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Abstract

Novel approaches towards the synthesis and applications of P-chiral molecules were investigated
and applied in the design of P-chiral Brgnsted acid organocatalysts. These catalysts were evaluated
in the asymmetric transfer hydrogenation of quinolines to tetrahydroquinolines. Among these
substrates, the organocatalytic asymmetric transfer hydrogenation of deactivated quinolines was
investigated for the first time. Additionally, these novel approaches were applied in the first
enantiospecific phosphonylation of imidazoles via a solvent-switchable, site-selective, 1,4-
palladium migration/C-H activation cascade. As a proof of concept of the utility of these
compounds, the stereoretentive reduction of one phosphonyl imidazole product was achieved,
leading to the first reported P-chiral phosphinyl imidazole ligand. This P-chiral ligand was found
to induce high enantioselectivity in the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of

two sterically demanding aromatic systems to give an atropisomer in high enantiomeric purity.



Résumé

De nouvelles approches vers la synthese et les applications de molécules P-chirales ont été étudiées
et appliquées dans la conception d'organocatalyseurs d'acide de Brgnsted P-chiraux. Ces
catalyseurs ont été évalués dans I'nydrogénation par transfert asymétrique des quinolines en
tétrahydroquinolines. Parmi ces substrats, I'hydrogénation par transfert asymétrique
organocatalytique de quinolines désactivées a été étudiée pour la premiere fois. De plus, ces
nouvelles approches ont été appliquées a la premiére phosphonylation énantiospécifique des
imidazoles via une cascade régiosélective de migration 1,4 du palladium et d’activation C-H,
commutable par solvant. Comme preuve de concept de l'utilité de ces composés, la réduction, avec
rétention de chiralité, d'un produit phosphonyle imidazole a été obtenue, conduisant au premier
ligand phosphinylimidazole P-chiral signalé. Il a été constaté que ce ligand P-chiral induisait une
énantiosélectivité élevée dans la réaction de couplage croisé Suzuki-Miyaura, catalysée par le
Palladium, de deux systémes aromatiques exigeants stériqguement pour donner un atropisomere de

haute pureté énantiomere.
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Chapter 1: Introduction

1.1 Synthesis of P-Chiral Secondary Phosphine Oxides (SPOs)

Organophosphorus compounds constitute an important class of catalysts and
ligands in asymmetric reactions. The high degree of tunability displayed by phosphorus
allows for the synthesis of compounds bearing a wide range of attributes. While their
electronic properties can be modulated by the installation of various aryl and alkyl
groups, steric congestion is often improved by t-butyl and adamantly substituents.
Moreover, such steric congestion often enhances the ability of P-chiral compounds to

promote asymmetric transformations.

Among the numerous organophosphorus compounds reported, the unique
nature of secondary phosphine oxides (SPOs) allows for their versatility in organic
synthesis and in some cases, their use as ligands in metal-catalyzed reactions. The
tautomerization of trivalent phosphinous acid 1.1 to pentavalent SPO 1.2 is favoured
under ambient conditions (Scheme 1.1). However, upon coordination as a neutral ligand
to metals, the equilibrium favours phosphinous acid-metal complex 1.3. Under basic
conditions, the corresponding anionic P-bound complex 1.4 and O-bound complex 1.5

are formed.?

M
2 (I)H 2 |l i 2 CI)H 2 (I)I | 2 (I)/
R -— R | R R | R
=P —_— =P | P —P | =P
R1/ Q R1/ \H : R1/ \M R1/ \M : R1/ Q
1.1 1.2 | 1.3 1.4 | 1.5
soft metals hard metals

Scheme 1.1. Models of SPO Coordination.

This coordination property has enabled their utility as ligands in various
reactions such as asymmetric imine hydrogenation? and alkylidenecyclopropanation
reactions.® In addition, SPOs also serve as precursors to more complex compounds
such as tertiary phosphine oxides (TPOs), phosphine ligands and Brgnsted acid

catalysts. In the design of the P-chiral Brgnsted acids (Chapters 2 and 3) and



phosphonyl/phosphinyl imidazoles (Chapter 4) reported in this thesis, the synthesis and
derivatization of various chiral SPOs was employed. As such, an overview of the
various synthetic routes to their acquisition is important. In general, these protocols are

grouped into two: the use of chiral auxiliaries and chiral resolution.

1.1.1 The use of Chiral Auxiliaries in the Synthesis of P-Chiral SPOs
1.1.1.1 Menthol as a Chiral Auxiliary

Diastereomeric complexes of a racemic SPO and a chiral auxiliary may be
formed via substitution reactions. By exploiting differences in physical properties,
separation methods such as fractional crystallisation may be successful in isolating
these diastereomers. Subsequent cleavage of the requisite bond(s) yields the
enantioenriched SPO and the recovery of the auxiliary. The application of this process
dates back to 1968, when Emmick and co-workers reported the first attempt to
synthesize enantioenriched SPOs with L-(-)-menthol as the chiral auxiliary.* The
reaction of phenyl phosphonous dichloride 1.6 with L-(-)-menthol yielded H-
phosphinate 1.7 (Scheme 1.2a). However, this diastereomeric mixture was inseparable
and the subsequent substitution of compound 1.7 with benzylmagnesium chloride
afforded SPO 1.8 as a racemate (Scheme 1.2a). Alternatively, the reaction of
phenylphosphonic dichloride 1.9 with L-(-)-menthol yielded 1.10. Subsequently,
substitution with benzylmagnesium chloride afforded a diastereomeric mixture of
phosphinate 1.11 which was isolated by crystallization. While Emmick and co-workers
claimed that enantioenriched SPO 1.8 was obtained by the reduction of 1.11 with
LiAIH4, (Scheme 1.2b), subsequent efforts by Mislow to reproduce this protocol led to
racemic SPO 1.8.° Mislow also reported that diastereomeric SPOs 1.12 undergo P-
epimerization to SPO 1.13 in the presence of LiAlH4, via two possible intermediates
(Scheme 1.2¢).°> Thus, this method of reduction was deemed detrimental to
stereoretention. Subsequently, Mislow and coworkers showed that H-phosphinate 1.7

could in fact be isolated in 95:5 dr by crystallisation from hexane.® However, their
2



efforts were directed towards the synthesis of chiral TPOs instead. It was not until 2007
that Giordano and Buono reported the first application of (Rp)-1.7 towards the synthesis

of chiral SPOs (Scheme 1.3a).’

1. L-(-)-menthol,
pyridine

CI\E/CI 2. H,0 (5\ D ., BnMgCl 0y
- <N\
Ph 770" Ve Bn™ “Ph
1.6 A 1.8
1.7 38% yield
47% yield (racemic)
(diastereomeric mixture)
b
o} - 0 o ) [0}
/l‘:‘,\/CI L-(-)-menthol, pyridine HNCI BnMgCl E,NBn LiAIH, /H\’H
PR™ e 70" "pn g ™ Bn” “ph
1.9 A = 1.8
1.10 /\1 » up to 36% yield
(unknown P-configuration) 50% vyield before crystallisation (possibly racemic)
(single diastereomer after crystallisation,
unknown P-configuration)
Q
Ph, Riph ‘
Me=T H } H CHMePh
H 1 LAT pp I ! | CHMePh WH
: 4 Z -\ "Ph —PX —PZ
0 2. NH,CI Me™ \H ; Ph T\OAIHa H T\OAIH3
Ph B, H : H | Ph |
Me=7" '\ 'H 1.13 ! Li Li
H Ph | possible intermediates
1.12

Scheme 1.2. Seminal Synthesis and Stability Studies of SPOs.

a RM c
LH R=alkyl, aryl Hiv P 0 WH M=, MgA FL‘
: () \Ph -78°Ctort P’ R ! (0} \Ph H (o] \Ph
PN 1.14 PR PN
(Rp) 1.7 11 examples (Rp)-1.7 1.17
60 - 91% yield i
RM = t-BuMgCl, 0% ee ! “ %
RM = t-BulLi, 86% ee |
b 1
' R-M (1 equiv.)
OMgX OMgX ! . OM
(5\ L e——— (5\ Lopn | (5\ hon  MLMoX P
Yo"\ <07\ ! (O N0
: Ph H . : H Ph H "
PN PN ; PN PR
1.15 1.16 ! (Sp)-1.7 1.18

Scheme 1.3. Synthesis of P-Chiral SPOs using L-(-)-Menthol as a Chiral Auxiliary.



While their methodology tolerated an array of alkyl and aryl nucleophiles in the
substitution of (Rp)-1.7, organolithium reagents outperformed the corresponding
organomagnesium reagents in stereoretention. For instance, while t-BuMgCl afforded
the t-butyl substituted SPO 1.14 as a racemic product, t-BuL.i yielded this compound in
86% ee.” The authors attributed this phenomenon to a reversible P-epimerisation of
1.15 to 1.16, obtained after the first equivalent of Grignard reagent abstracts the
phosphinate proton of (Rp)-1.7 (Scheme 1.3b).” The nucleophilic attack of compound
1.15 by a second equivalent of a bulky Grignard reagent like t-BuMgCl, was deemed
to proceed slower than P-epimerisation to 1.16, whereas the more reactive t-BuL.i
afforded stereoretention. However, Han latter reported a thorough mechanistic
investigation that highlighted the unlikely P-epimerisation of 1.15 to 1.16, or that of
1.17 to 1.18 (Scheme 1.3c).8 It was demonstrated that after the reaction of (Re)-1.7 with
1 equivalent of t-BuMgClI at -80 °C to give 1.15, quenching of the reaction led to the
recovery of (Rp)-1.7 in >99% de. Han also showed that metal alkoxides such as
(-)MenOLi generated from the substitution of (Rp)-1.7 by organometallic reagents were
implicated in the P-epimerisation of (Rp)-1.7 to (Sp)-1.7 (Scheme 1.3c). In addition,
other impurities such as menthol and water were reported to be detrimental to

stereoretention.®

1.1.1.2 Amines and Amino Alcohols/Phenols as Chiral Auxiliaries

In addition to chiral alcohols such as L-(-)-menthol, chiral amines and amino-
alcohols also serve as important auxiliaries towards the acquisition of P-chiral SPOs.
In 2003, Kolodiazhnyi reported the first diastereoselective reaction of phosphorus(I11)
chlorides 1.19a-c with chiral N-(1-methylbenzyl)amines, to furnish enriched
aminophosphines 1.20a-c (Scheme 1.4).° Their reaction with BHs. THF, gave adducts
which could be crystallised to yield compounds 1.21a-c as single diastereomers. The
deborylation of 1.21a with diethylamine and subsequent hydrolysis afforded SPO (Sp)-
1.22.
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Scheme 1.4. Synthesis of P-Chiral SPOs using N-(1-methylbenzyl)amine as a Chiral

Auxiliary.

Shortly after, Buono and co-workers reported a one-pot, two-step synthesis of
both enantiomers of 1.22 from oxazaphospholidine 1.23 (Scheme 1.5).1° The reaction
of amino alcohol (S)-(+)-prolinol with PhP(NMe). gave 1.23 and the cleavage of the
formed P-O bond with t-BuLi furnished 1.24. Upon work-up with acids having pKa
values < 1, (Rp)-1.22 was obtained in up to 88% yield and 91% ee. Moreover, acids
with pKa values of approximately 3 — 5, gave (Sp)-1.22 in up to 77% yield and 85% ee.
Buono also reported the transformation of unprotected ephedrine-based
oxazaphospholidine 1.25 to (Rp)-1.22. After t-BuLi mediated ring-opening and
PTSA/H20 acidolysis, (Rp)-1.22 was obtained in similar selectivity (85% ee) when
compared to the prolinol-based phosphine route (Scheme 1.5b). However, (Rp)-1.22

was obtained in lower yield at 40%.
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Scheme 1.5. Seminal Synthesis of P-Chiral SPOs using Prolinol and Ephedrine.

In 2017, Han and coworkers reported the synthesis of SPO (Sp)-1.22 using
(1R,2S)-norephedrine 1.26 as a chiral auxiliary (Scheme 1.6a).** The treatment of 1.26
with PhPCI> under basic conditions afforded intermediate 1.27. Subjecting 1.27 to
hydrolysis led to selective P-N bond cleavage, yielding 1.28. Subsequently, the P-O
bond cleavage of 1.28 was achieved with t-BuL.i, to give (Sp)-1.22 in 65% yield and
99.2:0.8 er. A similar approach was amenable to (1S,2R) aminoindanol 1.29, furnishing
phosphinates 1.30 in good to excellent dr (Scheme 16b). The reaction of these
compounds with t-BuLi gave SPOs (Sp)-1.31 in up to 92% yield and 99.5:0.5 er. In
both instances, aryl-substituted phosphine dichlorides were employed. However, it was
also demonstrated that the sequential reaction of phosphine trichloride and the requisite
aryl-Grignard reagent with either 1.26 or 1.29, yielded phosphinates 1.32 or 1.30
respectively (Schemes 16c¢-d). This protocol allowed for the modular installation of
various aryl groups, while avoiding the separate synthesis of aryl-substituted phosphine
dichlorides. Finally, the reactions of 1.32 or 1.30 with t-BuL.i, furnished SPOs (Sp)-1.31
in up to 91% yield and 99.9:0.1 er.
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Scheme 1.6. Synthesis of P-Chiral SPOs using Norephedrine and Aminoindanol as

Chiral Auxiliaries.

In the synthesis of SPOs from chiral auxiliaries, t-BuL.i is conventionally used
to install the t-butyl group while simultaneously cleaving the requisite P-OR bonds
(Schemes 1.3, 1.5, 1.6). However, due to the extreme pyrophoric nature of this
organolithium reagent, methodologies that circumvent its use are advantageous. In
2019, our group reported a novel route to the acquisition of SPOs, via the pre-
installation of the t-butyl group using t-BuPCl..}? Auxiliary 1.33 was reacted with t-
BuPClI: to give 1.34 and subsequently, the more labile P-N bond was hydrolysed to give
H-phosphinate 1.35 in good yield and excellent dr (Scheme 1.7). The choice of

auxiliary 1.33 was strategic: the aryloxy backbone incorporated into H-phosphinate

1.35 is a good leaving group. Consequently, the P-O bond of 1.35 is susceptible to
7



cleavage by nucleophiles weaker than t-BuLi. Thus, various Grignard reagents were
successfully utilized in P-O bond cleavage, to afford SPOs (Rp)-1.31 in 40 — 96% vyield
and up to 99% ee (Scheme 1.7).

Me t-BuPCl, Me Cl NS o
cl _Ts 1-methylimidazole Cl s H,0 H RMgX.LiCl "
N - T N e o) —_— R'-P\H
H THF, -40 °C to rt, 5h Fl_, crystalisation O\P// THF, 0 °Corrt, N
OH o’ K

& Ny 15minto3h

1.33 1.34 (Rp)-1.31
1.35 25 examples
71% yield 40 - 96% yield
99.7:0.3 dr up to 99% ee

Scheme 1.7. Synthesis of P-Chiral SPOs using an Aminophenol as a Chiral Auxiliary.

1.1.2 Synthesis of P-Chiral SPOs by Resolution
1.1.1.3 Resolution of SPOs using Chiral Bi-naphthol and Carboxylic Acids

The synthesis of enantioenriched SPOs from chiral auxiliaries is often
expensive and lacking in atom economy. Thus, despite the yield limitations of
methodologies such as kinetic resolution, this approach may be fairly efficient when
SPO racemates are readily accessible. Moreover, if the separation of the resulting
diastereomeric complexes is facile, accessibility to the desired compounds may be
further improved. In 1999, Mikotajczyk reported the first kinetic resolution of racemic
SPO 1.22 using optically active reagents.'® Preliminary investigations commenced by
stirring (rac)-1.22 (2 equiv.) with (R)-(+)-1,1'-Bi(2-naphthol) (1 equiv.), in water
(Scheme 1.8a). Consequently, a crystalline diastereomeric complex of (Sp)-1.22 and
(R)-(+)-1,1'-Bi(2-naphthol) was isolated by filtration. Via chromatography, (Sp)-1.22
was isolated in 58% ee. The extraction of the mother liquor yielded (Rp)-1.22 in 60%
ee and by repeating the resolution, it was obtained in 77% ee. Next, the resolving
properties of (S)-(+)-mandelic acid were investigated. By stirring equimolar quantities
of (rac)-1.22 and (S)-(+)-mandelic acid in ether, a crystalline diastereomeric complex
of (Sp)-1.22 and (S)-(+)-mandelic acid was obtained (Scheme 1.8b). Moreover, the

mother liquor contained a diastereomeric complex of (Rp)-1.22 and (S)-(+)-mandelic



acid. The decomposition of the crystalline complex in aqueous potassium carbonate
furnished (Sp)-1.22 in 28% vyield and 99% ee. Similarly, the isolation and

decomposition of the complex in the mother liquor gave (Rp)-1.22 in 52% yield and

39% ee.
precipitate: (Sp)-1.22/ O
h t h I
a (R)-(+)-1,1-Bi(2-naphthol) romatograpny, PP, (SP11:22,58% ee
o complex t-Bu/
L H,0, 15 h
—F~
" o o
=u OO 1 repeat resolution _ P (Rp122,77% e
PR >H Ph™" >H (mother liquor)
(rac)-1.22 B0 B4
(2 equiv.) )-1,1"-Bi(2- naphthol) (Rp)-1.22, 60% ce
(1 equiv.) p)-i-£€, DU /0
q (mother liquor)
precipitate: o o (Sp)-1.22
5 . K;CO Il
b (Sp)-1.22/(S)-(+)-mandelic -39 K2COs_ PP~y 29% yield,

acid complex t-Bu 99% ee

o
L Et,0,70 h
Ph—P~H
/ m ther liquor: 0] (Rp)-1.22
tBu motherfiquor: 5% aq. KoCO3 i Pl

(Rp)-1.22/(S)-(+)-mandelic Ph'P\H 52% yield
(rac)-1.22 (S)-(+)-mandeiic acid acid complex t-Bu\: 39% ee

Scheme 1.8. Kinetic Resolution using (R)-(+)-1,1'-Bi(2-naphthol) and (S)-(+)-
Mandelic Acid.

Mikotajczyk also highlighted the potential of dibenzoyl-L-tartaric acid to
resolve SPO (rac)-1.22. However, it was not until 2009 that Minaard reported the
application of this acid for this purpose.** Under optimised conditions, (rac)-1.22 was
dissolved in a 4:1 benzene:acetone solution at reflux, and following the addition of an
equimolar quantity of dibenzoyl-L-tartaric acid, a crystalline diastereomeric complex
of (Rp)-1.22 and dibenzoyl-L-tartaric acid was obtained at ambient temperature. The
decomposition of this complex in aqueous sodium hydroxide gave (Rp)-1.22 in 31%
yield and >99% ee. Similarly, the isolation and decomposition of the complex in the

mother liquor gave (Sp)-1.22 in 31% yield and 97% ee (Scheme 1.9a).
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Scheme 1.9. SPO Resolution using Dibenzoyl-L-Tartaric Acid.

In 2014, Minaard reported an extension of this methodology via a radical-
mediated, crystallisation-induced dynamic resolution of (rac)-1.22 (Scheme 1.9b).*® By
heating a mixture of (rac)-1.22, dibenzoyl-L-tartaric acid and catalytic iodine in
diisopropyl ether, a crystalline diastereomeric complex of (Rp)-1.22 and dibenzoyl-L-
tartaric acid was obtained. The decomposition of this complex under basic conditions
afforded (Rp)-1.22 in 92% vyield and 96% ee. After a thorough mechanistic
investigation, it was concluded that iodine promoted the radical-mediated P-
epimerisation equilibrium of (Rp)-1.22 to (Sp)-1.22. This allowed for the in-situ
deracemization of the SPO via the preferential binding of one enantiomer to the
dibenzoyl-L-tartaric acid, hence, leading to the formation of the favoured chiral SPO-

tartaric acid complex.

1.1.1.4 Resolution of SPOs by Asymmetric Coupling

Kinetic resolution via the asymmetric coupling of a racemic compound and
another substrate presents the opportunity to recover some of the compound
enantioenriched, as well as obtain a new P-chiral product. An efficient application of
this concept in the resolution of SPOs, was first reported by Zhang in 2020.%® The Le-

Phos catalysed asymmetric allylation of (rac)-1.36 with Morita-Baylis-Hillman (MBH)
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carbonates 1.37 gave SPOs (Rp)-1.36 in up to 99% ee. In addition, TPOs 1.38 were
obtained in up to 95% ee (Scheme 1.10).

Me Me
Me o] OR2 Me o Me 9)\—(:02R3 \
lg*H Le-Phos(10 mol%) P—H "p o
+ CO,R? : ¥
2 t-BuPh, 0 °C -
R Me ©/R1 Me R

(rac)-1.36 1.37 (Rp)-1.36 1.38

Scheme 1.10. Resolution via Asymmetric Allylation.

1.2 Brgnsted Acids as Efficient Organocatalysts for Asymmetric Reactions

In recent years, organocatalytic methodologies for asymmetric synthesis have
gained attention as a powerful tool in green and metal-free chemistry. Brgnsted acids,
a subset of organocatalysts, have become ubiquitous in asymmetric reactions, with the
BINOL-derived phosphoric acids being the most common types. The entry of these
catalysts into modern chemistry is attributed to Akiyama®’ and Terada'® who in 2004,
independently reported highly asymmetric Mannich-type reactions catalysed by these
phosphoric acids (Scheme 1.11). Since then, the field of Brgnsted acid catalysis has
undergone tremendous growth towards the development of strategies for asymmetric
bond construction.'® As such, electrophiles of varying strengths have been successfully
activated under mild reaction conditions. For instance, while imines are relatively easy
to activate using BINOL-based phosphoric acids (Scheme 1.11), the activation of
challenging electrophiles such as olefins was only recently reported by List, using

highly acidic IDPi Brgnsted acids.?°

11



Akiyama

cat. (10 mol%)
toluene, -78 °C, 24 h

HO
T
HN

R1’t\/COZR3

R2
11 examples, 65-100% yield

86:14-100:0 syn/anti
81-96% ee

cat. (2 mol%)
R

CH,Cly, 1t, 1 h
Ac

6 examples, 93-99% yield
90-98% ee

R = 4-bnapthyl-CgH,4

Scheme 1.11. Asymmetric Mannich-type Reactions Catalysed by Phosphoric Brgnsted
Acids.

Based on their pKa, chiral Brensted acids can be grouped into weaker and
stronger categories (Figure 1.1).2! Weaker Brgnsted acids such as chiral thioureas,
squaramides and TADDOL derivatives have higher pKa and catalyse asymmetric
reactions via hydrogen bonding. However, stronger Brgnsted acids have lower pKa
values. In addition, stronger catalysts display hydrogen bonding and/or ion pairing
modes of activation, depending on the nature of the electrophile and solvent.'® 2 Thus,
stronger Brgnsted acids (subsequently referred to as Bransted acids) display versatile
properties that can be tuned to promote otherwise difficult asymmetric transformations,

without employing harsh reaction conditions.
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binapthyl bis(sulfon)amide BINBAM binapthalenyl disulfonic acid, BINSA

Figure 1.1. Classification of Chiral Brgnsted Acids based on pKa (values in DMSO).

1.2.1 The Rational Design of Brgnsted Acids Towards Increased Reactivity and
Selectivity

Enantioselectivity is often dependent on the nature and size of the R and R’
substituents on the BINOL scaffold of Brgnsted acids (Figure 1.1). Moreover, the
various modes by which an electrophile can be activated by Brgnsted acid catalysts, in
addition to the catalyst-controlled delivery of a nucleophile, can also play a crucial role
in enantioselectivity. However, reaction rate is primarily determined by the acidity of
the catalyst.?® Although it is important to distinguish between the factors controlling
enantioselectivity and reaction rate, the holistic approach presented herein will attempt

to show how these factors are complementary in asymmetric catalysis.
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1.2.2 The Role of Acidity in Reactivity

While O’Donoghue and Berkessel have reported the pKa values of a range of
Bransted acids in DMSO,?* Rueping and Leito established an acidity scale for
commonly used Brgnsted acids in MeCN.% BINOL-derived phosphoric acids (BPAs)
were reported to have pKa values between 12 and 14, the N-triflylphosphoramides
(NPAs) between 6 and 7, and Binaphthyl-2,2’-bis(sulfuryl)imides (JINGLES) at around
5 (Figure 1.2). In addition, Rueping and Leito showed that the pKa of these acids were
positively correlated with their activities. Thus, more acidic catalysts promote higher
reaction rates and vice versa. List also reported the pka of imidodiphosphate (IDP),
disulfonimide (DSI), binaphthyl-allyl-tetrasulfone (BALT) and
imidodiphosphoamidate (IDPi) catalysts in MeCN (Figure 1.2).% Of these Bransted
acids, the IDPis are the most acidic. In order to clearly present this pKs-dependent trend
in reactivity, the Bragnsted acids reviewed in this chapter have been grouped according

to similarities in their structures (Figure 1.3).

BPA JINGLEs
R R
‘O [Hg] R = 9-phenanthrene; pK, = 14.0 ‘O o
o. 0 R = 2,4,6-iPr3-CgHa; pK, = 13.6 oS0
)¢ R = 9-phenanthrene; pK, = 13.3 NH R =3,5-(CF3),-CeHs; PKa = 5.2
O O OH  R=phpK, =127 O¢-0
R R = 4-F-CgHy; pK, = 12.5

DSI (BINBAM)

NH R = 3,5-(CF3),-CgHa; pK, = 8.4

[Hg] R" = 4-MeO-CgHy; R? = CF3; pK, = 6.9

R1
‘O [Hel R' = Ph; R? = CgF7; pK, = 6.8
0.0 o [Hg] R' = Ph; R? = C4Fg; pK, = 6.7

[Hg] R' = Ph; R? = CF3; pK, = 6.7

N-S-R?
o N9 R' = 4-MeO-CqHg; R? = CF3; pK, = 6.4
o}
R' = Ph; R? = CF3; pK, = 6.4

[Hg] R" = 4-f-CgH,; R? = CF3; pK, = 6.3

IDP: X = Y = O; R = 2,4,6-Et3-CgHy; pKo = 115
iDP: X = NTY, Y = O; R = 2,4,6-Et3-CgHy; pK, = 9.1
IDPi: X = Y = NTf; R = Ph; pK, = 4.5

X =Y = NTf; R = 3,5-(SF5)-CgHg; pK, = <2

Figure 1.2. pKa Values of Chiral Brgnsted Acids in MeCN.
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R BPA 1: X = O, Y = OH, R = 1-naphthyl
‘O BPA 2: X =0, Y = OH, R = 2,4,6-(i-Pr)5-CgH,
O X BPA3:X=0,Y=0H,R = 35-(CF3),-CeH,
24 BPA 4:X=0,Y=0H,R=H

v N
O Y  BPA5: X=0,Y=OH,R = 9-phenanthryl
[Hg]-BPA 6: X = 0, Y = OH, R = SiPh
R

BTPA 1: X =0, Y = SH, R = 2,4,6(i-Pr)3-CgH,

NPA 1: X = O, R = 2,4,6-(i-Pr3)-CgH,

R
OO NPA 2: X = O, R = 1-naphthyl
X 0 NPA 3: X = O, R = 9-phenanthryl

NPA 4: X = O, R = 3,5-(CF3),-CgH,

N=8-CFs NTPA 1: X =S, R = 2,4,6-(-Pr)y-CeH,
0 NTPA 2: X =S, R = 4-t-Bu-2,6-(i-Pr)3-CgH,
R

NSPA 1: X = Se, R = 2,4,6-(i-Pr)3-CgH,

IDP 1: X =Y = O; R = 2,4,6-(Et)3-CgH>
IDP 2: X =Y = O, R = 2-naphthyl

IDPi1:X=Y=NTf,R=

IDPi 2: X = Y = NTf; R = 4-tBu-CgH,
IDPi 3: X = Y = NSO,-(CgH,)-3,5-(CF3),, R = 4-tBu-CgHy

Figure 1.3. Structures of BINOL-derived Brgnsted Acids Reviewed.

1.2.3 The Progression of Catalyst Design from Phosphoric Acids to

Phosphoramides

BPAs, partially reduced BINOL-derived phosphoric acids ([Hs]-BPAs) and
NPAs (Figure 1.3) are by far the most common types of BINOL-based Brensted acids
encountered in asymmetric reactions. The ability to synthesize these acids from cheap
and commercially available BINOL, as well as elaborate their scaffold through standard
cross-coupling reactions, has led to the design of catalysts of varying steric and
electronic properties. For the majority of these compounds, the typical synthetic route'®
begins with the protection of BINOL (R or S) to obtain 1.39 (Scheme 1.12).
Subsequently, ortho-lithiation with n-BuLi, followed by borylation or halogenation
gives 1.40 or 1.41 respectively. Under Pd(0) cross-coupling conditions, the desired
substituents at the 3,3’-positions are installed and subsequent deprotection gives 1.42.
Phosphorylation using POCIs affords intermediate 1.43, from which amidation gives

the NPA. However, an acidic work-up of 1.43 yields the BPA and a subsequent
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reduction under H»-Pd/C conditions affords the partially reduced [Hg]-BPA (Scheme

1.12).19.2

1. n-BuLi B(OH),
2. B(OEt)3 OO 1. Pd(0)/ArX
3 HCI OR 2. deprotect
XX, ]
B(OH),
1.40

Ar Ar
O (O oo [T
OR OH _base O, O

o Ca o9y b

Ar
1.39 1.42 1.43

1. n-BuLi Br
R = Me or MOM 2.Br, 1. Pd(0)/Ar(BOH), H,N-SO,CF3
[3.HCI OR 2. deprotect
oL I,
1.41
° 0

Scheme 1.12. A General Synthetic Route to BPA, [Hs]-BPA and NPA.
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Brensted acids may activate substrates either through mono-activation, dual-

activation or bifunctional activation transition states (Figure 1.4).X° When the substrate

contains an acidic proton in proximity to the reaction center, dual activation mode A

occurs. However, when the substrate contains a Lewis basic group in proximity to the

reaction centre, dual activation mode B occurs. The bifunctional activation model is

possibly the most common transition state encountered in BINOL-based asymmetric

reactions. 1% 2" This model, as well as the dual activation models, highlight the Bransted

and Lewis basic nature of these catalysts in the activation and delivery of nucleophiles.

In conjunction with the steric bulk provided by the 3,3’-substituents, these transition

states may also control enantioselectivity.
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Mono-activation Dual activation Bifunctional activation

hydrogen bonding Mode A: two contacts to the catalyst individual contact to catalyst

1) O------ H-Y- and nucleophile

*( ¥ *CZ:P” > ______ _

CZ/ \O—H\ =3 \O—H\\ R *((O)\P:’o H—Nu

N X " O-H._ g3

JJ\ 1”\ 2 N

R" "R2? R" "R I
""""""""""""""""""""""""" R1 R2

ion pairing Mode B: two contacts to the acidic proton

Figure 1.4. Various Modes of Electrophile Activation by BINOL-based Brgnsted
Acids.

BPAs and [Hg]-BPAs have shown remarkable success in numerous asymmetric
reactions such as Mannich-type,}"'®?® intra-molecular Michael additions,?
transacetalization,®® hydrophosphonylation,3! the transfer hydrogenation of imines®
and N-heterocycles,* Friedel-Crafts, Strecker® and Biginelli*®® reactions. However,
the majority of these transformations involve the activation of reactive electrophiles
such as imines and aziridines.'® For weaker electrophiles such as aldehydes, ketones
and olefins, the relatively high pka values of BPAs and [Hs]-BPAs often render these
activations unsuccessful. In the effort to increase the acidity of these Brgnsted Acids,
Yamamoto introduced the electron withdrawing triflyl moiety as a replacement of the
-OH group.?® This modification allowed for the asymmetric activation of a,p-
unsaturated ketones 1.44 by (S)-NPA 1. The subsequent reaction of the activated
electrophiles with dienes 1.45 afforded Diels-Alder adducts 1.46 in moderate to

excellent yields and excellent enantioselectivity (Scheme 1.13).

((S)-NPA 1

R
Ny OO
o) . ~__«COEt
OSiR, S)-NPA 1 (5 mol% 0.0
e T RK/K/\ 2 : 5 P~
‘ Me toluene, -78 °C, 12 h R,SiO 0O

/ N_
: "
1
1.44 1.45 146 R R

8 examples, 35 to >99% yield R =R = 2,4,6-(i-Pr3)-CgH»
82-92% ee ~ =

7CF3

O=n=0

Scheme 1.13. Brgnsted Acid Catalysed Asymmetric Diels-Alder Reaction.
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In addition, when applied to other reactions that can be catalysed by BPAs, NPAs
show significant improvements in yields and enantioselectivities. This may be due to
the ability of NPAs to accommodate milder reaction conditions than BPAs, while
retaining their high reactivity. For example, in 2007, Rueping reported the first
asymmetric organocatalyzed Nazarov cyclization of pentenones to divinyl ketones
using NPAs.%" In the optimisation of the cyclisation of 1.47 to 1.48 a/b, (R)-BPA 1 was
able to catalyse the reaction in up to 81% ee, although a higher temperature (60 °C) was
required. However, with (R)-NPA 2 and (R)-NPA 3, full conversion of the starting
material to the desired product was observed at 0 °C, in 10 minutes. Furthermore,
enantioselectivity (up to 96% ee) and diastereoselectivity (cis/trans ratio up to 7:1) were

markedly improved using NPAs (Scheme 1.14).

(0] O (0]
o Me cat. (10 mol%) © ©
| | t—> Me 1Me
oluene
Ph

1.47 1.48a 1.48b
(R)-BPA 1: 2a/2b = 2.3:1; ee 2a, ee 2b = 81%, 55%
(R)-NPA 2: 2a/2b = 5.2:1; ee 2a, ee 2b = 83%, 96%
(R)-NPA 3: 2a/2b = 7:1; ee 2a, ee 2b = 86%, 94%

cat.:

R R
SONNERGS N

O o

P =i I

/ N_
H

0" "OH o S—CFy
99 LI, "
R R

(R)-BPA 1: R = 1-naphthyl (R)-NPA 2: R = 1-napthyl
(R)-NPA 3: R = 9-phenanthryl

Scheme 1.14. Optimisation of a Brgnsted Acid Catalysed Nazarov Cyclization.

To further increase the reactivities of NPAs, Yamamoto envisioned that more acidic
analogues could be obtained by replacing the P=0 moiety with P=S or P=Se.®® It was
reasoned that the ability of the respective N-triflylthiophosphoramides (NTPAs) and N-
triflylselenophosphoramides (NSPAs) to form more stable conjugate bases than NPAs,
would lower their pka. These analogues proved superior to NPAs, in the asymmetric

protonation of silyl enol ethers (Scheme 1.15).38
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OTMS 0 (S)-BPA 2: yield = 0%, ee = ND
cat. (10 mol%) (S)-BTPA 1: yield = trace, ee = ND
Ph : ° : »Ph (S).NPA 1: yield = 98%, ee = 54%
2,4,6-(CHs)3-CgH,CO,H (1.1 equiv.) (S)-NTPA 1: yield = 97%, ee = 78%
toulene, rt (S)-NTPA 2: yield = 97%, ee = 90%
1.49 1.50 (S)-NSPA 1: yield = 97%, ee = 72%
cat.: R R
OO o_ X “ o0_X o
/P /P\ i
oY o N$-CFs
(0]
R R
(S)-BPA 2: X = O, Y = OH, R = 2,4,6-(i-Pr);-CgH, (S)-NPA 1: X = O, R = 2,4,6-(i-Pr3)-CgH,
(S)-BTPA 1: X =0, Y = SH, R = 2,4,6-(i-Pr)3-C¢H, (S)-NTPA 1: X =S, R = 2,4,6-(i-Pr)3-CgH,
(S)-NTPA 2: X =S, R = 4-t-Bu-2,6-(i-Pr);-CgH,
(S)-NSPA 1: X = Se, R = 2,4,6-(i-Pr);-CgH,

Scheme 1.15. Optimisation of a Brgnsted Acid Catalyzed Asymmetric Protonation.

While investigating a suitable Brgnsted acid for this reaction, Yamamoto showed
that (S)-BPA 2 failed to catalyse the transformation of 1.49 to 1.50, while the sulfur
analogue, (S)-BTPA 1, only gave 1.50 in trace amounts after 96 h (Scheme 1.15).
However, with (S)-NPA 1, 1.50 was obtained in 98% yield and 54% ee after only 4.5
h. Furthermore, the thio- and seleno- analogues, (S)-NTPA 1 and (S)-NSPA 1 afforded
1.50 in similar yields but higher ee, in a shorter time of 3.5 h. Further optimisation using
the bulkier (S)-NTPA 2 improved selectivity, and a substrate scope with ee as high as

90% was reported.®

As a result of their higher acidity, NPAs and NTPAs have since been successfully
applied to other challenging asymmetric transformations including the 1,3-dipolar
cycloaddition of nitrones with ethyl vinyl ethers® and the Mukaiyama aldol reaction of
aldehydes with silyl enol ethers.*® However, in some cases, there is a correlation
between the higher reaction rates obtained with NPAs and the erosion of
enantioselectivity. An examples of this phenomenon was reported by List in the
asymmetric desymmetrisation of meso cyclic anhydrides.** While (S)-BPA 3 could

catalyse the conversion of 1.51 to 1.52 in 80% yield and 22% ee in 24 h, the more
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acidic (S)-NPA 4 gave a similar yield in the same time, but the product was racemic
(Scheme 1.16). By replacing the Tf group of (S)-NPA 4 with a pyridyl group, List
introduced a Brgnsted basic site that better activated and delivered MeOH with
improved yields and enantioselectivity (Scheme 1.16). While this Brgnsted acid/base,
(S)-NPA 7, gave 1.52 in quantitative yield and 80% ee in just 5 h, the thio-analogue,
(S)-NPA 8, gave similar results in only 3 h. Thus, the mode of substrate activation was
crucial in improving yields and controlling enantioselectivity. The importance of an
additional basic site was also exemplified in the asymmetric N,O-acetalization of
aldehydes;*? List showed that in the reaction of 1.53 and 1.54, the more acidic (S)-NPA
1 gave 1.55 with lower selectivity, compared to that obtained with (S)-BPA 2 (Scheme
1.17). However, the use of N-phosphonyl phosphoramide (S)-NPA 9, gave 1.55 in the
highest enantiomeric excess. List proposed a transition state where the second
phosphonyl group of the catalyst activates the hydroxyl nucleophile and enables its

delivery to the re-enantioface of the iminium intermediate (Scheme 1.17).

