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Abstract

Practical computational techniques are described to deternune the Galows group ol
a degree 8 polynomial over a function ficld of the form Q(fy,. .. 1,). Each trans
tive permutation group of degree 8 is 1ealized as a Galois group over the rationals
The techniques of Soicher and McKay [SM] o1 1ational polynonnals of degree lese.
than 8 are also extended to function fields  Timing and efficiency ol a MAPLE V

implementation are discussed.

Résumé

Nous décrivons des techniques pratiques de calcul pour la détermination du groupe
de Galois sur un corps de fonctions de la forme Q(ty, .., 0,) d’un polynome de
degré 8. Chaque groupe transitif de permutations de degié 8 est réaliné comme un
groupe de Galois sur les tationnels. Les techmques de Sorcher et Mohay [SM] pom
les polynomes 1ationnels de degré moins que 8 sont aussi géncralisées any corps de
fonctions. L'¢llicacité el le probleme du temps requis de Putihisation de MAPLE V

sont, discutds.



Acknowledgements

I would Iike to thank my supervisor, Prof. J. McKay, for his gnidance throughout
the prepatation of this thesis which is in large part the consequence of his many
crncellent suggestions 1 have much appreciated his patient encouragement and his
insistence on tigour 1s Lthe source of any quality this work may have.

I amndebted to G Buatler, D. Ford, L. Kwok-On, C. Lam, and G. Smith for
many frtful discussions and the use of their programs and results.

To my launly 1 say thank you for your many years of support and love.

This rescarch was funded by the Natural Sciences and Iingineering Rescarch

Counctl of Canada



Maybe it has become too hard for us unless we ate anen some out
side help, be it even by such devihish devices as high speed computing,

machines.

I Wl



Contents

A bstract

A cknowledgements

Table of Contents

List OF Fables

Notation

Introduction

[hetory . o o000 000

The Fandamental Theotem of Galois Theory . . . .

The Galois Group ol a Polynomial . . . .

nprinutive Groups

Resolvent Polynomials

Problem in Degree 8

History . .. e e e e e

200 Staunduhar's Method L. . L L.

2,12 'The Method of Soicher and McKay

Distmguishing Groups of Degree 8
2.2 Disaiimimant and Shapes . . . . L.
2,22 Imprinmtivity L L

203 Orhit-Length Pattitions . . . . L.

220 Factorization Over A(VA) . .

225 Galois Groups of Resolvent Factors

-----

.....

.....

.....

.....

.....

.....

.....



3 An Implementation of the Degree 8 Algorithm 33

31 Disctimnant and Shapes © 0 .00 L. . : 33
3.2 Construction of Resolvents . .o 0L L. C . 40
3.3 TFactotization over /\(\fj) ........ R .. 3
34 Distinguishing (Faze, Groae and Gy o . 37
4 Avenues for Further Exploration 39
4.1 Improving Polynomial Factorization C : 30
4.2 Improving the Imprinntivity Algorithm . . . .. . I
4.3  Small Degiee Resolvents .0 000 0000 C I
A Rational Polynomials With Given Galois Groups AR
Al Polynonuals of the form f(a®) .. . C Lo 01
A2 Additional Remarks on the Denvation of the Polynonuals il
A3 Generalizations of Soicher’s Method for (2% L(3,2))! Oy
B Polynomials over Q(/) 64
C Distinguishing (i}, from (/% 67
D Tables of Degree 8 Transitive Groups 70
References RO

2



List of Tables

|

Distingnishing groups by testing irreducibibity over A(vVA). . .
Distinguishing groups using Galos gronps of resolvent factors.
Distinguishing degree 8 Galois groups - (7 C Ag ..

Distingmshing degree 8 Galois groups - (V€ Ag ..

Statisties of CPU usage by MAPLE V aimplementation

Rational polynomials with degree 8 Galois groups - (¢ € Ag

Rational polynomials with degree & Galois groups - G € Ay
Polynomials over Q(f) with selected Galois groups . . 0 .0 0 . L.
Transitive groups ol degree 80 0 0 0 0 0oL o0 L oL
Gronp genetalors oo o0 0 L L L e e e e e e
Shapes occurtmg m cach group o oo o 0oL 0 000

Orbat Tength partitions of sets and sequences under G . . .



Notation

klai,...,ay) The ficld & extended by the elements a0 a,

k(x] The ring of polynomials over the ficld (o1 ning) &

G(K/k) The Galois group of K over &. See Defimtion 126

K The sabfield of K fixed by 1. See page 8.

G/ The gnotient of the group G by its normal subgronp H

Gali (f) The Galois group of [ over k. See Delinition 131

Sn The symmetric group on n letters

A, The alternating group on n letters

Ge, Standard notation for the transitive degree 8 groups. o | the

group has only even permutations The “n” mdicates the order of the

group. Il there are several groups of the same parity and order, they

are distinguished as o = a,byc,. .. See Appendin D) for more detanls
char (k) The characteristic of the field &.
A The discriminant of a polvnomial. See Delimtion 1.3
Q The field of rationals

Q(ly,...,4) Q extended by the transcendental elements 4,0 .1,
Z The ting of integers.

Rlty,...,t;]  The ring of polynomials in r indetermmates over the vme f7

UlrD Unique factonization domain.

af The degree of the polynomial f.

goh The composition g(h(r)) of the polynomials ¢ and /A

[ | goh The polynomial f divides the composition of the polvnomuals g and &
k[af Ring generated over £ by .

o, Fon Sce page 13,

slabe () The stabilizer of /' in G The group (4 s omtted af it s S, where



[ ke, oo an]. Sce page 13
AN ‘I he resolvent polynomial associated with /7 and [. See

Definition 1.5.4.

[5] T'he cardimal of the set S
L) The field & extended by the transcendental element z.
Tyl I he Tschirnhaus transformation of [ by é. Secc

Defimtion 1.5.6.

[ r] The greatest integer less than or equal to .

AT T'he specialization o1 the polynomial f under the
substitution { = a.

Pl The degree & power-sum symmetric function of f.

/M /)" Vi, Dy Qn See page 70.

A DB, AL Sce page 70.

I, The finite field of p clements.

Ca A primitive kth root of unity.

Sl ]) The splitting field of the polynomial f.
ris(f) The sel of 1oots of the polynomial f.

<o >, (L, k) See page 70.
Ao B ANDB, ALDB See page T0.
Hol(A), Syl (A) See page T1.
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1 Introduction

1.1 History. The otiginal defimtion of the Galows group leads to a means ol
computing it and this has been pomted out by several anthors (see tor example

[vW, p.189]). But, as Galois himsell said [13.A],

Si maintenant vous me donnes une cquation que vous anre, Chorsre
a votre gré, ot que vous desitiez connaitie st elle est on non resoluble
par radicaux, je n”’aurai tien a y faite que de vons indiquer le moven «de
répondre a votie question, sans vouloir charger m mor m personne de le

fairc. En un mot les caleuls sont impraticables

The technique involves factoring a polynomial of degree nt i order to lind the Galo
group of a degree n polynomial f. Hence 1tas feasible for only the smallest valoe,
of n.

llowever, with the advent of high speed digital computers, powerlul new e thaods
have been developed to quickly determine the Galois group of Ingher depree poly
nomials. In 1969, Stauduhar [St1] presented an algonthm tor tational polynomials
of degree 8 and less. This algonithm has recently been extended to depree 9]0 A
decade later, Soicher and MeKay [ST, SM] presented o different approach wloncd wa
implemented fos polynomials of degree 7 and less.

The principal advantage of the method of Sorcher and McKay - that gt s eaaly
generalized to polynomials over fields other than the rationals  Tno the the 1w
rcalize this potential by demonstrating an extension of the tedhingue to fonchion
ficlds of the form Q(ly,...,6) (where Ly, ...t are transcendental over €Q) and
polynomials of degice 8 and less.

Following an introductory section outlining the theory required, Section 2 how,
how the ideas of Soicher and McKay may be extended to the depree 8 case T See

tion 3 we give details of an implementation of the algonthim i the MAPLE VGG
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Lenguage ‘This s followed by an analysis of the program with timing results in Sec-
tion 4 The appendices imddude, m Appendix A a list of polynonuals 1cahzing each
transitive degree 8 group as a Galois group over the rationals and, in Appendix B,

a hist of polynonnals over Q1) of degrees 3 through 8 with selected Galois groups.

1.2 The Fundamental Theorem of Galois Theory. We begin with some def-
mitions leading to the fundamental theorem of Galois theory. Details can be found
i any standard alpebra text sech as [L; pp.263-313]). In the following k is a ficld,

K an extension field of & and [ a non-constant polynomial in k[z].

Definition 1.2.1 The ficld K s a splitting field of [ over k if [ splits (into
lencar factors) i W oand K s moumal unth respeet to this property. 1f S 1s a set of

polynonvals o ko] then Kows a splhitleng field for S if cach f € § splits in K and

K s mnimal

Since a sphiting field is unique up to isomorphism, we often refer to lhe splitting

field,

Definition 1.2.2 The polynomual f 1s separable over & 1f it has distinct rools in
the splitting ficld. The clement « of K is separable over &k if it 1s the root of a
separable polynonval i k[e]. If cvery a in K is separable then K is a separable

extension of k
Definition 1.2.3 An doment o of K is primitive if K = k(a).

Proposition 1.2.4 If K s a separable cxtension of k, then K has a primilive

clement.

Definition 1.2.5 The cxlension K is normal over k if it 1s the splitting field of a

scl of polynomals i ke,

-~1



Definition 1.2.6 The cricnsion N is Galois ovcr b if of s normal and scpaia-

ble. In this case, G(K/k), the Galois group of N over k, s the group of jickd

automorphisms of K fixing k.

Notation: Let /[ be a subgroup of G(A/k). We denote the sublicld of A fixed by
H by K%,

Theorem 1.2.7 (The Fundamental Theorem of Galois Theory) Lt N b o
Galois extension of k. There 1s a bycction btween the st of subfichds 1 of A
containing i, and the scl of subgroups H of G(K/k), given by £ K. The [icld
E is Galows over k if and only I s normal m (!, and «of thal s the case, then e

map o+ o|p mduces an wsomorphism of GJH onto the Galows qroup of 15 vecr k

1.3 The Galois Group of a Polynomial. We define the Galos group of a poly
nomial and introduce some invariants of the group casily derived from the polyno

mial.

Definition 1.3.1 If [ € k[z] s separable, then the splitting ficld K of [ s a Clalos.

extension. In this case we call G(K/k) the Galows group of [ ovcr bk and denole il

by Gali(f).

We will generally assume that f s irreducible and char(h) - 0 so that [ o
scparable. Let o € Galy(f). If « is a root of f, then, since o is a ficld homorar
phism, we sce that o(2) is again a root of f. But since o is also a monomorphism
it permutes the roots of f. Hence Gali(f) acts on the 1oots a0 e, of [ Ly
permutation.

In this way Gale(f) is a subgroup of S,, the symmetiic group on n letters
However, this injection depends on the labelling of the 1oots; relabelling the roots

amounts to conjugation by an clement of S,.

8



Definition 1.3.2 Groups ), Gy in S, are permutation isomorphic if Gy =

a Yo for some o € S,

Here, we identify the group only up to permutation isomorphism. This equiva-
lence 1s stronger than abstract groap isomorphism; isomorphic transitive subgroups
of &, will be permutation isomorphic only if the isomorphism is realizable by a
permutation m S, For example the groups G, and Gayy (see Table 9) are both
somotrphic to < o ylet y?, (ry)?, 2%yzya?yz®y > in Sg. However, since no permu-
tation isomorphism can change the parity of a group, they are not permutation

isomot phie.
Proposition 1.3.3 The polynonual f in k[z] is irreducible iff Gali(f) s transitive.

Definition 1.3.4 Lct k be a field with char(k) # 2 and [ € k[z] of degree n with

rools ay,...,a, w the splilting field K. The discriminant of [ is
A = H(a‘ — ;) €k
1<
Proposition 1.3.5 Let &, f, K and A be as above. Then A is a square in k iff
Gali(f) C A,.

Although the theory developed to this point applies generally to any field k,
we will assume henceforth that & is of the form Q(¢,...,t,;) (including the case
k= Q) whence & is the quotient field of the unique factorization domain (UFD)
D=12[,...,1;]. Wecan iclate factotization modulo maximal ideals in D to cycle

shapes in Gal(f) (using the monomorphism Gal(f) < S,).

Definition 1.3.6 The shape of o mn S, is the partition of n determined by the

lengths of s disjomnt cyclic factors.
Notation: We denote the degree of the polynomial f by f.

9



Proposition 1.3.7 Lct k be the quotient field of D = D/p where p as a marimal
ideal in D and supposc f = fmodp has no repeated roots  Then Galo(1) 15 a

subgroup of Galx(f).

Corollary 1.3.8 The partition of 9f induced by the degrees of the vrreducible factors
of [ is the shape of an element of Gali(f).

Proof. Sce [vW, pp.190-191]. L1

In case D = Z, we have the following result (see [LO)):

Theorem 1.3.9 (Cebotarev Density Theorem) Let © be a partition of n. Then
as | — oo, the proportion of occurrences of nm as the faclor type of [ mod p,,
i =1,...,0, (p1,...,p distinct primes) tends to the proportion of permutations of

that shape in Galq(f).

1.4 Imprimitive Groups. A reference for the material in this section s [W,

pp.11-15].

Definition 1.4.1 Let G be a transiive permutalion group on 2, |Q = n. The
group G is imprimitive if it stabilizes a partufion of Q@ wnto | scls of size m (ue.
n=1Im)with 1 <m<n. Inths casc the stabidizcd scls are called blocks (of

imprimitivily).

Proposition 1.4.2 Lt f € kfz] be an wreducible, scparable polynonial of deqiee n.
Then Gali(f) is vmprimuteve off there exist polynowaals g, h € k), wdh idg,dh < O f
and g wreducible, such that { | goh. In this case, Galy(f) has a decomposidion tule

dg blocks.

We shall call such a polynomial f imprimitive.

10



Proof  Let K be the splitting field of [ and let the roots of f be oq,...,0,. Let

(= Gl (f).

