
..

INTERPROCESSOR COMMUNICATION SUPPORTS FOR
A MULTIPROCESSOR DATAFLOW MACHINE

by
Jean-Marc MONT!

School of Computer Science

McGill University, Montréal

May 1991

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 1991 by Jean-Marc MONTI

(

Abstract

The datatlow model of computation offers a powerful alternative to the von Neumann
based model for exploiting the fine-grain parallelism inherent in scientific computa
tions. Under this model, a program is expressed in the form of a graph, where the data
values are carried by tokens, moving on the arcs of the graph. A distinctive feature
of datatlow computers is the absence of the conventional program counter. Instead,
instruction execution is solely determined by the availability of data which provides
ample instructio.l1evel fine-grain parallelism. A highly pipelined static dataHow archi
tecture has recently been proposed, based on the argument fetching principle, yielding
the McGill Datatlow Architecture (MDFA).

In this thesis, an inter-processor communication rnechanism is proposed. With
this mecha.nism, a multiprocessor MDFA system can be constructed, based on a
distributed memory organization. An efficient inter-processor synchronization and
communication support is presented, for sending and receiving data through an in
terconnection network. An Interprocessor Communication Unit (leU) has been de
signed to irnplement the above rnechanism in the MDFA. A s;mulation testbed has
been implemented to study the performance of the multiprocessor. It includes an as
sembler, with multiprocessor extensions, and a multiprocescor sirnulator. An analysis

based on the simulations results is presented, focusing on the impact of long latency
operations on program performance.

11

----------- - -- - ----- ----- -- -- - -- -- -----
----- -------- ------------------~~---_ ...

1

1

Résumé

Le modèle de calcul Flux-de-données constitue une puissa.nte alternative face aux
modèles cla.ssés von Neumann, car il permet d'exploiter le parallélisme "finement
granulé" (fine-grain) inhérent à la plupart des calculs scientifiques. Avec ce modèle,
un programme est exprimé sous la forme d'un graphe dans lequel les valeurs sont
convoyées par des jetons qui se déplacent sur les arcs du graphe. Un des traits dlstinc
tifs des ordinateurs ftux-de-données est l'absence du compteur d'mst"ûctions con ven
tionel. En contrepartie, l'exécution des instructions est uniquement déterminée par
la disponibilité des données, ce qui conduit à un très grand parallélisme au fllvcau des
instructions, finement granulé. L'Architecture Flux-de-Données de McGlll (AFDM)
repose sur cette idée, plus particulièrement, elle est une architecture de procebscur de

type flux-de-données statique, basée sur le principe "apporte-arguments" (argument

jetching). L'AFDM est l'architecture cible de cette étude.

Dans cette thèse, nous proposons un mécanisme de communication mterpro
cesseur. Avec ce mécanisme, un multiprocesseur de type AFDM peut être con
struit, basé sur une organisation de mémoire physiquement dihtribuée. Un support
efficace pour les synchronisations et les communications de type interplocesseur est
présenté, de façon à permettre l'envoi et la réception de données à travers ilL réseau

d'interconnections. Une Unité de Communication Interprocesseur (UCI) a été conçue
pour implémenter les mécanismes en question dans l'AFDM. Un processus de simula
tion a été mis en place pour étudier la performance du multiprocesseur Ce processus
comprend un assembleur, adapté au traitement des programmes multiprocesseurs,
et un simulateur de systèmes à processeurs multiples. Notre analyse des résultats,
obtenus à partir de plusieurs simulations, vise à évaluer l'impact des opérations de
longue latence sur la performance des programmes.

111

l

Acknow lüdgments

A numbe:r of people have contributed to the mil a.culous complet ion of this thesis.
First of a.ll, 1 wish to express my sincere gr&.titudt, to my thesis advisor, GVd.ng R.
Gao, for his generous cooperation, support, and guidance in the developmcllt of this
research.

A special thanks to the members of our research team-Advanced Computer Ar
chitecture and Program Structures Group at McGili University. In particular, 1 wish
to thank my colleagues and friends, Russell Olsen and Philip Wong, for making my
stay in the laboratory a most enjoyable experience. Their valu able discussions and
suggp.stions have been a grcat contribution to this work. Aiso many thanks to the
system staff of our School of Computer Science for being so patient and understand
ing with a.ll of my numerous requests. 1 am also very grateful to David Samuel, our
"experienced proof-reader", whose contribution has ~elped to improve the quality of
this thesis.

Finally, 1 owe my greatest thanks to my parents, and my sisters, whose endless
love and faith have given me the strength to accomplish this step. Without their
support, none of this would have been possible. To them, 1 dedicate this work.

IV

Contents

Abstract ii

Résumé iii

Acknowledgments iv

1 Introduction 1

1.1 The Dataflow Model of Computation 2

1.2 The Static Approach . . 4

1.3 The Dynamic Approach 4

1.4 Objectives of the 'T'hesis 6

1.5 Structure of the Thesis . 7

2 The Static Dataflow Mode} and The McGill Dataflow Architecture 9

2.1 The Static Dataflow Model . . . 10

2.1.1 The Basic Graph Model

2.1.2 Dataflow Languages ..

2.2 A Static Dataflow Architecture

v

la

11

13

2.2.1 Implementing the Basic Model . 13

2.2.2 The Architecture 13

2.~.3 The Argument-Flow Principle 14

2.3 The McGill Dataflow Architecture. . 16

2.3.1 The Abstract Model and The Program Tuple 17

2.3.2 The Argument Fetching Architecture 18

2.3.3 Instruction Execution and Scheduling Process 21

2.4 Summary '" . 22

3 InterprGcessor Communication Schemes for the McGill Dataflow Ar-
chitecture Model 24

3.1 Sorne AHernative Implementations 26

3.1.1 Explicit SendjReceive Instructions 27

3.1.2 External Addressing Mode. 30

3.2 The Proposed Solution 31

3.2.1 An Interprocessor Synchronization Mechanism . 32

3.2.2 A Data Communication Scheme 34

3.3 Summary 35

4 The McGill Multiprocessor Dataflow Architecture S7

4.1 The Interprocessor Communication Unit 39

4.1.1 Interprocessor Signals 40

4.1.2 Processing RLOAD and RSTORE Operations 43

J 4.1.3 A Retry Mechanism to Control Buffer Space 46

VI

t

l

l

4.2 The Interconnection Network

4.2.1 Interconnection Network Charaderistics

4.2.2 A Multistage Ornega IN for the MMD A

4.3 Summary

5 Performance Evaluation

5.1 The Testbed Environment

5.2 Mds: a Multiproeessor Dataflow Simulator

5.2.1 Simulator parameters .

5.2.2 Performance met ries

5.3 The Benchmarks

5.4 Simulation Results

5.4.1 Execution Time and Speed-Up .

5.4.2 Network Throughput

5.4.3 Latency .,

5.5 Summary and Discussion

5.5.1 Summary

5.5.2

5.5.3

A Look at Compiling Issues

Program Structure

6 A Survey on Related Work

6.1 Interprocessor Data Transfers

6.2 Avoiding Duplication of Instructions

Vil

47

48

52

53

55

56

57

58

59

60

62

63

67

69

71

71

72

73

75

75

78

• . '

7 Conclusion 81

A The Source Code of the Benchmark Programs 84

B An A-code sam pIe program 89

C The Mds Simulator 93

Bibliography 101

c

Vlll

List of Tables

5.1 Performance Results for a Single PE

5.2 Remote-Operations Ratios Used to Test Each Benchmark .

IX

............... --

62

66

List of Figures

1.1 An Example of a Data Flow Program Graph 3

2.1 Sample Execution of a Data Flow Graph 12

2.2 A Signal G raph 14

2.3 An Argument-Flow Dataflow Processing Element 15

2.4 The Abstract Model of ~he Argument-Flow Approach 15

2.5 A Dataflow Program Tuple. 18

2.6 The Argument Fetching Architecture 19

2.7 Structure of the PIPU 19

2.8 Structure of the DISU 20

3 1 Interprocessor Transfer of Data 27

3.2 The Send/Recelve Link 28

3.3 Instruction DuplicatIOn to Send Data to Remote PEs 29

3.4 A Data Flow Graph wlth a Remote Target Node. 33

4.1 Structural Model of a Multiprocessor MDFA ... 38

4.2 The MDFA and the Interprocessor Communication Unit 39

, 4.3 Sending a Signal to a Remote ~E 41
'!\

x

ft

4.4 Receiving a Signal from a Remote PE 43

4.5 Sending a Memory Request to a Remotc PE 45

4.6 Examples of StatIc INs .. 49

4.7 Examples of Dynanuc IN s 51

5.1 The Testbed Environment 56

5.2 Performance of Loop1 63

5.3 Performance of Loop7 64

5.4 Performance of Matmul . 61

5.5 Performance of Saxpy. . 65

5.6 Network Average Throughput 68

5.7 Global Average Latcncy 70

5.8 Global Colbsion Rate . . 71

5.9 Network Average Throughput versus Remote-Operations Ratio. 73

6.1 Instruction Duplication to Send Data to Remote PEs 79

6.2 Organization of the New Static Dataflow Architecture. 79

Xl

1

Chapter 1

Introduction

Rapid advances in computer architecture and device technology, such as VLSI tech
nology, have ma.de if. possible to build massively parallel computers integrating the
{unction of hundreds or thousands of hard ware units. Commercial and research efforts
are cUl1'ently underway to develop parallel comput ers with performance far beyond
what is achieva.ble today. Some examples are the SIGMA-l [39], the EM-4 [44J, and
the Monsoon [55].

In this thesis, we are interested in the type of multiprocessors generally classified
as MIMD-multiple instruction multiple data stream-machines. Compared to their
counterpart, the SIMD machines, they have the advantage of performing well over
a broader range of applications due to their more generaI design. MIMD machines
typically consist of a collection of von Neumann type processors, executing their
own instructions, and usuaIly communicating via a common memory, or by messages
being sent over a network. They mostly rely upon sequentiaI conventionallanguages
(like C, PascaI or Fortran), extended with parallel primitives, to program aU their
applications.

However, there is con cern as to whether or not they can keep up with the ever in
creasing demand for computing power. There exists a mismatch between the amount
of parallelism ava\lable in many la.rge scale scientific computations and the amount
of concurrency which can be efliciently supported by such multiprocessors.

Altogether, it becomes increasingly clear that traditinnaI von Neumann systems
are inadequate to meet such technological challenges. This stems from the nature

1

".

of their architectur.:!, where instruction scheduling is baset1. on a sequential control
mechanism, yielding the so-called von Neumann' }ttleneck [12]. Tllis shortcoming
is exacerbated in those multiprocessor systems which are build from conventional
processors. Long memory communication latencies, unavoidable in paraIlel machines,
considerably degrade their performance. Furthermore, convention al processors have
failed to provide inexpensive synchronization mechanisms for task switching, aIso
frequent in a parallel machine [9, 11].

The design of a parallel system must be based on a sound model of parallel COIU

putation, from its programming model down ta its architecture. This conviction has
lead to the introduction of novel forms of computer architecture in an attempt to
eliminate the crucial von Neumann bottleneck. One promising unconventional ap
proach ta high performance computer systems is based on the dataflow model of
computation.

1.1 The Dataflow Model of Computation

Under this model, instruction scheduling is solely determined by the availability of
the data on which the instruction operates, thus eliminating the need for the se
quentiaI program counter. In a multiprocessor environment, the coordination and
synchronization of concurrent activities, executing on different processing elements,
is implemented through the data-driven mechanism. Therefore, no conventional pro
cess interrupt, busy waiting, or context switching mechanisms are needed.

The datafiow model of computation arose from the development of data flow

program graphs in arder to mode! program behavior. An ahstract model was first
introduced by Jorge Rodriguez in 1966 [59], who showed that programs could he
represented in the form of a directed graph. Data fiow program graphs were later
formalized by Dennis in a seminal paper which jntrodu..:es an effective representation
of programs in the form of a. block structured language [14J.

A data fiow program graph basically consÎsts of a rrJllection of nodes) connected
hy arcs. Data values are carried by tokens) rnoving on the arcs of the graph, and the
nodes are actors) who execute instructions) i.e. apply an operator to the values carried
hy the input tokens connected to the node. The arcs of the graph thus denote the
da.ta dependencies between the operations. An actor becomes activated for execution

2

(

(

Expression:

(a-b) x (c+d) + (x+y) x (w/z)

Figure 1.1: An Exarnple of a Data Flow Program Graph

when aU its input ares have a token carrying a data value. The sequential program
flow of control, no longer relevant, is thus replaeed by a data driven flow of control,
a major eharacteristie of dataflow eomputers. An exarnple of a data flow program
graph is shawn in Figure 1.1.

By imposing restrictions on the structure of the graph, paraUe/ism and determi

nacy are revealed as the two major properties of the dataflow approaeh. The former
is due to the faet that different nodt>s in the graph ean potentially execute in paraUel
unless there is an explicit data dependenee between thernj the latter states that the
results of the execution of the graph do not depend on the order in which the nodes
get exeeuted (see Figure 1.1).

Dataflow researeh has further evolved, yielding two implernentations of the ab
straet datatlow model which have been under active developrnent ever sinee: the
static and dynamsc datatlow architectures (aIso ealled tagged-token architectures).
The static architectures allow at rnost one token per arc. In the tagged-token ar
chitectures, the tokens are allocated dynamically and include a tag specifying their
logical position on the arcs. A good presentation and eornparison of these models can
be round in an early paper by Arvind and Culler [4] and in a more recent publication

3

1
by Dennis [18].

1.2 The Static Approach

Under the static model, storage allocation for all operands is assigned at compile-time.
The simplicity of the model a.llows for an efficient instruction execution mechanism as
weIl as for a clean architecturai design. However, sophisticated compiling techniques
become necessary in or der to handle features that support Cunction activation and
recursion. The overlapped execution of loop iterations can be accomplished by a
pipelined execution of the code or by running multiple copies of the loop body.

The first static dataflow computer was proposed by Dennis and Misunas in 1974
[22]. In ihis model, the execution of an instruction is based on the data availability
concept, and the resulting vaIue is delivered as indicated by the destination field
specified in the instruction. Premature rescheduling of the instruction is prevented
by the presence of acknowledgment signais. This work belped set up the basis for
later projects, namely the LAU Project at Toulouse, France [57], the Texas Instrument
Dataflow Project [43], the Hughes Dataflow Machine [35], the MIT Static Dataflow
Machine Project [19] and the NEC Dataflow Machines [61].

Another recent project has been under development at McGill University, namely
the Mc Gill Dataflow Architecture project [20,30]. It is based on the principle of the
argument fetching dataflow model. The main characteristic of this model is that data
values and control signaIs are separated. An instruction fetches its own arguments
from a Data memory, just like in conventional processors, so the data valucs are
confined within the execution pipeline, leaving control signaIs as the unly entities
that travel around the structure of the processing element. A full description of this
machine is given in Chapter 2 of this thesis.

1.3 The Dynamic Approach

The tagged-token approach eliminates the one-token-per-arc constraint and thus pro
vides a higher potential for paraIlelism than the static model, at the expense of
complexity in the design.

4

(

(

1

Tagged-token architectures generally provide explicit support for recursive func
tion application and overlapped execution of successive loop iterations. Storage for
vaIues-computed by function activation-is aliocated during program execution. To

kens carry a tag which denotes their context within the program. Conceptually, tokens
are kept in a cornmon pool of storage waiting for their counterparts to arrive before
enabling an instruction.

In the early proposaIs, this ability to support severaI simultaneous activations
of one instruction is supported by a special mechanisrn called token-matching. It
is an unique feature by which pairs of tokens referring to the sarne instruction are

"rnatched" and their values sent to an execution unit. Implementation of this mecha
nism with a rnatching store, however, turned out to be a relatively costly associative
mechanism.

The first proposals for tagged-token dataflow architectures included the Manch
ester Prototype Dataflow Computer [38] developed at Manchester University, in Eng

land, and the MIT Tagged-Token Project from the Massachusetts Institute of Tech
nology [8]. Both projects independently discovered the ide a of explicitly labeling the
tokens.

The Manchester prototype was the first. dataflow machine to be built, providing

a waiting-matching store of l6K token capacity [38]. At Arvind's group, the nrst

step in the Dataflow Project was the U-Interpreter, developed in 1977 [7], which is an

abstract model for interpreting dataftow programs. Based on this work, research fur

ther evolved towards what we know today as the Tagged-Token Dataflow Architecture
[3, 6].

An alternative and more efficient implementation was later adopted at MIT, yield
ing the Monsoon Computer [5, 55]. It is based on the idea of frame activation by

which frames of rnemory are allocated at every function cali and every loop iteration,
and the base addresses of these frames play the role of "tags".

Other proposaIs for dynamic architectures have been developed since, like the

epsilon Dataflow Processor, at the Sandia National Laboratory [37], the SIGMA-l

Machine, bllilt by researchers at Japan's Electrotechnical Laboratory [39], and the

EM-4 Project, from the same Labora ~ory [44], a dataflow computer planned to have
1024 processing elements. The most powerful dataflow machine that has been built

to date, though, is the SIGMA-l Machine; it consists of 128 processors and 128 1-
structure stores interconnected by 32 local networks and one global two-stage Omega

5

Il'

-'

network. and has demonstrated a performance of 170 MFLOPS on a small integration
problem but the ideal peak performance sums to 427 MFLOPS [40J.

1.4 Objectives of the Thesis

In 1987, Arvind and lannucci write:

"The two most important characteristics of the dataflow processor are
split-phase memory oyerations and the ability to put aside computations
without blocking the processor" [9]1.

These are some of the main reasons why dataflow architedures-static or dyna
mie-show great potential in multiprocessr)I applications: they can support the im
plementation of in terprocessor data communications and instruction synchronization
without the 0verhead of context switching and program interrupts. By connecting
together many dataflow processing elements, we can drastically increase the level of
concurrency in the program in a scalable fashion.

However, whether that increase ean be achieved or not, and whether great speed
ups can be obtained or not, depends on many issues, sorne of which are addressed by

this project:

• Interprocessor communication schemes;

• Interprocessor synchronization mechanismsj

• Memory organizationj and

• Interconnection network characteristicsj

In this thesis, we prop05e a multiprocessor dataflow machine, in which each proces
sor is constructed based on the argument-fetching dataftow principle, and connecled

to aU other PEs through an interconnection network. We have callcel it the McGill

1 A split phase memory operation has the property of allowing an arbitrary number of instructions
to execute between the time when the mcmory request i" issued and the time when the associated
response is received. Such lapse of time is called latency.

6

i

Multiprocessor Dataflow Architecture (MMDA). In this multiprocessor system, all

PEs being sequentially ordered within the network, each Structure memory (array
memory) within each PE is actually a portion of an aggregate global memory. It can
been se en as a shared global memory, physically distributed, that spans its global
address space. AlI interactions among PEs are therefore accompli shed by means of
message-passing techniques.

To study the performance of the MMDA, interprocessor communication supports
have been developed on the grounds of the distributed memory organization ap

proach. An efficient interprocessor synchronization and communication mechanism is

proposed in this thesis, for sending and receiving signais and data through a packet
switching interconnection network. The main objectives of the project have been:

1. The development of efficient interprocessor mechanisms to allow an MDFA to
efficiently interact with other similar machines through an interconnection net
workj

2. The design of an Interprocessor Communication Unit for the MDFAj

3. The design and implementation of a multiprocessor testbed for MDFA involving
(1) design of an assembler in or der to accept the multiprocessor features added
to the base language of the MDFA: A-code; and (2) construction of a process

oriented simulator to allow us to con du ct experimental work on the performance

of multiprocessor dataflow programs;

4. The analysis of simulation results to determine (1) the impacts of long latency
memory operations on program performance, and (2) the factors that can help

minimize such impacts.

The testbed for our simulations thus consists of Mdasm, a Multiprocessor Dataflow

Assembler, which is an extension of its uniprocessor version [62, 50] and Mds, the
Multiprocessor Dataflow Simulator.

