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ABSTRACT 

1 

" 
The,gradient algorithm for computing the ~teady~sta~e, 

r 
" periodic response of circuits ha~ be~n derive~ on the basis of a , , 

genera~i~ab~eaU representa:ion of the netwo~k equations. 

contrast to the state variable fO~~lation which was ;e:~~t~y 
\ ' 

In 

re-

ported, the presert one lends itself to straightforward imPlem~nta-O 

/tion in modern transient analysis programs fo; ,large scale, nonlineJr 
'\ 

17 
circui'ts, which make use or sparsermatrix ~echniques. :The algorithm , 

has been implemented in one such program, SCAMPER, and details !l'f 

the program as weIl as results 'of tests with ~everal circuits are pre-, ' ,-
sented. 

,\ .l J \ 

The rate of conv7~gence,depends op the optimizatipn subroutine 
" . "i 
" and is sensitive to scali~g -of hoth the variable as well'as the gradien~ 
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' 1 

: L'~19or.ithme du' gradient pouJ~e calcul de la réponse 

périodique d'un circuit ft été derivé ,à 
o \ /' '\' ([ 

parti" d'une representation 
1 

généralisée en tableau ~es équat~~ns du ~irc~t." En co~traJte avec 
1 

." , 

ii 

la fO'rmulation selon' les va,iables d'état qui é! éte r~cemment publiée, 

'\ , , 
6e rapport presen'te une méthode plus aisement applicable ..aveô les pro-, 

, 1 

grammes moderne jbur l'analyse transitoirè de~ réseaux non-linéaire 

Cl r; , 

et de grande dimension, utilisant des techniques de matrices creuses. 
'1 

On a implanté l'algorithme sur le programme SCAMPER, les dé~ails du 

programme ~ussi bien qué les résultats 'des tests sur plusieuufs circuit~ 

, 

son t pre,sen té s • 
t .. 

d 
~. . ~ 

La convergence es resultats d~pend des sous-

progrJmmes d'optimisatiQn et est 
1 • 

sensible aux trartsformations yné'aires 

des variables aupsi bien que du v~cteur gradient. , 
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INTRODUCTION 

1 

, , 
'f .. ~ 

, " 
l ,"1 

, ''''j . " 
• 1 /" l 

" J 
1 

Many important classes of electronic circuits, such as 

'. 

power supplies, large signal ~plifiers, oscil1ators, et cetera, operate~ 

in the periodic steady-state mode and yet, because of their nonlinearity, 
f,; 

the designer is usually forced to analyze thern usin~ tirne damain, tran-

sient analysis computer frograms. The periodic steady state solutign 

can be found"by the continuaus integration. ("brute force" meth~) of the 
, ., 

.~-

_systemequations until aH the transient components die fJ-way. fIowever, 

such circuits are l'more often than nbt, lightly damped, in which case 

this method becames prahibitively expensive because the integration pro-

cess has to be cantinued for a very large number of periods. Re~ently 1 

1 

this prablern has receiyed considerable attention which has yieldetÂ 

\ . 
several procedùres for computing the steady-state response of nonlinear 

circuits at a cast which is cansiderably less than ~at 'for the "brutJ ' 

force" methcxl 

In 1972, Aprille and Trick [1] propased a method for the 

steady-state analysis of nonlinear circuits with periodic input which fs 
, 

based on the Newton algorithm and,which they implemente~ using astate 

variable formulation of the neliwork equations. 

iteratively to adjust the initial conditions at 

ù 
The Newton step is used 

sorne time to until the 

diJ;ference between these and the conditions at time t = t + T, 
P 

where 
" 

T is the period, is negligible. An extension of this method to the 

,oscillatory (autonomous) case' wa,s given in [2], where the period T is 

1 tr 

( 
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<7 

considered as an unkilown together wi th the initial conditions. The 
'0 

restriction of Uping the state variable representation of the network 
'r 

l, 
equatwns is inconvenient because it preyents the implemel),tatioIj.' of the ,. 
method in transient analysis programs which are based,on the tableau 

representation and which, ' consequently, can handle large problerns.; 
1 

Generalization of the Newton method without this/restriction were, re-
l' 

, 
porte? ~'P [3] f, [4], and [5] • Director [5] used ~e concept of the 

'/ 

"adjoint networks" which he had 'introducedi in [6], while Trick et al 
,! 

" /, 't' 't ' l't " t senS1 1V1 y C1rcu~ s concep. l, ,1 

[3], [4]/ based théi,r approach on the 

In fact, both the adjoint networks and th~ sensitivity circuits concepts 
,/ 

can be applied to ej,ther the state variabl'e or the, tableau form, which 
,i 

ever is more suitable. If the network MlS N reacti ve elements, both 
/' 

techniques - the sensitivity c,ircuits or :i~he adjoint networks - involve 

the integration of N adjoint ~ystems ok equations in addition to the 

original ïetwork equations over one full' period. 

rate order N, the Ne,wton method works quite weIl. 

For networks'of mode-

But for high order ;' 
. , 

systems (say N> 50), the computational cost may be prohibitive, and 

numerical difficulties may be encountered due to necessity of solving 

systems -of large and full matrices. 
1 

A second direction for solving the periodic steady-state 
iJ 

problem was initiated by Nakhla and Branin [10], fllJ, uSing an opti-

mization-like 

qunction <1> , 

approach, called the gradient method.\ 
/ \ 

is defined which reflec~s the state ~f 
(. 

A performance 
/ 

the system rela-

tive to its steady-state. The firs~derivatives (gradient) of the 

,. 



,< 

" 

. , 
-f. 

-1\ , ( '~ 

3 

--
objective function with respect to the initial conditiGns of the state 

variables 
) . . 
:lIC

O
' 5}-n add1tion to both, X o 

r " 

and ~ are pa5sed to an 

optimization routine~' Thenew v~lues o~ ,Xo 

l ' 
Il' el 

returned by. the optimiza- ' ( 

tion routine are used to update" the in1tifl,l conditions of the system. ' , 

~his proc~ss i5 repeated untilothe objective function ~. ~eaches a 

, J 

specified minimum ~hich is considered to correspond to the steady-st~te. 
t ( ~ 'i 

The effort required in:the gradient ,tnethod for each iteration is the 

integratipn of only twp'systems of equations over one period, the origi­
,r 

nai system in the forward' direction, and the corresponding adjoint 

variationai system in the ,backward direction. The gradient method is 

'characterized by its l.ow cost of integration per itération step as well 

as by its freedom from potential numerical stability problems. Nakhla 

.- l 
and Bran1n [10] implemented the gradient,.method ~sing the state vari-

l , 

able formula,tion, ~lthouglt they did also discus,s' a more ge~ral approach 
/ \. .. 

f ", 

to their method •. However, it waS' not parti"Cularly s,uitable, for"api>~ic,a-tion with , 

,;; analysis programs based on t)1e tableau re~l::esentatio? of the netwo:d;, .. ", 
.1\'\ 'l' ,,1" 

equatiotls. ;rt shbuld be ~entioned here 'that a similar gradient. meth~":' 
'f \ : 1 ,! ~ , ... : ~ .. , t 

was used hy Director . [1 - 9] in: o~Ùm5,tzing rionlinear circuits. In 
e, 

',' 

[8], (9) 
i. J. 

C~rent and D~reGtor showed that the optimization problem c~ 

-t ' ,~ 

be exten4~d to include that.of;determining the periodic, steady-state as 
4, "'i ' 

; ., t.,; 

weIl. In other' words, the~variab}e space can he extellded to linclude 
.~. r ''1)1. "J; , • 

,'lhot only' the optimization, parameters bût also the initial conditions o'f 

cJ' the network. 

, 
• . ' , f 

j' 

f 
" 

:-

'i f 
r,C; 

., , 

f 

l -------,----- . 
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A third direction for determin1.ng the steaèly-state of 

periodically forced nonlinear systems was given by Skelboe [16) and 

caUed the extrapolation met:hod. 1: This approach is based on the 
, Il 

< E: - a~gorithm by Wynn [15) and is, in fact, a sequencE7-to-sequence 

transformation where the € - algori thIil st~p is used to modify the 

'i.nitial conditi.ons in a nonlinear sequence of operations. The al ,go-
~ ~ -
t ? 

rit.hm does not require the computat;i,.on of first derivatives (such as 

the sensiti.vity matrix for the Newton method, or the gradient vector for 
/ 

the gradient method) ,,' 1211.\:, in PIac,T I it req~ires. the integration of tP~. 
fi .! 

system over many peri'àds. The advantage of the extrapolation meth6d is " 1 ,', 
'its quadratic rate of convergence (or even higher). But there are many .-

t ~ ./ 

restricttJ ons on the rnethod su ch as the assUJ1iption that the syst~ is 
- f • 1 

.1 ~ _. ~ (ft' __ 

mi.ldly nonli:çtear and the re~irement that, the order Qf the sy~tem be not 
)., 

tao )iafge [16) • 
. " l, 

);, 

"" - /J" 

-~ , '. 

As meritloned above, the graqie:r:r!< method ~,iritroduced in (10) , 

[11) 
.~ 

~ . 
,,~ 

~ : 
was based on the state variable approach. In the 'ork reported 

/ 

here, a more general formulatiori is developed for use in transient analysis 
". ,,-;../ 

programs based on ti;l.bleau rE}pr~seritation of network equations. The de-

tailed impiementation 'of the resultant .algorithm in one such program 

SCAMPER ~ 
is given as well as the numerical results tao of sorne test pro-

... 'i­
plems sofved on the new pX'ogr~. 

1 
,In Chapter II, a survey of the above three methods for the 

.." r 

periodic steady-state analysis (Ne~ton method, gradient methda, 'and' extra-

polat~on method) are presented. 
( 

For the Newton ~thod, the }mplementa­
-é'!' 

~ 

.. 

'i 

,/ 
o 

_________ --:-'.:...-__ -J 

.,01;1.',. ----

, , 

.., 

< •• 
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5 

tion i5 discussed according to two different é;\pproaches, the sensitivity 

circuits [4], and the adjoint networks [51,' Also, for both the 

, , 
Newt:n and the extrrPalation ~thods. e~ecttitable algorithms suited to 

the genera1 representation of network ~quations are presented. In the 

, 
ca® of the gradient' method the! approach is the ~ame as that given by 

Nakh1a [11]. The chapt~r ends with a discussion of the advantag~s. _ 

and disadvantages of these methods. 
/ 

/ 

The gradient method based on the genera1 tableau representa-

tion is developed in Chapter III. Lagrangian multip1iers are, used in a 

manner similar to that ernployed by Director [8] to define the adjoint 

system of equations. A fairlJ general representation o~ the nJwork 

nonlinear i ti:es is ass\lIlled. The method is applied to the de and tran-
,f _ ~ 

sient ana1ysis pragram SCAMPER on re., basis of a particular ·èhôicé of 

the objective function ~ 

, 
In Chapter IV, sorne consideratièns related- ta the prob1em. ~ ( 

of spaling are prresented; and the n\lIllerical results of sorne test problems 
}.'~ - 1 

are given. It should be noted that the sarne examp1es 'were studied by 

many authars including Trick [1], [3], Director [5], Skelboe rl6), 

àiid Nakhla _ [11]. - Since the a1gorithm present-eè.. in Chapter III i:~es­
sentially a generalization of Nakhla 1 s rnethod and becJuse the- same 

• • 1 _ 

apt.itnization routine [22] was used, the results of bath studies are 

compared where possible and are shawn ta be in good agreement. 

•• r 

. .(/ 
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Chapter V"- i1, concerned wi th the }>rogramming pr'oblem. 

In. Part A, a review of the existincj dc and transient analysis program 
,- \ 

seMPER [19), [20] is given. The key features and procedures are , 1 

discussed, in particular, code generation, sparse mat~ix and pivoting 

, , 
techniques, _~ 

features of the 

error ~d step size cIntrot. In Part B, the main 

additional programmin reqhired for JJt\plementing the 

steady-state algorithm présented in Chapter III, are discussed. These 

features are : (1) relation between, the originarsystem and its adjoint, 

(2) the procedures for, ~enerating the necessa:ry code, se9ments for in-
( 

tegrating t~e adjoint system, (3) the problern of data manipulation 

1 

(retrieval from disk, interpolation), (4L;. @etting the initial condi-
1 

tions of"both the ori~inal and adj'oint systems, and (5) error and step 

size control. 1 

1 
The main results of ~he present w9rk )ire sununarized in 

Chapter VI, which co~cludes with a b~ief discussion of fur-ther improve-

] 11 1 

ients ta the present meth<>ï as weIl as of tOJ;>is,s for work in this area • 

/ 

... 
1 

r 
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CHAPTER II 

PERIOOIC STEADY-STATE ANALYSIS ALGORITHMS , 
1· ; 

The "riodie st.ady s~ate of an e~e~tJonie net,work can" be 

analyzed either in ~time domain or in the phase (frequency) demain. 

7 

~! F If the n~twork i5 almost linear, with relat;"ve.1;:y. few nonlinear elements, l, 
, c~ ~, 

and the harmonie content is not too large, 1rHe 'phase domain is prefer-

1 -r 
abl:e [25]. But, when the network containst a significant number of n&b.-

, . ~ 

linear elements with sharp nonlineariti~s, the time domain is more 

suitable. Since it is this latter class of circuits which we are in-

" 
terested in, the following discussion will concentrate o~ time domain 

f .... "IJ ~~~ , . 
algorithms. 

.' ~, 

0, 
,r ~ 

The objective here will be ta examine several algorit:lÜiis 
1 

-
for the computation of j:he periodic steady state, from the point of view' 

ef their suitability for inclusion in an existing de and transient 
1 

analysis Ptogr~1Jased on the sparse tableau approacl}. FurtheDllore, 

although we are primarily interested in the nonautontlmous case, ease of 
\ ' 1 

• l ' 
extensi~n to'the autonomous network is very JIsirable. Finally, an 

apP~~~ch which would permi t ~e subsequent i' lusien of circuit optimiza-
," 

tion ev~dently merits particularly serious consid€ration. 

The most recent algorithms are 'of the iterative type, and 

can be divided into two groups: 

(i) 

, Il 

'BI 
The self sustained algorithms, Le., those which do 

not need èxternal steps, such as ?Pti~l~atior' 

, \1, 

The 

, .> 

/ 
, " 

~' 

; 

" , \ 

1,; , 

'.-



~ 
J' 

'~ () 1 

Q., , ,.,.iJr' 

, . 

(ii) 

/' .,. 
" / 

Newton l1ethods [1 - 5] 

/ 
1 

1 
'} 

'r and the ext~apol~tion 
, " 

methods [16], are members of this group. 

, (1- / 
The optimization - like algorithms;, Le., th6se 

that lnvolve an externa1 optimization st~p to 

t ~ 

achieve the circuit analy$~s., The bast knO! 
. 1 . • . 

method in this group :i5 the gradient method 10], 

. i11] . 

8' 

./ 

In order to simplify the discussion, the reduce~ (state 
~ "': 

!variable) form of equations will be us~d, but more genera1 

1 wil~ b~ introdu~ed whère necessary: 

ripre ~~ntati~ns 

r 
i, 

i 

Assume that we have a system of nonlinear differential .. ' 
equations g1ven by, 

,-
ij 
Il' l" • 

q = f (q, t) 1 (2.1) 

where q 1s the diffeientiate~variable v~ctor, and f is a Rn vector 

, ~ .. 1 
and has a cantinurus, flrst order part~al dèrivat~ve w.r.

1 
to q for 

t < 0 , • >. Furthermore, "" assume that-the Sysje:, has .' Unire 
periodic solution trajectory of period T, i.e.~ j 

III q (t) ; q Ct + n T) n == L 2, 3, 
J. 

" 
, . 

We seek a set of initial conditions q (~o) at t = to' whtch will put 
.1 

the 'system lnto its periodic steady-s~ate, i.e., 

. r 0 

, v 
.' 

l' 

( 
1 

, <" 

, 

" .1 

.. , 

\ ' 



t 
o ~ .. 

"-

, 1 

c 

( 

. ~~ 
~ 

with 

1.\# 

1 .' . .. . ~ 

9 

" 

(2.2) 

is a discussion 'Of three steady-statelanalYSiS methods, 
-;- 7 

! 

':<Followi~g 
.f. \ 

\ 

particular arnphasis on 

, 1 
/' 

the algorithms and computational techn~ques.«, • 
f • 

f (l' \ 
'. 

. { 

~., 

r 

'<. 

Newton Method 

/ The IlapPlicatiO~ of th~ Newton method for the periodic steady-

state ~alysls w~s first introd,.uced ~Y fPrille and Trick [1]., Several 

improvemen~s of the computation techniques as well as extensions of the 

area of application are given in [2 - 5]. In . this section, - the Newton 
1 . 

~omPuttti~nJl techn~ques. will 
o 

iteration will be stated, and two dif!erent 

be _9iven, 'one uSing\~ approach"based on sensitivity circuns [4] r 

the other ~n adjoint networks [5]. 

and 

". 
., 

tDI' 1 
i 

qo - is the iniFal condition -Fo~ iteration number 
.. 
assume i, 

vector. lt is required to adjust qo' until the.difference between two 

aucceeding iterations ~1di.tions. 1 ~ q~ 1 = ( ~ t %+ ~ 1. ia 

less than t accePt~le lower limit, at' Whi]h the' s~st7~~~il~ be consi~ered 

,- in steady-state. The Newton itération use ta adjust the initial candi-

tion is given by: 

,. , 1 

~~O'+l = qi - (1 _ 
..". 0 

(2.3) 
/" 

.' 

. , 

\, 

, il 
' 1 11f. 
". 

, ,~ 

r 

l , 
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) 

" 

" .,',. ! 

~ 

r 
" 

dl 

r 

, ,"f) lJ }. L~ , \ 

r. 
,f, J' 

"-.~~ 3- ( 

" ~ " 1 
',( ~ 10 
" 

~ 
," 

.... :. i' 

where initial condition véctor, q (qo' T)· is the sa lu-

tio~ after one, full, Pt'ri~d' beypnd t~ iniyal poitl~ to' and' i 1s the 

iteration number. l, 

'( 

o 

" , Equation (2.3) can be set in a more suitable farm: 

Ji tl. 
i. 

Ei 
qo = (2.4.) 

f, " 
"-

where 
" 

'Ii 
<, 

l' âq (qo' -î:P :" i i l, 1 

J = l ~ D = l - " (2. Sa) . " a i 
qo 

l, 
" ~ '; . 

If :: ~r i i 1+1 fJ. :q (2. Sb) qo = - qo ,0 .\ 

" i i i 
, '. E q (:0' T) - qo " (2.5c) ., l, ., 

.Y f 
~ i ' . âq (qo, T) 1fh 

'l'he t~'hn Di i, 'f.;;.., • , , • = i is called t~Jsensl.tl.vl.ty matrl.X, as-it f~ 
âQO ,# ' >r ~ 'V 

gives the variation of the final state at, t = ta +. T, w.r. to a per­

~~b.ation in the initial' condi,tfons at,,' '= tO. 

Henee, if the Jacobian J ~. 'the right hand side vector 
;;., E cail be d,e-

:j~ 

, i i i+1 termined, equation: (2. 4) can be sol ved te gi ve ·;'fqa = qo - q 
1 ,0 .. 

The' 

iteration will be terminated,if là, q~1 is 1ess than a specified limite 
,.s 

~he following are the main steps in the Newton algoi'ithm: 

;., 
.,; 

, 
:..-

;. 

'S 

f 
1 

~ 
.~ .~, 

,1 0<-

. 

/' 

" " 
el 

,. 
/" 

~ 

~ 

j 

~'f 

, .... 
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• 

Algor i thm 2 .1 ,. 
1 : ~, 
, ' 

~I (1) .Start with an' initial ~ay, by in~egrating 

for a few periods) . 

(2) i :; 0 • 

(3) Integrate further on complete period and determine 

(4) 

(5) 

(6,) 

i r· 
q (qa' T) ; hence~etermine E 

Compute (may be done simultaneously while deter-
• l, 

mining Eh 
\' <4 

Solve equation (2.M "(may be done usi~g LU factor.iza-
, ,~ 

, 
tion) for 

i and thence d~t~~in, 
i+l 

II qo . <la 
i .. 

Is III qol less than certain acceptable limit? 

1 
If' yes, STOP (the steady state solution is found) 

If not: 

i = i + l . 

IF i ip greater than a certain limit, STO~. 

~f not" put q~+ll as the nçw initial conditions. and 

go' ta Step 3. 

\ 

11 

\, 
\ 

If thè order of the system n (number of storage elemepts) 

i5 small, this ~190rithm. seems to be,very attractive as it has remarkably 

good Iconvergence criteri~. ~ut' in t~e cas~ of high order sys~~ms 
, (say n :1: 50), the drawbacKs will outweigh the convergence properties. 

r 

" i' 

1 

", 



~, 
... 

,J 

.~ 

" 
" 

Il''''' 

." 

f 

',' 
~ 

c 

Il 
h 

,1 

/ 

12 . 
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First.ly, the cost of éOffi)?uting the Jacobtrr.i ," J . 
',~ $~' 

will be very high, since 

it involves the analysis of n cii~~~ts 
~M; 

(adj~int networks, or' sensi'tf-
) ... -W 

YjLty circuits). SecondlYr th'~ ,Solutiyn o~ ,eewa,t'îon (2.4) involve's 

full matrices of order ·n which~ in addiitbn ta slowing down the exeCu-

1 \ 

tion speed, has sorne critical numerical stability problems. 'Thirdly, 

lit will not b~ possible to make use o~ the sparse matrix 'techniques u~ed 
1" ~ , ), 
in most recent progr~s, for so1~ïng equation (2.4). 

