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Abstract 

This thesis presents an image based falling snow rendering method which is based 

on spectral synthesis technique. By incorporating the natural falling snow motion 

property, that is, the image speed and size of the snowfl.akes are related to the depth, 

we develop a tent-like surface in frequency domain. We synthesize the power spectrum 

along the tent-like surface and use IFFT to bring the data function back to space­

time domain, thus attain a motion parallax image sequence. Treating the motion 

parallax as an opacity function, we can composite it with an existing video sequence 

and turn it into a snowing scene. Treating the motion parallax as a stimulus for the 

psychophysical study, it could serve as a complex yet natural scene-like stimulus, and 

therefore being expected to give a new perspective to the psychophysical study. 
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Résumé 

Ce mémoire présente une méthode de rendu de chute de neige à partir d'images 

basée sur une technique de synthèse spectrale. En incorporant la propriété du mou­

vement de chute de neige naturelle - la vitesse des images et la taille des flocons 

dépendent de la profondeur - nous développons une surface en forme de tente dans 

le domaine de fréquence. Nous synthétisons le spectre de puissance le long de la sur­

face et nous utilisons une transformée de Fourier inverse pour transférer la fonction 

de données au domaine espace-temps, avec laquelle nous atteignons une séquence 

d'images en mouvement parallaxe. En traitant le mouvement parallaxe comme une 

fonction d'opacité, nous pouvons le composer avec une séquence vidéo existante et 

obtenir une scène de chute de neige. Le mouvement parallaxe, traité comme un stimu­

lus d'une étude psychophysiologique, peut être utilisé comme un stimulus complexe 

mais naturel d'une scène. Nous nous attendons alors à ce que ceci donne une nouvelle 

perspective à l'étude psychophysiologique. 
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Chapter 1 

Introduction 

This is an information technology age, where computer science techniques glve 

us the power to imagine as wild as we like and to create as active as we cano Using 

computer science to take over the world is certainly the dream of a computer scientist. 

Here, our action is a drop in the ocean, we tried to simulate the natural phenomenon 

- falling snow. 

As one of the most common natural phenomena, falling snow simulation is inten­

sively used in flight simulation, film making, video game animation and meteorology 

study. This demands us to render snowfall computationally efficiently and visually 

appealingly. Research to this problem has been carrying on since 1980's, and the 

major approach is to use particle systems [26, 31, 17]. 

particle systems rendering considers each snowflake as a particle with attributes 

such as initial position, color, velocity, size and transparency, and also the particle's 

shape and lifetime. During rendering, by applying forces - gravit y, friction, resilience 

etc. - to the particle, its attribut es will be updated accordingly. The update depends 

1 



Chapter 1: Introduction 2 

on the predefined functions, for example, Newton's first law, and a short time inter­

val. As we can see, this rendering method has an adequate control to the motion of 

each particle. It therefore has wide use. Not only can it render falling snow, but also 

fireworks, waterfalls, explosions, falling rain etc. However, since each particle has to 

be computed, when the number of particles becomes big, the demanded computa­

tion increases accordingly, thus the system rendering conceivably becomes slow, and 

therefore prohibits its further utilization. 

If the rendering purpose is to create a visual effect of the rendering object, then 

we question whether it is necessary to simulate every single particle. In this thesis, 

we have developed an alternative falling snow rendering method. The inspiration 

cornes from the motion plane model [38], that is, a pure translational image motion 

in space-time domain pro duces a plane of energy in frequency domain. We intuitively 

incorporate the natural motion properties of the falling snow - the snowflakes in 

greater depth appear sm aller and move slower - with the motion plane model, this 

results in a tent like surface in frequency domain. We then synthesisd the power 

specturm along the tent like surface. The final rendering result is transformed to 

space-time do main by using a global inverse Fourier transform, this will give us the 

entire falling snow image sequence. 

Since our method renders the entire faIling snow motion once for aIl, instead of 

approaching by rendering each single snowflake, it is therefore a computationally el­

egant and simple rendering method. AIso, this global rendering method produces an 

atmospheric snowfall effect, which is the part missed out by particle systems. More­

over, our rendering method is an image-based one, the rendered image sequence can 
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be directly composited with 2D image instead of performing 3D to 2D transformation 

which is the procedure has to be taken by the scene-based rendering methods. 

As we mentioned before, our rendering method integrates the depth vs. speed 

vs. size relationship of the falling snow, it thus provides the rendering results strong 

3D depth effects. Indeed, it simulates exactly the motion effects of motion parallax. 

During our rendering experiments, we frequently ask questions as: "how and why do 

we perceive these continuous layers in depth?"; "what eues cause us perceiving the 

rendered motion parallax as falling snow?"; "why the white image spots are perceived 

doser?". Driven by our puzzles, we tried to apply perceptual transparency theories 

of visual psychology and the image motion theories to our rendered motion parallax. 

Besides the plausible explanation we could give to our puzzles, we also find that our 

rendered motion parallax could be an interesting stimulus to be used in the image 

motion study. 

Two major topics - the falling snow rendering and the psychophysical study - are 

addressed in this thesis. We naturally organize this thesis into two parts. In Chapter 

2, 3 and 4, we address the falling snow rendering problem. We present a literature 

background of our rendering method in chapter two. In Chapter 3, we introduce our 

rendering method in detail. Chapter 4 generalizes the falling snow rendering method 

to the case that when falling snow is seen by a panning camera. Chapter 5 and 6 

are related to the topic of the psychophysical study. We give a literature review of 

perceptual transparency theory in Chapter 5, and present our attempted experiments 

and discussions in Chapter 6. 



Chapter 2 

Background of the Rendering 

Method 

In this chapter, we wish to build up the literature background of our falling snow 

rendering method. Four topics are addressed to serve this purpose, they are: 

• Spectral synthesis - an overview of the spectral synthesis method in rendering 

Images. 

• Fourier domain and its properties - the fundamental theory used to render the 

falling snow. 

• Image motion properties - the basis of our tent like surface. 

• Image compositing - the theory used to composite our snow sequence with 

background images. 

Each topic is relatively independent, yet putting them together at the end will 

fund up a sufficient background to help reading through this thesis. 

4 



Chapter 2: Background of the Rendering Method 5 

2.1 Spectral Synthesis 

Spectral synthesis method has long been used in computer graphics to render 

images su ch as terrain [22], ocean waves [18], fluids [33], fire [6], smoke [6], cloud 

[6] etc. The common property of these natural scenes is that they do not have a 

well-defined surface or shape. This makes the usually used geometry based rendering 

methods hard to approach, and the existing algorithms are often suffering from the 

computational expensiveness. On the other hand, behind the randomness, sorne of 

the physics and natural features of these natural scenes can be easily synthesized by 

spectral synthesis method. 

The fundamental ide a of spectral synthesis is to sum up large number of sinusoidal 

waves and map the pixel intensity and color to the image according to the amplitude 

of the sinusoidal waves. Given the huge range of variation of the sinusoidal waves, 

the key of the spectral synthesis method is to choose a proper model to sum up the 

sinusoidal waves in a proper way. 

The spectral synthesis method can be carried on either in space-time domain 

[14, 15, 23, 24, 22] or in frequency domain [33, 27, 29, 18]. To the former case, 

the sinusoidal wave color(x) = sin(x), which is defined in space-time domain, is the 

primitive for synthesizing images. Further procedures such as varying its frequencies, 

amplitudes, biasing and weighting the obtained col or function, extending its dimen­

sionality, combining with shape function etc. would apply on this primitive to vary it. 