1.5 Structure of the ThesÎs

Chapter 2 of this thesis is dedicated to the Mc Gill Dataflow Architecture. It explains

the concept of the argument fetching principle as an alternative io the convention al

7

argument flow statie dataflow models. It also gives an overall description of the
dataftow machine that has been proposed, based on this new principle, from the
abstract model down to the architectural design. This is done in order to lay the
proper ground work for the following chapters.

In chapter 3, we discuss sorne alternative interprocessor synchronization and COIll

munication schemes that have been proposed thus far within the framework of our
research group) and introduce a new and efficient abstract model for both inter-PE
synchronization and inter-PE communication. The multiprocessor machine that is
proposed makes use of a globally addressable distributed memory organization and

an asynchronous message passing synchronization rnechanisrn.

The fourth chapter describes the modifications made to the original design in order
to support the mechanisms described in chapter 3. It introduces the Interprocessor
Communication Unit, which is designed to provide a gateway to the network. The
interconnection network on which we have chosen to run our simulations is a packet

switchillg Omega type of network.

Chapter 5 describes tht~ simulation testbed and analyses the performance results

obtained from simulation runs. It provides a deeper insight on the behavior of the
argument-fetching approach executing in a multiprocessor environment. The results
demonstrate the MMD A 's ability to effectively tolerate the latency of long rncmory

operations with no significant impact on the performance of the proglams. They
also show that the overall throughput of the interconnection network lS more critical

than the latency factor. Given today's technology, wc can build the type of networks

needed to mask those long latency operations up to a certain degree.

Chapter 6 is an overview of the related work 10 the dataftow field, concentrating

011 the multiprocessor aspects of sorne proposed dataftow architectures. A discussion

of the different techniques used to support interprocessor synchronization and com

munications provides with a survey of sorne of the major current research interests.

Finally, chapter 7 presents the conclusion of this work in addition to suggested

areas for future research.

8

(

Chapter 2

The Static Dataftow Model and
The McGill Dataflow Architecture

In recent years, the dataflow concept has attracted increasing attentIon as a radical
alternative to the von Neumann model. It emerged doS an Înnovative model which
offers simple yet powerful means of achieving highly parallel computations. In this

chapter, the concern is towards the static dataflow model of computation.

Indeed, in dataftow programs, there is no notioli of a single point of control, noth
ing corresponding to the program counter of a convention al sequential computer.
Computations are described in terms of locally controlled events, each of which cor
responds to the "firing of an actor" in the data ftow graph1 • In a dataftow machine,
many aetors may be ready to fire simultaneously, resulting in an asynchronous data
driven concurrent execution. The nrst section of this chapter will focus on the basic
data flow graph model, and the Iules determining the execution of i\ program graph.

Many advances have been achieved in the dataflow field since Dennis and Misunas
first proposed their static dataftow model [22]. A static dataflow processing element,
based on the argument-flow principle, is briefly described in the second section.

Despite the parillel nature of the dataftow model, there have been serious doubts

1 Firing an actor stands for exeruting an instruction who has previously been enabled due to the
availability of ils input operands. See Section 2.1.1.

9

",

that dataf\ow pwcessor architectures can compete with the efficiency of their conven

tionaI counterparts. One major concern is the amount of data "flowing" in the proces
sor. In order to exploit fme-grain parallelism, the model appears to rcquire an exces
sive volume of data traffie when compared to a convention al processor architecture-a
eriticism eommon to many proposed dataflow architectures.

The McGill Dataflow Architecture, described lU the third sectIOn, 1S based on the
argument-fetching principle. This new approach brings a solution to the excessive
data traffie problem encountered in previous proposaIs. This section gives an in
depth description of the new model, the architecture design, as weIl as the execution
and scheduling mechanisms.

2.1 The Static Dataflow Model

2.1.1 The Basic Graph Model

The static data flow graph model constitutes the basic model governing the execution
of a program graph on a static datafiow computer. The program graph is represented

by 8. directed graph. The nodes in the graph represent instructions whereas the edges
represent data dependencies between instructions. In dataftow terminology, the nodes

are called actors and the edges arcs. Each actor in the graph has an associated ordered
set of input arcs and output arcs.

When an instruction is executed, the tokens lying on the input arcs of the actor

are "consumed" and new tokens, representing the result value of the instruction are

"produced". Similarly, when an actor produces a data value to be transmitted to a

successor actor, it "places a token" on the arc connecting both actors.

The execution of a graph can be modeled by a sequence of configurahon.9, each
describing the different stat.es of the computation. A configuration is defined as an
assignment of tokens on the arcs of the graph. There can by many su ch sequences of

configurations but the ultimate result is unique, a property known ai> determmacy.

The transitions between configurations are governed by firmg rules which dctermine

the conditions required to fire an actor.

10

l

With the exception of sorne special actors for implementing conditional graphs
and iterative computations, the firing rules for the static dataflow model are defined
as follows:

Firing Rules:

1. An actor becomes enabled iff all of its input arcs have one token and
all of its output arcs are empty.

2. An enabled actor may fire, and once fired, aIl tokens on its input arcs
are removed, and a tt,ken is placed on each of its output arcs.

Bence, firing an actor corresponds to applying the corresponding operation to the
values carried by the tokens on its input aICS. Upon completion, a token carrying
the result of the computation is placed on each of the output arcs. Note that once
an actor has been executed, it cannot become enabled again until the tokens on its
output arcs, carrying previous result values, have been consumed by its successor
actors.

With the assumption that tokens are graphically represented by dots on the arcs
of the graph, Figure 2.1, illustrates a possible sequence of configurations modeling
the execution of the expression:

(a+b) x (c-d)

As illustrated in Figure 2.1, data flow graphs can exhibit two kinds of fine-grain
parallelisrn: the first one, called spatzal parallelisrn, is exploited when two nodes
are potentially executable concurrently; the second, called temporal parallelism, is
exploited when independent waves of computation are pipelined through the graph.
The nodes in the first stage of the graph being simultaneously enabled, they express
the first kind. U pon execution of the node in the second stage, they can be rescheduled
for execution, illustrating thus the temporal parallelism. A detailed study of this kind
of parallelism, also called ptpelznmg can be found in [30].

2.1.2 Dataflow Languages

The statie data flow graph model exhibits many interesting properties among which:
(1) the only dependencies among aetors in a program graph are data dependencies,

11

&

Figure 2.1: Sample Execution of a Data Flow Graph

(2) the execution of an actor is szde-effed {ree, and (3) the deterrnÎnate property which

ensures that input/output behaviors are fu nct IOn al. Due to tho~e features, the stati("

data flow graph model, is an excellent model for mapping fundional or appheatlve

languages [42].

These languages are based on the functlOnal programming style wherc HH' 8lTl

gle asszgnment rule and the referentwl transparency also allow tll(' parallcb!>I11 to he

fully and naturally expressed. Thcre have been a number of functlOnaI languages,

called daiafiow languages [1], specdically deslgncd for explOltmg t.he dataflow model

of computation.

Examples of dataftow languages are Val [2, 48], SISAL [49] and Id [5~11. More

information on dataflow languages can be found in [13] and [1].

12

2.2 A Static Dataftow Architecture

A typieal statie dataflow proeessing element (PE) based on the argument-flow mode!

(also ealled dataflow czrcular PiPe/me) is deseribed III [15]. This ;,ection's main coneern

is to briefly deseribe that areh\tecture as a representative of early statie dataflow
proposaIs. It then covers the implementation details required to support the statie
graph model, and the eritlelsms made towards this approaeh-which is based on the
argument flow principie.

2.2.1 Ilnplementing the Basic Model

In the statie data flow graph mo:lel, an arc ean carry at most one token, 50 an

actor can't become enabled unless ail its output arcs are empty. This rule can be

implemented by introducing a second form of arc, called acknowledgment signal arc.

The role of thls acknowlcdgmcnt signal arc is to inform aIl the predecessors of an actor
that the &uccessor actor has consumed aIl the tokens residing on its output arcs, and

thus are ready to accept the next set of data.

As a consequence, each actor has an 'lssociated set of input arcs, among which
sorne are data arcs and some are acknowledgment szgnal arcs, and a set of output
arcs with the same charaderistics. Figure 2.2 shows the szgnal graph corresponding

to the example shown in Figure 2.1. Imp~.:::mentations of the model have to provide
mechanisms to support thls signal grap!o.

The condItion for firing an in:.truction in the statIc dataflow machine now requires

that a szgnal token b~ pla.ced on each of the input signal arcs, a normal data token be

placed on the input dat a arcs. U pon firing, an actor places a data token-car~ying
the result value-on each of its out put data arcs, and a signal token on eacIt of its

output signal arcs. The outcome of the firing of an actor is therefore the production

of a datum for each of !ts successors, and also an aeknowledgment for each of its
predecess01''', ;:; _ • }~t the... :!on fire again.

2.2.2 The Architecture

Figure 2.3 shows a schematlc representation of the architecture. Dataflow instruction

templates are stored 111 the actwzty store. The queue holds the addresses of those

13

a

b

c

d

Figure 2.2: A Signal Graph

instructions which are enabled and ready to be executed.

Data arc
-----I~

Signal arc

•

The role of the fctch unit is to continuously pick the address of an instruction from

the queue, fetch the corresponding instruction template from the activity store, and

deliver it to the opcratzon und where the lllstruction gets executed. Each destinatIOn

address will carry a copy of the result value to the update umt of the appropriate PE

The role of the update unit 1S ta store those result values in the templates of

the target instructions and ddermine whether or not they bccome enablcd. Ali
communications between the different units wIthin a PE are ach1eved VléL data packets

traveling in a circular fashlOn, which has caused the PE to be called ClT'cular Plpelmc

[15].

2.2.3 The Argulnent-Flow Principle

In tradition al proposals for a dataflow processor, instructions loaded Înto the proces

sor represent, more or less directly, the actors of a data flow program graph. Such

an instruction typically has two spaces for receiving operand values called opcnmd

receivcrs, a s19nal-needed field, a slgnal-reset field, and a field that holds a dcstinatlO71

list-indicating the target instructions to which result values or slgnals are to be sent.

14

(

{

l

2

8

Activity
Store

~
a:
o
!
UJ z

Figure 2.3: An Argument-Flow Dataflow Processing Element

Graph Model

~
-~ .. --

Abstract Model

*initiaI value is 2. In this case, It is set to 1
to indicate thal a second input (8) is still
expected.

Figure 2.4: The Abstract Model of the Argument-Flow Approach

The signal-needed field contains an integer indicating the number of signals still to
be received before enabling the instruction. The signal-reset field contains the vaIue
required to reset the signal-needed field wlten it reaches zero.

The arrivai of a value corresponds to placing a token on the input arc of an actor.
Therefore, the delivery of a result value to the operand receiver of an instruction
template accomplishes two purposes: it signais the target instruction that an input is
available; and it transmits the data value itself from an instruction to one of its suc
cessors. We calI these architectures argument-flow dataflow architectures. Figure 2.4
illustrates the abstract dataflow model of the argument-flow approach.

The arrivai of a signai (an acknowledge signa~ from a successor instruction means

15

that a result token has been removed from the corresponding output arc. The anival
is processed by decrementing the signal-needed field by one. If the value reaches zero,
the instruction is enabled and the field is reset to the value storcd in signal-reset field.

An issue in this processor architecture is that more data movement is involved
than seems necessary. Two cases in point are: the destination list passes through the
instruction fetch unit and the operation unit, although the information in the list is
not acted upon by either unit; and result values are copied and stored in duplicate
whenever there is more than one target instruction. One of the consequences of this
issue is that unnecessarily high traffic may be generated causing the performa.nce of
the machine to decrease.

These inefliciencies arise from the decision to keep data information (values) and
control information (addresses) bound together in packets as they traverse the circular
structure of the processor. The alternative approach has lead to the decision of
separating the data and signa.ling roles of the information packets [20]. Once this
has been done, it becomes evident that it is better for an instruction to fetch its own
arguments ftom a Data memory than for its predecessor instruction(s) to store result
value(s) in the operand fields of several target instructions.

These considera.tions have led us to the argument-fetch architecture [20] which can
ovetcome those wea.knesses. Based on this principle, the McGill Dataflow Architecture
has been developed.

2.3 The McGill Dataflow Architecture

This section of the chapter presents an in depth description of the McGill Dataflow
Architecture based on the él.fgument-fetching principle. Under this new principle, the
data and the control signaIs are separated. An instruction operates on values, stored
in a regular Data memory, and an execution unit executes it, the same way a con
ventional processor would do. The instruction template nowadopts the ('onventional
three address format since aIl values are stored in mernory. Upon completion of the
execution, it generates a signal which ultimately informs aIl the related actors that
the instruction has executed. The main characteristic of this mode! is that data never
"flows" through the units of a PB. Instead, signaIs, which hold the sequencing infor
mation among the instructions, are the only entities that move around the circulaI
structure of the PE, thereby annihilating the concept of tokens.

16

=

1

f
1
<L

The McGill Datafiow Architecture (MDFA) consists of two major sections specif
ically designed to perform the instruction execution and scheduling functions. The
Dataflow Instruction Schedulmg Unit (DISU) contains all the information defining the
data-dependencies connecting the nodes of the datafiow program. It is responsible for
identifying and "firing" those nodes that are available for execution. The mechanism
used to select instructions for execution is based on the signal graph of the program.
The Pipelined Instf'uctlOn Processing Umt (PIPU) is an instruction processor that
uses conventional techniques to achieve fast pipelined operation.

The operational semantics of the model are best described by first presenting an
apercu of the architecture of an abstract machine.

2.3.1 The Abstract Model and The Program Tuple

A data fiow program graph G for the MDFA is represented by a program tuple (P,
S), where P is a set of instructions and S is a signal flow graph, represented by sets
of signal addresses. Formally,

G ::= <P, S>

Figure 2.5 shows a dataflow program tuple with its corresponding P-code and
S-code entries. Each actor in the data flow program graph has an entry in both the

P (P-code) and S (S-code) sections of the program tuple. The instructions in P-code,
called p-instructions contain no information about the sequence of execution. Instead,
the sequencing information is given separately by the signal flow graph called S-code.

Each p-instruction in P-code is a three address instruction similar to that in a con
vent ion al architecture. The instruction templates are stored in the PIPU Instruction
Memory and are executed by the PIPU when it receives a signal from the DISU.

The signal graph S-code of the program tuple determines the sequencing of the
instructions within the graph. S-code contains a set of s-nodes, each containing a
list of actors to notify when its corresponding p-instruction has been executed. Each
target actor has an enable count indicating the number of signaIs to bl... -!ceived
before the actor can fire, and a reset count to reset the enable count valu,'" once it
has fired. There is a one-to-one correspondence between each s-node address and its
corresponding p-instruction address.

17

P-Code:

S-Code:

a
b

c
d

n1 : +abx
n2: - cd y
n3: ·xyz

z=(a+b) x (c-d)

Figure 2.5: A Dataflow Program Tuple

2.3.2 The Argument Fetching Architect ure

The following is a description of the architectural aspects of the MDFA, focusing on

the single PE. The description of the rnultiprocessor aspects of the machine will he
covered in Chapter 4 of this thesis. None of the modules necessary to connect the PE
to the network will thus be part of this coverage.

The addresses of enabled instructions are sent to the PIPU via the /ire link. U pon
execution, the PIPU sends back to the DISU the address of the instruction-that
has just heen processed-through the done link, together with a condltlon code used
in sending conditional signaIs. Figure 2.6 illustrates the circular structure of the
architecture and shows the rnany units inte!)rating each of its parts.

The Pipelined Instruction Processing Unit

The organization of the PIPU is shown in Figure 2.7. It consists of four major pipeline
stages used for (1) instruction fetch and decode (IFU), (2) operand effective address
calculation and fetch (OFU), (3) instruction execution, and (4) result store (RSU).

18

.---------f----, fire

PI PU

SPU

do ne L..-_-+-_______ D....;IS_U....l

Figure 2.6: The Argument Fetching Architecture

lM tire

SM

DM
done

PIPU '------t,.=~

Figure 2.7: Structure of the PIPU

19

. .,

~ ...-
fire J

ECM

l ECU
~
~~,~Gount DISU

lAi ~~

~--

done JJ
SLM

J SXT ...
SPU

Figure 2.8: Structure of the DISU

The Execution Unit consists of a scalar operation unit (Sc.U) and a structure
operation unit (St.U). The former performs arithmetic and logic functions (such as
basic fixed and floating point arithmetic), as well as scalar memory operations. The
latter performs data~structure oriented memory operations, such as array accesses.

As can be seen, this architecture has several dedicated memories for code, data,
and scheduling information. This part shows three memory units, namely the Instruc~
tion Memory (lM), the Data Memory (DM) which mainly holds scalar operands, and
a Structure Memory (SM) which holds arrays and data-structures.

The Dataflow Instruction Scheduling Unit

The DISU consists of a Signal Processing Umt (SPU) and an Enable Controller Umt

(ECU) as shown in Figure 2.8. The signal graph of a program is represented in the
DISU by the signallists of each of the nodes of the program, stored in the Slgnal Lzst
Memory (SLM) of the SPU. For each node, there are tltree signal ltsts correspondmg
to the three possible values of the conditlOn code. These signal lists hold the addres&es
of the nodes that have to be signaled. We caU those addresses COU71t slgnals.

Since there is a one ta one correspondence bet ween each s-nade and each p~

instruction, and not all nodes have the same fan-out, a Signal Translation Table

20

(

(

(SXT) is required to store the addresses of the signal lists in the SLM. The fetching
of the count signaIs is therefore done in an indirect addressing fashion.

The Enable Count Memory of the EC Unit holds count and reset status values for
each node. It handles each count signaI by decrementing the count value for the indi
cated node and testing for zero. If the count becomes zero, an enable fiag for the node
is set and the count value is set to the reset value. This unit continuously monitors
all the en able fiags and issues fire signaIs for those nodes who become enabled.

The SXT, SLM, and ECM storage modules account for the memories of the PE
which keep all the information regarding the proper sequencing of the noàes within
the program graph.

2.3.3 Instruction Execution and Scheduling Process

Thi& section explains how the units can cooperate and communicate in or der to im
plement the abstract model of the MDFA. The operational semantics of a data fiow
program graph is described by the firing rules of the actors in the graph. In the
argument-fetching architecture, the firing rules are implemented jointly by the PIPU
and DISU, where the PIPU performs the actuaI execution of an operation and the
DISU performs the scheduling of the operation. These two phases are called the
executton phase and the scheduling phase.

The execution phase of an instruction in the PIPU begins when a filing signal
for that instruction is sent to the PIPU. The fire signal contains the address of a
p-instmction, which the PIPU will retrieve (from lM) and execute in a conventionaI
pipelined manner. When the execution phase ends, a done signal is generated and
sent to the DISU together with a condition code indicating the result status of the
operation.

The DISU performs the scheduling function by processing the done signal from
the PIPU. A done signal has the following format:

<done-signaI> ::= <address> <conàition-code>

where <a.ddress> is a pointer to the signallist counterpart of the "done" p-instruction,
and <condition-code> is either T, F or U (true, faIse or unconditional). When a

21

J

done signal is received, the condition code determines the corresponding signal lists
to be retrieved (from SXT and SLM) and a count signal is sent to the EC Unit for
each address in those signal lists. The cules of signaling are:

• The addresses in the unconditional signal list are a1ways signaled;

• If the condition code is T (F), the addresses in the true (faIse) list are also
signaled.

The EC unit retrieves the status information of the no de specified by the count
signal and decrements its en able count field in the ECM. The instruction is then
identified as enabled when this count reaches zero. At that time, the count field of
the enabled s-instruction is reset to the value determined by the reset field. Finally,
the EC unit chooses an enabled instruction and sends a fire signal to t.he PIPU. Since
there may be more than one enabled instruction, the EC unit uses a schcduling mech
anism ta determine the order in which the instructions are fired. Such a scheduling
mechanism should be "fair" [29J to ensure that the machine does not repeatcdly fire
a group of instructions without giving attention to other enahled instructions.