"1 

The he art of the above stated algorithm i5 the computation 
1 L . 

of the Jacobian J, Iwhich can be achieved using one of two methods: the 
1 

~ ~~ 

.' s~sitivity circuïts approach' [4], or the Adjoint Network method [6J. 
',,,;- '. j , 

These will n9w be briefly discussed. , 

/.' f' 
"" ,J 

2.1.1 Computa,!: ion of the Jacobian J Using the 

Sensitivit:;t Circuit A~proa~h 
., 

.,1 From equatirn (2. Sa) " 

Clq i (qo' T) ' .. 
Ji 

,,' 
oi = 1'- = l - i 

1 
aqo 

r 
.~ Put 

.... 

i 

oi!~ 
dq (qo' TJ i i oi Di] (2.6) = [Dl O

2 
. , , . 

i 
, . . . , 

aqo 
k n 

wherd 
1 ,) \ 

\ 
1 

\ 

\ 
\ , 

, ' 

'\ 
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" 

(2.7) 

'. 
is the" kth column of the sensitivity rnatrix Di 

.'To show how equation (2.7) can be computed, it i5 

necessary ta examine the sensitivity circuit [4], andl thence ta show 

how the computation of each colurnn of the sensitiyity rnatrix Dk will 

correspond té the solution of a sensitivity'circuit, after one full 
.' 

period with spec,ified initial conditions. 

" 

Conslder circuit equations defined in tableau forro by 

A i = 0 K C L (2.8a) 

At v = E KVL (2 ",9a) 

-1 

The branch constitutive (B .C.) relations - self or mutually depende;;f 

~
;can he· set in a genJral fona. 

For a non-reactive branch, 

1 r r 
V. v. (i ) 

J J rn 

For a capacitive branch, 

l''r (v) 
"c. rn 

J 

where 

,----------~------ ---, 

(2.10a) 

(2.;lla) 

r 

I~ 

r. 

.,. 
" 

1/. 



, , 

~~'., ., 
l' , , .... ~ 

i 
c. 

J 
= 

t 

d q 
è. 

-'1' ) 

d't 

For an induçtive branch 

, 

"and 1 V CO) 
m = v 

- mO 

= F Ci) 
,R.'j m 

where 

, 
d t 

i (9) 
ID 

= and 

Finally, for independent source 

l = 
s 

E = 

1 

l 1 (t) 
, sr 

(current source)' 

-" 
" --(voltage source) 

" 

• 14 

"''' 0, 
r 

, ' 

(2.1~a) 

(2.13a) 
! ' 

/ 1 

Assuming that the system has a unique solution, let us 

perturb tpe initial conditions of the differentiated variables (generally, 
- ! 

Wef will caU tt;:em qO)' one at a time. 'l'he result islobtained by dif- .,........ 

ferentiating equation (2. Sa) through (2. -J.4a) with respect to the kth 

differ,enti~ted var.i"ab1e qo 
k 

o 

, 0 

--- ' 
(2. Sb) 

• _ •. f.' 

-(2.9b) 

1 

!' 0 

.1;-

..1 l, 
! 
1 r 



(f .. av. av. 
-2 == ---1. 

aqo ai 
k 

ID 

e--"" 

, .~ 
.. ~ aq élq 

c. c. 
J J = 

a~ av 
k In 

,-
where Co. 

,~:r ··-3q-
"'" d c. 

Ir ( J = dt , aqa 
k 

-
and 

el 

" ~ 

',' ~ 

and 

o 
e,-.. . " 

. 

ai' 
m 

aqo 
. k 

av 
In 

aq;-
k 

c. 
] 

aq;~ 
1 . 

1., 

-;< 

----

15 

. 
(2. lOb) 

" 

ltf ~i· ;-~ 
(2.1lb) 

if C:lk corresponds to the di:t:ferentiated 

contraJ.11ng variable 0'lr ,,'. 

if 

av 
~e.~ 

aqa ' 
k 

m 

qk does not correspo~d ta v 
m 

(2.12b) 

if q]ç. does .not correspond to , 1m '\ 

J 
,1 

-l 
'j 

'1 
t 

~ 1 : __ 

,,>--~--------------~~-.~~-_.~------~--'--'~~====~----------------~. 
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Cl! 
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élQO 
1 k 

= 0 

o 

, ' 

,1 

.. 

, 1 
" 

\, 

(2.13b) 

JI (2.14b) 

/ \ 
\ A close examination of the corresponding pairs (a - b) of 

f, "\' '" " 

eqUa~iOns (2.8 - 2.14) wÙ.l show that equations (la},) (2.14b) 
, 

describe a circuit having the following properties: 

\ 

---'-~1-\,"'!':'---"'4;~:i:~~~-~arYi~g, if the ~d_gi~a~ circuit 

• 

·r 

- -1 

..... f, 

'\ contains nonlinear elements), having the sarne tOpology 
~ _ -~- ~-~- ~_7-.,-~ __ --: \ -. I?, .,' 1 

as the original circ~iti .r 

1 

\, 

-~--

" ,. 

'1 

<2> 

2. rthe ~ of '~ element 
r 

• 1. • 
oorrespondingi el-ement 

ls the sarne as that of the 
01/- - ------~ ~---- --------~- - ,., :--.-. -..,.~'-~---~i:---

3. 

of the original circuit; 

1 

i 
the value of an element 

(i) for a li~ear element is the same- as that of the 

. " 
original; 

I, f . 

" . 1 • 

(ii) for a nonlinear element i5 replace~~~~~~t=h~e~p~i~'è~c~e~-~ __ ~ __ ,~~~~ 

wise linearization at each titttè' point; 

(iiiL of an independent ~ou~ce is~;eplaced oy'a zero 
------~--_. __ .. 

-------
--->---"-- --- " 

'{ 

1 

source (i.e., short circuit.for an independent 

" voltage source, and.open ci~cuit· for an independent 

current source) 

," 

• 

. 

'fi 

., 

r 

. .., ....... 

f 1 

.. 

f ~ ... 

.~ 

l'-

,. 

: 

." 

.1 

-~' 
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" 
4. th &Y. • t . Id' . . ff . d e l.nl. l.a <con l.tl.ons of the dl. erentl.ate 

variables are replaced by a aource of unit y value 

if the differentiation is taken w.r. to this 

variable, and with a zero valued source if not. 

This circuit is called the sensitivity cirç~it. It should 

be noted that, corresponding to each reactive elément~ there must be an 

equivalent sensitivi.ty circuit. By solving the kth sensitivity cir-

cuit over one co~plete period starting at the initial point t o' the 

solution vector of the differentiated ~ariables at the ènd of the period 

1s just the kth column of the sensitivity matrix D. 

From a com~utational point of view, only one circuit (t~e 

original) is formed and the same coefficient Jacobian matrix, ~sçribin9 

bhe linearlzed system of e~uations (in tabléau fo~), is used but with 

a diffèrent forcing vrctor for the computation of each Dk' 
- ,; 

To show 
1> 

how this can bè done;' consider the general linearized tableau form 

B [ ~ lJ 
'q .... ~ -

, 1 ,~" 
~ ," it' 

= E ] 

where B is the toefficien~ Jacobian matrix, w the algebralc variable 

vector, q 

v-rctor • 

,~ 

the differential variable vector'~ and ,-

j, 
E \ is the forcing 

1 

The tableau forro for the kth ~ensitivity circuit is 

1 

" 

L 
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[ 0 J À (0) (2.16) 

, 
where ek is the kth unit y vector ,(Le., veètor of aIl zeros except 

the kth element value is unity)~ and u, À are, respectively, the 

vectors of the algebra~q and differentiated variables. 

The above methJa can be imPl~~ented by means of the follow-

ing algorithm for computing the sensitivity matrix D
NXN 

where J = l - ni' 

Algorithm 2.2 

1. 

1 
2. 

time point 

..... 
3. forro the coefficient Jacobian matrix (B) of the 

original circuit; save the non1inear entries 
/ 

o 

(if any) 

f 
4. solve the original system of equations (2.15) and 

save the solution vector and the necessary variables 

5. 

, 
6. load the Jacobian B (using the s~ored values 

) 
of the nonlinear 'entries (if an y) )--1: 

7. If it i5 the first time point, p~ .. " 
À (0) = -e

k
• . 

8. Solve the kth system of equations (2.16) and save 

the solution vector and the neceSsary variables (e .. 9., 

variables reguired_to compQte 
t 

À ) 
/ 

\ 
1 

" 

- ~-- , -

1 



f 

C 

( 

2.1.2 

. 
where 

9. 

10. 

If k less than N go ta step 5. 
,1 

\ 
If t < t + T, choose the next step size, and go 

, 0 

to step 2. 

Il.' Form the sénsitivity matrix D, by column, whe~e 

the kth colurnn Dk is the solution vector of the 

differentiated variables of the kth system. (Then 

J = l - D) . 

computa.tion of the Jacobian J 

Using the Adjoint Network Approach 

Tr ans form equation (2.6) into the form 

. 
i J, 

,Di 
~aq (~o' T) .t .t .t 

~ D~ 1 
= 

il i 
= [Dl , .... , Dk , 

2 
qo 

" 

i 
(qo' T) .t ôq

k ]t 1 
Dk = i Bgo 

is the kth row of the sensitivity matrix D. 

, ! 
Before describing an algorithm for computing ,D, it is 

19 

(2.18) 

necess~y to review the adjoi~t network concept [6), and its application 

[5]. 

o 

.. ---~'-'-'I 
• 0 

o 

.1 

r 
! 

, '. 
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( 
( " 

Consider an original network, with current and voltage 

variables i and v, respectively, and a corresponding "adjoint" 
, 

network with current and voltage variables i and v, respectively. 

Let. us assume the "adjoint" network to have the same topology as the 
1 

original network. In that case, using 'l'ellegen..' s theorem [27) 

tO+T 
~, 

J r " v. (t) i. ('"[ ) - i. (t) v, ('"[ ) ] dt = a 
ta j ) J ) J 

" 

where '"[ is the arbitrary time variable of the adjoint network. 
1 
1 

(2.19) 

r 
J ,'/ 
-.' If the original network variables are perturbed by f Il v., 

( J .1 

/ 
!J. 1., 

J 
Tellegen's theorem still holds for the perturbed state~ ,i.e. 

l 
j 

[ '!J. v. >lt) i. h) 
J ~ J 

lL j,j (i:r v j (1) ) dt ==, 0 (2.20) 

Using the assumptions given in ,[5], the adjoint network can be eXtracted 
.., 

from the original netw~rkIUs~; the fol1owing properties: 

/ 

1. The time variable of the adjoint system is 

2. 

or = ta + tf - t, where the final time 

tJ :=: ta + T. 

The r ~ of an ,adjoint,network e1ement is tpe 

same as the correspondi,ng one in the original net-

work and both networks have the saroe topol92Y' 

'1 

1 

'. 
" 
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l 
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r -

.( 

,. . 
-1t--

~:' ... 

• 0
1 

jo 

-' 

3. The value of ~1 ao.joint element is given by: 

(i) for a linear element~ its value; 

(ii) Jor a nonline'r element,tthe piecewise 

linearization of the original element 

value. -Thus the 

element is linear 

corresponding adjoint 

~'d time V~Ying. 
(iii) The independent source is replaced bX-

, -------.~ 
zero ~ur-ee--tr:e.,i~dependent 
---------

source is rèplaced by a 

the independent current 

by ah open cîr~it). 

,Il 
It ahould be noted [5] that, for 

adjOintl' networks each :r;eactive .element 

ta be replaced by a similar reactive element 

aJcompanied by an auxiliary source (para:lel 

eIement or series v~ltage source forcapacitive 

that auxiliary sourcé is 

Now J~ 
equal ta the initial 

ing branch. 

/ 
t 

tians of the adjoint 

kth :r;ow of the 

. 'lr 
be considered. 

1 < 

:remains re p~tblem of setting th~ ".1fitial cond1-
. ~ 

r active elements. Suppose we are computing the 

There are two éases [5J to 

'1 

l', 

1 

--.~ ____ -'I-
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(i) If ,the kth elernent is a capacitor, the initial 

(i.i) 

'condieion of the kth adjoint network is 
; , 

where e
k 

is equal to 

, 1 

(0,0, ••. , l, •. ,0) with 

~ the one in the kthlPosition. 

if the)! rnth elernen of the kth 

It can be shawn that 

adjoint network ... 

is capa.c::i~ive ~ 

'>, 

\ 
------------

(2.2la) 

{to + T) 
" (t »). ~)-~ 

Cl ie-_ (ta + T) - i v
co m c o e-

m 
rn 

But lf it is an inductor 

, . ' 

a v (t + ,T) 
c

k 
0 , 

a i1.0 
m 

= - L m 

, " 

m 

(ta» 1 (2. 23a) 

, 
If the 'kth element is an inducto~ hence the initial 

condition of the kth adjoint system is 

= 
1 

- --·',e . L k 
k 

, 
i' 

(2.21b) 

If thej mth element orthe kth adjoint s.'!..y~s.:t~em~i~s~a~ _____ -
.... ----

capacitor .......... 

'. 

l,· ----,-

" 
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.1>111 

Cl ii (ta + T) 
k 

C (v (ta + 'Il) (t
o

)·) = - v m 
(2.22b) 

Cl 
c c 

v cO ' m m 
m 

\ 
o 

But if it ls an inductor 

1 

-r ::= ta + tf 

computed at 

d iR.O 
m 

.. 
- L m ii (ta + T) - ii (ta» (2.23b) 

m m 

Due to the restriction imposed on the adjoint time variable 

- t, the cO'ificien~l~~cobian of fhe adjoint netw1rks is not 

the samé time point as the qriginal ne;twork. SO the adjoint 

computations have to be d~layed until after the original network integra-

tion over the whole pe~iod - (to--'t9- .to -+3)' and, the ne~ssary variables 
.' \ f l' --~-- - __ ~ 

, f 

Il 

have to he stored. Then, after ffinishing the origlnai- sY.§teIn1.ntegration,_ ---------1----1 

the adjoint system can be integrated in the opposite direction, usin~ the \ 

stored information. This is equiv~lent to i~tegrating barkward fram 

-From this discussion it should be clear t.hat th'e 
r 

adjoint nrtwork approach will slow down the'executlon speed relative to 

the sensi ivity circuit approach'. '~Also it may éause prograxnming diffi­

culties ~elated to the retrieval ~d~information' f~om disk and the inte:-

polatlon process as we~l. 

A computational algorithm can he computing 

the sensitivity matrix D, 

" 

\ 
.> .. , 

I~ 

1 
i 
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Algorithm 
r 

2.3 
,.,' 

/ 

1 

1 

". 

1. 

2. 

3,. 

" 
1 
1 l, Start at an irlitial tinte tO· Integra~e the 

. 
origihal system up to a final time, t = 

f ta '+ T. 

At~ea~h (aCceptrd) time point, store the necessary 

values of the nonlinear alements (if any). 

" 

a Construct the coeffioient JalObian of the adjO~nt 
system and generate the part of the code that per-

" 

form the LU factorization. Hence, for each 

adjoint system; generate the lother part, 'of the 

cpde (such as ~at required for.the forward and 

backward substitution) to be used for integrating 

each system, and~ave these codes.* 

k = a 
------~-( 

4. k = k + l 

5. 

il, 
If it is the first point, put the initial conditions 

according to equat~ons' (2.2Ia, b) i 

6. Load the Jacobian and the necessary variables. 
1 

Solve the system (by ~xecutîng'the generated code) 

24 

- * \ This step is oriented for a specifie time domain analysis program 
(SCAMPER) in which the integration i~Jdone using a generated machine 

\ code' s~ring. 1 But it can be mbdified depending on the features of.. the 
I>rogram ,used in the analysis. ' 

Il 
. 

t' 

----_--..-- . 

"1 

r-, 

CI 
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and save the necessary variaples (such as those 

needed for computrng 'the derivatives i ). 

1 7. If k , less than N 'go to step 4. 

8. If t :0:; ta go 
1 

top step 9 ~ 

, 
siep If t > ta 1 choose the next size and 

1 
go to step 3 ~ 

9. Formulate the rnatrix D, by row, us in~ the solu-
'\ 

tion vectors of the adjoint systems, where the 

c1tr~spondlng "" 
~ 

kth row i8 tlÎat to the kt)1 adj oint 
, 

system. 

2.2 The Extrapolation Methods 

The extrapolation methods l 
r 

e: - algoritlun [15J 
----_._- -

which does not require -the calculation of deriva-

tives (Sb~h as the gradient in the optimization-li~ algorithms or the 
• 1 .' '" l , : .,. ... 1 

sensitivity matrix in :helNewton methods). But, in pI,ace ot-this'I for 

a system wi th N ind~pendent differentia~ed, variables, 1- 2M'"'. 'solution 
... ~~. ~ 

vectors (M SN) must be determined over a titbe interval 2MT in order 
r 

to carry the algorithm one stepl where T is the period. 

~ 
Orig~nally! thr e: - algorithm proposed by WYnn [15] was 

oriented to the ~oîution of syste1r of linear ~ifferen~ial equations. 

With mildly nonlinear systems, and near the equilibrium (steady~state' 
, " 

\ 

.' 
'II 

, 
--' 

'~ 
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'. conditi~n) 1 the a1gorithm .. hopefully, can be applied to find this' solu-

tion with a quadratic convergence [12J, [13J. 

2.2.1 The ~ - Algorithm 

transform. 

The' E - algorithm is a nonlinear ~equence-to-sequence 

Assume that the system solution sequence is qo' ql' •••• 

which may be/produced by any integration process. A1so assume vectors 

wher~ k' repr~sents the ttansformation step and r is the 
\ ~.,~ 

sequence number at this step.· If initial vectors are give1 by: 

E 
(r) 
-,1 ° r ::: l, 2, 2m (2.24a) 

(r) 
EO 

The recursion 

. 
= gr r 

formula 

1 

(r+l) 
= E

k
_

1 

::: 0, l, 

+ 

is known as the E -,~lgorithm. 

2m 

1 
(r)} -1 

- Ek ~, r 

(2.24b) 

r 1 
\ ' 

=O,l,or' (2.25) 

~heie 'are two forms of the E 1 a1gorithm, depending on the defini~ion of 

_the inverse of 

,\ 
c'~ • 

f' 

" 

1-

, \ 

I-

r 
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The scalar € - a~gorithm is based on the primitive' inverse 

definition 

, 1 
-1 -1 

x ::: (xl 
-1 

Xz , •. 

\ 
50 that each component is treated independently. 

- The vector e: - algorithm invo1ves the Euclidean nq,nn.' definition 

of the inve;cse, 

-1 
x = xii Ixl I~ 

N, 

::: I 
i=l 

2 
x. 

1. 

. 
The fo11owing discussion will be restricted to the 

( 

vector e: - âlgorithm,because, the organization of the computation is 

i 
easier and, moreover,thene is sorne evidence that this foon is more 

stable [12]. 

\ 
It 'VIas showh by McLeOd [14] that if a seq.~ence {~} . 

~ 

satisfies the 1inear'recursion form 
\. 

ln ln ~ 

,1"'f~~<'.J~''''''''l: 

" 
.... 

.-,V 

f 

l CI.. qr+i 
::: ( l a. ) q r = 0, l, ... t2.26) 

1 1 

i;:=O i=O 
... 

wherEi {a} J..s a rea1 ~ector ,and q is a constant vector, then 
1 

(2.'27a) 
\ 

r ::: 0, l, ••. , if! ai 1 0 

i-O . " 

1 

i 
1 . 
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.1 

or 

(r) 
E

2m 

m 
0, r == 0, l, •.• , if L 

i=O 

28 

CL- == 0 
i 

(2.27b) 

In the case of a nonlinea~ystem, where the sOl~lion sequence ,~~} 

is produced, say, by the contraçtion mapping 
1 

1 --: :7 " 

== F (q ) 
, r 

the E-a1gorithm can be app1fed if [12], [13] 

F 'r >~q) • (~q):' -, q) + 0 Il ~ - q Il ~ 
... t -;:.~ ): .... ~ ~.2J~ .,.- . 

r 

/, 1 

(2.28) 

where tl.ïs notation means the last term has narm of_~e arder Ilq,l ql1 2 
r ' 2 , r - -" 

.!Jo ~ .. '''' 

Under this condition, the éônvèrgence 01 
point q of thermappingF is at/least 

the sequence to the fixed 

quadratic. 
) , 

\ 

It was stated at the beginning that an integration over 
, l ' 

each ite ation, hence, the detérmination and 

minimization oI M is of gr:eat Îln,Portance. This poi~as been stud;ed 

~,-

by Skelboe [16) who examined closely each circuit and, in1particular, ~ 
/ ' ! -------------\ 

the relative values of the circuit 
_ ,'i' 

time constants and . .tJJe_per-iodts)'-ot , i 
1 

foreing funq,tion (s) .. ,,~ . The maximum value o~ 
'" 

M is the order of the thè 

system N i.e., the number of independent reactive elements. One way, 
-. '\ . 1 

. of reduc/ing ,M i~ by ,the pr~per choice of, the starting, time' to' This 

point can ~e selected such that some -of. -the-f-aster--tranSi--erit=s-w=-:--i..-I..-l-,;:b-=.av:;::e;;:-----~-
1 1 , \ 

\ 

" 
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f 
\ 

-/ 

o 

-- ~ 'b e:x>ecutable prooedure, 
o ,.. 

based on the '~ - algoritnm can be stated: . , 

Algorithm ~.4 

1. Init~alization-ste~---

(i) k = -1 

(iiL __ --De.Hne (m), the starting poin~ -:ftO> 

acceptable error limit (5). 

, 

Il 

-..--------
and the 

(Hi)' Intégrate o/ver 't ~. (0, tO) and set: 
1 

~~cr'{t ) 
/ 0 "i; 

2. 

1-

29 

. \ 

:1 

i 
~ 

i 

Integration step: _ 
--~-+------------~----~----~~------~~ 

~J 
(i) k = 

(H) ,1 

(Hi) 

-/~/----------------- 7 -" .,. ~ 

f 
\ 

'e 

qr = q (1 0 + r T) 

3. E - algorithm ste 

(i) put: 

Cr) '0 
e: -1 = 

and 

j = -1 ----_~ __ l 

t. _______ ._---

r = l, 2, 2m 

u 

, r = 0, 1, 2m 

L ,_. ,,,. - __ 

,', .ë ,~/, - i.~' r _;-.. ~ ... ~, :., ~;: r-

h , ... 
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, , 

.1 

~I 

l' , 

Cii) 

(iU) 

Sol~: 
"l, 

+ Ce: ~r+l} 
J 

(r) )-1 e: • 
J 

~-.. ~ .. 
If j < "2m - l, go to s te.p (3 ii) • 

" 

/30 

f = 0, 1" 
1 

• """ 2m.".1~ 

4. Test of convergence step: 

(i) = 

1- . ,. 