Sometimes the variation could be radical such that the primitive might be altered to 

be a step function or a non-periodical signal. Putting the sinusoidal waves together 

is usually called constructing the noise function. Methods of doing so are stochas-
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tic subdivision [14, 15], fractional Brownian simulation [6, 22], interpolating random 

value on the discrete lattice [6] etc. Each of these methods has fairly deep and wide 

research space to dive in and to play around, especially when implementing these 

methods to the real scene simulation. Here, however, we only have a quick glance to 

them because our rendering method is a frequency domain based one. 

The major advantage of spectral synthesis images in frequency domain is because 

this method is global. The focus of this method is not how to sum up all the sinusoidal 

waves but how to define a physics model for our desired rendering image in frequency 

domain. Once we set up a right model, the procedure of the inverse Fourier transform 

will pro duce the constructed noise function. We say it is global because the entire 

image or the entire image sequence will be synthesized once for all after the IFFT. 

Further, along with the globality of this method, it is also fast and efficient. However, 

things never can be perfecto Because of the globality, once we take the IFFT, we can 

not really modify each single sinusoidal wave in space-time domain. This property 

makes the rendering process highly rely on the physics model which we built in 

frequency domain. Meanwhile, this overly essential physics model is usually difficult 

to render, because frequency domain is not as intuitively understandable as space­

time domain. But, many researchers have challenged this difficulty and rendered the 

scene images such as ocean waves [18], fluids [33], turbulent gaseous phenomena [27], 

motion under wind [29] ... and also, our falling snow quite well by using this method. 

Constructing the physics model requires understanding of the power spectrum dis­

tribution of the scene we meant to render. Through analyzing the motion properties, 

the image structures of the scene and referring its properties in the Fourier domain, 
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we could approach a spatial and temporal frequency distribution model which best 

approximates and summarizes the physics properties of the natural scene in frequency 

domain. On top of this physics model, the refining steps such as l/f noise filtering, 

phase shifting, color mapping, ray tracing etc. would be applied on to generate the 

more desirable image. 

In spite of the procedural commonality of the frequency domain based spectral 

synthesis methods, the constructed physics models are sharply different from each 

other. This is expectable because one can hardly connect the physics motion of the 

ocean waves with the gaseous turbulent, neither with the falling snow. Therefore, 

studying the power spectrum distribution of each scene images becomes fundamental 

and primary. This requires a good knowledge of the Fourier domain. Here, the next 

Section will follow up to facilitate the background of the Fourier domain. 

2.2 Fourier Domain and Its Properties 

By applying Fourier transform [5], image data can be transformed from space­

time domain to the frequency domain, and then by applying the inverse Fourier 

transform, the image data can be transformed back to space-time domain. The 

image will be unchanged after the Fourier and its inverse transforms. Therefore, 

Fourier transform offers another way to work on the same image data in another 

domain. The purpose of transforming data to frequency domain is to utilize the 

properties of Fourier transform, and therefore, to pro cess image data more efficiently, 

or even achieve sorne work which is prohibitive in space-time domain. This section 

will give a brief introduction of the Fourier transform and a few of its properties used 
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in the falling snow rendering. 

2.2.1 Fourier Transform 

Given an one variable continuous function f(t), the Fourier Transform F(wt) is 

defined as 

(2.1) 

and the inverse transform as 

(2.2) 

where j is the imaginary unit and eje = cos(O) + jsin(O). 

In the case of discrete function, the Fourier transform is defined in the similar 

way, except that it sums over the discrete series instead of integrating. If we let l (x) 

denote the discrete function with N samples, or more specifically, taking one row 

from an image, which is with N pixels, and let I(x) represent the image intensity of 

this row, then the Fourier transform of l (x) is defined as 

1 N-l 
I(wx) = - L I(x)e-j27rWxx/N 

N x=o 

and the inverse Fourier transform is defined as 

N-l 

I(x) = L I(wx)ej2X7rWx/N 
wx=o 

(2.3) 

(2.4) 

I(wx ) is a complex number, i.e. Ii = Ireal + jIimage , it can also be expressed in 

terms of its magnitude A(wx ) and phase a(wx ). 

Il I(wx) Il 
I,. 

tan-1 ( ~mag). 
Ireal 
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I(wx ) will become: 

The magnitude represents the energy of the signal at spatial frequency k, whereas 

the phase represents how many spatial frequency steps of the signal are shifted [16]. 

The above discussion is only about the one-variable Fourier transform. In fact, 

Fourier transform can be easily extended to multi-variable functions. As an example, 

three-variable discrete Fourier transform is discussed below. It is also the one used 

in falling snow rendering. 

Given a discrete function f(x, y, t) with samples (M, N, T), which denotes an 

image sequence with T frame and each frame with M * N pixels. Its Fourier transform 

1 M-l N-l T-l . 
:F(w w w) = ~ ~ ~ f(x y t)e-J27r(Wxx/M+wyY/N+Wtt/T) 

x, Y' t M NT L..J L..J L..J " 
x=O y=o t=o 

(2.5) 

and its inverse transform is defined as: 

M-l N-l T-l 

f(x, y, t) = L L L :F(wx, wy, wt)ej27r(XWx/M+ywy/N+twt/T) (2.6) 
Wx=O wy=o Wt=O 

Here :F(wx, wy, Wt) is a complex number in the (wx, wy, Wt) space. 

2.2.2 Fourier Domain 

Within the (wx , wy , Wt) space, Le. the Fourier domain, the spatial frequency 

(wx , wy ) relates to the number of cycles of the sine wave per image frame, whereas 

the temporal frequency Wt relates to the number of cycles of the sine wave per image 

sequence. Low spatial frequency corresponds to small number of cycles per image 
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frame. In space-time domain, it corresponds to larger size of the image objects. Low 

temporal frequency corresponds to small number of cycles per image sequence. In 

space-time domain, it corresponds to slower image motion. 

2.2.3 Periodicity Property 

The Fourier sine waves are periodic signaIs. Using this periodicity, we can repeat 

the signal to obtain more samples which are beyond the original sample range. As 

we will see later, given an image sequence with samples (M, N, T), which is obtained 

from the inverse Fourier transform, one can tile each image frame side by side to 

obtain a larger image, or repeat the image sequence to make the motion longer. 

2.2.4 Conjugacy Property 

Given a real image, i.e. the I(x, y, t) is a real number, its Fourier transform obeys 

the conjugacy property 

(2.7) 

Thus, if one synthesizes a signal in frequency domain, and wishes to get a real signal 

in space-time domain, then the signal should obey the conjugacy property. 

After we had a quick refresh at the Fourier domain, let's look at the image motion 

properties in this domain. 
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2.3 Image Motion Properties 

There has been a long and rich history about image motion analysis in Fourier 

domain. Moving sine wave gratings have been used as stimuli in thousands of ex­

periment al studies of visual motion perception. Such stimuli have also played a key 

role in computational models of visual motion processing [38, 1, 30, 8]. The model 

we used to render falling snow extends from two particular frequency domain models: 

the motion plane model introduced by Watson and Ahumada [38] and the optical 

snow model introduced by Langer and Mann [13, 12]. 

2.3.1 Motion Plane Model 

Watson and Ahumada observed that an arbitrary static image that undergoes a 

constant translational motion in the image plane over a sequence of frames yields a 

plane of energy in the 3D frequency domain. That is, if one takes the 3D Fourier 

transform of a translating image sequence, then aIl the energy lies on a plane in the 

3D frequency domain. FormaIly, suppose an image is translating with velo city (vx , vy) 

pixels per frame, that is, 

I(x, y, t) I(x - vxt, y - Vyt, 0) 

Let (wx , wy) be the spatial frequencies in the x and y directions, and let Wt be the 

temporal frequency. If one takes the Fourier transform of I(x, y, t), then aU the energy 

in the 3D frequency domain lies on the plane: 

(2.8) 
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This plane passes through the origin. We refer to it as the motion plane for velo city 

(vx , vy). 