In one implementation, the en able fiag bits in the EC unit are organizcd as a
two dimensional array (see [21]). The selection of instructions for execution is donc
by checking each row in turn and sendillg the contents of any non-zero row ta a
column encoder. No row is considered more than once unless ail other rows have
been examined. A column encoder seans each fiag bit in the seleeted row in turn,

issuing a fire command for eaeh bit that is on.

2.4 Summary

This chapter llas described the static dataflow model of computation and the McGill
Dataflow Architecture. Under the basic data flow graph model the exeeution of a
graph is modeled by a sequence of configurations, each of which describes astate
of the computation. The transitions between configurations are govcrned by firing
rules which determine the conditions required to flrt.' an actor (an thus pcrforrn the

execution of an instruction).

A typical static dataflow computer based on the argumcnt-flow principle has been
briefly deseribed. Under that principle, the tokens carry both the data values of the

22

(

operation to be performed and the addresses of the destination nodes where the result
vaIue has to be forwarded. A common critici:sm to this approach is the unnecessary
high traffic of data within the processing element.

The argument fetching architecture originated the idea of the separation of data
and scheduling information as two distinct entities. As a direct consequence, the data
driven instruction scheduling mechanism is separated from the instruction processing
unit.

The McGill Dataflow Architecture has been proposed to fully support this mode!.
Its architecture consists of an execution pipeline and a scheduling unit. SignaIs (ad
dresses) travel from one unit to the other in a circular fashion indicating which in
structions to execute and which actar to enable.

Hs main features are:

• No data-dependent hazards m the pipeline. The dataflow model guarantees that
there can never be a data conflict between any pair of simultaneously enabled
instructions. The principle that no instruction is initiated unless it has no data
conflict with other instructions in the pipeline is honored. The immediate result
is that data-dependent hazards are eradicated.

• EliminatIon of pipe/me gaps due to operand matching. In MDFA, the "match
ing" of the operands is not performed in the critical instruction execution
pipeline, thus eliminating possible pipeline gaps due to such operand match
ingj and

• Token duplication is avoided. In MDFA, a result value of an instruction never
needs to be duplicated (copied) and routed to the input "arcs" of destination
nodes. It is stored in the Data rnemory thereby allowing other subsequent
instructions to directly fetch it when nceded as an argument.

In the convention al dataflow models the transferal of the data is combined with
the synchronization of the instructions so that the term "communication" includes
both actions. In the MDFA, those actions are no longer integrated 50 we can dif
ferentiate between "data communication" and "event synchronization". However,
synchronization is in itself a form of communication. Ther~fore, to avoid any confu

sion throughout the remaining chapters of this thesis, the terrn communication will
be used interchangeably when referring to both actions together, or when referring
to the specifie communication of data.

23

Chapter 3

Interprocessor Communication
ScheIlles for the McGill Dataflow
Architecture Model

Many researchers agree that in a parallel system, one crucial problem to be solved is
the communication between processors, be it transfer of data or event synchronization.
Indeed, interprocessor communications constitute a major factor affecting the perfor
mance of a program. Minimizing the costs involve effective communication methods,
an efficient implementation scheme to directly support the model, and a careful use
of the methods, aiming at reducing the number of data transfers and synchroniza
tion during program execution. There are thus three aspects to this approach. The
communication methods are strongly determined by the model of computation l.>eing
used, the implementation schemes are provided by an efficient architectural design,
and their use is dictated by compiler decisions regarding the partitionmg and map
ping of the programs onto the PEso This chapter addresses the first of these aspects,
namely it proposes a communication and synchronization method for the McGill Mul
tiprocessor Dataflow Architecture. The implementation scheme is described in details
in Chapter 4. A thorough study of the compiler aspect, however, is beyond the scope
of this thesis, although the subject is briefly addressed in Chapter 5 which co vers the
performance results of the simulations.

In a pertinent paper published in 1985, Gajski and Peir provide a refinement of
that crucial processor communication problem [28J. Their analysis provides a classifi
cation scheme, based upon what they consider to be the main factors affect.ing parallel

24

computer performance. They contend that multiprocessor performance depends on
the ability of a system to handle control, partitioning, scheduling, synch1'Onization,
and memory access. The dataflow model of computation provides a good basis for
seeking elegant solutions to these issues.

For instance, in a data How program graph, parallelism can be fully expressed
at the instruction level, thereby providing a flexible data-driven type of distributed
control model. AIso, the synchronous scheduling of instructions being naturally em
bedded in the dataflow model, little software cost is incurred during program exe
cution. As for the partitioning problem, it comprises detecting the parallelism in a
program, and assigning tasks to PEs so that execution speed is maximized. This
task is facilitated by the use of dataflow languages, which are more appropriate for
expressing highly parallel problems. The data dependencies are directly represented
in the program structure, which eases the analysis done by the compiler to identify

them [16].

The problerns of memory latency and eost of synehronization have been closely
addressed by Au'ind and lannucci in a paper published in 1987, where they are known
as the two fundamental issues in multiproeessing [9]. They state th~ê; dataRow ar
chitectures are propitious for multiprocessor applications because they can provide
solutions to those fundamental issues. Most von Neumann style processors are likely
to "idle" during long memory references, unavoidable in parallel machines. It is
also difficult to provide inexpensive task switching mechanisms, often required during
waits for synchronization events. The dataflow model of computation, however, can
effectively tolerate long latency operations, provided there is enough fine-grain par
allelism available to hi de them. It can also han dIe the synchronization requirements
of a parallel system.

Hence, by efficiently addressing these fundamental issues, it appears that a mul
tiprocessor can be sealable, i.e. achieve proportionally higher performance gains by
increasing the number of PEso It is among the objectives of this thesis to investi
gate this facto In this chapter, we propose an efficieiiL mterprocessor synchronization
method to allow two data-dependent nodes residing in different processors to synchro
nize their execution. This synchronization involves sending an initial signal indicating
that the source no de has been executed, and possibly a data value, as the result of the
execution, to be consumed by the receiving node. The memory latency issue is also
addressed in this chapter by providing the system with split-phase remote memory

25

operations to access a global memoryl. The 0bjectives of the proposed scheme are
the !ollowing:

1. Increase the fl.exihility of the mechanismj

2. Provide a transparent multiprocessing environmentj

3. Reduce the network trafficj and

4. Make an efficient use of the execution pipeline.

There have been a few previous attempts to provide the McGill Datafl.ow Ar
chitecture with such a scheme. The first section of this chapter will describe these
attempts and provides a brief discussion on their lack of efficiency. The following
section will provide the solution that we propose in this thesls.

3.1 Sorne Alternative Implementations

Previous datafl.ow architectures are hased on the argument-flow model, where the
source instruction generates the necessary tokens that must he routed to all target
instructions. This approach lacks of flexibility, stemming from the fad that the data
arcs and signal arcs always appear in pairs. It also incurs the overhead of having
to duplicate aU instructions producing data to multiple PEso However, these short
comings set aside, the model is weIl suited for a multiprocessor environ ment Indeed,

interprocessor data routing is automatically embedded in the mode! hy assigni!lg a
processor address (tag) to each destination address. In the argument fetching ap
proach, those mechanisms are not implicitly part of the model 80 they have to he
developed.

A few attempts to provide interprocessor synchronization schemes to the design
have been proposed thus far, disregarding the more simple problem of implementing
rernote memory operations with the data-structure jar ra y memory. The first approach
uses specifie instructions to send and receive data through an interconnechon nctwork.

1 AIl throughout this report, "split-phase" refers to an operation th .. t does not stal1 the executioll
pipeline and only involves data communication Nothing like the I-structurt's related "plit-phase
operations which can enter in a waiting state if the data is not available.

26

1

:

•

PE 1

PE2

(a)

Figure 3.1: Interprocessor Transfer of Data

The second approach directIy extends the argument-fetching principle to implement
communications between multiple processors. In this section, both approaches are
analyzed to stress their major deficiencies, in order to justify the approach proposed
in this thesis.

The implementation schemes of a synchronization method are best described

within the context of an example. AlI throughout this chapter, we will consider
a sCt::!lario where anode producing a data value has to synchronize with a remote
node which consumes it (see Figure 3.1 (a)). und'.!r the data-driven modcl, the trans
fer actually consi.,ts of the folIowing steps: (0) preliminary step, an actor NI residing
on processor Pl executes its instruction and produces a result value which gets stored
in the Data Memory; (1) the actor NI signais its successor actor N2 residing in P2
that it has produced a result which can be consumedj (2) N2 proceeds by sending a
request to fetch the datum from Pl, (3) Pl fetches the data from its own memory
and sends it to P2j (4) upon execution of N2, a signal is sent back to NI. The overall
transfer involves 4 trips through tlte network as illustrated in Figure 3.1 (b).

3.1.1 Explicit Send/Receive Instructions

27

PE1 Send
1 ECU 1 PE2 Recv , 1 • • ECU

1 PIPU 1 , 1 PIPU 1 t

1 1 i 1 SPU SPU
..

Send Recv

Figure 3.2: The Send/Receive Link

In this proposai, the Instruction set is extended by introducing a send instruction and
a receive instruction to support interprocessor data routing. A detailed description of
this implementation can be found in [33]. Basically, each send instruction is cou pIed
with a receive instruction in a remote PE, thereby implementing a bidirectionaI link
between both PEs (see Figure 3.2). Following are the formats of the Scnd and Receive
instructions:

SEND local Data mem. addr' J remote specs. addr.

RECV remote specs. addr.

where remote specs. addr. is a Data Memory address containing a set of remote
specifications, and local Data mem. addr. is a data value's address.

Upon creation of this data value, the send instruction is signaled and enabled.
When it is executed, it is redireded ta the 1/0 unit, which fetches the remote speci
fications of the target PE a.nd the data value from the arguments of the mshuction,

and creates a data packet of the form'

28

«

(

(

PE B PEe PED

A node on PE A produces a
value consumed by nodes resid
ing on remote PEs B, C, and D.

+- Send

+- Receive

It translates into a situation
where six nodes are added to
support the transfers.

Figure 3.3: Instruction Duplication to Send Data to Remote PEs

where PE .. em is the address of the remote PE, s-node .. em is the address of the no de
corresponding to the remote receive, and data_address .. em is the address in the remote
PE where data_value has to be stored. When the 1/0 unit of the remote PE receives
the packet, it stores the value at the proper address and generates a done signal for
the instruction specified by the s-noderem •

This done signal then follows the normal path, i.e. it retrieves a signal list and
sends a count signal for each of the target nodes. When these target nodes execute,
they will signal back the Receive instruction causing it to become enabled. A Receive
instruction also gets redirected to the 1/0 Unit which fetches, from Data Memory,
the remote specifications needed to initiate the following packet:

< P E""ig, s-nOdeorig >

where PEori" is the address of the PE which originated the sending. When the packet
arrives at PEorigl the 1/0 unit originates a done signal for the s-nOdeorig instruction,
which is the address of the node corresponding to the Send instruction.

The appealing aspect of this solution is that only two trips through the network are
needed to accomplish a transfer. Steps 1 and 3 are embedded in the send instruction
thus eliminating the need for step 2.

The criticism of this approach is similar to the one made against the argument
flow model: the need to duplicate instructions for multiple remote targets and a lack

29

of flexibility. Figure 3.3 illustra tes the need to duplicate instructions when anode
produces a data value for nodes residing in remote PEso For each transfer, a pair of
Send/Receive instructions has to be added to the graph. The lack of flexibility stems
from the tight rules governing the use of the Send/Receive operations. It makes it
impossible for anode to synchronize with a remote successor without hansferring
data. Aiso note that the overhead of adding special instructions for each transfer
ultimately contributes to the congestion of the execution pipeline. Furihermore, the
send instruction has to wait for all the successors of the corresponding receive instruc
tion to complete before this latter is executed, thereby sending the acknowledgment
signal back through the network. In the best case, the receive instruction has one
successorj this still involves going twice through the execution pipeline. This can
involve a considerable delay if the remote processor has an important pool of enabled
instructions to execute-a situation likely to appear.

3.1.2 External Addressing Mode

A slightly more efficient solution to achieve interprocessor synchronization has been
proposed in [32,34]. This method behaves as if there were no boundaries between the
PEs at allj instructions on different processors are able to interact with each other
directly in an interprocessor argument-fetching fashion. Remote data is specified by
a special addressing mode in the input operands of an instruction (refer to [62] for a
complete description of the instruction set). Since the data values are fetched rather
than sent, data from one PE can be accessed by several other PEs without adding
extra instructions to duplicate it.

When instruction fires, the addressing mode of the operands is analyzed in the
Operand Fetch Unit. If the extended addressing mode is detected, it causes the
instruction to be "parked" away while the 1/0 unit sends the corresponding request(s)
to the remote processor(s). When the data values arrive Crom the remote PEs, the
blocked instruction is released and rejoins the execution pipeline to proceed with its
execution. Note that the blocked instruction does not stall the execution pipeline by
impeding other instructions from getting executed. Instead, J creates a "bubble" in
the pipeline. As long as there are enough enabled instructions, the processor can be
kept useCuIJy busy while tolerating the delay due to the remote Cetching

Implementing this method mvolves a complex 1/0 unit consisting of an associative
memory where instruction templates are stored while waiting for the data values to

30

(

(

return from the network. Upon arrivaI, a search is conducted on the p-instruction
address to locate the template and update it with the datum. This mechanism is
further complicated by the faet that both input operands can potentially refer to a
remote PE so the 1/0 unit has to make sure the instruction template is complete
before unblocking it.

External addressing for the operand of instructions is paired with a similar mech
anism where external count signaIs can be detected in the scheduling unit and sent
to remote nodes. A done signal is Rn s-node address which ultimately retrieves from
the SLM a list of count signaIs which a.re aIso s-node addresses (of the nodes that
have to be signaled). In this particular proposai, externaI addressing is im plemen ted
by reserving one bit in the address specifying if it refers to a local or a remote s-node
(This method is better explained in the next section).

By offering a separate scheme for data and signals we have obtained a higher de
gree of flexibility compared to the first proposai. Although this is a more transparent
solution (no explicit instructions), and although it has provided answers to the crit
icisms of the previous scheme, the implementation requirements may be expensive
and the simplicity of the MDFA design is lost. Indeed, the introduction of an asso
ciative memory implementing the "parking store", together with the mechanisms to
unblock an instruction, upon arrivaI of the data, have added much complexity to the
overall approach. Also note that, considering the scenario previously exposed at the
beginning of this chapter, no savings are achieved in terms of network traffic and the
basic four t.rips are still required: the initial signaI has to be sent to P2, the remote
node then sends a request for data back to Pl, the G.ata vaIue is sent to P2, and the
remote node sends an acknowledgment signaI back to Pl.

Finally, this solution can only be applied to situations where the compiler can
determine, at compile-time, the location where the remote data is stored. The next
section will show that there are situations when this information is not available until
run-time.

3.2 The Proposed Solution

The aforementioned implementations are at opposite extremes of the spectrum of
solutions. One follows the argument flow approach while the other follows the argu
ment fetchingj one blends signals and data together while the other considers them

31

"

as separate entities. This project's first goal was to find an efficient solution which
avoided the deficiencies of both implementations. Given the architecture described
in the previous chapter, it translated into the following objectives:

1. Increase the flexibility of the mechanisms by treating data. and signals as inde
pendent entities, while maintaining the perspective of a clean design with a low
level of complexity;

2. Provide communication to a multiprocessing environment as transparent as
possible, as if there where no boundaries between the processing elements;

3. Reduce the network traffic due to interprocessor data transferal and remote sig
naling. Ideally, it translates to reducing each data-transfer to two trips through
the network: the first carrying the signal and the datum, the second carrying
only a signal; and

4. Make an efficient use of the execution pipeline, i.e. avoid the creation of "bub
bles", and eliminate the use of unnecessary instructions;

3.2.1 An Interprocessor SynchronizatioJ4 Mechanism

The key factor in achieving high performance is the network traffic. Minimizing the
traflic can only be achieved by coupling the initial signal and the result value in the
same packet, leaving the remote processor the tRsk of sen ding the acknowledge signal
back. This method may appear as if it does not directly comply with the argument
fetching principle. However, it is important to realize that the decision to separate
data values from synchronization signals in the a.gurnent-fetching modcl, is mainly
due to the {ad that within a single processor, memories can be put very close to the
execution unit. Renee the data.fsignal separation avoids the overhead of copying and
sen ding multiple tokens around the processor. In other words, the data does not ncecl
to havel outside the boundaries of the Execution Unit. This docs not hoid if the
target node resides in a different PE, thu.; invalidating the main reason for separating
data and signals.

In the graph shown in Figure 3.4, no de Nl produces a data value consumcd by N2,
N3, and N4 which resides on a reroote processor P2. Here, it is important to realize
that before node Nl sends a signal to its successors, the instruction within that node

32

(

{

P1: N1: + a b x
N2: - x y z

N3: • x v w

P2: N4: + x m n

Figure 3.4: A Data Flow Graph with a Remote Target Node

gets executed and produces a result vaIue (x), which gets stored in the Data memory
of Pl. The data transfer itself only starts upon execution of the instruction, and is
in fact indcpendent of the instruction itself (NI). The only constraint is that is has
to be completed before N4 starts executing. This can be accompli shed by sending
the data and the signal together from Pl, and within P2, by making the transfer
before signaling N4. The figure graphically shows that it is simpler to differentiate
a remote target from a local target by using different kinds of signals instead of
using special instructions. Clearly, the transfer process is best initiated outside the
execution pipeline, within the ISU.

Hence, in our new scheme, there are three different kinds of count signais:

• A local count, where NI signaIs N2j

• A remote count, where NI signals N4j

• A remote count paired with a data valuej

We use an external addressing mode for count signals-similar to the one described
in Section 3.1.2- to distinguish between the local and remote signaIs. An extension
bit, indicating whether or not the signal has to be coupled with data can be added
to the addressing mode. When the extension bit is set, the mechanism adopts an
argument-flow approach where the data is sent to the target instruction rather than
fetched.

33

The transfer process is thereby completely separated from the execution pipeline.
This unit executes il13tructions transparently of whether their result.s have ta he sent
ta a remote processor or not.

3.2.2 A Data Communication Scheme

We have assumed so far that the source PE and the target PE can he identified at
compile.time for every data transfer. If this was the case, the ahove mechanism would
suffice for the processing of distributed data flow program graphs. The producer PE
would initiate each transfer and synchronize with the corresponding consumer PE.

However, this is not the case and there are situations where the source and target
PEs are not known at compile-time. The following is an example of such situations:

A[i J = B[C[i 11

where the array A has ta gather the elements of the array B which is scattered among
the memories of the PEso The consumer PE executing the code does not know where
to fetch the data until C[i 1 is evaluated.

Another problem cornes from the fact that each transfer of data requires the
synchronization of two nodes. Such a requirement is very costly when transferring
large blocks of data, specially when that transfer can be done without disturhing the
remote execution unit.

To palliate to these prohlems, we introduce two array operations ta the instruction
set design: RLOAD and RSTORE. They perform the remote loading (and remote
storing) of a data value from the global Structure memory to a local Data memory

(and vice-versa). Since they operate in the same way their local eounterpart do,
direct, indirect, and extended addressing modes arc a]so supparted (see [62]).

When a remote Load is executed, the effective address being a global address, it
refels to an absolute position in the aggregate memory. For the sa.ke of sunplieity,
we ale assuming that all PEs have the sarne array memory size, and that caeh PE
knows this size. Splitting the absolute address inta a PE address, and a relative
address within the p~~ is a trivial task. The same prinelple applies ta thc remotc
Store operation.

34

The ab ove example i.; handled by evaluating first the C element, storing its value
in Data memory, and issuing a remote Load instruction from that location. Should
the remote Load instruction encoul1ter a run-time computed address which turns out
to be local, it is processed as a normallocalload without going to the network. This
latter instruction now becomes obsolete since the RLOAD can process both local and
remote loadings.

