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Abstract

The dataflow model of computation offers a powerful alternative to the von Neumann
based model for exploiting the fine-grain parallelism inherent in scientific computa-
tions. Under this model, a program is expressed in the form of a graph, where the data
values are carried by tokens, moving on the arcs of the graph. A distinctive feature
of dataflow computers is the absence of the conventional program counter. Instead,
instruction execution is solely determined by the availability of data which provides
ample instructioa level fine-grain parallelism. A highly pipelined static dataflow archi-
tecture has recently been proposed, based on the argument fetching principle, yielding

the McGill Dataflow Architecture (MDFA).

In this thesis, an inter-processor communication mechanism is proposed. With
this mechanism, a multiprocessor MDFA system can be constructed, based on a
distributed memory organization. An efficient inter-processor synchronization and
communication support is presented, for sending and receiving data through an in-
terconnection network. An Interprocessor Communication Unit (ICU) has been de-
signed to implement the above mechanism in the MDFA. A simulation testbed has
been implemented to study the performance of the multiprocessor. It includes an as-
sembler, with multiprocessor extensions, and a multiprocescor simulator. An analysis
based on the simulations results is presented, focusing on the impact of long latency
operations on program performance.
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Résumé

Le modele de calcul Flux-de-données constitue une puissante alternative face aux
modeéles classés von Neumann, car il permet d’exploiter le parallélisme “finement
granulé” (fine-grain) inhérent & la plupart des calculs scientifiques. Avec ce modéle,
un programme est exprimé sous la forme d’un graphe dans lequel les valeurs sont
convoyées par des jetons qui se déplacent sur les arcs du graphe. Un des traits distinc-
tifs des ordinateurs flux-de-données est 'absence du compteur d'instructions conven-
tionel. En contrepartie, ’exécution des instructions est uniquement déterminée par
la disponibilité des données, ce qui conduit & un treés grand parallélisme au niveau des
instructions, finement granulé. L'Architecture Flux-de-Données de McGill (AFDM)
repose sur cette idée, plus particulierement, elle est une architecture de processeur de
type flux-de-données statique, basée sur le principe “apporte-arguments” (argurnent-
fetching). L’AFDM est P’architecture cible de cette étude.

Dans cette theése, nous proposons un mécanisme de communication mterpro-
cesseur. Avec ce mécanisme, un multiprocesseur de type AFDM peut étre con-
struit, basé sur une organisation de mémoire physiquement distribuée. Un support
efficace pour les synchronisations et les communications de type interprocesseur est
présenté, de fagon a permettre ’envoi et la réception de données a travers un réscau
d’interconnections. Une Unité de Communication Interprocesseur (UCI) a é1é congue
pour implémenter les mécanismes en question dans PAFDM. Un processus de simula-
tion a été mis en place pour étudier la performance du multiprocesseur Ce processus
comprend un assembleur, adapté au traitement des programmes multiprocesseurs,
et un simulateur de systémes & processeurs multiples. Notre analyse des résultats,
obtenus a partir de plusieurs simulations, vise a évaluer I'impact des opérations de
longue latence sur la performance des programmes.
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Chapter 1

Introduction

Rapid advances in computer architecture and device technology, such as VLSI tech-
nology, have made it possible to build massively parallel computers integrating the
function of hundreds or thousands of hardware units. Commercial and research efforts
are curzently underway to develop parallel computers with performance far beyond
what is achievable today. Some examples are the SIGMA-1 [39], the EM-4 [44], and
the Monsoon [55].

In this thesis, we are interested in the type of multiprocessors generally classified
as MIMD—nmnultiple instruction multiple data stream-—machines. Compared to their
counterpart, the SIMD machines, they have the advantage of performing well over
a broader range of applications due to their more general design. MIMD machines
typically consist of a collection of von Neumann type processors, executing their
own instructions, and usually communicating via a common memory, or by messages
being sent over a network. They mostly rely upon sequential conventional languages
(like C, Pascal or Fortran), extended with parallel primitives, to program all their
applications.

However, there is concern as to whether or not they can keep up with the ever in-
creasing demand for computing power. There exists a mismatch between the amount
of parallelism available in many large scale scientific computations and the amount
of concurrency which can be efficiently supported by such multiprocessors.

Altogether, it becomes increasingly clear that traditicnal von Neumann systems
are inadequate to meet such technological challenges. This stems from the nature
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of their architecturz, where instruction scheduling is based on a sequential control
mechanism, yielding the so-called von Neumann ' »ttleneck [12). This shortcoming
is exacerbated in those multiprocessor systems which are build from conventional
processors. Long memory communication latencies, unavoidable in parallel machines,
considerably degrade their performance. Furthermore, conventional processors have
failed to provide inexpensive synchronization mechanisms for task switching, also
frequent in a parallel machine [9, 11].

The design of a parallel system must be based on a sound model of parallel com-
putation, from its programming model down to its architecture. This conviction has
lead to the introduction of novel forms of computer architecture in an attempt to
eliminate the crucial von Neumann bottleneck. One promising unconventional ap-

proach to high performance computer systems is based on the dataflow model of
computation.

1.1 The Dataflow Model of Computation

Under this model, instruction scheduling is solely determined by the availability of
the data on which the instruction operates, thus eliminating the need for the se-
quential program counter. In a multiprocessor environment, the coordination and
synchronization of concurrent activities, executing on different processing elements,
is implemented through the data-driven mechanism. Therefore, no conventional pro-
cess interrupt, busy waiting, or context switching mechanisms are needed.

The dataflow model of computation arose from the development of data flow
program graphs in order to model program behavior. An abstract model was first
introduced by Jorge Rodriguez in 1966 [59], who showed that programs could be
represented in the form of a directed graph. Data flow program graphs were later
formalized by Dennis in a seminal paper which introduces an effective representation
of programs in the form of a block structured language {14].

A data flow program graph basically consists of a c<ilection of nodes, connected
by arcs. Data values are carried by tokens, moving on the arcs of the graph, and the
nodes are actors, who execute instructions, i.e. apply an operator to the values carried
by the input tokens connected to the node. The arcs of the graph thus denote the
data dependencies between the operations. An actor becomes activated for execution




o
| S - 1
%
w. <
£
w N

& /9 Expression:

(a-b) x (c+d) + (x+y) x (w/z)

Figure 1.1: An Example of a Data Flow Program Graph

when all its input arcs have a token carrying a data value. The sequential program
flow of control, no longer relevant, is thus replaced by a data driven flow of control,
a major characteristic of dataflow computers. An example of a data flow program
graph is shown in Figure 1.1.

By imposing restrictions on the structure of the graph, parallelism and determa-
nacy are revealed as the two major properties of the dataflow approach. The former
is due to the fact that different nodes in the graph can potentially execute in parallel
unless there is an explicit data dependence between them; the latter states that the
results of the execution of the graph do not depend on the order in which the nodes
get executed (see Figure 1.1).

Dataflow research has further evolved, yielding two implementations of the ab-
stract dataflow model which have been under active development ever since: the
static and dynamsc dataflow architectures (also called tagged-token architectures).
The static architectures allow at most one token per arc. In the tagged-token ar-
chitectures, the tokens are allocated dynamically and include a tag specifying their
logical position on the arcs. A good presentation and comparison of these models can
be found in an early paper by Arvind and Culler [4] and in a more recent publication
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by Dennis [18].

1.2 The Static Approach

Under the static model, storage allocation for all operands is assigned at compile-time.
The simplicity of the model allows for an efficient instruction execution mechanism as
well as for a clean architectural design. However, sophisticated compiling techniques
become necessary in order to handle features that support function activation and
recursion. The overlapped execution of loop iterations can be accomplished by a
pipelined execution of the code or by running multiple copies of the loop body.

The first static dataflow computer was proposed by Dennis and Misunas in 1974
[22]. In this model, the execution of an instruction is based on the data availability
concept, and the resulting value is delivered as indicated by the destination field
specified in the instruction. Premature rescheduling of the instruction is prevented
by the presence of acknowledgment signals. This work belped set up the basis for
later projects, namely the LAU Project at Toulouse, France [57], the Texas Instrument
Dataflow Project [43], the Hughes Dataflow Machine [35], the MIT Static Dataflow
Machine Project [19] and the NEC Dataflow Machines [61].

Another recent project has been under development at McGill University, namely
the McGill Dataflow Architecture project [20, 30]. It is based on the principle of the
argument fetching dataflow model. The main characteristic of this model is that data
values and control signals are separated. An instruction fetches its own arguments
from a Data memory, just like in conventional processors, so the data values are
confined within the execution pipeline, leaving control signals as the only entities
that travel around the structure of the processing element. A full description of this
machine is given in Chapter 2 of this thesis.

1.3 The Dynamic Approach

The tagged-token approach eliminates the one-token-per-arc constraint and thus pro-
vides a higher potential for parallelism than the static model, at the expense of
complexity in the design.
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Tagged-token architectures generally provide explicit support for recursive func-
tion application and overlapped execution of successive loop iterations. Storage for
values—computed by function activation—is allocated during program execution. To-
kens carry a tag which denotes their context within the program. Conceptually, tokens
are kept in a common pool of storage waiting for their counterparts to arrive before
enabling an instruction.

In the early proposals, this ability to support several simultaneous activations
of one instruction is supported by a special mechanism called token-matching. It
is an unique feature by which pairs of tokens referring to the same instruction are
“matched” and their values sent to an execution unit. Implementation of this mecha-
nism with a matching store, however, turned out to be a relatively costly associative
mechanism.

The first proposals for tagged-token dataflow architectures included the Manch-
ester Protctype Dataflow Computer [38] developed at Manchester University, in Eng-
land, and the MIT Tagged-Token Project from the Massachusetts Institute of Tech-
nology [8]. Both projects independently discovered the idea of explicitly labeling the
tokens.

The Manchester prototype was the first dataflow machine to be built, providing
a waiting-matching store of 16K token capacity [38]. At Arvind’s group, the first
step in the Dataflow Project was the U-Interpreter, developed in 1977 [7], which is an
abstract model for interpreting dataflow programs. Based on this work, research fur-
ther evolved towards what we know today as the Tagged-Token Dataflow Architecture
3, 6].

An alternative and more efficient implementation was later adopted at MIT, yield-
ing the Monsoon Computer [5, 55]. It is based on the idea of frame activation by
which frames of memory are allocated at every function call and every loop iteration,
and the base addresses of these frames play the role of “tags”.

Other proposals for dynamic architectures have been developed since, like the
Epsilon Dataflow Processor, at the Sandia National Laboratory [37], the SIGMA-1
Machine, built by researchers at Japan's Electrotechnical Laboratory [39], and the
EM-4 Project, from the same Labora‘ory [44], a dataflow computer planned to have
1024 processing elements. The most powerful dataflow machine that has been built
to date, though, is the SIGMA-1 Machine; it consists of 128 processors and 128 I-
structure stores interconnected by 32 local networks and one global two-stage Omega
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network. and has demonstrated a performance of 170 MFLOPS on a small integration
problem but the ideal peak performance sums to 427 MFLOPS [40].

1.4 Objectives of the Thesis

In 1987, Arvind and Iannucci write:

“The two most important characteristics of the dataflow processor are

split-phase memory operations and the ability to put aside computations
without blocking the processor” [9]'.

These are some of the main reasons why dataflow architectures—static or dyna-
mic—show great potential in multiprocessor applications: they can support the im-
plementation of interprocessor data communications and instruction synchronization
without the overhead of context switching and program interrupts. By connecting
together many dataflow processing elements, we can drastically increase the level of
concurrency in the program in a scalable fashion.

However, whether that increase can be achieved or not, and whether great speed-
ups can be obtained or not, depends on many issues, some of which are addressed by

this project:
o Interprocessor communication schemes;
o Interprocessor synchronization mechanisms;
¢ Memory organization; and
¢ Interconnection network characteristics;
In this thesis, we propose a multiprocessor dataflow machine, in which each proces-

sor is constructed based on the argument-fetching dataflow principle, and connected
to all other PEs through an interconnection network. We have called it the McGill

1A split phase memory operation has the property of allowing an arbitrary number of instructions
to execute between the time when the memory request i issued and the time when the associated
response is received. Such lapse of time is called latency.
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Multiprocessor Dataflow Architecture (MMDA). In this multiprocessor system, all
PEs being sequentially ordered within the network, each Structure memory (array
memory) within each PE is actually a portion of an aggregate global memory. It can
been seen as a shared global memory, physically distributed, that spans its global
address space. All interactions ameng PEs are therefore accomplished by means of
message-passing techniques.

To study the performance of the MMDA, interprocessor communication supports
have been developed on the grounds of the distributed memory organization ap-
proach. An efficient interprocessor synchronization and communication mechanism is
proposed in this thesis, for sending and receiving signals and data through a packet-
switching interconnection network. The main objectives of the project have been:

1. The development of efficient interprocessor mechanisms to allow an MDFA to
efficiently interact with other similar machines through an interconnection net-
work;

2. The design of an Interprocessor Communication Unit for the MDFA;

3. The design and implementation of a multiprocessor testbed for MDFA involving
(1) design of an assembler in order to accept the multiprocessor features added
to the base language of the MDFA: A-code; and (2) construction of a process-
oriented simulator to allow us to conduct experimental work on the performance
of multiprocessor dataflow programs;

4. The analysis of simulation results to determine (1) the impacts of long latency
memory operations on program performance, and (2) the factors that can help
minimize such impacts.

The testbed for our simulations thus consists of Mdasm, a Multiprocessor Dataflow
Assembler, which is an extension of its uniprocessor version [62, 50] and Mds, the
Multiprocessor Dataflow Simulator.

1.5 Structure of the Thesis

Chapter 2 of this thesis is dedicated to the McGill Dataflow Architecture. It explains
the concept of the argument fetching principle as an alternative io the conventional
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argument flow static dataflow models. It also gives an overall description of the
dataflow machine that has been proposed, based on this new principle, from the
abstract model down to the architectural design. This is done in order to lay the
proper ground work for the following chapters.

In chapter 3, we discuss some alternative interprocessor synchronization and com-
munication schemes that have been proposed thus far within the framework of our
research group, and introduce a new and efficient abstract model for both inter-PE
synchronization and inter-PE communication. The multiprocessor machine that is
proposed makes use of a globally addressable distributed memory organization and
an asynchronous message passing synchronization mechanism.

The fourth chapter describes the modifications made to the original design in order
to support the mechanisms described in chapter 3. It introduces the Interprocessor
Communication Unit, which is designed to provide a gateway to the network. The
interconnection network on which we have chosen to run our simulations is a packet-
switching Omega type of network.

Chapter 5 describes the simulation testbed and analyses the performance results
obtained from simulation runs. It provides a deeper insight on the behavior of the
argument-fetching approach executing in a multiprocessor environment. The results
demonstrate the MMDA’s ability to effectively tolerate the latency of long memory
operations with no significant impact on the performance of the progtams. They
also show that the overall throughput of the interconnection network 1s more critical
than the latency factor. Given today’s technology, we can build the type of networks
needed to mask those long latency operations up to a certain degree.

Chapter 6 is an overview of the related work 1n the dataflow field, concentrating
on the multiprocessor aspects of some proposed dataflow architectures. A discussion
of the different techniques used to support interprocessor synchronization and com-
munications provides with a survey of some of the major current research interests.

Finally, chapter 7 presents the conclusion of this work in addition to suggested
areas for future research.




Chapter 2

The Static Dataflow Model and
The McGill Dataflow Architecture

In recent years, the dataflow concept has attracted increasing attention as a radical
alternative to the von Neumann model. It emerged as an innovative model which
offers simple yet powerful means of achieving highly parallel computations. In this
chapter, the concern is towards the static dataflow model of computation.

Indeed, in dataflow programs, there is no notion of a single point of control, noth-
ing corresponding to the program counter of a conventional sequential computer.
Computations are described in terms of locally controlled events, each of which cor-
responds to the “firing of an actor” in the data flow graph!. In a dataflow machine,
many actors may be ready to fire simultaneously, resulting in an asynchronous data-
driven concurrent execution. The first section of this chapter will focus on the basic
data flow graph model, and the rules determining the execution of 2 program graph.

Many advances have been achieved in the dataflow field since Dennis and Misunas
first proposed their static dataflow model [22]. A static dataflow processing element,
based on the argument-flow principle, is briefly described in the second section.

Despite the parallel nature of the dataflow model, there have been serious doubts

!Firing an actor stands for executing an instruction who has previously been enabled due to the
availability of its input operands. See Section 2.1.1.




that dataflow processor architectures can compete with the efficiency of their conven-
tional counterparts. One major concern is the amount of data “flowing” in the proces-
sor. In order to exploit fine-grain parallelism, the model appears to require an exces-
sive volume of data traffic when compared to a conventional processor architecture—a
criticism common to many proposed dataflow architectures.

The McGill Dataflow Architecture, described 1n the third section, 1s based on the
argument-fetching principle. This new approach brings a solution to the excessive
data traffic problem encountered in previous proposals. This section gives an in-
depth description of the new model, the architecture design, as well as the execution
and scheduling mechanisms.

2.1 The Static Dataflow Model

2.1.1 The Basic Graph Model

The static data flow graph model constitutes the basic model governing the execution
of a program graph on a static dataflow computer. The program graph is represented
by a directed graph. The nodes in the graph represent instructions whereas the edges
represent data dependencies bet ween instructions. In dataflow terminology, the nodes

are called actors and the edges arcs. Each actorin the graph has an associated ordered
set of input arcs and oulput arcs.

When an instruction is executed, the tokens lying on the input arcs of the actor
are “consumed” and new tokens, representing the result value of the instruction are
“produced”. Similarly, when an actor produces a data value to be transmitted to a
successor actor, it “places a token” on the arc connecting both actors.