(U) . If 0 Il zk - zk_1, Il ~ ~ IS the steady-~tate 

as, the initial solution i5 found by using zk 

"~-r-rmrfHr,~roiTn 'at t =·t LSTOP"'-. ----..,-----. 
o 

? 
.t. 

.If no~~go to step 2. 

, The computations in step (3) ;invo1ve a tradeoff hetwe~n 

execution time," ~d_storage. requirements. If the ex, ecution time iSr to . . 

he minimal, at least 2 x (2M) veetors (each having N entries) must 
1 , 

r~side in the high speed memory, i.e., storage allocation of at ieast 

c' 

for 

en~ries ls req~ired, which is four t:irnes hi9;ir than that ~e~ired ~ 

the Néwton a1go~ithrn. If this s~orage araa,is t~he ~inimi~ 
1 . ." , -;: 

then 2M reti:ieval~ of data ~rom d~s~ memory ,'are ':te~ûî~ed, which will 

'slow down the execution spe'èd.. , ' 

, " 

------- -----
1 

",' , 

Il 

.. 

.. 

, 

1 • 

{ 
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2.3 Gradient Method 

The gradient method for the periodic steady-state analys~s 

of nonl~near ''Circuits, was first proposed by Nakh1a and Branin [l0] ", 111J. . 
«\ 10 ' . 

Thelr ~plementation was based on the state variable formulation of the 

circuit equations. Although one of the objectives of this work was fO -
1'1> 1 (, 

make use of the gradient method in conjunction with the more general 

and1 convenient tableau represehtati~n o~ th~circuit, the succeeding 

diSC'llSSiOnl wiH be based on the notatibnally simpler state variabl~ ap-

proach as given in [11]. The detailed analysls'of a more general 

tableau representation is 1eft for a later Chapter (I~I). 

Let the state variable equations describing the circuit 

be given by: , 
,/ 

• 
• 

:~~ q = f (q, t) (2.29) 
'(, 

, 
RN where .! and the differentiated variables q E • Gi ven tha t the 

forcing function '-1.s periodic and of period T, 0 it is required to 

find a set of iiitiai conditions q (t
O

)'::::' qo such that 
. ; 

• 

q (ta + kT) k l, 2, ., •••• (2.30) 

For convenience k = 1. The deviation of the circuit ~rom its periodic 

'steady-s-çate is e~ressed in terms of a, performance function ~ wh~ch 

is defiped i by 

~ [ ô 
t 

( 6 (qo) ] = (':l0)] (2.31} 

/" 

// 

1 

, 

J 

.1 
l 

----.......- 1. 1-7-
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( 

-~----

where 

~----­
,~ 

is the discrep~y ve~tor given by 

= (2.32) 

and the superscript t indicates transposJtion. 

Thus the objective is ta find a set of which will,minimize 

The nonlinear programming tèchnique used to minimize ~ 

requires the first denvatives (gradien"ts) a ofJ l 'â qo The crux of 

the methad is ta demonstrate an efflcient scheme for camputi~g the 

~ 

gradient G = d ~ / d qO' 'It has been shawn rll] that the gradient 

can be computed by only integrating two systems of equations over one 

complete period: the 4gïnal system- "bf equations from t = a ta t = T 

and a second system, W~Ch will be referred to as the adjoint variational 

s~ten\, from t = T 
1 

to t :;: O. From theorem 2 • .1 (11) and equations 

(2.29) to (2.32 ) it can be proved that the gradient G has the simple 

fOrIn 
/' 

G ::; = 2 [ À (à o (2.33 ) 

where À ( ô, t) is the ,solution -of the adjoint variational system 

• 
À = À (2.34) 

q (qa' t) 

with initial conditions 

1 ! 
" 

- - - "-~~----" --------------------~~-

.. 

1 
t 

t 
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,', 

À (0 , T) (2.35 ) . ' 
1 

From lequations (2.33). to (2.35) it is evident that the 

adj oint system pf equations ha~ to be, integrated backwards from t = T 

to t = O. This require~ knowledge ~f the in~tial conditions 

À (0 , Tl = 0 (qO) and the trajectory of the coefficients of the Jacobian 

rnatrix :! over the whole period. 1 The initial conditions az:e given 

simply by the difference be"tween the olutions of the original system at 

t = 0 and t = T. The Jacobian d / d q can he formed from the 

forward integration of the original s stem using one of two methods, 
1 ,. 

namely, by either saving the nonlinealt' entries of Cl f / Cl q directlYI 

/ 
or by saving the necessary variables from which Cl f / cr q can he ,. 
evaluated. 

A computational algorithm can be written on the basis' "f 

the above d{scussion [10],. [11]. '. 

Algorithrn 2.5 

1. 

2. 

3. 

Choo.$e a firJ esÜmate of qo' perhaps by integradng -

equation (2.29) until a predefined tirne to 

Using 

(2.29) 

,qo âs initial conditions, integrate equation 

for one full pe-riod, savil~ the necessary vari-

, ables to compute the Jacobian ê f / Cl q. 

At t =- to + T compute the discrep1ncy, vec'tor 

1 
1 •• 

1 

o ~ 1 

Il 



( 

« 
\ .. 

',. 

. , 
r , 

( 

4. 

defined by equati<lm 

l' ~-

-,r'~ 
(2.32) • Hence compute the 

performance function ~ defined by equation 

(2.31) . If ~ is less than or equal to an ac-

ceptable 1irni t, the stead'y-state solution iS 

found. STOP. 

Otherwise, use ô (qo) as initial conditions of the 

adjoint system d~fined by equation (2.34), and in-

tegrate backwards over one full period from t:= T 
r. , 

to t = 0 using the saved values from the forward 

integration (in reverse order)~'to compute the 

Jacobiln. 

.. 
5. Compute the gradient G defined' by equation (2.33). 

! 

6. 

7. 

1 

Pass the ~rguments 

Ijective function to the: optimization routine ill 
gradient G and the ob'-

1 

Go to step (2) 
1 

using the ne;\\I arguments q re­
D 

1 

b 

turned by the optimization r,outine as i.nitial condi-

1 

. 
tions. 

,~ • 4 Comparison of Methods 

34 
" 

Three possible methods for computing tht! periodic s~eady-
1 

" 1 

state response of nonlinear circuits have been reviewed. In arder. to 

•• 1 

\. 
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. ,~, 
arrive at a decision as to which method is the most suitable, it is 

necessar~ to derine the class of plblems which ha.s .tl be solveil. 

The present work was undertaken with the objective of finding a method 

which wOI,üd not only be used to compute econamically the periodic 
, ... 

steady-state re~ponse of large, stiff and nonlinear systems, but which 

could aiso be easily extendeà to include circuit optimization and sensi-

tivity analysis. In the following sections the three metbods are 

compared with respect to those characteristics which wou Id have the 

greatest ~nf1uence on the final choice. 

2.4.1 Computation Cast and Convergence Criteria 

Let u~ first consider the convergence prGlb1em. -For the 

gradie:flt method (GM), the rate of convergence depends eêsential1y on 
1 

(1) the stiffness of the network equations, (2) the initial state 

of the network relativ,k ~o the s~ady-state conditions, and il'(3) the 

optilni,zation routine useJ for min_~~ th~ Objectiv~. funrtion ~. 
With the optimization routine based on Fletcher' s )?2] variab1é metric 

method, the i /ras been, ~emonstrated by N?k:hla 

quadratically near the equi1ibrium (steady-state) 

[111 to converge 

conditions. When 

the network initial conditions are quite far from the steady-state, 

the method still, converges but 'at a slower rate. ,In the case of the 

./ 

Newton method (NM), a comparison of resul ts reported by Trick [3] 
;:;~~""" 

1 0_'-' 

and Nakhla [11] shows ttat~ i~_e~. NM, is more like1y to c.onverge faster 

\, 



( 

" 

1 

.. 1 

./ 

1 1 

4-
\ 

than the GM lut witha, narrower range of convergence. 
/-

The conver-

gence of ~NM. depends on (1) the stiffness of the Network equations, 

and (2) the state of th~ network relative to the steady-state Il]. 

For the extrapolation method {m-n , the few examples reported by 
1 

. " 

1 

Skelboe (16] se;em ta indi~ate that the rate of convergence of i the 

EM is at leas1; quadratic with a range as wide as that of the GM.,· In 

comparison to the Newton method [Il , [3], the EM 1'16] seems to be 

even faster. The cortvergence of the EM depends on (1) the stiffness 
7 \ " 

of the network ~quation, and (2) the mildness of the network non-

iinearities. 

From the above discussion and in .the ligh.t ().f the published 

resu1ts for a rèlat~vely sma11 number of modest size problems, it 

# 
appea.rs that, \'1ithin the range of problems where the three methods GM, 

NU ~ and EN, are applicable, the extrapolation method converges faster 
\. 1. 

than the two other methods while' the gradient method (with the variable 

me~ric optimization routine) is the slowest. 
\ 

But the number of itera-

tions required for conve.rgence by each of these three methods dlffer 
.') 

. by ratios which are not sa 1 far from uni ty. l 

'1 

Let us turn now to the problem of computation cast. 
", \ \ 

the ne;work equaiions set in 
\ 

Assume that are the forro \ '. 
-i 

J, X == E 

where J is the Jacobian matrix, and E is the forcing vector. 

'[ 
1 

,1 

: / 



( 

( 

'y 

l' 
37 

/ 

Suppose that a LU factorization method is ta be used for solving the 

network equations at each Integration step, where the number of steps 

over one full period is n *. ,s 

cast per step can be deduced by 

- The major ~ortion of t~ computation 

considering the costs of (1). ccif-
o • 

puting and loading the Jacabian (J) , (2) computing. the forcing vector 

(E), (3) factoring the matrix (LU), and (4) the forward and ., 

backward substitution (FE). 

Now, for the gradient method it has been shawn that an 

integration of two systems (the original system in the.forward direc-

tion, and r the adjoint system in the backward çLirection) over one full 

period is required for each iteration. If we assume that the cost of 

integrating t.~e a~joint ~ystem is the SaIne as ~hat for" thel original 

rne, and that, the number of iterat~ons required for 

.then, the' integrati't\ cost of the gra~irt method is 

, ~ , 

convergence 15
0 

ll
G 

1 

* In sorne time-domain analysis programs, such as NDPI \[17], the 
~ntegration process proceeds as follows: at each t~e po~ , the sys­
tem is solved with a predetermined step size h. If the stem doe~ 
hotl converge, a Newton iteration is applied repeatedly ,(with the same 
step 'size) k times until it converge. If W& éonsider the nUI\Ù)er - '" . of time steps e9-1la1 ta nt' and the average number of 
per step is k,' then the number of Integration steJ/ls 

'1 gi ven hy n s = n t k . 1 

Newton iterations 
n will he 

s 

In sorne other programs, 5uch as SeAMPER U9l, [20), 'the, ilnte­
gratlon process is as follows: at each time point.a step size h is 
chosen and the system of equations is solved. If it does not converge, 
the step size 1S reduced until convergence 9ccur~. In this case, the 
number of integration steps n'Will bÈ! the ntunber o~ solution trials 
(bOth accepted or not acceptedY.' . <, 

j 

" . '.­
... ># .... ~ !' 

-/'/ .-
, ' 

Il 

, 1 

r • 
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G M = 2. n 
s 

n
G 

1. (J + E + LU + FB 

.,' 

l'''~ 

For the\ Newton method, in addition to the' original sys-
,~ 

38 

(2.36) 

, tem, an integration of 

simultaneously with thel 
N adj oint systems (N sensitivity circuits [4] 

original system, or N adjoint ~etwo~s [5] 

in the reverse (backward) direction) must be carried out, .where N 
;1 

is th~ number of reactive elements in the network. Consider the case 
1 

[4], where ,the integration of the N Isensitivity circuits is carried 

out simultaneously with integrating the \'rig.inal system. The integra-

tion of the N sensitivit~ circuits ~an be carried out using the s~e 

Jacobian J and LU factorization used for integrating the original 

system. .'" Hence the computation cost of the Newton method can be approxi-
~'. 

mately gi ven by: 
o 

" 
where 

NM = n 
s 

[J + LU':$'+ N. (E + FB)] 

is the n~er" of iterations required for convergence. 

For the extrapolation metbod, it bas been shown that an 
! 

integration of one_system (the original) has tp be carIied out over 
1 

2M periods per iteration where M S N. 

cost of the extrapolation method will he given by 

, 1; r. 

EM = 2 • n s • M: • nE (J + E + LU + FB) 

f 

where is the number of iterations required for convergence. 

--------' . 
1. 

(2.37 ) 

(2.38) 
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From equations (2.36) - (2.38) the relativè cost of' the three , 

methods can be given by 
.' 

;. 

GM :NM EM = 2 . TI' 
G 

nN 
. [J + LU + N . (E + FB}) 2 . M nE . {J + E - (2,'39) 

In order to simpli:Çy this ' equation, let us consider a 

practicat situation. As mentioned before, we are interested in moderate / 

anèl large scale nonlinear networks, with quite a larg~ number of re-

'<!ftive elements N (N ~ 20). Suppose that the network equat~ons ~é 

~ to be written in the tableau fOrn\ with h .. _'" f . 1 j/ 1 t e nlUlUJer a equat10ns e'iua te 
/- 1 

NE (which is proport~onal ta the number of branches in the nétwork). 

Cbnsequently, the Jacobian IJ will be sparsrd. 
-- / 

For spaçse matrices 

with quite large dimension NE, Norin and Pattle [261 reported that 

tU, and FB requlres 0 (NE) operations, with LU = 0.4 o (NE) , 

FB = 0.6 0 (NE) ~ approxim~tely. 

1 

LU = "LU· NE 

, 
1 

In general we can write 

(2.40) 

E depends on (1) the: munber of equations NE" (2) number and types-----

of nonlinear elements, and (3) the n~er of reactive eleIrients. For 

simplicity, let us àssume that these two costs, J anô E, depends 

r 
linearly_ on the number of equations NE, such that 

1 
1 
1 

~'-

" 
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J :"J 
. NE 

;: = "E 
. NE {2.41) 

It has been found experimentally* that the cast of J or E ls less 

than that for LU or FB {e~g., "E ~ 0.3 ("LU + 0FB)' If we nor-

malize the units of the computation'cost such that 0J + ° +!J a +" E LU FB 
l, 

then equation (2.39) can be replaced b1 

GM 2 • M • nE 

(2.42') 

! 
l ' * A networ~, with the number of branches NB = 79 of which 40 were 

nonlinear, and\the nurnber of tableau equations ~ ~ 199, 'was analy~ed 
using ~CAMPER [19J, [20] with the steady-state aigorithm inc1Uded 
(see Chapter V). Bath JI! and E }re computed in part using F?rtran 
statements and in part using machine instructions (code), while LU ~d 
FB are done using a generated,code only. The length of the codes for 
this prob1em was as follows: .. ( 

, 
LU + FB 7083 E == 1498 , J = 146 • 

-

The computation of J was mainly by Fortran statements, while the com­
putation of E \ was mainly using the generated' code (E code). From a 
close examination' of the' network we expect that the total cast of K~' -------1-
will be ~*ima-t;e.1_y__5_9%--highe:t fllàn l:nenumber given abovE\. AIsé:> 
we expect the cast of computing the Jacobian ta be less than or equal to 
the cast of computing E. According to thèse estimates, a raugh cost 
comparison can be give~ as follow~: 

E, J ~ 1.5 -(;1498 / 70S3) (!lu + FB) 
/' 

Le. , E, J = 0.3 (LU + FB) . 

/' 

1 
T 

·1 
1 

" 
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Assuming M is of the arder of N CM ~ N), it appears that for networks 

with quite a 1arge number of reactive el~enta eN ;> 20), 
/ . 

the ~radient 
/ ' 

roethod yields the lowest cOmPuta~ional cost pi;vitled that nG ' 
1 1 and 

nE are approximately equal. 
! 
/ 

/ 

, 
2.4.2 N~twork Size and the Numerical Stability prob1em 

For the Newton roethod, the sensitivity matr' 

a q (<la ' T) / -a qo is, in genera1, a full matrix. When the arder of" 

"" 
the system N becomes large (s~y N > 50), çe en-

countered because : (1) a solut~on of a large scale sy tero with a furl 
1 . 

-'} 

Jacobian roatrix may present seriouj numerical stabilit' problems as wél1 

as goor accuiacy due to round-off error ; (2) the stq'rage requirements 

fot~~e Jacobian ili of the order ofl N
2 1 

which ~ay be'prohibit~vely 

large. 

In the case of the extrapola~ion method, the numèrica1 
\ . 

properties of the meth~d are less apparent due to ~he no~lin~arit~y~o~f~ ____ +-------~r 

~------,the' e: - p,1gori tlun~!!!:!L:this method~ But it wa7ï reported by 

Brezinski [121 that the round-off error may cause severe numerical : 
1 

prob1ems especially for sbiff systems. 

previous1y that starage of arder N
2 

,is 

cution time. 

1 

Furthermcire, i t ..was· shown 
1 
t 

requir~d ta minimizè ,~he exe-

/ 
/ 

Il 

l 
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For the gradient method, the,optimization step does not 

require solution of stultaneous- set o~ equations (even with the variable metric 

" 
method [22] ( the only matrix op~rations involved are addition or subtraction~_'~~~ 

Accordingly, there. will be 'none of the rnunerical problems which may be 

l ' 
encountered wi th :khe other methods. What concerns the storage (hence 

1 1 r 

the orde,; of the system N) problem, if a variable metric algorithm 

( / 

is used for the optimization, then storage of the order of is re-

quired just as for the oUler twol' methods. But if a conjugate gradien1s 

methoq. could be used for the optimization, then storage of oftly/order 
.r:~ 

N will b'e required. 

In conclusion, it can be _said that the gradient method 

does not have the . .,numerical stability problems such as those that may 

he e:ttcountered 'flith both the Ne\-rton and t~e extrapolation inethods, for 

large 'scale systems. Furthermore, the three' methods suffer from the 

same storage problem except that the gradient -method would not have 
. J 

this p~oblem if a conjugate gradients mèthod (which does not involve 

matrices or the opÙmization. 
:/ 

j 

, 

-- -- ~ ----"'--. 

( 
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CHAPTER III 

<, A GENERALI1:ED APPROACH TO THE GRADIENT l-lETHOD 
.' 

Introduction 
;; -; 

r 

In Section 2.3 a gradient method for detennining the 

periodiG-...steadyJ~tate response, based on the state variable approach 

[10], [11), was outlined. Although an extension to the general al- 1 

gebr.ic-differential formulation of the systom equations was also gi~er 
[10],~ [11), it is s tin far from béing directly implementable within 

{' 
most third generatic n time domain an~lysis programs 'which are based on 

the tableau fonnul~tion ~f the NetY{ork equations to take. advantage of \ 

highly soph;isticateél sparse matrix techniques~ In this chapter a more 

geneJ;.èl'l and 1 co~ven~er.t form?,la~ion "o~ the gra~ient method Wil'~ be de­

rive~ which can be i~plemented d:~~ectly within ·most of the recent time 

domain analysis programs. 