Suppose first that ¢/ is imprimitive with { blocks of sizc m. Let B be the block
contaimng aq. Let (0,0 be the stabilizer of ap in G and G the setwise stabilizer

of 13. By the fundamental theorem of Galois theory,

EC K% C K9 C K.

Fvidently,

K% = k(oy) = kloy].
Now, K% is separable over k so it has a primitive element f such that K8 =
MpA) Smee B € klag], we see that 8 = h(a;) for some h € k[z]. Let g € k[z] be
the minimal polynomial of # over k. Then dg = [k(B) : k] = |G : Gl =n/fm =1
and since goh(ay) = 0, we have [ ] goh as required.

Conversely, suppose [ | goh where dg = (. Let fy,...,0 be the roots of g.

Let

B, = {aylh(ay) = B).
Since the g, are all roots of the same irreducible polynomial, any ¢ € G acts on the

M by permutation. Suppose a,, q,, € B, and o(8,,) = f,, for some o € G. Then
h(o(ay,)) = h(o(ey,)) = By

and a(a,,),0(a,,) € B,,. Thus G stabilizes the partition of the a, into [ sets B,
and s ymprimitive. 0
Casperson and Mcelay [CM2] have recently described a practical algorithm for

linding decompositions f | goh when f € Q[x]. Let f have degree 0f = n with

tools oy, ..., a,. Lot
n-1

— ¥
h = E ¢l

=0

11



If a,,,q,, are in the same block, then A(a,,) = h(a,,) whenee

n-1

Z c,(al —a])) = 0.

=0

So, using approximations to the roots a, of f, we can use a 70 hinear dependence
algorithm such as the LLL [LLL} algorithm to determine the coeflicients ¢,, j /0 of
h. (It should be noted however that since we hiave no bounds for the cocllicients ol
h, we do not know how accurate the root approximations must, be. For this reason,
the algorithm may miss decompositions.)

Once h is known, there are several ways of determming g. We can use a 7 hnear
dependence algorithm to find ¢ as the minimal polynomial Tor h(a) whete o s a

root of f. Another method is to form
r(y) = resultant,(y — h(r), [(x)).

(The subscript z indicates that z is eliminated.) Then g = r/(ged(r, ")),
It appcars however that the best method for constiucting ¢(y) is by generating,

cquations of the form
y* = (M) mod f, k=0,...,M

until Z-lincar dependence occurs. At most M such equations are necessary where
M is the greatest proper divisor of n.

So the algorithim proceeds as follows. Calculate approximations to the 1ools of
f. Fix one root a;. For cach distinct pair oy, a, constiuct h and ¢ and test if
[ | goh;ifso, fis imptimitive and o) and @, are in the same block. For this pair,

then, we have found the polynomials £ and g¢.

1.5 Resolvent Polynomials. A reference for the material in this section s [MD]

We begin with the Fundamental Theorem of Symmetric Polynomials. In the follow

12



g, A s a comnntative ring and {y,...,t, algebraically independent elements over

A

Definition 1.5.1 Let I € Ally,..., ][] be defined as

n n

I"= H(.T ~1,) = Z(—])]s]m“"’.

1=1 1=0
Fach s, s a polynomal of lotal degree 3 n ty,...,1,. These are the elementary

symmetric polynomials of t;,...,{,.
Note that, up to sign, the elementary symmetric polynomials are just the coefli-
cients of 19
Definition 1.5.2 The polynomial f € Alty,...,t,] is symmetric if
[ty osta) = [(toqtys- -+ > to(m))
Jor cach o € S,,.

Theorem 1.5.3 (Fundamental Theorem of Symmetric Polynomials) Let
J € Ally, ... ] be symmcetrie. Then there ensts a polynomial g € Alty,.. ., 1,] such

that [ = g(si,...,%,) whore the s, are the clementary symmetric polynomials.

The resolvent polynomial is a very uselul tool in the determination of Galois
groups. We define 1t and give some of its properties. In the following, let [ € k[z]

be a polynonmal of degree nowith roots ay,...,a, over the field k.

Notation: For I € k[ri,...,rn] and o € 8y, we denote F(z,(1),...,Zq(n)) by F°

and {["”In C 'Sn} l’.\' ["S".

Notation: Let Il = stab(#') be the stabilizer in S, of F. (That is, I is the
largest subgroup of &, fixing /7. Note that any subgroup of I will also fix F.) For

13



o € Sp, Ho = {holh € 11} is a 1ight coset of Il in &, and ¢ is a 1epresentative
for Ho. (We use the permutation multiplication convention consistent with the

equation (b, ¢){a,b) = (a,b,c).)

Definition 1.5.4 For F € k[ry,...,r.], let op,... 00 be a sct of rght cosel rep-
resenlatives of stab(l") wn . The resolvent polynomial I\, [) associaled with

F and f is defined by
R(F, f) = H(.z: — Py, ... 0)).
1=1

Since the o, represent different cosets, we know that if + 4 5 then [0 /1
However, it may turn out that IF'%(ay,...,0,) = I {a,,.. ,a,). We will say that
R(F, f) has distinct zeroes in case @ # 3 implies F'(ag,..0,0,) /(a2 00)
(whence R(F, f) has no iepeated roots).

If & is the quoticnt field of the UFD D then, by dlearing denominators, we may
assume f € Dlz]. The cocfficients of the resolvent polynomial (1, f) are symmet
ric functions in the r1oots of f. Hence, by the fundamental theorem ol synnmeli

functions, they arc polynomials in the cocflicents of f. Thus E(1, [) ¢ D]a].

Definition 1.5.5 For a group G aclting on a finide scl S, we call the partilion of
|S| induced by the lengths of the orbus of S under ¢ the orbit-length partition
of S under (.

Notation: Any element v of A(z) may be written uniquely as g, /gq where g, g4
are in k[z], ¢, is monic and ¢,, ga have no common factors. We will denote g, by

N(7).

We shall define the Tschirnhaus transformations as follows (sce (B, pp 171 17%)

for a more standard exposition):

14



Definition 1.5.6 [f ¢, € k(z) are wnverses, (re. ¢ovY = po¢ = 1) then
1y) = N([ o¢) 1s a Tschirnhaus transformation of f.

Proposition 1.5.7 The Galows group is invariant under a Tschirnhaus transforma-

Lo, of Tyf 15 a Tschirnhaus transformalion of f, then Galg(Tyf) = Gali(f).

In this way, Tschirnhaus transformations induce a partition of the set of polyno-

mials imto Galois equivalence classes.

Proposition 1.5.8 Suppose R(F, f) has distinct zeroes. The orbit-length partition
of 1'* undcr Gal(f) s the same as the partition of OR(F, f) induced by the degrees

of the wreducible factors of R(I f).

Thus the factorization of resolvent polynomials is determined by Gali(f). The

[actorization of | over k(v/A) when A is not a square is also an invariant of the

Galois group:

Proposition 1.5.9 Ll g be an wrreducible factor of a resolvent polynomial R(F, f)
such that Fy(a) (where 0 = ay,...,0,,)) is a zero of g for some F, € FS. The

Jollowing are equivalent:
I. stabgu, (1) 15 a subgroup of A,.
2. k(I (q)) contarns k(VA).
3. g s reducible in k(vV/A)|z].

Proof.  The equivalence of 1 and 2 follows immediately from the fundamental theo-

rem of Galois theory and the observation that

MF (@) = K *tebgal (n)(F3)

15



and

/\(\/Z) = K9i(NHN A

where K is the splitting field of f.
Let h be the minimal polynomial of Fy(a) over k(VA).

g is irreducible over k(VA)
& g=h
& [k(F, (@) : k] = [K(£)(a), VA) : K(VA)]
& [K(Fy(a), VA): k(F)()] = [FVA): k] =2
& k(VA) € k(F)())

Hence 2 and 3 are also equivalent. ()

The Galois groups of factors of resolvent polynomials are also invariants of Galy(f)-

Proposition 1.5.10 Let g be an irreducible factor of a resolvend polynonal R(IY, [)
with rools Fy(a),..., () where F, € F, 1 < ¢ < m, are distinel and o --
(a1,...y0an). Then Gali(g) C S, s a representation of Galy(f) as a permutalion
group acling on {Fy,...,F,}. To each o € Galg(g) there corresponds o ¢ Galg([f)

such that the action of o on the F, is thal induced by o* on the o,

Proof. This is an immediate consequence of the fundamental theorem of Galois

theory. Note that Gali(g) is a quoticnt of Gali(f). (
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2 The Problem in Degree 8

2.1 History. At prescat there are two basic approaches to computer aided com-

putation of Galois groups. We briefly review these and discuss their relative merits.

2.1.1 Stauduhar’s Method. Stauduhar’s method [St1, St2] relies on the idea
of a polynomial belonging to a group (see page 13 for a definition of stab(F)):

Definition 2.1.1 We say that I € k[zy,...,z,] belongs to G = stab(F).

We will call a sequence
Sn=0GDG DGy D,...,D G

of subgroups of S, a chain if G,4; is a maximal transitive subgroup of G, for
cach ¢ = 0,...,m — 1. A monic, irreducible polynomial [ with integral coefficients
determines a chain as follows.

Suppose we know that Gal(f) C G, (initially G, = S,) with respect to some
ordering a = (ay,...,0,) of the roots of f. Let Il be a maximal transitive subgroup
ol ¢y and ay,...,01 aset of right coset representatives for H in G, (see page 14).
Let

k

Ru(F, f) = [[(z = F(a))

1=1

be a factor of R(I, f} where F belongs to H.
Proposition 2.1.2 [, (F, f) has a linear factor in Z[z] iff Gal([f) is contained in
a conjugate of 1.

So for cach masimal transitive subgroup H of Gy, we test Ry(F, f) for a linear
factor. If 1t has one, then Gy = H and the factor determines a new ordering of
the roots such that Gal(f) € H. 1 none of the Ry(F,f) have a lincar factor the

chain terminates at (. In this way, we extend the chain until one of the two things

happens.

17



1. We find that (7, is a minimal transitive group. In this case the chain terminates

with G,, = G,.

2. For all maximal transitive subgroups H of G\, Ry(F, [) has no hinear factor.

In this casc the chain terminates with (7, = @,.

Note that if Gy D,...,D G, is the chain associated with £ in this way, then
Gal(f) = G- So in Stauduhar’s method, given a polynomial | we determine its
chain and return the tail element of the chain as the Galos group. For each degree
n, we need to store a set of chains passing through cach transitive subgioup of &,
and, for cach subgroup in a chain, a polynomial belonging to the subgroup and coset
represcntatives of the subgroup in its predecessor in the chain maust be tahbulated.

The polynomials Ry (I, f) are constructed using high-precision approsimations
to the roots of f. We know that By (I f) has integer coellicients smee the toots are
ordered such that Gal(f) C I (sce [St2]). So to constiuct 1, (I, [) we appronumate
the roots to suflicient preasion that the tesulting error o the absolute value ol
the cocflicients of Ry (I, f) is less than 0.5, This required preasion can bhe very
large. Tor example, Stauduhar [St2] reports calculations using 192 bit (=2 60 digit)
approximations to the roots of a degree 6 polynomial. lu [CMI1] it is stated that
calculations for certain degree 11 and 12 polynomals require thousands of digits of
precision.

Since Stauduhar’s mcthod relies on calenlations using approximations to the
roots of f, it is not easily generalized to fields other than the rationals  In par-
ticular, it cannot be extended to function fields Q(fy,...,¢)  On the other hand,

the technique 1s very fast over Q in comparison with that of Soicher and McKay

2.1.2 The Method of Soicher and McKay. ‘The dalgorithm of Sorcher and

McKay [S1, SM] uses shapes (see Scction 1.3) Lo indicate what the Galows group

18



may be, followed by the use of resolvent polynomials to fix it. Rather than test for a
hnear factor, as was the case in Stauduhar’s method, the resolvents are completely
lactored so that the resultant orbit-length partition (see Proposition 1.5.8) may be
brought to full use, i, this way, only a few resolvents are required to distinguish all
the groups of a given degree,

Morcover, the resolvents are relatively simple. For a degree n polynomial we
make use of the othit-length partition on r-sets (r =1,2,..., [n/2]) and 2-sequences.
In these cases, the polynomials relating the coeflicients of the resolvent to those of
the initial polynomal are casily derived. (See [EFM] for example.) Hence, there is
no need to work with approximations to the roots of the polynomials. For this rea-
son, the method s casy Lo generalize to fields other than the rationals. The storage
requitements of this technique are minimal. For each group we record its shapes and

the orbit-length partitions of r-sets and 2-sequences under its action.

2.2 Distinguishing Groups of Degree 8. The method is essentially the same
as that outhned by Soicher and McKay [SM] for the groups of degree up to 7.
Let f be an irteducible polynomial in kfz] of degree 8 where & = Q(t4,...,1,).
To determine the Galois group it suflices to distinguish it among the 50 transitive
subgroups of Sy (sce [BM]). So we begin with a list of 50 candidates for the Galois
group. At each stage we make a calculation based on f which yields some further
property of the Galos group. Those groups which do not have the requisite property
ate removed from the list. This continues until there is only one candidate lelt which

must therefore be the Galois group.

2.2.1 Discriminant and Shapes. We first determine whether Gali(f) is even
by calculating the discriminant. Since k is the quotient of the UFD Z[¢y,...,t,],

we can look for cyele shapes by factoring f modulo maximal ideals. For each shape
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found in this manner, we may eliminate all candidate groups which do not extubit
this shape. The groups Sg and Ag contain respectively three and two shapes tound
in no other groups. In both cases, elements of these shapes mahe up 1/6th ol the
group. Asis illustrated in the following examples, 1if Galg (/) is Sg o1 g, we can
usually already prove it at this stage by finding shapes unique to these groups (they

are distinguished from one another by parity; Agx 15 even and Sg is not).

Example 1: Accordiag to Matzat [M], the polynomial
e — nz™ 4 (=1 (n - 1) (0= D F 1)
over Q(t) has Galois group A, when n = 0 mod 2. In particular, if n = 8, we have
f=2 8" + 7 (7t2 + 1).

