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Abstract 
A software system that automatically classifies MIDI files into hierarchically organized 

taxonomies of musical genres is presented. This extensible software includes an easy to 

use and flexible GUI. An extensive library of high-Ievel musical features is compiled, 

including many original features. A novel hybrid classification system is used that makes 

use of hierarchical, flat and round robin classification. Both k-nearest neighbour and 

neural network-based classifiers are used, and feature selection and weighting are 

performed using genetic algorithms. A thorough review of previous research in automatic 

genre classification is presented, along with an overview of automatic feature selection 

and classification techniques. Also included is a discussion of the theoretical issues 

relating to musical genre, including but not limited to what mechanisms humans use to 

classify music by genre and how realistic genre taxonomies can be constructed. 

Sommaire 
Dans cette thèse, nous présentons un système logiciel classifiant automatiquement, et de 

manière hiérarchique selon leur genre musical, des pièces de musique représentées sous 

format MIDI. Ce système comprend une interface utilisateur graphique, souple et facile à 

utiliser. Une collection entendue de caractéristiques musicales, dont plusieurs sont 

nouvelles, a été compilée. Pour cela on utilise un système original de classification 

hybride fondée sur des classification hiérarchiques, non-hiérarchique, ou de sélection en 

tournoi. Les classificateurs de type K plus proches voisins et les réseaux de neurones sont 

utilisés. Des algorithmes effectuent la sélection et attribuent une pondération à chaque 

caractéristique. Une revue détaillée des recherches antérieures sur la classification 

automatique des genres est présentée, incluant un examen technique des méthodes 

automatiques générales de sélection et de classification de caractéristiques. On discute 

également des questions théoriques concernant le genre de musique, incluant de manière 

non limitative les mécanismes utilisés par les humains pour classifier la musique et 

comment des taxonomies réalistes de genre peuvent être élaborées. 
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1. Introduction 

1. 1 Project overview 

The primary goal of this project was the production of an effective and easy to use 

software system that could automatically classify MIDI recordings by genre after having 

been programmed with a given genre hierarchy and trained on sample recordings. Before 

this could be accomplished, of course, there were a number of intermediate tasks to 

complete, each with varying degrees of research value of their own. 

The first task was to study and consider musical genre from theoretical and 

psychological perspectives in order to achieve a broader understanding of the issues 

involved. This was useful in gaining insights on how to implement the classification 

taxonomy and in understanding what kinds of assumptions might be reasonable to make 

and what kinds should be avoided. The results of this study are presented in Chapter 2. 

The next step was to review recent research in musical genre classification in order to 

incorporate previous work into this project and to see how it could be built upon. This 

information is presented in Chapter 4. It was also important to build a solid technical 

background by reviewing pertinent information relating to MIDI, feature selection 

techniques and classification techniques. These topics are covered in Chapter 3. 

The next task was the compilation of a library of features, or pieces of information 

that can be extracted from music and used to describe or classify it. Features relating to 

instrumentation, texture, dynamics, rhythm, melodic gestures and harmonic content can 

aIl be used by humans to make distinctions between genres. Features based on these 

parameters were considered along with features that might not be obvious to humans, but 

could be useful to a computer. In order to complete the feature library, a literature search 

of publications on music theory, musicology, data mining and music technology was 

performed in order to find existing features. These features were then combined with a 

large number of original features in order to complete the library. AlI of this is presented 

in Chapter 5. 

A model genre hierarchy was then constructed and a large set of MIDI files were 

collected in order to train and test the system. Although the large number of genres in 

existence made it impossible to consider every possible genre, efforts were made to 

incorporate as many different ones as possible, inclUding genres from classical, jazz and 

popular music. Each feature from the feature library was then extracted and stored for 

each MIDI file. A variety of classification methodologies, based on statistical pattern 

recognition and machine leaming, were th en applied to this data and a system was built 

for coordinating the classifiers and improving their collective performance. Feature 
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selection was performed using genetic algorithms. The details of how an of this was done 

are presented in Chapter 6, along with a brief outline of the advantages of the design 

structure of the software and its easy to use interface. 

Finally, a number of classification tests were performed in order to evaluate the 

system and judge its performance along a number of dimensions. Chapter 7 explains the 

tests and presents the results. Chapter 8 summarizes the results, compares the system's 

performance to that of existing systems, discusses the meaning of the results, outlines the 

original research contributions of this thesis and presents sorne areas for future research. 

1.2 Importance of project and applications 

Genre is used by music retailers, music libraries and people in general as a primary 

means of organizing music. Anyone who has attempted to search through the discount 

bins at a music store will have experienced the frustration of searching through music that 

is not sorted by genre. There is no doubt that genre is one of the most important means 

available of classifying and organizing music. Listeners use genres to find music that 

they're looking for or to get a rough idea of whether they're likely to like a piece of music 

before hearing it. Industry, in contrast, uses genre as a key way of defining and targeting 

different markets. The importance of genre in the mind of listeners is exemplified by 

research showing that the style in which a piece is performed can influence listeners' 

liking for the piece more than the piece itself (North & Hargreaves 1997). 

Unfortunately, consistent musical genre identification is a difficult task, both for 

humans and for computers. There is often no generally accepted agreement on what the 

precise characteristics are of a particular genre and there is often not even a clear 

consensus on precisely which genre categories should be used and how different 

categories are related to one another. The problems of determining which musical 

features to consider for classification and determining how to classify feature sets into 

particular genres make the automatic classification of music a difficult and interesting 

problem. 

The need for an effective automatic means of classifying music is becoming 

increasingly pressing as the number of recordings available continues to increase at a 

rapid rate. It is estimated that 2000 CDs a month are released in Western countries alone 

(Pachet & Cazaly 2000). Software capable of performing automatic classifications would 

be particularly useful to the administrators of the rapidly growing networked music 

archives, as their success is very much linked to the ease with which users can search for 

types of music on their sites. These sites currently rely on manual genre classifications, a 

methodology that is slow and unwieldy. An additional problem with manual classification 

is that different people classify genres differently, leading to many inconsistencies, ev en 

within a single database of recordings. 
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Research into automatic genre classification has the side benefit that it can potentially 

contribute to the theoretical understanding of how humans construct musical genres and 

the mechanisms they use to classify music. The mechanisms used in human genre 

classification are poorly understood, and constructing an automatic classifier to perform 

this task could produce valuable insights. 

The types of features developed for a classification system could be adapted for other 

types of analyses by musicologists and music theorists. Taken in conjunction with genre 

classification results, the features could also provide valuable insights into the particular 

attributes of different genres and what characteristics are important in different cases. 

The feature extraction and supervised leaming classification techniques developed for 

a genre classifier have the important benefit of being adaptable to a variety of other 

content-based musical analysis and classification tasks. Systems could be constructed 

that, to give just a few examples, compare or classify pieces based on compositional or 

performance style, group music based on geographical / cultural origin or historical 

period, search for unknown music that a user might like based on ex amples of what he or 

she is known to like already, sort music based on perception of mood, or classify music 

based on when a user might want to listen to it (e.g. while driving, while eating dinner, 

etc.). Music librarians and database administrators could use these systems to classify 

recordings along whatever lines the y wished. lndividual users could use such systems to 

sort their music collections automatically as they grow and automatically generate play 

lists with certain themes. It would also be possible for them to upload their own 

classification parameters to search on-line databases equipped with the same 

classification software. 

1.3 Detining musical genre and distinguishing it trom style 

Writers often fail to clearly define the differences between musical genre and style. 

This is understandable, to a certain extent, as there are definite similarities between the 

terms, but it is nonetheless important to distinguish between them if one is to undertake a 

detailed study of genre. 

Franco Fabbri defines musical genre as "a kind of music, as it is acknowledged by a 

community for any reason or purpose or criteria, i.e., a set of musical events who se 

course is govemed by rules (of any kind) accepted by a community" (Fabbri 1999). 

Fabbri continues on to define musical style as: "a recurring arrangement of features in 

musical events which is typical of an individual (composer, performer), a group of 

musicians, a genre, a place, a period of time" (Fabbri 1999). Musical genre can thus be 

considered to be somewhat broader and more subjective than style from a content-based 

perspective, which makes genre classification both more difficult and more interesting 

than style classification. 
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A possible clarification that may be made between genre and style is to say that a 

style is related to individuals or groups of people involved in music production and that 

genre is related to groups of music and the audiences that identify with these groups. It 

might therefore be said that a composer' s style will remain evident even if she or he 

writes in different genres. In general terms, the word "genre" can be taken to refer to 

music that is, by general social agreement, grouped together. 

It should be mentioned that the distinctions made above are for the purpose of clarity 

in this thesis, and that they do not reflect universal agreement in the music community. 

Moore (2001), for example, has a point of view that is not entirely consistent with Fabri's. 

Although much of the music technology literature on classification tends to use the words 

"genre" and "style" interchangeably, the term "genre" will be used exclusively here, in 

the sense defined above, unless the work of an authour who used the term "style" is being 

discussed. 

1.4 Ratianale far using MIDI 
Musical data is generally stored digitally as either audio data (e.g. wav, aiff or MP3) 

or symbolic data (e.g. MIDI, GUIDO, MusicXML or Humdrum). Audio data represents 

actual sound signaIs by encoding analog waves as digital samples. Symbolic data, in 

contrast, stores musical events and parameters themselves rather than actual waves. 

Symbolic data is therefore referred to as a "high-Ievel" representation and audio data as a 

"low-Ievel" representation. In general, symbolic representations store high-Ievel musical 

information such as individual note pitches and durations. 

Audio data and symbolic data each have their respective strengths and weaknesses. It 

was decided to use a symbolic format, namely MIDI, rather than audio data for this thesis. 

A brief discussion of the rationale for this decision is included in this section, as it may be 

a somewhat controversial decision to sorne. 

Before doing so, however, it is appropriate to define two terms for the purpose of 

clarity, as there is sorne debate as to exactly what the y mean. Throughout this text, 

references are made to "high-Ievel features" and "low-level features." For the purposes of 

this thesis, high-Ievel features refer to pieces of information that are based on musical 

abstractions and 10w-Ieve1 features refer to signal-processing characteristics derived 

directly from signaIs that do not have explicit musical meaning. For example, tempo, 

meter and key are all high-Ievel features. Number of zero crossings and spectral 

frequency ratios are examples of low-Ievel features. Although both high-Ievel and low

level features can be extracted from low-Ievel (audio) recordings, a mu ch wider range of 

high-Ievel features can be extracted with a much greater accuracy from high-Ievel 

(symbolic) recordings. 
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There is no doubt that there are a number of good reasons for using audio data rather 

than symbolic data for performing genre classifications. Most obviously, audio data is 

what people actually listen to in general, so an audio classification system has more 

apparent practical use than a MIDI classification system. Furthermore, MIDI files fail to 

store certain information that could be useful for performing genre classifications. For 

ex ample, MIDI files store references to standardized General MIDI synthesizer patches 

rather than actual sounds (see Chapter 3 for more details on MIDI), with the result that 

significant amounts of potentially very important timbraI information are unavailable. 

The ability to extract features related to information such as quality of singing voice, 

lyrics, phrasing and expression can be eliminated or become severely hampered. This is 

potentially a very serious problem, as there is sorne evidence that timbraI features may be 

more significant than rhythmic or pitch-based features (Tzanetakis & Cook 2002). An 

additional problem is that MIDI was devised primarily with Western musical models in 

mind, which limits its usefulness beyond this paradigm. A limitation of symbolic 

representations is that any information not encapsulated in the representation is lost. 

Although MIDI does allow pitch mico-intervals and arbitrary rhythms, there are still 

sorne limitations in this respect, such as the limited patches specified in General MIDI. 

It is likely for these reasons that most genre classification systems to date have 

focused almost exclusively on audio data (see Chapter 4). It is recognized here that audio 

classification is certainly a more important goal from a practical perspective than 

symbolic data classification. Unfortunately, success with audio classification has not yet 

attained a level that is commercially viable. Any possible improvements to these audio 

systems should therefore be considered. The current limitations of polyphonic 

transcription systems make it very difficult or impossible to extract accurate features 

based on high-level musical knowledge, such as precise note timing, voice and pitch, an 

important limitation considering that these features could very likely improve success 

rates significantly. Since these features are readily available in symbolic data, it was 

decided to study symbolic data in this project in order to complement and build on the 

work that has already been do ne with audio data. Although audio genre classification is of 

course very useful, there exists a large body of transcribed music, and it would seem 

foolish to ignore this information by only considering audio data. 

This research is intended, in part, to show the usefulness of high-level features, with 

the hopes that they could eventually be integrated into an audio classification system 

when transcription systems become more effective or file formats that package audio data 

with meta-data transcriptions come into corn mon use. High-level features have the 

additional advantage that they have musicological meaning, and can thus be used for 

theoretical studies as well as more applied applications. 
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As an additional note, the loss of timbraI data beyond instrumentation may not be as 

significant as it may seem at first. A recent study of the relationship between timbre 

features and genre indicated that there may be a poor correlation between the two 

(Aucouturier & Pachet 2003). It is, of course, true that timbre certainly do es play at least 

sorne roll in how humans perform classifications, particular in regards to vocal quality, 

but this is still an indication that the importance of timbre may have been overemphasized 

in past research. The fact that timbre-based features played a sometimes overwhelming 

role in many of the existing classification systems may have impaired their performance. 

MIDI data also makes it easier to extract features relating to entire recordings, both 

because of the symbolic nature of the data and because of the speed with which it can be 

processed. In contrast, it is often necessary to derive features from segments of audio data 

rather than entire recordings. 

An addition al benefit of using symbolic data is that it makes it possible to classify 

music for which scores are available but audio recordings are not. Classification based on 

high-level features is particularly ideal for music for which no audio recordings exist, as 

new performances could introduce biases. Advances in optical music recognition 

technology could make it a simple matter to produce MIDI files that could be classified 

by scanning in scores. 

MIDI was chosen as the particular symbolic format to use in this thesis because it is 

the most prevalent format and it is relatively easy to find diverse MIDI files for training 

and testing. In addition, it is relatively easy to translate other symbolic representations 

into MIDI if one wishes to classify recordings in other formats. 

1.5 Rationale for using supervised machine learning 

There are three main classification paradigms that could have been used in this thesis: 

• Expert Systems: These systems use pre-defined rules to process features and 

arrive at classifications. 

• Supervised Learning: Theses systems attempt to formulate their own 

classification rules by using machine leaming techniques to train on model 

examples. Previously unseen examples can then be classified into one of the 

model categories using the rules generated during training. 

• Unsupervised Learning: These systems cluster the data that they are fed based 

on similarities that they perceive themselves rather than model categories. 

Expert systems are a tempting choice because known rules and characteristics of 

genres can be implemented directly. A great de al of potentially useful work has been 

done analyzing and generating theoretical frameworks in regards to classical music, for 

example. Given this body of research, it might weIl be feasible to construct a rules-based 



13 

expert system to classify these kinds of music. There are, however, many other kinds of 

music for which this theoretical background does not exist. Many types of Western folk 

music, a great deal of non-Western music and Western popular music do not, in general, 

have the body of analyticalliterature that would be necessary to build an expert system. 

There have, of course, been sorne efforts to generate general theoretical frameworks 

for popular and/or non-Western music, such as in the work of Middleton (1990). 

Unfortunately, these studies have not been precise or exhaustive enough to be applicable 

to the task at hand, and it is a matter of debate as to whether it is ev en possible to generate 

a framework that cou Id be broad enough to encompass every possible genre of music. 

Although there are broad rules and guidelines that can be informaIly expressed about 

particular genres (e.g. delta blues music often has a swing rhythm, is likely to foIlow the 

I2-bar blues form, will often be limited to guitar and voice and willlikely make use of the 

pentatonic scale), it would be very difficult to design an expert system that could process 

rules that are often ill-defined and inconsistent across genres. A further problem is that 

new popular and folk genres are constantly appearing and existing ones often change. 

Keeping a rules-based system up to date would be a very difficult task. 

So, although expert systems could potentiaIly be applied to weIl-defined and 

unchanging types of music, such as pre-twentieth century classical music, any effort to 

perform classifications across a wider range of genres with rules-based systems is likely 

doomed to failure. Anyone trying to implement an expert system with applicability to a 

reasonable variety of genres would quickly get bogged down in inconsistencies and 

details, and would have to make judgment caIls that would bias and date the system. 

Systems that rely on pattern recognition and learning techniques, in contrast, hold a 

great deal of potential. Such systems cou Id analyze musical ex amples and attempt to learn 

and recognize patterns and characteristics of genres in much the same way that humans 

do, although the precise mechanisms would differ. A side benefit of such systems is that 

they may recognize patterns that have not as of yet occurred to human researchers. These 

patterns could then be incorporated into theoretical research. 

This leaves the options of supervised and unsupervised learning. It was decided that 

unsupervised learning would be inappropriate for this project, since the categories 

produced might not be meaningful to humans. Although this would avoid the problems 

related to defining a set genre hierarchy (see Chapter 2) and the categories produced 

might weIl be more accurate than human genre categories in terms of "objective" 

similarity, a genre classification system that uses its own genre categories would be 

useless for humans who want to use genres that are meaningful and familiar to them. 

Systems that use unsupervised leaming to measure the similarity of recordings certainly 

do have their uses, but they are not well-suited to the specific problem of genre 

classification. 



14 

Supervised leaming is therefore the best option, despite the fact that the need for a 

manually classified and therefore biased model training set is a drawback. Systems of this 

type form their own mIes without needing to interact with humans, meaning that the lack 

of clear genre definitions is not a problem. These systems can also easily be retrained to 

reflect changes in the genres being classified. Furthermore, these systems are able to 

consider and form relations between large groups of features, a task that is difficult to 

encode into an expert system. 
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2. Musical Genre Theory 

2.1 Introduction to musical genre theory 
Although a great deal of thought has been put into the notion of genre by those 

working in the field of literary theory (the collections of works edited by Duff (2000) and 

Grant (2003) are excellent resources on literary genre and film genre respectively), there 

has been relatively little research done specifically on musical genre. What work has been 

done leans towards either lists of binary features that tend to be too inflexible for the 

purposes of an evolving genre structure or discussions centered around the socio-cultural 

aspects of genres that are of limited utility to content-based classification. 

This topic is so large and there is so much research remaining to be done that a 

theoretical study of musical genre could easily fill several doctoral dissertations. 

Although this is somewhat beyond the scope of this thesis, an overview of the issues 

involved is presented here, as it is important that one be aware of the theoretical aspects 

of musical genre in order to properly consider their practical implications. This chapter 

discusses this important background relating to genre and genre classification. The details 

of the actual genre categories that were implemented in this project can be found in 

Section 6.1. 

Genre categories allow humans to group music along lines of perceived similarity. It 

is commonly held to be true by cognitive psychologists that categorization in general 

allows us to cornes to terms with information by grouping it in meaningful ways that can 

increase our understanding of it. Although musical genre is sometimes referred to as 

being primarily a marketing tool or an artificiallabelling system used by academics, one 

should not lose sight of its deeper significance. 

There are a number of important issues to consider relating to genre. How genres are 

created, how they are agreed upon and disseminated, how they are defined, how they are 

perceived and identified, how they change, how the y are interrelated and how we make 

use of them are aIl important areas of research. 

Answering these questions is not an easy task. It can be difficult to find clear, 

consistent and objective definitions of genres, and genres are rarely organized in a 

consistent or rational manner. The differences between genres are vague at times, rules 

distinguishing genres are often ambiguous or inconsistent, classification judgments are 

subjective and genres can change with time. The categories that come to be are a result of 

complex interactions of cultural factors, marketing strategies, historical conventions, 

choices made by music librarians, critics and retailers and the interactions of groups of 

musicians and composers. 
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2.2 How humans deal with genre 
Very little psychological experimental research has been done on the mechanisms that 

humans use to define and identify musical genres. This makes it somewhat difficult to 

build a content-based system that can be said to be reliably modeled on the classification 

techniques used by humans. There is, however, sorne research that has been done on 

genre in general that can be used to supplement what research on musical genre there is. 

Research by cognitive psychologist Eleanor Rosch has indicated that people tend to 

think of categories as having sorne typical, or prototypical, members, and other less 

typical members. For example, a robin can be considered to be a better example of a bird 

than an ostrich, or a chair a better example of furniture than a magazine rack (Rosch 

1975; Taylor 1989). This certainly seems consistent with the way that sorne recordings 

seem typical of a musical genre, yet others seem less so, while still leaving little doubt as 

to their membership in that particular genre. Marie-Laure Ryan puts these ideas into the 

context of genre in general: 

This approach invites us to think of genres as clubs imposing a certain number of conditions for 

membership, but tolerating as quasi-members those individuals who can fulfill only sorne of the 

requirements, and who do not seem to fit into any other club. As these quasi-members become 

more numerous, the conditions for admission may be modified, so that they, too, will become 

full members. Once admitted to the club, however, a member remains a member, even if he 

cannot satisfy the new mies of admission. (Ryan 1981, 118) 

This highlights sorne of the problematic inconsistencies in genres from a content

based perspective. It might further be added that quasi-members have membership due to 

similarities with the prototypical genres, although they might otherwise be dissimilar to 

each other. It might also be said that sorne members can belong to more than one genre 

and that the accumulation of enough quasi-members with a close similarity to each other 

may lead to the creation of a new genre or sub-genre. As stated by Simon Frith, "genres 

'fail' when their rules and rituals come to seem silly and restrictive; new genres are born 

as the transgressions bec orne systematic" (Frith 1996, 94). 

Research has shown that individuals are more familiar with sub-genres within a 

musical genre that the y like than within genres that they do not (Hargreaves & North 

1999). Even well-trained musicians may have significantly less knowledge and 

understanding of genres that they are not proficient in than even casual listeners who are 

interested in those genres. Furthermore, the features that different individuals use to 

identify genres can vary based on the genres that they are familiar with. AlI of this 

implies that few, if any, humans can be relied upon to classify arbitrary genres reliably 

and using consistent mechanisms. A computer system that can become familiar with a 

much larger range of music than most humans would be willing or able to may weIl be 
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able to perform genre classifications in general better than humans, even though 

individual humans may still perform better in their own limited domains. 

Turning now to the features that humans use to perform classifications, one might 

imagine that high-Ievel musical structure and form play an important role, given that this 

is the area on which mu ch of the theoretical literature has concentrated. This does not 

appear to be the case, however. Research by Perrott and Gjerdingen (1999) found that 

humans with little to moderate musical training are able to make genre classifications 

agreeing with those of record companies 71.7% of the time (among a total of 10 genres), 

based on only 300 milliseconds of audio. This is far too little time to perceive musical 

form or structure. This suggests that large-scale structural elements of music are in fact 

not needed by humans in order to make genre classifications and that there must therefore 

be a sufficient number of features available in very short segments of sound to 

successfully perform classifications. This does not mean that one should ignore musical 

form and structure, as these are likely useful as weIl, but it does mean that they are not 

strictly necessary. This is important if one wishes to build an audio classification system, 

as it takes much less computation al time to process short segments of sound than to 

process long segments. 

Another study found that, when asked to list the characteristics of a number of 

different genres, a test group consisting of Turkish undergraduates used the following 

terms most frequently: lively, exuberant, dynamic, exciting, entertaining, rhythmic, 

meaningful, pleasant, high quality, boring, irritating, simple, lasting, monotonous, 

harmonious, sentimental, restful, peaceful and soothing (Tekman & Horascsu 2002). It 

appears that ev en a relatively sophisticated sample tends to prefer words having to do 

with personal preferences and mood rather than direct musical descriptors. Although the 

descriptors that they used may weIl have been influenced by more detailed musical 

features, consciously or unconsciously, this research does appear to indicate that how 

individuals classify music is strongly related to the emotive meaning that is perceived. 

The authour has been unable to find any other experimental research beyond these 

studies relating to musical genre, unfortunately. Given the lack of experimental evidence, 

one may only speculate on further ways that humans identify genre. It would be valuable 

for future psychological experiments to be carried out to investigate this speculation. 

It seems intuitively likely that different individuals use different methods for 

distinguishing between genres, based on such factors as musical training and the genres 

that one is the most familiar with. Songwriters, musicians, cri tics, teachers, promoters and 

listeners in general can aIl be seen to describe music in different ways, and may perce ive 

and think about it differently as weIl. The same individual may also use different 

techniques wh en identifying different types of music. 



18 

There are two likely mechanisms that we use for performing classifications of music. 

The first is to compare features that we perceive, such as rhythmic patterns or the 

particular instruments being played, with our existing knowledge, conscious or 

unconscious, of the characteristics of different genres. The second is to perform 

classifications by measuring the similarity of unknown pieces with pieces that are known 

to belong to certain categories. Although these two approaches are related, the inherent 

processes at work are somewhat different, and those with musical training are probably 

more likely to use the first approach more. The importance of the second approach is 

demonstrated by the apparent fact that, when asked to describe a piece of music, many 

people will do so by linking it to other pieces of music that are in sorne ways similar. This 

seems to indicate that exemplar-based classification is an important tool used by humans 

to group music into genres and identify them. 

It would seem reasonable to say that lyrics play a particularly important role for many 

people in identifying genres, as everyday experience seems to indicate that they are the 

most memorable aspect of recordings to many people with limited musical training. 

Content (e.g. love, political messages, etc.), rhyming scheme, vocabulary, use of clichéd 

phrases and use of characteristic slang alllikely provide useful indications of genre. Style 

of singing and voice quality are also likely quite important, as these do seem to vary 

significantly from genre to genre. 

It is probable that many people use features beyond those that can be derived from the 

actual musical content of a recording or a performance. Genre is very much linked to the 

social, economic and cultural background of both musicians and listeners. Both of these 

groups tend to identify with and associate themselves with certain genres, with the result 

that their behaviour is influenced by their preferences. Or, viewed from a different 

perspective, many people have strong identifications with social and/or cultural groups 

that are associated with certain musical genres. In either case, it appears that there is often 

a correlation between musical genre preferences and appearance and behaviour. One need 

only see a photo or watch an interview with a musician, without ever having heard his or 

her music, to be almost certain wh ether the musician plays rap, heavy metal or classical 

music, for example. 

The style of album art, web pages and music videos are aU features that humans can 

use to identify genre. Similarly, a performer's appearance and actions on stage (facial 

expressions, ritual gestures, types of dancing, etc.) provide c1ues towards genre, as do an 

audience's demographics, dress and behaviour (clapping, shouting, sitting quietly, 

dancing, etc.). The fine distinction between sorne sub-genres may weil be related to such 

sociological features more than musical content. Although the CUITent study is only 

concerned with content-based features, future research that uses data mining techniques to 

gather these other types of features to supplement content-based features could be highly 
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useful. There has been sorne initial research in this direction (Whitman & Smaragdis 

2002) that has had very encouraging results. 

For further information about sorne of the issues raised here, one may wish to consult 

the work of Franco Fabbri, who is responsible for writing sorne of the most widely 

referenced work regarding musical genres from a musicological perspective. Fabbri 

discusses the links between genre and social, economic and cultural factors and how 

genres come into being in one of his early papers (Fabbri 1981). Fabbri continues this 

discussion in a slightly later paper (Fabbri 1982). He also presents a discussion of the 

issues related to musical categories, how the mind processes them and their importance in 

general in a more recent paper (Fabbri 1999). 

Chapter 4 of a Frith' s book (1996) is also informative, and contains an excellent 

discussion of the types of socio-cultural factors that can affect how genre distinctions are 

formulated and what their meaning is. Toynbee (2000) provides an interesting discussion 

of how genres inform musicians and of the influences of identifications with different 

communities as well as of the music industry. 

David Brackett has also done sorne very interesting work on musical genre, including 

a discussion of how the ways in which particular genres are constructed and grouped can 

vary in various charts, radio formats and media-fan groups, and of issues relating to 

recordings crossing over from one set of groupings to another (Brackett 2002). Brackett 

has also written a good resource for those trying to deal with the task of characterizing 

genres (Brackett 1995). 

2.3 Finding an appropriate labelling system 

In order to train an automatic classification system using supervised learning it is first 

necessary to have a set of genre categories that the training examples can be partitioned 

into. The mechanisms in which humans label entities or concepts in general is in itself an 

interesting area of inquiry. Lakoff' s book (1987) is an often cited source on this topic. 

The lack of a commonly accepted set of clearly defined genres makes it tempting to 

simply devise one's own artificial labels for the purposes of making an automatic 

classification system. These labels could be designed using reasonable, independent and 

consistent categories, a logical structure and objective similarity measures. One could 

ev en use unsupervised learning techniques to help accomplish this. The genre labels in 

common use are often haphazard, inconsistent and illogical, and someone designing an 

automatic classifier would certainly like to have a system that does not suffer from these 

problems. 

This would, of course, be a mistake. One must use the labels that are meaningful to 

real people in order for the labels to be useful to them, which is to say that genre 

categories must be consistent with how a pers on with moderate musical knowledge would 
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perform categorizations. Furthermore, genre labels are constantly being created, forgotten 

and modified by musicians, retailers, music executives, DJs, VJs, critics and audiences as 

musics develop, so a static, ideal system is not sustainable. Genre is not defined using 

strictly objective and unchanging qualities, but is rather the result of dynamic cultural 

processes. One must therefore be careful to avoid thinking of genres in terms of 

immutable snapshots, as both their membership and their definitions change with time. 

The genre labels attached to a particular recordings can change, even though the 

recording itself, of course, remains static. What might now be called "rock 'n roll," for 

ex ample, was once classified as "no veIt y," and the Bob Marley recordings that we 

recognise as "reggae" today were once classified as "folk music." The changes in genre 

definitions that can also occur as weil are illustrated by the differences between what was 

considered "rock" music in every decade from the 1950's to now. In order to have true 

practical usefulness, a system of labels should be used that is entirely up to date, as it 

should coincide with the terms used by real people. 

Historical types of music should also be included in a full taxonomy, of course, and it 

should not be forgotten that even these can change with time. Of course, it can be argued 

that historical genres tend to be more static and codified than CUITent genres, with the 

result that they these genres are easier to label and describe, and that membership is fairly 

set. There is, for ex ample, a large amount of literature on Baroque music theory and 

practice, and there is not any significant quantity of new Baroque-style pieces being 

composed that might cause this genre to mutate. Although this point does have sorne 

validity, historical genres can nonetheless still evolve to sorne degree, as can be 

demonstrated by a comparison of how Baroque music was performed by early 20th 

century musicians and by more recent ensembles using period instruments. 

Syncretic music, which is to say music that combines characteristics of multiple 

genres, presents a further problem. Although syncretic music can sometimes lead to the 

creation of new sub-genres, there is at least a transitional stage where such music does not 

definitively fit into one genre rather than another. This creates a definite difficulty to one 

wishing to design a clear labelling system with discrete categories. 

Considering the quantity and diversity of people that would need to be convinced to 

use an artificial labelling system and considering the rate at which genre taxonomies 

change, it is clear that any attempt to impose a given set of labels on the public is doomed 

to failure. The Canadian Content radio genre categories used by the Canadian govemment 

are an example of such a failure. These categories are generally inadequate and were 

obsolete before they were even brought into being. More information on the Canadian 

Content radio genres can be found in Frith' s book (1996). 

Another approach to finding an appropriate labelling structure is to look at the 

categories used by music sales charts such as Billboard, or by awards shows such as the 
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Grammies. Unfortunately, there are also a number of problems with this approach. Charts 

such as those used by Billboard often only reflect the current trends in music to the 

exclusion of older genres. A proper system should include old genres as weIl as new. 

Furthermore, these categories tend to reflect the labelling system that the music industry 

would ideally like to see for commercial reasons, not the one which is actually used by 

the public. Charts and award categories therefore often have labels based on marketing 

schemes more than common perceptions, and do not even offer the advantages of being 

consistent or weIl thought out from a taxonomical perspective. There are a number of 

interesting publications, such as that by Negus (1999), that offer a further analysis of the 

effects of business interests on musical genres and their development. 

Specialty shows on radio or television do offer a somewhat better source of labels, as 

they often reflect categories that attract listeners interested in specifie genres, both new 

and old. They do still suffer from the influence of commercial biases, however, as the 

content of shows tend to be influenced at least as mu ch by the interests of advertisers 

relating to age, income and political demographics as by the musical preferences of 

listeners. Although university radio stations do not suffer from this problem in the same 

way, they are often limited in scope and by the variable expertise and knowledge of their 

DJs. 

Retailers, particularly on the internet, may perhaps be the best source of labels. They 

use categories that are likely the closest to those used by most people, as their main goal 

is to use a taxonomy that makes it easy for customers to find music that they are looking 

for. Although retailers can sometimes be a little slow to respond to changes in genre, they 

nonetheless do respond faster than sorne of the alternatives discussed above, as 

responding to new genres and keeping existing genres up to date allows them to draw 

potential buyers into areas that contain other music that they may wish to buy, therefore 

increasing sales. 