The execution of a graph can be modeled by a sequence of configurations, each
describing the different states of the computation. A configuration is defined as an
assignment of tokens on the arcs of the graph. There can by many such sequences of
configurations but the ultimate result is unique, a property known as determinacy.
The transitions between configurations are governed by firtng rules which determine
the conditions required to fire an actor.

10
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With the exception of some special actors for implementing conditional graphs
and iterative computations, the firing rules for the static dataflow model are defined
as follows:

Firing Rules:

1. An actor becomes enabled iff all of its input arcs have one token and
all of its output arcs are empty.

2. An enabled actor may fire, and once fired, all tokens on its input arcs
are removed, and a tcken is placed on each of its output arcs.

Hence, firing an actor corresponds to applying the corresponding operation to the
values carried by the tokens on its input arcs. Upon completion, a token carrying
the result of the computation is placed on each of the output arcs. Note that once
an actor has been executed, it cannot become enabled again until the tokens cn its
output arcs, carrying previous result values, have been consumed by its successor
actors.

With the assumption that tokens are graphically represented by dots on the arcs
of the graph, Figure 2.1, illustrates a possible sequence of configurations modeling
the execution of the expression:

(a+b)x(c-d)

As illustrated in Figure 2.1, data flow graphs can exhibit two kinds of fine-grain
parallelism: the first one, called spatial parallelism, is exploited when two nodes
are potentially executable councurrently; the second, called itemporal parallelism, is
exploited when independent waves of computation are pipelined through the graph.
The nodes in the first stage of the graph being simultaneously enabled, they express
the first kind. Upon execution of the node in the second stage, they can be rescheduled
for execution, illustrating thus the temporal parallelism. A detailed study of this kind
of parallelism, also called pipelining can be found in [30].

2.1.2 Dataflow Languages

The static data flow graph model exhibits many interesting properties among which:
(1) the only dependencies among actors in a program graph are data dependencies,

11




tfé é’;j
1

(1) ®_¢. (2)
c b 4

1))
1Y

O

Figure 2.1: Sample Execution of a Data Flow Graph

(2) the execution of an actor is side-effect free, and (3) the determinate property which
ensures that input/output behaviors are functional. Due to those features, the static
data flow graph model, is an excellent model for mapping functional or applcative
languages (42].

These languages are based on the functional programming style where the sin-
gle assignment rule and the referential transparency also allow the parallelsm to be
fully and naturally expressed. There have been a number of functional languages,
called dataflow languages (1], specifically designed for exploiting the dataflow model
of computation.

Examples of dataflow languages are Val [2, 48], SISAL [49] and Id [53]. More
information on dataflow languages can be found in {13| and [1].

12
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2.2 A Static Dataflow Architecture

A typical static dataflow processing element (PE) based on the argument-flow model
(also called dataflow circular pipeline) is described 1n [15]. This section’s main concern
is to briefly describe that architecture as a representative of early static dataflow
proposals. It then covers the implementation details required to support the static
graph model, and the criticisms made towards this approach—which is based on the
argument flow principle.

2.2.1 Implementing the Basic Model

In the static data flow graph model, an arc can carry at most one token, so an
actor can't become enabled unless all its output arcs are empty. This rule can be
implemented by introducing a second form of arc, called acknowledgment signal arc.
The role of this acknowledgment signal arc is to inform all the predecessors of an actor
that the successor actor has consumed all the tokens residing on its output arcs, and

thus are ready to accept the next set of data.

As a consequence, each actor has an associated set of input arcs, among which
some are data arcs and some are acknowledgment signal arcs, and a set of output
arcs with the same characteristics. Figure 2.2 shows the signal graph corresponding
to the example shown in Figure 2.1. Imp'cmentations of the model have to provide
mechanisms to support this signal graph.

The condition for firing an instruction in the static dataflow machine now requires
that a signal token be placed on each of the input signal arcs, a normal data token be
placed on the input data arcs. Upon firing, an actor places a data token—carzying
the result value—on each of its output data arcs, and a signal token on eacihi of its
output signal arcs. The outcome of the firing of an actor is therefore the production
of a datum for each of its successors, and also an acknowledgment for each of its
predecessore 5. *‘hat thev =an fire again.

2.2.2 The Architecture

Figure 2.3 shows a schematic representation of the architecture. Dataflow instruction
templates are stored in the actuity store. The queue holds the addresses of those
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Figure 2.2: A Signal Graph

instructions which are enabled and ready to be executed.

The role of the fetch unit is to continuously pick the address of an instruction from
the queuc, fetch the corresponding instruction template from the activity store, and
deliver it to the opcration unit where the mstruction gets executed. Each destination
address will carry a copy of the result value to the update unit of the appropriate PE

The role of the update unit 1s to store those result values in the templates of
the targetl instructions and determine whether or not they become enabled. All
communications between the different units within a PE are achieved via data packets
traveling in a circular fashion, which has caused the PE to be called circular pipeline

[15]

2.2.3 The Argument-Flow Principle

In traditional proposals for a dataflow processor, instructions loaded into the proces-
sor represent, more or less directly, the actors of a data flow program graph. Such
an instruction typically has two spaces for receiving operand values called operund
receivers, a signal-needed field, a signal-reset field, and a field that holds a destination

list—indicating the 1arget instructions to which result values or signals are to be sent.
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Figure 2.4: The Abstract Model of the Argument-Flow Approach

The signal-needed field contains an integer indicating the number of signals still to
be received before enabling the instruction. The signal-reset field contains the value
required to reset the signal-needed field when it reaches zero.

The arrival of a value corresponds to placing a token on the input arc of an actor.
Therefore, the delivery of a result value to the operand receiver of an instruction
template accomplishes two purposes: it signals the target instruction that an input is
available; and it transmits the data value itself from an instruction to one of its suc-
cessors. We call these architectures argument-flow dataflow architectures. Figure 2.4
illustrates the abstract dataflow model of the argument-flow approach.

The arrival of a signal (an acknowledge signal) from a successor instruction means
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that a result token has been removed from the corresponding output arc. The arrival
is processed by decrementing the signal-needed field by one. If the value reaches zero,
the instruction is enabled and the field is reset to the value stored in signal-reset field.

An issue in this processor architecture is that more data movement is involved
than seems necessary. Two cases in point are: the destination list passes through the
instruction fetch unit and the operation unit, although the information in the list is
not acted upon by either unit; and result values are copied and stored in duplicate
whenever there is more than one target instruction. One of the consequences of this
issue is that unnecessarily high traffic may be generated causing the performance of
the machine to decrease.

These inefficiencies arise from the decision to keep data information (values) and
control information (addresses) bound together in packets as they traverse the circular
structure of the processor. The alternative approach has lead to the decision of
separating the data and signaling roles of the information packets [20]. Once this
has been done, it becomes evident that it is better for an instruction to fetch its own
arguments from a Data memory than for its predecessor instruction(s) to store result
value(s) in the operand fields of several target instructions.

These considerations have led us to the argument-fetch architecture [20] which can
overcome those weaknesses. Based on this principle, the McGill Dataflow Architecture
has been developed.

2.3 The McGill Dataflow Architecture

This section of the chapter presents an in depth description of the McGill Dataflow
Architecture based on the argument-fetching principle. Under this new principle, the
data and the control signals are separated. An instruction operates on values, stored
in a regular Data memory, and an execution unit executes it, the same way a con-
ventional processor would do. The instruction template now adopts the conventional
three address format since all values are stored in memory. Upon completion of the
execution, it generates a signal which ultimately informs all the related actors that
the instruction has executed. The main characteristic of this model is that data never
“fows” through the units of a PE. Instead, signals, which hold the sequencing infor-
mation among the instructions, are the only entities that move around the circular
structure of the PE, thereby annihilating the concept of tokens.
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The McGill Dataflow Architecture (MDFA) consists of two major sections specif-
ically designed to perform the instruction execution and scheduling functions. The
Dataflow Instruction Scheduling Unit (DISU) contains all the information defining the
data-dependencies connecting the nodes of the dataflow program. It is responsible for
identifying and “firing” those nodes that are available for execution. The mechanism
used to select instructions for execution is based on the signal graph of the program.
The Pipelined Instruction Processing Unit (PIPU) is an instruction processor that
uses conventional techniques to achieve fast pipelined operation.

The operational semantics of the model are best described by first presenting an
apercu of the architecture of an abstract machine.

2.3.1 The Abstract Model and The Program Tuple

A data flow program graph G for the MDFA is represented by a program tuple (P,
S), where P is a set of instructions and S is a signal flow graph, represented by sets
of signal addresses. Formally,

G = <P, S>

Figure 2.5 shows a dataflow program tuple with its corresponding P-code and
S-code entries. Each actor in the data flow program graph has an entry in both the
P (P-code) and S (S-code) sections of the program tuple. The instructions in P-code,
called p-instructions contain no information about the sequence of execution. Instead,
the sequencing information is given separately by the signal flow graph called S-code.

Each p-instruction in P-code is a three address instruction similar to that in a con-
ventional architecture. The instruction templates are stored in the PIPU Instruction
Memory and are executed by the PIPU when it receives a signal from the DISU.

The signal graph S-code of the program tuple determines the sequencing of the
instructions within the graph. S-code contains a set of s-nodes, each containing a
list of actors to notify when its corresponding p-instruction has been executed. Each
target actor has an enable count indicating the number of signals to b. :ceived
before the actor can fire, and a reset count to reset the enable count value once it
has fired. There is a one-to-one correspondence between each s-node address and its
corresponding p-instruction address.
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Figure 2.5: A Dataflow Program Tuple

2.3.2 The Argument Fetching Architecture

The following is a description of the architectural aspects of the MDFA, focusing on
the single PE. The description of the multiprocessor aspects of the machine will be
covered in Chapter 4 of this thesis. None of the modules necessary to connect the PE
to the network will thus be part of this coverage.

The addresses of enabled instructions are sent to the PIPU via the fire link. Upon
execution, the PIPU sends back to the DISU the address of the instruction—that
has just been processed—through the done link, together with a condition code used
in sending conditional signals. Figure 2.6 illustrates the circular structure of the
architecture and shows the many units integrating each of its parts.

The Pipelined Instruction Processing Unit

The organization of the PIPU is shown in Figure 2.7. It consists of four major pipeline
stages used for (1) instruction fetch and decode (IFU), (2) operand effective address
calculation and fetch (OFU), (3) instruction execution, and (4) result store (RSU).
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Figure 2.7: Structure of the PIPU
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Figure 2.8: Structure of the DISU

The Execution Unit consists of a scalar operation unit (Sc.U) and a structure
operation unit (St.U). The former performs arithmetic and logic functions (such as
basic fixed and floating point arithmetic), as well as scalar memory operations. The

latter performs data-structure oriented memory operations, such as array accesses.

As can be seen, this architecture has several dedicated memories for code, data,
and scheduling information. This part shows three memory units, namely the Instruc-
tion Memory (IM), the Data Memory (DM} which mainly holds scalar operands, and
a Structure Memory (SM) which holds arrays and data-structures.

The Dataflow Instruction Scheduling Unit

The DISU consists of a Signal Processing Unit (SPU) and an Enable Controller Unat
(ECU) as shown in Figure 2.8. The signal graph of a program is represented in the
DISU by the signa! lists of each of the nodes of the program, stored in the Signal List
Memory (SLM) of the SPU. For each node, there are three signal lists corresponding
to the three possible values of the condition code. These signal lists hold the addresses
of the nodes that have to be signaled. We call those addresses count signals.

Since there is a one to one correspondence between each s-node and each p-
instruction, and not all nodes have the same fan-out, a Signal Translation Table
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(SXT) is required to store the addresses of the signal lists in the SLM. The fetching
of the count signals is therefore done in an indirect addressing fashion.

The Enable Count Memory of the EC Unit holds count and reset status values for
each node. It handles each count signal by decrementing the count value for the indi-
cated node and testing for zero. If the count becomes zero, an enable flag for the node
is set and the count value is set to the reset value. This unit continuously monitors
all the enable flags and issues fire signals for those nodes who become enabled.

The SXT, SLM, and ECM storage modules account for the memories of the PE
which keep all the information regarding the proper sequencing of the nodes within
the program graph.

2.3.3 Instruction Execution and Scheduling Process

This section explains how the units can cooperate and communicate in order to im-
plement the abstract model of the MDFA. The operational semantics of a data flow
program graph is described by the firing rules of the actors in the graph. In the
argument-fetching architecture, the firing rules are implemented jointly by the PIPU
and DISU, where the PIPU performs the actual execution of an operation and the
DISU performs the scheduling of the operation. These two phases are called the
erecution phase and the scheduling phase.

The execution phase of an instruction in the PIPU begins when a firing signal
for that instruction is sent to the PIPU. The fire signal contains the address of a
p-instruction, which the PIPU will retrieve (from IM) and execute in a conventional
pipelined manner. When the execution phase ends, a done signal is generated and
sent to the DISU together with a condition code indicating the result status of the
operation.

The DISU performs the scheduling function by processing the done signal from
the PIPU. A done signal has the following format:

<done-signal> ::= <address> <condition-code>

where <address> is a pointer to the signal list counterpart of the “done” p-instruction,
and <condition-code> is either T, F or U (true, false or unconditional). When a
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done signal is received, the condition code determines the corresponding signal lists
to be retrieved (from SXT and SLM) and a count signal is sent to the EC Unit for
each address in those signal lists. The rules of signaling are:

e The addresses in the unconditional signal list are always signaled;

e If the condition code is T (F'), the addresses in the true (false) list are also
signaled.

The EC unit retrieves the status information of the node specified by the count
signal and decrements its enable count field in the ECM. The instruction is then
identified as enabled when this count reaches zero. At that time, the count field of
the enabled s-instruction is reset to the value determined by the reset field. Finally,
the EC unit chooses an enabled instruction and sends a fire signal to the PIPU. Since
there may be more than one enabled instruction, the EC unit uses a scheduling mech-
anism to determine the order in which the instructions are fired. Such a scheduling
mechanism should be “fair” [29] to ensure that the machine does not repeatedly fire
a group of instructions without giving attention to other enabled instructions.

In one implementation, the enable flag bits in the EC unit are organized as a
two dimensional array (see [21]). The selection of instructions for execution is done
by checking each row in turn and sending the contents of any non-zero row to a
column encoder. No row is considered more than once unless all other rows have
been examined. A column encoder scans each flag bit in the selected row in turn,
issuing a fire command for each bit that is on.

2.4 Summary

This chapter has described the static dataflow model of computation and the McGill
Dataflow Architecture. Under the basic data flow graph model the execution of a
graph is modeled by a sequence of configurations, each of which describes a state
of the computation. The transitions between configurations are governed by firing
rules which determine the conditions required to fire an actor (an thus perform the
execution of an instruction).

A typical static dataflow computer based on the argument-flow principle has been
briefly described. Under that principle, the tokens carry both the data values of the
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operation to be performed and the addresses of the destination nodes where the result
value has to be forwarded. A common criticism to this approach is the unnecessary
high traffic of data within the processing element.

The argument fetching architecture originated the idea of the separation of data
and scheduling information as two distinct entities. As a direct consequence, the data-
driven instruction scheduling mechanism is separated from the instruction processing
unit.

The McGill Dataflow Architecture has been proposed to fully support this model.
Its architecture consists of an execution pipeline and a scheduling unit. Signals (ad-
dresses) travel from one unit to the other in a circular fashion indicating which in-
structions to execute and which actor to enable.

Its main features are;:

¢ No data-dependent hazards in the pipeline. The dataflow model guarantees that
there can never be a data conflict between any pair of simultaneously enabled
instructions. The principle that no instruction is initiated unless it has no data
conflict with other instructions in the pipeline is honored. The immediate result
is that data-dependent hazards are eradicated.

o Elimination of pipeline gaps due to operand matching. In MDFA, the “match-
ing” of the operands is not performed in the critical instruction execution
pipeline, thus eliminating possible pipeline gaps due to such operand match-
ing; and

o Token duplication is avoided. In MDFA, a result value of an instruction never
needs to be duplicated (copied) and routed to the input “arcs” of destination
nodes. It is stored in the Data memory thereby allowing other subsequent
instructions to directly fetch it when neceded as an argument.

In the conventional dataflow models the transferal of the data is combined with
the synchronization of the instructions so that the term “communication” includes
both actions. In the MDFA, those actions are no longer integrated so we can dif-
ferentiate between “data communication” and “event synchronization”. However,
synchronization is in itself a form of communication. Therrfore, to avoid any confu-
sion throughout the remaining chapters of this thesis, the term communication will
be used interchangeably when referring to both actions together, or when referring
to the specific communication of data.

23




5

Chapter 3

Interprocessor Communication
Schemes for the McGill Dataflow
Architecture Model

Many researchers agree that in a parallel system, one crucial problem to be solved is
the communication between processors, be it transfer of data or event synchronization.
Indeed, interprocessor communications constitute a major factor affecting the perfor-
mance of a program. Minimizing the costs involve effective communication methods,
an efficient implementation scheme to directly support the model, and a careful use
of the methods, aiming at reducing the number of data transfers and synchroniza-
tion during program execution. There are thus three aspects to this approach. The
communication methods are strongly determined by the model of computation being
used, the implementation schemes are provided by an efficient architectural design,
and their use is dictated by compiler decisions regarding the partitioning and map-
ping of the programs onto the PEs. This chapter addresses the first of these aspects,
namely it proposes a communication and synchronization method for the McGill Mul-
tiprocessor Dataflow Architecture. The implementation scheme is described in details
in Chapter 4. A thorough study of the compiler aspect, however, is beyond the scope
of this thesis, although the subject is briefly addressed in Chapter 5 which covers the
performance results of the simulations.

