cos(thetaZ),0;0,0,1]; 

  
Locations=[X Y Z]; %Creation of a matrix to be rotated 
Locations=Locations*RX; %Applying the rotation around X axis 
Locations=Locations*RY; 
Locations=Locations*RZ; 

  
X=Locations (:,1); %Replacing with the new rotated coordinates 
Y=Locations (:,2); 
Z=Locations (:,3); 

  
if SwitchInitialDataFix==1; 
    figure (666) 
    plot3(X,Y,Z,'.') 
    grid on 
    xlabel('x coordinates (mm)','FontSize',12) 
    ylabel('y coordinates (mm)','FontSize',12) 
    zlabel('Z coordinates (mm)','FontSize',12) 
end 

  
figure(01) 
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subplot(2,1,1) 
plot(T,X,'b.','LineWidth',1,'MarkerSize',5); 
title('Raw Data') 
xlabel('time (s)','FontSize',12) 
ylabel('x coordinates (mm)','FontSize',12) 
axis([StartTime EndTime MinXvalue MaxXvalue]) 
grid on 
end 
%%%%%%%%%%%%%%% END DATA PREPARATION %%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%% DATA REFINEMENT %%%%%%%%%%%%%%%%%%%% 

  
[T, index32, ~] = unique(T(:, 1), 'rows'); 
X=X(index32); 
Y=Y(index32); 
Z=Z(index32); 

  
Tmin=StartTime; %Remove value with T value lower than (s) 
Tmax=EndTime; %Remove value with T value higher than (s) 
tT=(T>=Tmin & T<Tmax); 

  
Xmin=MinXvalue; %Remove points with X value lower than (mm) 
Xmax=MaxXvalue;  %Remove points with X value higher than (mm) 
tX=(X>=Xmin & X<Xmax); 

  
Ymin=MinYvalue; 
Ymax=MaxYvalue; 
tY=(Y>=Ymin & Y<Ymax); 

  
Zmin=MinZvalue; 
Zmax=MaxZvalue; 
tZ=(Z>=Zmin & Z<Zmax); 

  
SelectIni=ones(size(T)); %Creating a array with true (1) for each existing 

locations 
SelectIni=SelectIni.*tT.*tX.*tY.*tZ; %Applying the condition to convert from 

true (1) to false (0) if locations to be rejected 
SelectIni=SelectIni>0; 

  
T=T(SelectIni); %Keep only the initial data corresponding to boundaries (for 

comparison) 
X=X(SelectIni); 
Y=Y(SelectIni); 
Z=Z(SelectIni); 

     
%%%%%%%%%%%%%%%%% END DATA REFINEMENT %%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%SPLITING DATA INTO INDIVIDUAL PASSES%%%%%%%%%%%%%%%%%%%% 
if SwitchSplitPass==1 

     
    if isempty(T) 
        nbpass=0; 
        disp(['Number of passes: ',num2str(nbpass)]) 
        return 
    else 
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        maxlength=MaxNumLocations; %Max number of location in a pass 
        pcount=0; %initialise pass count 

         
        pTadd=zeros(maxlength,1); pTadd(:)=NaN; %Creating an array for the 

first passes with every array value to Not a Number marker 
        pTaddreset=pTadd; %Creating an array for the pass time reseted to 0 

at the begining of the pass 
        pXadd=pTadd; %Array for the X value of each location of the pass 
        pYadd=pTadd; 
        pZadd=pTadd; 

         
        aTi=0; 
        Treset=T(1); %used to make pass time starting at 0. 
        minlocpass=PassMinNumLoc; %min number of location per pass 
        tic 
        for i=1:length(T)-1 
            if T(i+1)-T(i)<MaxTimeInterval %checking time interval between 

point i and i+1 and detecting end of pass if time too long 
                aTi=aTi+1; %Counting the location rank in the pass 
                pTadd(aTi)=T(i); %attributin the T value to the pass 
                pTaddreset(aTi)=T(i)-Treset; %attributing the reseted time 

value to the pass 
                pXadd(aTi)=X(i); %attributin the X value to the pass 
                pYadd(aTi)=Y(i); 
                pZadd(aTi)=Z(i); 

                 
                pTaddlast=pTadd; 
                pTaddlast(isnan(pTaddlast))=[]; 
                lastvaluepTadd=(pTaddlast(length(pTaddlast))); 

                 
                if pcount > MinNumberofPass 
                    if lastvaluepTadd==T(length(T)-1) 
                        if aTi>minlocpass 

                             
                            pcount=pcount+1; %a new pass has been completed 

                             
                            pT=[pT pTadd]; %addng the pass to the T matrix of 

passes 
                            pTreset=[pTreset pTaddreset]; 
                            pX=[pX pXadd]; 
                            pY=[pY pYadd]; 
                            pZ=[pZ pZadd]; 
                        end 
                    end 
                end 
            else 
                if pcount==0 %(if time between location is too long, means 

end of pass), check if first pass 
                    if aTi>minlocpass %Check how many location per pass 
                        % only keep the one with enough location 
                        pcount=pcount+1; %a new pass has been completed 

                         
                        pT=pTadd; %attributing the pass to the T matrix of 

pass 
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                        pTreset=pTaddreset; 
                        pX=pXadd; 
                        pY=pYadd; 
                        pZ=pZadd; 
                    end 

                     
                    pTadd(:)=NaN; %Reseting the pass array 
                    pTaddreset=pTadd; 
                    pXadd=pTadd; 
                    pYadd=pTadd; 
                    pZadd=pTadd; 

                                         
                    aTi=0; %reseting the location rank in the pass 
                    Treset=T(i+1); %getting the time of the first location of 

the next pass as the reset time 

                     
                else %if not first pass 
                    if aTi>minlocpass 

                         
                        pcount=pcount+1; %a new pass has been completed 

                         
                        pT=[pT pTadd]; %addng the pass to the T matrix of 

passes 
                        pTreset=[pTreset pTaddreset]; 
                        pX=[pX pXadd]; 
                        pY=[pY pYadd]; 
                        pZ=[pZ pZadd]; 
                    end 

                     
                    pTadd(:)=NaN; %Reseting the pass array 
                    pTaddreset=pTadd; 
                    pXadd=pTadd; 
                    pYadd=pTadd; 
                    pZadd=pTadd; 

                     
                    aTi=0; %reseting the location rank in the pass 
                    Treset=T(i+1); %getting the time of the first location of 

the next pass as the reset time 
                end 
            end 
        end 
        toc 

         
        %Reconstruct the dataset with only the good passes 
        %--------------------------------------------------------------------

-----% 
        [m,n]=size(pT); 
        nbpass=n; 
        T=[]; %Reinitialise the T array 
        X=[]; 
        Y=[]; 
        Z=[]; 

         
        if SwitchManuallyremovedata==1  %Maunally remove additional bad data 
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            for i=1:n 
                RunT=pT(:,i); 
                RunX=pX(:,i); 
                RunY=pY(:,i); 
                RunZ=pZ(:,i); 
                RunselectT(1:MaxNumLocations)=NaN; 
                RunselectX(1:MaxNumLocations)=NaN; 
                RunselectY(1:MaxNumLocations)=NaN; 
                RunselectZ(1:MaxNumLocations)=NaN; 
                RungooddataT=RunT(RunT > (RemData(i,1)) & RunT < 

(RemData(i,2))); 
                RungooddataX=RunX(RunT > (RemData(i,1)) & RunT < 

(RemData(i,2))); 
                RungooddataY=RunY(RunT > (RemData(i,1)) & RunT < 

(RemData(i,2))); 
                RungooddataZ=RunZ(RunT > (RemData(i,1)) & RunT < 

(RemData(i,2))); 
                RunselectT(1:length(RungooddataT))=RungooddataT; 
                RunselectX(1:length(RungooddataT))=RungooddataX; 
                RunselectY(1:length(RungooddataT))=RungooddataY; 
                RunselectZ(1:length(RungooddataT))=RungooddataZ; 
                pT(:,i)=RunselectT'; 
                pX(:,i)=RunselectX'; 
                pY(:,i)=RunselectY'; 
                pZ(:,i)=RunselectZ'; 
            end 
        end 

         
        for i=1:n; %put all T,X,Y,Z values back into 1 array 
            T=cat(1,T,pT(:,i)); 
            X=cat(1,X,pX(:,i)); 
            Y=cat(1,Y,pY(:,i)); 
            Z=cat(1,Z,pZ(:,i)); 
        end 

         
        T(isnan(T))=[]; %remove the NaN from the array 
        X(isnan(X))=[]; 
        Y(isnan(Y))=[]; 
        Z(isnan(Z))=[]; 

         
        pT0=pT; 
        for i=1:n 
            pT0(:,i)=pT0(:,i)-(pT0(1,i)); 
        end 
    end 

     
    pT0(isnan(pT0(:,1)),:)=[]; 
    subplot(2,1,2) 
    plot(T,X,'bo','LineWidth',1,'MarkerSize',3); 
    title('Processed Data') 
    xlabel('time (s)','FontSize',20) 
    ylabel('x coordinates (mm)','FontSize',20) 
    axis([StartTime EndTime MinXvalue MaxXvalue]) 
    grid on 

     
    figure (666) 
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    plot3(X,Y,Z,'.') 
    grid on 
    xlabel('x coordinates (mm)','FontSize',12) 
    ylabel('y coordinates (mm)','FontSize',12) 
    zlabel('Z coordinates (mm)','FontSize',12) 

     
    disp(['Number of passes: ',num2str(nbpass)]) 
    save('Datafiltered','T','X','Y','Z','nbpass','pT','pX','pY','pZ','n') 
end 