H O
5 0 CO.Me (S)-BPA 3:yield = 80%, ee = 22%
o oAt (10 mol%) 2 (S)-NPA 4: yield = 80%, ee = 0%
: MeOH (10 equiv.) CO,H (S)-NPA 7: yield = quant., ee = 80%
Ao toluene, rt (S)-NPA 8: yield = quant., ee = 80%
1.51 1.52
cat.: R R R
L, L, e«
/P\ /P\N g C /P\N \N
o OH o N7% Fs o 3
(0]
R R R
(S)-BPA 3:R =3,5-(CF3),-CgH,  (S)-NPA 4: R = 3,5-(CF3),-C¢H,  (S)-NPA 7: X = O, R = 3,5-(CF3),-CgH>
(S)-NPA 8: X =S, R = 3,5-(CF3),-CgH,

Scheme 1.16. Asymmetric Desymmetrisation of Meso Anhydrides.
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(0] (0]

cat. (10 mol%) (S)-NPA 1: yield = 74%, ee = 14%

NHz s OHC\)\ tol 5AM.S /M (STNPA & ioid = 299%. on = Som
oluene, .S. " - vield = 739 — 909

o e o o (S)-NPA 9: yield = 73%, ee = 90%

1.53 1.54 1.55

cat.. R R CF3
OO o, 0 OO 0 O\Q
P PP
I A, " Q
R R CFj
NPA 1: X = OH, R = 2,4,6-(i-Pr3)-CgH, NPA 9: R = 2,4,6-(i-Pr3)-CgH,
BPA 2: X = NHSO,CF3, R = 2,4,6-(i-Pr);-CgH,

Scheme 1.17. Asymmetric N,O-Acetalization of Aldehydes.

1.2.4 The Design and Applications of imidophosphates and

Imidodiphosphoramidates

While BPAs and NPAs have been extensively applied in asymmetric catalysis,
a limitation to their usage is the absence of a confined cavity. This requirement is crucial
in controlling the enantiofacial bias of intermediates that lack well-defined interactions
with the catalyst.*® In addition, it is difficult to overcome this challenge with the
installation of bulkier 3,3’-substituents on the BINOL scaffold of BPAS/NPAs, since
they radiate away from the active site.** To overcome this limitation, List envisioned a
model catalyst that would provide a cavity, much like the deep binding pocket of an
enzyme. By assembling two identical BINOL subunits through a -P=N-P- linkage, and
locking the O,0-syn conformation with bulky 3,3’-substituents, imidodiphosphates
(IDPs) with well defined confinement were obtained (Scheme 1.18a//b). This
rigidification also prevented unwanted Brgnsted basicity at the -N- site, leaving only
one Brgnsted basic site at P=O (Scheme 1.18c).*® Subsequently, List explored the
asymmetric spirocyclization of hydroxyenol ethers 1.56 to 1.57 using these IDPs and
showed that they were superior to BPAS/NPASs in achieving excellent selectivities

(Scheme 1.18d). Since then, List and co-workers have successfully applied IDP
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asymmetric catalysis to other reactions including the acetalization of aldehydes,*, Prins

cyclization* and oxa-Pictet-Spingler reactions.*

a b c N\
Q /‘(,;‘,3(,1‘(,;‘,)‘\0) 0,0-syn [electrophile] [n‘ucleophile]
v ~K - N ;, Y K
N“ o PLIPY
7o o o ]
o 0 ){JMO 0.0-anti O shielded acidic site m
o NN - : T 0

i
QOPN Po)

IDP 1

o, O
o IDP 1 (0.1 - 10 mol%) w
_— =
WOH solvent, 0.025 M ( > Q O
n n2 3-4AM.S. nq ny 0
1.56 1.57
15 examples, up tp 89% yield,
up to 97% ee, up to 100:1 dr ’

R =2,4,6-(Et);-CgH,

Scheme 1.18. The Rational Design of Imidophosphates.

a R'" R®
ACHO  + “~ IDP 2 (5 mol%)
HO R N RS cyclohexane, 5 AM.S, rt
1.58 R2 R*
1.59
1.60
20 examples, up tp 84% vyield
up to >98% ee, >20:1 dr for all
compounds
b —
IDPi 1 (5 mol%) —
RCHO + /\/\)\/
HO XX methylcyclohexane, R
1.61 1.62 5AM.S.,0 °C or -20 °C 5
1.63

5 examples, up tp 84% yield

QQ R R OO up to 96% ee%, up to 20:1 dr
o—h F’\o O

IDP 2: X =Y = O, R = 2-naphthyl

IDPi1: X =Y =NTf,R = 0.0

Scheme 1.19. The Application of IDP and IDPi in Asymmetric Cyclisation Reactions.



A limitation of IDPs is their high pKa (IDP 1 =11.5 in MeCN). As a result, they
exhibit only moderate reactivity compared to other Brensted acids of lower pka For
instance, while investigating the asymmetric vinylogous Prims cyclization of aromatic
aldehydes 1.58 with dienyl homoallylic alcohols 1.59, List and co-workers were able
to obtain the corresponding THF products 1.60 in high yields and selectivities, with
IDP 2 (Scheme 1.19a).*” However, when less reactive aliphatic aldehydes were
investigated, the IDP-catalysed transformation failed, even at elevated temperatures. To
remedy this, the more acidic imidodiphosphoramidate, IDPi 1, was introduced,
facilitating the cyclisation of aliphatic aldehydes 1.61 and linear/branched alcohols 1.62
to yield THF products 1.63 (Scheme 1.19b). Depending on the aliphatic aldehyde, the
IDPi-catalysed reaction could be carried out at either 0 °C or -20 °C, in comparison to
the IDP-catalysed reaction of aromatic aldehydes, which were performed at room
temperature. This synergistic effect of confinement and acidity displayed by IDPi
catalysts, is further exemplified in the intramolecular hydroalkoxylation of simple

olefins 1.64 (Scheme 1.20).%°

S)-BPA 2: H-NMR yield = n.d., ee = n.d.

(
o (S)-NPA 1: H-NMR = 73%, ee = racemic
\/\/\/\)L/\/OH cat. (5 mol%) Me_O_  (S)NTPA 1: H-NMR = 63%, ee = 11%
toluene (0.2 M), 60 °C, 20 h (S)-DSI 1: H-NMR = 55%, ee = 7%
1.64 1.65 IDP 1: H-NMR = n.d., ee = n.d.
IDPi 2: H-NMR = 84%, ee = 71%
so2
so2
)-BPA 2: X = 0, Y = OH, R = 2,4,6-(-Pr)3-CeH, )-DSI1: R = 3,5+ CFazcsHs
)-NPA 1: X = O, Y = NHSO,CF3, R = 2,4,6-(i-Pr3)-CoH
(s) -NTPA 1: X = S, Y = NHSO,CF3, R = 2,4,6-(-Pr3)-CHy IDP 1:X =Y = O; R = 2,4,6-(Et)5-CH,
IDPi 2: X = Y = NTF; R = 4-tBu-CgH,
IDPi 3: X = Y = NSO,~(CgHy)-3,5-(CFa)p, R = 4-tBu-CgHy

Scheme 1.20. A Comparison of Catalysts in the Hydroalkoxylation of Olefins.

In the optimisation of this reaction, a plethora of catalysts ranging from the
BINOL-derived phosphoric acids and their N-triflyl analogues, to the disulfonimides
and imidodiphosphoramidates were explored. While (S)-BPA 2 and IDP 1 showed no
reactivity, the more acidic analogues, (S)-NPA 1, (S)-NTPA 1 and (S)-DS1 1 gave

THF product 1.65 in modest to good yields and racemic to poor ee However, under the
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same reaction conditions, the confined and more acidic IDPi 2 delivered 1.65 in 84%
yield and 71% ee. Further optimisation with 1DPi 3 afforded 1.65 in 91% isolated yield
and 95% ee.

1.2.5 Design, Synthesis and Applications of P-Chiral Phosphinamide Brgnsted
Acids

As exemplified by NPAs, DSI, IDPs and IDPis (Figure 1.3), the amine
functionality of Brensted acids can be tuned to improve catalyst reactivity. However,
since these catalysts are based on the BINOL scaffold, structural diversity is primarily
dependent upon the nature of the substituents at the 3,3’ positions. In the effort to
develop a new class of diverse Brgnsted acids, Han and co-workers envisioned a P-
chiral phosphinamide model amenable to structural tunability (Scheme 1.21a).8 At the
core of its architecture, this class of acids is devoid of C-symmetry common to the
BINOL-based catalysts. Moreover, the R! and R? substituents on phosphorus may be
tuned to modulate selectivity and the acidity of N-H. The synthesis of these catalysts

was achieved via either of two routes (Schemes 1.21b,c).

a P-stereogenic center H-bond acceptor
for asymmetric induction o g — -
i unable for asymmetric
\\\\ p_ _EWG { . nmene
tunable for asymmetric R/ N7 induction and N-H acidity
induction and N-H acidity] — g1 |l| ~—
b.
Me 0 1. NaH o o o
Cl _Ts 1.R'P(O)CI ‘ THF, 0 °C T
N e R2“" P\NH —_— 2w P /S\A
H 2.R?M 1/ 2 2. ArSO.CI R 1/ N r
OH 3. NH,Li R R" H
1.33 1.66 1.67

65 - 82% yield,

95 - >99% ee
c. (0]
B CCl,, NH,OH
2\ \H

Scheme 1.21. Design and Synthesis of Phosphinamide Brgnsted Acids.

Via the first route, chiral auxiliary 1.33 was cyclised using the requisite

phosphonyl dichloride. Afterwards, P-N and P-O bond cleavage were achieved with
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R?M and NH.Li respectively, to give phosphinamide 1.66. Subsequently, the requisite
sulfonyl moieties were installed via substitution on aryl sulfonyl chlorides, yielding
Bransted acids 1.67 (Schemes 1.21b). Alternatively, subjecting SPO 1.68 to Atherton-
Todd conditions yielded 1.66 (Scheme 1.21c) from which Brgnsted Acids 1.67 were
synthesised. Subsequently, Han and co-workers examined the properties of catalysts
1.67a-d as well as BINOL-based (R)-BPA 4 in the asymmetric transfer hydrogenation
of quinolines 1.69a-b (Table 1.1). With quinoline 1.69a as the substrate, catalysts (R)-
BPA 4 and (S)-1.67a-b performed comparably, yielding product 1.70a in 6-11% ee.
However, with the t-butyl substituted catalyst (R)-1.67c, enantioselectivity was
improved to 30%. Moreover, the more congested (S)-1.67d gave an improvement to
36% ee. In the transfer hydrogenation of 1.69b, catalysts (R)-1.67c and (S)-1.67d
outperformed (R)-BPA 4, yielding tetrahydroquinoline 1.70b in up to 45% ee (Table
1.1). In the transfer hydrogenation of benzoxazine 1.71, phosphinamide-based catalysts
(R)-1.67c and (S)-1.67d also outperformed (R)-BPA 4. However, in comparison to (S)-
1.67d, the t-butyl substituted (R)-1.67c afforded dihydrobenzoxazine 1.72 in a higher
ee of 68% (Scheme 1.22).
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Table 1.1. A Comparison of Phosphinamide and BINOL-based Brgnsted Acids

Catalysts in the Asymmetric Transfer Hydrogenation of Quinolines.

EtOZCI\/[COZEt
||

Me H Me
. HEH (4 equiv.) R
SN cat. (10 mol%) m
\©\/Nj\R2 toluene, 60 °C, 24 - 48 h N ¥ R?
1.69 1.70

cat.:

Ar = 2,4,6-(i-Pr)3-CgH,

OO O //
o \Ar W

1

OO o @ i

)-BPA 4 (S)-1.67a (95% ee)  (S)-1.67b (>99% ee) (R)-1.67¢ (97% ee) (S)-1.67d (99% ee)
Substrate R?, R? Cat. Time (h) Product %ee

(R)-BPA 4 24 (S)-1.70a 11

(S)-1.67a 48 (R)-1.70a 6

1.69a Br,Me | (S)-1.67b 24 (S)-1.70a 11

(R)-1.67¢ 24 (S)-1.70a 30

(S)-1.67d 36 (S)-1.70a 36

(R)-BPA 4 12

1.69b H, Ph (R)-1.67¢ 48 (R)-1.70b 45

(S)-1.67d 35
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EtOzCnCOZEt
||

HEH 3
©: cat. (10 ir?:ll‘:// j )-1.67c; ee = 68%
6) 1 .67d; ee =42%
toluene, 60 °C, 48 h ©\ B 4 oo - 345

cat.:

(R)-1.67c (97% ee) (S)-1.68d (99% ee) (R)-BPA 4
Ar = 2,4,6-(i-Pr)3-CgHy

Scheme 1.22. Phosphinamide Brgnsted Acid Catalysed Asymmetric Transfer

Hydrogenation of Benzoxazine.

1.3 C2-Substituted Phosphinyl imidazole Ligands in Catalysis

1.3.1 Synthesis and Characteristics of C2-Substituted Phosphinyl Imidazole
Ligands

Of the various classes of phosphorus-based ligands, C2-substituted phosphinyl
imidazoles (subsequently referred to as phosphinyl imidazoles; Figure 1.5) have
emerged as promising ligands for various transformations. Generally, the synthesis of
these ligands begins with the C2-metalation of the requisite imidazole 1.73. Quenching

the resultant anion with the desired chloro-substituted phosphine gives the phosphinyl

imidazole ligand, L (Scheme 1.23).
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\<j/ L13:R=Cy;R'=R?=/-Pr;R®=R*=R°=H
R L14: R = adamantyl; R' = OMe; R2= R3= R*=R5 = H XPhos:

L15:
L16:
L17:
L19:
L20

R = adamantyl; R' =R? = R*=R%=H; R®= OMe

R =tBu; R'=0Me; R2=R3=R*=R%=H R!
R=Cy;R"=0Me; RZ=R%=R*=R%=H
R=Cy;R'"=R?2=0-iPr;R®*=R*=R5=H
:R=tBu;R'=R?=0Cy; R®*=R*=R%=H

R=Cy;R"=R2=R%=iPr
tBuXPhos:

R=tBu; R"=R2=R%=/Pr
RuPhos:

R=Cy; R'=R?=0--Pr; R®=H

Figure 1.5. Structures of Phosphinyl Imidazoles and Buchwald Ligands Reviewed.

] PR,
R\ A R1
N" N 1.R-M SN
= 2. CIPR, —
R R* RS R*
1.73 L

Scheme 1.23. General Synthetic Protocol for Phosphinyl Imidazole Ligands.

In addition to their ability to act as monodentate ligands, phosphinyl imidazoles
may also display bidentate n?> P,N-chelation of metals. In 2006, Grotjahn reported a
thorough investigation on the denticity of these ligands, by evaluating the coordination
properties of L1-3 to Pd.*°® To synthesize the requisite Pd(0) species, L1-3 were reacted
with CpPd(allyl), furnishing Pd-(L1-3)2 (Scheme 1.24). When the less phosphorus-
encumbered Pd-(L1). was reacted with iodobenzene, oxidative addition gave 1.74. This
two-coordinate, 16-electron species was obtained, despite the availability of the
imidazole N-3 atom(s) to engage in n? P,N-chelation with Pd. However, when the more
phosphorus-encumbered Pd-(L2-3), were reacted with bromo- and iodobenzene, n?

P,N-chelation occurred, affording monomeric species 1.75a-c (Scheme 1.24a).
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R\(\N/ \NN/R MeOTf 1.76
N:< >:N benzene-dg, |
R,P—Pd—PR rt ®
2! 2 /ﬁ o
Pd-(L1-2), —_)\ ot
L1:R = i-Pr,R' = t-Bu Pd-(L2), 7/ \
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®
(\N/ NK\N*

N
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Scheme 1.24. Denticity of Phosphinyl Imidazole Ligands.

Similarly, the oxidative addition of Pd-(L1). to MeOTf yielded the
monodentate, two-coordinate species 1.76 (Scheme 1.24b). However, in the analogous
oxidative addition of Pd-(L2); to give 1.77, a bidentate n?> P,N-chelation to Pd was
observed for one imidazole ligand. Moreover, the second imidazole ligand displayed

only monodentate P-chelation. After variable temperature NMR analysis, fluxionality
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of 1.77 was proposed to exist in solution (Scheme 1.24c). In addition to changes in
denticity, varying the steric encumbrance on phosphorus affected the rate of oxidative
addition. For instance, while i-Pr substituted Pd-(L1). reacted with iodobenzene in

under 15 minutes, t-Bu substituted Pd-(L2-3)2 reacted with the aryl iodide in 1 day.

1.3.2 Applications of C2-Substituted Phosphinyl Imidazole Ligands

Inspired by metalloenzymes, Grotjahn envisioned that the cooperative effect of
a metal and phosphinyl imidazole ligands could provide a binding pocket for polar
molecules. The synthesis of this proposed complex was accomplished by the reaction
of L4 (Figure 1.5), H2O and CpRu(MeCN)3OTf, furnishing CpRu-L4 in 98% vyield
(Scheme 1.25a).%° As expected, the metal ion and the strategically placed imidazole
groups of L4 were able to participate in hydrogen-bonding with water. This interaction
was deemed to be crucial in stabilizing the catalyst and promoting its reactivity. In
2001, Grotjahn reported a highly selective anti-Markovnikov hydration of terminal
alkynes 1.78 to aldehydes 1.79, using CpRu-L4 (Scheme 1.25b). Furthermore, typically
labile functionalities such as acid-sensitive alcohol-protecting groups were tolerated. In
addition to this success of CpRu-L4, other Ru-phosphinyl imidazoyl complexes have

been utilized in reactions such as olefin isomerisation.?52

) @ @ S)
CF3SO3 Ru® ©) CF3803

;i CHsCN™ | “NCCH, PhaP
NN NCCH; \ 0. /

— N N

. N\ N, /7
\—§T H,O (5 equiv.), DCM, rt <N N
L4

CpRu-L4, 98% vyield

a.

(0]

o CpRu-L4 (2 mol%)
R 1?3 Ho+ MO cetone, 70°C, 211 R\)J\H

1.79
7 examples, 20-96% yield
Anti-Markovnikov:Markovnikov, up to 1000:1

Scheme 1.25. Anti-Markovnikov Hydration of Terminal Alkynes.
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Shortly after the introduction of L1-4, Beller reported the applications of L5-8

in the Pd-catalysed coupling of aryl chlorides via Buchwald-Hartwig amination and

Suzuki cross coupling reactions.> In order to investigate the properties of L5-8 in the

amination reactions, chlorobenzene 1.80 and aniline 1.81 were evaluated as test

substrates. While L5 afforded product 1.82 in 87% yield, L7 gave the product in 92%

yield. However, L6 and L8 furnished 1.82 in the best yield of 99%. The relatively lower

yield achieved with L5 was attributed to the decreased steric encumbrance of the

cyclohexyl moieties (Scheme 1.26). In the case of the Suzuki cross-coupling reaction,

aryl chloride 1.83 and boronic acid 1.84 were evaluated as test substrates. Under

optimised conditions, L6 and L8 gave biphenyl 1.85 in yield ranges of 50-83% and 59-

95% respectively. However, only L7 gave a reproducible yield of 86% (Scheme 1.27).

Pd(0AC), (0.5 mol)
L5-8 (1 mol%)

H
N

cl . HoN NaO-t-Bu
toluene, 120 °C, 48 h

1.80 1.81

o0

1.82

L5: yield (GC) = 87%
L6: yield (GC) = 99%
L7: yield (GC) = 92%
L8 yield (GC) = 99%

o Oy
N~ PR, N~ P(t-Bu),

ﬁj )

L7: Ar=Ph
L5:R = Cy L8: Ar = 1-napthyl
L6: R =tBu

Scheme 1.26. Aryl Chloride Buchwald-Hartwig Amination with Phosphinyl Imidazole

Ligands.

Pd(OAc); (0.01 mol)
L6-8 (0.1 mol%)

cl (HO),B KaPOj4
©/ * \© toluene, 100 °C, 20 h

1.83 1.84

1.85
L6: yield (GC) = 50 - 83%
L7: yield (GC) = 86%

L8 yield (GC) = 59 - 95%

e, T
P(t-Bu), N~ P(t-Bu);

N

W@

L7: Ar=Ph
L6: R = t-Bu L8: Ar = 1-napthyl
J

Scheme 1.27. Aryl Chloride Suzuki Cross-Coupling with Phosphinyl Imidazole

Ligands.
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In 2009, Beller reported a methodology for the Sonogashira cross-coupling of
aryl chlorides that did not require the addition of copper salts.>* During the evaluation
of ligands for the reaction, phosphinyl imidazoles generally outperformed other ligands
including the structurally related Buchwald ligand, XPhos (Scheme 1.28). For instance,
when the coupling of thiophene chloride 1.86 and octyne 1.87 was examined, XPhos
gave alkyne 1.88 in only 6% yield. However, phosphinyl imidazole ligands L5-6 and
L9-12 furnished 1.88 in yields ranging from 1-68%. Within this class of phosphinyl
imidazoles, a general trend was observed: the more sterically hindered ligands gave
1.88 in higher yields potentially due to accelerated reductive elimination. However, an
exception to this trend arose in the comparison of L11 to L12. While L11 gave 1.88 in
the best yield of 68%, the more hindered L12 afforded 1.88 in only 25% vyield.

XPhos: yield = 6%

[PACIo(CH3CN),] (1 mol%) L5: yield = 1%
?:\>_ - Ligand (3 mol%) SN\ L6: yield = 21%
Cl + =—hexyl ——hexyl - vield = 55%
=~ Na,COs, toluene, 90 °C, 16 h </ t?b}";gd _52’7/‘;/
. - 0
1.86 1.87 1.88 L11: yield = 68%
L12: yield = 25%
R?
® Y
\
PCy, R N)\PRZ
R! R?

R ! R i
R R3

XPhos: R = i-Pr L5:R=Cy;R'=R?=R%=Me; R*=R®=H
L6:R=tBu;R'=R?=R%®=Me; R*=R®=H
L10: R = +-Bu; R' =R? = R%®=Me; R*=R® = Ph
L11:R=tBu;R"=R?=iPr;R3=R*=R°=H
L12: R = adamantyl; R' =R%2 = j-Pr; R®=R*=R®=H

Scheme 1.28. Aryl Chloride Sonogashira Cross-Coupling with Phosphinyl Imidazole
Ligands.

In the same year, Beller also reported the hydroxylation of aryl halides using
phosphinyl imidazole ligands.>® A representative scope of various chloro- and

bromoarenes 1.89 were tolerant of the reaction conditions, affording phenols 1.90 in
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yields of up to 99% (Scheme 1.29a). Furthermore, a high chemoselectivity of >95%,
for the bromide moiety was observed with 1-bromo-2-chlorobenzene. In the
optimisation phase, the hydroxylation of 1.89a to 1.90a was studied using various
ligands. Similar to the aforementioned reactions, product yields were correlated with
the steric encumbrance of the phosphinyl imidazole ligands. Thus, while L13 failed to
give phenol 1.90a, the more hindered L11 and L12 furnished the phenol in 49% and
77% yields respectively. Moreover, the failure of ligands L14-15 was attributed to the
lack of substituents at both ortho positions of their phenyl rings. In comparison to L11-
12, Buchwald ligands XPhos and tBuXPhos performed poorly, giving the phenol in 1%
and 8% yields respectively (Scheme 1.29b).

a [Pdy(dba)s] (0.5 - 2 mol%)
X L12 (4 - 16 mol%) OH
KOH or CsOH.H,0
R solvent, 100 - 120 °C, 20 h R
1.89 1.90

15 examples, 50 - 99% yields

L11: yield = 49%

Br [Pd,(dba)s] (1 mol%) OH L12: yield = 77%
L (4 mol%), KOH L13: yield = 0%
- - - L14: yield = 0%
1,4-d°|oxane.H20 (1:1), L15: yield = 0%
100°C, 20 h XPhos: yield = 1%
1.89a 1.90a tBuXPhos: yield = 8%
R4
J W
\
5
RN PR, PR,
R1 R2 R1 R2
R3 R3
L11:R=t+Bu;R'=R?*=-Pr;R®*=R*=R°=H XPhos: R = Cy; R"=R?=R®=i-Pr
L12: R = adamantyl; R' = R2=j-Pr; R®=R*=R5 = H tBuXPhos: R = t-Bu; R'=R?=R3 = i-Pr
L13:R=Cy;R'=R?=/Pr;R*=R*=R°=H
L14: R = adamantyl; R' = OMe; RZ=R®=R*=R%=H
L15: R = adamantyl; R =R?= R*=R%=H; R® = OMe

Scheme 1.29. Hydroxylation of Aryl Halides with Phosphinyl Imidazole Ligands.
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The success of sterically hindered phosphinyl imidazoles is further exemplified
in reactions such as the carbonylative Heck coupling of aryl halides and olefins
(Scheme 1.30).% However, quite remarkably, this trend is not universal. In 2013, Beller
and co-workers highlighted one such aberration in their report of a Ru-catalysed
hydroformylation of olefins (Scheme 1.31).>” Whereas the hindered P-Ad substituted
L14 and P-t-Bu substituted L 16 gave no conversion, the less hindered P-Cy substituted
L17 and L18 yielded products (aldehyde and isomers) in 79% yield. Furthermore, less
hindered phosphinyl imidazoles have proven advantageous over more hindered
analogues, in similar reactions including the regioselective domino

hydroformylation/reduction of olefins.>®

N
/A
[(cinnamyl)PdClI], (1- 2 mol%) Q N)\P(Ad)z
X =
. g2 L12 (4 mol%), NEts, CO (5 - 10 bar) R2 R R
dioxane, 80 - 100 °C, 20 - 40 h
R' R
X=Brorl 32 examples, 41 - 90% yields L12: R = j-Pr

Scheme 1.30. Carbonylative Heck Cross-Coupling with Phosphinyl Imidazole
Ligands.

Ru3(C0O)42 (0.033 mol%),
L (0.11 mol%),
CO/H, (60 bar, 1:2)

propylene carbonate,100 °C, 3 h

L14: yield = 0%
R\/\CHO + isomers L16: y|e|d =0%

L17: yield (GC) = 79%

L18: yield (GC) = 79%

N N
{ 3pr,  { p,

P
OMe |
L18

L14: R = adamantyl
L16: R = {-Bu
L17:R=Cy

Scheme 1.31. Hydroformylation of Olefins with Phosphinyl Imidazole Ligands.
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It is of noteworthy mention that for some reactions, phosphinyl imidazoles do
not out-perform analogous Buchwald-type ligands. For instance, in the Barbier-Negishi
cross-coupling of triflate 1.91 with bromide 1.92, Baudoin reported that product 1.93
was obtained in <5% yield with L19. In comparison, the analogous Buchwald-type
ligand, RuPhos, gave 1.93 in 88% vyield.>® However, while the more sterically
encumbered L20 gave 1.93 in a lower yield of 83% vyield, it was selected as the

preferred ligand because it induced better selectivity for 1.93 (Scheme 1.32).

In addition to phosphinyl imidazoles bearing the same P-substituents, P-
unsymmetrical analogues have also proven to be important ligands for metal-mediated
catalysis. In 2019, Beller reported the first Pd-catalysed reductive methylation of
nitroarenes with L21 as the ligand (Scheme 1.33a).%° In a proposed mechanism, it was
suggested that the pyridyl nitrogen of L21 engages in hydrogen-bonding with methanol
(Scheme 1.33b). This interaction facilitates the Pd-catalysed decomposition of
methanol to hydrogen and formaldehyde via a B-H elimination/reductive elimination
cascade. The subsequent reaction of aniline with the aldehyde to generate the imine,

followed by hydrogenation, furnishes the methylaniline.

o I ®
oMo . LP?§($2?°;3; (2.5 mol%) OMe N)\pRz pCy,
h Mg, LiCl, ZnCl, (2 equiv.) R! R R R
’ THF, 60 °C, 24 h O
orf 192 L19:R = Cy; R'= O--Pr RuPhos: R = O-i-Pr
1.91 + C1 & C2isomers |L20:R = tBy; R' = OCy
1.93

L19: yield = <56%
RuPhos: yield = 88%; selectivity = 83:17 (product:(C1 + C2))
L20: yield = 83%; selectivity = 93:7 (product:(C1 + C2))

Scheme 1.32. Barbier-Negishi Cross-Coupling with Phosphinyl Imidazole Ligands.
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N
a. | S
NO, PdOAc, (1 - 2 mol%) N N~ ~P—tBu
+ MeoH L21(4-5mol%) KOH H  |ipr iPr
80-110°C,1-5h
R R
L21
b. - B
N —
t-Bu
/ »\l-l’ \, /

oxidative addition

\ N
\©/Pr Pd O
/O\ —
O

B-H elimination, then
reductive elimination

J

H
NO2 pg, NHz Sy Na PdL,, N
H, Hy

Scheme 1.33. Methylation of Nitroarenes.

1.4 Synthesis of Chiral Tetrahydroquinolines via Asymmetric
HydrogenationTransfer Hydrogenation

Chiral tetrahydroquinolines are privileged motifs found in numerous
biologically active compounds such as NK2 receptor agonist, TAK-480% and DNA-
gyrase inhibitor, Zoliflodacin®? (Figure 1.6). Synthetically, the asymmetric
hydrogenation/transfer hydrogenation of quinolines provide a direct and atom-
economical route to the acquisition of tetrahydroquinolines. In Chapters 2 and 3 of this
thesis, the applications of P-chiral Brensted acids in the asymmetric transfer
hydrogenation of quinolines was studied. Thus, an overview of key metal-mediated and

organocatalytic endeavours is presented herein.



Since Zhou’s 2003 report on the asymmetric Ir-catalysed®® hydrogenation of
quinolines (Scheme 1.34a), numerous methodologies employing different metals such
as Ru®+% (Scheme 1.34b,c) and Rh® (Scheme 1.34d) have been reported. While these
reactions are usually high-yielding and provide the desired tetrahydroquinolines in high
enantioselectivity, metal-free protocols circumvent the possibility of metal
contaminants in final products. In 2006, Rueping reported the first asymmetric, metal-
free, Bronsted acid-catalysed transfer hydrogenation of quinolines, with a Hantzsch

ester (HEH) as a biomimetic hydride source (Scheme 1.34¢).3

(0]
N
H
F,HCO O N——\
N +,, ~OCHgz ;
H =
TAK-480 Zoliflodacin (AZD0914, ETX0914)
NK2 receptor agonist DNA-gyrase inhibitor

Figure 1.6. Examples of Biologically Active Tetrahydroquinolines.
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& [I(COD)CII2 (0.5 mol%),
(R)-MeO-BiPhep (1.1 mol%), R1
12 (10 mol%), H2 (600 - 700 psi) \©\/j\ MeO PPh,
toluene or i-PrOH, rt, 12-15h N R2 MeO PPh,
H
19 examples O

83-95% yields, 72-96% ee | () MeO-BiPhep

Ru/Ts-dpen (1 mol%), R
H2 (50 - 100 atm) \©\/j\
N~ "R?

1
L
~
N~ "R?
b.
1
L
N R2

[BMIM]PT6, rt, 14 - 24 h TfO’}?“‘NTs
H HN~~ph
14 examples z
87-97% yields, 96-99% ee Ph
Ru/Ts-dpen

[Ru(p-cymene)l,], (0.5 mol%)
Ligand (10 mol%)
~N

N (4-0,NCgH,40),P(O)OH (50 mol%)
L 0 Oy
N~ “COR? EtOAc, 60 °C,48-72h ” COR?

23 examples ligand
73-98% yields, 69-99% ee

S

40°C,6-24h H o
25 examples Ph
80-97% yields, 86-98% ee

Ru/ligand
EtO,C CO,Et
T :
N
H
HEH (2.4 equiv.) o_,0
N (R)-BPA 5 (1 - 2 mol%) ©\/l O/P\OH
_ benzene, 60 °C, 12-60h N R
N~ "R N =

16 examples
54-95% yields, 72-96% ee BPA 5: R = 9-phenanthryl

i N o2 Rifligand (1- 2 moi%) R1~©\/§»R2 HN—R\h—CIO
Nz HCOONa, pH buffer 5, N o SN~

t-Bu

Scheme 1.34. Seminal Examples of Asymmetric Hydrogenation/Transfer

Hydrogenation of Quinolines.

This methodology tolerated a range of C2-substituted quinolines, including
those bearing alkyl, aromatic and heteroaromatic substituents, to furnish the desired
tetrahydroquinolines in high yields and enantioselectivities. It was proposed that the
first step of the mechanism is the protonation of the quinoline by the Brgnsted acid to

form iminium ion A (Scheme 1.35). Subsequently, 1,4-hydride transfer from the
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Hantzsch ester generates enamine B and the pyridinium salt which regenerates the
catalyst. The protonation of B to form iminium C, followed by an asymmetric 1,2-

hydride transfer to the less hindered face gives the tetrahydroquinoline D.

ArOP//O AN °
ArO” Y, O O o
OH [}j R /P\//
/_4 A H ArO OAr
EtO,C CO,Et
2N | 2 H, H
- EtO20. -~ CO2Et EtO,C._>\_ CO,Et
N Lo, [ ]
N N
o@ H H
\P,/O
N\
l}l R
B H

Scheme 1.35. Mechanism of Brgnsted Acid-Catalyzed Transfer Hydrogenation of C2-

Substituted Quinolines.

In an extension of this methodology, Rueping reported the asymmetric transfer
hydrogenation of C3-substituted quinolines shortly after (Scheme 1.36).%” In contrast
to the transfer hydrogenation of C2-substituted quinolines, the origin of
enantioselectivity via this methodology relied on the enantioselective protonation of the
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enamine (Scheme 1.36a). In the reaction optimisation phase, interestingly, 3,3’-
susbtituted 9-phenanthryl catalyst (R)-BPA 5 gave only racemic product even though
this catalyst was very successful in the transfer hydrogenation of C2-substituted
quinolines (Scheme 1.34e vs. Scheme 1.36b). However, under optimised conditions,
partially reduced (R)-[Hs]-BPA 6 furnished the C3-substituted tetrahydroquinolines in
30-84% vyield and 77-86% ee (Scheme 1.36c).

HEH

R asymmetric * R (1,2-hydride » R
\ o« /OAr protonation ©\/®j/ 0. /o/_\,. transfer) ©\/j/
r\\‘ ’P\OA N @P\OA N
H  HO ON H o N H

" 99 0,
cat. (5 mol%) «_Ph o 0 o, 0
" HEH (2.4 equiv.) ©\/j/ O/P\OH O’P\OH
—_—
— benzene, 60 °C N
N
R

H R
(R)-BPA 5:ee =0
(R)-[Hg]-BPA 6: ee = 74% (R)-BPA 5: R = 9-phenanthryl  (R)-[Hg]-BPA 6: R = SiPh;

C

(R)-[Hg]-BPA 6 (5 mol%)

R » R
A HEH (2.4 equiv.)
— benzene, 60 °C N
N H

22-48h
10 examples
30 - 84% yield
77-86% ee

Scheme 1.36. Asymmetric Brgnsted Acid-Catalyzed Transfer Hydrogenation of C3-

Substituted Quinolines.

Rueping further demonstrated the utility of this organocatalytic protocol by
investigating the transfer hydrogenation of C4-substituted quinolines.%® Under
optimised conditions with (R)-[Hs]-BPA 6 as the catalyst, the corresponding
tetrahydroquinolines were obtained in 67-98% yield and 72-92% ee (Scheme 1.37a).
Mechanistically, the enantioselectivity of this reaction is determined during the 1,4-

hydride attack of the quinoline (Scheme 1.37b).

40



. R
o = | ()
(R)-[Hg]-BPA 6 (5 mol%) . o, 0
Xy HEH (2.4 equiv.) O/P\OH
R N/ benzene, 50 °C R N “
R

35-50h H
17 examples
67 - 96% yield (R)-[Hg]-BPA 6: R = SiPh3

72 -92% ee
b.
R HEH R R
OA (1,4-hydride * *
N O\\P/ r transfer) N
®J o~ “OAr ) —
N y y
|
H H H

Scheme 1.37. Asymmetric Brgnsted Acid-Catalyzed Transfer Hydrogenation of C4-

Substituted Quinolines.

1.5 Research Goals: The Design and Applications of P-Chiral Brgnsted Acids
and Ligands

The first objective of this Ph.D. thesis was to design a class of novel P-chiral N-
phosphoryl sulfonamide Brgnsted acid catalysts and investigate their application in the
metal-free asymmetric transfer hydrogenation of quinolines. We hypothesised that a
key intramolecular hydrogen-bonding interaction could stabilize the catalyst-substrate
transition state and improve reaction rates and enantioselectivity. Chapter 2 reports the
design and application of this class of catalysts, as well as evidence for the role of
hydrogen-bonding in promoting reaction rate and enantioselectivity. Subsequently, in
Chapter 3, the applications of these catalysts to the asymmetric transfer hydrogenation
of 2-carboxymethyl quinolines to yield rigidified bioisosteres of amino acids, is
reported. In addition, catalyst stability is thermally probed and their rearrangement at
elevated temperatures is observed. In addition to our endeavours to develop novel P-
chiral Bransted acid organocatalysts, we sought to explore the design and applications
of novel P-chiral ligands for metal-mediated catalysis. In Chapter 4, the synthesis and
application of a novel P-chiral phosphinyl imidazole ligand in an asymmetric Suzuki-

Miyaura is reported. The synthesis of this ligand was enabled by a solvent-switchable,
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site-selective remote C-H activation, which allowed for the acquisition of its

phosphonyl imidazole precursor.
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Chapter 2: P-Chiral, N-Phosphoryl Sulfonamide Brgnsted Acids with an

Intramolecular Hydrogen Bond Interaction that Modulates Organocatalysis

2.1 Preface

Asymmetric Bransted acid organocatalysis presents an attractive route for the synthesis
of chiral molecules: the metal-free nature of such methodologies may allow for milder
reaction protocols, while circumventing the use of potentially toxic transition-metals.
While BINOL-based phosphoric acid organocatalysts are prevalent in the literature, P-
chiral analogues are rare, highlighting the underexplored potential for electronic and
steric modifications on phosphorus, in the design of organocatalysts. Thus, the
synergistic combination of phosphorus-based tunability, and the robust nature of
organocatalysis could furnish P-chiral Brgnsted acids bearing interesting and desirable
catalytic properties. Herein, the design and applications of a novel class of P-chiral, N-

phosphoryl sulfonamide Brgnsted acid organocatalysts is reported.

The work presented in this chapter has been published as shown: Yuan, M.; Mbaezue,
I. 1.; Zhou, Z.; Topic, F.; Tsantrizos, Y. S. P-Chiral, N-Phosphoryl Sulfonamide
Bronsted Acids with an Intramolecular Hydrogen Bond Interaction that Modulates

Organocatalysis. Org. Biomol. Chem. 2019, 17, 8690 — 8694.