A few details on the geometry of the motion plane helped us to develop our tent 

model and will help the reader's intuition as weIl. If one takes the intersection of the 

motion plane with the plane Wt = 0, one gets 

(2.9) 

This is a line in the spatial frequency plane (wx , wy ), namely, the line along which 

the motion plane of Eq. (2.8) intersects the plane Wt = o. The vector (vx , vy) is 

perpendicular to this line, and the magnitude Jv~ + v~ is the slope of the motion 

plane in the direction (vx , vy). These properties of the motion plane are well-known 

[38]. 

To simplify the notation, we rotate the spatial frequency coordinates (wx , wy ) to 

new coordinates (wv , Wl) such that W v is in the direction of the motion (vx , vy) and Wl 

is in the direction of the line of Eq. 2.9. If we let e be the angle between W x and the 

direction of the line Wl, then we can relate the two coordinate systems by: 

sin e - cos e 
(2.10) 

Wl cos e sin e 

In particular, Eq. (2.8) can be re-expressed as 

v (2.11) 

Eq. (2.11) will be used in Chapter 3 in our tent model from which we synthesize 

falling snow. 
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2.3.2 Optical Snow 

A more recent frequency domain model of image motion is the optical snow model 

introduced by Langer and Mann [13]. These authors observed that falling snow 

pro duces motion in which a range of speeds is present and the direction of motion 

is roughly constant across the image. In the frequency domain, falling snow thus 

pro duces a family of motion planes: 

(2.12) 

in which a range of speeds s is present. The family of motion planes aU intersect at 

the line of Eq. (2.9) and each with the motion plane properties as we described in 

motion plane model. 

In addition, Eq. (2.12) can also be expressed in a simple way by rotating the 

(Wx , Wy) coordinates to the (W[, wv ) coordinat es as in Eq. (2.10). The set of velocities 

will become sv and Eq. (2.12) can be re-expressed as 

Wt 
v = ---

s W v 
(2.13) 

A more generalized version of the optical snow model assumes that the image 

velo city of the falling snow is with a range of speed and also directions [12]. For 

example, in the case that faUing snow is seen by a moving camera, the set of image 

velocity is of form (ux + s vx , uy + s vy), where (ux , uy) is a constant velo city vector. 

The family of motion planes will become: 

(2.14) 

Eq. (2.14) defines a set of planes which aU pass through the origin (wx , wy , Wt) = 

(0,0,0) but do not intersect with plane Wt = ° at a common hne. In contrast with 
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Eq. (2.12), we name the optical snow model represented by Eq. (2.12) as parallel 

optical snow model, and the model represented by Eq. (2.14) as nonparallel optical 

snow model. 

Eq. (2.14) could be rewritten as: 

(2.15) 

Analogous to Eq. (2.10) and Eq. (2.13), we can express Eq. (2.15) using the (WI, wv ) 

coordinates as weIl. If let (sv, SI) represents the rotated velo city vector (ux , uy), i.e. 

sin () - cos () 

cos () sin () 

then Eq. (2.15) will become 

Given v is a constant velo city, we can simplify this equation as: 

(2.16) 

Eq. (2.16) will be referred in Chapter 4 to derive our sheared tent model, which we 

used to render the falling snow seen by a moving camera. 

The optical snow motion model captures the range of velocities presented in falling 

snow. However, it does not explicitly account for depth effects, nor is the model 

used for rendering image sequences. Solving these two problems is the main original 

research contribution presented in this thesis. The details will be given in Chapter 3. 
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The above two models, the motion plane model and the optical snow model are 

all discussed in the frequency domain. Now, let's change our mind a bit and come 

back to the space-time domain. We will introduce the compositing method in the 

following section. This method plays an important role when we apply our rendering 

results to the scene images. 

2.4 Image Compositing 

Image compositing has been richly studied in computer graphies [25, 9, 4, 20] and 

widely used in visual arts and film industry. Behind those fascinating special image 

effects created by compositing, the basic ide a of it is quite simple. 

We treat multiple images as overlapping layers and combine them together to 

obtain the composited image. For each image which will overlay on the other image, 

we give an extra a channel to it. The a channel contains the value of opacity a 

of each pixel in the overlaying image. The a value is within range [0, 1], 0 is fully 

transparent, 1 is fully opaque, and the intermediate values are partially transparent. 

Mathematically, to composite the foreground image 12 over the background image Il 

according to the opacity a, we do 

I(x, y) = (1 - a(x, y))h(x, y) + a(x, y)h(x, y) (2.17) 

to obtain the composited image 1. Color images associate with three channels ~ RGB. 

If this is the case, we apply Eq. (2.17) to each channel. 

Eq. (2.17) illustrates the general rule of compositing. When it is specifically 

applied to our application, both to the falling snow renderingand to building our 
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transparency study stimuli, we made slight variations to this compositing method. 

However, the fundamental concepts aIl still the same. You will see our application in 

Sec. 3.3 and Sec. 6.1.1. 



Chapter 3 

Rendering Falling Snow 

We present the falling snow rende ring method in this chapter. We approach 

this rendering problem from the frequency domain, that is, using an inverse Fourier 

transform. This method yields an image sequence which is designed to have similar 

appearance as falling snow. In this sense it pro duces a visual effect that is similar to 

falling snow. The overall ide a of the method is to: 

1. Define a specifie surface in the 3D frequency domain, that is, in the 3D space 

defined by the Fourier transform of space-time (XYT). This surface is derived 

mathematically from a motion parallax property of falling snow, namely from 

a relationship between the image speed and the image size of a given snowfiake 

and the distance of that snowfiake from the viewer (see Sec. 3.1). 

2. Take the inverse Fourier transform of to get a function I(x, y, t). 

3. Treat I(x, y, t) as an opacity function and use it to composite white snow over 

a background image (or video). 

17 
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As an example, Figure 3.1 (b) shows one frame of the falling snow image sequence, 

after compositing over a background image house [10], shown in Figure 3.1 (a). The 

entire image sequence is available from the video example house. 

(a) (b) 

Figure 3.1: (a) An image of a house on a winter day. (Painting Jimmy's place. 
Courtesy of artist Gary Johnson) (b) One frame of a rendered image sequence m 
which falling snow is composited over the still image in (a). 

3.1 Tent Madel of Falling Snow 

As we reviewed in Sec. 2.3.1, the standard model for motion in the frequency 

domain assumes pure image translation. Falling snow differs from pure image trans-

lation in that falling snow has multiple depth layers, indeed a continuum of depth 

layers. There are two implications of the continuum of depth layers. First, the depth 

layers give rise to motion parallax. The image speed of the snowflakes in a given 

depth layer depends on the depth of that layer. In terms of the motion plane model, 

falling snow should pro duce energy in a range of motion planes, corresponding to 
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different depth layers (see Sec. 2.3.2). The second implication of the depth layers 

concerns the size of the snowflakes, namely that the image size of snowflakes in a 

given layer depends on the depth of the layer. Let us now restate these two effects 

using mathematical formulas, and then combine them. 

Let the distance variable be d. Then the motion of falling snowflakes has two 

correlations associated with it: 

1: The closer the snowfiake, the faster the snowfiake. For simplicity, assume 

aU snowflakes are falling with roughly the same 3D speed. Then snowflakes 

doser to the camera will appear to move faster because of perspective, that 

is, dis inversely proportional to image speed, and so from Eq. (2.11), 

1 
dcx-­

wt!wv 
(3.1) 

II: The closer the snowfiake, the bigger the snowfiake. Bigger objects have 

more energy concentrated in lower spatial frequencies, i.e. smaUer radius 

J w; + wf· This means that the distance d to a snowflake is proportional 

to the radius of the spatial frequencies to which the snowflake contributes: 

(3.2) 

Combining Eqns. (3.1) and (3.2), we get: 

For any fixed proportionality constant C to, we get the surface: 

(3.3) 
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This is our falling snow rendering surface. Figure 3.2 shows an example of a surface 

of Eq. (3.3). These surfaces have a tent-like form, and so we refer to Eq. (3.3) as the 

tent model. 

