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1 :  ABSTRACT '

’ . ) ¢ ’
1 ! ¥

~

\ ' The gradient algorithm for computing the steady-state,

. P 2 B , -
4

periodic response of circuits has been derived on the basis of a 1

A «
i
N a -
- e

o generalithableau represéntaticm of the network equations. In )

. i N
v . a
contrast to the state variable formulation which was Jecﬂeptly re-

. . ° . . § "

*

ported, the prese%t one lends itself to straightforward implementa-

3

, tion in modern transient analysis programs for large scale, nonlinea)r
- N
' ' b
s‘ (‘ e v X
. v . circuits, which make use of sparse matrix techniques. <The algorithm ‘ e
j ’ has been implemented in one such program, SCAMPER, and details of ’ /

( * the prégram as well as results ‘'of tests with "s{everal circuits are pre- fo
1 . ’ : .

i o .

v

. A 4} ] N
. s sented. The rate of convergence depends on the optimization subroutine

;

ﬁ .
A . t -

: i oo - '

’ “

and is sensitive to scalix‘{;g-of both the variable as well as the gradient 2
~ 3 ' ! . ‘ \ b

a
'
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- e
’ vectoxis . i
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. - L'%lgor,ithme du‘ gradient pour%e calcul de la réponse -

. - ¢ ' ?

«F .
. . . . - . ° . N

périodique d'un circuit a été derivé 3 pax;tl% d'une representation | s

}

généralisée en tableau des équatjons du circuit., En cor}tragﬁe avec
B ;{ )
. . "ty N ,
la formulation selon les va\w%'iables d'état qui a été récemment publiée,
,_% ' &

:

¢e rapport presente une méthode plus aisement applicable -aved les pro-—

. |
- . : eo ) . . R
grammes moderne fbur l'analyse transitoire de® réseaux non-linéaire
‘ . .
: . & ' .
et de grande dimension, utilisant des techniques de mattrices creuses.
o - .

B}
‘

On a implanté l'algorithme sur le programme SCAMPER, les détails du

programme aussi bien qué les résultats des tests sur plusieurs circuits

w

sont presentés. La convergence des résultats déf>end des sous-
gn

& - . 7
programmes d'optimisation et est sensible aux transformations J]méalres R

des Yariables aussi bien que du vecteur gradient. { !
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~ CHAPTER I . R
INTRODUCTION T .
. | . ‘.:(3
. Many important classes of electronic circuits, such as

power supplies, large signal amplifiers, oscillators, et cetera, operate.

0

in the periodic steady-state mode and yet, bfzcause of their nonlinearity,

'

the designer is usually forced to énalyze them using time domain, tran-

sient analysis computer programs. The periodic steady stdte solutign

can be found“by the continuous integration,’(“brute force” methdd) of the

,/ ’
._system equations until all the transient components die away. However,
v

such circuits are, ‘more often than not, lightly damped, in which case

this method becomes prohibitively expensive because the integration pro-

cess has to be continued for a very large number of periods. Reéxently,
, |

this problem has received considerable attention which has yieldea\
Il N s

several procedures for computing the steady-state response of nonlinear

°

circuits at a cost which is considerably less than that for the “bruteje’

force" method/.

o

In 1972, Aprille and Trick [1] proposed a method for the

steady-state analysis of nonlinear circuits with periodic input which 1i.s

4

. based on the Newton algorithm and which they implemented using a state

o
variable formulation of the ne?work equations. The Newton step is used

iteratively to adjust the initial conditions at some time t0 until the

difference between these and the conditions at time t = tO

+ T, where

T 1is the period}, is negligible, An extension of this method to the

oscillatory (autonomous) cas€ was given in [2], where the period T is
| ?

1

P




2 . ! ' . (3 . s s
considered as an unknown together with the initial conditions. The
©

restriction of using the state variable representation of t?e network

equations is inconvenient because it preYents the implemegtation'of the
2
method in transient analysis programs which are based, on the tableau

‘ 3

representation and which, consequently, can handle iarge problems:

f . '
Generalization of the Newton method without thisjrestriction were re-

s °
P 3

porteé in [3]k [4), and [5]. Director [5] wused the concept of the
. N s 1 /
"adjoint networks" which he had 'introduced in [6], while Trick et al

{3], [4) based their approach on the "se551t1V}ty 01rcugts" concept.
I S

In fact, both the adjoint networks and thé sensitivity circuits concepts
’l!

can be applied to either the state variable or the. tableau form, which

/

{
ever is more suitable. If the network hAs N reactive elements, both
‘ ;
. I . . .
|" techniques - the sensiti¥ity circuits or%ﬁhe adjoint networks - involve

J
the integration of N adjoint bystems o% equations in addition to the

-

original ?etwork equations over one fulilperiod. For networks' of mode-
]

rate order N, the Newton method works quite well. But for high order *

DY

systems (say N > 50), the computational cost may be prohibitive, and
numerical difficulties may be encountered due to necessity of solving

‘ ) systems .of large and full matrices.

~ N / f 1

/ A second direction for solving the periodic steady-state
-
problem was initiated by Nakhla and Branin [10], {ll], using an opti-

\

mization-like approach, called the gradient methqu A performance

, b ' .
Q'%unct:ion ¢ , is defined which reflecés the state of the system rela-
" ¢

tive to its steady-state. The first derivatives (gradient) of the

. N *
.\ .
‘ - r
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objective function with respect to the initial conditions of the state

< variables 3;0, sin addition to both x_ and ¢ are passed to an

0

C@‘he\ new values of xO

r P
;o

optimization routine, returned by the optimiza- '/

tion routine are used to update the initigé,l conditions of the system. - .

A This process is repeated until.the objective function ¢- reaches a

y
'

specified minimum which is considered to correspond to the steady«si:éte.

5 <

The effort required in,: the gradient method for each iteration is the

integration of only two systems of equations over one period, the origi- 1
. 'e

nal system in the forward direction, and the corresponding adjoint

variational system in the backward direction. The gradient method is

©

characterized by its low cost of integration per iteration step as well

as by it§ freedom from potential numerical stability problems.

R

and Branin [10] implemented the gradient method using the state vari-

W ) N !

Nakhla

) >

able formulation, although they did also discus$ a more general approach

- p 1

to their method. . However, it was not parti‘cu/larly suitable for_‘apjblic,atiOn with

I analysxs programs based on the tableau representatlop of the network ‘
equations. ;t should be mentloned here ‘that a similax grad:.ent method ”

1 ¥
" . UL

was used by Director ['l - 9] in opt:.m:?z.:mg rionlinear circuits. In )

~

[81, [9] Current and D:.rector showed tha'c the optimization problem can

be extended to mclude t'hat of determxnmg the periodic steady-state as

P F

well. In other words, the ivarﬁ.ab}e space can be extended to \mclude

ot only” the optlmizatlon parameters but also the initial conditions of
“the network. | " {’ o

1

<
N 7
i

g
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A third direction for determining the steady-state of
periodically forced nonlinear systems was given by Skelboe [l6] and

called the extrapolation method. /. This approach is based on the

“e - algorithm by Wynn [15] and is, in fact, a sequence-to-sequence

transformation where the e — algorithm step is used to modify the

initial conditions in a nonlinear sequence of operations. The algo-
& o —
it 7

rithm does not require the computation of first derivatives (such as

the sensitivity matrix for the Newton method, or the gradient vector for
Ve

the gra&ient method) ., but, in place, it reqt;ires.the integration of the

. : oy
system over many periods. The advantage of the extrapolation methdd is

‘its quadratic rate of convergence (or even higher). But there are many

restrictions on the method such as the assusiption that the system is
e / us ySty '
N '

— —_ . . “

. mildly nonlinear and the requirement that, the order of the system be not

Yo. Lo e
too F¥ge [16] .

) e . : -
)' ’ As ment:.oned above, the grajient method; ,¢mtroducea in [10],

' - .

[11] was based on the state varlable approach. In the work reported
- s

here, a more general formulation is developed for use in transient analysis

oa

programs based on tableau repfésen‘tation of network equations. ‘The de-
tailed implement;ation ‘of the ;‘r:e‘sultant algorithm in c;neh sucix program
SCAMPER is given as well as the numerical resélts too of some test pro-
blems solved on the new progng;gt. j -

In Chapter II, a survey of the above three methods for the

g

periodic steady-state analys:Ls (Newton method, gradient metth, and extra-

=Y

. -—F
polation method) are presented. For the Newton me/thod, the jmplementa- -

. / K /

@ /
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tion is discussed according to two different approaches, the sensitivity

circuits [4], and the adjoint networks [5]. Also, for both the

¢
I3

Newton and the extr[apolation methods, e/xec’ﬁtable algorithms suited to

the general representation of network gquations are presented. In the
.

ca@‘ of the gradient method the‘approach is the same as tha;t given by
. - © . & A L
Nakh}.a {11]. The chapter ends with a discussion of the adwvantages .

and disadvantages of these methods.

’ - —

e

The gradient method based on the general tableau representa-
tion is developed in Chapter III.. Lagrangian multipliers are used in a
manner similar to that employed by Director [8] to define the adjoint
system of equati:ons. A fairly} general representation of the nei:work

nonlinearities is assumed. The method is applied to the dc and tran-

[, >

sient analysis program SCAMPER on Thq basis of a particular “Ehoice of

the objective function ¢

'

¢

w In Chapter IV, some considerations relat’:ed' to the problem“" Tor
of scaling are pr{esented, and the numerical resuli\:s of some tevst probie;rls
.
are:given. It slfhould be noted that the same examples were studied by
many au’thors including Trick [11, 31, Director [51, Skelboe [16],
and Nakhla . {11]. -Since the algorithm presented in Chapter I1I 'J'.;,{ges-

sentially a generalization of Nakhla's method and beca#use the- same

optimization routine [22] was used, the results of both studies are

compared where possible and are shown to be in good agreement.

[ /

Pl
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v Chapter y- is{ concerned with the programming pr'oblem.

In. Part A, a review of the existing dc and transient analysis program

Rzl

SCAMi’ER [1\9) . [20) is gi/ven. The key features and procedures are

discussed, in particular, code generation, sparse matrix and pivoting

—

‘Q
‘ techniques, and error and step size ¢ ntro[. In Part B, the main
features of the additional programminI required for implementing the
steady-state algorithm presented in Chapter III, are discussed. These

features are : (1) relation between:the original system and its adjoint,

(2) the procedures for generating the necessary code, sedments for in-
° :
tegrating the adjoint system, (3) the problem of data manipulation

|
(retrieval from disk, interpolation}), (4)., setting the initial condi-
\ I
o

tions of*both the origﬂinal and adjoint systems, and (5) error and step

! ‘ size control. . . | g ) *&[

- - . -
< »

. /
* : The main results of the present work are sumarized in

J ,
; i
rnents to the present methog as well as of topics for work :L‘n this area.

. |

Chapter VI, which concludes with a brﬂief discussion of further improve- }

Wﬁ. preate 7

»




- CHAPTER 1II ‘ ’ '
1

PERIODIC STEADY-STATE ANALYSIS ALGORITHMS

i v g

| |

’ The Yperiodic steady state of an electronic network can be
. !

g ;

analyzed either in thg, time domain or in the phaﬁe {frequency) domain.

. ; )
If the network is almost linear, with relatiﬁveféﬁ(_ few nonlinear elements,
N ‘l' A r'
and the harmonic content is not too large, the -phase domain is prefer-
. L F
able [25]. But, when the network containsza significant number of neh-

linear elements with sharp nonlinearities, the time domain is more

7 -
suitable. Since it is this latter class of circuits which we are in-
: C

terested in, /the following discussion will concentrate on time domain

v, -

algorithms. -

7 4 . 5 o
& ;rv e

The objective here will be to examine several alqoritl’iis

for the computation of the periodic steady state, from the point of view

)

of their suitability for inclusion in an existing dc and transient
i

analysis progra;’based on the sparse tableau approach. Furthermore,

although we are primarily interested in the nonautonomous case, ease of
N |
extgnsibn to ‘the autonomous network is very :Esirable. Finally, an
I N

approLlch which would permit the subsequent i

—_—

tion evidently merits particularly serious consideration.

The most recent algorithms are of the iterative type, and

”

can be divided intc two groups: '’ - b
. . - & ‘ .

(i} The self sustained algorithms, i.e., those which do

not need éxternal steps, such as pptim“i;atior. The

"
H

. : ’ Yo .

lusion of circuit optimiza-

>

b




e

\ E
Y ’/, /4'
r'f,' " '
'/ ;
{ . {,?(*%
Newton Methods [1 - 5} and\ the extrapolation .
methods [16)], are members of this group. !

&
e

(ii)  The optimization - like algorithms,i.e., those ’

that involve an external optimization step to

. —_

=S s <
ot achieve the circuit analysis.. The best kno

method in this group is the gradient method [10],

‘111). # i

h) .’;‘

)

§
\

k2

In order to simplify the discussion, the reduced (state

vyt
T

. ‘. y . ‘
will be introduced whére necessary.

’

pvariable)‘ form of equations will be used, but more g*'eneral erresentations

i

! il
r
|

[

1

Assume that we have a system of nonlinear differenf:ial

-

equations given by, ] ‘ #

.
q = f (q.' t) ' |

¥

i
Il
{
;

((2.1) :

vhere g is the diffefentiaten}gvariable vector, and £ is a Rx? vector

”

and has a centinuf)us, first order partial derivative w.r.,6 to

q for

t<0, »> . Furthermore, we assume that—the systjem has a unique

v 7 ?
periodic solution trajectory of period T, i.e.z

+

w q (t) ='q(t+qT) {; n\=}1, 2, 5,

/

We seek a set of initial conditg‘.ons q (to) at t = tO" which will put s

oo
t

the ‘system into its periodic steady-state, i.e., 1

ot

* wad‘ ‘r:




.

N3
°4

- pppisionnn ="

g (to) = q (£, + IP)’. . 7 o (2.2)

-
-~

be
*Following is a discussion of three steady-state analﬁrsis methods,

\
\
\

with particular eﬁ\phasis on the algorithms and computational technigues. .
i

P B E{

&

§ v
.'@}1 * “F" 5 h
- 1 .

-
—

s

H
S ! ¥
+

2,1  Newton Method ' -

¥ -

- The wapplication of the Newton method for the periodic steady-

state analysis was first introduced by Tprllle and Trick [1] Several

mprovements of the computatlon technlques as well as extens:.ons of the

area of application are given in [2 - 5]. In this section, the Newtorn

iteration will be stated, and two different computftionail techniques will

be .given, ‘one using, an approach ‘based on sensitivity circuits [4], and

the other on adjoint networks [5]. o

K © e
For iteration number i, assume q;, is the initial condition
vector. It is reguired to adjust 9y until the ~diff:'ere‘in':e between two

succeeding iterations initial-co r’dltlons, | & qo | = | l, -L q?:l |, is

less than + acceptable lower limit, at whlﬂh the system wlll be considered

7in steady-state. The Newton iteration used to adjust the initial condi-

i
W

tion is given by: —

' i
: 3d (gq., T) . .
i+l 1 _ 0 -1 i _ i . ,
B T %~ E i1 (g -d g ) (2.3)
aqo

-,
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Ve
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' " . S ¥n . .
. where qo is an R initial cendition véctor, q (qo, T)- is the solu- '
tion after one, full pfri;d‘beyond the initial point t('), and' i is the ' |

iteration number. b

3

R

. , . .
° ¢ i o
, N Equation (2.3) can be set in a more suitable form: . ¥ A
{ 2. , . R N .
¢
i, i i , ’
) I dq = E . T (2.4)
» 0 . »
¥ v
¥ » where ’ . X ,\
1li - '
Vi i R TS oo
A J = I+ D = I.- "':'\——'I-ﬂ-—— R ) ' (2.5a)
. 9q, : 5
: * ‘:'" - ¥ S
BT S S 5 R ' '
. Aqo = ‘?o i R B (2.5b) & .
' " i i i - |
.-. B = T - . o . h . é
q (go. ) 9, , " {2.5c) ]
. ) o - C —
f ¥ < i 3
& B ,55 i aq (qol T) ,?4;.'.‘ , .
. @ Tl%g. tefm D7 = 1 is called the¢- sensitivity matrix, as-it
LS . % # : , \,
., 9gives the variation of the final state at, ¢t = to + T, w.r. to a per- -
turbation in the initial cond(i;:ions at,,%: ‘= to. ,
) I ) ) 'F , - ! ’
. - !
Hence, if the Jacobian J and.‘the right hand side vector E can be de- |
' . iy o 4 o a1 1 din \ ’
Lo termined, equation (2.4) can be solved to give ~&p$qo =q, - qo - The
™7 B . i’ :
iteration will be terminated if |A qo[ is less than a specified limit.
p - - - R B
o . 1
: The following are the main steps in the Newton algorithm: -
" i , . .
¢ v
o - * . *
“t ( 7 ’ ' -\ 4
& :
2 - e .
, ' S , .
. i
) ¥ “

B
&
S
v R
b3
=3




‘. f‘ : , o i “ 11
. v ::I‘ r . N N
1 * ) - .
L s -
Algorithm 2.1 . o 1 Co.,
) N . . . N ‘ p
’ 4 (1) Start with an'initial g say, by integrating
L
g ;, for a few periods)
Loy
. (2) i=0. o
wo f
(3) Integrate further ong complete period and determine
i o . i ’ | ,
q (qo, T) ; hence ‘determine E~ , , , °
° B 7 o
N i . Y
) (4) Compute Jl {may be done simultaneously while deter-
v mining E?’) .
o= , . vy
% . (5) Solve equation (2. 9) (may be done using L U factoriza-
/ " tion) £ A i d thence det . l
) ion or g, an enc e 1nﬁ 9 . ‘
| | (6) 1Is |A qo‘ less than certain acceptable limit?
. D _ If yes, STOP (the steady state solution is found) ¢
If not: - - - ‘
r ’ !
T=i+1. X .

<

IF i is greater than a certain limit, STOP.

o If not, put q; ! as the new initial conditions, and

go  to Step 3.

‘ ’
y
;
Y B R . t

' A \’ B -

} ) ' If th\e order of the system n (number of storage eleme%lts)

is small, this algorlthm seems to be very attractive as it has remarkably

e
\

good convergence criteria. aut in t}xe case of high order systems

— ~— — —— e

. (say n > 50), the drawbacks w11l outwelgh the convergence properties,
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. Firstly, the cost of computing the Jacobiiﬁf:JA will be very high, since

.. B .
- it involves the analysis of n cirbﬁits (adjoint networks, or sensiti-
‘ 7 ’ : “ R
o Wity circuits).  Secondly, the_soluti?n of equation (2.4) involves

t

' full mat¥ices of order .n which, in addiﬁ?bn to slowing down the execu-~

! . ¢
tion speed, has some critical numerical stability problems. Thirdly,

o4
i

- ’ it will not be‘possible to make use of the sparse matrix techniques uged'

| . s |

in most recent programs, for so}v&ﬁg eéuation (2.4). ?

The heart of the above stated algorithm is the computation

| -
of the Jacobian J, 4which can be achieved using one of two methods: the

sensitivity circuits approach;[4], or the Adjoint Network method [6].

»

These will now Be briefly discussed.

- , .
s s . o e
2.1.1  Computation of the Jacobian J Using the
Sensitivity Circuit Approach ] . _
¢ " From equatiTn (2.5a) -,
i ~ ‘
b : 3g” (gq., T . . -
. J1=I‘—Dl=1-————-—§’————-.
qu
. Put !
i - ,
° s 9" (q., T) . . .
1, 0 _ i 1 i i
D - a i _, [Dl ? D2 7 * & g Dk s s e Dn] (2.6)
%o
wher%

—
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., .
i Bq (qol T) !
D = e (2.7)
k AP .
qu 3 -
k

. e

is the'- kth column of the sensitivity matrix D .

“To show how equation (2.7) can be computed, it i$

-

necessary to examine the sensitivity circuit [4], and]thence to show

how the computation of each column of the sensitivity matrix Dk will

torrespond to the solution of a sensitivity circuit, after one full

FLl

I3

period with specified initial conditions.

i

Consider ¢ircuit equations defined in tableau form by

A i =0 KCL (2.8a)
t N i ‘ \
A"v = E KVL (2.9a)

|

The branch constitutive (B.C.) relations - self or'mntually dependeﬁ% -

|

can be-set in a general form.