Dr. Zhi Zhou synthesised the first generation of P-chiral, N-phosphoryl sulfonamide
Bronsted acids catalysts and evaluated their properties in the asymmetric transfer
hydrogenation of quinolines. Dr. Minglei Yuan synthesised the second generation of
catalysts and optimised the reaction conditions for the transfer hydrogenation. Ifenna I.
Mbaezue re-synthesised catalysts, synthesised the substrates and performed the
experiment required to investigate the substrate scope. Dr. Filip Topic analysed the X-
ray crystallographic data. Youla S. Tsantrizos, Minglei Yuan and Ifenna I. Mbaezue

co-wrote the manuscript.
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2.2 Abstract

Brensted acids exemplified by OttoPhosa I (2.5¢) were designed and evaluated
in the asymmetric transfer hydrogenation of quinolines. Their catalytic properties are
modulated by an intramolecular hydrogen bond that rigidifies their catalytic cavity,

accelerates the reaction rate and improves enantioselectivity.

2.3 Introduction

Phosphorus-based Brgnsted acids have emerged as a highly promising class of
organocatalysts. Many molecular designs have contributed to this field, including the
most valuable BINOL-based Brgnsted acids 2.1 and 2.2 (Fig. 2.1).! Brgnsted acids 2.1
were first reported by Akiyama? and Terada,® and have been shown to efficiently
catalyse a plethora of asymmetric reactions, including Mannich-type®**# and Diels—
Alder reactions,® the enantioselective hydrophosphonylation of imines,® reductive
aminations,” imine transfer  hydrogenations,®  Friedel-Crafts  alkylations,®
intramolecular Michael additions,'® the N,O-acetalization of aldehydes' and the
transfer hydrogenation of various heterocyclic compounds.'? These Brgnsted acids
were also reported to catalyse metal-free asymmetric 6z-electrocyclization reactions,
leading to enantiomerically enriched 1,4-dihydropyridazines.®® Recently, List reported
the design of BINOL-based dimeric and sterically highly confined
imidodiphosphorimidate analogs (IDPi; 2.2, Fig. 2.1).}* IDPi analogs were shown to
catalyse the protonation of olefins, which then react with intramolecular hydroxyl
groups to form chiral 5- and 6-membered ring ethers.'* Additionally, they can catalyse
enantioselective C-C bond formation in Mukaiyama aldol-type reactions with a

remarkably low concentration of the catalyst.4
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Figure 2.1. Phosphorus-Based Brgnsted Acid Organocatalysts.

N-Phosphoryl sulfonamide derivatives of 2.1 (e.g. 2.1f) were first introduced by
Yamamoto and shown to possess greater ability to activate substrates with low
reactivity, such as aldehydes, ketones and silyl enol ethers.>*® This observation is
consistent with the higher acidity of the N-triflyl Bransted acid;® the pKa values of
many analogs of 2.1 have been determined in acetonitrile!” and DMSO.'® However, the
higher reaction rates observed with the N-triflyl Brensted acid, as compared to the
corresponding phosphoric acids, were often also associated with lower
enantioselectivity.**¢ For example, List reported that direct asymmetric N,O-
acetalization of aldehydes with Brgnsted acids 2.1e and 2.1g resulted in products with

61% ee and 14% ee, respectively.’® Similarly, asymmetric methanolysis of cis-1,2-
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cyclohexanedicarboxylic anhydride with a phosphinic acid and its corresponding
phosphoramide led to 22% ee and 0% ee, respectively.®® Recently, Han reported the
synthesis of P-stereogenic analogs 2.3 (e.g. 2.3a,b) and observed that these compounds
catalyzed the transfer hydrogenation of 2-phenylquinolines in only 30-36%

enantiomeric excess.?°

Based on the collective knowledge in this field, we decided to explore the
impact of an intramolecular non-covalent interaction that could potentially participate
in stabilizing the reaction intermediates in the transfer hydrogenation of heterocyclic
compounds. We aimed to combine the higher catalytic activity of phosphoramides with
the steric effect of t-butyl-substituted P-chiral phosphines into a new class of Brgnsted
acids, typified by analog 2.5¢ (Fig. 2.1). In the design of these compounds, we
presumed that a hydrogen bond between a heteroatom attached to the backbone of the
catalyst and the acidic NH could (a) further increase the acidity of the catalyst, (b)
rigidify the catalytic cavity, (c) stabilize the transition state of the reaction, and (d)
potentially recruit the Hantzsch ester, thus leading to faster conversion at RT and good
enantioselectivity. Herein we report the properties of a prototype, analog 2.5c
(OttoPhosa I), having a strategically placed phenolic moiety, as a key structural element

(Fig. 2.1).

2.4 Results and Discussion

Recently, we reported a library synthesis of structurally diverse t-butyl-
substituted P-chiral secondary phosphine oxides (SPOs) in high enantiomeric purity,
starting from precursor 2.6 (Scheme 2.1).2! Preparation of analogs 2.7a, 2.7c and 2.7d
was reported and the same methodology was used for the syntheses of 2.7e and 2.7f in
good yields and high enantiomeric purity.?! In order to probe the impact of the
intramolecular hydrogen bond characterizing Brgnsted acids 2.5 in a head-to-head
comparison with analogs missing only that feature, we also synthesized the previously

disclosed SPO 2.7b (the precursor to Brgnsted acid 2.3b) using the method previously
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reported.?? Intermediates 2.7 were treated with aqueous ammonia in the presence of
EtsN and CCla to obtain the phosphinamides 2.8 via an Atherton-Todd-type reaction.?®
These intermediates were treated with 2,4,6-triisopropylbenzenesulfonyl chloride
under basic conditions to give the P-chiral, N-phosphoryl sulfonamides 2.3b and 2.4.
Finally, analogs 2.3b and 2.4b—e were treated with BBr3 to cleave the methyl ether and
obtain the phenolic Brensted acids 2.5a—e (Fig. 2.1). Due to the polarity of these
compounds (2.4 and 2.5), chiral HPLC analysis proved to be very challenging.
Consequently, the reported enantiomeric purities of analogs 2.4 were based on the
enantiomeric purity of the corresponding phosphinamides 2.8. However, in cases where
both compounds 2.8 and the corresponding analogs 2.4 could be analyzed by chiral
HPLC, a negligible difference in enantiomeric excess was observed (e.g. for 2.8a and

2.4a, 96.6% ee and 96.0% ee, respectively).
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Scheme 2.1. Synthesis of Bransted Acids (*prepared as previously reported??).

As a proof of concept, we decided to study the ability of our compounds to
catalyze the asymmetric transfer hydrogenation of quinolines, which is an extensively

investigated reaction with many BINOL-based Brensted acids 2.1. Rueping first
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reported using Brgnsted acids 2.1 (Fig. 2.1)?* as a greener approach for the preparation
of chiral 1,2,3,4-tetrahydroquinolines (as compared to the classical metal-mediated
hydrogenation under high pressure of Hz). The hydride source for these reactions is
derived from the Hantzsch ester 2.9 (Table 2.1), a bioisostere of NADH/NADPH.?®
Chiral tetrahydroquinolines are valuable scaffolds for the synthesis of many
biologically active compounds, including natural products?®2” and human therapeutics
(Fig. 2.2).?8 The transfer hydrogenation of the 6-bromo-2-methylquinoline (2.10a) to
the 1,2,3,4-tetrahydroquinoline 2.11a was first investigated using the previously

reported Brgnsted acid 2.3b (Table 2.1; entry 3).

Table 2.1. Asymmetric Transfer Hydrogenation of Quinolines.

RO,C CO,R
/\EI Brm 2.9b (3 equiv.) Br\@\/j\
N >
2.9a, R = Me NZ >\ Catalyst (5 mol%)

2.9b, R = Et 2.10a toluene 2.11a ;
2.9¢, R = t-Butyl
Entry Catalyst Temp./°C Time/h Yield/% | 2.11a %ee?

1 none 60 48 50 -
2 none 22 48 - -
3 2.3b 22 48 75 40
4 2.4a 22 48 72 40
5 2.5a 22 2 99 58
6 2.5b 22 24 99 40
7 2.5¢ 22 2 99 80(93)
8¢ 2.5¢ 22 0.5 99 80
9 2.5¢ 22 5 99 89
10 2.5d 22 2 99 60
11 2.5e 22 2 99 84

%6ee of the crude product. "%ee of the isolated crystalline product. °Reaction was run in CHClas.
dReaction was run in cyclohexane.
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In parallel, the same reaction was carried out in the absence of a catalyst at 60
°C, 40 °Cand 22 °C, to exclude the possibility of any competing reaction. Surprisingly,
a significant amount of 2.11a was formed at high temperatures even in the absence of
a catalyst (entry 1), which was suppressed at RT (entry 2). To the best of our knowledge,
this observation has not been previously reported. Although the 2-methoxy group in
Brensted acid 2.3b could potentially hydrogen-bond with the NH, the rate of the
reaction and enantioselectivity were identical to those of the simple phenyl analog 2.4a
(entry 3 vs. 4). In contrast, the corresponding phenolic Brgnsted acid 2.5a led to
quantitative conversion in 2 h and higher enantioselectivity (entry 3 vs. 5). A much
slower reaction rate was observed with the 4-phenol derivative 2.5b and the
enantioselectivity was also reduced to that observed with 2.3b and 2.4a (entry 6 vs. 3
and 4, respectively). These results strongly support our hypothesis of a beneficial

intramolecular cooperative interaction.

Natural Products

NH
)\/\ N R'OC R?
N N |
HO,C N
N NH Ho
H '1,/\/ \n/ OCH3
NH

Benzastatin D; R' = OH, R? = CI
(-)-Martinellic acid Viratmycin; R' = NH,, R? = OH
bradykinin B4/B; receptor antagonist antiviral/neuroprotective activity

Potential Human Therapeutics

0
N
jog
F,HCO o N,\

N ~,, ~OCH3 !
H :
TAK-480 Zoliflodacin (AZD0914, ET0914)
NK2 receptor antagonist DNA gyrase inhibitor in Phase Il clinical development
in pre-clinical development for the treatment of N. gonorrhoeae infections

for the treatment of IBS

Figure 2.2. Examples of Bioactive Tetrahydroquinolines.
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Extension of the n-system to the naphthalen-2-ol derivative 2.5c led to further
improvement in enantioselectivity, giving a crude product in a 1:9 R:S ratio and a
quantitative yield after 2 h at RT; enantiomeric purity was increased to a 3.5:96.5 R:S
ratio upon crystallization of the product (entry 7). Furthermore, the same reaction could
be completed in only 30 min if run in CHCIs without any loss in enantioselectivity
(entry 8). The best enantioselectivity was observed when the reaction was run in
cyclohexane (89% ee); however, the reaction time was a little longer (entry 9).
Interestingly, the corresponding 5,6,7,8-tetrahydronaphthalen-2-ol derivative 2.5d gave
very similar results to the simple phenol 2.5a (entry 5 vs. 10), suggesting that n-stacking
interactions between the catalyst and the substrate play a significant role in this reaction.
Extension of the m-system to the 6-phenylnaphthalen-2-ol analog 2.5e provided some
further improvement in enantioselectivity (entry 7 vs. 11); this aspect of our catalyst
design merits further investigation in future studies. The absolute stereochemistries of
the (S)-6-bromo-2-methyl1,2,3,4-tetrahydroquinoline (2.11a) and the Brgnsted acids
Rp-2.5a and Rp-2.5¢ were confirmed by their single-crystal X-ray structures (Fig. 3a—
c, respectively). The structures of Rp-2.5a and Rp-2.5¢ also clearly showed the presence
of a hydrogen bond between the phenolic oxygen and the acidic NH and provided a

molecular view of a small substrate-binding cavity (e.g. Fig. 2.3d; 2.5c).

Figure 2.3. (a) (S)-2.11a; (b) Rp-2.5a; (¢) Rp-2.5¢; (d) space-filling model based on the
X-ray of Rp-2.5cC.
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Optimization of the reaction conditions for the solvent and the Hantzsch ester
effects in the presence of catalyst 2.5¢c were also studied (Tables 2.3 and 2.4). The
effects of the Hantzsch esters (2.9a—c) investigated so far did not result in any major
differences. The substrate scope was subsequently explored and the results were
compared to those reported for BINOL-based Brgnsted acids 2.1b and 2.1c (Table 2.2);
the objective of this study was to simply gain further insight into the catalytic properties
of catalyst 2.5 in comparison to BINOL-based Brgnsted acids 2.1 that have similar size
(or slightly larger) substrate binding cavities. Although catalyst optimization is often
required for each different type of reaction, certain structural trends are well known
about organocatalysts 2.1.1 For example, large substituents at the 3,3'-positions of the
BINOL-based Brgnsted acids 2.1 typically provide better enantioselectivity, due to
higher steric bulk and larger substrate-binding catalytic cavities (e.g. Table 2.2, entry 8

vs. 9).%
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Table 2.2. Substrate Scope and Catalyst Effect.

Cat. (5 mol%
—_—

N+ R2
H

R4

9b (3 equiv.)
210 2.1
Entry | Catalyst R? R3R4R® | Time/h | Yield/% | 2.11 %ee?
1 2.5¢C Me H/H/H 16 73 88
2 2.5¢ Me H/H/Br 5 99 88(93")
3 2.5¢ Me H/H/NO, 3 83 86(96")
4 2.5¢ Me H/H/OMe 168 <5 -
5 2.5¢ Et H/H/H 9 72 75
6 2.5¢ i-Pr H/H/H 22 77 66
7 2.5¢ Ph H/H/H 12 95 59
g° 2.1b Ph H/H/H - nd 5
9 2.1c Ph H/H/H 12 92 97
10 2.5¢ H H/Me/H 96 70 30
11° 2.1b H H/Me/H 35-60 nd 35
12 2.5¢ H Me/H/H 16 71 14
13 2.5¢ H Ph/H/H 86 514 4
14° 2.1c H Ph/H/H 22-48 nd Racemic
15° 2.5¢ CO;Me | H/H/H 4 71 30

Most reactions catalyzed by 2.5¢c were run at RT. %ee of the product. "%ee after crystallization. °Data
obtained at 60 °C.?**° ¢Yield based on the recovered starting material. ®Data obtained at 50 °C.

Screening of various substituents at the C-2 position of the quinoline substrate

revealed that substituents with larger steric bulk led to lower enantioselectivity (Table

2.2; entry 1 vs. 5 and 6). Substitution with an electron-withdrawing group at C-6

accelerated the reaction rate (entries 2 and 3), whereas an electron-donating group

dramatically reduced the rate of the reaction (entry 4). These observations are consistent

with the general mechanism for this type of reaction.>>* Hydrogenation of the 2-

phenylquinoline resulted in lower enantioselectivity than expected (59% ee; entry 7),
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suggesting a possible competing n-stacking interaction between the catalyst and the C-
2 phenyl group, instead of the quinoline core. It is noteworthy that in spite of its small
cavity size, compound 2.5c catalyzed the transfer hydrogenation of the 2-
phenylquinoline with significantly higher enantioselectivity than catalyst 2.1b (entry 7
vs. 8),2* whereas hydrogenation of the 4-methylquinoline catalyzed by 2.5c¢ results in a
similar enantioselectivity to that reported with catalyst 2.1b%° (entry 10 vs. 11). We also
examined the hydrogenation of the 3-methyl and 3-phenyl substituted quinolines but
observed low enantioselectivity and slower reaction rates (entries 12 and 13,
respectively). Our observations are consistent with those reported by Rueping for the
3-substituted vs. the 2-substituted quinoline. For example, whereas hydrogenation of
the 2-phenylquinoline with catalyst 2.1c leads to 97% ee of the tetrahydroquinoline
2.11 (entry 9),% the 3-phenylquinoline was reported to give a racemic mixture of the
corresponding product (entry 14). However, sterically more congested catalysts, such
as 2.1k, were shown to lead to the formation of the 3-phenyl-1,2,3,4-
tetrahydroquinoline in 74% ee, under the same reaction conditions.>® Finally, we
examined the transfer hydrogenation of methylquinoline-2-carboxylate (entry 15). A
strongly electron-withdrawing substituent at C-2 is expected to decrease the electron
density on the quinoline nitrogen and significantly decrease the rate of this reaction.!
In fact, the transfer hydrogenation of methylquinoline-2-carboxylate catalyzed by a
Brensted acid has not been previously reported. We were pleased to see quantitative
conversion in 4 hours, albeit in modest enantioselectivity (the isolated yield of the pure
product was only 71% due to partial co-elution of the Hantzsch esters with the product
during chromatography). It is reasonable to assume that the high acidity of Brgnsted

acid 2.5c is able to compensate for the electronic effects of the C-2 carboxylate moiety.

Although we have not yet fully explored the mechanistic differences between
catalyst 2.5¢ and the BINOL-based Brgnsted acids 2.1, our current data are generally
consistent with the established mechanism for this reaction.!?#?® The rate acceleration
and enantioselectivity differences observed between catalysts 2.3b and 2.5a (Table 1;
entry 3 vs. 5) are consistent with our original hypothesis, which presumed that
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protonation of the quinoline by the catalyst could lead to an intramolecular cooperative

ion pair (Fig. 2.4; 11), stabilizing the conjugate base of the catalyst.

i-Pr i-Pr i-Pr i-Pr
N g]@ N g;g]@
P\\ \ N P\\ N\ \\o

OH O ipr . O, O ipr
OO Cl) CO ng N
H NG
[ I N™ "CHs
H
ROQC R'0,C
||/O
OH P~o 5

R' ozc

Figure 2.4. Proposed Catalytic Mechanism of Brgnsted Acid 2.5c.

Whether the shared proton in the ionized form 11 is derived from the OH or the
NH of the original catalyst (1) is inconsequential to the proposed intermediate II.
Additionally, once the protonated quinoline is bound to the catalyst, it is likely that the
OH moiety recruits the Hantzsch ester, leading to a more stable trimolecular complex
(111) and guiding the delivery of the hydride species from the side of the naphthol ring
(1V). Binding of the 2-methylquinoline to 2.5¢ through favorable u-stacking
interactions and placement of the quinoline nitrogen near the acidic NH of the catalyst
necessitates that the 2-methyl group becomes buried in the catalytic pocket and near
the t-butyl substituent on the phosphorus. Therefore, entrance of the hydride from the
side of the naphthol would simultaneously push the 2-methyl group away from the

steric bulk of the t-butyl group.
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2.5 Conclusion

In summary, we aimed to demonstrate that the incorporation of an
intramolecular H-bond between a phenolic substituent on a P-stereogenic center of a
Bronsted acid and the NH of its N-phosphoryl sulfonamide can stabilize the
conformation of the catalytic cavity, accelerate the reaction rate and increase
enantioselectivity for the transfer hydrogenation of quinolines. OttoPhosa | (2.5c)
represents a prototype of this new class of Brgnsted acid organocatalysts. Its catalytic
properties compare favorably with those of BINOL-based Brgnsted acids 2.1 having a
similarly small substrate-binding pocket. The synthesis of analogues 2.5 and fine-
tuning of their catalytic properties for different chemical transformations can be easily

achieved in a modular library mode?! and is currently in progress.

2.6 Experimental Section

Genera Procedure: All reactions were carried out under anhydrous conditions and
under an atmosphere of dry argon unless otherwise indicated. Compounds were purified
by normal phase flash column chromatography on silica gel (SDS, 60 A C. C. 40-63
mm) as the stationary phase. Thin Layer Chromatography (TLC) was performed on
alumina plates pre-coated with silica gel (Merck silica gel, 60 F254), which were
visualized by UV when applicable (Amax =254 nm and/or 366 nm) and/or by staining
with vanillin or anisadehyde in acidic ethanol and/or KMnQg in basic water followed
by heating. Key compounds were fully characterized by *H, *C{*H} and *'P{*H} NMR
and HRMS. Chemical shifts (8) are reported in ppm relative to the internal deuterated
solvent or external HsPO4 (5 0.00 3!P), unless indicated otherwise. High-resolution MS
spectra were recorded using electrospray ionization (ESI+/-) and Fourier transform ion

cyclotron resonance mass analyzer (FTMS).

The reactions were monitored either by TLC or analytical HPLC/MS to confirm

completion and homogeneity of the products. Analytical HPLC was performed using a
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reversed phase C18 5 um column on a Waters Atlantis T3 instrument and the solvent

system indicated below:
Solvent A: H20, 0.1% formic acid
Solvent B: CH3CN, 0.1% formic acid

Mobile phase: linear gradient from 95%A and 5%B to 5%A and 95%B in 13 min, then
2 min at 100% B

Flow rate: 1 mL/min

Compounds 6-bromo-2-methylquinoline (2.10a), 2-methylquinoline (2.10b), 2-
phenylquinoline (2.10c) and 4-methylquinoline (2.10d) were purchased from Sigma
Aldrich. The 2-ethylquinoline (2.10e),%? 2-isopropylquinoline (2.10f),%® 6-nitro-2-
methylquinoline  (2.10g)** and 6-methoxy-2-methylquinoline (2.10n)**  were

synthesized according to the literature procedures indicated.

The enantiomeric purity of chiral compounds was determined by chiral HPLC using an
Agilent 1100 or Agilent 1260 series instrument and the column and solvent system
indicated for each compound. The absolute stereochemistry of all compounds was
assigned based on several factors, including the single crystal X-ray of the previously
reported key precursor compound 2.6,%' the single crystal X-ray structures of
intermediate phosphinic amide 2.8d (refer to Appendix I, Table I-1), the single crystal
X-ray structures of catalysts 2.5a and 2.5c, the single crystal X-ray structure of
compound  (S)-2-bromo-6-methyl-3,4-dihydro-2H-1A2-quinoline (2.11a), and by

analogy with previously reported compounds in the literature.
The names of all compounds were generated using ChemBioDraw Ultra 12.0.

General synthesis of secondary phosphine oxides (SPQOs) 2.7:

We recently reported the synthesis of SPO intermediates 2.6, 2.7a, 2.7¢ and 2.7d.2! The

synthesis of analogs 2.7e and 2.7f was achieved using the same protocol.?* The
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synthesis of SPO analogs 2.7b was achieved using the previously reported

methodology.?

(S)-tert-Butyl(2-methoxy-5,6,7,8-tetrahydronaphthalen-1-yl)phosphine oxide
(2.7¢)

Precursor compound 5-bromo-6-methoxy-1,2,3,4-tetrahydronaphthalene (used to
prepare the Grignard reagent) was synthesized according to the method reported by

Smith and co-workers.%®

Cl N/Ts MgBr ?
\©\/\H OMe 2-MeTHF > PH
ot Oé/ OMe
B 0°C, 30 mins C©/
o
2.6

2.7e

A three-neck flask under argon was charged with SPO 2.6 (1 mmol) in 2-MeTHF (3
mL) and cooled to 0°C. 2-Methoxy-5,6,7,8-tetrahydronaphthalen-1-yl magnesium
bromide (1 M in 2-MeTHF, 4 mmol, 4 mL) was added slowly while keeping the internal
temperature <5 °C. The reaction mixture was stirred for 40 min to completion.
Saturated and degassed aqueous NH4ClI solution (5 mL) was added slowly to quench
the reaction. The organic layer was collected and the aqueous residue was extracted
with DCM (25 mL x3). The combined organic extracts were dried over anhydrous
Na>SO4 and concentrated. The residue was purified by flash column chromatography
on silica gel (deactivated with 10% water) using a solvent gradient of hexane/EtOACc
(from 50:50 to 0:100, v/v) to obtain the desired product (141 mg) in 53% vyield. 'H
NMR (400 MHz, CDCls): & 8.28 (s, 0.5 H), 7.17 (d, J = 8.5 Hz, 1H), 7.06 (s, 0.5 H),
6.71 (dd, J = 8.5, 5.1 Hz, 1H), 3.77 (s, 3H), 3.54 — 3.39 (m, 1H), 2.93 (dt, J = 17.0, 5.6
Hz, 1H), 2.72 (t, J = 6.2 Hz, 2H), 1.83 — 1.66 (m, 4H), 1.20 (d, J = 16.6 Hz, 9H). 3'P
NMR (162 MHz, CDClz3): 6 36.57.
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More detailed characterization and estimation of the enantiomeric purity was performed
at the subsequent step, when 2.7e was converted to the corresponding P-chiral (tert-

butyl)-P-arylphosphinic amide 2.8e.

(S)-tert-Butyl(2-methoxy-6-phenylnaphthalen-1-yl)phosphine oxide (2.7f)

The precursor 1-bromo-2-methoxy-6-phenylnaphthalene (used to prepare the Grignard

reagent) was synthesized according to the method reported by Smith and co-workers.®®

Me MaB ?
B gbr _
cl NS OMe 2-MeTHF P—H
H + >_OMe
o. 2 0°C, 30 mins
4 Ph
» Ph
2.6 2.7¢

A three-neck flask under argon was charged with SPO 2.6 (1 mmol) dissolved in 2-
MeTHF (3 mL) and cooled to 0 °C. A solution of 2-methoxy-6-phenylnaphthalen-1-yl
magnesium bromide (1 M in 2-MeTHF, 4 mmol, 4 ml; prepared as previously
reported®) was added slowly, while keeping the internal temperature <5 °C. The
reaction mixture was stirred for 40 min to complete the reaction. Saturated and degassed
aqueous NH4Cl solution (5 mL) was added slowly to quench the reaction. The organic
layer was collected and the aqueous residue was extracted with DCM (25 mL x3). The
combined organic extracts were dried over anhydrous Na,SO4 and concentrated. The
residue was purified by silica gel chromatography (on deactivated silica with 10%
water) eluted with a solvent gradient of hexane/EtOAc gradient (50:50 to 0:100, v/v) to
obtained the desired product (189 mg) in 56% vyield. *H NMR (400 MHz, CDCls): §
9.04 (d, J = 9.0 Hz, 1H), 8.54 (s, 0.5 H), 8.07 (d, J = 9.1 Hz, 1H), 7.98 (s, 1H), 7.81
(dd, J=9.0, 2.1 Hz, 1H), 7.70 (d, J = 7.1 Hz, 2H), 7.48 (t, J = 7.7 Hz, 2H), 7.37 (t, J =
7.4 Hz, 1H), 7.31 (s, 0.5 H), 7.30 — 7.26 (m, 1H), 3.98 (s, 3H), 1.26 (d, J = 16.8 Hz,
9H). 3P NMR (162 MHz, CDCls): 5 36.19.
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More detailed characterization and estimation of the enantiomeric purity was performed
at the subsequent step, when 2.7f was converted to the corresponding P-chiral (tert-

butyl)-P-arylphosphinic amide 2.8f.

General procedure for the conversion of SPOs 2.7 to the P-Chiral (t-butyl)-P-

arylphosphinic amides 2.8:

O O

I NH4OH, Et3N I
P—H 1P—NH,
H CCly, MeCN, 0 °C to rt i
Ar Ar
16 h
2.7 recrystallization 2.8
92-99% ee

Chiral SPO 2.7 (1.0 mmol) was dissolved in 6 mL of degassed acetonitrile and cooled
to 0 °C. CCl4 (1.0 mL), EtsN (2.0 mmol) and saturated aqueous solution of NHsOH
(28% in water, 0.5 mL) were sequentially added dropwise while stirring. The solution
was stirred at 0 °C for 30 min and then warmed to RT and allowed to stir for 16 h. Water
(5 mL) was added to the reaction mixture and then extracted with EtOAc, the organic
layers were combined, dried over anhydrous Na2SO4 and concentrated to give the crude
product. The pure product was obtained after first passing the crude through a short
silica gel column and then doing a crystallization in DCM/Et,0 (1:5, v/v) at -20 °C to

obtain the phosphoramide products as highly enriched single enantiomers (92-99% ee).

(R)-P-(tert-butyl)-P-phenylphosphinic amide (2.8a); characterization data consistent

with previously reported.®

o]

S
g

Isolated as a white solid in 82% yield (162 mg) and 96.7% ee. *H NMR (500 MHz,
CDCls): & 7.90-7.84 (m, 2H), 7.57-7.52 (m, 1H), 7.49-7.43 (m, 2H), 2.72 (brs, 2H),

1.16 (d, J = 15.3 Hz, 9H). *1P NMR (202 MHz, CDCls): § 41.34. Chiral HPLC method:
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Chiralcel OD, hexane/IPA = 80/20, 1.0 mL/min, A =220 nm; (R)-enantiomer tr (major)

= 5.88 min, (S)-enantiomer tr (minor) = 7.60 min.

(R)-P-(tert-butyl)-P-(2-methoxyphenyl)phosphinic amide (2.8b)

0

e
<)

OMe

Isolated as a white solid in 73% yield (166 mg) and 95% ee. 'H NMR (500 MHz,
CDCl3): 6 7.90 (ddd, J = 11.9, 7.5, 1.8 Hz, 1H), 7.49 — 7.40 (m, 1H), 7.10 — 7.02 (m,
1H), 6.93 —6.87 (m, 1H), 3.83 (s, 3H), 3.17 (5, 2H), 1.08 (d, J = 15.9 Hz, 9H). 3C NMR
(126 MHz, CDCls): & 159.2 (d, J = 3.9 Hz), 135.5 (dd, J = 5.5, 3.0 Hz), 133.3, 121.0
(dd, J = 10.6, 2.5 Hz), 119.4 (d, J = 101.4 Hz), 110.6 (d, J = 7.0 Hz), 55.2, 34.3 (d, J =
93.7 Hz), 24.2. 3P NMR (203 MHz, CDCls): & 46.01. HRMS: calculated for
C11H1sNnaO2P* [M+H]*: 250.0967, found: 250.0967. Chiral HPLC method: Chiralcel
OD, hexane/IPA = 80/20, 1.0 mL/min, A = 220 nm; (S)-enantiomer tr (minor) = 7.38

min, (R)-enantiomer tr (major) = 10.23 min.

(R)-P-(tert-butyl)-P-(4-methoxyphenyl)phosphinic amide (2.8c)

9
%I--P—NHZ

OMe

Isolated as a white solid in 48% yield (109 mg) and >99% ee. *H NMR (500 MHz,
CDCl3) 5 7.77 — 7.70 (m, 2H), 6.92 (dd, J = 8.9, 2.4 Hz, 2H), 3.83 (s, 3H), 2.84 (s, 2H),
1.11 (d, J = 15.2 Hz, 9H). 13C NMR (126 MHz, CDCl3): § 162.4 (d, J = 2.9 Hz), 135.0
(d, J=9.6 Hz), 121.4 (d, J = 123.0 Hz), 113.6 (d, J = 12.5 Hz), 55.2, 32.3 (d, J = 93.5
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Hz), 24.8. 3P NMR (203 MHz, CDCls): & 41.44. HRMS: calculated for
C11H1sNNaO2P* [M+H]*: 250.0967, found: 250.0968. Chiral HPLC method: Chiralcel
OD, hexane/IPA = 80/20, 1.0 mL/min, A = 220 nm; (R)-enantiomer tr (major) = 7.08

min, (S)-enantiomer tr (minor) = 12.49 min.

(R)-P-(tert-butyl)-P-(2-methoxynaphthalen-1-yl)phosphinic amide (2.8d)

0
'PNH2

Isolated as a white solid in 42% yield (116 mg) and >99% ee. *H NMR (400 MHz,
CDCls): §9.59 (d, J = 8.5 Hz, 1H), 7.99 (d, J = 9.1 Hz, 1H), 7.76 (dt, J = 8.2, 1.7 Hz,
1H), 7.54 (ddd, J = 8.6, 6.7, 1.5 Hz, 1H), 7.38 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 7.31 —
7.23(m, 1H), 3.99 (s, 3H), 3.22 (s, 2H), 1.16 (d, J = 16.0 Hz, 9H). 13C NMR (101 MHz,
CDCls): § 158.7 (d, J = 3.2 Hz), 136.7 (d, J = 6.7 Hz), 134.7, 129.4 (d, J = 9.1 Hz),
128.0, 127.6 (d, J = 2.2 Hz), 127.5, 124.2, 112.8, 111.9, 111.8, 56.0, 35.9 (d, J = 93.2
Hz), 244. 3P NMR (162 MHz, CDCl3): & 50.06. HRMS: calculated for
C1sH20NNaO2P* [M+H]": 300.1124, found: 300.1115. Chiral HPLC method: Chiralcel
OD, hexane/IPA = 80/20, 1.0 mL/min, % = 220 nm; (S)-enantiomer tr = 8.46 min, (R)-

enantiomer tr (single peak) = 28.96 min.
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(R)-P-(tert-butyl)-P-(2-methoxy-5,6,7,8-tetrahydronaphthalen-1-yl)phosphinic
amide (2.8e)

O

> f
Xy

OMe

Isolated as a white solid in 45% yield (126 mg) and >99% ee. 'H NMR (500 MHz,
CDCls): 6 7.15 (d, J = 8.5 Hz, 1H), 6.72 (dd, J = 8.5, 4.8 Hz, 1H), 3.79 (s, 3H), 3.65 —
3.56 (m, 1H), 3.20 (dt, J = 17.7, 5.7 Hz, 1H), 3.12 (s, 2H), 2.72 (t, J = 6.6 Hz, 2H), 1.86
—1.77 (m, 1H), 1.75— 1.66 (m, 2H), 1.65 — 1.55 (m, 1H), 1.13 (d, J = 15.8 Hz, 9H). 3C
NMR (126 MHz, CDCls): § 158.09 (d, J = 4.6 Hz), 145.82 (d, J = 7.0 Hz), 133.25 (d,
J=2.1Hz),131.73 (d, J = 10.3 Hz), 117.61 (d, J = 95.2 Hz), 108.24 (d, J = 7.4 H2),
55.16, 35.83 (d, J = 91.8 Hz), 29.87, 28.51 (d, J = 2.2 Hz), 24.41 (d, J = 0.9 Hz), 22.39
(d, J = 845 Hz). 3P NMR (203 MHz, CDCls): & 50.18. HRMS: calculated for
CisH24NNaO2P* [M+H]*: 304.1437, found: 304.1142. Chiral HPLC method: Chiralcel
OD, hexane/IPA = 80/20, 1.0 mL/min, A = 220 nm; (S)-enantiomer tgr = 4.96 min, (R)-

enantiomer tr (single peak) = 6.20 min.

(R)-P-(tert-butyl)-P-(2-methoxy-6-phenylnaphthalen-1-yl)phosphinic amide (2.8f)

0
'+ P—NH,

“COOMG
Ph

Isolated as a white solid in 60% yield (212 mg) and >99% ee. *H NMR (500 MHz,
CDCls): $9.64 (d,J = 9.1 Hz, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.94 (s, 1H), 7.80 (dd, J =
9.1, 2.1 Hz, 1H), 7.70 (d, J = 7.0 Hz, 2H), 7.47 (t, = 7.7 Hz, 2H), 7.36 (t, J = 7.4 Hz,
1H), 7.24 (dd, J = 9.0, 4.3 Hz, 1H), 3.95 (s, 3H), 3.31 (brs, 2H), 1.17 (d, J = 16.1 Hz,
9H). 13C NMR (126 MHz, CDCls): § 158.7 (d, J = 3.2 Hz), 140.6, 136.5, 135.9 (d, J =

6.7 Hz), 134.9 (d, J = 2.1 Hz), 129.7 (d, J = 9.0 Hz), 128.9, 128.2 (d, J = 2.1 Hz), 127.3,
69



127.2,127.0, 125.63, 112.4 (d, J = 93.6 Hz), 112.3 (d, J = 7.7 Hz), 56.0, 35.9 (d, J =
93.2 Hz), 24.4. 3P NMR (203 MHz, CDCls3): § 50.11. HRMS: calculated for
Co1H2sNO2P* [M+H]*: 354.1617, found: 354.1618. Chiral HPLC method: Chiralcel
OD, hexane/IPA = 80/20, 1.0 mL/min, A = 220 nm; (S)-enantiomer tr = 10.91 min, (R)-

enanatiomer (single peak) tr = 15.34 min.

General procedure for the conversion of arylphosphinic amides 2.8 to Brgnsted acids

2.3b and 2.4:

A slurry of NaH (3 equiv of 60% NaH in oil) in anhydrous THF (3.0 mL) at 0 °C was
added to a solution of phosphinamide 2.8 (0.5 mmol, 1 equiv) and the mixture was
stirred for 30 min. The arylsulfonyl chloride (1.5 equiv) was added slowly, and the
mixture was warmed to RT and monitored by TLC. After complete conversion (~12-
15 h), NH4ClI (0.1 g) was added portion-wise, the mixture was diluted with THF and
filtered. The filtrate was concentrated and the crude residue was purified by flash
column chromatography on silica gel to give the desired product. The product was
dissolved in DCM (15 mL) and thoroughly washed with 4 M HCI (2x) to remove any
salt impurities and completely protonate the catalyst. The organic layer was separated
and concentrated under reduced pressure. The residue was taken up in toluene (5 mL),

evaporated to dryness again and dried under high vacuum for 24 h to give the catalyst.

Note: Upon completion of the coupling reaction between intermediate 2.8 and the
sulfonyl chloride, some analogs 2.4 were used directly in the subsequent demethylation

step (without isolation/purification) to get the final catalysts 2.5.
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(R)-N-(tert-butyl(2-methoxyphenyl)phosphoryl)-2,4,6-
triisopropylbenzenesulfonamide (2.3b): This compound was recently reported by

Han and coworkers.?

Isolated as a yellow solid in 97% yield (240 mg). *H NMR (500 MHz, CDsOD): & 7.74
(ddd, J = 7.0, 1.5 Hz, 1H), 7.37 (t, = 7.3 Hz, 1H), 7.11 (s, 2H), 6.91 (dd, J = 7.8, 5.3
Hz, 1H), 6.77 (t, 3 = 7.0 Hz, 1H), 4.49 - 4.40 (m, 2H), 3.54 (s, 3H), 2.88 (hept, J = 6.9
Hz, 1H), 1.27 — 1.21 (m, 12H), 1.14 — 1.04 (m, 15H). 3'P NMR (202 MHz, CD30D): &
33.97. HRMS: calculated for C2sHs0NO4sPSNa [M+Na]: 516.2308, found: 516.2305.

(R)-N-(tert-butyl(phenyl)phosphoryl)-2,4,6-triisopropylbenzenesulfonamide
(2.4a)

Isolated as a yellow solid in 96% yield (223 mg). *H NMR (500 MHz, CD3s0D): & 7.66-
7.62 (m, 2H), 7.35 (td, J = 7.5, 1.5 Hz, 1H), 7.22 (td, J = 8.0, 3.0 Hz, 2H), 7.04 (s, 2H),
4.51-4.45 (m, 2H), 2.88-2.82 (m, 1H), 1.23 (d, J = 7.0 Hz, 6H), 1.21 (d, J = 6.5 Hz,
6H), 1.06 (d, J = 7.0 Hz, 6H), 1.01 (d, J = 15.5 Hz, 9H); 3C NMR (125 MHz, CD30D):
§150.8, 149.2, 142.7, 134.8 (d, J = 112.0 Hz), 134.5 (d, J = 8.1 Hz), 131.3 (d, J = 1.8
Hz), 128.1 (d, J = 10.9 Hz), 123.6, 35.3, 33.9 (d, J = 103.8 Hz), 30.2, 25.6, 25.2, 25.1,
24.33, 24.30; 3P NMR (202 MHz, CDs0D): § 31.74; HRMS: calculated for
C2sH3sNOsPSNa [M+Na]*: 486.2202, found: 486.2194.
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(R)-N-(tert-butyl(4-methoxyphenyl)phosphoryl)-2,4,6-

triisopropylbenzenesulfonamide (2.4b)

OMe

Upon completion of the coupling reaction with the sulfonyl chloride, compound 2.4b

was used directly in the subsequent demethylation step to get the final catalyst 2.5b.