Figure 3.2: The plot of Eq. (3.3) with constant (C = 1) 

If comparing our tent model with the motion plane model, i.e. Wt = -VWv , 

and with the parallel optical snow model, i.e. Wt = -SVWv , we can find sorne close 

relationship among these three. In motion plane model, Wt relates to W v according 

to constant speed v. In parallel optical snow model, Wt relates to Wv according to a 

range of speeds sv. In particular, s is a free variable. In our tent model, Wt relates to 

W v according to C / J w; + wf, which is a set of speeds varying according to the spatial 

frequency J w; + w[. This set of speeds captures the properties that objects at greater 

depth appear sm aller and move slower in the image, which is the fundamental motion 

property of falling snowfiakes. In conclusion, our tent model handles a larger range 

of image motion speeds than the motion plane model, and accounts more specifically 
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the falling snow motion property than the parallel optical snow model. 

3.2 Synthesizing a Tent Surface 

We synthesize falling snow sequences with T frames and N x N pixels per frame. 

Typical values are N=512 and T = 64. The basic idea is to synthesize a tent surface 

in the frequency domain and then take the inverse Fourier transform. 

The (wx , Wy, Wt) space in which we synthesize the tent surface has N x N x T cells. 

Each cell is assigned a complex value, with both its real and imaginary parts defined 

as type double. The cells are initialized to the value zero. We then loop through the 

three dimensions of the frequency domain. If any cell (wx , Wy, Wt) overlaps the surface 

defined by Eq. (3.3), we assign it a complex value with an amplitude varying between 

o to 1 and a random phase varying between 0 to 27r. 

To ensure that the values after the inverse Fourier transform will be real, we enforce 

that the value in the cell (wx , Wy, Wt) is the complex conjugate of the value in the cell 

( -Wx , -Wy, -Wt). This is the standard conjugacy property of Fourier transforms of 

real images (see Sec. 2.2.4), namely 

(3.4) 

where I(x, y, t) is the image sequence and I(wx , Wy, Wt) is its 3D Fourier transform. To 

achieve this conjugacy property, we only assign values to the cells within the negative 

Wt halfspace. All the cells in the positive halfspace are then assigned values according 

to their conjugate cells. 
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3.2.1 Thickened tent surface 

The tent in Fig. 3.2 is an infinitely thin surface. For this surface, each spatial 

frequency .jw; + w~ has a single speed associated with it. This is not quite what 

we want, however. Snowflakes at a given depth (and hence at a given image speed) 

contribute to a range of spatial frequencies. This fact suggests that we should use 

a thickened tent surface. We implement the thickened tent surface by using a small 

range of Wt values around the tent surface. This gives slightly better renderings than 

if only a single layer is used. 

3.2.2 Limiting the range of spatial frequencies 

The sizes of the snowflakes have to be taken into account. If we allow all possible 

spatial frequencies to contribute to the tent surface, then the size of the snowflakes 

would vary from very big (the image width) to very small (the distance between 

pixels). This is not quite what we want to render falling snow, since snowflakes 

should be relatively small. 

To limit the size of the snowflakes - that is, to limit the size of the moving 

image structure that we are synthesizing - we limit the energy in the tent surface to 

three octaves of relatively high spatial frequencies. This acts as cutting an annulus 

in the (wx , wy ) plane and assigning values only to the cells whose spatial frequency 

components lie in the annulus. Because speed is related to size, limiting the range of 

spatial frequencies also limits the range of speeds. 

Here are the specifics. We are synthesizing image frames of size 512 x 512, and so 

we limit the non-zero values of energy of the tent surfaces to the three octave range 
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from 16 to 128 cycles per image frame. Spatial frequencies lower than 16 cycles per 

image frame are not used in order to enforce an upper bound on size of moving image 

structure ~ that is, snowfiakes are small. Spatial frequencies ab ove 128 cycles per 

image frame are not used in order to stay far from the Nyquist limit, which is 256 

cycles per frame. 

3.2.3 l/f amplitude spectra 

The final issue is to make the amplitudes of the Fourier coefficients as a function 

of spatial frequency. It is known that the amplitude spectra of natural images obeys 

a power law [7, 28]. SpecificaIly, the amplitudes of the Fourier coefficients faIl off as 

1/ Jwi + w~ on average. In the image science literature, this is known as l/f scaling. 

Such an amplitudes distribution will put constant amount of energy in each constant 

octave, thus make each band equaIly visible [7]. 

Our falling snow images are natural images as weIl, we therefore apply this 1/ f 

spectral distribution on synthesizing our tent surface. As we mentioned at the be-

ginning of this section that the amplitudes are set to a random value between [0, 1], 

then now we need to divide each amplitude by the spatial frequency: 

(3.5) 

A little reminder is about the phases. We set them as random values between 

[0, 21f] at the beginning of this section and we will keep this randomness throughout 

our image rendering without any modification, since phase changing relates to the 

image object shifting, which is out of our concern in this thesis. 
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3.3 Compositing Method 

To obtain a falling snow sequence, we compute the inverse Fourier transform of 

our tent surface. This yields a real valued function which we denote a(x, y, t). We 

wish to treat a(x, y, t) as an opacity function, namely the density of snowflakes at a 

pixel (x, y) in frame t. The reason for treating a(x, y, t) as an opacity function is that 

we can then apply standard compositing (see Sec. 2.4). 

To treat a(x, y, t) as an opacity function, we need to map it to the interval [0,1]. 

We also wish to take account of the fact that the human visual system is sensitive 

to logarithmic differences in intensity, rather than linear differences in intensity. For 

this reason, after mapping to [0,1], we apply a non-linear transformation 

a(x, y, t) -+ a(x, y, t)f3 

where we use f3 = 1.5. This compresses the values of a(x, y, t) to the lower part of the 

interval [0,1] and makes the variations in opacity more visible. In particular, f3 is not 

fixed. We let f3 2 1 and vary according to the rendering purpose and the background 

images. Higher f3 value associates with lighter falling snow appearance, because the 

nonlinear transformation a(x, y, t)f3 will result low opacity value, and therefore, will 

weaken the foreground snow and strength and background image. 

To composite the snow with a background image, we set the intensity of the snow 

to be a constant, namely the intensity Iamb of the ambient light in the scene. The 

reason for setting the intensity of snow to a constant is that snow is white (reflectance 

near one). The value of Iamb is not known. So we take it to be a high grey level value, 

say 250. The reason for choosing such a value is that we would like it to be less than 
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the intensity of light source (which saturate the pixels at grey level 255). But we 

would also like the snow to appear white, so we take it to be high value. 

To composite with a background image, we use the formula: 

I(x, y, t) = Iamb Œ(X, y, t) + (1 - Œ(X, y, t)) hg(x, y) (3.6) 

This is a variation of standard compositing where the foreground intensity is constant 

and the opacity varies with time. The background image could itself be a video, but 

in our example, we only use the still image. 

A special feature of this compositing method is that the snow motion will become 

very weak or even vanish wh en the background image region has high intensity, or 

say has white color. Because in this case, we can assume that Ibg(x, y) = Iamb, then 

this results that I(x, y, t) has the same value within the white image regions over all 

the image frames, i.e. 

I(x, y, t) = I(x + vxdt, Y + vydt, t + dt) 

thus no falling snow motion being detected. 