The de ivation involves the use of the adjoint system 

concept. In Direct~r's [6] ,treatment'of the adjoint network,. the" . 
ç 

parametric represent tion of branch types involved one a~pendency on 

a circuit' v.&~iable a weIl as a set of design parameters, and the de-
',-

rivation of" th~ ad1e; nt ine-t;.work was carried out ~ype-by-type. In the 

.present approach to 1 he derlvation of the adjoint var:itational system, 

the ~quations describlng the network are set in a' general form, ,but with 
" . 

ar: ;j.5;;umed upper limi of two on the number of dependencies (linear or 
", /' 

he course of the derivation it is shown that de-nonlinear) • During 
" , 

pendencies iwithin the e limits are acc,eptablé for representing the' 

~~~~~~---------

_. ______________ -;-" ~I-_________ -----:c 
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adjoint fystém, with the 5..mplicit assumption that the depèndellcy can 

be representsG as aB elem e original network. 

The, app~oach in the present worl). is si1lÛ.lar to that of 

Director [8) but the equation formulation is more general. After 'a' 

geneFal adjoint system as weIl as a gradient forro are developed, t~ 
, ' 

1 

useful objective functions, reflecting the state of the network rela­
i' 

tive to the steady-state are considered. One of these, based on 

normalizing the contribution of each 

square of voltage, is selected. On 
\ 

reactive elernent int;~ the. wei9'ht;~dl 

the basis of thls choice a lI\Ore· 
• 1 

specifie apP10ach is taken, which leads.to cônvenient forms of the equa-

tions for computing the Bradient, as weIl as for th~ initial conditions:: 

of the a<\?o'int systeJ;ll. The· cnapter. end!? with a computational algorithm 

suited to application within a general time domain .analy~is program Ilsuc~ ~ ~ 

as SCAMPER [19], [2~].r 

3.2 

\ 
\ 

ty, \, 1 • 

Deriv:~ion of the Gradient Equations "Ba~ed Ol) \" <: 
a Generalized' Adjoint Variation~l System'· - -; ~.\ 

-' .... '~,- \ 
In order- to mi;nim.1ze an objective· ... functiQn \~, which re .. 

r . ..,., -, ,,\ 

flects hoy far a ci;rcuit is :'from the periodic stea9y-state,\ it is 
...' ~ \ f 1 \.. \ " 

ff ' ~. t
f ~ f . ' \ ." necessary to have an e l.Cl.en, proceoure or oomputlng t.he gradJ.ent 

.. ! .,." 

Cl 
the, dif-lS the initial copdition vector 0 

j ,~ 

.', 

,-
G ::::, a ~ 1 a q _. where 

, l ,-U 

ferenti~ted variables representing the ... system'. . To this end, we fonnulate 
( 

• ' v 1 

the original system of equation~ ln, the gen,eral lableau fOJ:lll. 

- . t, 

, , 
-~ -~-~-----.. ::----:;;:---

Il 

, ' 

~f. 1 . ' 

, ., 

, , 

l 
1 

. " 

l .•• 
! , 
ï :' 

, \ , . " , \ ' 

. \. 
.. ~ \ 
, ' 
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h ( u, q, t) a Algebraic equations (3.la) 

" 9 (u, q, q , qa' t) a DifferentiaI equations (3.lb) 

where 

, 
u is an algebraic variables vector , .., 
q i5 a differentiated variables vector 

, 
qo = q (ta) is the init~l condition vector 

q q (qo' t) 

In re~.ent time domain, circuit analysils programs the 

solution of the system of equations ~3.1) at any time point i5 achiev d 

by linearizing ~he ndnlinear terres at a'~oint (the la st ~ccepted point 

or a p:.;edicted'\' one)" and replacing the d1fferentiated terms q ,by tht. 

slope of a polynomial of order. R ~ 6 (28], Thè 1inearized equations 

corresponding to (3.1) can be expressed in the forro 

/ 
where J 

vector. 

/ 
J { U 

q = E Ct) 

i5 the coefficient'Jacobiah matrix, 

',.. !" 

~ .(1. , 

and, 1 E (t) 

J-
. (3.2) 

l, 
is'the forcing 

i 

Before giving a detaiied representation of J,' it i5 
, , 

important ~o specify limits on the acceptable range of branch types and 

. dependencies. We shall use the following equation to de scribe ,an ele-
----------_._._~------. 

ment or a part of a controlled (coupled) branch~ f, 
1 

1 
1 
1 

,. 1 

. ~I./""~·, 1 

r\ . , ,A--_." __ ~'"-______ -r _____ ""i_i ---...-;-------'---------
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X. 
1. 

Cl (x ) • x. 
r- ) 

(3.3) 

where x may be an algebraic (u) or differentiated (q) variable. 

-In thl.s way branche~ ranging from linear self-dependent to nonlinear 

with two dependencies wilL be considered within the scope of -our 

analysis*. 

.~ 

Returning ta the linearization of the system of equations, 

equation (3.lb) can be set in the form 
{:, { 

" 

MU+A~ = 
d t 

o r 
(:-3.4) 

where M is a matrix of 0 or + l entries, 

and A = a .. ] 
1.) 

, where 

a .. = 0 , + 1 for linear e1.ements, 
1.J 

= a .. (q.b for a ~online1r single dependency, 
l.J ) 

/" 

(self or·mutual) , 

a .. (x r) 1 r :1 j for nonlinear double dependency. 
1.) 

From equations (3.la) ,and (3.4) the linearized equati9ns 

of the original system can be expressed in the form 
~ . 

'. , .. 

--: * For more detail~ about the different types o~ branche~ under con-
sideration, 'see Part A of Chapter V. j .< 

/. 
-" ----,·------------..,.....,1000------.,.-:---''-;--:'-:-.11-:';"-

Il 

1\' , 

\, ,,;/ 'i 
, . .f. 
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ah ,ah 
'-- u au aq 

"" E (t) {3.5} 

( d 
M A 

dt 
q 

r 

In general, the objective function ~, which reflects the deviation 

from the periodic steady-state, cân be defineà in an integral form 

tO+T 

J ~ Cu, q, qo' tl/dt 

to 

(3.6) 

If we choose ~ to be specifically the sum of the weighted squares of 

the differentiated variable differences, i.e., 

. where W 

fOrnl for 

where t.
O 

e.quations 

l " 
équatio~ 

- t . 
~ = [W (q (T) - q ]], [CI. (T) - 'q ) o 0 

(3.7) 

1 

i5 a constant weig~t~nglcoef~~Cient vector, then the integral 

can b~'writtenlas .f~tlOWS' . 

T 

= J 
o 

1 

T; 

f
'l t \ f ~ t = [(q (t) - qo) : f ], dt 

01 
1 

, 

1 

1 

is taken to be zero fOr simplicity 07' notatiop. ' 

1 

, 1 
Since the variables u and q ~ust satisfy the network 

, ! ' /' 
(3'.5), by using Lagra~gian multipliers [8] "1 and À

2
, 

(3.8) for t can hé rewritten as 
1 

1 

': 1 

1 
, 

.. 

, 

l ' 



, 
',' 

" .', 
" l"'l' 

" '. ~.; 
f:f:. >, 

l 
lo.:,'_" J. 

f 

( 

( 

/ 
T 

~ = J [$ (u, q, qo' t) + À~ h (u, 'q, t) + (Ât M u 
2 

0 
T 

+ À
t ~ t - ! ( À~ 1 r,J E (t) . dt 
2 A d t]' d 

./ 

where ~l and À2 are assumed to be independent of the initial con-,. 
ditions qo 

The gradient G will then be 

.,S:. 

T 
• -J 

d ~ d 

J [cp + À
t 

h t 
À

t A'~] G = = + À
2 

M u + dt 
d qo d qo l 2 d, t" 

0 

= G Tl + G T
2 + G T + G T • 

3 4 • 

T T 
d } 1 

J d'</> Il u li Ls. li G T =' -'~' d t = [au + + a'rq J dt 
l " d qo a qo a q' a qo 

" O' 0 
0 

~ ... '"'" 

\H i we use for ~'\ the for:m. given ly 
'\ 

\ 
(3.8) then 

T 

G T '= J l , 
o o 

, 

which, after sorne straightforwar~ manipulation, can he 
\ 

sintplified to: 
1 

G T = 
~ 

t 
[W (q (T) - '1

0
)] 

-

\, , 
, , 

a q (T) '_ [W (q (T) - qo)') t\ 
a,qo 1 

1 

The second term G T2 
can he expanded as follows 

~,- /­, ".---1-. 1'1) ) 

Cl' 
" , 

IJ 
IJ 

, : 

48 

(3.9) 

1 . 

(3.10) ,~ 

;.~ .. 

. 1 

(3.l1a) 

\ , " 
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" 

T T 
d l t 

J À
t Cl h Cl u Cl h ~ + Cl h ] G T

2 
= À

1 
h d t = --+- dt 

d qo l Cl u Cl % a q a qo il qo 
0 0 

" 

But since h is '~ndependent of qo' 'therefore,' ah / aq d, whence G ,T 
. 2 

becomes 

T 

J À
t a h ô' u a h ~] dt (3.11b) G T

2 
= + 

l Cl u 
ô l'la il q ô qo 

0 

The third term G T
3 

is 

T T 

G' T = ddq J ).t M u d t = J 3. 2 
o 0 0 

(3.11c) 

, 

In examining the fourth term 'G :4' which depends on J' we Wil~ have 

,to consider the acceptabi1ity of different types of nOn]ine~ de enden­

oies. We therefore'proceed to reform~late GIT
4 

com~onent~is, i.e., 

t~e inner products will be explicitly shown. 

d 
1 GT =-
1 4 d % 

, where l . is the 
k 

,j ·1 

o /" 
kth entry of G T

4
, k = l, 2,' 

I
k

, ••• l ) (3.12) 

N. 

~, ' 

1 1 

.... 
(,~. ~ -~-~,.-,'~~.7~;: .,.~ .\~I, 

l' 
i' 

" 

1 
1 ..... .".. 
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Il 

" 
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~ 
" .:, 
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Q 
T 

d 

J p,t d q] 
Ik = -- A dt d q 2 drt 

Ok 0 
T 

d q. d 

J 
N N 

= [ L I À2 . a .. (x ) -2: 1 dt d qo i=l j=l 1.) r d t 
l. 

k 0 , 
" -

N N 
T 

a q. 

J, d 
= L L { À2 . a .. (x ) ---1. 1 dt 

d t a qo 1.) r 
1 

i=l j=l 0 k 

T 
Cl a .. _ (x ) Cl x Cl q. 

~'. 

J --+ À 1J r r ~ 
2. .a x Cl qo a t ] 

° 
1. r 

k 

N N 
= L L ( I~l + I

k2
) 

i=l j=l 
~. 

where:' x 1 may bé' an algebraic (u ) or a ifferentiail, 
, r 

-. ' T 

il
k1 = J 

i '0 

1 
1 

T 

)f 
.2; o 

(1 
o 

1 

d t 

'r 

a.. (x ) 
l.) r 

d Cl q. 

dt a-?-l 
?k 

a q. T 
J 1 

a qo 0 
k 

a.. (x) 
1.) r 

Cl a.. (x) 
l.) r 
a x 

r 

j}. x 

il t , 

substituting for I
k1 

in eqrlation (3.13) 

.. 

1. 

dt 

dt} 
'1 

(qr) 
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1 

1 

1 

Ir) 
\ -

(3~1~) 

Il \. 

\ variable. \ 

\ 

" 

" 
.'> 

...". 

( J 1/ 
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N° N _ Cl q. T 

Ik L l À'"' a .. (x ) --L 
1 2.' 1J r Cl q , 

i=t j=l 1 Ok 0 

Il 
T d À -

d q. 

J 

2. 
1 a .. ---ex ) J dt d t ,1J r d qo 

0 k 

T 
Cl (x ) Cl x Cl q. Cl Cl q. a .. x 

À
2 

1J r (~ -...l r dt ] - --Cl x Cl t Cl t \ +1 J ~) é) qo l r C'°k 1(~\14) 0 k <1 

In the case of a si~gle dependency, i.e. , x -+ 
~ and r -+ j, the term 

l~ 
Cl q. Cl 

- r ~ -" 

il t Cl qo 
k 

is identically zero. 

r 

Cl x q. 
r J 

t Cl q"" 
Ok 

For a double dep~~dency, where 'x ~ q. , it is 
r ,J 

"'-

shown in Âppendix l that this term i5 identically zero for a class of 

l, systems with a unique perJ-pdic steadY-~tate solution. Hence, using this 

fact, and equations (3.12) and (3.14) 

T 
) 

J d t 
o 

From equations (3.Ua) 

À:t (0) A (0) 
2 

U 
A il q J. dt 

o 

(3.lld) , 

L~-

Il 

~ 
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1 \ 

(. 

T 

J 
rx-t a h À

t a u ~\ " 

G = + M] dt 
Cl 1 Cl u 2 a qo 

0 

T 
d À

t 

J [À t a h a q + -- - 2 
A] dt 1 a q d t aq 

0 0 

+ [À t (T) A (T) - (W (q - q (T») t] Cl SI (T) 
2 0 Cl go ~ 

.' 

+ [W 
t 

À
t 

(0) A (0) (go - g (T»] -
0 

, 

Since the Lagrangian mu1tip1iers cal be chosen arbitrarl1Yt ,they can, 

in par~icu1ar, be specified in such a way as to greatly simp1ify the 

52 

(3.,15) 

form of the gradient eguation, e.g., take À1 and 1 À
2 

such that both 

the first and second terms in (3.15) are'identically zero. 

À
t a h ).t M cl -+ = l Cl u 2 --and . " 

).t Cl h 
'd À t 

- _,_2 
A == 0 

l a q - ~ t 

• Cf' 

In matrix form, it can l:?~ __ r~'p~.~ge_~.~~L_ 
.--_ .. - ... --------_ .. - .---

Cl h 
t 

a q 
À

1 

= 0 (3.16) 

d 
À

2 
--A 

d t 

'Iv 
M 

, . 
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1 

1 r 
Furthermore, and ta avoid the computation of the term d q (T) 1 a qo 

1 

(which is, in general, a full matrix), the initial cOl1ditions of À
2 

~ ',' 

can be chosen 50 that the third term of equatidl (3.t5) is identically 
~ 

zero, i.e., 
\ -

À~ (T) A (T) - [W (qo - q (T)~]t = 0 . '1 , (3.17) 

f""'" 

Accordingly, ~te gradient takes the'simp1ified forro 

G = 

( 

Equations (3.16) 

À t (0) A (0) 
2 

(3.18) are the~resu1ts that we 

sought. If we compare equations (3.5) and (3.16), the coefficient 
1 • 

~ \ 
Jacobiân matrix of the Ilat~er is jus-t. the transpose of the Jacobian 

of (3.5) with a change in the sign of the time derivative term. 
1 

system (3.16) i5 ca11ed'the adjoint variational system of the original 
" 

one described by' (3.5). Relation 1 (3.l7)~ d~fines the init±a~ condi-

tion~ of that adjoint system for computing G.' Note that-'these conditions 

are given' atl t = T, which means that to satisfy equation (3.18), the 

integration ~f rthé adjoint Isystem has to be carrie~ out over one full ' 

'·Pe'.t'~oà-,from ~ = T ta t ='0, i.e., in the backward direction. It 
, 1 

shou1d aiso be 
\ . 

noted that, due to th1S reversaI of the direction of in-

tegration, the sibn of the differentiated, terms in 1.(3.16) will be 

restored ta the original 8ign. Let us define a new time base T, for 

Ithe adjoint system where sa that 'd / dt = - d / d T T = T - t, 

1 

... 

- -" ~ .... 

.',,! 

j 
r 

. " 
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In that case (3.16) takes the form 

Cl h Cl h t --. ... ~~ 

a u a q \ 0 

= (3.19) 

M A.A. 
d T 

À
2 

0 

In swnrnarYi 
(3.19) defines the adj~i~t ,~y~~~~ich, ______ _ 

when integrated over one full period, starting with initial conditions 

(i.e., t = T) given by equation (3.17), has a final solu­

= T (Le. 1 t = \) in which À
2 

defines the second tenu of 

the gradient equ~tion (~.18). 

tion at i T 

at T. = 0 

~.3 Choice of the Objective Function 
, 

~f th~ Obj~ctive fun~tio~ .( 
i5 to be a meaningful 

measure of the~circuit's deviation from the periodic steady-state, the~ 
'; , 

the components of ~ , corresponding to the contributions of the in-
" , 

order of magn~tude. Howev~r, the 

\ 
should, in\.gene~al, be ~ the same 

re2resenta~ion of the branch variables 

dividual dif~erentiated variables, 

(i, V, q, f) in'the :Mrchho'ff's laws equaÙôns in SCAMPER depends on 

the type of'dependenoy and on whether the bran ch is nonlinear. 

the current in a q-dependency (capacitive) branch i6 rePlacJd 
" 

Thus, 

by 

dg 1 dt if the element Is linear, and by c dv / dt if it is non~inear. 
- 1--

Becaùse the units of the differentiated variables differ, their values 

... 
-.... ~\- -----~-~-_.~ ~ 'j.o: 



\ 

• r 

, 1 

may also differ by many, orders of magnitude. Therefore, it is 
..-

necessary to weight the contribution of each storage elernent to the 

performance ~unction ~. 

\ 
55 

) -

, , ,------------
, ~, 

One par~~eVing this weight-

_------~--J~[in~g~.Ji~S;:t:t~o~c~o~n~v~e~r~t~a~I~1 the brdnch variables to vOltag~s. when comP'qt~L:-_ ... _---'-'-'" 

Thus, for example, the variable assoc~~e 

branch, namely qi' by defining 

V. = q. / C .• ' An objective fuaction which is based on this approach 
~ l. 1, 

and which hàs tqe sam~ form as equation (3.7) is 

---N N 
1 2 

~ = 2 $i = I w. • - ~v (T) ~- vo' i (3.20) 
" i==1 i"ll 

~ 2 

( ~, 

'. Il 
where N is the sYstem order, 4hd w. is an additional weighting factor ~"ir 

" ~ 

for reactive element i 
. 1 '! -\ 

An alternative ferro ot ~ , which also tends te reduce 

th~ spread in ~e con~ributions of the storage elements to therobjective~ 

function, is the sum over the stored energy, i.e., 
1 _ 

\. 

'-
N 

~ :1 ~ 
i=l 

~ ~ = I Id..!. (v' (T) 
.L 1. 2 over 

- v (O»i (q (T) - q (O»i 

aU C 

.+ l Ilw" 
over J 
aIl L 

!. (i (T) - i JO». (f (T) - f (il» 
2' e 1 j 

,p.21) 

( 
~-~~- ~-- -:; -~- -,.-

~ " ' .' " . , , . 
is tf{è inducter flux;-where f 

Ij 
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It can, in fact, be shown that (3.21) and (3.2~ equi- . 
~ ~ 

valent ~~ w's. N~vertheless, equation (3.20) \ . . , ----------- . 
----------- i5 more convenient ta use ~nd wa; se1ècted for the work reported here. 

------------------

( 

1 

.', 

-( 

r 
1 

-----

Detailed Computations of the Gradient and 
the Initia~ Conditions of the Adjoint System 

The initial conditions À (T) of the adjoint system are 
-- -

defined by equation (3.l7), ~~i~~~ha-gr~dient G- 'cari be computed through 

equation (3.18). ~th equations" are given in matrix forro, and appear ta 

'" °be difficu1t to handl,_ 

pute À
2 

(T) and G, 

In order to see how e~sy it is, in fact, ta com-
'1 

it,is helpful ta revie:W the actual'representation 

of the system variables and the order ih whieh the equations are set in 

the de and transient analysis program SCAMPER {l9], 120], which was 

used for this work. (For more details see Part A of Chapter V). 
, ~ 1 

,Reactiv~ Variable Representation: 

l ' fhe current through a q-dependency (capacitive)'element'in l ' . 
Kirchhoff's 

, (i) 

, 
current law equations is replaced by: _,' --~~ 

0

1 
1 

'~ 
d t 

if the element ~s linear (self or mutually 

'dependent), i.e., the differentiated 

var iable is charge. q • 

1. 

\ 

.J 

< • 

,-? ' 
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(il) 
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" < 

d v 
C d t if the branch i5 nonlinear, where v 

... , 
-y 

i5 ~ften a voltage, ~.e., the dif-
~ 

- > 

ferentiated variable i5 a voltage. 
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- - - - - --- --- ------ - ~TN_In::fe,..,<-.,v,.,...onl+tage acr05S an f1epenàency (.inductive) el~ent 

in Kirchhoff'5 voltage law is replaced by: 

-, 

(i) 
d f 

-1 
d t 

(H) L d 1-
d t 

if the element is 

. 
if the element is 

often a current. 

linear. 

nonlinear, 

/ 
f 

The Order of the S stem Variables and E /t ion s 

( 1 

where i is 

Consider th: number of el tents is NE, and the number 
l~ r: J 

of nodes~·NN. In the tableau ~epresentation there are (2NE + NN - 1) 

equations and var~ables. are ordered in the following 
.. r 

: way: first, the branch Kirchhoff' s vol age law' equatfons KVL (1 to NE) 

second, the nodal Kirchhoff's current aw e~atiions KCL (NE + 1 to l ' . -
, , 

NE + NN - 1) '; third" the branch const' tuti ve relations B:C. (NE + NN 

~ . 
ta 2NE +'NN - 1). The variables ap ear in the arder of : firs~, branch 

current or charge (1 to NE) ; seco d,- br an ch voltage or flux 

(NE +' 1 to 2 NE); third,. node vOlt ges 
, 

(2NE + 1 ta 2 NE + NN - 1) 

, Now, a·close'examina ion _of equations (3.11) and (3.18), 

1 -

in the light ôf the aOOve comments, reveal~:a very simple procedure for 
1 "1 

cOII!puting .othe di~ferent components of the gra
j 
dient G of the performance 

l -

1 
Il ' ", 

1 .. ,' ~/ 
1 1.~:;1 

\ 'ô~~ 
., " 'l'~' 
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function defined by equ~t.tbn (3.20) as well as the initial'conditions 

À (T) • The followiag ~elations for À (T). and G can he pr9fed ta 

bèequivalent to those 1fequations (3.17)" and (3.18) .. 

For a linear capa~itor CR., 

= 1 
2 

The ~nitial conditions À (T) 

will be 

À (T) - À (T) .= 
NE+Nl' NE+N2, 

" 2 
(g - q .~ (T') ) • 

o c,R. 

1 1 
in the solution of the adjoint system 

!Il 
cR. 

(go - q (T).) 
cR. 

where Nl 
\ 1 

and "N2 are the numbers :o~ .nodes to which the branch is 

connected. 
~~ 

The corresponding gradient 

'J:-

""\ 
1 \ 
1 .. 

(3.22a) 

À (QJ) 
NE+N2 

(3,. 23a) 

tOlthe _~ whilell the argument passed op~imization routine x ( -:' 
cR. 

Q 

X = 
0,R. 

For a nonlinear 

.. 
1:/ 

'" 
! -r il 

._. -, ."" ,-, ~. ~ 

,\ ....L % 
, 

CR. \ 
Ct 

1 
1 

.\ 
C capac:Ltor 

n 

, 

,l, ~ 

j,' '!\ 

(,) 

~, " 

. 
... -

(3.24a) 
'" 

, , " • 

, , 

, " 
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, . 
\" 

~' 
" 
, 
" , Ir 

./ 

( 

~ 

ie 

" 

! .. '" 

<, 

~c 
l 

(v - v (T) ) 2 = w 
,2 c o . c n 

Î 
n 

" 
, 

1 
À (T) == }. (T). .= w (v

O 
- v (T» 

NE+Nl NE+N2 
c C {T} n ' ,n 

., 
where ·çn (T) is the value of C at ~ = T + t 

0 
. 

~J 

G 
c 

n 

where C (0) 
n 

and 

x 
c n 

d 
d 

~ 

V
o 
c 
n 

is the 

For a linear inductor , 

~1 
1 

= - . 1Il
1 ,2. 2 ,2. 

n 

== w (v - v 
c 0 

n 

va;I.ue of C 
n 

Li 

, . (-L)2 (fo 
L,2./' 

,nere R is a weighting resistanee. 

.G 
(T)) - C (0) 

c n 
n 

, 
at t == to ' , 

- f (T) ) ~ 
R. 

1 

The initial conditi0,n À (T) 

1 
.in the solùtion of' tlle 

~i (T) = • 1Il1 
(-.!L) 2 (f - f (T»l 

R, LR, 0 :t. 

where i i5 the brancq number ( ;L S; i S NE ) 

l, 

r 
1 ." \ 

'\, 

c 
n 

( ). (0) - À 

NE+Nl 

Cl 

... 

-tl 

, 0 

_7." ... · _ ....... ~~~-~-....,---,..;-r,. ,or. - ~'""'c"",-I-:. >,..,,--.,""''" ______ ..ii.. ______ ...... _~-'"''. 
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(0) ) 

NE+N2 

" , 

" ' 1 

(3.2~) 

(3.22b) 

J 

(3.23b) 

(3.24b) 

(3.21e) 

(3.22c) 

Il 

,/1 
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0 ... 

The corresponding gradient G lJP 

1 
IR. .. 

Li Lt - or 
d q\ 

(.lL) (fa - f (T» 1 Â. (0) G = -- = W1 - -IR. R d f Li R l. 
°1 t i 

(3.'23a) i --.'-

routine 
Il 

1-" 
while the argumeqt passed rto the optimization Xl J:- R. , - > 

Xl 
R 

fa (3.24c) 
,Lt R- '1 

~ 
--, 

,; 
1 ," -" For a nonlinear inductor L 

n 
( . ) 

1 2 y 
CT»)\ (3.2~d) 4>1 C' i 

2 
w11 R l. -

0 n n n 
'\ p~~~ 

( , ,. 

À
i
- {T} wl~ 

"i (i --"- i (T» l 

~J 
(3:22d) = ,L (T) 0 

J?-"n n 

where L (T) is the value of L at t ,., T + to n n 
L, / 

1 (0) _ J: 1 L 1 ~. I~ ~ 

='w R (i -- 1 (T» 1 
n 

Ài (0) , G1 = 
. d la l' 0 R , 

\ n n n .: 
-II 1 

- 1 

. \ 
n 

PT , (3.23d) 
--1 ""1 

,"{ J J1/'-t 

where L (OJ i~\ the value of L at t = t 
n n 0 

" 
and ,<~ 

/ -; , , 
'-':,1 .1 

~ ~I 
Xlnll 

R 
\. 

-(3.24d) , = 1.
0 -, 

i l n 
i. 

JI 
'1 

~ - 1 

); 

1 
"," 
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3.5 A Cornputational Technique 

The proceeding formulation of the gradient method has been 
, 

implernented in the de and transient -analysis program SCAMPER by means 

of the algori thm outlined below. 

1. 

2. 

Initialization Step. 

(i) 

(ii) 

• (iii) 

Define constants (rnimum limi t of ~ (~ . ) 
ml.n, 

a~d G CG . ) aJd maximum number of itera-
IlUn 

tions' NIT (NIT » 
max 

Integrate the ori']inal system of equations 

(3.5) until a predefined time to' yj-elding 

a sultab1e set of initial conditions for the 

/ 

steady-state analysis. 
1 
J 

At t' = t o ave the initial conditions of the 

the' solution vector reactive v iabl~ q, 
ç- .. 

Cu, q) ari the values of the nonlinear reactive 

elements fl?r computing matrix A (0». 

(iV)fl , 
NIT = 1 1 . 

xntegration : Forward 
j 

! (i) NIT 1 NIT + 1 = 
\ .~ 

, 

-~-

i , 

'.-

Il 

f ,,~ ., 
.. "'-

-<' 



',' 

( 

( 

'. 

3. 

/ 

(ii) Integrate the original system (3.5J ,over 

(iii) 

one full period T from t ::: t . o Save the 
'. 

necessary nonlinear entries of the Jacobian J 

as well as the step size at a sequence of time 

points. 

At t ::: t + T o compute q (T) and thé values of 

nonlinear reactive elements- (for computing A (T» . ..'}>, 

(iv) Compute the performance function ~ defined by 

equation (3.20), using e~tions (3.2la, h, c, 

and dl . 

If é{l S ~ . 
mJ.n 

found. STOP. 

a steady-state solution -ïi~s been' 

(vi) '[ NT> NIT 
max 

STOP. 

Co !pute the initial cLd~ti~ns >'2 (T) 
.... -------

(vii) for the 

adjoint system defined by equation (3.17) using 

1 - ' 

equations (3. 22a, b, c, .and d) • Aiso compute 

the first term of the 9~ien~ defined by equation 
.-/ ' 

(3.18) ~sing equa tions (2. 23a, b, c, and d) • 
\ 
\ 

Backward Integration. 

(i) with the in~ial' cbndit ons À (T) computed in 
" 
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) 
1 

1 
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« 4. 

·c 

(H) 

step (2. vii), inte"trate the adjoint system 

'_ of equations (3,.19)· ,over one full period 

using the stored values of the nonlinear en­

:ries of the Jacobian as weIl as, the, Jorré's-

ponding step sizes. 

At the end of the period T = T (i.e. 1 

use the solution of the adj oi.nt system 

t = t ) o 
À (0) 

and A (0) for completing th.~ computation of the 

gradi,ent (second term) using equations (3 .. 23a, b, 

c, and d). 

optimiz .. tion. 

(i') 

(ii) 

CH;") 

Scale the argure?t vector 

(3.24a, b , c, bd d) • 

X accordin9 to e~ations 

- " '\. 

CalI the optimization routine. 1 

1 

Reset the initial conditions of the original 

system (u, q) 
1 ; 1 - ~ 

to the valuéS saV'ed from-

step (1. iii). 
( , . 

(iv) ~~. "the rea:tiv~ .lement var~abl.S q vith 

the -,'SI •• S «0 ,returned by the pptimization 

routi~e. 
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III : 
- 1 

1 
1 , , 
! 

1 , 
1 

\ 1 
1 

l' 
1 l! 

l 'r~); 