(R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-2,4,6-

triisopropylbenzenesulfonamide (2.4c)

@)

1 H 9

1 .p_N_ﬁ

(@)
Meo

Compound was isolated as a white solid in 98% yield (173 mg). *H NMR (500 MHz,
CDCl3): § 9.43 (d, J = 8.9 Hz, 1H), 8.02 (d, J = 9.1 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H),
7.56 — 7.43 (m, 2H), 7.37 (t, J = 8.0 Hz, 1H), 7.32 — 7.27 (m, 1H), 7.05 (s, 2H), 4.16
(hept, J = 6.5 Hz, 2H), 4.10 (s, 3H), 2.81 (hept, J = 7.0 Hz, 1H), 1.31 — 1.11 (m, 21H),
1.10(d, J = 6.8 Hz, 6H). *C NMR (126 MHz, CDCls): § 158.42, 152.56, 150.27, 136.80
(d,J=7.6 Hz), 135.92 (d, J = 2.3 Hz), 135.43, 129.60 (d, J = 10.0 Hz), 128.28, 127.99,
127.57 (d, J = 2.3 Hz), 124.64, 123.75, 111.89 (d, J = 8.2 Hz), 110.79, 110.03, 56.53,
37.40 (d, J = 89.4 Hz), 34.18, 29.91, 24.91 (d, J = 3.4 Hz), 24.60, 23.63 (d, J = 5.8 Hz).
3P NMR (203 MHz, CDCls): § 43.1. HRMS: calculated for C3oH104NPS: 542.2499,
found: 542.2491.
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(R)-N-(tert-butyl(2-methoxy-5,6,7,8-tetrahydronaphthalen-1-yl)phosphoryl)-
2,4,6-triisopropylbenzenesulfonamide (2.4d)

IH NMR (500 MHz, CDCls): & 7.47 (s, 1H), 7.17 (d, J = 8.5 Hz, 1H), 7.08 (s, 2H), 6.74
(dd, J = 8.5, 5.2 Hz, 1H), 4.18 (hept, J = 6.7 Hz, 2H), 3.89 (s, 3H), 3.40 (dt, J = 18.0,
6.2 Hz, 1H), 3.03 (dt, J = 17.9, 5.5 Hz, 1H), 2.85 (hept, J = 6.9 Hz, 1H), 2.74 — 2.64
(m, 2H), 1.73 — 1.56 (m, 4H), 1.26 (d, J = 6.7 Hz, 6H), 1.24 — 1.15 (m, 15H), 1.13 (d, J
= 6.7 Hz, 6H). 5P NMR (203 MHz, CDCl3): § 44.0.

Upon completion of the coupling reaction with the sulfonyl chloride, the crude
compound 2.4d was used directly in the subsequent demethylation step to get the final

catalyst 2.5d.

(R)-N-(tert-butyl(2-methoxy-6-phenylnaphthalen-1-yl)phosphoryl)-2,4,6-

triisopropylbenzenesulfonamide (2.4e)

I
o)
MeO O
Ph

IH NMR (500 MHz, CDCl3) § 9.51 (d, J = 9.2 Hz, 1H), 8.08 (d, J = 9.1 Hz, 1H), 7.95
(t, 3= 2.1 Hz, 1H), 7.75 (dd, J = 9.2, 2.1 Hz, 1H), 7.68 (dd, J = 8.3, 1.3 Hz, 2H), 7.52
(d, J = 6.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.39 — 7.34 (m, 1H), 7.31 (dd, J = 9.1, 4.7
Hz, 1H), 7.06 (s, 2H), 4.18 (hept, J = 6.7 Hz, 2H), 4.11 (s, 3H), 2.81 (hept, J = 6.8 Hz,
1H), 1.26 — 1.20 (m, 15H), 1.18 (dd, J = 6.9, 2.4 Hz, 6H), 1.12 (d, J = 6.7 Hz, 6H). 3P
NMR (203 MHz, CDCls): § 43.2.
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Upon completing of the coupling reaction with the sulfonyl chloride, compound 2.4e
the crude product was used directly in the subsequent demethylation step to get the final

catalyst 2.5e.

General procedure for the synthesis of Brgnsted acids 2.5:

(0]

I (6] (6] (o] (o]
1P—NH n H n H

% 2 TPSCI, NaH %“‘P—N—§ BBrs %‘_P_N_%
/
MeO—CAr | THF, 0°C to rt A © CH,Cly, -78 °C to rt N
x 16 h MeO—- Ar | 16 h HO— Ar |
NS NS
2.8 2.4 2.5

Note: Upon completion of the coupling reaction between intermediate 2.8 and the
sulfonyl chloride, some analogs 2.4 were used directly in the subsequent demethylation

step to get the final catalysts 2.5.

Demethylation step: A solution of intermediates 2.3b or 2.4 in dry DCM (5 mL) was

cooled to -78 °C, then BBr3 (1.2 equiv in hexane) was added slowly over a 5 min period.
After the addition was finished, the reaction mixture was allowed to warm-up to RT
and stirred overnight. The reaction was quenched with water and diluted with DCM.
The organic fraction was washed with 1 N HCI, dried over anhydrous MgSQsg,
concentrated and purified by flash column chromatography on silica gel. The isolated
product was re-dissolved in DCM (15 mL) and thoroughly washed with 4 M HCI (15
mL x 2) to remove any metal impurities and completely protonate the catalyst. The
organic layer was separated and concentrated under reduced pressure. The residue was
taken up in toluene (5 mL), evaporated to dryness again and allowed to dry under high

vacuum for a minimum of 24 h to give (R)-phenolic catalyst.
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(R)-N-(tert-butyl(2-hydroxyphenyl)phosphoryl)-2,4,6-

triisopropylbenzenesulfonamide (2.5a)

Compound was isolated as a yellow solid in 92% yield (221 mg). *H NMR (400 MHz,
CDCl3): 6 10.60 (s, 1H), 7.42 (ddt, J = 8.4, 7.1, 1.4 Hz, 1H), 7.31-7.23 (m, 1H), 7.14
(s, 2H), 6.97 — 6.89 (m, 1H), 6.84 — 6.75 (m, 1H), 6.41 (d, J = 8.7 Hz, 1H), 3.91 (hept,
J=6.6 Hz, 2H), 2.90 (hept, J = 6.9 Hz, 1H), 1.30 — 1.14 (m, 27H). 3C NMR (126 MHz,
CDCl3): 5 163.6 (d, J = 5.0 Hz), 153.7, 150.3, 135.1 (d, J = 2.1 Hz), 134.2 (s), 133.0 (d,
J=8.4 Hz), 123.9, 118.8 (d, J = 12.5 Hz), 118.0 (d, J = 9.3 Hz), 107.5 (d, J = 117.5
Hz), 34.6 (d, J = 86.2 Hz), 34.2, 30.1, 24.7 (d, J = 47.0 Hz), 23.8, 23.5 (d, J = 4.2 Hz).
3P NMR (162 MHz, CDCls): § 45.42. HRMS: calculated for C2sHzgNO4PS* [M+H]*:
480.2332, found: 480.2336.

(R)-N-(tert-butyl(4-hydroxyphenyl)phosphoryl)-2,4,6-

triisopropylbenzenesulfonamide: (2.5b)

Isolated as a yellow solid, in 80% yield (193 mg). *H NMR (500 MHz, MeOD): § 7.51—
7.44 (m, 2H), 7.17 (s, 2H), 6.77 (dd, J = 8.5, 2.5 Hz, 2H), 4.27-4.14 (m, 2H), 2.96-2.87
(m, 1H), 1.31-1.20 (m, 12H), 1.18-1.03 (m, 15H). 3C NMR (126 MHz, MeOD): &
161.4,152.4,149.6, 136.6, 134.8 (d, J=11.0 Hz), 123.1, 116.5 (d, J = 125.4 Hz), 114.7
(d, J = 13.8 Hz), 34.0, 33.1 (d, J = 93.4 Hz), 28.9, 23.8 (d, J = 38.7 Hz), 23.0, 22.7 (d,
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J = 6.2 Hz). 3P NMR (203 MHz, MeOD): & 41.15. HRMS: calculated for
CasH3oNO4PS™ [M+H]*: 480.2332, found: 480.2335.

(R)-N-(tert-butyl(2-hydroxynaphthalen-1-yl)phosphoryl)-2,4,6-

triisopropylbenzenesulfonamide (2.5c)

2
(KR

9
P-N—S
"0
Isolated as a yellow solid in 95% yield (252 mg). *H NMR (400 MHz, CDCls): § 12.55
(s, 1H), 8.15 (m, 1H), 7.88 (d, J = 8.9 Hz, 1H), 7.70 (m, 1H), 7.25 — 7.20 (m, 2H), 7.15
—7.06 (m, 3H), 6.56 (s, 1H), 3.88 (hept, J = 6.7 Hz, 2H), 2.88 (hept, J = 6.9 Hz, 1H),
1.36 — 1.14 (m, 21H), 1.11 (d, J = 6.7 Hz, 6H). 3C NMR (126 MHz, CDCls): & 166.5
(d, J = 4.8 Hz), 153.4, 150.1, 136.5 (d, J = 2.3 Hz), 134.6, 133.6 (d, J = 8.6 Hz), 128.4
(d, J =10.2 Hz), 128.0 (d, J = 197.2 Hz), 125.5 (d, J = 4.2 Hz), 123.9, 123.2, 120.4 (d,
J=11.1Hz), 36.8 (d, J = 85.8 Hz), 34.2, 30.2, 24.8, 24.7 (d, J = 39.8 Hz), 23.5 (d, J =
4.6 Hz). 3P NMR (162 MHz, CDCls): § 47.72. HRMS: calculated for C2oHa1NO4PS*
[M+H]*: 530.2488, found: 530.2496.

(R)-N-(tert-butyl(2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)phosphoryl)-2,4,6-

triisopropylbenzenesulfonamide (2.5d):

Isolated as a yellow solid in 93% yield (248 mg). *H NMR (400 MHz, CDCl3): § 11.50
(s, 1H), 7.17 (s, 2H), 7.14 (d, J = 8.4 Hz, 1H), 6.75 (dd, J = 8.4, 5.2 Hz, 1H), 6.19 (d, J
=10.9 Hz, 1H), 3.97 (hept, J = 6.5 Hz, 2H), 3.13 (ddd, J = 15.9, 10.1, 5.4 Hz, 1H), 2.95
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—2.78 (M, 2H), 2.75 — 2.67 (m, 2H), 1.98 — 1.68 (m, 4H), 1.31 (d, J = 6.6 Hz, 6H), 1.27
—1.22 (m, 12H), 1.18 (d, J = 16.6 Hz, 9H). 3C NMR (126 MHz, CDCls): & 162.9 (d, J
= 5.6 Hz), 153.3, 150.2, 140.3 (d, J = 9.1 Hz), 136.0, 135.0, 128.9 (d, J = 10.4 Hz),
124.0,116.4 (d, J = 11.0 Hz), 106.3 (d, J = 109.8 Hz), 36.2 (d, J = 83.9 Hz), 34.1, 30.3,
29.5,24.8 (d, J=84.6 Hz), 24.8 (d, J = 14.8 Hz), 24.3, 23.6, 22.4, 22.1. 3P NMR (162
MHz, CDClz): & 49.00. HRMS: calculated for CagHisNOsPS™ [M+H]": 534.2801,
found: 534.2808.

(R)-N-(tert-butyl(2-hydroxy-6-phenylnaphthalen-1-yl)phosphoryl)-2,4,6-

triisopropylbenzenesulfonamide (2.5€)

Isolated as a yellow solid in 88% yield (267 mg). *H NMR (500 MHz, CDCls) § 12.49
(s, 1H), 8.30 (d, J = 8.9 Hz, 1H), 7.85 (d, J = 8.9 Hz, 1H), 7.64 (s, 1H), 7.44 — 7.30 (m,
6H), 7.17 (s, 2H), 7.13 (dd, J = 8.9, 4.7 Hz, 1H), 3.98 (hept, J = 6.7 Hz, 2H), 2.89 (hept,
J=6.9 Hz, 1H), 1.35 (d, J = 6.7 Hz, 6H), 1.28 — 1.12 (m, 21H). 3C NMR (126 MHz,
CDCls): 5 166.2 (d, J = 4.3 Hz), 153.6, 150.6, 140.0, 136.8, 135.3, 134.7, 132.9 (d, J =
8.7 Hz), 128.6 (d, J = 10.1 Hz), 128.3, 126.9, 126.6 (d, J = 126.9 Hz), 126.3 (d, J = 4.1
Hz), 124.0, 120.3 (d, J = 10.8 Hz), 98.3 (d, J = 111.8 Hz), 36.9 (d, J = 85.1 Hz), 34.2,
30.3, 25.2, 24.6, 23.5 (d, J = 6.9 Hz). 3P NMR (203 MHz, CDCls): § 48.88. HRMS:
calculated for C3sHasNO4PS™ [M+H]*: 606.2801, found: 606.2803.
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General procedure for the transfer hydrogenation of quinolines 2.10 to the

tetrahydroquinolines 2.11:

General procedure for the synthesis of the racemic tetrahydroquinolines:

Etozcj\/\/[coza
| |

R4 Me N~ Me R4

(6]
R? R® P-OH " RS RS
N . cat. 50 mol%
/ o
N DCM, 22 °C N~ R?
0.2 mmol H

An oven dried 2 dram vial equipped with a stir bar was cooled to ambient temperature
in a desiccator and subsequently charged with the requisite quinoline (0.200 mmol).
DCM (1 mL), Hantzsch ester (152 mg, 0.600 mmol) and diphenylphosphinic acid (21.8
mg, 0.500 mmol). The vial was capped under air, sealed with parafilm and the mixture
was stirred at RT for 2-24 h. Progress of the reaction was monitored by TLC (20%
EtOAc and 80% hexanes). The crude product was purified by flash chromatography on

silica gel (using EtOAc/hexanes) to afford the desired tetrahydroquinoline.

General procedure for the asymmetric transfer hydrogenation of guinolines 2.10 to the

tetrahydroquinolines 2.11:

R4 R
R6 R3 0 RB * R3
X cat. (5 mol%) *
N/ R? solvent, 22 °C, time N * R2
H
210 ROZC)\/ICOZR 2.11
N
3 equiv
29 ( )

An oven-dried flask was fitted with magnetic stirring bar and charged with the quinoline
(reactions were typically carried out at a 0.1-0.2 mmol scale), catalyst (5 mol%),
Hantzsch ester (3.0 equiv) and solvent (0.5-1.0 mL). The resulting mixture was stirred
at RT (~22 °C), unless otherwise indicated and monitored by TLC. When all starting
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material was consumed, the solvent was removed under reduced pressure and the
residue was purified by flash column chromatography on silica gel using the solvent

system indicated to isolate the corresponding product.

(S)-6-bromo-2-methyl-1,2,3,4-tetrahydroquinoline (2.11a)

)
N

H

Reaction time: 5 h using catalyst 2.5¢. Known compound®’, purified using a 0-2%
EtOAc/hexanes eluent gradient; isolated as white solid in 98% yield (44.2 mg) and 88%
ee. The compound was crystallized from DCM/hexanes to afford the
tetrahydroquinoline 2.11e in 93% ee. 'H NMR (500 MHz, CDCIs): § 7.09 — 7.05 (d, J
=2.4 Hz, 1H), 7.03 (dd, J = 8.4, 2.4 Hz, 1H), 6.34 (d, J = 8.4 Hz, 1H), 3.76 (s, 1H),
3.38 (dqd, J=9.3, 6.3,2.9 Hz, 1H), 2.80 (ddd, /= 17.0, 11.5, 5.7 Hz, 1H), 2.75 — 2.64
(dt, 1H), 1.98 — 1.87 (m, 1H), 1.55 (m, 1H), 1.20 (d, J = 6.3 Hz, 3H). 1*C NMR (101
MHz, CDCI3): 6 143.9, 131.8, 129.5, 123.3, 115.5, 108.4, 47.2, 29.8, 26.5, 22.6. Chiral
HPLC method: chiralcel OD-H, hexane/IPA = 98/2, 1.0 mL/min, A = 254 nm; (R)-
enantiomer tr (minor) = 8.6 min, (S)-enantiomer tr (major) = 11.2 min.

For the purpose of comparison the product was also analyzed using the same chiral
HPLC column and solvent system as previously reported:3” ° Chiralcel OJ-H,
hexane/IPA = 95/5, 0.8 mL/min, A = 254 nm; (S)-enantiomer tr (major) = 19.04 min,

(R)-enatiomer tr (minor) = 23.19 min.
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(S)-2-methyl-1,2,3,4-tetrahydroquinoline (2.11b)

NMR and chiral HPLC data consistent with those previously reported.3®

H

Compound was purified using a 0-1% EtOAc/hexanes as the eluent; isolated as a pale-
yellow oil in 73% yield (21.6 mg) and 88% ee. '"H NMR (500 MHz, CDCls): § 7.02 —
6.90 (m, 2H), 6.60 (td, J= 7.3, 1.2 Hz, 1H), 6.47 (dd, J = 8.4, 1.2 Hz, 1H), 3.70 (broad
s, 1H), 3.40 (dqd, J = 10.0, 6.3, 2.8 Hz, 1H), 2.90 — 2.78 (m, 1H), 2.73 (ddd, J = 16.3,
5.2,3.4 Hz, 1H), 1.93 (dddd, /= 12.8, 5.6, 3.4, 2.8 Hz, 1H), 1.63 — 1.55 (m, 1H), 1.21
(d, J= 6.3 Hz, 3H). *C NMR (126 MHz, CDCl5): § 144.9, 129.4, 126.8, 121.3, 117.1,
114.1, 47.3, 30.3, 26.7, 22.8. Chiral HPLC method: Chiralcel OD, hexane/IPA = 98/2,
1.0 mL/min, A =254 nm; (R)-enantiomer tr (minor) = 6.78 min, (S)-enantiomer (majot)

tr = 7.79 min.

(R)-2-phenyl-1,2,3,4-tetrahydroquinoline (2.11c)

NMR and chiral HPLC data consistent with those previously reported.®
©\/Njw,©
H

Compound was purified using a 0-3% EtOAc/hexanes eluent and isolated as a white
solid 95% yield (39.9 mg) and 59.3% ee. '"H NMR (500 MHz, CDCl3): & 7.45 — 7.33
(m, 4H), 7.32 — 7.27 (m, 1H), 7.07 — 6.97 (m, 2H), 6.66 (td, /= 7.3, 1.2 Hz, 1H), 6.55
(d, J=17.5 Hz, 1H), 4.45 (dd, J=9.4, 3.3 Hz, 1H), 4.05 (s, 1H), 2.93 (ddd, J = 16.2,
10.7, 5.5 Hz, 1H), 2.75 (dt, J=16.3, 4.8 Hz, 1H), 2.13 (dddd, /= 13.1, 5.4, 4.5, 3.3 Hz,
1H), 2.00 (dddd, J=13.0, 10.7,9.3, 5.1 Hz, 1H). *C NMR (126 MHz, CDCI3): & 144.9,
144.9, 129.4, 128.7, 127.6, 127.0, 126.7, 121.0, 117.3, 114.1, 56.4, 31.1, 26.5. Chiral
HPLC method: Chiralcel OD, hexane/IPA = 98/2, 1.0 mL/min, A = 254 nm; (S)-

enantiomer tr (minor) = 15.13 min, (R)-enantiomer tr (major) = 21.39 min (major).
80



(R)-4-methyl-1,2,3,4-tetrahydroquinoline (2.11d)

NMR and chiral HPLC data consistent with those previously reported®®

o

Compound purified using a 0-20% Et>O in pentane and isolated a pale-yellow oil in
70% yield and 30% ee. '"H NMR (500 MHz, CDCls): § 7.06 (d, J = 7.6 Hz, 1H), 6.96
(tdd, J=7.3,1.7,0.8 Hz, 1H), 6.63 (td, J= 7.4, 1.2 Hz, 1H), 6.48 (dd, J= 7.9, 1.2 Hz,
1H), 3.91 (s, 1H), 3.39 — 3.23 (m, 2H), 2.92 (h, J = 6.6 Hz, 1H), 2.04 — 1.94 (m, 1H),
1.68 (dddd, J = 13.0, 6.9, 6.1, 3.5 Hz, 1H), 1.29 (d, J = 7.0 Hz, 3H). '*C NMR (126
MHz, CDCI3): 5 144.3, 128.6, 126.9, 126.8, 117.1, 114.3, 39.2, 30.4, 30.0, 22.8. Chiral
HPLC method: Chiralcel OD, hexane/IPA = 98/2, 0.6 mL/min, A = 254 nm; (S)-

enantiomer tr (minor) = 16.41 min, (R)-enantiomer tr (major) = 17.67 min.

(S)-2-ethyl-1,2,3,4-tetrahydroquinoline (2.11e)

NMR and chiral HPLC data consistent with those previously reported.3®

©\/Nj"’//
H

Compound was purified using a 0-2% EtOAc in hexanes and isolated as a pale-yellow
oil in 72% yield (23.1 mg) and 75% ee. 'H NMR (500 MHz, CDCls): § 6.96 (ddt, J =
8.2,7.4,0.8 Hz, 2H), 6.60 (td, /= 7.4, 1.2 Hz, 1H), 6.48 (dt, /= 7.4, 1.3 Hz, 1H), 3.77
(s, 1H), 3.17 (dtd, /= 9.4, 6.4, 2.9 Hz, 1H), 2.88 — 2.77 (m, 1H), 2.73 (ddd, J = 16.3,
5.4,4.0 Hz, 1H), 1.98 (dddd, /= 12.7, 5.6, 4.0, 2.9 Hz, 1H), 1.65 — 1.56 (m, 1H), 1.56
—1.49 (m, 2H), 1.00 (t, J= 7.5 Hz, 3H). *C NMR (126 MHz, CDCls): § 144.9, 129.4,
126.8,121.5,117.0, 114.1, 53.2, 29.6, 27.7, 26.6, 10.2. Chiral HPLC method: Chiralcel
OD, hexane/IPA = 98/2, 1.0 mL/min, A = 254 nm; (R)-enantiomer tr (minor) = 6.56

min, (S)-enantiomer tr (major) = 7.91 min.
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(R)-2-isopropyl-1,2,3,4-tetrahydroquinoline (2.11f)

Ry

NMR and chiral HPLC data consistent with those previously reported,*® purified using
a 0-2% EtOAc/hexanes eluent; isolated as a pale-yellow oil in 77% yield (27.0 mg) and
66% ee.'H NMR (500 MHz, CDCl3): § 7.00 — 6.91 (m, 2H), 6.59 (td, J= 7.3, 1.2 Hz,
1H), 6.52 - 6.45 (m, 1H), 3.76 (s, 1H), 3.04 (ddd, /= 10.0, 5.9, 2.9 Hz, 1H), 2.81 (ddd,
J=16.5,11.3,5.5Hz, 1H), 2.77 - 2.70 (m, 1H), 1.92 (dddd, /= 12.5, 5.5, 3.9, 2.9 Hz,
1H), 1.77 — 1.60 (m, 2H), 1.00 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H). 3*C NMR
(126 MHz, CDCl3): 6 145.2, 129.3, 126.8, 121.6, 116.9, 114.1, 57.4, 32.7, 26.8, 24.7,
18.7, 18.4. Chiral HPLC method: Chiralcel OD, hexane/IPA = 98/2, 1.0 mL/min, A =

254 nm; (S)-enantiomer tg (minor) = 5.90 min, (R)-enantiomer tr (major) = 8.53 min.

(S)-2-methyl-6-nitro-1,2,3,4-tetrahydroquinoline (2.11g)

N

H

NMR and chiral HPLC data consistent with those previously reported.** Compound was
purified by flash column chromatography on silica gel (silica gel was deactivated with
a 1% Et3N in hexanes solution) using a 0-15% EtOAc/hexanes eluent gradient; isolated
an orange solid in 83% yield (31.8 mg) and 86% ee. The compound was recrystallized
from DCM/hexanes to afford the tetrahydroquinoline in 96% ee. 'H NMR (500 MHz,
CDCl3): & 7.95 — 7.86 (m, 2H), 6.42 — 6.32 (m, 1H), 4.53 (s, 1H), 3.55 (dqd, J = 9.7,
6.4,3.4 Hz, 1H), 2.90 — 2.74 (m, 2H), 2.00 (dtd, /= 12.9, 4.8, 3.4 Hz, 1H), 1.58 (dtd, J
=13.0, 9.8, 6.2 Hz, 1H), 1.28 (d, J = 6.4 Hz, 3H). '*C NMR (126 MHz, CDCl3): §
150.4, 137.5, 125.9, 124.4, 119.8, 112.2, 47.6, 29.0, 26.3, 22.4. Chiral HPLC method:
Chiralcel OD, hexane/IPA = 95/5, 1 mL/min, A = 254 nm; (R)-enantiomer tr (minor) =
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19.35 min, (S)-enantiomer tr (major) = 20.67 min (major).

(R)-3-methyl-1,2,3,4-tetrahydroquinoline (2.11h)

Y

NMR and chiral HPLC data consistent with those previously reported.*® Compound
was purified by flash column chromatography on silica gel using a 0-10% pentane/Et,O
eluent; isolated as a pale-yellow oil in 71% yield (20.9 mg) and 14% ee. *H NMR (400
MHz, CDCl3): & 7.01-6.91 (m, 2H), 6.61 (td, J = 7.4, 1.2 Hz, 1H), 6.49 (dd, J = 7.9, 1.2
Hz, 1H), 3.89 (s, 1H), 3.27 (ddd, J = 11.0, 3.7, 2.0 Hz, 1H), 2.90 (dd, J = 11.0, 9.6 Hz,
1H), 2.78 (ddd, J = 16.0, 5.0, 2.0 Hz, 1H), 2.43 (dd, J = 16.0, 10.2 Hz, 1H), 2.14 — 1.99
(m, 1H), 1.05 (d, J = 6.6 Hz, 3H). 1*C NMR (126 MHz, CDCl3) § 144.4, 129.7, 126.8,
121.3, 117.1, 114.0, 49.0, 35.6, 27.3, 19.2. Chiral HPLC method: Chiralcel OJ-H,
hexane/IPA = 90/10, 0.5 mL/min, A = 210 nm; (R)-enantiomer tr = 30.77 min (major),

(S)- enantiomer tr = 37.77 min (minor).

(R)-3-phenyl-1,2,3,4-tetrahydroquinoline (2.11i)

The precursor 3-phenylquinoline was synthesized according to literature procedure.*!

©ﬁ©

NMR and chiral HPLC data consistent with those previously reported.®® Compound
was purified by flash column chromatography on silica gel using 0-6% EtOAc/hexanes
as the eluent; isolated as a pale-yellow solid in 51% vyield (10.5 mg; yield based on
recovered starting material) and 4% ee. *H NMR (400 MHz, CDCl3) & 7.39 — 7.30 (m,

2H), 7.30 — 7.22 (m, 3H), 7.02 (d, J = 7.4 Hz, 2H), 6.66 (td, J = 7.4, 1.2 Hz, 1H), 6.57
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(dd, J = 8.4, 1.3 Hz, 1H), 4.15 (s, 1H), 3.47 (ddd, J = 11.2, 3.7, 1.9 Hz, 1H), 3.35 (t, J
=10.7 Hz, 1H), 3.16 (tdd, J = 10.2, 5.8, 3.7 Hz, 1H), 3.09 — 2.93 (m, 2H). 1*C NMR (101
MHz, CDCls) 6 144.1, 144.0, 129.7, 128.8, 127.4, 127.1, 126.8, 121.6, 117.3, 114.3, 48.5, 38.8,
34.8. Chiral HPLC method: Chiralcel OD, hexane/IPA = 98/2, 1 mL/min, A = 254 nm;
(R)-enantiomer tr = 18.81 min (major), (S)- 10.5 mg tr = 24.04 min (minor).

Methyl (R)-1,2,3,4-tetrahydroquinoline-2-carboxylate (2.11j)

OMe

e

“r
(@)

Reaction time: 4 h at 50 °C using catalyst 5c. NMR and chiral HPLC data consistent
with those previously reported.*? purified using a 0-8% Et,O/hexanes eluent; isolated
as a colourless oil in 71% yield (27.2 mg) and 30% ee. *H NMR (400 MHz, CDCls) §
7.05-6.96 (M, 1H), 6.96 (d, J = 7.5 Hz, 1H), 6.65 (td, J = 7.3, 1.2 Hz, 1H), 6.59 (dd, J
=8.0, 1.2 Hz, 1H), 4.40 (s, 1H), 4.05 (dd, J = 8.8, 3.8 Hz, 1H), 3.78 (s, 3H), 2.90 - 2.71
(m, 2H), 2.29 (dtd, J = 13.0, 5.6, 3.8 Hz, 1H), 2.01 (dtd, J = 13.0, 9.1, 5.3 Hz, 1H). :*C
NMR (101 MHz, CDClz) 6 173.8, 143.1, 129.3, 127.2, 120.7, 117.8, 114.7, 54.1, 52.5,
26.0, 24.8. Chiral HPLC method: Chiralpak AD, hexane/IPA = 80/20, 1 mL/min, A =
254 nm; (R)-tr = 7.62 min (major), (S)-tr = 9.04 min (minor).
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Br\©\/j
—Z
N Me

Hantzsch ester (3.0 eq.)

2.5¢ (5 mol%

solvent, 22 °C

Table 2.3. Solvent Screening and Optimization of Reaction Conditions.

Seel ot

2.10a 2418 Hantzsh ester
Entry Solvent Time (h) Yield (%) ee (%)
1 toluene 2 99 80
2 CHCl; 1.5 99 75
3 CHCls 0.5 99 80
4 CCls 1.5 99 86
5 DCE 1.5 99 78
6 cyclohexane 5 99 89
7 n-hexane 5 99 86
8 Et.O 3 99 85
9 t-BuOMe 3 99 85
10 EtOAC 2 99 84

Hantzsch ester (3.0 eq.)

Table 2.4. Optimization of Hantzsch Ester.

@g*ﬁ%

Br\@\/j 2.5¢ (5 mol%
NZ “Me solvent, 22 °C
2.10a 2114 Hantzsh ester
Entry R Time (h) Yield (%) ee (%)
1 Me 5 99 88
2 Et 5 99 89
3 t-Bu 3 99 85
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2.7 Associated Content

NMR spectra and chiral HPLC data are provided in Appendix I.
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Chapter 3: Re-evaluation of P-Chiral, N-Phosphoryl Sulfonamide Brgnsted Acids
in the Asymmetric Synthesis of 1,2,3,4-Tetrahydroquinoline-2-carboxylate Esters

via Biomimetic Transfer Hydrogenation

3.1 Preface

The organocatalytic, asymmetric transfer hydrogenation of pro-chiral molecules is a
powerful strategy for the synthesis of chiral compounds, owing to the atom economical,
and green nature of this protocol. Conventional BINOL-based phosphoric acids, such
as TRIP, are often effective in catalysing the transfer hydrogenation of reactive
quinoline precursors to the corresponding tetrahydroquinolines. However, in the case
of deactivated quinolines, these phosphoric acids are less effective. Herein, the catalytic
properties of a novel class of P-chiral N-phosphoryl sulfonamide Brgnsted acids are
further evaluated in the asymmetric transfer hydrogenation of deactivated, C2-
carboxylate ester-substituted quinolines. The scope of this research also includes an
investigation of the thermal stability of this class of P-chiral Brgnsted acids,

highlighting a rearrangement that occurs at elevated temperature.

The work presented in this chapter has been published as shown: Mbaezue, 1. 1.; Topic,
F.; Tsantrizos, Y. S. Re-evaluation of P-Chiral, N-Phosphoryl Sulfonamide Brgnsted
Acids in the Asymmetric Synthesis of 1,2,3,4-Tetrahydroquinoline-2-carboxylate
Esters via Biomimetic Transfer Hydrogenation. Synlett 2023, 34, 1709-1714.

Ifenna I. Mbaezue synthesised all compounds and conducted all experiments reported
in this manuscript. Dr. Filip Topic analysed X-ray crystallography data of key
substrates and catalysts. Youla Tsantrizos and Ifenna I. Mbaezue co-wrote the

manuscript.
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3.2 Abstract

Enantioenriched heterocyclic and rigidified bioisosteres of amino acids are
valuable building blocks in drug discovery, particularly in the design of peptidomimetic
drugs. The rigidified bioisostere of phenylalanine, 1,2,3,4-tetrahydroquinoline-2-
carboxylic acid, is found in several biologically active compounds. However, only a
small number of successful methodologies have been reported for its asymmetric
synthesis. To develop an environmentally benign and metal-free organocatalytic
process for the preparation of this compound, a number of novel P-chiral, N-phosphoryl
sulfonamide Bregnsted acids were synthesized and evaluated in a biomimetic transfer
hydrogenation reaction of quinoline-2-carboxylates to give the (R)-1,2,3,4-

tetrahydroquinoline-2- carboxylates.

3.3 Introduction

Chiral molecules that can serve as bioisosteres of amino acids constitute
valuable building blocks for medicinal chemistry, particularly in the synthesis of
biologically active peptidomimetics. These bioisosteres often play a significant role in
optimizing the biopharmaceutical properties of human therapeutics, improving their
cell-based potency, metabolic stability, solubility in biological fluids and oral
bioavailability.! Examples of such enormously valuable building blocks are those
characterizing the structures of the clinically validated drugs shown in Figure 3.1.
Amino acid bioisosteres also serve as precursors in the synthesis of other chiral
molecules that are equally valuable in medicinal chemistry and organic
synthesis/catalysis (Figure 3.2). Examples include intermediates 3.6 and 3.7, which
have been used in the preparation the chiral N-heterocyclic carbene ligand (NHC) of
the Ru-based catalyst 3.9,% and the multikilogram production of the Bcl-2/Bcl-xL dual
antagonist 3.10, 3 respectively (Figure 3.2). For both of these examples, the rigidified

phenylalanine bioisostere 3.8 was used as the starting material, which was initially
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accessed from the hydrogenation of inexpensive and commercially available quinoline-

2-carboxylic acid.?®
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Figure 3.1. Examples of Amino Acid Bioisosteres (highlighted in blue) in Human

Therapeutics.
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Figure 3.2. An Example of a Chiral Ligand (3.9) and a Human Therapeutic (3.10),
Synthesized from Chiral Tetrahydroquinoline-2-Carboxylic Acid (3.8).

Tetrahydroquinoline scaffolds are a common structural motif of biologically
active natural products and human therapeutics.* A number of efficient methodologies
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have already been reported on the asymmetric synthesis of such compounds that include
metal-catalyzed asymmetric hydrogenation,® as well as biomimetic transfer
hydrogenation catalyzed by Bransted acids,® of their precursor quinolines. However, a
very limited number of reports describe the asymmetric hydrogenation of quinolines
having a C-2 electron-withdrawing substituent, such as a ketone, carboxylic acid, amide

or ester moiety (Scheme 3.1).

(a) Enzymatic Resolution
1) PtO, / H, (60-70 bar)

©\/j 2) a-chymotrypsine ©\/j\
T .

e

N CO,Me H CO,Me

41% yield; >99% ee

(b) Iridium-Catalyzed Hydrogenation
[Ir(COD)CI],, (R)-Segphos
— 0,
N >coMe  20°C.17h N7 Co,Me

95% yield; 74% ee

(c) Metal-Free Transfer Hydrogenation Catalyzed by a P-Chiral Bronsted Acid
OttoPhosa |

©\/j __Hantzsch Ester ©\/j
Co,Me o S0C.4n “CO,Me

71% yleld 30% ee

(d) Biomimetic Ruthenium-Catalyzed Hydrogenation
[Ru(p-cymene)l,],,

(S)- CYNAM
= Hj (34.5 bar »
N~ “CO;Me 60°C, 48h CO,Me

98% y|eId 97% ee

Scheme 3.1. Asymmetric hydrogenation of quinoline-2-carboxylate.

In the course of our medicinal chemistry investigations, enantioenriched
tetrahydroquinoline-2-carboxylic acid (Figure 3.2; 3.8) was required for the preparation
of peptidomimetic inhibitors targeting the zinc metalloprotease STE24 (ZMPSTE24).”
Earlier reports on the synthesis of 3.8 (as its methyl ester) directly from the quinoline-
2-carboxylate methyl ester include classical hydrogenation followed by enzymatic
separation of the enantiomers (Scheme 3.1a)2 iridium-catalyzed asymmetric
hydrogenation of quinoline2-carboxylate ester (Scheme 3.1b),® and biomimetic, metal-
free transfer hydrogenation catalyzed by a P-chiral, N-phosphoryl sulfonamide

Bronsted acid (Scheme 3.1c).1° Most recently, a very efficient Ru-catalyzed
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asymmetric reduction that utilizes a regenerable bioisostere of NADH/NADPH [(S)-
CYNAM] and a Bransted acid (Scheme 3.1d) was also reported.'? Phosphorus-based
Bransted acids are highly valuable organocatalysts,® with the BINOL-based derivatives
catalyzing numerous transformations. These organocatalysts were first reported by
Akiyama®® and Terada,** and have been reported to catalyze a plethora of asymmetric
reactions, including Mannich-type!3!41> and Diels-Alder reactions,'® the
enantioselective hydrophosphonylation of imines,'’ reductive aminations,'® imine
transfer hydrogenations,'® Friedel-Crafts alkylations,?® intramolecular Michael
additions,?! the N,O-acetalization of aldehydes®? and the transfer hydrogenation of
various heterocyclic compounds.®? These Bransted acids were also reported to
catalyze metal-free asymmetric 6mn-electrocyclization reactions, leading to
enantiomerically enriched 1,4-dihydropyridazines.?* BINOL-based dimeric and
sterically highly confined imidodiphosphorimidate analogs were designed by List,
and shown to catalyze the formation of highly enantioenriched five- and six-membered
ring ethers from the intramolecular nucleophilic attachment of an alcohol onto a double
bond.?® Additionally, these molecules can also catalyze enantioselective C-C bond
formation in Mukaiyama aldol-type reactions at remarkably low concentration of the

catalyst.?*

3.4 Results and Discussion

P-Chiral, N-phosphoryl sulfonamide Brgnsted acids, such as 3.12, were
originally reported by Han, Senanayake and co-workers,?® and were used in the transfer
hydrogenation of quinolines to tetrahydroquinolines with modest enantioselectivity

(e.g., Table 3.1, entry 1).
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Table 3.1. Asymmetric Transfer Hydrogenation of Quinolines.?