In a pertinent paper published in 1985, Gajski and Peir provide a refinement of
that crucial processor communication problem [28]. Their analysis provides a classifi-
cation scheme, based upon what they consider to be the main factors affecting parallel
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computer performance. They contend that multiprocessor performance depends on
the ability of a system to handle control, partitioning, scheduling, synchronization,
and memory access. The dataflow model of computation provides a good basis for
seeking elegant solutions to these issues.

For instance, in a data flow program graph, parallelism can be fully expressed
at the instruction level, thereby providing a flexible data-driven type of distributed
control model. Also, the synchronous scheduling of instructions being naturally em-
bedded in the dataflow model, little software cost is incurred during program exe-
cution. As for the partitioning problem, it comprises detecting the parallelism in a
program, and assigning tasks to PEs so that execution speed is maximized. This
task is facilitated by the use of dataflow languages, which are more appropriate for
expressing highly parallel problems. The data dependencies are directly represented
in the program structure, which eases the analysis done by the compiler to identify
them [16].

The problems of memory latency and cost of synchronization have been closely
addressed by Arvind and Iannucciin a paper published in 1987, where they are known
as the two fundamental issues in multiprocessing [9]. They state thzat dataflow ar-
chitectures are propitious for multiprocessor applications because they can provide
solutions to those fundamental issues. Most von Neumann style processors are likely
to “idle” during long memory references, unavoidable in parallel machines. It is
also difficult to provide inexpensive task switching mechanisms, often required during
waits for synchronization events. The dataflow model of computation, however, can
effectively tolerate long latency operations, provided there is enough fine-grain par-
allelism available to hide them. It can also handle the synchronization requirements
of a parallel system.

Hence, by efficiently addressing these fundamental issues, it appears that a mul-
tiprocessor can be scalable, i.e. achieve proportionally higher performance gains by
increasing the number of PEs. It is among the objectives of this thesis to investi-
gate this fact. In this chapter, we propose an efficieis interprocessor synchronization
method to allow two data-dependent nodes residing in different processors to synchro-
nize their execution. This synchronization involves sending an initial signal indicating
that the source node has been executed, and possibly a data value, as the result of the
execution, to be consumed by the receiving node. The memory latency issue is also
addressed in this chapter by providing the system with split-phase remote memory
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operations to access a global memory'. The objectives of the proposed scheme are
the following:

1. Increase the flexibility of the mechanism;

2. Provide a transparent multiprocessing environment;
3. Reduce the network traffic; and

4. Make an efficient use of the execution pipeline.

There have been a few previous attempts to provide the McGill Dataflow Ar-
chitecture with such a scheme. The first section of this chapter will describe these
attempts and provides a brief discussion on their lack of efficiency. The following
section will provide the solution that we propose in this thesss.

3.1 Some Alternative Implementations

Previous dataflow architectures are based on the argument-flow model, where the
source instruction generates the necessary tokens that must be routed to all target
instructions. This approach lacks of flexibility, stemming from the fact that the data
arcs and signal arcs always appear in pairs. It also incurs the overhead of having
to duplicate all instructions producing data to multiple PEs. However, these short-
comings set aside, the model is well suited for a multiprocessor environment Indeed,
interprocessor data routing is automatically embedded in the model by assigning a
processor address (tag) to each destination address. In the argument fetching ap-
proach, those mechanisms are not implicitly part of the model so they have to be
developed.

A few attempts to provide interprocessor synchronization schemes to the design
have been proposed thus far, disregarding the more simple problem of implementing
remote memory operations with the data-structure/array memory. The first approach

uses specific instructions to send and receive data through an interconnection network.

1ALl throughout this report, “split-phase” refers tc an operation that does not stall the execution
pipeline and only involves data communication Nothing like the I-structures related split-phase
operations which can enter in a waiting state if the data is not available.
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The second approach directly extends the argument-fetching principle to implement
communications between multiple processors. In this section, both approaches are
analyzed to stress their major deficiencies, in order to justify the approach proposed
in this thesis.

The implementation schemes of a synchronization method are best described
within the context of an example. All throughout this chapter, we will consider
a scenario where a node producing a data value has to synchronize with a remote
node which consumes it (see Figure 3.1 (a)). under the data-driven model, the trans-
fer actually consi.ts of the following steps: (0) preliminary step, an actor N1 residing
on processor P1 executes its instruction and produces a result value which gets stored
in the Data Memory; (1) the actor N1 signals its successor actor N2 residing in P2
that it has produced a result which can be consumed; (2) N2 proceeds by sending a
request to fetch the datum from P1, (3) P1 fetches the data from its own memory
and sends it to P2; (4) upon execution of N2, a signal is sent back to N1. The overall
transfer involves 4 trips through the network as illustrated in Figure 3.1 (b).

3.1.1 Explicit Send/Receive Instructions

27




PE 1

Figure 3.2: The Send/Receive Link

In this proposal, the instruction set is extenaed by introducing a send instruction and
a recetve instruction to support interprocessor data routing. A detailed description of
this implementation can be found in [33]. Basically, each send instruction is coupled
with a receive instruction in a remote PE, thereby implementing a bidirectional link

between both PEs (see Figure 3.2). Following are the formats of the Send and Receive
instructions:

SEND local Data mem. addr., remote specs. addr.
RECV remote specs. addr.

where remote specs. addr. is a Data Memory address containing a set of remote
specifications, and local Data mem. addr. is a data value’s address.

Upon creation of this data value, the send instruction is signaled and enabled.
When it is executed, it is redirected to the I/O unit, which fetches the remote speci-
fications of the target PE and the data value from the arguments of the instruction,
and creates a data packet of the form-

<PE,em, s-node,.,,, data_address,.,,, data_value>
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Figure 3.3: Instruction Duplication to Send Data to Remote PEs

where PE,.,, is the address of the remote PE, s-node,.,, is the address of the node
corresponding to the remote receive, and data_address, . is the address in the remote
PE where data.value has to be stored. When the I/O unit of the remote PE receives
the packet, it stores the value at the proper address and generates a done signal for
the instruction specified by the s-node,.s,.

This done signal then follows the normal path, i.e. it retrieves a signal list and
sends a court signal for each of the target nodes. When these target nodes execute,
they will signal back the Receive instruction causing it to become enabled. A Receive
instruction also gets redirected to the I/O Unit which fetches, from Data Memory,
the remote specifications needed to initiate the following packet:

<PEqig, s-node,;y >

where PE,,;; is the address of the PE which originated the sending. When the packet
arrives at PE,,;;, the I/O unit originates a done signal for the s-node,,;; instruction,
which is the address of the node corresponding to the Send instruction.

The appealing aspect of this solution is that only two trips through the network are
needed to accomplish a transfer. Steps 1 and 3 are embedded in the send instruction
thus eliminating the need for step 2.

The criticism of this approach is similar to the one made against the argument
flow model: the need to duplicate instructions for multiple remote targets and a lack
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of flexibility. Figure 3.3 illustrates the need to duplicate instructions when a node
produces a data value for nodes residing in remote PEs. For each transfer, a pair of
Send/Receive instructions has to be added to the graph. The lack of flexibility stems
from the tight rules governing the use of the Send/Receive operations. It makes it
impossible for a node to synchronize with a remote successor without transferring
data. Also note that the overhead of adding special instructions for each transfer
ultimately contributes to the congestion of the execution pipeline. Furthermore, the
send instruction has to wait for all the successors of the corresponding receive instruc-
tion to complete before this latter is executed, thereby sending the acknowledgment
signal back through the network. In the best case, the receive instruction has one
successor; this still involves going twice through the execution pipeline. This can
involve a considerable delay if the remote processor has an important pool of enabled
instructions to execute—a situation likely to appear.

3.1.2 External Addressing Mode

A slightly more efficient solution to achieve interprocessor synchronization has been
proposed in {32, 34]. This method behaves as if there were no boundaries between the
PEs at all; instructions on different processors are able to interact with each other
directly in an interprocessor argument-fetching fashion. Remote data is specified by
a special addressing mode in the input operands of an instruction (refer to [62] for a
complete description of the instruction set). Since the data values are fetched rather
than sent, data from one PE can be accessed by several other PEs without adding
extra instructions to duplicate it.

When instruction fires, the addressing mode of the operands is analyzed in the
Operand Fetch Unit. If the extended addressing mode is detected, it causes the
instruction to be “parked” away while the I/O unit sends the corresponding request(s)
to the remote processor(s). When the data values arrive from the remote PEs, the
blocked instruction is released and rejoins the execution pipeline to proceed with its
execution. Note that the blocked instruction does not stall the execution pipeline by
impeding other instructions from getting executed. Instead, .t creates a “bubble” in
the pipeline. As long as there are enough enabled instructions, the processor can be
kept usefully busy while tolerating the delay due to the remote fetching

Implementing this method involves a complex I/0 unit consisting of an associative
memory where instruction templates are stored while waiting for the data values to
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return from the network. Upon arrival, a search is conducted on the p-instruction
address to locate the template and update it with the datum. This mechanism is
further complicated by the fact that both input operands can potentially refer to a
remote PE so the I/O unit has to make sure the instruction template is complete
before unblocking it.

External addressing for the operand of instructions is paired with a similar mech-
anism where external count signals can be detected in the scheduling unit and sent
to remote nodes. A done signal is an s-node address which ultimately retrieves from
the SLM a list of count signals which are also s-node addresses (of the nodes that
have to be signaled). In this particular proposal, external addressing is implemented
by reserving one bit in the address specifying if it refers to a local or a remote s-node
(This method is better explained in the next section).

By offering a separate scheme for data and signals we have obtained a higher de-
gree of flexibility compared to the first proposal. Although this is a more transparent
solution (no explicit instructions), and although it has provided answers to the crit-
icisms of the previous scheme, the implementation requirements may be expensive
and the simplicity of the MDFA design is lost. Indeed, the introduction of an asso-
ciative memory implementing the “parking store”, together with the mechanisms to
unblock an instruction, upon arrival of the data, have added much complexity to the
overall approach. Also note that, considering the scenario previously exposed at the
beginning of this chapter, no savings are achieved in terms of network traffic and the
basic four trips are still required: the initial signal has to be sent to P2, the remote
node then sends a request for data back to P1, the cata value is sent to P2, and the
remote node sends an acknowledgment signal back to P1.

Finally, this solution can only b= applied to situations where the compiler can
determine, at compile-time, the location where the remote data is stored. The next
section will show that there are situations when this information is not available until
run-time.

3.2 The Proposed Solution

The aforementioned implementations are at opposite extremes of the spectrum of
solutions. One follows the argument flow approach while the other follows the argu-
ment fetching; one blends signals and data together while the other considers them
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as separate entities. This project’s first goal was to find an efficient solution which
avoided the deficiencies of both implementations. Given the architecture described
in the previous chapter, it translated into the following objectives:

1. Increase the flexibility of the mechanisms by treating data and signals as inde-
pendent entities, while maintaining the perspective of a clean design with a low
level of complexity;

2. Provide communication to a multiprocessing environment as transparent as
possible, as if there where no boundaries between the processing elements;

3. Reduce the network traffic due to interprocessor data transferal and remote sig-
naling. Ideally, it translates to reducing each data-transfer to two trips through
the network: the first carrying the signal and the datum, the second carrying
only a signal; and

4. Make an efficient use of the execution pipeline, i.e. avoid the creation of “bub-
bles”, and eliminate the use of unnecessary instructions;

3.2.1 An Interprocessor Synchronizatiory. Mechanism

The key factor in achieving high petformance is the network traffic. Minimizing the
traffic can only be achieved by coupling the initial signal and the result value in the
same packet, leaving the remote processor the task of sending the acknowledge signal
back. This method may appear as if it does not directly comply with the argument-
fetching principle. However, it is important to realize that the decision to separate
data values from synchronization signals in the argument-fetching model, is mainly
due to the fact that within a single processor, memories can be put very close to the
execution unit. Hence the data/signal separation avoids the overhead of copying and
sending multiple tokens around the processor. In other words, the data does not need
to travel outside the boundaries of the Execution Unit. This does not hold if the
target node resides in a different PE, thus invalidating the main reason for separating
data and signals.

In the graph shown in Figure 3.4, node N1 produces a data value consumed by N2,
N3, and N4 which resides on a remote processor P2. Here, it is important to realize
that before node N1 sends a signal to its successors, the instruction within that node
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Figure 3.4: A Data Flow Graph with a Remote Target Node

gets executed and produces a result value (x), which gets stored in the Data memory
of P1. The data transfer itself only starts upon execution of the instruction, and 1is
in fact independent of the instruction itself (N1). The only constraint is that is has
to be completed before N4 starts executing. This can be accomplished by sending
the datz and the signal together from P1, and within P2, by making the transfer
before signaling N4. The figure graphically shows that it is simpler to differentiate
a remote target from a local target by using different kinds of signals instead of
using special instructions. Clearly, the transfer process is best initiated outside the
execution pipeline, within the ISU.

Hence, in our new scheme, there are three different kinds of count signals:

o A local count, where N1 signals N2;
¢ A remote count, where N1 signals N4;

e A remote count paired with a data value;

We use an external addressing mode for count signals—similar to the one described
in Section 3.1.2— to distinguish between the local and remote signals. An extension
bit, indicating whether or not the signal has to be coupled with data can be added
to the addressing mode. When the extension bit is set, the mechanism adopts an
argument-flow approach where the data is sent to the target instruction rather than

fetched.
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The transfer process is thereby completely separated from the execution pipeline.
This unit executes instructions transparently of whether their results have to be sent
to a remote processor or not.

3.2.2 A Data Communication Scheme

We have assumed so far that the sonrce PE and the target PE can be identified at
compile-time for every data transfer. If this was the case, the above mechanism would
suffice for the processing of distributed data flow program graphs. The producer PE
would initiate each transfer and synchronize with the corresponding consumer PE.

However, this is not the case and there are situations where the source and target
PEs are not known at compile-time. The following is an example of such situations:

Ali]=B[C[i]]

where the array A has to gather the elements of the array B which is scattered among
the memories of the PEs. The consumer PE executing the code does not know where
to fetch the data until C[i] is evaluated.

Another problem comes from the fact that each transfer of data requires the
synchronization of two nodes. Such a requirement is very costly when transferring

large blocks of data, specially when that transfer can be done without disturbing the
remote execution unit.

To palliate to these problems, we introduce two array operations to the instruction
set design: RLOAD and RSTORE. They perform the remote loading {and remote
storing) of a data value from the global Structure memory to a local Data memory
(and vice-versa). Since they operate in the same way their local counterpart do,
direct, indirect, and extended addressing modes are also supported (see [62]).

When a remote Load is executed, the effective address being a global address, it
refers to an absolute position in the aggregate memory. For the sake of simplicity,
we are assuming that all PEs have the same array memory size, and that each PE
knows this size. Splitting the absolute address into a PE address, and a relative
address within the PE is a trivial task. The same principle applies to the remote
Store operation.
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The above example is handled by evaluating first the C element, storing its value
in Data memory, and issuing a remote Load instruction from that location. Should
the remote Load instruction encouater a run-time computed address which turns out
to be local, it is processed as a normal local load without going to the network. This
latter instruction now becomes obsolete since the RLOAD can process both local and
remote loadings.

Note that Loth operations are split-phase memory operations because of the long
latency they require to execute, meaning that there is a lapse of time between the
initiation of the instruction and its completion. However, there is no need to “park”
an instruction template in the local processor while the operation is carried out, since
it is performed in the same way a local Structure memory operation is performed.
The request is sent to the network along with all the information needed to bring
back the information requested.

Also, both operations require an acknowledgment from the remote processor, con-
firming the successful completion of the operation, without which the instruction can-
not assume it has finished executing. Receipt of this acknowledgment then triggers
the corresponding done signal towards the scheduling unit, again as any other local
instruction would do, in accordance with the second objective of the iruplementation
scheme (see beginning of the chapter).

3.3 Summary

In any multiprocessor system where the shared memory is physically distributed,
interprocessor communication is an important factor in order to achieve high level
performance. Synchronization, a special form of communication, and memory latency,
are the two most fundamental issues in multiprocessing. The dataflow model of
computation appears to be well suited to efficiently address these issues. Under the
argument fetching principle, the mechanisms to synchronize nodes residing in separate
PEs and to provide remote memory operations are not implicitly embedded in the
model.

In this chapter we have proposed an effective communication method to provide
interprocessor synchronization between two nodes and remote Structure memory op-
erations. It provides the necessary supports for interprocessor communications to
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the McGill Multiprocessor Dataflow Architecture. The multiprocessing environment

is transparent, flexible, and makes an efficient use of the network and the execution
units of all tlie PEs.

Basically, the method can be described as follows: a data transfer between a
producer/consumer pair of actors is initiated by the done signal generated by the
producer actor upon execution. It is a two-step operation: a special signal carrying
the result value is sent through the network to the remote PE where the data is locally
stored and the actor is signaled. Upon execution, the remote actor sends back the
signal confirming that it has consumed the data. Simple synchronization can also be
achieved by sending a normal signal to a remote node.

The key contribution of this solution is to separate the processing of remote signals
from the main execution pipeline. It is implemented by introducing an external
addressing mode in the signal lists of an actor. The execution pipeline is thereby
completely separated from this matter, and there is no need to duplicate instructions
in case of multiple remote target nodes.