  
%%%%%%%%%%%%%%%%%%%%%%% FINISH SPLIT DATA %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%% NEW FIT AND INTERPOLATION %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
if SwitchDataFit==1 

     
    pW=pT.^0; 
    Tfit=[]; 
    Xfit=[]; 
    Xfitvel=[]; 
    Xfitacc=[]; 
    Yfit=[]; 
    Yfitvel=[]; 
    Yfitacc=[]; 
    Zfit=[]; 
    Zfitvel=[]; 
    Zfitacc=[]; 
    tic 
    for i=1:n 
        TData=pT(:,i); 
        XData=pX(:,i); 
        YData=pY(:,i); 
        ZData=pZ(:,i); 
        WData=pW(:,i); 
        WDataedit=WData; 
        WDataedit(isnan(WDataedit))=[]; 
        WDend=length(WDataedit); 
        WDid03=ceil(0.001*WDend); 
        WDid08=ceil(0.10*WDend); 
        WDid57=ceil(0.57*WDend); 
        WDid86=ceil(0.86*WDend); 
        WDid96=ceil(0.96*WDend); 
        WDataedit(WDid03:WDid08)=50; 
        WDataedit(WDid08:WDid57)=5; 
        WDataedit(WDid57:(WDid86-1))=50; 
        WDataedit(WDid86:(WDid96-1))=100; 
        WDataedit(WDid96:(WDend))=1000; 
        WData(1:WDend)=WDataedit; 
        WDataReset=WData; 

         
        % Set up fittype and options. 
        ft = fittype( 'smoothingspline' ); 
        opts = fitoptions( 'Method', 'SmoothingSpline' ); 
        opts.SmoothingParam = 0.999999; 
        opts.Weights = WData; 
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        % Fit model to data. 
        [TData, XData, WData] = prepareCurveData( TData, XData, WData ); 
        opts.Weights = WData; 
        [fitresult, gof] = fit( TData, XData, ft, opts );  
        TTT = linspace(TData(1),TData(end),(2*numel(TData)))'; 
        YYY = zeros(numel(TTT), 1); 

         
        for qq = 1:size(fitresult.p.coefs, 1) 
            a = find(TTT >= fitresult.p.breaks(qq) & TTT < 

fitresult.p.breaks(qq + 1)); 
            p = fitresult.p.coefs(qq, :); 
            YYY(a) = p(1)*(TTT(a) - fitresult.p.breaks(qq)).^3 + p(2)*(TTT(a) 

- fitresult.p.breaks(qq)).^2  + p(3)*(TTT(a) - fitresult.p.breaks(qq)) + 

p(4); 
        end 

         
        YYYvel=0.001*diff(YYY)./diff(TTT); 
        YYYacc=diff(YYYvel)./diff(TTT(1:length(YYYvel))); 
        YYYacc(length(YYYacc))=[]; 
        eval(['Xfitvel' num2str(i) '= YYYvel;']); 
        eval(['Xfitacc' num2str(i) '= YYYacc;']); 
        eval(['Xfit' num2str(i) '= YYY;']); 
        Xfit=[Xfit; YYY(1:length(YYYacc))]; 
        Xfitvel=[Xfitvel; YYYvel(1:length(YYYacc))]; 
        Xfitacc=[Xfitacc; YYYacc]; 

         
        % Fit model to data. 
        TData=pT(:,i); 
        WData=WDataReset; 
        [TData, YData, WData] = prepareCurveData( TData, YData, WData ); 
        opts.Weights = WData; 
        [fitresult, gof] = fit( TData, YData, ft, opts );  
        YYY = zeros(numel(TTT), 1); 

         
        for qq = 1:size(fitresult.p.coefs, 1) 
            a = find(TTT >= fitresult.p.breaks(qq) & TTT < 

fitresult.p.breaks(qq + 1)); 
            p = fitresult.p.coefs(qq, :); 
            YYY(a) = p(1)*(TTT(a) - fitresult.p.breaks(qq)).^3 + p(2)*(TTT(a) 

- fitresult.p.breaks(qq)).^2  + p(3)*(TTT(a) - fitresult.p.breaks(qq)) + 

p(4); 
        end                 

         
        YYYvel=0.001*diff(YYY)./diff(TTT); 
        YYYacc=diff(YYYvel)./diff(TTT(1:length(YYYvel))); 
        YYYacc(length(YYYacc))=[]; 
        eval(['Yfitvel' num2str(i) '= YYYvel;']); 
        eval(['Yfitacc' num2str(i) '= YYYacc;']); 
        eval(['Yfit' num2str(i) '= YYY;']); 
        Yfit=[Yfit; YYY(1:length(YYYacc))]; 
        Yfitvel=[Yfitvel; YYYvel(1:length(YYYacc))]; 
        Yfitacc=[Yfitacc; YYYacc]; 

         
        % Fit model to data. 
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        TData=pT(:,i); 
        WData=WDataReset; 
        [TData, ZData, WData] = prepareCurveData( TData, ZData, WData ); 
        opts.Weights = WData; 
        [fitresult, gof] = fit( TData, ZData, ft, opts );  
        YYY = zeros(numel(TTT), 1); 

         
        for qq = 1:size(fitresult.p.coefs, 1) 
            a = find(TTT >= fitresult.p.breaks(qq) & TTT < 

fitresult.p.breaks(qq + 1)); 
            p = fitresult.p.coefs(qq, :); 
            YYY(a) = p(1)*(TTT(a) - fitresult.p.breaks(qq)).^3 + p(2)*(TTT(a) 

- fitresult.p.breaks(qq)).^2  + p(3)*(TTT(a) - fitresult.p.breaks(qq)) + 

p(4); 
        end  

         
        YYYvel=0.001*diff(YYY)./diff(TTT); 
        YYYacc=diff(YYYvel)./diff(TTT(1:length(YYYvel))); 
        YYYacc(length(YYYacc))=[]; 
        eval(['Zfitvel' num2str(i) '= YYYvel;']); 
        eval(['Zfitacc' num2str(i) '= YYYacc;']); 
        eval(['Zfit' num2str(i) '= YYY;']); 
        Zfit=[Zfit; YYY(1:length(YYYacc))]; 
        Zfitvel=[Zfitvel; YYYvel(1:length(YYYacc))]; 
        Zfitacc=[Zfitacc; YYYacc]; 
        eval(['Tfit' num2str(i) '= TTT;']); 
        Tfit=[Tfit; TTT(1:length(YYYacc))]; 
    end 

   
    toc 

       
    figure (331) 
    subplot(3,1,1) 
    plot(T,X,'o',Tfit,Xfit,'-.') 
    axis([Tmin Tmax Xmin Xmax]) 
    xlabel('T (s)','FontSize',20); 
    ylabel('X (mm)','FontSize',20); 
    grid on 
    legend('Fit', 'Initial locations') 
    set(gca,'FontSize',20) 

     
    subplot(3,1,2) 
    plot(T,Y,'o',Tfit,Yfit,'-.') 
    axis([Tmin Tmax Ymin Ymax]) 
    xlabel('T (s)','FontSize',20); 
    ylabel('Y (mm)','FontSize',20); 
    grid on 
    set(gca,'FontSize',20) 

         
    subplot(3,1,3) 
    plot(T,Z,'o',Tfit,Zfit,'-.') 
    axis([Tmin Tmax Zmin Zmax]) 
    xlabel('T (s)','FontSize',20); 
    ylabel('Z (mm)','FontSize',20); 
    grid on 
    set(gca,'FontSize',20) 
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    figure (332) 
    subplot(3,1,1) 
    plot(Tfit,Xfitvel,'o') 
    subplot(3,1,2) 
    plot(Tfit,Yfitvel,'o') 
    subplot(3,1,3) 
    plot(Tfit,Zfitvel,'o') 
    figure (333) 
    subplot(3,1,1) 
    plot(Tfit,Xfitacc,'o') 
    subplot(3,1,2) 
    plot(Tfit,Yfitacc,'o') 
    subplot(3,1,3) 
    plot(Tfit,Zfitacc,'o') 

     
    

save('Datafitvel3','Tfit','Xfit','Yfit','Zfit','Xfitvel','Yfitvel','Zfitvel') 

     
end 

  
%%%%%%%%%%%%%%%%%%%% END NEW FIT AND INTERPOLATION %%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%%%% REUSE DATA FIT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
if SwitchReuseDataFit==1 
    if SwitchDataFit==1 
        disp(['SwitchDataFit must be turned off if reusing already fit 

data.']) 
        return 
    else 
        if exist('Datafitvel3.mat', 'file') == 2 % File exists. 