Etog(j\/j/\cozEt

RS N R®

T, s L)
N “R2 Catalyst (5 mol%) N~ “R2

3.11 solvent 38 H
Entry | Cat. R?/R® Temp. Time Solvent Yield ee
°C) (h) (%) | (%)
1 3.12 Me/Br 48 48 Toluene 75 40
2 3.13 Me/Br 22 2 Toluene 99 58
3 3.14b Me/Br 22 2 Toluene 71 | 80(93)°
4 3.14b | CO2Me/H 50 4 Cyclohexane 71 30
5 3.14a | CO2Me/H 35 12 Toluene 71 23
6 3.14b | CO2Me/H 35 12 Toluene 70 13
7 3.14c | COMe/H 35 12 Toluene 72 26
8 3.14d | CO2Me/H 35 12 Toluene 73 0
9 3.14e | COMe/H 35 12 Toluene 73 45
10 3.14e | CO;Me/H 50 4 Toluene 75 44
11 none | CO2Me/H 50 48 Toluene 0 -
12 3.16 | CO2Me/H 50 4 Toluene 0 -
13 3.14e | CO2Me/H 50 4 Cyclohexane 73 49
14 none | CO2Me/H 50 4 Cyclohexane 0 -
15 3.14e | CO2Me/F 50 4 Cyclohexane 83 48
16 | 3.14e | CO:Me/Br 50 4 Cyclohexane | 76 | 46(66)°

aThe absolute stereochemistry was assigned based on comparison of the chiral HPLC data previously
reported. PIsolated yield. In some cases, the isolated yield is lower than expected, based on the 100%
conversion observed, due to co-elution of the Hantzsch pyridine by-product with products having C2 =
CO:Me, making the purification more challenging. %% ee of crystalline product after crystallization. %%

ee of the mother liquor after crystallization.

We speculated that the introduction of an intramolecular hydrogen bond/ion pair

(Figure 3.3; e.g., 3.13),%° could modulate the catalytic activity of these organocatalysts,
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stabilizing the conformation of the catalytic cavity, and potentially acting as a ‘hydride
shuttle’, which could lead to significant acceleration of the reaction rate and increase in

enantioselectivity.°

e N Ar = | l
H ! !
R'O © /j\g?/k
3.12; Ar=B, R'= Me
A B

3.13;Ar=B,R'=H

Cy-__A~__Cy Ph._A__Ph
HO ° e
0 3%
s Cy Ph
0

3.14e;’Ar= E ‘ OO
Ar O
90 ;
o. 0O

e

3.16; Ar=B

Figure 3.3. Brgnsted Acid Catalysts Explored in the Transfer Hydrogenation of
Quinoline-2-Carboxylate Methyl Ester.

During our initial evaluation of organocatalyst 3.13, we observed a dramatic
acceleration of the reaction rate and substantial improvement in enantioselectivity,
when compared to 3.12 (Table 3.1, entry 1 vs. 2).2% After some screening of the aromatic
substituent attached to the phosphorus atom,'® the optimized analog OttoPhosa |
(3.14b) was identified and found to further increase enantioselectivity to 80% ee (entry
3). We were also pleased to find that analog 3.14b could catalyze the asymmetric
transfer hydrogenation of the methyl quinoline-2-carboxylate 3.11 (R>=C0O;Me, R%=H)
to the corresponding methyl (R)-1,2,3,4-tetrahydroquinoline2-carboxylate (3.8), albeit
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with much lower enantioselectivity and only at higher temperature (entry 4). The
basicity of the quinoline nitrogen plays a major role in the rate of this reaction and,
consequently, it is not surprising that electron-withdrawing substituents at the C-2
carbon decelerate the reaction rate. In fact, our previous report is the first example of a
Bronsted acid catalyzed transfer hydrogenation of quinoline-2-carboxylate (3.11;
R®=H).1% However, after further evaluation of Brgnsted acid 3.14b, we observed
significant decomposition of this molecule at high temperature. The decomposition of
3.14b was followed by *!P NMR (in CDCl3) and it was found to begin within 5 hours
at 40 °C and lead almost quantitatively to the racemic phosphonamidate 3.15 within 24
hours (Figure 3.3). The structure of this rearranged product (3.15) was confirmed by its

single-crystal X-ray structure (Figure 3.4).

LA
- P
(;//\4“;\_5/

Figure 3.4. Single-Crystal X-ray Structure of Racemic Phosphonamidate 3.15.

In the last decade alone, numerous [1,2]-phospha-Brook rearrangements have
been employed in synthetic methodologies. Examples include the preparation of
optically active phosphoric esters,”” Brgnsted base catalyzed [2,3]- Witting
rearrangements of 2-allyloxy-2-phosphonoacetates,?® intramolecular cyclization of
alkynyl o-ketoanilide,?® asymmetric organocatalytic reductive coupling of benzylidene
pyruvates and aldehydes,®® the synthesis of 3-aryloxindoles,3* preparation of 2,3-
allenylamides,®? Brgnsted base catalyzed three-component coupling reactions of a-
ketoesters, imines and diethyl phosphite,3 intramolecular addition of benzyl anion to

alkyne,3* the generation of homoenolate equivalent compounds,® preparation of
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tetrasubstituted furans,® transformation of a,B-epoxyketones to allylic alcohols,3” and
the fluorinative ring expansion of 2- benzoylpyrrolidines.®® Most recently, the use of
this rearrangement has also been reported in the preparation of
(difluoromethyl)cycloalkenes,®®  the  Passerini-Smiles  reaction  of  o-

ketophosphonates,*°

and the asymmetric synthesis of enantioenriched axial chiral
allenes.*! All of the above mentioned reactions proceed under basic conditions, and
examples of a Lewis acid catalyzed reaction are extremely rare.*? To our knowledge,
the Brgnsted acid catalyzed [1,4]-phospha-Brook rearrangements observed in this
study, for the conversion of organocatalyst 3.14b into the phosphonamidate 3.15, has
not been previously reported. At high temperatures, it is likely that the electron-
deficient phosphorus atom of 3.14b can drive the nucleophilic attachment of the phenol
to induce the rearrangement. It is also plausible that during the transfer hydrogenation
of 3.11 to give 3.8 (Table 3.1) the accumulating 1,2,3,4-tetrahydroquinoline product
(Figure 3.5; Path A, i.e., during the 2nd step of the catalytic cycle) is sufficiently basic
to hydrogen-bond or deprotonate the weakly acidic phenol and accelerate an [1,4]-
phospha-Brook rearrangement (Figure 3.5; Path B). The latter mechanism may explain
why even at slightly higher temperatures (from 35 to 50 °C, corresponding to the
temperatures at which 3.14b is fairly stable and unstable, respectively, over a period of
4 hours) there is no significant deterioration of the enantioselectivity. Another
possibility is that intramolecular rearrangement, involving a configurationally labile
trigonal bipyramidal intermediate on the phosphorus atom, may be involved in the
formation of 3.15; such intermediates have been proposed in the racemization of P-

chiral SPOs in the presence of LiAIH4. 43
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3

Phosphonamidate 3.15

Figure 3.5. Plausible Mechanism for the [1,4]-phospha-Brook Rearrangement of

Organocatalyst 3.14b to the Phosphonamidate 3.15.

In the hope of identifying a better organocatalyst within this structural class of
Bragnsted acids, which could catalyze the asymmetric hydrogenation of quinolines
having a C-2 electron-withdrawing group at low temperatures and in higher
enantioselectivity, we turned our attention to the role of the sulfonamide moiety.
Several new derivatives were synthesized (Figure 3.3; analogs 3.14a, 3.14c,d.e) in
order to evaluate the relative contributions to thermal stability and ability to induce
enantioselectivity in the transfer hydrogenation specifically of quinoline-2-carboxylate
methy| esters (3.11). Initially, we carried out these reactions at 35 °C, which was found
to be the highest temperature at which catalyst 3.14b was chemically stable over a
period of 48 hours. Interestingly, when the catalytic properties of Brgnsted acid 3.14b
were compared with those of 3.14a and 3.14c, having a less sterically congested and a
more sterically congested catalytic cavity, respectively, the reaction rates and yields
were found to be virtually identical, and only a slightly higher enantiomeric excess of
the product was observed with 3.14a and 3.14c, as compared to 3.14b (Table 3.1;
entries 5-7). Although these differences are very small, they suggested that steric
hindrance may not play a very significant role in inducing enantioselectivity in this

transformation. However, a more extended aromatic system on the sulfonamide
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moieties, such as analog 3.14d and 3.14e, lead to significantly different outcomes.
Whereas Brgnsted acid 3.14e catalyzed the transfer hydrogenation of 3.11 to 3.8 with
higher enantiomeric excess (entry 9), 3.14d led to a completely racemic product (entry
8). These results seem to suggest that n-stacking interaction plays an important role in
directing the binding of quinoline 3.11 within the catalytic cavity, allowing for the
formation of a salt-bridge with the nitrogen or the oxygen anion, or even a bifurcated
interaction with both. However, n-stacking interactions distal to the N-/O— may be
detrimental in controlling the orientation of substrate binding. In spite of some
decomposition of catalyst 3.14e at higher temperatures (presumably due to the
equivalent rearrangement product as 3.15, these decomposition products did not appear
to have any significant catalytic function), since increasing the temperature of the
reaction to 50 °C led to 100% conversion (75% isolated yield) over a 4 h period with
equivalent enantioselectivity (44-45% ee, entry 9 vs. 10). This result also suggests that
catalyst loading lower than 5% may be sufficient to catalyze this reaction, albeit with a
longer reaction time. We also confirmed that, in the absence of an organocatalysts, the
transfer hydrogenation of 3.11 to 3.8 did not proceed at all, even at 50 °C temperature
and over the same period (entry 10 vs. 11 and 14). To further validate the unique
catalytic properties of compound 3.14e, the same reaction was also run using the
commercially available Brensted acid 3.16 [(R)-3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-
binaphthyl-2,2’-diylhydrogenphosphate; (R)-TRIP] at both 35 °C and 50 °C, and for an
extended reaction period (4-48 h); however, we did not observe any conversion (entry
12). Finally, based on our previous solvent screening studies,’® this transfer
hydrogenation reaction was also run using cyclohexane as the solvent (entry 13);
however, only a very slight increase in enantiomeric excess was observed (entry 13).
The yield and enantiomeric excess observed at the 1 mmol scale were essentially
identical to those observed at the 0.2 mmol scale (entry 13).** To further probe the
outcome observed in the transfer hydrogenation of methyl quinoline-2-carboxylate
substrate 3.11 (with R? = CO;Me, R® = H), the 6-fluoro- and 6-bromoquinoline-2-

carboxylate methyl esters were also exposed to the same reaction conditions and found
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to give very similar outcomes (entry 13 vs. 15 and 16). Although, crystallization could
be used to improve the enantiomeric purity of 3.8 when R?= Me and R® = Br (entry 3)
from 80 to 93%, crystallization of 3.8 when R? = CO,Me and R® = H, F or Br proved
to be more challenging. For example, crystallization of the reaction mixture containing
the methyl 6-bromo-1,2,3,4-tetrahydroquinoline-2-carboxylate (3.11, entry 16; 46% ee)
led to enantiomeric enrichment of the mother liquor (rather than the crystalline

material) from 46 to 66% ee (entry 16).

3.5 Conclusion

In summary, in this study we have identified a serious limitation in using P-
chiral, N-phosphoryl sulfonamide Brensted acids at high temperatures, due to their
facile rearrangement into a racemic phosphonamidate product. Nonetheless, this class
of organocatalysts leads to much faster reaction rates at nearly ambient temperature, as
compared to many BINOL-based Brgnsted acids, and has the ability to induce the
metal- and hydrogen-gas-free transfer hydrogenation of quinolines bearing a C-2
electron-withdrawing substituent, such as an ester moiety. Although establishing a large
substrate scope was beyond the purpose of this study, and the enantiomeric ratio
achieved was only ca. 75:25 (R/S), it is conceivable that, upon crystallization, a

significant improvement in the enantiomeric purity of product(s) would be possible.

3.6 Experimental Section

General Procedure: All reactions were carried out under anhydrous conditions and
under an atmosphere of dry argon, except transfer hydrogenation reactions, which were
carried out under air in sealed vessels. Compounds were purified by normal phase flash
column chromatography on silica gel (SDS, 60 A C. C. 40-63 mm) as the stationary
phase. Thin Layer Chromatography (TLC) was performed on alumina plates pre-coated
with silica gel (Merck silica gel, 60 F254), which were visualized by UV when

applicable (Amax = 254 nm and/or 366 nm) and/or by staining with vanillin or
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anisadehyde in acidic ethanol and/or KMnOs in basic water followed by heating. Key
compounds were fully characterized by 'H, '*C{'H} and 3'P{'H} NMR and HRMS.
Chemical shifts (0) are reported in ppm relative to the internal deuterated solvent or
external H3PO4 (8 0.00 3!P), unless indicated otherwise. High-resolution MS spectra
were recorded using electrospray ionization (ESI+/-) and Fourier transform ion
cyclotron resonance mass analyzer (FTMS).

The reactions were monitored either by TLC or analytical HPLC/MS to confirm
completion and homogeneity of the products. Analytical HPLC was performed using a
reversed phase C18 5 um column on a Waters Atlantis T3 instrument and the solvent
system indicated below:

Solvent A: H>0O, 0.1% formic acid

Solvent B: CH3CN, 0.1% formic acid

Mobile phase: linear gradient from 95%A and 5%B to 5%A and 95%B in 13 min, then
2 min at 100% B

Flow rate: 1 mL/min

The enantiomeric purity of chiral compounds was determined by chiral HPLC using an
Agilent 1100 or Agilent 1260 series instrument and the column and solvent system
indicated for each compound. The absolute stereochemistry of all compounds was
assigned based on several factors, including the single crystal X-ray of the previously
reported key precursor compounds.

Chloroform (CHCls) used in screening, was passed through SiO; to remove residual
EtOH (preservative) and used immediately after. Methoxy-2-quinoline carboxylate was
purchased from Sigma Aldrich. All other substituted quinolines were synthesized
according to literature procedure from the precursor methyl quinolines, via sequential

tribromination,* carboxylation*® and esterification.*’
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Procedure for the Synthesis of Catalysts 3.14a-e:

(R)-P-(tert-butyl)-P-(2-methoxynaphthalen-1-yl)phosphinic amide and catalyst 3.14b

were synthesised according to previously reported literature protocol.*81°

(R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-4-

methylbenzenesulfonamide

An oven-dried 25 mL flask equipped with an oven-dried stir bar was cooled to ambient
temperature in a desiccator. Subsequently, phosphinic amide (90.5 mg, 0.326 mmol)
was added to the flask and put through one cycle of evacuation and Ar-backfilling. Dry
THF (3 mL) was added to the flask under Ar, to dissolve the phosphinic amide. While
stirring, the solution was cooled to an external temperature of 3 °C in an ice bath and t-
BuOK (110 mg, 0.979 mmol) was added in one portion. The mixture was stirred for 30
minutes at this temperature and then 4-toluenesulfonyl chloride (249 mg, 1.31 mmol)
was added in one portion, under Ar. The mixture was stirred vigorously while sitting in
the bath, where it slowly warmed up to RT and was stirred for 14 h. Subsequently, the
reaction was quenched with NH4Cl (8 mL) and diluted with EtOAc (10 mL). The
mixture was transferred to a separatory funnel. The flask was washed with EtOAc (4
mL x 2) and the resulting solution was transferred to the separatory funnel. Brine (10
mL) was added and the organic layer was separated. The aqueous layer was further
extracted with EtOAc (10 mL) and the combined organic layers was dried over Na;SOa,
filtered and concentrated. The crude was purified on SiO; via flash column
chromatography (0-3% DCM/MeOH) to afford the desired product as a light brown oil.
Re-dissolving the oil in CDCl3 and evaporating gave a light-yellow solid in 78% yield
(110 mg, 0.255 mmol). *H NMR (400 MHz, CDCls): & 9.36 (d, J = 8.9 Hz, 1H), 8.00

107



(d, J = 9.1 Hz, 1H), 7.89 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.1 Hz, 1H), 7.50 (ddd, J =
8.7, 6.8, 1.7 Hz, 1H), 7.38 (ddd, J = 8.0, 6.8, 1.1 Hz, 1H), 7.22 (dd, J = 9.2, 4.9 Hz,
1H), 7.07 (d, J = 8.0 Hz, 2H), 4.06 (s, 3H), 2.25 (s, 3H), 1.13 (d, J = 17.4 Hz, 9H). 13C
NMR (126 MHz, CDCls): 6 158.4, 143.4, 138.9, 136.7 (d, J = 7.8 Hz), 135.9 (d, J = 1.9
Hz), 129.6, 129.2, 128.3, 128.2, 127.7, 127.4 (d, J = 2.3 Hz), 124.7, 111.9 (d, J = 8.2
Hz), 109.8 (d, J = 97.1 Hz), 56.7, 37.3 (d, J = 89.7 Hz), 24.3, 21.6. 3'P NMR (162 MHz,
CDCl3): 0 42.96. HRMS (ESI+, m/z): calcd for C22H27NO4PS [M+H]: 432.1393, found:
432.1407.

(R)-N-(tert-butyl(2-hydroxynaphthalen-1-yl)phosphoryl)-4-

methylbenzenesulfonamide (3.14a)

An oven dried 25 mL round bottom flask was charged with an oven dried stir-bar and
cooled to ambient temperature in a desiccator. The starting material (83.3 mg, 0.193
mmol) was added and the flask was put through a cycle of evacuation and Ar-
backfilling. Dry DCM (2 mL) was added under Ar and the flask was cooled to -70 °C.
1M BBrz in DCM (0.23 mL, 0.23 mmol) was added dropwise over 2 minutes while
stirring. The flask was allowed to slowly warm up to rt in the bath, over 5 h and stirring
was continued for another 2 h at RT. After a TLC showed complete consumption of
starting material (5% MeOH/95% DCM), the flask was cooled to 0 °C in an ice bath
and the reaction was quenched with deionised water (5 mL). The reaction was diluted
with DCM (5 mL) and transferred to a 60 mL separatory funnel. The flask was rinsed
with DCM (1 mL x2) and transferred to the separatory funnel and the organic layer was
separated. The aqueous was further extracted with DCM (5 mL) and the combined
organic layers was washed with 1IN HCI (2 mL). The organic layer was dried over

Na>SO0s, filtered and concentrated under reduced pressure (at 35 °C). The crude product
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was purified via flash column chromatography on EtsN-deactivated SiO2 (0-2%
MeOH/DCM) to yield a brown oil. The oil was redissolved in DCM (5 mL) and washed
thoroughly with 2N HCI (1 mL) to reveal a cloudy yellow organic layer which was
collected. The aqueous layer was extracted with DCM (1 mL) and the combined organic
layers was washed once more with 2N HCI (1 mL). The aqueous layer was extracted
with DCM (2 mL) and the combined organic layers was concentrated under reduced
pressure. The resulting white solid was suspended in toluene (5 mL), evaporated to
dryness (at 30 °C) and concentrated under high vacuum for 24 h, to afford the desired
compound as a light yellow solid in78% yield (63.0 mg. 0.151 mmol). *H NMR (400
MHz, CDCls): 6 12.51 (s, 1H), 8.13 (d, J = 8.6 Hz, 1H), 7.84 (dd, J = 15.4, 8.7 Hz, 3H),
7.71 (m, 1H), 7.38 (ddd, J = 8.6, 6.9, 1.6 Hz, 1H), 7.33 — 7.25 (m, 1H), 7.14 (d, J = 8.0
Hz, 2H), 7.09 (dd, J = 9.0, 4.7 Hz, 1H), 2.35 (s, 3H), 1.21 (d, J = 17.0 Hz, 9H). 3C
NMR (126 MHz, CDClz): ¢ 166.5, 144.7, 137.5, 136.5, 133.5, 129.5, 129.3, 128.7,
128.6, 127.7, 127.4, 125.0 (d, J = 4.0 Hz), 123.4, 120.8 (d, J = 11.0 Hz), 36.9 (d, J =
85.5 Hz), 24.8, 21.7. 3P NMR (162 MHz, CDCls): & 48.49. HRMS (ESI-, m/z): calcd
for C21H23NO4PS [M-H]: 416.1091, found: 416.1107.

(R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-2,4,6-

tricyclohexylbenzenesulfonamide

An oven-dried 25 mL flask equipped with an oven-dried stir bar was cooled to ambient
temperature in a desiccator. Subsequently, phosphinic amide (73.7 mg, 0.266 mmol)
was added to the flask and put through one cycle of evacuation and Ar-backfilling. Dry

THF (3 mL) was added to the flask under Ar, to dissolve the phosphinic amide. While
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stirring, the solution was cooled to an external temperature of 3 °C in an ice bath. t-
BuOK (89.5 mg, 0.797 mmol) was added in one portion. The mixture was stirred for
30 minutes at this temperature and then the sulfonyl chloride (337 mg, 0.797 mmol)
was added in one portion, under Ar. The mixture was stirred vigorously while sitting in
the bath, where it slowly warmed up to RT and then stirred for 20 h. Subsequently,
the reaction was quenched with NH4ClI (8 mL) and diluted with EtOAc (10 mL). The
mixture was transferred to a separatory funnel. The flask was washed with EtOAc (4
mL x 2) and the resulting solution was transferred to the separatory funnel. Brine (10
mL) was added and the organic layer was extracted. The aqueous layer was further
extracted with EtOAc (10 mL) and the combined organic layers was dried over Na;SOg,
filtered and concentrated. The crude was purified on SiO, by flash column
chromatography (0-2% DCM/MeOH) to afford the desired product as a light brown oil.
Re-dissolving this oil in CDCIs and evaporating gave a white solid in 81% yield ()143
mg, 0.216 mmol). *H NMR (400 MHz, CDCls): 6 9.36 (d, J = 8.8 Hz, 1H), 8.03 (d, J =
9.1 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.45 (ddd, J = 8.7, 6.7, 1.6 Hz, 1H), 7.36 (ddd, J
=8.0, 6.8, 1.2 Hz, 1H), 7.31 (dd, J = 9.1, 4.8 Hz, 1H), 7.01 (s, 2H), 4.12 (s, 3H), 3.80
—3.61 (M, 2H), 2.67 —2.22 (m, 1H), 1.91 (d, J = 11.6 Hz, 2H), 1.80 (d, J = 8.1 Hz, 4H),
1.75 — 1.65 (m, 5H), 1.65 — 1.46 (m, 7H), 1.42 — 1.09 (m, 21H). 1*C NMR (126 MHz,
CDCl3): ¢ 158.7, 151.6, 149.3, 135.7, 128.2, 128.0, 127.6, 124.9, 124.7, 1245, 56.7,
44.6,40.8,37.5,36.8,35.1, 34.9, 34.1, 34.0, 27.3, 27.1, 26.9, 26.5, 26.2, 24.7. *1P NMR
(162 MHz, CDCls): 6 42.06. HRMS (ESI+, m/z): calcd for CaoHssNO4PS [M+H]:
664.3584, found: 664.3588.
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(R)-N-(tert-butyl(2-hydroxynaphthalen-1-yl)phosphoryl)-2,4,6-

tricyclohexylbenzenesulfonamide (3.14c)

An oven dried 25 mL round bottom flask was charged with an oven dried stir-bar and
cooled to ambient temperature in a desiccator. The starting material (121 mg, 0.182
mmol) was added and the flask was put through a cycle of evacuation and Ar
backfilling. Dry DCM (2 mL) was added under Ar and the flask was cooled to -70 °C.
1M BBr3z in DCM (0.22 mL, 0.22 mmol) was added dropwise over 2 minutes, while
stirring. The flask was allowed to slowly warm up to rt in the bath, over 6 h and stirring
was continued for another 2 h at RT. After a TLC showed complete consumption of
starting material (5% MeOH/95% DCM), the flask was cooled to 0 °C in an ice bath
and the reaction was quenched with of deionised water (5 mL). The reaction was diluted
with DCM (5 mL) and transferred to a 60 mL separatory funnel. The flask was rinsed
with DCM (1 mL x 2), transferred to the separatory funnel and the organic layer was
separated. The aqueous layer was further extracted with DCM (5 mL x 2) and the
combined organic layer was washed with 1N HCI (2 mL) and the resulting organic layer
was collected. The acidic-aqueous layer was further extracted with DCM (5 mL). The
combined organic layer was dried over Na»SOs, filtered and concentrated under
reduced pressure (at 30 °C). The crude product was purified via flash column
chromatography on EtsN-deactivated SiO» (0-2% MeOH/DCM) to yield a brown oil.
This was redissolved in 5 mL DCM and washed thoroughly with 2N HCI (1 mL) to
reveal a cloudy yellow organic layer which was collected. The aqueous layer was
extracted with DCM (1 mL) and the combined organic layer was washed once more

with 2N HCI (1 mL). The aqueous layer was extracted with DCM (2 mL) and the
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combined organic layer was concentrated under reduced pressure. The resulting white
foam was suspended in toluene (5 mL), evaporated to dryness (at 30 °C) and
concentrated under high vacuum for 24 h, to afford the pure compound as a light-yellow
solid in 87% yield (103.4 mg. 0.159 mmol). *H NMR (400 MHz, CDCls): 6 12.60 (s,
1H), 8.09 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 9.1 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.24 —
7.17 (m, 2H), 7.12 (dd, J = 9.0, 4.7 Hz, 1H), 7.03 (s, 2H), 6.37 (s, 1H), 3.47 — 3.24 (m,
2H), 2.50 — 2.40 (m, 1H), 1.96 — 1.82 (m, 6H), 1.81 — 1.74 (m, 3H), 1.69 (d, J = 10.6
Hz, 4H), 1.56 (d, J = 12.2 Hz, 4H), 1.46 — 1.32 (m, 6H), 1.32 — 1.03 (m, 16H). 13C NMR
(126 MHz, CDCls): ¢ 155.8, 152.4, 151.8, 148.4, 136.5 (d, J = 2.3 Hz), 135.0, 129.2,
129.1, 128.4, 126.8, 125.2, 123.3, 120.8 (d, J = 10.9 Hz), 44.7, 41.5, 36.5, 35.1, 34.1,
34.1,27.3,27.1, 26.9, 26.3, 26.2, 25.2. 3P NMR (162 MHz, CDCls): 6 47.50. HRMS
(ESI-, m/z): calcd for CagHs:NO4PS [M-H]: 664.3282, found: 664.3307.

(R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-5'-phenyl-[1,1":3",1"'-

terphenyl]-2'-sulfonamide

N
Q)

An oven-dried 50 mL flask equipped with an oven-dried stir bar was cooled to ambient
temperature in a desiccator. Subsequently, phosphinic amide (75.2 mg, 0.271 mmol)
was added to the flask and put through one cycle of evacuation and Ar-backfilling. Dry
THF (4 mL) was added to the flask under Ar, to dissolve the phosphinic amide. While
stirring, the solution was cooled to an external temperature of 3°C in an ice bath. t-
BuOK (91.3 mg, 0.813 mmol) was added in one portion. The mixture was stirred for
30 minutes at this temperature and then sulfonyl chloride (220 mg, 0.542 mmol) was

added in one portion, under Ar. The mixture was stirred vigorously while sitting in the
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bath, where it slowly warmed up to RT and stirred for 18 h. Subsequently, the reaction
was cooled to 3 °C in an ice bath, quenched with NH4Cl (8 mL) and diluted with EtOAc
(10 mL). The mixture was transferred to a separatory funnel. The flask was washed
with EtOAc (4 mL x 2) and the resulting solution was transferred to the separatory
funnel. Brine (10 mL) was added and the organic layer was extracted. The aqueous
layer was extracted with EtOAc (15 mL x 3) and the combined organic layer was dried
over NazSQg, filtered and concentrated. The crude was purified on SiO; via flash
column chromatography (0-2% DCM/MeOH) to afford the desired product as a light-
yellow solid in 77% yield (135.6 mg, 0.210 mmol). *H NMR (400 MHz, CDCls): 6 9.43
(d, J = 8.8 Hz, 1H), 8.04 (d, J = 9.2 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.65 — 7.46 (m,
4H), 7.45 — 7.28 (m, 9H), 7.21 (tt, J = 7.5, 1.3 Hz, 2H), 7.16 — 7.01 (m, 3H), 6.82 (d, J
= 6.9 Hz, 2H), 3.68 (s, 3H), 1.00 (d, J = 17.8 Hz, 9H). 3C NMR (126 MHz, CDCls): &
157.7, 143.0, 141.8, 139.0, 138.5, 136.8 (d, J = 7.4 Hz), 135.3, 130.9, 129.7, 129.5,
129.4,128.9,128.3,127.5,127.4,127.1, 126.8, 124.6, 111.6, 111.6, 109.9, 109.2, 55.5,
37.8(d, J = 89.3 Hz), 25.4. 3P NMR (162 MHz, CDCls): 5 44.28. HRMS (ESI+, m/2):
calcd for C3gH37NO4PS [M+H]: 646.2175, found: 646.2195.

(R)-N-(tert-butyl(2-hydroxynaphthalen-1-yl)phosphoryl)-5'-phenyl-[1,1":3",1"'-

terphenyl]-2'-sulfonamide (3.14d)

An oven dried 25 mL round bottom flask was charged with an oven dried stir-bar and
cooled to ambient temperature in a desiccator. The starting material (100 mg, 0.155
mmol) was added and the flask was put through 2 cycles of evacuation and Ar

backfilling. Dry DCM (3 mL) was added under Ar. The flask was cooled to -78 °C and
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1M BBrz in DCM (0.20 mL, 0.202 mmol) was added dropwise over 5 minutes, while
stirring. The flask was allowed to slowly warm up to RT over 5 h and stirred for an
additional 24 h at RT. After a TLC showed almost complete consumption of starting
material (5% MeOH/95% DCM), the flask was cooled to 0 °C in an ice bath and the
reaction was quenched with deionised water (5 mL). The reaction was diluted with
DCM (5 mL) and transferred to a 60 mL separatory funnel. The flask was rinsed with
DCM (1 mL x 2) and transferred to the separatory funnel and the organic layer was
separated. The aqueous layer was further extracted with DCM (5 mL x 2) and the
combined organic layer was washed with 1N HCI (2 mL) and the resulting organic layer
was collected. The acidic-aqueous layer was further extracted with DCM (5 mL). The
combined organic layer was dried over Na>SOgs, filtered and concentrated under
reduced pressure (at 30 °C). The crude product was purified via flash column
chromatography on SiO (0-6% MeOH/DCM) to yield a purple-blue solid. This was
redissolved in DCM (8 mL) and MeCN (1 mL) and washed thoroughly with 2N HCI (2
mL) to reveal a cloudy yellow organic layer which was collected. The aqueous layer
was extracted with DCM (1 mL) and the combined organic layers was washed once
more with 2N HCI (2 mL). The aqueous layer was extracted with DCM (2 mL) and the
combined organic layer was concentrated under reduced pressure. The resulting yellow
solid was suspended in toluene (5 mL), and concentrated (at 30 °C) and then under high
vacuum at rt for 24 h, to afford the pure compound as a yellow solid in 88% yield (86.2
mg. 0.137 mmol). 'H NMR (400 MHz, CDCls): ¢ 12.40 (s, 1H), 7.87 (d, J = 9.0 Hz,
1H), 7.72 (d, J = 8.1 Hz, 1H), 7.67 — 7.59 (m, 2H), 7.56 — 7.36 (m, 8H), 7.25—7.11 (m,
8H), 7.11 — 7.02 (m, 2H), 1.05 (d, J = 17.6 Hz, 9H). 3C NMR (126 MHz, CDCl5): 6
157.7, 143.0, 141.8, 139.0, 138.5, 136.8 (d, J = 7.4 Hz), 135.3, 130.9, 129.7, 129.5,
129.4,128.9,128.3,127.5,127.4,127.1, 126.8, 124.6, 111.6, 111.6, 109.9, 109.2, 55.5,
37.8 (d, J = 89.3 Hz), 25.4. 3'P NMR (162 MHz, CDCls): 6 50.57. HRMS (ESI-, m/z):
calcd for CagH3asNO4PS [M-H]: 630.1873, found: 630.1894.
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(R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)phenanthrene-9-sulfonamide

An oven-dried 25 mL flask equipped with an oven-dried stir bar, was cooled to ambient
temperature in a desiccator. Subsequently, phosphinic amide (67.4 mg, 0.243 mmol)
was added to the flask and put through one cycle of evacuation and Ar-backfilling. Dry
THF (3 mL) was added to the flask under Ar, to dissolve the phsphinic amide. While
stirring, the solution was cooled to an external temperature of 3 °C in an ice bath.
Subsequently, t-BuOK (81.8 mg, 0.729 mmol) was added in one portion. The mixture
was stirred for 30 minutes at this temperature and then aryl sulfonyl chloride (202 mg,
0.729 mmol) was added in one portion, under Ar. The mixture was stirred vigorously
while sitting in the bath, where it slowly warmed up to RT and stirred for 42 h.
Subsequently, the reaction was cooled to 0 °C in an ice bath, quenched with NH4ClI (8
mL), diluted with EtOAc (10 mL) after which the mixture was transferred to a
separatory funnel. The flask was washed with EtOAc (4 mL x2) and the resulting
solution was transferred to the separatory funnel. Deionised water (10 mL) was added
to dissolve the salts and the organic layer was separated. The aqueous layer was further
extracted with EtOAc (15 mL x3) and the combined organic layer was dried over
Na2SOg, filtered and concentrated. The crude was purified on SiO2 (flash column
chromatography; 0-3% DCM/MeOH) to afford the desired product as a light brown
solid in 95% yield (104 mg, 0.202 mmol). *H NMR (500 MHz, CDCls): 6 9.08 (d, J =
8.8 Hz, 1H), 8.80 — 8.70 (m, 2H), 8.54 — 8.47 (m, 1H), 8.40 (d, J = 8.2 Hz, 1H), 7.84
(d, J =8.0 Hz, 1H), 7.74 (d, J = 9.1 Hz, 1H), 7.63 (ddd, J = 8.3, 7.0, 1.4 Hz, 1H), 7.61
—7.46 (M, 5H), 7.22 (ddd, J = 8.8, 6.9, 1.6 Hz, 1H), 7.17 (ddd, J = 8.0, 6.7, 1.2 Hz, 1H),
6.89 (dd, J = 9.2, 4.9 Hz, 1H), 3.98 (s, 3H), 1.10 (d, J = 17.4 Hz, 9H). 13C NMR (126
MHz, CDCls): ¢ 136.1, 136.1, 135.7, 134.6, 134.0, 132.2, 131.1, 129.5, 129.4, 129.2,
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128.0,127.8,127.3,127.0, 126.9, 126.0, 125.1, 124.5, 123.3, 122.3, 111.1, 108.8, 60.5,
56.3, 37.7, 37.0, 24.3, 14.4. 3'P NMR (203 MHz, CDCls): 6§ 43.5. HRMS (ESI+, m/z):
calcd for Co9H2sNNaO4PS [M+Na]+: 540.1369, found: 540.1388.

(R)-N-(tert-butyl(2-hydroxynaphthalen-1-yl)phosphoryl)phenanthrene-9-
sulfonamide (3.14e)

A flame-dried 10 mL round bottom flask and stir-bar were cooled to ambient
temperature under a stream of Ar. Subsequently, starting material (75.2 mg, 0.145
mmol) was added and the flask was fitted with a rubber septum. The flask was put
through a cycle of evacuation and backfilling with Ar and dry DCM (3 mL) was added
under Ar. The flask was cooled to -78 °C and 1M BBrz in DCM (0.20 mL, 0.203 mmol)
was added dropwise, while stirring. The flask was allowed to slowly warm up to RT in
the bath, while stirring for 12 h. The flask was cooled to 0 °C in an ice bath and the
reaction was quenched with deionised water (5 mL). The reaction was diluted with
DCM (5 mL) and transferred to a 60 mL separatory funnel. The flask was rinsed with
DCM (1 mL x2) and transferred to the separatory funnel and the organic layer was
collected. The aqueous was further extracted with DCM (5 mL x2) and the combined
organic layer was washed with a 1M HCI solution (2 mL) after which the resulting
organic layer was collected. The acidic-aqueous layer was further extracted with DCM
(5 mL). The combined organic layer was dried over Na>SOs, filtered and concentrated
under reduced pressure (at 30 °C). The crude product was purified via flash column
chromatography on SiO (0-7% MeOH/DCM) to yield a whitish-blue solid. This was
redissolved in DCM (5 mL) and MeCN (1 mL) and washed thoroughly with 2N HCI (2

mL) to reveal a cloudy yellow organic layer which was collected. The aqueous layer
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was extracted with DCM (1 mL) and the combined organic layers were washed once
more with 2N HCI (2 mL). The aqueous layer was extracted with DCM (2 mL) and the
combined organic layer was concentrated under reduced pressure. The resulting white
foam was suspended in toluene (5 mL x2), evaporated to dryness (at 30 °C) and
concentrated under high vacuum for 24 h, to afford the pure compound as a light-yellow
solid (42.1 mg. 0.0836 mmol, 58% yield). *H NMR (500 MHz, CDCls): 6 12.49 (s, 1H),
8.76 (d, J = 7.3 Hz, 1H), 8.66 (d, J = 8.2 Hz, 1H), 8.57 (d, J = 8.6 Hz, 1H), 8.45 (s, 1H),
7.81 (d, J = 8.5 Hz, 1H), 7.76 (ddd, J = 7.4, 4.0, 2.3 Hz, 2H), 7.69 (ddd, J = 8.3, 7.1,
1.5 Hz, 2H), 7.65 (ddd, J = 8.2, 6.9, 1.4 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.44 (d, J =
7.8 Hz, 1H), 7.00 — 6.93 (m, 2H), 6.89 (t, J = 7.7 Hz, 1H), 1.16 (d, J = 17.1 Hz, 9H).
13C NMR (201 MHz, CDCl3): 6 166.7 (d, J = 4.5 Hz), 136.4 (d, J = 2.6 Hz), 134.2,
133.5, 133.1 (d, J = 8.9 Hz), 132.6, 131.3, 131.1, 130.2, 129.2, 129.0, 128.9, 128.4,
128.3 (d, J = 10.1 Hz), 128.0, 127.6 (d, J = 9.6 Hz), 126.9, 125.7, 124.7 (d, J = 4.4 Hz),
124.6,123.7,122.8 (d, J = 75.0 Hz), 120.7 (d, J = 10.9 Hz), 97.8 (d, J = 112.4 Hz), 37.2
(d, J = 85.0 Hz), 25.0. 3P NMR (203 MHz, CDCl3): J 49.4. HRMS (ESI+, m/z): calcd
for C2gH27NO4PS [M]+: 504.1393, found: 504.1410.