Although one might argue that it would be preferable to base labels on the views of 

concert goers, clubbers, musicians, DJs, VJs, music reporters and others who are on the 

front lines of genre development, doing so would be disadvantageous in that genres at this 

stage of development may be unstable. Additionally, favouring the genre labels used by 

specialists may result in sorne confusion for non-specialists. Waiting for retailers to 

recognize a genre and thus make it "official" is perhaps a good compromise in that one 

keeps somewhat abreast of new developments, while at the same time avoiding excessive 

specialization and excess overhead in terms of data collection and training. 

The problem of inconsistency remains, unfortunately, even with the taxonomies used 

by retailers. Not only do record companies, distributors and retailers use different 

labelling systems, but the categories and classification judgements between different 

retailers can also be inconsistent. This is, unfortunately, an unavoidable problem, as there 
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are no widely accepted labelling standards or classification criteria. Employees of 

different organizations may not only classify the same recording differently, but may also 

make selections from entirely different genre taxonomies or emphasize different 

identifying features. One must simply accept that it is impossible to find a perfect 

taxonomy, and one must make do with what is available. One therefore has little choice 

but to adopt one of the imperfect labelling systems that are in use, and those used by 

retailers appear to be the best choice from a practical perspective. 

2.4 Particularly problematic categories 

One of the greatest problems with designing a content-based automatic classification 

system is dealing with genres that are only distinguishable based on patterns of social use 

and context rather than musical content. The different musics of the Narifio, for example, 

are almost identical in terms of content, but are considered to belong to entirely different 

genres based on the social context in which they are performed (Broere 1983). Although 

this is an extreme example, it is not unique, and socio-cultural features external to actual 

musical content play an important role in many genre categories. 

There are a number of common Western categories that group together music that is 

dissimilar from a content-based perspective. "Top 40" music, "woman's music" and 

"indie music" are aIl ex amples of categories into which music from entirely unrelated 

(from a content-based perspective) genres can be grouped together. 

"World music" is also a problematic category to deal with, as it groups together many 

sub-genres that are wholly dissimilar in terms of content. Even if one includes socio

cultural features, many of the sub-genres found in record stores often only have socio

cultural commonality from the uninformed perspective of Western music industry 

workers. Even the criterion of coming from a non-Western country is not decisive, as 

there are types of Western folk music that are labelled as world music and there are types 

of music originating from non-Western countries that are played in Western styles and 

therefore do not fall under the world music umbrella. For ex ample, the music of a 

Nigerian cellist playing Bach should be classified under Baroque, not under a Nigerian 

sub-genre of world music. 

One possible solution to these problems would be to consider the language that is 

being sung in as an important feature. This would require either language recognition 

software or appropriate meta-data, neither of which are easily and consistently available. 

A second possibility would be to only perform classification of sub-genres, and to obtain 

the unreaiistically broad parent genres by implication. The disadvantage of this is that one 

loses the potentially improved classification accuracy that could potentially be obtained 

by classifying at multiple levels in a genre tree at once, and using a weighted average or 

sorne other form of co-ordination to obtain a final result. A final possibility would be to 
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consider the demographics of the listeners and musicians as features. Although the 

extraction of such features is beyond the scope of this paper, it may weil be the only 

apparent way to deal with categories that are objectively dissimilar but commonly used. 

2.5 Interrelations between categories 
An important part of constructing a genre taxonomy is determining how different 

categories are interrelated. This is, unfortunately, a far from trivial problem. Attempts to 

this point to implement an automatic classification system have sidestepped these issues 

by limiting their testing to only a few simple genres. Although this is acceptable in the 

early stages of development, the problem of taxonomical structures needs to be carefully 

considered if one wishes to construct a system that is scalable to real-world applications. 

This problem is discussed in a paper by Pachet and Cazaly (2000). The authours 

observe that retailers tend to use a four-Ievel hierarchy: global music categories (e.g. 

classical, jazz, rock), sub-categories (e.g. operas, Dixieland, heavy metal), artists and 

albums. Although this taxonomy is effective when navigating a physical record store, the 

authours argue that this taxonomy is inappropriate from the viewpoint of establishing a 

major musical database, since different levels represent different dimensions. In other 

words, a genre like "classical" is fundamentally different from the name of an artist. 

Pachet and Cazaly continue on to note that internet companies, such as Amazon.com, 

tend to build tree-like classification systems, with broad categories near the root level and 

specialized categories at the 1eaves. The authours argue that, although this is not in itself 

necessarily a bad approach, there are sorne problems with it. To begin with, the level that 

a category appears at in the hierarchy can vary from taxonomy to taxonomy. Reggae, for 

example, is sometimes treated as root-1evel genre and is sometimes considered a sub

genre of world music. 

A further problem is that there is a lack of consistency in the type of relation between 

a parent and a child. Sometimes it is genealogical (e.g. rock -> hard rock), sometimes it is 

geographical (e.g. Africa -> Aigeria), sometimes it is based on historical periods (e.g. 

Baroque -> Baroque Opera), etc. Although these inconsistencies are not significant for 

people manually browsing through catalogues, they could be problematic for automatic 

classification systems that are attempting to define genres using content-based features, as 

different musics from the same country or same historical period can be very different 

musically. 

Julie E. Cumming has adapted Ludwig Wittgenstein's ideas about the "family 

resemblance" between genres to music (Cumming 1999), and uses this theoretical basis 

as justification for favouring an exclusively genealogical organization of categories. She 

argues that, since lists of simple and well-defined binary features are insufficient to 

distinguish between sometimes amorphous genres, it would be wise to con si der genres in 
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terms of the similarities that they share with the features of genre families that they have 

descended from. 

An additional problem to con si der is that different tracks in an album or even different 

albums by an artist could belong to different genres. Many musicians, such as Neil Young 

and Miles Davis, write music in different genres throughout their careers. It seems clear 

that attempting to classify by musicians rather than individual recordings is problematic. 

Pachet and Cazaly argue that it therefore seems apparent that, ignoring potential 

problems related to size, it would be preferable to base taxonomies on individual 

recordings, rather than on artists or albums. In a later paper, however, Aucouturier and 

Pachet (2003) argue that one should in fact use taxonomies based on artist rather than 

title, as taxonomies based on title involve many more entries and result in categories that 

are overly narrow and have contrived boundaries. 

Pachet and Cazaly argue that it is necessary to build an entirely new taxonomy to 

meet the needs of any large scale musical database. They emphasize the goals of 

producing a taxonomy that is objective, consistent, independent from other metadata 

descriptors and that supports searches by similarity. They suggest the use of a tree-based 

system organized based on genealogical relationships, where only leaves would contain 

musical examples. Each node wou Id contain its parent genre and the differences between 

its own genre and that of its parent. 

The concems with existing taxonomies expressed by Pachet and Cazaly are certainly 

valid, but their proposed solution unfortunately has sorne problems of its own. To begin 

with, defining an objective classification system is much easier said than done, and 

getting univers al agreement on a standardized taxonomy is most probably an impossible 

task. Furthermore, their system does not deal with the reality that a single recording can 

sometimes reasonably be said to belong to more than one genre, nor does it deal with the 

potential problem of multiple genealogical parents that can compromise the tree structure. 

It seems apparent that sorne modifications are needed to Pachet and Cazaly's system, 

but sorne sort of hierarchal tree-based taxonomy nonetheless appears to be a convenient 

and realistic genre structure. Franco Fabbri (1982) suggests that, when faced with 

describing a genre to a pers on who is unfamiliar with it, most individuals do so by 

defining the genre as an intersection of other similar genres with labels known to both 

parties, by using a broader label under which the genre in question might faU or by 

explaining the genre using familiar terms such as definitions and emotive meanings. The 

former two methodologies are certainly consistent with a hierarchal structure with visible 

parents and siblings. 

A further issue to consider is the variable degree to which different genres branch out 

into sub-genres. Considered from a hierarchal tree-based perspective, this variability 

applies to both the depth and breadth of various branches. Sorne genres have many very 
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specialized sub-genres, such as electronic dance music (e.g. techno, jungle, rave, etc.). 

Others, such as pop-rock, tend to have fewer, broader and less specified sub-genres. For 

the purposes of creating a genre hierarchy, one must accept these inconsistencies rather 

than imposing unrealistically broad or narrow categories in order to avoid dissymmetry in 

the genre structure. 

2.6 Towards a successfullarge-scale taxonomy 

Aucouturier and Pachet (2003) divide methods of genre classification into three 

categories: manual, prescriptive and emergent. The manual approach involves humans 

performing the classification task by hand, while the prescriptive and emergent 

approaches involve automatic systems. 

Aucouturier and Pachet define the prescriptive approach as an automatic process that 

involves a two-step procedure: feature extraction followed by machine learning / 

classification. The prescriptive approach assumes a pre-existing taxonomy that a system 

can learn. Aucouturier and Pachet argue, reasonably enough, that prescriptive systems 

tend to be based on contrived taxonomies and that a truly useful system would need to be 

able to de al with much larger taxonomies than can successfully be modelled and kept up 

to date. A further problem is that it can be difficult to find training samples that are 

unambiguously representative enough to train a classifier properly. 

Aucouturier and Pachet argue that the emergent approach as the best alternative. 

Rather than using existing taxonomies, an emergent system attempts to emerge labels 

according to sorne measure of similarity. The authors suggest using similarity 

measurements based on audio signaIs as weIl as on cultural similarity gleaned from the 

application of data mining techniques to text documents. They propose the use of 

collaborative filtering to search for similarities in the taste profiles of different individuals 

and of co-occurrence analysis on the play lists of radio programs and the track listings of 

CD compilation albums. 

The emergent approach is untested, however, and it is difficult to predict how 

effective it would be in real life. Implementing the data mining techniques that would be 

required would be quite a difficult task. Furthermore, there is no guarantee that the 

recordings that get clustered together would be consistent with groupings that humans use 

in reality or would find convenient to use, nor is there any obvious provision for defining 

the types of genre structures and interrelations that humans find useful when browsing 

through categories. Nonetheless, the emergent approach holds more promise than naïve 

unsupervised learning, and is certainly worthy of investigation. 

In any event, such a system is clearly beyond the scope of this thesis. The use of a 

reasonable model taxonomy, while not ideal, is certainly effective enough for most 

practical use and for the purposes of this thesis. A logical future development would be to 
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merge the system developed here with modules that collect and consider non-content 

based socio-cultural data. Whether it is prescriptive or emergent systems that end up 

being more effective, the idea of automatically exploiting text documents to gather socio

cultural data is an interesting one, and should certainly be explored in future research. 
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3. Technical Background Information 

3.1 MIDI 

MIDI is an encoding system that is used to represent, transfer and store musical 

information. Instead of containing actual sound samples as audio encoding methods do, 

MIDI files store instructions that can be sent to synthesizers. The quality of sound 

produced when a MIDI file is played is therefore highly dependant on the synthesizer that 

the MIDI instructions are sent to. In effect, MIDI recordings give one much the same 

information that one would find in a musical score. MIDI, and other formats such as 

KERN, MusicXML or GUIDO, are often called "symbolic" formats because of this. 

Selfridge-Field (1997) provides a good overview of alternative symbolic formats to 

MIDI. 

The MIDI standard is known to have a number of weaknesses and disadvantages. 

There is a relatively low theoretical threshold on the amount of control information that 

MIDI can encapsulate, for example. Furthermore, it can be difficult and time consuming 

to properly record sophisticated synthesis instructions. In effect, a basic MIDI recording 

of a human performance will almost always sound significantly worse than an audio 

recording, partly because it is impossible to properly record the full range of control 

parameters of many instruments and partly because of limitations in synthesizers. 

MIDI recordings do, however, have a number of advantages over audio recordings. 

They are much more compact, which in turn makes them easier to store and much faster 

to process and analyze. MIDI recordings are also easier to edit, as they store simple 

instructions that are easy to view and change. This contrasts with audio recordings, where 

it is not currently possible (with the exception of simple monophonic music) to even 

correctly extract the actual notes being played. 

MIDI is therefore much more convenient th an audio if one wishes to extract precise 

high-1evel musical information. For the purposes of genre analysis, this is an important 

advantage, as it is desirable to look for patterns relating to notes, rhythms, chords and 

instrumentation, aIl of which are easy to extract from MIDI but currently difficult to 

impossible to extract from audio. More information on the advantages and disadvantages 

of MIDI in relation to genre classification can be found in Section 1.4. 

Only the portions of the MIDI specification that are relevant to the task of genre 

classification are discussed in this section in any kind of detail. The aspects of MIDI that 

are relevant to live performance but not to MIDI files, for example, are almost entirely 

ignored here. There are many books on MIDI, such as that by Rothstein (1995), which 

can be consulted for further information on MIDI. The complete specification is 
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published by the MIDI Manufacturers Association (2001). The MIDI Manufacturers 

Association web site also provides additional useful information. 

MIDI essentially consists of sequences of instructions called "MIDI messages." Each 

MIDI message corresponds to an event or change in a control parameter. MIDI messages 

consist one or more bytes of data, which fall into two types: status bytes and data bytes. 

The status byte is always the first byte of a MIDI message, always starts with a 1 bit and 

specifies the type of MIDI message and the number of data bytes that will follow to 

complete the message. Data bytes always start with a 1 bit, which means that each data 

byte has 7 bits free to specify values, with a resultant range of between 0 and 127. 

MIDI allows the use of up to sixteen different "channels" on which different types of 

messages can be sent. Each channel operates independently of the others for most 

purposes. Channels are numbered from 1 to 16. There is no channel O. 

There are two important classes of MIDI messages: "channel messages" and "system 

messages." The former influence the behaviour of only a single channel and the latter 

affect the MIDI system as a whole. "Channel voice messages," a type of channel 

message, are the only type of messages that are relevant to this thesis. The four least 

significant bits of the status byte of aIl channel voice messages indicate the channel 

number (0000 is channel 1 and 1111 is channel 16). "Note On," "Note Off," "Channel 

Pressure," "Polyphonic Key Pressure," "Pro gram Change," "Control Change" and "Pitch 

Bend," as discussed below, are aIl channel voice messages. 

A Note On messages instructs a synthesizer to begin playing a note. This note will 

continue playing until a Note Off message is received corresponding to it. The four most 

significant bits of the status byte of aIl Note On messages must be 1001 and, as with aIl 

channel voice messages, the four least significant bits specify the channel on which the 

note should be played. Note On messages have two data bytes. The first specifies pitch, 

from 0 to 127, and the second specifies velocity, also from 0 to 127. Pitch is numbered in 

semitone increments, with note 60 being designated as middle C (equal temperament 

tuning is used by default), although synthesizers can be instructed to use altemate 

arrangements and tunings. The velocity value specifies how hard a note is struck, which 

most synthesizers map to initial volume. 

A Note Off message has an identical format to a Note On message, except that the 

four most significant bits of the status byte are 1000. The pitch value specifies the pitch of 

the note that is to be stopped on the given channel and the velo city value specifies how 

quickly a note is released, which is generally mapped to the fashion in which the note dies 

away. Many synthesizers do not implement Note Off velocities. A Note On message with 

velocity 0 is equivalent to a Note Off message for the given channel and pitch. 

Channel Pressure messages specify the overall pressure for aIl notes being played on a 

given channel. This can be mapped by synthesizers in a variety of ways. Aftertouch 
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volume (loudness of a note while it is sounding) and vibrato are two common mappings. 

The status byte of Channel Pressure messages has 1101 as its four most significant bits, 

and there is one data byte that species the pressure (between 0 and 127). 

Polyphonic Key Pressure messages are similar to Channel Pressure messages, except 

that they contain an addition al byte (the one immediately following the status byte) that 

specifies pitch, thus restricting the effect of the message to single notes rather than to aH 

notes on a channel. The most significant bits of the status byte are 1010. 

Program Change messages allow one to specify the instrumental timbre that is to be 

used for all notes on the specified channel. The terms "program," "patch" and "voice" are 

often used in reference to the instrumental timbres specified by Pro gram Change 

messages. The most significant bits of the status byte are 1100 and there is a single data 

byte specifying patch number, from 0 to 127. 

The particular 128 instrumental timbres and sound effects corresponding to particular 

patch numbers are specified by the MIDI Pro gram Table, which is part of an addendum to 

the MIDI specification called General MIDI. All notes sent to a given channel will be 

played using the patch specified by the most recent Program Change message sent to that 

channel. There is one exception to this, however. All notes played on channel 10 are 

considered to be percussion notes, and General MIDI specifies a separate Percussion Key 

Map specifying 47 percussion timbres that are always used for notes sent to channel 10. 

The timbre that is used for notes on channel lOis specified by the pitch value of Note 

Ons, not by Pro gram Change messages. Rothstein (1995) gives the details of the MIDI 

Program Table and the General MIDI Percussion Map. 

Control Change messages affect the sound of notes that are played on a specified 

channel. Common parameters include volume and modulation. There are 121 MIDI 

controllers, including sorne that are unspecified, although many synthesizers do not 

implement most, or ev en any, of these. The four most significant bits of the status byte of 

Control Change messages are 1011. The first data byte specifies the controller that is 

being referred to, from 0 to 120. There is a second data byte that specifies the setting of 

the controller, from 0 to 127. 

If a greater resolution is required, a second Control Change message can be sent to 

supplement the first, resulting in a resolution of 16 384. Controllers 0 to 31 represent the 

most significant byte in this case, and controllers 32 to 63 represent the least significant 

byte. Two Control Change messages can thus cause a single change to be implemented 

with much greater resolution than a single Control Change message. 

Control Change messages are generally intended for use when performing with 

continuous controllers. They are only standardized to a limited extent, and many 

synthesizers do not implement them. They are thus of limited applicability to this project, 

which analyzes MIDI files in the context of scores rather than performance nuances. 
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Control Change messages are often absent in MIDI files, and the lack of standardization 

could cause a good deal of noise. They are therefore only considered in a very limited 

capacity in this thesis. Rothstein (1995) gives the details of particular Control Change 

messages. 

Pitch Bend messages allow microtonal synthesis. The four most significant bits of the 

status byte of such messages are 1110. There are two data bytes, the first of which 

specifies the least significant byte of the Pitch Bend and the second of which specifies the 

most significant byte. Maximum downward bend corresponds to data byte values of 0 

followed by 0, centre pitch (no bend) corresponds to values of 0 followed by 64 and 

maximum upward bend corresponds to values of 127 followed by 127. General MIDI 

specifies that the default Pitch Bend range is plus or minus two semitones. This can be 

altered on synthesizers, however, so one must be careful to ensure that the Pitch Bend 

range that is actually played corresponds to what is desired. 

MIDI timing is controlled by a clock which emits "ticks" at regular intervals. Clock 

rates are usually related to note durations in terms of parts per quarter note (ppqn). A 

greater ppqn corresponds to a greater rhythmic resolution, which allows one to have push 

or lag the beat or to represent complex tuplets with a greater precision. The most 

commonly used resolution is 24 ppqn, which allows sufficient resolution to permit 64th 

note triplets. At 24 ppqn, a half note corresponds to 48 ticks, a quarter note to 24 ticks, an 

eighth note to 12 clicks, at sixteenth note to 6 clicks, etc. It should be noted that the actual 

speed of playback of quarter notes is controlled by tempo change meta-events (see 

below). 

The alternative to ppqn resolution is the SMPTE time code (Society of Motion Picture 

and Television Engineers 1994), which is divided into hours, minutes, seconds and 

frames. This is very useful when synchronizing MIDI to media such as film or video. 

There are variations of SMPTE for different frame rates. The 30 frames per second rate is 

the one most commonly used by MIDI. 

MIDI messages are often used in real-time performances as a communications 

proto col. It is, however, often convenient to store MIDI data in files to be accessed later, 

and it is this form of MIDI data that is of interest in this thesis. Although sequencers can 

use a variety of proprietary formats for storing data, there are three standard MIDI file 

formats, numbered 0, 1 and 2 (MIDI Manufacturers Association 2001). The main 

difference between these standard formats is the manner in which they de al with "tracks," 

which can be used by sequencers to segment different voices. Format 0 files consist of a 

single multi-channel track, Format 1 files have multiple tracks that aIl have same meters 

and tempos (the first track contains the tempo map that is used for aIl tracks) and Format 

2 files have multiple tracks, each with their own tempos and meters. Format 1 files are the 

most commonly used, and Format 2 files are very rarely used. 
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AlI standard MIDI files consist of groups of data called "chunks," each of which 

consist of a four-character identifier, a thirty-two bit value indicating the length in bytes 

of the chunk and the chunk data itself. There are two types of chunks: header chunks and 

track chunks. 

The header chunk is found at the beginning of the file and includes the type of file 

format (0, 1 or 2), number of tracks and the division. The division value can mean one of 

two things, depending on whether it specifies the use of either quarter-note timing 

resolution or SMPTE. In the former case, it specifies the timing resolution of a quarter 

note. In the latter case, it specifies the SMPTE frame rate and the number of ticks per 

SMPTE frame. 

Track chunks, in tum, contain aIl of the information and MIDI messages specific to 

individual tracks. The time between MIDI events is specified using delta times, which 

specify the amount of time that has elapsed between the current event and the previous 

event on the same track. This is done because it requires less space than simply listing the 

absolute number of MIDI ticks that pass before an event occurs. 

MIDI messages and their associated delta times are called "track events." Track 

events can involve both MIDI events and "meta-events." Meta-events provide the ability 

to include information such as lyrics, key signatures, time signatures, tempo changes and 

track names in files. 

Key signature meta-events include two pieces of information: si and mi. si indicates 

the number of fiats (negative numbers) or sharps (positive numbers). For example, C 

major and A minor are represented by 0 (no sharps or fiats), 3 represents 3 sharps and -2 

represents 2 fiats. mi indicates whether the piece is major (0) or minor (l). 

Time signature meta-events contain four pieces of information: 1111, dd, cc and bb. 1111 

and dd are the numerator and denominator of the time signature respectively. cc is the 

number of MIDI ticks in a metronome click and bb is the number of 32nd notes in a MIDI 

quarter note. It should be noted that dd is given as a power of 2, so a dd of 3 corresponds 

to 2"3 = 8. Thus, a time signature of 5/8 corresponds to 1111 = 5 and dd = 3. 

Tempo change meta-events consist of three data bytes specifying tempo in 

microseconds per MIDI quarter note. The default tempo is 120 beats per minute if no 

tempo is specified. 

3.2 Feature extraction and evaluation 
Musical feature extraction involves processing a recording with the aim of generating 

numerical representations of what are, hopefuIly, traits of the recording that are 

characteristic of the category or categories that it should be classified as belonging to. 

These features can then be grouped together into feature vectors that serve as the input to 

classification systems. 
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Deciding upon appropriate features can be a difficult task, as it is often unclear which 

features will be useful ahead of time. Furthermore, it is not al ways easy to extract the kind 

of features that one would ideally like. Although one can make limited assumptions as to 

the types of features that might work weIl based on one's experience and knowledge, 

there is often at least sorne amount of guesswork involved in the choice of features in 

cases such as genre classification, where a diverse and sometimes ambiguous range of 

factors are involved in category differentiation. 

Although there are a wide variety of classification techniques available, their 

effectiveness is ultimately limited by the quality, consistency and distinguishing power of 

the features that they are provided with. No classification system can perform its job 

effectively if the features that it is given do not segment a population into different 

groups. 

Intuitively, one might think that a solution to poor classification performance would 

be to increase the number of features. Although this is true up to a point, experimental 

evidence has shown that too many features can actually cause classification performance 

to degrade. In fact, the "curse of dimensionality" states that, in general, the need for 

additional training samples grows exponentially with the dimensionality of the feature 

space (Du da, Hart & Stork 2001, 169-170). More features can also necessitate greater 

training times. It is therefore necessary to carefully select the features that one is to use, in 

order to have enough features to be able to effectively discriminate between categories 

while at the same time not overwhelming the classifier. 

From one perspective, redundancy should be avoided when choosing features in order 

to decrease the total number of features. However, it could also be argued that slightly 

different representations of similar information may prove more or less successful at 

distinguishing between particular genres. One should therefore not reject features out of 

hand simply because of sorne overlap with other features. 

To further complicate matters, having only a few specialized features available for a 

particular type of classification can be problematic if new categories are added to the 

classification taxonomy later for which the previously used set of features are 

inappropriate. It is therefore useful for one to have a large and diverse set of features on 

hand that can be taken advantage of if new developments in a classification problem 

make them necessary. 

It is clear that it is imperative to have an effective way of evaluating features so that 

the best ones can be chosen in the context of particular taxonomies and classification 

problems. This process is known as feature selection. There is also a related procedure, 

known as feature weighting, where different features are given varying degrees of 

influence in classifications. The choice of features that will work best ultimately depends 

on the classification methodology being used, the taxonomy that classifications are based 
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on and the size and diversity of the training and testing sample sets. The best that one can 

do in terms of feature evaluation and selection is to start out with a wide selection of 

candidate features and use feature selection methods to choose ones that work weIl 

together for the problem at hand. 

Fortunately, there are a range of effective feature selection techniques available. 

Although few of them can guarantee optimal feature selection even for the training set, to 

say nothing of the overall population of samples being classified, they often can 

significantly improve classification results compared to the case where classification is 

performed without feature selection. 

There is a class of dimensionality reduction techniques that operate by statistically 

analyzing a feature space without needing to perform actual test classifications to evaluate 

classification performance with test features subsets. This can be an important time saver, 

as training sorne classifiers can be computationally intensive. Princip le component 

analysis (PC A) and factor analysis are two commonly utilized techniques of this type. 

They operate by projecting multi-dimensional data into a lower-dimensional subspace by 

forming linear combinations of new features in a way that preserves the variance of the 

original features. 

A drawback of these techniques is that an emphasis is placed on those features that 

have the greatest variability in general, which may not necessarily coincide with the 

particular variability that one needs when dealing with a particular taxonomy. For the 

purpose of classification, one is interested in features for which the difference in category 

means is large relative to the standard deviations of each of these means. Dimensionality 

reduction techniques such as PCA and factor analysis simply select those features for 

which the standard deviations are large, and do not consider the particular categories that 

samples belong to in a particular taxonomy. 

Although, there are a variety of multiple discriminant analysis techniques that can be 

used to perform dimensionality reduction with the particular needs of classification in 

mind, there is a further problem with aIl of these dimensionality reduction techniques that 

must be considered. A by-product of aIl of these processes is that one ends up with a new 

set of features that cannot be mapped back to individual features in the original feature 

space. Although this is not necessarily problematic if one is only concemed with 

classification performance, it is a significant drawback if one wishes to glean information 

about how weIl particular features perform relative to one another or in regards to 

different kinds of classifications. 

Another approach to feature selection involves actually performing classifications of 

the training samples with different subsets of the features available and seeing which 

combinations perform best. Those features that do not perform weIl can be eliminated 
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from consideration when the final classifier is trained, or can be given lower weightings 

by the classifier. 

Experimental techniques of this type have the advantage that they give one insights 

into which of the original features are useful in particular types of classifications and 

which are not. The disadvantage is that these techniques can be quite computationally 

intensive, particularly if there are many candidate features or if the classification 

techniques being used to test the performance of different feature subsets are themselves 

computationaIlyexpensive. 

A naïve approach would be to simply statistically measure how weIl each feature 

individually segments the training data into the appropriate groups and then choose the 

highest performers. One problem with this approach is that it does not necessarily ensure 

that features will be chosen that will be effective for classifying samples into every 

needed category. A feature might perform very weIl at correctly classify samples 

belonging to two particular categories, for example, but consistently misclassify samples 

belonging to a third category. 

Although this problem could be solved by incorporating a system that increases the 

ranking of features that help to distinguish between categories for which no other 

effective features have been found, there is another important problem that must be 

considered. Several separate features that have little discriminating power when 

considered individuaIly, and which might therefore be rejected by this naïve feature 

evaluation approach, could in fact be very useful when considered together. A feature 

evaluation system must therefore consider the discriminating power of features operating 

collectively as weIl as individuaIly. 

IdeaIly, one would like to exhaustively test every possible subset of candidate 

features. This would ensure that the features selected would be optimal for the training 

samples. Of course, this does not necessarily guarantee that they will be optimal for the 

overall population, so overfitting can be a problem, but then no feature selection method 

of any kind can guarantee that results based on training samples will generalize weIl to 

the population as a whole. 

Exhaustive examination of aIl possible combinations of features is certainly attainable 

in sorne cases, but in others limitations on computing power and the demands of the task 

make it practical only to test a fraction of aIl possible feature combinations. This is 

particularly true when dealing with large feature sets, a great number of training samples 

and computationally intensive classifiers. Although techniques such as branch and bound 

searching can be used to improve the speed of exhaustive examinations, there can still be 

many cases where exhaustive examinations are intractable. Fortunately, there are a 

variety of techniques available that allow one to find a good, although not necessary 

optimal, feature subset without needing to test aIl possible combinations. 
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One simple approach is to limit the number of selected features to sorne maximum 

number n, and then exhaustively test the performance of aIl feature subsets of size n or 

less. This has a good likelihood of performing weIl, as the curse of dimensionality implies 

that one would not want to use aIl that many features in any case. A variation of this 

technique is to choose the best m feature subsets selected this way and implement a 

separate classifier for each. Final classification results could be arrived at by combining 

the results of these classifiers using a coordination system (see Section 6.5 for more 

information on the coordination of classifiers). These approaches can significantly cut 

down on computational demands relative to exhaustive searches, but they can still be 

computationally intensive if n is high or there are many features. 

Forward selection and backward selection are two common feature selection 

techniques that allow one to further reduce computational demands. Forward selection 

operates by starting with the empty set and adding features one by one until sorne 

maximum number of features are selected. This process begins by first considering aIl 

possible feature subsets consisting of one feature only, and choosing the best one. Next, 

aIl possible feature subsets consisting of this feature and one other feature are considered, 

and the best performer is chosen. Features are thus added iteratively one by one to the 

previously selected features until the maximum number of features are attained. 

Backward selection, in contrast, starts with the full set of features, and iteratively removes 

features one by one. 

A problem with these two techniques is that there is no way to remove (or restore) a 

feature once it has been added (or taken away). This problem, called nesting, can be 

significant, since a feature that performs weIl early on in the feature selection process 

may actually not be one of the best features to choose. A technique called forward "plus 1 

take away r" overcomes nesting by first applying forward selection 1 times and then 

applying backward selection r times. A variation of this technique, called sequential 

floating selection, dynamicaIly assigns the values of 1 and r, instead of fixing them (Pudil 

et. al 1994). 

An alternative way to select features experimentally is to use a class of techniques 

called genetic algorithms (GA's). GA's can be used for a wide variety of purposes, and 

are often used for optimization problems where exhaustive searches are not practical. 

Siedlecki and Sklansky (1989) pioneered the use of genetic algorithms for feature 

selection, and they have been used successfuIly in the past with respect to music 

classification (Fujinaga 1996). Recent research has found that GA's are particularly 

effective "in situations where the search space is uncharacterized (mathematically), not 

fully understood, or/and highly dimensional," aIl of which certainly apply to the task of 

genre classification (Hussein, Ward & Kharma 2001). There is also sorne evidence that, 
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III general, GA's perform feature selection better but slower than greedy search 

algorithms (Vafaie & Imam 1994). 

GA' sare inspired by the biological process of evolution. They make use of data 

structures called "chromosomes" that iteratively "breed" in order to evolve a hopefully 

good solution to a problem. Each chromosome consists of a bit string that encodes the 

solution to the problem that the GA is being used to solve. This bit string is effectively the 

DNA of a chromosome, and is combined with the bit strings of other chromosomes when 

breeding occurs. Each bit string has a fitness associated with it, which indicates how well 

its bit string solves the problem at hand. 

In the case of feature selection, each bit in the bit string could represent a feature, with 

a value of 1 implying that the feature is to be used and a value of 0 implying that it is not 

to be used. Alternatively, bit strings could be segmented into multi-bit words, each of 

which encodes a numerical value that represents the weighting of a feature. 

A GA begins with a population of many chromosomes whose initial bit strings are 

randomly generated. Reproduction, and hence the evolution of a solution, occurs through 

a process called crossover. Sorne fraction of the chromosomes, based on a GA parameter 

called the crossover rate, is selected for reproduction, with the remaining chromosomes 

being eliminated. One way of selecting the chromosomes that will reproduce, called the 

roulette method, assigns a probability of selection for reproduction to each chromosome 

based directly on its fitness. An alternative, called rank selection, ranks the chromosomes 

based on fitness and then bases the probability of selection for crossover on this ranking. 

This latter approach prevents one or a few chromosomes with very high relative fitnesses 

from dominating early on, as this could lead to a local minimum in error space that is far 

from the global minimum. 

In general, the actual process of crossover involves taking two of the chromosomes 

selected for breeding and breaking the bit string of each one into two or more parts at 

randomly selected locations. The resulting child is generated with a bit string constructed 

from the pieces of the bit strings of its parents. An alternative approach involves going 

through the bit strings of the parents one bit at a time and copying the bits to the child 

when the values for the parents correspond and randomly selecting a bit's value when the 

corresponding bit of the two parents differs. Each parent chromosome can reproduce 

multiple times, either polygamously or monogamously. 