            
            

load('Datafitvel3','Tfit','Xfit','Yfit','Zfit','Xfitvel','Yfitvel','Zfitvel') 

             
            idfit=find(Tfit); 
            locrunall=[]; 
            loctimeall=[]; 
            hzall=[]; 

             
            for i=1:n 
                pts=pT(:,i); 
                pts(isnan(pts))=[]; 
                locrun=length(pts); 
                locrunall=[locrunall locrun]; 
                loctime=pts(end)-pts(1); 
                loctimeall=[loctimeall loctime]; 
                hz=locrun/loctime; 
                hzall=[hzall hz]; 
            end 

             
            disp(['No. Locations: ',num2str(locrunall)]) 
            disp(['Time of pass: ',num2str(loctimeall)]) 
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            disp(['Location Rate: ',num2str(hzall)]) 
            AAHz=[hzall; loctimeall; locrunall]; 

             
            figure(341) 
            subplot(3,1,1) 
            plot(Tfit,Xfit,'r.-','LineWidth',2,'MarkerSize',5); 
            hold on 
            plot(T,X,'bo','LineWidth',1,'MarkerSize',3); 
            axis([Tmin Tmax Xmin Xmax]) 
            xlabel('T (s)','FontSize',20); 
            ylabel('X (mm)','FontSize',20); 
            grid on 
            legend('Fit', 'Initial locations') 
            set(gca,'FontSize',20) 

             

            subplot(3,1,2) 
            plot(Tfit,Yfit,'r.-','LineWidth',2,'MarkerSize',5); 
            hold on 
            plot(T,Y,'bo','LineWidth',1,'MarkerSize',3); 
            axis([Tmin Tmax Ymin Ymax]) 
            xlabel('T (s)','FontSize',20); 
            ylabel('Y (mm)','FontSize',20); 
            grid on 
            set(gca,'FontSize',20) 

             
            subplot(3,1,3) 
            plot(Tfit,Zfit,'r.-','LineWidth',2,'MarkerSize',5); 
            hold on 
            plot(T,Z,'bo','LineWidth',1,'MarkerSize',3); 
            axis([Tmin Tmax Zmin Zmax]) 
            xlabel('T (s)','FontSize',20); 
            ylabel('Z (mm)','FontSize',20); 
            grid on 
            set(gca,'FontSize',20) 

             
            figure(342) 
            plot3(Xfit,Yfit,Zfit,'o','MarkerSize',3) 
            axis([Xmin Xmax Ymin Ymax Zmin Zmax]) 
            xlabel('X (mm)','FontSize',20); 
            ylabel('Y (mm)','FontSize',20); 
            zlabel('Z (mm)','FontSize',20); 
            grid on 
            set(gca,'FontSize',20) 

             
            figure (332) 
            subplot(3,1,1) 
            plot(Tfit,Xfitvel,'o') 
            subplot(3,1,2) 
            plot(Tfit,Yfitvel,'o') 
            subplot(3,1,3) 
            plot(Tfit,Zfitvel,'o') 
%             figure (333) 
%             subplot(3,1,1) 
%             plot(Tfit,Xfitacc,'o') 
%             subplot(3,1,2) 
%             plot(Tfit,Yfitacc,'o') 
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%             subplot(3,1,3) 
%             plot(Tfit,Zfitacc,'o') 

             
            if SwitchSplitPass==1 
                disp(['Number of passes: ',num2str(nbpass)]) 
            end 

             
        else 
            % File does not exist. 
            disp(['File does not exist, rerun with SwitchDataFit turned 

on.']) 
            return 
        end 
    end 
end 

  
%%%%%%%%%%%% VELOCITY CALCULATIONS FOR FITTED OR PROCESSED DATA 

%%%%%%%%%%%%%% 

  
if SwitchVelocityCalculations==1 
    if SwitchDataFit==1 || SwitchReuseDataFit==1 
        %Converting to polar 
        Rfit=(Xfit.^2+Zfit.^2).^(1/2);  % Radius around y axis 
        %Afit=atan2(Zfit,Xfit);  

          
        % For continuously growing theta 
        Afit=Tfit; %Angle from first position on xz plan 
        Afit(1)=0; 
        Afitprev=0; 
        for i=2:length(Tfit) 
            vect1=[Xfit(i-1) 0 Zfit(i-1)]; 
            vect2=[Xfit(i) 0 Zfit(i)]; 
            

Afit(i)=Afitprev+atan2(norm(cross(vect1,vect2)),dot(vect1,vect2)); 
            Afitprev=Afit(i); 
        end 

      
        vRfit=Tfit; %Radial velocity 
        endi=0; 
        starti=0; 
        for i=1:length(Tfit) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
            if i>=(length(Tfit)-6) %if you are at the end of the pass, use 

the previous pooints 
                endi=1; i=i-6; 
            end 
            vRfit(j)=... 
                0.10*((Rfit(i+5)-Rfit(i-0))/(Tfit(i+5)-Tfit(i-0)))+... 
                0.15*((Rfit(i+4)-Rfit(i-1))/(Tfit(i+4)-Tfit(i-1)))+... 
                0.25*((Rfit(i+3)-Rfit(i-2))/(Tfit(i+3)-Tfit(i-2)))+... 
                0.25*((Rfit(i+2)-Rfit(i-3))/(Tfit(i+2)-Tfit(i-3)))+... 
                0.15*((Rfit(i+1)-Rfit(i-4))/(Tfit(i+1)-Tfit(i-4)))+... 
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                0.10*((Rfit(i+0)-Rfit(i-5))/(Tfit(i+0)-Tfit(i-5))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
            starti=0; endi=0; 
        end 
        vRfit=vRfit/1000; %from mm/s to m/s 

         
        vAfit=Tfit; %Angular velocity 
        endi=0; 
        starti=0; 
        for i=1:length(Tfit) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
            if i>=(length(Tfit)-6) %if you are at the end of the pass, use 

the previous pooints 
                endi=1; i=i-6; 
            end 
            vAfit(j)=... 
                    0.10*((Afit(i+5)-Afit(i-0))/(Tfit(i+5)-Tfit(i-0)))+... 
                    0.15*((Afit(i+4)-Afit(i-1))/(Tfit(i+4)-Tfit(i-1)))+... 
                    0.25*((Afit(i+3)-Afit(i-2))/(Tfit(i+3)-Tfit(i-2)))+... 
                    0.25*((Afit(i+2)-Afit(i-3))/(Tfit(i+2)-Tfit(i-3)))+... 
                    0.15*((Afit(i+1)-Afit(i-4))/(Tfit(i+1)-Tfit(i-4)))+... 
                    0.10*((Afit(i+0)-Afit(i-5))/(Tfit(i+0)-Tfit(i-5))); 

                 
%                 0.5*((Afit(i+1)-Afit(i-0))/(Tfit(i+1)-Tfit(i-0)))+... 
%                 0.5*((Afit(i+0)-Afit(i-1))/(Tfit(i+0)-Tfit(i-1))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
            starti=0; endi=0; 
        end 

         
        vXfit=Tfit; %X velocity 
        endi=0; 
        starti=0; 
        for i=1:length(Tfit) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
            if i>=(length(Tfit)-6) %if you are at the end of the pass, use 

the previous pooints 
                endi=1; i=i-6; 
            end 
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            vXfit(j)=... 
                0.10*((Xfit(i+5)-Xfit(i-0))/(Tfit(i+5)-Tfit(i-0)))+... 
                0.15*((Xfit(i+4)-Xfit(i-1))/(Tfit(i+4)-Tfit(i-1)))+... 
                0.25*((Xfit(i+3)-Xfit(i-2))/(Tfit(i+3)-Tfit(i-2)))+... 
                0.25*((Xfit(i+2)-Xfit(i-3))/(Tfit(i+2)-Tfit(i-3)))+... 
                0.15*((Xfit(i+1)-Xfit(i-4))/(Tfit(i+1)-Tfit(i-4)))+... 
                0.10*((Xfit(i+0)-Xfit(i-5))/(Tfit(i+0)-Tfit(i-5))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
            starti=0; endi=0; 
        end 
        vXfit=vXfit/1000; %from mm/s to m/s 

         
        vYfit=Tfit; %Y velocity 
        endi=0; 
        starti=0; 
        for i=1:length(Tfit) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
            if i>=(length(Tfit)-6) %if you are at the end of the pass, use 

the previous pooints 
                endi=1; i=i-6; 
            end 
            vYfit(j)=... 
                0.10*((Yfit(i+5)-Yfit(i-0))/(Tfit(i+5)-Tfit(i-0)))+... 
                0.15*((Yfit(i+4)-Yfit(i-1))/(Tfit(i+4)-Tfit(i-1)))+... 
                0.25*((Yfit(i+3)-Yfit(i-2))/(Tfit(i+3)-Tfit(i-2)))+... 
                0.25*((Yfit(i+2)-Yfit(i-3))/(Tfit(i+2)-Tfit(i-3)))+... 
                0.15*((Yfit(i+1)-Yfit(i-4))/(Tfit(i+1)-Tfit(i-4)))+... 
                0.10*((Yfit(i+0)-Yfit(i-5))/(Tfit(i+0)-Tfit(i-5))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
            starti=0; endi=0; 
        end 
        vYfit=vYfit/1000; %from mm/s to m/s 