A fact from nature is that the snow covered surface is white. Another fact from 

the natural motion ls that falling snowflakes would stop falling when they hit the 

snow covered surface. These two natural facts demand the similar visual effect from 

our rendered falling snow motion. And here, by fooling eyes through the intensity 

trick, our compositing method offers this side benefit with easy. 
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3.4 Tiling XYT 

The opacity functions a(x, y, t) that we compute are periodic (see Sec.2.2.3) in all 

three variables XYT. The reason for the periodicity is that each of the frequency com­

ponents is chosen independently. A traveling sine wave of any frequency (wx , wy , Wt) 

is periodic in XYT, so is the sum of such waves. 

The periodicity property is convenient because it means we can tile XYT with 

the function a(x, y, t) to obtain videos that are larger (in space) and longer (in time). 

For example, our computed a(x, y, t) functions are only T = 64 frames long. But if 

you loop the video, then the videos can be extended to infinite length. Notice that 

looping the video do es not create a jumpping discontinuity. 

We can also tile in space. The snow in video sydney (see Sec. 3.5) uses sixteen 

(4 * 4) falling snow tiles, each one of size N = 128 and T = 64. The sydney image 

itself is 512 * 512, which is shown in Figure (3.3). The tiles are not apparent at this 

size. One frame of the tiled snowing video sydney is shown in Figure (3.4). The tiling 

effect does not appear on the static image either. 

When very small tiles are used (say N = 64), the tiles do become visible and the 

periodicity becomes visible as weIl. We present the video example sydneysmalltiling 

to show this effect. One frame of the image example is in Figure 3.5. As we can see 

the snow appears more like a periodic pattern than natural falling snow. 
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Figure 3.3: The sydney background image. Size is 512 * 512. 

3.5 Results 

We submit three groups of MPEG videos to demonstrate the falling snow rendering 

results. Each group is the rendered snowing scene along with its opacity function. 

These videos use lossless compression (MPEG quality = 90%). 

1: The video snow shows the opacity function a(x, y, t) itself. The video 

house uses a background image [10J of a scene in which there is snow on 
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the ground but no snow falling (see Fig. 3.1). The video shows falling 

snow composited over this scene. 

II: The video sydney shows a cityscape of Sydney on a sunny day. We have 

composited snow over this scene to show what the city might look like on 

a snowy day. For sydney, we used the falling snow tiling method (see Sec. 

3.4). The video tile128 shows the opacity function with size 128 * 128. 

III: The video sydneytilesmall shows a failure example of the tiling method 

when the tile size is too small, as 64 * 64. The video tile64 shows the small 

tile of the opacity function with size 64 * 64. 

28 

Notice that the snowfall direction of house is different from the snowfall direction of 

sydney. Indeed, the motion direction of the falling snow is a free variable (see Sec. 

2.3.1 ), and these two examples are used to demonstrate this property. 
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(a) 

(b) 

Figure 3.4: One frame of the video example sydney to demonstrate the seamless tiling 
method. (a) One frame of the rendered falling snow, which is with size 128 * 128. (b) 
The composited snowing scene sydney, in which the foreground snow scene uses the 
rendered snow in (a) and tiled sixteen (4 * 4) times. 
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(a) 

(b) 

Figure 3.5: The failure example of applying tiling method. When the size of the tile 
is too small to render natural scene, it appears as periodic patterns on the composited 
scene images. (a) One frame of a rendered snowfall tile, with size 64 * 64. (b) The 
composited snowfall scene, in which the foreground snow uses 8 * 8 tiles. 



Chapter 4 

Falling Snow Seen by a Panning 

Camera 

The method we presented in Chapter 3 renders parallel falling snow. Although 

the motion direction of the falling snow is a free variable, once it is chosen, the image 

motion will be along the chosen direction only. When the falling snow is seen by 

a rotating camera, its motion direction will become the sum of the snowfall motion 

and the panning camera motion. Since we render the falling snow image velo city 

according to its depth, and the camera motion associates with only one image motion 

velo city, the sum of these two will pro duce a range of velocities, in which both the 

image motion speed and direction vary according to its depth. 

31 
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4.1 The Sheared Tent 

Let's recall Eq: (2.16), which expresses the image motion as the sum of a set of 

parallel image motion (s, 0) and a panning camera rotation (sv, SI). This set of motion 

planes is re-expressed as: 

-S W v (4.1) 

In Chapter 3, we developed our tent model, in which Eq. (3.3) defines a set of 

parallel image velocities which takes into account the falling snow motion properties. 

More specifically, it specify the set of velocities sv of the parallel optical snow as 

C / J wf + w;. If we substitute C / J wf + w; for S in Eq. (4.1), we obtain the equation 

which expresses the falling snow motion seen by a panning camera with velocity 

Wt + Sv Wv + SI Wl (4.2) 

We wish to simplify the camera panning motion and only consider the case that 

the camera is panning in perpendicular to the snow falling. Therefore, the camera 

panning velo city becomes (SI, 0), and Eq. (4.2) becomes: 

Wt = C J - SI Wl 
w2 +w2 

v 1 

(4.3) 

Geometrically, Eq. (4.3) expresses a tent-like surface added to a plane. A plot 

of Eq. (4.3) with constant C = 1 and SI = 0.3 is shown in Figure 4.1. Given that 

the shape of the plotted surface looks like the tent surface is sheared up, we name 

this rendering model as sheared tent model. Synthesizing the sheared tent surface and 
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Figure 4.1: The plot of Eq. (4.3), with constant C = 1 and SWt = 0.3 

compositing with the snowing scene follow exactly the same as in Sec. 3.2 and Sec. 

3.3. 

There are two coefficients in Eq. (4.3). The constant C relates to the falling 

snow motion speed, and St relates to the camera panning speed. Theoretically, the 

camera can pan with infinitely high speed. However, given that the constant C is 

limited to [0,7r] and (Wl, wv ) are limited to [-7r,7r], the high camera panning speed 

will result in St » C, thus result in SI Wl » C wv / {(w; + wf). If we refer back 

to Eq. (4.3), we can see that this will lead to Wt ~ SI * Wl. This is equivalent in 

saying that the snowfall motion will be diminished and the image motion will appear 

to be translational only. To avoid this effect, we need to keep these two coefficients 

compatible. Since wv / jw?; + wf :s; 1 and Wl :s; 7r, we wish st/7r ~ C to ensure the 

compatibility of these two coefficients. One side effect of the constraint st/7r ~ C is 

that it limits the camera panning speed. This might be considered as the limitation 

of the shearing tent method. 
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4.2 Results 

We present three video examples to demonstrate the rendering results of our 

sheared tent model. All the videos use lossless compression (MPEG quality = 90 %). 

The video panningsnow is the falling snow opacity function which is rendered from 

the sheared tent model. It demonstrates the snowfall motion when it is seen by the 

panning camera. The video panningsnowscene is the panningsnow composited with 

the snowing scene house [10]. The panning motion of the scene house [10] is made by 

one pixel per frame. However, from the video panningsnowscene we can perceive that 

the panning motion of the background scene is faster than the panningsnow's. This is 

because the panningsnow motion speed is less than one pixel per frame, for the reason 

of compatibility. A better result can be achieved by compositing the falling snow with 

a video whose shooting camera has roughly equal velo city as the panningsnow's. 

We also present the video panningbgstill, which composites the video panningsnow 

with the still background image house [10]. The panning motion of the falling snow 

is more perceivable in this video, we therefore present it as a comparative example. 

To this end, we presented our falling snow rendering technique, which includes 

introducing the literature background, in Chapter 2, mathematically formulating and 

practically implementing the rendering technique, in Chapter 3, and extending the 

falling snow rendering as it is seen by a panning camera, in Chapter 4. Moreover, dur­

ing the development of our rendering technique, we looked up and inspired by sorne 

psychophysical theories. After we developed our falling snow rendering method, we 

find that our rendered motion parallax could be used as a stimulus to help psychophys­

ical study. In the following two chapters, we will present the literature background of 
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the psychophysical theories and show that how our rendered motion parallax could 

be used for psychophysical study. 