The second component of this proposal consists of extending the instruction set
with a remote load and a remote store operation. It allows the PE to perform those
transfers where the source PE and the target PE cannot be determined during compi-
lation phase. At the same time, it provides an inexpensive alternative to the transfer
of large blocks of data, which incurs prohibitive synchronization costs when performed
with the other methods. The reason lies in the fact that it becomes possible for a PE
to fetch (or store) a block of remote data, one element at a time, without synchroniz-

ing with the target PE for every value. Only one synchronization signal is necessary
to tell the consuming PE that the block of data is available.
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Chapter 4

The McGill Multiprocessor
Dataflow Architecture

In the design of a multiprocessor system, much of the efforts are dedicated to reduc-
ing the amount of time the processor has to wait, while memory operations are being
performed. The dataflow approach is viewed as an extreme solution because of the
ability of the processing element to execute other useful instructions while waiting.
Another important factor that affects performance is the synchronization mechanism.
Although dataflow architectures do not incur any software overhead for such opera-
tions, it is important that they be supported by an efficient hardware implementation.
In this chapter, we describe the implementation details of the interprocessor commu-
nication supports, which were explained in Chapter 3 of this thesis.

The methods allow any two processors to interact with each other in an argument-
flow fashion by means of messages conveying signals (possibly paired with data). Ul-
timately, the system we envision is a dataflow multiprocessor system, consisting of a
number of MDFA processors, connected together by an interconnection network as
shown in Figure 4.1. The overall system is modular and scalable, to facilitate the
inclusion of more processors in order to increase power, memory space and commu-
nications bandwidth. It is also flexible enough to allow:

e arequest to be issued without affecting the local PE’s capacity to execute other
instructions;
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Figure 4.1: Structural Model of a Multiprocessor MDFA

e arequest to be processed without affecting the remote PE’s capacity to execute
instructions;

¢ a node in a processor to signal multiple remote nodes;
o a PE to issue multiple independent requests to the network; and

o a PE to receive responses for those requests in a different order from that in
which they were issued.

This chapter concentrates on the modifications that have to be done on the MDFA
to support the interprocessor communication schemes. Each PE requires a mechanism
for handling the communications with the network, which include remote memory op-
erations and remote synchronization signals. This mechanism is implemented through
the Interprocessor Communication Unit (ICU) which is described in the first section.
Remote memory operations are introduced to allow any PE to interact with remote
Structure memory (SM) modules.

Interactions among PEs are achieved through the sending and receiving of mes-
sages. The communication network is responsible for delivering each message from
the sender PE to the receiver PE, based on the address within the message’s header.
Many routing network structures have been studied to implement MIMD machines;
Section 4.2 of this chapter describes the characteristics of the packet switched in-
terconnection network that has been chosen to support the Multiprocessor McGill

Dataflow Architecture (MMDA).
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4.1 The Interprocessor Communication Unit

This section describes the Interprocessor Communication Unit (ICU) which serves as
an interface between the processing element and the interconnection network. It is
responsible for all the communications between the local processor and the network.
There are two kinds of communications:

remote count signals: used to synchronize the scheduling of actors residing in different
PEs. Hence, the ICU must be able to send (and receive) count signals to (from)
the network. Part of the unit has therefore to connect with the DISU which
manages the count signals within the PE.

remote memory requests: which are array memory operations. The consequence, at
the design level, is a connection with the PIPU to extract those instructions
after the decoding phase. Upon completion of the request, the ICU has to
generate the appropriate done signal and send it to the DISU.

Figure 4.2 shows a schematic block diagram of the MDFA including the ICU,
The connections between the ICU and the Data Memory and Array Memory will be
explained in the following subsections, as we describe the unit in greater detail.
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4.1.1 Interprocessor Signals

There are two kinds of count signals, depending on whether the count is a local signal
or an interprocessor signal, in which case it 1s called 1p-count. Furthermore, there are
two kinds of ip-count signals, depending on whether data has to be transmitted or
not: the first kind is called data-count and the other remote-count signal.

There is a direct correspondence between the data arc described in Section 2.2 of
this thesis, and the data-count signal (which is paired with a data value). The same
correspondence exists between the signal arc and the remote-count signal (with no
data), with the exception that the remote-count can be used for purposes other than
Jjust to signal back a predecessor actor.

This section describes the steps involved in processing ip-signal: Since all the
information required to send and receive those signals during execution time is fully
expressed in the dataflow program, it can be gathered at compile-time. Target node
addresses are stored in the SLM while the number of predecessor nodes 1s stored n
the ECM for example. This information is then grouped into memory load-images,
one for each memory module in the system and stored in a “load-image file”. This
is the kind of file that should be preloaded in the memory modules of the pro .
element to execute the program.

Sending an Ip-Signal

In the case of local count signals, the compiler determines, for each node, the three
destination lists corresponding to the possible values of the condition code: uncondi-
tional, true, and false. These destination lists, containing the addresses of the target
nodes, are stored in the SLM. The higher order bit of the address is reserved to
indicate the end-of-list condition.

For the ip-count signals, there is more to fetch than just the address of the target
node. The remote specifications for the remote-count signal include the address of the
remote PE and the address of the target node within that PE A data-count signal
needs yet more specifications, namely the address in the local Data memory from
where to fetch the data value, and the address in the remote Data memory where 1t 15
to be stored after the transfer. All this information 1s available at compile-time so it
is possible to store it into any of the existing memory modules or 1nto a new module.
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Figure 4.3: Sending a Signal to a Remote PE

We have chosen to store the specifications in a new memory module, within the
ICU, which we have called Interprocessor Communications Memory (ICM). When a
node has to signal a remote node, the remote specifications are fetched in an indi-
rect fashion via a remote address stored in SLM which is recognizable by the signal
count dispatching mechanism of the SPU. This can be achieve by reserving a second
bit—besides the end-of-list condition bit—to indicate this condition. Thus, a remote
address being detected in the SPU automatically gets redirected to the ICU where it
15 used to access the ICM. All the necessary information to form the required packet
can be fetched from this memory before it is sent to the network.

When the ICU receives an ip-count signal from the SPU, the address contained
in the signal (say icm,) is used to access the ICM memory module. The first address
that is fetched from the ICM is the address of the remote node (s-node,,, ) that has
to be signaled. The high order bit of that address is reserved to determine the type
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of signal to be sent. Setting the bit indicates that it is a data-count signal, otherwise,
it indicates a remote-count signal. Figure 4.3 illustrates the process of sending a
data-count signal to the network.

Both types of ip-signals require the remote PE address and the remote node
address (within that PE) to deliver the signal. For a data-count signal, the remote
data address also has to be sent aloug, so that the value can be stored in the remote
Data Memory upon arrival of the packet. Once the ICU detects the data-count
signal, it proceeds to fetching from the ICM the next three words stored after icm,
(i.e. icm;+1, icm;+2, icm,+3). They contain the remote PE address (PE,.n), the
local address of the data value, and its remote Data Memory address (dm_add,em).
The local address is then used to fetch from the local Data Memory the data value
that will travel along with the signal. The following is the packet structure of the
data-count signal:

<data-count, PE,.,, s-node,,, dm_add,., data_value>

If the type-of-ip-count bit is not set, the ICU knows that it is a remote-count
signal. For this type of signal, only the remote PE address is necessary, besides the
remote node address (within that remote PE). That PE address is stored in the ICM
memory location contiguous to icm,. After fetching it, the ICU sends a remote-count
packet with the following structure:

<remote-count, PE, .., s-node,.,, >

The packet header is actually the remote PE address'. Once the packet is formed
and properly identified with the type of message it is conveying, it is put on the bufler
of the ICU output port which connects to the network.

Receiving an Ip-Signal

The reception of an ip-signal from the network is processed in the following way: the
ICU retrieves the incoming packet from its input port buffer and identifies its type.
If it is a remote-count, the node address is extracted from the packet and sent to the

}This will be explained in greater detail in Section 4.2.
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Figure 4.4: Receiving a Signal from a Remote PE

ECU to be processed as a local count. If it is a data-count (see Figure 4.4), the data
value and its address are first retrieved from the packet, and the address is used to
store the value in the Data Memory before the count is sent to the ECU.

Processing remote signals is therefore achieved independently of the processor’s
execution pipeline which is one of the main objectives that were set by this project.
The DISU is also 1elieved from the burden since most of the action takes place within
the ICU. The implications at this level are two: the homogeneity of the SLM is
conserved, and the transparency of the remote signaling is maintained, since all the
processing is confined within the ICU. Remote synchronization events are therefore
processed in a simple and efficient manner, keeping the pri..c.nles of modular design.

4.1.2 Processing RLOAD and RSTORE Operations

The remote load and remote store operations are used to transfer data values from
the Structure memory (SM) to the Data memory (DM) and vice versa, when the SM
is not local to the PE. The reader is reminded that no other operation has access
to the SM. To be used in a computation, array values have to be downloaded from
SM, using a load instruction, and then uploaded back, if necessary, using a store
instruction. These remote memory operations are described as follows:

RLOAD  global Struc. mem. addr., local Data mem. addr.
RSTORE local Data mem. addr., global Struc. mem. addr.
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Their implementation is best described by giving a closer description of the first
two stages of the execution pipeline beforehand.

The first stage is the Instruction Fetch Unit. It is responsible for decoding the
fire signal which is an address in the Instruction Memcry. With the information it
retrieves from that address, it creates a template, containing the instruction number
(n;), the operator code (oc), and the addresses of the operands and result registers

(add,p1,add,op2, and add,.,):
<n,, oc, addgy, addyp2, add,., >

The template is then forwarded to the Operand Fetch Unit which computes the
effective operand’s address and fetches the data values from DM. It is then forwarded
to the next stage of the pipeline, the EU.

To implement the remote memory operations, we require that this stage of the
pipeline be provided with a mechanism to analyze the operator code and detect the
remote load and store instructions. Upon detection of the remote instructions, the
template is redirected to a subsection where the “remote” address of the operand
(first operand for a RLOAD, second for a RSTORE) is analyzed to extract the target
PE address. If the address points to the local Structure memory (SM), then the
template is just sent back to the second section and processed as a normal load/store
operation. Otherwise, it is stored into a buffer which is repeatedly checked by the
ICU, in search for requests. Requests stored in the buffer are processed in a FCFS
basis. When a template is stored in the buffer, the ICU retrieves it, identifies the
request and takes the appropriate actions to process it. When the memory operation
is performed, the ICU generates a done signal directly to the DISU, as if the operation
had been executed within the local execution pipeline. Figure 4.5 illustrates the way
remote array operations are processed within the PIPU and the ICU.

Processing a Remote Load Request

In the case of a remote load request, the address in the template points to a location
within the global address space. From that global address, the ICU extracts the
remote PE address and the s-node address within that PE.
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Figure 4.5: Sending a Memory Request to a Remote PE

To avoid a “parking” mechanism while waiting for the data, the ICU includes
in the request all the information required to store the returning data into the local
Data Memory. The packet being sent thus contains the following information:

<remote-load, PE,.,., sm_add,cm, PEi., s-node;,., dm_add;,. >

where PE is a processing element address, dm_add is a data memory address, sm_add
is a Structure memory address, and s-node is a node address.

Upon reception of the packet, the target PE fetches a data value from location
sm_add,.,, in its own Structure memory, and then replies with a message, structured
in the following way:

<ack-load, PE;,., s-nodejo., dm_add;.., data_value>

This message is also an acknowledgment that the fetching operation has been
successfully performed. The ICU stores the data_value at location dm_add,,., and
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uses the s-nodey,. address to generate a done signal with an unconditional condition
code? thereby completing the remote load operation.

Processing a Remote Store Request

In the case of a remote store, the data value is part of the remote request. Once the
template is retrieved from the buffer, the ICU fetches a value from the local Data
Memory address, contained in the template, and extracts the remote PE and s-node
addresses from the global Structure memory address. It then proceeds to send a
packet structured as follows:

<remote-store, PE,.,,, sm_add,.,., PE., s-node;,., data_value>

where data_value is the data to be stored at address sm_add,.,, in the Structure
memory of PE,,,,. This task is accomplished by the ICU in the remote PE, when it
retrieves the packet from the buffer in its input port.

PE,.» then replies with an acknowledgment message indicating that the operation
has been processed. The packet is structured as follows:

<ack-store, PE;,., s-nodej,. >

where s-nodey,. is the node address used by the ICU in the source PE (PE,.) to
generate the done signal.

4.1.3 A Retry Mechanism to Control Buffer Space

There are three sources of requests that are likely to generate messages to be processed
by the ICU. One of them is the Signal Processing Unit, within the DISU, redirecting
ip-counts. Another one is the Operand Fetch Unit, within the PIPU, redirecting
instruction templates which contain remote memory requests The third and last
one is the input port buffer, receiving requests from the network which have to be
processed by the ICU before sending back an acknowledgment.

2 All memory operations such as Load and Store generate the unconditional code upon execution.
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Since all the modules generating the requests are independent, the lower level
of design for the ICU should be organized such that all three types of requests can
potentially be processed independently of each other. A common entity between the
modules is the output port buffer, connecting the ICU to the network, through which
all outgoing messages ultimately have to go. A possibility of deadlock can occur if
this buffer fills up with too many requests.

Since neither acknowledgment messages nor interprocessor signals can be delayed
nor blocked, little can be done about an overflow of such types of requests, besides
providing ample buffer space for the input port buffer and the ip-count buffer—
connecting the SPU with the ICU. It is possible, however, to delay the remote memory
operation requests.

A retry mechanism has been implemented so that upon reaching a certain (low)
degree of free available space in the output port buffer, incoming templates containing
remote memory operation requests are not processed. Instead, the s-node;,. address of
the node is extracted from the template, and redirected back to the end of the buffer
containing the fire signals®. This will provide for some short delay during which the
instruction containing the remote request will not be processed. This delay depends
on the number of instructions awaiting for execution; ideally, it should neither be too
long nor too short since either extremes would indicate that the pipeline is starving
or that there is too much parallelism exposure. Meanwhile, the ICU can use the delay
to free up some space in its output buffer by sending packets to the network.

4.2 The Interconnection Network

In order for our processors to cooperate during the execution of a particular applica-
tion, we must provide them with some interconnection network. Such interconnection
network must feature fast and reliable handling of interprocessor communication op-
erations such as remote memory accesses and synchronization of events. This section
describes the main characteristics of interconnection networks (IN) and gives some ex-
amples of well known network topologies which are available today. It then describes
the model we have chosen for the MMDA.

3Fire signals are equivalent to s-node addresses as explained in Section 2.3.1.
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4.2.1 Interconnection Network Characteristics

There are four design decisions involved in selecting the architecture of an IN: the
operation mode, the overall control strategy, the switching method and the network
topology (see [26]). The following are the alternatives for each characteristic:

o The operation mode can be synchronous, asynchronous or a combination of both.
Synchronous systems are characterized by a central global clock signaling all the
devices which operate in a lockstep fashion. Asynchronous communications are
more suitable for systems in which connection requests are issued dynamically.

o The switching methodology to transfer data can be either circuit or packet-
switching. With circuit-switching, once a processor is granted a path it keeps it
for the duration of the communication. Under the packet-switching method,
messages are broken into small packets which compete for paths. In gen-
eral, circuit-switching is much more suitable for bulk data transmission whereas
packet-switching is more efficient for short data messages.

e The control strategy can be centralized, where the IN is governed by a global
controller, or decentralized, in which the requests are handled independently by
the different devices in the IN.

o The network topology can be static or dynamic depending on whether the links
in the IN are passive, i.e. dedicated, or if they can be reconfigured by acting on
the switching elements.

Among these characteristics, the network topology aspect offers the wider range
of alternatives.

Static Topologies

A static network topology is one that does not change after the machine is built.
Those topologies are usually classified according to the dimensions required for the
layout of the IN. For instance, the single bus is an example of a one-dimension static
IN. Some well known two-dimensional topologies are the ring and the mesh. At
the other extreme of the spectrum, there is the hypercube, a representative of the
multi-dimension class (see Figure 4.6)
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Figure 4.6: Examples of Static INs

Within bus based multiprocessors, individual processors, memory modules, and
input/output devices are connected by one or more high-speed data buses, in such a
way that all modules are accessible by all processors. The bus requester, driver, and
receiver circuits on each device, handle the passing of addresses and data. Since the
bus itself contains little or no active logic, it is the simplest of the interconnection
architectures. Despite this advantage, though, as bus speed increases, each component
attached to the bus must also increase its operating speed, raising the overall cost
and complexity. Also, modules can be added to the bus at any time (as long as there
is room on the backplane and control circuitry on each device), but the growth is
limited: efficiency starts to decrease with additional processors, as each one must
compete for the same fixed resource—bus bandwidth.

A different type of static IN, the hypercube, provides multi-step communication
paths by connecting each processor to a subset of the other processors [60]. In a hyper-
cube architecture of order N, each processor can communicate directly with N other
processors, and indirectly with all other processors in a maximum of N “hops”. Inter-
mediate processors are used in a store-and-forward technique to convey the messages.
Figure 4.6 (b) shows a hypercube of order three. One of its advantages is its abil-
ity to connect hundreds or thousands of individual processors. Thus, the processing
power can be quite large, but it can only be reached at the expense of user-generated
load balancing techniques, both at the program partitioning phase and at the data
partitioning phase. A disadvantage is the overhead involved in the message passing
operations that are required for interprocessor communications.
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Dynamic Topologies

Dynamic topologies are divided into three classes: single-stage, multistage, and cross-
bar. These interconnection networks are usually designed so that they can be con-
structed of a single type of modular building block, the switching element, shown
in Figure 4.7 (a). Switches are arranged into stages with data paths, called hnks,
connecting the output terminal of a switch in one stage to the input terminal of a
switch in the next stage. Input terminals of switches in the first stage are called input

ports or source nodes, and output terminals in the last stage are called output ports
or sink nodes.