~~~ 
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c -

/' 

- ~ . 

1 ' 

" 

1'" (v) Go to step 2 . 1. 

Remarks 

(1) The optimization routine returns a new set of 

(2) 

(3) 

initial conditions fue ta the nonlinear',ity 

of the system, and the change in qo (whlch lTIày 

-'-be 1~rge relative to the previo1;lT value~ of qO) 

the system may faU completely t6 satisfy the non-

linear error criteria at the starting point of 

integrating the original system. A way tb over ... 

come this problem is to start the integration \ii th 

values of ' q which satisfy the system eqli"ations 
o 

This is the reason for step (1. ii;). 

In :liact, the ~nly values which it is necessary to 

save for tp.is' step,/ are the components of (u, q) 

:1J' " 1 

corresponding.to the.nonlinear'branc~es. 
~/ 1 

Steps (2,/ and (2. vii) can be c_uted 

SimrltaneQJ~lY • 
: /" 

Sorne optim zation techniques consider a minimum 

to have bee found (which in our qpplication means 

solution is found) if the gradient 

" 

t 

, ( 

64 

\ 

( i 

, : 
t
l , ' 

,1 'r 

-,-_~""'""'-\-~~_--""""':-;-~,--:--' .... ~""";"""" ......... ~r'J.2 ,~: +.;\ ~~~, LL--;--r-;t; :: .. \o(r.;t::"r-;-·-----...... î~;~~ 



( 

/ ( 
l 
: l' ~r 
~ 
L 

(4) 

• 

J' 

1.~' 

vector 1 G 1 (or its norm Il GIII~) is less 

than a certain liroit. Hence another termina-

tion criterion san be added in this case. 

For more details abo~~ resitting the initial 

conditions as weil as the ntegration process p 

~I 

see Par~ B of Chapter V a 

),. . 
1 

Il "-

1 . 

'" 

" . , -1- 1 
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~J,TER IV 

NUMERICAL CONSIDERATIONS AND RESULTS 

4.1 Introduction .. 
The periodic steady-staté ~alysis algorithms 3.1 was ' 

imp1emented ~n the de and transient analysis program SCAMPER. For ... 
the optimization step, two ~ifferent optimization routinJs we~e made 

J.. 

available to the user. These routines are Fletcher's [22] variable 

metric routine (VM), which requires ful~ matrix storage, and an auto-

matie restart, conjugate gradient routin& (ARCG) by Powell [23] whieh 

requires less storage. 

The convergence of the algorithm as weIl as the execution 

~~e are greatly influeneed by the scaling of the different arguments. 
r /-1 

In Section ~.2 the scaling features are discussed hrief1y and Jome 

suggestions are' made, based on our limi ted experience with the proqram, 

regarding the selection of a proper scheme for scaling the arguments. 

Three examples are bresented in Section 4,.3. These were 

sqlved using both the VM and the. ARCG optimization routines, however, 

since the VM routine ~e b~tter ~onv~rgence, most of thè detai1ed re­

sults are give~ for that routine and only sorne final results are shawn 

,for kG for comparison. An import~t result that com~s out of these 

examples is that the Itime required 
: . 

of equations can he cont:çolled and 
~ 

1 

for integrating 

is usually les~ 
the adjoint system 

than ~lf the tiIUe 

required for integrat~ng the original system of equations describing the 

network • 

" 



.t 
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Although thes~ same ~xamples were also analyzed by 

Nakhla [11] using a similar gradient method and the~ame VM routine, 

a detailed comparison of results is, in general, not meaningful because 

of the differént strategies used for the transieft 

case, the transient analysis start!:'; after the de 
l , 

analysis. In our 

solution is found, 

while in NakhIa's program the transient analysis starts ffom zero , 

initial conditions. 

4 .:2' Scaling 

The results obtained for severai problems demonstrate 

clearly that the optimization step of the algorithm is the most criticai 

one. The available optimization routines, VM and ARCG, may require 
- ./ 

a large number of iterati~n~_to reach the region of quadratic convergence, 
1 

depending on, the starting point. The convergence rate as weIl as the 

execution time can be greatly affected by the choice of the scali~g para~ 
\ 

meters, sa that if' 15 important ta understand their respective 'functions 
1 ~ 
1 

in order to use them properly. The four kinds of. scaUf9 which are 

available are discussed below and sorne guide-lines are given for their 

proper use. 

l 
~ 

The equivalent resistance, RLS, for the inductive elements: 

.~ The initial concli tians 1 correspanding ta the 41f-
, l 

ferent types (linear and nanlinear) af inductive elements are made in-

1 

1 .. 
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ternally to be equivalent to cur~ent sources ,1 , while those 
0J/, 

correspanding ta the capacitive elements are made'equivalent ta voltage 

Il -~ t 
""sources V 

1 0 The equivalent resistance RLS i5 intrgduced ho scale 
c 

the inductive variables by converting them ta voltages = 

A Ch~iCi of the value of RLS other than unI. ty may be necessary in cases 

where there are order of magnitude differences between the V' s and l' s 

of the C's and L's, respectively. From the computatlbnal point of 

view, the equivalent resistance RLS seales the objective functions of) 

the inductive elements ~J/, by (RLS) 
2 

and the variables·passed to the 

optimization routine, XR,.' by RLS, while the gradie~t will be scaled 

indirectly by RLS and (\ / RLS)' . (See equation~ .. 3. 23e- and d). 

II - Weighting of the objective function $. : 
~ ~ 

The weighting fa~tor w. of the. objective function 
~ 

given by.equation (3.20) is speeified via the paJameter FCTR
i 

&:: w .• 
~ 

This kind of weighting is ~seful for controlling the influence of eaeh 
, 

storage element' s deviation from the periodic steady-state on the cbn-
1 

version proeess.' For example/ the FCT~ of $k corresponding to 

1 
element k associated with a longer time con~tant, and yet probably 

having ,a relatively small initial difference between qo 1 and q (T) l' 

may be indreased tq advantage w. r. t. 
\ 

the other FCTR
i 

. 

, 
,1 

1 
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III Scaling the optimization variables X • « 

SCLX {il = SCLX. 
1. 

i = L, 2, • • • N. 

69 

In the steady-state analysis of circuits, cases are often 

encountered where the values of the variables differ hy orders of magni-

tud~. This may result in poor convergence due to the search for a mini-

mum over an elongated contour of the performance functi~n ~ with respect 

to th~se. variables. . Convergence may he improvetl by scaling the variables 

to be of the sarne order of magnitude. Care must be taken in using this 

type of scaling as the relative maghitudes of the variables may changr 
drastically as the search for a minimum ~ proceeds. Four options are 

available in using SCLX. 

{il 

(ii) 

Ind~idual scaling of each element. In this 

case M values have to be provided. If 

M < N, the firsL in 

'the given order of their corr~ponding branches, 

hy the specified M, values, while t.he remain-

ing N - M variables'will be scaled hy unity. 

Common scaling for aIL and Lis, respec-

tively.. In thJ.s case two values, SCLX and 
" ~ c 

SCLX.t must he provided whe~_all the 'capacitive 

va~iables wililbe scaled by the first value, 

SCLX 
c 

-:: ' 

, 
and aIL the inductive variables by the 

\ 1 

"---- >-- ---~ 

: 

" ' 
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(Hi) 

(iv) 

1 

il 

second, SCLXR,' This particular forro of 

scaling is simple to uFe and yet quite im-

portant. If, for example, inductor currents , 

are of the order of milliamps while the capaci-

tor voltages are -of t]le order o.f volts, the 

ratio SCLXR, / SCLX
c 

coul,d b~, say, 1000. 

i 

AlI the variables to be scal~d in such a way as 

to cause their scaled values to be equal at the 

first steady-state iteration. In, this case a 

parameter, XREF, must he supplied whereupon the 

No scaling at 
l, 

aU. : 
\ 

\ 

\ 
\ 

Soaling the initial condi,ti~ns ~f thlF 0 adjoint ~ystem. SeLO: 

\ ' 
\ 

If this scaling is required al! the. initial conditions 
~ \ 

of the adjoint system, ~2 CT), will b~ scaled equally in such a way 
\ 

as to cause the initial condition with J~e large'st eqJivalent voltage 

'. 

76 

to he equal to seLO at the begiAning of each integrati'ln of the ad- ; 
\ ' 1 

joint system. The rJason for intr~duci~9 this type of ~caling ,is _F, 

1 1 
that the gradient may not have to he computed as accurately during th~ 

• 
li ~ 

,~ 

,J ~:~~f 
.. ,r" 
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first few iterations as within th, quadratic region of convergence~ 

Hence" if the ~arameter 

ta the largest equivalent 

and large enough relative 

(which is 

seLD iS! chosan to be small enough relative 

voltagel of À '(T) at the' tirst iteration 
-2 1 

1 

to thatl sarne component of Â
2 

(Tl at the 

normall!y within the specified error of l~t rt~ration 

computation) , the average tinte . ~or ihtegrating the adjoint system may 

,"_WIll 

be reduced. Furthermore, the highe 
~ 

tians may improve the convergence.1 

accuracy.during the last few iter~­
~ 

-------------~~ our dmittedly limfted experience with 

the ,program, the following guide~i ,,~s are pr?posed fok using the steady-

state analysis effectively. 

1 

(i) Perform analysis ove~ few period~. 

Examine the reac~ ve (dif~erentigted) variables as 

well as 'tho~e cor ,espot1ding td'sharp nonlinearit~es, 

- t!ô 
such as exp~~enti ls, over the last period and 

1 

chooae the starti1 point, ta in is~ch a way that 

(1) regions wherJ the sign of the ~ime derivative.s 
\ ~ 

i5 changing rapidly are avoided, (2) it does not 

correspon~ to the ~e ~on ~ conductio~ of junctions 

shurited by reactive lements (if any), and (3) 1 as 

many variables ~s pas ible are near their largest 

absé>lute values. 

" '1 

.-.::;:::,.----'--

/, 
1 

,_'"\.;-
1 

! 
j 
j 
! 
j 
f 
i 

~ f 
! 
\ 

tI'; 

\ 
, \ 

j 
! 

, , 
l, 

i 
1 

" 

, , 
'~ ~-.\. .. 

, " 
l' '. 
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(ii) , 

- Il 

Cho!se the equivalent re!?istance ~RLS 1 co~res-

ponding to the 'inductive' e±~ents (if any), Ln 

stlch a way as ta cause t~e average. equivalent 
• ,,or" 

voltage of the induct..ive elements to he comparable 

to the average vpltage of the capaci~ive elements. 

, 
.\ 

----
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' .. 
X~~fiye function' '1 jaccording to 

___ -------------- , its ~pected infl~1rce on the tr~s·ent ~esponse 
of t;he circuit (t;aking into accoun the effect of 

c 

1 

',C 
' ':./ (" 

. 

" 

41 

RLS} . r 
(iv) Sca~e the arguments passed to the optimization 

routine in such a way'as to make themall appraxi-" , 

mately ~qual ('tak~ng into account the effect of ' 
\ , < ~ 

RLS) 
• 

4.3 
"i ~;'; 

Numerical Resu1 ts , 

Three examp1es are "presented tp illustraté the effec~ive­

ness of the proposed stead~-state algorithm 3.1, and to dem~nstrate 

the import~ce of using scaling. BesiJes the scaling par~ters intto-
J 

duced in the preced~ng section, the fol1owing notations w~11' he used in 
1 .. 

the se exarnples l 1 

Il 1 

1 

1 

1 '-f 0 
1 

1 

\ 1-- \ , . , ____ .:: _____ L 

i, ~ .1 i ~ 

, . 

'. 

... , 

1 
1- \' 

1 

c' 
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Tf, TB 

~p 

Exarnple l 

the .time required for one full period, inte-

gratio~ of the original and the adjoint 

Rystem, respectively 

the equivalent total number ,of forward ~te-', 

grations_, requir'ed for completing the steady-

,state analysis, i.e., NP = TT / TF, where 

TT is the total time to convergence. ' . 

The importance'of using a steady-state anaLysis algo~ithm 
, 

hther than using continuOU5 transient a~alysis (','brute force '1 method) 

i5 demonstrated ,by this simple example which was· also analysed by . .. 
Nakhla [Il], The clipperocircuit shown in F,igure 4.1 was analysed 

twice, once using the gradient method and- once by the "brute force" . 

te~1ili.ique • In fâc1::, with the. dc source EC = 5 volt~'1 t.he diode nj3ver 
ri 

<1 conducts so.t.hat 'the circuit is effectively a linear one. The circuit 

has two time constants Tl and T
2 

which, with the diode off, can be 
4 

simply shown to be given by , : Tl :: Cl (RI R
2 

/ (Rl + ~2)l and 
( . 

'1' :: C 
2 ,,2 (~ + R2 )· The,kratl0 TO i Tl is app:ro~imately - 50, while 

the ratio of the longer t~me constant T
2 

to tHè period Qf the input 
/ 

signd 'is approximately , 100 \ Hence,' using the brute force method, 

lhe :teady-statè condition i's not expected to be i:eac~d before a few 
.. '1 0 

, ~undred' full _periods of integ:r;~ti~o. ~J This ts 'cd~iirnied by the results 

• 0, 

4 ' 

-. . 
. , 

' . 
, ., 

" 

T 

Il 

1 
.~ 

, ,. 
0 

r ' 
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1 

shawn in 1 the first tWQ C~l,:"""" of Table 4.1. Note that with the steady­

s±ate algo~ithm, ~ is ~educed to 1ess than lq-9 in two iterations .;.. 
(equivalent to approximarely 2.64 periods of forward integration) 

1 
whereas 49 periOds by rhe brute for~e method reduces ~ to only 

0.234 x 10-7 • 
1 

Example 2 

The 

çoth Nakhla [11] 

was still f~r frçm s 

With the gradient 

in 16 iterations 

/ 
the adjoint system ini 

0.01 the convergence 

1 , 

in Figure 4.2 has been considered by 

[1) who showed that the.syst~ 

state aft~r 75 full-period integrations. 

thm ~e obtained convergence to a t' of lO-~2 

The only scaling used was that of 

conditions, SCLD. With sew equal to 

the quadratic région was improved and the 

I~ ~igure 4v3 the ratio ~xecutiÇ)n time was .... "" ....... f"'''''''' by about 4, 10%. 
/ 

scaled ~~d 'the unscaie~ cases are plotted against (TB / TF) 

o 
the iteration number. With scalinq the àverage (TB / TF) was 461' 

while rithout scaling 1; was 51\. 
&/', 

Exaxnple 3 

in using 

amplifier of Figure 

and with,scaling app! 

;-- - ... 

of apply~g tfie differ~nt types of scaltng 

i6 shawn in the' analysis of the class C 

start~9 the analysis ~fter 4.9 periods, 

sho~ in Table 4.~, the steady~state 
, 
~ , 

, ' \ 

, ' 

Il 

, 
1 
1 
\ 
\ 
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TABLE 4.1 

1 
1 

\ 
\ 

\ 

RESULTS OF EXAMPœ 1 
1 

Brute Floree Method 

Period ~ 

0 0.236 
-;-

1 0.467 X 10-1 

2 0.925 x 10-,2 

- -7 10. 1.00 x 10 

20 0.415 x 10 -7 
, 

30 0.34 x 10-7 

40 0.28 x 10-7 

49 0.234 X 10-7 

-
\ 1 

For the gradien'lt method --
SCLX 0.5 10. 

(- 1.1515, 

Execution time = 

(TB / TF)avrrage = 
/' 

NP: ' = 

-, CI' 

5.37 sec. 

32 , 

2.64 

\ 

Iterati~n 

1 0 

1 
1 

2 

1 " 

0.10156) 

\ 
\ 
\ 

., 

Gradient 

c) 

0.236 

0.99,2 x 

0.477 x 

/ Il 

\ 
1. 

---
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Xl x
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10-8 
-1.1513 0.10156 

10-9 
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TAljlIf 4.2 
1 1 

RESpLTS " OF EXAMPLE 2 

1 \ 

Scalin9 

~ 

SCLD ::: O.OJ.. 

Iteration ~ Iteration ~ 

0 4:26 9 0.995 x 10-3 

\ 
10-4 1 0.227 ~ la 0.490 x 

2 0.226 11 0.153 x 10-5 , 
3 0.222 12 0.173 x 10-6 

~ 

4 

1 
0.2;1.2 fi 13 0.122 x 1077 -

Il -9 5 0.118 14 0.479 x la 
f, ' 

0.48~ x 10~1 6 0.111 15 

1 

-

1 
0.232 x-1O-12 7 0.254 x 10 16, 

< ~ .' -< ..,. .' 
.:~----

0.892 Je la 2 8 

= [-9.07535 9,05648, 9-10251, 9.029 x 10-3) 

"'% 

ÈXecution time = 45.7 sec. 