Chapter 5 

Perceptual Transparency Theory 

Review 

During studying the rendering experiments of the falling snow motion parallax, 

we frequently observe snowHakes passing through each other with perceivable depth. 

In order to make more compelling rendering effects, we wish the motion parallax with 

continuously many depth and wish the perceived motion as vivid as the real falling 

snowHakes. These rendering objectives motivate us to have a deep investigation of 

the transparency the ory in human visual perception. Along with carrying on those 

interesting experiments, a nice side-effect we had is that the rendered motion parallax 

could be a new moving stimulus to study perceptual transparency. We will review the 

perceptual transparency literature in this chapter. In Chapter 6, we will introduce 

our preliminary transparency study experiments and discuss the results. 

36 
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5.1 Metelli's Theory 

Since Helmholtz(1866) spoke of seeing one colar through another, Kofika(1935) 

related this problem to perceptual transparency, and later on many other researchers 

tried to answer when to scission 1, i.e. wh en the visual system initiates the percepts 

of transparency, and how to scission, i.e. how the visual system assign transmittance 

and reflectance values to the perceived layers, perceptual transparency theory has 

been richly studied. Among them, the most historical one is Metelli's "episcotister 

model" [19]. 

b b 

(a) (b) 

Figure 5.1: Metelli's episcotister model. (a) a disc with reflectance t, and an open 
sect or of relative area Œ, is rotated rapidly in front of a bipartite background. (b) 
when the disc is rotated fast enough, a transparent layer is perceived overlying the 
bipartite background. 

Metelli built up the "episcotister model" (see Figure 5.1) and derived the Metelli's 

equations to answer how to scission. AIso, he addressed the geometrie and photometrie 

conditions to approach when to scission. As showing in Figure 5.1, wh en a disc with 

reflectance t and an open sect or of relative area Œ, is rotated fast enough in front of 

a bipartite background image, it will lead to pereeive a transparent surface overlying 

1 Here we refer scission as visu al system perceiving multiple transparency layers from single image 
intensity. 
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the bipartite background. From Talbot's law, which gives the mixing color in the 

region of the episcotister rotating over the background, Metelli derived the t and Œ 

as following, 

t 

p-q 

a-b 
aq - bp 

a+q-b-p 

(5.1) 

(5.2) 

Eq. (5.1) and (5.2) are called Metelli's equations, since their significant influence on 

the perceptual transparency study. 

Given the constraint that Œ E [0,1], and from Eq. (5.1), Metelli observed the geo-

met rie condition of scission, i.e. the magnitude constraint and the polarity constraint. 

The former requires Ip - ql ~ la - bl and the latter says that (p - q) has the same 

sign as (a - b). Besides, Metelli also observed two kinds of photometrie constraints, 

i.e. the contour continuity of the underlying surface and the boundary conti nuit y of 

the perceived transparent layer. 

Albeit these insightful constraints Metelli made from Eq. (5.1), he claimed that 

Eq. (5.2) is too complicated to make a simple prediction. lndeed, there is a discrep-

ancy between the prediction of the Metelli's model and the perceived transparency. 

Metelli's model predicts that when (p - q) and (a - b) meet both the magnitude 

constraint and the polarity constraint, a consistent transmittance value Œ is supposed 

to be derived from Eq. (5.1). However, even Metelli himself puzzled [19] that wh en 

"aU other conditions being equal, the darker the transparent layer, the greater its 

perceived transparency". This discrepancy later on was solved by Singh and Ander-

son [32]. They showed that it is the variable - the Michelson contrast, which can 

be interpreted from Eq. (5.2), acted as a more adequate constraint to predict the 
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transmittance value Œ. 

5.2 Michelson Contrast 

Figure 5.2: Singh and Anderson's transmittance matching experiments. 

As showing in Figure 5.2, Singh and Anderson did the transmittance matching 

experiments to study how to scission. In their experiments, they place a smaller disk 

inside a large disk. The target central disk has the same mean luminance value as 

its sinusoidal background, and is assigned a fixed luminance range. The matching 

central disk is assigned a mean luminance value only, which is probably different 

from the target's. By adjusting the luminance range of the matching central disk, its 

transmittance value will change accordingly. During the experiments, the observer is 

instructed to find the transmittance value which matches the target's. Moreover, aIl 
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these central disks are placed on the 2D sinusoidal background, which is more gen-

eral than the bipartite background as used in the Metelli's model. By examining the 

obtained data of matching central disk and the target disk, Singh and Anderson find 

that both the luminance range and the mean luminance affect the perceived trans-

mittance value. More precisely, it is the Michelson contrast, which is the luminance 

range divided by twice of the mean luminance, affects the perceived transmittance. 

If let M represents the Michelson contrast, let Lrange represents the luminance 

range and let Lmean represents the mean luminance, then the Michelson contrast is 

defined as: 

M 
Lrange 

2 * Lmean 
(5.3) 

Therefore, instead of deriving the perceived transmittance value a by using Metelli 's 

equations - Eq. (5.1), which only considered the luminance range, Singh and Ander-

son re-defined the perceived transmittance as: 

Mcenter 

Msurround 
(5.4) 

lndeed, Eq. (5.4) can be derived from Eq. (5.2) ([32] : 504), which Metelli claimed as 

too complicated to make a simple prediction. Consequently, by applying Eq. (5.4), 

Metelli 's puzzle - that a black episcotister looks more transparent than a white one -

has an answer: the darker episcotister has higher Michelson contrast, so, it has higher 

transmittance value. 

Besides addressing the Michelson contrast as the answer of how to scission, Singh 

and Anderson also applied it to the study of wh en to scission. As the magnitude 

constmint of the Metelli's model requires the central luminance range to be less than 
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the surround to initiate the perceptual transparency, Singh and Anderson glve a 

counter-example as showing in Figure 5.3. In Figure 5.3, as the central luminance 

Figure 5.3: Example that the central luminance range is larger than the surround. 
The surround region is perceived to be transparent, and the central region is perceived 
as a background being seen through a hole of the transparent layer. 

range is larger than the surround, the surround region is perceived to be transparent, 

and the central region is perceived as a background being seen through a ho le of the 

transparent layer. Moreover, when keeping the luminance range of both the central 

and the surround regions unchanged but varying the mean luminance, the perceived 

transparency will change from perceivable to obscure. Indeed, from the experimental 

data results, Singh and Anderson show that it is the Michelson contrast acted as 

the critical variable to initiate the scission, not the luminance range. Furthermore, 

by placing the low contrast regions over the textured background, as show in Figure 

5.4, Singh and Anderson extend the photometrie condition of the Metelli's model. 

They find that, over the contrast varying regions, the continuity of the textures, for 

example, the left part of Figure 5.4, is the sufficient condition to initiate the scission. 

From these new geometric and photometrie observations, Singh and Anderson suggest 

that "visu al system uses changes in Michelson contrast over aligned contours and 
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group able textures as a critical image property to initiate percepts of transparency" 

([32]:515). 

Figure 5.4: Texture background with two low contrast regions. The left low contrast 
region has the consistent texture with the background. The right one does not. The 
perceptual transparency can be perceived from the left low contrast region, but not 
the right one. Note that in the printed hard copy, this figure is not perceived as good 
as the one in the soft copy, because of the PSjPDF dithering problem. However we 
can at least perceive that the texture in the right low contrast region has orientation 
and density inconsistancy, which prevents initiating the percepts of transparency. 

5.3 Coherent vs. Non-coherent Motion 

Beyond the adequate perceptual transparency study of the static images, other 

researchgroups broaden this study to the moving images [34, 35, 36, 37, 11, 2, 21]. 