A single-stage IN is composed of a stage of switching elements, which is based on a
special connection pattern. The example shown in Figure 4.7 (b) is a shuffle-exchange
network, based on the perfect-shuffle connection [46]. In a single-stage network, data
may have to be passed through the switches several times before reaching the final
destination; hence it is also called a recirculating network. The way the connections
are configured determines the functional characteristics of the network. Most of these
networks have a cost proportional to the number of processors they interconnect and
their bandwidth increases as processors are added. However, a disadvantage with
these networks is that requests cannot be pipelined, which forces a delay-—until all
the passes through the switches are completed—before more requests can be sent.

The crossbar interconnection is organized in a grid pattern allowing all possible
connections between processors. It is shown in Figure 4.7 (d). Crossbar connection
networks offer a possible solution to the limited-bandwidth problem due to their use
of separate buses to connect each processor with each other. Contention appears if
two processors attempt to access the same target module, in which case an arbiter
temporarily delays one of the requcsters. Theoretically, the crossbar interconnection
has no upper limit to the addition of modules, but the number of grid connections
unfortunately grows as N2. This makes it an expensive and complex architecture
for large-scale multiprocessing (a network interconnecting 128 PEs requires 16,384
connections, each of which might contain several wires)

Multistage networks provide many layers of switches, many of which are built from
stages of the basic single-stage networks. The characteristics of the connection pattern

are often used to classify these multistage networks among themselves. Figure 4.7 (c)
shows an Omega network (47].
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These networks combine the better aspects of all three classes of models: they al-
low direct connections between processors and support systems of hundreds or thou-
sand of processors; the communication bandwidth capacity incrementally increases as
processors are added; the complexity of the network for an N processor system only
grows as O(Nlog,N), where i is the size of the switches (ixi); and the delays through
the IN are proportional to log,N.

A lot of research has been done on the performance of these INs, proposing a myr-
iad of enhancements—like alternate /redundant paths, combining messages, buffered
switches etc.—to increase the overall throughput. For more precisions, the reader is
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referred to the references [26, 58, 23, 24, 45, 54].

4.2.2 A Mhultistage Omega IN for the MMDA

As we shall see in Chapter 5, the IN in a multiprocessor dataflow architecture has a
significant impact on the performance of the entire system.

Pipelining multiple requests to the network is one of the features which can be
exploited by the MMDA system. This is not effectively handled by single-stage net-
works which is the reason why they have not been considered. The crossbar type of
IN seemed to meet the requirements for fast response time and small delays, in the
case of contention, by providing direct paths from any input to any output. However,
the complexity and growth expansion factor make it a too expensive approach for a
dataflow multiprocessor. On the other hand, the multistage type of IN is currently
attracting much of the attention in the field, mainly because of its flexibility and
attractive features.

Delta networks [56] are constructed with switches of size i x 7, arranged in log, N
stages of N/t switches. The connection patterns between stages allow any input port
to send a message to any output port. The control of data movement through the
network does not require a global controller. Instead, it is implemented locally at the
switch level: the destination address digits in the message header are used to route
the packet through the network-thus log, N digits in base i. At each stage, the switch
uses a digit of the destination address to select which of its output ports to use.

If a message arrives at a switch and is directed to an output pozi which is already
in use, a collision occurs, which causes the arriving message to block. A collision can
also occur if two messages simultaneously arrive at a switch and are both directed to
the same output port. The switch then has to use some arbitration strategy to pick
which message gets blocked and which one goes through. If there is no collision, the
switch is capable of passing them all to the next stage.

The links between the stages sometimes contain FIFO buffers of a predetermined
length. All links, however, are homogeneous. The advantage is that the buffers can
temporarily hold a message in case it is blocked at a switch, instead of disregarding
it. In this latter case, the message has to be reissued.
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Because high throughput is important, and because of the relatively small size of
the messages, packet switched networks have been considered for this thesis instead
of circuit switched networks. Also, since the requests in the MMDA are issued in a
dynamic fashion, the network’s operation mode should be of the asynchronous type.

Based on the characteristics laid above, we have chosen a multistage Omega type
of network—a particular class of Delta network— to support the interprocessor com-
munications within the MMDA®*. We have thus considered a packet-switched, asyn-
chronous Omega network, consisting of log, N stages of 2x2 buffered switches, with
N/2 such switches per stage (see Figure 4.7 (c)). Thanks to its decentralized type of
control, messages can be propagated in a pipeline fashion, progressing through the
network independently of each other.

4.3 Summary

This chapter proposes a modification to the McGill Dataflow Architecture to efhi-
ciently implement the interprocessor communication methods described earlier in the
thesis. The Interprocessor Communication Unit has been added to the Architecture,
yielding the McGill Multiprocessor Dataflow Architecture.

It effectively handles the ip-counts (which are remote count signals) that are redi-
rected from the Signal Processing Unit. Its direct link to the Data Memory allows it
to fetch the data values that have to be paired with the data-count signals, whereas
normal remote-count signals are just redirected toward the IN. Incoming signals are
processed in a similar way, with the data value being stored in memory, if necessary,
and the signal being redirected to the Enable Count Unit.

A direct connection with the Structure memory allows it to process remote re-
quests without interrupting the main execution unit in a straightforward manner.
These requests are issued by the PIPU of the remote PE which has the ability to
detect a remote memory address within a remote instruction template. When the
address points to a the local PE, the instruction is kept in the execution pipeline
and processed like a regular local memory operation. Otherwise, they are redirected

#Notice should be done, however, that the ICU has been designed independently of the network
topology which implies that it can adapt to any network that guarantees direct point-to-point
delivery of messages.
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to the ICU which sends an appropriate packet to the network. The reply ultimately

generates a done signal to the Signal Processing Unit, as if the instruction would have
been executed locally.

The main contribution of this implementation has been to keep the multiproces-
sor environment as transparent as can be, realizing interprocessor communications
almost as if the PE boundaries were inexistent. The architectural design has kept its
simplicity and modularity. It also provides a retry mechanism to redirect memory
requests away from the ICU| in case the unit is caught into too much traffic, thereby
eliminating a probable source of deadlock.

A muitistage interconnection network is proposed to support the actual transfer
of the messages from PE to PE. It is a packet-switching, asynchronous Omega net-
work. It i1s best suited to the 1dea of a scalable multiprocessor, specially due to the

delay growth which is proportional to log; N, and the complexity growth which is
proportional to Nlog, N.

54




Chapter 5

Performance Evaluation

To investigate the i.apact of long latency memory operations on the performance
of multiprocessor dataflow programns, we have developed a simulation testbed. It
includes the implementation of an assembler for multiprocessor systems (mdasm),
and a low level architecture simulator (mds) written in AT&T Concurrent C [36]. In
this chapter, we report the results we have obtained from testing the simulator with
various benchmarks, and we give a performanc: analysis based on those results.

The simulator has been designed to closely moaei the McGill Multiprocessor
Dataflow Architecture, including an interconnection network, up to a maximal con-
figuration of 16 processing elements'. A more detailed description of the program can
be found in an associated technical report [51]. The interprocessor communication
schemes, which we have developed and presented in the previous chapters, are an
integral part of this simulator. Their efficiency has been evaluated by running var-
ious simulations of multiprocessor dataflow programs, executing on different system
configurations. Better yet, we have been able to get accurate measures of the perfor-
mance of the overall system, thereby providing a deeper insight on the behavior of
multiprocessor dataflow programs.

The simulations which are preseuted in this chapter show that the MMDA is a
system which can potentially (1) effectively tolerate high latencies during interproces-
sor memory operations, and (2) inexpensively support remote event synchronization.

'This limit is set by the actual implementation of the language at McGill, which restricts a
Concurrent C program to run on one single machine. Future releases will allow programs to run in
distributed mode, thereby increasing this limit.
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Figure 5.1: The Testbed Environment

It turns out that network throughput is a more critical factor than latency, in trying
to achieve high performance.

5.1 The Testbed Environment

In this section, we give a description of the testbed environment that was used to sim-
ulate the multiprocessor system. The original testbed was developed for the MDFA
and was therefore oriented towards the compilation and simulation of dataflow pro-
grams executing on a single processor machine [31]. This environment 1s shown in
Figure 5.1 and represented by the upper path of the diagram. The work accomplished
within the framework of this thesis involves the development of a new testbed, start-
ing from the assembler down to the simulator. This new testbed is illustrated by the
lower path in Figure 5.1.

The path along the testbed suite, for the uniprocessor architecture, consists of five
software layers representing five different programs that are used to automatically
generate and execute machine code on a simulation model of the MDFA Starting
from the SISAL front end, SISAL benchmark programs [49] are translated into a
hierarchical data dependence graph (HDDG) [41]. A code generator translates the
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machine-independent HDDG forms into an intermediate representation of data flow
graphs, which we have called A-code [62]. In A-code, the simple nodes of the HDDG
form are mapped into instruction tuples. An assembler (dasm [50]) is used to generate
executable code for an interpreter/simulator (AD [63]) of the architecture.

The framework of this thesis is focused on the architectural design of interpro-
cessor communication schemes. The simulations were prepared in the following way:
SISAL benchmark programs were translated to A-code graphs, and then manually
modified into multiprocessor programs, written in an extended A-code language with
multiprocessor flavors (A-code+). A multiprocessor assembler, called mdasm, was de-
veloped to assemble multiple-processor A-code programs into an appropriate network-
based load-image file, executable by mds, the multiprocessor dataflow simulator®. Ap-
pendix B shows an example of a A-code program.

5.2 Mds: a Multiprocessor Dataflow Simulator

Mds is a simulator for the MMDA written in AT&T Concurrent C which consists
of two parts, a processor simulator and a network simulator. In the version we
are currently using, it supports configurations of up to 16 processors interconnected
by a packet-switched Omega network. It gathers information such as simulation
times, network throughput, latency of requests, processor utilization and others. It
was designed so that processing elements could be easily added, and to simplify the
implementation of new communication network topologies.

The ICU, the two major units of the DISU, each of the sections of the PIPU,
the memories, and the network are implemented by distinct self-contained code units
which simulate the functionality of each hardware unit. The three major units of
the PE (PIPU, DISU, ICU) and the network, operate under the same r.achine clock
cycle. This machine cycle is the basic unit of time used by the simulator t¢ measure
all its results.

Assumptions regarding the execution time have been made in terms of the work
that can be performed by each module within one unit of time. The PIPU can
potentially receive ore fire signal per clock cycle. All scalar operations and local
Structure memory operations within the execution pipeliiie are assumed to have the

3 Altogether, the assembler and the simulator programs add up to about 12.5K lines of code
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same processing delay, so each instruction going through the PIPU consumes the
same number of units of time (the default value is 6). Within the DISU, the SPU
can receive one done signal per cycle, retrieve the corresponding signal list and send
it to the ECU. This latter can process n count signals per cycle, n being a machine
characteristic and thus a parameterized value in the simulator (default value 4). The
ICU can process one type of request per cycle, be it a request from the SPU (ip-count),
a remote memory request coming from the PIPU, or an interprocessor request. These
requests are serviced in a round robin fashion. Communications bet ween the units
are smoothed by means of FIFO buffers, where each element is paired with a time
stamp determining the time unit at which it becomes available.

The network simulator can be set to operate at a faster rate than the processor
by varying the ratio of ;.cfu ‘ir - clock cycles. The movement of packets into and out of
the network, and from stage to stage within the network, is assumed to take place at
discrete, equally spaced points in time. The time between these points is the minimum
delay experienced by a packet at a switch, based on the data rate supported by the
link. Analysis based on this assumption can be used to approximate the behavior of

an asynchronous network.

5.2.1 Simulator parameters

The simulator offers a wide number of parameters that allows it to perform simulations
of various technological aspects, concerning both the PE’s internal design, and the
network characteristics. Parameters are also used to generate traces of various kinds
of events.

A complete list of all available options can be found in Appendix C. The following
are the ones most relevant to this chapter:

o -S: this parameter tells the simulator the amount of the Structure memory (SM)
that each PE dedicates to the system’s globa! shared memory. This value is the
same for all PEs. The default is determined by the smallest Structure memory
size, among the PEs.

o -Nc: this option determines the PE-to-network clock ratio ( ClockRatio). Tt
provides the possibility of experimenting with various network speeds®

3More flexibility can be reached by modifying the internal vanable defining the data rate of the
links.
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o -N1: this options sets the start-up latency for each packet sent on the network,
i.e. the number of cycles necessary to form a packet. The default value is 2

processor cycles.

o -Ns: this parameter determines the switch buffer size within the network.

5.2.2 Performance metrics

The performance metrics used by the simulator are divided into two groups, the
first of which reports on the performance of the processor and the second on the
performance of the network. Each simulation run thus produces a result file for each
individual PE, containing overall system results, local processor performance results,
and network performance results. A sample result file is given in Appendix C.

Assume a multiprocessor system of N processors. The following are the most
relevant metrics for each PE:

o The Processor Ezecution Time (ProcEzecTime) reports the number of machine
cycles consumed by the PE.

¢ The Remote Requests (RemReq) is the number of remote memory operations

(RLOAD and RSTORE) generated by the PE.

e The Remote-Operations Ratio (RemRatio0) is the percentage of remote memory

operations over the total number of instructions executed:

(RemReq x 100)
InstEzxec

RemRatio =

o The Local Average Latency (LocLatency) is the cumulated latency of each re-

mote memory request, averaged over the total number of requests. Each latency
comprises the time elapsed while going through the network both ways, and the
time spent in the queues of the remote processor while it performs the operation.

The following are the metrics used to evaluate the performance of the overall
system and the network:
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e The Total Ezecution Time (EzecTime) reports the number of machine cycles

that are required to execute the whole application. It is defined as:

EzecTime = max {ProcEzecTime,} , i=1—- N

The Total Network Accesses (NetAcc) is the cumulative number of remote re-
quests issued by each PE:

N
NetAcc = Z RemReg;

i=1

The Normahzed Average Throughput (NAT) is the average number of bytes
that can be passed through the network per unit of time, normalized over 100
(to have integer numbers). It is defined as:

(NbBytes x 100)

NAT = N x EzxecTime x ClockRatio x DataRate

where DataRate refers to the data rate supported by the network links, i e. the
number of bytes that can go through a link per network cycle The adjustement
with ClockRatio yields a data rate per processor cycle.

The Global Average Latency (GlobLatency) is the total of all the LocLatency
metrics, averaged over N. Thus,

SN, LocLatency,
N

GlobLatency =

The Global Collision Rate (CollRate) is the ratio of the total number of col-
lisions that occur within the network, over BusyNet, which is the number of
cycles during which the network had at least one packet.

S Collisions

CollRate =
oll Rate BusyNet

5.3 The Benchmarks

The benchmark programs we have selected to test the simulator are mostly scientific
applications. Our choice is mainly due to the fact that most scientific programs
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contain large portions of parallelizable code, often expressed in loops involving array
operations. Hence, they correspond to applications which are both computationally
intensive and well suited for parallel execution.

The Livermore Loops [27] are a collection of typical loops, extracted from widely
used scientific applications which were developed at Lawrence Livermore National
Laboratory. Their advantage, as benchmarks, is their big appetite for processor
cycles. The kernels capture the inner loop calculations which constitute the most
computationally intensive portions of the applications from which they are extracted.
We have used LoopI and Loop7 from the collection. For Loopl, the main loop is
unrolled twice to increase the parallelism of the program. This is enough to obtain a
high rate of processor utilization.

Sazpy is the kernel of the Lower/Upper Decomposition, a basic computation pro-
cedure widely used in linear algebra for solving systems of linear algebraic equations
such as the famous LINPACK [25]. The routine computes a vector as the sum of a
scalar value times a vector plus a second vector. The benchmark has been modified
to make it more computationally intensive, by adding the sum of a scalar value times
a vector yielding the following expression: a X X[i] + b X Y[i] + ¢. The main loop is
also unrolled twice to increase the parallelism in the program and thus reach a better
processor utilization rate.

Matmul is a matrix multiplication progcam which has been directly hand coded
into A-code. For each simulation, the result matrix is a (32 x 32). The first input
matrix is of size (32 x 8) and the second is a (8 x 32) matrix. This is done to
keep the problem size (and thus the duration of the simulations) at a reasonable
level. Each processor is assigned the task of computing one portion of the result
matrix. We have chosen the most commmon algorithm for this computation, based
on three nested loops, even though it is not the most efficient one in terms of number
of communications. The reason behind this choice is that we are interested in high
levels of communication, to put to the test the capacity of the system to overcome
the problems this load will create. Within each PE, the outer loop is partitioned into
two independent code blocks, to increase the parallelism.

Each of these benchmark programs has been coded using a technique called soft-
ware pipelining [31) to increase the amount of exposed parallelism. The source code
for these benchmarks and a graph representation, can be found in Appendix A.
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Size of Memory ]
Benchmark || Problem | InstExec | Operations | ProcExecTime | ProcUtil
Loopl 4800 36008 13.33 % 36149 99.607 %
Loop7 3200 56808 1267 % 56923 99.796 %
Matmul 32x32 92836 17.64 % 112078 82.831 %
Saxpy 3840 16328 15.68 % 16744 97.510 %

Table 5.1: Performance Results for a Single PE

5.4 Simulation Results

In this section we present the results we have obtained from testing several bench-
mark programs on mds. The simulator’s default parameters have been set, using
reasonable numbers for processor and network characteristics We have assumed
a theoretical processor’s clock speed of 25 MHz, yielding a clock cycle time of 40
nanoseconds. The simulation of this clock defines the unit of time within the sim-
ulated model. Assuming a 16 bits parallel capacity for ports and links within the
network, the data rate is therefore set at 2 bytes per network cycle. Setting the net-
work’s clock at 50 MHz gives us a total peak bandwidth of 100 MBytes/second/port
The network’s clock cycle being 20 nanoseconds, our PE-to-network clock ratio is
therefore set at 2. The size of the buffers within each switch 1s also set at 2. All these

are parameters that can easily be adjusted to simulat. different system and network
configurations.