         
        vZfit=Tfit; %Z velocity 
        endi=0; 
        starti=0; 
        for i=1:length(Tfit) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
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            if i>=(length(Tfit)-6) %if you are at the end of the pass, use 

the previous pooints 
                endi=1; i=i-6; 
            end 
            vZfit(j)=... 
                0.10*((Zfit(i+5)-Zfit(i-0))/(Tfit(i+5)-Tfit(i-0)))+... 
                0.15*((Zfit(i+4)-Zfit(i-1))/(Tfit(i+4)-Tfit(i-1)))+... 
                0.25*((Zfit(i+3)-Zfit(i-2))/(Tfit(i+3)-Tfit(i-2)))+... 
                0.25*((Zfit(i+2)-Zfit(i-3))/(Tfit(i+2)-Tfit(i-3)))+... 
                0.15*((Zfit(i+1)-Zfit(i-4))/(Tfit(i+1)-Tfit(i-4)))+... 
                0.10*((Zfit(i+0)-Zfit(i-5))/(Tfit(i+0)-Tfit(i-5))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
            starti=0; endi=0; 
        end 

         
        vZfit=vZfit/1000; %from mm/s to m/s 

         
        vMfit=(vXfit.^2+vYfit.^2+vZfit.^2).^(1/2); %3D velocity magnitude as 

the sqrt of the sum of square of each axis speed 

  
        figure(21) 

         
        subplot(4,1,1) 
        plot(Tfit,vRfit,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vRfit) max(vRfit)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vR (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,2) 
        plot(Tfit,vAfit,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vAfit) max(vAfit)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vA (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,3) 
        plot(Tfit,vYfit,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vYfit) max(vYfit)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vY (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,4) 
        plot(Tfit,vMfit,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vMfit) max(vMfit)]) 
        xlabel('T (s)','FontSize',20); 
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        ylabel('vM (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        figure(22) 

         
        subplot(4,1,1) 
        plot(Tfit,vXfit,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vXfit) max(vXfit)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vX (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,2) 
        plot(Tfit,vYfit,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vYfit) max(vYfit)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vY (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,3) 
        plot(Tfit,vZfit,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vZfit) max(vZfit)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vZ (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,4) 
        plot(Tfit,vMfit,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vMfit) max(vMfit)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vM (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
    else 

         
        Rvel=(X.^2+Z.^2).^(1/2); %Radius around y axis 

         
        Avel=T; %Angle from first position on xz plan 
        Avel(1)=0; 
        Avelprev=0; 
        for i=2:length(T) 
            vect1=[X(i-1) 0 Z(i-1)]; 
            vect2=[X(i) 0 Z(i)]; 
            

Avel(i)=Avelprev+atan2(norm(cross(vect1,vect2)),dot(vect1,vect2)); 
            Avelprev=Avel(i); 
        end 

         

         
        vR=T; %Radial velocity 
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        endi=0; 
        starti=0; 
        for i=1:length(T) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
            if i>=(length(T)-6) %if you are at the end of the pass, use the 

previous pooints 
                endi=1; i=i-6; 
            end 
            vR(j)=... 
                0.10*((Rvel(i+5)-Rvel(i-0))/(T(i+5)-T(i-0)))+... 
                0.15*((Rvel(i+4)-Rvel(i-1))/(T(i+4)-T(i-1)))+... 
                0.25*((Rvel(i+3)-Rvel(i-2))/(T(i+3)-T(i-2)))+... 
                0.25*((Rvel(i+2)-Rvel(i-3))/(T(i+2)-T(i-3)))+... 
                0.15*((Rvel(i+1)-Rvel(i-4))/(T(i+1)-T(i-4)))+... 
                0.10*((Rvel(i+0)-Rvel(i-5))/(T(i+0)-T(i-5))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
            starti=0; endi=0; 
        end 
        vR=vR/1000; %from mm/s to m/s 

         
        vA=T; %Angular velocity 
        endi=0; 
        starti=0; 
        for i=1:length(T) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
            if i>=(length(T)-6) %if you are at the end of the pass, use the 

previous pooints 
                endi=1; i=i-6; 
            end 
            vA(j)=... 
                0.5*((Avel(i+1)-Avel(i-0))/(T(i+1)-T(i-0)))+... 
                0.5*((Avel(i+0)-Avel(i-1))/(T(i+0)-T(i-1))); 
            %         0.10*((Afit(i+5)-Afit(i-0))/(Tfit(i+5)-Tfit(i-0)))+... 
            %         0.15*((Afit(i+4)-Afit(i-1))/(Tfit(i+4)-Tfit(i-1)))+... 
            %         0.25*((Afit(i+3)-Afit(i-2))/(Tfit(i+3)-Tfit(i-2)))+... 
            %         0.25*((Afit(i+2)-Afit(i-3))/(Tfit(i+2)-Tfit(i-3)))+... 
            %         0.15*((Afit(i+1)-Afit(i-4))/(Tfit(i+1)-Tfit(i-4)))+... 
            %         0.10*((Afit(i+0)-Afit(i-5))/(Tfit(i+0)-Tfit(i-5))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
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            starti=0; endi=0; 
        end 

         
        vX=T; %X velocity 
        endi=0; 
        starti=0; 
        for i=1:length(T) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
            if i>=(length(T)-6) %if you are at the end of the pass, use the 

previous pooints 
                endi=1; i=i-6; 
            end 
            vX(j)=... 
                0.10*((X(i+5)-X(i-0))/(T(i+5)-T(i-0)))+... 
                0.15*((X(i+4)-X(i-1))/(T(i+4)-T(i-1)))+... 
                0.25*((X(i+3)-X(i-2))/(T(i+3)-T(i-2)))+... 
                0.25*((X(i+2)-X(i-3))/(T(i+2)-T(i-3)))+... 
                0.15*((X(i+1)-X(i-4))/(T(i+1)-T(i-4)))+... 
                0.10*((X(i+0)-X(i-5))/(T(i+0)-T(i-5))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
            starti=0; endi=0; 
        end 
        vX=vX/1000; %from mm/s to m/s 

         
        vY=T; %Y velocity 
        endi=0; 
        starti=0; 
        for i=1:length(T) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
            if i>=(length(T)-6) %if you are at the end of the pass, use the 

previous pooints 
                endi=1; i=i-6; 
            end 
            vY(j)=... 
                0.10*((Y(i+5)-Y(i-0))/(T(i+5)-T(i-0)))+... 
                0.15*((Y(i+4)-Y(i-1))/(T(i+4)-T(i-1)))+... 
                0.25*((Y(i+3)-Y(i-2))/(T(i+3)-T(i-2)))+... 
                0.25*((Y(i+2)-Y(i-3))/(T(i+2)-T(i-3)))+... 
                0.15*((Y(i+1)-Y(i-4))/(T(i+1)-T(i-4)))+... 
                0.10*((Y(i+0)-Y(i-5))/(T(i+0)-T(i-5))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
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            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
            starti=0; endi=0; 
        end 
        vY=vY/1000; %from mm/s to m/s 

         
        vZ=T; %Z velocity 
        endi=0; 
        starti=0; 
        for i=1:length(T) 
            j=i; 
            if i<6 %if you are at the begining of the pass, use the later 

points 
                starti=1; i=i+6; 
            end 
            if i>=(length(T)-6) %if you are at the end of the pass, use the 

previous pooints 
                endi=1; i=i-6; 
            end 
            vZ(j)=... 
                0.10*((Z(i+5)-Z(i-0))/(T(i+5)-T(i-0)))+... 
                0.15*((Z(i+4)-Z(i-1))/(T(i+4)-T(i-1)))+... 
                0.25*((Z(i+3)-Z(i-2))/(T(i+3)-T(i-2)))+... 
                0.25*((Z(i+2)-Z(i-3))/(T(i+2)-T(i-3)))+... 
                0.15*((Z(i+1)-Z(i-4))/(T(i+1)-T(i-4)))+... 
                0.10*((Z(i+0)-Z(i-5))/(T(i+0)-T(i-5))); 
            if starti==1 %reset i to its original value 
                i=i-6; 
            end 
            if endi==1 %reset i to its original value 
                i=i+6; 
            end 
            starti=0; endi=0; 
        end 

         
        vZ=vZ/1000; %from mm/s to m/s 

         
        vM=(vX.^2+vY.^2+vZ.^2).^(1/2); %3D velocity magnitude as the sqrt of 

the sum of square of each axis speed 

         
        figure(21) 

         
        subplot(4,1,1) 
        plot(T,vR,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vR) max(vR)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vR (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,2) 
        plot(T,vA,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vA) max(vA)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vA (m/s)','FontSize',20); 
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        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,3) 
        plot(T,vY,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vZ) max(vZ)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vY (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,4) 
        plot(T,vM,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vM) max(vM)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vM (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

             
        figure(22) 

         
        subplot(4,1,1) 
        plot(T,vX,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vX) max(vX)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vX (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,2) 
        plot(T,vY,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vY) max(vY)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vY (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,3) 
        plot(T,vZ,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vZ) max(vZ)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vZ (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
        subplot(4,1,4) 
        plot(T,vM,'bo','LineWidth',2,'MarkerSize',2); 
        axis([Tmin Tmax min(vM) max(vM)]) 
        xlabel('T (s)','FontSize',20); 
        ylabel('vM (m/s)','FontSize',20); 
        grid on 
        set(gca,'FontSize',20) 

         
    end 
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end 

  
%%%%%%%%%%%%%%%% END VELOCITY CALCULATIONS FOR FITTED DATA %%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%% TOROID BINNING (WRAPPING INTO SINGLE PLANE) %%%%%%%%%%%%%%%% 

  
if SwitchToroidBinning==1 
    if SwitchDataFit==1 || SwitchReuseDataFit==1 
        if SwitchVelocityCalculations==0 
            disp(['SwitchVelocityCalculations must be turned on for Toroid 