Since f is irreducible, Galqqy(f) is a transitive subgroup of Sy. The discrimmant
of [ is

A = (2771 + 1))~
As A is a squarc in Q(t), we know that Galgy,)(f) € As.

We next find shapes by factoring modulo maximal ideals. It 1s convement to use
ideals of the form p = (p,t — a) whete a,p € Z and p is prime. Then 4jt]/p - 4,
is a field and so p is maximal. To factor f modulo p, we tist ‘speaalize’ | by
setting t = « and then factor f|i=, mod p. (Note that Galgy(f]e o) 15 a quotient, of
a subgroup of Galgyy(f).) To ensure that f mod p has no repeated 100t we chouse
a and p such that A # 0 mod p under the specialization ¢ - a. (In particular

p #2,7.) The choice a =1, p =3, gives the specialization
[lt=a = 2% — 827+ 2°77
= (4222 4o+ )+ 2"+ 22 4 22+ 2 4+ 2) mod 3,
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and so Gulgyy(f) has

Ax with this shape is

Example 2: Matzat

S,.:

In the case n =8, we

not a square in Q({),

Sle=1

flt:'i

Sle=s

[le=7

an clement of shape 3,5, but the only transitive subgroup of

As itsclf (sce Table 11). So Galq)(f) = As, as required.
[M] also provides examples of polynomials with Galois group

" -1z 4 t.

have f = z® — tz +1t. As the discriminant 22147 — 77t8 of f is

we sce that Galguy(f) € As.

=z —r+1
= (@ +z+1)(25+2° + 28+ 22+ 1) mod 2
=28 -3z +3
(22 + 24+ 1)(z®4+2° +2° 4+ 22+ 1) mod 2

=22 —5z+5

(22 +z+1)(2®+2° 4+ 23+ 22+ 1) mod 2

It

P R

4+ 24+ 1)(2®+2° +2°+ 22 +1) mod 2

(Specializations with ¢ = 0 mod 2 are omitted as the discriminant is trivial mod 2 in

those cases.) So the Galois group has an element of shape 2,6. Consulting Table 11,

we see {hat g(l[(u,)(f) must be one of the folfowing: qu, Glgga, G]ggb, G384, G1152

or Sy Under the spec

only group in the list

requited.

tahzation ¢ = 8, f has factors of degrees 3 and 5 mod 3. The
just given with the shape 3,5 is Sg. So Galg(y(f) = Ss as

2.2.2 Imprinitivity. If ¥ is Q, the algorithm of Casperson and Mckay [CM2]

{sce Section 11) can be used to test f for imprimitivity. If a decomposition f | goh
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is found, groups which are not imprimitive with d¢ blocks may be climinated. There
are scveral more groups which may be identified at this stage using this technique

in concert with those mentioned previously.

Example 3: The polynomial f = 28 +40% + 70 + 62 + 5 has discrininant
A = 218321115 and Galq(f) € As. Since A = 0mod p for p = 2,35, 11 we begin
looking for shapes by [actoring mod 7. Since f is irreducible mod 7, the proups
Gaad, Geady Gese and Gryze, which have no element of shape 8, can be removed
from the list of candidates.

Modulo 13, f has two factors of degree 2 and one of degiee 1. The groups 7y,
Greas Giess Ghrecy, G2ay Gazp, Gag and PGL(2,7) may be eliminated as they lack
an element of shape 224. By factoring mod 17, 19 and 23 we find shapes 8, 4% and
1223, The first two give no new infc ‘mation as all temaining candidate groups have
these shapes. However Gy, Gese and Glszg have no element of shape 1927 and can
be eliminated. The shape 42 occurs again mod 29, but mod 31 we find the shape
122,4, allowing us to remove Gogay, Gogp and Ghay and leaving only (G s,
Ghs2 and Sg as candidates for Galg(f).

Evidently, sctting g = 2 +4a* + 72?4 6o -+ 5 and b = 1%, we see that [ = goh
so that f | goh. An additional decomposition is: f | ((z*+ 3¢ +5)o (&' 207)).
Since Ggg is the only group amongst the remainming candidates which has systems
of imprimitivity with both 2 and 4 blocks (sce Table 9), we conclude that the Galois

group is Gzs.

Example 4: The polynomial f = z® + 22 + 1 has discriminant 2#229* whence
Galq(f) C As. Factoring modulo p for p = 3,5,7,...,23, we find the shapes
1232, 26, 4% and 1224. This leaves G, G, Gie, (22.0(3,2))F and A} as

candidates for Galg . Clearly f '+ z 4 1)oz*). Since GF,,. is the only one
2 192a
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of the remaining gioups with a decomposition into four blocks of imprimitivity, we

conclude that Galg(f) = Gy, -

2.2.3 Orbit-Length Partitions. Although testing shapes and imprimitivity are
ellicient, ways of reducing the list of candidate Galois groups, they do not, in gen-
cral, provide a proof; for this we must turn to resolvent polynomials. As was the
case for smaller degree polynomials [S1, SM], we make use of r-set (r = 2,3,4)

and 2-sequence resolvents. The orbit-length partition of these four resolvents distin-

guishes 24 of the 50 groups.

Notation: We will refer to the resolvent whose roots are sums (respectively prod-
nets) of r-sets of the roots of f as the r4-set (respectively ry-set) resolvent. Thus,
the 24 -set 1esolvent is Je{z, + x2, f) and the 24 -set resolvent is R(z1z2, f). We use

[(ry + 20y, [) as a 2-sequence resolvent.

Example 5: Let [ = 2 -2, The discriminant of f is —2° so Galq(f) € As.
Factoring [ modulo p for the primes 3 < p < 41, we find the shapes 1222, 42
and 8. After removing subgroups of Ag and those missing any of these shapes,
the temaining candidates for Galg(f) are Gigs, Gisey, Gazay Gasy Gotay, Goas, Gizs,
Ghoe, PGL(2,7), (ny, Ghsz, and Sg. However, by the Cebotarev density theorem,
we expect that the Galois gioup is Gig.; all the other groups have shapes not yet
obscrved in the first 12 puimes, but which should occur more frequeutly than 1/12.
(In fact we shall see that Gal(f) is Gie.. All shapes of Ghg. occur in cach of the
other temaiming, candidates. So we can not further reduce the list of candidates by
testing shapes.)

Clearly [ ] ((+* —=2)o2*) and f | ((z* — 2) 0 2?). The groups Gas, Giezs,
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PGL(2,7), G3ss, Grisz and Sg are removed from the list of candidates as they do
not have decompositions into both 2 and 4 blocks.

The group G, may be distinguished from the other groups in the hist of can
didates by orbit-length partition of 2-sets and 3-sets. Since we have not yet proved
that the group is G'g., we start with the 2-set resolvent as it has smallet degree and
is therefore casier to construct and factor. The remaining candidates tor Galg(f)
have differing orbit-length partition on this resolvent, so we will be able to eliminate
candidates using it.

The 2y -sct resolvent
2% 4 2% — 12270 — 242" + 482" + 962 — G400 ~ 128

has repeated roots. In order to apply Proposition 1.5.8 we fitst construct [* from [
p pply I

by the Tschirnhaus transformation z — z + 1
f* =2+ 827 4+ 282% + 56z° + 70z + 5622 + 282% + 8o — 1.
The 24 -sct resolvent of f* factors as

(2 — 42> + 622 — 42 — 1) x
(28 — 8z + 28z° — 56x° + 66z — 104z + 3622 4 8r 4 1) x
(26 — 1621° + 120z — 560z'3 4+ 1828'% — 43361 + TG08. 1
—103202° + 1184628 — 1195227 + 11976.% — 872027 + 18281

+ 158427 + 2642? + 16z + 1)

so the orbit-length partition is 4,8,16 and we may climinate /), fiom the hst of
candidates.

Finally, the orbit-length partition for the 3-sct resolvent is 8*16%.  The only
remaining candidate with this partition of 3-scts is Gy (sce Table 12). So the

Galois group of z8 — 2 is G\.
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Example 6: Let [ = % 4 2z* + 2. The discriminant, 227, is not a square so that
Galy(f) 7 As. Factoring mod p for 3 < p <37 yields shapes 8, 14, 4%, 224 and
2V o that (Fy, Gowe, (hasy Gras, G, Ghse and Sg ren ain as candidates for
Galy (/). By Cebotarev, the most hkely candidate is Gage.

Smee f] (¢4 2044 2)00t) and f | ((224+2242)02") we may climinate Grog,
(fixay (A and Sy The 1esolvent of least degree which allows us to further reduce

the number of candidates is the 2-sequen ¢ resolvent. As it has an orbit-length

partition of 8'32, we conclude that Galq(f) = Gize.

2.2.4 Faciorization Over k(vA). Amongst the groups not distinguished by
orbit-length partitions, all but three of those with discriminant A not a square
in & can be identified by testing irreducibility of factors of resolvents over k(\/Z)

(See Table 1).

Example 7: Let f = 28 — 42% + 42% — 2. The discriminant —(2)? is not a square
so Galq(f) 15 not even. Factoring modulo p for p from 3 to 71, we find the shapes
120, 1, 220 and 4%, So the list of candidates for the Galois group is Ggae, Gead,
(o CGrom, Glsyy Gy and Ss. Using the Cebotarev density theorem, the most
likely candidate is (7 4.

Clearly f 1 ((¢'—= 10 +422=2)0x?). On the other hand, f | (22~2)o(z*—22?)
as well. Consequently, only Gesa, Gesa and Ghas remain as candidates for the
Galois group. Since these groups all have the same orbit-length partition for the
four tesolvents, there is nothing to be gained by attempting to factor them.

Instead, we use factorization over Q(\/—_.)) From Table 1 we sce that, the Galois
group may be ddentified by examining the degree 16 factors of the 2-set and 3-set
resolvents, The 2-set resolvent is of lesser degree (and is therefore casier to construct

and factor) so tt is best to start with it.



Table 1: Distinguishing groups by testing irreducibility of factors of 1esolvents over

k(VA).

Group Factor(s) to be Tested
(Resolvent/Degree of Factor)
2-set /4
G reducible
Geaw irreducible
2-set /4
Glagg reducible
Glgae irreducible
2-set /4 2-5¢t /16 3—.501,/]{;.
Gesa irreducible  r1eduaible  1edudble
Gsse  reducible  frireducible  1educible
Gloaq  irreducible  iireducible  1educible
(98 irreducible  nireducible  inreduable
2-set/12
(i576 reducible
Ghise irreducible
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Sinee the 2, -sct resolvent of f has repeated roots we first construct f* from f

via the Tschirnhaus transformation z — z + 1. The required factor of the 24 -set

resolvent polynomial of f* s

g= 1%~ 162" 4 96z — 2562' + 19627 + 528z — 105621°

+ 90228 4 59227 + 144028 + 2562° + 19624 + 482° + 3222 + 1.

As ¢ is ineducible over Q(v/—2) we may climinate Ggq .

The 3, -sel resolvent of f also has repecated roots, but, again, that of f* does

not. 'The degree 16 factor is

ho= 2" — 162" + 362'% + 3362"° + 32228 + 2402° + 922* + 1622 + 1
= (" - 82% — 8y/~22° — 142" — 82 - 1) x
(o — 82° + 8v/=22° — 1e* — 82® — 1),

Since b factors over Q(v/—2), we conclude that Galg(f) = Gead-

2.2.5 Galois Groups of Resolvent Factors. The remaining sixteen groups can
be determined by calealating the Galois groups of factors of the resolvents as indi-
cated 1 Table 20 For example, to distinguish (Z, x Ay)* from (Zy x S4)* we make
use of the 2-set resolvent  The resolvent has an irteducible factor ¢ of degree 4.
(Since (Zy x At and (Z, x S;)* have the same orbit-length partitions for the
resolvents, both groups will have such a degree 4 factor.) Using the methods in [SM]
we can find Galy(q). Il Gali(g) = Aq then Gali(f) = (Zy x AT, If Gali(g) = Sq
then Gali(f) = (22 x So)*

The *1-dill” resolvent polynomial referred to in Table 2 is

B{(e)y +ro+ 23+ 24— 25 — 26 - T7 — $8)2af)~
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Gali(f) Resolvent  dy  Galx(y) -
(Zy x AT 2-sel 4 A

(Zy x §y)F Sy

G, 2-set 8 (G N
G o _
(25.Z7)* T
(2%.(Z7.2,))* 4-diff T (Z7.2,)F
(23.L(3,2))* PSL(3,2)
G 2-sct 4 A }
Goza S1 ]
Gt 4-difl 6 A o
Gl A
Glg 2-sct 12 1rt o
o |27
1271+ 2-set 6 7,84 —
12712+ 32,22

G192a (h,

Gloap 4-diff 8 (k.

(lagq ("?Zw, N

Table 2: Distinguishing groups using Galois groups of resolvent factors
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Cxample 8: Let
[=ab— 2" 4+ 2% + 22° + Tz + 32° + 42 4 3z + 5.

‘The discriminant A = 29°157% is a square whence Galg(f) € Ag. The shapes found
amongst the primes between 2 and 31 (excluding 29) are 1,7 and 2! so that the can-
didates are (28.Z)7, (22 (Z7 Zy))F, L(2,7)F, (2°.L(3,2))t and A} with (23.Z;)*
most likely according to Cebotarev. As the remaining groups are all primitive, there
is no need Lo test for imprimitivity.

The groups L(2,7)F and A} may be removed from the li<. using orbit-length
partitions on 4-sets. By Table 2, the remaining groups may be distinguished from
one another using the degree 7 factor g of the 4-diff resolvent. Following [SM], we

find Galy(g) == Z7 'The Galois group is therefore (2°.27)%.

For dg < 8 we can use cither the techniques of Soicher and McKay or those
we are presenting here to find Gali(g). However, to distinguish between Gz and
(V47 we make use of a lactor ¢ of degree 12, In this case, we denote Gali(g) by
L2011 (respectively 1272%) when Gali(f) is Gl (respectively Gidzg). Then as
indicated in Table 2, the Galois group of the degree 6 factor of the 2-set resolvent
of ¢ depends on whether Galy(g) is 1271% or 127°2% (127°1F and 127'2*% have the
satne orhit-length partition for the 2-set resolvent).