Note that both operations are split-phase memory operations because of the long
latency they require to execute, meaning that there is a lapse of time bet~een the
initiation of the instruction and its completion. However, there is no need to "park"
an instruction template in the local processor while the operation is carried out, since
it is performed in the same way a local Structure memory operation is performed.
The request is sent to the network along with all the information needed to bring
back the information requested.

AIso, both operations require an acknowledgment from the remote processor, con
firming the successful complet ion of the operation, without which the instruction can
not assume it has finished executing. Receipt of this acknowledgment then triggers
the corresponding done signal towards the scheduling unit, again as any other local
instruction would do, in accordance with the second objective of the implementation
scheme (see beginning of the chapter).

3.3 Summary

In any multiprocessor system where the shared memory is physically distributed,
interprocessor communication is an important factor in order to achieve high level
performance. Synchronization, a special form of communication, and memory latency,
are the two most fundamental issues in multiprocessing. The dataHow model of
comput.ation appears to be well suited to efficiently address these issues. l, nder the
argument fetching principle, the mechanisms to synchronize nodes residing in separate
PEs and to provide remote memory operations are not implicitly embedded in the
model.

In this chapter we have proposed an effective communication method to provide
interprocessor synchronization between lwo nodes and remote Structure memotyop

erations. It provides the necessary supports for interprocessor communications to

35

the McGill Multiprocessor Dataflow Architecture. The multiprocessing environment
is transparent, flexible, and makes an efficient use of the network and the execution
units of all tite PEso

Basically, the method can be described as follows: a data transfer between a
producerjconsumer pair of actors is initiated by the done signal generated by the
producer actor upon execution. It is a two-step operation: a special signaI carrying
the result value is sent through the network to the remote PE where the data is locally
stored and the actor is signaled. Upon execution, the remote actor sends back the
signal confirming that it has consumed the data. Simple synchronization can also be
achieved by sen ding a normal signal to a remote node.

Thè key contribution of this solution is to separate the processing of remote signaIs
from the main execution pipeline. It is implemented by introducing an externaI
addressing mode in the signal lists of an actor. The execution pipeline is thereby
completely separated from this matter, and there is no need to duplicate instructions
in case of multiple remote target nodes.

The second component of this proposaI consists of extending the instruction set
with a remote load and a remote store operation. It allows the PE to perform those
transfers where the source PE and the target PE cannot be determined during compi
lation phase. At the same time, it provides an inexpensive alternative to the transfer
oflarge blocks of data, which incurs prohibitive synchronization costs when performed
with the other methods. The reason lies in the faet that it becomes possible for a PE
to fetch (or store) a block of remote data, one element at a time, without synchroniz
ing with the target PE for every value. Only one synchronization signal is necessary
to tell the consuming PE that the block of data is available.

36

(

c

Chapter 4

The McGill Multiprocessor
Dataftow Architecture

In the design of a multiprocessor system, much of the efforts are dedicated to reduc
ing the amount of time the processor has to wait, while memory operations are being
performed. The dataflow approach is viewed as an extreme solution because of the
ability of the processing element to execute other useful instructions while waiting.
Another important factor that affects performance is the synchronization mechanism.
Although dataflow architectures do not incur any software overhead for such opera
tions, it is important that they be supported by an efficient hardware implementation.
In this chapter, we describe the implementation details of the interprocessor commu
nication supports, which were explained in Chapter 3 of this thesis.

The methods allow any two processors to interact with each other in an argument
flow fashion by means of messages conveying signals (possibly paired with data). Ul
timately, the system we envi sion is a dataflow multiprocessor system, consisting of a
number of MDFA processors, connected together by an interconnection network as
shown in Figure 4.1. The overall system is modular and scalable, to facilitate the
inclusion of more processors in order to increase power, memory space and commu
nications handwidth. It is also flexible enough to allow:

• a request to he issued without affecting the local. PE's capacity to execute other
instructions;

37

",

M M

INTERCONNECTION NETWORK

Figure 4.1: Structural Model of a Multiprocessor MDFA

• a request to be processed without affecting the remote PE's capacity to execute
instructions;

• a node in a processor to signal multiple remote nodes;

• a PE to issue multiple independent requests to the networkj and

• a PE to receive responses for those requests in a different order from that in
which they were issued.

This chapter concentrates on the modifications that have to he done on the MDFA
to support the interprocessor communication schemes. Each PE requires a. mechanism
for handling the communications with the network, which include remote mernory op
erations and remote synchronization signais. This mechanism is irnplemcnted through
the Interprocessor Communication Unit (leU) which is descrihed in the first section.
Remote memory operations are introduced to allow any PE to interact with remote
Structure memory (SM) modules.

Interactions among PEs are achieved through the sending and receiving of mes
sages. The communica.ti,m network is responsihle for delivering each message from
the sender PE to the receiver PE, based on the address within the message's header.
Many routing network structures have been studied to implement MIMD machines;
Section 4.2 of this chapter describes the characteristics of the packct switched in
terconnection network that has been chosen to support the Multiprocessor McGill
Data.flow Architecture (MMDA).

38

(

(

~ DM 1. ~ fire 1

PIPU ECU

~ ... SM j~

count

donE SPU
DISU

ICM 1.
ICU

..
~,

NETWORK

Figure 4.2: The MDFA and the Interprocessor Communication Unit

4.1 The Interprocessor Communication Unit

This section describes the Interprocessor Communication Unit (ICU) which serves as
an interface between the processing element and the interconnection network. It is
responsible for all the communications between the local processor and the network.
There are two kinds of communications:

remote count signaIs: used to synchronize the scheduling of actors residing in different
PEso Hence, the leu must be able to send (and receive) count signaIs to (from)
the network. Part of the unit has therefore to connect with the DISU which
manages the count signaIs within the PE.

remote memory requests: which are array memory operations. The consequence, at
the design level, is a connection with the PIPU to extract those instructions
aCter the decoding phase. Upon completion of the request, the ICU has to
generate the appropriate done signal and send it to the DISU.

Figure 4.2 shows a schematic block diagram of the MDFA including the leu.
The connections between the ICU and the Data Memory and Array Memory will be
explained in the fol1owing subsections, as we describe the unit in greater detail.

39

4.1.1 Interprocessor Signais

There are two kinds of count signaIs, depending on whether the count is a local signal

or an interprocessor signal, in wlâch case it is called zp-count. Furthermore, there are
two kinds of ip-count signals, depending on whether data. has to be transmitted or
not: the first kind is called data-count and the other remote-count signal.

There is a direct correspondence between the data arc described in Section 2.2 of
this thesis, and the data-count signal (which is paired with a data value). The same
correspondence exists between the signal arc and the remote-count signal (with no
data.), with the exception that the remote-count can be used for purposes other than
just to signal back a predecessor actor.

This section describes the steps involved in processing ip-signal- Since all the
information required to send and receive those signals during execution time is fully
expressed in the dataflow program, it can be gathered at compile-time. Target node
addresses are stored in the SLM while the number of predecessor nodes IS storcd 1Il

the ECM for example. This information is then grouped into memory load-images,
one for each memory module in the system and stored in a "load-Image filc". This
is the kind of file that should be preloaded in the memory modules of the pro "
element to execute the program.

Sending an Ip-Signal

In the case of local count signaIs, the compiler determines, for each node, the thrce
destination lists corresponding to the possible values of the condition code: uncondi
tional, true, and false. These destination lists, containing the addressf!s of the target
nodes, are stored in the SLM. The higher order bIt of tht' address is reserved to

indicate the end-of-list condition.

For the ip-count signals, there is more to fetch than just the address of the target

node. The remote specificat.ions for the remote-count signallOclude the address of the
remote PE and the address of the target node within that PB A data-count sIgnai

needs yet more specifications, namely the address in the local Data memory from
where to fetch the data value, and the address in the remote Data memory where It 16

to be stored after the transfer. AlI this information 1S availahle at complle-time so it

is possible to store it into any of the existing memory modules or mto a new module.

40

1

(

(

PIPU

<s-node ,cc>

SXT

<slmadd>

end-of-slgnal bit
remote-slgnal bit

SLM

DM -e ____ ---.

Figure 4.3: Sen ding a Signal to a Remote PE

ECU

ICM

We have chosen to store the specifications in a new memory module, within the

ICU, which we have called Inierprocessor Commumcatwns Memory (ICM). When a
node has to signal a remote node, the remote specifications are fetched in an indi
rect fashion via a remote address stored in SLM which is recognizable by the signal

count dispatching mechanism of the SPU. ThIs can he achieve by reserving a second

bit-besides the end-of-list condition bit-to indicate this condition. Thus, a remote

address being detected m the SPU automatically gets redirected to the ICU where it
IS used to access the ICM. AlI the necessary information to form the required packet

can be fetched from this memory hefore it is sent to the network.

When the ICU receives an ip-count signal from the SPU, the address contained

in the signal (say icm,) is used to access the ICM memory module. The first address
that is fetched from the ICM is the address of the remote no de (s-noderem) that has
to he signaled. The high order hit of that address is reserved to determine the type

41

•

of signal to be sent. Setting the bit indicates ~hat it is a data-count signal, otherwise,
it indicates a remote-count signal. Figure 4.3 illustrates the process of sending a
data-count signal to the network.

Both types of ip-signals require the remote PE address and the remote no de
address (within that PE) to deliver the signal. For a data-couut signal, the remote
data address also has to be sent alouS, so that the value can be stored in the remote
Data Memory upon arrival of the packet. Once the leU detects the data-couut
signal, it proceeds to fetching from the leM the next three words stored aCter iCIU,
(i.e. icmi+l, icmi+2, icma+3). They contain the remote PE address (PE,em), the
local address of the data value) and its remote Data Memory address (dllLaddrcm)'

The local address is then used to fetch from the local Data Memory the data value
that will travel along with the signal. The following is the packet structure of the
data-count signal:

If the type-of-ip-count bit is not set, the leU knows that it is a remote-count
signal. For this type of signal, only the remote PE addres3 is necessary, besides the
remote node address (within that remote PE). That FE address is stored in the leM
memory location contiguous to icm,. After fetching it, the leu sends a remote-count
packet with the following structure:

<remote-count, PE,eml s-node,em >

The packet header is actually the remote PE address1
. Once the packet is formed

and properly identified with the type of message it is conveying, it is put on the buffer
of the IOU output port which connects to the network.

Receiving an Ip-Signal

The reception of an ip-signal from the network is processed in the following way: the
leU retrieves the incoming packet from its input port buffer and identifies its type.
If it is a remote-count, the node addrcss is extracted from the packet and sent to the

IThis will be explained in greater detail in Section 4.2.

42

(

(

ECU

DM .. ,,-----
data-cou nt remole-<:ount

INPUT PORT

Figure 4.4: Receiving a Signal from a Remote PE

ECU to be processed as a local count. If it is a data-count (see Figure 4.4), the data
value and its address are first retrieved from the packet, and the address is used to
store the value in the Data Memory before the count is sent to the ECU.

Processing remote signals is therefore achieved independently of the processor's
execution pipeline which is one of the main objectives that were set by this project.
The DISU is also lelieved from the burden sin-::e most of the action takes place within
the ICU. The implications at this level are two: the homogeneity of the SLM is
eonserved, and the transparency of the remote signaling is maintained, sinee all the
processing is eonfined within the leu. Remote synchronization events are therefore
proeessed in a simple and efficient manner, keeping the pri •. c_?les of modular design.

4.1.2 Processing RLOAD and RSTORE Operations

The remote load and remote store operations are used to transfer data values from
the Structure memory (SM) to the Data memory (DM) and vice versa, when the SM
is not local to the PE. The reader is reminded that no other operation has access
to the SM. To be used in a computation, array values have to he downloaded from
SM, using a load instruction, and then uploaded baek, if necessary, using a store
instruction. These remote memory operations are descrihed as follows:

RLOAD global Struc. mem. addr.,
RSTORE local Data mem. addr.,

43

local Data mem. addr.
global Struc. mem. addr.

,

"

Their implementation is best described by giving a doser description of the first
two stages of the execution pipeline beforehand.

The first stage is the Instruction Fetch Unit. It is rcsponsible for decoding the
fire signal which is an address in the Instruction Memcry. With the information it
retrielres from that address, it creates a template, containing the instruction number
(ni), the operator code (oc), and the addresses of the operands and result registers
(addopt,addop2' and addrea):

The template is then forwarded to the Operand Fetch Unit which computes the
effective opera.nd's address and fetches the data values from DM. It is then forwarded
to the next stage of the p~peline, the EU.

To implement the remote memory operations, we require that this stage of the
pipeline be provided with a mechanism to analyze the operator code and deted the
remote load and store instructions. Upon detection of the remote instructions, the
template is redirected to a subsection where the "remote" address of the operand
(first operand for a RLOAD, second for a RSTORE) is analyzed to extract the target
PE address. If the address points to the local Structure memory (SM), then the
template is just sent back to the second section and processed as a normalload/store
operation. Otherwise, it is stored into a buffer which is repeatedly checked by the
leU, in se arch for requests. Requests stored in the buffer are processed in a FeFS
basis. When a template is stored in the buffer, the leu rdrieves It, identifies the
request and takes the appropriate actions to process it. When the memory operation
is performed, the !CU generates a done signal directly to the DISU, as if the operation
had been executed within the local execution pipeline. Figure 4.5 illustrates the way
remote array operations are processed within the PIPU and the leu.

Processing a Remote Load Request

ln the case of a remote load request, the address in the template points to a location
within the global address space. From that global address, the leu extracts the
remote PE address and the s-node address within that PE.

44

(

(

lM

Remote
detection OFU

'-..U~~~rJ

RSTORE

UJP~I~P~U~ __ -= .. =··~~ __ do_n_e ________ ~=:sPu

RLOAD

leu

(DM) ________ -....

RLOAD
ACK.

RSTORE
ACK.

Input Port

Figure 4.5: Sending a Memory Request to a Remote PE

To avoid a "parking" mechanism while waiting for the data, the ICU includes
in the request all the information required to store the returning data into the local
Data Memory. The packet being sent thus contains the following information:

where PE is a processing element address, dm_add is a data memory address, sm_add
is a Structure memory address, and s-node is anode address.

Upon reception of the packet, the target PE fetches a data value from location
snLadd,.em in its own Structure memory, and then replies with a message, structured
in the following way:

This message is also an acknowlt!dgment that the fetching operation has been
successfully performed. The ICU stores the data_value at location dm_add/oc , and

45

uses the s-node,oc address to generate a done signal with an unconditional condition
code2 thereby completing the remote load operation.

Processing a Remote Store Request

ln the case of a remote store, the data value is part of the remote request. Once the
template is retrieved from the buffer, the IOU fetches a value from the local Data
Memory address, contained in the template, and extracts the remote PE and s-node
addresses from the global Structure memory address. It then proceeds to send Il

packet structured as follows:

where data_value is the data to be stoJ'ed at address sm_add,.em in the Structure
memory of PErem. This task is accoTllplished by the IOU in the remote PE, when it
retrieves the packet from the buffer in its input port.

PErem then replies with an acknowledgment message indicating that the operation
has been proccssed. The packet is structured as follows:

<ack-store, PE,oc, s-node,oc >

where s-node,oc is the no de address used by the leu in the source PE (PE,.,.,) to
generate the done signal.

4.1.3 A Retry Mechanism to Control Buffer Space

There are three sources of requests that are likely to generate messages to be processed
by the IOU. One of them is the Signal Processing Unit, within the DISU, redirecting
ip-counts. Another one is the Operand Fetch Unit, wIthin the PIPU, redirecting
instruction templates which contain remote m<:'Inory requests The thtrd and last
one is the input port buffer, receiving requests from the network wlllch have to he
processed by the leu before sending back an acknowledgment.

2 AU memory operations such as Load and Store generate the ullconditional ("ode UpOII exe("utioll.

46

Since all the modules generating the requests are independent, the lower level
of design for the leu should be organized such that all three types of requests can
potentially be processed independently of each other. A common entity between the
modules is the output port buffer, connecting the leu to the network, through which
all outgoing messages ultimately have to go. A possibility of deadlock can occur if
this buffer fms up with too many requests.

Since neither acknowledgrnent messages nor interprocessor signals can be delayed
nor blocked, little can be done .. bout an overflow of such types of requests, besides
providing ample buffer space for the input port buffer and the ip-count buffer
connecting the SPU with the leu. It is possible, however, to delay the remote rnemory
operation requests.

A retry mechanism has been implemented so that upon reaching a certain (low)
degree of free available space in the output port buffer, incoming templates containing
remote memory operation requests are not processed. Instead, the s-node,oc address of
the noJe is extracted from the template, and reJirected back to the end of the buffer
eontaining the fire signals3 . This will provide for sorne short delay during which the
instruction eontaining the remote request will not be processed. This delay depends
on the number of instructions awaiting for executionj ideally, it should neither be too
long nor too short sinee either extremes would indicate that the pipeline is starving

or that there is too mu ch parallelism exposure. Meanwhile, the leU can use the delay
to free up sorne spaee in its output buffer by sending packets to the network.

4.2 The Interconnection Network

In order for our proeessors to cooperate during the execution of a particular applica
tion, we must provide them with sorne interconnection network. Such interconnection
network must feature fast and reliable handling of interprocessor communication op
erations such as remote memory aceesses and synchronization of events. This section
describes the main eharacteristies of intereonnection networks (IN) and gives sorne ex
amples of well known network topologies which are available today. It then describes
the model we have chosen for the MMDA.

3Fire signaIs are equivalent to !.-node addresses as explained in Section 2.3.1.

47

"

'.

"

4.2.1 Interconnection Network Characteristics

There are four design decisions involved in selecting the architecture of an IN: the
operation mode, the overall control strategy, the switehing method and the network
topology (see [26]). The following are the alternatives for each charaderistic:

• The operation mode can be synchronous, asynehronous or a combination of both.
Synchronous systems are characterized by a central global dock signaling all the
devices whieh operate in d. lockstep fashion. Asynchronous communications Me
more suit able for systems in which connection requests are issucd dynamically.

• The switching methodology to transfer data can be either circuit or packet
switching. With circuit-switehing, once a processor i8 granted a path it kccps it
for the duration of the communication. Under the packet-switching method,
messages are broken into small packets which compete for paths. In gen
eral, circuit-switching is mueh more suitable for bulk data transmission whereas
packet-switching is more effir.ient for short data messages.

• The control strategy can be centralized, where the IN is governed by a global
controller, or decentralized, in which the requests are handled independently by
the different devices in the IN.

• The network topology can be static or dynamic depending on whether the links
in the IN are passive, i.e. dedicated, or if they can be reconfigured by acting on
the switching clements.

Among these characteristies, the network topology aspect offers the wider range

of alternatives.

Static Topologies

A static network topology i5 one that does not change aCter the machine is built.
Those topologies are usually classified according to the dimensions required for the
layout of the IN. For instance, the single bus i8 an ex ample of a one-dlIIlenslOn static
IN. Sorne well known two-dimensional topologies are the ring and the rnesh. At

the other extreme of the spectrum, there is the hypercube, a reprcsentative of the
multi-dimension dass (see Figure 4.6)

48

(

(

(a) Single Bus

(b) Hypercube (c) Ring (d) Mesh

Figure 4.6: Examples of Static INs

Within bus based multiprocessors, indivîdual processors, memory modules, and
input/output devices are connected by one or more high-speed data buses, in such a
way that all modules are accessible by ail processors. The bus requester, driver, and
receiver circuits on each device, handle the passing of addresses and data. Sînce the
bus itself con tains little or no active logic, it is the simplest of the interconnection
architectures. Despite this advantage, though, as bus speed increases, each component
attached to the bus must also increase its operating speed, raising the overall cost
and complexity. AIso, modules can be added to the bus at any time (as long as there
is room on the backplane and control circuitry on each device), but the growth is

limited: efficiency starts to decrease with additional processors, as each one must
compete for the same fixed resource-bus bandwidth.