Binning']) 
        else 
            binsize=BinSize; %Spacing of the square grid defining bins (mm) 

(same as cubic bin) 
            %binangle=(BinAngle/180)*pi; 
            Rmin=0; 
            Rmax=Xmax; 
            Amin=-pi; 
            Amax=pi; 

                         
            EdgesA=linspace(Amin,Amax,(180/BinAngle)); 
            EdgesR=[Rmin:binsize:Rmax]; % Creating the bins boundaries 
            EdgesY=[Ymin:binsize:Ymax]; 

             
            nbbinA=(length(EdgesA)-1); 
            nbbinR=(length(EdgesR)-1); % Counting the bins 
            nbbinY=(length(EdgesY)-1); 

             
            MatRCount=zeros(nbbinR,nbbinY); %Initialisation of a 2D (R, Y) 

matrix to count location in the bins. 
            MatRCenterR=MatRCount; %Initialisation of a 2D matrix to store R 

location of the center of the bins. 
            MatRCenterY=MatRCount; 
            MatRT=MatRCount; %Initialisation of a 2D matrix to store Time in 

the bins. 
            MatRVol=MatRCount; %Volume of the bin 
            MatRvMmean=MatRCount; 
            MatRvMmode=MatRCount; 
            MatRvMstd=MatRCount; 
            MatRvMdis=cell([nbbinR nbbinY]); 
            MatRvRmean=MatRCount; 
            MatRvRmode=MatRCount; 
            MatRvRstd=MatRCount; 
            MatRvYmean=MatRCount; 
            MatRvYmode=MatRCount; 
            MatRvYstd=MatRCount; 
            MatRvAmean=MatRCount; 
            MatRvAmode=MatRCount; 
            MatRvAstd=MatRCount; 

             
            for jj=1:nbbinY 
                ET=Tfit; %Set the matrix of locations 
                ER=Rfit; 
                EY=Yfit; 
                Eid=idfit; 
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                EYmin=EdgesY(jj); %Selecting the bin Y lower boundary 
                EYmax=EdgesY(jj+1); %Selecting the bin Y upper boundary 
                EtY=EY>=EYmin & EY<EYmax; %Filtering the data to keep only 

data point found into the Y Edges of the bin 

                 
                ET=ET(EtY); 
                ER=ER(EtY); 
                EY=EY(EtY); 
                Eid=Eid(EtY); 

                 
                for rr=1:nbbinR 
                    EET=ET; %Set the matrix of locations 
                    EER=ER; 
                    EEY=EY; 
                    EEid=Eid; 

                     
                    EERmin=EdgesR(rr); %Selecting the bin R lower boundary 
                    EERmax=EdgesR(rr+1); %Selecting the bin R upper boundary 
                    EEtR=EER>=EERmin & EER<EERmax; %Filtering the data to 

keep only data point found into the R Edges of the bin 

                     
                    EET=EET(EEtR); 
                    EER=EER(EEtR); 
                    EEY=EEY(EEtR); 
                    EEid=EEid(EEtR); 

                     
                    nbpoints=length(EET); % Counting how many locations 

remains in the Y and R boundaries 
                    MatRCount(rr,jj)=nbpoints;% Writting the number of 

location in the bin 
                    MatRVol(rr,jj)=pi()*((EdgesR(rr)+binsize)^2-

EdgesR(rr)^2)*binsize; %Writting the volume of the bin (mm3) 
                    MatRCenterR(rr,jj)=EdgesR(rr)+binsize/2; %Writting the 

bin center R coordinate 
                    MatRCenterY(rr,jj)=EdgesY(jj)+binsize/2; 

                     
                    id1=EEid; % Getting the id of each location in the bin 

                     
                    Tbin=0; % Initialisation of time count 
                    Ybin=0; 
                    Rbin=0; 
                    Abin=0; 
                    vYbin=0; 
                    vMbin=0; 
                    vRbin=0; 
                    vAbin=0; 
                    % section to add -  
                    if nbpoints>=MinNumPtsBin;  
                        for iT=1:nbpoints 
                            if id1(iT)-1<1 %if first point of whole data set 
                                Tbin=Tbin+(Tfit(id1(iT)+1)-Tfit(id1(iT))); 
                            else 
                                if Tfit(id1(iT))-Tfit(id1(iT)-

1)>MaxTimeInterval 
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                                    Tbin=Tbin+(Tfit(id1(iT)+1)-

Tfit(id1(iT))); % If first point of pass use following point 
                                else 
                                    Tbin=Tbin+(Tfit(id1(iT))-Tfit(id1(iT)-

1)); % If not first point use previous point 
                                end 
                            end 
                        end 

                         
                        Ybin=Yfit(id1); 
                        Rbin=Rfit(id1); 
                        Abin=Afit(id1); 
                        vYbin=vYfit(id1); 
                        vMbin=vMfit(id1); 
                        vRbin=vRfit(id1); 
                        vAbin=vAfit(id1); 

                         
                        MatRT(rr,jj)=Tbin; 
                        MatRvMdis{rr,jj}=vMbin; 
                        MatRvMmean(rr,jj)=mean(vMbin); 
                        MatRvMmode(rr,jj)=mode(vMbin); 
                        MatRvMstd(rr,jj)=std(vMbin); 
                        MatRvRmean(rr,jj)=mean(vRbin); 
                        MatRvRmode(rr,jj)=mode(vRbin); 
                        MatRvRstd(rr,jj)=std(vRbin); 
                        MatRvYmean(rr,jj)=mean(vYbin); 
                        MatRvYmode(rr,jj)=mode(vYbin); 
                        MatRvYstd(rr,jj)=std(vYbin); 
                        MatRvAmean(rr,jj)=mean(vAbin); 
                        MatRvAmode(rr,jj)=mode(vAbin); 
                        MatRvAstd(rr,jj)=std(vAbin); 
                    end 
                end 

                 
                MatRCount(MatRCount==0)=NaN; 
                MatRT(MatRT==0)=NaN; 
                MatRVol(MatRVol==0)=NaN; 
                %MatRvM(MatRvM==0)=NaN; 
                MatRvMmean(MatRvMmean==0)=NaN; 
                MatRvRmean(MatRvRmean==0)=NaN; 
                MatRvYmean(MatRvYmean==0)=NaN; 
                MatRvAmean(MatRvAmean==0)=NaN; 
            end 

             
            %%%%%%%%%%%%%%%%%%%%%%%%% FIGURES OUTPUT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             
            

save('velocitydata','MatRvMdis','MatRvMmean','MatRvMstd','MatRvRmean','MatRvA

mean','MatRvYmean','MatRCount','MatRVol') 
            save('plotxandy','MatRCenterR','MatRCenterY') 

             
            %DISPLAY VELOCITY PROFIL (TOROID BINS) 
            %----------------------------------------------------------------

---------% 
            figure (11) 
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            quiver(MatRCenterR-binsize/2, MatRCenterY-binsize/2, MatRvRmean, 

MatRvYmean,1,'color','k') %Be carefull with scale 
            axis equal 
            grid on 
            axis([Rmin Rmax-binsize Ymin Ymax-binsize]) 
            box on 
            xlabel('Radius (mm)','FontSize',20) 
            ylabel('Elevation (mm)','FontSize',20) 
            set(gca,'FontSize',20) 

             

             
            %DISPLAY VELOCITY MAGNITUDE (TOROID BINS) 
            %----------------------------------------------------------------

---------% 
            figure(14) 
            subplot(1,3,1) 
            C=MatRvMmean; 
            surf(MatRCenterR-binsize/2,MatRCenterY-binsize/2,MatRvMmean,C); 
            col = colorbar; 
            ylabel(col,'Mean Velocity magnitude (m/s)','FontSize',20); 
            caxis([0,8]) 
            colormap(hot) 
            axis equal 
            axis([Rmin Rmax-binsize Ymin Ymax-binsize]) 
            box on 
            xlabel('Radius (mm)','FontSize',20); 
            ylabel('Elevation (mm)','FontSize',20); 
            %zlabel('Z (mm)','FontSize',20); 
            set(gca,'FontSize',20) 
            view(2); 