Tables 3 and 4 summarize how to distinguish the 50 degree 8 groups. For each
proup ¢/, we mdicate orthit-length partitions for a set £ of resolvent polynomials.
I 11 is another group, of the same parity as G, such that G and II have the
sarme othit-length partition for cach resolvent in ¥, then G and Il have the same
partition for all resolvents. Morcover, no proper subset of & has this property; ¥ is

minimal. The tables also show whether it is necessary to find the Galois groups of

—_
tesolvent factors or factor them over A(V'A).
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Group Orbit-Length Partition Galois Groups ol
(G C As) 2 3 4 2 Resolvent Factors
sct sct set 50| (sce Table 2)
(Z, x T+ | 4% | & o
(2°)* 47
D} 458
¥ 4,8 87
Gt, 438% | 83162
G 4316 | 8°162
G, 4,8 | 8162
SL(2,3)* 4,24 | 8,24?
(Zy x Ag)* 2,6%8,242 Needed
ST 2,6%8,12%224
Gt 8332
G%, 8, 16,32 Needed
Gt.. 4,8,16 | 8332
Gt, 4,8 | 8°32
‘able 3: Distinguishing degree 8 Galois groups - (/ C Ay
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Giroup Orbit-Length Partition Galois Groups of
(G2 As) 213 1 2 Resolvent Factors
set | set set seq (see Table 2)

(Zy x Sy)* 2,628,242 Needed
(2*.2,)F 14, 56 Needed
Gt 8,16, 32 Needed
G 8,48 Needed
G 2,12,24,32 Neceded
(it 2, 12332
(2°.(Z7.23))* 14,56 Needed
L{2,7)* 14242

H 8,48 Needed
(o 2,12, 24,32 Needed
Gl 2,32,36 Needed

B 2,32,36 Needed
(22.1(3,2)* 14, 56 Needed
AL 0

Table 3: (continued) Distinguishing degree 8 Galois groups - G C As
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Group Orbit-Length Partition Factotization

(G Z As) 2 3 1 2 over F(v'\)
sct sct set seq (see Table 1)

Zs 57 o

G16a 4,8 8162

Gieb 8°16*

Ghee 4,8,16 | 8°16? 8, 16*

Gaga 8,16°

Gz 4,8,16 | 8332 Needed

Gsac 8732

G324 4,8 8332 Needed

Gas 4,24 8,242

Geia 8,16,32 8,16, 32 Needed

Gow 4,816 | 832 Needed

Glote 8,16,32 8,16,32 Needed

Gad 8,16,32 8,16, 32 Needed

Glsae 4,8 8332 Needed

Gias 8,16, 32 8,16, 32 Needed

CGli92q 24,32

Ghoz 24,32

PGL(2,7) 28,42

Giaga 24,32

Gsze 12,16 Needed

Glis2 12,16 Needed

Ss 70

Table 4: Distinguishing degree 8 Galols groups -
32
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3 An Implementation of the Degree 8 Algorithm

The algorithm of the previous section has been implemented in the MAPLE V [CGG]
language. The curent program extends MAPLIS code written by Ron Sommcling
to find Galois groups of rational polynomials of degree up to 7 using the ideas out-
lined in [SM]. The polynomials (of all degrees up to 8) may now be defined over a
function field of the form Q(4y,...,¢;) where &y,...,t are transcendental over Q.

We describe some aspects of the implementation.

3.1 Discriminant and Shapes. Iixpressing the algorithm in a symbolic algebra
langnage such as MAPLE is sitaightforward. For example, discrun(f,z) finds the
discimminant of a polynomial f(r). The command Faclor(f) mod p, which factors f
over K, (for p prime), can be used to generate shapes. According to Corollary 1.3.8,
we can find shapesin Gal(f) by factoring f modulo maximal ideals. We use ideals
in Z{t, ... L] ol the form p = (p, 8y —ay, ..., l. — a.) where pyay,...,a, € Z and
pis prime. Then Z{ty, ..., :]/p = Zp is a field and so p is maximal. To factor
[ ¢ Q. ..., 1) modulo p we first ‘specialize’ f to f* € Z[z] by substituting a,
for ¢, and then factor f* mod p. In particular, if the base field is Q, we simply
factor mod p.

However, in order to apply the proposition, we must ensure that [ has no re-
peated toots m Zy, .., 4,]/p. Cousequently, we do not attempt to factor f mod
p il the disaiminant or leading coeflictent of f is zero modulo p.

Although generating shapes is rather casy, they will not determine Gal(f) unless
s Ay ot S The question then arises as to how many shapes should be generated
before moving on to other techniques. In our program, we continue generating shapes

until the following three conditions all obtain.
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e The sct C of candidate Galois groups remains stable alter computing, shapes

for 16 consccutive primes.

e C contains an clement 4 such that ¥, C Y, forall ¢ in (" where N, s the set

of shapes of c.
e All shapes of 4 have been observed.

The first condition is motivated by the Clebotarev density theotem Let N, he
the sct of shapes occurring in group G. If (¢ and 7y are degree 8 groups of sumla
parity such that Xg, is a proper subset of Y¢,, then the clements with shapes i
Y2 = X, \ Y, make up at least 1/16th of (5. So, by Cebotarey’s theorem, il
Gal(f) = G, we expect a shape in Xz to occur amongst the 16 consecutive primes
and hence allow us to eliminate (fy as a candidate.

The advantage of the sccond condition is dear, 1l there s no mmmnal group,
then, continuing, we will eventually be able to elimmate some candidates when we
find a shape they lack. The third condition gives us Turther conhidence that 5 o
fact the Galois group and therefere there is nothing to be gamed by sencrating more
shapes. (Il Ygis) € Ye, then we can never eliminate €7 as o candidate by teatng
shapes.) Note however that we needn’t expliatly danonstiate all shapes of 4 (by
factoring modulo maximal ideals), if we find a shape corvesponding to the element
z, then we know that the shapes of all powers of o will also ocon

As further evidence for the validity of our stopping cnitena, we note that, with
one single exception, X = Ygsy, for the polynonnals of Tables 6 and 7. 'The
exceptional case is f = 2® —2® — 3u% +4 (Gal(f) = (L ). In order to select the
correct «y in this case, we would need to extend the first condition to require stabalhi,

under 26 consccutive primes.
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3.2 Construction of Resolvents. The r-set (r = 2,3,4) resolvents may be
constructed as having roots which are either the sum or the product of r-sets of
roots of the onginal polynomial. Casperson and McKay [CM1] have demonstrated
cflicient methods for both of these cases. It appears to be faster to construct the

tesolvent, using products, For example, on a SPARC station 2, the 3-set resolvent of
[ =841z + T2* — 142° + 40 + 14

(Gal(J) = (2*.1L(3,2))*) was constructed in two ways. Using sums of roots took 20
scconds of CPU while products required less than 3 seconds. On the other hand,
products tend to give a polynomal with larger coeflicients since the roots of the
resolvent are of homogencous weight r in the roots of the original polynomial as
opposed to weight one in the case of sums. Such a polynomial is therefore more
dithcult to factor  In the case of the resolvents just mentioned, it took twice as long
to factor the products polynomial as compared to the sums polynomial; 15 versus 8
seconds of CPUL For the 2-set and 3-set resolvents we use the product construction.

To constinct the tset polynomial of a degree 8 polynomial f, we make use of
the following observation of Soicher and McKay [SM]: When I2(F, f) is a resolvent
such that £°7 = —F' for some o € S, (n=09f), then R(F?, [)(z*) = R(F, f)(z). In
particular, let

F=r+r,+r34+24—25—26— 27—y

(»o that (I f) is the 4-difl resolvent of Table 2). By making an appropriate
Tschunhaus transformation we can ensure that the sum of the roots of f is 0.
But then we see that B, f) s the 4 -set resolvent. (Actually the roots have been
doubled, but this is again just a Tschirnhaus transformation.) So by constructing the
by -set esolvent in this way, we find that we have in fact constructed R(F?, f)(z?).

To factor the resohvent, we fist factor R(#72, f)(z). This polynomial has half

the degree of the 4y -set 1esolvent and therefore is much casier to factor. This gives
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a partial factorization of R(F?, f)(2?) or, cquivalently, the 1y -set tesolvent, By
examining the possible orbit-length partitions which may arise under a degree 8
transitive group (sec Table 12), we sce that the only factors of the tp-set resolvent
which may be further reduced after the initial partial factorization, are those of
degree 16, 32 and 48. To complete the factorization, we factor any factors of these
degrees.

The method used to construct the 2-sequence resolvent is similar to that out
lined by Casperson and McKay [CM1] for the r-set resolvents. We represent the
2-scquence resolvent as Ry, = R(zy + 224, f). To construct R, it suflices to
demonstrate how the power-sum symmetric functions of RK,, depend on those of
[ the cocfficients of a polynomial are simply related to these synmumetiic funcetions

(sce [CM1]). For f a polynomial of degree n with roots ay,...,q, let
Pi(f) =)o
1=1
Proposition 3.2.1

k k
Pi(Ras) = ) 2 (P)Pe-i)) = Pul])), k21,

Proof. Let ay,...,as be the roots of f. The roots of I8y, arc then

{a, + 20,]i # j,1< 4,7 <8}. So,

Pe(Ras) = > Y (an+20,)F



k k 8 8 8

= Z?l (ZafZaf" - ) of

=0 1=1 1=1 =1
k

=52 (0 ) erpan - pian)

{=0

3.3 Factorization over k(v/A). To distinguish between certain groups not con-
tained in Ag, we use factorization over k(v/A), where A is the discriminant of the
input polynomial f. We can avoid working over an extension field using a technique
of Svicher [S1, p.31]. To sce whether the polynomial g is irreducible over k(vVA),
we constiuct the polynomial ga with roots 8, + VA where the 8, run through the
roots of ¢ (so dga = 20g). Then ga € k[z] and g is irreducible . ver k(vA) iff ga

is itreducible over k. The polynomial ga may be constructed as a resultant:

ga(y) = resultant(g(z),(z —y)* - A)

It is convenient, to use §, the square-free part of A, in place of A in the construction;
the polynomial gg is irreducible iff ga is irreducible and the former will have smaller

cocflicients and hence be easier to factor.

3.4 Distinguishing (1924, Gi92 and Gagg. In the current implementation, to
improve performance, we use methods slightly different from those outlined above
to distingnish among G192, Grozs and Gagq. As indicated in Table 2, these groups
may be identified by finding the Galeis group of the degree 8 factor g of the 4-diff
tesolvent For example, if we have narrowed the list of candidates for Gal(f) down
to (Haze and gy then we know that Gal(g) is cither G, or GY,,,. Again, by

rcferring to Table 2 we see that Gal(g) is determined by the Galois group of A, the
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degree 6 factor of the 4-diff resolvent of g; the process of finding the Galois group
of a resolvent factor is repeated.

We can avoid repeated construction of Galois groups of resolvent factors as fol-
lows. First G192, may be identified by finding the Galois gioup of ¢, the degiee
4 factor of the 2-set resolvent. If Gal(f) = Ghyre then Gal(y) = Ay Otherwise,
Gal(g) = S4. To distinguish between Ghgay and Gligy we use the degree 6 factor of
the 4-set resolvent. This polynomial, g, can also be construdted as the 2 set resol
vent of the degree 4 factor of the 2-set resolvent of f (and this s faster unless the
4-sct resolvent is alrcady available from previous calculations since the degrees of
the resolvents used are smaller). The 3-set tesolvent of ¢ has an irreducible factor
h of degree 12. If Gal(f) = Gigzs (respectively (Faay), then B factors (tespectively s
irreducible) over k(VA), where A is the discriminant of f.
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4 Avenues for Further Exploration

In ‘Table 5 we give some statistics on the CPU use of the implementation discussed
in the previous section.  In particular, we have included data on the time spent
factoring polynomials and testing polynomials for imprimitivity.

The imprimitivity algorithim (see Section 1.4) tests pairs of roots in an effort
Lo constiuet a decomposition f | goh. The algorithm will only be able to find
such a decomposition if the pair is in the same block of imprimitivity. Ilence, the
perfonmance of the algonthm depends on which root pairs are examined. In the
tables we have mdicaved statistics for the best case, in which the first pair of roots
tested yields a decomposition, and the worst case, in which as many bad choices of
tool paits as possible is made before hitting on one which yields a decomposition.
(Il there is o system of imprimitivity with blocks of size m, then we can be sure
that a pant in the same block occurs amongst the first n— m 41 pairs. However,
since the algorithim sometimes misses decompositions, the worst case may be to
nnsuccessfully test all 7 paits even when the polynomial is imprimitive.) The data
for the polynomial factonization is taken with respect to the best case.

In the worst case, polynomial factorization and the imprimitivity algorithm ac-
count for 71% ol the CPU used in calculating the fifty Galois groups. Even in the
best case, the percentage is H8%. Improving either of the two processes would be a

good way to improve our algorithm.