For a non-reactive branch,

: | |

\v = v, (i ) . . (2.103)
m .

qc.’ = qc_ (Vm) . ’ (Z.ila)
3 o I
where g
1 —

{

.

wy
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perturb the initial conditions of the differentiated variables (generally,

uh e
d 9 ‘ o b . :
= —-——Z:Ah-i o = * ’
lc. e , and, vm(O) Vo I,
J
r »
. . - ‘ ‘ > AW
For an inductive branch - w “
F = F (i (2.1
2. " (lm) (2.12a)
J J
where
d
F!. et .
v, = T, ad i ) = i ’
3 at s )
&
Finally, for independent source @
e , . 1 '
Is = Is;(t) (current source)" ‘ {2.13a)
(4 / :
) J I ‘, - ’ .;"‘ i, !
E, = ES (t) ' T(voltage source) - ‘- : (2.5.4&1)
~ A Y '

,
LM

Assuming that the 5ystem has a unique solution, let us

wag will call them qo)‘ one at a time. The result is| obtained by dif- -~

ferentiating equation (2.8a) through (2.14a) with respect to the kth

differentiated variable 9,

a d _
qu
k *
'
At _.A_Y__=. 0
qu,
-k

k’.l .,

P

- e

-

R G
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e Va , ~ )
’ v, BVJ Bin" : ' .
= . { . %.10b
74, 31 da, . (2.105)
k _ X ] ,
PR \
e '4‘\
] ch. 3qc v [ % '
| 3 .3 . m ¥ 1 (2.0
s Bq_o | ov aqo
k , k _
; : et

: el Tl
‘ C at " 9q 3q
N . C ok l ak
L4
and ' | ) ' , " /
- { R ' ) v \
, JR——
) - 17 if qk corresponds to the differentiated
) v 4 , o
. *mo % - ;
K | o aqmo - controlling variable v »
Ok 0, if q does not correspond to v . t
Ty k ‘ N m e
- ‘[] X ,
. °Fy. arlj ’i_
—L = — . e T 2.12
, qu ol aqo [ T - ( ®)
ky RS k ) —
N .o —
wlexe I ~ '
-~ ' F v ‘
. )
’ 4_ ( ) = —l ’ -
g dat 3q| qu
. 2 - , Pk k/ - ——
and RN b — —
: -@ A\ ——m .
a;’ &m ) . Y
’ / ) 1 —if—~q—f_coxpesponds_to_¢1(m_difiex_gtj‘a_ted o
. . 3 o
g ' | almo o controlling variable :‘Lm .
(c va, I , | ,
o , k 0 if gq_ does .not correspond to . i .
. SR k ™ \
" ) - |

~ ]
{iane




wr . " , .- i : v ' °
// ) i, - . ? o
. , )
. | \ ! i K
4] ' ! ' . 16 ~ %
9 ' , /(
\‘/ . ! x\ i
| — ] W . N i N
‘ 954! RN .
i - \ . P Ve - [
BIS " i 3
1 —— — ¢ A
5q 0 , (2.13b) .
\ | ] 0k . v o ,
. \ ‘ N
| OF ~ o ; .
\ 5 = 0 , i ' (2.14b)
CIO , ‘
- k N .
1{ * l , D , /
| : - -
| A close examination of the corresponding pairs (a -~ b) of
v V -~ , o . ;
\ 0 . N -
equations (2.8 - 2.14) wiYl show that equations (2.8b) - (2.14b)
i . -
) .o .
; , Y% desctibe a circuit having the following properties: . S
- T ‘ \ . . ) ‘
{ . .
S I , . TR . . LT . .
- T‘WWme—varymg’lf the orlglr{al circuit H N
. —_— —— \ A .
O contains nonlinear elements)’ having the same topology NN -
R R . . - ’?« ) . ’ v - '
= s h T4 - d . E “
[ / | . as the original circuit; NG ’ . . \
- ) ) B t ‘ 2 4 ’ D “
| 2. Ahe type of fxn element is tlﬁg same as that of_‘ the“ ]
-, . L - T e e g T e
! ) ' corresponding element of the original circuit; .. oo
Py r . . v, . ) ) [ ’ ]
o | i ) 2 } '
3. the value of an element N . )
_ - (i) for a linear element is the same as thaft of the ! :
. - I} ‘ . 1
] original;
= i N EUN _— ;
(ii) for a nonlinear element is replaceq‘zbg;-i:he piece- e
i ) _—4-————’_’_'—_’__’-‘—' . M ® -
\ . . ’ . o
' e wise linearization at each tike point; AP v Lo~ '
‘ - . ) ' . A - ‘ o oe
| : ' . (iii) of an independent source is-replaced by a zero . © o .
- e . o »:‘_ . - - = ,__:-:;‘""‘,—*. L‘ “
- source (i.e., short circuit.for an independent = . - ‘ .
| . voltage source’, and.open circuit- for an ihdependent r_ :
T T i current source) ; ' - .. ' o
. \ | ) ‘A . !
€ _ R e
N ’ ) //f; LAk
; . . - «
P , =t N - e @ - - F s a~
- _ I e T : - L
N % Yt ' o
/ 'ﬂ :
] r -y - fr
» ‘oo A
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& .. ’
4. the initial.conditions of the differentiated

0 variables are replaced by a source of unity value
if the differentiation is taken w.r. to this

variable, and with a zero valued source if not.

This circuit is called the sensitivity circuit, It should

be noted that, corresponding to each reactive element, there must be an

equivalent sensitivity circuit. By solving the kth sensitivity cir-
1Y

cult over one complete period starting at the initial point ¢t _, the

solution vector of the differentiated gariables at the &nd of the period
is just the Xkth column Dk of the sensitivity matrix D.
Y

\ r

From a computational point of view, only one circuit (the

o

original) is formed and the same coefficient Jacobian matrix, d@sgribiﬁ§

the linearized system of equations (in tableau form), is used but with

a different forcing vector for the computation of each Dk « To show

&4

» how this can be dbéne, consider the general linearized tableau form

o

-

w
BI"d = [IE] - (2.15)
= s o
R L - [
“ . ‘
‘where B is the coefficient Jacobian matrix, w the algebraic variable
‘ , : J
- vector, q the differential variable vector; and E: is the forcing
r
o ( . ‘ A . !
; vector. o 0 . 1 “
/ . - Y
N The tableau form for the kth sensitivity circuit is

\‘\/\.‘

b

L.

‘
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;
where e’
k
%

the kth element value is unity), and wu, X are, respectively, the

vectors of the algebraic and differentiated variables.

, Ve

The above metth can be implemented by means of tlie follow-

ing algorithm for computing the sensitivity matrix DNxN where J =
4
Algorithm 2.2
a
1. Start at initial time point t0 ; .
’s
2. k=0 ; : \

/
3. * form the coefficient Jaccbian matrix (B) of the
I
original circuig; save the nonlinear entries

Q

(if any) :

4. solve the original system of equationé (2.15) and

! » /’

_save the solution vector and the necessary variables ;

7

5. k = k+1 ; ‘

(I
6. load the Jacobian B ({using the stp}ed values
j of the nonlinear ‘entries (if any)) ™%
7. Is it is the first time point, pp& A (0) = -
8. Solve the kth system of equations (2.16) and save

o

the solution vector and the necegsary variables (e.g.,

. 1
variables required to compute A ) .

9 2 /

. /

{2.16)

is the kth unity vector (i.e., vector of all zeros except

I - Di

Y
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9. If k 1less than N go to step 5. ’
10. If t < to + T, choose the next step size, and go
-~ to step 2.
1. Form the sensitivity matrix D, by column, where
the Xkth column Dk is the solution vector of the
differentiated variables of the kth systemn. (Then ;
J=1-0D).
H
o
2.1.2 Computation of the Jacobian J N .h
Using the Adjoint Network Approach .
Transform equation (2.6) into the form
i !: ' LR “
- .0q (g , T) .t .t .t .t
i -0 i i i i
D7 = aqi = [D1 ’ D2 ;oeenes Dk ¢ e DN ] (2.17)
Q0
whe}e - ) ‘ ’ >
.t ag. (q., T) ’
i k 0 t
D = [ T ] , (2.18)
k aql
0

is the kth row of the sensitivity matrix D.

v

Before describing an algorithm for computing .D, it is
necessary to review the adjoint network concept [6], and its application

[5].

]
a
A
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Consider an original network, with current and voltage

variables i and v, «zrespectively, and a corresponding "“adjoint"

¢ -~ »~ , . ]
I network with current and voltage variables i and v, respectively. -

e
|

Le}: us assume the "adjoint"™ network to have the same topology as the

original network. In that case, using Tellegen's theorem [27]

t0+T .
I Sl Lv, )i, () -i, ) v, (1) 1da = 0 (2.19)
I
where 1 1is the arbitrary time variable of the adjoint network. S
] v
. " 14
I If the original network variables are perturbed by /A vj, .
/ e ! ¢ i e
" A ij' Tellegen's theorem still holds for the perturbed states, -i.e.
t_+
0 T ]
) J 2 [ A v, :*t) i, (v - A, (Y v, (v} 1 a4t = .0 " (2.20)
0 i
i | N | o

f - |

Using the assumptions given in [5], the adjoint network can be extracted

°

from %t:he original network,using the following properties:

@ 3

L

' 1. The time variable of the adjoint system is

t=t_ + t_ - t, where the final time

:

2. The type of an adjoint network element is the ’ -
e ~ /!‘
( ’ same as the corresponding one in the original net- H / »
{ ,

work and both networks have the same topology. £
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3. The value of aﬁ adjoint element is given by:
(i) for a linear element, its value; ‘
t ~

s

(ii) Aor a nonlinear element,| the piecewise ’ N

l linearization of the original element

1

value. Thus the corresponding adjoint

I . element is linear and time v ying.

- (iii) The independent source is replaced b¥~§//i
' V,»~M/f-"’”“fk~
l , zgggdggunar/‘ﬁ;e., 1ndgpendent volt:

[

{ - source is replaced by a short circ
the independent current source

'by ah open ciiﬁyit).

« N

’ It should be noted {[5] that, for b

adjointlnetworks each reactive element with initia

to be replaced by a similar reactive element with

)

t ‘ ‘ ajcompanied by an auxiliary source (parallel current
element or series véltaéé source for capacitive elﬁme"

FCorrespond~
A4

: that auxiliary source is equal to the initial co?dition o

»

T

ing branch. ' p
§ 3

T - |
' . Now theére zemains #he pﬁ%blem of setting fﬁe‘initial condi~-
. 3
tions of the adjoint reactive elements. Suppose we are computing the p
‘ kth zrow of the seni§ti ity mdtrix, Dk: There are two ¢ases [5] to ’
- . \

£
=
be considered.

R | R

P S
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N
(1) » If the kth element is a capacitor, the initial
condition of the kth adjoint network is )
! ‘ %
9, - 1 . y '
Ok c -t ek ' {(2.21a) .
k p

i “
where ek is equal to (0, O, ..., 1, .., 0) with
~ the one in the ktthosition. It can be shown that

mth elemen

if theJ of the kth adjoint network *

is capacitive. |
— . |

- !

—

(t)). (27280 —

|

|
- : :
1
|

—

bed

But if it is an inductor

9 vc (to +,T%

o « ) . -
e 51 ==L vy (g, +T) - v, (g))] (2.233)
10 m m
m [ s
!
!
! (ii)  If the 'kth element is an inductor hence the initial

condition of the kth adjoint system is

s

(2.21b)

W >

I S
x & kK ‘ i,

If the) mth element of the kth adjoint sXEEEE_E§—§~Q—————————-——i -
‘J '

P

4
-

= Ve T

. —

capacitor ... -

A T S e
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Y {
i +
] d 12’k (to T) A \ X .
. . = C_ (v (t, +T) ~v (t ) (2.22b)
m  c 0 )
9 m m
c0
. m
But if it is an inductor . N
\ -
3 ilk (t0 + T) -~ X X
- . A * 3 )
) . L ( i (to T) i (to)) (2.23b)
- iso m m
m
4 Due to the restriction imposed on the adjoint time variable
T = tO + tf - t, the coirficienglgqcobian of Fhe adjoint netw#rks is not

computed at the samé time point as the original network. So the adjoint

P

computations have to be delayed until after the original network integra-

tion over the whole period - (tO"i$ZPO—+ T), anq the necessary variables
. » — ——

\ ——

have to be stored. Then, aftexr %inishing the origiﬁéi‘éyéféﬁfiﬁtegration;h,

the adjoint system can be lntegrated in the opposite direction, using the' ’
stored information. This is equivalent to qntegrating barkward from

t=t

+ uwp to t .
o W

0 From this discussion it should be clear thiﬁ the

adjoint nItwork approach will slow down the ‘execution speed relative to

the sensitivity circuit approach. ‘Also it may cause programming diffi-

e

culties felated to the retrieval oﬁLinformation’from disk and the inter-

gﬁf* ‘ ‘

A computational algorithm can be established for computing

polation process as well.

the sensitivity matrix D, using the adjoint net#drk approach.

‘

.

oo v i Sy
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Algorithm 2.3 )
@ ~ ‘ N i ;
- | i
1. Start at an initial time t,- Integrate the , !
original system up to a final time. te =t + o7,
7,
. !
At«; each (acceptrd) time point, store the necessary
, \ . _ o : \
. values of the nonlinear elements (if any). -
Ve 4
f IS . . L \ y
2. Construct the coefficient Jacobian of the adjoint ‘
. system and generate the part of the code that per-—
form the LU factorization. Hence, for each .
adjoint system, generate the [\other partj of the oy °
)
cJode (such as t;aat required for.the forward and
4
. I backward substitution) to be used for integrating -
' ( i each system, and ,save these codes.*
: |
| -
| ) 3. k=0; ) : * . e
i . | e}
e ] ] ¢
4. k=k +1; .
N 4 14
® 0 '
5. ® it is the first point, put the initial conditions
L N - .
i‘ according to equations’(2.21a, b); '
[ .
‘,] 6. Load the Jacobian and the necessary variab’les.

Solve the system (by c-;xecuti'ng ‘the generatéd code)

. ] -

! 4 ' °
-*, This step is oriented for a specific time domain analysis program
(SCAMPER) in which the integration is!/done using a generated machine

e(coc’ie‘ string. ! But it can be modified depending on the features of the
program used in the analysis.

- R - [
"
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and save the necessary variables (such as those

needed for computing the derivatives x ).
7. If k. less than N go to step 4.

8. If t < t, go tb step 9 ;

If t > to r choose the next stJ:ep size and

- 4
go to step 3 ;

9. Formulate the matrix D, by row, using* the solu-
AY
tion vectors of the adjoint systems, where the

. R ~ o=
kth row is that ccH:responding to the kth adjoint
s .

system. '

2.2  The Extrapolation Methods

The extrapolation methods [1

T > e
¢ - algorithm [15] which does not require the calculation of deriva-

tives (st¢h as the gradient in the optim?.zatiorx-—lilge algorithms or the
| ' ‘ ; ‘ s
sensitivity matrix in the|Newton methods). But, in place of _this, for .

-

- ~ )
a system with N indgpendent differentiated variables,| 2M- ‘solution

3

vectors (M < N) must be determined over a Eirhe interval 2MT in order
. ' ;oo

to carxy the algorithm one step, where T 1is the period.

4 . .
Originally, thf e ~ algorithm proposed by Wynn [15] was

oriented to the olution of syste:ir}; of linear differential equationms.

Wwith fildly nonlinear systems, and near the equilibrium (steady-state

-~
N

P .
\ . § |

-
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-

; conditi&n), tHe algorithm, hopefully, can be applied to find this-solu- !

tion with a quadratic convergence [12], [13).

2.2.1 The € - Algorithm t

The: £ - élgorithm is a nonlinear ﬁequence—to—sequence

tiansform. Assume that the system solution sequence is qo, ql, cees

A

which may be produced by any integration procesé. Also assume vectors

{ e; } where~ k- represents the F#aﬁsformation step and r is the
sequence number at this step.. If initial vectors are givew by:

¥

(r)

€, =0 sxr=1,2, .. 2 ' (2.24a)
| (r) | \f
f €p =i r=0,1, ... 2m (2.24b)

| - . ,’;:‘

The recursion formula

(r) _ _f(xt+l) (e+1) _ _(x), -1 _
’ €k+l : Jek-l + €x €x ) i kyr=0,1, ... (2.25)
-~ -

is known as the € - Algorithm. . .

‘,;

There ‘are two forms of the & - algorithm, depending on the definition of

the inverse of p

N

e




The scalar € - allgorithm is based on the primitive' inverse

definition

so that each component is treated independently.

€ - algorithm involves the Euclidean nqrm-'definition

\ ‘ff .
. - . The vector
LAe
of the inverse,
S N
& -1 2 2 2
YA [ I '
s i=1 R
j ° “ .
] ] , :
‘. The following discussion will be restricted to the
‘o ¢
vector € - algorithm because the organization of the computation is
)
) .
easier and, moreover, thexe is some evidence that this form is more
stable [12]. ¢ ) .
\ :

It was showh by McLeod [14] that if a sequence {qr}

L]

? 3 - s
satisfies the linear  recursion foarm
.
oo™,
- et .
‘ .om v } .
o, = o,) : r=20,1, .. - 2.
i qr+l ( Z i q r ’ .z . ("
i=0 . ‘ ‘ -

: .
: ce., if §
i=0

4

26)

L |
AY '
where {a} is a real vector | and g is a constant vec’t::or, then \ ‘
__,—-—————"L—'_‘_‘_'_—‘—’_—‘
" ¥
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" minimization of M is of great importance. This poin?:ml:las been studied

or : ’ ’ fl

(x) v i
m = 0 XT=0,1, ..., if ¥ o =0 (2.27b)

i=0

| ‘ ,

In the case of a nonlinear-%ystem, where the solution sequence ‘{qk}

is produced, say, by the contrag:tion mapping - =

i ~ Lt
B »

g9

r+1 F Eqr) -

the e-algorithm can be applied if [12], [13] ) ]

.

. ) 2
v 9 9= sz(q)q(q.I -a + ol q - g [|2 (2.28)

} 32 Z'x,‘» f;';:’l‘ . }
. ) 2 )
where this notation means the last term has norm of. the order H qr‘ - q “2 .
LS B T -t R
;::P’V':g.) -

i

Under this condition, the c’o"hv-érgen'ce oﬁ the sequence q, to the fixed

|

point q of the'mapping F is at' least quadratic. -< =" g’

i
It was stated at the beginning that an integration over

I3

pe x_each iteration, hence, the detérmination and

by Skelboe [16] who examined closely each circuit and, in’ particular,

the relative values of the circuit ii.me c\onstants ar‘xdﬂtlie,penigd (—s)’”éf/”/// ¢
the foreing fungti.c;z(s),J .The‘maximum value of "M is the ordex of the "
system 1; i.e., the number of independent rea‘xr\ctive elements. One way. ;

.of reduc!ing .M qi,s' by \th:e proper choice of. the st:_arting_ time to. This‘ h '

' s

point can _be selected such that some _of the-faster-transients will Bave |

died out ‘bx,? t =” to. i . .
e *N » L. . -

4 ,r
™
T W

Ao

|




| based on the '€ - algorithm can be stated: :
i . -
Algorithm $.4
1. Initialization step: - S s
(1) Tk=-1 ’ T
| © {ii) __ _Define (m), the starting point .jto) and the
]L acceptable error limit 8. .
\ (iiiy Intégrate o;ver “t e (0, to) and set:
. N
, ,’L@l‘q'(to) L
( 2. * Integration step: \ ' R - ‘
- 1 . N V'
(i) k = k + ' , . _—
' (ii) 9 = 2l
) ¢
o (iii) In‘tegrate ver, t e (to, to + 2 TQ/ _and_set:-
- j’ \ ’ T 14
T T— - . T = \
qr=q(o+rT) ' r=1, 2, ... 2n
- 3. € - algorithm step: ) l i
- L |
(i) put: ; )
. I -
-El) ’ ec()r) = ' r=90,1, ... 2m
B “ and %
| ; ,
i ¢ e B - |
v 1 l
N \ o ; . . — !n _ e __.—__
i S S S e




¥
N

J voow “
| - ) ’ X ) AL |
« L L
. | . (ii) - Sq}ve%F | _ . . ) | .
;ii _ E;g’l) . (Egru) _ E;r))-—l e . --,ﬁ2m--l‘l
i= jw + L’,, L o |

(iii) If 3 < 2m- 1, go to step (3 - ii). -

1

4. Test of conveggence step: . oy
, \ X (0)
\ - @) Zk a €2m ’
i+ -0 ) I
(ii) - If °llzk - zk—lflli £ & the steady-btate

. solution is found by using zy ‘as, the initial

ion at t =-t0 . \"s'rop. ¥ e
, .

fIf noﬁwﬁgo to step 2.

come Yoa

.
¥ : g .