A different type of static IN, the hypercube, provides multi-step communication
paths by connecting each processor to a subset of the other processors [60]. In a hyper
cube architecture of order N, each processor can communicate directly with N other
processors, and indirectly with all other processors in a maximum of N"hops". Inter
mediate processors are used in a store-and-forward technique to con vey the messages.

Figure 4.6 (b) shows a hypercube of order three. One of its advantages is it.s abil
ity to connect hundreds or thousands of individual processors. Thus, the processing
power can be quite large, but it can only be reached at the expense of user-generated
load balancing techniques, both at the program partitioning phase and at the data

partitioning phase. A disadvantage is the overhead involved in the message passing
operations that are required for interprocessor communications.

49

..

Dynamic Topologies

Dynamic topologies are divided into three classes: single-stage, multistage, and cross
bar. These interconneetion networks are usually designed so that they can be con
structed of a single type of modulaI building block, the switching element, shawn
in Figure 4.7 (a). Switches are arranged into stages with data paths, called 1mb,
connecting the output terminal of a switch in one stage to the input terminal of a
switch in the next stage. Input terminaIs of switches in the first stage are called input

ports or source nodes, and output terminals in the last stage are called output ports

or sink nodes.

A single-stage IN is compased of a stage of switching elements, which is bascd on a
special connection pattern. The example shown in Figure 4.7 (b) is a shllme-exchange
network, based on the perfect-shuffie connection [46]. In a single-stage network, data
may have to be passed through the switches sever al times before reaching the final
destination; hence it is also called a reclrculatwg network. The way the connections
are configured deiermines the functionaI characteristics of the network. Most of these
networks have a cost proportiollal to the numher of processors the y interconned and
their bandwidth increases as processors are added. However, a disadvantage with
these networks is that requests cannot be pipelined, which forces a dclay--until a1l
the passes through the switches are completed-before more requests can he sent.

The crossbar interconnection is organized in a grid pattern allowing aU possible
connections between processors. It is shown in Figure 4.7 (d). Crossbar conneclion
networks offer a possible solution to the limited-bandwidth problem due to their use
of separate buses to connect each processor with each other. Contention appears if
two processors attempt to access the same target module, in which case an arbiter
temporarily delays one of the requcsters. Theoretically, the crossbar interconnection
has no upper lirnit to the addition of modules, but the number of grid connections
unfortunately grows as N2. This makes it an expensive and complex architecture
for large-seale multiprocessing (a network interconnecting 128 PEs requires 16,384
connections, each of which might contain several wires)

Multistage networks provide many lay~rs of switches, many of which are bUllt from
stages of the basic single-stage networks. The characlenstics of the eonnection pattern

are often used to classify these multistage networks among themselves. Figure 4.7 (c)
shows an Omega network [47].

50

(

c

(a) 2x2 Switching element

(b) Shuffle-exchange

:&: t-... --4 ----t~

(c) Omega (d) Crossbar

}< 19ure 4.7: Examples of Dynamic INs

These networks combine the better aspects of all three classes of models: theyal
low direct connections between processors and support systems of hundreds or thou
sand of processors; the communication bandwidth capacity incrementally increases as
processors are added; the complexity of the network for an N processor system only
grows as O(Nlog,N), where i is the size of the switches (ixi); and the delays through
the IN are proportional to LogaN.

A lot of research has been done on the performance of these INs, proposing a myr
iad of enhancements-like alternatejredundant paths, combining messages, buffered
switches etc.-to increase the overall throughput. For more precisions, the reader is

51

--------------------- -------

-"

referred to the references [26, 58, 23, 24,45, 54].

4.2.2 A Multistage Omega IN for the MMDA

As we shall see in Chapter 5, the IN in a multiprocessor dataflow architecture has a
significant impact on the performance of the entire system.

Pipelining multiple requests to the network is one of the features which can be
exploited by the MMD A system. This is not effectively handled by single-stage net
works which is the reason why they have not been considered. The crossbar type of
IN seemed to meet the requirements for fast response time and small delays, in the
case cf contention, by providing direct paths from any input to any output. However,
the complexity and growth expansion factor make it a too expensive approach for a
dataflow multiprocessor. On the other hand, the multistage type of IN is currently
attracting much of the attention in the field, mainly because of its flexibility and
attractive features.

Delta networks [56] are constructed with switches of size i x i, arranged in log,N

stages of N/i switches. The connection patterns betwc>en stages allow any input port
to send a message to auy output port. The control of data movement through the
network does not require a global controller. Instead, it is implemented locally at the
switch level: the destination address digits in the message header are used to route

the packet through the network-thus loglN digits in base i. At each stage, the switch
uses a digit of the destination address to select which of its output ports to use.

If a message arrives at a switch and is directed to an output po~t which is already
in use, a collision occurs, which causes the arriving message to block. A colliSIOn can
aIso occur if two messages simultaneously arrive at a switch and are both directed to
the same output port. The switch then has to use sorne arbitration strategy to pick
which message gets blocked and which one goes through. If there is no collision, the
switch is capable of passing them all to the next stage.

The links between the stages sometimes contain FIFO buffers of a predetermined
length. AlI links, however, are homogeneous. The advantage is that the buffers cao
temporarily hold a message in case it is blocked at a switch, instead of disregarding
it. In this latter case, the message has ta be reissued.

52

1

Because high throughput is important, and because of the relatively small size of
the messages, packet switched networks have been considered for this thesis Înstead
of circuit switched networks. AIso, sinee the requests in the MMDA are issued in a
dynamic fashion, the network's operation mode should be of the asynchronous type.

Based on the characteristics laid above, we have chosen a multistage Omega type
of network-a particular class of Delta network- to support the interprocessor com
munications within the MMDA 4. We have thus considered a packet-switched, asyn
chronous Omega network, consisting of log2N stages of 2 x2 buffered switches, with

N /2 such switches per stage (see Figure 4.7 (c». Thanks to its decentralized type of
control, messages can be propagated in a pipeline fashion, progressing through the
network independently of each other.

4.3 Summary

This chapter proposes a modification to the McGill Dataflow Architecture to effi
ciently implement the interprocessor communication methods desc.ribed earller in the
thesis. The Interprocessor Communication Unit has heen added to the Architecture,
yielding the McGill Multiprocessor Dataflow Architecture.

It effectively handles the ip-counts (which are remote count signals) that are redi
rected from the Signal Processing Unit. Its direct link to the Data Memory allows it
to fetch the data values that have to he paired with the data-connt signals, whereas
normal remote-count signals are just redirected toward the IN. Incoming signaIs are
processed in a similar way, with the data value being stored in memory, if necessary,
and the signal being redirected to the Enahle Count Unit.

A direct connection with the Structure memory allows it to process remote re
quests without interrupting the main execution unit in a stra.ightforward manner.
These requests are issued by the PIPU of the remote PE which has the ability to
detect a remote memory address within a remote instruction template. When the
a.ddress points to a the local PE, the instruction is kept. in the execution pipeline
a.nd processed llke a regular local memory operat.ion. Otherwise, they are redirected

4Notice should be done, however, that the leu has been designed independently of the network
topology which implies tbat it can adapt to any network that guarantees direct point-to-point
delivery of messages.

53

to the leu which sends an appropriate packet to the network. The reply llltimately
generates a done signal to the Signal Processing Unit, as if the instrudion wOlild have
been executed locally.

The main contribution of this implementation has been to kecp the multiproces
sor environment as transparent as can be, realizing interprocessor rommunications
almost as if the PE boundaries were inexistent. The architectural deSign has kept its
simplicity and modularity. It also provides a retry mechanism to redired Illemory
requests away from the leU, in case the unit is caught into too much traHie, thereby
eliminating a probable source of deadlock.

A multistage interconnection network is proposed to support the actual transfer
of the messages from PE to PE. It is a packet-switching, asynchronous Omeg,L net
work. It is best suited to the idea of a scalable rnultiprocessor, specially due to the
delay growth whkh is proportiollal to log2N, and the cornplexity growth which is
proportional ta Nlo92N.

54

Chapter 5

Performance Evaluation

To investigate the ~ .npact of long latency memory operations on the performance
of multiprocessor dataflow programs, we have developed a simula.tion testbed. It
includes the implementation of an assembler for multiprocessor systems (mdasm),
and a low level architecture simulator (mds) written in AT&T Concurrent C [36]. In
this chapter, we report the results we have obtained from testing the simulator with
various benchmarks, and we give a performano.! analysis based on those results.

The simulator has been designed to closely moael the McGill Multiprocessor

Dataflow Architecture, inc1uding an interconnection network, up to a maximal con
figuration of 16 processing elementsl. A more detailed description of the program can
be found in an associated technical report [51]. The interprocessor communication
schemes, which we have developed and presented in the previous chapters, are an
integrat part of this simulator. Their efficiency has been èvaluated by running var
ious simulations of multiprocessor dataflow programs, t'.lCecuting on different system
configurations. Better yet, we have been able to get accurate measures of the perfor
mance of the overall system, thereby providing a deeper insight on the behavior of
multiprocessor dataflow programs.

The simulations which are preseIlted in this chapter show that the MMDA is a
system which ca.n potentially (1) effectively tolerate high latencies during interproces
sor memory operations, and (2) inexpensively support remote event synchronization.

IThis limit is set by the &CtuaI implementation of the language at McGill, which restricts a
Concurrent C program to run on one single machine. Future releases will allow programs to run in
distributed mode, thereby increasing this limit.

55

1

Assembler
(dasm)

Interpreter
(AD) upper path

lower path

Figure 5.1: The Testbed Environment

It turns out that network throughput is a more critical factor than latency, in trying

to achieve high performance.

5.1 The Testbed Envirûnment

In this section, we give a description of the testbed environment that was used to sim
ulate the muItiprocessor system. The original testbed was developed for the MDFA
and was therefore oriented towards the compilation and simulation of dataflow pro
gra'llS executing on a single processor ma-::hine [31J. This environment lS shown in
Figure 5.1 and represented by the upper path of the diagram. The work accomplished
within the framework of this thesis involves the development of a new testbed, st art
ing from the assembler down to the simulator. This new testbed is lllustrated by the
lower path in Figure 5.1.

The path along the testbed sUIte, for the uniprocessor ardlltecture, conslsts of five
software layers representing five dtfferent programs that are uscd to automatically
generate and execute machine code on a simulation model of the MDFA Starting
from the SISAL front end, SISAL benchmark programs [49] are translated into a
hierarchical data dependence graph (RD DG) [41 J . A code generator translates the

56

l

•

machine-independent HDDG forms into an intermediate representation of data flow
graphs, which we have called A-cotie [62]. In A-code, the simple nodes of the HDDG
form are mapped into instruction tuples. An assembler (dasm [50]) is used to generate
executable code for an interpreterjsimulator (AD [63]) of the architecture.

The framework of this thesis is focused on the architectural design of interpro
cessor communication schemes. The simulations were prepared in the following way:
SISAL benchmark programs were translated to A-code graphs, and then manually
modified into multiprocessor programs, written in an extended A-code language with
multiprocessor flavors (A-code+). A multiprocessor assembler, called mdasm, was de
veloped to assemble multiple-processor A-code programs into an appropriate network
based load-image file, executable by mds, the multzprocessor dataflow simulator'l. Ap
pendilC B shows an example of a A-code program.

5.2 Mds: a Multiprocessor Dataflow Simulator

Mds is a simulator for the MMDA written in AT&T Concurrent C which consists
of two parts, a processor simulator and a network simulator. In the version we
are currently using, it supports configurations of up to 16 processors interconnected
by a packet-switched Omega network. It gathers information such as simulation
times, network throughput, latency of requests, processor utilization and others. It
was designed so that processing elements could be easily added, and to simplify the
implemenlation of new communication network topologies.

The ICU, the two major units of the DISU, each of the sections of the PIPU,
the memories, and the network are implemented by distinct self-contained code units
which simulate the functionality of each hardware unit. The three major units of
the PE (PIPU, DISU, ICU) and the network, operate under the same r,~achine dock
cyde. This machine cycle is the basic unit of time used by the simulator t<,. measure
aIl its results.

Assumptions regarding the execution time have been made in terms of the work
that can be performed by each module within one unit of time. The PIPU can
potentially receive one fire signal per clock cycle. AU scalar operations and local
Structure memory operations within the execution pipelilie are assumed to have the

'Altogether, the assembler and the simulator programs add up to about 12.5K lin es of code

57

same processing delay, so each instruction going through the PIPU consumes the
same number of units of time (the default vaIue is 6). Within the DISU, the SPU
can receive one done signal per cycle, retrieve the corresponding signal list and send
1t to the ECU. This latter can process n count signals per cycle, n being a machine
characteristic and thus a parameterized value in the simulator (default vaIue 4). The
leu can process one type of request per cycle, be it a request from the SPU (ip-count),
a remote memory request coming from the PIPU, or an interprocessor request. These
requests are serviced in a round robin fashion. CommunicatIOns bet ween the units
are smoothed by means of FIFO buffers, where each element is paired with a time
stamp determining the time unit at which it becomes available.

The network simulator can be set to operate at a faster rate than the processor
by varying the ratio of ;.e::~1e clock cycles. The movement of packets into and out of
the network, and from stage to stage within the network, is assumed to take place at
discrete, equally spaced points in time. The time between these points is the minimum
delay experienced by a packet at a switch, based on the data rate su pported by the
link. AnaIysis based on this assumption can be used to approximate the behavior of
an asynchronous network.

5.2.1 Simulator parameters

The simulator offers a wide number of parameters that allows it to perform simulations
of various technological aspects, concerning both the PE's internai design, and the
network characteristics. Parameters are also used to generate traces of various kinds

of events.

A complete list of all available options can be found ln Appendlx C. The f,)llawing
are the ones mast relevant to this chapter:

• -S: this parameter tells the simulator the amount of the Structure memory (SM)
that each PE dedicates to the system's g10bal shared memory. This value is the
same for aU PEso The default is determined by the smallest Structure memory

size, among the PEso

• -Ne: this option determines the PE-to-network dock ratio (ClockRuho). It
provides the possibility of experimenting with various network speeds3

3More ftexihility can he reached hy modifying the internai variable defining the data rate of the
links.

58

"

• -NI: this options sets the start-up latency for each packet sent on the network,
i.e. the number of cycles necessary to form a packet. The default value is 2
processor cycles.

• -Ns: this parameter determines the switch buffer size within the network.

5.2.2 Performance metrÎcs

The performance metrics used by the simulator are divided into two groups, the
first of which reports on the performance of the processor and the second on the
performance of the network. Each simulation run thus produces a re",ult file for each
individual PE, containing overall system results, local processor performance results,
and network performance results. A sample result file is given in Appendix C.

Assume a multiprocessor system of N processors. The following are the most
relevant metrics for each PE:

• The Processor Execuhon Time (ProcExecTime) reports the number of machine
cycles consumed by the PE.

• The Remote Requests (RemReq) is the number of remote memory operations
(RLOAD and RSTORE) generated by the PE.

• The Remote-Operations Ratio (RemRaho) is the percent age of remote memory
operations over the total number of instructions executed:

R R
. _ (RemReq x 100)

em alto - 1 E nst zee

• The Local Average Latency (LocLateney) is the cumulated latency of each re
mote memory request, averaged over the total number of requests. Each latency
comprises the time elapsed while going through the network both ways, and the
time spent in the queues of the remote processor while it performs the operation.

The following are the met ries used to evaluate the performance of the overall
system and the network:

59

..

• The Total ExecutIOn Time (EzecTame) reports the number of machine cycles
that are required to execute the whole application. lt is defined as:

E~ecTim,e = max {ProcEzecTime,} , i = 1 -+ N
•

• The Total Network Accesses (NetAcc) is the cumulative llumber of remote re·
quests issued by each PE:

N

N etAcc = L RemReqi
i=l

• The Normalazed Average Throughput (NAT) is the average number of bytes
that can be passed through the network per unit of time, normalized over 100

(to have integer numbers). lt is defined as:

NAT = (N~Bytes x 100)
N x EzecTime x ClockRatio x DataRate

where DataRate reCers to the data rate supported by the network links, i e. the
number of bytes that can go through a link per l.letwork cycle The adjustement
with ClockRatio yields a data rate per processor cycle.

• The Global Average Latency (GlobLatency) is the total of aIl the LocLatency

metrics, averaged over N. Thus,

Cl bL
E~l LocLatency,

o atency = N

• The Global Collision Rate (ColiRale) is the ratio oC the total number of col
lisions that oceur within the network, over BusyNel, which is the number of
cycles during which the network had at least one packet.

C IIR
L Collisions

o ate=~---
BusyNet

5.3 The Benchmarks

The benehmark programs we have selected ta test the simulator are mostly scientifie
applications. Our choice is mainly due to the {ad that most scientific programs

60

(

(

1

contain large portions of parallelizable code, often expressed in loops involving array
operations. Hence, they correspond to applications which are both computationally
intensive and well suited for parallel execution.

The Livermore Loops [27] a.re a collection of typicalloops, extracted from widely
used scientific applications which were developed at Lawrence Livermore National
Laboratory. Their advantage, as benchmarks, is their big appetite for processor
cycles. The kernels capture the inner loop calcdations whic..h constitute the most
computationally intensive portions of the applications from which they are extracted.
We have used Loopl and Loop7 from the collection. For Loopl, the main loop is
unrolled twice to increase the parallelism of the program. This is enough to obtain a
high rate of processor utilization.

Saxpy is the kernel of the LowerjUpper Decomposition, a basic computation pro
cedure widely used in linear algebra for solving systems of linear algebraic equabons
such as the famous LINPACK [25]. The routine computes a vector as the sum of a
scalar value times a vector plus a second vector. The benchmark has been modified
to make it more computationally intensive, by adding the sum of a scalar value times
a vector yielding the following expression: a x Xli] + b x Y[i] + c. The main loop is
also unrolled twice to increase the parallelism in the program and thus reach a better
processor utilization rate.

Matmul is a matrix multiplication pr0t!.cam which has been directly hand coded
into A-code. For each simulation, the result matrix is a (32 x 32). The first input

matrix is of size (32 x 8) and the second is a (8 x 32) matrix. This is done to
keep the problem size (and thus the duration of the simulations) at a reasonable
level. Each processor il' assigned the task of computing one portion of the result
matrix. We have chosen the most commmon algorithm for this computation, based
on three nested loops, even though it is not the most efficient one in terms of number
of communications. The reason behind this choice is that we are interested in high
levels of <.'ommunication, to put to the test the capacity of the system to overcome
the problems this load will create. Within each PE, the outer loop is partitioned into
two independent code blocks, to incre&.se the parallelism.

Each of these benchmark programs has been coded using a technique called soft
ware p'pelmang [31] to increase the amount of exposed parallelism. The source code
for these benchmarks and a graph representation, can be found in Appendix A.

61

..
-. - - --

Size of Melllory
Benchmark Problem InstExec Operations ProcExecTime ProcUtil

Loopl 4800 36008 13.33 % 36149-----~-99.607 %
Loop7 3200 56808 1267 % 56923 99.796 %

Matmul 32x32 92836 17.64 % 112078 82.831 %
Saxpy 3840 16328 15.68 %

1
16744 97.510 % -

Table 5.1: Performance Results for a Single PE

5.4 Simulation Results

In this section we present the results we have obta.ined from testing several bench
mark programs on mds. The simulator's default parameters have been set, using
reasonable numbers for processor and network characteristics We have assumed
a theoretical processor's dock speed of 25 MHz, yielding a dock cycle time of 40

nanoseconds. The simulation of this dock defines the UDlt of tune wlthin the SIII1-

ulated mode!. Assuming a 16 bits paraUel capacity for ports and hnks withill the
network, the data rate is therefore set at 2 bytes per network cycle. Settlllg the nct

work's dock at 50 MHz gives us a total peak bandwidth of 100 MBytes/second/port
The network's dock cycle being 20 nanoseconds, our PE-to-network clock ratio is

therefore set at 2. The size of the buffers within each sWltch lS aiso set at 2. AU thcsc

a.re parameters that can easily be adjusted to simulak dlfferent system and network

configurations.