4.1 Improving Polynomial Factorization. Thcre arc several ways in which
we may speed up polynomial factorization. By finding shapes in the Galois group,
we have a good idea of what it is before we examine resolvents. As Casperson and
MeRay [CMI] have discussed, we can use this knowledge to construct factors of the

1esohvent
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Group CPU Used Polynomial llll[)l;;;i—l‘i_\;l‘\ '
(scconds) Factorization (%) Algotithm (9%)

Best  Worst Best Worst

Zs 10.3 40.7 28.1 ;;;_ o \H
(Zo x Z,)*  46.5 105.7 66.5 232 66 2
(23)* 8.9 317 58.5 15.3 80.0
D} 13.3 133 10.7 70.6 70.6
Q¥ 58.4  86.1 83.8 2.3 337
Gi6a 5.2  61.2 18.1 355 915
Glieb 13.7 42.6 44.2 10.1 7.3
G6c 18.3  67.1 51.9 10.6 iH 6
Gt 43.8 526 6.2 8% 2 0.2
G, 50.9 113.8 80.6 1.3 5T 2
Glec 73.2 829 87.5 2.1 138
SL(2,3)* 96.5  625.9 87.5 2.5 85.0
(Zo x At 216 99.9 8.5 79.6 91.1
S 202.2  369.1 7.9 5.7 205 1
G324 78.5  143.0 86.0 3.5 470
Gz 22.8 1476 51.5 0.3 86 ()
Gaze 16.6  45.0 27.8 187 700

Table 5: Statistics on CPU usage and percentage of Lime spent factoring polynounal-,
and testing them for imprimitivity - Data from a MAPLE V unplementation ron on

a SPARC station 2 using polynomials of Tables 6 and 7 as input,
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Giroup CPU Used Polynomial Imprimitivity
(scconds)  Factorization (%) Algorithm (%)
Best  Worst Best Worst

. 205.7  248.5 89.4 63 225 |
Gl 3.0 70,0 43.6 418 718
(L, 1479  267.6 56.1. 37.9 65.7
(V334 32.1 32.1 29.0 60.4 60.4
ey 169.8  288.5 55.5 38.9  64.0
(i1 116.5  295.5 91.7 1.7 61.2
(Zy x Sq)t 21.6 92.0 11.9 76.3 94.4
(21.Z7)t 2278 2218 3.9 0.0 0.0
(/o 1a 10.0 10.0 41.5 15.9 15.9
Glotb 32.0 91.6 51.1 24.6 73.6
(l61c 14.1 86.5 13.1 63.8 94.1
(i 35.1 90.8 34.1 50.1 80.7
(644 434.6  499.1 85.0 12.6 23.9
(lote 158  15.8 39.2 34.5 34.5
(e 69.3 169.4 83.1 3.4 60.5
" 2383 238.3 75 31.2 31.2
(i 389.6  389.6 9.0 30.6 30.6

Table 5: (continued)
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Group CPU Used Polynomial Imprmutivity

(seconds)  Factorization (%)  Algorithm (96)

Best  Worst Best Worst

Gizs 23.1 712 8.3 T ans
(2.(27.23))t 2166 216.6 8.6 0.0 0.0
L2, 7t 221.7 2217 8.3 00 00
G920 102 958 45.0 25.0 92
G 4.1 865 3.6 H8.5 98 0
Goz 151 9L1 15.5 15.1 859
G 289.1  289.1 3.7 71.3 713
G 1319 1319 4.7 80.6 80.6
FGI(2,7) 218.3 218.3 3.7 0.0 0.0
Gss 3.7 972 2.3 6.1 98.8
G 21.6 1294 1.3 92.5 93.3
Gse 319 100.3 19.5 71.1 91 1
Gz 2.1 96.1 0.5 94.6 98 8
(23.L(3,2))* 1011 1011 4.4 0.0 0.0
At 0.6 0.6 16.7 0.0 00
Ss 0.6 0.6 24.3 0.0 00

Table 5: (continued)
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It is often not necessary to find a complete factorization of the resolvent polyno-
mtal. For example, if we are going to distinguish groups by forming the Galois group
of a certain Tactor of the resolvent, it suflices to find that factor. Some symbolic alge-
bra programs have factonzation routines which only look for factors of given degree
(c.g. PART[BBCO]). MAPLE V does not.

The most tine consnmng part of the standard Zassenhaus [7] factorization al-
eotithin s tecombination of modular factors after Hensel lifting; i the absence of
other mformation 1t s necessary to try multiplying all possible combinations of the
modular factors together and testing if the result is a factor of the original polyno-
mial. But since we know what orbit-length partitions may occur, we can speed this
up by rejecting those combinations of modular factors whose degree is inconsistent
vath any of the possible partitions.

Morcover, because our 1esolvents are derived from degree 8 polynomials, their
modular factors will be relatively small. Note that the elements of largest order
which occur amongst the degiee 8 Galois groups have order 15, corresponding to the
shape 3,5, Simce the factors of resolvents have Galois groups which arc quotients
of the original degree 8 group (sce Proposition 1.5.10), these groups will also have
clements of order not exceeding 15. But then, since the factorization of the resolvent
lactor modulo a prime represents the shape of an clement in the Galois group, we
see that the modualar factors can never exceed degree 15.

So the Zassenhaus method s a poor choice for the situation of factoring resolvents
dernved from degree 8 polynomials; there will be many modular factors of relatively
small degree (< 15) to be recombined. It may be worthwhile to investigate other
approaches to polynomial factorization such as that proposed by Lenstira, Lenstra
and Lovasz [LLL]  Unhke the Zassenhaus algorithm, which is exponential in the
worst case, the LLL algorithm is polynomial.

The LLL algotithm begins with a low-degree factor h € Z(,,)[z] (where Z,) is the
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p-adic integers) of f with cocflicients accurate modulo ¢ = p™ (for m *sufliciently’
large). Such a factor may be found using Berlekamp's algorithm with Hensel lifting.
g g I 8 L

From h, we construct the Z-lattice
0,9, 92%, ..., qz* 7 h(z),zh(x), 22h(r),... " F! h.r)

where n = 0f, k = Oh. If h | hy for ho € Z[r], then Dy is i the lattice. Iy
divides f, then the coeflicients of Ay are relatively small. So flinding by corresponds
to looking for a short vector in the lattice. This process is repeated to gencrate all

irreducible factors of f.

4.2 Improving the Imprimitivity Algorithm. 'Theie is also some possibility
of making better use of the imprimitivity algorithm of Casperson and McKay [CM2]
It would be useful to get a bound on the coeflicients of h. In particular, we have a
bound if we know [ = goh so conditions under which f | goh mnplies [ gol are
worth investigating. If such a bound were available, then we could be sure that il no
decomposition [ | goh is found (with coeflicients of & less than the bound), then
none exists. Such a negative iesult could be used to prove primitivity  We conld
also test for the different block sizes; given a bound for the cocflicients of I, the
imprimitivity algorithm 1s definitive.

In our implementation, the use of the LLI algorithun to (ind the Z-lincar de-
pendence determining the coefficients of A (see Section 1.4) accounts for most of
the CPU used in testing impiimitivity. For example, in the worst case of Table 5
(Gal(f) = SL(2,3)%), the imprimitivity algorithm uses 532 CPU seconds; 83% of
this time is consumed by the LLL algotithm. So efliciency of the algonthin depends
on a good implementation of LLL.

We compared the MAPLE V [CGG] and PARI 1.36 [BBCO] unplementations
of LLL on a SUN 3/50 for the case of SL(2,3)*. In PARI, LLL takes 10 seconds
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of CPU if real arithretic is used, and 1500 seconds for rational arithmetic. Al
though the two versions came up with the same result in this case, in general, the
real arithmetic version 1s ‘numerically unstable’ (see [BBCO, p.30]). The MAPLE
inplementation requires 2040 seconds of CPU and uses rational arithmetic.

LLLL 15 used for basis reduction in a lattice generated by differences of powers of a
pait of 1ools (sce Section 1.4). The vectors used in the computation become smaller
when a pair of real 1oots are used since these differences ate then real (we may drop
the imaginary component of the vector). So the calculation will be faster for pairs
of 1eal 1oots. It may be advantageous to first test all real pairs before proceeding to
any nnaginary roots

It 1s evident from the data in the tables that the worst case for the imprimitivity
algorithm can be much worse than the best case. Over the 50 groups, the percentage
of time used increases from 23% to 50%. So it would be uscful to develop a means of
quickly testing whether a given pair of roots might lead to a decomposition; one can
waste a lot of time trying to get a decomposition from a pair of roots which are not
in the same blodk of miprimitivity and hence can never result in a decomposition.
Fven a test which sometimes labels good pairs as bad may be worthwhile; a big
saving of time in the worst case scenario might be worth a small increase in the best
case. Inany event, we do not rely on imprimitivity to identify the groups so it is
not. critical if we lose some accuracy in exchange for speeding the algorithm up.

A decomposition f | goh also gives information about certain subficlds of the
sphiting field of f. Let f be an imprimitive polynomial of degree n with splitting
lield A" such that the roots {ay,...,a;} are representatives of the ! blocks of im-
pinntivity., Then cach /3, = h(a,) is a root of g. Let Il C Gali(f) be the subgroup

ol automorphisms which fix the blocks. Then H fixes each £, and conscquently, by



the fundamental theorem of Galois theory,
K%' = kB) = k(B) =...= k).

So the decomposition f | gok implies the existence of a field k() such that
[k(B) : k] =1.

If the “improper” decompositions of the set of roots into one block of size 1 and
n blocks of size onc are included, then the systems of imprimitivity of a group define
a lattice L. To cach system of imprimitivity with { blocks we may assocrate a field
k(B) with [k(B) : k] = . The lattice operations then cortespond to the intersection
and compositum of the corresponding fields. In this way L determines part of the
lattice of subficlds of K over k. But L is an invariant of Guly(f) and so the resulting,

subfield structure may also be used to help identify the Galois group.

4.3 Small Degree Resolvents. Another means of potentially improving our
technique arises from the idea of a polynonnal belonging to a group (sce Delim
tion 2.1.1). It is not difficult to sce that every group (/€ S, has a polynomial
belonging to it. For example let #*(zy,...,0) = rjad, oo ok Phen D o(1°)
belongs to GG. Generally there are many polynomials belonging Lo a given gronp (.
If 7 belongs to G, then OR(E, f) = |S, : ]. This gives us a method lor con-
b Y b !‘)
structing new resolvents of small degree; find a large subgroup and take a polynomial
belonging to it. Tor example, a resolvent associated with (2% L(3,2))F has degree
|Ss : (22.L(3,2))*| = 30. In Appendix C we show how such a 1esolvent can be ised
to distinguish G, fiom G
There remains however the question of how to construct these resolvents. I
k = Q, we could use complex approximations to the roots. But, as mentioned in

Section 2 1.1, there are certain disadvantages to this approach. It is preferable to

take advantage of the cocfficients of the resolvent being polynormals i the coeffi-

46



cients of [ (see Section 1.5). Although we know of no casy way to find these poly-
nomials, it is worth noting that we need only to do it once; once we have expressed
the coeflicients of the resolvent in terms of those of f, constructing the resolvent is
simply a matter of evaluating the polynomials.

As mentioned, one bottleneck in our method lies in factoring the r-set and
2-sequence resolvents The degrees of these resolvents increase with df so that they
are more diflicult to factor; consequently, using polynomials belonging to groups to

genetate small degree resolvents becomes more attractive as df increascs.
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A Rational Polynomials With Given Galois Groups

Tables 6 and 7 give, for each transitive subgioup ¢ of Sg, a tational polynonual f
such that Galq(f) = (. In the tables, ¢¢ denotes a pumitive Ath oot of unity
Many of these polynomials were suggested to us in catlier work by Darmon [D] T
Section A.2 we indicate how they were derived. Examples fon SL(2,800, L2, 6!
and PGL(2,7) are drawn from [HK] and [M]. In [S2], Soicher gives a polynonnal
for (2°.L(3,2))* and mentions that the same method may be used for (28.7:)' and
(2°(Z+.23))*. We discuss this method and how it may be extended 1o detive poly
nomials for G, and Gg. in Section A.3. The remaining polynomials were found
by computer scarching. We were guided in our searches by Soicher [S1, pp 85 87] In

particular, we uscd his ideas for gencrating polynomials with squate disconmmant,
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~-(~;~Hmp - f(z) Remarks
(€0 T Ay)
(2o o Tt | ot At 4822416 | spl(f) = Q(Csy V) [D]
(29)¢ | 20 4 2320 — 1202 41 spl(f) = Q(V2,V3,V5) [D]
;)} oAt + 8zt + 422 + 1 spl(f) = spl(z® —4) [D]
OF | 210 1440t — 28822 4 144 | spl(f) =
QV2,V3,1/(2+ V2)(3 +V3)) (D]
oo & — 10" + 1 f =TIz + V+v2 £ V3) [D]
ey B3 p 9~ 1222416 | =[]« = iz — 2) [D]
H}lﬁl’,_t 81821+ 9 spl(f) = normal closure of
Q(V12 + 7v6 + 12V2 + 7V3) [D]
;AI,(;),:;)*‘ o890 4 230t 4+ 12?41 (K]
(Z., ~ Ayt 24200t 4+ 6122 4+ 141 spl(f) = Q(rts(zt + 8z + 12),7)
MSA,* “ B4 1500t — 50002 4+ 5625 spl(f) = spl(z' + 2z + 3)
(m{_, o 84 0
(TI—_,,, of = et 4 120t - 82 + 4 (D]
Y A N A (R LI | [=(z*+1)' - 5(z? + 1)+ 5 [D]
_(.'_{,,, 8 — 2804 4100 f=Tl? - (£2v3 £ V2)) [D]

Table 6: Rational polynomials with degree 8 Galois groups - G C As
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Group f(z) Remarks
(G C As)
(Zy x Sq)t 8 — 41?2 4+ 4 o -
(28.Z,)* 8 — 27 + 225 4 22° + Tt See }l(‘(()ll\])(lll;’i:l;;_;,;-:.‘-( l—
3 + 402+ 30+ 5

GE, a8+ 4x® + 7ot + 607 + 4 Gal(at + 4o 4 To? (i.; 4 1) i I)i, [D]
Gisa 2® — 2% — 3x? 44 -
G, 28 — dz” — 8u° + 240° + 3621 See “‘“'—- -

—2423 — 482% + 48z — 12
G 28 — 62°% — 42® + 242% — 2807 + 18 | See text o

(28.(2,.Z3))*

28 + 257 + 282° + 842% + 22421
439223 — 336z + 112

See text

L(2,7)* 8 + 227 + 282° + 1728z 4 3156 | [M]
Glone ® + 2t + 1 T
Gl 84+ 162" + 1627 + 8 o