(TB / TF)' = 46'. -average ! 

NP = 27 

,r ! 

~ J 

, 
1 1 

1 /~~ 

/' 

~ 

a . 
,-

1 " 

, .. 1 ,,;, .. ,~ , - 1 , 
-, . 
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Without scaling 

(TB/TF) = 51% 
av 

With scaling 
, 

(SeLO ::, 0.01) 

(TB/TF) = 46% av 

(II) 

15 

(TB/Tt) 
" 

(1) 

/ . 

io 
Iteration, 

1 . 
vs itération 
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number for'power supply example 2. 
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~onditions were found a~ter 23 iterations accurate to six digits with 

41 < 10-12 • The two sets of values shown for x. in Table ~3 
l 

correspond to the final stea~y-state solution at t = to = 4.9T and 

also at t = S.T. The latter are given to permit comparison with the 
1 

\ 
results of Trick et al Il) apd Nakhla et al 110], [llJ • 

1 

\ , 

When this problem was solved with the 4kàIlle RLS, FCTR 

and SCLX but without SCLO, tr~ method converged'to ~ = 0.819 x 10-
11 

after 24 iterations with 118J,4 sec execution time. This corresponds 

to an inc~ease of abou~ 15 % in-the execution time due to the omission 

of : SCLO.' Figure 4 • 5 shows (TB / TF) as a'function of iteration 

1 number without SCLD and with SCLD equal to 0 • 01 . For the unscaled 

case, the increase of the execution time during the first few it~rati9ns 
, 

was no~ balanced by the reduction during the last Iterations re=Ul~Îng 

in an increase of the average (TB / TF} over that for the'ca$e wpe:e 

SCLO was used properly. In the absence of any kind of scaling, ~e 

method was not abl~to oonverge' within the same number of iteratians. 

After, 28 iteratioris, and 150 secs. 'of exectuion time the objective 

, -4 
0.45 x 10 • 

f 
function It ià worth noting that 41 was reduced to only 

ihen the same problem was solved, for comparison, using. the conj~9ate 
1 

gradient optimizat~,on z;.outine, th~ algorithm was not able to converge and, 

after 28 
-2 

iteratiQns, the objective function red~ced only to O.19'x 10 

which is very far from the steady-~ta~ë\condition. 1-

.. 

... , 
': 

1 ,-

, 1 
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"TABLE 4.3 

3 

Scaling 

RLS = 50 

~ FCTR
i

, i = 1., 2, .. "; 10 : 1., L, 0.1, 0.1, 0.1, 1.i,I1., 1., 1. 

L 

SCLXi , i\= 1,2, •.. 10 0.5,0.5,1.,0.1, 0.1, 0.1, 1., l., 1., 1. 

SC-W : 0.01 

Iteration 

o 

1 

2 

3 

4 

5 

6 

7 

0.138 

0.329 

0.,973 x 10"'"1 
!, 

0.718 x l'0-1 

0.532 x 10-1 

-1 
'0.416, x 110 

0.338 x 10-1 

-1 
0.315 x 10 1 

(xi' i = l, 2, 

III / 
... , 

25.5844 29.4632 

Iteration 
" -

8 

9 

10 

Il 

).2 

13 

14 

15 

1.16458 
"\ 

1.4530 

-0.076572 

26.8711 28.8556 -0.~79830 
~ \ 

Execution tiIne -= 104.73 sec. 

(TB 1 TF) - 4Ef, 
average 

NP "" 39.5. 

.Iteration 

0.307 x 10-1 

0.284 x 10-1 • 

0.272 x 10"'11 

0.262 x 10-
1 

0.180 x 10-
1 

-1 
<\-133 x 10 

o.~~ x 10-
2 

O.§3;~10-3 

16 

17 

18 

19 

20 

21 

22 

23 

0.345 x 10-
4 

. -4 
0.114 x 10 

- -5 0.496 x 10 

-6 
0.546 x 10 

-7 
0.331 x 10 _ 

-9 
J 0.691 x 10 

-;.' 1 

-10 
0.,105 x 10 

0.234 x 10-12 

l, ' 
1.04044 

l.4169~ 
1 

-0.304503 , 2G.549S 

28.3779 -0.288972 

-0.062961 , -0.076349 , ,-0.149948 

0.000141 -0.076101 -0.098802 . 

j) 

• 

\ 
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1 v 

.) . 
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Figure 4.5. The relation between', (TB/TF) vs the iteration number 
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CHAPTER V. PROGRAMMING 

PART A 

DC AND TRANSIENT ANALYSIS PROGRAM,SCAMPER \ 

The tran;ient ~alysis program SCAMPER, to which the 

periodic steady-state' analysis has been added wa~ wiitteh by Millar 
1 ( ,l" 

and Blostein [19], [20]. Its main features are accuracy, high speed 

! and a cap abi li ty of handling a wide .range of branch types. 
__ ~ '.,.1 

circuits 

of about 350 branches (which is roughly equivalent tO,a circuit of 

20 transistors) can be analyzed. 
" 

The analysis starts by generating the dè solution.-

84 

~' ' 

AlI ~he' independent sources are set to ,their valuys at zero time and aIl 
, 1 

1 i 
l " 

tbe time derivatives are removed fr m the network equations, (which 15 

equivalent to short circuiting aIl he inductors and open circuiting aIl 

the capacitors). Then, if require , a transient analysis ia èarried 

out over a specified time ~terval. 
, 

~J'I'r 

------------
Techniquas such as h'gh order i~liéit integration with 

, • J .. 

~-,-------variab,le stepÎtize; the use of e matricès and tge generation of 

• 
ex~cutable mach:ine cOde account for SCAMPER ',5 high spee9 and accuracy. 

1 

The program is \«i~ten mai~ly in F'QRrru~ IV. 

, ,. 

1 

" 

\ 
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, 
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Il 

5.1 Acceptable Element Types 

There are 'two genera types of branches which are 

accepted by SCAMPER. 

/1 
(i) Sources: ' 

l, 

F-Qr current source 

J = J (t) , (S. la) 

i .. 
For voltage source 

E = E (t). (5~lb) 

where the time ~'P~~tfuncfion dln Pa any of the follow~ng functions. 

; (1) Constant (de source). (2) Sine, ,ve I~magnitude A~, starting 

time to' 

source)'. 

frequency f). (3) PIse (general tra 
1 ~ 

(4) Tab\ü,ated source general piece-wise 
-

'non-periodic source). 

'1 

(ii) CQntrolled Branche~ -' 

iéa""1 periodic 

of 

J' 

1 

The se ches jthat can he desctibed by either 

-..... --..:.... d • , 

a relation between network variab es (voltage, cur?=ent, etc.), or hi "" 
• 1 

1 ~ 1 

relation between'element values esistance, etc.) 

" 

and network variables:. 
1 

l' )1 where X Using,the conv tional network definitions, 
, .~ 

é 

1s a network variable (voltage V, 

the general acceptable relations ar~ 
1 

1.'''', 

l , 

1 

current l, -' charge 2, 

li 

flux . ~,), 

, tI' 0 
~ 

o , 
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,1 

, 1 

" 
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Xl = Xl (X
2

) e.g. lb ::; lb (V ) 
a 

(5.2a) ~ 
( 

R ::; R (Xl' X )' V, = Xl · R (X
2

) "(Sor 0 2 
J ." 

, " 

~ = G (Xl' X2)')1 l = Xl · G (X-2) (5.2c) 

i.~. 1 
c = C (Xl ,"'X2) Q = Xl · C (X2) (5.2d)' 

, . 
, ~ 

L = L (XI" X
2

) F = X L (X
F
). , (5·fe ) . 

" l '-

" 1 . , ~ 
, 

Through this ~eneral representatf°rt , types ranging from constant, linear, 

self-dependent élements up l, to cross coupled non-linear elen\eJl~s are . 
acceptable. The only restrictions on ~e type of dep~nQencyl are that 

1 ~ , 

gependency is not permitted on non-rep~esentable variables such as a 
1 

current through a capacitor Q~ a voltage-aeross an indbctor,'because these 

ar~ not treated as equa~ion variables. Also'the nonlinearities are 

restricted to be çf the piece-~ise linear form~ with ,the exception of a 

current-or charge-contro'rled branch which ean be of the exponential type 
Il 

as weIl. 

I
~ l':, 

ltl' .. 

5.2 or4er of Setting'the, Equations Md va~~les 
The tableau repre$entation of the network is set in the " , 

, i " following ord,er. First, the'br~ch Kirchhof~~s vol.tage law equations 

(KVL), in order of inoreasing brbch n~er. Second, the nodal Kirch'" .' /' \ ~ 
, 

hoff's 'eurrent law ~quations (KCL) , 

-~---"----~ 

, \ , 1 

. 
~ . 

in order of increasing node ~umber. 

~ , 
L. t • 

• \,,>< 

,a.. , 

. . 
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Third, the branch constitutive equations (B.C), in order of increas-' 
" 

ing branch number. 

The variables represented in the net~rk equation's, (J 

X, are not the network varlables themflelves, but the negated differences 

between their values at a new point (i) and the last accepted point 

(i-l) , i.e. 

x = 
1 

Y '"1 - Y. 
l.- ~ 

\ 
.. 

(5.3) • 

where X is the equation variable, and.Y is the corresponding networK 

variable. 

1 
The a~rangement of vàriables is in the folloWing 

order. First, branch cuJrent br c&arg~ (I or Q), in order of in-
1 • 

Î 

creasing branch nref. / Second,. branch voltage or flux (V or F), in 

order of increasing branch number. Third, node voltage (VN), in order , 1 
1 

of increasing node number. 

,. 

5.3 solutio~procedurès and Num~rical Techniques 

. first 

The transient analysis 

lineariZill1) the bra~ch equa:tions at a 

bf the network is done by 

point, this being the la st 

accepted point or a predicted one. 
-4 

The differentiated variables are 

replaced by a backward aifference formula (integration rormula) of a 

l .. 

" 

/ 

v 
i 
i· 

1 
f 
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,. 
. , 

, 
k. 1 ~The linearized system of equations may take 

1 

user-specified order 

the forro 

J X = E (5.4) 

,{ 

where J is.the Jacobian coefficient ~trLx, E is the forcing vectpr, 

and X is the equation ''l'ar\able vector. Equation (5.4) is solved 
,) , 
~açtorization, 

.' 
using the Gaussian ., 

+ L U 

1 

L (UX) E cs. 5) 

/ 

followed by backward and forward substitutions. 

Thus, ,substituting forward in 

L Y = E (5.6) 

yields 'i, whence 1 substituting back in-

u X .'i (5 ~ 7) 

,1 

gi .... es 
X '1 

As the ~ystem of equatiQns is set in tableau faim, the 

Jacobian ~ may be highly sparse and of large dimensions. Also, it 
/. 

\ can be shown that most of the Jacablan entries are s~ply + 1 . Mare-
o 

1. 

r 
1 
f 
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\ 

,.j 

over, for each mode of analysis (de or transient), the same system 
, 
of equations, with a fixed sparsity of the Jacobian J, is required 

ta be solved repeatedly with different values of J and E. In order 

ta derive the most benefit from these properties, a sparse technique 

/ 

wa~ developed which genera~es non-looping executable machine instructions 

(code) through Fortran stat~ments. The code is generated twice, once 
-~/! ~ 

for the dc analysis and once for the transient. When this code is 

executed 1 it performs Gnly necessary operations, avoiding' any nrivial 

or unnecessary operations (e.g., multiplication and division byor 
,. f 

storage of ~ 1) . 

, ~ r, n ) 

1 

The linkage and accountïng vec~ars u~ed with the ( 

'code g~ne~ation are quite large. However, they are 0~r1aid on.other ~ / 

vectors, sa that no extra storage space has ta be SP~CiallY rese~ed 

J \ 

for 

these vectors. 

In the fol1dwing sections, the main techniques 

-1 used in 'jSCAMPER are reviewed. 

5.4 Code Generatio~ 

There are'two types of machine instructions used in 

seMPER I19] , \ register-to-register (RR) ,and regist;er-to-core ,(lUe) 

instructions. The required RR instructions are defined in DATA 

statements, 50 tha t they can be added ta the code strea:a(" when needed. The 
• 0 

t , 

1 

1 

, l 
i 
! 
1 

\ 
" 
~l~ 
1 
1 
1 

1 
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fi 
/ 

~ ,: instructions consist of an operation code, operand register number, 

index register nurnber, base register number and dïsplâcement' field: 
i 

The ?perati~n code, oper~d register.number and index r~gister numger 

occuPY the first half word of the instruction, and are defined in DATA 

---~ statements for every required combïnation. The index register is used 

1 '. 

to specify which vector is being operated on, and it contains the address 

~of the start of this vector. The base ~~giste~number and theidisplace-

ment field occupY the second haif of the 'instruction word, and define the 

operand in th~ specified vector. This is done by setting the second 

half word to 

8 (1 1) 

where l is the subscript value of the operand. ThJ mUltiplication by 

8 'is done because vectors are of double précision. In this w~y vectors 

of up to 512 entries (= 4096'/ 8) can be assessed. To increase the 

acoessible length of each vector, some registers (1 through Il) are 

loaded by values" 4096. K, wl;1ere K is the register ntmlber. This 

allows vectors of entries up to 6144 to be accessed correctiy. 
-~---......-" 

,/ 

\ -. 
Considering equations "(5.4.) to (5.7) we can see that 

{ 

the -code string has to consist of four basic sections, each with a specific 

function. 

(i) -J-codej to fil! in. the ëo~stant (real) entries of J. 
1 . , ' 

Also t-o fill in the integration formula corresponding 

to .the rinear reactive elements. 

. " 

." ,~ ..- 1 - , 
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. (~I 
, 1 

, 
! 

., 6 

(H) 
, . 

(Hi) 

• 

/ 
./ 

E-code , to compute the r • h. s • 

/ 
~ 

( 

E ,of equation (5.3). 

F-code, to perform a Gaussian LU factorization of 

Jacobian J, witp complete pivoting to ensure numeri-

~al ~tability and high acc~racy. 

(iv) S-code to perform the 'solution with the factorized 

matrix via a forwar~ substitution followed,by a bac~-

ward one. 

/' 
In addition to these f9ur main segments of the code, .some control state-

ments are ;nserted between segments (such as reloading index regis~rs . ' 
ând transfer 'of control), as weIl as some constants to};le initialized 

at the starting locations of the code. 

5.5 Sparse Matrix Technique 

" The sparse matrix technique is used in conjunction with 

the code gèneration. . '. It may seem qui te complicated due to the large: 

number of linkage and counting vectors used~ but it shoùld be noticeq 

that this technique is executed only twice, once for the dc analysis , 

and once for the transient one. Accordingly, a làrgé portion of the time 
1 1 / 

that would be consumed j.n generatin9" and updating these vectors is ,saved 

due to the execution of thé generated code~, This is not the place for 

-
a detailed analysis of this technique, b~t the main idea and the des-

cription of two basic vectors will be given . .. 

/' 

~ 
( 
! 

• 1 j 
1 : , 1 

1 ! 

. [: 

{ , 

..i-,J ;. ..... -M,.r~...,.. ............ ----·_---...... ...;...-/4! 
J 
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{, 

... ' 
During the setting of the linearized network 'equations, 

/' 

two vectors, lC and lSGN, are constructed to~ link and identify the 

non-zero entries of Jaéobian J. 

. 
(i) Linkage vector lC (IJ), IJ = l, 2, •.• etc., is a list by 

row~ of the non-zero Jacobian entry column ~umbers. The entries for , 
, . 

f ' 

each ro~ are separated by terminators, 50 that-entries of each x:ow can 
/' 1. /' 

This vector is effective~y a two dimenSionJl be identified. 

~" -
vector, where l represents the row number and J represents the 

column number. 

(H) . Identity vector 

" 
ISGN (IJ), 

, 
lJ = l, 2 / -'" ~. '. This 15 a marRer 

, , 1 ~ 

vector for the non-zero Jacobian entries and corresponds to lC. En-

tries which are + l or - lare ide,ntified by 0 and l" 

respectively. Non-zero entries other tpan ± lare identified by 

their location in the vector VAL 
'(' 

± lare not stored in VAL. 

where they are ~tored •. 

J 

Npte that 

, , 

~slng th~se two basic vector: IC, 'ISGN" soma' othe:r 
, . 

linkage and accountin~ ve.ctors are constructed and, updated durüw/tne 
~_ / 1 

step of Gaussian LU factorization to facilitate the process of 

generating the machine code. 

T~ prqc~ss of LU facto:r;'ization is illustrated 
, 
~n ,f 

Figur~ Assume that in 
. 

S .1.- we have a full matrix as Figure S.la. 

Aiso assume that the diagonal elenients have been chosen a.s pivots. At 

/ 

/ 

, 

1 
f 
· " 

r 
• 1 

· · ,1 · ~ 1 ~} . , 

1. , 
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" the beginning, the whole matrix is liflked as in Figure S.lb: As 'the 
, " ~ 

process of ~actorization proeeeds the lipkage is sp~"it into three 

different p~ths: (i~ t~e uPRer t~apezoidal,' (ii) the lower triangular, 

and, 'CHi) the un~educed matrix (FigU';-é S.le). The start and 1ëhe end 

.of tqese paths'are marked by pointers. At the end of the 'LU factori~' o • , 

. zation both the upper U and the 'lower L ,triangular matrices are 

linRed and identified. In genera]", the matrix is spar.se and the pivot 

elements may not'be thé diagqnal~, so tha~ tne linkage paths will be ' 

, , 
overlapped, but the same principle 'iemains. " 

~\ ' .' 
. , 

.. . '. 

, 5-.6 , 'Pi,vot-ing Procedure 

,. 

' . . 
rhe.pivoting.pro~dG~ is a~ost a complete plvoting, 

except for sorne " minor 
.' , 

constraints owhich,; from experien~ [21],' are 

found,to give better numerical stabilit~. The algorithm used starts 

by el~inating th~ ro,ws corre,s,pondi;n9 ,to the B.C. equations, then the . ,.", 
, [ , .. 

KVL equations and the 
\ 

KCL {if possible', Also the cho~ce of the~ 
1 _ 

pivot col.utnn . (if possible) ia forced, not to. :çorresp~nd . . '.. . fir~t to the node 

voltage vàriables, 

pivot row is chosen tb avoid a search procedu~e:1 ..A'" " 

.. 
Taking into consideration the above ramarks the following 

is a review of the pivpting a~90rithm. " 
, 

1:· 
,', 

" 

, .. 

L 
,1 
'1 
l 
-1 
1 , , . 1 _ 

1 

1 

1. , 
,\ 
\' 
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(a) Original matrix. 
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x 

x -

x , 

~ \ 

(b) Original linkage of the Jacobian J. 
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Figure 5.1. The prbcess of updating the linkage paths 

,P during the LU Factorization. , .. . . 
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" (1) 
\ , , 

'", 

Set an upper bound 

! 
KREP' on the number of entries in a row 

"ta be < accepted as a pivot row. 
/' 

(ht the start, this limit is set 

. . 
during the construction of the linkage vectors). This acceptance 

limit rnight hé modified at any step. 
, . 

(2) During,ea~h subsequent step of factorization, compare the 
'" J , 

.. 

/ 

.number of entrie·s of each row of the unreduced rnatrix with KREF. If 

95 

a ~o~ of entries equal to KREF or less is found, terminate the search. , 
,1 

If'this €onditipn is not satisfied after a complete scan choose the +ow 

with the smallest number of entries ~s the pivot r,ow and' reset KREF. 

'. , 
(3)' From the se1-ected row, choose the pi;rot column as follo' .... s:-

(i)" 

1. 
(ii) 

(iii) 

, 
1 .. 

(iv) 

1 • 

If the 'first entry is + 1 (corresponding 

to ISGN (0). = 0, -:1..)', piel<. it. 

tf .not., pic~ the first unit,rnagni~ude + 1) 

• 8 • 
before the entries ~orxesponding to ,tqe node " 

voltage'variables. 
, 1 

~ ! 

If none, choose the large st entry which is 

greater than a certain lower limit. (10 -60) .. 

If none 1 choose an~ entif of u~it magnitude .. 

( :!:: 1) correspond~ng to â node v;ltagE( 

va#able. 

Il 

• 

f 

'1 ,t 

f 
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As soon as a tOint is chosen.' a step of factorization 
( 

lis carried out: JI) pro l' es/irrg the entries of th~ coefficient ' i 
Jacobian vector VAL, (2 generating the riecessàry machine instru9-

tions for thi~ step of ctorization, (3) updatipg' the linkage and 

accounting ~ectors. n order to ensure nillne:r:ic~i stabÜity and 

accuracy' the 
.,~ 

rese~tative Ja~obian entries are ~hosen to correspond 1 

" 
to the wôrst case 
,/ 

, 
(e.g., the coefficient of an exponential branch ls'l 

set to zero) . 

/ 

1-
7 

r 

Numerical 
-
! 

À variable x ='x (t) canr-in 

by a polynomia~ ~aVing ~ infi~ite n~ber of 

siderations limit the number of terms k to 

/ 
genera,l'; be repres~ntèd 
? 

tarms." rractica:l' con-

l ,~ k ~ 6 [2a).: The 
, " 

differentiated variable • x i5 repla?ed by.the slope of this pbly-

nomial at the new time point, wQich is computed usihg a 

" 

... 
"corrector" 

formula, whi:!-e the error estimation is done using a "predic1;or" l' 

formula' [19].' The err..or iritroëluced by this "truncation" of the 

polynomial is called the trunèati9n~rror. 
, 

Moreover, when the non-
, ' 

linear equatio,ns'are ~eplaced at a given time point by a ,linear m5Jdel, 
~ ... 

,. the error introduced by this 1ineari~atiOn is called the nonlinear 
,/' 

error'~ Accôrdingly, there are two types of error, control, the trunca-

:-.. J tion error contr~l and the nonlinear erro:ç cYintrol." The step si,ze is 

chosen to limit the large st error tq be less thah or equal to a certain 

user-sp~cified limït. 