The starting point of the testing process 1s the execution of the benchmark pro-
grams on a single processor. The performance results are presented in Table 51 The
problem size refers to the size of the Structure memory required by each of the PEs
to run the programs. For instance, in Saxpy, there are 3 vectors of 1280 elements
involved so the problem size is 3840. The percentage of array memory fetches, over
the total number of instructions, is shown in the fourth column This number indi-
cates the number of instructions that can potentially translate into long latency load
operations in a multiple processor environment.

Notice that the programs feature a very high processor utilization, due to the
unrolling of the loops, for the particular case of Loopl and Saxpy. The reason for
targeting such high percentage utilization is due to the fact that each PE has to have
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Figure 5.2: Performance of Loopl

enough parallel computations to keep its execution pipeline sufficiently busy in order
to absorb the effects of long latency operations.

The second phase of the testing process investigates the programs’ performance
on a multiprocessor system. The size of the application, for each benchmark, is kept
identical while the configurations of the system are increased from 2 to 16 PEs. In
all cases, computations and memory loads have been balanced among all PEs. In
the following sections, we report on the execution times, speed-up curves, processor
throughput, and memory latency, as we look at the performance of the MMDA.

5.4.1 Execution Time and Speed-Up

Linear speed-up is trivially achieved if the remote-operations ratio (RemRatio) for
each processor is zero—meaning that all the array memory operations are accessing
the local SM. A RemRatio of value zero translates into portions of code, running in
each PE, which are completely independent of each other. The amount of work is
therefore simply divided among the available processors, thereby dividing the execu-
tion time in the same proportion

A more interesting set of results is obtained by gradually incrementing the Rem-
Ratio from 0 to its maximal value (which is given in Table 5.1). When this maximal
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Figure 5.4: Performance of Matmul

value is reached, all memory fetches are remote to the PE. The Figures 5.2- 5.5 show
the performance of each benchmark, with a RemRatio varying from its minimal value
to its maximal value. Each figure illustrates the progression of the total execution time
(ExecTime) as processors are added (a), and the corresponding speed-up curves (b).
Each curve, within a specific graph, corresponds to a different value of the RemRat:o
The increment value of the RemRatio 1s not the same for each of the benchraarks Thas
explains why some graphs have more curves than others. For I.copl, the spectrum is
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divided into 6 intervals yielding 7 performance curves. For Loop7 there are 10 curves,
while there are 5 curves for Matmul and 9 for Saxpy. Table 5.2 shows the different
RemRatio values that have been used to test each of the benchmarks, and their
corresponding NetAcc. Each remote memory request translates into two network
accesses, one by the PE issuing the request, and the second by the PE acknowledging
the request.

Both Loopl and Loop7 have similar program structures and a maximum RemRa-
tio neighboring the 13% of instructions, i.e. one out of 7.7 instructions is a remote
load. For these benchmarks, a virtually linear improvement in performance is ob-
served for all curves, except for the extreme cases where the progiams are importing
more than 83.35% of their data, for Loopl, and moie than 88.87%, for Loop7. These
extreme cases are illustrated 1n the speed-up figures by the two lowest curves of each
graph with RemRatics of 11.11% and 13.33% for Loopl, and 11.26% and 12.67% for
Loop7 The corresponding loss ot performance will be explained shortly (see Sec-
tion 5.4 2). If we focus on the majonity of the cases, we can observe that communica-
tion costs and long latency operations have practically no effect on the performance
of the programs. This is a sign that there is enough parallelism available to keep the
processor busy with useful instructions while waiting for each of the remote loads,
which translates into the fact that the MMDA can effectively tolerate latency.
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Remote-Operation Ratios (RemRatio in %)
Benchmark and Total Network Accesses (NetAcc in Ks)
Loopl 0.00]1222)444 | 6.66 | 888 | 11.11} 13.33
0 16 | 3.2 | 4.8 6.4 8.0 9.6
Loop7 000|141 | 282 422 | 563 | 7.04 | 845 | 986 | 11.26 | 12.67
0 1.6 3.2 4.8 6.4 8.0 96 11.2 128 | 14.4
Matmul 0.00 | 441 | 8.82 | 13.23 | 17.64
0 8.2 [ 164 | 246 | 328
Saxpy 0.00)196] 3.92{ 5.88 | 7.84 | 9.79 | 11.75 | 13.71 | 15.68
0 064 ) 1.28| 1.92 | 256 3.2 3.84 | 448 | 5.12

Table 5.2: Remote-Operations Ratios Used to Test Each Benchmark

Saxpy has a very similar behavior: the performance of the program starts degrad-
ing once the RemRatio hits 11%. However, both Loopl and Loeg? show petformance
losses in the 16 PEs configuration only, whereas Saxpy degrades as soon as it reaches
the 8 PEs configuration, when the RemRatio reaches its maximum value of 15.68%.
Intuitively, the observations lead us to a premature conclusion that a system of 8
PEs can execute an application without loss of performance, if the RemRatio is kept
under 15%, whereas on a system of 16 PEs, that limit is 11%.

In fact, the RemRatio indirectly measures the load that the PE imposes on the
network. As will be discussed in the next subsection, there is a limit imposed by the
interconnection network which depends on the size of the network. Once that himit
is reached, the network becomes a bottleneck and the performance starts dropping.
Below that limit, though, the program’s execution time decreases in proportion with
the number of PEs, thus yielding virtually linear speed-ups. This can be confirmed
by observing the Figures 5.2, 5.3, a~rd 5 5.

The results concerning Matmul show a distinct behavior compared to the other
benchmarks. With zero RemRatio, execution time is optimal, and speed-up curve is
quasi-linear. However, the execution time increases drastically as soon as the program
starts fetching remote data—from 56.1K to 77.7K cycles, an increase of 41 8%-—to
later stabilize at that level. The RemRatio vanation almost does not affect the overall
performance thereafter. This particular behavior stems from the way the program 1s
structured: as opposed to the other benchmarks, which feature a single loop executing
a portion of code, Matmul is programmed based on three nested loops, the innermost
of which requires two loads at each iteration. The reason for chosing this algorithm
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is to provide an example of a very computationally intensive program which does not
expose enough parallelism to support remote data fetching. The loss on performance
is more precisely due to the fact that there are not enough instructions to execute
while a particular path in the graph is blocked due to a long latency operation. This
situation does not occur with the other benchmarks because of the more numerous
paths available through the graph. Appendix A shows a graphical representation of
the benchmarks.

5.4.2 Network Throughput

The performance of a packet-switched interconnection network is characterized in
terms of how much information can be passed through it in a given period of time.
This criteria, known as throughput, can be informally defined as the number of packets
the network can accept at the input port per unit of time. The corresponding metric
used by mds to describe the network’s performance is the network average throughput
(NAT). We have chosen a normalized metric because it gives us a measure of the
amount of network bandwidth that the application has consumed in relation to its
ideal performance.

Figure 5.6 shows the plots of NAT versus number of PEs, for all values of Rem-
Ratio. We can observe that, within the same system configuration, the throughput
increases proportionally with RemRatio until it reaches a limit. We will call this
limit the mazimum reachable throughput (MRT). Below this MRT, the throughput
is practically constant, independently of the size of the system, for each fixed value
of RemRatio. The reason is that the load imposed by each PE to the network is a
characteristic of the program Since the programs do not change—only the size of the
problem they are solving—the load on the network remains a constant. This is also
valid because the destinations of all packets in our benchmark programs are equally
distributed in the same way for all system sizes.

This observation confirms our earlier remarks about a limit imposed by the net-
work, which is inversely proportional to its size. This is caused by the collision of
packets within the switches of the network. Increasing the packet flow through the
links automatically increases the probability of having a collision, which explains why
the network can not reach its peak bandwidth. Furthermore, increasing the number
of stages increases the probability for a packet to be blocked and thus reduces the
overall throughput. The MRT therefore decreases as the network size increases,
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Figure 5.6: Network Average Throughput

following a monotonically decreasing curve which is a charactenstic of the network.

The same observation was made by Dias and Jump in a study of packet switched
interconnection networks [24] Their analysis is based on a network which is never
“starving”, i.e. packets are presented to the network at the maximum rate that the
network can accept themn. The destination addresses are uniformly distrnibuted over
the set of output port addresses. Their results show that cven under these ideal
conditions, the network features an upper bound on performance There 15 a maxi-
mum rate of passing packets which is primarily a property of the retwork. We have
observed the sanie phenomena with our simulations.
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Therefore, an application consuming a bandwidth below the MRT corresponding
to the system configuration can be expected to feature linear speed-up. Of course, this
can only be achieved because the processor architecture can tolerate latency. Above
the MRT, the number of collisions in the network will slow down the overzil system
and the performance will tend to decrease. This is exactly the kind of behavior we
observed in Section 5.4.1.

5.4.3 Latency

A different criteria, also often used, is the delay, defined as the period of time it
takes for a message to go from an input port to an output port. The corresponding
metric in the simulator is the global average latency (GlobLatency) which actually
corresponds to two trips through the network.

The average latency of a packet is expected to increase as the logarithm of the
number of processors in the system (see Section 4.2). This assumption holds if the
required network throughput is below the aforementioned MRT. Otherwise, the in-
crease is considerably higher, as can be seen in Figure 5.7. As before, each curve in
the graph corresponds to a different value of RemRatio, from the bottom up.

The anomalies of the top curves in Loopl, Loop7, and Saxpy, correspond to the
simulations for which the network has been a bottleneck. The corresponding con-
gestion causes the packets to stay longer in the switch buffers, thereby increasing
the global average latency. This congestion is measured by the global collision rate
(CollRate) whick reports the total number of collisions per cycle during which the
network is in use The CollRate variable is plotted in Figure 5.8 for each benchmark.

This measurement allows us to explain why the latency in a system of 8 PEs, for
instance in the case of Loop7, is twice as long as the latency in a system of 16 PEs
for the same RemRatio value, when in fact it is expected to be smaller. What we
are actually measuring is the average amount of tirne that a packet is being delayed
beyond the normal latency it is bound to incur In order to have a monotonically
increasing latency curve, the CollRate has to increase in the same proportion as the
number of PEs. In other words, if there are z collisions in a system of n PEs, we
expect to have 2z collisions in a system of 2n PEs to obtain a logarithmic increase
in the GlobLatency. As can be observed in Figure 5.8, CollRate does not increase
proportionally to the system size for the two upper curves of Saxpy (RemRatio of
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Figure 5.7: Global Average Latency

13.71% and 15.68%), the top curve of Loop7 { RemRatio of 12.67%) and the top curve

of Loopl (RemRatio of 13.33%).

Matmul’s GlobLatency is a representative of a program which does not go beyond
the network’s MRT, and thus has a normal latency increase. Notice that for these
programs, there is no relation between the latency of the memory requests gomng
across the network, and the total execution time of the program
observed is that if a program has enough parallelism, and if 1t does not require a
bandwidth greater than the limit imposed by the network, then it can be expected

to have linear speed-up
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5.5 Summary and Discussion

5.5.1 Summary

The results of the simulations are very encouraging. Basically, they show that the
MMDA can perform remarquably well, given a high bandwidth interconnection net-
work.
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The simulations have shown that, under normal circumstances, long latency oper-
ations can be tolerated, and that they do not harm the performance of the program
We ha re observed that even for increased latencies, in larger systems, execution times
decrease in the same proportion as the system size, and processor utilization remains
almost constant. For these cases, virtually linear speed-up is achieved. For some
other extreme cases, we have observed a loss of performance, but we have found that
this loss is mainly due to an interconnection network overlcad, which has caused it
{o become a bottleneck to the computation.

Altogether, the key factor to achieve h gh performance is to program the applica-
tions in such a way so that: (1) the data partitioning does not require each processor
to access the network beyond its MRT; and (2) the fine-grain parallelism inherent
in the program is sufficiently exposed. These are reasonable assumptions to make,
given an appropriate choice of network, with a high MRT, and an appropriate lan-
guage support, such as dataflow languages, so as to allow the parallelism to be fully
expressed. It turns out that the first assumption, about the network, is a difficult one
to achieve. Network throughput, though, can be improved by implementing various
techniques such as niore powerful switch technology, alternate paths or redundant
paths through the network to decrease the number of collisions, and many others
[26, 58, 23, 24, 45, 54].

5.5.2 A Look at Compiling Issues

An interesting point to make relates to the fact that the MR T is solely a characteristic
of the network, and is independent of the application executing in the PE, as long
as this latter does not generate memory hot spots {see Section 54.2) Lets assume
that a compiler is given enough information about the network interconnecting the
PEs, so that it has a good estimate of the MRT behavior in relation to the number of
PEs, for well balanced applications. Lets also assume the compiler 1s able to evaluate
the RemRatio of a given application by some analysis of the program structure. A
simple static count of the number of Rloads within each loop body can be the basis
of a good estimate of RemRatio. Finally, iets assume that the network has no MRT
and thus execution is performed under ideal circumstances It becomes therefore
possible to guess an estimation of the network average throughput (ENAT) required
by the application, based on the estimated RemHKatio. This is possible since each
type of packet has a fixed known size. For instance, by plotting the values of NAT for

72




NAT

[} 2 4 6 8 10 12 14 16
RemRatio

Figure 5.9: Network Average Throughput versus Remote-Operations Ratio

which the network does not act as a bottleneck against the values of RemRatio, we
obtain the graph shown in Figure 5.9. It can be observed that there is a one-to-one
correspondence which is independent of the type of application.

If such analysis can be dcne a-priori at compile time, a similar correspondence
can be established to compute an ENAT. The compiler is therefore in a position to
compare the ENAT agains. the MRT. This information can be an useful contribution
to the process of estimating the optimal number of PEs required to execute the
application program. For example, suppose the MRT for a given configuration is one
fourth of the ENAT; this corresponds to a situation where the application overloads
the network. A smaller configuration with a higher MRT can therefore constitute
an interesting tradeoff to make a better usage of the network and obtain better

performance.

5.5.3 Program Structure

Another observation relates to the way the position of remote memory operations
within a graph can influence program performance. All our predictions, regarding the
ability of the system to tolerate long latency operations, are based on the assumption
that the PE can keep it’s execution unit busy with other useful operations.

Dataflow programs are written in the forms of graphs, with a number of inputs,
and outputs. Examples of such graphs can be found in Appendix A. Loops are
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coded by embedding cycles within the graph, that perform the body of the loop. All
parallel operations within the loop are coded in different paths. When a long latency
operation is executed within one path, finding other useful work is accomplished by
switching to an alternate path. This process can be repeated as long as there are
alternate paths available. Duplication of the loop body is one way of providing more
paths to enlarge the “pool” of enabled instructions that can be fired at any given
time. Intuitively, there should be at least enough paths to ailow the first blocked
path to become unblocked by receiving the acknowledgment from the network.

A problem arises, though, when the long latency operation is at a location where
paths merge together. Such a situation is very likely to occur in some loops where
the last instruction of the loop body to be executed is a Store. If the store is a
remote operation, meaning that the result of the computation has to be stored in a
remote PE, there are no other alternate paths to switch to (since its location is at
the merging point within the graph). After “filling up” the graph, the processor has
no other choice but to idle, which causes the performance to drop We have tested
this phenomena with our simulator, using the same benchmarks The results show
an increase of 10% to 15% in the total execution time of a program, when the store is
a remote operation, in comparison with a local one. Unless some technique is found
to optimize this degradation, it remains more effective to fetch data from a remote
processor to ultimately store the result locally, than to do the opposite.
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Chapter 6

A Survey on Related Work

In this chapter, we present a brief survey of the related work that has been done in
the field of dataflow computation, concentrating on the multiprocessor aspects of the
architectures. Our concern is to compare our multiprocessor model with some of the
other static or dynamic multiprocessor dataflow architectures that have been recently
proposed. We are interested in analyzing the philosophy of varying approaches to-
wards the multiple-PE environment, on the basis of the types ¢~ data transfers which
are provided, and how they are implemented. In the first section of this chapter, we
will look at some of the drawbacks and advantages of our model in comparison with
the mechanisms which are investigated in other dataflow projects focusing on the
types of interprocessor data transfers. We will then briefly survey the methods being
used by some of the other architectures that effectively tolerate latency to implement

those transfers

6.1 Interprocessor Data Transfers

Static dataflow architectures differ in many ways from the dynamic models. These
differences have been stressed in the introductory chapter of this thesis. However, in
our particular case, a closer look at the approaches towards multiprocessing reveals

that there are some common aspects.

Essentially, there are two kinds of transfers that can take nlace between PEs that
involve data values: DM-to-DM transfers, and SM-to-DM or vice-versa. The first type
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of transfer takes place when a node produces a token and sends it to its successor. In
the dynamic model, as in any argument-flow static model, the token carries the data
value to be delivered. Upon execution, a remote destination token gets automatically
redirected to the interconnection network by a Send unit. This is the basic mechanism
as all tokens pass through this unit. The receiving PE then delivers the token to the
Update unit which verifies whether 1t enables an instruction or not. This method was
found inefficient for the processing of local tokens. However, it turns out being most
effective for remote tokens because it minimizes network traffic Due to this particular
feature, our static dataflow architecture ultimately adopted a similar mechanism for
remote DM-to-DM transfers, represented by the data-count signal.