The starting point of the testing process is the execution of the benchmark pro
grams on a single processor. The performance results are presented in Table 5 1 The
problem size refers to the size of the Structure memory required by carh of the pgs
to run the programs. For instance, in Saxpy, there are 3 vectors of 1280 elcmcnts
involved so the problem slze is 3840. The percentage of array Illcmory fdchC'b, over

the total number of instructions, is shown in the fourth column Tlus numlwr IIldl

cates the number of instructions that can potentially translate into long la.tency loa.d

operations in a multiple processor environment.

Notice that the programs feah.re a very high processor utlhzation, due to the
unrolling of the loops, for the partIcular case of Loopl and Saxpy. The rcason for

targeting such high percentage utilization is due to the fact that each PE has to have

62

(

(

J6

J4

J2 '--'., RemR .. o
J5000

JO

î bIcNM •• "01111110

/ 6

4

2

O~~--~--~~--~~--~--~ o 2 4 6 • 10 12 14 16
Numboror~

(a) Execution Time (b) Sreed-Up

Figure 5.2: Performance of Loop1

enough parallel computations to keep its execution pipeline sufficiently busy in order
to absorb the effects of long latency operations.

The second phase of the testing process investigates the programs' performance
on a multiprocessor system. The size of the application, for each benchmark, is kept
identical while the configurations of the system are increased from 2 to 16 PEso In
all cases, computations and memory loads have been balanced among all PEso In
the following sections, we report on the execution times, speed-up curves, processor
throughput, and memory latency, as we look at the performance of the MMDA.

5.4.1 Execution Tiole and Speed-Up

Linear speed-up is trivially achieved if the remote-operattOns ratIo (RemRatio) for
each processor is zero--meaning that aIl the array memory operations are accessing
the local SM. A RemRatio of value zero translates into portions of code, running in
each PE, which are completely independent of each other. The amount of work is
th'!refore sim ply divided among the available processors, thereby dividing the execu
tion time in the same proportion

A more interesting set of results is obtained by graduaIly incrementing the Rem
Ratio from 0 to its maximal value (which is given in Table 5.1). When this maximal

63

l

l\.

..

,-",JI&mRIIIO

10000
/

oL-~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~
o % 6. 10 1% 14 16

N"'rof~

(a) Execution Time

1&

\4

10

i 1

6

..

°0~--~2--~.--~6--~'--~IO---1~2--~14---I~A~
N_r or l'IootIoon

(b) Speed-Up

Figure 5.3: Performance of Loop7

90000

10000

70000

60000

6_
]40000

:lOOOO

lOOOO

10000

0
0 2 .. 6 1 10 12 14 16

N_r of Procc_

(a) Execution Time

16

14

.... 10

i 1

..
2

OL-~~~ __ ~~ __ ~ __ ~ __ ~~-J
o 2 .. 6 1 10 12 14 16

NWllber or l'IootIoon

(b) Speed- U p

Figure 5.4: Performance of Matmul

value is reached, all memory fetches are remote to the PE. The Figures 5.2- 5.5 show

the performance of each benchmark, with a Rem Ratio varymg from its minimal value

to its maximal value. Each figure illustrates the progression of the lolal cxecuhon ttme

(ExecTime) as processors are added (a), and the eorrespondmg speed-up ("urves (b).

Each curve, within a specifie graph, corresponds to a dtffcrent value of the RcmHaho
The increment value of the Rem Ratio 1S not the sarne for each of the benehmarks ThIs
explains why sorne graphs have more curves than others. For Loopl, the spcctrurn is

64

(

(

1000

4 6 • 10 12 14 16
Nombc,or_

(a) Execution Time

16

14

~ 10 "".

l · ~
6

2

4 6 • 10 12 14 16
Nurnbc,orrr-.

(b) Spepd Up

Figure 5.5: Performance of Saxpy

divided into 6 intervals yielding 7 performance curves. For Loop7 there are 10 curves,
while there are 5 curves for Matmul and 9 for Saxpy. Table 5.2 shows the difFerent
RemRatio values that have been used to test each of the benchmarks, and their
corresponding NetAcc. Each remote memory request translates into two network
accesses, one by the PE issuing the request, and the second by the PE acknowledging
the request.

Both Loop1 and Loop7 have similar program structures and a maximum RemRa
tio neighboring the 13% of instructions, i.e. one out of 7.7 instructions is a remote
load. For these benchmarks, a virtually linear improvement in performance ls ob
served for all curves, except for the extreme cases where the programs are importing
more than 83.35% of their data, for Loop1, and mOie than 88.87%, for Loop7. These
extreme cases are illustrated In the sl'eed-up figures by the two lowest curves of each
graph with RemRatios oi 11.11 % and 13.33% for Loop1, and 11.26% and 12.67% for
Loop7 The corresponding loss oi performance will be explained shortly (see Sec
tion 5.4 2). If we focus on the majonty of the cases, we can observe that communica
tion costs and long latency operations have practically no effect on the performance
of the programs. This is a sign that there is enough para.llelism available to keep the
processor busy with useful instructions while waiting for each of the remote loads,
which translates into the fact that the MMDA can effectively tolerate latency.

65

1

Remote-Operation Ratios (RemRatio in %)
Benchmark and Total Network Accesses (NetAcc in Ks)

Loop1 0.00 2.22 4.44 6.66 8.88 11.11 13.33
a 1.6 3.2 4.8 6.4 8.0 9.6

Loop7 0.00 1.41 2.82 4.22 5.63 7.04 8.45 9.86 11.26 12.67
a 1.6 3.2 4.8 6.4 8.0 96 11.2 12.8 14.4

Matmul 0.00 4.41 8.82 13.23 17.64
a 8.2 16.4 24.6 32.8

Saxpy 0.00 1.96 3.92 5.88 7.84 9.79 11.75 13.71 15.68
a 0.64 1.28 1.92 2.56 3.2 3.84 4.48 5.12

Table 5.2: Remote-Operations Ratios Used to Test Each Benchmark

Saxpy has a very similar behavior: the performance of the program starts degrad

ing once the Rem Ratio hits 11%. However, both Loopl and L00;ï7 allow performance

los ses in the 16 PEs configuration only, whereas Saxpy degrades as soon as lt reaches
the 8 PEs configuration, when the RemRatio reaches its maximum value of 15.68%.

Intuitively, the observations lead us to a. premature conclusion that a. system of 8

PEs can execute an application without 10ss of performance, if the Rem Ratio is kept

under 15%, whereas on a system of 16 PEs, that limit is 11%.

In fad, the RemRatio indirectly measures the load that the PE imposes on the

network. As will be discussed in the next subsection, there is a limit imposed by the

interconnection network which depends on the size of the network. Once that limit

is reached, the network becomes a bottleneck and the performance starts dropping.

Below that limit, though, the program's execution time decreases in proportion with

the number of PEs, thus yieldmg virtually linear speed-ups. ThIS ca.n be confirmed

by observing the Figures 5.2, 5.3, a,--d 5 5.

The results concerning Matmul show a dlstmct behavlOr compared to the other

benchmarks. With zero RemRatio, execution time is optimal, and speed-up curve is

quasi-tinear. However, the execution time increases drasticaUy as saon as the program

starts fetching remote data-from 56.1K to 77.7K cycles, an increase of 41 8%---to

later stabilize at that l~vel. The Rem Ratio variation almost does not affect the overall

performance thereafter. This parhcular behavior stems from the way the program IS

strudured: as opposed to the other benchmarks, whlch feature a single 1001' executing

a portion of code, Matmul is programmed based on three nested loops, the innermost

of which requires two loads at each iteration. The reason for chosmg thls algorithm

66

(

is to provide an example of a very computationaUy intensive program which does not
expose enough parallelism to support remote data fetching. The loss on performance
is more precisely due to the fact that there are not enough instructions to execute
while a particular path in the graph is blocked due to a long latency operation. This
situation does not occur with the other benchmarks because of the more llumerous
paths available through the graph. Appendix A shows a graphical representation of

the benchmarks.

5.4.2 N etwork Throughput

The performance of a packet-switched interconnection network lS characterized in
terms of how much information can be passed through it in a given period of time.
This criteria, known as throughput, can be informally defined as the number of packets
the network can accept at the input port per unit of time. The corresponding metric
used by mds to describe the network's performance is the network average throughput

(NAT). We have chosen a normalized metric because it gives us a measure of the
amount of network bandwidth that the application has consumed in relation to its
ideal performance.

Figure 5.6 shows the plots of NAT versus number of PEs, for aU values of Rem
Ratio. We can observe that, within the same system configuration, the throughput

iIlcreases proportionally with RemRatio until it reaches a limit. We will cali this
limit the maxImum reachable throughput (MRT). Below this MRT, the throughput
is practically constant, independently of the size of the system, for each fixed value
of RemRatio. The reason is that the load imposed by each PE to the network is a
characteristic of the program Since the programs do not change--only the size of the
problem they are solving-the load on the network remains a constant. This is also
valid because the destinations of alI packets in our benchmark programs are equally
distributed in the same way for all system sizes.

This observation confirms our earlier remarks about a limit imposed by the net
work, which is inversely proportional to its size. This is caused by the collision of
packets within the switches of the network. Increasing the packet flow through the
links automatically increases the probability of having a collision, which explains why

the network can not reach its peak bandwidth. Furthermore, increasing the number
of stages increases the probability for a packet to be blocked and thus reduces the
overaU throughput. The MRT therefore decreases as the network size mcreases,

67

t

100 \00

10 l--..... mRa ••
10 l llemR •••

60

----~
~

60

....
~

40 40

20 lO

0 0
0 2 4 6 • 10 Il 14 16 0 4 1 \0 Il 14 1&

NlIIJII>cr oC "'--<xl N_'.Irn..-....

(a) Loopl (h) Loop7

100

10 110--..... mIùo. 10 lin"' R.mR •••

60 60

~ ---40 --- 40 ---------~----------

20 lO

0

0 4 6 8 10 Il 14 16 6 • 10 Il \4 I~

Number clf ProœIlOll Nwnbc. of Pr~

(c) Matmul (d) Saxpy

Figure 5.6: Network Average Throughput

following a monotonically decreasing curve which is a charadenshc of the network.

The same observation was made by Dias and Jump in a study of packet switched

interconnection networks [24] Their analysls is based 011 a network which is never

"starving", i.e. packets are presented to the network at the maximum rate that the
network can accept them. The destinatIOn addresses are um[0rmly di!>tnbllted over
the set of output port addresses. Theu results show that (ven under thche icleal

conditi0!\S, the network fcatures an upper bound on performance There 1& a maxI

mum rate of passing packets which is prunarily a property of the llctwork. We have
observed the saIlle phenomena wlth our simulatiom.

68

Therefore, an application consuming a bandwidth below the MRT corresponding
to the system configuration can be expected to feature linear speed-up. Of course, this
can only be achieved because the processor architecture can tolerate latency. Above
the MRT, the number of collisions in the network will slow down the overill system
and the performance will tend to decrease. This is exactly the kind of behavior we
observed in Section 5.4.1.

5.4.3 Latency

A different criteria, also often used, is the delay, defined as the period of time it
takes for a message to go from an input port to an output port. The corresponding
metric in the simulator is the global average latency (GlobLatency) which actually
corresponds to two trips through the network.

The average latency of a packet is expected to increase as the logarithm of the
number of processors in the system (see Section 4.2). This assumption holds if the
required network throughput is below the aforementioned MRT. Otherwise, the in
crease is considerably higher, as can be seen in Figure 5.7. As before, each curve in
the graph corresponds to a different value of RemRatio, from the bot tom up.

The anomalies of the top curves in Loop1, Loop7, and Saxpy, correspond to the
simulations for which the network has been a bottleneck. The corresponding con
gestion causes the packets to stay longer in the switch buffers, thereby increasing
the global average latency. This congestion is measured by the global colhsion rate

(CollRate) which reports the total number of collisions per cycle during which the
network is in use The CollRate variable is plotted in Figure 5.8 for each benchmark.

This measurement allows us to explain why the latency in a system of 8 PEs, for
instance in the case of Loop7, is twice as long as the latency in a system of 16 PEs
for the saIlle RemRatio value, when in fact it is expeded to be smaller. What we
are actually measuring is the average amount of time that a packet is being delayed
beyond the normal latellcy It is bound to incur In order to have a monotonically
increasing latency curve, the Coll Rate has to increase 1Il the same proportion as the
number of PEso In other words, if there are x collisions in a system of n PEs, we
expect to have 2x colliltlOns in a system of 2n PEs to obtain a logarithmic increase
in the GlobLatency. As can be observed in FIgure 5.8, Coll Rate does not increase
proportionally to the system size for the two upper curves of Saxpy (RernRatio of

69

l

50 50

45 l IDcre .. ., RomRaDo

4'

40 40

~5 3'
30 30

! 2l

~
~ 2' ~

20 20 -------=====...-......::

U U ~
10
~

10

0 0
0 2 4 6 8 10 12 14 16 0 4 6 8 10 12 14 16

Nwnhcror_ Numbcr of Prooeac..,

(a) Loop1 (b) Loop7

50 50

45 l "'cre RomRabo

45

lIn" RemRlbu 40 40 ------------
35 31 -----30 30

j ?l'
25 " 25

~ ----------- ---
10 10

~
,,;;, ~---U t5 ~-----------

10 10

0 0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Nwnhcr or Pt_ra Nwnber of Proce..ura

(c) Matrnul (d) Saxpy

Figure 5.7: Global Average Latency

13.71% and 15.68%), the top curve of Loop7 {l~emRatio of 12.67%) and the top curvc

of Loop1 (RernRatio of 13.33%).

Matmul's GlobLatency is a represcntative of a program which docs not go beyond
the network's MRT, and th us has a normal latency increase. Notice that for these

programs, there is no relation between the latency nf the Inemol'y l'eqllchb gomg

across the netwol'k, and the total executlOll time of the pl'ogl'am What wc have

observed is that if a progl'am has enollgh parallelism, and If It docs not l'equire a
bandwidth greatel' than the liuut imposed by the network, thcn it can he cxpcdcd

to have linear spced-up

70

1 ...

1

• ,
7 IIe 7 ~DlllemllaD.

6 \ 6 \ s
1 1
! 4

~
4

3 l

2 2 --
0 0

0 1 4 6 • 10 12 14 16 0 12 14 16
N ' of Pnxcaon

(a) Loopl (b) Loop7

7 IDm.DI IIemltaao 7 1Daua.1 IIemllaDo

6 \ 6 \ s
ft n
8 4 8 4

3

2 2

0 0
0 2 4 6 • 10 12 14 16 0 4 6 1 10 12 14 16

N ' of Pnxcaon Numbc,.f~

(c) Matmul (d) Saxpy

Figure 3.8: Global Collision Rate

5.5 Summary and Discussion

5.5.1 Summary

The results of the simulations are very encouraging. Basically, they show that the
MMDA can perform remarquably well, given a high bandwidth interconnection net
work.

71

..

The simulations have shown that, under normal circumstances, long latency oper
ations can he tolerated, and that they do not harm the performance of the program
We ha' re observed that even for increased latencies, in larger systems, execution times
decrease in the same proportion as the system size, and plOcessor utilization remains
almost constant. For these cases, virtually linear speed-up is achieveJ. For SOIlle
other extreme cases, we have observed a loss of performance, but we have found t.hat
ihis loss is mainly due to an interconnection network overk,ad, which has callsed it

to become a bottleneek to the computation.

Altogether, the key factor to achieve h gh performance is tO program the ap(.. Jica
tions in such a way so that: (1) the data partitioning does not require each processor
to access the network beyond its MRT; and (2) the fine-grain parallchsm inherent
in the program is suffieiently exposed. These are reasonable asslllllptions to make,

given an appropriate choice of network, with a hIgh MRT, and an appropriate lan

guage support, such as dataftow languages, so as to allow the parallelislll to be fully
expressed. It turns out that the first assumption, about the network, is a dlffieult one
to achieve. Network throughput, though, ean he improved by implementing various

techniques such as more powerful switch teehnology, alternate paths or redundant
paths through the network to decrease the number of collisions, and rnany 0thcrs

[26, 58, 23, 24, 45, 54].

5.5.2 A Look at Compiling Issues

An interesting point to make relates to the faet that the MRT is solely a charaderistic

of the network, and is independent of the application executing in the PE, as long

as this latter does not generate memory hot spots (see Section 54.2) Lets assumc

that a compiler is given enough information about the net work mterconnccting the
PEs, so that it has a good estimate of the MRT behavior in relatIOn to the Humber of
PEs, for weil balanced applications. Lets also assume the compiler IS able to cvaluate

the RemRatio of a given application by some analysis of the program structure. A
simple statie count of the number of Rloads within eaeh Ioop body can be tlw baslb
of a good estimate of Remllatio. Fmally, ids assume that the nctwork hab no MH.T
and thus execution is performed under ideal circumstances It bccomes thercfore
possible to guess an esttmatl.On of the network a:Jerage throughput (EN AT) rcquircd

hy the application, hased on the estimated RemRatlO. ThIS is pO~blbie bmcc each

type of packet has a fixed known size. For instance, by plotting the values of NAT for

72

(

(

8 10 16
RanK.tao

Figure 5.9: Network Average Throughput versus Remote-Operations Ratio

which the network does not aet as a bottleneck against the values of RemRatio, we
ohtain the graph shown in Figure 5.9. It can he ohserved that there is a one-to-one
correspondence which is independent of the type of application.

If such analysis can he dene a-priori at compile time, a similar correspondence
ca.n be established to compute an ENAT. The compiler is therefore in a position to
compare the ENAT agaim. the MRT. This information can be an useful contribution
to the process of estimating the optimal number of PEs required to execute the

application program. For example, suppose the MRT for a given configuration is one
fourth of the ENAT; this corresponds to a situation where the application overloads
the network. A smaller configuration with a higher MRT can therefore constitute
an interesting tradeoff to make a better usage of the network and obtain better
performance.

5.5.3 Program Structure

Another observation relates to the way the position of remote memory operations
within a graph can influence program performance. AlI our predictions, regarding the
ability of the system to tolerate long latellcy operations, are based on the assumption
that the PE can keep it's execution unit husy with other useful operations.

Dataflow programs are written in the forms of graphs, with a number of inputs,
and outputs. Examples of such graphs can be found in Appendix A. Loops are

73

coded by embedding cycles within the graph, that perform the body of the Ioop. AU
parallel operations within the Ioop are coded in different paths. When a. long latency
operation is executed within one path, finding other useful work is accomplisheù by
switching to an alternate path. This proce&s can be repeated as long as there are
alternate paths available. Duplication of the Ioop body is one way of providing Illore
paths to enlarge the "pool" of enabled instructions that can be fin'd at any givell
time. lntuitively, there should be at least enough paths ta ailow the first blocked
path to become unblocked by receiving the acknowledgmellt from the Iletwork.

A problem arises, though, when the long latellcy operatIon Îs at a location wht>re
paths merge together. Such a situation is very hkely ta oerur In some loops where
the last instruction of the loop body ta be exeeuted is a Store. If the store Îs a.

remote operation, meaning that the resuIt of the computatlOn has ta he IItored in a.

remote PE, there are no other alternate paths to switch to (slIlee Its location is al
the merging point within the graph). After "fillillg up" the graplt, the prOfessor lias
no other choice but to idle, whieh causes the performance ta drop We have tested
this phenomena with our simulator, using the saIlle benrhmarks The results show
an inerease of 10% ta 15% in the total exeeution time of a program, WhCll the store is
a remote operation, in comparison with a local one. U nless sallie tcdlllique is found
to optimize this degradation, it remains more effective ta fetch da.ta. {rom a remote
processor to ultimately store the result locally, than to do the opposite.