1 • 

" 

• ,1,. r 
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5.,7.1. 
, 

'TrJltnca tian Errar 

1 The predictar~corrector algorithm replaces the dif-
1 

feténtiated yariable x by the slope of the truncated polynomial of 

order k 

tian errar 

at thl nàw time poi~t 

1E' is defined by 
tr 

t .. 
n 

[18]. 

The associated local trunca-

, ' 

, . 
h CXn true - x n approx) E + 0 (h1l:+2 ) .. , 

tr 1 
(5.8) 

• wheré x denotes'the value yielded by the carrector formula. 
n approx 

Neglec~ing the term ,0 (h +2) it can be p~aved Il8] that 

5.7.2 Ndnlinear Errar 

',~r~r 
of non14ity. If the e 

considered only for the exponential ty'pe 
\ -f 

a tian-for, say 1 an exponential capaci tor . 
b 

q ,'= a (e - 1) 

• 
i~ linearized at a'predic ed value vP, it can be,praved 

'l-

119], that 
... 

the nonlinear error E 
'n 

can ,he approximated by 

ç , 

.... 

/ /' 

" 

,. 

" -

' ..... 

1 
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5.7.3 
,/ 

E 
n 

b 
2 (v 

98 J 

'\ < (5.10) 

• 
Step size h, is determined acco~ding to two criteria: 

1 
1 

the truncation error cri terion (wi th a lower limi t h = HO.), and the 

nonlinear error criterion (with a lower limit h "" Maa where HOO is, 

related to HO and k) • 

Let us consider 

, 
X 1 the normalized maximum truncation error; 

"'" y , the normalized maximwn nonlinear error, 

h the last (accepted) step size, 
n ,,-

fi' 
n+1 

is the new step size. 

In SCAMPER, the step size is cl;losen such that the maximwn error is 

less than or equal to half a user-specif~ed error. 

Àccordingly, the step size determined by the truncation error criterion 

is 
" 

l 

h h (0.5) k+1 
::: 

n+1 n X 
(S.llt 

an~that determined by the non1inear error criterion is 

~ l 
\ (0.5) k+l ,/ h ::: h· 
n+1 n" Y (5,,12) 

,/ 1 

\ 

/ 

'1\, 

t 
\ 

1 

,/ 
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step size. 

as: (1) 

The smaller of h n+l and 
.... 

h of' n+.L 
~s taken as the new 

There are sorne othe~ constraints On the step size' such 

avoiding wide change of h / h new old 
(say; < 10, 0.1 > ) 
, 

ta achieve better nurnerical stability i (2) choosing h to yield 
new 

a point just after the cusp change of'independent sources; (3) choos-

ing h / 
new 

points. 

. ' 

to yield points at speciiied times ta ojJtput res\:Ù..ts 

i 
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1 
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PART B 

STEADY-STATE ANALYSIS ROUT~~ 

5.8 Code Generation for the Adjoint system 
.".4 

One of the main reasons for the superiority of the 

" 
de and transient analysis algorithms usedoin the program SCAMPER is 

the sucbessful marria~e between a ~ghly sophisticated sparse matrix 

technique and a co~piler-like routine for generating machine instruction 
r:t 

(cade) strings. Once the code is generated it is used repeatedly in 

.construcfing and solvin9 the network equations. When executed, this 

code dces only the necessary operations, avoiding any trivial wor~ such 

as multiplication or division by unit y or the storage thereof. Since 

the sbeady-state ~nalysis method considered her~ involves the proposed 

gradientralgo:éithm 3'.1, the àdjoint syst.em has to be integrat~d as well 
"- !If 

as the original one. Ta achieve a perfotmance consi~tent Wl:h that 'Of 

SCAMPER it was necessary to modify the compiler-like routine to 
, 

generate ano~h~; cod~ for integrating the adjoint system in an efficient 
(\ 

waY'I /exploi ting the cOInmon prope;rties of both Sy51;:ems. 

Let us first consi,der the actual representation of 

the original system. 
. . 

The Ilnearized form of the network Te~ations i5 

J X 

Substituti{lg the qefinitions given .':Ln ,Part' A 
'"î 

1 

becomes 

(5.13) 

of this cMpter, this 

t, ,- ... "ô. I ....... ~ •• L .. , ,~ 

~L_L __ 
/'.' ..-

I~ 

, 1 
1 

1 
1 

li 
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KVL 

\ 

KCL ... 

BC 

where D (-) 

, IÙ a 

'\ 

(l, Q) (V, F) VN .....----.-... 
r. .. 

~~ 

D (n) 

Alg. (:!:. 1) 

1 
IAlg. (~ 1) 

1 
ID (!:.., n) 

J-.: 
1 
1 
ID (n) 

/ 

1 Alg_ (+ 11 .-
1 
1 

.1 -r-
I 
1 o ' 

D (!:..", n) "1 ~ 1 -- - - - - t - - - - - -1- - - - -
. 1 1 

Alg. 
1 ) 1 
~Ig. 1 0 
l ' " 1 

, ~ 

(I, Q) 

(V, F) 

( 

VN 

symboiizes the entries of a black of the Jacobian J 
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which 

are differentiated, while t and. n represent, respéc~ve1y, linear and 

nonlinear terms. 

,. 

This system of linearized equations is SOl~d by WjJ.n~ Gaussian 

,LU f?ctorization followed by forward and bac)<ward substitution. The 

pivot:Ï.ng procedure [19] forces the pivot row to be taken in tne follow­
,/ 

order: first, rows 9orresponding to the branch,constitutive relations, 

second KVL, third the KCL (if possible) .. AIso, for the p~ot columns,' 

those corresponding to the node voltage lariables VN are forced ta be 

l' 
the Iast (if possible) • 

~ " 

t' 
" Com.ider DOW the adjoint system; 

~ ~ 

,,' .... .( 

/ 
Jt À ;=: Eb. (5.14) 

or 

~ 

( 

, 

'. '. '"'' ,,~f~~~' ; .. ~-.J(!_~ i'" t 

~ • 1 ... . 
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KVL ' KCL BC 

~~--------

Ôi,Q) 