N
¢
b > l

* " The computations in step (3) :involve a tradeoff between
executlon tlme and storage requlrements. If the egecution time is to

-~ be mlnlmal, at least 2 x (2M) vectors (each having uN entries) must ‘

t o

\ reside in the high speed memory, i.e., storage allocation of at least

-

4MN entrles is re ulred which is four times bigger than that required fu
q g 7 qu

,}, s
- for the Newton algorlthm If thls storage area- is to. be mlnlmlze 7

13
then 2M retrlevalL of data from 4isk memory . are requlred, which will

¥ Fl e

‘'slow down the execution speéd., ' =~ =% o .

| N . o
v i
o " . { " ,

SR
-~ SEmesrmea o . ‘

T :
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2.3 Gradient Method

\

The gradient method for the periodic steady-state analysis
° a

of nonl‘_inear'*circuits\wgs first proposed by Nakhla and Branin [10]-,111}. -

'

Their inmplementation was based on“ the state variable formulation of the -

circuit equations. Although one of the objectives of this work was Ito -

)

make use of the gradient method in conjunction with the more general !

and’ convenient tableau represe'ntatign of the” circuit, the succeeding
discussion will be based on the notativnally simpler state variable ap-
proach as given in [11]. The detailed analys:.s'of a more general

tableau representatién is left for a later Chapter (III). ‘

. Let the state variable equations describing the circuit

be givgn by:
- F

/ i
a .

‘ a = £ g t) ° (2.29)

g
'1‘/ .
(

where ¥ and the differentiated variables 'q e RN . Given that the

forcing function ‘s periodic and of period T, it is required to

find a set of irritial conditions g (to)’ = 4, such that .
’ o cq(t) = q (kg +KT) , k=1, 2, ... (2.30)
For convenience k = 1. The deviation of the circuit grom its periodic

' steady-state is expressed in terms of a performance function ¢ which
is defined* by °

»

©
|

[6 (@ 16 @)1 : L (2.31)

o
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A

\

//'“ P
-

where § (qo) is the discrepan/cy vector given by

,
é = - + .
(qo) g (to) q (to T (2.32)
/
and the superscript t indicates transposition.

- e

Thus the objective is to find a set of 4, which will minimize ¢ .

1

The nonlinear programming teéchnigue used to minimize @
requires the first derivatives (gratzieﬁts) 2 ¢ /9 qg - The crux of
the method is to demonstrate an efficient scheme for computing the
gradient t"G =3¢ /3 9 - - It has been shown [11] that the gradient
can be computed by only integra{t:ing two systems of equations over one
complete period: the 6riginal system 'iof equations from t =0 to t =T
and a usecond system, wiich will be referred to as the adjoint variational
shrhftex‘n, from t =T to t =0. )From theorem 2.1 [11] and equations
(2.29) to (2.32) it can be proved that the gradient G has the simple
form |

4

G = 374 = 2[2(6,0)-8(qy)] . (2.33)

where X ( §, t) is the .solution:of the adjoint variational system

-~

S e s re——— ’

o v
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A8, T = § (g.) : (2.35)
‘ s 0

~—~
~ 4

;7 43
J
From lequations (2.33). to (2.35) it is evident that the

adjoint system of equations ha# to be integrated backwards from t =T

to t =0. This requires knowledge Eof the in;i.tial conditions

A (8,1 =6 (qo) and the trajector'y of the coefficients of the Jacobian

. 9 f , . e .
matrix 5—(; over the whole period. [The initial conditions are given '

simply by the difference between the solutions of the original system at

t=0 and t =T. The Jacobian 3 f / 3 g can be formed from the

forward integration of the original system using one of two methods,
v ‘ (.
namely, by either saving the nonlinear entries of 3 £ / 3 g directly, g ‘
i

or by saving the necessary variables from which 9 f / 3 q, can be

evaluated.

x

A computational algorithm can be written on the basis of

the above discussion [10], [11]. . -

Algoxithm 2.5 .

1. Choose a firsl estimate of qO, perhaps by integrating - _ § =~

equation (2.29) until a predefined time to. ,

2. Using q0 as initial conditions, integrate equation

(2.29) for one full pe}iod, savil.g the necessary vari-

* ables to compute the Jacobian 3 £ / 3 q.

3. At £ o= to + T compute the discrepa]ncy vector & (qo)




sme,

DR S ‘ i
defined by equatian (2:32) . Hence compute the |
performance function ¢ defined by equation

(2.31). If; § is less than or equal fo an ac-

ceptable limit, the steady-state solution i ‘

£ found. STOP.

—

4. Otherwise, use G(qo) as initial conditions of the
adjoint system defined by equation (2\.34), and in-

tegrate backwards over one full period from t = T

<

to t =0 using the saved values from the forward

integration (in reverse order){to compute the .

Jacobian.
- ~7 ')
¥
5. Compute the gradier}t G defined by equation (2.33).
Al ! - ‘
‘ ! . '
6. Pass the prguments 9 - gradient G and the ob-
. | |

jective function ¢ to the'optimization routine

[

- i
C . R
7. Go to step (2) using the net‘w arguments q0 re-
i
turned by the optimization routine as initial condi-

!
tions. “

- ’

2.4 Comparison of Methods
: |

Three possible methods for computing the periodic st*,:eady-
N i

-t .

"state response of nonlinear circuits have been reviewed. In order. to

® 7

.
i

i P




" of the network relativ,é ]o the steady-state conditions, and
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*»

arrive at a decision as to which method is the most sui:table, it is
necessary toldef'ine the class of prLblems which has-tcT be solved.

The presént work was undertaken with the objective‘ of finding a method
wI;ich would not only be used to compute econc?mica]ily the periodic
steady-state response of large, stif‘f and nonlinear syste;11$, but which
coul.d also be easily exténdeel to include circuit optimization and sensi-
tivity anaiysis. In the following sections thg three methods are

compared with respect to those characteristics which would have the

greatest influence on the final choice.

2.4.1 Computation Cost and Convergence Criteria

Let us first consider the convergence preblem. For the
gradient method (GM), the rate of convergence depends e&sentially on
I

(1) the stiffness of the network equations, (2) the initial state

7
o

(3) the

4,

optimifzation routine use

for minﬁ’tﬂ:%i}ng the objective funf:tion ? .
With the optimization routine based on Fletcher's ,[22'] variablé metric
method, the GfM as been demonstrated by Nakhla [11] to converge
quadratically near the equilibrium (steady-state) conditions. When
the network initial conditions are quite far from the steady-state,

the method still converges but at a slower rate. - In the case of the

7 >
Newton method (NM), & comparison of results reported by Trick [3]
.’1"&‘:"a

| oy
and Nakhla [11] shows tlpat the. NM is more likely to converge faster

| \

’




" by ratios which are not s0
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<

than the GM Lut witll a naxrower range of convergence. The conver-

gence of MNM' depends on (1) the stiffness of the Network equations,
; R

and (2) the state of the network relative to the steady-state [1].

For the extrapolation method (EM), the few examples reported by
! |
Skelboe [16] seem to indicate that the rate of convergence of]w\the

EM is at least quadratic with a range as wide as that of the GM., In

comparison to the Newton method [1], [3], the EM [16] seems to be
even faster. The convergence of the EM depends on (1) the stiffness
1 ‘ ! .

of the network equation, and (2) the mildness of the network non-—
{inearities. e
From the above discussion and in.the light of the published
results for a rélatively small number of modest size problems, it
r ‘ +%
appears that, within the range of problems where the three methods GM,

NM , and EM are applicable, the extrapolation method converges faster

-

than the two other methods whi’le‘thé gradient method (with the variable

a

metric optimization routine) is the slowest. But the number of itera-
s \ -

tions requifed for convergence by each of these tliree methods differ

<
far from unity.’

2

Let us tuxn now to the problem of computation cost.

ay
A

\
Assume that the network equa'Tions are set in the form

e

§ 0 v
where J is the Jacobian matrix, and E is the forecing vector.

|

L "y % M
Y
- ’ N
s . '| ES
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Suppose that a LU factorization method is to be used for solving the

- network equations at each integration step, where the number of steps {

over one full period is ns*. -The major portion of thﬁ computation

N

\
cost per step can be deduced by considering the costs of (1). co:+~

# ’ .
puting and loading the Jacobian (J), (2) computing the forcing vector

(E), (3) factoring the matrix (LU), and (4) the forward and
5 .

N

backward substitution (FB).

Now, fo;r the gradient method i’t has been shown that an “
integration of two systems (the original system in the.forwaxd direc;
tion, and the adjoint system in the backward direction) over one full
period is required for each iteration. If we assume that the cost of

( - integrating t_be adjoint fystem is the same as that forP the| oxiginal

<3 ‘
ne, and that the number of iterations required for convergence is, nG ' '
: - R

. " then, the integran?ér\cost of the gradiTnt method is

Ve . ’

. * In some time-domain analysis programs, such as NDP| ,[17]), the

integration process proceeds as follows: at each time point, the sys-

tem is solved with a predetermined step size h. If the Jystem does -
ot converge, a Newton iteration is applied repeatedly (with the same

- step 'size) k times until it converge. If we consider the number -
.of time steps equal to n_, and the average number of Newton iterations
- per step is k, then the number of integration ste?s n will be
g \ . given by nS = ntk .

In some other programs, such as SCAMPER °[19], [20], &th"e, ﬂnte—
. gration process is as follows: at each time point a step size h is
chosen and the system of equations is solved. If it does not converge, .
the step size is reduced until convergence occurs. In this case, the
number of integration steps n_  will be the number of solution trial¥

(both accepted or not accepted} .
d N ¥

-
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€
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———— 7 h

GM=2.n".nG.(J+E+LU+FB) f (2.36)
¥

. ¢
For the' Newton method, in addition to the original sys-—

1

tem, an integration of N adﬁoint systems (N sensitivity circuits [4]
simultaneously with the' original system, or N adjoint networ]ks [5]
in the reverse {(backward) direction) must be carried out, where N

is the number of reactive elements in t[he network. Considexr the case
= ’ -
[4], where kthe integration of the N sensitivity circuits is carried

out simultaneously with inteérating the ‘original system. The integra-

tion of the N sensitivity'circuits can be carried out using the same

23

2

Jacobian J and LU factorization used for integrating the original

’ -
’

system. Hence the computation cost of the Newton method can be approxi-
0 . —

mately given by:
. : o

NM o= n_.ng . [ 4 LUs+ N. (E + FB)] (2.37)

&

where n N is the number”of iterations required for convergence.
4 \ &

For the extrapolation method, ij.t has been shown that an

Y

integration of one system (the original) has‘tp be carried out over
o7 - !

,2M periods per iteration where M < N. AccsigﬁgT?j“the~compgi:£{i\;L‘.in

—

cost of the extrapolation method will be given by 1 |
- |

| /, : /
| !

- EM=2.nS.M.nE;(J+E+pU+FB) (2.38)

o . . f
where nE is the number of iterations required for convergence. -

ORI
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From equations (2.36) - (2.38) the r’elativé cost of the three

methods £an be given by . N

| ‘ N

/ GM :NM : EM 2 .o :

. nN.[J+LU+N.(E+FB)]:2.M.I’\E.(J+E+
’ (2.39)

N
N

In order to simplify this equation, let us consider a

practicaj( situation. As mentioned before, we are interested in moderate
large number of re-—

'

and large scale nonlinear networks, with quite a

‘agtive elements N (N 2 20). Suppose that the network equations are

% to be written in the tableau form with the number of equations eéual to
- 7/

-
s

' NE (which is proporti'onal to the number of branches in the network) .

Cobnsequently, the Jacobian :J will be sparse]. For si;ars/é matrices
with quite large dimension HNE, Norin and Pattle [26] reported that

LU and FB requires O (NE) operations, with LU = 0.4 O(NE),

Pl

FB = 0.6 O (NE'), approximately. In genera{l we can write

”

N g
- \

' LU = aLU « NE
m FB = quB + NE : , ! \ (2.40) ,
) The cm‘rng\an%ngthe Ja obiafx J and the forcing vector \
. . E depends on (1) the number of emmm?“"‘ Lo
] of nonlj:near elements, ‘and (3) the ngmber of reactive elements. A For ’
. simplicity, let us assumé that these two costs, J and E, depends -
jf ( linearly on the numbler of equation’s NE- such that

! !

——

Fﬁwm N
T ~

g

\

l




N

—W%H—be—app;eximate-lf—ée%——higher—ﬂrﬁn—tﬁe number given above. Also

E = a_-* NE , {2.41)

It has been found experimentally* that the cost of J oxr E is‘Iess

th that £ L F .qg. = 0.3 . -
an at for 1U or B (e:qg., o (aLU + aFB)) If we nor

ize th its of th ion ‘cost such t +“'+” + -
malize e units o e computation cost such that oy GE aLU uFB 1,

then equation (2.39) can be replaced by

GM : NM : = : + + + N + : 2 . .
i NM : EM 2nG g [aJ artoa (aE uFB)] M ne

(2.42) *

3

T

* A network, with the number of branches NB = 78 of which 40 were
nonlinear, and\the number of tableau equations NE = 199, ‘was analysed

‘using SCAMPER [19], [20] with the steady-state algorithm included

(see Chapter V). Both J H and E }'.re computed in part using Fortran
statements and in part using machine instructions (code), while LU and
FB are done using a generated.code only. The length of the codes for
this problem was as follows: b

o

LU +FB = 7083 , E= 1498 , J = 146 .

a

a

The computation of J was mainlg( by Fortran statements, while the com-
putation of E° was/rﬁainly using the generated code (E code). From a -
close examination of the network we expect that the total cost of e

we expect the cost of computing the Jacobj.ém to be less than or equal to .
the cost of computing E. According to these estimates, a rough cost T
comparison can be given as follows: ' ’

|14

1.5-(1498 / 7083) (LU + FB) ' |
0.3 (LU + FB) . -

E, J

b4

i.e., , B, d




n_ are approximately equal.

/ ! T

e

T

'

Assuming M is of the order of N (M £ N), it appears that for networks
, -
with quite a large number of reactive elements (N > 20), the grad/ient

method yields the lowest computa’qional cost pf&vi&ed that né , M ar;d

B

‘. .

2.4.2 Network Size and the Numerical Stability ’Problem

N . i //
For the Newton method, the sensitivity matri

3 q/(qo, T) /2 qq is, in general, a full matrix. When /the order of
the system N becomes large (say N > 50), difficul¥ies may be en—
countered because : (1) a solution of a large scale system with a full -

Jacocbian matrix may present serious numerical stability problems as well

as poor accuracy due to round-off error ; (2) the stq’rage requirements

P ae

2 : ! e I v
for the Jacobian is of the orxrder of) N which may be prohibitjvely [ ,

laxge. o - ’

In the case of the extrapolation method, the numerical

properties of the method are less apparent due to the nonlinearity of
B
the' & ~ algorithm step used with this method; But it was reported by
RueP Isee X

Brezinski [12] that the round-off error may cause severe numerical -
. | .

problems especially for stiff systems. Furthex;mo’re, it -was shown

!

previously that storage of order N |is requ:.r/éd to minimize the exe- s
. L -
cution time. ) , / ’ .
- *
!
wor ) ’ - ' .,:




kR R R <

o ~ g 42

For the gradient method, the optimization step does not

require solution of sijnultaneous set of equations (even with the variable metric

"method [22],

-

Accordingly, there will bé none of the numerical problems which may be

|

encountered with ihe other methods. What concerns the storage (hence

- the order of the system N) problem, if a variable metric algorithm

is use;l for the optimization, then storage of the order of N2 is re- j
quired just as for the other two}'methods. But if a conjugate grajxdiem?s
method could be used for the optimizatiog, then storage of only’ %x\;der

N wiil be required.

v

X

In conclusion, it can be .said that the gradient met‘.‘hod
doe's' not have the.numerical stability pr'ob}ems such as those that may
be er}c;)untered with both the Newton and tt}e extrapolatioh 'methods{ for
large 'scale systems. Furthermore, the three methods suffer from the ‘
same storage pr.\'oblem except that the gradient -n;ethod would not have

tihis problem if a conjugate gradients method (which does not involve

- orI the opt'imization.

'

the only matrix operations involved are additiowg
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CHAPTER III

« A GENERALIYED APPROACH TQO THE GRADIENT METHOD

3.1 Introduction - ] -

In Secftion 2.3 a gradient m;ethod for determlnlng the
perlodlc\steady—étate response, based on the state variable approach
[10}, (11}, was 9utlined. Although an exten§ion to the general al- /
gebraic—d;fferential formulation of the system equations was also give)

0

[10] . [11}, it is dtill far from being directly implementable within

most third generatign time domain an&lysis programs which are based on
the tableau formulatjion of the Network equations to take advantage of \

highly sophisticated sparse matrix techniques. In this chapter a more

general and)convenient formulation “of the gradient method wil} be de-
I t.

i‘ivecﬂ which can be implemented directly within-most of the recent time
domain analysis prog‘rams.
. The dekivation involves the use of the adjoint system

[N

concept. In Director's [6] _treatment of the adjoint network,. the. /.,

!
£

parametric representation of branch types involved one ‘dependency on

a circuit'Vgriable as well as a set of design parametexs, and the de~

1

rivation of the ad;')q nt network was carried out type-by-type. In the ~

e

\
%




~

- .
~

-
.
( - :

adjoint Fystém, with the implicit assumption that the dep\endency can

wm original network.

»

The. appoach in the present work is similar to that of

Director [8] but the equation formulation is more general.  After &

-

;] dgeneral adjoint system as well as a gradient form are developed, two

r T

S
useful objective functions, reflecting the state of the network rela-
IS ‘ '

»

tive to the steady-state are considered. One of these, based on K

) normalizing the contribution of each reactive element in‘gg the‘weightg'd

l

‘ *

, specific approach is taken, which leads.to convenient forms of the

square of voltage, is selected.

On the basis of this choice a more -
\ .

equa- ( )
- tions for computing the gradient, as well as for the initial conditions

&i of the ad\joiné system. The. chapter ends with a computat;ionail al:goritlfnn

'

»

: . I - .
suited to application within a general time domain .analysis program 'such ,

, | as SCAMPER [19], [zgu].[

e
S

(%3
3

. g . ‘ pe o ) .
3.2 Dperivation of the Gradient Egquations Ba\sgd on \r'
" a Generalized Adjoint Variational System’ -

1
4 . 3 v . . ‘u
- S \ ; '

- s e - v 5 y 'y ° -

In order to minimize an objective function \0, which re— -
. - s : ‘ )
flects how far a circuit is from the periodic steady-state, it is . -
g ; \ . |

. ! .
¢

-

[

. ‘ S
necessary to have an efficient, procedure for corqputing the gradient

- , . Fs S * )""‘7 1 v
G=30 /3 qo' vhere qo is the initial cogdition vector of the, dif- 2 ) fo
\ . ‘ - . . - »

ferentiated variables representing the,system. 'To this end, \
1 ’ . . {

. ou . . !
the original system of egquations in the general l:ableau form.

N

. '
L -

‘
< v

“

e et
A - "



" where J is the coefficient ‘Jacobian matrix, ang IE (t) is'the forcing

_ dependencies.

h (u, g, t) - 0 ; Algebraic equations - (3.1a)
g (u, q, c'; r 9y t) = 0 ; pifferential equationsb . {3.1b) . \
where ‘
u is an algebraic variai:le‘s vector ,

Ar
. q 1is a differentiated variables vector ,

13

qo = q (to) is the initial condition vector ,
, ]
¢ » s t .
a = g (g &) . K
!
In recent time domain, circuit analysi‘s programs the |° . ;.

i

solution of the system of equations (3.1) at any time point is achieved

by linearizing the ndnlinear terxms at a-ploint (the last a{ccepted pointg
. [
or a predicted one), and replacing the differentiated terms q by th%

slope of a polynomial of order. R £ 6 [28]. The linearized equations

/

corresponding to (3.1) can be expressed in the form ’ ’ i

\ i

~. B s ’ ,
;93 { ] = E (t) ’ , . ‘ L (3.2)
‘l; ) ¥

- f
! !

¢ N 1 7
vector. A ! L

E (RN

- Before giving a detailed representation of J, it is ,
i :

important 4o specify limits on the acceptable range of branch types and

We shall use the following equation to describe an elé-
—_—
ment or a part of a cdontrolled (coupled) branch; I ‘ .

—r— 4

i

|

f

e . /
- ]

4




46

rn

x, = o (x]) - x, (3.3)

-

4
f

where x may be an algebraic (u) or differentiated (q) variable.
-In this way brancheg ranging from linear self-dependent to nonlinear 1.

with two dependencies will. be considered within the scope of -our

- A
s

analysis*. <
+
Returning to the linearization of the system of equations,

equation (3.1b) can be set in the form
6

o

Mu+a = 0 w (3.4)

[o7)
t

where M 1is a matrix of 0 or + 1 entries,

and - A

[ aij] . where . U

ij 0, +1 for linear elements,

o
]

.

aij (qug for a nonline#r single dependency,

-

(self or-mutual) ,

p = aij (xr), r # j £for nonlinear double dependéncy.