There are several additional features that are sometimes incorporated into GA's as 

weIl. "Mutation" involves assigning a probability (usually very small) to every bit of 

every child's bit string that the bit will be flipped. Elitism involves automatically cloning 

the chromosome with the highest fitness from one generation to the next. Villages or 

islands involve segregating the chromosomes into different groups that evolve 

independently for the most part, but occasionally exchange a few chromosomes. 
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A simplified version of genetic algorithms, known as random mutation hill climbing, 

is also occasionaIly used. This involves eliminating the crossover step, and having the 

population improve through mutation only. 

Genetic algorithms have been shown to find good solutions to many problems, 

although not necessary the optimal ones. Their success is highly dependant on the 

goodness of the fitness function that is used. In the case of feature selection, this fitness 

function is related to how weIl the selected feature subsets perform in classifying the 

training set. 

GA's can be computationally expensive, particularly if fitness evaluation is 

expensive, since fitness must be ca1culated for each chromosome at each generation. This 

makes them suitable for classification techniques that require little or no training time, 

such as nearest-neighbour classifiers (see Section 3.3), but less appropriate for classifiers 

that are computationally expensive to train. 

It should be noted that simple statistical techniques could be combined with any of the 

methods listed above in order to offer sorne additional increases to performance. For 

example, one could consider features one by one, and measure the standard deviations of 

the central means of each feature for each classification category. A high standard 

deviation would indicate a good disceming power for a feature. The standard deviation of 

a feature's values within each category could also be considered, as a large variation 

would indicate that the feature wou Id likely not coherently cluster samples in the given 

category, and would perform poorly if one's goal is to find ail samples belonging to that 

category, for example. Cross-correlations and covariances could also be calculated in 

order to see how similarly different features change across categories in order to eliminate 

redundant features. 

Although this approach certainly has limitations that would hamper it usefulness if it 

was used alone, as discussed earlier in this section, it could nonetheless provide sorne 

basic information that could be used by an expert feature selection system, for example, 

that also makes use of sorne of the more sophisticated techniques discussed earlier in this 

section, such as GA's. 

There are a number of lesser used feature selection techniques that have not been 

discussed here. Jain and Zongker (1997) have written a good overview of experimental 

feature selection methods as weil as an empirical study of their relative performance. 

Kirby (2001) offers a good resource for those looking for more specialized techniques 

than those discussed here. The books of Duda, Hart and Stork (2001), Fukunaga (1972) 

and James (1985) provide good references on feature selection in general. Sakawa's book 

(2002) is an excellent resource for more information on genetic algorithms in general, and 

Hallinan (2001) pro vides an excellent literature review and practical guide to the use of 

genetic algorithms for feature selection. 
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3.3 Classification methods 

There are a variety of methods available for automatically classifying information 

based on features. For reasons discussed in Section 1.5, only supervised leaming 

techniques are considered here. Which classification technique is appropriate to use in a 

given situation depends on the type of population that is being classified, the amount of 

knowledge one has about the statistical properties of the population, the taxonomy that is 

being used to organize the population, the types of features that are being used, the 

computational power available and the amount of training and classification times that are 

considered acceptable. 

There is not enough space here to coyer the full range of classification techniques 

available in any amount of detail. This section therefore limits detailed descriptions to 

those classifiers which are actually used in this thesis, namely k-nearest neighbour and 

feedforward neural network-based classifiers. Before describing the details of these 

methods, however, other techniques are briefly mentioned in order to make it possible to 

explain why they were not used, and to make it clear under what circumstances it would 

be appropriate to use them. Those looking for further details should consult Duda, Hart 

and Stork's (2001) or Jain et al.'s review of classifiers (1999). The books of Russell and 

Norvig' s (2002) and Mitchell (1997) are also excellent references for those looking for 

information on machine leaming. Briscoe and Caelli (1996) coyer a variety of existing 

machine leaming systems that have been implemented, although sorne of these have 

bec orne somewhat dated. 

Rowe (2001) is a good resource for those wishing to apply artificial intelligence 

techniques to musical tasks. Although this book touches on the actual techniques in less 

detail and much less rigorously than sorne of the other resources discussed in this section, 

it is a very good introduction to artificial intelligence from a musical perspective and 

provides sorne good ideas relating to how music can be conceptualized and represented in 

ways that computers can deal with effectively. 

In the ideal case, one would have full knowledge of the probability structure 

underlying the population that one is classifying. This means that the statistical 

distribution of the population's features would be known. If this is the case, then one can 

use the optimal Bayes classifier. If, rather than knowledge of the distribution based on 

parameter vectors one has knowledge of the causal re1ationships among component 

variables, it is then possible to use Bayesian belief networks. 

It is unusual that one has this amount of knowledge about the properties of a 

population, unfortunately. Even if one does not know the particular parameters of a 

population's distribution, however, knowledge of the general form of the distribution 

makes it possible to use techniques such as maximum-likelihood estimation and Bayesian 

parameter estimation in order to estimate them. One such technique, hidden Markov 
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models, is of particular interest if one wishes to perform classifications that take into 

account the temporal order of events. Rabiner in particular has written two good tutorials 

on hidden Markov models (Rabiner & Juang 1986; Rabiner 1989). 

There are also classification techniques available if one has no prior knowledge of the 

underlying probability structure of a population, and is forced to rely only on information 

gleaned from training samples. This class of techniques is known as nonparametric 

techniques, and include the nearest-neighbour algorithm and potential functions. There 

are also nonparametric methods for transforming the feature space with the goal of being 

able to employ parametric metrics after the transformation. These include analysis 

methods such as the Fisher linear discriminant. There is also a related class of 

classification techniques that involve neural networks, a set of techniques inspired by, 

although not accurately simulating, the processes utilized by the neurons of human and 

animal brains. 

Another class of techniques use functions to map the features of a problem to a higher 

dimensional space, where appropriate category boundaries can be found. Support Vector 

Machines (SVM' s) are a well-known example of this type of classifiers. 

Finally, there is a class of classification techniques that are based on leaming logical 

rules rather than using statistical methods. These nonmetric methods include tree-based 

algorithms and syntactic-based methods involving grammars. These techniques require 

the use of nominal data, which is to say features with discrete values that do not involve 

any natural notion of similarity or ordering. In practical application, continuous features 

can be divided into discrete categories (e.g. small or big), although the dividing point is 

usually somewhat arbitrary, and these techniques are better suited to features where no 

such arbitrary dividing point is necessary (e.g. has a tail or does not have a tail). 

In the particular case of musical genre classification as dealt with in this thesis, no a 

priori knowledge is available regarding the distribution of the feature values of the 

population, so it would be inappropriate to make the unfounded assumptions that would 

be necessary to use techniques that rely upon such knowledge. 

Nonmetric methods are certainly attractive, as they not only perform classifications, 

but also provide information about how the classifications were arrived at. Part of the 

goal of this thesis is to develop and use a wide library of candidate features for 

classification, however, where values are often continuous and di vi ding points are not 

necessarily obvious. This limits the applicability of nonmetric methods, with their 

requirement for nominal data, to the task at hand. Future research using specialized 

features and nonmetric classifiers could certainly be of interest, however. 

Nonparametric techniques stand out as the best choice for situations such as automatic 

musical genre classification of the type studied here, where one must rely solely on 

training samples in order to leam the information necessary to perform classifications. Of 
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the nonparametric techniques available, k-nearest neighbour and neural network-based 

classifiers are two of the most commonly used, and have repeatedly been found to 

perform weIl for a variety of classification tasks. They therefore deserve special attention. 

The k-nearest neighbour (KNN) classification technique is one of the simplest and 

most commonly used nonparametric methods. Training operates simply by storing the 

coordinates of each training sample in the multi-dimensional feature space. Test samples 

can then be classified by examining their surroundings in feature space and finding the 

labels of the nearest k training points. In other words, a cell is grown in feature space 

around a test point until the k nearest training points are captured. If a test point happens 

to fall in a region of high training point density, the cell will be relatively small, and if the 

test point falls in a region of low density, then the cell will be large, but will rapidly stop 

expanding when it enters a region in feature space of high density. 

The probability that a test point belongs to a given category can be estimated by the 

number of training points captured divided by k. This is useful, since it allows one to 

obtain a score for potentially more than one category when classifications are performed, 

which is beneficial if an ensemble of classifiers is being used or if samples can belong to 

multiple categories. 

The choice of k is important, as a k that is too large can include more points than there 

are training points of the appropriate category, thus inappropriately including points of 

other classes even if the training points are well clustered. A k that is too small, on the 

other hand, can make the classifier too sensitive to noisy training points. Rather than 

using an arbitrary constant for k, it is usually a function of n, the number of training 

samples, most commonly the square root of n. In practice, however, it might be wise to 

also make it a function of the number of training samples in each category, otherwise 

categories with too few training samples could be overlooked by the classifier as the 

captured area expands beyond their neighbourhood in order to capture k training points. 

There are a variety of distance measures that can be used to ca1culate which points are 

closest to a test point. Euclidean distance is often used, although it is sometimes 

appropriate to use alternatives such as Manhattan distance, Tanimoto distance or tangent 

distance. It is often wise to pre-process features in order to ensure that the y have roughly 

the same range of values, otherwise features with large values will potentially 

inappropriately dominate distance measurements over features with small values. 

An important advantage of KNN classifiers is that they require a negligible amount of 

training time, since all that the y must do is memorize the coordinates of the training 

samples. Classifying a test point can be somewhat computationally expensive using a 

naïve implementation of KNN, however, particularly if a large number of features (cl) 

and, more importantly, training samples (n) are used. Using big-O notation, the naïve 
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implementation actually has O( dn2
) complexity. A variety of alternative computationally 

efficient KNN implementations are discussed in Duda, Hart and Stork (2001). 

A variation of the basic KNN classifier involves assigning weights to the different 

features, so that sorne play a more important role in distance measurements. This is tied to 

feature selection weighting methods. Although this can improve classification accuracy, it 

has the disadvantage that sorne method must be used to train the weightings, such as 

genetic algorithms, that willlikely require additional training time. 

Despite their advantages in training speed, KNN classifiers are limited in the ways in 

which they can model relationships between features. Classifications are based entirely on 

distances, and no considerations of conditional relationships can be made. For example, if 

one is attempting to classify musical recordings based on the fraction of aIl notes played 

by each instrument, the presence of an eJectric guitar would automatically eliminate aIl 

traditionally performed pre_20th century classical music categories from contention. A 

classifier capable of building conditional relationships between features, such as a human, 

could then consider other features with the assumption that the recording is not classical 

music in mind. KNN classifiers, in contrast, are incapable of deducing such sophisticated 

relationships, and can only consider features as a whole. The extensive use of a flute in a 

recording also containing a small amount of electric guitar, for instance, might cause a 

KNN classifier to conclude that the recording is a classical flute sonata, rather than the 

correct classification of, for example, progressive rock. 

Neural networks (NN's) provide a means of performing classifications that can 

encapsulate more sophisticated relationships than KNN classifiers. Although there are 

many varieties of NN' s used for many types of tasks including but not limited to 

classification, the emphasis is placed here on multilayer feedforward NN' s, which are the 

type most often used for supervised learning for the purpose of classification. There has 

been a significant amount of research showing the applicability of NN's to musical 

problems, such as that by Stevens and Latimer (1997), to cite just one example. 

NN's are inspired by and loosely modelled on biological processes in the human 

brain. Neural networks are composed of units (inspired by human neurons) that are 

connected by links, each with an associated weight. Learning in NN' s takes place by 

iteratively modifying the values of the weights. 

Units in feedforward NN's are organized into layers. The input layer is composed of 

units where patterns of numbers are fed into the network. For classification purposes, 

each unit in the input layer is normally given values corresponding to a single feature. 

There is also an output layer, whose units provide the output of the network in response to 

the patterns placed on the input units. One approach to using networks for classification 

tasks involves having one output unit for each possible classification category. There may 
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also be one or more hidden layers, whose units and weights are used for processing and 

learning by the network, and which are treated as the inside of a black box. 

Bach unit in a feedforward NN has a link to every unit in the previous layer (if any) 

and to every unit in the subsequent layer (if any). Bach unit also has a current "activation 

level," which is the value propagated down the links leading to the subsequent layer (or to 

the output sensors). 

The activation level of a unit is calculated by adding the values on aIl of the links 

coming into the unit from units in the previous layer (or input sensors) and processing the 

sum through an "activation function." The values on each link are calculated by 

multiplying the value placed on it by the link's weight. Sorne feedforward NN's also 

include a "bias unit" for each hidden or output unit that outputs a constant value through a 

link 

The activation function is generally a function with a range of 0 to 1 that, generally 

speaking, maps input sums over 0 to 1 and input values under 0 to O. This function must 

be continuous, as its derivative is taken during training. A commonly used such function 

is the sigmoid function: 

sigmoid(x) = _l_ 
1+ e-x 

(1) 

So, to put it more formally, the net input into an input unit is simply the input value 

placed on it. The net input into a hidden or output unit} is given by: 

(2) 
i=l,n 

where Wb is the weight of the bias link, b is the bias constant (0 if no bias units are used), 

each i corresponds to a unit in the preceding layer, n is the number of units in the 

preceding layer, wij is the weight on the link from unit i to unit}, and Oi is the output of 

unit i. The output of a unit} with net input netj and a sigmoidal activation function is: 

0; = sigmoid(net;) (3) 

Feedforward NN' sare trained by putting trammg patterns on their inputs and 

observing how the output of the network differs from the model output. Weights are then 

adjusted in order to make the output doser to the model through a process called gradient 

decent. The process of first adjusting the weights leading into the output nodes and then 

successively adjusting the weights in each earlier layer is known as "backpropagation." 

The training modifications to the weights leading into an output unit k are adjusted by 

first calculating Jk, the error signal: 
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(4) 

where tk is the target or model activation value for the unit k, Ok is the actual activation 

value, netk is the net input into k, and fis the derivative of the activation function. For the 

sigmoid activation function: 

(5) 

The weights leading into output unit k from each unit j in the preceding layer, Wjk. are 

adjusted as follows from iteration t to iteration t+ 1: 

(6) 

where 

~Wik (t) = W ik (t) - W ik (t -1) (7) 

and 1J and a are NN parameters known as the leaming rate and the momentum 

respectively. The momentum term is sometimes omitted. These parameters are often set 

to between 0 and 1, and control how quickly a NN converges towards a stable solution 

and how likely it is to get stuck in a poor local minimum in error space far from the 

global minimum. The leaming rate controls how large the adjustments to the weights are 

each iteration (i.e. how large the steps are in error space towards a solution) and the 

momentum stops the network from oscillating wildly in error space from iteration to 

iteration by taking into account the previous adjustment to each weight. Increasing the 

leaming rate can cause a network to converge faster, but a value that is too high may also 

cause the network to jump around so much that it does not converge. Increasing the 

momentum also usually increases the speed of convergence, but can cause po or 

performance if it is set too high. It should be noted that the initial value of the weights is 

randomly determined, and the range of initial values that are permitted here can also have 

an effect on how a network converges. 

The error rate for a hidden unit,j, behind units k in a subsequent layer is given by: 

8; = j'(neti)L 8k W ki 
k 

(8) 

The weight change formula for the weights of the input links to a hidden unit is the same 

as that for an output unit (equation 7). 

There are a variety of ways of going about the training process, aIl of which usually 

pro duce similar results. One can simply feed the training samples into the network one by 

one, and adjust the weights after each sample. This can be done as above or, if one is 
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inclined to be more mathematically orthodox, one can only actually implement the weight 

adjustments after aIl of the adjustments have been calculated for a particular training 

sample. Alternatively, one can choose to not actually implement the weight changes until 

aIl of the training samples have been run through the network once, after which aIl of the 

weight changes are implemented collectively. In practice, either approach works weIl, but 

it is generally a good idea to randomly order the training samples if the former approach 

is used, to avoid receiving many similar patterns consecutively, which could be conducive 

to falling into a poor local minimum in error space. 

In any event, the entire training set usually needs to be input to the network during 

training many times before the network converges to a solution. Each time the entire 

training set is processed once and the weights updated is called an epoch or a training 

iteration. An indication of convergence can be measured by observing the rate of change 

from epoch to epoch of the sum of squares error, E: 

(9) 

between the model output activation values and the actual values. Convergence can 

generally be said to have occurred when this error stops changing significantly from 

epoch to epoch, although it is not unknown for a network to seemingly converge for a 

large number of epochs before suddenly changing dramaticaIly. 

Like any non-optimal system, neural networks carry the danger of converging to a 

local minimum in error space that corresponds to a significantly worse solution than the 

optimal solution. This is in general unavoidable, since the optimal solution is likely 

unknown and its calculation likely intractable if one is resorting to a non-optimal system 

such as neural networks. This makes it difficult to know whether a particular solution is a 

poor local minimum or not. Sorne experimentation with the NN parameters for a 

particular problem can help to reduce the likelihood of converging to a particularly poor 

solution. 

There is sorne disagreement in the literature as to the appropriate number of hidden 

layers to use and how many hidden units should be used in aIl. de Villiers and Barnard 

(1992) do offer sorne convincing arguments that more than one hidden layer can actually 

degrade performance rather than improve it. There have been a number of formulas 

proposed as to the ideal number of hidden units to use. For example, Wanas et al. (1998) 

claim that the best performance, in terms of both performance and computation time, 

occurs when the number of hidden nodes is equal to log(n), where n represents the 

number of training samples. There is no real consensus on this matter in the literature, and 

the optimal number of hidden nodes likely depends on the particularities of each 

individual problem. A good experimental approach is to test performance by gradually 
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adding hidden units one by one until the performance fails to improve by a certain 

amount. There are many variations of this approach, including Ash's pioneering work 

(1989). Another approach is to use techniques such as genetic algorithms to optimize 

network architecture. In any case, it is true in general that increasing the number of 

hidden units increases the complexity of the function that can be modelled, but also 

increases the training time and, potentially, the probability that the network will not 

converge. 

The initial weightings of the networks can also have an important effect on what 

solution a network converges. One simple approach is to randomly determine the initial 

weightings of the network within sorne range, and experiment until an effective range is 

found. Maclin and Shavlik (1995) have suggested the alternative of using competitive 

learning to find an initialization that maximizes the number of attainable local minima 

that the network can converge to. 

Feedforward NN's with no hidden layer (called "perceptrons") initially caused a great 

de al of excitement because of their ability to simulate relations. There was sorne 

disappointment when it was found that there are certain functions which they cannot 

simulate, such as XOR logical relations. Fortunately, it was later found that feedforward 

NN' s with one or more hidden layers can in fact overcome this problem, and can indeed 

be used to model complex relations. This means that NN' scan be used in cases where 

one wishes to model more sophisticated relationships between features than classification 

techniques such as KNN are capable of doing. Unfortunately, the disadvantage of neural 

networks is that they can take a significant amount of time to train. 

Abdi and Valentin (1999) provide an excellent introduction to the inner workings of 

NN' s, and include sorne revealing worked examples. Bengio (1996) provides sorne useful 

practical guidelines regarding working with NN' s. Gallant (1993) is also a good resource, 

and includes very interesting sections on combining neural networks with expert systems 

and sorne ideas on how rules can be extracted from trained neural networks. Adeli and 

Hung (1995) provide useful background information on both neural networks and genetic 

algorithms, and sorne ideas on how the two techniques can be used together. Fausett 

(1994) is also a good general reference on neural networks. 

Those interested in how different machine learning techniques can be combined to 

improve performance of practical systems may wish to consult the book edited by 

Michalski, Bratko and Kubat (1999). The book edited by Kandel and Bunke (2002) 

includes further information in this vein. The book edited by Jagannathan, Dodhiawala 

and Baum (1989) contains a good deal of information on blackboard systems that could 

also be useful in this respect. 

Before moving on, it is appropriate to briefly discuss the division of one's sample 

examples into training and testing groups in order to evaluate the performance of any 
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supervised classifier. It can happen that an inexperienced researcher working with 

classifiers will observe that a classifier perfectly classifies his or her training examples, 

and then conclude that the classifier works very weIl. Unfortunately, this conclusion may 

not necessarily be correct. Classifiers can learn to classify a training group perfectly, yet 

fail to make the generalizations necessary to accurately classify the population as a whole. 

This effect is known as overfitting. Successful classification of the training group is not 

therefore necessarily indicative of a successful classifier. In order to reaiistically test a 

classifier' s performance, one must reserve a set of testing samp1es that the classifier does 

not have any contact with during training. The measured performance of the classifier 

must then be based on how weIl the classifier classifies these test samples after training, 

as this provides a mu ch better indication of how weIl the classifier is likely to perform on 

the population in general. 

Care must be taken wh en selecting the training and testing samples not only that 

representative samples are taken from aIl categories in the classification taxonomy, but 

that aIl sub-groups, if any, within each category are present as weIl. Although the exact 

ratio of training to testing samples can vary, 10% to 20% of the available samples are 

typically reserved for testing. GeneraIly speaking, a greater number of total available 

samples usually corresponds to a smaIler percentage of samp1es reserved for testing, as 

fewer samp1es are needed to achieve statistical significance. 
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4. Previous Research in Music Classification 

4.1 Overview 
The majority of research on genre classification to date has been on the classification 

of audio data rather than symbolic data. Although the features extracted from audio data 

are usually very different from those extracted from symbolic data, most other aspects of 

the two types of classification are very similar. It is also important to note that the 

intersection of the features that can be extracted from audio and symbolic data is 

increasing as automatic transcription techniques improve. It is therefore useful to examine 

research on audio classification for ideas that can be adapted to symbolic data 

classification and to create a basis for future expansion of this research into the audio 

realm. Section 4.2 discusses previous research on the classification of audio data, and 

Section 4.3 covers research involving symbolic data. 

It should be noted that a number of papers on systems that perform classifications 

based on performer and/or composer styles have also been included here. It is useful to 

examine these systems as well as genre classifiers, as both types of systems often use 

similar features and classification techniques. 

A selection of papers on systems that use unsupervised learning techniques to perform 

classifications have been included here as well. Although unsupervised leaming is not as 

appropriate for genre classification as supervised leaming, as discussed in Section 1.5, 

there has been a significant amount of research using these systems, and it is important to 

be aware of it. The popularity of unsupervised leaming in research up to this point may be 

due to the fact that most systems have used only a limited number of very distinct 

categories. It is probable that unsupervised systems would form categories that coincide 

with human genre categories wh en dealing with such taxonomies. More realistic 

taxonomies, with large numbers of categories that include overlap and potentially 

objectively irrational distinctions from a content-based perspective, would be highly 

unlikely to match the categories formed by unsupervised classifiers, however. So, 

although unsupervised classifiers have performed well to date in regards to genre 

classification, it is very improbable that these types of systems would scale well to 

realistic genre taxonomies. 

This do es not mean that research involving unsupervised leaming is not worth 

pursuing, however. Classification using unsupervised leaming is in a very real sense 

equivalent to similarity measurements, an area of research with important applications 

outside of the scope of genre classification. The kind of similarity groupings produced by 

unsupervised leaming could, for example, produce a means of navigating music databases 

that could potentially be more useful than genre categories for certain applications, such 
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as if one is simply looking for new types of music that are similar to one's existing 

preferences in a way that is not limited by the peculiarities of genre taxonomies. 

There has also been sorne research into automatically generating music of given 

styles, which is in a sense the inverse of the classification problem. Although sorne such 

systems operate using a rules based approach, others dynamically analyze music and 

attempt to generate music that is similar to it. The analysis portion of systems of the latter 

type could operate similarly to classification systems, and are therefore worth mentioning 

here. Two of the most salient papers on the subject are discussed in Section 4.4. 

It should be noted that this chapter only briefly covers the topics and results of each of 

the publications that are presented. Those aspects of certain publications that were used 

directly in this thesis are discussed in more detain in Chapters 5 and 6. 

Overall, success rates of between 50% and 92% have been achieved in previous 

studies when classifying between three to ten categories using only musical content-based 

features. As one would expect, success rates have in general been inversely proportional 

to the number of categories. These success rates are promising, especially considering 

that most humans would themselves likely be unable to achieve rates beyond 80% or 

90%. A large variety of features and classification techniques have been used, leading one 

to think that there may be a number of different but valid solutions to genre classification. 

Table 1 summarizes the results of studies where musical genre classification success 

rates were reported. More details on these studies are available in Sections 4.2 and 4.3. 

One should keep in mind that the variety of taxonomies and recordings used makes it 

difficult to compare success rates directly in order to conclusively judge one system as 

better than another. 

Unfortunately, no results have been published to date, to the best of the author's 

knowledge, of the application of a classification system to a realistic taxonomy with large 

numbers of categories. It is one of the goals of this paper to fill this gap. 

4.2 Classification of audio data 
George Tzanetakis has performed the most widely cited research on automatic genre 

classification to date. His first major paper on the subject (Tzanetakis, Essi & Cook 2001) 

presented two real-time GUI-based systems that performed musical genre classification of 

audio signais. The first, GenreGram, developed for real-time radio broadcasts, displayed 

cylinders representing each genre that moved up and down based on the confidence at any 

given moment that a recording belonged to a particular genre. The second GUI, 

GenreSpace, provided a 3-D representation of genre space and mapped each recording to 

a point based on its three most distinguishing features. GenreSpace was meant to be used 

for representing large collections of recordings. Classifications were made based on a 
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Table 1 : Summary of existing musical genre classification systems. 

tree-based genre hierarchy containing both music and speech. A 62% success rate was 

achieved in classifying between six genres. 

The ideas presented in this paper were further developed in a second paper 

(Tzanetakis & Cook 2002), where a fully functional system was described in detail. The 

authors proposed using features relating to timbrai texture, rhythmic content and pitch 

content to classify pieces. The system was able to correctly distinguish between audio 

recordings of ten genres 61 % of the time. Results of music/speech and sub-genre 

classifications were also presented. A variety of statistical classifiers were used. A 

refinement of this work was published by Li and Tzanetakis (2003) and Li, Ogihara and 

Li (2003), where classification results of between 70% to 80% were achieved through the 

use of linear discriminant analysis and Daubechies wavelet coefficients. 

A further paper (Tzanetakis, Ermolinksyi & Cook 2002) argued that pitch-based 

features could be used to enhance content-based analysis of music. As a demonstration, a 

genre classification system was built to distinguish between five genres. A success rate of 
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50% was achieved with the use of only four pitch-based features and no rhythm or timbre 

related features. A k-NN classifier was used in this system. 

Tzanetakis' dissertation (2002) presented a number of approaches and techniques for 

extracting information from audio recordings, including techniques related to genre 

classification. Tzanetakis reviewed and brought together research that he had previously 

published. 

Another detailed description of a genre classification system can be found in Karin 

Kosina's thesis (2002). This system used KNN classification to achieve a success rate of 

88% when classifying audio data into one of three genre categories. This thesis provides a 

good overview of background information in the field of genre classification. 

Grimaldi, Kokaram and Cunningham (2003) described a system that used a discrete 

wavelet transform to extract time and frequency features, for a total of sixt y-four time 

features and seventy-nine frequency features. Instead of using a single classifier to 

classify aIl genres, Grimaldi et al. used an ensemble of binary k-NN classifiers, each 

trained on only a single pair of genres. The final classification was arrived at through a 

majority vote of the classifiers. Tests achieved a success rate of 73.3% with the binary 

classifier ensemble, as compared to only 63.6% when a single classifier was used for aIl 

of the genres. Tests were performed using a total of five genre categories. 

Xu et al. (2003) proposed using a two-level classification system, where a broad 

classification was first made, followed by a finer classification based on the results of the 

first classification. The authors implemented such a system by having the first stage 

classify audio data into either rock/jazz or pop/classical and then having the second stage 

decide between either rock and jazz or pop and classical, depending on the output of the 

first stage. Different sets of features were used for each of the above three classifiers. This 

is an approach that would fit in weIl with a hierarchical taxonomy. A success rate of 93% 

was obtained using support vector machines. Further tests of the system using nearest 

neighbour, Gaussian mixture model and hidden Markov model methods resulted in 

significantly lower success rates. 

Burred and Lerch (2003) compared the performance of basic fiat and hierarchical 

classification techniques on 13 musical and 4 non-musical genres, and achieved success 

rates of approximately 60% using both techniques. A three component Gaussian mixture 

model was used to perform classifications based on 18 features. 

Pye (2000) compared a Gaussian mixture modelling classifier and a tree-based vector 

quantization classifier for the purposes of audio classification, and achieved an accuracy 

of 92% with the former when classifying between Blues, Easy Listening, Classical, 

Opera, Dance (Techno) and Indie Rock music. 

Lambrou et al. (1998) achieved success rates of 90% or above when classifying 

between categories of rock, piano and jazz. A comparative analysis was made between 
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different wavelet analysis techniques, with the best results achieved with the adaptive 

splitting wavelet transform. Four different distance-based classifiers were used. 

Matityaho and Furst (1995) used a large feed-forward neural network and spectral 

components to perform classifications. The authors achieved a 100% success rate when 

classifying 2.8 second segments of audio. Although this is impressive, particularly 

considering the limited feature set, the system only considered Classical music and 

Popular music, so testing with more categories would be required to truly test the system. 

Deshpande, Nam and Singh (2001) built a system that used a variety of classifiers to 

separate audio recordings into Rock, Classical and Jazz categories. The best three-way 

results were obtained by the k-nearest neighbour classifier, with an accuracy of 75%. 

McKinney and Breebaart (2003) published a study comparing four different audio 

feature sets in terms of their ability to classify music as Jazz, Folk, Electronica, R&B, 

Rock, Reggae and Vocal. Success rates of between 61% and 74% were achieved, 

depending on the feature sets used, with auditory filterbank temporal envelope-based 

features outperforming low-level signal parameters, Mel Cepstral Coefficients (MFCC) 

and psychoacoustic features. Classification was performed using a standard Gaussian 

framework. 

Karpov (2001) used hidden Markov models and spectral features to classify 

recordings into four categories (Celtic, Western Classical, TechnolTrance and Rock). 

Success rates of over 90% were achieved with three-way classifications. Karpov offered 

the interesting suggestion that hidden Markov models could be used in future research to 

initially classify music into broadly different categories and other classifiers, su ch as 

neural networks, could then make finer classifications. 

Soltau et al. (1998) proposed a method that they called Explicit Time Modeling with 

Neural Networks (ETM-NN) that could be applied to musical genre classification. This 

method is based on finding an effective way of using neural networks to deal with 

features based on temporal structures. They used their system to classify audio data as 

Rock, Pop, Techno or Classical. They argued that their ETM-NN system provides a 

superior alternative to the hidden Markov models that have often been used to perform 

classifications using temporal data. They fed the same features into both an ETM-NN and 

HMM, and achieved success rates of 86.1 % and 79.2% respectively. 

Jiang et al. (2002) presented an "octave-based spectral contrast" feature that 

represents relative spectral distribution in order to improve classification of audio data. A 

success rate of 90.8% was achieved for classifying full recordings into Baroque, 

Romantic, Pop, Jazz or Rock categories. The classification was performed using a 

Gaussian mixture model. 

Jennings et al. (2003) developed a new method to quantify the behaviour of the 

"loudness fluctuations" of an audio signal. Although no classification success rates were 
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reported, correlations were found between loudness fluctuations and high art music, 

popular music and dance music. Although the results found by the authours are not 

exceptionally impressive in themselves, the signal processing techniques that were used 

do hold sorne potential. 

Crump (2002) devised a system that classified audio recordings based on composer' s 

style. The system used neural networks, and was successful in distinguishing between 

Bach and Mozart recordings 73% of the time using only one second long segments of 

music. 

Frühwirth and Rauber (2001) used a self-organizing map to organize a collection of 

audio files according to their genres and sound characteristics. Melodic information was 

included in the feature vectors that were used. Classification was performed by first 

clustering segments of recordings based on similarity and then clustering recordings 

based on their segments. A further discussion of the uses of self-organizing maps for 

organizing music has been written by Rauber and Frühwirth (2001). 

Pampalk, Rauber and Merkl (2002) constructed a system that analyzed audio data and 

presented it to users using a visual interface that made the relationships of different genre 

categories to each other intuitively apparent. A self-organizing map was used to cluster 

recordings based on genres. More details of this system are available in an earlier 

publication of Pampalk (2001). 

In an effort to expand on the use of self-organizing maps, Rauber, Pampalk and Merkl 

(2002) used a growing hierarchical self-organizing map to create a hierarchical 

organization of music based on similarity of audio recordings. This is a promising 

approach, as the incorporation of a hierarchy into the similarity structure has the potential 

to create a structure that is easier for humans to navigate than categories on the same 

level. The features that were used incorporated ideas from psychoacoustic models, 

including loudness and rhythm perception. 