117



Thermal Stability Studies of Catalysts 3.14b and 3.14e

Investigation of the decomposition of catalyst 3.14b by 3'P NMR at high temperature

o~

e S B
%""'P_NH CDC3, 40 °C, 46 h ']”_NH
OH O

3.14b 3.15

In 3P NMR in CDCls: An aliquot of 3.14b was heated in dry CDCls at 40 °C, over 46
h; 97% conversion to 3.15 was observed (estimated by 3P NMR; Figure 3.6).
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Figure 3.6. 3P NMR (CDCls) showing Phospha-Brook Rearrangement of Catalyst
3.14b over 46 h.
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In cyclohexane: 3.14b (18.5 mg, 0.0349 mmol) was suspended in dry cyclohexane (2
mL) and the mixture was stirred at 60 °C for 26 h, after which full conversion to 3.15
was observed. After concentrating the reaction mixture, the crude was purified on SiO>
(0-5% MeOH/DCM) and crystallised from DCM/hexanes. *H and P NMR analysis
showed the possibility of rotomers at RT. However, at 50 °C, *H and *'P NMRs showed

peak coalescence.

Naphthalen-2-yl P-(tert-butyl)-N-((2,4,6-
triisopropylphenyl)sulfonyl)phosphonamidite (3.15b)

O

%p—NH

IH NMR (500 MHz, CDCl3): § 7.78 — 7.68 (m, 1H), 7.67 — 7.53 (m, 1H), 7.42 — 7.30
(m, 3H), 7.20 — 7.14 (m, 1H), 7.14 — 7.09 (m, 1H), 7.07 (s, 2H), 6.23 (s, 1H), 4.09 —
3.97 (m, 2H), 2.94 — 2.79 (m, 1H), 1.41 (overlapping d, J = 18.5 Hz, 9H), 1.29 - 1.14
(m, 12H), 0.93 (overlapping d, J = 6.8 Hz, 6H). 1H NMR at 50 °C (400 MHz, CDCls)
§7.77 — 7.66 (m, 1H), 7.62 (d, J = 8.9 Hz, 1H), 7.46 — 7.33 (m, 4H), 7.13 (dd, J = 8.9,
2.4 Hz, 1H), 7.08 (s, 2H), 6.01 (s, 1H), 4.07 (hept, J = 7.5 Hz, 2H), 2.85 (hept, J = 6.5
Hz, 1H), 1.42 (d, J = 18.5 Hz, 9H), 1.33 — 1.15 (m, 12H), 0.99 (d, J = 6.7 Hz, 6H). 13C
NMR (126 MHz, CDCls): § 153.43, 150.41, 150.37, 148.40 (d, J = 11.0 Hz), 134.40,
133.89, 130.73, 129.75, 129.19, 128.37, 127.61, 126.63, 125.43, 124.10, 119.73 (d, J =
6.0 Hz), 116.06 (d, J = 5.0 Hz), 34.82, 34.24, 33.80, 30.08, 24.99, 24.66 (d, J = 3.3 Hz),

24.55, 23.68, 23.63, 21.61. 3P NMR (203 MHz, CDCls3): ¢ 30.54, 30.43. 3P NMR at
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50 °C (162 MHz, CDCls): & 30.34. HRMS (ESI-, m/z): calcd for CagHzoNO4PS [M-
H]+: 528.2332, found: 528.2340.

Investigation of the decomposition of catalyst 3.14e by 3P NMR at high temperature

In CDCls: An aliquot of 3.14e was heated in dry CDCls at 40 °C, over 46 h; 95%

conversion to 3.17 was observe (estimated by *'P NMR; Figure 3.7).
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Figure 3.7. 3P NMR (CDCls) showing Phospha-Brook Rearrangement of Catalyst
3.14e over 46 h.
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Scope of the Asymmetric Transfer Hydrogenation of Quinolines
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An oven dried pressure vial was cooled to ambient temperature in a desiccator and
charged with the requisite quinoline-2-carboxylate (0.200 mmol), Hantzsch ester (0.500
mmol) and 3.14e (0.0100 mmol). Subsequently, dry cyclohexane (1 mL) was added.
The vial was crimp-capped and the mixture was stirred vigorously, at 50 °C for 4 h.
The resulting solution was diluted with DCM (1 mL) and SiO2 was added. The mixture
was concentrated in vacuo and the crude was first purified by flash chromatography (0-
10% EtOAc/hexanes), with the co-elution of some Hantzsch pyridine by-product.
Subsequent flash chromatography on EtsN-deactivated SiO2 (0-10% EtOAc/hexanes)

on this mixture, was sufficient to purify the product.

This reaction was repeated at 1.0 mmol scale with the same outcome in terms of yield

and %ee of the product.

Methyl (R)-1,2,3,4-tetrahydroquinoline-2-carboxylate (3.8a)

Known compound. Isolated as a light-yellow oil in 73% yield (28.0 mg, 0.146 mmol)
and 49% ee. *H NMR (400 MHz, CDCls); § 7.00 (t, J = 7.6 Hz, 1H), 6.96 (d, J = 7.4
Hz, 1H), 6.65 (td, J = 7.3, 1.2 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 4.36 (s, 1H), 4.05 (dd,

J =88, 3.8 Hz, 1H), 3.78 (s, 3H), 2.84 (ddd, J = 15.1, 9.3, 5.4 Hz, 1H), 2.75 (dt, J =
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16.3, 5.5 Hz, 1H), 2.29 (dtd, J = 13.0, 5.6, 3.8 Hz, 1H), 2.01 (dtd, J = 12.9, 9.1, 5.2 Hz,
1H). C NMR (101 MHz, CDCls): 6 173.8, 143.1, 129.3, 127.2, 120.7, 117.8, 114.7,
54.1, 52.5, 26.0, 24.8. Chiral HPLC method: Chiralpak AD, hexane/IPA = 80/20, 1
mL/min, A =254 nm; (R)-tr = 6.52 min (major), (S)-tr = 7.82 min (minor).

Methyl (R)-6-fluoro-1,2,3,4-tetrahydroquinoline-2-carboxylate (3.8b)

Known compound.'? Isolated as a colourless oil (which solidifies at low temperature)
in 83% yield (34.8 mg, 0.166 mmol) and 48% ee. *H NMR (500 MHz, CDCls): § 6.72
(td, J =8.5, 2.9 Hz, 1H), 6.68 (dd, J = 9.1, 2.9 Hz, 1H), 6.52 (dd, J = 8.7, 4.8 Hz, 1H),
4.25 (s, 1H), 4.01 (dd, J = 8.6, 3.7 Hz, 1H), 3.78 (s, 3H), 2.81 (ddd, J = 14.8, 8.9, 5.6
Hz, 1H), 2.73 (dt, J = 16.6, 5.7 Hz, 1H), 2.26 (dtd, J = 12.9, 5.8, 3.8 Hz, 2H), 2.05 —
1.94 (m, 1H). 3C NMR (126 MHz, CDCls): 5 173.8, 155.9 (d, J = 235.4 Hz), 139.2 (d,
J=2.1Hz),122.0 (d, J = 6.9 Hz), 115.5, 115.4 (d, J = 29.5 Hz), 113.8 (d, J = 22.5 Hz),
54.1, 52.5, 26.0, 24.6. F NMR (471 MHz, CDCls3) § -127.5. Chiral HPLC method:
Chiralcel OJ-H, hexane/IPA = 70/30, 1 mL/min, 30 °C, A =254 nm; (S)-tr = 9.97 min
(minor), (R)-tr = 12.80 min (major).

Methyl (R)-6-bromo-1,2,3,4-tetrahydroquinoline-2-carboxylate (3.8c)

RO

“ M

N ,/”/O e
0

H

Known compound.!? Isolated as a white solid in 76% yield (41.1 mg, 0.152 mmol) and
46% ee. Re-crystallisation: The purified compound was dissolved in a minimal quantity

of hot hexanes. After cooling to rt and then at -20 °C for 12 h, the enantioenriched
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mother liquor was collected using a Pasteur pipet. After drying, the process was
repeated and the mother liquor was collected, dried and passed through a short SiO>
column (0-10% EtOAc/hexanes) to obtain the enantioenriched tetrahydroquinoline in
66% ee. 'H NMR (500 MHz, CDCls): 6 7.12 — 7.03 (m, 2H), 6.46 (d, J = 8.7 Hz, 1H),
4.37 (s, 1H), 4.02 (dd, J = 8.6, 3.8 Hz, 1H), 3.78 (s, 3H), 2.79 (ddd, J = 16.5, 9.1, 5.4
Hz, 1H), 2.72 (dt, J = 16.5, 5.6 Hz, 1H), 2.26 (dddd, J = 13.1, 6.3, 5.4, 3.9 Hz, 1H),
1.98 (dtd, J = 13.2, 8.9, 5.2 Hz, 1H). *C NMR (126 MHz, CDCls): 6 173.5, 142.1,
131.7, 129.9, 122.7, 116.1, 109.3, 53.8, 52.6, 25.7, 24.4. Chiral HPLC method:
Chiralcel OJ-H, hexane/IPA = 70/30, 1 mL/min, 30 °C, A =254 nm; (S)-tr = 11.20 min
(minor), (R)-tr = 12.65 min (major).

3.7 Associated Content

NMR spectra and chiral HPLC data are provided in Appendix II.
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Chapter 4: Solvent-Switchable Remote C-H Activation via 1,4-Palladium
Migration Enables Site-Selective C-P Bond Formation: A New Tool for the

synthesis of P-Chiral Phosphinyl Imidazole Ligands

4.1 Preface

The ability to directly functionalise C-H bonds via transition-metal catalysis, is a
challenging, yet powerful tool towards the rapid synthesis of molecules. Due to their
inertness and ubiquity, C-H bonds may be selectively activated using strategies such as
the pre-installation of a directing group. However, in the interest of step-economy, the
direct usage of the desired starting materials without pre-functionalization, is
advantageous. Herein, we report the first traceless, enantiospecific, solvent-switchable
strategy for the construction of C-P bonds, via a C-H activation/1,4-Pd migration

cascade.

The work presented in this chapter has been adapted from a manuscript in preparation:

Mbaezue, I. I.; Li, S-G.; Reddy, A. C. S.; Titi, H. M.; Tsantrizos, Y. S.

Dr. Shi-Guang Li discovered the solvent-switchable site-selectivity via 1,4-plladium
migration, contributed to the optimization of the reaction conditions and the
optimization of the asymmetric Suzuki-Miyaura cross-coupling to give 4.9. Dr. Angula
C. S. Reddy contributed to the optimization of the reaction conditions, synthesized one
SPO and two imidazoles and contributed to the reaction design for the stereoretentive
reduction of 4.5g. Dr. Hatem M. Titi collected X-ray crystallography data used in
identifying the absolute configuration and substitution patterns of the compounds.
Ifenna I. Mbaezue contributed to the reaction optimization, synthesized the remaining
starting materials and performed the substrate scope, synthesized ligand 4.6 and applied
it in the Suzuki-Miyaura cross-coupling reaction to give 4.9, and performed the
mechanistic studies. Youla S. Tsantrizos, Ifenna I. Mbaezue and Shi-Guang Li co-wrote

the manuscript.
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4.2 Abstract

Solvent-switchable site-selective phosphorylation of imidazoles at the C2 or C5
position of the imidazole ring was achieved via 1,4-palladium migration. P-chiral tert-
butyl(aryl)phosphine oxides were cross-coupled to 1-(2-bromophenyl)-1H-imidazoles
with high enantiospecificity, leading to a novel class of chiral imidazole-based
phosphine oxides. As proof of concept, reduction of an analog yielded the
corresponding P-chiral 2-phosphinyl imidazole ligand, which was shown to induce
high enantioselectivity in the formation of atropisomers, synthesized via a Pd-catalyzed

Suzuki-Miyaura cross-coupling reaction.

4.3 Introduction

Numerous metal-mediated catalytic transformations involve exchangeable
phosphorus- and/or nitrogen-based ligands. In 2001, Grotjahn introduced the 2-
phosphinyl imidazole ligands and demonstrated that they can form Ru-complexes
capable of accepting a proton or a hydrogen bond, and catalyze the anti-Markovnikov
hydration of terminal alkynes.! In addition to their monodentate properties,? these
hemilabile ligands can engage in bidentate n? P,N-chelation of metals, through the
formation of four-membered metallacycles.® Soon after, Beller reported the
applications of 2-phosphinyl imidazole ligand (Figure 4.1a; L4.1a-h) in complexes
with metals for several reactions, including Buchwald-Hartwig amination and Suzuki-
Miyaura cross-coupling (Pd-L4.1a,b),* Sonogashira cross-coupling (Pd-L4.1c),*°
hydroxylation of aryl halides (Pd-L4.1c,d),* carbonylative Heck cross-coupling (Pd-
L4.1d),* and hydroformylation of olefins (Os-L4.1f, Ru-L4.1e-h, Ru-L4.2).%¢9 More
recently, Baudoin reported the Pd-catalyzed Barbier-Negishi coupling of secondary
alkyl bromides with aryl and alkenyl triflates, as well as nonaflates with limited
isomerization of the alkylpalladium complex (Pd-L4.1i,j).° In addition to their
applications as ligands for cross-coupling, 2-phosphinyl imidazoles have displayed

excellent amenability to other reactions such as Ru-catalyzed alkene isomerizations.®
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Beller also reported the remarkable utility of P-pyridyl substituted 2-phosphinyl
imidazole ligand L4.3, which catalyzes the methylation of nitroarenes to methylanilines
(Figure 4.1b).” Interestingly, significant differences in catalytic properties have been
observed between metal complexes of 2-phosphinyl imidazoles and those of the
structurally related Buchwald-type ligands (Fig 4.1a; L4.4, L4.5). For example,
whereas the Pd-catalyzed hydroxylation of aryl halides in the presence of L4.1c
proceeds with acceptable yield, the same reaction provides only trace amounts of
product with t-BuXPhos (Figure 4.1b, L4.4).% In contrast, the Pd-RuPhos complex (Pd-
L4.5) catalyzes the Barbier-Negishi coupling of secondary alkyl bromides far more
efficiently than the Pd-L4.1k complex (Figure 4.1c),® highlighting the importance of

structural diversity in ligand design.
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Figure 4.1. Representative Examples of 2-Phosphinyl Imidazole and Buchwald-type

Ligands in Catalysis.

Despite the significant achievements highlighted above, the synthesis and
applications of P-chiral phosphinyl imidazolyl ligands have not been reported.
Traditionally, 2-phosphinyl imidazoles are synthesized by quenching C2-metalated
imidazoles with the requisite chlorophosphines (Scheme 4.1a),%® which requires the
handling of highly sensitive reagents. The configurational instability of

chlorophosphines® precludes the synthesis of P-chiral analogues via this route. In
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contrast, stereoretentive reduction of chiral phosphine oxides*® could circumvent these

challenges and afford P-chiral phosphinyl imidazoles.

Over the past two decades, through-space 1,4-palladium migration - has emerged
as a powerful strategy for the construction of C-C and C-N,'! C-0,* C-B,*3 C-Si** and
very recently, C-P*® bonds. We envisioned that the remote C(sp?)-H activation of
imidazoles via 1,4-palladium migration could furnish palladated intermediates of
various substitution patterns (Scheme 4.1b; intermediates | and/or 11). The subsequent
coupling of these intermediates with P-chiral secondary phosphine oxides (SPOs),
could furnish tertiary phosphine oxides (TPOs) that could serve as precursors to P-
chiral phosphinyl imidazoles. Herein, we report the first solvent-switchable and site-
selective P-chiral phosphorylation of imidazoles, via 1,4-palladium migration.
Additionally, we provide an example of the utility of this novel methodology towards

the synthesis of a novel P-chiral phosphinyl imidazole ligand for asymmetric catalysis.

a. Traditional synthesis of 2-phosphinyl imidazoles

PR,

AN !
SNSN 1. n-BuLi NN
={ 2. CIPR, =,
RZ RS R R

b. This work: Pd-migration leading to C-P bond formation on imidazole rings
Pd
O\ % ;e
C-2 selectivity QN =N P—H QN =N
1 \) Ar \)
. — >
.| C-5 selectivity N/§N /=N
¥ e
1
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9
%‘?*H B
Ar /=N
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Scheme 4.1. Strategies towards the Installation of Phosphorus on Imidazoles.
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4.4 Results and Discussion

We reasoned that a thorough exploration of reaction conditions may reveal
parameters that would favour palladium migration to either the C2 or the C5 position
of the imidazole moiety, as opposed to direct cross-coupling to the phenyl moiety. We
began by investigating the effects of various catalysts, solvents, bases and temperatures

on the coupling of the racemic SPO 4.1a with imidazole 4.2a (Table 4.1; refer to

supplementary information for more details).

Table 4.1. Optimization of Reaction Conditions.

(o}

-

/N
Ly

PdL,, base

+ —_— “J< +
© ©/Br solvent, temp., 24 h ij/'j\l :

N
Ly

4.1a 4.2a 4.3a 4.4a 4.5a
Entryld [Pd] Ln Base Solvent Temp. °C 4.3a:4.4a:4.5alb!

1 Pd(PPhz)a DIPEA DMF 110 90:9:1
2 Pd(PPhs)a DIPEA DMSO 110 59:37:4
3 Pd(OAc)2 PPh3 DIPEA DMSO 110 56:40:4
4 Pd(OAc)2 PPh3 DIPEA DMSO:H20 (1:1) 110 24:47:29
5 Pd(OAc): PPh;  DIPEA DMSO:H,0 (10:1) 110 31:55:14
6 Pd(OAc): PPh;  DIPEA DMSO:H,0 (10:1) 80 45:54:1
7 Pd(PPhs)a DIPEA DMSO:H.0 (10:1) 100 13:74:13
8 Pd(PPhs)s DIPA DMSO:H,0 (10:1) 100 8:64:28
9 Pd(OAc)2 PPh3 DIPEA MeOH 110 41:28:31
10 Pd(OAc)2 PPh3 DIPEA n-BuOH 110 59:26:15
11 Pd(OAc)2 PPh3 DIPEA i-PrOH 110 81:14:5
12 Pd(OAc)2 PPh3 DIPEA t-BuOH 110 92:7:1
13 Pd(OAc)2 PPhs DIPEA ethylene glycol:H20 (10:1) 110 26:8:66
14 Pd(OAc)2 PPhs DIPEA ethylene glycol 110 24:8:68
15 Pd(OAc)2 PPhs DIPEA glycerol 110 30:26:44
16 Pd(OAc)2 PPhs DIPEA ethylene glycol 130 17:8:75
17 Pd(PPhs)a DIPEA ethylene glycol 130 24:3:73
18 Pd(PPhz)as DIPA ethylene glycol 130 18:2:80
19 Pd(PPhs)a DIPA DMF 130 52:26:22
20 Pd(PPhs)s DIPA DMSO:H,0 (10:1) 130 14:36:50

aAll reactions were run in parallel without individual optimization, using racemic 4.1a (0.10 mmol) and

4.2a (0.15 mmol) for 24 h with either Pd(OAc). (10 mol%)/PPhs (25 mol%) or Pd(PPhs)s4 (10 mol%),

base (4 equiv.), solvent (1.0 mL). PEstimated ratio based on *'P NMR.

Cross-coupling catalyzed by Pd(PPhs)s in the presence of DIPEA at 110 °C in

DMF, led predominantly to the direct cross coupling at the phenyl moiety in a ratio of
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the products 4.3a:4.4a:4.5a of 90:9:1, as estimated by 3P NMR (entry 1). However,
replacement of DMF with DMSO as the solvent, led to an increase in the formation of
the C5 coupled product 4.4a, presumably via 1,4-palladium migration, and a decrease
in 4.3a (Table 4.1; entry 2). Changing the catalyst to Pd(OAc)./PPhs marginally
improved the selectivity for 4.4a (entry 3), whereas reactions catalyzed by Pd(PPhs)4
in a mixture of DMSO:H-0O (in variable ratios) and slightly lower temperatures led to
more appreciable selectivity for the formation of compound 4.4a (entries 4-8).
Interestingly, replacement of DMSO:H20 with simple alcohols, reversed the selectivity
to the direct cross-coupling at the phenyl moiety (entries 9-12). However, replacement
of DMSO:H-0 with ethylene glycol:H>0O (10:1) led to preferential coupling of the SPO
at the C2 of the imidazole, leading to the formation of product 4.3a:4.4a:4.5a in a ratio
of 26:8:66 (entry 13).

Inspired by this phenomenon, we sought to investigate the effects of other polar
and polyprotic solvents. Cross coupling of 4.1a with 4.2a under the same overall
conditions as in entry 13 (Table 4.1), with only ethylene glycol as the solvent
marginally increased the formation of 4.5a (entry 14), whereas, the triol, glycerol,
resulted in almost no site selectivity (entry 15). Reverting to ethylene glycol and
increasing the temperature to 130 °C improved the selectivity for 4.5a (entry 16).
Finally, while replacing PdOAc2/PPhz with Pd(PPhs)s had a negligible effect on the
yield of 4.5a (entry 16 vs. 17), switching the base to DIPA, led to the formation of 4.5a
as the major product in a ratio of 4.3a:4.4a:4.5a of 18:2:80 (entry 18). Finally, in order
to gain greater insight as to the solvent and temperature effects on the site selectivity,
we compared the reaction outcomes in DMF, DMSO:H,0 (10:1) and ethylene glycol
at 130 °C, using Pd(PPhas)s as the catalyst and DIPA as the base. The outcomes of these
test reactions seem to indicate that 4.4a and 4.5a are the thermodynamic products. For
example, at 130 °C in DMF, the ratio of the direct coupling product 4.3a to the
combined 1,4-palladium migration products (4.4a + 4.5a) was 56:48 (entry 19), as
compared to 90:10 at 110 °C (entry 1). Although the overall ratio of direct coupling to

total migration products was almost the same in DMSO:H>0 (10:1) as that observed in
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ethylene glycol, in the latter case, there was an increase in cross coupling to the more
electron deficient C2 carbon of the imidazole ring (entry 20 vs 18). At this time, the
solvent effect on the site selectivity between the C2 and C5 position of the imidazole
remains unclear. However, it is plausible that although DMSO, H;O, simple alcohols
and ethylene glycol can all act as coordinating ligands to the palladium metal, only
ethylene glycol can potentially form a monodentate coordination with Pd(Il) and
simultaneously form a hydrogen bond to the N3 of the imidazole, thus orienting
palladation at the C2 position.

Subsequently, we pursued the coupling of the highly enantioenriched SPO (S)-4.1a
(>99% ee)'® with imidazoles 4.2'7 under our optimized conditions for each of the
potential products (S)-4.3a, (S)-4.4a and (S)-4.5a (Figure 4.2). Under the condition of
entry 1 (Table 4.1) cross-coupling of (S)-4.1a with 4.2 gave (S)-4.3a in 83% ee (~83%
es) and 46% isolated yield. It is noteworthy that although all of the SPO (S)-4.1a was
consumed within the 18 h reaction period, we observed that a portion had oxidized to
the corresponding phosphinic acid and some debromination of the imidazole 4.2 had
also occurred, thus compromising the final isolated yield of (S)-4.3a. Nonetheless, we
continued with our investigation into the enantioretentive properties of this

methodology without further optimization of the reaction conditions.
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(S)-4.3a, 46% yield® (S)-4.4a, 32% yield®!  (S)-4.5a, 60% yield
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>99% ee (>99% es)  >99% ee (>99% es) 92% ee (92% es)
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(S)-4.5€, 64% yield® (s). 45f 68% yield™
>99% ee (>99% es) >99% ee (>99% es)

(S)-4.59, 76% yleld["]
95% ee (>99% es)
>99% ee after crystallization

Figure 4.2. Scope of Site-Selective Coupling. SPO (>99% ee) 0.20 mmol, imidazole
(0.30 mmol), DIPEA (4.0 equiv.), DMF (2 mL), 110 °C, 18 h. Solvent, temperature
and time changed to DMSO:H,O (10:1, 2 mL), 100 °C and 48 h. °Base, solvent,
temperature and time changed to DIPA (4 equiv.), ethylene glycol (2 mL), 130 °C, 18
h. 9SPO (95% ee) 1.08 mmol, imidazole (1.62 mmol), DIPA (4 equiv.), ethylene glycol
(10.8 mL), 18 h.

We subsequently investigated the enantiospecificity of the conditions favoring
substitution at the C5 of the imidazole using the reaction conditions of entry 7 (Table
4.1), and obtained product (S)-4.4a with minimal erosion of chiral integrity (85% ee;
85% es), albeit in low isolated yield (32%). For this initial study into P-chiral imidazole
ligands, we chose to focus on the C2-imidazole phosphonylation using the optimized
conditions of entry 18 (Table 4.1). We were pleased to see that the cross-coupling of
(S)-4.1a (>99% ee) with 4.2 under these conditions gave (S)-4.5a without any erosion
in chirality (>99% ee; >99% es) and in 60% isolated yield. This favorable outcome was
also confirmed with a few other electron rich imidazoles, leading to the formation of

products (S)-4.5b,c,f in >99% ee (>99% es) in all cases, with 55-68% isolated yields
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(Figure 4.2). However, based on one example of an electron-deficient imidazole,
product 4.5d was obtained with slightly lower enantioretention (92% ee; 92% es) and
in only 19% isolated vyield. As a proof of concept, (S)-tert-butyl(4-
methoxyphenyl)phosphine oxide (>99% ee) and (S)-tert-butyl(phenanthren-9-
ylphosphine oxide (95% ee) were also explored under the same reaction condition,
leading to the formation of (S)-4.5e (>99% ee; >99% es) and (S)-4.59 (95% ee; >99%
es; >99% ee after crystallization), respectively (Figure 4.2). Both products were formed
without any loss of chiral integrity in 64-76% isolate yields. The enantiomeric purity
of all products was determined by chiral HPLC. The absolute configuration of key
compounds was confirmed by their single-crystal X-ray structure (Figure 4.3) and that

of other compounds, assigned by analogy.

Figure 4.3. Single-Crystal X-ray Structure of P-chiral 2-Phosphonyl Imidazoles (S)-
4.3a, (S)-4.4a-HCI, (S)-4.5a, (S)-4.5d. (S)-4.59 and P-chiral 2-phosphinyl imidazole
4.6.

We subsequently turned our attention to the utility of these novel P-chiral ligands
and selected to investigate the trivalent phosphine analogue of (S)-4.5g, as a model
ligand, in a metal-catalyzed asymmetric reaction. Stereoretentive reduction of (S)-4.5¢g
using catalytic'® or stoichiometric!® amount of Ti(O-i-Pr)s and a slight excess of TMDS

were unsuccessful. However, with super-stoichiometric equivalents of both reagents,
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the reduction proceeded within 72 h, to afford 4.6 in 38% isolated yield and 98% ee
after column chromatography (Scheme 4.2a). The structure and absolute
stereochemistry of 4.6 were also confirmed by single-crystal X-ray diffraction (Figure
4.3). As a proof of concept, we reasoned that the electron-rich nature (P NMR,
CD.Cly, 6 = -26.5 ppm) and bulkiness of this ligand could promote the oxidative
addition and reductive elimination steps of cross-coupling reactions,**?° such as the
asymmetric Pd-catalyzed Suzuki-Miyaura reaction. We were pleased to see that
coupling of bromide 4.7 to the naphthalene boronic acid 4.8 afforded atropisomer 4.9
in 89% vyield and 86% ee (Scheme 4.2b). Interestingly, although crystallization of 4.9
in Et2O/DCM at -20 °C, led to the formation of poorly-enantioenriched crystals, the
mother liquor contained this compound in >99% ee. Tang and co-workers have
previously reported preparation of the same atropisomer 4.9%% in slightly higher yield
and enantiomeric purity using the P-chiral ligand (2S,3S)-3-(tert-butyl)-4-(2,6-
dimethoxyphenyl)-2-methyl-2,3-dihydrobenzo[d][1,3]oxaphosphole 4.10 (Scheme
4.2¢).2** The absolute configuration of product 4.9, which was obtained by using our
methodology, was assigned by comparison of chiral HPLC data using the same chiral

HPLC conditions as those previously reported.?*?
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Scheme 4.2. Synthesis of P-Chiral 2-Phosphinyl Imidazole and its Application in an

Asymmetric Suzuki-Miyaura Cross-Coupling Reaction.

In an effort to gain further insight into the mechanism of the 1,4-palladium
migration, 4.1a was subjected to conditions favoring cross-coupling to the C2 of the
imidazole and leading to products 4.5a, using the C2-deuterated imidazole ?H-4.2a
(Scheme 4.3). However, we did not observe any deuterium incorporation in product
4.5a, suggesting that the transformation is not H-retentive in the 1,4-palladium
migration step. Furthermore, we did not observe the formation of any product when the
nonbrominated analog of 4.2a (i.e. compound 4.11) was used, eliminating the

possibility of any direct C-H activation or oxidative coupling on the imidazole ring.
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Scheme 4.3. Investigations of Deuterium Incorporation in the C2-Imidazole Site-

Selective Reaction and the Possibility of Direct C-H Activation/Oxidative Coupling.
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Scheme 4.4. Proposed Mechanism.

Based on all of our observations and literature precedents,'>?2 we propose the
mechanism shown in Scheme 4. Oxidative addition of Pd(0) to 4.2a is expected to
generate the arylpalladium(Il) species A. The subsequent 1,4-palladium migration can

lead to the formation of palladacycles B and B’, which upon protonation would generate
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C (or the corresponding C’ intermediate; the latter is not shown). As mentioned
previously, the plausible coordination effects of ethylene glycol, favoring the C2 1,4-
migration of the metal is indicated in intermediate A’. Ligand exchange on intermediate
B, followed by displacement of the bromide by the nucleophilic addition of the SPO is
expected to give intermediate D, which upon reductive elimination can lead to (S)-4.5a.
Intermediate B’ can follow a similar catalytic cycle to give (S)-4.4a. An analogous
mechanism has been proposed by Fu and Feng for the phosphorylation of C(sp®)-H
bonds via a 1,4-palladium migration, in the presence of non-chiral H-phosphonates.’®
In addition to this proposed Pd(0) to Pd(Il) catalytic cycle the involvement of other
Pd(IV) species in 1,4-palladium migration mechanisms has been proposed by Mota and

Dedieu.2?

4.5 Conclusion

In summary, we have developed an enantiospecific solvent-switchable
methodology to access various P-chiral 2-phosphonyl oxide imidazoles via 1,4-
palladium migration. The reaction conditions that favour the C2-substituiton on the
imidazole moiety are of particular interest since they provide valuable precursors for
the simple preparation of P-chiral 2-phosphinylimidazole ligands. As a proof of
concept, one such ligand was used in the successful asymmetric Suzuki-Miyaura cross-
coupling reaction. Currently, the synthesis of a structurally diverse library of P-chiral
compounds of general structures 4.4 and 4.5 is in preparation in order to fully explore

the potential applications of such ligands in a variety of asymmetric transformations.

4.6 Experimental Section

General Procedure: All reactions were carried out under anhydrous conditions and
under an atmosphere of dry argon, unless otherwise stated. Compounds were purified
by normal phase flash column chromatography on silica gel (SDS, 60 A C. C. 40-63
mm) as the stationary phase. Where necessary, further purification was carried out by
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reversed phase column chromatography on C18 silica gel (SDS, 100 A 20-40 um). Thin
Layer Chromatography (TLC) was performed on alumina plates pre-coated with silica
gel (Merck silica gel, 60 F254), which were visualized by UV when applicable (Amax
= 254 nm and/or 366 nm) and/or by staining with vanillin or anisaldehyde in acidic
ethanol and/or KMnOyg in basic water followed by heating. Key compounds were fully
characterized by *H, BC{*H} and 3!P{*H} NMR and HRMS. Chemical shifts (5) are
reported in ppm relative to the internal deuterated solvent or external HsPO4 (6 0.00
31p), unless indicated otherwise. High-resolution MS spectra were recorded using
electrospray ionization (ESI+/-) and Fourier transform ion cyclotron resonance mass
analyzer (FTMS).

The reactions were monitored either by TLC or analytical HPLC/MS to confirm
completion and homogeneity of the products. Analytical HPLC was performed using a
reversed phase C18 5 um column on a Waters Atlantis T3 instrument and the solvent
system indicated below:

Solvent A: H20, 0.1% formic acid

Solvent B: CH3CN, 0.1% formic acid

Mobile phase: linear gradient from 95%A and 5%B to 5%A and 95%B in 13 min, then
2 min at 100% B

Flow rate: 1 mL/min

The enantiomeric purity of chiral compounds was determined by chiral HPLC using an
Agilent 1100 series instrument and the column and solvent system indicated for each
compound. The absolute configuration of key compounds was confirmed by their
single-crystal X-ray structures and that of all other compounds assigned by analogy.
The absolute configuration of the atropisomeric product 4.9 was assigned by
comparison of its chiral HPLC chromatogram, using the same chiral HPLC conditions,

as that previously reported.?
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Solvents used for reactions:

THF was dried and deoxygenated by distillation over sodium wire and benzophenone
under a nitrogen atmosphere.

DMF was purchased from Fisher Scientific and stored over activated 3A MS. Prior to
use, it was filtered through a 0.45 puM syringe filter to remove particulates.
Subsequently, it was sparged with argon for 2 hours.

Ethylene glycol was purchased from Sigma Aldrich in a Sure-Seal bottle and

maintained under argon.
DMSO (HPLC grade) was used after sparging with argon for 2 hours.

Deionized water was used after sparging with argon for 2 hours.

CDCl3 was purchased from Sigma Aldrich and stored over activated 3A MS.

D20 was purchased from Sigma Aldrich and used without further purification.

Crystallization conditions:

The desired compounds (solids) were dissolved in a minimal volume of DCM in a
screw-cap vial and an equal volume of pentane or hexanes was added. The cap was
loosely screwed on the vial, with gradual evaporation occurring over a 1-2 day period,
to give crystals. For compound 4.6, a minimal volume of Et,O was used to dissolved it,
followed by slow evaporation over a few hours to afford crystals. When the compound
was an oil (i.e. (S)-4.4a), it was first converted to the HCI salt using 1M HCI in dioxane
and concentrated to dryness. The resulting oil was suspended in pentane (1 mL) and
vigorously stirred until a sticky white solid formed. A minimal volume of EtOAc was
added dropwise, with warming, until complete dissolution occurred. The solution was
allowed to evaporate to 1/3 of its volume at room temperature and then stored at -20 °C,

with the formation of crystals.
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Svynthesis and Characterization of SPOs:

(0]

Cl N/TS I \c\) 9 0
H Grignard.LiCl P—H P—H P-H PH
o 3 3 3 3
P"o
H
4.12

We previously reported the asymmetric synthesis of 4-chloro-2-((S)-1-((4-
methylphenyl)sulfonamido)ethyl)phenyl (R)-tert-butylphosphinate oxide (4.12), as
well as the asymmetric synthesis of SPOs 4.1a, 4.1b and 4.1c.*® However, the synthesis
of 4.1c was achieved in higher enatiomeric purity to that previously reported via minor

modifications of the previously published protocol.
Synthesis of SPO 4.1c:

A 100 mL oven-dried round bottom flask was equipped with an oven-dried stir bar and
cooled to ambient temperature in a desiccator. LiCl (204 mg, 4.80 mmol) and Mg metal
(117 mg, 4.80 mmol) were added and flame-dried under vacuum. The flask was cooled
to ambient temperature under Ar, 9-bromophenanthrene (1.03 g, 4.00 mmol) was added
and the flask was put through 3 cycles of evacuation and Ar back-filling. Anhydrous
THF (5 ml) was added under Ar, and while stirring vigorously, 1,2-dibromoethane (6
drops) was added. The resulting yellow mixture was stirred vigorously at RT for 3 h,
during which time it became warm and acquired a greenish-yellow colour. After 3 h,
only residual Mg was left and the Grignard solution was used as such. While the
Grignard reagent was being generated, a 100 mL oven-dried 3-neck flask was charged
with an oven-dried stir bar and phosphinate oxide 4.12 (430 mg. 1.00 mmol). The flask
was fitted with a thermometer, an adapter and a rubber septum, and put through 3
standard cycles of evacuation and argon-backfilling. The compound was then dissolved
in THF (5.0 mL) and cooled to an internal temperature of 0 °C, and the previously
generated Grignard solution was added dropwise over 20 min using a syringe pump,
while maintaining the internal temperature between 0 - 5 °C. The resulting yellow

solution was allowed to warm to 10 °C over a 30 min period. Subsequently, it was
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removed from the cooling bath and stirred at RT for an additional 30 min. The solution
was cooled back to an internal temperature of 0 °C, quenched with aqueous NH4ClI (5
mL) and diluted with EtOAc (15 mL). The resulting mixture was directly decanted into
a separatory funnel, and the salt residue was washed with EtOAc (3 x 20 mL) and
filtered to remove the metal salts. The EtOAc layers were combined and extracted with
brine (10 mL). The aqueous layer was further back extracted with EtOAc (2 x 15 mL)
and the combined organic layers were dried over anhydrous Na,SO4 and concentrated
under reduced pressure at RT. The crude product was purified by column
chromatography on silica get using a Combi flash instrument, and a solvent gradient of
0-100% hexanes/EtOAcC, to give the desired product as a white foam in 73% yield (206
mg, 0.729 mmol) and 95% ee.

Svynthesis of Imidazoles:

R1

N
R! F I\

N KsPO 2
1Y e
SN DMF, 150°C, 24 - 48 h 5
o ()

Imidazoles 4.2a-e were synthesized according to a previously reported protocol, with

minor modifications.’
A general protocol is provided below:

A 150 mL pressure vessel equipped with a stir bar, was charged with the imidazole
precursor (8.00 mmol), KsPO4 (40.0 mmol), dry DMF (28 mL) and the requisite
fluorobenzene (16.0 mmol). The flask was capped and stirred at 150 °C for 24 h for

4.2a-d and 48 h for 4.2e. The resulting reaction mixture was diluted with DCM (25 mL)
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and the solution was filtered. The solid residue was washed with DCM (2 x 25 mL) and
combined organic layers were concentrated under reduced pressure. The resulting oil
was diluted with EtOAc (50 mL), transferred to a separatory funnel and washed with
distilled water (5 x 20 mL) followed by brine (20 mL). The organic layers were dried
over anhydrous Na>SO4 and concentrated under reduced pressure. The crude product
was purified by column chromatography on silica gel using a Combi flash instrument
and a solvent gradient from 0-40% EtOAc/Hexanes, to give the desired compounds in
32 — 71% yield. If necessary, the obtained solid could be triturated with a hot solution

of EtOAcC in hexanes (20% v/v) and then cooled to 0 °C to increase the product’s purity.