From equations (3.1a) - and (3.4) the linearized equations

of the or;ginal §§stem can be expressed in the form |

—_— - - - e L ——

I

*  For more details about the different types of branches under con-
sideration, ‘see Part A of Chapter V. ) -

A!": e
-
-

N

G
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. In general, the objective function &,

from the periodic steady-state, can be

“
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E (t) . (3.5)

which reflects the deviation

defined in an integral form

<

t +T

9 =

¢ (u, q, qo, tO) = J ¢ (u, q, qor t),dt
t

0
(3.6)

0 ‘.

If we choose & +to be specifically the sum of the weighted squares of

the differentiated variable differences, i.e.,

o= (g M -g " (g’ -q)

£

(3.7)

.where W is a constant weightinglcoeffgcient vector, then the integral

form for & can bé written as_fLilows:

. T o
? = J pat =
0 -0

! ¢
;
t
where 0

1
1

J Ha(t) - g 2

]~dL P ‘"13.8)
-

dt

i
/

/

/

is taken to be zero for simpliciéy of notation. - . -
|

N Since the variables u and q must satisfy the network

(3.5), by using Lagra%gian

equations

i

€quation (3.8)

o

[~
multipliers [8]

A; and 12,

for ¢ can be rewritten as

e




" 48 -

P T
. d>=j [¢(u,q,q,t)+hth(u,'q,t)+()\tMu
0 1 2
0

T
t_d t .
+aasha - J(Al, ) E (t) at (3.9)
0

-~

. where Xl and )\2 are assumed to be independent of the initial econ-

-3

°

diti )
ions q,

The gradient G will then be

2

T
>~
d ¢ d t t t d q
= o = ——— + +
G agq dq J [¢ Alh )\2Mu+ >‘2 Ad,t] dt
0 0
. 0
. = + G +GT +G . . %
G T1 T2 G 3 T4 ) (3.10) :
. ’ T . T o
y : ©
¢ cr= 2 [ Yae- [ 2L 2w, 2¢2a . 29,4 |
1. dg u 3 q 3 g 3 qgq g .
. 0 . 0 ()] (]
0 0 ’ : -
l \\ L
\If jwe use for ¢ \\\the form given by (3.8) then E
. / A\ ¥ ‘
\\ - \
T 5 T
. d qt ’ _ t, 4 3 q
G T ‘ J W3zl dt+ W (g () qo)] Bt q) at ,
., i 0
/ 0 0 - [ }
i - fo \
Eji which, after some straightforwart# manipulation, can be simplii;'ied to: .
5,
b . |
2 |
3 ’ . :\ )
Y ; t 3 T) . t - '
; ¢r, = Wigm-=-gn®+ 228 yiqgm-qnt - @i
el ]E 0 a‘q 1 0 >
4 ) 0 ‘
12 f -4
1 - * LR ‘ :
{ - ‘ o -
The second term G T2 can be expanded as follows 7
L:{‘,{ " s ’ . ) \
N | I
; - - '
L .
5 4 i | ,
, ‘ | !
By Amaecaemmeweleacrss s Y e &ptn N . T
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er, === | Ahat-= APpih 2u,2h 29 [ B3h, 4,
, 2 dg 1 1 du 3 qo 93g9g 9 qg 9 g
0 0 0
0] 0 —_
But since h 1is independent of qo,’therefore, ?h / 9g = 0, whence G-T2
becomes
|
/ - | . -
. c R
GT. = aEpdh ¥u  3h 39, 4 (3.11b)
2 1 3u 3 9, 9 g 9 q
0 / 0
’ The thixd term G T3 is )
T T .
gr, = AL Mudt = A oM 28 g ‘ (3.11c)
3. dgqg 2 2 q .
00 0 0

g T,

} In examining the fourth term 'G 4

I

’
to consider the acceptability of different types of non]ineaj dependen-

- cies. We therefore ‘proceed to reformulate G

1
the inner products will be explicitly shown.

’

. T
d
}GT=—-—~J
/774 a
| A

I

" where Ik' is the kth entry of G T4,

IT

4

14

t,dgq -
le A 3 t} § t = (Il' 12, eeny I

which depends on

i
1

|
we wilh have
}

’

component-wise, i.e.,

k

‘

k=1,2, ... N.
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Al ' -
| /
Y | /
T 1
_ d t d q J
T« T a a j A, & gz 4t /
k © ‘ ’
I
a T N N d q, !
T Tq J [izl .Zl Y2, iy Y gyl |
k Y ] ’ . 1/)
| "
T 1
: N N 9 q \
_ 4 _ 3
=7 ¥ { J [ Azi a; &) 77 3 qo] at
=1 j=1 0 . k \
N \
- K ] alj (x) 9 x ? q:l l
’ -+
[ LA, - 7, ¢t ]Hdt} \‘
0 . k ’
N N L]
= 3 I« IH(I *L) (3.15@)
i=1 j=1 . ‘ ; | \
- .

wherei-xr! may be an algebraic (qr) or a differential (qr) variable. \

- d 3 q — |
fIkl = J { )\21 35 x ) 3% -——-1—-3 %, ] dat ) !
i 0 Tk
f 9 q. T
. = AZ a,., (x) —B—L | -
S % 0 x
k . 1
s \ i
: 3N T agq \\ | 1
- = (x) —2 -at ‘
s dt ij 9 qo \ .
<0 X [
7 1 0
| é
T da,. (x) 3x  34q
- [ A 1) X dt e
2 9 x 9t ] HO .
o r R ‘

substituting for I in eqdation (3.13)
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N N d q. T
. =1 I x5, a5 ) 5 | '
. 1 0 6]
1:# J=1 k !(
T a i . R
21 dq
- a, ~(x )—-3— at
dat I b o dqo
0 k
T k3
aal {(x ) 9 x 9 3 axr 9 g,
+ - -—-—-l
‘J 121 axr (aqo I t I t qu) dt\]
: : - 0 k “ Yk

t Zxr qu _axr qu
, . q, 8t 3t 3gqo =
O Ok

-~

is identically zero. For a double dependency, where 'xr #q, , it is

shown in Appendix I  that this term is identically zero for a class of

"k ‘ systems with a unique periodic steady-Ltate solution. Hence, using this -

fact, and equations (3.12) and (3.14)

. { _
i £ . l 3 g (T t '
¢r, = X mam 2Lt a0 :
4 2 . 9, 2
fl, 9] ) T )\t . |
) \ - J e » =33 ac " (3.119)
ﬁ 9o ' .
b, 0
¥,
%; y
h ' From equations (3.1la) - (3.11d), the gradient can take the form=®
. lz“‘ ’y( ' , I i ) v °

T

o
&
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I
s
i
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_ £t 9 h t d u ‘
\ ) G—I[Al———au+12 M] aqodt
0
” T t
aa
t 9 h 2 3 g
+ A — - £ — -~
J by 3¢ ~ d¢ M g at
0 0
. l
\ @
t t. 3 - -
F LM A - (W (q -q mnT LD ,
2 o] } 9, -
t t :
+ [W (qo - q (T))] - )\O (0) A (0) . (3.15)
i . i
Since the Lagrangian multipliers can be chosen arbitrarily, they can,
in partiicular, be specified in such a way as to greatly simplify the
t form of the gradient equation, e.g., take )‘l and | A 2 such that both s

the first and second terms in (3.15) are‘identically zero.

t dh t
. and . & ’ N
t #
‘ ‘ 58 2h a4 A = 0
1 9q dt

L . ' ;
In matrix form, it can be replaced by . ... ... . e e
.t P‘,/ t S | N
: L h an 15 T ] \
S u 3 g 1 '
4
i , = 0 . (3.16)
¥, ; ~ .
& a W r
i | M R A i
N ¢
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Furthermore, and to avoid the computation of the term 3 q’(T) J 9 q

i -

’ |
(which is, in general, a full matrix), the initial conditions of A

2 I"/
can be chosen so that the third term of eguatiJL (3.15) is identically

zero, 1i.e.,

\
i

t t .
Ay (A (T = [W(gy-q @M~ = 0 p 7 (3.17)
—
Accordingly, gre gradient takes the’simplified form
1 t t /
G = [Wig-a @I - A (& @ (3.18)

ﬁquations (3.16) - (3.18) are the results that we

i »

L4

sought. If we compare equations (3.5) and (3.16), the ?oeff?cient
Jacobian matrix of the latggr is just the transpose of /thé Jacobian
of (3.5) with a change in the sigg of thg time dekivative term.
System (3.16) is called'the adjoint variatio&al system of the originaL i
one described by (3.5). Relation f(3.l7)J dgfines the i;itial condi~-
tion% of that adjoint system for computing .GQ Note that these conditions
are given‘at! t = T, which means that to satisfy equation (3.18), the

v

integration of ;the adjoint system has to be carried ouf over one full

“perkodufrom t.=T to t ="0, i.e., in the backward direction. It

L

i

should also be noted that, due to this rewversal of the direction of in-
I

tegration, the siLn of the differentiated terms in [(3.16) will be

restored to the original sign. Let us define a new time base T, for

!
-

lthe adjoint system where T = T~ t, sothat d /dt=~-d/4d 1 .

i

)t
i

&
4
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. \ *
‘ : In that case (3.16) takes the form
e - 3 h 2] "o, . o
{3 3 g 1 -
= = . . (3.19)
) d ' .
. M A a )\2 0
N ..
: \ I

In summary1 (3.19) definesrt';h;{ jad_jqiﬁx}t;fyfgegnﬂgl’}iCh:

.

when integrated over one full period, starting with initial conditions

[

A

M

l“’ 1 . at 1.=0 (i.e., t =T) given by equation (3.17), has a final solu-
tion at7t =T (i.e., t = 0)

in which A 9 defines the gecond term of
i

the gradient equatic;n (3.18).

?.3 Choice of the Objective Function ¢

!
'

- If the objective functio?x) $ is to be a meaningful
measure of the circuit's deviation from the periodic steady-stg‘tg, then
the components of ¢ , corresponding to the contributions of the in-

v J

N \ -
dividual differentiated variables, should, in general, be of the same

~ | —
- ‘
P

order of magnitude. However, the representation of the branch variables
v N .
(i, v, g, £) in-the Kirchhoff's laws equations in SCAMPER depends on

the type of‘dependency and on whether the branch is nonlinear. Thus,
i »

i

M‘v the current in a qg-~dependency (capacitive) branch is replaced by

%A dq / dt ‘ if the element is linear, and/by c dv / dt if it is x}on‘lin’ea’;-!ﬁ
( I Because the units of the differentiated variables differ; their values

3

' . g
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may also differ by many orders of magnitude. Therefore, it is
necessary to weight the contribution of each storage element to the
performance }function ¢ . ) .
— , 3 . i ! /
* . /

*  One particuléxrl 'Meving this weight-

: ing is to convert all the bré,nch variables to voltages when computing QJ—; _

W

Thus, for example, the variable associ;g;gd,mi%h/ame
———— o - =

I f—’—’// - - -
branch, namely qi, would be converted to a ?)"o'l_ta.geJ A by defining

] = q;_L / Ci . An objective function wfu'.ch is based on this approach

and which has the same form as equation (3.7) is

. N N l' 2
P b= Zl by = ¥ AV D -] (3.20)

= - u

- . ) "‘ ' 1 [’

[ - o
where N is the s&stem order, q“ﬁd mi is an additional weighting factor .*

. £ " \

. _ for reactive element i . . ‘

—~— - 4 ‘o

. o | ,;

An alternative form of ¢ , which also tends to reduce

c

the: spread in t!he con\tr:fbutions of the storage elements to the ,objectiveé

4 oy function, is the sum over the stored energy, i.e., -
< » 3
! ~ ~ -
pesl - N ~
; e=§ ¢, =] w T m-vO) @@m-qO),
| i=1 over * : . +
. all cC
v o Y e s U@ -1 (0), (£ @ - £ (), ,
o over A 2 . J J
: ’ .. all L , .. .21

T ——— v

where £ is tff‘e” inductor flux-: ’ |
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N i . . i /
It can, in fact, be shown that (3.21) and (3.20) —eanbe made equi- .
21) and (3.2

valent Wm w's. Nevertheless, equation (3.20),
/ ' v ) '

is more convenient to use and was selected for the work reported here.

& .4 Detailed Computations of the Gradient and
the Initial Conditions of the Adjoint System

' ) The initial conditions A (T) of the adjoint system are

defined by equation (3.17), while the gradient G ‘can be computed t’hrough'

-~

equation (3.18). Both equationS“aré given in matrix form, and appear to

-’k;e difficult to hanle.’ In order to see howyfe;sy it is, in fact, to com-
' ( - pute A 2 {(TY and G, it is helpful to review the actual representation
" of the system varial‘ales and the order iL which the equations are set in
5 [ thg dc afxd transient anaiyéis program SCAMPER 4[19], [20] which was

=

. used for this work. (For more details see Part A of Chapter V). -

. ] \
. . R B | ’ ’

%
I3

- -
- Y

‘Reactive Variable Representation:

N

}r‘he current through a g-dependency (capacitive)- element in

Kirchhoff's current law equations is replaced by: = —
+ 0'
. , 4

-

‘ (1)

oo
ot

if the element is linear (self or mutually }

T AR ] P R I f
——

‘dependent), i.e., the differentiated

. f variable is charge. q . , ‘




1o d v . . . :
(i) Sl if the branch is nonlinear, where v .

-5 is qften a voltage, i.e., the dif-
. ~ ‘} -

T
ferentiated variable is a voltage.

S e e e —-~-—-~***T1'irerrvoi‘tage across an f-?depenae"‘nc_‘y {inductive) element l

in Kirchhoff's voltage law is feplaced by:

“ P | ,
. d . e ‘
(i) —_— if the element is linear.

H

t N
1 ! . ‘
! . A . ¢4 /
- - cme o T T T d i . - . . s
(i1) L ET if the element is nonlinear, where i is

] often a current.

1

p)

3 '. . !
: |
The Ordér of the System Variables and Ean/tions

\ Consider the number of elements is XNE, and the number |

L4 / hs
P i

of nodes: NN. In the tableau representation there are (2NE + NN - 1)

equations and var’iables. The equations are ordéred in the following

-

i
s - |-
+;

'«f‘ NE +'NN“ - 1) 5 third, the ;aranch constitutive relations B.C. (NE + NN

]

:: -~ - . i

;“ to 2NE +'NN ~ 1). The variables appear in the order of : first, branch
% | current or charge (1 to NE) ; second,- branch voltagé or flux

. ' Now, a close‘examination of equations (3.17) and (3.18),

i f —~

reveals la very simple procedure for '
| ,

computing -the different components/of the grlhdi’ent G of the performance
- y -

»

4

, ' . . ; )
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;‘:'unction ‘def_ined by equation (3.20) 'as‘well as the initial conditions

A (T) . The followirg relations for A (T) K and G can be prc"ed ta

be ‘equivalent to those ﬁf—equations (3.17) and  (3.18). R ©
For a linear capacitor Cz : - | o
e 1 o ¢
1l < 2
— - ¢ = 5 cw o+ = {q -q (T)) ~(3.21a)
. ’ c 2 c 2 0 c.* .
'3 2 C.Q, L &)
2 \ ° -
o |
The initial conditions A (T) in the solution of the adjoint system : . ‘
will be T T " .
‘ {
- . .
a . s A (T - A (D) = w, 5 (qo -q (T).)c . (3.22a)
. NE+N1 '  NE+N2 2 c, [

o . N
, -
. " [
.

Y. | : '
where N1 and N2 are the numbers of nodes to which the branch is

connected. v . o .
& :
* N *
P The corresponding gradient G '
' ; o . \ Cz‘ i { ) . f
!1 v - ’ . IN , \' d Q g‘ l , . o —
N G ' = .C 3 = h’c < g -am, -¢c o -2 Q) 3
Cy qoC 2 £ 7 NEsNl  NEHN2 -
; . v 2,’ " J e F-
: ) ) ‘ ' ’ (3.23a) o
. - : V\\ / - N - ) " [l
3 B while” the argument passed tolthe optimization routine LN ’ \
3 - . il - . z ;
iy [y ‘:P’ oi
o - , b -
= e ‘ o - .24a ‘
) T J . %e "¢, % | ‘ ’ ] * (3;242) 1 .
~ ‘gl A (o] N
' z - K ! — -
; \ .
\ \ For a nonlinear capacitor Cn‘ (v) . : o C .
+ Y B . ) r ,
;.‘ ‘ . \ . . . ‘ ) . )
\‘ , ) . ’
. v (1 - !
g " - ' )
i. . IS * - $ : C
2 - N ] F
i{: ~ @ ™ re
D e T ————— BT R s T OO SR WX
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.
1 .y | ;
. ‘ ¢ 3 Y% vy - v T (3.21b)
- - n ‘ T > ~ n !
i ’ N
"t
A = AT -= o, 3 lm (v, - v o, (3.22b)
NE+N1 NE+N2 n - n °n
C 4 ﬂ - ' ’
" where C (T) is the value of C at 11 =T+t .
1 j n n 0
d ¢ . ’ ”
Gc = 3w = o, (Vo -V (’1‘))c - Cn (0) (A {(0) -X (O0))
n 0c n n ) NE+N1 NE+N2
J T n 3.23b
& ( )
, L3
. where C (0) is the valueof C at t=1t ,
. n 5 n 0 , )
H i
| and
Iy ’ ‘ '
:( x z v . (3.24b)
c 0 .
n c
n
L ! ld H i.
! For a linear inductor LJI, : ..
} }
1 R ,2 2 N
¢ = =sru v (=) E - £ (D)) p « (3.21c¢)
1 2 1 L, 0 1 '
_— L L % % i,
L yhere R is a weighting resistance. ;
J s * . |
; o © . s i ‘
N The initial condition A (T) in the solution of the adjoi;ﬁ: system
'R , ' A
? A, B = w9 g - £ ), Y% (.22 )
; 1 1, "1 0 1 o “
¢ g ~ 2 2 ~£ - R L
g K ) < ‘: 14 N ?i *_:-
E‘e - . . ﬁi: X
' where i is the branch number (1 < i < NE ) .° T)\ -
, A “)‘a
g € ‘ g \ v
4 11 ~ , ) .
f < ", n ' / "o .
% .. *
"t 1. . r‘\,k - ’
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For a nonlinear inductor

L
n

s

(*)

S

~ o
The corresponding gradient Gl »
2’ hl
L L
L a9 ’
G = —_ =g (=) (£ .-£ (T) -
R 4df
) 0, ooy 0 1,
. 2 :
%
while the argument passed to the cptimization routine Xl
i "'
R
X = — £ .
1 L 0 ,
‘R' \ 2 l& X

’
»

_ 1 2 .0 2
¢p = § Y B -1 '
n n n
5
2 )
’ Ai (T) = w4k T (1) (10 =2 (T))l ’ r\\d
- n g - n
where Ln (T) is the value of Ln at t =T + to
1 J . (l} N (0)
, - ' L
' 1" 499 . . . n
¢ = a1, “Y%, RGyg-im); - —F—
- I''n ‘ .0 n n
v ) \ n .
where L (0} is the value of I, at t =t ’
n , n 0 .

[

{

‘

—— e
T R B R R U Raaia e § B B s Ak vt 0 K4 ‘dmdzit‘ﬁfiﬁ“@ﬁﬁqu&% )
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(3.24c¢)

(3.214)

F

(3.22d)

3
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3.5 A Coyutfational Technique

' The proceeding formulation of the gradient method has been

implemented in the dc and transient -analysis iarogram SCAMPER by means

of the algorithm outlined below. '
kS
" *
“Algorithm 3.1
1. Initialization Step.
i
(1) Define constants (?iinimmn limit of & (¢ . )
¢ i min.
and G (Gmin) ar[d maximum number of itera-—
tions ' NIT (NIT )) . . ‘.
max .
(ii) Integrate the origjinal system of eguations
(3.5) until a predefined time to, yielding ) H
_  a suitable set of initial conditions for the e
/l ' ]
steady-state 7ina1ysis. '
. / '
*(iii) At t'= to ave the initial conditions of the
reactive variables q, the solution vector
7 s o
(u, q) and the values of the nonlinear reactive
elements /fqr computing matrix A (0)).
1 : i
(iv) NIT = ? J
¢ t },: * _
2. Forward Integration. ol ! \
’ /
| ' / l
(i) NIT = NIT+ 1 . -




¢ .

(i1) Integrate the original system (3.5) .over

‘

b ' one full period T from t = to . Save the
S
necessary nonlinear entries of the Jacobian J

as well as the step size at a sequence of time

points. 1

o

(iii) At t = to + T compute q (T) and the values of

nonlinear reactive elements- (for computing A (T)). -**

. (iv) Compute the performance function ¢ defined by

i equation (3.20), using equations (3.21a, b, c,

and d) .
(v) If ¢ < Qmin , a steady-state solution ~Ti?a‘s been’
‘ l found. STOP.
- oL
(vi) STOP .
N ' (vii) Compute the initial anditions )‘2 (T) for the
' adjoint system defined by equation (3.17) using
. equationé (3.22a,‘ b, ¢, and 4d). " Also compute ) . ",
: I the first texrm of the gmLﬁient defined by equation ‘
. - e -
y (3.18) psing equations (2.23a, b, ¢, and d) .
\ A
{ , \ l
’ T
3. _ Backward Integration. "
N - (i) With the iniL:ial'c’ondit ons A (T) computed in
}
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step (2. vii), integrate the adjoint system

*_of equations (3.19)- ,over one full period
%sing the stored values of the nonlinear en-
, tries of the Jacobian as well as. the, orrés-— ' \

ponding step sizes.