Whitman and Smaragdis (2002) have taken the important step of combining audio 

content-based features with cultural features in order to classify music. They used what 

they called "community metadata" that was derived from text data that was mined from 

the web. Classification was done using a time-delay neural network in order to 

incorporate a short-term memory into the system. Although cultural and audio data both 

performed relatively POOrlY when classifying recordings independently between Heavy 

Metal, Contemporary Country, Hardcore Rap, "Intelligent Dance Music" and R&B, the 

authors claimed a success rate of 100% when features of both types were combined. This 

is very encouraging, and certainly provides justification for further research involving 

more categories. 
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4.3 Classification of symbolic data 
One of the earliest works on the topic of automatic genre classification was published 

by Gabura (1965). This paper only deals explicitly with classical music, unfortunately, 

which limits its applicability. Despite this and its age, however, this paper nonetheless 

offers sorne interesting ideas that appear to have been overlooked in many later 

publications, particularly in regards to the use of relatively sophisticated statistics and 

theoretical models to derive features. 

Shan and Kuo (2003) published one of the few papers dealing directly with genre 

classification of MIDI recordings. They extracted features based exclusively on melodies 

and chords, and obtained success rates between 64% and 84% for two-way 

classifications. Recordings aIl belonged to one of four categories (Enya, Beatles, Chinese 

folk and Japanese folk), with 38 to 55 files used for each category. This research is 

particularly valuable in terms of the ways in which melodic and chordal features were 

extracted, and it would have been interesting to see how weIl the system would have 

performed with a greater variety of features and a larger number of categories. 

Chai and Vercoe (2001) used hidden Markov models to classify monophonic 

melodies belonging to one of three different types of Western folk music (Austrian, 

German and Irish). They were able to achieve 63% accuracy in three-way classifications 

that used only melodic features. Interestingly, they found that the number of hidden states 

had only a relatively minor effect on success rates and that simple Markov models 

outperformed more complex models. 

Ponce de Leon and Inesta (2002) produced a system that extracted and segmented 

monophonic jazz and classical MIDI tracks in order to extract melodic, harmonic and 

rhythmic features. The system then used these features to form distinguishable categories 

using self-organising maps. About 77% of the pieces were classified correctly as 

belonging to a group that corresponded roughly to jazz or a group that corresponded 

roughly to classical music. 

Lartillot et al. (2001) discussed two alternative methods of unsupervised learning, 

namely an improved incremental parsing method and prediction suffi x trees, for the 

purposes of classifying recordings based on musical style. This was done using analyses 

of musical sequences in terms of rhythm, melodic contour and polyphonic relationships. 

Dannenberg, Thom and Watson (1997) described a real-time system to classify 

performance styles. Improvisations were classified as "lyrical," "frantie," "syncopated," 

"pointillistic," "blues," "quote," "high" and "low." The system was trained with MIDI 

recordings of trumpet performances. The following features were extracted from the 

MIDI data: averages and standard deviations of MIDI key number, duration, dut y factor 

(the ratio of duration to inter-onset interval), pitch (differs from key number in that Pitch 

Bend information is included) and volume, as weIl as counts of notes, Pitch Bend 
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messages and volume change messages. Bayesian, linear and neural network based 

classification schemes were used, with an optimum successful classification rate of 90.0% 

achieved among the eight style classes with the Bayesian classifier. 

4.4 Music generation based on learned styles 
Laine and Kuuskankare (1994) used genetic algorithms to generate melodies in 

different styles. In order to do this, the y represented melodic segments with mathematical 

functions. This causes one to think that the inverse process, namely fitting melodies to 

functions, could be useful in detecting melodic characteristics and patterns for 

classification purposes. 

Pachet (2002) proposed an interactive system capable of generating music in real-time 

in a style consistent with that being performed by humans or other systems. A Markov 

model was used to account for rhythm, beat, harmony and imprecision. Trees of 

sequences were used to learn musical patterns. 

There are a number of other software systems that have been devised to generate 

music in a particular style or styles. The work of David Cope (1991a and 1991b) is 

particularly weIl known. Many of these systems have only limited relevance to this thesis, 

however, primarily because they use pre-written rules-based techniques rather than 

dynamic pattern recognition techniques. The generative technologies used in these 

systems are therefore not easily adaptable to musical analysis and supervised 

classification. A later publication by Cope (1996) does describe sorne very interesting 

automated analysis techniques that are more relevant to genre classification, but these still 

emphasize factors that are primarily relevant to Western art music. 
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5. Feature Library 

5.1 Overview of issues relating to choice of features 
People often claim that they "don't know what to listen to" when they are first 

exposed to an unfamiliar genre of music. This shows how difficult genre recognition can 

be in terms of feature extraction and how listening methodologies that apply to one genre 

may be of little value when applied to another. It is useful to consider as wide a range of 

features as possible in order to characterize as full a spectrum of music as possible. It was 

therefore decided to devise a large library of features relating to a number of different 

aspects of music as part of this thesis. Although it was known that not aIl of these features 

would ultimately be used, for reasons discussed in Section 3.2, this approach had the dual 

benefits of causing there to be a greater probability of finding features with feature 

selection techniques that have good discerning power that might not have been initially 

obvious as good candidates and of creating a resource that could be of use in future 

studies for a variety of purposes. 

It is obvious that even people with little musical knowledge can make at least sorne 

genre classifications. It could therefore be argued that genre classification systems should 

pay special attention to features that are meaningful to the average, musically untrained 

listener, to the detriment of more technical or sophisticated musical properties. It is 

maintained here, however, that the ultimate goal of a classification system is to produce a 

correct classification, and whatever readily available features help to do this should be 

used, whether or not they are perceptible to the average human. The fact that high-Ievel 

musical knowledge, such as precise perception and understanding of timing, pitch and 

voice information, is not necessary to distinguish between genres does not mean that it 

might not help. In addition, machine learning and pattern recognition systems operate 

using significantly different mechanisms than their human analogs, so there is no reason 

to assume that the types of percepts suited for one are necessarily suited to the other. 

Since high-Ievel musical information is readily available from symbolic formats such as 

MIDI, it might as weIl be taken advantage of. High-Ievel musical knowledge is, by 

definition, musical, and is therefore likely to be of use in distinguishing between genres. 

As shown in Chapter 4, existing genre classification systems have only had limited 

success to date without high-Ievel musical features, and one of the goals of this thesis is 
to demonstrate the usefulness of such features 

There is, of course, a great deal of existing literature on theoretical analyses of music 

that could be used to generate features. The books of Cook (1987) and LaRue (1992), to 

give just two of many possible examples, provide complementary surveys of analytical 

methods. Ideally, one would like to have a grand unified analytical process that could be 
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applied to music in any genre and used to generate features. Unfortunately, there is no 

generally accepted process of this sort. However, even though no single analysis system 

is complete, and most are only applicable to a limited number of genres, several systems 

could nonetheless be used in a complementary or parallel way. For ex ample, Schenkerian 

analysis could be used to analyze harmony if other features indicate a significant degree 

of tonality in a recording, complimented perhaps by a set theory analysis to deal with 

non-tonal music. To extend the example, techniques such as those of Grosvenor Cooper 

and Leonard Meyer (1960) could also be used to analyze rhythm and melody and the 

techniques of Rudolph Reti (1951) could be used to gain insights by looking at motivic 

patterns. Semiotic analysis (Tarasti 2002) could also potentially be useful, although 

somewhat difficult to implement automatically from a content-based perspective. The 

multi-purpose analysis systems developed by researchers such as David Temperley 

(2001) in general could also be taken advantage of. Although these types of analyses are 

intrinsically different in many ways, the y could each be used to generate individual 

features that could prove to be complementary. 

There are, unfortunately, a number of disadvantages with using this approach of 

combining sophisticated analytical systems. To begin with, many of these techniques 

require a certain amount of intuitive subjective judgement, as the analytical ruIes are 

sometimes vague or ambiguous. This is demonstrated by common occurrences of 

inconsistencies between the analyses of the same piece by different people using the same 

system. Another problem is that sophisticated theoretical analyses could be 

computationally expensive, thus making their use inappropriate for rapidly expanding 

musical databases or real-time classification. In addition, most analysis techniques have 

been designed primarily from the perspective of Western art music, which limits their 

applicability to popular and non-Western musics. This last probIem, however, may be less 

crippling than it seems, as analyses could potentially still be generated that are internally 

consistent, ev en if the meaning of the analyses themselves, from the perspective of their 

theoretical background, are not relevant to certain genres. Future experimentation is 

necessary to further investigate this. 

In any event, a generally accepted software system capable of performing a wide 

range of sophisticated theoretical analyses has yet to be implemented, and this is well 

beyond the scope of this thesis. One must therefore make do with taking simple and 

incomplete concepts from different analytical systems, of necessity somewhat 

haphazardly, and combining them with intuitively derived characteristics in order to 

arrive at suitable features. This is not as serious a limitation as it might seem, as features 

that are used for classification purposes need not be consistent or meaningful in any 

overarching theoretical sense. All that matters for the purposes of classification is that 

each feature helps to distinguish between genres. 
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In any case, most humans are certainly unable to perform sophisticated theoretical 

analyses, but are nonetheless able to perform genre classifications. It is therefore clear 

that such analyses are not strictly necessary in order to implement a successful automatic 

classification system. Furthermore, a study of how weIl children of different ages can 

judge the similarities of music belonging to different styles found that there was almost 

no difference between the success rates of eleven-year olds compared to college 

sophomores, despite the fact that, unlike the sophomores, the eleven-year olds displayed 

almost no knowledge of musical theory or stylistic conventions (Gardner 1973). Of 

course, this does not necessarily mean that features based on sophisticated analytical 

systems might not be useful to an automated classification system, but it does appear that 

the y are not necessary, which is fortunate given the difficulty that would be involved in 

extracting them. 

Once it is accepted that features need not be chosen in sorne unified theoretical sense, 

one is tempted to pro gram characteristics of particular genres into the system (e.g. swing 

rhythm, characteristic drum and bass rhythms, etc.) and have the computer base features 

on whether or not such characteristics are present in recordings. The disadvantage of this, 

however, is that it becomes necessary to base features on the particular genres that are 

being considered. Although this may be appropriate and effective for sorne specialized 

applications, 1 such an approach wou Id be unable to adapt easily to changes in a 

classification taxonomy. It would be very undesirable to have a system that is dependant 

not only on people laboriously programming features specific to particular genres, but 

having to reprogram themall everytimetheclassificationtaxonomychanges.This would 

be a particularly arduous task when one considers the difficulties in defining genres 

discussed in Chapter 2. Such a system would in essence be a type of expert system which, 

as discussed in Section 1.5, is undesirable for the purposes of musical genre classification. 

One must therefore use features that are meaningful in the context of a large variety of 

genres. 

It was decided to pay special attention to simple features that well-trained humans are 

suspected to use in genre determinations. Such humans are currently the most skilled 

genre classifiers, so the features that they use are the most likely to be useful. This does 

not mean that other features were ignored, however, as there may be other important 

characteristics of music that humans are not consciously aware of, but which do delineate 

differences between genres. 

1 Those interested in such a system may wish to consult work such as that by Nettl (1990) and Manuel 
(1998) for an overview of the types of features that are characteristic of different types of non-classical 
music. The body of work on classical music is too large to cite specifically. 
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5.2 Ethnomusicological background relating to features 
Once the issues discussed in Section 5.1 were considered, it was decided to research 

the work of musicologists and ethnomusicologists in order to search for features that 

might be of use. Ethnomusicologists have done significant research into comparing the 

musics of different cultures and, although this has often been done with anthropological 

interests in mind, this work is in sorne cases adaptable to the purposes of this thesis. Such 

research tends to focus on experimental observation rather than on attempting to derive 

theoretical meaning from music. It is for this reason that ethnomusicologie al research 

tends to be less likely to be intrinsically tied to specifie types of music or limiting 

assumptions than more theoretical analytical approaches. 

Perhaps the most extensive work in this vein was performed by Alan Lomax and his 

colleagues in the Cantometrics project (Lomax 1968). This project compared several 

thousand songs from hundreds of different cultural groups using thirty-seven features. 

These features were extracted by hand from audio recordings and, unfortunately, many of 

them are not extractable from MIDI recordings. These features are still discussed here, 

however, as the y could be of significant use in future systems designed to work with 

audio recordings, particularly non-Western recordings. AIso, a number of the 

Cantometrics features helped to inspire sorne of the features that were in fact used in this 

thesis. Below are the thirty-seven features proposed in the Cantometrics project: 

1. Leader chorus: the importance of the lead singer relative to the chorus 

2. Relation of orchestra to vocal part: importance and independence of the orchestra 

relative to the vocal part 

3. Relation within orchestra: relative independence of the different parts of the 

orchestra 

4. Choral musical organization: texture of the choral singing 

5. Choral tonal integration: degree to which the chorus blends singing together to 

create perception of unit y and resonance 

6. Choral rhythmic organization: degree of rhythmic co-ordination of the chorus 

7. Orchestral musical organization: texture of the orchestra 

8. Orchestral tonal concert: degree to which the orchestra blends together to create 

perception of sonority 

9. Orchestral rhythmic concert: degree of rhythmic co-ordination of the orchestra 

10. Text part: whether singers tend to use words or other sounds. Aiso measures 

amount of repetition of text. 

Il. Vocal rhythm: complexity of meter used by singers 

12. Vocal rhythmic organization: degree to which singers use polyrhythms 

13. Orchestral rhythm: complexity of meter used by orchestra 
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14. Orchestral rhythmic organization: degree to which orchestra uses polyrhythms 

15. Melodie shape: melodie contour of most characteristic phrases 

16. Melodic form: complexity of form 

17. Phrase length: temporallength of phrases 

18. Number of phrases: average number of phrases occurring before full repeats 

19. Position of final tone: position of the final pitch relative to the range of the song 

20. Range of melody: pitch interval between the lowest and highest notes of the song 

21. Average interval size: average melodie interval 

22. Type of vocal polyphony: type of polyphony present, ranging from a drone to 

counterpoint 

23. Embellishment: amount of embellishment used by the singer(s) 

24. Tempo: speed of song from slow to very fast 

25. Volume: loudness of song 

26. Vocal rhythm: amount of rubato in the voice part 

27. Orchestral rhythm: amount of rubato in the orchestral part 

28. Glissando: degree to whieh voiee(s) slide to and from notes 

29. Melisma: number of pitches sung per syllable 

30. Tremolo: amount of undulation on held notes 

31. Glottal effect: amount of glottal activity present 

32. Vocal register: whether singers are singing near the bottom, middle or top of their 

ranges 

33. Vocal width and tension: degree to whieh voice sounds thin or rich 

34. Nasalization: how nasal the singing sounds 

35. Raspy: amount of raspiness in singing 

36. Accent: strength of attack of sung tones 

37. Consonants: precision of enunciation in singing 

There would be a number of difficulties in incorporating these features into even an 

audio automatic classification system. Many of the features, such as "nasality," are 

difficult to measure objectively or even extract at aIl automatieally. Furthermore, manyof 

the features are related to vocallines, so segmentation would be necessary to separate the 

many !ines that may be recorded in a single audio channel. Nonetheless, Lomax did find a 

good correlation between these features and cultural patterns, and they intuitively seem as 

if they might perform weIl, so the work necessary to extract these features may weIl be 

worth the effort in future research. 

Feature 15 above refers to melodic contour. This is one area in whieh sorne significant 

research has been done, and is worth looking at in more detail. Charles Adams in 

particular has found that examining melodic contour can allow one to differentiate 
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between different musics (Adams 1976). Adams based his analyses on only the initial 

note (1), highest note (H), lowest note (L) and final note (F) of melodies. 

There are, unfortunately, sorne complications in applying Adams' approach to MIDI 

recordings. To begin with, isolating the melodies of a piece can be difficult when dealing 

with music with multiple voices, as the melodies can involve notes contained in only one 

or in many voices. In the case of polyphonie music, one must deal with simultaneous 

melodies. One possible solution would be to simply assume that the most significant 

melody is in the highest line, and only this line, which is often but certainly not always 

the case. Altematively, one could potentially implement sorne sort of melody detection 

system. An ex ample of the last approach wou Id be to assume that the melody is in the line 

that wins based on a weighted average of loudness and quantity of notes, with perhaps a 

bias given to the highest line. 

An additional problem is that there can be repetitions of melodies or multiple 

independent melodies that occur sequentially. A melody/phrase segmentation system 

would be necessary to truly extract melodic contour features in the sense that they were 

intended, something which is beyond the scope of this thesis. 

Fortunately, it is possible to extract at least sorne melodic contour features without 

critical problems caused by the lack of a melody segmentation system. Section 5.9 

contains, among other things, a number of features inspired by Adams' work. 

A number of writers have proposed a number of broad are as that could be useful to 

concentrate on for the purposes of musical classification. Nettl (1990) has proposed the 

following broad features as having significance to many different cultures: 

1. Sound and singing style 

2. Form 

3. Polyphony (texture) 

4. Rhythm and tempo 

5. Melody and scale. 

Julie E. Cumming has suggested a number of features in relation to motets (Cumming 

1999). With the understanding that "voices" can be adapted to mean voices or 

instruments, a number of these features have a good deal of general applicability: 

1. Texture 

2. Number of voices 

3. Voice ranges 

4. Melodie behaviour (leaps, steps) 

5. Relative speed of voices 
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6. Coordination of phrases between voices 

7. Use of rests 

8. Length 

9. Complexity 

10. Tone 

Philip Tagg has proposed the following "checklist of parameters of musical 

expression" that could be adapted to generate features for both symbolic and audio 

systems: 

1. Aspects of time: du ration of analysis object and relation of this to any other 

simultaneous forms of communication; duration of sections within the analysis 

object; pulse, tempo, meter, periodicity; rhythmic texture motifs. 

2. Melodic aspects: register; pitch range; (melodic) motifs; tonal vocabulary; 

contour; timbre. 

3. Orchestration aspects: type and number of voices, instruments, parts; technical 

aspects ofpetformance; timbre; phrasing; accentuation. 

4. Aspects of tonality and texture: tonal centre and type of tonality (if any); 

harmonic idiom; harmonic rhythm; type of harmonie change; chordal alteration; 

relationship between voices, parts, instruments; compositional texture and 

method. 

5. Dynamic aspects: levels of sound strength; accentuation; audibility of parts. 

6. Acoustical aspects: characteristics of (re- )petformance 'venue'; degree of 

reverberation; distance between sound source and listener; simultaneous 

'extraneous' sound. 

7. Electromusical and mechanical aspects: panning, filtering, compressing, phasing, 

distortion, delay, mixing, etc.; muting, pizzicato, tongue flutter, etc. 

(Tagg 1982, 45-46). 

Although this checklist was designed with theoretical analysis of Western music in 

mind, the ideas nonetheless have a more general applicability, as long as they are taken in 

conjunction with other features. Another useful list of parameters has been suggested by 

David Cope (l991b), although this list also emphasizes parameters specifie to Western art 

music. 

There are also a number of software systems that have been developed for problems 

other than genre classification but nonetheless contain a number of useful features. 

Aarden and Huron (2001), for example, have performed an interesting study where 

corresponding characteristics of European folk songs were studied in terms of spatial 
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location. A potentially useful catalogue of 60 high-level features was used, although these 

were limited to monophonic melodies. To give another example, Towsey et al. (2001) 

developed a system for compositional purposes that uses 21 high-Ievel melodic features 

that have application beyond the aesthetic fitness judgements that the y were used for in 

this study. 

5.3 General comments on features in the following sections 
The feature library that was actually devised for this thesis was created in the context 

of aIl of the research discussed in Sections 5.1 and 5.2 as weIl as the work that has 

previously been done in automatic genre analysis (see Chapter 4). The following seven 

sections provide details about these features. Although sorne of the features were based 

on features used in previous research, many of them are original, particularly in the 

context of computer-based analysis for the purposes of classification. 

The ideology that accompanies any person's knowledge about music can cause them 

to give inappropriate weight to sorne characteristics of music, and ignore others. One will 

notice a bias towards Western tonal music in examining the features discussed in Sections 

5.4 to 5.10. This is due partly to the training of the authour, partly to the dominance of 

Western genres in the taxonomy that was used and partly to the limitations of MIDI, or 

any other musical representation based on Western music. Nonetheless, efforts were 

made to include features that might not be obvious to one accustomed only to Western 

music. The library of features used in this thesis should be seen as a work in progress that 

can continually be expanded and refined as more types of music are considered and as 

music changes. 

One will notice, upon examining the features listed in Sections 5.4 to 5.10, that there 

is a certain degree of redundancy in sorne of the features, in the sense that one feature 

sometimes emphasizes an aspect of another feature. This was do ne in order to ensure that 

features were available relating to both overviews of certain aspects of recordings as weIl 

as to more focused aspects that could be particularly salient. The feature library in the 

following sections is intended as a catalogue of features, sorne of which will be 

appropriate for certain tasks and sorne which will be appropriate for others. This 

catalogue was designed to give the feature selection and weighting algorithms as wide a 

range of features as possible to choose from and to provide a resource for future research. 

The redundancy in the features was purposely included for these reasons, and it is 

understood that no one classification system should be fed aIl of the features without 

sorne kind of feature selection process, as this would likely overwhelm it. Rather, this 

catalogue is intended to serve as a palette from which different classifiers can select 

different features according to their needs. 
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Efforts were made to design features that could be extracted from any symbolic 

musical representation, not just MIDI. So, with this in mind, as many as possible of the 

features proposed in Sections 5.4 to 5.10 were designed so that they could be easily 

adapted to music stored in any symbolic format, as long as pitch, rhythmic timing, 

dynamics, instrumentation and voice segregation are known reliably and exactly. Since 

MIDI was used for this thesis, however, the features described below use MIDI 

terminology so that the definitions could be more precise. Section 3.1 can be consulted by 

those needing more information on MIDI and the terminology related to it. 

Unfortunately, there can be many different ways of encoding MIDI data. MIDI 

recordings can be produced by writing out music on a notation pro gram or by performing 

actual real-time recordings, each of which can produce significantly differences in 

recordings of the same music. An authour' s recording style and the particular sequencer 

he or she uses can also play a role. Care was therefore taken, when possible, to use 

features that were not sensitive to differences in the encoding style. Although this 

problem could have been avoided by only considering MIDI data from a single source, 

this was not done here, partly because there is no known source with a sufficiently diverse 

range of music, and partly because it was the goal of this system is to have a system 

capable of classifying recordings from arbitrary sources. 

A number of intermediate representations of the MIDI recordings, including 

histogram-based representations, were constructed in order to derive sorne of the features 

proposed below. The most interesting of these representations are discussed in the 

following sections. 

One will notice that there are a few "magic numbers" in the descriptions of sorne of 

the features. The origin of these constants is based on intuition and informaI experimental 

experience. 

Given their number, it was not possible to implement aIl of the features described in 

Sections 5.5 to 5.10. This was not a serious limitation, as the 111 features that were 

implemented represented a much greater number of features than have been used by most 

other symbolic music classification systems. The particular choice of which features to 

omit in the CUITent implementation was based on a combination of the author' s judgement 

of how useful each feature would be and how time-consuming it would be to implement, 

an important concem given the size and sc ope of the software. AlI of the features except 

for T-l1, T-14, T-16, T-17, T-18, T-19, R-16, R-26, R-27, R-28, R-29, P-26, M-16, M-20 

and C-l to C-28 were implemented. 

5.4 Features based on instrumentation 
This class of features capitalizes on the fact that the General MIDI (level 1) 

specification allows recordings to make use of 128 pitched-instrument patches and a 
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further 47 percussion instruments in the Percussion Key Map. Although these instruments 

are insufficient for the full range of international music, they are, in general, diverse 

enough for the genres covered in this thesis. 

The use of MIDI patches can be, in sorne cases, somewhat sensitive to encoding 

inconsistencies between different MIDI authours. In a few fortunately rare cases authours 

fail to specify patch numbers, with the result that aIl notes are played using a piano patch 

by default. Another problem is the occasional inconsistency in the choice of patches that 

are used for sung lines. Despite these occasional problems, however, features based on 

instrumentation can be highly characteristic of genres, and the use of features belonging 

to other classes can helped to counteract inconsistencÏes in authours' uses of patches. 

The instrumentation related features that were implemented are as follows: 

1-1 Pitched Instruments Present: A features array with one entry for each of the 128 

General MIDI Instruments. Each entry was set to 1 if at least one note was 

played using that patch and to 0 if the patch was not used. 

1-2 Unpitched Instruments Present: A features array with one entry for each of the 

47 MIDI Percussion Key Map instruments. Each entry was set to 1 if at least 

one note was played using that patch and to 0 if the patch was not used. 

1-3 Note Prevalence of Pitched Instruments: A features array with one entry for 

each of the 128 General MIDI Instruments. Each entry was set to the number of 

notes played using the corresponding MIDI patch divided by the total number of 

Note Ons in the piece. 

1-4 Note Prevalence of Unpitched Instruments: A features array with one entry for 

each of the 47 MIDI Percussion Key Map instruments. Each entry was set to the 

number of notes played using the corresponding MIDI patch divided by the total 

number of Note Ons in the piece. 

1-5 Time Prevalence of Pitched Instruments: A features array with one entry for 

each of the 128 General MIDI Instruments. Each entry was set to the total time 

in seconds during which a given instrument was sounding notes divided by the 

totallength in seconds of the piece. 

1-6 Variability of Note Prevalence of Pitched Instruments: Standard deviation of 

the fraction of notes played by each General MIDI instrument that is used to 

play at least one note. 

1-7 Variability of Note Prevalence of Unpitched Instruments: Standard deviation 

of the fraction of notes played by each MIDI Percussion Key Map instrument 

that is used to play at least one note. 

1-8 Number of Pitched Instruments: Total number of General MIDI patches that 

were used to play at least one note. 
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1-9 Number of Unpitched Instruments: Total number of MIDI Percussion Key Map 

patches that were used to play at least one note. 

1-10 Percussion Prevalence: Total number of Note Ons belonging to percussion 

patches divided by total number of Note Ons in the recording. 

1-11 String Keyboard Fraction: Fraction of Note Ons belonging to string keyboard 

patches (General MIDI patches 1 to 8). 

1-12 Acoustic Guitar Fraction: Fraction of Note Ons be10nging to acoustic guitar 

patches (General MIDI patches 25 and 26). 

1-13 Electric Guitar Fraction: Fraction of Note Ons belonging to electric guitar 

patches (General MIDI patches 27 to 32). 

1-14 Violin Fraction: Fraction of Note Ons belonging to the violin patches (General 

MIDI patches 41 or 111). 

1-15 Saxophone Fraction: Fraction of Note Ons belonging to saxophone patches 

(General MIDI patches 65 to 68). 

1-16 Brass Fraction: Fraction of Note Ons belonging to brass patches (including 

saxophones) (General MIDI patches 57 to 68). 

1-17 Woodwinds Fraction: Fraction of Note Ons belonging to woodwind patches 

(General MIDI patches 69 to 76). 

1-18 Orchestral Strings Fraction: Fraction of Note Ons belonging to orchestral string 

patches (General MIDI patches 41 to 47). 

1-19 String Ensemble Fraction: Fraction of Note Ons belonging to orchestral string 

ensemble patches (General MIDI patches 49 to 52). 

1-20 Electric Instrument Fraction: Fraction of Note Ons belonging to electric (non

"synth") patches (General MIDI patches 5, 6,17,19,27 to 32, 34 to 40). 

5.5 Features based on musical texture 
This class of features takes advantage of the fact that MIDI notes can be assigned to 

different channels and to different tracks, thus making it possible to segregate the notes 

belonging to different voices. Although it would seem natural to use MIDI tracks to 

distinguish between voices, since only a maximum of sixteen channels are available, this 

was found to be an inappropriate approach. Using MIDI tracks would mean that it would 

be impossible to extract texture-based features from all Type 0 MIDI files, since they 

only allow a single track. Almost all MIDI files do use different channels for different 

voices, however, and it is possible to take advantage of Program Change messages to 

multiplex multiple voices onto a single channel in order to avoid being restricted to 

sixteen voices. It was therefore decided to use MIDI channels in order to distinguish 

between voices rather than tracks. 
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This approach is not perfect, as it is possible to use a single channel to hold multiple 

voices even without regular program change messages. A piano could be used to play a 

four-voice chorale, for example, with ail notes occurring on one channel. This problem is 

unavoidable, unfortunately, as it would be necessary to design a special analysis module 

to automatically segregate voices in order to solve this problem, something which is 

beyond the scope of this thesis. Fortunately, this problem does not occur often. 

The texture related features that were implemented are listed below: 

T -1 Maximum Number of Independent Voiees: Maximum number of different 

channels in which notes have sounded simultaneously. 

T-2 Average Number of Independent Voiees: Average number of different channels 

in which notes have sounded simultaneously. Rests are not included in this 

calculation. 

T -3 Variability of Number of Independent Voices: Standard deviation of number of 

different channels in which notes have sounded simultaneously. Rests are not 

included in this calculation. 

T -4 Voiee Equality - Number of Notes: Standard deviation of the total number of 

Note Ons in each channel that contains at least one note. 

T -5 Voice Equality - Note Duration: Standard deviation of the total duration of 

notes in seconds in each channel that contains at least one note. 

T -6 Voice Equality - Dynamics: Standard deviation of the average volume of notes 

in each channel that contains at least one note. 

T -7 Voiee Equality - Melodie Leaps: Standard deviation of the average melodic leap 

in MIDI pitches for each channel that contains at least one note. 

T -8 Voiee Equality - Range: Standard deviation of the differences between the 

highest and lowest pitches in each channel that contains at least one note. 

T -9 Importance of Loudest Voiee: Difference between the average loudness of the 

loudest channel and the average loudness of the other channels that contain at 

least one note divided by 64. 

T-10 Relative Range of Loudest Voiee: Difference between the highest note and the 

lowest note played in the channel with the highest average loudness divided by 

the difference between the highest note and the lowest note in the piece. 

T -11 Relative Range Isolation of Loudest Voiee: Number of notes in the channel with 

the highest average loudness that fall outside the range of any other channel 

divided by the total number of notes in the channel with the highest average 

loudness. 
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T -12 Range of Highest Line: Difference between the highest note and the lowest note 

played in the channel with the highest average pitch divided by the difference 

between the highest note and the lowest note in the piece. 

T -13 Relative Note Density of Highest Line: Number of Note Ons in the channel with 

the highest average pitch divided by the average number of Note Ons in aIl 

channels that contain at least one note. 

T-14 Relative Note Durations of Lowest Line: Average duration of notes (in seconds) 

in the channel with the lowest average pitch divided by the average duration of 

notes in aIl channels that contain at least one note. 

T -15 Melodie Intervals in Lowest Line: Average melodic interval in semitones of the 

line with the lowest average pitch divided by the average melodic interval of aIl 

lines that contain at least two notes. 

T -16 Simultaneity: Average number of notes sounding simultaneously. 

T-17 Variability Simultaneity: Standard deviation of number of notes sounding 

simultaneously. 

T -18 Voice Overlap: Number of notes played within the range of another voice divided 

by total number of notes in the piece. 

T-19 Parallel Motion: Fraction of ail notes that move together within 10% of the 

duration of the shorter note that both move up or both move down. 

T-20 Voiee Separation: Average separation in semi-tones between the average pitches 

of consecutive channels (after sorting based on average pitch) that contain at 

least one note divided by 6. 

5.6 Features based on rhythm 

A number of scholars have expressed the view that rhythm plays a very important, or 

even dominant, role in many types of music. Richard Middleton (2000), for example, 

stresses the importance of rhythm in characterising music in a discussion of ways to 

approach creating a widely applicable method of music analysis. It is unfortunate that 

many music analysis techniques, with a few exceptions su ch as the work of Cooper and 

Meyer (1960), tend to give rhythm less attention than it deserves. Special attention was 

therefore given to this class of features in this thesis. 

One approach to acquiring rhythmic features would be to use beat-tracking systems. 

Most existing beat-tracking systems provide only an estimate of the main beat and its 

strength, however, with Iittle further information. More varied and detailed information is 

needed for the purposes of genre classification. The "beat histogram" approach used by 

Brown (1993) and by George Tzanetakis and his coIleagues in a number of papers 

(Tzanetakis, EssI & Cook 2001; Tzanetakis & Cook 2002; Tzanetakis 2002) has been 

shown to be a valuable resource in this respect. A slightly modified version of 
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Tzanetakis' histogram was used to derive a number of the rhythmic features listed in this 

section. 

It is necessary to have sorne understanding of how autocorrelation works in order to 

understand how beat histograms are constructed. Autocorrelation essentially involves 

comparing a signal with versions of itself delayed by successive intervals. This technique 

is used to find repeating patterns in signaIs. Autocorrelation gives the relative strength of 

different periodicities within a signal. In terms of musical data, autocorrelation allows one 

to find the relative strength of different rhythmic pulses. 

In the particular case of this thesis, rhythmic histograms were constructed by 

considering sequences of MIDI events with MIDI ticks delineating the time domain. The 

following autocorrelation function was applied to each sequence of MIDI Note On 

messages: 

1 IN-I autocorrelation[lag] = - x[n]x[n -lag] N n=O 
(10) 

where n is the input sample index (in MIDI ticks), N is the total number of MIDI ticks, x 

is the sequence of MIDI ticks and lag is the delay in MIDI ticks (0 ~ lag < N). The value 

of x[nJ is proportional to the velocity of Note Ons. This ensures that beats are weighted 

based on the strength with which notes are played. This autocorrelation function was 

applied repeatedly to each MIDI sequence with different values of lag. These lag values 

corresponded to both rhythmic periodicities as weIl as bin labels in beat histograms, and 

the autocorrelation value provided the magnitude value for each bin. 