             
            subplot(1,3,2) 
            C=MatRCount; 
            surf(MatRCenterR-binsize/2,MatRCenterY-binsize/2,MatRCount,C); 
            col = colorbar; 
            ylabel(col,'Mode Velocity magnitude (m/s)','FontSize',20); 
            caxis([0,500]) 
            colormap(hot) 
            axis equal 
            axis([Rmin Rmax-binsize Ymin Ymax-binsize]) 
            box on 
            xlabel('Radius (mm)','FontSize',20); 
            ylabel('Elevation (mm)','FontSize',20); 
            %zlabel('Z (mm)','FontSize',20); 
            set(gca,'FontSize',20) 
            view(2); 

                         
            subplot(1,3,3) 
            C=MatRvMstd; 
            surf(MatRCenterR-binsize/2,MatRCenterY-binsize/2,MatRvMstd,C); 
            col = colorbar; 
            ylabel(col,'Std Velocity magnitude (m/s)','FontSize',20); 
            caxis([0,3]) 
            colormap(hot) 
            axis equal 
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            axis([Rmin Rmax-binsize Ymin Ymax-binsize]) 
            box on 
            xlabel('Radius (mm)','FontSize',20); 
            ylabel('Elevation (mm)','FontSize',20); 
            %zlabel('Z (mm)','FontSize',20); 
            set(gca,'FontSize',20) 
            view(2); 

             
            figure (141) 
            plot(MatRCount(:),MatRvMstd(:),'.'); 

             
            %DISPLAY VERTICAL VELOCITY (TOROID BINS) 
            %----------------------------------------------------------------

---------% 
            figure(15) 
            subplot(1,3,1) 
            C=MatRvRmean; 
            surf(MatRCenterR-binsize/2,MatRCenterY-binsize/2,MatRvRmean,C); 
            col = colorbar; 
            ylabel(col,'Radial velocity (m/s)','FontSize',20); 
            caxis([-3,3]) 
            colormap(hot) 
            axis equal 
            axis([Rmin Rmax-binsize Ymin Ymax-binsize]) 
            box on 
            xlabel('Radius (mm)','FontSize',20); 
            ylabel('Elevation (mm)','FontSize',20); 
            %zlabel('Z (mm)','FontSize',20); 
            set(gca,'FontSize',20) 
            view(2); 

             
            %DISPLAY ANGULAR VELOCITY (TOROID BINS) 
            %----------------------------------------------------------------

---------% 
            subplot(1,3,2) 
            C=MatRvAmean; 
            surf(MatRCenterR-binsize/2,MatRCenterY-binsize/2,MatRvAmean,C); 
            col = colorbar; 
            ylabel(col,'Angular velocity (rad/s)','FontSize',20); 
            caxis([0,1000]) 
            colormap(hot) 
            axis equal 
            axis([Rmin Rmax-binsize Ymin Ymax-binsize]) 
            box on 
            xlabel('Radius (mm)','FontSize',20); 
            ylabel('Elevation (mm)','FontSize',20); 
            %zlabel('Z (mm)','FontSize',20); 
            set(gca,'FontSize',20) 
            view(2); 

             
            subplot(1,3,3) 
            C=MatRvYmean; 
            surf(MatRCenterR-binsize/2,MatRCenterY-binsize/2,MatRvYmean,C); 
            col = colorbar; 
            ylabel(col,'Vertical velocity (m/s)','FontSize',20); 
            caxis([-3,1]) 
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            colormap(hot) 
            axis equal 
            axis([Rmin Rmax-binsize Ymin Ymax-binsize]) 
            box on 
            xlabel('Radius (mm)','FontSize',20); 
            ylabel('Elevation (mm)','FontSize',20); 
            %zlabel('Z (mm)','FontSize',20); 
            set(gca,'FontSize',20) 
            view(2); 

            
        end 
    end 
end 

  
%%%%%%%%%%%%%% END TOROID BINNING (WRAPPING INTO SINGLE PLANE) %%%%%%%%%%%%%% 

  
%%%%%%%%%%%% CUBIC BINNING (For volume averaging of quantities)%%%%%%%%%%%%%% 

  
if SwitchVolumetricBinning==1 
    if SwitchDataFit==1 || SwitchReuseDataFit==1 
        if SwitchVelocityCalculations==0 
            disp(['SwitchVelocityCalculations must be turned on for Cubic 

Binning']) 
        else 
            %Cartesian Coordinates 
            binsize=BinSize; % Edge length of the cubic occupancy bin (mm) 

             
            EdgesX=[Xmin:binsize:Xmax]; % Creating the bin boundaries 
            EdgesY=[Ymin:binsize:Ymax]; 
            EdgesZ=[Zmin:binsize:Zmax]; 

             
            nbbinX=(length(EdgesX)-1); % Counting the bins 
            nbbinY=(length(EdgesY)-1); 
            nbbinZ=(length(EdgesZ)-1); 
            nbbin=nbbinX*nbbinY*nbbinZ; 
            bincount=0; 

             
            MatCount=zeros(nbbinX,nbbinY,nbbinZ); %Initialisation of a 3D 

matrix to count location in the bins. 

             
            MatCenterX=MatCount; %Initialisation of a 3D matrix to store X 

location of the center of the bins. 
            MatCenterY=MatCount; 
            MatCenterZ=MatCount; 

             
            MatTime=MatCount; %Initialisation of a 3D matrix to store the 

Time in the bin. 
            % MatX=MatCount; %Initialisation of a 3D matrix to store the X 

axis travel distance in the bin. 
            % MatY=MatCount; 
            % MatZ=MatCount; 
            MatvX=MatCount; %Initialisation of a 3D matrix to store X speed 

in the bin. 
            MatvY=MatCount; 
            MatvZ=MatCount; 
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            %MatR=MatCount; 
            MatvR=MatCount; 
            MatvA=MatCount; 

             
            for kk=1:nbbinZ 
                ET=Tfit; %Reset the matrix of locations 
                EX=Xfit; 
                EY=Yfit; 
                EZ=Zfit; 
                Eid=idfit; 

                 
                EZmin=EdgesZ(kk); %Selecting the bin Z lower boundary 
                EZmax=EdgesZ(kk+1); %Selecting the bin Z upper boundary 
                EtZ=EZ>=EZmin & EZ<EZmax; %Filtering the data to keep only 

data point found into the Z Edges of the bin 

                 
                ET=ET(EtZ); 
                EX=EX(EtZ); 
                EY=EY(EtZ); 
                EZ=EZ(EtZ); 
                Eid=Eid(EtZ); 

                 
                for jj=1:nbbinY 
                    EET=ET; %Reset the matrix of locations 
                    EEX=EX; 
                    EEY=EY; 
                    EEZ=EZ; 
                    EEid=Eid; 

                     
                    EEYmin=EdgesY(jj); %Selecting the bin Y lower boundary 
                    EEYmax=EdgesY(jj+1); %Selecting the bin Y upper boundary 
                    EEtY=EEY>=EEYmin & EEY<EEYmax; %Filtering the data to 

keep only data point found into the Y Edges of the bin 

                     
                    EET=EET(EEtY); 
                    EEX=EEX(EEtY); 
                    EEY=EEY(EEtY); 
                    EEZ=EEZ(EEtY); 
                    EEid=EEid(EEtY); 

                     
                    for ii=1:nbbinX 
                        EEET=EET; %Reset the matrix of locations 
                        EEEX=EEX; 
                        EEEY=EEY; 
                        EEEZ=EEZ; 
                        EEEid=EEid; 

                         
                        EEEXmin=EdgesX(ii); %Selecting the bin X lower 

boundary 
                        EEEXmax=EdgesX(ii+1); %Selecting the bin X upper 

boundary 
                        EEEtX=EEEX>=EEEXmin & EEEX<EEEXmax; %Filtering the 

data to keep only data point found into the X Edges of the bin 

                         
                        EEET=EEET(EEEtX); 
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                        EEEX=EEEX(EEEtX); 
                        EEEY=EEEY(EEEtX); 
                        EEEZ=EEEZ(EEEtX); 
                        EEEid=EEEid(EEEtX); 

                         
                        nbpoints=length(EEET); % Counting how many locations 
                        MatCount(ii,jj,kk)=nbpoints; % Writting the number of 

location in the bin 
                        MatCenterX(ii,jj,kk)=EdgesX(ii)+binsize/2; %Writting 

the bin center X coordinate 
                        MatCenterY(ii,jj,kk)=EdgesY(jj)+binsize/2; 
                        MatCenterZ(ii,jj,kk)=EdgesZ(kk)+binsize/2; 

                         
                        id1=EEEid; % Getting the id of each location in the 

bin 
                        Tbin=0; % Initialisation of time count 
                        Xbin=0; % Initialisation of distance count 
                        Ybin=0; 
                        Zbin=0; 
                        Rbin=0; 
                        Abin=0; 
                        vXbin=0; 
                        vYbin=0; 
                        vZbin=0; 
                        vRbin=0; 
                        vAbin=0; 

                         

                         
                        bincount=bincount+1; 

                         
                        if length(id1)>1 
                            for iT=1:nbpoints 
                                Tbin=Tbin+Tfit(id1(iT)); 