(ii) At the end of the period v =T (i.e., t = to)

use the solution of the adjoint system A (0) ‘ ,

and A (0) for completing tﬁg computation of the .

gradient (second term) using equations (3.23a, b,

T

¢, and 4d).

g o

. ( 4, Optimization.
. ' (L) Scale the arguEnt vector X according to equations -
5 (3.24a, b, ¢, and d). o —
i
T (ii) Call the optimization routine. . ' (
(iii) Reset the initial conditions of the original - !
system (u, g) to the valués saved from- f
step (1. iii). l _ )
( ’ i
(iv) Update "the reactive element varr.'ables g with /;
. f i
- the values q'o returned by the optimization / A
\ [— ' !
routine. . bt l /
4 - R \ /
|
/ o

iy
Earal

e
1
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Remarks

(1)

(2)

(3)
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Go to step 2.1.

I |

¥

The optimization routine returns a new set of
initial conditions g 0" ue to the nonlinearity

of the system, and the change in 9 (which may

PEBIE

be large relative to the previop§ values of qo)

the system may fail completely to satisfy the non-
linear erxrror criteria at the starting _point of
integrating the original system. A ;vay to over-

come this problem is to start the integrat‘ion with
values of 'qo which satisfy the system equations

at ty = This is the reason for step (1. iij).

In fact, the q,nly values which it is necessary to

save for tﬂhis' step/are the components of (u, q)

# C
corresponding~§t7 the.nonlinear’ branc{hes .

Steps (2. i¥) and (2. vii) can be computed

sim lta.ne@tfsly. !
e

Some optimization techniques consider a minimum

to have beeh found (which in our application means

a steady-state solution is found) if the gradient

Ty




e
o

(4)

. 2,
vector ] G l {oxr its norm H G{ ”2) is less
than a certain limit. Hence another termina-
tion criterion cam be added in this case.

‘

For more details aboyt resetting the initial

I3

conditions as well as the integration process,
i

see Part B of Chapter Vv °

~—
Bl

—~

“

-
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. available to the user.
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CHALTEIi 1y

NUMERICAL CONSIDERATIONS AND RESULTS

4.1 Introduction

\ L
The periodic steady-staté qnalyéis algorithms 3.1 was -

implemented Fn the dc and transient analysis program SCAMPER. For

- .
the optimization step, two different optimization routinés were made

'I‘”}iese routines are Fletcher's (22} wvariable

metric routine (VM), which requires full matrix storage, and an auto-

matic restart, conjugate gradient routine

(ARCG) by Powell [23] which

requires less storage. '

!

§

The convergence of the algorithm as well as the execution

&li.me are greatly influenced by the scaling of the different arguments.

¥ g
In Section 4.2 the scaling features are discussed briefly and Some

suggestions are made, based on our limited experience with the program,

regarding the selection of a proper scheme for scaling the arguments.

‘
‘

Three examples are [presented in Section 4.3. These were
solved using both the VM and the, ARCG optimization routines, however,
since the VM routine Q{Ie better convergence, most of thé detailed re-

sults are given for that routine and only some final resul‘gs axe shown

for G for comparison. An importaﬁt result that comes out of these
i

examples is that the time required for integrating the adjoint system

1

of equations can be contxolled and is usually lesL than half the time
required for integrating the original system of equations describing the

network. / e

‘

®

IR T e
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€ ' -
Although thesg same examples were also analyzed by

r

Nakhla [11] using a similar gradient method and the-$ame VM routine,

«

a detailed comparison of results is, in general, not meaningful because

of the different strategies used for the tranéienrt analysis. In our
’ case, the transient analysis start$ after the dc solutiocn is found,
while in Nakhla's program the transient analysis starts fFom zero .

‘ initial conditions.

2 . -

’ 4.2 ' Scaling H
The results obtained for several problems demonstrate t
( ‘ clearly that the optimization step of the algorithm is the most critical

one. The available optimization routines, VM and ARCG, may require
. . —_—
a large number of iterations to reach the region of gquadratic convergence,

depending on the starting point. The convergence rate as well as the -

execution time can be greatly affected by the choice of the scalixig parar
\ ! » .
mcieters, so that it is important to understand their respective ‘functions
%
M |

in order to use them properly. The four kinds of scalirxg which are

l‘ *

available are discussed below and some guide-lines are given for their

=y
-

proper use. .

P e P
o, b

i [

Ldr £IE1Y
] <

&
I - The equivalent resistance, RLS, for the inductive elements:

.

'

iy
B
¢
e
:

~ The initial conditions, 9y corresponding to the Jif-
Vg R

ferent types (linear and nonlinear) of inductive elements are made in-

) ! ' ‘ -~

! +

-.y"

o
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ternally to be equivalent to curxent sources .I o * while tﬁose
! L
corresponding to the capacitive elements are madé'equivalent to voltage

}f ~souxces V0 . The equivalent resistance RLS 1is introduced Lo scale
c

the inductive variables by converting them to voltages VO = RLS* IO .
— ¢ 2 . A

A choici of the value of RLS other than unity may be necessa;r‘y in cases
wheré there are order o; magnitude differences between the V's and 1I's
of the C's and L's, respectively. From the computat®onal point of

view, the equivalent resistance RLS scales the objective functions ofj

the inductive elements ¢ L by (RLS)2 and the variables passed to the

!

optimization routine, X L by RLS, while the gradient will be scaled

indirectly by RLS and (11/ RLS

l —

) . - (See equations 3.23¢ and d4).

II - Weighting of the objective function 4>i :

L]

The weighting factor w; of the. objective function ¢i' '

given by .equation (3.20) is specified via the paJ}ameter ].?‘CTRi = wi .

~

This kind of weighting is useful for controlling ‘the influence of each
storage elément's deviation from tl{le periodic steady-—stat; on the con-
version process. - For example, the FCTFk of ¢k corresponding to
element k associfated with a longer time constaqt, and yet probably
having a relatively shall initia} difference between 9, and q (T),

may be indreased to advantage w. r. t. the other FCIR, . ’
N -

-

.
'
‘

This kind of weighting affects both the objec\tivé function

¢i , and therefore ¢, and the gradient vector G .

. | -

e o — T e a3 . =¥ s
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IIT - Scaling the optimization variables X : .,

=

SCLX (i) = SCILX; i=1L,2,... N.

v

In the steady-state analysis of circuits, cases are often

—

encot‘mtered where the values of the variables differ by orders of magni-
tude. This may result in poor convergence due to the searc;h for a mini-
mum over an elongated contour of the performance function ¢ with respect
to these, variables. . Con’vergence may be improved by scaling the variables
to be of the same order o;f magnitude. Care must be taken in using this

type of scaling as ,the relative magnitudes of the vai'iables may cha.ngfe

drastically as the search for a minimum ¢ proceeds. Four options are

n
.

available in using SCIX. J

El
-

(1) Indiyidual scaling of each element. In this

case M values have to be providéd. If

‘ /

e —

0 M < N, the first. M vari @ scaled in

‘the given order of their corresponding branches,
by the specified M values, while the remain-
H

ing N - M variables will be scaled by unity. — f \

.

!

(ii) Common scaling for“all <):'s and L's, respec-
tively. \Ih tlL}s case two values, SCLxc and
SCLX 3 must be provided whe%_all the ‘capacitive
variables will| be scaled by the fir'st value,
SCLXc ,( and all the inductive vari'ables‘ by the

-t -




e

»

;
;
};,;

"1

4
ity
2

w

!
second, SCLXR' . This particular form of

scaling is simple to use and yet quite im- ‘
portant. If, for example, inductor currents
are of the order of millimnps while the capaci- i

tor voltages are of the order of volts, the

ratio SCLX, / SCIX_ could b& say, 1000.

(iii) All the variables to be scaled in such a way as ’

- £

to cause their scaled ’values to be equal at the
first steady-—stat;e iteration. In this case a
parameter, XREF, must be supplied whereupc;n the
variables will be scaledm,internally to be equal to /
. T — /

XREF f?r tliiifjt/igga,tionﬂof/t}ré 'Bt/;«'jgl[:ﬂ»éte/

//aﬁ’ai;/;;’
I t
(iv) No scaling at all.: .

\ ~
‘\x
i
: ! . .
Iv - Scaling the initial conditions e?f t)/lfqadjOlnt system SCID :

|

\ .
‘ If this'scaling is requi‘.\red all the initial conditions
i

-

of the adjoint systen, 12 (r), will b% scaled equally in such a way
i

1 : N
as to cause the initial condition with the largest equivalent volfr:age

AN

to be equal to SCLD at the begixlming b? each integraticTn of the ad—
.- « § ,
joint system. The réason for introducirig this type of scaling is ™~ #
I -
that the gradient may not have to be computed as accurately during the

. | . v

'

§
i
'
i
§
!
i

¥
1

3
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[N

I

first few iterations as within th¢ quadratic region of convergence:

- Hence, K if the parameter SCLD is } chosen to be small enough relative

to the largest equlvalent voltagej of 1 at the'#irst iteration

and large enough relative to that] sama component of A 9 (T) at the

last f.teration (which is norma%’lfy within the specified error of
computat;ion) » the average time ﬁ‘or iLtegrating the adjoint sysi:em may
be reduced. Furthexrmore, the higheryaccuracy during the last few iter%-

‘ =
tions may improve the convergence.}

i .

—

MKM/"()}IOHI dmittedly llm{).ted experience with

/m the following gu:.dell [es are proposed fol: using the steady-

state analysis effectively. ' . !

(i) " Perform a transiedt analysis over few periods.

chooge the startin‘( point to
{
|

in such a way that
(1) regions wherg the sign of the time derivatives

is changing rapidly\are avoided, (2) it does not i

N -
ta
/
H [
i ‘
f ' . i ,
o, K
{ .
. { '
H
i .
)
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(ii)- ChoJ.Lse the equivalent resistance RLS, corres-
ponding to the ’inductive' e]}gments (if any), in ¢

stich a way as to cause the average equivalent

™

i voltage of the inductive elements to be comparable

to the average voltage of the capacitiive elements.

\

(W objective function ¢,

its expected influe?fzce on the tri;nsFent response
° I

faccording to

of the circuit (taking into account the effect of
~ ¥

RLS) . o | , .

Scale the arguments passed to the optimization

1

routine in such a way as to make them all approxi-.

T

(taking into account the effect of

\"

mately equal

/ RLS) .

©

4.3

Numerfc;:al Results

Three examples are presented to illustrate the effective-

st - * e
ness of the proposed steady-state algorithm 3.1, and to demonstrate

the importance of using scaling. Besicies the scaling parameters intro-~

y 4

duced in the preced;ng section, the following notations will be used in
2 - . o , '

these exa;nples . 4 ,
i

R
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- e

_“ TF, TB the time required for one full period inte- . R

gration of the original and the adjoint

x
Y

system, respectively ;

) . © NP the equivalent total number of forward iTte— . : 4

- ‘ . grations , required for completing the steady- -

R .  state analysis, i.e., NP =TT / TF , where

L

! . TT is the total time to convergence." -

v t
.

' -

[ N

Example 1

e -~

% |
j . The importance of using a steady-state analysis algorithm
8 . ; :
“: ' ( Pather than using continuocus transient analysis ("brute force" method)
w' is denwns;rag:éd by this simple example which was also e;nalysed by
Nakhla ‘[ll] . The clipperscircuit shc;wn in Figure 4.1 was z;tna:lyséd
. twice, once using the gradient method and once by the "brute force"' -
techfiique. 1In fadt, with the. dc source EC = 5 volt'$l, the diode never :
, ‘ 3
e conducts so. that ‘the circuit is effectively a linear one.  The circgi;:
) has two time constants Tll’ and 'I.‘2 which, with the diode otgf, can be -,

51mp.'f.y shown to be givep by : T1 = Cl (R1 R2 / (Rl + 32)) and - 4

{ &

LN

T, = C, (ﬁi + Rz). Thetratio Ty / T, is approximately - 50, while

- the ratio of the longer time constant ‘Tz
s - e

signal is approximately . 100 . ' Hence, using the brute force method, : N

to the period of the input ‘ F'

~

. Ll . ) . . -y
‘o Lhe steady-state condition is not expected to be reached before a few

- hundred full .periods of mtegggtan. " This is ocdh#fimed by the results . . "

. n L4
) “
+ g - " A
.~ ‘ e -
. 1
©w v ' i
0 ’ ‘ ¢
7
4

-3

i
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shown in the first two cq]luxmls of Table 4.1. Note that with the steady-

s&ate algorithm, ¢ is #educed to less than lQ”9 in two iterations

{equivalent to approximatl‘rely 2.64 ’peziiods of forward integration)

| ..
whereas 49 periods by Ihe brute force method reduces ¢ to only

0.234 x 107,

Examgle 2

e e

The circyit shown in Figure 4.2 has been considexed by
both Nakhla [11] and b Trick et al [l1] who showed that the system

was still far from steady-state aftpr 75 full-period integratioms.

With the gradient algor thm we obtained convergence to a d) of 10 12

in 16 iteratlons w.Lt —‘3 .5 T. ‘The only scaling used was that of -
\ .
the adjomt system initial conditions, SCLD. With SCLD equai to

0.01 the convergence }ithin the quadratic region was improved and the

execution time was yeduced by about Py 10%. In Figure 4v3 the ratio

Ve

(TB / TF) for both thé scaled and ‘the unscaled cases are plotted against
the iteratior: number. With sca.ling.the average (TB / TF) was 46%

whiléf +vithout scaling jit was 51% . . - -

¢ : T

Example 3

[\

“The imﬂortance of applying tfe 'differ;ent types of scaiing
|

in using the gradignt’nrethad is shown in the analysis of the claas c i

-amplifier of Figure 4.4. Starting the analysis after 4 9 perlods,

o

and with scaling applied as shown in Table 4.:4, the steadyv-state

\

ol

i . B ’

! N | Y -
TN . ‘
- )
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TABLE 4.1
RESULTS OF EXAMPLE 1 ’
\
Brute Eorce Method Gradient \Method
oo - |
Period ) Iteratia ¢ x, X,

!

‘ !
0 0.236 l 0 0.236 0.1 . 0.1

' 8

) . 1 0.467 x 10—.1 0.992 x 10~ |-1.1513 0.10156

.

4

2 0.925 x 1072 2 |0.477 %107 {-1.1515  0.10156 -

10. © 1.00 x 1077 I
7

v i -
% ) ~ 20 . 0.415 x 10”7 , ’

: \
4 -7 ’
’ 30 0.34 x 10 ) .
o "7
40 0.28 x 10
A g 49 0.23¢ x 1077 t
& / - -
o o - ‘ ' l
g;‘ H \ ; -
g . For the gradient method 1= | s | -
8 B |
W I ! ‘
@ SCLX 0,5 10.
§ : - 1.1515, 0.1015 f
i R N L 15, 0.10156) : .
ér Execution time = 5.37 sec. ’ & {
¥ '
; ) ' = 32%,
& (1B / TF)av rage 2 ? -, Y '
23 r /—‘ '
NP’ = 2.64 . - )
: - : |
. \ - w ] ?
. . - oo f
‘ . \\\ ( * , { !
i
¢ o h | :
, L. .
x . ; : - g
. ] - e
‘ \ i "
! et |- ‘ * t v
\ . . - Y ARTIAA
- JE— 4 )1 = :i ii‘f.‘:;i M ,{1"‘ o - -
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I
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) RES{JLTS
|
Scaling :
. scID = o0.01. -
! Iteration o |
| — !
. 0 4:26 i
! 1 0.227 z
; 2 0.226
] 3 0.222
o & 4 0.2)2
o 5 0.118
| ;.
~ 6 0.111
L
. 7 . 0.254 x 10
8 0.892 x 1072 _
- i
[fl. %,0 Xgs X,] = [-9.07535
. - !
Execution time = 45.7 sec.
. ' _ ..
(T8 / TF)'a.verage 46 ;
\ ,
NP = 27 .
— ‘ ) I

T e amtegs ¢ e “

;
LR O ot B “m YL Ay ,ww,,....[,.-.,\ .

TABLE 4.2

|

OF EXAMPLE 2

I

Iteration

11

12

14

15

16

0.995
0.490
0.153
0.173
0.122
0.479
0.489

0.232

78
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1.2 T

' L) &  without scaling
| (TB/TF) ___ = 51%
av

(TB/TF)

1.0

‘ (II) A With scaling )
(SCID = 0.01)

o8 + ) (TB/TF) = 46%

0.6 L

i . e 1'
h A
F' Y
\\ ‘ \A ‘
0.4 % 4 A
~
0.2 |
| |
) + . ‘ : .
1 ’ 5 10 15 .20
) ' Iteration
- ) .

| . ]
Figure 4.3. Theé relation” between (TB/TF) wvs iteration

o

N
number for power supply example 2.
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|

conditions were found after 23 iterations accurate to six digits with

~12
¢ < 10 . The two sets of values shown for xi in Table 433

correspond to the final stea%y—state solution at t = to = 4.9T and

also at t = 5.T. ' The latte% are given to permit comparison with the

l}

\
results of Trick et al [1] ﬁnd Nakhla et al [10}, [11] .
|

N
|
'

At
When this problem was solved with the «ame RLS, FCTR

and SCILX but without SCLD, tbg method converged to ¢ = 0.819 x 10."ll

after 24 iterations with llal4 sec execution time. This corresponds

T

A

to an increase of about 15 % in-the execution time due to the omission
ofg SCLD. © Figure 4.5 shows (TB / TF) as a function of iteration

number without SCLD and with SCLD equal to 0.01. For the unscaled

. ’

case, the increase of the execution time during the first few itexations

was not balanced by the reduction during the last iterations resulting

-

in an increase of the average (TB / TF} over that for the-case where

SCLD was used properly. In the absence of any kind of scaling, the

v !

method was not able to convefge{within the same number of iteratioms.
After. 28 iterations, and 150 secs. of exectuion time the cbhjective
function ¢ wgg_reduced to'cnly 0.45 x 1074. It is worth‘hot%nq that
rhen the same problem was s;lved, for comparison, using the conjg;ate

i

J ) .
gradient optimization routine, the algorithm was not able to converge and,

a

after 28 iterations, the objective function reduced only to 0.19 x 10-2 e

vhich is very far from the steady—sﬁa;é\condition. . ’ N

v
¥
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Jl

D

{50Q)

Rl 2 —m—.

=T
(10 pF) (10 pF){ (1.2uH)

X
-1+ x8 L8
| ———t00— ~
A . (25 nH) | Qé:
Cl . x9
(100 pF) |
+ + .
T C2 X. . C3 L9

\

.

’

(a) Class C - Ampl%fier circuit

Jl

= 0.1 sin (27 x 10% )
{

(b) Transistor Model

-a f

= 0.99

]

0.5

T, 38.9 v -
107° (e be_ )

h

38.9 v
10”6 (e b?— 1)
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4
Scaling : ’ —
RLS = 50 .
' FCTR, i=1,2, .., 10 : 1., 1)., 1., 0.1, 0.1, 0., 1.,/ 1., 1., 1.
Pl / : )
SCIX;, 1\=1, 2, ... 10 : 0.5, 0.5, 1., 0.1, 0.1, 0.1, 1., 1., 1., 1,
SGID : 0.01 |
{ ' Itéeration o .Iteration ) Iteration ) \
o -1 -4
, 0 0.138 B 0.307 x 10 16 0.345 x 10
. ! ! - - - -
1| 0.329 9 0.284 x 1071, 17 | 0.114 x 1074
‘ ;
,( -1 . -1, - P -5
: 2 0.973 x 10 10 0.272 x 10 18 0.496 x 10
3 ' omexwl 11 0.262 x 107 19 0.546 x 10°°
4 - 0.532 x 107 12 0.180 x 107~ 20 0.331 x 107
5 | 0.416 %10 13 Q133 x 100 2 - 0,691 x 207
L 6 . 0.338 x 107! 14 0.d63 x 1072 22 0.105 x 10 10
7 0.315 x 10 % 15 o0 §37\10 23 0.234 x 10 12

i
#
-
g
5
i
e
%
5
5

45 ¢ . 1.04048 , -0.304503 , 26.5495 ,
| g 5.0 1.4530 1.41695 -0.288972  28.3779

o
H

. : [
25.5844 , 29.4632 , -0.076572 , -0.062961 , -0.076349 , ,-0.149948

(x »1i=1, 2, ..., 10) + 1.16458

26.8711 28.8556 —o.d79§3o . 0.000141 ~0.076101 -0.098802
Execution time -= 104.73 sec. - | | . s
(TB / TF)average = 48;, $ . 3 \

: NP = 39.5 . : . w / 7
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l.47
) ) ~ ' _
m »
3}
(1) a Without scaling
(SCID = 1)
' (TB/lTF)' = 55 g
av
‘ (IT) A  With scaling
. (SCLD = 0.01)
I 7 . ’7‘
: (TB/TF) = 48%
; .oavs
|
Fay A '
A a : o
fay
-
A .
A A
A A A
A
.
o ° ” ' 4 .
+ — + — 3
5 io 15 20  Iteration
. \

ks

The relation between '

. o w
i
\

for'Class C - amplifier, Example 3.

|
c e
5

+ (TB/TF) vs the iteration number

.