Once the histogram was completed with aIl reasonable values of lag, the histogram 

was downsampled and transformed so that each bin corresponded a periodicity with units 

of beats per minute. Finally, the histogram was normalized so that different pieces could 

be compared. The end result was a histogram whose bins corresponded to rhythmic pulses 

with units of beats per minute and whose bin frequencies indicated the relative strength of 

each pulse. In effect, beat histograms portray the relative strength of different beats and 

sub-beats within pieces. 

Figure 1 displays a sample beat histogram derived from a MIDI recording of the 

Ramones' Blitzkrieg Pop. The clear periodicities that are often multiples of each other is 

typical of Punk music, as is the characteristic rhythmic looseness demonstrated by the 
spread around each beat. Other types of music demonstrated very different patterns in 

their beat histograms. Techno, for ex ample, often had very clearly defined beats, without 

the surrounding spread. Modem Classical music, to cite another example, had much less 

clearly defined beats. 
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Beat Histogram for Blitzkrieg Pop 
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Figure 1: Beat histogram for the Ramones' Blitzkrieg Pop. 

Although beat histograms have only limited utility as a features in and of themselves, 

they are very useful in providing an intermediate data structure from which other features 

can be extracted. The two highest peaks of the beat histograms tend to have particular 

importance, as they are likely to represent the main beat of the music or one of its 

multiples or factors. 

It is important to keep in mind that MIDI timing can be affected by both the number 

of MIDI ticks that go by and tempo change meta-events that control the rate at which 

MIDI ticks go by. Tempo change meta-events must therefore be monitored. 

MIDI allows one to think of timing in terms of both raw time and rhythmic note 

values (i.e. half notes, quarter notes, etc.) by equating a certain number of ticks with a 

quarter note (although live MIDI recordings are not al ways quantized). Although these 

rhythmic note values, along with time signature and tempo change meta-events, can 

potentially provide features with a high discriminating power, they are somewhat 

sensitive to the MIDI encoding style of MIDI files' authours and to the sequencers 

they've used. This inconsistency is the reason that an emphasis is put on features derived 

from rhythmic histograms in the rhythmic features listed in this section. 

The rhythmic features that were implemented are listed below: 

R-l Strongest Rhythmic Pulse: Bin label of the beat bin with the highest magnitude. 
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R-2 Second Strongest Rhythmic Pulse: Bin label of the beat bin of the peak with the 

second highest magnitude. 

R-3 Harmonicity of Two Strongest Rhythmic Pulses: The bin label of the higher (in 

terms of bin label) of the two beat bins of the peaks with the highest magnitude 

divided by the bin label of the lower. 

R-4 Strength of Strongest Rhythmic Pulse: Magnitude of the beat bin with the 

highest magnitude. 

R-5 Strength of Second Strongest Rhythmic Pulse: Magnitude of the beat bin of the 

peak with the second highest magnitude. 

R-6 Strength Ratio of Two Strongest Rhythmic Pulses: The magnitude of the 

higher (in terms of magnitude) of the two beat bins corresponding to the peaks 

with the highest magnitude divided by the magnitude of the lower. 

R-7 Combined Strength of Two Strongest Rhythmic Pulses: The sum of the 

frequencies of the two beat bins of the peaks with the highest frequencies. 

R-8 Number of Strong Pulses: Number of beat peaks with normalized frequencies 

over 0.1. 

R-9 Number of Moderate Pulses: Number of beat peaks with normalized frequencies 

over 0.01. 

R-IO Number of Relatively Strong Pulses: Number of beat peaks with frequencies at 

least 30% as high as the magnitude of the bin with the highest magnitude. 

R-ll Rhythmic Looseness: Average width of beat histogram peaks (in beats per 

minute). Width is measured for ail peaks with frequencies at least 30% as high 

as the highest peak, and is defined by the distance between the points on the 

peak in question that are 30% of the height of the peak. 

R-12 Polyrhythms: Number of beat peaks with frequencies at least 30% of the highest 

magnitude whose bin labels are not integer multiples or factors (using only 

multipliers of 1, 2, 3,4, 6 and 8) (with an accepted error of +/- 3 bins) of the bin 

label of the peak with the highest magnitude. This number is then divided by the 

total number of beat bins with frequencies over 30% of the highest magnitude. 

R-13 Rhythmic Variability: Standard deviation of the bin values (except the first 40 

empty ones). 

R-14 Beat Histogram: A feature array with entries corresponding to the magnitude 

values of each of the bins of the beat histogram (except the first 40 empty ones). 
R-15 Note Density: Average number of notes per second. 

R-16 Note Density Variability: The recording is broken into 5 second long windows. 

The note density is calculated for each. This feature is the standard deviation of 

these note densities. 

R-17 Average Note Duration: Average duration of notes in seconds. 
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R-18 Variability of Note Duration: Standard deviation of note durations in seconds. 

R-19 Maximum Note Duration: Duration of the longest note (in seconds). 

R-20 Minimum Note Duration: Duration of the shortest note (in seconds). 

R-2l Staccato Incidence: Number of notes with durations of less than a 10th of a 

second divided by the total number of notes in the recording. 

R-22 Average Time Between Attacks: Average time in seconds between Note On 

events (irregardless of channel). 

R-23 Variability of Time Between Attacks: Standard deviation of the times, in 

seconds, between Note On events (irregardless of channel). 

R-24 Average Time Between Attacks For Each Voice: Average of average time in 

seconds between Note On events on individual channels that contain at least one 

note. 

R-25 Average Variability of Time Between Attacks For Each Voice: Average 

standard deviation, in seconds, of time between Note On events on individual 

channels that contain at least one note. 

R-26 Incidence of Complete Rests: Total amount of time in seconds in which no notes 

are sounding on any channel divided by the totallength of the recording. 

R-27 Maximum Complete Rest Duration: Maximum amount of time in seconds in 

which no notes are sounding on any channel. 

R-28 Average Rest Duration Per Each Voice: Average, in seconds, of the average 

amounts of time in each channel in which no note is sounding (counting only 

channels with at least one note) divided by the total duration of the recording. 

R-29 Average Variability of Rest Durations Across Voices: Standard deviation, in 

seconds, of the average amounts of time in each channel in which no note is 

sounding (counting only channels with at least one note). 

R-30 Initial Tempo: Tempo in beats per minute at the start of a recording. 

R-31 Initial Time Signature: A feature array with two elements. The first is the 

numerator of the first occurring time signature and the second is the 

denominator of the first occurring time signature. Both are set to 0 if no time 

signature is present. 

R-32 Compound Or Simple Meter: Set to 1 if the initial meter is compound 

(numerator of time signature is greater than or equal to 6 and is evenly divisible 

by 3) and to 0 if it is simple (if the above condition is not fulfilled). 

R-33 Triple Meter: Set to 1 if numerator of initial time signature is 3, set to 0 
otherwise. 

R-34 Quintuple Meter: Set to 1 if numerator of initial time signature is 5, set to 0 

otherwise. 
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R-35 Changes of Meter: Set to 1 if the time signature is changed one or more times 

during the recording. 

5.7 Features based on dynamics 

The term "loudness" is used in this thesis to refer to velocity values scaled by volume 

channel messages: 

note loudness = note velocity x (channel volume 1127) (11) 

Ali features based on dynamics use relative measures rather than absolute measures (such 

as average volume) because the default volume and velocity values set by sequencers can 

vary, and many MIDI authours simply encode their files without varying these values. 

The features related to dynamics that were implemented are listed below: 

D-l Ove raIl Dynamic Range: The maximum loudness minus the minimum loudness 

value. 

D-2 Variation of Dynamics: Standard deviation of loudness levels of ail notes. 

D-3 Variation of Dynamics In Each Voice: The average of the standard deviations of 

loudness levels within each channel that contains at least one note. 

D-4 Average Note To Note Dynamics Change: Average change of loudness from 

one note to the next note in the same channel. 

5.8 Features based on pitch statistics 
Statistics based on pitch can help to characterize genres in terms of degree of tonality, 

types of scales used and pitch variety. The features in this section differ from those in 

Sections 5.9 and 5.10 in that the latter take into account temporal locations of notes, 

whereas the se features only consider recordings as a whole. It should be mentioned that 

ail notes occurring on channel 10 were ignored for ail of these features, as pitch values on 

that channel correspond to percussion patches, not to pitches. 

Sorne features of this class were based on MIDI Pitch Bends. Although the use of 

Pitch Bends is somewhat variable from authour to authour, and therefore not entirely 

dependant on the music itsetf, features relating to Pitch Bend have the potential to be very 

discriminating, so they were included here. Efforts were made to use features with as 

limited sensitivity to non-musical factors as much as possible. 
Slightly moditied versions of the three types of "pitch histograms" that were 

implemented by George Tzanetakis and his colleagues (Tzanetakis & Cook 2002; 

Tzanetakis, Ermolinskyi & Cook 2002; Tzanetakis 2002) were used as bases from which 

pitch-based features could be derived. The tirst histogram, called the "basic pitch 

histogram," consisted of 128 bins, one for each MIDI pitch. The magnitude of each bin 
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corresponded to the number of times that Note Ons occurred at that partieular pitch. This 

histogram gave insights into the range and spread of notes. 

The second histogram was called the "pitch class histogram," and had one bin for 

each of the twelve pitch classes. The magnitude of each bin corresponded to the number 

of times Note Ons occurred in a recording for a particular pitch class. Enharmonie 

equivalents were assigned the same pitch class number. This histogram gave insights into 

the types of scales used and the amount of transposition that was present. 

FinalIy, the "fifths pitch histogram," also with twelve bins, was generated by 

reordering the bins of the pitch class histogram so that adjacent bins were separated by a 

perfect fifth rather than a semi-tone. This was done using the following equation: 

(3 = (7a) mod(l2) (12) 

where fJ is the fifths pitch histogram bin and a is the corresponding pitch class histogram 

bin. The number seven is used because this is the number of semi-tones in a perfect fifth, 

and the number twelve is used because there are twelve pitch classes in total. This 

histogram was useful for measuring dominant tonic relationships and for looking at types 

of transpositions. 

AlI three histograms were normalized after being generated so that histograms would 

not be influenced by the lengths or note densities of recordings. The features based on 

pitch statisties that were implemented are listed below: 

P-l Most Common Pitch Prevalence: Fraction of Note Ons corresponding to the 

most corn mon pitch. 

P-2 Most Common Pitch Class Prevalence: Fraction of Note Ons corresponding to 

the most common pitch class. 

P-3 Relative Strength of Top Pitches: The magnitude of the 2nd most common pitch 

divided by the magnitude of the most common pitch. 

P-4 Relative Strength of Top Pitch Classes: The magnitude of the 2nd most corn mon 

pitch class divided by the magnitude of the most common pitch class. 

P-S Interval Between Strongest Pitches: Absolute value of the difference between 

the pitches of the two most corn mon MIDI pitches. 

P-6 Interval Between Strongest Pitch Classes: Absolute value of the difference 

between the pitches of the two most common pitch classes. 

P-7 Number of Common Pitches: Number of pitches that account individually for at 

least 9% of aIl notes. 

P-8 Pitch Variety: Number of pitches used at least once. 

P-9 Pitch Class Variety: Number of pitch classes used at least once. 
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P-I0 Range: Difference between highest and lowest pitches. 

P-ll Most Common Pitch: Bin label of the most common pitch divided by the number 

of possible pitches. 

P-12 Primary Register: Average MIDI pitch. 

P-13 Importance of Bass Register: Fraction of Note Ons between MIDI pitches 0 and 

54. 

P-14 Importance of Middle Register: Fraction of Note Ons between MIDI pitches 55 

and 72. 

P-15 Importance of High Register: Fraction of Note Ons between MIDI pitches 73 

and 127. 

P-16 Most Common Pitch Class: Bin label of the most corn mon pitch class. 

P-17 Dominant Spread: Largest number of consecutive pitch classes separated by 

perfect 5ths that accounted for at least 9% each of the notes. 

P-18 Strong Tonal Centres: Number of peaks in the fifths pitch histogram that each 

account for at least 9% of aIl Note Ons. 

P-19 Basic Pitch Histogram: A features array with bins corresponding to the values of 

the basic pitch histogram. 

P-20 Pitch Class Distribution: A feature array with 12 entries where the first holds the 

magnitude of the bin of the pitch class histogram with the highest magnitude, 

and the following entries holding the successive bins of the histogram, wrapping 

around if necessary. 

P-21 Fifths Pitch Histogram: A feature array with bins corresponding to the values of 

the 5ths pitch class histogram. 

P-22 Quality: Set to 0 if the key signature indicates that a recording is major, set to 1 if 

it indicates that it is minor and set to 0 if key signature is unknown. 

P-23 Glissando Prevalence: Number of Note Ons that have at least one MIDI Pitch 

Bend associated with them divided by total number of pitched Note Ons. 

P-24 Average Range of Glissandos: Average range of Pitch Bends, where range is 

defined as the greatest value of the absolute difference between 64 and the 

second data byte of aIl MIDI Pitch Bend messages falling between the Note On 

and Note Off messages of any note. 

P-25 Vibrato Prevalence: Number of notes for which Pitch Bend messages change 

direction at least twice divided by total number of notes that have Pitch Bend 
messages associated with them. 

P-26 Prevalence of Micro-Tones: Number of Note Ons that are preceded by isolated 

Pitch Bend messages as a fraction of total number of Note Ons. 
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5.9 Features based on melody 
Although the pitch statistics discussed in Section 5.8 are both meaningful and useful, 

they do not reflect any information relating to the order in which pitches are played. 

Neglecting information about sequence would be very limiting, as melody is a very 

important part of how many humans hear and think about music. IdeaIly, one would like 

to collect information about aIl of the melodies in a recording and how they repeat, 

change and interact with each other. The literature on melodic contour discussed in 

Section 5.2 could prove useful as weIl. Unfortunately, aIl of this would require a phrase 

segregation system that is beyond the scope of this thesis. 

What one can do fairly easily, however, is collect statistics about melodic motion and 

intervals. In order to do this, the use of a "melodic interval histogram" is proposed here. 

Each bin of such a histogram is labelled with a number indicating the number of semi

tones separating sequentially adjacent notes in a given channel (independently of 

direction of melodic motion). In the normalized implementation of this histogram used 

here, the magnitude of each bin indicates the fraction of aIl melodic intervals that 

correspond to the melodic interval of the given bin. AIl notes occurring in any given 

channel were treated as a melody. Although this was not a perfect solution, especially for 

instruments su ch as pianos that can play harmonies or multiple melodies simultaneously, 

it was the only apparent cheaply available solution, and is entirely suitable in many cases. 

A second intermediate data structures was used as weIl. This consisted of an array with 

each indice corresponding to a MIDI channel and each entry consisting of a list of aIl 

melodic intervals on the appropriate channel in the order that they occurred. The intervals 

in the second data structure were negative for downward motion and positive for upwards 

motion. 

The features based on melody that were implemented are listed below: 

M-l Melodie Interval Histogram: A features array with bins corresponding to the 

values of the melodic interval histogram. 

M-2 Average Melodie Interval: Average melodic interval. 

M-3 Most Common Melodie Interval: Melodic interval with the highest magnitude. 

M-4 Distance Between Most Common Melodie Intervals: Absolute value of the 

difference between the most common melodic interval and the second most 

common melodic interval. 

M-5 Most Common Melodie Interval Prevalenee: Fraction of melodic intervals that 

belong to the most common interval. 

M-6 Relative Strength of Most Common Intervals: Fraction of melodic intervals 

that belong to the second most common interval divided by the fraction of 

melodic intervals belonging to the most common interval. 
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M-7 Number of Common Melodie Intervals: Number of melodic intervals that 

represent at least 9% of aIl melodic intervals. 

M-8 Amount of Arpeggiation: Fraction of horizontal intervals that are repeated notes, 

minor thirds, major thirds, perfect fifths, minor sevenths, major sevenths, 

octaves, minor tenths or major tenths. 

M-9 Repeated Notes: Fraction of notes that are repeated melodicaIly. 

M-IO Chromatie Motion: Fraction of melodic intervals corresponding to a semi-tone. 

M-ll Stepwise Motion: Fraction of melodic intervals that corresponded to a minor or 

major third. 

M-12 Melodie Thirds: Fraction of melodic intervals that are major or min or thirds. 

M-13 Melodie Fifths: Fraction of melodic intervals that are perfect fifths. 

M-14 Melodie Tritones: Fraction of melodic intervals that are tritones. 

M-15 Melodie Octaves: Fraction of melodic intervals that are octaves. 

M-16 Embellishment: Fraction of notes that are surrounded on both sides by Note 

Ons the same channel that have durations at least 3 times as long as the central 

note. 

M-17 Direction of Motion: Fraction of melodic intervals that are rising rather than 

falling. 

M-18 Duration of Melodie Arcs: Average number of notes that separate melodic 

peaks and troughs in any channel. 

M-19 Size of Melodie Arcs: Average melodic interval separating the top note of 

melodic peaks and the bottom note of melodic troughs. 

M-20 Melodie Piteh Variety: Average number of notes that go by in a channel before 

a note is repeated. Notes that do not recur after 16 notes are not counted. 

5.10 Features based on chords 
This class of features is based on the intervals between notes that sound 

simultaneously. Although it is certainly not assumed that any recording is tonal, a number 

of features were used that are related to tonality. This was done simply because tonal 

relationships do play an important role in many of the genres that were considered in this 

thesis, and the degree and types of tonality present can be representative of genre. Sorne 

of the techniques for chord analysis discussed by Rowe (2001) were taken advantage of 

here. 

Two new types of histograms are proposed as an aid to deriving chordal features. The 

first, called a "vertical interval histogram," consists of bins labeIled with different vertical 

intervals. The magnitude of each bin is found by going through MIDI recordings tick by 

tick and recording aIl vertical intervals (exhaustively between aIl notes sounding 
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simultaneously) that are sounding at each tick. The magnitude of each bin is then set to 

the appropriate sum and the bins are normalized. 

This histogram does not, however, give explict insights into what kinds of chords are 

present at any given time. A "chord type histogram" is proposed in order to fill in this 

gap. This histogram has bins labelled with types of chords (two pitch class chords, major 

triad, minor triad, other triad, diminished, augmented, dominant seventh, major seventh, 

minor seventh, other chord with four pitch classes and chord with more than four pitch 

classes). AlI inversions were treated as equivalent and octave doubling was ignored. The 

frequencies were counted in much the same way as in the vertical interval histogram, and 

were normalized as weIl. 

Neither of these histograms provides any information about arpeggiation, 

unfortunately, but sorne information related to this is collected in the melodic features. A 

more sophisticated system in the future could integrate vertical statistics with arpeggios 

and could collect information about inversions as weIl as chord transitions in order to 

obtain details about chord progressions, whether they be tonal or not. This is, however, 

beyond the scope of this thesis. 

The following features were implemented in order to collect information relating to 

chords: 

C-l Vertical Intervals: A feature set consisting of the frequencies of each of the bins 

in the vertical interval histogram described above. 

C-2 Chord Types: A feature set consisting of the frequencies of each of the bins in 

the chord typed histogram discussed above. 

C-3 Most Common Vertical Interval: The bin label of the vertical interval histogram 

bin with the highest magnitude. 

C-4 Second Most Common Vertical Interval: The bin label of the vertical interval 

histogram bin with the second highest magnitude. 

C-S Distance Between Two Most Common Vertical Intervals: The difference 

between the bin labels of the two most common vertical intervals. 

C-6 Prevalence of Most Common Vertical Interval: The fraction of vertical 

intervals corresponding to the most common vertical interval. 

C-7 Prevalence of Second Most Common Vertical Interval: The fraction of vertical 

intervals corresponding to the second most common vertical interval. 

C-8 Ratio of Prevalence of Two Most Common Vertical Intervals: The fraction of 

vertical intervals corresponding to the second most corn mon vertical interval 

divided by the fraction of vertical intervals corresponding to the most common 

vertical interval. 
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C-9 Average Number of Simultaneous Pitch Classes: Average number of different 

pitch classes sounding simultaneously. 

C-I0 Variability of Number of Simultaneous Pitch Classes: Standard deviation of 

the number of different pitch classes sounding simultaneously. 

C-ll Minor Major Ratio: Number of minor vertical intervals divided by number of 

major vertical intervals. 

C-12 Perfect Vertical Intervals: Fraction of aB vertical intervals corresponding to 

perfect intervals. 

C-13 Unisons: Fraction of aB vertical intervals corresponding to unisons. 

C-14 Vertical Minor Seconds: Fraction of aB vertical intervals corresponding to minor 

seconds. 

C-15 Vertical Thirds: Fraction of aB vertical intervals corresponding to thirds. 

C-16 Vertical Fifths: Fraction of aB vertical intervals corresponding to fifths. 

C-17 Vertical Tritones: Fraction of aB vertical intervals corresponding to tritones. 

C-18 Vertical Octaves: Fraction of aB vertical intervals corresponding to octaves. 

C-19 Vertical Dissonance Ratio: Total number of vertical 2nds, tritones, 7ths and 9ths 

divided be total number of vertical unisons, 4ths, 5ths, 6ths, octaves and 10ths. 

C-20 Partial Chords: Fraction of aB vertical intervals involving only two pitch classes. 

C-21 Minor Major Triad Ratio: Number of minor triads divided by number of major 

triads. 

C-22 Standard Triads: Fraction of aB chords that are either major or minor triads. 

C-23 Diminished and Augmented Triads: Fraction of aB chords that are either 

diminished or augmented triads. 

C-24 Dominant Seventh Chords: Fraction of aB chords that are dominant sevenths. 

C-25 Seventh Chords: Fraction of aB chords that are dominant seventh, major seventh 

or minor seventh chords. 

C-26 Complex Chords: Fraction of aU chords that contain more that four pitch classes. 

C-27 Non-Standard Chords: Fraction of aB chords that are not two pitch class chords, 

not major or minor triads and not seventh chords. 

C-28 Chord Duration: The average duration of a chord in seconds. 
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6. Implementation of classification system 

6.1 Selection of model genre taxonomy 

This section discusses the model genre taxonomies that were used to train and test the 

classification system. Chapter 2 can be consulted in order to read more about the 

background that led to the implementation decisions presented here. 

It is important for a classification system to be able to classify recordings into 

categories that are meaningful to the average, potentially musically illiterate person. At 

the same time, however, it is also desirable that a system be able to make the kind of fine 

classifications that are useful to music professionals. A hierarchal tree-based structure of 

categories was chosen as the taxonornical structure to use for this system, as it fulfils 

these dual requirements. Broad categories, such as Classical or Jazz, are found at the root 

of the tree (topmost level of the tree) , and categories become increasingly fine as one 

progresses towards the leaves (i.e. nodes in the tree without children). 

The various branches of the tree were permitted to vary in terms of both depth and 

breadth. This was necessary in order to accommodate the different degrees to which 

different real-life genres are sometimes split into narrow sub-genres and sometimes 

simply left as broad categories. 

It was decided to use a taxonomy based on individual recordings rather than artists as 

a whole, des pite the problems related to scalability discussed in Chapter 2. Using artists 

would have involved too many contradictions that could confuse the classification 

system. Many artists have produced music in a number of different genres, and it would 

be inappropriate to attempt to force a genre recognition system to accept artificial 

relations between such pieces. This is not to say that relations based on artist are not 

meaningful, of course, since it would certainly be useful to build a system that could 

search for features based on a composer' s style rather than genre, for ex ample, but this is 

beyond the scope of this thesis. 

The tree-based system used here had two important differences from the types of trees 

traditionally used: a given recording could be associated with more than one leaf genre 

and a sub-genre could be a direct descendant of more than one parent genre (e.g. Bossa 

Nova is a descendant of both Jazz and World Beat in the implementation shown in Figure 

3). These two modifications did complicate the organizational clarity offered by 

traditional trees, but they were necessary to deal with the realties that the boundaries 

between different genres are often vague, sub-genres are often the result of a complex 

amalgamation of potentiaUy disparate parent genres and many recordings do not faU 

unambiguously into single genre categories. 
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This hierarchical organization allows users to look at whatever level of the hierarchy 

IS appropriate for their needs. Users can start at a root-Ievel genre and descend to 

increasingly deep levels of the tree if they wish to refine a search. Altematively, they can 

start at a leaf and travel up the tree if they wish to gain a broader perspective. Dividing 

genres hierarchically is not only advantageous in the sense that it is useful to humans 

performing searches, but it also makes it possible to compare how weIl the system 

distinguishes between fairly dissimilar music from the parent genres compared to the 

more similar sub-genres. 

This kind of structure does have the disadvantage that ev en small updates to the 

taxonomy (which would be necessary in order to keep up-to-date with the constant 

changes in the labels that people use in real life) would require re-training of the entire 

classification system. This is not as mu ch of a problem as one might think, however. One 

needs simply update the hierarchy and the training examples, and the leaming of the new 

structure could be done automatically off-line with no further human intervention other 

than sorne test validation at the end of the leaming process. This updating process could 

be done regularly as a matter of routine. The requirement of having to manually research 

and implement changes in the hierarchy is certainly inconvenient, but this is still a great 

improvement over the fully manual classification system that is currently in use. The use 

of data mining techniques such as those discussed in Chapter 2 could potentially be used 

to automate even these tasks in a future version of this software. 

As can be seen in Chapter 4, existing automatic classification systems have rarely 

classified between more than 9 or 10 categories, and have frequently used fewer 

categories. This is certainly a reasonable choice as an intermediate attainable goal in 

developing genre classification systems. Taxonomies of this size are also realistic for 

certain limited types of tasks, and the use of broad categories avoids the pitfalls related to 

being forced to label training and testing recordings with narrower categories that tend to 

be more subjective. Of course, one must have a diverse enough set of training samples to 

represent aIl of the sub-types of broad genres if one wishes to perform realistic 

classifications. 

In any case, it was decided to design an initial rough taxonomy (Figure 2) in order to 

compare the performance of this system with existing studies. Although these 

comparisons cannot be definitive, since different categories and different recordings have 

been used in different studies, and most of the existing studies have analyzed audio 

recordings rather than symbolic recordings, they can at least give sorne general idea of 

relative performance. The taxonomy shown is Figure 2 was designed to include 

categories with sorne similarity as weIl as categories that are significantly different. 
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Popular Western Classical 
Rap Baroque 
Punk Modern Classical 
Country Romantic 

Figure 2: Reduced classification taxonomy. 

Of course, the taxonomy shown in Figure 2 is not sophisticated or large enough to be 

useful for general real-life purposes. It was therefore decided ta develop a much larger 

and better designed taxonomy in arder ta test the practical potential of the system 

developed here. This expanded taxonomy is shown in Figure 3. 

Country Rap Western Classical 
Bluegrass Hardcore Rap Baroque 
Contemporary Pop Rap Classical 
Trad. Country Early Music 

Rhythm and Blues Medieval 
Jazz Blues Renaissance 

Bop Blues Rock Modern Classical 
Bebop Chicago Blues Romantic 
Cool Country Blues 

Fusion Soul Blues Western Folk 
Bossa Nova Funk Bluegrass 
Jazz Soul Jazz Soul Celtic 
Smooth Jazz Rock and Roll Country Blues 

Ragtime Soul Flamenco 
Swing 

Rock Worldbeat 
Modern Pop Classic Rock Latin 

Adult Contemp. Blues Rock Bossa Nova 
Dance Hard Rock Salsa 

Dance Pop Psychedelic Tango 
Pop Rap Modern Rock Reggae 
Techno Alternative Rock 

Smooth Jazz Hard Rock 
Metal 
Punk 

Figure 3: Full classification taxonomy. 

The desire to have a realistic taxonomy required significantly more thought than the 

taxonomy shown in Figure 2. As discussed in Chapter 2, on-line retailers tend to offer the 

most reliable and useful taxonomies. The expanded taxonomy developed here therefore 

emphasized this source of information, but were also made use of an amalgamation of 

information found in scholarly writings on popular music, popular music magazines, 

music critic reviews, taxonomies used by music vendors, schedules of radio and video 

specialty shows, fan web sites and the personal knowledge of the authour. 
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Particular use was made of the AU Music Guide, an excellent on-line resource, and of 

the Amazon.com on-line store. These sites are widely used by people with many different 

musical backgrounds, so their systems are perhaps the best representations available of 

the types of genres that people actually use. These two sites are also complimentary, in a 

sense. The AU Music Guide is quite informative and weil researched, but does not 

establish clear relationships between genres. Amazon.com, in contrast, has clearly 

structured genre categories, but no informative explanations of what they mean. 

Given the limitations on the number and types of MIDI files that can and have been 

encoded using MIDI and made available on-line, it was unfortunately only practical to 

use a subset of the categories that would have ideally been included in the taxonomy. The 

amount of time needed to manually find, download and classify recording also imposed 

limitations on the number of categories that could be used here. This taxonomy is, 

however, significantly larger, more specialized and more diverse than that used in any 

other known automatic classification system to date, and it includes a range of categories 

that is certainly sufficient for real-life, practical use. 

The taxonomy shown in Figure 3 is not always perfectly logical or consistent. This 

was necessary in order to test the system realistically, as the types of genre structures that 

humans actually use are often illogical and inconsistent. The taxonomy proposed here is 

not presented as ideal, perfect or complete, but rather as a realistic taxonomy that is good 

enough for testing and for practical use, yet is certainly open to refinement in the future. 

This taxonomy encapsulates many of the difficulties, ambiguities and inconsistencies 

found in any realistic taxonomy and is large and sophisticated enough that it provides a 

significantly more difficult and realistic test bed than has been applied to any previous 

automatic genre classification system known to the author. 

There are a total of 9 root level labels, 8 intermediate labels and 38 unique leaf labels 

in the taxonomy shown in Figure 3, for a total of 55 unique labels (with duplicates only 

counted once). Detailed explanations of these categories can, in most cases, be found by 

referencing the Ail Music Guide. 

The software developed for this thesis has been designed to allow users to enter in 

their own taxonomies if they wish by customizing labels, modifying the architecture of 

the tree and controlling the selection and model classification of the training data if they 

wish. This makes it possible for users with specialized interests to custom train the 

software to be able to de al with the specific genres and sub-genres that interest them. 

Since there is not, a universally accepted genre taxonomy to date, this approach allows 

individual users to use taxonomies that fit their needs and perspectives. Furthermore, it 

allows modification of the taxonomy as genres change or new genres are introduced. 
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6.2 Selection of training and testing data 
One would ideally like to have a standardized test bed of recordings that could be 

used to compare the performances of different classification systems. Unfortunately, no 

such large scale, widely acceptable and affordable set of MIDI recordings exists, so it was 

necessary to manually collect a custom recording library in order to train and test the 

classification system developed in this thesis. 

The first step towards accomplishing this was the compilation of a catalogue of web 

sites from which MIDI files could be downloaded. Although an emphasis was placed on 

sites that focused on partieular genres, the y were insufficient in number to meet the 

demands of this thesis, so a number of general purpose sites and MIDI search engines 

were included as weIl. 

The sites in this directory were then surveyed manually and aIl files that sounded like 

they might belong to the genre categories in the model taxonomy were downloaded. This 

recording library was then supplemented by specifie prototypieal recordings that were 

sought out if they had not already been found. This was done by constructing lists of ten 

to twenty pieces that were typical of each genre according to the AlI Music Guide web site 

and using MIDI search engines to find as many of these specifie recordings as possible. 

At this point, 30 to 45 MIDI recordings were available for each leaf genre. Deficits in any 

individual genres were remedied by performing further searches for model recordings. 

It was decided to use a combination of both prototypical ex amples and generally 

selected ex amples in this manner so as to attain a training set that would help to make it 

clear to the pattern recognition system what is typical of particular genres while at the 

same time including diverse enough examples to avoid overspecialization. Using only 

prototypical examples would have the dangers of biasing the system towards the authour's 

perception of genre categories and of making it unable to deal with recordings that are 

somewhat atypieal of genres that they nonetheless clearly belong to. 

It should be noted that, within each leaf category, MIDI files were taken from a 

variety of sources whenever possible. This was done in order to even out any encoding 

particularities, as recordings from a single source could have encoding characteristics that 

the system could use to classify them, which would artificially inflate classification 

performance. 

AIl of the downloaded files were then reviewed one by one by the authour, and 

classified based on the author' s experience, the AlI Music Guide and the label of the piece 

on the site that it was downloaded from, if available. Twenty-five pieces were then 

selected from the available pool for each leaf genre. Single pieces were permitted to 

belong to more than one genre, when appropriate. The particular twenty-five recordings 

that were chosen were selected in order to fulfill three requirements: that aIl recordings 

could reasonably be said to belong to the given leaf genre, that as full a range of sub-types 
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within each leaf genre as possible were represented and that a few pieces at least 

somewhat atypical of the genre were present. These requirements helped to ensure that 

training would occur over a broad enough range that the classification system could 

perform well in a real-world situation and that success rates were not artificially inflated 

by using overly specialized training and testing examples. 