1-(2-bromophenyl)-1H-imidazole (4.2a)
N

/

Ly

©/Br
The product was obtained as a white solid. *H NMR (500 MHz, CDCls): § 7.73 (dd, J
=7.9, 1.4 Hz, 1H), 7.67 (t, J = 1.1 Hz, 1H), 7.46 — 7.40 (m, 1H), 7.37 — 7.29 (m, 2H),
7.21(t,J=1.1Hz, 1H), 7.14 (t, I = 1.4 Hz, 1H). *3C NMR (126 MHz, CDCl3): & 137.7,

136.9, 134.1, 130.2, 129.5, 128.6, 128.2, 120.7, 120.1. HRMS (ESI+, m/z): calcd for
CoHgBrN20O [M+H]+: 222.9865, found: 222.9867.

1-(2-bromo-5-methylphenyl)-1H-imidazole (4.2b)
N
/
{3

/@/Br
Me

The product was obtained as a yellow oil. *H NMR (400 MHz, CDCls): § 7.65 (s, 1H),
7.57 (d,J = 8.1 Hz, 1H), 7.18 (s, 1H), 7.15—7.09 (m, 3H), 2.36 (s, 3H). 3C NMR (101
MHz, CDCls): 6 139.0, 137.7, 136.5, 133.6, 131.0, 129.4, 128.8, 120.6, 116.4, 20.9.
HRMS (ESI+, m/z): calcd for C1oH10BrN2 [M+H]+: 237.0022, found: 237.0017.
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1-(5-(benzyloxy)-2-bromophenyl)-1H-imidazole (4.2c)
N
/
Ly

ﬁj !
BnO

The product was obtained as a white solid. *H NMR (400 MHz, CDCls): § 7.66 (s, 1H),
7.62 — 7.51 (m, 1H), 7.45 — 7.30 (m, 5H), 7.20 (s, 1H), 7.12 (s, 1H), 7.01 — 6.86 (m,
2H), 5.08 (s, 2H). 3C NMR (101 MHz, CDCls): § 158.7, 137.6, 137.4, 135.9, 134.4,
129.5, 128.9, 128.6, 127.6, 120.6, 116.9, 114.9, 110.3, 70.7. HRMS (ESI+, m/z): calcd
for C16H14BrN2O [M+H]+: 329.0284, found: 329.0290.

1-(2-bromo-5-(trifluoromethyl)phenyl)-1H-imidazole (4.2d)
N
/
®

Qa
F.C

3
The product was obtained as a light-yellow solid. *H NMR (500 MHz, DMSO): § 8.11
(d, J = 8.4 Hz, 1H), 7.95 (s, 1H), 7.81 (dd, J = 8.5, 2.2 Hz, 1H), 7.50 (s, 1H), 7.12 (s,
1H). 3C NMR (126 MHz, DMSO): 5 137.8, 137.4, 134.9, 129.4 (g, J = 33.1 Hz), 128.9,
126.9 (q, J = 3.7 Hz), 125.5 (q, J = 3.8 Hz), 123.3 (q, J = 272.2 Hz),, 124.4, 121.0. °F
NMR (471 MHz, DMSO): & 61.2. HRMS (ESI+, m/z): calcd for CioHeBrFsN2Na
[M+Na]+: 312.9559, found: 312.9555.

1-(2-bromophenyl)-4,5-diphenyl-1H-imidazole (4.2e)

O N
oy,
o

After chromatography, this compound was isolated with some minor impurities and

was further purified by trituration from a hot solution of EtOAc in hexanes (20% v/v)
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and then cooled to 0 °C to obtain highly pure material as an amorphous white solid. *H
NMR (400 MHz, CDCl3): 6 7.70 (s, 1H), 7.63 (dd, J=7.7, 1.7 Hz, 1H), 7.61 — 7.57 (m,
2H), 7.32 — 7.26 (m, 2H), 7.25 — 7.16 (m, 9H). 3C NMR (101 MHz, CDCls): & 138.3,
137.7, 135.9, 134.3, 133.6, 130.8, 130.6, 130.2, 130.0, 129.4, 128.6, 128.4, 128.1,
127.2, 126.9, 122.7. HRMS (ESI+, m/z): calcd for Co1Hi16BrN2 [M+H]+: 375.0491,
found: 375.0494.

Solvent-Switchable, Site-Selective C-H Activation via 1,4-Palladium Migration:

Table 4.2. Optimization of Reaction Conditions.

o [ 0 ek Ogk
%—H N PdL,, base N R

T N e W Rk, Y .
OO T O 0000

4.1a 4.2a 4.3a 4.4a 4.5a
Entry [Pd] Ln Base Solvent Temp. °C 4.3a:4.4a:4.5a

1 Pd(PPhs)s - DIPEA DMF 110 90:9:1

2 Pd(PPhs)s - DIPEA DMSO 110 59:37:4
3 Pd(OAc). dppb DIPEA DMSO 110 37:57:6
4 Pd(OAC): PPhs DIPEA DMSO 110 56:40:4
5 Pd(OAC): PPhs DIPEA DMSO:H20 (1:1) 110 24 :47:29
6 Pd(OAc). PPh; DIPEA DMSO:H,0 (10:1) 110 31:55:14
7 Pd(OAc). PPh; KsPOs4 DMSO:H,0 (10:1) 110 83:17:0
8 Pd(OAC): PPhs K2COs3 DMSO:H20 (10:1) 110 68:31:1
9 Pd(OAC)2 PPhs Cs2CO3 DMSO:H20 (10:1) 110 63:35:2
10 Pd(OAC)2 PPhs NaHCO3 DMSO:H20 (10:1) 110 65:30:5
11 Pd(OAC): PPhs KOAc DMSO0:H20 (10:1) 110 51:40:9
12 Pd(OAc): PPhs CsOAc DMSO:H0 (10:1) 110 52:41:7
13 Pd(OAc). P(2-furyl)s DIPEA DMSO:H0 (10:1) 100 66:28:6
14 Pd(OAC): CataCXium A DIPEA DMSO0:H20 (10:1) 100 47:23:30
15 Pd(OAc). PPh; DIPEA DMSO:H0 (10:1) 80 45:54:1
16 Pd(PPhs)s - DIPEA DMSO:H:0 (10:1) 100 13:74:13
17 Pd(PPhs)a - DIPA DMSO:H,0 (10:1) 100 8:64:28
18 Pd(OAC): PPhs DIPEA MeOH 110 41:28:31
19 Pd(OAC): PPhs DIPEA n-BuOH 110 59:26:15
20 Pd(OAC): PPhs DIPEA i-PrOH 110 81:14:5
21 Pd(OAC): PPhs DIPEA t-BuOH 110 92:7:1

22 Pd(OAc): PPhs DIPEA ethylene glycol:H20 (10:1) 110 26:8:66
23 Pd(OAC): PPhs DIPEA ethylene glycol 110 24:8:68
24 Pd(OAC): PPhs DIPEA glycerol 110 30:26:44
25 Pd(OAC): PPhs DIPEA ethylene glycol 130 17:8:75
26 Pd(PPhs)s - DIPEA ethylene glycol 130 24:3:73
27 Pd(PPhs)a - DIPA ethylene glycol 130 18:2:80
28 Pd(PPhs)s - DIPA DMF 130 52:26:22
29 Pd(PPhs)s - DIPA DMSO:H20 (10:1) 130 14 :36 : 50

Reaction conditions: 4.1a (0.10 mmol), 4.2a (0.15 mmol), Pd(OAc)2 (10 mol%)/PPhs (25 mol%) or Pd(PPhs)s (10
mol%), base (4 equiv.), solvent (1.0 mL). Product ratios were estimated by 3P NMR.
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General procedures for direct and site-selective enantiospecific coupling of SPOs

and imidazoles:

Procedure for the synthesis of analogues 4.3; direct coupling to the phenyl moiety:

An oven-dried pressure vessel equipped with an oven-dried stir bar was charged with
imidazole 4.2 (0.300 mmol), SPO 4.1 (0.200 mmol) and Pd(PPhs)4 (10 mol%) The vial
was crimp-capped and put through 3 cycles of evacuation and Ar back-filling via a
needle. DMF (2 mL) was added under Ar, followed by diisopropylethylamine (0.14
mL, 0.800 mmol). and the reaction mixture was vigorously stirred in a pre-heated oil
bath at 110 °C for 18 h. After cooling to ambient temperature, the solution was
transferred to a flask and the pressure vessel were washed with EtOAc (2 x 1 mL). The
solution was concentrated to dryness and the crude mixture was first purified on a short
column of silica gel using a Combi flash instrument and 100% EtOAc as the eluent to
remove some side products, followed by a gradient of a 0-10% MeOH/EtOACc to elute
the desired product. This product was further purified on C18 reversed phase silica gel
using a solvent gradient from 10% MeCN/H20 to 100% MeCN; the desired product
typically eluted at 40% MeCN/H20). The combined fractions were concentrated under
a reduced pressure at 45 °C and any residual water was removed as an azeotrope by
adding toluene (1 mL) and MeCN (1 mL) and evaporating at the same temperature.
Toluene (1 mL) and MeCN (1 mL) were added again, followed by concentration under

a reduced pressure at 45 °C to give the desired final product.

Procedure for the synthesis of analogues 4.4 cross coupling to the C-5 of the imidazole

ring via 1,4-Pd migration

An oven-dried pressure vessel equipped with an oven-dried stir bar was charged with
imidazole 4.2 (0.300 mmol), SPO 4.1 (0.200 mmol) and Pd(PPhs)4 (10 mol%) The vial
was crimp-capped and put through 3 cycles of evacuation and Ar back-filling via a
needle. DMSO0 (1.82 mL) and deionised water (0.18 mL) were added under Ar, followed
by diisopropylethylamine (0.14 mL, 0.800 mmol) and the reaction mixture was

vigorously stirred in a pre-heated oil bath at 100 °C for 48 h. After cooling to ambient
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temperature, the solution was transferred to a flask and the pressure vessel were washed
with EtOAc (2 x 1 mL) and MeOH (2 x 1 mL). The solution was concentrated to dryness
and the crude mixture was first purified on a short column of silica gel using a Combi
flash instrument and a gradient of 0-100% EtOAc/hexanes, followed by 0-10%
MeOH/EtOAC, to elute the desired product. This product was further purified on C18
reversed phase silica gel using a solvent gradient from 10% MeCN/H20 to 100%
MeCN; the desired product typically eluted at 30% MeCN/H20). The combined
fractions were concentrated under a reduced pressure at 45 °C and any residual water
was removed as an azeotrope by adding toluene (1 mL) and MeCN (1 mL) and
evaporating at the same temperature. Toluene (1 mL) and MeCN (1 mL) were added
again, followed by concentration under a reduced pressure at 45 °C to give the desired

final product.

General procedure for the synthesis of analogues 4.5; cross coupling to the C-2 of the

imidazole ring via 1,4-Pd migration

An oven-dried pressure vessel equipped with an oven-dried stir bar was charged with
imidazole 4.2 (0.300 mmol), SPO 4.1 (0.200 mmol) and Pd(PPhs)4 (10 mol%) The vial
was crimp-capped and put through 3 cycles of evacuation and Ar back-filling via a
needle. Ethylene glycol (2 mL) was added under Ar, followed by diisopropylamine
(0.11 mL, 0.800 mmol) and the reaction mixture was vigorously stirred in a pre-heated
oil bath at 130 °C for 18 h. After cooling to ambient temperature, the mixture was
transferred to a separatory funnel and diluted with DCM (20 mL). The organic layer
was washed with deionised water (10 mL) and collected. The aqueous layer was further
extracted with DCM (2 x 5 mL) and the combined organic fractions were washed with
brine (10 mL). The resulting aqueous layer was extracted with DCM (5 mL) and
combined with the previous organic fractions. The collective organic fractions were
dried over anhydrous Na>SOg, filtered, and concentrated to dryness. The crude mixture
was first purified on a short column of silica gel using a Combi flash instrument. When

necessary, products were further purified on C18 reversed phase silica gel using a
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solvent gradient from 10% MeCN/H20 to 100% MeCN; the desired products typically
eluted at 50 - 55% MeCN/H20). The combined fractions were concentrated under a
reduced pressure at 45 °C and any residual water was removed as an azeotrope by
adding toluene (1 mL) and MeCN (1 mL) and evaporating at the same temperature.
Toluene (1 mL) and MeCN (1 mL) were added again, followed by concentration under

a reduced pressure at 45 °C to give the desired final product.

(S)-(2-(1H-imidazol-1-yl)phenyl)(tert-butyl)(phenyl)phosphine oxide (4.3a)

oD

Product 4.3a was obtained as a white solid in 46% yield (38.8 mg, 0.120 mmol) and
82% ee. 'H NMR (400 MHz, CDCls): § 8.18 (ddd, J = 10.5, 7.6, 1.7 Hz, 1H), 7.62 (t,
J=7.7,15Hz, 1H), 7.56 (tt, J = 7.5, 1.8 Hz, 1H), 7.50 — 7.32 (m, 3H), 7.33 — 7.27 (m,
2H), 7.23 (ddd, J = 7.7, 3.7, 1.5 Hz, 1H), 6.82 (s, 1H), 6.73 (s, 1H), 1.34 (d, J = 14.9
Hz, 9H). 3C NMR (101 MHz, CDCls): & 141.8, 139.0, 132.8 (d, J = 2.2 Hz), 132.6 (d,
J=8.1Hz), 1315 (d, J = 2.8 Hz), 131.3 (d, J = 8.9 Hz), 130.8 (d, J = 60.5 Hz), 130.4
(d, J=6.2 Hz), 129.9 (d, J = 50.6 Hz), 128.3, 128.0, 128.0 (d, J = 11.5 Hz), 122.3, 34.4
(d, J = 71.6 Hz), 26.0. 3P NMR (162 MHz, CDCls): § 39.3. Chiral HPLC method:
Chiralpak AD, hexane/IPA =90/10, 1 mL/min, A =220 nm; (R)-tr = 26.57 min (minor),
(S)-tr = 33.17 min (major). HRMS (ESI+, m/z): calcd for Ci9H22N20P [M+H]+:
325.1464, found: 325.1456.

(S)-tert-butyl(phenyl)(1-phenyl-1H-imidazol-5-yl)phosphine oxide (4.4a)

gk

O

Product 4.4a was obtained as a colourless oil in 32% yield (20.9 mg, 0.0644 mmol) and
85% ee. 'H NMR (400 MHz, CDCls): & 7.85 (s, 1H), 7.74 (s, 1H), 7.45 — 7.31 (m, 3H),

7.30 — 7.25 (m, 1H), 7.24 — 7.11 (m, 6H), 1.27 (d, J = 15.6 Hz, 9H). 13C NMR (101
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MHz, CDCls): § 142.9, 138.5, 136.2, 132.3 (d, J = 8.9 Hz), 131.5 (d, J = 2.9 Hz), 130.3
(d, J =98.7 Hz), 128.9, 128.8 (d, J = 81.6 Hz), 128.6, 127.9 (d, J = 11.6 Hz), 127.3,
34.1 (d, J=76.6 Hz), 25.2. 3P NMR (162 MHz, CDClI3): § 32.1. Chiral HPLC method:
Chiralpak AD, hexane/IPA = 90/10, 1.0 mL/min, A = 220 nm; (R)-tr = 13.94 min
(minor), (S)-tr = 17.73 min (major). HRMS (ESI+, m/z): calcd for CigH21N2NaOP
[M+Na]+: 347.1284, found: 347.1277.

(S)-tert-butyl(phenyl)(1-phenyl-1H-imidazol-2-yl)phosphine oxide (4.5a)

e k
O

The crude product 4.5a was first purified on silica gel, using a gradient of 0-60%
hexanes/EtOAcC) and then on reversed-phase C 18 silica gel to afford the desired product
as a white solid in 60% yield (38.8 mg, 0.120 mmol) and >99% ee. *H NMR (400 MHz,
CDCls): & 7.66 — 7.56 (m, 2H), 7.44 — 7.34 (m, 2H), 7.35 — 7.26 (m, 2H), 7.25 — 7.14
(m, 6H), 1.33 (d, J = 15.8 Hz, 9H). 13C NMR (101 MHz, CDCls): 5 141.0 (d, J = 126.6
Hz), 137.6, 132.3 (d, J = 8.8 Hz), 131.5 (d, J = 2.8 Hz), 130.5 (d, J = 95.8 Hz), 129.7
(d,J=14.0 Hz), 128.7, 128.5, 127.9 (d, J = 11.5 Hz), 126.9, 125.5 (d, J = 2.7 Hz), 34.9
(d, J = 75.6 Hz), 24.6. 3'P NMR (162 MHz, CDCls): & 32.9. Chiral HPLC method:
Chiralpak AD, hexane/IPA =95/5, 0.7 mL/min, A =254 nm; (S)-tr = 11.87 min (single
enantiomer). HRMS (ESI+, m/z): calcd for C19H21N2NaOP [M+Na]+: 347.1284, found:
347.1289.

(S)-tert-butyl(phenyl)(1-(m-tolyl)-1H-imidazol-2-yl)phosphine oxide (4.5b)
N
[N%Qg,-k

Weke

The crude product 4.5b was first purified on silica gel, using a gradient of 0-50%

hexanes/EtOAc and then on reversed-phase C 18 silica gel to afford the desired product
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as a white solid in 62% yield (42.2 mg, 0.125 mmol) and >99% ee. *H NMR (400 MHz,
CDCls): & 7.64 — 7.49 (m, 2H), 7.47 — 7.34 (m, 1H), 7.34 (t, J = 1.4 Hz, 1H), 7.31 (ddd,
J=8.5,6.8,3.0 Hz, 2H), 7.15 (t, J = 1.3 Hz, 1H), 7.12 — 6.97 (m, 2H), 6.99 — 6.84 (m,
2H), 2.20 (s, 3H), 1.35 (d, J = 15.8 Hz, 9H). 3C NMR (101 MHz, CDCl3): § 141.1 (d,
J=127.5 Hz), 138.4, 137.4, 132.2 (d, J = 8.8 Hz), 131.4 (d, J = 2.8 Hz), 130.7 (d, J =
95.8 Hz), 129.6 (d, J = 14.3 Hz), 129.3, 128.3, 127.8 (d, J = 11.5 Hz), 127.5, 125.4 (d,
J =2.8Hz), 123.8, 34.8 (d, J = 75.6 Hz), 24.7, 21.2. 3'P NMR (162 MHz, CDCls): §
32.6. Chiral HPLC method: Chiralpak AD, hexane/IPA = 96/4, 1.0 mL/min, A = 254
nm; (S)-tr = 9.63 min (single enantiomer). HRMS (ESI+, m/z): calcd for C2oH24N20OP
[M+H]+: 339.1621, found: 339.1629.

(S)-(1-(3-(benzyloxy)phenyl)-1H-imidazol-2-yl)(tert-butyl)(phenyl)phosphine
oxide (4.5¢)

[3%.K
SO
The crude product 4.5¢ was purified on silica gel using a gradient of 0-50%
hexanes/EtOAc to afford the desired compound as a light-yellow oil in 55% yield (47.7
mg, 0.111 mmol) and >99% ee. *H NMR (400 MHz, CDCls): § 7.64 — 7.53 (m, 2H),
7.44 —7.27 (m, 9H), 7.18 (t, J = 1.3 Hz, 1H), 7.08 (t, J = 8.1 Hz, 1H), 6.88 (t, J = 2.2
Hz, 1H), 6.83 (ddd, J = 8.3, 2.5, 1.0 Hz, 1H), 6.76 (ddd, J = 7.8, 1.9, 0.9 Hz, 1H), 4.92
(d, J = 11.5 Hz, 1H), 4.85 (d, J = 11.4 Hz, 1H), 1.36 (d, J = 15.8 Hz, 9H). 3C NMR
(101 MHz, CDCl3): 6 158.6, 140.9 (d, J = 127.1 Hz), 138.6, 136.7, 132.2 (d, J = 8.8
Hz), 131.5 (d, J = 2.8 Hz), 130.5 (d, J = 95.8 Hz), 129.8 (d, J = 14.4 Hz), 129.3, 128.7,
128.2,127.9 (d, J = 11.6 Hz), 127.7, 125.3 (d, J = 2.6 Hz), 119.0, 115.9, 112.9, 70.1,
34.9 (d, J = 75.9 Hz), 24.7. 3'P NMR (162 MHz, CDCls): & 33.0. Chiralpak AD,
hexane/IPA = 96/4, 1.0 mL/min, A = 254 nm; (S)-tr = 12.33 min (single enantiomer).
HRMS (ESI+, m/z): calcd for C2sH27N2NaO2P [M+Na]+: 453.1702, found: 453.1701.
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(S)-tert-butyl(phenyl)(1-(3-(trifluoromethyl)phenyl)-1H-imidazol-2-yl)phosphine
oxide (4.5d)

[igk

OO0

The crude product 4.5d was first purified on silica gel using a gradient of 0-50%
hexanes/EtOAc and then on reversed-phase C 18 silica gel to afford the desired product
as a white solid in 19% yield (15.0 mg, 0.0382 mmol) and 92% ee. *H NMR (400 MHz,
CDCls): § 7.61 — 7.46 (m, 4H), 7.44 — 7.35 (m, 3H), 7.35 — 7.27 (m, 3H), 7.18 (s, 1H),
1.35 (d, J = 16.0 Hz, 9H). 3P NMR (162 MHz, CDCl3): § 32.9.3C NMR (101 MHz,
CDCls) & 141.3 (d, J = 125.2 Hz), 137.8, 132.0 (d, J = 8.8 Hz), 131.6 (d, J = 2.8 Hz),
130.9 (g, J = 33.3 Hz), 130.5, 130.0 (d, J = 96.0 Hz), 130.0 (d, J = 14.2 Hz), 129.1,
127.9 (d, J = 11.6 Hz), 125.3 (q, J = 3.7 Hz), 125.0 (d, J = 2.5 Hz), 123.6 (g, J = 3.7
Hz), 123.2 (d, J = 272.7 Hz), 34.7 (d, J = 75.5 Hz), 24.4. *'P NMR (162 MHz, CDCls):
5 32.9. °F NMR (377 MHz, CDCls): § -62.8. Chiralpak AD, hexane/IPA = 90/10, 1.0
mL/min, X = 254 nm; (R)-tr = 4.33 min (minor), (S)-tr = 5.05 min (major). HRMS
(ESI+, m/z): calcd for CaoH20FsN2NaOP [M+Na]+: 415.1158, found: 415.1164.

(S)-tert-butyl(4-methoxyphenyl)(1-phenyl-1H-imidazol-2-yl)phosphine oxide
(4.5€)

N
[N%Q,;-k
© OMe
The crude product 4.5e was first purified on silica gel using a gradient of 0-90%
hexanes/EtOAc and then on reversed-phase C 18 silica gel to afford the desired product
as a white solid in 64% yield (45.2 mg, 0.128 mmol) and >99% ee. *H NMR (400 MHz,
CDCl3): 6 7.62 — 7.51 (m, 2H), 7.34 (t, J = 1.3 Hz, 1H), 7.26 — 7.20 (m, 3H), 7.20 —
7.17 (m, 2H), 7.16 (t, J = 1.3 Hz, 1H), 6.85 — 6.80 (m, 2H), 3.80 (s, 3H), 1.30 (d, J =

15.8 Hz, 9H). 13C NMR (101 MHz, CDCls): 5 162.2 (d, J = 2.9 Hz), 141.2 (d, J = 126.4
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Hz), 137.7, 134.1 (d, J = 10.0 Hz), 129.6 (d, J = 14.2 Hz), 128.6, 128.5, 126.9, 125.4
(d, J = 2.6 Hz), 121.5 (d, J = 102.3 Hz), 1135 (d, J = 12.5 Hz), 55.4, 34.9 (d, J = 76.6
Hz), 24.6. 3P NMR (162 MHz, CDCls): § 32.9. HRMS (ESI+, m/z): calcd for
C20H24N202P [M+H]+: 355.1570, found: 355.1578. Chiralpak IC, hexane/IPA = 90/10,

1.0 mL/min, A = 254 nm; (S)-tr = 42.00 min (single enantiomer).

(S)-tert-butyl(phenyl)(1,4,5-triphenyl-1H-imidazol-2-yl)phosphine oxide (4.5f)

W,

O [ Nh\lkqg,.k

O
The crude product 4.5f was purified on silica gel using a gradient of 0-60%
hexanes/EtOAc to afford the desired compound as a light-yellow solid in 68% yield
(64.7 mg, 0.136 mmol) and >99% ee. *H NMR (800 MHz, CD2Cl,,, 0 °C): § 7.68 — 7.64
(m, 2H), 7.59 — 7.55 (m, 2H), 7.48 — 7.41 (m, 1H), 7.35 (td, J = 7.8, 2.9 Hz, 3H), 7.30
—7.16 (m, 7H), 7.13 (tt, J = 7.5, 1.2 Hz, 1H), 7.11 — 7.09 (m, 2H), 6.84 (s, 1H), 6.44 (s,
1H), 1.38 (d, J = 15.7 Hz, 9H). 3C NMR (201 MHz, CD:Cl,, 0 °C): § 140.8 (d, J =
126.5 Hz), 138.9 (d, J = 13.2 Hz), 136.1, 134.5, 133.8, 132.6 (d, J = 8.8 Hz), 131.8 (d,
J=2.7Hz),131.3,130.6 (d, J = 95.9 Hz), 130.1, 129.6, 128.8, 128.7 (d, J = 15.1 Hz),
128.6, 128.3, 128.2 (d, J = 11.6 Hz), 128.0, 127.4, 127.3, 35.0 (d, J = 75.0 Hz), 24.7.
31p NMR (162 MHz, CD2Cly): § 32.2. HRMS (ESI+, m/z): calcd for CaiH20N2NaOP
[M+Na]+: 499.1910, found: 499.1917. Chiralcel OD, hexane/IPA =96/4, 1.0 mL/min,

A =254 nm; (S)-tr = 6.91 min (single enantiomer).
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(S)-tert-butyl(phenanthren-9-yl)(1,4,5-triphenyl-1H-imidazol-2-yl)phosphine
oxide (4.59)

N o W

(Nj

Synthesis of analogue 4.5g was carried out using SPO 4.1c (0.68 mmol, 95% ee),
imidazole 4.2e (1.02 mmol), diisopropylamine (0.38 mL, 2.70 mmol) and ethylene
glycol (6.80 mL). The crude product was purified on silica gel using a gradient of 0-
30% hexanes/EtOAc, to obtain the desired product as a light-yellow foam in 69% yield
(273 mg, 0.473 mmol) and 95% ee. The foam was dissolved in a minimal volume of
diethyl ether, and after a few seconds, white crystals began to form. The mixture was
allowed to stand at RT for 1 h and then stored at -10 °C for 20 h. The yellow supernatant
was removed to reveal white crystals. The white crystals were dissolved in a minimal
volume DCM and the solvent was evaporated to reveal a foam. The foam was
subsequently dissolved in a minimal quantity of hot methanol and the solution was
cooled to RT, then stored at -10 °C for 18 h, with the formation of crystals. The
supernatant was removed while cold and the crystals were washed with cold MeOH
(1.0 mL) to give the desired product as an off-white solid in 51% overall yield, 73%
recovery after crystallisation (200 mg, 0.347 mmol) and >99% ee.

The reaction was repeated on a larger scale using SPO 4.1c (1.08 mmol, 95% ee),
imidazole 4.2e (1.62 mmol), diisopropylamine (0.61 mL, 4.31 mmol) and ethylene
glycol (10.8 mL) to give 4.5g in 76% vyield (475 mg, 0.823 mmol) and 95% ee. After
trituration from diethyl ether and crystallisation from MeOH as described above, 4.5¢g
was obtained in 59% overall yield, 76% recovery (364 mg, 0.631 mmol) and >99%see.
IH NMR (800 MHz, CDxCly, 0 °C): 6 8.64 (dd, J = 25.3, 8.4 Hz, 2H), 8.48 (s, 1H),
8.09 (d, J = 15.8 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.72 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H),
7.69 — 7.64 (m, 2H), 7.62 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.60 (ddd, J = 7.9, 6.9, 1.1
Hz, 1H), 7.54 (s, 1H), 7.50 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.35 — 7.29 (m, 2H), 7.28 —
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7.24 (m, 1H), 7.22 — 7.20 (m, 1H), 7.19 — 7.15 (m, 2H), 7.12 — 7.05 (m, 2H), 7.01 (s,
1H), 6.64 (t, J = 7.5 Hz, 1H), 6.14 (s, 1H), 5.82 (s, 1H), 1.53 (d, J = 15.9 Hz, 9H). 3°C
NMR (201 MHz, CD2Cly): § 142.4 (d, J = 128.4 Hz), 138.9 (d, J = 13.3 Hz), 137.6,
135.7, 134.6, 133.6, 132.1, 131.9 (d, J = 2.2 Hz), 131.3, 130.6 (d, J = 8.7 Hz), 130.1,
130.1, 130.0 (d, J = 13.7 Hz), 129.6, 129.1, 128.8, 128.8, 128.6, 128.2, 128.0, 127.5,
127.4,127.3,127.0 (d, J = 5.8 Hz), 125.1 (d, J = 90.1 Hz), 123.1, 122.7, 36.8 (d, J =
75.5 Hz), 25.6. 31P NMR (162 MHz, CD2Cly): & 34.85. HRMS (ESI+, m/z): calcd for
Ca9H34N20P [M+H]+: 577.2403, found: 577.2402 Chiralpak AD, hexane/IPA = 96/4,

0.6 mL/min, A =254 nm; (S)-tr = 20.86 min (single enantiomer).

Stereoretentive Reduction of 4.5q to 4.6:

O L

N Ti(0-i-Pr), (20 equiv.) N
o 4 s
O /N»\\ﬁ"K TMDS (40 equiv.) /N»\P”K
_MDs (@9 equiv.)
QO THF, 50 °C, 72 h OQ
>99% ee 35% yield, >99% ee

An oven-dried pressure vessel equipped with a dry stir bar was cooled to ambient
temperature in a desiccator. The vessel was charged with 4.5g (28.5 mg, 0.049 mmol.
The vessel was crimp-capped and put through 3 cycles of evacuation and Ar-
backfilling. Dry THF (2.0 mL) was added under Ar and the mixture was stirred at RT
until complete dissolution. TMDS (0.35 mL, 1.98 mmol) and Ti(O-iPr)s (0.29 mL,
0.988 mmol) were added. The Ar inlet was removed, the vessel was wrapped in
aluminum foil, immersed in a pre-heated oil bath at 50 °C and stirred for 72 h. The
vessel was removed from the oil bath and allowed to cool to RT. Using a needle, the
Teflon seal was carefully punctured to vent the vessel. The resulting dark-drown
solution was transferred to a flask. The vessel was washed with THF (1.0 mL x2) and
transferred to the flask. The solution was concentrated at 30 °C in vacuo, dissolved in
5% EtOAc/hexanes (ca. 1.5 mL), and wet-loaded unto activated, neutral alumina for
column chromatography. Purification (0-2% EtOAc/hexanes) and subsequent

concentration at RT afforded the desired compound as a white solid in 38% yield (10.6
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mg, 0.0189 mmol) and 98% ee. Following crystallization from hexanes, the compound
could be obtained in >99% ee. *H NMR (800 MHz, CD:Cl,, 0 °C): § 8.72 (d, J = 8.3
Hz, 1H), 8.69 (d, J = 8.3 Hz, 1H), 8.65 (t, J = 7.6 Hz, 1H), 8.43 (d, J = 4.1 Hz, 1H),
7.92 (d, J = 7.9 Hz, 1H), 7.72 — 7.69 (m, 2H), 7.68 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.64
(ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.60 (ddd, J = 7.9, 6.8, 1.1 Hz, 1H), 7.53 (ddd, J = 8.2,
6.8, 1.3 Hz, 1H), 7.31 (t, J = 7.7 Hz, 2H), 7.26 — 7.17 (m, 6H), 7.15 — 7.08 (m, 2H),
7.04 (t,J = 7.4 Hz, 1H), 6.68 (s, 1H), 6.44 (s, 1H), 1.35 (d, J = 13.8 Hz, 9H). 13C NMR
(201 MHz, CD,Cl, 0 °C): § 147.1 (d, J = 11.3 Hz), 139.7, 138.0 (d, J = 3.8 Hz), 137.2,
135.5,135.2 (d, J = 25.9 Hz), 132.3, 131.4 (d, J = 1.1 Hz), 131.2, 131.0, 130.9 (d, J =
17.5 Hz), 130.3 (d, J = 5.1 Hz), 129.6, 128.7, 128.6, 128.3, 128.2, 127.9, 127.8, 127.7,
127.4,127.0, 126.9, 126.6 (d, J = 1.7 Hz), 126.6 (d, J = 2.7 Hz), 123.1, 122.7, 33.2 (d,
J=7.6 Hz), 28.5 (d, J = 14.4 Hz). *'P NMR (162 MHz, CD:Cl): § -26.5. HRMS (ESI+,
m/z): calcd for CagHzaN2P [M+H]+: 561.2454, found: 561.2443.

In order to determine the %ee, an aliquot dissolved in CDClz was oxidised using cold
H20, (30% w/w). After extraction, drying over anhydrous Na SO4 and concentration,
the oxidised product was subjected to HPLC analysis: Chiralpak AD, hexane/IPA =
96/4, 0.6 mL/min, A = 254 nm; tr = 21.04 min (single enantiomer).

Asymmetric Suzuki-Miyaura cross-coupling using Phosphinyl Imidazole Ligand 6:
Pd(OAc), (5 mol%),
Br O fo) HO\B/O 4.6 (6 mol%)
OO NJ(Q + K,COj3 (3 equiv.)
“ toluene:H,0 (9:1), OO
@ OO t, 24 h @
4.7 4.8

89% yleld 86% ee
(>99% ee after crystallisation)

Aryl bromide 4.7 (36.9 mg, 0.100 mmol), boronic acid 4.8 (34.5 mg, 0.200 mmol),
ligand 4.6 (3.4 mg, 0.006 mmol, 6.0 mol%), Pd(OAc)2 (0.005 mmol, 5.0 mol%) and
K2CO3 (41.6 mg, 0.300 mmol), were weighed into an oven-dried pressure vial. The vial
was crimp-capped and put through 3 cycles of evacuation and Ar back-filling via a
needle. Subsequently, dry Ar-sparged toluene (0.9 mL) and Ar-sparged deionised water

(0.1 mL) were added. The mixture was vigorously stirred under Ar at RT for 24 h. The
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mixture was filtered into a flask and the residue was washed with DCM (5 x 1 mL).
The combined filtrate was concentrated at RT and dried under vacuum for 2 h. The
crude was purified on SiO2 (0-5% EtOAc/hexanes) to give the desired compound as a
white solid in 89% vyield (37.2 mg, 0.085 mmol) and 86% ee. The compound was
suspended in warm Et.O (1.0 mL) and DCM was added dropwise until dissolution. The
solution was stored at -20 °C and crystals formed. The enantioenriched mother liquor
was removed with a pipet and dried to give a fluffy white solid in 54% over all yield
(22.3 mg, 0.0537 mmol) and >99% ee. *H NMR (400 MHz, CDCls): § 8.09 (d, J = 8.5
Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.84 — 7.64 (m, 3H), 7.58 (ddd, J = 8.2, 6.7, 1.4 Hz,
1H), 7.51 (dd, J = 7.0, 1.3 Hz, 1H), 7.45 — 7.38 (m, 4H), 7.38 — 7.29 (m, 3H), 7.12 —
7.06 (m, 1H), 7.03 — 6.96 (m, 2H). 13C NMR (101 MHz, CDCls): 5 168.3, 150.6,
142.4, 137.3, 134.8, 134.4, 133.5, 132.8, 132.7, 132.2, 128.7, 128.6, 128.4, 128.4,
128.2, 127.8, 127.6, 127.4, 127.2, 126.7, 126.5, 126.2, 125.1, 124.9, 124.4, 123.7,
114.3, 109.7. Chiralpak OD, hexane/IPA = 98/2, 0.8 mL/min, A = 254 nm; (R)-tr =
19.03 min (minor), (S)-tr = 21.12 min (major).

Mechanistic Studies

Synthesis of 1-(2-bromophenyl)-1H-imidazole-2-d (*H-4.2a):

N N
/A /
q)\H AgOTf [N)\D (97%)

AgOTF
©/Br D,0, CDCl,, 90 °C (j/Br

4.2a 2H-4.2a

Compound 4.2a with a deuterium at C-2 was synthesised according to previously
reported protocol with modifications.?® An oven-dried pressure vessel equipped with a
dry stir bar was charged with 1-(2-bromophenyl)-1H-imidazole (446 mg, 2.00 mmol)
and AgOTf (12.8 mg, 0.0500 mmol). The vessel was wrapped with aluminum foil to
exclude light. Subsequently, D2O (0.72 mL, 40.0 mmol) and CDCIs (1.3 mL) were
sequentially added. The vessel was crimp-capped and stirred in a pre-heated oil bath at
90 °C for 18 h. The mixture was cooled to RT and transferred to a separatory funnel.

The bi-phasic mixture was diluted with EtOAc (10 mL) and brine (50 mL). The organic
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layer was collected and the aqueous layer was further extracted with EtOAc (10 mL).
The combined organic layers were dried over anhydrous Na»SOgs, filtered and
concentrated, to give the deuterated imidazole as a light-yellow oil in 67% deuteration
at C2. The solid was re-dissolved in CDClIz (2.0 mL) and transferred to a dry pressure
vessel, followed by the addition of DO (0.72 mL, 40.0 mmol) and AgOTf (12.8 mg,
0.0500 mmol). The vessel was wrapped in aluminum foil and after stirring in a pre-
heated oil bath at 90 °C for 64 h, the mixture was cooled to RT and transferred to a
separatory funnel. The bi-phasic mixture was diluted with EtOAc (20 mL) and brine
(20 mL). The organic layer was collected and the aqueous layer was further extracted
with EtOAc (2 x 20 mL). The combined organic layers were dried over anhydrous
Na2SOyg, filtered and concentrated. The crude was purified on silica gel using a gradient
of 0-60% EtOAc/hexanes, to afford the desired deuterated imidazole as a light brown
oil in 70% yield (312 mg, 1.39 mmol) and 97% deuterium incorporation at C2. After
storage in a freezer (ca. -10 °C), the oil solidified and remained a solid even at room
temperature.