) -

P
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i CHAPTER V. PROGRAMMING : S
) PART A
DC AND TRANSIENT ANALYSIS PI:'{OGRAM, SCAMPER \
L | ( . The transient analysis program SCAMPER, to which the
[ periodic steady-state analysis has been added was writteh by Millar
7 ]
£ ,
‘ : 3 . . |
l j and Blostein [19], [20]. Its main features are accuracy, high speed I
i - .
} ‘and a capability of handling a wide range of branch types. Circuits
r l - ' - * s
! ! of about 350 branches (which is roughly equivalent to a circuit of
4, ! t : .
: 1 20 trans_is'tors) _can be analyzed. . | .
;3

'I‘he analysis starts by generat:.ng the dc solution.

¥ t

~ -

( All f;l:he independent sources are set to .their valuefs at zero time and all | ”
f

the time derivatives are removed fn?m the network equations, (which is
2 ' equivalent to short circuiting all the inductors and open circuiting all I
the capacitof.%) . Then, if required, a transient analysis is caxried

out over a specified time iﬂ‘tterval.

Y v

Ny
Se— Techniques such as high order implicit integration with )

_— —

variable step &ilze, the use of sparse matriceés and the generation of

4

executable mach:me code account for | SCAMPER' 's high speed and accuracy. v

The program is Mitten mainly in B Iv. a

i . . M . R . . . H "
e S 5 R EE . i R B T A DR Bt R S e BT

I PR TN DU 4
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5.1 Acceptable Element Types

LN

"

There are two generall types of branches which are’

~ accepted by SCAMPER.

kS

(i) Sources:* . M
L

For current source

S , I = I8 : e (s.1a) -
¥ [ ~ - J

A,,i g For voltage source

;}. - . ...\ a

I3 ’ -~ E = E(t) -~ - . (5.1b)

; ( where the time erendenf fmc¢ion cL.n be anf( of the follow;ng functions.

Y . ) y

P . ! ( .

2 /7 (1) Constant (dc source). (2) | Sine wave [(magnitude A, starting

, time t, frequency f). (3) Pylse (general tra ifal periodic

—

; -
e source). (4) Tabulated source

'non-periodic source). ’
; ‘ . [ <
[ B { .J
\ : -
T (ii) controlled Branches - ,
! . These are the branches “that can be described by either i
" ~c~ P - s ' ‘ - s .
- a relation between network variables (volta;ge, currxent, etc.), or by a . |
A . -~ T L
relation between’ element values (resistance, etc.) and network variables.
! ‘ ‘ ™~ ,’

- . )
o / |

the general acceptable relations|are: ; -
. | ,

. i - . :
v
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. Through this general representatiorl, types ranging from constant, linear, .

g AT T gy . o vsien ‘ : ' e et b

1 86 ! * ‘
( ( : . 1
xl) = Xl (xz) e.qg. Ih = ,Ib (Va) (5.2a) ’
R “= ’ ' . [ 2 = . . s .‘ w
‘ ) R (xl xz) 3\ v x1 R (Xz) (5.2 .
= G (X,, X 1. = X. .G (X (5}2 |
G = ( ll 2) g ' , I = 1" (XQ) ' . C) \‘
i.e. ﬂ
€= C(%,.X,) Q =, % .C(X) (5.23)
L = L (¥ X)) ) \ F = X .L (xf) (5.2
.\ — '\&

AY i
\ , |

o, '

self-dependent élements up|to cross coupled non~linear elements are’

acceptable. The only restrictions on the type of depen@gy‘ are thlat':
* Y -
dependency is not permitted on non-representable variables such as a
- { ‘
current through a capacitor or a voltage across an inductor, because these

arLe not treated as equation variables. Also'the nonlinearities are

restricted to be of the piece-wise linear form, with the exception of a

-current-or charge-cc:;ntro'lled branch which can nbe of thé exponential type

) I

as well. .
. H
¥
\ v I R
- I
. . . < g

‘5.2 Ordler of Setting the Equations and Vaasié:les

The tableau representation of the network is set in the  -.

’

. ! ,
following oxder. First, the branch Kirchhoff‘'s voltage law equations .

(KVL) , in order of increasing branch number. .. Second, the nodal Kirch- [

-
s T

hoff's current law equations (KCL), in of@er of increasing node number. ’
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Third, the branch constitutive equations (B.C), in order of increas-'
7

ing branch number. - ' . ;

- -, <

.
.

The variables represented in the network equations, U

& s

X, are not the network variables themselves, but the negated differences

between their values at a new point (i) and the last accepted point

(i-1), i.e.

X = Y. . -Y, ' (5.3) *

i

where X 1is the equation variable, and ,Y is the” corresponding network ’ |
variable. o : i t

®

) / . . ,
. The afrangement of variables is in the following

order. First, branch cux;/rent or, charge (I or Q), in order of in-

/
creasing branch nimbeé‘. /Second, branch voltage or flux (V or F), in .
/ .

1

order of increasing bran/’ch number. Third, node voltage (VN), in order

v

!
of increasing node number,

s
»

,
-
.

e SRR AR £

5.3 Solution, Procedureés and Numerical Techniques

-

The transient analysis of the network is done by

first linearizing the branch equations at a point, this being the last

accépted point or a predicted one. The differentiated variables are
£ . -
replaced by a backward difference formula (integration ‘formula) of a -

| ¥
o 3
, | §
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user-specified order k., "The linearized sysfem of equations may take [

e

s the form /

1 JX = E . . ' (5'4) |
3 4 i -

where J is.the Jacobian coefficient matrix, E

is the forcing vector,

»

i and X is the equation variable vector. Equation (5.4)

is solved
; \ : . ( |
using the Gaussian LU ¥fa'ctorizaticm, ’ J
< "0 B
- ’ R , l
' ¢ l
" Jg + LU t
- 1
, \
- \ 4 * l 3
.. L = E |, ~(5.5) |
- ’ \
¢ | ‘ |
‘ followed by backward and forward substitutions. 2 :
l
Thus, substituting forward in .
{
- LY = E . (5.6)
- yields Y, whence, substituting back in
v t a
UX = Y |, (5.7)
- ’ , é
gives X . K
\*‘ \ ) . As the system of equations is set in tableau form, the
Jacobian & rnay~ be highly sparse and of large dimensions. Also, it )
oot ’ . s T
(, \ can be shown that most of the Jacobian entries are sipply + 1 . More-
r ' ) :

RS

B [P | —
. e kL - -

e A o PG R AR S
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.

over, for each mode of analysisa (dc or transient), the same system -
7

of equations, with a fixed sparsity of the Jacobian J, is required

-

to be solved repeatedly with different values of J and E. In oxder

’
.

to derive the most benefit from these properties, a sparse technique

°

e
wag, developed which generates non-looping executable machine instructions f

(code) through Fortran statements. The code is generated twice, once
——t 'Y

for the dc analysis and once for the transient. When this code is -

executed, it performé oenly necessary operations, avoiding any btrivial ! ;
, .
or unnecessary operations (e.g., multiplication and division by or
. ) “t
storage of + 1).

)

The linkage and accountihg vectors used with the

- - \ o

' code generation lare quite large. However, they are overlaid on.other \\\\v'\
vectors, so that no extra storage space has to be specially reseryved for

these vectors. :

"

In the following sections, the main techniques

used in /SCAMPER are reviewed., . o

L4

= ) e, it Kbt VW S e

5.4 Code Generation

There are‘two types of machine instructions used in

’

SCAMPER [19}, | register~to-register (RR) and register-to-core ¢(§k) ‘

'instructions. The required RR instructions are defined in DATA
N ' {

statements, so that they can’be added to the code stream when needed. The

o
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-
3 k]
-

" . . Lo , . / .
RX .instructions consist of an opération code, operand register number,

I i

index register number, base register number and diSplécement'fieldl

. - / ,
The operation code, operand register number and index r@gister number

’

occupy the first half word of the instruction, and are defined in DATA
- statements for every required combination. The index register is used
. \ .
to specify which vector is being operated on, and it contains the address

«of the start of this vector. The base rqgiste?number and the displace-

’

ment field occupy the second half of the instruction word, and define the

operand in the specified vector.  This is done by setting the second y

o

half word to . . ,

8- (L-1) ,

’
’

where I is the subscript value of the operand. ThJ maltiplication by

, . .
8 -is done because vectors are of double précision. In this way vectors }
B \ |

of up to 512 entries ( = 4096'/ 8) can be assessed. To increase the

14

y accessible length of each vector, séme registers (1 through 11) are ';3
loaded by values; 4096. K, where K is the register number. This i
allows vectors of entries up to 6144 to be accessed correctly. ' i

“\.‘/‘/ . \ -

1 . : l 4

Considering equations ‘(5.4) to (5.7) we can see that

the -code string has to consist of four basic sections, each with a specific

function. . .

i

(i) J-code; to fill in the comstant (real) entries of J. g

Alsoc to fill in the integration formula corresponding

¢

. to .the linear reactive elements.

s
- B T SO ST L e P SRV VTR L RS T S T ] o . Lo
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(ii) E-code, to compute the r.h.s. E .of equation (5.3).

< . -
]

(iii) F—code,' to perform a Gaussian LU factorization of
! . ,

-

Jacobiafi J, with complete pivoting to ensure numeri-
- ¢ B B

///////. *&bal stability and high accuracy. :

;S ’

’

(iv) S-code to perform the 'solution with the factorized

’ -

matrix via a forward substitution followed by a back-

ward one. N
- +
L]

7
- In addition to these four main se

gments of the code, .some control istate-

ments are inserted between segments (such as reloading index registers

and transfer 'of control), as well as some constants to be initialized

at the starting locations of the code. ’ T

Y
K

5.5 Sparse Matrix Tecﬂhique

3
. The sparse matrix technique is used in conjunction with

the code‘ﬁéneration. It may seem quite complicated due to the largé:

number of 1inkégé and counting vectors used, but it should be noticed

that this technique is executed only twice, once for the idc analysis

Accordingly, a large portion of the time
] i

that woulé be consumed in generating and updating these vectors is Saved

—

and once for the transient one.

*

due to the execution of the generated code,  This is not the place for

« N

a detailed analysis of this techﬁique, pr the main idea and the des-—

cription of two basic vectors will be given. ’

/ \ ’

] [ PN SR s e e o B as POAGT d, o
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During the setting of the linearized network ‘equations,
. { - s
) two vectors, IC and ISGN, are constructed to link and identify the

-

<

non-zero entries of Jacobian J. . , . -

|

(i) Linkage vector IC (IJ)} IJ ='l, 2, ... etc., 1is a list by

.

rows of the non-zero Jacobian enfry column numbers. The entries for

1 |
v
’
i

‘e

each row, are separa;ed by terminators, so that entries of each row can
/ s

be identified. This vector is effectively a two qimensionJl (1,:1J) ) .

-

veétor, where I represents the rowunumber and J represents the

" « . ! i

—e
h

column number. - ) 3

-
s
N

(ii)° Identity vector ISGN (IJ), IJ =1, 2,™.. . This is a marker

s

Fd . el . " N
. vector for the non-zéro Jacobian entries and corresponds to IC. En- ‘ s
tries which are + 1 or -1 are identified by 0 and - 14
respectively. Non-zero entries other than + 1 are identified by

° + *

_their location in the vector VAL where they are stored. " Note that - f
. € . ' ’

) .;. cet .7
+ 1 aré not stored in VAL. ! - ' ' .

- k-3 S - o
L , - . . ! - P
Using these two basic vectors IC, 'ISGN,. some other e %

~ - -
< -

- 3

linkage and accounting véptors are constructed and updated during the
_ a ’ ‘(- ~ /'//
step of Gaussian LU factorization to facilitate the process of

' A . - RN}

generating the machine code. . )

. ﬂ§;>;chéss of LU factorization is illustrated in i‘-

1
-

|

» 5

Figﬁrk 5.1,- Assume that we have a full matrix as in Fiéﬁre 5.1a.
. ! ) L j .

Also assume that the diagonal elenients have been chosen as pivots. At -

:
1 . - 4

'
13

e
’
t
/

M i
b ¢ - ’ 4 - *
: ‘s L. LY WP PR B R - te .
boud s tatdao el s ,ﬂ.,‘mgmmwmm@wamm ) e 'L.,,«!)xul o o
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. . of these paths are marked by pointers.

¢

b N
v ” 3 )

the beginning, the whole matrix is linked as in Figure 5.1b} As the

- t L1

split into three

¢
I3

process of factorization proceeds the linkage is

different paths: (i) the upper trapezoidal, ' (ii) the lower triangular,
and, ' (iii)l the unreduced matrix &Fig‘u:fé 5. ic).

v, -

The start and the end
At the end of the ‘LU factori-’

H

’
4

.zation both the upper U and the lower L 1triangular matrices are

» .

linked and identified. In general, the matrix ’i's sparse and the pivot

' - - .
.

elements may not be the diagonals, so that the linkage paths will be -

S - —_

-

*  overlapped, but the same principle Yemains. .. .

" - s
4 * .

s
a

[

I ' .
( ’ , 5.6, 'Pivoting Procedure A
. . l

3 s

The .pivoting procdss is almost a complete pivoting,

3 t .

T .o . ty N o . N - o . 1, .
. except for some " minor constraints which, from experience [21], are

! 14

M ’ I} ' - ' »
! . L found .to give better numerical stability\. The algorithm used starts

‘ ©, by eliminating the rows corresponding to the B.C. equations s, then the
\ t ’ - \ i : : . . * ’ o
KVL equations and the KCL (if possible). Also the choice of the
I - R > ' } R , * > . i .
pivot column '(if possible) 4is forced not to.__'cprftespopd firgt to the node

v .

<

voltage variables. During' each stép of ‘the sfactorization, the next

.
. e . .
.

pivot row is chosen ’t6 avoid a search procedure ‘.f . a-
. !

-
1

'
. . v
-

Taking into consideration the above remarks the following
. . ‘ S

b

is a review of the pivoting algorithm. e ' C

v

e ' v -
PRI
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* ! (a) Original matrix. : (b) Original linkage of the Jacobian J. |
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, Upper Trapezoidal Path |
~
N » :
- , S !
\ POINTR :
. ', POINTR 2 S dp—ta—d—<ca2\ \
A -
Lower tri- POINTR 3
: .o ' ' angular —€—N—e<—¥—e—X l
' path / . -9
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- - . . ¢ - ¢
. tion linkage. X
3 ) ' ) o
>k- a ! [N ¢ 3
L] - [ :(
- a . ] . ? ,
- entry -
a . P ® . ) s ;
— ’ m pivot éntry ‘ , o ‘ . }
» : ' / !
1 . , !
* | P terminator ‘ ‘ ) ' K
' { '
-, ) +  direction of POINTR'2
, linkage path ,
3 . .
- ) POINTR 3
. ' ) (@) The final stage of factoriza- -
’ } - . tion 1linkage. ¢
I .
(,, i ) '_ Figure 5.1. The process of updating the linkage paths
” . - ¢ , '
.7 v during the LU Factorization. - v
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' e

(1) Set an upéerbound KREF on the mumber of entries in a row. .

i

.
f -~

‘to be‘accépted as a plvot row. (At the start, this limit is set !
e . .

< 3

during the construction of the linkage vectors). This acceptanée n

N -

Y

limit might be modified at any step.

. . . ,
(2) During .each subsequent step of factorization, compare the
. i “

1

.number of entries 6f each row of the unreduced matrix with XREF. If

a row of entries equal to KREF or less is found, terminate the search.
S T ’

"‘ » 8 o
If this eondition is not satisfied after a complete scan choose the yow

s

\ ' N ’
with the smallest number of entries as the pivot row and reset KREF.

i
+ ¢

.
v

(3) From the selected row, choose the pivot column

~

as followsg—

+ i ~
| . -

N &

C (@) If the 'firxst entry is + 1 (corresponding - i
' to ISGN (+). = 0, -1), pick it. ]
(i1) If not, pick the first unit magnitude ( + 1) . .

. § N y ,
before the entries porxxesponding to the node

voltage’ variables.
; N ‘)
- o

‘ (iii) If none, choose the largest entry which is {
T L . -60, .
: greater than a certain lower limit. (10 ).
! i
1‘“ . . ¢
| (iv) If none; choose any entry of unit magnitude ‘Nv .

' had
§ ¢

(+1) corresponding to & nodé v::;ltagé"° . -

- . ' v

o . variable. - T ‘

1

o
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« . As soon as a ?01nt is chosen, a step of factorization

\ (4 - r
9 | R

3 i
is carried out: (1) proces/lng the entries of the coefficient . }
Jacobian vector VAL, (2)Y generating the ﬁecessary machine instruc- ' ‘

tions for this step of ctorization, (3) updating the 1inkage and ‘_* %

‘ 4/

accounting wvectors.
1 f 5

n order to ensure numerical stability and |
resentative Jacobian entries are chosen to correspond .

.o » . Y v . - -

to/;he worst case (e.g., the coeff1c1ent of an exponentlal branch lS*

accuracy’ the

!

set to zero).

- ’

N . g - '

/

7.7 " Numerical \>§méiderations . S /

\e

i - .

‘ . ’ A varialb]te x ='x (t) ’ can;,in ge-nera.lf,' b;a represe/x;téd
by a polynomial aviné aé infi#ite ﬁh&ber of tgrms.ﬂ Tracticalfcén—
”s;derations limit the ;umbeé of texms k £o 1 £k<6 [28).. The
- ) . N . : c
' differentiated variable x is replaged by the slope of th;s bbly— SR
) nomial at thé new time point, which ig ?omputed using a “cérfector? '

AR ot A

f

formula, while the error estimation is done using a ‘"predictor" b

- formula ' [19].° fhe error introduced by this "truncation" of the
. . ’ A » )

polynomial is called the trincation -error. . Moréover, when the nonh-

B}

. ' ' linear equations'are replaced at a given time point by a lineér mpdel,

..~ the error introduced by this linearizatidn is called the nonlinear
. . ) e N s - -
erroxr>™ Accordingly, there are two types of error.control, the trunca- :

“

4 tion error control and the nonlinear erroy cgntrol.  The step size is .o

/ o

chosen to limit the largest error to be less than or equal to a certain

- -

LY

user-specified limit.

+

- ot
anr s . ) bt T
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5

‘Trancation

[ The predictor-corrector algorithm replaces the dif-

* ferentiated yvariable x by the slope of the truncated polynomial of

N , v o
order k at the/L new time point tn‘ . The assocjated local trunca-

=

e

I

tion error JEt}: is defined by [i8] .

e

[

. o . R
o h (xn true ~ *n approx) =, Etr (5.8)

. +

" el

+ 0 (h’T+2) ),

Wheré x " * denotes the value yielded by the corrector formula.
‘ n approx :
Neglecting the term .0 (h

) it can be proved [18] that

, h
S R B
o ] tr h n n'
! t
. N ‘ \ o
where* h. = t -t h = t -t - Py i ot
n + £ k-1 n n-1 ' dnd x isa predlcted'
value of x_ . .
n ] ’ .
o ¥ 5
5.7.2 - Nonlinear Error | ” . ' y
' ' 1
T K 1%
"This error is considered only for the exponential type . :
of nonlk nea}:ity. If the equation for, say, an exponential capacitor ;
« ¢ *
i g*= a(e| -1 , ) .
f

{
+
; |

/

EX= 1T
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5.7.3 Step Size %ontrol ‘ -
’ f

'

Step size h, is determined according to two criteria:
t

1
o

the truncation error criterion (with a lower limit h = HO.), and the

nonlinear error criterion (with a lower limit h = HO0 where HOO is,

related to HO and k) .

Let us consider

X, the normalized maximum truncation error,
, A . b
Y , the normalized maximum nonlinear error,
hn p the last (accepted) step size,
! ¢
hﬂ+1 ’ is the new step size. 4

<&
L4

In SCAMPER, the step size is chosen such that the maximum error is

less than or equal to half a user—spec'ifiﬂed error.