G'hss P4 T2 485 4 9 e

G & 825 — 845 + 8 ———

(PLE,2) | P 4T M e |52

"l

2® 4+ 822 + 10

Table 6: (continued) Rational polynomials with degree 8 Galois groups -
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Group J(z) Remarks
(G L Ag)
Zy 2® — 682° 4 918z — 61222 4+ 17 | spl(f) = Q(ir + (7') (D]
(1o 8 — 821 — 9 [=(z'— (2'/1 + 23/4)2)x
(z* +(2'/* = 2¥%)?) [D]
G of = 2005 4+ 1002% — 16022 + 80 | [ = [],cz, (2* — o(a + 2\/a/2 + 2,/B[2))
a=5+V5, f=5—5[D]
Croe 2# -2 (]
(F324 28 — 162 — 98 f= ("= (21 4+ 2(2)*)?) x
(z* +(2/* —2(2)>/*)?) D]
(fymp 8 =5 +5 Gal(z" — 5z* 4+ 5) = Z4 [D]
({42, £8 4221 42
G Y8t 3t 6022 445 | f = (22 4+ 2)" 4+ T(a® +2)2 4+ 4 [D]
(4a o — e — 44
(loaa 2t 4+2 Gal(z' + 2% +2) = D4 [D]
Clot 284 40% + 100 + 1222+ 7 Gal(z* + 423 + 1022 + 122 + 7) = Zy [D)

Table 7: Rational polynomials with degree 8 Galois groups - G € Asg
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Group f(=) Remarks _
(G € As) L
Geac 28+ 428 + 8z + 822 + 2 | Gal(a! + 4 + 80% 4 8u 4+ 2) = Dy [D]
Gead 8 — 425 4+ 42 — 2 o i
Geae B+ 48+ Tzt + 622 +6 | Gal(a* + 107 To? |- G b6) = \’4" (D]
Gias 2® 4+ 42% + Tt + 622 + 5 | Gal(a? + 4+ T + 6o M) 7)‘[| )>]
G192 284 8x2 412 o
G920 22+ 1202~ 9 o
PGL(2,0) | a®42"+ T84+ +1 | [M] -
Gis a¥+ 2?42 )
Gs76 8 —dz® + 2t — 4 #
+22% + 4z + 2
Gise a8+ 42° + 8 -
Ss + 42 o

Table 7: (continued) Rational polynomials with degree 8 Galois groups (/¢ Ay




A.1  Polynomials of the form f(z?). Notice that if f = f(2?) then Gal(f)
has a system of imprimitivity with blocks of size 2 (sce Section 1.4). Conversely,
given [ such that Gal(f) is imprimitive with blocks of size 2, we can construct f
with _(/'ul(f) = Gal(f) and such that f= f(xz) For let f be such a polynomial,
) = 2u. 'Then by Proposition 1.4.2 there are ¢ and h such that f | goh
with ¢ nreducible and d¢g = n. Roots @, and a; of f aie in the same block iff
h(ev,) = h(er,) (sce proof of Proposition 1.4.2). We may order the roots such that
h(ag) = I{og-r).
Let,

J =TI - (e = az-1)?).

1=1

(If [ is 1educible, apply a Tschirnhaus transformation to the original f. Alterna-

tively, choose [ € A[«] and let 4, = (a, — ag,—1)l(h(az)). Then [ =[], (z? = 42)
will also work provided it is irreducible.)

Fvidently f = f(o?) and spl(f) C spl(f). By the fundamental theorem of Galois

theory (see also Proposition 1.5.10), Gal(f) is a representation of Gal(f) acting on
res(f) = {£(e2 — ag-1) |i=1,...,n}.

[t suflices to show that the representation is faithful. Suppose a o € Gal(f) acts as
the identity on rts(f). Since f is constructed to be irreducible and char(k) =0, the
tools are distinct. Hence o fixes cach of the blocks. On the other hand o also fixes
the two elements within cach block for otherwise it interchanges the roots ay, — ag,-1
and ag-y — ay of f Thus o is the identity of Gel(f) and the representation is
faithlul.

Note that f may also be constructed as a resultant. Let 1 = h(a1) be a root

of ¢g. Let ¢ be the minimal polynomial of a; over k(3;). Then
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0 = [k(au) : k(B1)]
= [k(ar) : k]/[k(B1) : 4]
= 0f/0g
= 2u/n =2

Since B1 = h(a1) = h(ag), the roots @y and ay of f are conjugate over k(). Of
course o is one root of ¢; the other must be «y. Heneo Lhe disceriminant of ¢ s
Ay = (a1 — @2)%. Since Ay € k(B1), it may be written as a function of #; and we

can construct the resultant

n

resullantm(m2 - A;,g(ﬁ,)) = f = H(:ﬁ —(ay —an 1)),

=1

(Again, if the resultant is reducible, apply a Tschitnhans transformation to [ )
For cach of the 36 degree 8 groups with a system of imprimnitivity consistang, ol
blocks of size 2 the example in the tables is of the form f(r%). The remarks for these

examples indicate other methods for obtaining polynomials of the lorm [ - f(r*
p g poly

A.2 Additional Remarks on the Derivation of the Polynomials. We have
given some indication of the derivation of the polynomials in remarks in the tables.

However, more details are in order in several cases:

(Z2 X Z4)+
Let g be the polynomial with roots ¢ +£v2, ¢ = 1,. ., 4. The cxample [
of Table 6 is derived from ¢ via the smallpolred command of PART [BBCO].
(This command performs Tschirnhaus transformations on a polynomial 1 an

attempt to find a new polynomial with smaller coellicients and the samme <pht,

ting field.)



(2*)!
Let g = [[(z+V2+ V3£ Vv/5). The example f of Table 6 is derived from g

using smallpolred.

D}
Note that Gal(z* — 2) = Dy. llence, R(z1 + 2z3,z* — 2) (the 2-sequence
resolvent) has a factor ¢ of degree 8. The example f of Table 6 is derived

fiom ¢ by smallpolred.

()}

UK

[ =Tl £ /2 £ VDB £ V3))
o
With the generators of Table 10, Gy, acts on the system
{Gi+Dl=1,...,4}

as the Klein Vierergruppe Vy. Thercfore, an extension of Q(v/2,v/3) was

sought. The extension Q(v2,v/3,4, Vv2 + v/3) has degree 16.

(;ﬁm
Since (F, acts as Z,4 on the system of imprimitivity {(12),(34),(56),(78)},
we are lead to an extension of Q((s).

N

{6
Since (7). acts as Vy on its system of imprimitivity, we seck an extension of
Q(v2,v3). The notmal closure of Q(\/I‘Z +7V6 + 122 + 7v/3) has degree

16. The polynomial f given in Table 6 is derived by smallpolred from

g= 11 (22 = o(12+ 7V6 + 12v2 + TV3)).
0€6(Q(VIVE)/Q)




(Z2 X -A4)+

The polynomial has roots {ai,—caila € rits(c* + 8¢+ 12)}. Note that the

Galois group of z* + 8z +12 is A,.

Si
Let g =2* +2z 4+ 3. Then Gal(g) = Sy and ¢ has discriminant X - 5(36)*.
The polynomial f of Table 6 has roots {£v5Ha |a € rts(g)}.
G
Let ay,...,ag bethe roots of f with a? = a2, af = o3, ol =02 and o} - o}
Let B,=a?,i=1,...,4. Let
T = (@03 + ajaq)(asar + ag0g)
To = (03(14 + al(Yg)((Ys(Y7 -+ ()(,(IH)
T3 = (aear + asag)(ayog + a0y)
Tqg = ((1506 + (Y7()’5)((Y1(Y_; + ”3”4)
Then using the representation given by Table 10, (if acts as 1)y on the /4,
and as V4 on the 7,.
Zg

Let g be the polynomial with roots (}; + (7, t = 1,...,8 (50 that Gal(y)

Zg). The 34-sct resolvent of g has a factor
h(z) = 2® + 427 —102® — M2® — 2" + 742" + 6102 4 16, 1 )

The polynomial of Table 7is 256h((z — 1)/2).



({16
For the polynomial with roots £ /£(a21/4 + 623/4), £1/%(ai2"/4 — 0:23/1), let
61, 65 be the roots Va2l/4 4523/ and Vai2!/4 — 1:23/1, Then

6162 = \/17\4/2-\/(12 - 21)2
= ((1 +1)/V2)V2Va? = 202

So, we want 1o choose a,b such that v/a? —2b2 € Q(i,+/2). The polynomial

in the table corresponds to the choice a = b=1.

("l(:b
Note that G(Q(¢s)/Q) = Zs. But Q(¢s5) = Q(V/5+ v/5). This explains how
o € 2y acts on a+2y/a/2+2./B/2 (a, 8 =5 £ V5).

'
(' 16¢

See Ghge above. For this polynornial we take a = 1,0 = 0.

1
(l 32a

Similar to (714, above. In this case we choose a, b such that a* — 2% is not
a square in spl(e? —2). The example given corresponds to the choice a = 1,

bh=2.

(".L!b
Note that (Yay acts as Z4 on its 24 system of imprimitivity. The polynomial
=501+ 5 is a good candidate since Gal(z! — 522 4 5) = Z,; and the product

of ils roots is a square in Q(v5) = Q(VA) (A is the discriminant).

v v Y Y Y
Gotas Gowy Gotey Gotey Gras

For these groups we again use the §; and 7, dcfined for G, above.
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Group Actionon 8, Actionon 7,

Gé4a Dy D,
Geab Z, D,
Geac Dy 7y
Gese Vi Dy
Gi2s Dy Dy

A.3 Generalizations of Soicher’s Method for (2°.L(3,2))*. We begin by te
pcating Soicher’s [S2] construction of a polynomial with Galois group (2°.L(3,2))".
Let f=2"—72%4+142° =Tz +1 (Ga(f) = L(3,2)*). Under an appropriate labelling

of the roots ay,...,a7 of f,
Ga(f) =<(1,2,3,4,5,6,7),(1,3)(1,5) > .

Taking h(z) = f(x?) we may label the roots fi,..., 34 of h such that /4, = n‘l/“,
and Boicy = —Po (i =1,...,7). Then, Il = Gal(h) =< A, B,C>= 27.1(3,2) whete

A=(1,3,5,7,9,11,13)(2,4,6,8,10, 12, 1),

B =(1,5)(2,7)(7,9)(8,10), C = (1,2).

Let K =< A,B,D,E>=2%.L(3,2) be the subgroup of Il with generators A, 13
as above and

D = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14),
E = (1,2)(7,8)(11,12)(13,14).
Then, if we define
v =) PaBayPuPuli, gk, L € {1,4,6,7}9))

= Bo(1)Paa)Bae) P27y + Ba1)Pa(2)BayPais) + BeiryBuayPasyPazy + Bayfu oo

+ Ba2)Pa(3)P2(4) Py + Ba2)Ba)Pas)Paey + BagnyPasyPaeParys
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we see that staby(v) = K.
The images of v under Il are v, = ¥4 (i =1,...,7) and 75 =7. So using

ngh-precision approximations to the roots of f, we may construct

tz)=]J(z— )

and it Tollows from the method of construction that

Gal(t) = H/( [} PT'KP) = (2°.L(3,2))*.
Pel

The polynomials for (2°.27)7 and (23.(Z7.Z3))t may be gencrated in exactly
the same way except that we begin with polynomials f such that Gal(f) = Z7 and

2775 respectively. For (20.2Z7)% we take
J =27~ 132% - 272° + 2992* — 832 — 1132% — 6z + 1
and label the roots as
ap & —4.98, az = -0.14, az ~ —0.43, a4 = 0.07,

as = 0.84, ag = 4.25, a7 ~ 13.4.

(Although Soicher relates his 100t labelling to a specific permutation representation
of (20 L(3,2))", we found it casier to simply experiment with different labellings
until we find one which results in integer coeflicients for {(z). Once we have {(z),
we can check that Gal(t) = (28.Z7)% using the algorithm of Section 2.2.) We find

that
u(r) = ((20)/256 = o® + 312 + 120° + 4052 - 1022® — 9122 + 721z + 2063.

The polynomial reported in Table 6 is derived from u by the smallpolred command

ol PARL
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In the case of (2°.(Z7.Z;))*, we use
f=z"—282° + 22423 — 448¢ + 192
with roots
ay = 3.76, az = 3.41, az ~ 1.29, a4 ~ =2.10,
as & 048, ag =~ —2.80, ar =~ —3.98.

Then,
u(z) = t(4z)/4® = z° + 282° + 1122° + 294z 4+ 1568+ + 450802 + HY6Sr + 21553,

The polynomial given in the tables is constructed from w by smallpolrcd

We may use a similar technique to find polynomials for ¢/}, and ¢} . Let us
begin with G}, . This group can be written as 28.A4,. I we notice that (g
2. A4, then, in analogy with the (23.L(3,2))* case, we are led to look for subgroups
K of G924 of index 8 such that |nPeGma PYKP| =2,

Let

f=(@+1)P*+8(z+1)*+12
= 2% + 827 + 282% + 562° + 70x + 562" + 36.£% + 210 | 21

so that Gal(f) = Gg2.. To find an appropriate ordering of the roots, il is convement,
to usc Stauduhar’s [St1] method. In the notation of [St1], (f1gz, = (44, and although
different gencrators are given, the permutation representation of (74, is m fact that

of Table 10: G924 =<e,n,v> where
€= (11 7)(218)(3)5)(4a6),

n=(3,5,7)(4,6,8), v=(3,4).
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'I'hen, Lo fix a correct ordering of the roots ap,...,as of f, we must ensure that
A(evyong, cugarg, agog, arag) (that is, the discriminant of the polynomial with roots

vyery, ..., apay) is an integer. One such ordering is
ap & —2.35 + 0.68, az = 0.35 — 0.68:, a3 = &7, a4 = Gy,

ag =~ —1.27 — 1.201, ag = —0.73 + 1.202, a7 = &5, ag = Gs.

A suitable choice for K is (Zy x Ag)t represented as < A, B,C'> where
A=(1,6,8)(2,5,7), B=(3,8,6)(4,7,5),

C=(1, 5)(?'a 6)(37 7)(47 8)

An element 4 such that stabg 4, (7) = (Z2 x Ag)* is

Y = a10306 + ayazag + ayogas + aagas +

qQaa407 + 57 + Q3agag + Qu0507.

(We constructed v by looking at the orbit of {3,6,8} under the action of the group
(Z2 x Ag)F.)
The images of v under 2*.4; are 4, = 4°* (i = 1,...,8) where the &, are right

coset 1epresentatives (see page 14) of (Zz x A4)t in 24 A,:
(3,4), (5,6), (7,8), (3,4)(7,8), (3,4)(5,6), (3,4)(5,6)(7,8), (5,6)(7,8).