The particular ceiling of twenty-five recordings per leaf genre was selected because of 

the time requirements involved in manually finding, downloading and classifying 

recordings, particularly given the number of genres considered here. An additional 

problem was that MIDI files are much harder to find in sorne genres than others. It was 

decided to use an equal amount of recordings for all leaf genres, as failure to do this 

might cause the pattern recognition to find local minima by ignoring genres with few 

recordings. This had the consequence of causing the genres with the fewest easily 

available MIDI files to set the ceiling on the number of recordings used per leaf genre. 

As a final step, a module was included in the software to report recordings that were 

statistical outliers after feature extraction was completed for all recordings. This was done 

in order to flag any recordings that may have been accidentally misclassified manually or 

if a file was corrupted. Recordings were only reclassified or replaced if an obvious error 

had been made during manu al classification, however. Recordings that were outliers in 

the feature space but nonetheless had been correctly classified based on information on 

the web and elsewhere were therefore not altered or removed, as to do so would have 

artificially inflated success rates. 

Space limitations prevent the inclusion of an appendix listing the MIDI files used and 

statistics regarding their encoding in this document, unfortunately. Such a list can be 

obtained from the author by writing to him at cory.mckay@mail.mcgill.ca, however. 

As a side note, many MIDI files contain meta-data indicating genre. This meta-data is 

not universally present, however, and there is not any consistent set of genre labels or 

classification standards that are used. Such meta-data is of very limited use without a 

reliable standardized system, as its presence and quality depends entirely on the pers on or 

people who made a particular file. Genre identifications stored in MIDI files were 

therefore ignored and classifications were performed based solely on musical content. 

An automated system for finding and downloading files and/or access to a large 

database of easily accessibly music would have greatly helped to increase the number of 

recordings collected. Commercial or larger scale academic research in the future would 

benefit from such systems, as twenty-five recordings per category is a relatively small 

number given the number of categories, and a larger recording library would likely 

improve performance and make it possible to use more genre categories. A committee

based manual classification process would also be appropriate given the availability of 

willing committee members. 
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6.3 Feature extraction and selection 
The group of 111 features that was implemented (see Chapter 5) was large enough 

that the features were not likely to perform weU aU together, particularly given the 

training 1 testing library only consisted of 950 recordings (the "curse of dimensionality" is 

explained in Section 3.2). Sorne kind of feature selection and/or weighting, as covered in 

Section 3.2, was therefore necessary. It was decided not to use any of the dimensionality 

reduction techniques that cause one to lose the separability of the original features, as 

which features perform weU in distinguishing between different genres has musicological 

research interest. Exhaustive search strategies were also rejected, as the large number of 

candidate features made them intractable. Although techniques such as sequential floating 

selection could certainly have been used, it was decided to use genetic algorithms (GA's) 

instead, as they are particularly weU suited to feature spaces such as that used here (see 

Section 3.2). Genetic algorithms also have the advantage of aUowing one to find feature 

weightings as weU as simple on/off feature selections. 

After sorne informaI experimentation with different GA parameters, it was decided to 

use a roulette crossover system with mutation and with elitism, but without villages. A 

population of 125 chromosomes was used with a crossover rate of 0.4 and a mutation 

probability of 0.02. Evolution was continued until the fitness of the best performing 

chromosome in the population did not improve for 75 consecutive generations or a given 

maximum was reached. In general, the choice of particular GA parameters is as much of 

an art as a science. These values worked better than others that were tried, so they were 

kept. Although more extensive and formaI experimentation cou Id have been performed, it 

was decided that the research resources would be better spent elsewhere. 

Two types of feature selection were performed for each classifier: basic on/off feature 

selection and feature weighting. Feature weighting was performed using 5 bit words for 

each feature, with a resultant non-normalized weighting between 0 and 1 in 32 

increments. Experiments were conducted to see the relative performance of no feature 

selection at aU, only on/off feature selection, only feature weighting and on/off feature 

selection foUowed by weighting of the survivors. The results are described in Chapter 7. 

A close examination of the features described in Sections 5.4 to 5.10 wiU reveal that 

there are two types of features present: those that consist of a single value (referred to 

here as one-dimensional features) and those that consist of an array of values (referred to 

here as multi-dimensional features). The reasons for this division into the two types of 

features are explained in Section 6.4. 

As will be seen in Section 6.4, each of these two feature types was treated in a 

separate way. AU one-dimensional features were classified using a single k-nearest 

neighbour (KNN) classifier, and each multi-dimensional feature was classified using its 

own feedforward neural network (see Section 3.3 for a description of these classification 
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techniques). This led to two stages of feature selection, each of which consisted of both 

on/off selection and feature weighting. 

In the first stage, feature selection and/or weighting were applied to the collection of 

all one-dimensional features. Since only the training recordings were accessible to the 

system (using testing recordings at any stage of the training violates the validity of the 

final testing), it was necessary to temporarily partition the training data into feature 

selection training and testing groups. Genetic algorithms were then used to find the best 

features and their associated weights using these two training recording sub-sets. The 

fitness of each chromosome was evaluated by measuring how well a KNN classifier with 

the selection or weightings of the bit string and trained on the feature selection training 

group classified the feature selection test group. Once the features and their associated 

weightings were evolved, a new KNN classifier was trained using these settings and all of 

the feature values in the entire original training set. 

The second stage was just as much a classifier selection process as it was a feature 

selection process. Which of the classifiers to use and their associated weightings in the 

combined classification process (see Section 6.5) were found here using a similar genetic

algorithm-based process as in the first stage. The classifiers considered consisted of the 

KNN classifier trained in the first stage as well as the neural networks, which had each 

been trained to classify a single multi-dimensional feature. The fitness of each 

chromosome was determined by how well the classifier selections and weightings 

associated with its bit string corresponded to the model classifications. 

So, to sum up, the one-dimensional features were first selected and/or weighted using 

a single KNN classifier. This single KNN classifier was then combined with one neural 

network-based classifier for each multi-dimensional feature, and selection/weighting was 

performed again, but this time on this entire ensemble of classifiers. 

Sorne initial pre-processing was applied to all of the one-dimensional feature values 

before selection and/or weighting. It was desirable to use scaling so that all feature values 

would faU in roughly the same range of values so that aU features would start off with 

equal effective weightings. If this had not been done, then a feature with a range of values 

between 0 and 1000, for example, would have had far more effect on the distances 

calculated by a KNN classifier than a feature whose value varied between 0 and 0.1. 

Furthermore, it was desirable to moderate the effect of extreme feature values that fell 

far out of the normal range of a feature. If a particular feature usually varies between 0 

and 1, for ex ample, but one recording has a value 1000 for that feature, it is likely that 

this is due to sorne kind of noise. If left unmoderated, this extreme value could cause a 

KNN classifier to misclassify the recording, even if all of its other features would lead to 

a successful classification. An erroneous value such as this cou Id also detrimentally 

influence feature selection, if left uncorrected. 
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The first stage of this pre-processing consisted of finding the standard deviation and 

mean of each feature across all testing recordings. The maximum for each feature was 

then set to two standard deviations above the mean, and all values above this maximum 

were reduced to the maximum value. A similar process was used to ensure that no values 

were below two standard deviations less than the mean. The following equation was then 

used to scale all feature values to faH between 0 and 1: 

VI - v rnin v2 = 
Vmax - vmin 

(13) 

where V2 is the scaled feature value, V J is the original feature value, Vmin is the value 2 

standard deviations below the me an and Vmax is the value 2 standard deviations above the 

mean. 

6.4 Implementation of classifiers 
As will be seen in Section 6.5, a hierarchical classification system was used that 

divided the taxonomy into portions and classified each portion separately, before 

combining the results to arrive at a final classification. Each portion of the taxonomy, 

with its subset of aIl possible categories, was classified into one or more of its candidate 

categories by a collection of classifiers referred to here as a "classifier ensemble." At the 

level of abstraction used in Section 6.5, each such ensemble can be seen as a black box 

object that takes in the features of recordings and outputs scores, between 0 and l, for 

each candidate category. This section explains the contents of each of these black boxes. 

One will recall from Section 3.3 that nonparametric classifiers are the best type of 

classifiers to use for tasks such as this sort of musical genre classification, where the 

underlying statistical distributions of the population's feature values are unknown, where 

the data is not nominal and where there are multiple candidate categories. In particular, k

nearest neighbour (KNN) and feedforward neural network (NN) classifiers were chosen 

for use here, as they are often used and known to be effective. 

As discussed in Section 6.3, features were divided into two groups, namely one

dimensional features and multi-dimensional features. The one-dimension al features each 

consisted of single values that were self-contained and meaningful in themselves. The 

multi-dimensional features, in contrast, each consisted of several values that were closely 

related to one another. Although it is of course true that aIl features are potentially 

interrelated, those sub-features grouped into multi-dimensional features were particularly 

subject to this interdependence. 

As was seen in Section 3.3, KNN classifiers have the advantage of requiring a 

negligible amount of computation to train, but have the disadvantage that they cannot 

model complex logical relationships between features. NN' s, on the other hand, are 
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relatively slow to train, but can model sophisticated relationships after training. These 

relative strengths and weaknesses correspond closely to the characteristics of the two 

types of features, so it was decided to use a single KNN classifier to perform 

classifications using aIl of the one-dimensional features and a separate NN for each multi

dimensional feature. The use of a KNN classifier reduced training time, and the use of 

NN' s made use of their more sophisticated classification ability where it was most 

needed. 

Each KNN classifier calculated a score for each candidate category based on the 

number of points captured that belonged to each category divided by k. The NN 

classifiers calculated a score for each candidate category based on the value of each 

output unit, each of which corresponded to a different candidate category. 

This collection of component classifiers, namely a single KNN classifier and one NN 

classifier for each multi-dimensional feature, made up a single complete classifier 

ensemble. Each of these component classifiers, when provided with the appropriate 

features of a recording, output a score for each candidate category, and a final set of 

scores for each category for the ensemble was found by calculating a weighted average of 

the scores for each category for each component classifier. Which component classifiers 

were actually used and how their relative weightings were found using genetic algorithms 

is discussed in Section 6.3. A graphical depiction of a classifier ensemble is shown in 

Figure 4. 

Now that the composition of each classifier ensemble is understood, it is appropriate 

to delve into sorne of the details of how each component classifier was implemented. As 

stated above, each KNN classifier was trained on aIl of the one-dimensional features, with 

feature selection and/or weighting performed using genetic algorithms. The value of k 

was set to the square root of the number of training samples. The relative weightings for 

aIl features, including multi-dimensional features, could be found by combining these 

weightings with those found during classifier weighting. 

Each NN took in a single multi-dimensional feature. Each dimension of the feature 

was assigned to a single input unit. The sigmoid function was used as the activation 

function. One output unit was created for each candidate category, and it was trained to a 

target value of 0.8 if a training sample belonged to a given category and to 0.2 if it did 

not. During classification, values on the output units were cut off so that no values could 

not exceed 0.8 or fall below 0.2. Values read off the output units were automatically 

scaled so that a value of 0.8 would correspond to a final output of 1 and a value of 0.2 

would correspond to a final output of o. AIl of this was done rather than simply training 

units to values of 0 and 1 because the sigmoid function can have difficulty approaching 

these output extremes. 
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Figure 4: A single classifier ensemble with feature and classifier selection and weighting. 

A leaming rate of 0.1 was used as weB as a momentum of 0.1 in the NNs. Initial 

weights were randomly set to values between 0.1 and 0.7, and bias units outputting 

constant values of -1 were used. A single layer of hidden units was used, consisting of a 

number of units equal to the square raot of the sum of the number of input units and the 

number of output units. These network parameters were found to work well during 

informai experiments. As is the case with genetic algorithms, there are no reliable 

commonly accepted techniques for choosing the ideal values for these parameters. 
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Training was terminated when the absolute change in the sum of squares error across the 

output units fell below 10-7 for 500 consecutive iterations or until a set maximum of 

iterations was reached. The order of the training samples was randomized. 

So, in summary, each ensemble of classifiers took in the complete set of features and 

output a non-normalized score for each candidate category from 0 to 1. Inside each 

ensemble, a KNN classifier (with feature selection and weighing determined by genetic 

algorithms) classified based on one-dimensional features and a separate NN classified 

each multi-dimensional feature. The final scores for each category for an ensemble were 

found by calculating a weighted average of the outputs of these component classifiers, 

with the classifier selection and weightings determined with genetic algorithms. 

6.5 Coordination of classifiers 
Since a hierarchical taxonomy was used in order to realistically model a way in which 

humans organize genres, it was decided to take advantage of this organization in order to 

improve classification performance by using a hierarchical classification technique. As 

will be seen below, this involved training a number of separate classifier ensembles on 

different parts of the taxonomy. Each of these classifier ensembles was of the type 

described in Section 6.4, but can be seen as a black box at this lev el of abstraction that 

outputs a certainty score for each candidate category. 

Classifying among many categories is in general a harder task than classifying among 

fewer categories. Simply classifying a recording among aIl leaf categories (a flat 

classification) could be a difficult task if there are many such categories. Classifying only 

among root level categories, in contrast, is likely to be easier because there are fewer 

candidate categories and what categories there are are likely to be more easily 

distinguishable at such a broad level. 

Hierarchical classification operates by first performing a classification to choose one 

or more root level categories, th en classifying only among the children of those root 

categories selected, and so on until only a leaf level category or categories remain. This 

progression from initial coarse classifications to progressively finer classifications as one 

proceeds down the tree has the advantage that only a small subset of aIl possible 

categories must be considered at any one time, thus making the work of the classifiers 

much easier. 

Another important advantage of this approach is that, if feature selection techniques 

are used, as they are here, a specialized classifier can be trained for each parent no de in 

the taxonomy that uses specialized features to classify among its direct descendants. For 

example, it would be reasonable for a classifier attempting to distinguish between 

different types of Western classical music to base classifications partly on whether 

parallei fifths are present. This feature would be less useful if one is attempting to 
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distinguish between different types of blues music, for example, but a feature such as 

whether a harmonica is present or not might be useful here, whereas it would not be for 

classical music. 

This type of hierarchical classification has two important weaknesses, however. The 

first is that training times are significantly increased because a separate classifier must be 

trained for each parent node in the taxonomy. This is not as bad as one might imagine for 

the implementation used in this thesis, fortunately, since each classifier only needs to be 

trained on the subset of recordings belonging to its particular candidate categories, which 

reduces training times. Also, the task of each classifier is simpler than it would be with a 

larger number of categories, so it is likely to converge faster than a classifier attempting 

to deal with a more complex task wou Id. Finally, the use of KNN classifiers to deal with 

most of the features significantly cut down on training times. 

The second weakness of basic hierarchical classification is that an erroneous 

classification near the root of the tree will cause classification failure, since an incorrect 

choice willlead to a path down the tree which cannot lead to a correct leaf category. This 

is not necessarily a disadvantage when compared specifically to flat classification, since 

the classifications made by such a classifier are much more likely to be incorrect than the 

coarse classifications near the root of a hierarchical classifier, but it is still a problem that 

should be dealt with. 

In order to improve results, three types of classification using three different classifier 

ensembles or groups of ensembles were therefore performed at each level of the hierarchy 

as a decent was made down the hierarchy: 

• Parent classifier: a classification was made among the direct descendants of the 

current node in the taxonomy (or the root categories, when a classification was 

first begun). 

• Flat leaf classifier: a classification was made among all possible leaf categories. 

This was essentially a flat classification. The scores for leaves that were not 

descendants of at least one of the categories considered by the current parent 

classifier were discarded, and the scores for the remaining leaves were propagated 

up the tree until they reached a category that was a direct descendant of the 

current node, where they were averaged. 

• Round-robin classifier: a separate classifier was trained for each pair of leaf 

categories. This was another type of flat classifier. Only the pairs that consisted of 

descendants of the categories considered by the current parent classifier were 

used. The results were propagated up the tree, as was done with the leaf classifier. 
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The scores for each candidate category from each classifier ensemble were then 

combined using a weighted sum, with the final result deciding which child or children 

were considered during the next stage of the decent down the hierarchy. It should be 

noted that the same leaf classifier and round-robin ensembles were used with every parent 

classifier. Figure 5 displays this classifier process graphically: 

Choice for 
Category 1 

Features of a 
Recording 

Threshold 
Based Decision 

System 

Choice for 
Category n 

Figure 5: How a decision was arrived at as to which children of a parent category were 
to be explored or, if they were leaves, selected as winning categories. 

This classifier coordination technique is in a sense an expert system that makes use of 

specialized classifiers (namely the parent classifiers) as well as the knowledge of more 

general classifiers (the leaf classifier and round robin classifiers). This approach does 

increase the amount of training time needed, particularly in the case of the round-robin 

classifiers, but there is good potential for increasing performance. Grimaldi et al. (2003) 

had sorne success with round robin classification, so it was decided to test their use, 

despite the increases in training time. 

It was decided to use weightings of 0.6 for the parent classifier, 0.2 for the leaf 

classifier and 0.2 for the combined results of all the appropriate round-robin classifiers. 

These values worked well experimentally, and eut down on further training time that 
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techniques such as genetic algorithms would have required to calculate weightings. The 

emphasis was put on the parent classifiers, as they used specialized features, and it was 

therefore reasonable to expect them to perform better than the general-purpose leaf and 

round-robin classifiers. 

Past results from applying hierarchical classification to musical genre have been 

mixed. Xu et al. (2003) had good results, but Burred and Lerch (2003) found little 

difference in success rates between fiat and hierarchical classification methods. It was 

therefore decided to compare fiat and hierarchal classification experimentally. The results 

are presented in Chapter 7. The particular hierarchal classification techniques used here 

are of a novel and generally more sophisticated type than have previously been 

investigated in relation to musical classification, and the use of many high-level features 

and of feature selection to train specialized classifiers makes it reasonable to hope for 

improved results from hierarchical classification methods here. 

Each classifier, regardless of which of the three types listed above it belonged to, was 

an ensemble of classifiers of the type described in Section 6.4. A modular object-oriented 

design was used here, so that the only visible differences from one instantiation of an 

ensemble to another were the candidate categories and the training samples. The feature 

selection and training for each ensemble can be seen as having happened inside the 

ensemble black box, so that it simply output a score between 0 and 1 for each candidate 

category. 

It was decided to allow classifications into more than one category, as many 

recordings can indeed be said to belong to more than one genre. It was also decided to 

allow the system to classify recordings as "unknown" if none of the scores were high 

enough, as in practical situations such a result can act as a fiag to request human 

intervention, and is certainly better than simply outputting a wrong classification. Both of 

these decisions complicated the task of the classifiers, but this was necessary in order for 

the classifications to be realistic. 

The potential for membership with multiple categories made it possible for multiple 

paths to be followed down the classification hierarchy. A result of "unknown" at any 

point terminated the corresponding path. If no path reached a leaf category, then a 

recording was classified as unknown. A recording was said to belong to allleaf categories 

that were reached. 

It is now appropriate to explain how it was determined whether or not a given 

recording was said to belong to a given category based on its classification scores. If 

classification into exactly one category had been all that was needed, one could have 

simply called the category with the highest score the winner. However, this was not the 

case here, so a more sophisticated approach was needed. 
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AU candidate categories whose scores met at least one of the foUowing two conditions 

were considered winners: 

• Score was over 0.5. 

• Score was at least 0.25 and was within 20% of the highest score. 

These "magic numbers" were arrived at through informai experimentation, and intuitively 

seem reasonable if one wants to make it possible to have a recording belong to multiple 

categories but does not want to have false positives. If no categories met either of these 

two conditions, then a recording was classified as unknown. Categories that did not meet 

either of the above criteria but did have a score within 30% of the highest score and had a 

minimum value of 0.2 were considered "secondary choices," which were output simply in 

order to see how close erroneous classifications were to being correct. 

The process described above was applied to any set of category scores when they 

needed to be resolved into specifie results rather than just scores, whether they came from 

a single classifier inside an ensemble, from the outputs of an classification ensemble as a 

whole or from the combined results of the three types of classifier ensembles (parent, leaf 

and round-robin) described above. 

6.6 Synopsis of classification architecture 
The system described in Sections 6.3 to 6.5 is somewhat complex. A brief summary 

of the system described in these sections is therefore provided here for the purpose of 

unifying the reader' s overaU conception of the system. 

During training, a number of classifier ensembles are created based on the 

hierarchical model taxonomy provided to the software by the user. Each of these 

ensembles take in the full set of feature values of a recording as input and provide a score 

for each candidate category as output. 

One leaf classifier ensemble is created that has aU leaf categories as candidate 

categories. In addition, one round-robin classifier ensemble is created for every possible 

pair of leaf categories. Each round-robin ensemble has only its corresponding pair of 

categories as candidate categories. FinaUy, one parent classifier ensemble is created for 

each category that has child categories in the provided taxonomy. Each parent ensemble 

has only its direct children as candidate categories. 

Each ensemble is trained using only the recordings belonging to at least one of its 

candidate categories. Each ensemble consists of one KNN classifier for use with aU one

dimensional features and one NN for each multi-dimensional feature. The scores output 

by the KNN and NN classifiers are averaged in order to arrive at the final scores output 

by the ensemble. Feature selection is performed on the one-dimensional features during 
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training, followed by feature weighting on the survivors of the selection. Classifier 

selection and weighting is also performed on the scores output by the KNN and NN 

classifiers, so that each classifier has a weight controlling the impact of its category 

scores on the final score for each category output by the ensemble. AlI selection and 

weighting is done using genetic algorithms. 

Actual classification is performed by descending down the hierarchical taxonomy one 

level at a time. A weighted average of the results of the flat, round-robin and parent 

classifier ensembles is found for each child of the parent category un der consideration, 

and only those child categories whose scores for a given recording are over a certain 

threshold are considered for further expansion down the taxonomy tree. The leaf category 

or categories, if any, that pass the threshold are considered to be the final classification(s) 

of the recording. 

6.7 Java and XML 
The software written for this thesis was implemented in Java and made use of XML. 

These technologies are therefore reviewed briefly here. 

Java is an object-oriented programming language developed by Sun Microsystems. 

Software developers write Java code using integrated development environments, or 

sometimes just simple text editors. Java code can then be compiled into Java Bytecode, 

which is a platform independent binary encoding that can be understood and run by 

implementations of the Java Runtime written for different operating systems. This 

effectively makes Java code platform independent, as Java Bytecode should be run 

identically by aIl distributions of the Runtime. In actual fact, there can be sorne 

inconsistencies, particularly relating to graphical user interfaces, but in general platform 

independence is successful. 

Both the Java Development Kit and the Java Runtime are available free at 

www.java.sun.com.Animportant advantage of Java is that the Development Kit is 

distributed with a large standard class library, which includes sophisticated graphical user 

interface components (Swing) as weIl as MIDI and audio file parsing classes. 

The combination of platform independence, the large standard class library and the 

ease with which Java code can be written, maintained and extended made it ideal for this 

project. Java also runs faster than code written in many other languages, making it 

appropriate for processing intensive tasks such as those in this project. C and C++ do in 

general run slightly faster than Java, but the y lack many of the advantages of Java. 

Gosling and Amold's book (1996) offers an excellent introduction to the basics of 

Java and how the philosophy behind object-oriented program can be fulfilled with it. 

Horstmann and Comell have written two books (2000 and 2001) that are good practical 
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guides to Java. Those looking for information specifically about Swing should consult 

Geary (1999) or Pantham (1999). 

The software developed in this project stores a wide variety of data and configuration 

settings on disk using computer files. A technology called XML was used to do this. 

XML is a general purpose markup language that enables developers to custom design 

legible and robust formats for storing and transmitting data. There is a free and 

particularly good XML parser implemented in Java named Xerces, which was used in this 

thesis. Xerces is available at xml.apache.org/xerces-j/. Whitehead, Friedman-Hill and 

Vander Veer (2002) provide a good guide to XML in general and to using XML with 

Java. 

6.8 Software and its interface 

A modular, object-oriented software engineering approach was used to design all 

parts of the software, making it a simple matter to upgrade and expand the software in the 

future. A new feature could be added, for ex ample, sim ply by writing a new class that 

implements the Feature abstract class and adding a simple reference to the new class in 

the FeatureMaker class. Similarly, new types of classifiers could be added simply by 

implementing the SupervisedClassifier abstract class and including references to the new 

class in the ClassificationPanel class. 

Furthermore, the software was designed to perform classifications of any kind, not 

limited in scope to classifications of MIDI files by genre. Someone wishing to classify 

audio recordings, for example, would simply need to write an audio processing class and 

a class for each feature. No other modifications to the code would be necessary, as the 

implementation used makes no assumptions as to the type of data being processed. 

If a user is concemed only with MIDI data, then the system could be used as is to 

perform supervised classifications of any kind simply by altering the taxonomy that is 

used and the model training classifications. This could be done entirely through the GUI, 

without and modifications at aIl to the code being necessary. 

This flexibility and extensibility of the software is an important strength of the 

system. This makes the software weIl suited for those with sorne programming experience 

who wish to quickly build a fully functional classification system but wish to specify 

sorne key aspects to their particular needs. 

The software was also written with the needs of those people with no coding 

experience or no inclination to write code themselves in mind. A highly flexible graphical 

user interface was designed that enables users to perform aIl tasks and customize settings 

within the interface itself without needing to directly modify any configuration files. The 

software allows users to easily: 
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• Custom design their own hierarchal or flat taxonomies (Figure 6). 

• Control the settings for each feature and get precise descriptions of each feature 

(Figure 7). 

• View and edit the meta-data of the loaded recordings, extract features from 

recordings and view feature values both before and after scaling (Figure 8). 

• View and edit preferences relating to neural networks, genetic algorithms, whether 

or not feature and classifier selection and/or weighting is performed, what 

classifiers are included in classification ensembles, what types of classifier 

ensemble coordination are performed, what thresholds are used to terminate 

training and perform classifications, what information is reported in training, 

classification and feature selection/weighting reports, etc. (Figure 9). 

• Train and classify recordings. The user has the option of training on all 

recordings, randomly reserving a certain percentage from each category for testing 

or automatically performing cross-validation tests. Formatted reports are 

generated giving a wide variety of statistics on training progress, feature selections 

and weightings and classification results, either as a whole or for individual 

classifiers or classifier ensembles (Figure 10). 

• Save all if this information in configuration files that can be loaded and 

automatically parsed either individually or in project groups. 

• View graphical on-line help information explaining how to use the software. 

All code other than the Xerces XML parser and the SwingWorker class (available on 

the Java Technology web site), including classifiers, was written by the authour. Copies 

of the software and the source code may be acquired by contacting the authour at 

cory.mckay@mail.mcgill.ca. 
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Figure 6: Component of interface used to edit and view taxonomies. 
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Figure 10: Component of interface used to train and classify recordings as weil as see 
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7. Experiments, Results and Discussion 

7. 1 Experimental methodology 
The experiments discussed in this chapter were aIl performed using the features 

described in Chapter 5 and the taxonomies, library of recordings, feature selection 

methodologies, classifiers, classifier ensemble coordination techniques, software and 

interface described in Chapter 6. 

AIl tests were performed using 5-fold cross-validation, which means that each 

experiment was performed five times, with each fold reserving different subsets of the 

available recordings for testing. 80% of the recordings were used for training and 20% for 

testing in each fold, with the membership of each of these groups determined randomly 

on a leaf genre by leaf genre basis. This means that every fold reserved 20% of the 

recordings belonging to each leaf genre for testing, and that each recording served as a 

testing sample exactly once during aIl of the five folds and as a training sample exactly 

four times. The results reported for each experiment in this chapter are aIl averages of the 

results for each of the folds in the corresponding experiment. 

AIl training times reported in the foIlowing sections were dependant on the computer 

used and factors such as temperature of the room where the tests were performed. Efforts 

were made to keep conditions consistent across experiments, although sorne smaIl 

variations were unavoidable. AIl tests were performed on a Pentium 4 2.8 GHz based 

machine with an 800 MHz front si de bus, 1.5 GB of 400 MHz RAM and an 80 GB 7200 

RPM hard drive with an 8 MB cache. The computer was running Windows XP Home, 

with the network cable disconnected and no applications running other than the 

classification system. 

Sorne initial informai experiments were performed to explore the effectiveness of 

various basic classifier parameters, such as neural network learning rates and 

momentums. These are omitted here for lack of space, but the settings that were used are 

available in Chapter 6. More formai experiments were performed with regards to the use 

of feature selection and weighting, classifier selection and weighting, training iterations 

and classifier ensemble coordination methodology, however, as these parameters have 

sorne research interest. These experiments and their results are presented in the foIlowing 

sections. 

Experiments were performed using both of the taxonomies presented in Section 6.1. 

The term "T-9" is used in this chapter to refer to the taxonomy shown in Figure 2 (with 9 

leaf categories), and "T-38" is used to refer to the taxonomy shown in Figure 3 (with 38 

leaf categories). Both figures are on page 81 As discussed in Section 6.1, T-9 was chosen 

in order to provide a rough means of comparing this system' s performance to that of 
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previous systems, as T -9 has a size and difficulty similar to that of the most difficult 

taxonomies used in previous research. T-38, in contrast, is a much more sophisticated 

taxonomy than has, to the best of the authour's knowledge, been used to test any existing 

automatic genre classification system. It is therefore included here to test the boundaries 

of this classification system beyond the scope of testing in previous research. 

The majority of the experiments presented in this chapter focus on Taxonomy T-9, 

partly because T-9 provides a basis for comparison with previous research, and partly 

because T-38 requires much longer training times. Training time can increase 

exponentially with the number of training samples, depending on the classification 

configuration used. This made extensive experimentation with T-38 much more resource 

expensive, an important issue when it is considered that five complete folds had to be 

performed for each experiment. 

One would ideally have liked to exhaustively experiment with every possible 

combination of configuration settings, but the wide range of possible configurations and 

the training time needed for each ex periment made this an unrealistic goal in the context 

of this thesis. As a good second best option, experiments were performed so as to build 

upon each other in an incremental fashion in order to attempt to find optimal or near

optimal configurations. 

The results of cheaper experiments with a small taxonomy can, to a certain extent, 

give indications of the best classification configuration to use for a larger taxonomy. One 

must be cautious on this point, however, since it will not always necessarily be correct. A 

fiat leaf classification system, for ex ample, might perform very weIl with a small 

taxonomy, but be unable to de al with the complexity of a more sophisticated taxonomy. 

Sections 7.3 to 7.7 deal with T-9 exclusively, and Section 7.9 deals with T-38 

exclusively. The experimental configurations and results of aIl experiments, for both 

taxonomies, are available below in Section 7.2. 

7.2 Details of experiments and their results 

The details of ail of the experiments and their associated classifier configurations are 

given in Table 2 and Table 3. The letter codes given in the first column of each of these 

tables is used to identify each of the experiments through the remainder of this text. The 

results of these experiments can be found in Table 4 and Table 5. The remaining sections 

of this chapter analyze and compare the especially pertinent aspects of these experiments 

in a variety of contexts. 

A variety of statistics were collected on the results of each experiment. The statistics 

presented in Tables 4 and 5 are defined as follows: 
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• Training Time: The amount of time, in minutes, needed to completely train a full 

classification system for a given taxonomy using aIl of the assigned training 

recordings. In other words, the time to complete one cross-validation fold. 

• Success Rate: The percentage of recordings that were assigned the correct leaf 

category(ies) by the classification system. Recordings belonging to multiple leaf 

categories were only counted as partiaIly correct if sorne categories were missed 

by the classification system. The success rate was calculated by assigning each 

recording a score corresponding to the number of correct 1eaf categories assigned 

to it by the classifier divided by the number of model leaf categories that the 

recording belonged to, and then averaging these fractions across aIl recordings and 

multiplying the result by 100%. 

• Secondary Success Rate: The percentage of those recordings where at least one 

model leaf category was missed by the classifier, but where that category was 

assigned as a secondary choice by the classifier. 

• Over Select Rate: The percentage of recordings that were assigned at least one 

extra (i.e. beyond the total number of model categories for the recording) leaf 

category by the classification system that was not one of the model1eaf categories 

for the recording. 

• Root Rate: The percentage of recordings that were correctly classified as 

descendants of the correct root category(ies). The scores for recordings belonging 

to descendants of multiple root categories were calculated in the same way as 

described for the success rate above. 

• Unknown Rate: The percentage of missed classifications that were classified as 

unknown rather than being assigned an erroneous label or labels. 

A particular emphasis is put in the foIlowing sections on the overall success rate and 

the training times. These statistics are in a sense the "bottom !ine," since the ultimate goal 

of a classification system is to maximize the number of correct classifications while 

minimizing processing time. The other statistics are discussed in the following sections 

when they are remarkable for a particular experiment. 