On the other hand, SM-to-DM data transfers are not so similar. To solve the
problem of large data structures, the vast majority of dynamic architectures rely upon
the concept of I-structures{10] or on some variant—at least those which denived from
the Tagged-Token Data-Flow Machine, the Manchester Dataflow Computer having no
explicit siructure storage. An [-structure can be thought of as a storage space for data
values which are governed by the single-assignment rule. I-structures usually reside
in a separaie memory called the I-Structure Storage, which s a globally addressable
memory. There are some exceptions, though, like the Mecasoon Architecture which
implements them in the local memory. The usual uperations that are allowed are:
the allocation of storage, I-fetch, and [-store.

Our model also has a separate Structure memory, globally addressable by all
PEs. Programs can use Rioad and Rstore to transfer data values in and out of the
SM. The major difierence between both models resides in that there is no special
hardware such as “presence bits” to support fine-grain synchromzation Whereas the
I-Structure Storage provides a mechanism by which the requesters are queued if the
value has not been produced, in the model described in this thesis, the read-before-
write situation has to be controlled by software means

Depending on the situation, the overhead generated by this type of control can
be negligible, or become a scrious drawback of the mndel The latter is illustrated
by the situation where an array A 1s produced within a processor P1 in an order of
increasing index, and consumed by processor P2 in the opposing order {30] In our
model, this producer-consumer style of parallehsm cannot be efficiently exploited.
Dynamic models, or the other hand, generally allow the I-fetches in the consumer
processor to fire and eventually accumulate while waiting for the data value to be
produced. When this event happens, the release of the waiting fetches is automatic
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and immediate so the situation is effectively handled. (f the array is consumed and
produced in the same order of increasing index and the consumer P2 can be detected
at compile-time, then the producer-consumer pair can be software-pipelined. DJur
model can then choose betweei running code on the consumer PE to fetch data by
means of the Rload insiruction, or make use of a mechanism of FIFO buffers, to
regulate the flowing of values between processors. In both cases, the overhead is
minimal and there is no loss of parallelism exposure.

P-RISC is a hybrid von Neumann and dataflow architecture based on the dynamic
dataflow model [52). Memory is organized into frames, used to hold the set of operands
associated with cach instantiation of a code block within a program. This concept
is also at the heart of the Monsoon architecture, but unlike Monsoon, it eliminates
all forms of operand matching schemes, and uses a local memory to hold the frames.
Shared data structures are supported by a global memory space, the Heap Memory,
implemented as an [-structure memory. Load/store instructions are used to generate
read/write messages to transfer values in and out of the Heap memory, and special
I-read /I-write to take care of those producer-consumer situations. The mechanisms
for sending ~nd receiving data to this memory are very similar to the ones presented
in this thesis. Both types of operations are extracted from the execution pipeline at
the operand fetch level and are converted into a packet which gets sent to the global
memory. The difference lies in that the write immediately generates a continuation
token and inserts it in the the token queue, without waiting for an acknowledgment
from the Heap memory. In our case, the done signal, equivalent of the continuation
token, is only sent to the DISU after the acknowledge comes back. The reason is that
the Heap provides a mechanism for deferring the read instructions on empty locations,
whereas we have to rely on node synchronization mechanisms to insure that the read
does not anticipate the write.

In his New Static Dataflow Architecture, extensively described in [17], Dennis
introduces a novel multiprocessor based on the argument-fetching principle. In this
architecture there is no notion of global memory. Each PE has a Memory Switch that
acts as a local memory and holds both the code (instructions) and the data (operands)
as well as the data structures Thus, there is no notion of SM-to-DM transfers, all
transfers being done from one Switch memory to another Switch memory. They are
implemented by means of send/receive instructions in a way similar to the method
described in Section 3.1.1: upon computing a data value, the producer executes a
send instruction which ultimately triggers a receive instruction on the remote PE
which writes it to its local memory.
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As pointed out by Dennis, values are transferred as they are created, no buffer 1s
needed, and communication can proceed concurrently with computation All these
are features which can be found in our model as well. However, our scheme provides
more flexibility, by implementing the Rload/rstore operations. The reason is that
these operations provide the possibility for a local processor to fetch data from a
remote processor without affecting 1t’s execution pipeline. As we mentioned earher,
these situations occur when the compiler is not able to detect the identity of the
consumer PE beforehand. Such situation cannot be solved in an elegant way with
a send/receive scheme. Furthermore, even when it can be 1dentified, there can be
cases where data values are not produced by code (1input arrays, for example) For
these cases there is a non negligible overhead incurred by the remote PE who has to
execute code to send the data values to the consumer PE This overliead is avoided in
our scheme because we provide a flexible mechanism that allows each of the Plis to
fetch their values by directly accessing the remote PE’s Structure memory. Fually,
notice that communication and computation can only proceed concurrently if both
the consumer and the producer generate the index in the same order Failure to do
so implics that the consumer has to wait for the producer to finish, and send the

values in the proper order In our scheme, again, the overhead of sending the values
is avoided for the producer PE.

6.2 Avoiding Duplication of Instructions

In Section 3.1.1, we set forth the problem of instruction duplication as a drawback
of one of our earlier schemes for implementing interprocessor communication of data
The situation is iilustrated in Figure 3.3 which is reproduced in Figure 6 1, where a
node in PEA produces a data value to be consumed by three remote nodes  Instruc-
tion duplication is usually not a problem within the argument-flow based architectures
since the multiple destination list of a token generates automatic duplications of the
result data value instead.

The MMDA is an argument-fetching architecture, but as we previously explained,
the DM-to-DM remote transfers of data values are accomplished more efficiently if
they are done in an argument-flow fashion. It turns out that our scheme for processing
multiple remote target nodes avoids the duplication of instructions as well, which
brings it close to the schemes upon which the pure argument-flow architectures are
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based. Data values are also duplicated—only when they leave the boundaries of the
PE—instead of duplicating the instructions.

In Dennis’ New Static Dataflow Architecture, snstructions are made up of some
arbitrary number of sections which can be of three kinds: execute sections, control
sections, and send/receive sections ( Figure 6.2 shows the major components of this
architecture, without the interprocessor interface). Actually, each instruction corre-
sponds to what other architectures have called a thread of instructions. Nevertheless,
we will refer to them as instructions. Each instruction entering the Execution System
gets exclusive usage of one of the register sets for all the duration of its activation

As pointed out earlier, data values are transferred from PE to PE by means
of the send/receive section. Each send operation has to wait for an acknowledgment
generated by the receive operation upon reception of the data value, so they interrupt
the thread of execution within the instruction Sincec the execution system cannot
afford to idle in the meanwhile due to the Linited number of register sets, the send
sections are always located at the end of an instruction. The consequences of this
scheme is that there can only be one send section per instruction, and one instruction
per data value being sent, thus a duplication of instructions which we have avoided
in the scheme presented in this thesis.
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Chapter 7
Conclusion

The design of a parallel system must be based on a sound model of parallel computa-
tion, from its programming model down to its architecture. The dataflow concept has
been attracting increasing attention as a radical alternative to the von Neumann ar-
chitectures, emerging as an innovative model which offers simple yet powerful means
of achieving highly parallel computations.

Dataflow languages, based on the functional programming style, allow the paral-
lelism, 1inherent in many scientific applications, to be fully and naturally expressed.
The McGill Dataflow Architecture has been developed, to efficiently support this
model of computation. It is based on the argument-fetching principle, which prones
for the separation of data values and scheduling information, yielding a modular
design where simplicity is a major characteristic. An execution pipeline free of data-
dependent hazards and pipeline gaps due to operand matching, together with a vir-
tually non existent data traffic, are among the attractive features of this architecture.

In a parallel system, communication between processors is one crucial problem to
be solved, be it transfer of data or event synchronization. Any scalable multiprocessor
must therefore address the fundamental problems of high latency memory operations,
and the interprocessor synchronization of events. The former is directly attributable
to the physical partitioning of the machine into independent processors, while the
latter can be attributable to the logical partitioning of the application program. As
the number of processors increases, the latency invariably increases too, the physical
size of the machine being an insurmountable factor. Furthermore, the fine-grain
parallelism, fully supported at the instruction level by the dataflow model, generally
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leads to great synchronization overheads. The dataflow model of computation appears
as an attractive model, well suited to efficiently address these issues

In this thesis, we have proposed an effective communication method to provide
interprocessor synchronization between two nodes, and remote Structure memory
operations. By providing the necessary supports for interprocessor communications
to the MFDA, we have established a sound multiprocessor environment whose main
features are transparency, flexibility, and an eflicient use of the network and execution
units of all the PEs. The key contribution of the approach 1s to separate the processing
of remote signals from the main execution pipeline, and to provide the processor with
flexible structure memory operations.

The above mechanisms allow two processors to interact with each other in an
argument-flow fashion by means of messages conveying signals, possibly paired with
data values The implementation of these mechanisms has been accomplished by
the Interprocessor Communication Unit (ICU), yielding the McGill Multiprocessor
Architecture. It is a modular and scalable system, that facilitates the iclusion of
processors for increasing power, memory space and communications bandwidth. In-
teractions among PEs are achieved through the sending and receiving of messages
through a packed switching interconnection network. The maimn contribution of this
implementation has been to keep the multiprocessor environment as transparent as

can be, realizing interprocessor communications almost as if the PE boundanes were
inexistent.

Within the framework of this thesis, we have developed some useful and flexible
simulation tools that closely model the behavior of the multiprocessor system and
its interactions with an interconnection network. We have investigated the impact of
long latency operations on the performance of multiprocessor dataflow programs Our
results are very encouraging. They have shown that the MMDA 1s a system that can
effectively tolerate high latencies during interprocessor memory operations and that
it can inexpensively support remote event synchronization We have demonstrated
that when the program contains enough fine-grain paralichsm, 1t can absorb the
effects of long latency operations, thereby featuring increasing execution speeds as
additional processors were made available to the systein. We have also shown that
the performance can degrade in a considerable manner if the interconnection network
becomes a bottleneck, thereby showing that it 1s a factor as critical as latency in the
execution of an application. However, and overall, the MMDA performs remarquably
well, achieving close to linear speed-ups, given a high bandwidth interconnection
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network, and a highly parallelizable application like some of the benchmark programs
used in this work.

We also believe that this work has been a valuable contribution in the sense that
it has brought forward the problem of network contention, in a field where it is often
disregarded. Most of the simulation results in other works estimate the effects of
physically distributing a program, by assigning a cost to each interprocessor commu-
nication in terms of a fixed delay, thereby assuming a situation which is not always
the case. With our simulations, we have achieved results which are closer to reality
since they take into account this kind of network contention problem. For instance,
our results show that in a system of 16 processors with an interconnection network of
1.6 gigabytes per second peak bandwidth, the network’s average throughput adds up
to about 720 megabytes per second, a figure that tends to decrease with larger sys-
tems. We believe that research should be done in order to fird better suited networks
for the dataflow model, and to find ways to include this network contention problem
as an element of importance in the compiling of multiprocessor dataflow programs.
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Appendix A

The Source Code of the
Benchmark Programs

The Livermore Loops are 24 loops, widely recognized as performance benchiaark
programs, produced by the Lawrence Livermore National Laboratory. The Loops
represent the type of computation kernels typically found in large-scale scientific
computing. In this appendix, we present the SISAL source code for the loops that
have been used for the performance evaluation of the MMDA The SISAL functions
faithfully implement the computations of the loops, which originally were written in
Fortran. The other benchmark programs are coded in Pascal. Each benchmark is
also presented in the form of a graph.
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Benchmark 1: Excerpt from a Hydrodynamics Code (Loop1)

This code fragment is the first Livermore Kernel and is excerpted from a hydro-
dynamics code. The values Q, R, T are scalar coefRicients while Y and Z are one
dimensional arrays. This loop returns an one-dimensional array of size n. Note that
for the construction of a static array, the value of n should be known at compile time.

type OneDim = array(double];
function Loopl (n: integer; Q,R,T: integer,
Y,Z: OneDim; returns OneDim)
forkin 1,n
returns
Q + (Y[k] * (R * Z[k+10] + T * Z[k+11]))
end for
end function
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Benchmark 2: Equation of State Fragment (Loop7)

This code fragment is the seventh Livermore Kernel and returns a one-dimensional
array of size n. R and T are coefficients, while U, Y, and Z are input arrays that are
used for the consiruction of the returned array. The value of n should be known at

compile time.

type OneDim = array[double];
function Loop7(n: integer; R,T:real; U,Y,Z: OneDim; returns OneDim)
for kinln
returns array of Uk] + R * (Z[k] + R * Y[k])
+ T * (Uk+3] + R * (Uk+2] + R * Ulk+1])
+ T * (Uk+6] + R * (U[k+5] + R * Ulk+4])))
end for
end function
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Benchmark 3: Matrix multiplication (Matmul)

The matrix multiplication is a function widely used in scientific applications. It
is also a very common benchmark. It’s inputs are two two-dimensional arrays A and
B, of size {n x m) and (m x n) respectively. It returns a two-dimensional array C of
size (n X n). Both » and m should be known at compile time.

type typel : array [l..n,1..m] of real;
type2 : array [1..m,l1..n] of real;
t~ped : array [1..n,1..n] of real;

procedure Matmul (A: typel; B: type2; var C: type3);
var i, j, k : integer;
begin
fori:= 1 tondo
for j :=1ton do
fork:=1 tomdo
Cli,j] := C[i,j] + Afi,k] x Blk,j;

end;

o
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Benchmark 4: Fragment of Lower/Upper Decomposition
(Saxpy)

Saxpy is a kernel of a program performing the Lower/Upper Decomposition. This
is a computation widely used in linear algebra for solving systems of linear algebraic
equations. The benchmark has been modified though, to make it more computation-
ally intensive. X and Y are the input matrices of size n, and Z is the returued array,
of the same size.

type arrtype : array [l..n] of real;

procedure Saxpy (X, Y: arrtype; a, b, c: real; var Z: arrtype);
vari: integer;
begin
fori:=1tondo
Zfi] := a x X[i] + b x Y[i] + ¢;
end;
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Appendix B

An A-code sample program

The following is a fragment of the A-code version of the Loop7 program. The graph
corresponding to this benchmark is shown in Appendix A. What we are showing
here is called a PE segment and corresponds to the portion of code that runs on
a particular processor— in this case, PE 0. The complete multiprocessor program
consists of a list of these segments.
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pre N

Fiily

.PE loop7100 count IGEN_1_0:0.1
count loop7101/EXITING loop7102/EXITING

exit Res count 1loop7103/EXITING loop7104/EXITING
ipsig EXITING loop7101/EXIT count loop7106/EXITING loop7106/EXITING
ipsig EXITING loop7102/EXIT count loop7107, EXITING
ipsig EXITING loop7103/EXIT .end
ipsig EXITING loop7104/EXIT
ipsig EXITING"loop7105/EXIT .n EXIT
ipsig EXITING-loop71u6/EXIT NOOP
ipsig EXITING loop7107/EXIT count EXITING
.end

const LoopSize= 100 % Loop limit
const LoopLim = 99 % Loop limit -1 .n Init_Sup_ k_0:0
const ArrSizei= 106 % Size array typel ID LoopLim Sup_k_0:0
const ArxSize2= 100 % Size array type2 count INIT
.end
0 % Base address
406 % Base address

const baseL_U
.n InitIGEN_k_0:0

const baseR_U

const baseL_Y = 106 % Base address ID Int k_0O:0
const baseR_Y = 612 % Base address count INIT
const basel_Z = 206 % Base address .end

NN < S A

const baseR_Z = 612 % Base address
const baseL_Res=306 % Base address Res .n IGEN_k_0:0
const baseR_Res=306 % Base address Res IGEN k_0:0 Sup_k_0:0 k_0:0

count ( InitIGEN_k_0:0 Start_0:0)

const Int = -1 count ( Init_Sup_k_0:0 Start_0:0)
.end

.segment DATA

dm I1 init( 2.) .n Start_0:0

dm I2 init( 3.) ID k_0:0 R1_0:0

.end count IGEN_k_0:0.t
nocnt GTUO_0:0 GTZ0O_0:0 GTYO_0:0

.segment STRUC nocnt GT3U0_0:0 GT2U0_0:0

dm U[ArrSizei] init({ArrSizel) 3.) nocnt GT1U0_0:0 GT6U0_0:0

dm Y[ArrSize2] init((ArrSize2) 4.) nocnt GTSUO_0:0 GT4U0_0:0

dn Z[AxrrSize2] init((ArrSize2) 5.) .end

dm Res[ArrSize2] init((ArrSize2) 0.)