(Note that if we take o8 + 822 + 12 as the polynomial f, then we find that all the

v, are zeto. This is why we first make a Tschirnhaus transformation z +— z 4+ 1.)

8

=1(z — 1) using high-precision approximations to

Finally, we construct ¢ = ]

the roots of f. Taking

w(r) = {(8(x —1))/8® = 8 — 16¢° — 102z* + 6422 — 482 + 9
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we have,

Gal(u) = 22 Au/( [ P2 x ANP) =24, = G},
Pe2t. A,
The polynomial given in Table 6 is derived from w by the smallpolicd command ol

PARI

In the case of G¥,, we note that Gy, has a notmal subgioup NV of order 2
such that Gy, /N = G&.. So, again we look for a subgtoup A of mdex 8w (.,
such that ﬂpecifgza P7'KP = N. In Staudubar’s [St1] notation, (/},,, — G, and

his representation is the same as that of Table 10: (i}, =< ,n,s> where
J = (1,6)(2,5)(3, 7)(4,8),
n=(3,57)(4,6,8), s=(1,3)(21).
Let
f=2%— 102" 4 872° — 504z° + 1890z — 4536, + 680407 — 5832 § 2IN8T

with Gal(f) = Glys,. ([ is a Tschirnhaus transformation of +* + £% 4 1.) By
[St1], a correct labelling of the roots ay,...,ag of f, results in an integer value for

ajog + azay + ayo6 + azag. One such labelling is
ay & 0.30 4+ 6.26:, ap &= 1.43 — 0.35:, «; = @7, a4 = dj,
as ~ 1.60 + 1.14z, ag = 1.67 — 1.96i, a7 = @75, ag = @,
A suitable candidate for K is <A, B,C> where
A =(1,6,2,5)(3,7,4,8), B =(1,3,5)(21,6),
C =(1,7,2,8)(3,5,4,6).
Let

T = a0+ oy aqag + agagay + apeor

Q040 + Q508 + 3y + sy
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so that .slab(,.:, (v) = K. As before, we define 4, = 4 for a set {o1,...,08} of

la

coset, representatives of K in Gy, and construct ¢ = []%.,(z — 7,). Then

u(r) = 1(18(z +4))/18® = 28+ 642° — 162° + 1280z* — 5122° + 82562° — 2048z + 1728

has Galois group GF .

In fact, the polynomial of Table 6 is derived in a different way; it is a transfor-

mation (by smallpolred) of the degree 8 factor of the 4-diff resolvent of a polynomial

with Galois group Gig.
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B Polynomials over Q(t)

In Table 8 we present polynomials over Q(t) with sclected Galois groups.  Fx-
cept where otherwise noted, these polynomials wete all provided to us by Gene
Smith [Sm]. Note that we can always construct a polynomial over Q(f) with group
G simply by homogenizing a rational polynomial with that group. None ol the
polynomials in the table are of this form.

The table also reports CPU use by our MAPLE V implementation running on
a SPARC station 2. For those computations which took particularly long, the main
reason was the manipulation of a resolvent polynomial. We have included comments
indicating z-degree and percentage of time spent factoring o1 construeting such a
resolvent in these cases.

LaMacchia [I.M] has given an example of a polynomial with group 1751(3,2)"

over Q(¢1,12)
(z+1)(2® +2(1 —2¢))z® +2(4t; — D)z =4ty ) (2> — (14202 + 204 203) 4 0 (1 = v).

The program requires 6765.8 seconds of CPU to determine the Galois group, Most
of the time was spent on a 3y« -set resolvent {z-degree = 35); constiuction of the

resolvent required 79% of the total and factoring took 20%.
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- —

Croup f(z) € Q(¢)[z] CPU Used
(seconds)

Al 24tz + (- 3)z -1 0.2
S, 3 —tx+t [M] 0.4
A 2z —4) + (2 427 0.3
A 2+ 12° — 627 — 1z + 1 7.9
" 1)4” - (=1 + -3+ (1 +22-2)z* — (-1 +t> )z + 1 5.7
Sy gt —tz+t [M] 0.1
i /‘ 1 —100° — 40" — 512% — 254222 + 1543z + 306z — 1065z 289.0

+200e + &% = 102” + 5r? — 2501027 — 10t2% — 2532% — 10422
2805 4 2002 + 1565 + 102 + 10 + 3043 + 3521 — 104323
+507 — 5% — 101* 2% — 15082 — 30tz — 200%r — 204%22 — 30152

N} r(z— 5z +5)* -tz — 1)*(x + 3) 8.3
_'A,f x® + (12 — 3125) (2 —4) 1.9
7 7, 2P = 100t = 100507 — 100e? — 5822 — 510 — Bl — 12 —t =11 — 3 6.4
S | S~ te+ ¢ M) 0.3
r;l,*“m” 2Ot (= 3)et = ] 29.5
?;.1—/\’,)’ 1% — 4zt - ¢? 16.6
VAL #Me = 6)2 — (2 — 1024 23.1
;17 r°(r—6) —t* 4+ 3125 1.6

Table 8: Polynomials over Q(¢) with sclected Galois groups




cpu

Group f(z) € QO]

(sec)
Ds 28 4 ted + 1 | T: 0
Sal T4 (e(e =) + 2P —da(e— ) =5 | 1373
32.D, iz -1)2 -t 133
PGL(2,5) ®(r —4) —t(cr+1) _ IS:i..l~
Se 2% —tr 4+t [M] o 2.0
PSL(3,2)* 2(z - 1(x + 7 — (= 9)(r - 1)’ 616
Af x” — (£ + 823543)(« — 6) T
Z:.7 27 — 2102% — 35000 — 350250 — 3500 | 31044

351223 — 35L2% — 214322 — 2110t — 20 4.0?
~218%22 — 7% — T2 — Tr — Tt'r
iy Ly | gy — -

Sy 2" =tz 4+t [M] o
G 21 AT
PGL(2,7) (P 4+ T7)+t(r+1) (M] ] 16228 9

e® — 2427 + 21282° + 21842 — 665281
—286722% — 2430648x + 104976 — 878081 [MI]

z® — 827 + HT618011% + 823543 [M]

z® —tz + ¢ [M]

5600 3

07

1.6

Remarks

S1UO lactonmg

i, — 21 1esolvent

97% lactonmg,

d, - 35 resolvent,

99% constiucting,
), 0 resolvent

9% constructing

d, 10 1csolvent

Table 8: (continued) Polynomials over Q(t) with sclected Galos groups
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C Distinguishing G from G
We have mentioned in Section 4.3 that a resolvent derived from a polynomial be-
longing to (2*°.4(3,2))% has degree 30 (= [Ss : (23.L(3,2))*]). Aside from its low
degree, this 1esolvent is attractive because it provides a simple test which distin-
puishes between Gl and Gy,
An example of a polynomial belonging to (23.L(3,2)) is
I" = rjrgrors + T283T427 + TTeZT7Tg + T1T3T4T5 + T1T3T7T8 +
Tpra L5l + L1T2T4T8 + T3T5TeZ7 + T1T4T6T7 + T2T3T5Tg +
T3LqToTg + I | T2L5L7 + T4T5T728 + T1Z223T6.
Ghiven a labelling ay,...,ay of the roots of f, the root F(ay,...,ag) of Ry =
R(I J) may be represented (using the subscripts) as
1568 4 1345 + 1378 + 1248 + 1467 + 1257 + 1236 +
2317 4+ 2678 + 2456 + 3567 + 2358 + 3168 + 4578.

However, on examining this notation, we sce that for every 4-ad its complement in
{1,2,3,...,8} also occurs. So we can simplify our notation by writing only the 4-ads

in which ‘I’ occurs:

Flay,...,a08) = 1568 + 1345 + 1378 + 1248 + 1467 + 1257 + 1236.

According to Table 10,

+
G =<8,z,m>

and

Gl =<s,2,m, y>

where

s=(1,9)(2,4), m= (la5)(2, 6)(37 7)(4a8),
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~=(6,8,7), y=(1,8)(2,5)(3,6)(1,7).

Using this representation, we find that both groups partition the roots of Iy into

4 orbits; 2 of length 12 and 2 of length 3. The two orbits of length 3 are (9 -
{B1, B2, Bs} and Oy = {B4, Bs, Bs} where

B
Ba
Ps
Br = 1378 4 1468 + 1457 + 1234 + 1267 + 1258 + 1356

1367 + 1168 + 1256 + 1358 + 1457 + 1278 1231

1234 + 1368 + 1267 + 1456 + 1478 + 1258 -+ 1357
1378 + 1467 + 1257 + 1234 + 1458 + 1268 -f 1356

Bs = 1257 4 1367 + 1358 + 1234 + 1268 + 1456 -+ 1178
Bs = 1467 + 1256 + 1278 + 1234 + 1458 + 1368 + 1357

The action of Gz on O; yields the permutations (/3 fa, 43) and (B, fa, i) as
well as the identity. So Gy acts as Az on Q). On the other hand, the achion on
O, gives all possible permutations. Hence Gy acts on O, as S,

Since Gy C G, wesce that Gy will likewise act as 8 on 0y But the pener
ator y of G induces the transposition (A, 43). Combined with the pernmtations
alrcady found for (g, this proves that the action on O 15 now Sy.

So Ry can be used to distinguish between (i, and (1L 0 Under cither of these
groups it has two irreducible factors ¢y and g2 of degree 3010 Gal(f) - G/ then
both g, and gz have Sy as Galois group. But if Gul(f) /), then one of ¢ and
g2 has Galois group A, and the other has Galois group S,

This may be contrasted with the algorithin we have presented m Section 22
which, in order to distinguish these groups, requires factorization of a degiee 66
polynomial (the 24-set resolvent derived from the degree 12 factor of the 2, set

resolvent of the original polynomial f; see Table 2). As this resolvent has lgher
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degree than [y, it inay take longer to factor. For example, let
f=az847z"+8s>+9

(Gal(f) = (). Factoring the degree 66 resolvent of f requires 1200 seconds of
CPU on a SPARC su *ion 2. Factoring Rag (constructed using complex approxima-
tions to the roots) takes only 4 seconds of CPU.

Since it is much faster to factor Ry than the degree 66 polynomial required by
our algorithing it appears that we could improve the algorithm by using this new
resolvent. However, as noted in Section 4.3, it is not clear how to construct it;
construction by complex approximations to the roots is available only when k= Q

and even then it is to be avoided.
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D Tables of Degree 8 Transitive Groups

The following tables, taken from [BM] and [MR], give information about the degree

8 transitive groups. Table 9 includes the group order, parity and which svstems of
imprimitivity it admits to. If there is more than one system for a given bloch size, we
indicate how many such systems there are. This table also relates the '’ notation

of [BM, MR] to the ‘GZ_” notation used here. In the final columnof ‘Table 9 we give

a description of the group structure. The descriptions of the imprimitive groups are

drawn from [IIK]. The notation is as follows:
Z,, The cyclic group of order n.
p* An clementary abelian group of order p* where p is prime.
Vi The Klein Vierergruppe.
D, The dihedral group of degree n and order 2n.
(Ys The quaternions.
<l,mln> The group < z,ylz' = y™, (zy)" = ¢> where ¢ is the identity
(I, m|n, k) The group <z,ylz' = y™ = (zy)" = (¢ 'y)¥ = ¢>.
A x B The direct product of the groups A and 3.

A.DB denotes a group with a normal subgroup isomorphic to A such that A.3/A

is isomorphic to B.

i

Ao The central product of groups A and B. Let A and 13 have conmmon center
isomorphic to C'. Then we have injections .(x 2 C e A, 0 v I3 The
group Ao 3 is the quoticnt of A x I3 by the set of ordered pairs of the forn
(a(c), Blc)), ce C.
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AL The diagonal product of A and B. Let D be the largest common homo-
morphic image of the groups A and B. Then we have surjections v: A — D,
6: 18 — D. The group AAB is the subgroup of A x B cousisting of the (a,b)
for which ~(a) = 6(b).

A1 The wieath product of the groups A and B. The group B is a permutation

group on n letters. The wreath product is the semidirect product A™.B where

A=A x ... x A
N reremreast’

n

and I3 acts by permuting factors.

11ol(A) The holomorph of the group A. Let Aut(A) be the group of automor-
phisims. We construct I{ol(A) on the Cartesian product A x HHol(A) with the

operation

-1
(al7¢l)(a2’ ¢2) = (a]a;bl ] ¢1¢2)-
Syl,(A) The Sylow p-subgroup of the group A.

A superseript of ‘4" indicates that the group consists of even peimutations.