Stoner and Albright is one among them. They extended the stimuli of line gratings 

which are used by Movshon et. al [21] to the square-wave gratings and addressed 

the multiplicative luminance condition under which the motion of each single moving 

object can be perceived when there are multiple moving objects in an image. As in 

Figure 5.5, the model of their experiment is two square wave gratings, each with the 

same size, the same transmittance value, and the same background, but move up-Ieft 
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and up-right accordingly. These two gratings are then superimposed one on top of 

another. If Tsw represents the transmittance value of the square wave, and let Ta 

(a) (b) 

Figure 5.5: Stoner and Albright's square wave gratings. (a) and (b) are with same 
size, same transmittance value and the same background, but move up-Ieft and up­
right accordingly. 

represents the transmittance value of the overlap region. By adjusting Ta, Stoner and 

Albright find that when Tsw * Tsw :S Ta :S Tsw , the image motion is perceived as the 

two square waves moving in their own motion directions, i.e. non-coherent motion. 

Otherwise, the image motion is perceived as the two square waves moving together 

in a common direction, i.e. the coherent motion. Stoner and Albright therefore name 

the condition Tsw * Tsw :S Ta :S Tsw as the multiplication condition and conclude that 

in order to perceive non-coherent motion, the image luminance condition has to obey 

the multiplication rule. 

Following along with the previous three Sections, we had an overview to the 

perceptual transparency theory. In the next Chapter, we will see how these theories 

could apply on our motion parallax image sequences, and how our motion parallax 

image sequence could extend these theories. 



Chapter 6 

Perceptual Transparency Study 

U sing Motion parallax 

In Chapter 3, we rendered falling snow motion by using the tent model. The for­

mulation was based on the motion parallax of the falling snowflakes, i.e. the size and 

the motion speed of the snowflakes correlate to the depth, and we refer the depth as 

infinitely many layers. The rendered results appear remarkably similar to the falling 

snow and with continuously many layers. We would like to take advantage of the 

rendered motion parallax and apply it to the perceptual transparency study. We car­

ried on several informaI experiments and had a preliminary study of the conditions 

of initiating the percepts of transparency when using the motion parallax as stimu­

lus. These experiments are not carefully designed procedural work, but they can be 

considered as the initial explorations for the future psychophysics study. AIso, we 

compared the perceived results with those perceived from the static images. We also 

ask how applicable are the previous transparency theories to our rendered motion 

44 
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paraIlax. 

6.1 When to Scission: Conditions for Motion Par­

allax 

In the review of the transparency study in Chapter 5, we learned of MeteIli's 

model, as weIl Metelli 's puzzle. We saw that this puzzle later on was weIl solved 

by Singh and Anderson, who discovered that the Michelson contrast is the actual 

variable used by the visual system to initiate scission. Besides, they also extended 

both of the geometric and the photometrie conditions in MeteIli's model, and made 

the conditions of when to scission more general as the following: 

I: There is change in Michelson contrast over the aligned contours. 

II: The texture display over the regions where Michelson contrast changes 

should be groupable. 

However, the stimuli Singh and Anderson used are only static images. It is quite often 

that the visual system confront moving images and perform image decomposition on 

them. We therefore question when the visual system initiates perceptual transparency 

with the moving images. We investigate this problem by compositing the motion 

parallax which is rendered in Chapter 3 over the background images which are with 

geometric patterns. 
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• 
(a) (b) (c) 

Figure 6.1: The background images used to composite with the motion parallax to 
investigate the scission conditions of the moving images. (a) checkboard (b) moon 
(c) disco The original image size is 512 * 512. 

6.1.1 Compositing Method 

We render the motion parallax by using the tent model and synthesize the data 

in the same way as we synthesize the falling snow. After taking the inverse Fourier 

transform, we scale the data function within gray level intensity [0,255]. The ob-

tained image sequence is the motion parallax, which we used to study the perceptual 

transparency. We treat the motion parallax as the foreground image Ifg(x, y, t) and 

composite it with the background image Ibg(x, y). Since the purpose of this experi-

ment is to study the conditions of initiating perceptual transparency when the media 

is the motion parallax, we design the background images as shown in Figure (6.1). 

We wish the Michelson contrast of the composited image sequences changing over 

the geometric patterns. To achieve this purpose, we lower the Michelson contrast 

of the motion parallax in the white background regions and leave those in the black 

background regions unchanged. The compositing method is: 

{ 

255 * .7 + 0.3Ifg (x, y, t), 
I(x, y, t) = 

Ifg(x, y, t) 

Ibg(x, y) = 1 

Ibg(x, y) = 0 

(6.1) 

Based on this compositing method, we can compute the Michelson contrast of 
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both the black and white background regions. The motion parallax is obtained from 

the inverse Fourier transform. It is the sum of the sine waves, therefore, its me an value 

is o. After we rescale the data function, the luminance range is scaled as [0,255], and 

the mean is scaled as 128. Let's recall Eq. (5.3), Michelson contrast is the luminance 

range divided by twice of the mean luminance. Since the compositing method leaves 

motion parallax in the black background regions unchanged, the Michelson contrast 

of these regions will be the Michelson contrast of the motion parallax itself, it is 1. 

From Eq. (6.1), and given that the image luminance difference is 255 * 0.3 and the 

image mean luminance is (255 + 255 * 0.7)/2, the Michelson contrast of the white 

background regions can be easily computed as 0.176. 

6.1.2 Result and Discussion 

After compositing, the motion parallax changes the Michelson contrast along the 

geometric figuraI contour. The compositing results are shown in videos checkboard, 

moon and dise. The motion parallax itself is shown in the video parallax. One frame 

of each video is shown in Figure 6.2. 

The static images in Figure 6.2 (b), (c) and (d) aIl meet the scission conditions 

concluded by Singh and Anderson. Therefore, it is not surprising that a transparent 

layer can be perceived from aIl of them. lndeed, the perception we got is that the 

geometric background images are split into two layers along the figuraI contours. The 

white regions are perceived overlaying the motion parallax patterns as a light trans­

parent layer, and the black regions are perceived laying behind the motion parallax 

patterns as a black background layer. The motion parallax pattern itself is perceived 
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(a) (b) 

(c) (d) 

Figure 6.2: (a) One frame of the rendered motion parallax. (b), (c) and (d) One 
frame of the motion parallax composited with the background image checkboard, 
moon and disc respectively. In (b), (c) and (d), the low contrast regions are perceived 
as transparent layers overlaying on the motion parallax patterns. 
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with continuous 3D depth (see Figure 6.2 (a)). This fact could increase the perceived 

distance between the perceived transparent layer and the background layer and might 

cause the effect of scission st ronger. 

The last statement can be perceived more dearly by observing the moving images. 

In the moving images, not only the structure, but also the moving speed of the motion 

parallax gives depth cue. Since the continuous depth is evidently perceivable, when 

perceiving the transparent layers overlaying on the motion parallax, these transparent 

layers will inherit the depth cues of the motion parallax, thus are perceived as mu ch 

doser than the black background layer. 

Stone and Thompson investigated the effects of image contrast on image speed 

perception [34]. Using grating stimuli, they observed that the low-contrast gratings 

are perceived moving slower than the high-contrast ones. This perception effect is 

also shown on the motion parallax stimulus. From the video cheekboard, moon and 

dise, we could perceive that the image motion speed in the low contrast regions is 

slower than those in the high contrast regions. However, this image speed difference 

does not show significant impact on perceiving transparency for our examples. There 

could be two issues to this facto One is that the difference is too small to affect the 

overall image motion consistency. Another one is that the motion speed consistency 

is not the dominant effect to affect the perceptual transparency. 

To clarify our doubts, we did a motion-inconsistency experiment. This experi­

ment is quite similar to the experiment moon, except that the motion direction of 

the motion parallax in the central disc part has 90 deg angular difference from the 

motion direction in the surround part. The experimental result is shown in the video 
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motion_in consistent, and one frame of the video is shown in Figure 6.3. 