3

Accordingly, the step size determined by the truncation error criterion

is .

hn+l n X

\ .

an&“that determined by the nonlinear error criterion is

hn+1 . n" Y . B

. *= 1_). . 2 N
E 5 ) (5.10)

Y ——
'

a5

o S AR b $LE B

(5.11) ,

(5,12)
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The smaller of hn+ and h is taken as the new

1 n+l

step size. There are some other constraints on the step size such

s (1 iding wi , <10, 0.1 >)
as (1) avoiding wide change of hnew / ho1 {say , 0.1 > )

d

'

to achieve better numerical stability ; (2) choosing hnew to yield

a point just after the cusp change of° independent sources ; (3) choos-
s
ing hnew to yield points at specified times to ofitput resylts at these
I
points. : v '

»

e
'
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PART B

2
AL}

.

STEADY-STATE ANALYSIS ROUTINE

5.8 Code Generation for the Adjoint System

r

° R ]

One of the main reasons for the superiority of the

dc and transient anaiysis algorithms used in the program SCAMPER is

the successful marriage between a lﬁghly sophisticated sparse matrix
. .
technique and a compiler-like routine for generating machine instruction

o

{code) strings. Once the code is 'generated it is used repeatedly in

»

When executed, this

code does anly the necessary operations, avoiding any trivial work such

as multiplication or division by unity or the storage thereof. " since

" the steady~state analysis method considered here involves the proposed

o
3

gradient ralgofithm 3.1, the ddjoint system has to be integratédd as well
~ Q l -

as the original one. To achieve a perfofmance consistent wéith that of

SCAMPER

’

generate anotheyr code for integrating the adjoint system in an efficient

it was necessary to modify the compiler-like routine to

)

6
way, exploiting the common properties of both systems.
. ’ CoenF
. ) . .
2 ' Let us first consider the actual representation of

[y

the original system. The linearized form of the network relations is

/ °

- J X = E ' (5.13)

Substituting the definitions given.in ,Part A of this chapter, this

i
4

becomes

«

'
A e Ny \éfwm«ﬁw,mmﬁtg&ﬁgw“‘h ba e e P
" B PRI 4 s X - - -

4
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(I, Q) (v, F) VN
P e ey /___A.———-ng —N— .
- ’ - | T, [~ y
Alg. (+ 1) | Alg. (+ ﬂah |
KVL D (n) | | ) (I, Q) g
P (2, n | ‘
. ‘ | |
NS W SR (o S i |
*| alg.+ 1 | ‘s I
‘ KCL D (n) ! o v, F)
b (5 mn | ¢ = Eg
______ __.'.___—-__..__._..]——-—.___
{ |
‘, BC Alg. !Alg. y\” : 0 w |
|
L u‘ : || o - =) @

3

where D (+) symbolizes the entries of a block of the Jacobian J which

™  are differentiated, while ¥ and. n represent, respéct\ively, linear and
| . ) 1 a
&‘1 nonlinear terms. . , N )

[ X3

LU factorization followed by forward and backward substitution. The

pivoting procedure [19] forces the pivot row to be taken in the follow-—
7 - s

e «

& order: first, rows corresponding to the branch,constitutive relations,

second KVL, third the XCL (if possible). " Also, for the pi‘?rotf columns,’

those corresponding to the node voltage Lariables VN are forced td be

the last (if possible) . e |

v

Coansider now the adjoint systemi;l

“
7 13

C or |

-

H 4

) B - e T PR . .

This system of linearized efuations is solﬂd by uging Gaussian

. v eI —o
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KVL KCL " BC
: ol N e — ey l_
- | Alg- (+ 1) 1 ] 1
|
S ®1.9 | @ | | Al A,
- D (&_I n) '
- — ‘ — l S b
z B At st
Alg.(+ 1) | |
(V,F) :D (n) : Alg. | =g :
&_(’i‘—_i_“)___ll.___,‘___Jr______d .
|
(v,.N) Alg.(+ 1) { 0 ) | 0 }\bc
! ! ‘ S

hY

This adjoint systen may‘ be solved using procedures similar {
4
to those for the original one, e.q., by using Geilssian LU factorization,

" . v and forward and backward substitution. The additional reguirements for 5
generating a solution code are: A J
(i) to manipulate"“the transposition of the matrix in such a way as
4o - o

toj the séme J-code (which fills in th% linear entries of the Jacobian) ‘

fox both the original and the adjoint system;

(ii) to make use of the relation between the two systems to s?melify

the procedure for generating the E-code (which computes the r.h.s.
w h A\

vector Eb) ;

. (diil) to modify the pivpt selection algorithm in gzder-to achieve, re-

quirements similar to those imposed on the pivoting order of the original \

.

system of equations, and also to use tht same routine whidm generates
‘ /

&
the F- Lnd S— codes for both systems.

'
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¢
The way in which these requirements were satisfied is

¢

outlij'l'eQ in the following sections.

5.8.1 Transposition of the Jacobian

by three vectors: ' N

(i)

A\

(ii)

(iii)

matrix.

s

»
As discugsed in Part A, the Jacobian is mainly described
i

kS x

-

VAL, the coefficient Jacobian vector which holds

a

the real valLles of J (not including + 1) ;

’

IC, which links the whole matrix by row in order

of increasing column number, with rows identified

A . .

by terminator entries ;

-

ISGN, the identity vec‘tﬁo‘r, which describes the

type of entries located by IC (real, + 1).

A typical sketch of these vectors is shown in Flgur§5 .2 fck\é 9 x 9/

N¢

-
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' ' | ' .

Figure 5.2. Typical representation of some entries :

of vectors IC, ISGN A6 and VAL. .

H

]

’ “ T Since the execution of the J-code fills in the linear
.entries of VA# (with the nonlinear entriés to be filled via Fortran g
‘ statements), henge, if IC and ISGN are rearranged in such a way as -/
to keep the'ofde} of VAL unchanged, the J-code "’can serve both the ' ) .

/ original and the adjoir'xt system. This is achieved by means of the /

following steps : T o o
: /

(i} Count  the number of entries in each row of the ..
. - _ "

adjoint system using IC ;

(ii) use the above counting vector to set the termina-

tors of each row ;

: ' .
{iii) _scan the lilrkage vactor IC to fill the entries
(‘ of each row of the corresponding linkage vector

/ -
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-~ / i !
- .
ICJ in order of increasing column number and,
/ /
at the same time, for each entry of IC £ill
B in the corresponding i&entity vector ISGNJ,
i.e., if IC (NL) = ICJ (NLJ), hence take
' ISGN (ML) - ISGNJ (NLJ).
O 5 ‘
RS In the actual program, not only ICJ and ISGNJ art,

constructed, but the other linkage and counting vectors required for the

LU factorization are generated simﬁlfaneously. _ .

R ]

5.8.2 E-Code Generation

3
i
/

For the original system, the equation variables are taken

\ S
as the (negated) differences between the current network variables x

I

and the last accepted solution xn—i' i.e., Ax = xn-l - xn . Furthex—
'] ! -
more, the differentiated variable xﬁ is replaced by an integration ~
" , ]
formula (polynomial) of order k, 1<k <6 , - -
3

. ’ . ‘ }

» X = C. Ax+BDF,, - . ‘ {5.15)

n 0 . /

! Y X ‘1/. ; I
where A x = x and BDF is tﬁe explicit part of X (backward

xn--l -
difference formula) which depends on the last .k differences as well as.

on the step sizes. The term, BéF will be added to the xr.h.s of the

®

equation. ‘ o

’ . - l
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-Now, for the adjoint system a general form of the equa- /
- . 2 ' * ’ } ° - - ! 1'/( ' '( ’ ‘i
tion is - - o . ‘ ;
H s ‘
/ 1

If we use the difference A A as variable, A X = A - A '

1

. W

|

>

”

+

b~

=2

>l e

.

i

(o]

Py

5,
. b )

- 2
T T b e A A e

old new /
" equation (5.16) takes the form S
« : - ' ce
. 7 v PR
- e f . 'i: t . ' . :: 4 - ; . ' 4 - .
, . ; } oagt A F ] by Cy & A ¥ alf . b, BOF, (5.17)
. -~ % . ’

.

¢ ’
'

-. . Equation (5.17) is used to compute the r.h.s. entries of equation (5.14)

“ -

& - N corresponding to the (I, Q) and (V, F) rows, while for the eqqat‘ions

corresponding to VN the corresponding entries are set to zero.  Ther .
0 \ . : /
&

g special. functional structure of the/ Jacobian is exploited to sg,gnificantly

reduce the complexity of the E-code generator. . ~ ¥ i

'

o ( .

w

5.8%3 F- and S-Code Generation and Pivoting :

t

'
r

To formulate the Gaussian LU factorization, it was . |
. ’ ! ;
decided t&‘use a pivoting procedure similar to that used in the forward ‘

— /

integration. - 'Thus, fLr the adjoint system, the rows corresanding to

'

node voltages VN and the columns correspondirng to the KCI variables , .
are forced to be the last (if possible). This has been achieved by
modifying the pivotipng algorithm in such a way ;w:hat it can handle both

4

+ E
( systems, the original and its adjoint. By doing this, one routine :

P Rt thn i LI
i e
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. i . * ., ) . .
, SGEN is used for generating the F- ‘and S~ codes of the original
. ’ system and its adjoiﬁt as weil. I " : - °

%
\ e ' 4
.

P

° ¢

° In summary, the origigal Jacobian J is transposed by
- ~ * .
chnging the linkage and the identity vectors .IC, ISGN' in such a way

;

’

as to keep the c'oeffic'i_ent Jacobian vector VAL unchanéed. Thys, the |

©  J-code generated for the original system sc-:rves'w the adjoint systém as J .

{

~well. The functional structire of the Jacobian is utilized to simplify -

the E-code generating routide.. The vpivot’ing proc¢edure has been modi-

v

fied so that it can handle both the origiﬁal and the adjoint system in
.ot ’
e , L
4

a similar manner and so that the same routine for generating the F-
4

and S-codes can be used for both systems. -

b
JFI
.
e °
o
T
~
AN
1
\
TR SR T T
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5.9  Data. Management ’ . - “ , ;

'

Dealing with the integration of two, different s{stems

)

requires some kind of data management «storing, retrieving and process-

\ v .

v et o e

'

ing). Some of these data are
" {
, . : é
. o . (1) the necessary values of the nonlinear entries of the
£ / . Jacobian J as well as the corresponding step size (or the time) at Y ;

>

different time points over one full period ; -~

9 .
' .
* -

(ii) ©  the two fmachine instruction strings (codes) Benerated

i
o

for solving both the original and the adj_o:fnt systems ;

R . N ¢
a

2ia ,
% ,
M%H B
oM - -
5%1?1 . ! v .
barte, *
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1

L

(i1i)  vector of (1/,, 1/, + € (0), L (0))y in the g ,

-3

7

order of reactive branch number, wher% C (0) 'and L:! (0) are the

values of the nonlinear capacitive and’inductive elements respec-

’

tively at the starting time point t0 . Even though these values

can be retrieved from the data in item (i), it is found more
. ‘o / .
efficient to have this vector separately and arranged in a particular
: - A
L |

way. ; ;
7 .

W%
i}

(iv) the initial condition vector of the reactive variables

4, as well as the solution of the network variables at the beginning

of the first steady-state iteration. .

«

. . \ .
the case for data item (i). The nonlinear entries and the s#ep sizes

3

. . . ’ v i
Items (ii) to (iv) are each treated as one unit - §
(sgquential) and their manipulation is a trivial matter. This is not g
— M - » . #

' {

i

}

are evaluated at a series,of time points over one full period during

«
-

the integratidn of the original system. For the integration of ‘the

- v

adjoint system, this data has te be retrieved in the opposite order and,

. -

| e ’ . . ' .
hence, care must be taken to minimize both storage and the time for !

retrieving data from disk. We found it most efficient to défine a
v, “

temporary storage vector ' AREA with suitable pointers and linkage vec-

-

- 3
tors to be used with a particular scheme for handling this problem.

The size of AREA ‘was chosen large enopgh to ‘ensure that in the worst o

* e
case it can hold data of at least three time points.

p
* By worst case we mean the largest problem that can be solved by the
program (380 branches) with most of the brahches nonlinear.

t

1
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Suppose that the temporary storage “vector AREA haé

3
g ' v ’

NT entrids and the number of entrieg-per time péint is NETP. (the i
0 ot

"number of nonlinear entrieszplus one for step size).” Hence, the
. ' - ' !
maximum number of time poihts that can be held in AREA is .
1 . s . k -
NTPA = NT/NETP (rounded to the least integer number). Since inter-
—~ : . . iv4

3
polation petween time points may be required for-computing thé Jacobian

¥

. J, it is necessary to keep the data of the last time point in AREA

befo#e reloading it f;bm-disk with ‘a new record. Accordingly, the

’
[

"dyhamic" size of AREA¢r is (NTPA~1l) time points. ‘THat ‘means the’

4 b /
‘transfer of data from and into disk«tak%@'place every (NTPA-l) points.

! 1 ' . .

If the Hata is retJieved from disk more than once, and because we have

.

_to keep the last point of the previous record, the stérting‘(and the

v 3

end) .location of the newly retrieved record will move in a loop. A
- Fl L
d g A ¢ ' I
sketch of this situation is giverr in Figure 5.3. This process is con- -
o\ ' -

trolled by defining pointers that change in a closed loop. '

- »
.
) [

R - : /
- . o . . ¢ -
Ve ’ ’

. .
. 4 E}

5.10 Some Aspects of the Béckward Integration of the Adjoint System -

~

Figure 5.4 is a sketch of the adjoint system inJeératiop
loop. -’ It represents the integration of equation 13.19) over a period -

- in the opposite ,order .to that of integrating the original system 'given

[y

by equation (3.5). Requirements for the adjoint system integration
are quite different from those for the original syétem.' .
. [ . i /
- . ,
A ' . -
- W mﬁ"“‘\
/
" ’ r
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last &point

4

N NN A L e

i 2 3 4 5 . NTPA’

- (a) The &£irxst rqﬁyrd.

/

last point

/ | I

BN NI 07777200

1 3 4 5 7 o .~ NTP
I f |

2
Start N— .

! (b)‘ The second record (first retrieved from disk).
N e

last point |
VLA W RN A
| ] R |

Lg

End Start

(c) A generai record. ' r.
‘4
\ T77A L e C
L , - m New data.‘ ‘ 3

o1d point from the previous recoxd.

——— Sequence of loading.

¢
1

"’

Figure 5.3.  Sketch !to show different cases ,of't‘:he<
temporary storage Vector ARE;A. .
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(i) Forfthe original 'system the required data are computed

St/each step usiny the currently available values of the variables,

while for the adjoint system thesé data already exist but may nead

)

some manipulation (retrieval, interpolation). i

{ii) ‘The number of differentiated yariables of the adjoint

i N

i

system Az may‘be different from that of the original system. Accord-
ingly, the truncation error computation ag well as setting the initial

conditions for both systems will be ,different. :
N \ R
- i T
(iii) - In-the original.system, there are two error criteria to

be applied : the truncation and nonlinear error criteria. For the

F
‘

adjoint system the only criterion is the truncation error contfol since

Q

_ the system is’linear (time varying if the original system is nonlinear).
1

(iv) * For the original system the step size is determined by

a

the error conttol as well as the "“cusp" changes (if anyf¥of the in-
dependent sources, while for the adjoint the step sizeé is determined by’ )

the error control as well as by the interpolatioﬁ process.
: . / . T i

L |

5.10.1 Settiné;the Initial Conditions of the Adjointfsystem

J

! ,
{ i Lo

As the initial conditions of the algebraic variables

. N a3

can be éhosen arbitrarily we simply put Al (T) =0 . The initial

2 .

l”

.conditions of the differentiated variables A_ (T), rare defined by

2
equation (3.17), with the detailed equations for the different types of

-

e e A ot SRR i 0, e s, o X,

ey




N s
 BAP et Tt e SR L YN RPN

.

Tl U et ¢ o bind &

\ 1
]
‘ 112
]
’ / .o
( initialize, - . 1
Constants, .
" pointers
; T
3 -t
-1
Set TInitial
o Conditiong,
Update ’
Pointers
e -« )
" V 1
H h X , . "‘“. “
! - Load
[ ' Lt . ’ AREA
\ Q
"y "z
* Load
Jacobiarme
. » j, ' ’
{ . Solve
. * Reduce )
, ] - Step Size'’ !
Compute J
New Step Siz Compute 4 , [ ;
' Truncation’ .
4 Error ° .
N - § i
. i
e . N ) - :
. 4
» : "? F’ .

N o

; { N v Q‘
Figure 5.4. Sketch of t{,hé Integration loop of the Adjoint 5y§tem.
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" Algorithm 5.1 J '

13

feaétive %lements given by equatibns (3.22a, b, ¢, 4). éorresponding

i
to each inductiye branch there is only one differentiated variable.

v

In the case‘of capacitive branches we are faced with two problems: (1)

1

corresponding to each branch there may be)two differentiated va%iables

(one for each node); (2) there may be loops of only capacitors and/or

1

independent voltage sources and/or khort circuit branches. In oxrder

to overcome the second problem an algorithm was formed to ident%fy such
{

loops and to ignore one of the capacitors in such a loop-in computing

!
the initial conditions. To get around the firLt problem an algorithm

-

S .
was designed truct linkage vectors which are used to set the

initial conditi S in the correct and proper way. The outline of this

! I
.

al

°

1. Count the number of trees that consist of only capacitors

- . 1
and/or indepéndent voltage sources and/or short circuits.

| '
2. Count the number of capacitors connected to each node in

ws

these trees. ’

'

v

3. ' If there is a tree which contains the ground node (if the
12 .7

ground node is specified) consider it to be the firs£

- tree and consider the ground node the first node in. this . -
tree. For any other tree consider the first node to be
- - ! ~ .
the one which connects the largest number of capacitors. (’4“

%
!
i
J
{
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. &7 3
: ] ' . :
¥ o , - k
} s ’ ! o '=
A 3 Put the variable corresponding to this node equal to ;
0 ¥ P .
’ zero and proceed. - : %
- -
B 4 ;
. 4. Following from the previous node NI choose the next .
node NJ separated from NI by one branch, Cj and . %
4" set the initial condition of this node, kNI according 3
& :
. to the relation ?
) | |
u, i
= 4+ (= . (0 = v, (T) £ 2 5.18
Mg, T B g vy (0 = v (@A) (5.18)
~ ? J .
. C
. 5.10.2 * Truncation Error Computation
! : The computation of the truncation error of variables re-
, lated to inductive branches is dong in a similar manner to that for the S
original_ system. Corresponding“to each capacitive branch, the difference

between the two node variables is defined and, the initial conditions are

“

= set such that this'difference is equal to (A v0 / C). Since the , :

' « capacitors in the circuit mayidiffer by orders of magnitude, the: control '
.0of the absolute valués of'the variables is meaningless.” Hence, the con- %

i

: trol is carried out on the differences corresponding to each capacitive

» L)
L S

branch. Consider a capacitow connected between two nodes NI and N2.

N
N~
e

R S Define a variahbhle , / ’

- ’ z = Aa -2 , (5.19) |

/

4

'
¢
- —

. .
2 ; . ¢
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\
Hence } f
= i =3
s [ [ 4 2 - f‘d
R (5.20) N
If the differentiated variable =z L 1s replaced by an integration K
' formula (polynomial) of order k, the predicted value willl be’ L
| ‘fé
» i ;
P _ P _ 4P .
z T M2 : , (5.21) L

'

Accordingly, the truncation error control of the differences correspond-

ing to each capacitive element is done according to equations (5.19)
\' *

and (5.21) ije., on the difference z - zp ] , and not on l ANl —°A§1 I

. or | ANZ - l§2 | - » . -

Q@
3
5.10.3 Interpolation and Step Size Control

v

- ¥

Suppose the largest normalized trun¢ation error computed

/

at a time point is- X . ¢If the last step size is hn' the new step size

h6+1 is chosen to produce half the normalized truncation error (the,
. J
samg as for the original system integration) i.e., ) : o ,
- :~ 1 . ’ )
: 0.5, k+l d

The step size is subject to other restrictions such as the ratio

/h

n+l n

° having to be within certain limits <'€l, 22> (say °<10, 0.1>). Also,

. if the last point was rejected the step size is not allowed to increase.

== i - ‘ ' &,

i
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Another restriction is set by the interpolation between points and by

the end-of-record condition as will be shown next.