74

(

(

Chapter 6

A Survey on Related Work

In this chapter, we present a brief survey of the related work that has been done in
the field of dataflow computation, concentrating on the rnultiprocessor a!:r>ects of the
architectures. Our con cern is to compare our multiprocessor model with sorne of the
other static or dynamic multiprocessor dataflow architectures that have been recently
proposed. We are interested in analyzing the philosophy of varying approaches to
wards the multiple-PE environment, on the basis of the types o' data transfers which
are provided, and how they are implemented. In the first section of this chapter, we
will look at sorne of the drawbacks and advantages of our model in comparison with
the mechanisms which are investigated in other dataflow projects focusing on the
types of interprocessor data transfers. We will then briefly survey the methods being
used by sorne of the other architectures that effectively tolerate latency to irnplernent
those transfers

6.1 Interprocessor Data Transfers

Static dataflow architectures differ in many ways from the dynamic models. These
differences have been stressed in the introductory chapter of this thesis. However, in
our particular case, a closer look at the approaches towards multiprocessing reveals
that there are sorne corn mon aspects.

Essentially, there are two kinds of transfers that ca.n take ~lace between PEs that
involve data values: DM-to-DM transfers, and SM-to-DM or vice-versa. The first type

75

•

of transfer takes place when anode produces a token and sends it to its successor. In

the dynamic model, as in any argument-Dow slatic model, the token carries the data
value to be delivered. Upon execution, a remote destination token gets autolllatically
redirected to the interconnection network by a Send unit. This is the basIc lllcchallislIl

as a.ll tokens pass through this unit. The receivillg PE then delivers the token to the

Update unit which verifies whether it enables an instruction or not. This method was

found ineflicient for the processing of local tokens. However, it turns out bClIlg 1lI00,t

effective for remote tokens because it minimizes net work traffie Due to this particular

feature, our static dataftow architecture ultirnately adopted a !limilar mechanislll for

remote DM-to-DM transfers, represented by the data-count sIgnal.

On the other hand, SM-to-DM data transfers a.re not so similar. To solve the

problem of large data structures, the vast majority of dynamie architectures rely upon
the concept of [-structures [10] or on ilome variant-at least those which denved frolll

the Tagged-Token Data-Flow Machine, the Manchester Dataflow Computer having no

explicit structure storage. An I-structure can be thought of as a storage space for data

values which are governed by the bingle-assignrnent rule. l-structures m;lally r('sicle

in a separate memory called the I-Structure Storage, whieh IS a g!übally addrcssable

rnemory. There are sorne exceptions, though, hke the Mortsoon Ardutedure winch

implements them in the local memory. The usual. ùperations that are allowed arc:

the allocation of storage, [-/etch, and [-store.

Our mode! also has a separd.te Structure memory, globally addressable by ail
PEso Programs can use Rioad and Rstore to transfer data values in and out of the

SM. The major difference between both models resides in that there is no special

hardware such as "presence b~ts" to support fine-grain synchromzation Whereas the

I-Shucture Storage provides a meehanism by which the requC'stcrs are queued if the

value has not been produced, in the model described ln this thesls, the read-bcfore

write situation has to be controlled by software means

Depending on the situatlOn, the overhead generated by this type of control can

be negligible, or become a serious drawback of the model The latter is illustré' ted

by the situation where an array A 1S produced withlI~ a proce~sor Pl 1lI an order of

increasing index, and consumed by processor P2 in the opposmg order [30] In our

model, this producer-consumer style of parallehsm cannot be efficiently exploited.

Dynamic models, on the otiler hand, generally allow the I-fetchcs 1Il the consumer

processor to fire and eventually accumulate whtle waiting for the data value to be

produced. When this event happens, the release of the waiting fetehes is autornatic

76

.(

and immediate so the situation is effectively handled. ({ the array is consumed and
produced in the same order of increasing index and the consumer P2 can be detected
at compile-time, then the producer-t;onsumer pair can be software-pipelined.)ur
mode} can then choose bet weert running code on the consumer PE to fetch data by
means of the Rload inotruction, or make use of a mechanism of FIFO buffers, to
regulate the fll}-w-mg of values between processors. In both cases, the overhead is
minim .. l and there is no loss of parallelism exposure.

P-RISC is a hybrid von :r-;eumann and dataflow architecture based on the dynamic
dataflow model [52J. Mèmory is organized into frames, used to hold the set of operands
associated with cach instantiation of a code block within a program. This concept
is also at the heart of the Monsoon architecture, but unlike Monsoon, it eliminates
ail forms of operand matching schemes, and uses a local memory to hold the frames.
Sha.red data structures are supported by a global memory space, the Heap Memory,
implemented as an I-structure memory. Load/store instructions are used to generate
read/write messages to transfer values in and out of the Heap memory, and special
I-read/I-write to take care of those producer-consumer situations. The mechanisms
for sending :'..:ld receiving data to this memory are very similar to the ones presented
in this theliis. Both types of operations are extracted from the execution pipeline at
the operand fetch level and are converted into a packet which gets sent to the global
memory. The difference lIes in that the write immediately generates a continuation
tok,en and inserts it in the the token queue, wIthout waiting for an acknowledgment
fwm the lIeap memory. In our case, the done signal, equivalent of the continuation
token, is only sent to the DISU aCter the acknowledge comes back. The reason is that
the Heap provides a mechanism for deferring the read instructions on empty locations,
whereas we have to rely on node synchronization mechanisms to insure that the read
does not anticipate the wnte.

In his New Stallc Dataflow Architecture, extensively Jescribed in [17], Dennis
introduces a novel mulbprocessor based on the argument-fetching principle. In this
arc;hitecture there is no notion of global memory. Each PE has a Memory Switch that
acts as a local memory and holds boUt the code (instructions) and the data (operands)
as weIl as the data structures Thus, there is no notion of SM-to-DM transfe~s, all
transfers being done From one Swüch memory to another Switch memory. They are
implemented by means of send/receive instructiom in a way similar to the method
described in Section 3.1.1: upon computing a data value, the producer executes a
send instruction which u1timately triggers a receive instruction on the remote PE
which writes it to its local memory.

77

'.

As pointed out by Dennis, values are transferred as they are created, no butTer II'

needed, and communication can proceed concurrently with computation AU these

are features which can be round in our model as weil. lIowever 1 our scheme provicles

more flexibility, by implementing the Rload/rstore operations. The reason is that

these operations provide the possibility for a local processor to f(·teh data from a

remote processor without affecting I1'S execution pipeline. As we mentioned earIJer,

these situations occur when the compiler is not able to dctect the Idmtify of tht'
consumer PE beforehand. Such situation cannat be solved 111 an e1ega.nt way with

a send/receive scheme. Furtherrnore, even when it cau be IdentifieJ, th('re can bt'

cases where data values are not produced by code (mpl1t arrays, for example) For

these cases there is a non negligible overhead incuued by the remote PE who has to

execute code ta send the data values ta the conl>umer PE l'lus overhead Îs aVOIded in

our scherne because we provide a fièxible mechamsm that allows eac!t of tltt> l'Es to

fetch their values by directly accessmg the remote PE's Structurt' 1Ilt'lllory. Flllally,

notice that communication and computatIOn can ouly procced cOl\currt'utly If both

the consumer and t.he producer generate the mdex III the same order Failure lo do

50 implics that the consumer has to wait for the producer to finish, and scnd the

values in the proper order In our scheme, again, the overhead of sending the va.lu('s

is avoided for the producer PE.

6.2 A voiding Duplication of Instructions

ln Section 3.1.1, we set forth the problem of instruction duplicatIOn al> a drawba~'k

of one of our earlier schemes for implementing interproeessor communicatlOll of data

The situation is Illustrated in FIgure 3.3 which is reproduced in Figure 6 l, where a

node in PEA procluces a data value to be consumed by Huee remote Bories Instruc

tion duplication is usually not a problem within the argument-flow based architectuf{'s

since the m!lltiple destinatIOn list of a token gener(j.tes automatIc duplicatIOns of the

resuIt data value instead.

The MMDA is an argument-fetching architecture, but as we previously explaincd,

the DM-to-DM remote transfers oi data values are aceomplished morc effiClently if

they are done in an argument-flow fashion. It turns out that our Beheme for processing

multiple remote target nodes avoids the duplicatIOn of instructions as weIl, which

brings it close to the schemes upon which the pure argument-fiow architectures are

78

{

PE B PEe PE ['

A node on PE A produces a
value consumed by nodes resid
ing on remote PEs B. C. and D.

+- Send

+- Receive

It translates !nto a situation
where six nodes are added to
support the transfers.

Figure 6.1: Instruction Duplication to Send Data to Rernote PEs

Flre

Memory
Switch

Signal

Execute

Figure 6.2: Organization of the New Static Dataflow Architecture

79

..

based. Data values are ruso duplicated-only when they leave the boundaries of the
PE-instead of duplicating the instructions.

In Dennis' New Static Dataflow Architecture, tnstrucho'fls are made up of some
arbitrary number of sechons which can be of three kinds' execute sections, control
sections, and send/receive sections (Figure 6.2 shows the major components of this
architecture, without the inter!,rocessor interface). Actually, each msfruclwll corr('
sponds to what other architectures have called a thread of instructIOns. Nevertheless,
we will refer to them as instructions. Each instructIOn eutering the gxccution System
gets exclusive usage of one of the register sets for all the duration of ils activation

As pointed out earlier, data values are transferred from PE to P E by lIIc~n:.

of the send/re<:eive section. Each send operation has to watt for an adc!lowledgment
generated by the receive operation upon reception of the data ",Jue, so they interrupt
the thread of execution within the lIlstruction Sincc the execution system cannot
afford to idle in the meanwhile due to the limited number of reglster sets, the send
sections are always located at the end of an instruction. The consequences of thls
scheme is that there can only be one send section per Instruction, and one instruction
per data value being sent, thus a duplication of instructions whlCh wc have avoided
in the scheme presented in this thesis.

80

(

(

Chapter 7

Conclusion

The design of a parallel system must be based on a sound model of parallel computa
tion, from its programming model down to its architecture. The dataftow concept has
been attracting increasing attention as a radical alternative to the von Neumann ar
chitectures, emerging as an innovative model which offers simple yet powerful means
of achieving highly parallel computations.

Dataflow languages, based on the functional programming style, allow the paral
lelism, mherent in many scientific applications, to he fully and naturally expressed.
The McGill Dataflow Arc:hitecture has been developed, to efficiently support this
model of computation. It is based on the argument-fetching principle, which prones
for the separation of data values and scheduling information, yielding a modular
design where simplicity is a major characteristic. An execution pipeline free of data
dependent hazards and pipeline gaps due to operand matching, together with a vir
tually non existent data traffie, are among the attractive features of this architecture.

In a parallel system, communication between processors is one crucial problem to
be solved, he it transfer of data or event synchronization. Any scalable multiprocessor
must therefore address the fundamental prohlems of high latency memory operations,
and the interprocesbor synchronization of events. The former is directIy attributahle
to the physical partitioning of the hlachine into independent processors, while the
latter ca.n he attribut able to the logical partitioning of the application program. As
the numher of processors increases, the latency invariably increases too, the physical
size of the machine being an insurmountable factor. Furthermore, the fine-grain
parallelism, fully supported at the instruction level hy the dataflow model, generally

81

leads to great synchronization overheads. The dataftow model of computatillll appears

as an attractive model, weIl suited to efficiently address these issues

In this thesis, we have proposed an effective commuuicatlOu tlH'thod to provide

interprocessor synchronization betwecn two nodes, and remote Structure memory

operations. By providing the nccessary supports for iuterprocessor COllllllUIIICiÜlOlIS

to the MFDA, we have established a sound multJprocessor environ ment who~e Illain

features are transparency, fleXlbility, and an efficient me of the network and execution

units of aU the PEso The key contributIon of the approach IS to separate the proceshing

of remote signais from the main execution pipeline, and to provide the prOfessor with

flexible structure memory operations.

The above mechanisms aUow two processors to mteract with each other in ail

argument-tlow fashion by means of messages conveying signaIs, posslbly paired wlth

data values The implementation of these mechanisms has been accompltslH>d hy

the Interprocessor Communication Unit (leU), yielding the McGIll MultIproc{,h~or

Architecture. It is a modular and scalable system, that facilitates the lIlclUSIOIl of

processors for increasing power, memory space and comlllunicatlOtlS handwldth. In

teractions among PEs are acllleved thrcugh the sendlIlg and recelVlll~ of 1IJ('ssageb

through a packed switching interconnection network. The llléUn contribution of titi!>

implernentation has been to keep the multiprocessor enVIrOlllnent as transparent as

can be, realizing interprocessor communicatlOlls almost as If the PE boundaraes WCfe

inexis ten t.

Within the frarnework of this thesis, we have developed sorne uscful and flexible

simulation tools that closely model the behavior of the multtprocessor system and

its interactions with an interconnection network. We have invchttgated the impact of

long latency operations on the performance of multtproccssor datatlow programs Our

results are very encouraging. They have shown that the MMDA 15 a system that can

effectively tolerate high latencies durlIlg mterprocessor IIl('lI\ury operatlollh and that

it can inexpensively support remote ('vent synchronizatlOTl Wc have delllollstrated

that when the pro gram contains enough fine-gram paralielism, tt ca.n ab"orh t!w
effects of long latency operations, thereby featuring increasmg executlon bpeeds a!>

additional processors were made aVaJ.lable to the system. We have abo shown that

the performance can degrade in a comiderable manner if the mterconncctlon network

becomes a bottleneck, thereby showing that it il> a factor as critical as latency in the

execution of an application. However, and overall, the MMDA performs remarquahly

weil, achieving close to linear speed-ups, given a high bandwldth mtcrconnectioll

82

l

network, and a highly parallelizable application like sorne of the benchmark programs
used in this work.

We also believe that this work has been a valuable contribution in the sense that
it has brought forward the problern of network contention, in a field where it is often
disregarded. Most of the simulation results in other works estimate the effects of
physically distributing a program, by assigning a cost to each interprocessor commu
nication in terms of a fixed delay, thereby assuming a situation which is not always
the case. Wit.h our simulations, we have achieved results which are closer to reality
since they take mto account this kind of network contention problem. For instance,
our results show that in a system of 16 processors with an interconnection network of
1.6 gigabytes per second peak bandwidth, the network's average throughput adds up
to about 720 megabytes per second, a figure that tends to decrease with larger sys
tems. We believe that research should be done in order to fir>d better suited networks
for the dataflow model, and to find ways to include this network contention problem
as an element of importance in the compiling of multiprocessor dataHow programs.

83

1

Appendix A

The Source Code of the
Benchmark Programs

The Livermore Loops are 24 loops, widely recognized as performance benchltlark
programs, produced by the Lawrence Livermore National Laboratory. The Loops
represent the type of computation kernels typically found in large-bcale scientific

computing. In this appendix, we present the SISAL source code for the loops that
have been used for the performance evaluation of the MMDA The SISAL functions
faithfully implement the computations of the loops, whlch originally were wntten in

Fortran. The other benchmark programs are coded in Pascal. Each benchmark is

also presented in the form of a graph.

84

.'

....

Benchmark 1: Excerpt from a Hydrodynamics Code (Loopl)

This code fragment is the first Livermore Kernel and is excerptcd from a. hydro
dynamics code. The values Q, R, Tare scalar coefficients while Y and Z are one
dimension al arrays. This loop returns an one-dimensional array of size n. Note that

for the construction of a static array, the value of n should he known ai compile timc.

type OneDim = array[douhle];
function Loopl (n: integer; Q,R,T: integer,

Y,Z: OneDimj returns OneDim)
for k in l,n
returns

Q + (Y[k] * (R * Z[k+10] + T * Z[k+ll]))
end for

end function

~_

85

Benchrnark 2: Equation of State Fragment (Loop7)

This code fragment is the seventh LiverlI10re Kernel and returns a one-dimensional
array of size n. R and T are coefficients, whUe U, Y, and Z are input arrn.ys that are
used for the construction of the returned array. The value of n should be known at
compile time.

type OneDim = array[double];
function Loop7(n: integer; R,T:real; U,Y,Z: Onen;'m; returns OneDim)

for k in l,n
returns array of U[k] + R * (Z[k] + R * Y[k])

end for
end runctiOl~

+ T * (U[k+3] + R * (U[k+2] + R * U[k+l])
+ T * (U[k+6] + R * (U[k+5] + R * U[k+4])))

86

Benchmark 3: Matrix multiplication (Matmul)

The matrix multiplication is a function widely useo. in scientific applica.tions. It
is also a very common benchmark. It's inputs are two two-dimensional arrays A and
B, of size (n x m) and (m x n) respectively. It returns a two-dimensional array C of
size (n x n). Both n and m should be known at compile time.

~ype typel : array [l..n,l..m] of real;
type2 : array [1..m,l..n] of real;
t~·pe3 : array [l..n,l..n] of real;

procedure Matmul (A: typel; B: type2; var C: type3);

var " j, k : integer;
begin
for i := 1 to n do

for j := ! to n do
for k := 1 to m do

C[i,j] := C[i,j] + A[i,k] x B[k,j];
end;

87

·f

Benchmark 4: Fragment of Lower jUpper Decomposition
(Saxpy)

Saxpy is a kernel of a program performing the LowerjUpper Decomposition. This
is a computation widely used in !inear algebra for solving systems of linear algehrai-::

equations. The benchmark has been modified though, to make it more computation

ally intensive. X and Y are the input matrices of siz~ n, and Z is the returned array,

of the same size.

type arrtype : array [Ln] of reali

procedure Saxpy (X, Y: arrtypej a, h, c: realj var Z: arrtype);

var i : integer;
begin
for i := 1 to n do

Z[i] := a x Xli] + h x Y[i] + c;
end;

88

-.

Appendix B

An A-code saUlple program

The following is a fragment of the A-code version of the Loop7 program. The graph
corresponding to this benchmark is shown in Appendix A. What we are showing
here is called a PE segment and corresponds to the portion of code that runs on
a particular processor-- in this case, PE O. The complete ffiultiprocessor program
consists of a list of these segments.