                                 
                                Xbin=Xbin+Xfit(id1(iT)); 
                                Ybin=Ybin+Yfit(id1(iT)); 
                                Zbin=Zbin+Zfit(id1(iT)); 
                                Rbin=Rbin+Rfit(id1(iT)); 
                                Abin=Abin+Afit(id1(iT)); 
                                vXbin=vXbin+vXfit(id1(iT)); 
                                vYbin=vYbin+vYfit(id1(iT)); 
                                vZbin=vZbin+vZfit(id1(iT)); 
                                vRbin=vRbin+vRfit(id1(iT)); 
                                vAbin=vAbin+vAfit(id1(iT)); 

                                 
                            end 
                            MatTime(ii,jj,kk)=Tbin; 
                            MatvX(ii,jj,kk)=vXbin/nbpoints; 
                            MatvY(ii,jj,kk)=vYbin/nbpoints; 
                            MatvZ(ii,jj,kk)=vZbin/nbpoints; 
                            MatvR(ii,jj,kk)=vRbin/nbpoints; 
                            MatvA(ii,jj,kk)=vAbin/nbpoints; 
                        else 
                        end 
                    end 
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                end 
                %     clc; 
                %     percent_bin=bincount/nbbin*100 
            end 

             
        end 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% %DISPLAY 3D LOCATIONS COLORED BY VELOCITY MAGNITUDE 
% %-------------------------------------------------------------------------% 
% figure(67) 
% NbPart=500; %Number of particle wanted in the animation 
% NbLoc=20; %Number of location shown on the trace 
%  
% Tmarker=linspace(min(T),max(T),NbPart+1); %Time stamp to start trace 
% NbFrame=length(T)/length(Tmarker-1)-NbLoc; %Number of point per time 

interval 
% Frate=(length(T)/length(Tmarker-1))/((max(T)-min(T))/length(Tmarker-1)); 

%Real frame rate 
%  
% NbFrame=floor(NbFrame) 
% Frate=floor(Frate) 
%  
% for i=1:(NbFrame) 
%     g=figure('position', [0, 0, 700, 850]); %700 900 
%  
% %     for n=1:length(R)-1 
% %         [x1 z1 

y1]=pol2cart((0+pi/2:maxA/nbp:maxA+pi/2),R(n),Zfull(:,n)'); 
% %         [x2 z2 

y2]=pol2cart((0+pi/2:maxA/nbp:maxA+pi/2),R(n+1),Zfull(:,n+1)'); 
% %         surface([x1;x2],[y1;y2],[z1;z2],'FaceColor','[0.6 0.6 

0.6]','FaceAlpha',0.3,'EdgeColor','[0.4 0.4 0.4]','EdgeAlpha',0.7); 
% %     end 
%  
%     for j=1:NbPart 
%         startI=j*NbFrame+i; %Starting index of the trace for each trace 
%         stopI=startI+NbLoc; %Final index of the trace for each trace 
%         %         hold on 
%         %         scatter(X(startI),Y(startI),Z(startI)) 
%         hold on 
%         if T(stopI)-T(startI)<5 %Time in seconds between passes 
%             h = surface([X(startI:stopI), X(startI:stopI)], 

[Y(startI:stopI), Y(startI:stopI)], [Z(startI:stopI), 

Z(startI:stopI)],[vM(startI:stopI), 

vM(startI:stopI)],'LineWidth',3,'EdgeColor','flat', 'FaceColor','none'); 
%         else 
%         end 
%     end 
%  
%     hold off 
%     colormap cool 
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%     col = colorbar; 
%     ylabel(col,'Velocity Magnitude (m/s)','FontSize',14); 
%     axis equal 
%     caxis([0,8]) 
%     axis([-50 100 320 400 -100 50]); 
%     xlabel('X (mm)','FontSize',14); 
%     ylabel('Y (mm)','FontSize',14); 
%     zlabel('Z (mm)','FontSize',14); 
%     grid off 
%     set(gca,'FontSize',14) 
%     AZ=0; 
%     EL=0; 
%     view(AZ,EL); 
%     %view(2) 
%     %camorbit(-40,25,'camera') %50 15 
%     %campos([-400 -30 740]) 
%     %camorbit(i*2,5,'camera') 
%  
%     fig=gcf; 
%     fig.PaperUnits='inches'; 
%     fig.PaperPosition = [0 0 7 8.5]; 
%  
%     I=getframe(gcf); 
%     imwrite(I.cdata,sprintf('FIG%d.png',i)); 
%     %print(sprintf('FIG%d.png',i),'-dpng','-r150') 
%     %saveas(g,sprintf('FIG%d.png',i)); %Save the image 
%     clc; 
%     close all; 
%     NbFrame 
%     Frate 
%     percent_printing_images=i/NbFrame*100 
%  end 
% figure(6666) 
%  subplot(3,1,1) 
%     plot(Tfit,Xfit,'ro','LineWidth',2,'MarkerSize',5); 
%     hold on 
%     plot(T,X,'bo','LineWidth',1,'MarkerSize',3); 
%     axis([Tmin Tmax Xmin Xmax]) 
%     xlabel('T (s)','FontSize',20); 
%     ylabel('X (mm)','FontSize',20); 
%     grid on 
%     legend('Fit', 'Initial locations') 
%     set(gca,'FontSize',20) 

  
%%%%%%%%% MOVIE -- DISPLAY 3D LOCATIONS COLORED BY VELOCITY MAGNITUDE %%%%%%% 
if SwitchMovie==1; 

         
    close all 
    NbPart=15000; %Number of particle wanted in the animation 
    NbLoc=20; %Number of location shown on the trace 

     
    Tmarker=linspace(min(Tfit),max(Tfit),NbPart+1); %Time stamp to start 

trace 
    NbFrame=length(Tfit)/length(Tmarker-1)-NbLoc; %Number of point per time 

interval 
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    Frate=(length(Tfit)/length(Tmarker-1))/((max(Tfit)-

min(Tfit))/length(Tmarker-1)); %Real frame rate 

     
    NbFrame=floor(NbFrame) 
    Frate=floor(Frate) 

         

     
    for i=1:(NbFrame) 
        g=figure('position', [0, 0, 700, 850]); %700 900 

         
        %     for n=1:length(R)-1 
        %         [x1 z1 

y1]=pol2cart((0+pi/2:maxA/nbp:maxA+pi/2),R(n),Zfull(:,n)'); 
        %         [x2 z2 

y2]=pol2cart((0+pi/2:maxA/nbp:maxA+pi/2),R(n+1),Zfull(:,n+1)'); 
        %         surface([x1;x2],[y1;y2],[z1;z2],'FaceColor','[0.6 0.6 

0.6]','FaceAlpha',0.3,'EdgeColor','[0.4 0.4 0.4]','EdgeAlpha',0.7); 
        %     end 

         
        for j=1:NbPart 
            startI=j*NbFrame+i; %Starting index of the trace for each trace 
            stopI=startI+NbLoc; %Final index of the trace for each trace 
            %         hold on 
            %         scatter(X(startI),Y(startI),Z(startI)) 
            hold on 
            if Tfit(stopI)-Tfit(startI)<5 %Time in seconds between passes 
                h = surface([Xfit(startI:stopI), Xfit(startI:stopI)], 

[Yfit(startI:stopI), Yfit(startI:stopI)], [Zfit(startI:stopI), 

Zfit(startI:stopI)],[vMfit(startI:stopI), 

vMfit(startI:stopI)],'LineWidth',3,'EdgeColor','flat', 'FaceColor','none'); 
            else 
            end 
        end 

         
        hold off 
        colormap cool 
        col = colorbar; 
        ylabel(col,'Velocity Magnitude (m/s)','FontSize',14); 
        axis equal 
        caxis([0,8]) 
        axis([-50 100 320 400 -100 50]); 
        xlabel('X (mm)','FontSize',14); 
        ylabel('Y (mm)','FontSize',14); 
        zlabel('Z (mm)','FontSize',14); 
        grid off 
        set(gca,'FontSize',14) 
        AZ=0; 
        EL=0; 
        view(AZ,EL); 
        %view(2) 
        %camorbit(-40,25,'camera') %50 15 
        %campos([-400 -30 740]) 
        %camorbit(i*2,5,'camera') 

         
        fig=gcf; 
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        fig.PaperUnits='inches'; 
        fig.PaperPosition = [0 0 7 8.5]; 

         
        I=getframe(gcf); 
        imwrite(I.cdata,sprintf('FIG%d.png',i)); 
        %print(sprintf('FIG%d.png',i),'-dpng','-r150') 
        %saveas(g,sprintf('FIG%d.png',i)); %Save the image 
        clc; 
        close all; 
        NbFrame 
        Frate 
        percent_printing_images=i/NbFrame*100 
    end 

     

     

     
    %COMBINE FRAME INTO VIDEO 

     
    writerObj = VideoWriter('hydrovid.avi'); 
    writerObj.FrameRate=Frate/500; 
    %writerObj.Quality=100; 
    open(writerObj); 
    %Number of repeats 
    for ww=1:10 
        for K = 1 : NbFrame 
            clc; 
            NbFrame 
            Frate 
            percent_video_writing=K/NbFrame*100+ww*100 