.end Y istbranch: U[k] ------ %
.n GTU0_0:0
ID R1_0:0 R2_0:0

.seg PROG count Start_0:0
nocnt GTU1_0:0

.n EXITING .end

NOOP
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)
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.n GTU1_0:0 nocnt Addr_4U_0:0

ID R2_0:0 R3_0:0 .end

count GTUO0_G:0

nocnt GTU2_0:0 .n Addr_4U_0:0

.end ADD baseR_U R39_0:0 add_4V _0:0
count Offset_4Y_0:0

.n GTU2_0:0 nocnt Load_4VU_0:0

ID R3_0:0 R4_G:0 .end

count GTU1_0:0

nocnt GTU3_0:0 .n Load_4U_0:0

.end RLOAD add_4U_0:0 val_4U_0:0
count Addr_4U_0:0

.n GTU3_0:0 nocnt Mult4_0:0

ID R4_0:0 R5_0:0 .end

count GTU2_0:0

nocnt Addr_U_0:0 .n Mult4 _0:0

.end MULTF It val_4U_0:0 R40_0:0
count Load_4U_0:0

.n Addr_U_0:0 nocnt Plus4_0:0

ADD baseR_U R5_0:0 add_U_0:0 .end

count GTU3_0:0

nocnt Load_U_0:0 .n Plus4_0:0

.end ADDF val_SU_0:0 R40_0:0 R41_0:0
count Load_5U_0:0

.n Load_U_0:0 count Mult4_0:0

RLOAD add_U_0:0 val_U_0:0 nocnt Mult5_0:0

count Addr _U_0:0 .end

nocnt Plusi_0:0

.end .n Mults_0:0

= End 1st branch: U{k] ------ A MULTF I1 R41_0:0 R42_0:0

count Plus4_0:0
nocnt Plus5_0:0

.end
A 9th branch: R * U[k+4] ~~==u- %
.n GT4U0_0:0 .n Plusb 0:0
ID R1_0:0 R38_0:0 ADDF val_6U_0:0 R42_0:0 R43_0:0
count Start_0:0 count Load_6U_0:0
nocnt Offset_4U_0:0 count Mult6_0:0
.end nocnt Mult6_0:0
.end
.n Offset_4U_0:0 .n Mult§_0:0
ADD R38_0:0 4 R39_0:0 MULTF 12 R43_0:0 R44_0:0
count GT4U0_0:0 count Plus6_0:0
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nocnt Plusé_0:0 .end
.end
.n Addr_Res_0:0
.n Plus6_0:0 ADD 1_0:0 basel._Res add_Res_0:0
ADDF R29a_0:0 R44_0:0 R45_0:0 count IGEN_1_0:0.t
count GT1U1_0:0 nocnt StoreRes_0:0
count Multé_0:0 .end
nocnt Mult7_0:0
.end .end

.end % PE loop7100
.n Mult7_0:0
MULTF I2 R45_0:0 R46_0:0
count Plusé_0:0
nocnt Plus7_0:0
.end

.n Plus7_0:0

ADDF R16_0:0 R46_0:0 R47_0:0
count GTY4_0:0

count Mult?7_0:0

nocnt StoreRes_0:0

.end

.n StoreRes_0:0

STORE R47_0.0 add_Res_0:0

count Plus7_0:0

count Addr_Res_0:0

.end

%---- End 9th branch: R * U[k+4] ----%

.n Init_Sup_1_0:0

ID LoopLim Sup_1_0:0
count INIT

.end

.n InitIGEN_1_0:0
ID Inf 1_0:0
count INIT

.end

.n IGEN_1_0:0

IGEN 1_0:0 Sup_1_0:01_0:0

count ( InitIGEN_1_0:0 StoreRes_0:0 )
count ( Init_Sup_1l_0:0 StoreRes_0:0 )
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Appendix C

The Mds Simulator

The mds simulator is written in Concurrent C, a process-oriented concurrent language.
The language provides tools to create and handle light-weight proceeses which can
communicate via transactions. Each major unit of the architecture has been simulated
using this concept of proces s. The result is a modular program, flexible and easily
modifiable, which can simulate systems of 1 to 16 processing elements. It can be used
to test different configurations of processing element, and networi topologies.

From each load image file that executes on the simulator, there is one file per
PE that gets created, to store the results of the program as well as the performance
metrics related to each specific PE. Most of the options are self explanatory as can

be seen by this sample message obtained from running the simulator without any
option:

Mds: A Multiprocessor Dataflow Simulator (Release 1.1)
(c) J.M. Monti ACAPS-SOCS 06/90

Usage: mds [ <flags> ] <ldifile>

flags: -ns <num>: set number of stages in PIPU (def. 6)
-nc <num>: set number of counts allowed per cycle (def. 4/ideal)
-1 <time>: starting time of run log (def. off/1)
~t <time>: termination time of program (def. off/60000)

-P <num> : set number of the PE generating the msgs (def. 0)

-C : show time counter
-Lt : generate log of firings (def. off)
~-Le : generate log of enabled instructions (def. off)
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-Nc <num>:
-N1 <num>:
-Ng <num>:
-S <size>:

: generate log of network utilization (def. off)

: generate log of network pending requests (def. ~ff)
: generate log of network latencies (def. off)

: print network traffic on stdout

PE to network clock ratio (def. 2)
network start-up latency (def. 2)
network switch buffer size (def. 2)
set Struc memory virtual size

In addition, there is the possibility of tracing some key events for all PEs or for

only one PE, by using the L option combined with the P option. The traces are

stored in log fites which can be previewed using any graph software. If the P option
is used, only the specified PE gets traced. All traces can be used at once, and are
recorded at each unit of simulated time. The following is a list of each of the possible

traces:

Lf: PIPU utilization, i.e. whether or not the execution pipeline is busy;

e Le: size of the fire queue, which contains the enabled instructions;

¢ Lnu: network utilization, i.e. whether or not the network is used at each cycle;

e Lnr: number of pending network requests, at each cycle;

¢ Lnl: time of arrival and amount of latency, for each incoming packet;

The following is an example of a result file produced by a simulation:

SIMULATOR SETTING

FIF0 Scheduling; 1 PIPUs (P);

6 stage(s) in PIPU; 4 count signals/cycle (C);
Nb. procs 8; Network: OMEGA (3 stages);
PE/Nturk ratio: 2; Start-up latency: 2;

Network Switch size: 2 buffer(s).

SYSTEM STATISTICS PE#0:

File name: loop7.res
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NETWORK STATS:
Global Network utilization:

accesses: 6414
refused: 889
delayed: 0
delayed/cycle: 0 00
total bytes: 64066
bytes/access: 9.99
throughput : 27 65
contention: 30.37 %
nb. coll : 9780
coll./cycle: 0.93
Local Network utilization:
accegsges: 807
refused: 210
total bytes: 8028
bytes/access: 9.95
throughput: 27.72
Remote requests:
total: 400
frequency: i8.10
pctge load: 5.63 Y%
Latency (min/max/ave):
local: 2
network: 10

total (ave.): 17.77
PROCESSOR STATS:
Total number of processor cycles:
Total idle cycles:
Processor usage:
Struc Memory Size:

Sequential Run time:
Local Speedup:

Avg. population in enable
memory and fire queue:

Count(s) Done(s) Fire(s)
Total: 15810 7107 7108

CountQ Cnts/ DoneQ FireQ Fire

Inst. Delay
Max: 4 11 4 23 22
95

through stage 0

over 105642 cycles

on ave.

MBytes/sec over total tims
over 10542 cycles

on ave.

out / 807 in

on ave.
MBytes/sec on ave.

over total time
over total inst.

8 2.06
28 156.71

7240

132
98.18 %
406 words

42648
5.89

12.28
/5h.Fire(s) Exec(s)

/9 7108

RemPeqQ IntSigQq LocalQ




Bibliography

[1] W. B. Ackerman. Data flow languages. JEEE Computer, 15(2):15-25, February
1982

(2] W. B. Ackerman and J. B. Dennis. VAL—a value-oriented algorithmic language.
Technical Report 218, Laboratory for Computer Science, MIT, 1979.

[3] Arvind, S A Brobst, and G. K Maa Evaluation of the MIT tagged token
dataflow project. Computation Structures Group Memo 281, Laboratory for
"i Computer Science, MIT, 1988.

[4) Arvind and D E Culler Dataflow architectures. Annual Reviews in Computer
Science, 1:225-253, 1986

[5) Arvind, M. L. Dertouzos, R S. Nikhil, and G. M. Papadopoulos. Pr.ject

dataflow—the Monsoon architecture and the Id programming language. Com-

putation Structures Group Memo 285, Laboratory for Computer Science, MIT,
March 1988.

[6] Arvind and et al The tagged token dataflow architecture (preliminary version).
Technical report, Laboratory for Computer Science, MIT, Cambridge, MA., Au-
gust 1983

[7] Arvind and K P. Gostelow. The U-Interpreter IEEE Computer, 15(2):42-49,
February 1982.

[8] Arvind and R A Tannucci. A critique of multiprocessing von Neumann style.
In Proceedings of the Tenth Annual International Symposium on Computer Ar-
chitecture, pages 426--436, 1983.

96




[9]

[10]

[11]

[12]

[13]

[14]

[15]

116]

[17]

[18]

[19]

[20]

Arvind and R A. Jannucci Two fundamental 1ssues in multiprocessing. Com-

putation Structures Group Memo 226, Laboratory for Computer Science, MIT,
1987.

Arvind, R 5 Nikhil, and K K Pingali I-structures Data structures for par=ilel
computing ACM TOPLAS, 11{4) 598-632, October 1989

Arvind and R S. Nikhil Executing 4 program on the MI'T tagged-token dataflow
architecture IEEE Transactions on Computers, 39(3)-300-318, March 1990.

John Backus. Can programming be liberated from the von Neumann style?
A functional style and 1ts algebra of programs Communications of the ACM,
21(8)-613-641, August 1978

A. L. Davis and R. M. Keller Data flow program graphs [FFEE Computer,
15(2):26-41, February 1982

J. B. Denmis First version of a data-flow procedure language. In Proceedings
of the Collogue sur la Programmalion, volume 19 of Lecture Notes in Compuler
Science, pages 362-376. Springler-Verlag, 1974

J. B. Dennis. Data flow supercomputers. [EEE Computer, 13(11) 48-56, Novem-
ber 1980.

J. B. Dennis. Dataflow computation: A case study. In Veljko Milutinovi¢, editor,
Computer Architecture. Concepts and Systems, pages 354-404. North-Holland,
New York, 1988.

J. B. Dennis. The evolution of ‘static’ data-flow computing. In J -L. Gaudiot and
L. Bic, editors, Advanced Topics in Date-Flow Computing. Prentice-Hall, 1990

J. B Dennis Evolution of the static dataflow architecture In Advanced Topics
in Dataflow Computing Prentice-Hall, 1991.

J. B. Dennis, G. A. Boughton, and Leung C. K C Building blocks for data flow
prototypes. In Proceedings of the Seventh Symposium on Compuler Architecture,
May 1980

J. B. Dennis and G. R Gao. An efficient pipehned dataflow processor arch-
tecture. In Proceedings of the Supercomputing '88 Conference, pages 368--373,
Florida, November 1988. IEEE Computer Society and ACM SIGARCH

97




o

Y Wz§

&

[21] J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor archi-
tecture. Technical Report TR-SOCS-88.06, School of Computer Science McGill
University, Montreal, February 1988.

[22] J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic data-flow
processor. In The Second Annual Symposium on Computer Architecture, pages
126-132, January 1975.

[23] D. M. Dias and J. R. Jump. Analysis and simulation of buffered delta networks.
IEEE Transactions on Computers, C-30(4), April 1981.

[24] D. M. Dias and J. R. Jump. Packet switching interconnection networks for
modular systems. IEEE Computer, 14(12), December 1981.

[25] Jack J. Dongarra. The LINPACK benchmark: An explanation. In C. D. Poly-
chronopoulos, editor, Proceedings of the 1987 Conference on Supercomputing,
Athens, Greece, pages 457-474, Berlin, June 1987. Springer-Verlag, LNCS-297.

[26] Tse-yun Feng. A survey of interconnection networks. IEEE Computer, pages
12-27, December 1981. Special issue on Interconnection Networks.

[27] J. T. Feo. An analysis of the computational and parallel complexity of the
Livermore loops. Parallel Computer, 8(7):163-185, July 1988.

[28] D. D. Gajski and J.-K. Peir. Essential issues in multiprocessor systems. IEEE
Computer, 18(6):9-27, June 1985.

[29] G. R. Gao. A pipelined code mapping strategy for dataflow super computers.
In Proceedings of the Third International Conference on Supercomputing, pages
209-215, May 1988.

[30] G. R. Gao. A Code Mapping Scheme for Dataflow Software Pipelining. Kluwer
Academic Publishers, Boston, December 1990.

[31] G. R. Gao, H. H. J. Hum, and Y. B. Wong. Towards efficient fine-grain soft ware
pipelining. In Proceedings of the ACM International Conference on Supercom.-
puting, Amsterdam, the Netherlands, June 1990.

(32] G. R. Gao and R. Tio. Instruction set architecture for an argument-fetching
dataflow architecture. In Proceedings of the Canadian Conference on Very Large.-
Scale Integration (CCVLSI-88), Halifax, October 1988.

98



€

[33] G. R. Gao and R. Tio. Instruction set definition for the argument-fetching
dataflow machine. ACAPS Technical Memo 01, School of Computer Science,
McGill University, Montreal, February 1988.

[34] G. R. Gao, R. Tio, and H. H. J. Hum. Design of an efficient dataflow archi-
tecture without dataflow. In Proceedings of the International Conference on
Fifth-Generation Computers, pages 861-868, Tokyo, Japan, December 1988.

[35] J. Gaudiot, R. Vedder, G. Tucker, D. Finn, and M. Campbell. A distributed
VLSI architecture for efficient signal and data processing. IEEE Transactions
on Compulers, C-34(12):1072-1087, 1985.

[36] N.H Gehani and W.D. Roome. The Concurrent C project. Computer technology
research laboratory technical reports, AT&T Bell Laboratories, Murray Hill, New
Jersey, 1988. Collection of papers.

[37] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes. The Epsilon dataflow
processor. In Proceedings of the 16th International Symposium on Computer
Architecture, pages 36-45, Israel, June 1989.

[38] J. R. Gurd, C. C. Kirkham, and I. Watson. The Manchester prototype dataflow
computer. Communications of the ACM, 28(1):34-52, January 1985.

[39] K. Hiraki, S. Sekiguchi, and T. Shimada. Efficient vector processing on a dataflow
supercomputer SIGMA-1. In Proceedings of IEEE Computer Society and ACM
SIGARCH Supercomputing ‘88 Conference, Orlando, FL, 1988.

[40] K Hiraki, S. Sekiguchi, and T. Shimada. Status report of SIGMA-1: a dataflow
supercomputer. In Advanced Topics in Dataflow Computing. Prentice-Hall, 1991.

[41] W.-K. Horg. IF1 parser for HDDG. ACAPS Design Note 01, School Of Computer
Science, McGill University, Montreal, June 1988.

[42] P. Hudak. Conception, evolution, and application of functional programming
languages. Computing Surveys, 21(3), September 1989.

[43] D. Johnson et al. Automatic partitioning of programs in multiprocessor systems.
In Proceedings of Compcon 80, pages 175-78, 1980.

[44] Y. Kodama, S. Sakai, and Y. Yamaguchi. A prototype of a highly parallel

dataflow machine EM-4 and its preliminary evaluation. In Proceedings of Info-
Japan 90, October 1990.

99




[45]

[46]

[47]

[48]

[49]

[50)

[51]

[52]

53]

[54]

[55]

[56]

C.P. Kruskal and M. Snir. The performance of multistage interconnection net-
works for multiprocessors. IEEE Transactions on Computers, C-32(12):1091-
1098, December 1983.

V.P. Kumar and S.M. Reddy. Augmented shuffle-exchange multistage intercon-
nection networks. IEEE Computer, pages 30-40, June 1987,

D.H. Lawrie. Access and alignment of data in an array processor. IEEE Trans-
actions on Computers, C-24(12):1145-1155, December 1975.

J. R. McGraw. The VAL language: Description 2nd analysis. ACM TOPLAS,
4(1):44-82, January 1982.

J. R. McGraw and et al. SISAL: Streams and iteration in a single assign-
ment language—language reference manual version 1.2. Technical Report M-146,
Lawrence Livermore National Laboratory, 1985.

J.M. Monti. Dasm reference manual (version 1.4). ACAPS Design Note 17,
School of Computer Science, McGill University, Montreal, November 1989.

J.M. Monti. Mds: A multiprocessor dataflow simulator. ACAPS Design Note 15,
School Of Computer Science, McGill University, Montreal, November 1989.

R. Nikhil and Arvind. Can dataflow subsume von Neumann computing? In Pro-
ceedings of the 16th International Symposium on Computer Architecture, pages
262-272, Israel, 1989.

R.S. Nikhil. The parallel programming language Id and its compilation for par-
allel machines. Computation Structures Group Memo 313, Laboratory for Com-
puter Science, MIT, July 1990.

Krishnan Padmanabhan and Duncan H. Lawrie. Performance analysis of
redundant-path networks for multiprocessor systems. ACM Transactions on
Computer Systems, 3(2):117-144, May 1985.

G. M. Papadopoulos. I'mplementation of a General Purpose Dataflow Multipro-
cessor. PhD thesis, MIT, 1988.

J.H. Patel. Processor-memory interconnections for multiprocessors. In The 6th
Annual Symposium on Computer Architecture, pages 168-177, New York, N.Y.,
April 1979,

100




?

¢

b

9

[57] A. Plas, D. Comte, O. Gelly, and J. C. Syre. LAU system architecture: A
parallel data driven processor based on single assignment. In Proceedings of the
1976 International Conference on Parallel Processing, pages 293-302, 1976.

[58] Daniel A. Reed and Dirk C. Grunwald. The performance of multicomputer
interconnection networks. IEEE Computer, pages 63-73, June 1987.

[59] J. E. Rodriguez. A Graph Model for Parallel Computation. PhD thesis, Lab-
oratory for Computer Science, MIT, Cambridge, MA, September 1967. Also
available as Technical Report 64, Project MAC, MIT, September, 1969.

[60] C. L. Seitz. The cosmic cube. Communications of the ACM, 28(1), January
1985.

61] T. Temma, S. Hasegawa, and S. Hanaki. Dataflow processor for image processing.
{4 g g

Proceedings of the 11th International Symposium on Mini and Microcompulters,
pages 52-56, 1980. Monterey, CA.

[62] R. Tio. The A-code assembly language reference manual. ACAPS Design
Note 02, School of Computer Science, McGill University, Montreal, July 1988.

[63] Y. B. Wong. AD reference manual (version 1.4). ACAPS Design Note 16, School
of Computer Science, McGill University, Montreal, October 1989.

101