89

. PE loop71.00

exit Rea
ipaig EIITIIG-loop71.01/EIIT
irdtg EIITIIG-loop7102/EIIT
ipaig EIITIIG-loop7103/EIIT
ipaig EIITIMG-loop7104/EIIT
ipaig EIITIMG-loop7106/EIIT
ipaig EIITIHG-loop71v6/EIIT
ipaig EIITIIG-loop7107/EIIT

conat LoopSize= 100 Y. Loop limi t
conat LoopLim = 99

conat lrrSize1= 106
conat lrrSize2= 100

conat baBeL_U = °
conat baseR_U = 406
conat baseL_' = 106
conat baseR_Y = 612
conat baseL_Z = 206
conat baseR_Z = 612
conat baseL_Rea=306
conat baseR_Rea=306

conat Int = -1

. aegment D1TA
dm Ii init(2.)
dm 12 ini t (3.)
. end

.aegment STRUe

Y. I.oop limi t - 1
Y. Size array type1
Y. Size array type2

y. BaBe address U
y. Base address U
y. Base addreBB T
y. BaBe address Y
y. Base addreBB Z
y. Base addre88 Z
y. Base addre8s Res
y. Base addreas Rea

dm U[lrrSizel] init«lrrSizel) 3.)
dm T[lrrSize2] init«lrrSize2) 4.)
dm Z[1rrSize2] init«lrrSize2) 6.)
dm ReB [lrrSize2] init«lrrSize2) O.)

count IGEIf_l_O:O.f
count loop7101/EIITING loûp7102/EIITING
count loop710~/EIITING loop7104/EIITING
count loop7106/EIITING loop7106/EIITING
count loop7107, 'EIITING
. end

.n ElIT
1I00P
count EIITIIiG
. end

.n Init_Sup_k_O:O
ID LoopLim Sup_k_O: 0
count IIiIT
. end

.n InitIGEII_k_O:O
ID In! k_O:O
count INIT
. end

.n IGEII_k_O: °
IGER k_O:O Sup_k_O:O k_O:O
count (InitIGEM_k_O:O Start_O:O
count (Init_Sup_k_O:O Start_O:O
. end

.n Start_O: °
ID k_O:O RLO:O
count IGEII_k_O:O.t
nocnt GTUO_O:O GTZO_O:O GTYO_O:O
nocnt GT3UO_O:0 GT2UO_0:O
nocnt GT1UO_O:O GT6UO_0:O
nocnt GT5UO_O:0 GT4UO_0:O
. end

. end y,------ lstbranch: U[k] ------%
.n GTUO_O:O

.seg PROG

.n EIITIIiG
1I00P

ID R1_0:0 R2_0:0
count Start_O:O
nocnt GTU1_0:0
. end

90

·n GTUCO:O
ID R2_0:0 R3_0:0
count GTUO_O:O
nocnt GTU2_0: °
. end

.n GTU2_0:0
ID R3_0:0 R4_G:O
count GTULO:O
nocnt GTU3_0:0
. end

.n GTU3_0:0
ID R4_0:0 R5_0:0
count GTU2_0:0
nocnt iddr_U_O:O
. end

.n iddr_U_O:O
iDD baaeR_U R5_0:0 add_U_O:O
count GTU3_0: °
nocnt Load_U_O:O
. end

.n Load_U_O: °
RLOiD add_U_O:O val_U_O:O
count iddr_U_O:O
nocnt PlusLO:O
. end
%------ End lat branch: U[k] ------%

%------ 9th branch: R • U[k+4] ------%
.n GT4UO_O:O
ID R1_0:0 R38_0:0
count Start_O:O
nocnt Off8et_4U_O:O
• end

.n Dffset3U_O:O
iDD R38_0:0 4 R39_0:0
count GT4UO_O: °

nocnt Addr_4U_O:O
. end

.n iddr_4U_O:O
ADD baseR_U R39_0:0 add_4U_O:O
count Off8et_4U_O:O
nocnt Load_4U_O:O
. end

.n Load_4U_O:O
RLOiD add_4U_O:O val_4U_O:O
count Addr_4U_O:O
nocnt Mult4_0: 0
. end

.n Mult4_0:0
MULTF Il val_4U_O:O R40_0:0
count Load_4U_O:O
nocnt Plus4_0: °
.end

.n Plus4_0:0
iDDF val_6U_O:O R40_0:0 R41_0:0
count Load_6U_O:O
count Mult4_0:0
nocnt Mult5_0:0
. end

.n Mult5_0:0
MULTF Il R41_0:0 R42_0:0
count Plu64_0: °
nocnt Plu85_0:0
. end

.n Plus6.0:0
iDDF val_6U_O:O R42_0:0 R43_0:0
count Load_6U_O:O
count Mult6_0:0
nocnt Mult6_0: °
. end

91

.n Mult6_0:0
MULTF 12 R43_0:0 R44_0:0
count Plu86_0: °

•

{

,.,.
,.

nocnt P1U86_0:0
. end

.n Plu86_0:0
ADDF R29a_O:O R44_0:0 R45_0:0
count GTlULO:O
count Mult6_0:0
nocnt Mu1t7_0:0
. end

.n Mult7 _0:0
MULTF 12 R46_0:0 R46_0:0
count P1U86_0:0
nocnt P1ulI7_0:0
. end

.n PIU87 _0:0
ADDF R16_0:0 R46_0:0 R47_0:0
count GTY4_0:0
count Mult7_0:0
nocnt StoreRe8_0:0
. end

.n StoreRel_O:O
STORE R47_0.0 add_Re8_0:0
count P1u87_0:0
count lddr_Re8_0:0
. end
y,---- End 9th branch: R • U[k+4] ----%

.n Init_Sup_1_0:0
ID LoopLi. Sup_1_0:0
count INIT
. end

.n InitIGEI_1_0:0
ID In! 1_0:0
count INIT
. end

.n IGEI_1_0:0
IGEI 1_0:0 Sup_1_0:0 1_0:0
count (InitIGEI_1_0:0 StoreRe8_0:0)
count (Init_Sup_1_0:0 StoreRell_O:O)

. end

.n Addr_Rel_O:O
ADD 1_0:0 ba8eL_Res add_Re8_0:0
count IGEI_1_0:0.t
nocnt StoreRe8_0:0
• end

. end

.end Y. PE loop7100

92

Appendix C

The Mds SiDlulator

The mds simulator is written in Concurrent C, a process-oriented concurrent language.
The language provides tools to create and han die lJght-WClght proce'?:;r-s wluch can

communicate via transacüons. Each major unit of the architecture has been simulated
using this concept of pro ces s. The result is a modular progral11, flexible and easlly

modifiable, which can simulate systems of 1 to 16 processing elern ents. It can be used
to test different configurations of processing element, and networi(topologies.

From each load image file that executes on the simulator, t here is one file per
PE that gets created, to store the results of the program as weIl as the performance
metrics related to each specifie PE. Most of the options are self explanatory as can
be seen by this sample message obtained from running the simulator without any
option:

Mda: , Multiprocessor Dataflow Simulator (1818ase 1.1)
(c) J.M. Monti 'CAPS-SOCS 05/90

Usage: mdll [<flags>] <ldif ile>
flags: -na <num>: set number of stages in PIPU (def. 6)

-ne <num>: set number of counts allowed per cycle (def. 4/ideal)
-1 <time>: starting time of run log (def. off/1)
-t <time>: termination time of program (def. off/50000)

-p <num>

-c
-Lf
-Le

set number of the PE generating the mags (def. 0)
show time counter
generate log of firings (def. off)
generate log of enabled instructions (def. off)

93

(

(

-Lnu generate log ot network utilization (det. ott)
-Lnr generate log of network pending requeata (det. ~ff)
-Lnl generate log oi network latenciea (det. oft)
-ft print network traitlc on stdout
-le <num>: PE to network eloek ratio (det. 2)
-Il <num>: network start-up Jateney (det. 2)
-Is <num>: netvork switch butter size (det. 2)
-S <size>: set Struc memory virtual size

In addition, there is the possibility of tracing sorne key events for aU PEs or for
only one PE, by using the L option combined with the P option. The traces are
stored in log files which can be previewed using any graph software. If the P option
is t,.:.ed, only the specified PE gets traced. Ail traces can be used at once, and are
recorded at each unit of simulated tirne. The following is a hst of each of the possible
traces:

• Lf: PIPU utilization, i.e. whether or not the execution pipeline is busyj

• Le: size of the fire queue, which contains the enabled Instructionsj

• Lnu: network utilization, i.e. whether or not the network is used at each cycle;

• Lnr: number of pending network requests, at each cycle;

• Lnl: time of arrivai and amount of latency, for each incoming packetj

The foilowing is an example of a result file produced by a simulation:

SIKUL1TOR SETTING
=-=-=-=-=-=-=-=-=-=

FIFO Sehedulingi 1 PIPUs (P)i
6 stage(s) in PIPU; 4 count signals/cycle (C);
lb. procs 8; letvork: OMEGA (3 stages);
PE/ltvrk ratio: 2; Start-up latency: 2;
letwork Switch size: 2 buffer(s).

SYSTEM STATISTICS PE#O:
-=-=-=-=-=-=-:-:-=-:-=-:

File name: 100p7.res

94

,
,

•

HETWORK ST11S:
Global letwork utilization:

acceBses: 6414
refused: 889
delayed: 0
delayed/cycle: o 00
total bytes: 64066
bytes/access: 9.99

throughput: 27 65
contentIon: 30.37 %
nb. coll : 9780
coll./cycle· 0.93

Local letwork utillzation:
accesses: 807
refused: 210
total bytes: 8028
bytes/access: 9.96
throughput: 27.72

R.emote requests:
total: 400
frequency: 18.10
pctge load: 5.63 %

Latency (min/max/ave) :
local: 2
network: 10
total (ave.): 17.77

PR.OCESSOR STATS:
Total number of processor cycles:

Total:

Max:

Total idle cycles:
Processor usage:
Struc Kemory Size:

Sequential Run time:
Local Speedup:
!vg. population in enable
memory and tire queue:

Count(s) Done(s)
16810 7107

CountQ Cntsl DoneQ FireQ
Inst.

4 11 4 23

Fire(s)
7108

Fire
Delay
22

95

through stage 0

over 10642 cycles

on ave.
MBytes/sec over total time
over 10542 cycles

on ave.

out / 807 in

on ave.
MBytes/sec on ave.

over total time
over total inst.

8 2.06
28 15.71

7240
132
98.18 %
406 words

42648
5.89

12.28

/:;h.Fire(s) Exec(s)
10 7108

RemP.eqQ IntSigQ LocalQ

1 7 2

Bibliography

[lJ W. B. Ackerman. Data flow languages. IEEE Computer, 15(2):15-25, February

1982

[2] W. B. Ackerman and J. B. Dennis. VAL--a value-oriented algorithmic langua.ge.

Techmcal Report 218, Laboratory for Computer Science, MIT, 1979.

[3] Arvind, S A Brobst, and G. K Maa Evaluation of the MIT tagged token

dataflow proJcct. Computation Structures Group Memo 281, Laboratory for

Computer Scicnce, MIT, 1988.

[4J Arvind and D E CuUer Dataflow architectures. Annual Revzews m Computer

SCIence, 1·225-253, 1986

[5J Arvind, M. L. Dertouzos, R S. Nikhil, and G. M. Papadopoulos. Pr)ject

dataflow-the Monsoon archltedure and the Id programmmg language. Com

putation Structures Group Memo 285, Laboratory for Computer SCIence, MIT,

March 1988.

[6J Arvind and et al The tagged token dataflow architecture (preliminary version).
Techmcal report, Laboratory for Computer Science, MIT, Cambndge, MA., Au

gust 1983

[7J Arvmd and K P. Gostelow. The V-Interpreter IEEE Computer, 15(2):42-49,

February 1982.

[8J Arvmd and R A Iannucci. A critique of multiprocessin;:: VOIl Neumann style.
In Proceedmgs of the Tenth Annual Internattonal Symposmm on Computer Ar

chItecture, pages 426--436, 1983.

96

l

[9] Arvind and R A. Iannucci Two fundamental Issues in multtprocessmg. Com

putation Structures Group Memo 226, Laboratory for Computer S,teIl,e, MIT,
1987.

[10] Arvind, R S Nikl111, and K K Pmgali I-structures Dat d ~trnctures for panild

computmg ACM TOPLAS, 11(4) 598-632, Odobcr H)H~

[11] Arvind and R S. Nlkhil Executing:t program on the MIT tagged-token dataflow

ar,hitecture IEEE Transactwns on Computer's, 39(:q-:300-318, Mar,h 19!)Q.

[12] John Baclcus. Can programmmg hl" ltberated

A functlOnal style and !ts algebra of programs

21(8)'613-641, August 1978

from the von Neumann style?

COmmll1llCaflli1ls of the A CM,

[13] A. L. Davis and R. M. Keller Data flow program graphs IRE!,,' Compu.ter,

15(2):26--41, February 1982

[14] J. B. Denms First version of a data-flow procedure language. In P10crcdmgs

of the Colloque sur la Programmatwn, volume 19 of Lecture Notes ln Computer

SClcnce, pages 362- 376. Springler-Verlag,] 974

[15] J. B. Dennis. Data flow supercomputers. IEEE Computer, 13(11) 48-56, Novem

ber 1980.

[16] J. B. Dennis. Dataflow computation: A case study. In Veljko Mllutmovié, editor,

Computer AT'chliectuT'e. Concepts and Systems, pages 354 -404. North-Ilolland,

New York, 1988.

[17] J. B. Dennis. Thé evolution of 'static' data-flow computlIlg. In J -L Gaudiot and

L. Bic, edItors, Advanced Toptcs zn Date-Flow Compu.tmg. PrpntIce-Hall, 1!)90

[18] J. B Dennis Evolution of the static dataflow archItecture In Adllflno:rl Toptcs

ln Dataflow Computmg Prentlce-Hall, 1991.

[19] J. B. Dennis., G. A. Boughton, and Leung C. K C BUlldmg hlo.:-k<. for data flow

prototypes. ln Procf.'edmgs of the Seventh SympOSlll7n on C,nnplLieT' A rchtlecturc,

May 1980

[20] J. B. Dennis and G. R Gao. An efficient PlPchncd dataflow pro('e!>~or ardu

tecture. In Proceedmgs of the Sl1percomputwg '88 Confer'enee, pages 368--:n3,

Florida, November 1988. IEEE Computer SOCIety a.nd ACM SIGARCII

97

(

[21] J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor archi
tecture. Technical Report TR-SOCS-88.06, School of Computer Science McGill
University, Montreal, February 1988.

[22] J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic data-flow
processor. In The Second Annual Symposium on Computer Architecture, pages
126-132, January 1975.

[23] D. M. Dias and J. R. Jump. Analysis and simulation of buffered delta networks.
IEEE Transactions on Computers, C-30(4), April 1981.

[24J D. M. Dias and J. R. Jump. Packet switching interconnection networks for
modular systems. IEEE Computer, 14(12), December 1981.

[25] Jack J. Dongarra. The LINPACK benchmark: An explanation. In C. D. Poly
chronopoulos, editor, Proceedings of the 1987 Conference on Supercomputing,
Athens, Greece, pages 457-474, Berlin, June 1987. Springer-Verlag, LNCS-297.

[26] Tse-yun Feng. A survey of interconnection networks. IEEE Computer, pages
12-27, December 1981. Special issue on Interconnection Networks.

[27] J. T. Feo. An analysis of the computational and parallel complexity of the
Livermore loops. Parallel Computer, 8(7):163-185, July 1988.

[28] D. D. Gajski and J.-K. Peir. Essential issues in multiprocessor systems. IEEE

Computer, 18(6):9-27, June 1985.

[29] G. R. Gao. A pipelined code mappil\g strategy for dataflow super computers.
In Proceedings of the Third International Conference on Supercomputing, pages
209-215, Ma.y 1988.

[30] G. R. Gao. A Code Mapping Scheme for Dataftow Software Pipelining. Kluwer
Academie Publishers, Boston, December 1990.

[31] G. R. Gao, H. H. J. Hum, and Y. B. Wong. Towards efficient fine-grain software
pipelining. In Proceedings of the A CM International Conference on Supercom
puting, Amsterdam, the Netherlands, June 1990.

[32] G. R. Gao and R. Tio. Instruction set architecture {or a.n argument-fetching
dataflow architecture. In Proceedings of the Canadian Conference on Very Large
Scale Inlegration (CCVLSI-88), Halifax, October 1988.

98

t
[33] G. R. Gao and R. Tio. Instruction set definition for the argument-fetching

dataflow machine. ACAPS Technical Memo 01, School of Computer Science,
McGill University, Montreal, February 1988.

[34] G. R. Gao, R. Tio, and H. H. J. Hum. Design of an efficient dataflow archi
tecture without dataflov.. In Proceeding8 of the International Conference on
Fifth-Generation Computers, pages 861-868, Tokyo, Japan, December 1988.

[35] J. Gaudiot, R. Vedder, G. Tucker, D. Finn, and M. Campbell. A distributed
VLSI architecture for efficient signal and data processing. IEEE Transactions
on Computers, C-34(12):1072-1087, 1985.

[36] N.H Gehani and W.D. Roome. The Concurrent C project. Computer technology
research laboratory technical reports, AT&T Bell Laboratories, Murray Hill, New
Jersey, 1988. Collection of papers.

[37] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes. The êpsilon dataflow
processor. In Proceedings of the 16th International Symposium on Computer
Architecture, pages 36-45, Israel, June 1989.

[38] J. R. Gurd, C. C. Kirkham, and 1. Watson. The Manchester prototype dataflow
computer. CommunicatIons of the ACM, 28(1):34-52, January 1985.

[39] K. Hiraki, S. Sekiguchi, and T. Shimada. Efficient vector processing on a dataflow
super computer SIGMA-l. In Proceedings of IEEE Computer SocIety and ACM

SIGARCH Supercomputing '88 Conft,.ence, Orlando, FL, 1988.

[40] K Hiraki, S. Sekiguchi, and T. Shimada. Status report of SIGMA-1: a dataflow
supercomputer. In Advanced Topics in Dataflow Computmg. Prentice-Hall, 1991.

[41] W.-K. Hong. IFI parser for HDDG. ACAPS Design Note 01, School Of Computer
Science, McGill University, Montreal, June 1988.

[42] P. Hudak. Conception, evolution, and application of functional programming
languages. Computing Surveys, 21(3), September 1989.

[43] D. Johnson et al. Automatic partitioning of programs in multiprocessor systems.
In Proceedings of Compcon 80, pages 175-78, 1980.

[44] Y. Kodama, S. Sakai, and Y. Yamaguchi. A prototype of a highly paraUel
datatlow machine EM-4 and its preliminary evaluation. In Proceedings of In/o
lapan 90, October 1990.

99

(,

(

[45) C.P. KruskaI and M. Snir. The performance of multistage interconnection net
works for multiprocessors. IEEE Transactions on Computers, C-32(12):1091-
1098, December 1983.

[46) V.P. Kumar :tond S.M. Reddy. Augmented shufRe-exchange multistage intercon
nection networks. IEEE Computer, pages 30-40, June 1987.

[47) D.H. Lawrie. Access and aIignmf'nt of data in an array processor. IEEE Trans
actions on Computers, C-24(12):1145-1155, December 1975.

[48) J. R. McGraw. The VAL langu~_g~: Description !'.nd anaIysis. ACM TOPLAS,
4(1):44-82, January 1982.

[49) J. R. McGraw and et ai. SISAL: Streams and iteration in a single assign
ment language-language reference manuaI version 1.2. TechnicaI Report M-146,
Lawrence Livermore National Laboratory, 1985.

[50) J.M. Monti. Dasm reference manuaI (version 1.4). ACAPS Design Note 17,
School of Computer Science, McGill University, Montreal, November 1989.

[51) J.M. Monti. Mds: A multiprocessor dataflow simulator. ACAPS Design Note 15,
School Of Computer Science, McGill University, Montreal, November 1989.

[52) R. Nikhil and Arvind. Can dataflow subsume von Neumann computing? In Pro
ceedings of the 16th International Symposium on Computer Architecture, pages
262-272, Israel, 1989.

[53) R.S. Nikhil. The parallel programming language Id and its compilation for par
allel machines. Computation Structures Group Memo 313, Laboratory for Com
puter Science, MIT, July 1990.

[54] Krishnan Padmanabhan and Duncan H. Lawrie.
redundant-path networks for multiprocessor systems.
Computer Systems, 3(2):117-144, May 1985.

Performance analysis of
A CM Transactions on

[55) G. M. Papadopoulos. Implementation of a General Purpose Dataflow Multipro
cessor. PhD thesis, MIT, 1988.

[56] J.H. Patel. Processor-memory interconnections for multiprocessors. In The 6th
Annual Symposmm on Computer Architecture, pages 168-177, New York, N.Y.,
April 1979.

100

,
i

-

[57] A. PIas, D. Comte, O. Gelly, and J. C. Syre. LAU system architecture: A
parallel data driven processor based on single assignment. In Proceedmgs of the
1976 International Conference on Parallel Processing, pages 293-302, 1976.

[58] Daniel A. Reed and Dirk C. Grunwald. The performance of multicomputer
interconnection networks. IEEE Computer, pages 63-73, June 1987.

[59] J. E. Rodriguez. A Graph Model for Parallel computahon. PhD thesis, Lab
oratory for Computer Science, MIT, Cambridge, MA, September 1967. Also
available as Technical Report 64, Project MAC, MIT, September, 1969.

[60] C. L. Seitz. The cosmic cube. Communications of the A CM, 28(1), January
1985.

[61] T. Temma, S. Hasegawa, and S. Hanaki. Dataflow processor for image processing.
Proceedings of the 11th International Symposium on Mini and Microcomputers,

pages 52-56, 1980. Montcrey, CA.

[62] R. Tio. The A-code assembly language reference manual. ACAPS Design
Note 02, School of Computer Science, McGill University, Montreal, July 1988.

[63] Y. B. Wong. AD reference manual (version 1.4). ACAPS Design Note 16, Schooi
of Computer Science, Mc Gill University, Montreal, October 1989.

101

•