Table 10 exhibits generators for each group. The shapes belonging to each group
are shown in Table 11. Siuce every transitive degree 8 group has the shapes 1% and
21, we de not incude these in the table. However, these are the only shapes in
T3, Fimally, Table 12 lists the orbit-length partition of sets and sequences under the

action of the groups

71



Group | Order | Even | Imprimitive Name Description
[2'] | [4°]

1 | 8 vV Zs | Zs
T2 8 + 3 V | (Z2x Z)Y | (Zy x Zy)t
T3 8 + 7 Vv (2%)* (2%)1
T4 8 + 5 Vv Dt D}
TS | 8 |+ | V|V $ Qd
T6 16 v v Gioa Dy
T7 16 v Vi Gliob <2,202>
T8 | 16 v v Groc < =2,42 >
T9 16 + 3 Vv Gt (Z, x Dy)*
T10 16 + J v Gt (1,4]2,2)*
T11 16 + v v Gl <t 2
T12 24 + v SL(2,3)Y | SL(2,3)F
T13 24 + v VvV | (Zyx Ayt | (Zy x A))F
T14 24 + v v St St
T15 32 v Vv G s2a Zy.V,
TI6 | 32 J 1 v G | <a™ (),
T17 32 v Vv G sze Zy17

Table 9: Transitive groups of degree 8
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Chioup ;);«I('r liven | Imprimitive Name Description
[2'] ] [4°]
s | o + | 3 v G (V4 1 Z,)t

19 32 + Vv Vv G, 1yt (zy)d, 2ty tyaty >
120 32 + v Vv G1,. , 7/2, (zy)t, 2?yzyayady >+

— -l—zT 32 Vv Vv G324 2 (ay)t, 2iyayziyzty >
22 32 + | V|V G (Qs o Qs)*
123 18 v Gas GL(2,3)
121 18 + v Vo | (Z2 x ST | (Zy x )

125 56 + (22.Z2) | (23.Z,)7
6 | 64 N, Gosa | Hol(Zy x Z)

127 64 v Vv em <z8, 9yt (ry)?, (%)Y, (2%y?)? >
28| 61 Vi Vv Goic <z y', (ay)?, («%)*, (2%9®)* >
129 64 1 4 v G, Syly(Zy 1 Ag)*

I 30 61 Vv Vv Gead <z, yt, (2y)?, (2y?), (2%y) >

S |6 v v Gote syzz(z2 X Ay)

32 V6 + v Gia (@50 Q5).23)*

133 96 v G, (Va122).2,)*

T3 96 + Vv G, (AsDAy).Z2)*

Table 9: (continued) Transitive groups of degree 8
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Group | Order | Even | Imprimitive Name Description
[2')| [4?]
T35 | 128 v iV Gias Syl (sﬁ) -
36 | 168 | + (BT ) | (2ol
T37 | 168 + L(2,7)* L(2,7)!
T38 | 192 v Gz 1A,
T39 | 192 + |V o2 (280"
T40 | 192 v Ghrgap Hol((x)
T4r | 192 | + Y Gt | (SiAS).2)
T42 | 288 + Vv Gl (A1 Z,)t
T43 | 336 PGL2,T) | PGLE2,T)
T44 | 384 v Glasa 718,
T45 | 576 + Vv . (84« 8)! 7))
146 | 576 v Glsro <u” —/M(“/ V(g )y eya)
T47 | 1152 Vv Glisz Sil 2,
T48 | 1344 | + (23 L(3,2))% | (2°.L(3,2))"
T49 | 20160 | + Af A
T50 | 40320 Sk Sk
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«

b

d

16
7
18
1Y
110
T

(1,4,6,8,2,3,5,7)
(1,3,5,7)(2,4,6,8)
(1,6)(2,5)(3,2)(4,7)
(1,8)(%7)(3,6)(1,5)
(1,7)(2,8)(3,5)(1,6)
(1,7)(2,8)(3,6)(1,5)
(17mmcxmmm
1)(1,8)

(1,0)( 5)(3,1)
(1,6)(25)(3,7)(4.8)
(1,6)(25)

= <a>

= <b,e>

= <b* e, e>

= <b,d>

= < a? g>

= <a,f>

= <u,h>

= <a,1>

= <bye,e>

= <b,y>

= <(12,[)2,1>

l

m

T18
T19
T20
121
122
T2

124
125
126
127
T28

(1,3)(2,4)(5,8)(6,7)
(1,5)(2,6)(3,7)(4.8)

3,5,7)(4,6,8)

1,2)(7,8)

(
(14)(2,3)(5,6)(7.8)
(

(1,6,2,5)(3,7)(4,8)

(5,6)

(1,3)(2,4)

(1,2)

(1,5)(2,6)

(3,1)
<b,e,j> T35
<b, f> T36
<b,p> T37
<q, e> T38
<a?, b?j,e> T39
<n,w> T40
<¢n,s> T41
<A,D> T42
<a, f,b*> T43
<a,t> T4
<a,u> T45
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=

1,3)(2,4)(7,8)
2,4,3)(6,8,7)

1,8)(2,5)(3,6)(4,7)

(

(

(

(6,8,7)
(1,2,3,4,5,6,7)
(2,4,3,7,5,6)
(

(

(

4
2,3)(4,7)
1,8)(2,
1,8

<a, f,t>
<A,D,B*>
<A,B%E>
<v,e,n>
<j,m,s>
<j,n,shv>
<IF,z,y>
<s,z,m>
<A,B,E>
<t,b,s>

<S8, z,my>

1)(3,7)(5,6)
)(2,7)(3,4)(5,6)
(1,7,3,5)(2,8,4,6)



Shapes

LS5,
s Nt
A0, D>
NG

<Ay o b

) .
A, 20, 8

2ol 292
BN RS

A EH S R

17

IR SV I RTEY DO E S
IR RV 122‘;“3'*’4, 1%, 8
[Ra2, 1421, 241, 448
l‘z‘ 1~'—:‘, [, m’i e

‘ 4yl 293 1
o0, 122 12 1,
2- A’ 2

1424, »4p, 4% 8
1432 96 17

1432 44, 1T

T2 = <g,n> T29 = <be, f> T46
T3 = <hjyn> T30 = <bpaku> TdA7
T4 = <n,o> T3l = <q,e,t> 48
TS = <a,f,h> T3 = <ejn> T19
T6 = <a,b?> T3I = <lFz> 50
TI7T = <a,e> T3 = <wvsv,r,y>
Table 10: (continued) Group generalors
Groups Shapes Groups ~
T1 4%, 8 23 -
T2,T4,T5 | 42 T2, T3, 133
T3 (18, 21) 125 7
T6, T8 1223, 42,8 126 -
T7,T16 1422428 27 —
T9,T10,T11 | 1122, 42 128 —
T18,7120,122 T30
T12 1232, 42 26 T3
T13 1232, 26 T4 |
T14 1232, 42 135
T15 [192 1203 42 8
T17 1922 114, 224, 4%, 8 T36 -
T19,1T29 11221221, 42 137 e
121 1192 924, 42 T3040 |

1424 1434, 1824, 44, 26

Table 11: Shapes occurting in cach group
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Group Shapes

T | 1e2, 1197, 1223 1232 232, 224, 42, 126, 26

T40 11122 1898 1282 144, 224, 42, 26, 8

TA2 | 12E 108, 1248, 1282, 4%, 26

T4 1R 144, A4 16, 1T, 8

TA4 | 102, 14, 1420 1234, 234, 174, 1224, 224, 4%, 1%, 26, 8

TAn |2, 0N, 1283, 1434, 1424, 4%, 26

PO | E2 1y, 120, 1432, 1224, 224 4% 8

10, 1121420 108, 1028, 1223, 1232, 114, 1224, 224, 134, 42, 26, 8

1934, 1221, 44, 20, 17

oL 1R 1293, 143, 1420, 42, 195, 35, 26, 17

PHOC |02, 19 120 153, 100, 1223, 1232, 232, 144, 1224,

D113, 44, 195, 125, 35, 196, 26, 17, 8

Tablc 11: (continued) Shapes occurring in each group

« Z-sels | 3-sets | 4-sels 4-diff 2-scq
(; C Ag

2 8% | 87 234287 1322.4382 | &7

i 47 8 2787 1747 87

1 v 1\ 87 201188 1920418 | &7
5 A 2388 134283 87

T9 P8 864 | 201288162 | 19224982 | 82162
;l‘l() e | 8160 | 2,980162 | 1,20 1816 | 82162

Table 12 Orbit-length paititions of sets and sequences under G
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T13 4,122 | 8,242 2,648, 21°
T14 1,122 18,21% 2,648, 12421
T18 416 8,16° 2, 198332

T19

1,38, 16

8,16, 32

2,4, 816, 32

G 2-scts | 3-sets 4-scts 4-difl
G C As
Tl 4,8 | 8%16% | 27800 N
T12 4,24 8, 24? 6, 84244 L_E"'—._’i ’

1.3 1,641
[25 1

1,2, 148, 16

T20 | 4,8,16 [ 8332 | 2,4,8%16
T2 |48t st | 25iE
Tor | 4020 820 | 200820
T25 | 28 56 11,56

129

148,16

8,16, 32

2,4, 816,32

1,2, 128,16

Table 12: (continued) Orbit-length partitions of sets and sequences under
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TS2 | 121 24,32 | 60,8448 5,442
T38| 12,16 | 8,48 2 122032 | 61216
T34 | 12,16 | 8,483 2122 | 10016
T36 | 28 56 | 156 T8
T37 | 98 56 YT

T39 | 4,21 | 24,32 _;,ﬁb‘” s | e
T41 | 12,16 M“aﬁjuzﬂ? 1,6, 12,10
T42 | 12,16 | 8,48 2,132,36 IRURT
a5 12,16 | 8,48 232,36 - T,lf;,ls
T48 | 28 36 14,56 108
T49 | 28 56 70 35

-

0




r 0 2-sets | J-sets 4-sets 4-diff 2-seq
('L Ay
Y 4,8% 87 2,4,8° 1,2,4%8% | 87
KT 14,8% 8164 2,4,8162 1,2,428% | 8,16°
# "'—1—7*% ~4,8, 16 | 82164 2,4,8%16" 1,2,8216 | 8162
E 4,8, 16 | 811062 2,4,8%16° 1,2,8216 | 8,16°
mjltl—” - 4“81( 8,16° 2,4,8%16,32 | 1,2,8%16 | 8,16, 32
76 ”«—1,—8",7;»— 832 2,4, 16 1,2,8216 | 8,16°
TR :H, 8,16,32 [ 2,4,16232 1,2,8%16 | 8%32
7?1— B 1,;* 8132 2316 B 8, 16°
T_;;“ n/t,ﬁx 8,21¢ 6,16,21* 3,8,21 | 8,48
Tz(,“ 1;17 ;mu 2,4,16%32 1,2,8%16 | 8,16,32
—hl—z_?ﬁ —1;7(: ;‘32 2,4, 16" 1,2,8%16 | 8,16°
) 'l‘;ns:m 4,3,1_(_{ ;,T(;,:zz 2.4,16232 1,2,8%16 | 8,16, 32
__1?0- ‘1_,(;:1—(‘,‘ ; 16,321 2,4,16232 1,2,8%16 | 8,16,32
T /1:\‘ - AR 23161 1481 8,16° N
T I,g,—n; ;,1(5,32 2,4,16%32 1,2,8%16 | 8,16, 32
Tas 111,21 21,32 | 6,16,48 3,8,21 8,48
»-'1‘71?)—"”»_1\51% PR 6,16,48 3,8, 241 8,48
_TTz_M N 56 28,42 14,21 56
ﬁ :[‘_1.(.__ {21 21,3;; 6,16,48 3,8,21 8,48
MIT 1’10 ‘ x_i: 2,32, 36 1,16,18 | 24,32
Ty _1‘2:1? \_1\ 2,32, 36 1,16,18 | 24,32
s | o %o |70 35 56
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Table 120 (continued) Onbit-length partitions of sets and s- juences under G



References

[B]

[BA]

(BBCO]

[BM]

[CGG]

[CM1]

[CM2]

[D]

[EFM]

[MK]

W. S. Burnside and A. W. Panton, The Theory of Fquations, vol. 2, Dublin

University Press, 1916.

R. Bourgne and J-P. Azra, Eerits el Mémowres Mathemaliques d'F'rariste

Galois. Gauthier-Villars, 1926.

C. Batut, D. Bernardi, HI. Cohen, and M. Olivier, User's Guide 1o PARI-
G P, March 1990.

G. Butler and J. McKay, ‘The transitive groups of degree up to 117, Conim

Algebra 11 (1983), 863-911.

B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B Monapan
and S. M. Wall, Maple Library Refercnee Manual, Springer Verlag, 1991

D. Casperson and J. McKay, ‘Symmetiic functions. m-sets, and Galons

groups’, to appear.

D. Casperson and J. McKay, ‘An ideal decomposition alporithn’, prehn-
I ) I 4 s |

nary teport, AMS Abstracts 13 (1992) 405.
I. Darmon, private communication.

D. W. Erbach, J. Iischer, and J. McKay, ‘Polynomials with PSL(2,7) as
Galois group’, J. Number Theory 11 (1979) 69-75.

F-P. lleider and P. Kolvenbach, ‘The construction of SL(2,3) Polynomials’,

J. Number Theory 19 (1984) 392-411.

S. Lang, Alacbra. Addison-Wesley, 1984.

80



[1LLL]

1M

(1.0]

[M]

(MD)]

M)

NI

0]

51

52

SM]

A. K. Lenstra, . W. Lenstra, Jr., and L. Lovasz, ‘Factoring Polynomials
with Rational Coeflicients’, Math. Ann. 261 (1982), 515-534.

S. K. LaMacchia, ‘Polynomials with Galois group PSL(2,7)’, Comm. Al
gebra 8 (1980) 983-992.

J. C. Lagarias and A. M. QOdlyzko, ‘Effective versions of the Chebotarev

density theorem’) in Algebrare Number Fields (L-functions and Galois prop-
crhies) (A Frohlich, Ed.), pp. 409-464, Academic Press, 1977.

B. H. Matzat, ‘Konstruktion von Zahl- und Funktionenkorpern mit

vorgegebener Galoisgruppe’, J. remne angew. Math. 349 (1984), 179-220.

I. Gi. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon

Press, 1979,

G. Malle, ‘Polynomials for Primitive Nonsolvable Petmutation Groups of

Degree d <157, J. Symb. Conp. 4 (1987), 93-97.

J. McKay anl BE. Regener, ‘Actions of permutation groups on r-sets’,

Comm. Algebra 13 (1985) 619-630.
M Olivier, preprint.

[, Soicher, The computation of Galois groups. Master’s thesis, Universily

ol Concordia, Montréal, Québee, Canada, April 1981.

L. Soicher, ‘An Algorithm for Computing Galois Groups’, in Computa-
tional Group Theory (M. D. Atkinson, Ed ), pp. 291-296, Academic Press,

19N,

L. Soicher and J. McKay, ‘Computing Galois groups over the rationals’,

J. Number Theory 20 (1985), 273-281.

81



[Sm] G. Smith, private communication.

[St1] R. P. Stauduhar, The automatic determination of Galos groups Ph D

Dissertation, University of California, Berkeley, 1969,

St2 R. P. Stauduhar, ‘The determination of Galois groups', Math Comp 27
!

(1973) 981-996.

(VW] B. van der Wacrden, Modern Algebra. Vol. 1, Ungar, 1919,

(W] . Wiclandt, Finite Permulation Groups, Academic Press, 1961
7 II. Zasscnhaus, ‘On Hensel Factorization Iy J. Number Theory 1 (1969
?
291-311.

82