             

             
            filename = sprintf('FIG%d.png', K); 
            thisimage = imread(filename); 
            writeVideo(writerObj, thisimage); 
        end 
    end 
    close(writerObj); 
end 

  

 

 

  



241 

Appendix C: Figure and Coauthor Permissions 

Appendix C.1 Figure Permissions 

 



242 

 



243 

 



244 

 



245 

 



246 

 



247 

Appendix C.2 Author Permissions 

Appendix C.2.1 Darryel Boucher 

 

Appendix C.2.2 Luis Vinnett 

 



248 

Appendix C.2.3 Ray Langlois 

Appendix C.2.4 Randolph Pax 

  



249 

Appendix C.2.5 Thomas Leadbeater 

 

  


	Abstract
	Résumé
	Acknowledgements
	Contribution of Authors
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1: Introduction
	1.1 Background
	1.1.1 Minerals, Rocks and Ores
	1.1.2 The Basics of Mineral Processing
	1.1.3 Mineral Demand, Depletion and Need for Development
	1.1.4 Designing the Future – The Need for Computers

	1.2 Thesis Objectives
	1.3 Thesis Structure
	1.4 References

	Chapter 2: Literature Review - Classification
	2.1 Chapter Overview
	2.2 Introduction
	2.3 Importance of Classification in Mineral Processing
	2.4 Types of classifiers
	2.5 Classification Vs. Screening
	2.6 The Hydrocyclone
	2.6.1 Basic design, operation and sizing
	2.6.2 Characterisation of hydrocyclone performance
	2.6.2.1 Flow Split
	2.6.2.2 The Partition Curve
	2.6.2.3 Sharpness of Cut
	2.6.2.4 By-pass Fraction in Underflow
	2.6.2.5 Fish-hook effect
	2.6.2.6 Short-Circuiting of Feed to Overflow

	2.6.3 Factors affecting hydrocyclone performance
	2.6.3.1 Cyclone Diameter
	2.6.3.2 Feed Inlet Diameter and Type
	2.6.3.3 Vortex Finder Diameter and Length
	2.6.3.4 Apex or Spigot Diameter
	2.6.3.5 Cone Angle, Hydrocyclone Length
	2.6.3.6 Inclination of Hydrocyclone
	2.6.3.7 Feed Rate (Capacity) and Pressure Drop
	2.6.3.8 Pulp Density (Viscosity)

	2.6.4 Mathematical Models of hydrocyclones
	2.6.4.1 Equilibrium Orbit theory
	2.6.4.2 Residence Time Theory
	2.6.4.3 Crowding Theory
	2.6.4.4 Turbulent Diffusion Theory
	2.6.4.5 Empirical Models
	2.6.4.6 Model Summary


	2.7 References

	Chapter 3: A review of the computational modelling of hydrocyclones – a need for understanding and prediction
	3.1 Abstract
	3.2 Introduction
	3.3 Turbulence Modelling in the Hydrocyclone
	3.3.1 The k-ε Turbulence Models
	3.3.1.1 Model Constants

	3.3.2 Reynolds stress model (RSM)
	3.3.2.1 Modelling the Pressure-Strain Term
	3.3.2.2 Model Options and Constants

	3.3.3 The Large Eddy Simulation (LES) Model
	3.3.3.1 Subgrid-Scale Models

	3.3.4 Comparative studies of turbulence models

	3.4 Multiphase Modelling of the Hydrocyclone and its Interphase Transfer
	3.4.1 Introduction to Multiphase Modelling
	3.4.1.1 The Volume Of Fluid (VOF) Model
	3.4.1.2 The Mixture Model
	3.4.1.3 The Eulerian Model
	3.4.1.4 The Discrete Particle Model (DPM)

	3.4.2 Air-core Modelling
	3.4.2.1 Simplifications of the Air-core
	3.4.2.2 Applications of the VOF Model
	3.4.2.3 Applications of the Mixture Model
	3.4.2.4 Comparison between Mixture and VOF Models

	3.4.3 Particle Modelling
	3.4.3.1 Low vs High solid concentration flows
	3.4.3.2 Comparison of the LPT and Mixture models
	3.4.3.3 Particle sphericity
	3.4.3.4 Phase Coupling and Interactions


	3.5 Boundary Conditions and Computational Requirements
	3.5.1 Computational Time and Memory
	3.5.2 Two-Dimensional Vs Three-Dimensional Analysis
	3.5.3 Boundary Conditions
	3.5.3.1 Feed inlet
	3.5.3.2 Pressure outlets
	3.5.3.3 Wall functions


	3.6 Numerical Method and Simulation Conditions
	3.6.1 Mesh Development and Independence studies
	3.6.1.1 Types of Meshing
	3.6.1.2 Mesh Refinement
	3.6.1.3 Mesh Independence and Quality Analysis

	3.6.2 Solution Methods
	3.6.2.1 Pressure-Velocity Coupling
	3.6.2.2 Spatial Discretisation
	3.6.2.3 Temporal Discretisation

	3.6.3 Steady State vs Transient Solutions (Time Steps)
	3.6.4 Judging Convergence – Residuals and Quantity Balancing
	3.6.5 Solution Initialisation and Controls

	3.7 Validation of Hydrocyclone Models
	3.7.1 Water flow validation
	3.7.1.1 Global Validation
	3.7.1.2 Local Validation

	3.7.2 Air-Core Validation
	3.7.3 Particle flow validation
	3.7.3.1 Global Validation
	3.7.3.2 Local Validation


	3.8 Conclusions and Future Direction
	3.9 Acknowledgments
	3.10 References

	Linking Paragraph between Chapter 3 and Chapter 4
	Chapter 4: Performance Analysis of a New Positron Camera Geometry for High Speed, Fine Particle Tracking
	4.1 Abstract
	4.2 Introduction
	4.3 Experimental
	4.3.1 Determining Tracer Location – The PEPT Algorithm
	4.3.2 PEPT Detection Cameras – Positron Cameras
	4.3.3 Constrained Trajectory Setup
	4.3.4 Trajectory Error Analysis Code Development

	4.4 Results and Discussion
	4.5 Applications
	4.5.1 Hydrocyclone trajectory
	4.5.2 Flotation track

	4.6 Conclusions
	4.7 Acknowledgments
	4.8 References

	Linking Paragraph between Chapter 4 and Chapter 5
	Chapter 5: Improvements in Positron Emission Particle within a Hydrocyclone
	5.1 Abstract
	5.2 Introduction
	5.3 Experimental
	5.3.1 Creation of tracer particles
	5.3.2 Positron Cameras - ADAC Forte Camera
	5.3.3 Positron Cameras - Modular detector assembly
	5.3.4 Hydrocyclone apparatus and operating procedure

	5.4 Data Processing
	5.4.1 Determining tracer location and optimising track code parameters
	5.4.2 Data Clean-up
	5.4.3 Trajectory Smoothing Technique
	5.4.4 Averaged Quantities – Lagrangian to Eulerian particle tracking

	5.5 Results and Discussion
	5.5.1 Comparison of ADAC and Modular Cameras
	5.5.2 Three dimensional trajectories
	5.5.3 Velocity Profiles

	5.6 Conclusions
	5.7 Acknowledgements
	5.8 References

	Linking Paragraph between Chapter 5 and Chapter 6
	Chapter 6: A CFD Simulation of a Single Particle’s Trajectory inside a Hydrocyclone with Validation through PEPT
	6.1 Abstract
	6.2 Introduction
	6.3 Simulation Method
	6.3.1 Turbulence Model
	6.3.2 Multiphase Model
	6.3.3 Mesh Structure and Qualities
	6.3.4 Solution Initialisation and Methods

	6.4 Results and Discussion
	6.4.1 Water flow split measurements
	6.4.2 Comparison of tangential velocities to literature
	6.4.3 Particle trajectory comparison to PEPT.

	6.5 Conclusions
	6.6 Nomenclature
	6.7 Acknowledgements
	6.8 References

	Chapter 7: Conclusions, Contributions, and Future Work
	7.1 Conclusions
	7.2 Contributions to Original Knowledge
	7.3 Considerations for Future PEPT Experimentation in the Hydrocyclone
	7.4 Suggestions for Future Work

	Appendix A: Supplementary Data
	Appendix A.1: Supplementary Results from Chapter 4
	Appendix A.2: Supplementary Results from Chapter 5

	Appendix B: Matlab Code
	Appendix B.1: Matlab Code for Automated Parameter Input into the track Code
	Appendix B.2: Matlab Code for Analysing Fixed Trajectory Data
	Appendix B.3: Matlab Code for Analysing Hydrocyclone Trajectory Data

	Appendix C: Figure and Coauthor Permissions
	Appendix C.1 Figure Permissions
	Appendix C.2 Author Permissions
	Appendix C.2.1 Darryel Boucher
	Appendix C.2.2 Luis Vinnett
	Appendix C.2.3 Ray Langlois
	Appendix C.2.4 Randolph Pax
	Appendix C.2.5 Thomas Leadbeater