1 Al g. (!. 1) 1 

1 1 
1 1 
1 D (~, n) 1 

Alg. o (n) À 
v 

- - - - 1 - - - -,- - -
.Alg.{!..1) 1 1 

ID (n) 1 Aig. À = Eb 
1 1 c CV TF) 

~~~, ~)_ J __ ~, 
1 

--+----
1 Alg. (:!:. 1) 0 0 À 1 bc (V,N) 

1 

, 
This adjoint system may be solved using procedures similar 

to those for the original one, e. g. 1 by us'ing ~ssian LU factorization ~ 

and forward and backward substitution. The additional requirements for 

generating a solution code are: 

(i) to manipulate~the transposi~on of the matrix in such a way as 
o V 

to~ the same J-code (which fi Ils in th1 linear entries of the Jacobian) 

for j>oth the original and the adjoint system; 

~ 

(ii) to rnake ].lse of t'he relation between th~ two systems to simpli~y 

the procedure for generating the E'-code (which computes the r.h.s. 
\ . 

vector E
b

) ; 

. (iil.) ta mOd;fy the pi~ot select;on algorithm in ~er'to achiev~ re-

quirements sirnilar to those imposed on the pivoting order of the original 

system of equations, and also to use th~ srume routine whidh generates 

the F- a knd s- codes for both systems. 1 

~ 
r' 
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f 
The way in which these requirements were satisfied is 

outlihe, in the following sections. 

5.8.1 Transposition of the Jacobian 

• 
As discu~sed in Part A, the Jacobian is mainly described 

, , 
by three vectors: 

(i) VAL, the coeffioient Jacobian vector which hold.s 

the real valJes of J (not inc1uding + 1) ; 

(il) ,~ lC, whj..ch links the whole mat.rix by row in order 

(iH) 

of increasing column number, with rows identified 
\. 

by terminator entries 

ISGN, the identity vector, Which describes the 
~ 

type of entries located by rc (real, + 1). 

A typical sketch of these vectors is shown in F~9Ur2--,\ 
'-

matrix. 

1 

. . 

9 x 

1 

r 
1 

I­
l 
1 
1 

1 

~ 
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lC 

ISGN 

• VAL 

Figure 5.2. Typical representation of sorne entries 

of vectors IC, ISGN ,and vAt. 

1 " 

Il 
o 

Since the execution of the J-code fills in the linear 

entries of (w~th the nonlinear entries ta bë filled via Fortran 
1 

statements), henpe, if lC and ISGN are rearranged in s~ch a way as 

to keep the order .of VAL unchanged 1 the 
• ,* 

J -code' can serve bath the 

~original and the adjoirt~ system. 

following steps 

This is achieved by means of the 

(i) Count-the number of entries in each row of the 
/' 

adjoin1i system using IC i 

(ii) use the above counting vector to set the termina-

tors of each row 

ire .. ) /' 
L~~ <scan the Urage vector lC te fi 11 the entries 

of each row of the corre spand ing linkage vector 

( 

" 

/ 
/ 

1 

j 
1 ' / ~ 

1 t 
l 
j 

I 

1 

1 
1 

1 
l' 
1 

.1 

1 



( 

, 

, ' 
", 1 

.' 

~ 

( 

", 

'1 

/ l' 
/ 

/ 

105 

ICJ ~n arder of increasing column number and, 
/ 

at the same time, for each entry of le fill 

in the corresponding iaentity vector ISGNJ, 

i. e., if IC (NL) -+ lCJ (NLJ), hence take 

, 
ISGN (NL') -+ ISGNJ' (NLJ). 

In the actual program, not only ICJ and' ISGNJ are, 

constructed, but the other linkage and counting vectors required for the 

. 
LU factorization are generated simul'taneously. 

5.8.2 E-Code Generation' 

l 

For the Qriginal system, the equation vâriables are taken 

\ . 
as the (negated) differences between the current network variables x 

n 
1 

and the last accepted solution xn_i' Le., !::. x = Furthe-r- ' 

• more, the differentiated variable ~ is replaced by an integration 
, . 

formula (polynomial) of arder k, r ~ k $' 6 , 

• x 
n 

where I:!. x == x -n-1 

difference fo:onula) 

on the step sizes. 

e~ation. 

= Co !::.x+BDF, (5.15) 

, • x and BOF x (b"ackward -n i p t~e explicit part of 
n 

which depends on the 1ast .k differences as well as 

The ter.m\ B~F will be added ta the r.h.s of the 

/ 

'" l; 
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... 

, Now, for the adjoint 

tion Ï-s 

/ . ' 

. , 

system 

• o' 

a~general 

<> 

/' 

foim of th!,!. equa-. 
" 

{' / ~ 

I- a: À. + l b. À. 4= 0 (5.16) 
.~ ~ ) J ". 

If we use the difference 6. À as variable, b Â ~ Â new' . . old 

equation (5.16), t,akes the forro 

/, 

À. + \' b C 
l. 1 j 0 À. b, BDF. (5.17 ) 

~ J J. J 
'10 

Equation (5.17) i5 used ta cortlpute t:he r.h. q, • ..entriès· of equation (5.14) 

cprresponding to the (1, Q) and (V, F) rQws, whi1e for the e~atlon~ 

corresponding to VN the corresponding e,ntriès are set to zero. The' 
1 

special. functional structure of the/,Jaeobian is exp1oit~d to s~~nific~ntly 

reduce the comp1exity of the E-code generator. - 1 
, 

~ l , 

5.~3 F- and S-Code Generation and Pivoting 
1 

~ 

To formulate the Gaussian LU factorization, it was 

decided t,d"use a pivoting procedure similar to that used in the forward 

integration. . Thus, f~r the adjoint sy~tem, nhe ro~s oarresPirndin: ta 

node voltages VN and the columns correspondirig to the KCL variables 

are forced to be the 1ast (if possible). This has been achieved by 

modifying the 'pivotipg algori;thrn in such a way lhat it can handle both 

" 
systems, the original and its adjoint. By doing this, one routine 

/" 

) 
J. 

1 

1 i 
l' 
1 

1 

r 

7. snri:" t'M'te :!S'lffS Ttt® ~ ~' ,'~,-, •• " ~I, ~/~~iI~t'\rôI.1'l'Ao~ • 
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s~stern and its adjoi~t as weIl . 

/ . ') . 
F- 'and S- codes of the or1g1nal 
,l' , 

1 

SGEN is used Ifor generati~g the 
" 

• / In surnrnary~ the ~rigi~al Jacobian J is transposed by 
, 

chknging the linkage and the identity:ectors ,IC, ISGN in such a ~ay 

as to keep the c~effié~ent Jacobian vector VAL unch~ged. Th\ls, the 

J-code generated for the original system serves the adjoint; systèm as 
( 

welle The fjll1ctional structure of the Jacobian i5 utilized to sirnplify 
, 

the E-code gene~aJing routin'e. M The ,pivoting proéedure has been modi-, 

fied so that it can handle both the original and the adjoint system in 

a similar manner and so that the sarne routine for generating the F-

and S-codes câh be used fbr'both systems. 

o 
/' 

/ 

5.9 Data. Management 

Dealing with the integration of tWQ different systems 

~equires sorne kind of data maRagement ~stord..ng, retrieving and process-

ing) • Some of these data are 

(i) the necessary vaIlles, of .the nonlinear entries of the 

Jacobian J as 'wel1 as the corresponding step size (or the tim~) at. 

different time points over one full périod 

1 

(ii) t~e two ~achine Instruction strings (codes) ~enerated 

for solving both the ori~inal and tne adj~int systems 
1 

, '. 

/' 

. - , 

.... ____ .~_ .....• _~ .'_rM"'~~,'"'~'_~'''"''_~''''' ............ ..,.ru.>....t,"'_ ......... l.-"l'~ •• 1'. ."'f_ if' ,l ... t "''''l'' 
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• 

(iii) vectorof (Ile' r,l/L' e (0), L'(O»" in the ,/ 

order of reactive b~anch ,r:umber, whert e (0) 'and Li ,(0) are the 

values of the nonlinear capacitive and'inductive elernents respec-

'bively at the starting tirne po,int tO' Even though these values 

cari be retrieve~ from thé data in item (i), it is found more 
1 

1 

,108 

efficient to have this vector separately ~~ arranged in a particular 
.. 

o 

(iv) the initial conditio~ vector of the reactive variables 

qo as weIl as the solution of the network variàbles at the beginning 

of the' first ste,ady-state iteration. 

Items (ii) to (iv) are each treated as one unit 

(s~uential) and their manipulation ,is a trivial matter. This is not 

the case fo~ data item (i). 
, \ 

The nonlinear ~trfes and the step sizes 

are èvaluated at a s~ries,of time points over one full period during" . .. 
the integration of the original system. For the integration of the 

adjoint system, this data has te be retrieved i~ the opposite order and, 

1 
hence, care must be taken to'minimize bath storage and the time fo~ 

'" . , 

retrieving data from disk. We found it most efficient to d~fine a 

temporary 'Storage vector' AREA with suitable pointers and linkage vec­

t 
tors to be used with a particular scheme for handling this problem. 

o -

The size of AREA 'was chosen large enopgh to'ensure that in the worst r, ' ' 
* case it can hold data of at least three tÎll\e :points. 

/ * By worst case we mean the l~gest problem, that c~n be solved by the 
program (380 branches) with most of the brahches nonlinear. 

Il 

:' ~ 
, ,l' 

l 

,/ 
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i' , 
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" 

Suppose that the temporary' sto~age'vector AREA has 

" 
NT entri~s and the mlJnber of entrier-per time point is NETP c (the 

.. ' , t 
< 

'numper' of nonlinear ~mtries "p~us one for step size).: Hence, the 
, '1 

maximum number of time points that can be held in AREA is 
" 1. 

Since inter-
~I 

NTPA = NT !NETP (ro~nded ta the ~east ~nteger number). 
1 

polation ~etween time points mat b~ required fO~'computing-the Jacobian 

n J, it is necessary ta keep the data of the last time point in AREA -,. 

Accordingly, the befO~è reloading it j~bm-disk with'q nèw record. 

"dynamic" size of AREA' is (NTPA-l) tiIne points. Tl'lat 'means the' 

transfer of 

Il th~ata 

data from and into disk.tak~~'plac: every (liTl?A-l) points. 

~s retJieved from d~Sk ~ore "'th~ once, and because we have 
• t 

" , 
ta keep th~ last point of the previous record, the starting.<and the 

s , 
end) .location of the newly retrieved record will move in a loop. A 

s~etch of'this situation is giverr in Figure 5.3. 
J 

This proèess is con-
, \ 

, , 

trolled by defining pointers that change in a closed lqop. 

! 

/ 

5.],.0 Sorne Aspects of the Backward Integration of the Adjoint System 

Fi~ure 5.4 is a sketch of the adjoint system inje9ratio~ 
f 

loop. p It represents the integration' of equation (3.19) 
, . over a period 

in the opposite,or~er,to that of integrating the original system 'given 
, , 

byequation (3.5). Requirements, for the adjoint system integration 

are qui te different from th9se for the original system.' 
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2 3 4 5 

1 2 

"Start 

1 . 
1 \ . \ 

(a) The .,first 
'-0 

': 

3 4 5 /" 

le: \ 

~< 

(b)' The second record (first retrieved from ~isk) . 
/" 

last point 
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NTl?A / 

End 

, ~ , 

f//Y7V/Y/ïm2?:r-'iZ? /77>;%/P~g 
, ~ . 1 Il • 1 

End Start 

, , , , , 
(c) A seneral record. f" 
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(i) For,'the original 'system the required data are computed 

\ 

at/ each step usiJllJ the currentl~ available values of, the variables, 

while for the ~djoint system thesé data already exist but may nead 

sorne manipulation (retrieval, interpolation). 

, " 

{ii) 'The numb~r of differentiated yariables of the adjoint 

sy&tem À
2 

may'be differ.ent from'that of the original system. A"ccord-

ingly, the truncation error computation as weIl as setting the initial ...... , 

conditions for bath systems will be.different. 

, 1 

(i'ii) , In' the original, system, there are two error criteria to 
o 

be applied : the truncation and nonlinear error criteria. 
, '/ ' 1 

For the 
1 

adjoint system }:h~ only cr.t-terion is the truncation error control 'since 

the system is Ilinear (tiroe ~arying ii th~ original system is nonlinear). 
1 

'" " 

(iv) , For the origina;L system the step -size is detennined by 

tl].e error control as weil as the "cusp" changes (if any}tt' of the in-

àepenc:'!ent sources, while for the adjoint the step sizé is deterrnined by' 

the error control as well as by the 'interpolatioft process. 

1 • " 

5.10.1 setting the Initial çQnditions of the Adjointlsystem 
1 
1 

• 1 

variables 
1 Î 

As the init:.ial conditions o'f the __ algebraic 
q 

The initial ÀII c~ be chosen arbitrarily we simply put Al (T~ = U • 

conditions of the dif'ferentiated variables À
2 

(T), 'are defined by 

equation (3~17), with the detailed equations for the different types of 

L 

, . 

') 

r 

, 
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. .; 

" 
reaétive llements given by equations (3.22a, b, c, dl. corresponding 

1 

to each inductive branch there i5 only' one differentiated variable. 

In the caselof capacitive branches we are faced with two problems: ~l) 

correspo.ndiIlg to each branch there may be )two differentia~'êd va~iables 

(one for each nOde); (2) there may be loops of only capacitors and/or 
1. , o • 

independent voltage Sources and/or ~~hort circuit br~~hes. In orper 

to overcome the second problem an algorithm was formed to identify such 
J 

loops and to iJnore one 
, 

of the capacitors i~ such a loop· in computing, 
, 1 

the initial conditions. To get around the firlt problem ah algorithm 
~ 

was ~~~~truct linkage vectors w4ich are used to set the 

correct and proper way. The outl~ne of this 

aigoritlun 15 

- 1 

lb • 
Algonthm -5.1- ' 

, 

1 

1. Count the number of trees that consist of only capacitors 

h 

and/or indepéndent voltag~ sources and/or short circuits. 

Il 
2. Count the number of capacitars connected ta each node in 

",. 

these trees. 

3. • If there is a tree whicft contains the ground node (if the 

ground node i8 specified) consider it ta be the first 

tree and consider the ground n~de the first node in,this 

tree. For any other tree consider the first nede to be 

the one which connects the largest number of capacitors. 

• 

\ 
l, 
1 
1 

1 

, , 

\ 
•• J 

t 
\ . 
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~ 
Put the variable corresponding to this node equal to 

zero and proceed. 

4. Following from the previous node NI choose the next 

5.10.2 • 

node NJ separated from NI by one branch, 

set the initial condition of this node, ~NI 

to the relation 

À
NJ, 

= + 

~ 

w. 
(_J 
, C. 

J 

(v. (0) 
J 

Truncation Error Computation 

) 

C. and 
J 

according 
t 

114, 

{S. lB) 

" 
t:> 

The computation of the truncation error of variables re-

lated to inductive branches is don~ in a similar manner ta that for the 

original. ~ystem. Carresponding(.'t6 each capacitive branch, the difference 

between the two node variables is defined andothe i~itial conditiops are 

set such that this'differenée is equal to (ô Vo / C). Since the 

capacitors in ~he circuit maytdiffer by orders of magnitude, the, control 

oof the absolute valuàs of'the variables is meaningless.' Hence 1 the con-

trol is carried 9ut on the differences corrèsppnding to each capa~~tive 

"-
branch. Consider a capacito~.connected bet~een two nodes NI and N2. 

Define a variable 

z (5.19) 

, , 
~ 

i 
• 1 

1 

1 

1 

;"1 
.... 
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Hence 

• z (5.20) 

If ~he differentiated variable -z is replaced by an integration 
1... 

formula (polynomial) of order k, the pred~cted value wil~be' 

Accordingly, the truncation error control of the differences correspond-

l 

ing to each capacitive element is done aécording to equations (5.19) 
• 

an..d (5.21) ii. e. , on the difference z - zp 1 , and not on 1 ÀNl 
_oÀP 

Nl 

or 1 À 
N2 

).p 
N2 1 . 

o 

5.10.3 Interpolation and Step Size Control 
" 

Suppose the largest normalized truntat\on error computed 

at a time point is' X. rlf the last step size is h , the new step size 

h' is chosen to produce half ~e ndrmalized trunca:ion error (tne; 
n+l :J 

samJ as for the original system integration) i.e., 

h 
.. n 

1 

(0.5) k+l 
X 

.. 

The step size is subject to other restrictions such as the ratio h / h 
n+1 n 

having to be' within certain lirnits < E:
1

, E:
2

> (say °<10, 0.1». Also, 

if the last poin~ was rejected the step size is not allowed to increasc. 

.. 

"r f· ,\ 

,:1 
.; 

fi 
,. , 
, ' ,-
, 
: 
t~ 
,~ 

~ L 
'~ 
~ f 
il 

.Il f, 
1 

1 :, 
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, 
Another restriction is set by the interpolation between points and by 

the end-of-record condition as will be shown next. 

For each time point the step slize h 
n 

~ 
~ 

is stored along \ 

Considering the backward integration, 

H, and IP defines the locatio~ 
with the nonlinear entries. 

suppose the preçomputed step size is 
J 

of the las·t accepted point, where the time d1fference between IP and 

the precedlng point is DHl as' shown below. A pointer J 

J+l JP J o 1+1 IP l 

}E ~"'I • JE • • • • K K • X 

\ DH21 
: H 

lS moved starting from value l and scanning step sizes 

etc., accumulating a step h 

h + • • + 

The ai"'l'Ulation of h- terminêitE;!s when 

.h+h >H 
J 

A new point JP will be taken between (or coincident with) points J 

... 
/' 

and J+l. If jp is within a certain limit- (say 1 H - h li H < 0.01) 

of,. points
i 

J or J+l, the nearest point will be taken ~s the new point. 

1 

If the new point is~accepted, pointers wi~l be reset to l = J, 

IP ,= JP qnd DHl = DH2. 

- .... 
--, 

o 

, 
'. 

l-

, 
" 

i , 

) 
l 

f . 
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For the special case when the la st accepted point is, 

equal to or just before the last point l of the temporary s~rage 

vector AREA, and 

h = hl - DHI < H 

there are two possibilities: 

~(' 

(1) if h > HO, where HO is a lowes~ limït on the step size, 

'H w~ll be set to H = h and IP to l 

(2) if h < HO, this means that the last point l in AREA 

precedes any new acceptable point. In this case new,,\-data will be 

retrieved from disk' ifl place of the previous data, exc~pt for the last 

point 1. Pointer IP will be set to land DHI = DHl - ~I-I. 

The process of interpolation will then continue normally. 

It should be mentioned that wa use a linear interpola-

tion process. For example, 'if a point JP is chosen betwèen two 

points J and J+l with corresronding values • respec-

tively, the value corresponding to JP, XJP is given by 

'P 

,,1 ' 

, : 
! 

J 

" 1 

, 
) 

',7 

,1 
, 1 

'·~l 
1 

W 
1 ~ j, 

l 
l. 1 
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5 .. 11 Resetting the Initial Conditions of the priginal System 

/ 
The values of the differentiated_ variables of the 

original system corresponding, to the reactive eleme~ts, before and 

after the calI of the optimization routine, may differ considerably. 

Due to the nonlinearity of the network~ the integration procedure may 

fail completely ~o converge at.the first step of integration if there 

are such big changes. To avoid this problem, the solutiôn may pro-

ceed as follows. 

1 
Corresponding to each reactive element an auxiliary 

source is added: ,an independent voltage source E 
c 

capacitive branch and an lndependent current source 

in series with a 
r 

118 • 

with an inductive branchl Suppose the new value of an initial condi-

tion i5 x new 
and an old value i5 x 

I.
old 

(in ourrcase the old value is 

1 
that corre5ponding to the starting 'point of the first steady-state itera-

. 
tion) • Assume that this previous valUe satisfies the system equations~ 

. and that the solution vector VoId at that point is available (or at 

least the variables'corresponding to the nonlinear elements). -wè set 
• 

the value of the corresponding source x at the starting po~nt ta ;; s 

to he 

/' " 

1 
and at 

x (t) 
s 0 

to he 

"'old - xnew 

.., ....... , ft F ' N ik ct! 

. , 

• < 

l 
~ 

1 

1 i 

r 
I-I . 
j 

j 
1 

H 
i 'd 
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'" 
l{ (t· + ôt) O~ as shown below, where ôt s 0 

~ 
~. x 

s 

(X
Old 

- ~he~) 

o 
t 

is chosei small, relative to.;the period of integr ~on. Howev~r, the 

initial conditions of thé corresponding reac 've element is set equal 

'to x • new As a result, the termi!}al v iable.. x of each reactive 
1 -

element (including the auxiliary 

t =, ta' and appr~aches x 
n 

near 

uree) start with x = XO~d at 

ôt. In this way, the 

integration of 'the net rk equations starts with initial,9onditi6ns 

which satisfy t nonlinear error criteria ..and which can then change / 

to the ne initial conditions 

te al from t 'to 
o ôt • 

x ' in several steps within the in­new/ 

, 
~. , 
r. 

1!1 

f' 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS' 

The~dient rnethod for eornputing the ~eriodic 

120 

/ 

steady-. 

state response of no~linear networks has been successfully irnplernented 

with the de and transient a~alysis prograrn SCAMPER which can be 

used to.analyz~ large networks by virtue of' its being based on the 

/' --; 
sparse tableau formulation of network equations. This periodic re-

sponse sol ver has been tested with several circuits including those 
, l ' 

whifh were u~ed by others working'on this problem, in particular, Nakhla 

and Branin [lO]~ [11) who first proposed the gradient method but used 

the state vari~le approach ta sol~e the network equatians, which is 

. only practical for small systems. , 

'A by product of the derivatioft of the equations for corn-' 

eomputing the gradient vectqr was the proof thay they are val id for 
'1 

circuits having nonlinear elements invalving not only single [6] but 

also double dependencies. This has been verHied for several eX~Ples, 1 

[Appendix II]. 

As predict~d, th~ time per iteration never 

the tirne for one forward integration over one peribd. 

exceeded.'twice-

The rate of 
_ 4 

cbnvergence depends very much on the characteristics of the optimization 

'; routine, the scaling of th~ ~ariables and the associat~d gradi~n~s, and 
i 

on the choice of the starting time to. 
1 / 

1 
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/ 

The high standards se y the authors of SCAMPER 

were adhered .to in c,oding the g ient algorithm. Thus, the setting 

up and solution of the ad: int system of equations is also achieved 

by a routine 

was designed 

which g nerates executable 

to ~~oit features common 
, , 

machine instructions, and which 

to both the original and the ad-

ioint sysfems. / Furthermore a large number of the subroutines used in 
/ • f 1 / 

.. 1 ! 

the integratifn are common.to both,systems. 
/ 

1 

Several importa~t and potentlally fruitful areas of 

\ 
investigation present themselves as natural extensions of the present 

work. Variou~improvements that can be m~de in the existing program are 

aISc apparent. These are discussed below in-an arbitrary order~ 

(1) To reduce .. the cOll!Putation t.ime; the error control should b~ m09i~/ 
/ // 

limit E which, éorre~p6nd-Assume a user supplies an error 
max / 

fied. 

inglyj 
1. 

causes the r~ults to be accurate, to, say, n di<.;rits. 
! 
/ouring 

! 
the first few iterations lower accuracy may be the 

j! 
1 

error limit cpn be larger which, in turn, causes a red 

:tegration time. ~hen, as the sol~tion converges to the steady-state 

c

l
ndition. the error limit ca~ be reduced in steps to the user-s~ecified 

Emit. If this would be done, there would be~o need ,tor the extra 
1 ~' 

control imposed on the adjoint system initial conditions for changing 

the accuracy of computatign. 

/ 

Thé initial conditions from wh~ch the steady-state analysis 
, , 

starts are determined by integratr~g the system equations up te a 

o 

1 

1 

1 
r 

-i~ . 

1 
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In sorne cases it may be more advantageous 

to start tne analysi5 with a set of u5er-defined initial conditions. 

Work on this feature is now in progress. 

(3) A linear interpolation process i5 u\sed for computing the Jacobian 

of the adjoint system. According ~o the tested problems, this process 
Il , l , 

wo~ks quite weIl, but cases may be,encountered where a higher order of 

interpolation (2nd, 3rd, ••• etc.) may be necessary. 

(4) In Chapter 'IV some comments are made, concerning the ~êaling 
1. 

problem in the;light of our ~dmittedly limited experience with the 

program. Further work is needed to achieve a more systematic scheme 

for using the scaling facilities that are made available ta the user. 

(5)' Considerable work remains to be done èn the problem of the de-

sign ~f an efficient function minimization routine. Al though the 

variable metric roJtlne was more successful in solving the test problems 

1 '. 
than the conjugate gradients one, its initial convergence was, neverthé-

less'I ~uite slow in some cases. Moreover, the variable metric 

algorithm will present storage, problems when large ne~~rks Jre tackled. 

( 6) 
; . 

The present investigation wa's concerned with the periodic steady-
o 

state analysis with periodic,input (nonautonomous). The·starting time 
/' / . 

to' of the analysis was 

depends on the choice of point and, accordingly, the con-

constant, in fact,'the gradient regarded as a 

Il -
thelstarting 

vergence criteria of the gradient method depends on that choice. In 

1 

.. 

/" 

, Il 
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other words, by letting the starting point to change, a point can 

he found at which the computed gradient yi~ld better convergence [11). 

To dp so, we redefine the objective function and the variable space as 
\ 

weil as the gradient to include ta as a variable, i.e., 

/ 

Hence the gradient"with respect ta (Xo' ta)', wiJ.1 be 

G = 

By passing the objective fu~ction tll; gradient G and the variables 

(Xo' to) to the nptimization routine not only the variables ,XO are 

updated but also ~o is upda ted towards an "optimal" poi.nt. Wîth 
.. 

this modificatio'n the gradient method i'S expected to give better result~. 

'-
Also, ah extension_of the method to the oscillat9ry (autonomous) case 

Can be achieved with little ef~ort, especially after including optimi-

zation'of the starting po~pt. 
1 

, . 

/ 
/ 

, 1 

/ 

Il 

l' 
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APPENDIX l 

ACCEPTABILITY OF DOUBLE DEPENDENCY REACTIVE ELEMENT 

To show that the term in equation (3.14) 

a u 
Il t 

d 11: 

d P 
Il 'U 

Il P 
a 11: 

â t " 
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\ 

is identlca11y zero for a c1ass of systems that have.a unique solution 
8', 

3 over (t) for a given range of parameter {pl .' Let the system variâq1es 

(x, u) can be represented as functions of the parameters p, t, 
/ 

1 

'f 

u = u (p, t) ,l 

( 
o Il 

, f 

:' 

(I.1) 

The parametric relation betwee~ 11: and u may take any of two implicit 

forms 

/ 

f 

1jI J ,(x, u, t') 0- 6:.2) 

1 

wh~re t is taken as the running pa~ameter, or 

/ 

E (x, u, p) -0 (r. 3) 

1 

1 

/ 0, 

1 
where p is the running parameter. 

We ,are interested in practical problems whe~e both the 
, 

variaJJles x and u, and the - p 1 are within a finite, range. Let us, 

'\l 1 
'1 r 

/ 

" 

• 0, ' 

-/ 
11 
1 

1 
/ 
1 

1 
" ' 

.' 

\ j 

j , 
1 
'j 
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125 l" 
.' 

consider a point in the, ,.(x, u) 
.' . 

plane'whèr~ p - p and t = t The 

two functions 
1- ' 

, ( 

1jJ (x '. 1" t) __ :::. O. .' C.I.4) . 
" . ._------,----

e (x, u, 'p) ::: O. ., (I.5) 

~, l' 
will, in general~ inter~ect ~t.o~e qr more points al' a

2
, ••. , as 

•. shown in F~gure I.I .. The interpre~ation of this figure is that, if the .' 

\, 

" 
two curves ~ntersect at'more than one point the system has more tihan one 

" 

solution def~ned by points ~l' .:2', . Hence, for our proof, we 
. 

consider that class of s1stems which can,be represented by Figure 1.2 

where both curVes are tangent at a single point. In 0The~ .. WO~sl~, for a 
1 

given va'lue of p, p '::: p a group of cua::ves (I), corresponding to 
/ 

equation (1.2) can be found such that ,curve (II), repre,s,enÜng equa-, 

tion (I. 3) '.' for a given value of p = p, 'is the envelope ef this group. 
,/ li 

If-the group of curv~s 1jJ::: 0 /i9 expresSed parametricàlly 
, Il . 

in the forro of equation (1 .. 1), then equation (1.2)" can be replflced by a· 

function $ {p, t) where 

$ (p, t) = 1jJ (x (p, t), u (p, t), t) = 0 

Hence, ~t any point on ~y curve of the group W = 0 

o 

and 

'a u 
() p = o 

(1.6) 

(I.7) 

, 
/ 
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, Figure 1.1. Genera~ representation of equa~ion (1.4) 
by cdrve l , and e~atio~ (1.5) 
by curve II. 
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\ 

u 

r' 

o ' 

II 

/' 

l 
~ 

1/1 (x. ur t) = 0 

x 

Figure I. 2. _ Representation of familY of, curves l 
,g~en ~y equation (I.2) for different 
values of t

" 
and,equation (1.3) for 

a c:orrèsponding p (II)., 
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u::: 
il t 

U é) x" li ~ + li = 0 
dX at:+ dU Cl): at (1.8) 

For a given value p = p', the solutièn of the $ystem (x, u) for t a~ 

a:parameter will be,given)by curve (rI), /i.e.; by the envelope of group 
/ 

(I) . At any poft.nt on the ~nvelope [2~ 

If we multiply equation (I.7) 

'subtract,::')'Ie ob~ain 1 

li a u' 
é) u 
d t 

â'x a-p-

:B~t li may not equal: zero 
Cl u 

l;Ience 

1 ~ 

il 'Il il x 
a. t il p -

él u il. X 

il pat 

il x 
il t and eqpation (I.IO) by Cl x and a p 

d u ~] 
il p il t... 

l 
= 0 

" 

r 

:::,0 

. " 

, ~; 

;, .. , 

" 

/ 

'. 
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A'PPENDIX 'II 

VERIFICATION OF ACCEPTABILITY OF DOUBLE DEPENDENCY 

Severai nonl~near and time varying differential 

equat,ions which require the use of nOQlinear circuit: elements with single 

\ ' 
or double dependencies when simulated on SCAMPER, and for which solu-

tions can be 'obtainëd in ~losed form, were used to test the validity of 

the gradient derivation in Chapter III. ., Results of direct hand calcu-

lations-and,of the use,of the program described in this thesis are com-

pared below. 
/ 

It should be noted that, due to the inherent nature of the 

SCAMPER simulation! such as the restrict~ons imposed by the set up 

rcru~ine of this p~,?gram, exact agreement can not be expected. Moreover, 
~ 

lower 
. ' 

accuFacy should be expected in computinç the gradient G because , , 

it is obtai~~d'" after two steps of integration, the forward integration 
1 

and the backward one. 

The results will bé compared on the basis of·th~ 

foll~wing definitions. 

Let the dif~erentitl eqûation be 
o 

) • x = f (x, t) , (11.1) 

the starting time. point t and the pariod T . 
0 

We d~fine 

xO. = x (t
O

) 

~ 
x

T = x (to -+ T) (II.2) 

~ 

l'~ 
\ 
: 

l' 

J ~ 

\ 



J 
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l' 

From the definition of the objective function ~ 

<P 
l 

(x -
2 

2 0 
x

T
) (II.3) 

the gradient i5 

G U (x
O 

- x ) Cl -
Cl x

T = = ax- 1 a Xo T 
0 

(II .4) 

Example 1 

the different~al equation 

t (x - 1) (ILS) 

sol ving we get 

x 1 + (xa - l) e (II.6) 

The problem was simulated by simulating 

• 
x ttx-t = a 

twice, once as anode equation (Figure ILIa) and onte by -using 

T were t~ to be 

its dual 

loop equation. In the simulation, to and 

T == 2. Step size contro~, in fact, forced the starting point 'to be 

Substituting these values and choosing xa sueh that 

x (0) = 0 we obtain· 

Â , 

( , 

t 
.1 , 



( 

« 
, 

, 
'" 
" l' 

J 
f' 

1 

r-
" . 

t 
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Xo ~ 0.3974 

x
T 

::: 0.9891 

G ~ 0.5805 . /' (II.7) 

The results from the simulation were 

" 
.\ 

Xo 
::: 0.3972 

x
T 

::: 0.9891 il 

G == 0.5811 (ILS) 

Thus 1 the gradients are in agreement to three digits « 0.1 % ). " 

In Figure II.1 the representation of the nonlinear resistive elemertt 

G1 was 

= 
\,\ 

In another simulatiop the equation was re~ritten as 

(1:.) x + X - 1 = 0 
t 

(IL9) 

-1 r \there the deriv,ative term was repre:,ented as in Figure II.2 by a non-

linear inductor L (or C in the dual network) of value equal to l / t 

More ~peçifically, the reactive e1ement is modelled through. a double de-

pendency 

Il 

" , 

/, 

.~ 

1 
1 
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, 
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In this case agreement is only to two significant figures, primarily 

due to the modelling compromises that must be made with 

t 0 

, , 
r , 

'N 
' , 

ExamJ21e 
li' 

i5 

2 

Solution of the differential equation 

• x 

x = 

2 
- x t 

\ 

1 / t at 

(II .10) 

(II .11) 

! 
The simp.lation of this problem was done on the b'sis df the following 

forro of (II. 10) 

• r 
x + (x • t) x o 

whe~e the nonlinear coefficient was represented by a nonlinear conductance 

Gl (or its corresponding element in the dual network) where, Gl = ,x • 1; 
'r 

the hand corn­
/' 

CILl2) 

" 

\ 

'f' 

1 

1 
1 

• r~ \~ é . H 
fit 'ft v" ! t '0 L t 1 1 hO 
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(~ 

, 
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The results of simulation as in Figure rI.3 gave 

x a = l-
r 

x
T 

0.5 1 
~ ., 

" 
/' 

G ,,- '0.3734 {II. 13) 

Bath results of the ~~adient are in agreement ta within < 0.4 % • The 
1 

representation of the nonlinear element Gl and R2 is dane according 
/' 

to the relations 

= 

.Whete' al is an open circuit branch across the capacitor C and the 

independent source (initial condition) El 

/ 

Example 3 

, 

.1 

Consider the differential equation 

Solv:Lllg we get 

, 
x 

.x 

The simulation was 

= 

t / x 

It
2 

+ 

done on 
1 

, 
" "112 

(x2 ..: 't2lJ 
a a 

"" the basis of 

(II.14) 

,', 

(II.IS) 

/' 

J 
1 , ' 

. 
i 

'<' 
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( 
• 

(x) x t = 0 
~ , l' 

derivative term wa~ b~ a 'whére the simulated nonlinear capacitor C 

-
(ôlî inductor L in the dual network) where c ;:: x . 

Taking ta ;:: l, T ;:: 

/ 
1, x (0) ;:: 0 . 

The hand computation gives 

\ 
j), 

x
a = l. 

-1 xT = 2. 
1 / 

G ;:: -0.5 . (II. 16) 
~ 

.. 
Whilj the re.su1ts of simulation as in Figure II.4 yielded 

( 
1.002 

.~ 
~t 

~ .1 

" J 
/ 

= 2.003 .1 
,. 

" \ ( 
G = -0.5009 (II.17) 

1 
J i 

l , 

J 
j . 

• The results for 1 the grad~ent 

the hand computations within thX:ee digits. 

show an agreement between the simulation and t 
î 

/ 
... _ '1 
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f 
.. 

NI 

Il 

JI Cl Cl /' . " 
/ 

GND 

(a) 

i r: 
JI GND Nl TABLE O. o. 10. 10 'r. 

/ ,., 
,; 

Gl Nl GND TABLE V (Gl) l (Jl) o. I.E - 8' 10. 10 '0 

Cl Ni GND l 
/' , f·, 

( 

(b) 

Figurè I~.1. Simula lion of equat;ion x = - t (x-l) 
(' . , 

using ,Donlinear resistance. 
1 

Ca) The simulating ciroui t. "V 

(b) The input circuit description. 

" ... 
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1 « 

l' , 
. 
.' 

-, 
.. 

, 1 

1 

" 

+ 
ECl 

N4 

Ee1 

E2 

R2, 

El 

R1 

" Ll 

figure 

, , 

/' N3 

+ 
E2 

GND 

(a) 

N4 1ND TABLE O. O. 10. 

N3 GND 1". 

/' 

- N3 GND TABLE l (R2) V (ECl) 

Nl GND' TABLE O. O. l.E-7 

Nl N2 l. 

N2 GND TABLE l (Ll) 1 (R2) 

(h) 

1 

II.2. Simulation of 
. . 

equat~on x 

using nonli.near reactive 
\ 

J 
(a) Simula'Hon circuit. 

1 

(b) Input description. 

1 

/ 

• 
,135' 

N2 

, 
j 

'1 

1 
, 

/' 
" . 

1
1°\ ,~ 

~ 
,}:,: 

0 l.E-S. 10. 10. 

l. 

O. O. I.ES. l.Es.1 

1 , 

1 . 
;::; - t (x-I) 1 , 
~L) circuit. 
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Ni 

/ 
JI -.J.:"-- Cl 

GND 
-i, 

/' , (a) 
/' 

/' l', 

1 

JI GND NI TABLE O. O. 10. ).0. 
1 

( 

1 
RI NI GND TABLE O. l.ES l.E-6. l.EIO. 

e 
Cl. Nl GND TABLE V (Cl) O. l.E-S •. 10. 10. 

\ .f 
,\ 

Ch) 
, . 

'f • . 
) 

f' • Figure II:4. S,imùlation of equati'On x = t / x ' ' 

/ 
q (a) Simulation circuit. 

" 1 

(b) Circuit de scr iption., '{ 
\ 
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