In Figure 6.3, a transparent layer can be perceived overlaying centrallow contrast 

region. This is plausible because the pattern structures of these two motion parallaxes 

are very similar, and the motion direction difference does not show on the still image 

of course. However, from the video motion_inconsistent, the central transparent layer 

could be perceived as well, even though the motion parallaxes in the central and 

surround regions move in two very different directions. This effect might suggest that 

the motion velo city consistency over the Michelson contrast changing regions is not 

a critical condition of perceiving transparency. 

This is quite different from the photometrie condition of the static images. In 

static images, the groupable texture over the Michelson contrast changing regions is 

a critical scission condition, recall Figure 5.4. However, in moving images, we are 

able to perform image scission from the ungroupable motion. 

To this end, we hypothesize that the scission conditions - the change of the Michel­

son contrast is over aligned contours and over group able texture - are applicable to 

the motion parallax stimulus as weIl. However, the groupable velocities of the mo­

tion parallaxes over the aligned contours where the Michelson contrast changes might 

not be necessary. In addition, the scission layers could inherit the depth eues of the 

motion parallax, thus might promote the scission perception. 

Nevertheless, our hypotheses are only based on the limited experiments. Further 

detailed and extensive studies are certainly necessary in order to have a general and 

comprehensive suggestion to this topie. 
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Figure 6.3: One frame of the video motion_inconsistent. The motion parallax in the 
central low contrast region moves down-Ieft, whereas the one in the surround high 
contrast region moves down-right. Since the pattern structures of these two parallaxes 
are very similar, the motion direction difference does not show on this static image. 
Therefore, we are still able to perceive a transparent layer overlaying central low 
contrast region. 
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6.2 Image Motion Analysis: Using Motion Paral­

lax as Stimulus 

As we reviewed in Sec. 5.3, Stoner and Albright used gratings as stimuli and 

observed that the visual system computes the multiplicative transparency to decide 

the coherency of the motion. However the stimuli they used are quite strict, which 

are two superimposed gratings with the same transmittance value and moving along 

the fixed directions. These stimuli were generalized later on by other researchers in 

terms of varying the motion direction and the contrast of the gratings. Along with 

the generalization, the research results also became more broad and accurate [37, 35, 

36,11,2,21]. For example, Kim and Wilson [11] varied the relative motion directions 

of the two gratings and suggested that it is the motion. directions of the gratings 

that mainly affects the coherency of the observed motion. Stoner and Albright [36] 

themselves later on varied the relative contrast of the gratings and observed that 

the luminance contrast difference of the two superimposed gratings could affect the 

motion eoherency by acting as a depth-from-occlusion cue. More specifically, when 

two superimposed gratings are put on the same black background, the higher contrast 

grating tends to be perceived in front of the low contrast grating and acts as an 

occluding grating, whereas the luminance value of the overlap regions of these two 

gratings is not critieal anymore. 

From the previous examples, we could notice that the stimuli used in those re­

search are mainly limited on gratings. When the real natural scenes are much more 

complicated than two superimposed gratings and there exists more than one eue, 
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we question whether the grating stimuli are good enough for image motion study. 

Intuitively, we would like the stimuli to be more similar to nature. 

In this sense, the motion parallax we rendered could suggest a new perspective for 

the image motion study. Since we render the motion parallax in the Fourier domain, 

it is the sum of sine waves, it therefore appears mu ch more complicated than the 

gratings. Moreover, the primary goal of rendering this stimulus is to simulate the 

falling snow and the formulation of this stimulus is based on falling snow motion, we 

therefore naturally acquire a stimulus which is very similar to the nature. 

Staring at the motion parallax, we could observe that the image objects are passing 

through each other and the motion incoherency is obviously existing. What cues are 

acting here? We could suggest the luminance contrast difference as one cue. From 

the motion parallax, we could observe that the image patterns with higher luminance 

contrast are in front of those with lower luminance contrast. We could interpret our 

observation as higher contrast image patterns acting as the occluding objects and 

therefore being observed as in front, whereas the lower contrast image patterns are 

acting as the occluded objects and therefore being observed as behind. We might 

also try to apply the luminance multiplicative condition [37]. However, a difficulty 

here is that how do we exactly locate the overlapping regions among the objects of 

the motion parallax and address the luminance value? 

This discussion leads us to a number of open questions. Wh en the previous re­

se arch results are based on exactly two gratings and are with exactly two layers, we 

ask if we still can use those theories to give an adequate image motion analysis to our 

rendered motion parallax? For example, when multiple layers exist in the motion par-
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allax, can we apply the multiplicative rule to the luminance values of the overlapping 

regions of the muitiple layers? When the luminance contrast differences exist among 

more than two objects of the motion parallax, do we interpret the depth order of the 

objects according to the luminance contrast monotonically? When the transparency 

and the depth-from-occluding cues are both existing in the motion parallax and even 

somewhat confiicting with each other, how do es our visual system interpret them? 

From these questions and uncertainties, we can see the motivation and necessity of 

using motion parallax as stimulus to study image motion. Although carefully designed 

experiments have not been carried out in this thesis, because the enormous work load 

and challenging questionnaire could be another research topic. However, we cou Id 

predict that motion parallax could be a promising stimulus for future research. 



Chapter 7 

Summary 

This thesis presents an image based falling snow rendering method. It is based on 

the spectral synthesis technique, and is carried on in frequency domain. Synthesizing 

the power spectrum is based on the tent model, which is developed in this thesis, and 

is also the major contribution of this thesis. The inspiration of developing the tent 

model cornes from the motion plane model. It is saying that a pure translational image 

motion in the space-time domain produces a plane of energy in frequency domain. 

This motion plane comprises two important properties, they are, the common line 

of the motion plane (see Eq. (2.9)) relating to the motion direction and the slope 

of the motion plane relating to the motion speed. Associating these two properties 

with the natural falling snow motion property, i.e. the size and the speed of falling 

snowfiakes relate to the depth, we develop a tent like surface, and name it as tent 

model. The power spectrum we synthesized in frequency domain is exactly along this 

tent model. We also apply 1/ f scaling law and limiting the range of spatial frequency 

to the synthesized power spectrum to make the snowfiakes equally visible at all the 
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depth and give them reasonable size. Afterwords, we bring the data function of the 

power spectrum to space-time domain by computing IFFT. We then treat the data 

function as the opacity function and composite a white unitary snow image, which is 

with intensity 250, with a background scene image or video to create the falling snow 

scene. 

We also extend our falling snow rendering to the case when the motion is seen 

by a panning camera. Using the property of the sheared corn mon line in the optical 

snow model, we shear up the tent surface to incorporate the panning camera motion. 

A special feature of this method is that it allows us to render the camera motion with 

non-integer pixels per frame without aliasing, sinee the rendering work is carried on 

in frequency domain. However, given the limitation of the shape of the tent surface, 

the incorporated camera panning speed is indeed always limited as less than one 

pixel per frame. This causes an inconsistency between the camera motion and the 

background image motion, because in space-time domain, the image motion is always 

integer pixels per frame. As a result, this special feature turns our sheared tent model 

to be not very useful. 

The rendered falling snow motion sequence comprises the depth vs. the speed 

vs. the size relationships of the falling snowflakes. If treating the rendered motion 

parallax itself as a motion stimulus, it would include more motion cues than the 

conventional grating stimulus. Also, since we considered the natural image amplitude 

spectra distribution property and the sizes of the image objects, the rendered motion 

parallax per se is more similar to the natural scene than the moving gratings. We 

therefore suggest that our rendered falling snow motion parallax could be a novel 
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stimulus for the perceptual transparency study and image motion analysis. 
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