The uncertainties that accompany the values on Tables 4 and 5, as weIl as the error 

bars for each of the figures in this chapter, are based on the standard error (standard 

deviation divided by the square root of the number of trials) of measurements across aIl 

folds for each experiment. The fact that there is sorne variation from fold to fold is not 

surprising, as success rates are dependant on both the particular recordings randomly 

selected to be used for training and for testing and on the non-deterministic training of 

neural networks and genetic algorithms. 
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Table 2: Classifier configurations for experiments involving Taxonomy T-9. Code gives 
the unique identifier of an experiment. Figures Used ln gives the figures in which the 
values fram each experiment are displayed. Classifier Ensemble Coordination gives the 
techniques that were used to combine the results of ail classifier ensembles (hierarchal, 
fiat leaf and/or round robin). One-D Features gives which one-dimensional features were 
used to perform classifications (none, ail, those selected through feature selection and/or 
with weightings). Multi-D Features gives which multi-dimensional features/classifiers 
were used to perform classifications (none, ail, those selected through classifier selection 
and/or with weightings). NN Epochs gives the maximum number of epochs used to train 
neural networks. Values in parentheses give the maximum number of genetic algorithm 
generations used in the corresponding training. 

Code Figures Classifier Enemble One-D Multi-D NN 
Usedln Coordination Features Features Epochs 

AA Flat Ali None 
BB Hierarchal, Flat, RR Ali None --
CC 23,24 Hierarchal, Flat Ali Weighted (105 2000 
DO 23,24 Hierarchal, Flat Selected (35) Weighted (105 2000 
EE 23,24 Hierarchal Selected (30) Weighted (150 3000 
FF 23,24 Hierarchal Ali Wéighted (150 3000 

Table 3: Classifier configurations for experiments involving Taxonomy T-38. Columns 
have same meanings as in Table 2. 
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Code Training Success Secondary Over Root Unknown 
Time (min) Rate (%) Success Select Rate (%) Rate (%) 

Rate (%) Rate (%) 
A 0.0 ± 0.0 75 ±3 6±3 5±3 96.9 ± 1.1 O±O 
B 27.9 ± DA 80 ±2 10 ± 6 5 ±1 95.1 ±1.5 O±O 
C 50.9 ± 0.1 80 ±3 7±3 3 ± 1 96.9 ± 0.9 O±O 
D 63.0 ± 0.3 81 ± 2 9±4 6±2 96A ±1.1 O±O 
E 14.0+0.1 79 ± 3 11 + 1 4 ± 1 97.1 ± 1.4 O±O 
F 43.9 ± 0.1 78± 3 4±2 7±1 94.7 ± 1.1 O±O 
G 19.1 ± 0.0 85 ±3 7+7 3 ± 1 98.7 ± 0.5 O±O 
H 24.6 ± 0.0 84 ± 2 20 ±5 12 ±2 97.S±0.7 O±O 
1 25.9 ± 0.2 89 ±2 18 ± 6 10 ± 1 98.9 ± 0.7 O±O 
J 29.3 ± 0.1 87 ±3 20 ± 11 9 ± 1 96.4± 1..3 5±3 
K 25.9 ± 0.1 88 ± 1 19 ± 11 4±1 97.8 ± 0.0 O±O 
L 26A ±O.O 83 ± 1 17 ± 7 3±2 96.9± 1.1 , O±O 
M 16.2 ± 0.1 83 ± 2 14 ± 2 4±1 97.8 ± 0.7 O±O 
N 36.9 ± 0.0 86±2 28 ± 12 5±1 96.9± 1.2 O±O 
0 26.4 ± 0.2 83 ± 2 9±5 4 ± 1 96.9 ± 1.1 2±3 
p 53.3 ± 0.1 85 ±3 9±6 6±1 97.S± 0.0 O±O 
Q 30.1 ± 0.1 100 ± 0 o±o 96 ±2 99.6 ± 0.4 O±O 
R 32.2 ±0.5 85 ±3 o±o NA 96.9 ±0.9 O±O 
S 9.7 ±o.o 86 ± 2 30 ± 5 14 ± 2 95.6 ± 1.4 15 ± 6 
T 13.6 ± 0.0 90 ±2 24 ± 8 21 ±3 98.2± 0.8 O±O 
U 42.0 ± 0.6 84 ± 1 O±O o±o 96.9 ± 0.9 o±o 
V 43.6 ± 0.1 83 ± 1 12 ± 7 3±1 96A± 1.1 O±O 
W 25.2 ± 0.4 89 ±2 54 ± 14 19 ± 2 99.1 ± 0.5 O±O 
Z 89.5 ± 0.3 86 ±3 13 ± 8 4±3 95.6± 1.9 O±O 

Table 4: Classification results for experiments involving Taxonomy T-9. Ali values are 
averages across ail folds. Uncertainty values correspond to the standard error. See page 
103 for the meaning of the columns. 

Code Training Success Secondary Over Root Unknown 
Time (min) Rate (%) Success Select Rate (%) Rate (%) 

Rate (%) Rate (%) 
AA O±O 37 ± 2 10 ± 0 7 ± 1 70.7 ± 0.6 43 ± 7 
BB .. O±O 43 ±2 2±1 4±1 .... 63.3t 0.1 37 ±6 
CC 99 ± 2 57 ± 5 13 ± 1 21 ± 1 74.9±0.1 32 ± 1 
DD 331 ±2 52 ± 0 15 + 0 22± 1 71.5± 2.0 29±6 
EE 196 ± 4 56 ± 1 11 ± 1 31 ± 2 81.2 ± 0.9 5±1 
FF SO ± 1 57 ± 1 13 + 2 3l± 1 80.6 ± 1.1 4+1 

Table 5: Classification results for experiments involving Taxonomy T-38. Ali values are 
averages across ail folds. Uncertainty values correspond to the standard error. See page 
103 for the meaning of the columns. 
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It should be understood that these experiments were not intended to be rigorous and 

conclusive scientific studies of which classification configurations are absolutely better in 

general. This would have required many more trials than were performed here, with a 

larger number of training and testing recordings. Rather, these experiments were intended 

as rough examinations of how weIl different techniques worked in the context of 

taxonomies of the particular types studied here. Similar experiments can and should be 

performed in other research contexts in order to gain better insights on the performance of 

the different classifier configurations in regards to the general problem of music 

classification. The flexibility of aIlowing users to customize classifier configurations to 

meet different user needs is an important advantage. 

7.3 Number of features 
Before beginning a more detailed analysis the experiments described in Tables 2 

through 5, it is appropriate to gain a baseline by first briefly reviewing sorne earlier 

experimental results that have been submitted for publication elsewhere. These studies 

used taxonomies almost identical to T -9 and used recordings drawn from the same pool as 

here. 

The pilot study for this thesis (McKay 2004) used eight ensembles of neural networks 

combined using simple weighting to perform genre classifications of MIDI files using 20 

high-Ievel musical features. Leaf genres were correctly classified 58% of the time and 

parent genres were correctly classified 85% of the time. 

Although these results were acceptable for the purposes of that study, it was hoped to 

improve these rates here. Three primary areas of improvement were identified: increasing 

the number of recordings, improving the classification system and increasing the number 

of features. AlI three approaches have been addressed in this thesis. 

In regards to the number of recordings, the library of recordings has been expanded 

from 225 to 950, although this increase has had the effect of expanding the number of 

categories rather than the number of recordings per category, for reasons made clear in 

Sections 6.1 and 6.2. The classification system presented in this thesis has also greatly 

increased in sophistication, as can be seen in Chapter 6. As for the number of features, 

Chapter 5 makes it clear that many more are available now than were previously. 

According to the "curse of dimensionality" (discussed in Chapter 3), too many 

features can make classifications harder. This is one of the reasons that feature selection 

has been given such an emphasis in this thesis. A study (McKay & Fujinaga 2004) was 

made on the effect of varying the number of candidate features from which the feature 

selection system could choose while keeping other classifier parameters constant. The 

particular features that were made available to the feature selection sub-system were 

randomly selected for each trial. The results are shown in Figure Il. 
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Figure 11: Effect of varying number of candidate features available to feature selection 

system (McKay & Fujinaga 2004). 

Figure Il makes it evident that a large number of candidate features paired with 

feature selection greatly increased performance. Furthermore, this classification was done 

using fiat leaf classification only. The potential increases in performance could be even 

greater with hierarchal or round robin classification, as these techniques take advantage of 

the availability of specialized features suited to their particular candidate categories. 

7.4 Feature and classifier selection methodology 

Once it had been established that a large number of candidate features was indeed 

beneficial, the next step was to examine the relative performance of different selection 

techniques. One will recall from Section 6.3 that four operations of this type were 

performed, namely 1-D feature selection, 1-D feature weighting, classifier selection and 

classifier weighting. Classifications were performed with various combinations of these 

selection methods in order to find the ones that maximized performance while minimizing 

training time. 

It can be seen from Figure 12 that sorne type of one-dirnensional feature selection did 

improve performance over no feature selection, but it is unclear which form of feature 

selection was the best. Selection al one did require significantly less time than weighting 

or selection and weighting, however (27.9 minutes versus 50.9 and 63.0 minutes 

respectively), so this was therefore chosen as the best option for Taxonomy T-9. 
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Figure 12: Effect of different one-dimensional feature selection methodologies on the 

classification of Taxonomy T-9. Values are averages over ail folds and errer bars 

correspond to standard error. Letter codes identify the experiment (see Table 2). 
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Figure 14: Effect of different classifier selection methodologies on the classification of 

Taxonomy T-9. Values are averages over ail folds and error bars correspond to standard 

error. Letter codes identify the experiments (see Table 2). 
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change. 
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Figure 13 appears to indicate that relatively few generations were needed for the 

genetic algorithm to converge to a good solution. Of the trials performed, the best 

chromosome was generally found in the first 20 or so generations, and additional 

evolution usually caused no improvement. This rapid convergence is good, as feature 

selection was a relatively time consuming process per iteration compared to classifier 

selection and neural network training. Of course, it is certainly possible that a superior 

chromosome could always appear after many generations of apparent stagnation, but 

apparent asymptotic behaviour and acceptable success rates nonetheless seems to make it 

fairly safe to say that the small potential for increased performance brought about by 

extended evolution has too high a training time cost associated with it for Taxonomy T-9. 

The next step was to experiment with various classifier selection methodologies, 

namely none, selection, weighting or selection and weighting. Since classifier selection 

involved training one KNN classifier on aIl one-dimensional features and one neural 

network classifier for each multi-dimensional feature, it was necessary to include neural 

network training here. 

According to the results shown on Figure 14, there did not appear to be aIl that much 

difference between the different methodologies, if one considers the error bars. Classifier 

weighting alone did seem to perform slightly better than the alternatives, however, and it 

was fairly inexpensive to use in terms of training time (25.9 minutes total training time as 

opposed to 19.1 minutes for no classifier selection at aIl). As for training generations, the 

classifier selection systems tended to converge very quickly in many cases, even on the 

first or second generation, as can be seen on Figure 15. As a side note, the relatively low 

performance of Experiment L was probably due to a particularly inopportune selection of 

training versus test recordings rather than to the classifier selection. 

It was somewhat surprising that feature and classification selection did not have a 

more significant effect, so a closer look was taken at the individual classifiers in order to 

gain insights into why this was the case. It turns out that the round robin classifiers 

virtually al ways achieved perfect classification success with the training samples even 

with no selection, and that the hierarchal classifiers other than the root classifier did the 

same almost as often. This means that a chromosome with a very sub-optimal selection or 

weighting had perfect fitness, since it still resulted in a perfect classification of training 

samples, so the genetic algorithm had no reason to evolve a better selection. However, 

during testing, the round robin and hierarchal classifiers were exposed to recordings 

belonging to categories other than their candidate categories, which they had not been 

exposed to during training. Their behaviour was unpredictable in these cases. In essence, 

the classifiers performed so weIl during training, that they were unable to evolve good 

selections and weightings that would improve testing rates. This explains why feature 

selection had a relatively small effect in these experiments, as those classifiers that would 
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have benefited from it the most had perfect fitness already, as far as the genetic algorithm 

was concerned, so no evolution and corresponding improvement took place for them. 

A potential solution to this problem would be to train the round robin and hierarchal 

classifiers on recordings that do not belong to their candidate categories as weIl as those 

that do. This would make the classifiers' task more difficult initially by forcing them to 

learn to reject more types of recordings, thereby hopefully getting non-perfect 

classifications with poor feature sets during training, thereby causing the genetic 

algorithm to evolve better feature sets. This approach would greatly increase training 

times, however, which could be a critical problem with round robin classification, as this 

requires a great many classifiers for large taxonomies. 

7.5 Classifiers 
The next issue to examine was the relative performance of the k-nearest neighbour 

(KNN) classifiers that were used to perform classifications based on one-dimensional 

features and the neural network (NN) classifiers that were used to classify each multi

dimensional feature. The KNN classifier had the advantage of requiring essentially no 

training time (although feature selection could be expensive) and the NN classifiers had 

the advantage of being able to model relatively sophisticated relationships between 

features and categories. 

Figure 16 seems to indicate that the NN's alone performed slightly better than a KNN 

classifier alone, although the uncertainty associated with the measurements makes this 

difficult to say with absolute certainty. AIso, the KNN and NN classifiers use entirely 

different features, so the results here are linked to both which classifiers were used and 

which features they were given to base classifications on. In any case, it does seem 

apparent from that the combination of a KNN classifier and NN' s operating in 

conjunction do perform better than either type of classifier operating alone. 

One surprising result was that basic KNN classification performed better when 

combined with NN' s than KNN with feature selection combined with NN' s. This result 

should be treated with caution, as there was a relatively large error associated with 

experiment P, but it still bears investigation. 

This result may also be due to the effect of round robin and hierarchal ensembles 

immediately achieving perfect fitnesses with non-optimal feature selections during 

training, as discussed in Section 7.4. This would make most of the classifiers unable to 

benefit from feature selection. Indeed, it is even reasonable to suspect that, in 

circumstances such as this, performance could be poorer with feature selection that 

without, as perfect results during training could cause the system to settle on a selection 

of features less good than even the entire feature set. 
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Effect of Classification Technique on Classification Success 
Rates 
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Figure 16: Effect of different classification methodologies within a classifier ensemble on 

the classification of Taxonomy T-9. Values are averages over ail folds and error bars 

correspond to standard error. Letter codes identify the experiments (see Table 2). 
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Aside from this, it should be noted that Experiment P had a much lower over select 

rate than Experiment l (6 % compared to 10%), which does give at least sorne support for 

the use of feature selection. On the other hand, Experiment l only required 25.9 minutes 

of training time, whereas experiment P needed 53.3 minutes. In any case, it appears that 

either technique works weIl, and that it is better to combine KNN and NN' s in a classifier 

ensemble than to limit oneself to only one classifier type. Although using a simple KNN 

classifier with no feature selection (Experiment A) does have the advantage of requiring 

essentially no training time, including NN' s in the experiment as weIl increased the 

average success rate by 14%, a very significant amount, at a cost of only 25.9 minutes of 

training time. 

Figure 17 explores the effects of varying the number of neural network training 

epochs on success rates. Although the plot on the left shows that the best results were 

achieved with 1000 epochs, there is enough uncertainty to make it possible that the 

classifiers trained using 1500 epochs could in fact perform better or comparably. An 

examination of the right plot shows that the network stopped rapidly converging after 600 

or so epochs, but that small improvements were still being made right up to the 1500 

epoch training termination point. This indicates that further improvements, although 

probably relatively minor, could be achieved by further training. This is supported by the 

significantly better secondary success rate and over select rate achieved in Experiment N 

(1500 epochs) compared to Experiment l (1000 epochs), as can be seen in Table 4. There 

is therefore reasonable reason to use larger numbers of training epochs, as long as training 

time is not critical (Ex periment N took 36.9 minutes to train, but Experiment l took only 

25.9 minutes). 

7.6 Classifier ensemble coordination 

AIl of the experiments discussed up to this point have used the full complement of 

hierarchal, flat leaf and round robin classifier ensemble coordination techniques. It is now 

appropriate to further examine the relative performance of these techniques while holding 

other classifier parameters constant. Both KNN and NN classifiers were used for these 

experiments, using feature selection and classifier weighting. 

Figure 18 reveals sorne interesting results. InitiaIly, one might be very excited by the 

100% success rate achieved by the round robin only classifier in experiment Q. 

Unfortunately, this is accompanied with an average over select rate of 96%, which is 

entirely unacceptable. An additional experiment (R) was performed to further investigate 

this, where the round robin classifiers were only allowed to classify recordings into a 

single category. The resultant average success rate was 85%, which is not bad, although 

certainly less impressive than 100%. 
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Effect of Classifier Ensemble Coorination Techniques on 
Classification Success Rates 

Figure 18: Effect of different classifier ensemble coordination methodologies on the 

classification of Taxonomy T-9. Values are averages over ail folds and error bars 

correspond to standard error. Letter codes identify the experiments (see Table 2). 

The problem here was that each round robin classifier was trained only with 

recordings belonging to its candidate categories, as is standard practice with round robin 

classification. When faced with a recording belonging to neither of its two candidate 

categories during test classification, a round robin classifier usually output a high score 

for at least one of the candidates. This is not at aIl a problem if one only wishes to have 

one winning category, since one can simply choose the category with the highest average 

score, without worrying about how high the other scores are. If one can have a variable 

number of correct classifications, however, then matters become more difficult, as one 

cannot assume that just choosing one winner is sufficient. The differences between the 

scores of aIl categories when the scores for aIl round robin classifiers for a recording were 

averaged were fairly small, thus making it difficult to decide how many categories should 

be chosen. Even though the highest score was often correct, which is why experiment R 

had good results, this is not much help in cases where there can be multiple correct 

categories or where one wishes to have the possibility of having labels of "unknown" 

assigned to wrongly classified recordings rather than an incorrect label. 

It was therefore decided to set aIl scores but the highest from aIl round robin classifier 

ensembles to 0 when round robin classification was used with other techniques. This was 

done on aIl experiments presented in Tables 2 to 5 (except Q, of course). This had the 

effect of boosting the score of one particular category for each recording, and thus 
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making it more likely to be chosen by the hierarchal and fiat classifiers. This leads one to 

suspect that this would have the overaIl effects of improving the number of classifications 

where at least one category was correct and of bringing down the over select rate. 

Unfortunately, this could also have the less desirable effects of lowering the number of 

failed classifications that were assigned unknown labels rather than erroneous labels and 

of causing the classification system to be more likely to miss one or more of the 

categories of recordings with multiple correct classifications. 

So, round robin classification as implemented here is inappropriate for use by itself if 

one wishes to have a variable number of categories assigned to each recording, and its use 

in conjunction with other forms classifier ensemble coordination has both strengths and 

weaknesses. One possible way of getting around the problem discussed above would be 

to train round robin classifier ensembles on aIl training recordings, thus making them 

accustomed to giving negative results as weIl as positive results. This, unfortunately has 

the disadvantage of potentiaIly drasticaIly increasing training time, as a single round robin 

classifier would thus require almost as much training time as a leaf classifier. This is 

problematic for large taxonomies, as a taxonomy of n categories requires the following 

number of round robin classifiers, which grows quickly: 

c = n! 
n 2 2(n-2)! 

(14) 

Looking at aIl of the experiments in Figure 18, it can be seen that hierarchal 

classification by itself and hierarchal classification combined with fiat leaf classification 

had the best average success rates. Unfortunately, these two experiments also had the 

highest average over select rates, of 21 % and 19% respectively, both significantly higher 

than experiments U, V and P. In fact, an examination of Figure 19 shows that those 

experiments that combined round robin classification (now only choosing one winning 

category) with other techniques had significantly lower average over select rates than 

experiments that did not include a round robin classifier. This confirms the suspicions 

expressed above that the use of round robin classification along with other techniques 

lowers the overall success rate (when dealing with a variable number of correct categories 

per recording), but also decreases the over select rate. 
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Effect of Classifier Ensemble Coorination Techniques on 
Over Select Rates 

S: Flat T: Hierarchal U: Flat, RR V: Hierarchal, W: Hierarchal, P: Hierarchal, 
RR Flat Flat, RR 

Figure 19: Effect of different classifier ensemble coordination methodologies on over 

select rates with Taxonomy T-9. Values are averages over ail folds and error bars 

correspond to standard error. Letter codes identify the experiments (see Table 2). 

Iii' 
al 
'S 60 
.5 
.§. 50 
'tl 

~ 40 
G) 
r::: 
o 30 ... 
o 
-; 20 
E 
i= 10 
Cl 
r::: 
:5 0 
l'CI 

~ 

Effect of Classifier Ensemble Coorination Techniques on 
Training Times 

S: Flat T: U: Flat, RR V: w: P: 
Hierarchal Hierarchal, Hierarchal, Hierarchal, 

RR Flat Flat, RR 

Figure 20: Effect of different classifier ensemble coordination methodologies on training 

times with Taxonomy T-9. Values are averages over ail folds and error bars correspond 

to standard error. Letter codes identify the experiments (see Table 2). 
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Which coordination method is the best to choose likely depends on one's priorities. If 

one is willing to tolerate classifications that may include sorne false positives in addition 

to the correct category(ies), then simple hierarchal classification is probably the best 

choice, since experiment T achieved a success rate of 90%, and required only 13.6 

minutes of training time. This training time is very good in comparison to other 

techniques, as can be seen in Figure 20. The fact that sorne extra categories will be found 

may not be as critical as one thinks, as they will be likely to be similar to the correct 

categories, as exhibited by the 98.2% root rate for experiment T (see Table 4). The use of 

combined hierarchal and fiat classification may also be appropriate if one does not mind 

sorne false positives, since the success rate and over select rate were comparable for 

Experiments T and W, but Experiment W had an excellent secondary success rate of 

54%, far higher than any other experiment. However, experiment W also required almost 

twice the training time of Experiment T. 

If one considers a high over select rate unacceptable and does not mind sorne 

increased training time, then the combination of hierarchal, fiat and round robin 

classification is likely the best option. Experiment P achieved a very respectable success 

rate of 85%, and had a relatively small over select rate of 6%. P did require an average of 

53.3 minutes of training time, however, so fiat classification combined with round robin 

or hierarchal classification combined with round robin would be good choices for 

someone trying to cut down a little on training time, as they also have reasonable success 

rates and over select rates. 

As a final note, the exclusively fiat leaf classification of experiment S obtained a 15% 

unknown rate, which is at least 3 times as high as the unknown rate for any other 

experiment with T-9. This seems to indicate that fiat leaf only classification is an 

appropriate choice if one is particularly concerned about incorrect classifications and 

wishes to ensure that erroneous classifications are more likely to be marked as unknown 

rather that given incorrect labels. 

7.7 Benchmark classification for 9 leaf taxonomy 
Upon reviewing the above sections, it seems apparent that different classification 

settings are better suited to different needs. It is desirable, however, to have a single 

general purpose classifier to benchmark the system and present as a final overall result for 

Taxonomy T-9. It was decided to choose the best overall configuration, and then train it 

with a greater number of iterations than had been used previously in order to arrive at the 

benchmark. This classifier configuration is described under Experiment Z in Table 2. This 

particular configuration was chosen because it coincided with the classifier parameters 

revealed in the previous experiments to give the near best success rate while at the same 
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Benchmark Performance for Taxonomy T-9 
Experiment Z 

Success Rate Root Rate Secondary Over Select Rate 
Success Rate 

Figure 21: Performance of benchmark classifier for Taxonomy T-9 (Experiment Z). 

Values are averages over ail folds and error bars correspond to standard error. 

time minimizing the over select rate and not requiring an excessive amount of training 

thime. The results of this benchmark can be seen if Figure 21. 

These results were quite good. Even though earlier experiments achieved superior 

success rates up to 90% (Experiment T), root rates up to 99.1% (Experiment W), 

secondary success rates as high as 54% (Experiment W) and over select rates as low as 

0% (Ex periment U), the results for Experiment Z characterize the best overall 

performance. The training time of 89.5 minutes for Experiment Z, although higher than 

that of previous experiments because of the additional GA and NN iterations used, is 

nonetheless more than small enough for practical purposes. 

The particular kinds of errors made during classification are shown on Table 6, the 

confusion matrix for Experiment Z. Figure 22 shows the relative success rates for 

recordings belonging to different categories in Experiment Z. The distributions of 

classifications shown here are generally consistent with the distributions found in other 

experiments. 
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Table 6: Taxonomy T-9 confusion matrix for Experiment Z. The columns correspond to 
the model classifications and the rows correspond to how the test recordings were 
actually classified. Values are average percentages across ail five folds of the 
experiment. Percentages are normalized for each leaf category. The boxes identify 
groups belonging to the same root categories. 
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Figure 22: Success rates for Experiment Z with Taxonomy T-9. Root Success Rate 
gives how often a recording belonging to the given root category was assigned leaf 
label(s) with the correct root ancestor(s), and Leaf Success Rate gives how often a 
recording belonging to a given root category was assigned the correct leaf label(s). 
Values are averages over ail folds. 
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As can be seen in Table 6 and Figure 22, recordings that were assigned erroneous 

labels were usually at least classified as belonging to leaf genres with the correct roots, 

except in the case of Popular Music. Popular Music recordings were most often assigned 

the correct leaf labels, however. As can be seen in Figure 22, Jazz, Classical and Popular 

recordings were classified with fairly similar success. 

Swing and Punk recordings were unfailingly classified correctly. Jazz Soul and 

Modem Classical performed the worst, with success rates of 67% and 70% respectively. 

The performance of Modem Classical was not overly conceming, however, since 77% of 

the misclassified Modem Classical Recordings were classified as Romantic, which can be 

quite similar to Modem Classical in sorne cases. Although 19% of the Jazz Soul 

recordings were classified as Bebop or Swing, which is not too worrying, 18% of Jazz 

Soul recordings were classified as dissimilar categories. The relatively poor performance 

of Jazz Soul is perhaps not surprising, however, as this genre does have much in corn mon 

with other jazz genres as weIl as sorne popular genres, so there it has a fairly high amount 

of overlap with other categories that could confuse the classifiers. Aside from this, 

however, performance was excellent overall with Experiment Z in particular and 

Taxonomy T -9 in general 

7.8 Relative performance of different features 

A detailed analysis of which features were most useful in different contexts is beyond 

the scope of this thesis, but could be of great musicological interest, and is therefore 

worth pursuing in the future. Automatically produced records were kept of the selections 

and relative weightings assigned to each feature and classifier in aIl of the experiments 

discussed in this chapter, and are available for future research. These may be of limited 

utility with respect to Taxonomy T-9, however, since, as discussed earlier in this chapter, 

the specialized round robin and hierarchal classifiers performed so weIl in training with 

such a wide variety of feature sub-sets that the particular ones selected were probably not 

near-optimal. The results for Taxonomy T-39 were slightly better in this respect, 

however, as the categories there were more similar, thus making feature selection more 

important and forcing the genetic algorithms to work harder to find good solutions. Future 

experiments where round robin and hierarchal classifiers are trained on aIl recordings, not 

just ones belonging to their candidate categories, could provide more musicologically 

interesting feature selections and weightings for both taxonomies. 

In general, it can be seen from an informaI examination of the feature selection and 

weightings discussed in the above experiments that the classifiers made significant use of 

features belonging to aIl of the feature classes. The instrumentation features were 

particularly useful, however, as these features were assigned 42% of the weight in , for 

example, experiment Z, even though the y only comprised 18% of the candidate features. 
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7.9 Experiments with the 38 leat taxonomy 
Once it was established that the software developed here was able to perform very 

weIl with the simplified T-9 taxonomy, it was then appropriate to test it on the more 

difficult T-38. The experiments performed are described in detail in Table 3 (p. 104) and 

the results are presented on Table 5 (p.105). Experiments AA and BB were the first ones 

performed, as they required essentiaIly no training time, since only simple KNN 

classification was used with no feature selection or weighting. Success rates of 37% with 

only flat classification and 43% with hierarchal, flat leaf and round robin classification 

were achieved, which were less than ideal. Of course, this was not surprising given the 

complexity of the taxonomy and the limited classification techniques used. It was 

therefore necessary to use more sophisticated classification methodologies. 

Training time was much more of a concern here than with Taxonomy T-9, as the full 

library of 950 recordings was used for training and testing, thus requiring greater time for 

each training iteration, and the larger taxonomy also required a greater number of 

hierarchal and round robin classifiers (18 and 703 respectively, as opposed to 4 and 36 for 

T-9). Training time concerns were particularly significant, given that 5 complete folds 

needed to be performed for each experiment. AlI of this meant that the level of 

experimentation performed with Taxonomy T -9 was not feasible here, and that limitations 

had to be placed on the techniques used in order to keep training times reasonable. 

Several experiments were performed with hierarchal and/or flat classification, with 

and without feature selection. Although the differences in GA and NN iterations in these 

trials limits the direct comparisons that can be made of these experiments, the differences 

are not so great so as to pre vent sorne rough conclusions from being drawn. The particular 

classifier configurations chosen were based on the results of the experiments with T-9. 

Although it is not valid to say that aIl of the results from these experiments necessarily 

generalize to T-38, they did provide a good starting point. 

Round robin classification was rejected immediately, as the 703 round robin 

classifiers took up to a matter of days to train. Furthermore, the use of round robin 

classifiers caused classification times, which had previously been effectively negligible, 

to become perceptible. In one test in Experiment BB it took almost 3 minutes to classify 

the 190 testing recordings, something that is less than ideal in real world situations where 

the system should be able to de al with multiple requests rapidly without causing users to 

bec orne impatient. 

Experiments CC, EE and FF aIl performed comparably with regard to success rate, 

and Experiment DD performed somewhat worse, as can be seen on Figure 23. The 

differences in training time were much more significant, however, as can be seen in 

Figure 24. Experiment DD took a great deal of time to train, but training times for CC and 

FF were comparatively small. 
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Success Rates with Different Classifier Ensemble 
Coordination and Feature Selection Methodologies 

CC: Hierarchal, DO: Hierarchal, EE: Hierarchal FF: Hierarchal 
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Figure 23: Effect of classifier ensemble coordination and feature selection techniques on 

success rates for Taxonomy T-38. Values are averages over ail folds and error bars 

correspond to standard error. Letter codes identify the experiments (see Table 3). 
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Figure 24: Effect of classifier ensemble coordination and feature selection techniques on 

training times for Taxonomy T-38. Values are averages over ail folds and error bars 

correspond to standard error. Letter codes identify the experiments (see Table 3). 
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These results seem to indicate that the configuration used in Experiment DD is a poor 

choice. Beyond this, however, the other results are fairly similar in terms of average 

success rates. A further examination of Table 5 indicates, however, that experiments CC 

and DD performed much better than EE and FF in terms of their over select and unknown 

rates, and worse in terms of their root rates. 

These overall results seem to make Experiment CC stand out as the best configuration 

of those experimented with. Its success rate was as good as any of the configurations and 

its training time was 99 minutes, a very small amount for su ch a large taxonomy. 

Furthermore, its over select rate of 21 % was better than the other three options, although 

still uncomfortably high, and its unknown rate was the best of the group at 32%, a very 

good value. Although the root rate of 74.9% was less than the values of 81.2% and 80.6% 

for Experiments EE and FF respectively, this is a reasonable sacrifice to make in 

ex change for the benefits discussed above. 

It is interesting to note that Experiment CC, with no one-dimensional feature 

selection, performed better than Experiment DD, which did use feature selection but was 

otherwise identical. One would expect hierarchal classifiers with feature selection to 

perform better, not worse. An informaI examination of the training records from 

Experiments DD and EE, where feature selection was performed, helped to shed light on 

the several causes of this. 

To begin with, the same problem occurred here with sorne hierarchal classifiers that 

occurred with taxonomy T-9, namely that sorne of the hierarchal classifiers were able to 

perfectly classify the training recordings belonging to their candidate categories with a 

wide variety of feature sub-sets, and thus had perfect fitness during training and therefore 

did not evolve an effective feature selection. During actual testing, these classifiers were 

exposed to recordings that did not in fact belong to any of their candidate categories. 

Ideally, in situations such as this, a good feature set would have been evolved which 

would reject such recordings. However, since almost any feature set worked during 

training, such an optimized feature set was not available, and the classifiers behaved 

unpredictably when given recording belonging to categories that they had not been 

exposed to during training. 

The solution to this problem, as discussed earlier, would be to train the hierarchal 

classifiers with recordings of aIl types, not just ones that belong to their particular 

candidate categories. This would, for example, tum an (effectively) two-category 
classifier such as one with candidate categories of Bebop and Cool into a three-category 

Bebop / Cool / neither classifier, thereby increasing the difficulty of the classification task 

and hopefully forcing the evolution of a good feature selection. This would, however, 

have the negative effect of greatly increasing training time. 
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Fortunately, this problem was not as prevalent here as it was with T-9. A number of 

the hierarchal classifiers had fine enough distinctions between their candidate categories 

that distinguishing between them was somewhat difficult. This meant that a random 

feature subset was not sufficient to provide perfect fitness, so the GA's were forced to 

evolve better feature selections, which made the classifiers perform better during testing. 