<

, y
For each time point the step size hn is stored along i :
t

-

with the nonlinear entries, Considering the backward integration, |

suppose the precomputed step size is H, and IP defines the locatio

]

of the last accepted point, where the time difference between IP and

the preceding point is DHl1 as shown below. A pointer J

P
J+1 JpP J o I+l Ip I
. * — Ly % X——8. X :
DH2 ' EH].
‘ H
1s moved starting from va}ue I and scanning step sizes h1+l' hI+2' XL

s
etc., accumulating a step h

Ty

' h

) - DH1

o4
(hy **hrp By-1

The actumulation of h- termindtes when

»h + >H .
h hJ

’

A new point JP will be taken between (or coincident with) points J

and J+1. If Jp is within a certain limit (say I H-h l/YH < 0,01)

I of,pointﬁ J or J+1, the nearest point will be taken as the new point.
|

If the new point is‘accepted, pointers will be reset to I = J, o

IP = J» and DH1 DH2. . ’ :

] - .- vy . , I i U U R PN Wi -~ .

P

S
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For the ‘special case when the last accepted point is °

equal to or just before the last point I of the temporary stdrage

vector AREA, and

LS

h=hI-DHl<H,

o

there are two possibilities:

-

0
(1) if h > HO, where HO is a lowest 1imit on the step size,

H will beset to H=h and IP to I ;

-

(2) if h < HO, this means that the last point I in AREA

precedes any new acceptable point. In this case newﬁdata will be

)
—

retrieved from disk im place of the previous data, except for the last

point T. Pointer IP will be set to I and DHl = DH1 ~ hI_

'

1°

The process of interpolation will then continue normally. )

_ It should be mentioned that we use a Iinear interpola-
tion process. For example, 'if a point JP is chosen betwéen two

- <

points J and J+1 with corresponding values XJ -and XJ+1 respec~-" ,
tively, the value corresponding to JP, XJP is givén by o
Xp = %5 +’D_§§V(XJ+1 N ;(J) | o j k
, . AN - !
' - | H
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5:11  Resetting the Initial Conditions of the priginal System

- 2

| - P The values of the differentiated variables of the

original system corresponding to the reactive elements, before and

after the call of the optimization routine, may differ considerably.
/
Due to the nonlinearity of the network, the integration procedure may

fail completely to converge at .the first step of integration if there

M t

To avoid this problem, the solutionh may pro-

¢

are such big changes.

ceed as follows. -

-
o

»

Corresponding to each reactive element an auxiliary

source is added:  an independent voltage source E_  in series with a

c -~
capacitive branch and an independent current source J, in pa%allel ,jk

with an inductive branch. Suppose the new value of an initial condi-

value is x (in our ;case the old value is

old

/ .o

, . ,
starting ‘point of the first steady-state itera-
A9

previcus value satisfies the system equations,

tion is x and an old
new

that corresponding to the

tﬁon). Assume that this

at that point is available (or at
. .

+ and that the so}htion vector Vold

least the variables’corresponding to the nonlinear elements). -We set
N : , / .

/ the value of the corresponding source X at the starting point tO R
2 .
to be . C R
N t ~ »
F X, (&) = %184 7 *new

Q e N " ' N ’ \
. ) -
and at tO + 8t to be JEr R

3
’ ‘
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X (té + 6t) = 0, as shown below, where &t . ‘ Q
- X
’ s
Y
L x -
¢ old *hew)
- -——-—J
0 ,
t t.  + 4t
6] Q § °
' |
t is choserr small, relative tosthe period of integr Howevér, the
i . |

to X . As a result, the terminal v

iable, x of each reactive
, new -

rce i =
urce) start with x xold at ;

near t =t + §t. In this way, the

element (including the auxiliary

t =.t0‘ and apprqaches X 0

which satisfy the'nonlinear error criteria .and which can then change -~ I

-

) to the newinitial conditions xne&/,in several steps within the in-

-~ 5

- / o

t + 6t .
‘te al from 0 to to | t

R N

R e b F Ny
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CHAPTER VI |
. ) yan g ) -

CONCLUSIONS AND RECOMMENDATIONS ¢

q%%g
N 7
The gradient method for computing the periodic steady-, !

state response of nonlinear networks has been successfully imblemented
with the dc and transient analysis program SCAMPER which can be

used to‘analyzé large networks by virtue of its being based on the

¢
‘

. b Ve s . . . .
sparse tableau formulation of network equations. This periodic re-

sponse solver has been tested with several circuits including those

whiFh were used by others working‘on this problem, in particular, ﬁakhla

~

f and Branin [lO]Q {11] who first proposed the gradient method but used
the state variable approach to solye the network equations, which is

" only practical for small systems.

-

'A by product of the derivation of the equations for com-'

computing the gradient vector was the proéf that- they are valid for

g -
circuits having nonlinear elements involving not only single {[6] but

- also double dependencies. This has been verified for several examples.
[Appendix II]. ‘ o
. , ‘

As predicted, the' time per iteration never exceeded 'twice

-

the time for one forward integration over one periLd. The rate of
4

convergence depends very much on the characteristics of the optimization

7~ . ) . : . o N
routine, the scaling of thg variables and the associated gradients, and

on the choice of the starting time ¢

/
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& ,
y the authors of SCAMPER

¢

The high standards se
were adhered to in coding the gradient algorithm. Thus, the setting

up and solution of the adjéint system of equations is also achieved

T

by a routine which genherates execntable machine instructions, and which

was designed to exploit features common to both the original and the ad-
/

-
’

joint systems. / Furthermore a large number of the subroutings used in
N - / ! / y
the integratipn are common to both systems.
) /

/

Several important and potentially fruitful areas of

\
investigation present themselves as natural extensions of the present

work. Variouswimprovements that can be made in the existing program are

also apparent. These are discussed below in-an arbitrary order.

LS ‘

(L) To reduce the computation time, the error contrsl should be mogiﬁf
. ‘ ! Ve _f’f
fied. Assume a user supplies an error limit Emax which, correspond-
/) ! rd
-

inglyJ causes the regults to be accurate to, say, n digits. fbd}ing

s
S

. . ;
the first few iterations lower accuracy may be satisfactory, nce the
] = { fi . .
error limit can be larger which, in turn, causes a red ion of the in~

‘tegration time. Then, as the solution converges to the steady-state °*

"

.

2
v

condition, the erxror limit can be reduced in steps to the user-specified

-

limit. If this would be done, there y9u1d be %o need for the extra
N ’ control imposed on the ddjoint system initial conditioné for changing

- the accuracy of computation.

i

t

.

e

{2) The initial conditions from which the steady-state analysis
' ;

dc starts are detexrmined by integrating the system equations up to a

L

' \ r

i e R T T RS I Clgadiananit
DR i Rt I
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. -specified time point t, - In some cases it may be more advantageous

to start the analysis with a set of user~defined initial conditions.

Work on this feature is now in progress.

-

(3) A linear interpolation process is used for computing the Jacobian
| of the adjoint system. According to the tested problems, this process
works quite well, but cases may be\éncounteréd where a higher order of

interpolation (2nd, 3rxd, ... etc.) may be necessary.

v (4) In Chapter IV some comments are made. concerning the scdaling

. ‘ .
problem in the, light of our admittedly limited experience with the

-

program. Further work is needed to achieve a more systematic scheme

(‘ for using the scaling facilities that are made available to the user.

/ : ”

P

(5) - Considerable work remains to be done on the problem of the de-
o sign of an efficient function minimization routine. Although the

variable metric roltine was more successful in solving the test problems

'

/ 3 3 . ’
than the conjugate gradients one, its initial convergence was, neverthe-

less, quite slow in some cases. Moreover, the variable metric ° ’

'
€

algorithm will present storage problems when large net#qus are tackled.

i

. ‘ (6) The present investigation was concerned yith éhé periodic steady-
f state analysis with periodic‘lnﬁut (nonautonomous). The starting time
’ tO' of the anai;sis wés regarded af a constant, in fac;,'the gradiegt
depends on the choice of the]
/ o
.d[‘ B vergence‘critgria of the gradient method depends on that choice. In

'starting point and, accordingly, the con~

—
e

AL arldcinionid B>
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other words, by letting the stérting point t change, a point can

o]
ge found at which the computed gradient yield Bet£er convergence [11].

To dp so, we redefine the object}vé fuqction and the varjiable space as

o as a variable, i.e., ’ ‘
/ ’ ) ’

well as the gradient to include ¢t

'

P = ¢ (X0 , to) .

Hence the gradient.with respect to (XO, tO) will be

By passing the objective function 9, gradient G and the variables

(xo, tof to the optimization routine not only the variables XO are

L
a1

updated but also to

is updated towards an optimal" point. With I
\ . o
this modification the gradient method is expected to give better resulfé.

Also, ;n extension of the method to the oscillatory (autonomous) case

can be achieved with little effort, especially after including optimi~- 1

v, -

zation of the starting point. “
b ’ / ’ Ve
L

?
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3 APPENDIX T

’

- - ACCEPTABILITY OF DOUBLE DEPENDENCY REACTIVE FLEMENT

- To show that the term in equation (3.14)

9 X

t £

M
M
&

Y
@
+
Qs
o
-8}
e}

i ¥

' is identi!,cally zero for a elass of systems that have a unigue solution
! i a

) 5

: over (t) for a given range of parameter {p} . Let the system variables

{x, u) can be represeﬁted as functions of the parameters p, t, i.e.,
» ; Ve ~ , ~ ” .
/ x = x (p,, t) , ' ’
. . “«
/ i
u= u (p, t) . ; L (r.1)
¢ S \

¢ o
The parametric relation betweern x “and u may take any of two implicit .
n

2

. " forms
- =
!
A bbxlut) = 0, ” (x.2)
. ) . ' \
where t is taken as the running parameter, or
B -~ ’ i o )
€ (x, u, p) =-0 , ’ (x.3)

where p is the running parameter.
/
e

We .are interested in practical problems where both the

’

variahles x and u, and the p ’are within a finite range. Let us,

\7 a !

!

e,

ey b
-5

P2

et ke v




—_——

"consider a poiﬁt in tﬁe Ax, u) ﬁlane'whére p=p and t=t . The —

s . - f ,
. e . . ¥y

>

two functions . ' C . :

- ¢ N . . L
«
-
v ~ [

v (x, 7.,t) =- 0. e o (L.4)

A

e (x, u,'p) = 0. - ) -, (1.5)

\ -

will, in general’, intersect at.one or more points ars a

13 * \
gt * v s+ @S

shown in Figure I.l. - The intexrpretation of this figure is that, if the

2! 1

two curves intersect at more than one point the system has more than one

solution defined by points a., a . . . Hence, for our proof, we

1" %2t

consider’that class of systems which can be represented by Figure I,2

where both curves are tangent at a single point. In o?he;‘words, for a

2
~

|
given value of p, p=p a group of curves (I), corresponding to
r

equation (I.2) can be found such that curve (II), representing equa-,

tion (I.3) .for a given value of ’p = p, ‘iLs the envelope of tgis group. o
. . . ’ ) . ﬂ
i

If-the group of curves U = 0 “is expressed parametrically

S

in the form of equation (I;ls, then equation (I.2)  can be replaced by a-

:

function ¢ (p, tf where -

- ' - . 4 .

$ (P, t) = ¥ (x‘(P: t)yu (p, £), t) =0 - (I.6)

Hence, at‘any point on any curve of the group ¢ = 0 R ’
: L3 _ 3% d3x B9 du o_ o, .

S "p " 3x 3p T 3u 3p (.7

= » !

ar{d . » R - -
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Figure I.l.
and equation (I.5)

by curve IT,

x

P
l" -

Figure I.2, .Representation of family of curves T
,giyen by equation (I.2) for different

, values of t, and equation (I.3) for
a corresponding P (II).

Generjl representation of equation (I.li)
by curve I ,

i
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R g - ¢
- ' 2 3¢ 2 20 2 3 ¥ | ‘
b _ X, ) u - ‘
st " 2x 8t " Fudfp at 0 -8
, ,

, For a given value p = p, the s

olution of the gystem (x, u) for t as

i

a parameter will be given by curve (IIL), i.e. ,‘by the envelope of group

(1. At any point on the tnvelope [ 24%‘— ,. w
i a. w" _ ) .
st ¢ 0° \ ) . (o
: AN ‘ . ¢ . :
hence ' . :
L ‘ | !} ':
‘ 59 _ a9y 2x,0y Bu | o €10
.~ 9t  "dx 9t du 3Ip v . ;
. ’\ ’ 7 ' 4
If ve multiply equatioh (I.7) by ¢ and equation (I.10) by -__g;‘ and
’ - A - - . ] .
‘subtract,:'yve obtain ‘ - .
- 3 ¥ [ d3u . ¥x_du 3x 1 =.0
3 u a9t 3p dap 9t .
‘But g—% may not equal zero . : T ‘
Hence e .
t v : . 4
, du 3 x 9w 3x _ 0 -
3.t 9 p 3 p 3t , .
. ..
. . .




»
\
-
%
7
— J
N
o
SR o

o ' 128

[

o
AT UARPLT T W

* KPPENDIX T1I

@

f e =

VERIFICATION OF ACCEPTABILITY OF DOUBLE DEPENDENCY

M o

Several nonlinear and time varying differential

~

equations which require the use of noglinear circuit elements with single
or doubl\e dependencies when :.;imulated on SCAMPER, and for which solu-
tions can be ‘obtaineéd in mloséd form, were used to test thfa validity of
&t'he gradient derivation in Chapter III. Results of direct hand calcu-

lations -and.of the use of the p(rogram described in this thesis are com-

pared below. It should be noted that, due to the inherent nature of the
Ve

, . SCAMPER simulation, such as the restrictions imposed by the set up

> routine of this prygram, exact agreement can not be expected. Moreover,

t ' lower accuracy should be expected in computing the gradient G because

v

. 7
it is obtaifed after two steps of integration, the forward integrati’on

@

4 ‘ and the backward one.

Jo - ] C
14

The results will be compared on the basis of:the

- - folléwing definitions. | ‘ . .

: * sas ‘
- Let the differential equation be ,
. v o . _

i
]
, R 1
:" . N - 1
. / x = f (x, t), (11.1) i,
J’J‘ . ) ; )
. G 3
the starting time point t0 and the period T . }
T . ! ® / 4
P We define i
%, | ! i
= ‘t
. Xy x | 0) '
4 ' .
‘1 ! / = + T L] II.2
_ N L T x £y + 1) (11.2) \




Wain \
129
From the definition of the objective Ffunction ¢ .
1 2 , .
$ = T (xy %) ' (11.3)
the gradient is ~ .
} 9 X
¢ - T
G = —L = - 1 -
- (xo xT) ( TR ) (TI.4)
0 0
# hd Example 1 i
i °
' Consier the differential equation
. 4 [
Sox = -t (x-1) (11.5) :
2 :
‘ solving we get \
- 1 .2 2
, : 7 (& %)
x = 1+ -1 .6
\ (x0 ) e \ (11.6)
l The problem was simulated by simulating )
f
- *
X +tx-t = 0
.’ ‘ -
twice, once as a node equation (Figure II.la) and onge by.using its dual
loop eguation. In the simulation, t 0 and T were txkey to be to =1, -
< ,
T = 2. Step size control, in fact, forced the starting point to be
; .
to = 1.Qb,62. Substituting these values and choosing Xy such that

g a ’ x (0) = 0 we obtain

4 .

& e b o b ih A Dl e e
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o ) ) .
xo = 0.3974 ,
o x, = 0.9891 ,
G = 0.5805 . . (TI.7)
The results from the simulation were R
, T A e
x0 = 0.3972 , i
x_ = 0.9891 ,%
T . r 1

- G = 0.5811 . + (X1.8)

Thus, the gradients are in agreement to three digits { < 0.1 % ). "

In Figure II.l the representation of the nonlinear resistive element

t ‘ Gl was

4 P

B I, = 6L (Iy) Vg n

In another simulation the equation was rewritten as
. « 4

i
i
‘
}
«

(-t—) x+x -1 = 0 , ) (XI.9)

’

: - -
where the derivative term was' represented as in Figure II.2 by a non- ) P

; linear inductor L f{or C in the dual network) of value equal to 1 / t .

——

More g.pecificallly ; the reactive element is modelled through a double de-

'
I

pendenc::y ’ -

( ‘ Ll ; R2 Ll

i
I_’_‘;”' -
1
b
K
t
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In this case agreement is only to two significant figures, primarily

3

due to the modelling compromises that must be made with 1 / t at

t=0.
¢ “ . £l
" Example 2 » {
ﬁ Solution of the differential equation
. 2
X = ~=-x t .- © (11.10)
is _ - 3 N
‘ 1,2 1 1.2 -1
—_— + —_— - = B .
_ X [ 2 t { 2 to) ] (II.11)

The simulation of this problem was done on the b#sis ¢f the following

+

form of (II.10) -

[
X 4+ (x.t)x = 0 '

where the nonlinear coefficient was represented by a nonlinear conductance

Gl (or its corresponding element in the dual network’) where, Gl =.x . 1;“ .

Taking t0 =0 (= 0.2x 10—7) r T =Y 2- and X, = 1, t/he hand com-

putations yielded
P

X, = 1. .
X, = Q.5 , )
' G = 0.375 s ‘ . (XT.12)

ety
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The results of simulation as in Figure II.3 gave

X = .
, 6 = L.
p-
’ x = 0.5 , - c
T o .« 1
p ® v
G .= 0.3734 . T (Ir.13)

. !
Both results of the ggadient are in agreement to within < 0.4 % . The ('

-

representation of the nonlinear elen&ant Gl and R2 is done according

to the relations ’

| IGl = Gl (VR2) VGl ) :

.
~py . ¢

¢ ‘ Ve T Ry W) I -

*whe#:e‘ 01 is an open circuit branch across the capacitor C and the

independent source (initial condition) El . ' ;

J .
'Examgle 3
Ve ~ -
j Consider the differential equation .
)- [ ! ﬁL' ool
3 o x = t/x . ’ (I1.14)
}\/ T ., Solving we get
¢ W e -
, , 5 2 . 2 172 )
x = [t 4+ (x_ -t)] \ (Ir.15)
0 0
\,‘ . '
(" The simulation was done on the basis of

<@

n

.
§
;
&
-4
:
5
,
:

-

[T

T L T et s A s i

4
1
?

3
i
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¢

¢

‘whére the derivative term was simulated b& a nonlinear capacitor C

(or inductor I in the dual network) where ¢ = x .

[t}
o
.

=1, T=1, x (0)

Taking t0 = ]

The hand computation gives o .

n

simulation as in Figure 1II.4

C ; |
Cor xo 1.902

2.003

]
]

' (I1r.17)

4]
n

-0.5009 .

) « THe results for the gradient show an agreement between the simulation and

digits. ¢

-

the hand computations within three

L]
«

.
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J1L GND N1 TABLE 0. 0. 10. 10 ‘ ’
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Gl NL GND TABLE V (G1) I (J1) 0. I.E - 8 10. 10
c1 NL G 1 : 7
' )
| . : |
Figure II.l. Simulation of equation x = - t(x-1)
- e ‘Y, ’
- using  nonlinear resistance.
q ; f - -
. (a) The simulating circuit. .~ -
{b) The input circuit description.
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EC1 E2
(a)
{
ECl N4  GND TABLE 0. 0. 10. ’10\.
|
B2 N3 GND 1°.
“ ; e N
R2, N3 GND TABLE I (R2) V (EC1) O . 1.E-8. 1lO.
,. P El Nl GND:TABLE O. 0. 1.E~7 1.
R1 N N2 1.
Ll N2 GND TABLE I(Ll) I (R2) O. O. 1.EB.
* . (b)
! /

Figure 1II.2 .

Simulation of equation X = - t (x-1)

using nonlinear reactive (L) circuit.

|

(a) Simulation circuit.

(b) Input description.
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! - Ve
. » - 01
/ N3 N1 + -
‘ cl
ll 1 ~
+
El
— z .
/
GND
(a)
I3 /
cL NI N2° 1. )

EL N2 GND TABLE 0. 0. LE-8 1. ;
01 N1 GND .
Gl NI GND TABLE V (GIT V (R2) ©O. 1.E-8. 10. 10.

R2 N3, GND TABLE I (R2) VvV (01) 0. O. 1lo. 1lo. j

J2 GND N3  TABLE 0. 0. -10. 10. - :
(b)
- \ . 2 '
Figure ITI.3. Simulation of equation x = - xt .

1

{(a) Simulation circuit.

(b) - Circuit description.
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J1 f ' RL 7.— c1

4
' . 5 »
GND .
. &
- . t . {a) !
P
' I
/ * ’ ,
J1 GND NI  TABLE 0. 0. 10. 0. , /
/ ’ -
, R1 N1 GND TABLE 0. 1.E5 1.E-6. 1.E10. 4
‘ ‘ : CL |, Nl |, GND TABLE V (Cl) 0. 1.g-5.- 10. 10. 5
. 4 . k
l} - ‘i?
, ’ - ‘f
(b) * i
i i
' i
L] ! -
. * 1] \
' [
Figure 1II.4. Simblation of équation x =t / x . s
. _ ‘ i
e * . B
s " (a) Simulation circuit. * .
(b) cCircuit description..’ . v
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