An additional problem, however, was that there were not enough generations of evolution 

performed, as the fitness had often not yet converged once the maximum generations of 

30 or 35 were reached. This low maximum on generations was imposed in order to cut 

down training times, as feature selection was the most time consuming process during 

training. Unfortunately, this may well have severely limited performance. This, combined 

with the fact that sorne of the more general hierarchal classifiers still suffered from too 

easy success during training and therefore led to incorrect classification paths down the 

hierarchy, probably explains why the experiments shown in Figure 24 that did not use any 

feature selection performed better than those that did. 

If one looks at the results for T-38 in the context of those for T-9, the T-38 

performances seem quite mediocre at first. The success rate did not exceed 57% for any 

of the experiments, and the over select rate was over 20% for aU experiments that 

achieved a success rate over 43%. However, respectable root rates between 71.5% and 

81.2% were achieved (compared to a chance rate of Il %), along with decent secondary 

success rates of Il % to 22% and impressive unknown rates of up to 32%. Furthermore, 

results of this order were achieved with training times as low as 80 to 99 minutes, which 

is very impressi ve for a taxonomy of this size. 

Even the success rates of 56% to 57% are not insignificant when it is considered that 

the random chance of success is only a tiny 2.6% even if one is limiting oneself to one 

correct classification per genre. The probability of randomly guessing the correct genres 

when there could be more than one is significantly lower even than this. Furthermore, to 

put these results in context, Tzanetakis, EssI and Cooks' groundbreaking and often cited 

automatic genre classification research (2001) of only three years ago achieved a success 

rate of 62% with only 6 genres, a far easier task than dealing with 38 genres. Since no 

one, to the best of the authour's knowledge, has attempted to work with a taxonomy of 

anywhere near the size or difficulty of T-38, the fact that success rates of 56% to 57% 

were achieved is actually somewhat encouraging, and leads one to hope that future 

research could weU significantly improve these results. 

If one is willing to accept training times that span one or more weeks, even the system 

used here could potentially achieve significantly improved success rates without any 

modifications. Simply increasing the number of NN epochs and GA generations and/or 

population could cause gains. In addition, training the hierarchal classifiers on aU training 

recordings could potentially greatly increase performance. The inclusion of round robin 
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classifiers, also trained using aIl recordings, could also significantly improve results, 

although this would cause training times to increase by a factor of 37 in the case of T -38. 

So, the results for T-38, although not suitable for practical applications, are 

nonetheless quite encouraging from a research perspective, and hold a great deal of 

potential. The first future step towards exploring this would be to perform tests that 

require weeks of training time, something outside of the timeframe of this thesis, but not 

at aIl unreasonable, when it is considered that humans take years to leam the knowledge 

necessary to distinguish between genres, and even then they don't al ways perform very 

weIl. There are also numerous other techniques and approaches that could improve results 

in the future, as discussed in Section 8.3. 
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8. Conclusions and Future Work 

8. 1 Conclusions and summary of experimental results 
Overall, the results of this study were quite encouraging, both from a purely 

performance based perspective as weIl as from a theoretical perspective. The benchmark 

experiment with the 9 category taxon orny was, on average, able to correctly classify 

recordings 86±3% of the time by leaf genre, and found the correct root genre 95.6±1.9% 

of the time. Even in those cases where a misclassification occurred, the correct category 

was given by the system as a secondary choice an average of 13±8% of them time. In 

addition, those errors that were made tended to be reasonable (e.g. Bebop was 

occasionally misclassified as Jazz Soul, but never as Baroque). 

These numbers are particularly impressive, given that recordings were permitted to 

have a variable number of model categories. This made the classification task much more 

difficult than simply choosing a single winning category per recording without needing to 

also determine the number of categories to select as weIl. Even with this added difficulty, 

recordings were only assigned extra categories that they did not belong to an average of 

4±1 % of the time. Furthermore, an average of only 89.5±0.3 minutes of training time 

were required on a personal computer, a very small amount of time. 

To put these results in perspective, it is important to realize that the average Western 

human would probably have difficulty achieving success rates this high. In an experiment 

involving listening to three seconds of audio recordings belonging to one out of ten 

genres (blues, country, classical, dance, jazz, latin, pop, R&B, rap and rock), college 

listeners were only able to perform correct classifications only 70% of the time (Perrot & 

Gjerdigen 1999). Although these numbers are not directly comparable to the results of the 

system described in this thesis, as different taxonomies were used and audio data was 

examined rather than high-Ievel musical representations, this study nonetheless puts 

success rates in context. If relatively educated humans with training periods of years can 

only achieve success rates of 70%, then a success rate of 86% after only 89.5 minutes of 

training is exception al. 

Although direct comparisons with existing automatic classification systems that have 

used entirely different taxonomies, recording libraries and file formats must also be 

treated with sorne caution, sorne loose comparisons can help to put these success rates in 

context. A review of Chapter 4 will show that only one of the audio genre classification 

systems to date dealing with more than five candidate categories have achieved success 

rates above 80%. Pye (2000), who correctly classified recordings 92% of the time into 

one of six candidate categories, is the single exception. As far as classification systems 

that use symbolic data go, the best known previous results are 84% for two-way 
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classifications (Shan & Kuo 2003) and 63% for three-way classifications (Chai & Vercoe 

2001). 

When it is considered that increases in taxonomy size are well known to greatly 

increase classification difficulty, and that the system presented here was the only one 

forced to de al with the added complication of recordings having variable numbers of 

correct classifications, the result of 86% with 9 candidate categories is quite impressive. 

Of course, it is important to stress once again that one cannat make direct judgements as 

to whether one system is better than another without tests involving the use the same 

taxonomy and testing recordings. Nonetheless, it is clear that the rate of 86% achieved 

here is a very good result, compared to both humans and existing automatic genre 

classification systems. 

An important implication of this success is that it clearly demonstrates the potential of 

high-Ievel features, which could be applied to a wide variety of musical classification 

tasks beyond the scope of genre classification. High-Ievel features could be used in 

conjunction with low-level features in future research to improve overall performance of 

audio classification systems, and could also be of great use if one wishes ta classify 

scores for which no audio recordings are readily available. 

The results for the 38 leaf category taxonomy were also encouraging. The best overall 

configuration of the system that was experimented with was able to correctly identify the 

leaf genre(s) of the 38 leaf taxonomy with an average success rate of 57±5% (with extra 

categories selected 21±1 % of the time). This configuration also had a success rate of 

74.9±0.1 % when classifying recordings into one or more of the 9 root genres. 

These numbers are impressive given the very large size of the taxon orny and the fact 

that the random chance of success is only a tiny 2.6% even if one is only limiting oneself 

to one correct classification per genre. The probability of randomly guessing the correct 

genres when there cou Id be more than one is significantly lower even than this. 

Furthermore, to put these results in context, Tzanetakis, Essi and Cooks' (2001) 

groundbreaking and often cited automatic genre classification research of only three years 

ago achieved a success rate of 62% with only 6 genres, a far easier task than dealing with 

38 genres. Since no one, to the best of the authour's knowledge, has attempted to work 

with a taxonomy of anywhere near the size or difficulty of the 38 leaf category taxonomy 

experimented with here, the fact that a success rate of 57% was achieved is actually quite 

encouraging. The subsequent improvements to Tzanetakis, Essi and Cooks' system (see 

Chapter 4) lead one to hope that similar future improvements will be achieved here as 

weIl. 

It is also encouraging to note that the incorrectly classified recordings were assigned a 

label of "unknown" an average of 32±1 % of the time rather than sorne erroneous label. 

This is very important, as it can act as a flag for human operators, and is much better than 
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just giving recordings wrong labels that can be difficult to detect. Furthermore, the correct 

genre was specified an average of 13±1 % of the time as a secondary choice when it was 

missed as a primary choice. FinaIly, and quite impressively for such a large taxonomy, 

these results were achieved after an average of only 99±2 minutes of training on a 

pers on al computer. 

Although the 57% success rate is still too low for practical applications, it is quite 

impressive from a theoretical perspective as a groundbreaking rate for such a difficult 

taxonomy, and holds a good deal of potential for future improvement. Even beyond the 

significantly increased classification difficulty of requiring that the system be able to 

classify recordings into a variable number of categories and be able to classify recordings 

as unknown in sorne cases rather than just giving an erroneous classification, there were a 

number of other factors that made the classification task performed here particularly hard. 

Time limitations imposed a limit on the number of training recordings that could be 

collected, with the result that only 20 recordings were available per leaf category after 

sorne recordings had been reserved for testing. This is not a very large number to learn to 

recognize genres with, particularly considering the far larger number of recordings that 

humans are exposed to in their lives. The use of MIDI itself also proved to be a challenge, 

as important features such are lyrics are not consistently available, and therefore had to be 

ignored here, and most recordings are sequenced in an amateurish and inconsistent 

manner. 

The 38 leaf category taxonomy also included more categories than the average pers on 

(although not music professional) would likely be weIl acquainted with, and also 

contained sorne genres where the differences can be primarily sociological for sorne 

recordings (e.g. Alternative Rock and Punk), leaving a limited amount of content-based 

differences for the automatic classifier to work with. Furthermore, the categories were not 

necessarily structured logically from a content-based perspective (e.g. Modem Classical 

and Medieval music should be and were grouped together, despite the fact that they have 

little in corn mon from a content-based perspective), as was necessary to accurately 

simulate real conditions, with the result that this complicated matters significantly for the 

hierarchal classifiers. 

Aside from the actual performance of the system, the results of the experiments 

described in Chapter 7 led to sorne interesting observations. To begin with, it was found 

that the inclusion of increasing numbers of candidate features for the feature selection 

system to choose from significantly improved classification performance. This leads to 

the conclusion that the implementation of even further features could be beneficial, 

despite the predictions of the curse of dimensionality, whose effects were probably 

alleviated by the feature selection. 
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It was also observed that the neural network classifiers and their associated multi

dimensional features worked slightly better than the KNN classifiers and their associated 

one-dimensional features. Overall, however, the results of both types of classifiers acting 

together in a classifier ensemble were better than either operating independently. 

In addition, it was found that the genetic algorithms of sorne round robin and 

hierarchal classifiers converged immediately to significantly sub-optimal results during 

feature selection and weighting rather than gradually evolving optimal or near-optimal 

feature sub-sets. It was discovered that this was due to the classifiers being able to 

perfectly classify their training recordings using a wide variety of sub-optimal feature 

selections, with the result that even poor selections had perfect fitness, thus giving the 

genetic algorithms no reason to evolve better selections. As is typically done with round 

robin and hierarchal classifiers, the classifiers were only trained on ex amples belonging to 

their candidate categories. During actual testing, these classifiers were exposed to 

recordings that did not in fact belong to any of their candidate categories. IdeaIly, in 

situations such as this, a good feature sub-set would have been evolved which would 

reject such recordings. However, since almost any feature sub-set had worked during 

training, such a good feature sub-set was not available, and the classifiers behaved 

unpredictably when given recordings of types that they had not been trained on. 

Essentially, the classifiers were doing their job too weIl during training for selection and 

weighting to work effectively during testing. 

A potential solution to this problem would be to also train these classifiers on 

recordings that do not belong to their candidate categories so that they could learn to 

reject them. This would make the classifiers' task more difficult by forcing them to leam 

to deal with more types of recordings, thus increasing the probability that a po or feature 

selection or weighting would not work as weIl, thereby forcing the genetic algorithms to 

evolve beUer solutions. The downside of this approach is that it could greatly increase 

training times, especially in cases of taxonomies with many leaf categories that would 

require a very large number of round robin classifiers that would now each have long 

training times. 

It tumed out that this problem was less evident with the hierarchal classifiers of the 

large taxonomy than it was with the smaller taxonomy. This is probably because the 

candidate categories for each hierarchal classifier in the large taxonomy were often quite 

similar, thus making the corresponding recordings more difficult to classify, thereby 

making the classifiers unable to successfully classify training recordings with arbitrary 

feature selections and therefore forcing the genetic algorithms to evolve better feature 

selections and weightings. In any event, it was clear that it was important to take steps to 

ensure that the round robin and hierarchal classifiers were not able to converge to perfect 

fitness with significantly sub-optimal selections and weightings. 
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It was also observed that round robin classifiers can be problematic in situations 

where recordings can belong to a variable number of candidate categories. This is because 

there tends to be little difference between the average scores of aIl categories across aIl 

round robin classifiers, thus making it difficult to decide how many are correct. This is 

not a problem if one only needs a single classification for each recording, as one can 

simply choose the category with the highest average score, which usually corresponds to 

the correct category, and it does not matter if the score of this category is only slightly 

higher than the scores of the other incorrect categories. This is a problem when dealing 

with a variable number of possible correct classifications, however, since the small 

differences between the scores of different categories produced by round robin classifiers 

make it difficult to decide on the correct number of categories to choose. 

One solution would be to train round robin classifier ensembles on aIl training 

recordings, thus making them accustomed to giving negative results as weIl as positive 

results, thereby lowering the overall averages of incorrect categories. This, the same 

solution as the solution proposed above for improving feature selection, has the same 

disadvantage of potentially drastically increasing training time. 

An alternative solution, and the one used here, was to simply choose one winner for 

the round robin classification, thereby bypassing this problem, but allowing the hierarchal 

and flat leaf classifiers to select multiple winners, if appropriate. This had the effect of 

lowering the overall success rate, since it made it more likely that recordings belonging to 

multiple categories would have fewer of these categories selected by the classifiers, but 

also decreased the amount of additional incorrect categories that were assigned to 

recordings. 

A study of different classifier ensemble coordination methods also found that which 

method is the best to use depends on one's priorities. If one is willing to tolerate sorne 

false positives in addition to the model category(ies), then simple hierarchal classification 

is probably the best choice. The use of combined hierarchal and flat classification may 

also be appropriate if one does not mind false positives and is willing to increase the 

training time in exchange for a better secondary success rate. If one considers false 

positives to be a particularly unacceptable type of error and does not mind a significantly 

increased training time, then the combination of hierarchal, flat and round robin 

classifiers is likely the best option. Flat leaf classification al one is an appropriate choice if 

one is particularly concerned about false classifications and wishes to ensure that 

erroneously classified recordings are more likely to be marked as unknown rather that 

given incorrect labels, and does not mind sacrificing overall success rates a little. 

OveraIl, testing results showed that the system performed very weIl with a taxonomy 

consisting of 9 leaf genres. The results also showed that, although the system cannot yet 

de al with significantly larger taxonomies weIl enough for practical application, sorne 
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respectable success is already possible, and there is great potential for future 

improvement, as discussed in Section 8.3. This research also clearly demonstrated that 

high-Ievel features can be very successful as a basis for automatic classification. 

8.2 Research contributions of this thesis 

This thesis attempted to classify recordings into a much larger, more sophisticated and 

more realistic taxonomy than has been used in any known previous research on automatic 

genre classification. Far more categories were used than had been previously, and 

complications such as the possibility of recordings belonging to more than one category, 

recordings not belonging to any categories, and categories having more than one parent 

were incorporated into the taxonomy and classification methodology in order to make it 

more realistic. Realistic genre categories were also used, many of which were similar to 

one another. Realistic training examples were used as weil, including ones that were in 

many ways atypical of the genres that they belong to. Ali of this made the classification 

done here far more difficult than any attempted previously, making this the first system to 

approach genre classification as more than a toy problem. 

A large library of MIDI files was collected and manually classified based on genre. 

This library could be used in future systems as a test bed comparing different systems. 

This research was the first wide-ranging investigation of the problem of musical genre 

classification in general based on symbolic data rather than audio data. There certainly 

have been sorne very interesting papers published on classification using symbolic data, 

but ail of them used a mu ch narrower range of features than those used here, and did not 

take full advantage of the types of features that can be extracted from symbolic data. 

The feature library designed and implemented here provides a very diverse and useful 

resource for analyzing music, both for the purposes of classification and for other types of 

analysis. Although there certainly has been a significant amount of research on 

computerized analysis systems, this is the largest and most diverse one known to the 

authour that analyzes and characterizes music in an overall statistical sense rather than 

trying to derive meaning about the music or its structure. Many of the features that were 

developed are original, and a number of features that had not previously been presented in 

connection with one another were also collected from a variety of sources and presented 

here in a united form. The feature library presented here could be made use of in a diverse 

range of research projects. 

Feature selection and weighting techniques were used to experimentally determine 

which features were most significant in different classification contexts. When combined 

with the hierarchical classification approach that was used, this makes it possible to study 

the importance of different features with respect to differentiating between different 

categories, something which is of great musicological interest. 
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This is the first known implementation of on automatic genre classification that 

includes a significant and serious discussion of the musicological and theoretical issues 

relating to musical genre taxonomies rather than treating the task primarily in terms of 

being an engineering problem only. This thesis also contains the most complete and 

multidisciplinary known survey of automatic musical genre classification systems to date. 

The software was designed to have an easy-to-use and flexible graphical interface and 

an easily extensible program design. This allows users and programmers of different skill 

levels to easily adapt the software to their own classification needs with little leaming 

time. The software was also carefully coded and weIl documented in order to allow more 

in-depth modifications by those with coding experience. This system was designed so that 

it could be used for a large variety of musical classification tasks weIl beyond the scope 

of musical genre classification, with little or no modification being necessary. 

A novel classification system was used here that made simultaneous use of 

hierarchical classification, flat leaf category classification and round robin classification. 

The separation of features into one and multi-dimensional types so that ensemble 

classifiers could be used that took advantage of the relative strengths of KNN and neural 

networks where they were needed the most was also a novel technique. 

8.3 Future research 
The genre classification system that was developed here could easily be adapted to 

tasks such as composer identification, performer identification, mood classification or 

classification based on time period simply by changing the classification taxonomy and 

training data. Future experiments with this expansion of scope could explore the multiple 

ways in which this system could be used. 

More sophisticated methods could be developed for displaying the results of 

classifications in order to make the positions of each recording relative to different 

categories and of different categories relative to one another intuitively apparent. This has 

been discussed by Pampalk (2001), Pampalk, Rauber and Merkl (2002) and Pampalk, 

Dixon and Widmer (2003). Interfaces of the type described by Tzanetakis, EssI, and Cook 

(2001) could also be investigated further and implemented as part of this system. 

The field of literary studies is perhaps the area in which the most work has been done 

on identifying and classifying genres, and the adaptation of applied research from this 

field into a musical context could prove useful. Rauber and MüIler-Kogler (2001), to cite 

just one example among many, have done interesting research into automatically 

analyzing and classifying text documents and th en presenting the results using an intuitive 

GUI. 

Further theoretical study of genre in areas outside of music could pro vide insights as 

weil. The collections of papers edited by Duff (2000) and Grant (2003) are excellent 
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resources on literary genre and film genre respectively. An expanded study could also be 

made in the field of classification and labelling theory itself. Lakoff' s book (1987) 

provides an excellent start in this direction, and further research in the fields of 

psychology and library science could also be useful. Even the way that recipes are 

categorized in a cook book, for example, or the ways that biologists organize types of life, 

could be revealing in respect to how humans assign labels and organize categories. 

Research in this field could help one to construct improved musical genre taxonomies. 

The system could be expanded to deal with other types of file formats. A module for 

analyzing KERN, MusicXML or GUIDO files, or perhaps translating them to MIDI, 

would expand the types of recordings that could be classified. Further research into 

extracting high-Ievel information from printed scores and audio data would also be 

useful. 

The system could also be expanded to include features extracted from low-Ievel audio 

data directly that are not necessarily directly translatable to symbolic terms, but 

nonetheless help one to distinguish between genres. The work covered in Section 4.2 

would certainly prove useful in this respect, as would more general work such as that by 

Scheirer (2000). Audio data contains the information that most humans actually use to 

perform content-based classifications, so it would be advantageous to make use of these 

low-Ievel cues as weIl as the higher-Ievel musical awareness that trained musicians 

possess. 

Using both symbolic and audio data wou Id make it possible to take advantage of score 

alignment research in order to match scores to audio recordings and remove noisy 

transcription and performance errors. This would also give a measure of the amount of 

deviation from the score in a performance, which could be a useful feature in itself. 

Perhaps the ideal would be the exploitation of music formats, such as that proposed in the 

MPEG-21 standard, which can package audio data together with symbolic data describing 

the score and production parameters of the music. This would make an extremely wide 

range of features available aIl in one package. 

Data mining techniques could be implemented in order to collect sociocultural 

features about the performers and audiences of different genres. Metadata such as country 

of origin, date of composition, composer, performers who have recorded a piece, ethnicity 

of performers, age of performers, fan demographics, etc. could aIl prove to be highly 

revealing. The emergent approach suggested by Aucouturier and Pachet (2003) holds a 

great deal of promise in theory. The work of Whitman and Smaragdis (2002) would 

provide a good starting point for this.A module to derive features from lyrics, including 

meaning, vocabulary used, rhyming scheme and syllabic structure could prove very 

useful. 



134 

As suggested by Tekman and Horascsu (2002), emotional feeling and mood cou Id 

provide useful features, albeit potentiaIly hard ones to extract. Research on the KANSEI 

system (Katayose & Inokuchi 1989) as weIl as other recent research in this area, such as 

that by Liu, Lu and Zhang (2003) and Li and Ogihara (2003), could prove useful in this 

respect. 

Further high-Ievel features could be implemented as weIl, including those that were 

presented in Chapter 5 but have not yet been implemented. Despite the limitations of 

sophisticated theoretical analytical techniques in relation to genre classification, as 

discussed in Section 5.l, one should still use whatever information is available. Features 

derived from these types of analyses could in fact be highly useful for a certain limited 

number of genres. Harmonic analysis could, for example, be useful for distinguishing 

between types of Classical music, but one would need a separate module to first, for 

example, measure the degree of tonality of a recording in order to decide whether it 

would be appropriate to use such an analysis. A hybrid expert system / supervised 

learning system could be developed in order to take advantage of sophisticated analysis 

techniques while avoiding the weaknesses of expert systems discussed in Section 1.5. 

If it turns out that sophisticated analytical techniques are too problematic to 

implement, it could still be useful to implement a relatively rudimentary harmonic 

analysis system. Work such as that by Raphael and Stoddard (2003) and the techniques 

used by Rowe (2001) could be useful in this respect. Features derived from chord 

progressions based on Roman numerals or from chord voicings / inversions could be 

extracted, for example. Although these analyses might certainly contain errors due to the 

difficulty and subjectivity of harmonic analyses, and would have limited value in and of 

themselves, features derived from such analyses could still provide a rough but effective 

way of distinguishing between genres. Simple statistics based on the intervals of notes 

above the bass note could prove to be revealing in the context of known chord 

progressions. The ability to take arpeggios into account as weIl as vertical chords would 

also be valuable. 

More sophisticated statistical analyses could also be applied to the histogram features 

described in Chapter 5. The calculation of higher order moments, skew, scatter and 

excess, for ex ample, cou Id aIl be useful. Gabura's paper (1965) provides a good starting 

point for this approach. A more in depth study of the techniques used by 

ethnomusicologists to compare different types of music could also provide more ideas. It 

might also be beneficial to use alternative ways of representing pitch, as suggested by 

Chai and Vercoe (2001). 

Further research on more sophisticated features based on sequential information could 

be useful as weil. Phrasing and repetition, in terms of melodies, chord progressions and 

rhythms, are very important. The degree and regularity at which such patterns are 
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repeated, as weIl as their general character, length and register could aIl be useful 

features. It would also be good to collect features related to transposition, decoration and 

inversion of motifs. In order to extract features related to these characteristics, however, it 

would first be necessary to have an effective phrase detection and segmentation system, 

something which would be a valuable research contribution beyond just the scope of just 

classification systems. It would also be useful to make use of a system that could 

automatically segment different lines in order to derive features related to melodic 

contour. 

The problem of segmentation in general is highly relevant to genre classification, as a 

single recording can have different parts that are characteristic of different genres. It 

would be beneficial to have a system that could properly segment such pieces so that each 

segment could be classified separately, rather than having the features averaged out, 

which could result in features that are not indicative of any of the correct genres. 

There has been sorne interesting research done on models of how humans code 

sequential musical information as weIl as on applications of generative grammars to 

music, which is one way in which to think of phrases. Stevens and Latimer (1997) present 

sorne references on these areas that could provide a good starting point for adapting this 

research to the purposes of music classification, as weIl as sorne further references on the 

limitations of these approaches. Research on detecting and processing repeating musical 

patterns, such as that by Hsu et al. (2001), Typke et al. (2003) or Lartillot (2003), could 

be taken advantage of. Works such as those by Tseng (1999) or Foote (1999) could also 

be useful in devising a system to extract melodies and segment recordings. An alternative 

and potentially very interesting approach to extracting features from phrases would be to 

characterize melodies by fitting them to functions, as was done by Laine and 

Kuuskankare (1994), in order to search for patterns and then apply functional data 

analysis techniques. In the case of audio segmentation, Dannenberg and Hu (2002) 

present several techniques for searching the underlying structure of music that could be 

used to search for different types of repetition in the music. 

Existing research on query by humming systems could also provide a useful resource 

for the extraction of features based on sequences and phrases. Features could be extracted 

by collecting and analyzing n-grams relating to melodies, rhythms and chord 

progressions. There are a number of resources that could be useful in this respect 

(Agrawal & Srikant 1995; Hsu, Liu & Chen 2001; Selfridge-Field 1998; Uitdenbogerd & 

Zobel 1998). The work of Shan and Kuo (2003) could also be of use, as it considers the 

problem in the context of style classification. The work of Yip and Kao (1999) also 

provides sorne useful background on melody-based features. 

AIl of the features that were used in this thesis were extracted from entire MIDI files, 

in order to take advantage of the full data that was available. Given that it is possible for 
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humans to make genre identifications based on only short segments of data (Perrott & 

Gjerdingen 1999), it should be possible for similar classifications to be made by 

computers. It would therefore be interesting to conduct further studies using only short 

segments of MIDI recordings to see if the system could still perform weIl. This would be 

useful from the perspective of real-time classification. It should be noted, however, that 

humans may make these quick classifications based on timbraI data that is not available in 

symbolic musical representations such as MIDI. 

The use of alternative classifiers could also improve results. Support vector machines, 

for example, would be particularly weIl suited to the binary round-robin classifiers, and 

sorne success has been had with this approach in the pa st (Xu et al. 2003). Hidden 

Markov models could also be useful for classifying features dealing with sequential 

events, such as melodies or chord progressions. Neural networks with feedback could also 

be used to process sequential features. 

There have been a number of studies on the benefits of combining neural networks in 

ensembles of different types using a variety of methods to coordinate the results (Granitto 

et al. 2002; Hansen & Salaman 2001; Wanas & Kamel 2001; Wanas & Kamel 2002; 

Zhou et al. 2001). Network ensembles such as these could be experimented with for the 

purposes of musical genre classification, and sorne of the coordination techniques could 

be adapted to the types of classifier ensembles already used here. Stevens and Latimer 

(1997) and Crump (2002) present good surveys of literature relating to the application of 

neural networks to music that could be consulted in order to devise more sophisticated 

networks. 

Non-metric methods such as induction trees could also be used, as the y offer the 

significant advantage of revealing how classifications are performed. Inductive learning 

could also help eliminate unneeded features. Sorne interesting work relating to this has 

been done by John et al. (1994). 

Alternatives to genetic algorithms for feature selection could also be experimented 

with. For example, principal component analysis cou Id be used to reduce the 

dimensionality of multi-dimensional features, since it is not as important that one be able 

to judge the musicological importance of their components as it is for entirely different 

features. 

Existing research into alternative ways of deciding which classifiers to group into 

ensembles, such as that by Zenobi and Cunningham (2001) could be further explored in 

order to gain ideas as to alternative types of classifier ensembles. Alternative techniques 

could also be used to coordinate the ensembles as weIl. Studies such as that by Tax et al. 

(2000) could be useful in this respect. Blackboard systems are one particularly promising 

approach, where different classifiers or ensembles of classifiers could be treated as 

knowledge sources. A good coverage of such systems is presented in Jagannathan et al.'s 
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book (1989). The advantages of both expert systems and supervised learning could be 

taken advantage of with this approach. Opitz and Maclin (1999) review and evaluate 

sorne promising techniques for different ways in which neural networks and decision tree 

classifiers can be combined. 

A system could be implemented that punishes certain kinds of errors more than 

others. For example, a misclassification between two similar sub-genres would not be as 

bad as confusion between Gangsta Rap and Baroque organ fugues, for example. This 

could be considered in the evaluation of the system as weIl, rather than only looking at 

potentially deceptive overall error rates, which may be as influenced by the choice of 

genre taxonomy as by problems in the systems itself. 

Probably the best way to improve performance would be to acquire a larger and better 

classified library of training and testing recordings. An automated system for finding and 

downloading files and the acquisition of access to a large database of easily accessible 

music would be of great use here. 

Techniques for automatically selecting the "best" training samples and eliminating 

inappropriate ones could be applied. Hartono and Hashimoto (2002) have already done 

sorne research on this topic, and there is certainly room for more exploration here. Care 

must be taken not to leave out atypical members of a genre that nonetheless clearly do 

belong to the genre, however. This means that this approach would require a great deal of 

training data with weIl balanced representatives from aIl sub-types of each genre. 

More categories and training samples could also be used to further expand the scope 

and effectiveness of the system in general. More attention could be given to the selection 

of the taxonomy and model examples as weIl. These were, of necessity, designed and 

chosen by the authour personally. Although external resources were certainly consulted, 

better results could probably be achieved by forming a panel of experts that could come 

up with their own taxonomy and model examples. The correlations between the 

judgements of different panel members cou Id also provide interesting psychological data. 

The results of such a study could be used as a large, diverse and standardized testbed 

for other automatic musical genre classification systems, something that is sorely missing 

at the moment, making it difficult to compare different systems. The work of Goto et al. 

(2003) provides the beginning of work in this direction. Research into developing a 

standardized way of studying and measuring musical similarity (Ellis et al. 2002; 

Berenzweig et al. 2003) could also be adapted to genre-based applications. 

In regard to expansions to the taxonomy, the sub-genres of techno are one area of 

particular muscicological interest, for which Reynolds' work (1998) could be of particular 

use, although it is becoming somewhat dated due to rapid rate of change in these types of 

music. The taxonomy could also be expanded to include the ways in which blues music 

has interfaced with other types of rhythm & blues music, such as jump blues and uptown 
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R&B. The addition of genres such as Rockabilly, Surf, early British Invasion and Folk 

Rock would help to make the taxonomy more complete. Folk musics of all kinds could 

also be added, including American Old-Time, as weil as more World Pop. The limited 

availability of these recordings is a problem if one limits oneself to MIDI recordings, but 

the inclusion of an optical music recognition sub-system that could translate scores into 

MIDI would greatly improve matters. 

The issues raised by Pachet and Cazaly (2000) and by Aucouturier and Pachet (2003), 

in terms of the needs of a large global database, could also be considered when designing 

an alternate taxonomy. A system could be implemented that classifies the genre of artists 

rather than individual recordings, for example. The emergent approach proposed by 

Aucouturier and Pachet (2003) of deriving taxonomies by applying data mining 

techniques to resources such as radio play lists and CD track listings could also provide a 

powerful alternative. 

It could also be useful to train the system with custom recordings of musicians asked 

to play music in specific genres. This would have the advantage of using "idealized" 

prototypical training data rather than training data that may be "contaminated" with 

irregularities. This would, of course, carry the risk of making the system unable to 

classify recordings that are not purely typical of a genre. Perhaps it would be a good 

compromise to use training data comprised of both custom recordings and normal 

recordings. 

Aside from improvements that cou Id benefit the practical performance of the system, 

there are also several important areas of musicological research that could be 

investigated. Unsupervised learning could be applied to the features that were extracted 

from recordings in order to arrive at similarity measurements. The resultant categories 

could be compared to the genres used by humans in order to get a feeling of the relative 

"objective" similarity of music that humans put in the same or different categories. The 

resulting similarity measurement system would also have numerous applications 

independent of genre. Sorne of the research discussed in Chapter 4 would be of use here, 

and work such as that of Dittenbach et al. (2000) would be of particular use, as it ailows 

the formation of hierarchical taxonomies which could be compared to existing 

hierarchical taxonomies. 

Psychological experiments could be performed in order to gain a more precise idea of 

the extent to which humans agree with each other when they classify music. Experiments 

could be done where subjects come up with their own categories as weil as experiments 

where subjects fit recordings into supplied categories. This would help to give a 

quantitative measure of human consistency that would put automatic classification 

success rates in better context. Subjects cou Id also be asked why they classify certain 

recordings in certain ways, and the results could be compared to the particular features 
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that the automatic system used for different groups of genres. It would also be interesting 

to see if there is a difference in how weIl human subjects classify MIDI recordings 

compared to audio recordings. 

The features extracted from different recordings and the results from the feature 

selection process for different groups of categories could be studied from a musicological 

perspective in order to attempt to derive meaning from the classifications that were 

performed and to help understand how different genres of music are related to particular 

features. Music theorists could also use the feature extraction system developed here to 

collect data that could be used to develop or enhance music theories in relation to 

different genres of music. 
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