IH NMR (500 MHz, CDCl3): & 7.73 (dd, J = 7.9, 1.4 Hz, 1H), 7.67 (s, 0.03 H), 7.47 —
7.39 (m, 1H), 7.36 — 7.29 (m, 2H), 7.21 (d, J = 1.4 Hz, 1H), 7.13 (d, J = 1.3 Hz, 1H).
13C NMR (126 MHz, CDCls): 8 136.9, 134.1, 130.2, 129.6, 128.6, 128.3, 120.6, 120.1.
HRMS (ESI+, m/z): calcd for CoHsBrDN2Na [M+Na]+: 245.9748, found: 245.9751.

Investigation of H/D scrambling under C2-favouring site-selective conditions:

N N
o AR PA(PPh3)s (10 mol% R
%‘FLH (N%D(w%) d(PPhg)y (10 mol%) [N»\PJ<
H

DIPA (4 equiv.)
i Sl bl AN
* Br ethylene glycol,
130 °C, 18 h
4.1a ’H-4.2a 4.5a, 63% vyield

The crude product 4.5a was first purified on silica gel, using a gradient of 0-60%
hexanes/EtOAc) and then on reversed-phase C 18 silica gel to afford the desired product
as a white solid in 63% yield (41.1 mg, 0.127 mmol) without deuterium incorporation

at the ortho-position of the phenyl ring of the imidazole moiety.
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Investigation of direct C-H activation/oxidative coupling:

N
%,‘C;‘),H q» Pd(PPhg), (10 mol%)

DIPA (4 equiv.)

+ No reaction
ethylene glycol,
130 °C, 18 h

4.1a 4.11

4.7 Associated Content

NMR spectra and chiral HPLC data are provided in Appendix I11.
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Chapter 5: Conclusion and Contributions to Knowledge

5.1 Conclusion and Future Directions of Research Projects Presented in this

Ph.D. Thesis

The three projects presented in this Ph.D. thesis focused on the rational design,
synthesis and applications of novel P-chiral Bragnsted acids and novel P-chiral ligands
in asymmetric catalysis. In the first project (Chapter 2) a class of P-chiral N-phosphoryl
sulfonamide Brgnsted acid-type organocatalysts was synthesized from P-chiral SPOs.
A systematic evaluation of their properties in the asymmetric transfer hydrogenation of
quinolines revealed that these Brgnsted acids, characterized by an ortho-substituted
phenol or naphthol moiety, performed better in reactivity and enantioselectivity than
comparable, commonly used BINOL-based phosphoric acid organocatalysts. In
addition, extending the aromaticity of these acids, for instance, replacing the P-
substituted phenol moiety with naphthol (Scheme 2.1, Table 2.1) enhanced reaction
enantioselectivity. Within this reaction scope, the asymmetric Brgnsted acid-catalyzed
transfer hydrogenation of deactivated quinolines was successfully investigated for the

first time.

In the effort to improve on the enantioselectivity of this reaction, the library of
Brgnsted acids was further expanded to include variations to the sulfonyl handle
(Chapter 3). These compounds were shown to catalyze the transfer hydrogenation of
C2-substituted carboxymethyl quinolines in modest yields and enantioselectivity,
where BINOL-based phosphoric acid organocatalysts failed. Furthermore, the thermal
stability of some P-chiral Brgnsted acids was investigated and it was shown that at
elevated temperatures, a phospha-Brook rearrangement occurs. Future studies to
address this limitation may involve modulating the electronic nature of the substituents
on the phosphorus atom of these compounds, and thoroughly re-evaluating their
stability and catalytic properties. For instance, utilizing electron-deficient P-substituted

naphthols may decelerate the rate of catalyst rearrangement at elevated temperatures.
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Furthermore, to improve on the enantioselectivity of the transfer hydrogenation
reaction, it is suggested that the P-substituted aromatic group is further elaborated with
systems such as phenanthrol and anthracenol. In order to further explore the catalytic
properties of this novel class of P-chiral Brgnsted acid organocatalysts, it is imperative

that reactions involving other challenging electrophiles, such as olefins, are explored.

In the third project reported in this thesis (Chapter 4), a novel, enantiospecific,
site-selective, solvent-switchable 1,4-palladium migration/C-H activation cascaded
was applied to the phosphonylation of imidazoles with P-chiral SPOs. Preliminary
investigations suggest that this methodology is amenable to imidazole and SPO
coupling partners of various electronic and steric demands. To demonstrate the utility
of this methodology, the synthesis of a novel C2-substituted P-chiral phosphinyl
imidazole ligand was achieved for the first time, via the stereoretentive reduction of its
phosphonyl imidazole precursor. The application of this ligand was showcased in an
asymmetric Suzuki-Miyaura cross-coupling reaction, to give the desired atropisomer in
high yield and enantioselectivity. As a future direction for this methodology, an
improvement to the yields of the products may be investigated via an extensive reaction
optimization. In addition, a structurally diverse library of P-chiral phosphonyl
imidazoles (Figure 4.2) will be synthesized and evaluated in numerous asymmetric
transformations. In collaboration with experts in the field, computational studies may

be carried out to probe the role of solvents in site-selectivity.

5.2 Claims to Original Knowledge

a. Contributed to the synthesis of a novel class of P-chiral N-phosphoryl
sulfonamide Brgnsted acids organocatalysts, and their evaluation in the biomimetic
asymmetric transfer hydrogenation of quinolines. We showed that the catalytic
properties of these acids are modulated by an intramolecular hydrogen bond interaction

that rigidifies their cavity size, and potentially guides the hydride transfer from the
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Hantzsch ester reagent to the substrate, increasing the reaction rate and
enantioselectivity.

b. These Brgnsted acids were also applied to the organocatalytic, asymmetric
transfer hydrogenation of deactivated quinolines for the first time, yielding amino acid
bioisosteres. In comparison, BINOL-based Brgnsted acids failed to catalyze this
transformation. Furthermore, the thermal stability of some of these P-chiral Brensted
acids was investigated and an unprecedented phospha-Brook rearrangement was shown
to occur at elevated temperatures. While this phenomenon presents a limitation to this
methodology, it may be explored as a synthetic route towards compounds such as
phosphoramidates.

C. Contributed to the development of an unprecedented enantiospecific, solvent-
switchable, site-selective 1,4-palladium migration/C-H activation cascade and applied
it to the synthesis of P-chiral phosphonyl imidazoles. This methodology allowed for
direct coupling, as well as imidazole-C2 and imidazole-C5 site-selectivity. To the best
of our knowledge, the stereoretentive reduction of one of these compounds afforded the
first P-chiral 2-phosphiny imidazole ligand, which was used, as an example, to achieve
an asymmetric Suzuki-Miyaura cross-coupling reaction.

d. Contributed to the development of a B2Pin.-assisted copper-catalyzed transfer
hydrogenation of aromatic sulfonylimines, delivering a variety of aryl/heteroaryl
sulfonamides in good to excellent yields under mild reaction conditions and with
methanol as the hydrogen source. Mechanistic studies suggest that the reaction may
proceed via a transient a-borylated intermediate, followed by protodeboration to afford
the sulfonamide products. This manuscript is published, however, it is not reported in
this thesis.

e. Contributed to the applications of novel P-chiral N-heterocyclic carbenes as
ligands for asymmetric catalysis. This manuscript is under preparation and not reported

in this thesis.
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Appendix 1: NMR Spectra, HPLC Chromatograms and X-Ray Data for Chapter
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13C NMR of 2.3b
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13C NMR of 2.4a

25000

20000

15000

10000

5000
0

251822
08+57Z .,__r
15+ €2
8544 mmw
vERL T,
S96.°82 ¢
ogs0ze
161676
S956'EE

L8122y
858992}
99//°97)1
LGHGBT1
V0P 64|
FEPEZEL|
0960 €€}~
oogreel
BEFBEEL
VBLT L=
£850°/7)
NE;ﬁM

|

0

=
)

179



Chiral HPLC Chromatograms of 2.4a

Method: HPLC instrument: Agilent 1260 HPLC; L =220 nm

Colum: Phenomenex Lux Cellulose-2, 4.6x100 mm

Solvent A: 0.1% (v/v) HCIOg in water, Solvent B: CH3CN; 50-90% solvent B in 15

min at a flow rate of 1.2 mL/min

Top panel, racemic (in red) superimposed with (R)-enantiomer (in blue); bottom panel
(R)-2.4a; (R)-enantiomer tr = 11.44 min (major), (S)- enantiomer tr = 12.36 min

(minor).

Peak RetTime Type Width Area Height Area
L [min] [min] [mAU*s] [mAU] L]
=== I====1 | I |
1 11.439 MM 0.2819 1.42850ed4  B44.44775 98.0089
2 12.401 BB 0.2276 290,20435 17.39890 1.98911

Totals : 1.45752e4 B61.84665

*%+ End of Report *++*
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IHNMR of 2.4¢
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31p NMR of 2.4c

600

550

500

450

400

350

300

250

200

150

100

50

ey —

T T T T T T T T T
-60 -80 -100 -120 -140 -160 -180 -200 -220 -240
f1 (ppm)

T
-40

13C NMR of 2.4c

o o o o o o
o o o o o o o
n [=] n (=] n o o
™ ™M o~ ~N — — wn
Il Il Il Il Il Il Il
)
. c
19'€2 k)
S9'€e m _
09'b2
cm.vNN ©
60T =
16'62 7
81ve -
soze \ =
3
£5'95 — -
n
1962~ _ rQ
s9€z =" -
(=]
Y~
NE
a
a
£0°01T % =
Fe e
6L°0TT 09'v7 — o~
98°'T1T
61T 064~ )
SLeet [az4d Fu
pOHTT o
prias
85°£2T 1)
66'L2T Fo -
82'87T
o scen— &
S
EP°GET N\ o _
teser v9'bTT [
€6°GET -
LL09€T © ~
£8'9€T L E
~8
£2°0ST — NT
LR o
95251 — -
Lseey _
Th'8ST — 8scet ]
66221 = rs
szger - o
L&
S
95°67T ~
v9'62T LR
2
n
)
=
£b'SET —
16'SET~_ o £
. = |- aQ
£6'5eT - S8 2
o
o
® g
LL9ET ~ ©
€8'9€T >
M=

T T T T T T T T
190 180 170 160 150 140 130 120 110

T
200

210

f1 (ppm)

182



'HNMR of 2.4d
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3P NMR of 2.4d
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'H NMR of 2.4e
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31p NMR of 2.4e
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'H NMR of 2.5a
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'H NMR of 2.5b
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1P NMR of 2.5b
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'H NMR of 2.5¢
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13C NMR of 2.5¢
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'H NMR of 2.5d
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3P NMR of 2.5d
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'H NMR of 2.5e
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3P NMR of 2.5¢
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$IP-NMR of 2.7e
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'H-NMR of 2.7f
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$IP-NMR of 2.7f
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'H-NMR, *3C and 3P NMR spectra of compound 2.8a were consistent with those previously
reported.’

i
%----P—NHZ

2.8a

Chiral HPLC chromatograms of 2.8a

DAD1 E, Sig=220 4 Ref=360,100 (MLYWLYQ1-110 SM RAC-1.D)
mAU ]
250
200 g
150 | ?
100 .
0
o] - _— |
0 2 4 6 8 10 12 4 mid
DAD1 H, Sig=214 4 Ref=360,100 (MLY\MLY01-016 RECHECK.D)
mAU
500
g
400 | I
300
200
100 ‘
ol e
0 2 4 & & 10 12 4 min
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s] [mAU] %
Il R |====|======= | === | ========== [—=——=———- I
1 5.881 BB 0.2069 5673.06494 411.40399 98.3002
2 7.600 BB 0.2540 98.09958 5.90015 1.6998
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'H NMR of 2.8b
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3P NMR of 2.8b
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Chiral HPLC chromatograms of 2.8b

DAD1 E, Sig=220,4 Ref=360,100 (MLY\MLYQ1-121-P(O)NH2.D)
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'H NMR of 2.8¢
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31p NMR of 2.8¢c
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Chiral HPLC chromatograms of 2.8¢c

DAD1 E, Sig=220.4 Ref=360,100 (MLY\MLY-P-MEOPH-TBU-PNH2-RAC.D)
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'H NMR of 2.8d
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3P NMR of 2.8d

—50.0634

1900

F1800

F1700

1600

F1500

1400

F1300

1200

F1100

1000

Fo00

800

200

200

100

=100

T T LI I e |

T T T T T
130 110 90 80 70 B0 B0 40 30 20 10 O

13C NMR of 2.8d

1587263
1586048
1367204
[-136.8536
134 7400
1293320
1280287
1276392
1276173
1275225

1118873
1118113

fi
/
f

T
-130

559720

-1a0

T
-170

~36.3752

™35 4498

T T
-190 -210 -230

60000

—24.3761

55000

(50000

(45000

(40000

(25000

(20000

25000

20000

15000

(10000

5000

5000

T T T T T
100 a0 80 0 60
f1 (ppm)

T T T T T T T T T
190 180 170 160 150 140 130 120 110

209



Chiral HPLC chromatograms of 2.8d

DAD1 E, Sig=220,4 Ref=360,100 (MLY\MLYD1-131-P(C)NH2.D)

mAU |
300
250
200
150 |

100 \

50

26556

5 10 15 20 25 30 35 miny

DAD1 E, Sig=220,4 Ref=360,100 (MLY\MLY02-13-NEW-PONH2.D}

= 28.063

Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s ] [mAU] %

1 28.963 BB 1.0990 1.57264e4 216.10506 100.0000
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'H NMR of 2.8e
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31p NMR of 2.8e
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Chiral HPLC chromatograms of 2.8e

mAU

DAD1 E, Sig=220 4 Ref=360,100 (MLY\MLY02-02-PONH2.D)

—=4.964

—=6.078

DAD1 E, Sig=220.4 Ref=360,100 (MLY\MLY02-04-PONH2-RECRY.D)

E— R4

Peak RetTime Typse
# [min]

1 6.197 BV

Area
[mAU*s]

Width

0.2148 ©538.37207

Height
[mAU] %

457.20520 100.0000
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'H NMR of 2.8f

o [=3 o [=3 (=3 o o (=3 o (=3 o [=3 o
o o o (=3 o o [=3 (=3 (=3 o o o (=3 (=3 (=3 o I=)
i=] o (=] (=3 o i=] o o (=3 o i=] o o o o o o
o o @ o < o~ o @ o < o~ o o (=3 o o ~
™ @ ~ ~ Nl ~ I — — — — — @ © < [N} o h
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
STT~ - @ .
P <06
o
N
~
o
o
P
e’ . ~E —
VA ja
voL— N
T oF
€000 92L ~_ ~N
~N
Tee— - TD.N
s6'€ — Tﬁ.m
F~
YL~
oL —
Ree v
SbL '~ g
AN =
L — e B
8y'L in
8b'L \ r~
£
e o
€L 0L~ = oz N 8
vTL e =
. n ¢
see L=
€0ad 9z, N
veL ©
9e7L N
£ .
. 00T
Sv'L ~ Tzo1
ShL~ 6L'L~ - o E Tsoz
Lyt 6L e a po
8v'L /- 184~ [POTIs m\.vo.ﬁ
sv'sIfF 8L = H\_Mo.ﬁ
e .
6Lt T
6L'L
87 o m ~
8°L I Lo
v6'L v6L— z - 107 | ™ T
66°L | s
108 o o=n — gg
o z ® - Feot[ o &
108 — z P T
€96~ \_/ O .
o6 —  F001

0.5

1.5 1.0

2.0

3.0

4.0

4.5

5.0

f1 (ppm)

6.5

7.5

8.0

214



1P NMR of 2.8f
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Chiral HPLC chromatograms of 2.8f

DAD1 E, Sig=220,4 Ref=360,100 (MLY\MLY02-069-PONH2-RAC.D)

10912
_>15.582

20 25 i}

DAD1 E, Sig=220 4 Ref=360,100 (MLY\MLY02-068-PONH2-RECRY-3.D)
mAU
800
700+

600

= 15.336

500

400

300

200

100

Peak RetTime Type Width Area
# [min] [min] [mAU*s ]

1 15.336 BV 0.9039 3.62257e4

614.41528 100.0000
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(S)-6-bromo-2-methyl-1,2,3,4-tetrahydroquinoline (2.11a)

'HNMR of 2.11a
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13C NMR of 2.11a
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Chiral HPLC Chromatograms of 2.11a
DAD1 A, Sig=220,4 Ref=off (MLY\MLY01-001-RAC.D)
mAU S
500 % g
400 ‘\‘ e
300 I‘ \ ‘
200 | [
100 N [
0 T - T T ‘*‘\\“ T T “ T > T T T T
0 2 4 6 8 10 12 14 16 18 min
DADT A, Sig=220 4 Ref=off (MLYWLY02-072-CYC D)
mAU
400 s
350 <
300 I
250 I
200 I
150 ||
100 © )
50 E \
03 T T T B T ‘\\ T T T
0 2 4 6 8 10 12 14 16 18 min
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU* s ] [mAU] %
e e | —=mmmm |- | === |
1 8.575 BB 0.4773 492.90408 le.006506 5.2228
2 11.171 BB 0.4480 8944,63574 316.22061 94.7772
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For comparison compound 2.11a was also analyzed using a chiralcel OJ-H colunn in comparison
with the literature.’

Chiral HPLC Chromatograms of 2.11a

DADA F, Sig=254,4 Ref=360,100 (IFENNA MBAEZUE\IM02-74_RAC.D)
mAU [Te] [To]
2 & 3 D}@y
300 ;59 A N AN
250 i S
200 [ [
150 ‘ "‘ ||
| |
100 I [
50 I\ J'
0 - /L . o
6 ‘5 1|0 1‘5 2‘0 ‘ 2‘5 min|
DAD1 F, Sig=254 4 Ref=360, 100 (IFENNA MBAEZUE\MO2-72_ENAN D)
mAU o] 9
g o
350 2 s
300 |
250 [
200 |
150 | o (\"W
n & &
50 ‘; ‘»\ g?se’b
0 — foN e
6 _ ‘5 __ _ 1‘9 _ _ _ 1‘5 2|0 2‘5 min|
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*5] [mAU] %
Il Bt [—=== === | —====—=- | === | ======—= |
1 19.035 MM 0.5867 1.50542e4 427.68332 93.9108
2 23.192 MM 0.6424 976.11206 25.32313 6.0892
Chiral HPLC Chromatogram of crystallized product 2.11a
DADT F, Sig=254,4 Ref=360, 100 (IFENNA MBAEZUE\MO02-72_ENAN_RECRYST D)
mAU 7 [} ™
E g &
1 P
500 || >
] | V&
400 | ¥
] [
300 I
E ‘ o
200 . W
] | b %\Q"
1003 [ S
03 J . L
I R T T
Peak RetTime Type Width Area Height LArea
# [min] [min] [MAU*s] [mAU] %
e e | == | === | === |
1 18.989 MM 0.5980 2.30864e4 643.44177 96.5849
2 23.121 MM 0.7581 B816.29865 17.94708 3.4151
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(S)-2-methyl-1,2,3,4-tetrahydroquinoline (2.11b)
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Chiral HPLC Chromatograms of 2.11b

DAD1 F, Sig=254,4 Ref=360,100 (IFENNA MBAEZUE\IM01-110 RAC NEW.D)

mAU 3 %’9 o
] [ 5
1200 T
j |’D‘ | 2
1000: ‘Ysa MI?S@
800 1 “\
600 I |\|
400 1
200 AR
UE — ) ‘\‘J_.“I "I
— 1 1 T [ 1 I T
0 2 4 6 8 10 12 14 16 18 min

mAU e 2
200 v
] ks
1500 | ‘,
] a
1000 X
1 = w’lﬂ
500 ~o |
] &n»s |
-l S s i:RH
0 2 1 6 8 10 12 14 18 18 mir
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s ] [mAU] %
=== | === === | === | ———=====—= | ——=—==== |
1 6.777 MM 0.1708 2120.12207 206.83456 5.7703
2 7.786 MM 0.2332 3.46218e4 2474.55040 94.2297
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(R)-2-phenyl-1,2,3,4-tetrahydroquinoline (2.11c)

'H NMR of 2.11c
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Chiral HPLC Chromatograms of 2.11c

DAD1 F, Sig=254.4 Ref=360,100 (IFENNA MBAEZUE\IM02-73_RAC.D)
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DADT F, Sig=254,4 Ref=360,100 (IFENNA MBAEZUENM02-79_ENAN D)
mAU 3
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Peak RetTime Type Width Area Height RArea
# [min] [min] [mMAU*s] [mAU] %

1 15.129 MM
2 21.393 MM

0.5518 1115.59338 33.69407 20.3431
0.6967 4368.30176 104.49825 79.6569

226



(R)-4-methyl-1,2,3,4-tetrahydroquinoline (2.11d)

'H NMR of 2.11d
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13C NMR of 2.11d
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Chiral HPLC Chromatograms of 2.11d
DAD1 F, Sig=254 4 Ref=3860,100 (IFENNA MBAEZUE\IM02-80_RAC.D)
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DAD1 F, Sig=254,4 Ref=360,100 (IFENNA MBAEZUE\IMO2-78_ENAN.D)
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Peak RetTime Type Width Area Height Area
# [min] [min] [mMAU*s] [mAU] %
il Bt [—=== ===~ |—========= | —========= | —=====—= |
1 16.412 MM 0.5150 1.74665e4 565.20856 35.2382
2 17.669 MM 0.5373 3.21006e4 995.67267 64.7618
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(S)-2-ethyl-1,2,3,4-tetrahydroquinoline (2.11e)

"H NMR of 2.11e
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13C NMR of 2.11e
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Chiral HPLC Chromatograms of 2.11e

DAD1 F, Sig=254 4 Ref=360,100 (IFENNA MBAEZUEMO1-114 RAC 2-ETHYLQUINOLINE.D)
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(R)-2-isopropyl-1,2,3,4-tetrahydroquinoline (2.11f)

'H NMR of 2.11f
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13C NMR of 2.11f

8 |- 14000
g g8 § 2% S 5 § 83 2 | 13000
| Lo )
12000
11000
10000
9000
8000
7000
6000
5000
4000
. 3000
2000
| | 1000
Y
-1000
1‘60 1‘50 1‘40 1‘30 1‘20 1‘10 160 9‘0 éO 7‘0 éO 5‘0 4‘0 3‘0 2‘0 1‘0 b
f1 (ppm)
Chiral HPLC Chromatograms of 2.11f
DADT F, 5ig=254,4 Ref=360,100 (IFENNA MBAEZUENMOT-117 RAC 2-PR THQ.D)
mAU % ) 8 2
N Q?
2500 A s &
| &a'b' I ‘a‘b'
2000 s
1500 | (
1000 (1l (
500 [ [\
0 — LI — I_‘,
[ T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 mir
DADT F, Sig=254 4 Ref=360,100 (IFENNA MBAEZUEMO1-116A ENANTIOENRICHED 2-PR THQ.D)
mAU w 3
O
2500 % @Q‘b
& L&
2000 o s
@ )
1500 wx |
1000 ‘l“ [
500 " |
0 L J N
I T T T T T T T T T
0 2 4 8 8 10 12 14 18 18 i
Peak RetTime Type Width Area Height Area
# [min] [min] [mMAU*s] [mAU] %
el EEEEE R | —=mmmm - | == | ==————- |
1 5.896 MM 0.1692 1.36597e4 1345.61450 17.1757
2 8.525 MM 0.3606 ©.58694e4d4 2994.45923 82.8243

233



(2.119)

line

Ino

tro-1,2,3,4-tetrahydroqu

-ni

(S)-2-methyl-6

IH NMR of 2.11g

12000

11000
10000

9000

8000

7000

6000

5000
4000

3000

2000

1000

r-1000

lias
8T
bS'T
SS°T
95'T
9s'T
8T
85'T
85T
65'T
6S'T
09'T
19T
16T

86'T ~
86'T ﬂ

Ry

66'T
66'T
00T
10T
10T
20T
20T
€0'T
08'C
18T
8T
€8T
[
[A
£5°€
bS'E
bS'E
SS°€
95'E
95'€
L5°€
L5°€
85°€
5% —

SE'9

Nm.o/
Nm.ww
L£°9

€10a0 9T L —

88°L
88'L
68'L
68'L
06'2
06°L
06'L

082~
187~
w7 —
egr

43 /
[

€5°€ %
PSE"
bS'E~T
S5°€—
95'€
95°€ \
L5°€ \

L5°€ \
85°€

S€'9
LE79 ”
LE79 N
L£9

88°L
88 u/
68'L AN

68°L~\

06°L
06°L
06°L

O,N

,,//

ZT

2.11g

[s0'c

00T

T T T
3.50 2.90 2.85 2.80 2.75

T
3.55

f1 (ppm)

3.60

6.30

795 7.90 7.85 6.40

f1 (ppm)

1 (ppm)

1 (ppm)

Wﬁ.m

Feot

Fsoz

Foot

Fot

Fs1

9000

8000

7000

6000

5000

{-4000

3000

2000

1000

— zr—
87T —

f1 (ppm)
25
—

water overlap

(433

20'T

2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15

2.10

f1 (ppm)

234



13C NMR of 2.11g
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Chiral HPLC Chromatogram of crystallized product 2.11g

DAD1 H, Sig=254.4 Ref=460,100 (IFENNA MBAEZUE\IMO1_121_RAC_CD_4.D)
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'H NMR of 2.11h
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13C NMR of 2.11h
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'H NMR of 2.11i
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13C NMR of 2.11i
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'H NMR of 2.11j
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13C NMR of 2.11j
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X-Ray Data Collection and Structural Refinement Statistics

The X-ray data were collected on a Bruker D8 Venture dual-source diffractometer
equipped witha PHOTON I detector and an Oxford Cryostream 800 cooling system, using mirror-
monochromatized CuKa: radiation (1 = 1.54184 A) from a microfocus source, in a series of ¢- and
w-scans. APEX3 software was used for data collection, integration and reduction.*® Semi-

empirical absorption correction was applied using SADABS-2016/2.4

The structures were solved using SHELXT-2014/5 (5a_123K, 11a 253K) or SHELXT-
2018/2 (5¢c_253K, 8d_253K)*and refined by full-matrix least-squares using SHELXL-2018/3
within Olex24’and WinGX*® packages. All non-hydrogen atoms were refined anisotropically. All
carbon-bound hydrogen atoms were calculated to their optimal positions and treated as riding
atoms using isotropic displacement parameters 1.2 (or 1.5 in case of methyl groups) times larger
than the respective parent atoms. Nitrogen- and oxygen-bound hydrogen atoms were found in the
difference electron density map and were modelled as constrained, with isotropic displacement
parameters 1.2 (for nitrogen-bound) or 1.5 (for oxygen-bound) times larger than those of the
respective parent atoms. In case of 11a_253K, the amino group was instead allowed to refine as a
rigid body to allow for the partial sp* character of the nitrogen, i.e. the out-of-plane position of the
attached hydrogen atom. For disordered moieties, 1,2- and 1,3-interatomic distances were
restrained to be equal and the anisotropic displacement parameters of the atoms were restrained to
be equal for bonded and spatially close atoms. In case of 5¢_253K, the minor disorder component
of the 2,4,6-triisopropylbenzenesulfonyl group was partially refined as a rigid body including the
benzene ring with the attached secondary carbon atoms of isopropyl groups and the sulfonyl (-
SO2-) group. The occupancies of the disordered moieties were either allowed to refine freely

(5¢c_253K) or were fixed to 0.5 as required by the proximity of a two-fold rotation axis (8d_253K).

CCDC 1935843-1935846 contain the supplementary crystallographic data for this paper.
The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via

www.ccdc.cam.ac.uk/structures.
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Table I-1. Crystallographic data.

Complex 2.5a 123K 2.5¢c_253K 2.8d_253K 2.11a 253K
CCDC Number 1935843 1935844 1935845 1935846
Empirical formula CasH3sNO4PS C30H44NOsPS C31H42C|2N204P2 CioH12BrN
Formula weight 479.59 561.69 639.50 226.12

T/IK 123.0(1) 253.0(1) 253.0(1) 253.0(1)
Crystal system Monoclinic Orthorhombic Tetragonal Orthorhombic
Space group P2, P2,2:2,1 P4,2,2 P2:2:21

alA 10.6790(7) 10.5840(6) 10.7127(2) 16.0321(5)
b/A 12.0178(8) 15.7917(8) 10.7127(2) 6.1532(2)

c/A 11.2241(7) 18.4493(10) 27.9476(6) 9.7828(3)

al® 90 90 90 90

BI° 112.3257(14) 90 90 90

y/° 90 90 90 90

VIA3 1332.50(15) 3083.6(3) 3207.32(14) 965.06(5)

z 2 4 4 4

Peaiclg cm™2 1.195 1.210 1.324 1.556

ulmm™ 1.878 1.721 3.070 5.338

Max. and min. 0.7543and 0.5780  0.7536and 0.6107  0.7536and 0.6332  0.7543 and 0.5764
transmission

F(000) 516.0 1208.0 1352.0 456.0

Crystal color and shape colorless, prism yellow, lath colorless, prism colorless, block

0.655%0.634x0.502  0.644x0.628x0.384  0.314x0.283x0.221  0.337x0.312x0.294
8.952 to 161.056 7.368 to 145.612 8.84 t0 144.914 10.594 to 161.068

Crystal size/mm?3
20 range for data

collection /°
-13<h<13, -13<h<13, -13<h<13, —-20<h <20,
Index ranges -15<k< 14, -19<k<19, -13<k<13, -7<k<T,
-14<1<14 —22<1<22 -34<1<32 -12<1<12
Reflections collected 31499 60068 45989 25154

Reflections [Rin] 5643 [0.0313] 6006 [0.0411] 3167 [0.0835] 2073 [0.0457]
Data completeness (%) 99.5 to 26 = 135.500° 97.6 to 20 = 135.358° 99.2 to 26 = 135.500° 97.6 to 20 = 135.358°
Data/restraints/parameters  5643/1/300 6006/981/483 3167/20/208 2073/0/114

Goodness-of-fit on F? 1.034 1.137 1.054 1.145

o R. = 0.0271, R = 0.0437, R: = 0.0278, R: = 0.0656,
Final Rindices [/>20()] | o _ 0 0709 WR, = 0.1133 WR, = 0.0741 WR; = 0.1579
o R. = 0.0273, R; = 0.0440, R; = 0.0280, R: = 0.0662,
Final R indices [all data] | o _ 4 0717 WR, = 0.1137 WR, = 0.0744 WR, = 0.1581
'(‘ea;&giit diff. peakinole 346/ 0,258 0.477/-0.282 0.253/~0.190 0.475/~0.632
Flack parameter x 0.014(9) 0.029(4) —-0.007(5) 0.050(18)
Extinction coefficient 0.0090(10) 0.0130(15) - 0.014(2)
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Appendix I1: NMR Spectra, HPLC Chromatograms of Chapter 3

'H NMR (CDCls, 400 MHz) of compound 3.8a
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Chiral HPLC Chromatograms of 3.8a

[T DADT A, Sig=254 4 Ref=360,100 (IFENNA MBAEZUEMO7-20.0)
mAU 3 @
b3 ~
120 # n
100 f (| ‘
50 I |
80 (|
40 '
20
0 - - v - o
I T T T T T T T
2 4 6 8 10 12 min|
] DAD1 A, Sig=254.4 Ref=360,100 (IFENNA MBAEZUEM08-135.0)
mAU P
#
200 i
150
100 5
50 N
0 — - —
1 T T T T T T
0 2 4 8 8 10 12 min
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
=l I |- [—————— [ === I
1 6.464 VB 0.1902 1836.71472 146.56891 49,4534
2 7.746 BB 0.2377 1877.31531 119.22342 50.5466
Peak RetTime Type Width Area Height Area
3 [min] [min] [mAU* 3] [mAU] %
———= - B [-—=—————- === [———=———=
1 6.523 BB 0.1914 3015.92383 238.72182 74.4572
2 7.819 BB 0.2329 1034.62195 67.48457 25.5428

246



F

'H NMR (CDCls, 500 MHz) of compound 3.8b
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F NMR (CDCls, 471 MHz) of compound 3.8b

1275

T T T T T T T T T T T T T
10 0 -0 -20 -30 -4 -50 60 -70 -80 90 -100 -110 -120 ~-130 -140 -150 ~-160 -170 ~-180 -190 -200 -210
f1 (ppm)

Chiral HPLC Chromatograms of 3.8b

T DAD1 A, Sig=254 4 Ref=360,100 (IFENNA MBAEZUEMO7-8.0)
mAU 3 3 3
154 @ o
125
105
754
54
254
0o — L S S - - _
253 L L e ey S L B LA
0 2 4 6 8 10 12 14 16 min|
[T DADT A Sig=254 4 Ref=360,100 (FENNA MBAEZUEV06-126_CRYSTALD)
mAU 2
140 &
120 |
100 g ‘
80 2
80
40
204
0 v - -
2 4 5 8 1 12 14 s il
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s] [mAU] %
- |- |- |—————— |- \
1 9.914 BB 0.1774 200.36966 17.51891 50.1694
2 12.699 BB 0.2268 199.01665 13.59466 49.8306
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
el B I |- | ————— |- \
1 9.967 BB 0.1790 935.77582 79.66815 27.3511
2 12.798 BB 0.2394 2485.57617 158.13461 72.6489
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13C NMR (CDCls, 126 MHz) of compound 3

1735

142.1
1317
~ 1209
— 1227
— 1161

i

.8c

— 1003
_-538
526

1 |

257
~244

T T T T T T T T T T
210 200 190 180 170 160 150 140 130 120

T T T T T T T T
110 100 90 80 70 60 50 40

f1 (ppm)
Chiral HPLC Chromatograms of 3.8c
[T DADTA, Sig=254 4 Ref=360,100 (IFENNA MBAEZUE'IMO7-8_RUN2.D)
mAU @ bl
3 I
35 b &
a0 ' |
25
20
15
10
5
0 . o S . .
ﬁ i A‘l é é 1ID 1‘2 1‘4 min
[T DADTA, Sig=254 4 Ref=360,100 (IFENNA MBAEZUE\IM06-127.D)
mAU b4
1 b
400 b
300 ] i
2004 :
100
o] .
0 2 3 § 8 10 12 14 i
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
——— |- [———= === |- [————————- | ———————- |
1 11.078 BB 0.2138 571.73297 40.72522 50.0334
2 12.543 BB 0.2355 570.97064 37.10265 49.9666
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

e e R |-
1 11.038 BB 0.2150 2678.41431 1
2 12.463 BB 0.2445 7253.516l11 4

———————— |—mm |
8§9.39082 26.9677
53.70108 73.0323
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After Recrystallization:

[ 1 DAD1 A, Sig=254.4 Ref=360,100 (IFENNA MBAEZUE\IM06-127_MOTHER_LIQ_P.D)
mAU g
i
30 n
20 & |
10 :
0 _ - _ _ _ e _;". N -
0 2 4 5 8 10 12 14 mirl
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] 3
el B |- - [-————————- |- -
1 11.195 BB 0.2183 132.32381 9.28285 17.1056
2 12.648 BB 0.2389 ©041.24689 41.36087 82.8944
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!H NMR (CDCls, 400 MHz) of (R)-N-(tert-butyl(2-methoxynaphthalen-

1-yl)phosphoryl)-4-methylbenzenesulfonamide
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13C NMR (CDCl3, 126 MHz) of (R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-4-

methylbenzenesulfonamide
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3P NMR (CDCls, 162 MHz) of (R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-4-

methylbenzenesulfonamide
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(R)-N-(tert-butyl(2-hydroxynaphthalen-1-yl)phosphoryl)-4-
methylbenzenesulfonamide (3.14a)

'H NMR of (CDCls, 400 MHz) 3.14a
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13C NMR of (CDCls, 126 MHz) 3.14a
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'H NMR (CDCls, 400 MHz) of (R)-N-(tert-butyl(2-
methoxynaphthalen-1-yl)phosphoryl)-2,4,6-

tricyclohexylbenzenesulfonamide
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13C NMR (CDCls, 126 MHz) of (R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-
2,4,6-tricyclohexylbenzenesulfonamide
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3P NMR (CDCls, 162 MHz) of (R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-

2,4,6-tricyclohexylbenzenesulfonamide
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Luc

(R)-N-(tert-butyl(2-hydroxynaphthalen-1-yl)phosphoryl)-
2,4,6-tricyclohexylbenzenesulfonamide (3.14c)

'H NMR (CDCls, 400 MHz) of 3.14c
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13C NMR (CDCls, 126 MHz) of 3.14c
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(R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-5'-

OMe

3',1"-terphenyl]-2'-sulfonamide

phenyl-[1,1'
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13C NMR (CDCl3, 126 MHz) of (R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-5'-
phenyl-[1,1":3",1""-terphenyl]-2'-sulfonamide
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3P NMR (CDCl3, 162 MHz) of (R)-N-(tert-butyl(2-methoxynaphthalen-1-yl)phosphoryl)-5'-
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3',1""-terphenyl]-2'-sulfonamide (3.14d)

(R)-N-(tert-butyl(2-hydroxynaphthalen-1-yl)phosphoryl)-5'-
!H NMR (CDCls, 400 MHz) of 3.14d

phenyl-[1,1°
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13C NMR (CDCls, 126 MHz) of 3.14d
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!H NMR (CDCls, 500 MHz) of (R)-N-(tert-butyl(2-

methoxynaphthalen-1-yl)phosphoryl)phenanthrene-9-sulfonamide
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13C NMR (CDCl3, 126 MHz) of (R)-N-(tert-butyl(2-methoxynaphthalen-1-
yphosphoryl)phenanthrene-9-sulfonamide
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(R)-N-(tert-butyl(2-hydroxynaphthalen-1-
yphosphoryl)phenanthrene-9-sulfonamide (3.14e)
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IH NMR (CDCls, 500 MHz) of compound 3.14e
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13C NMR (CDCl3, 201 MHz) of compound 3.14e
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Naphthalen-2-yl P-(tert-butyl)-N-((2,4,6-

triisopropylphenyl)sulfonyl)phosphonamidate (3.15)

!H NMR (CDCls, 500 MHz) of compound 3.15 at RT
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'H NMR (CDCls, 400 MHz) of compound 3.15 at 50 °C showing peak coalescence
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13C NMR (CDCls, 126 MHz) of compound 3.15 at RT
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3P NMR (CDCls, 203 MHz) of compound 3.15 at RT
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3P NMR (CDCls, 162 MHz) of compound 3.15 at 50 °C showing peak coalescence

30.34

30.34

T T T T T
31.0 30.5 30.0 29.5 29.0
1 (ppm)
T T T T T T T T T T T T T T T T T T T T
120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70

f1 (ppm)

\¥1p NMR (CDCls) of compound 3.15 at RT and 50 °C showing peak coalescence

50 °C

RT

————— T ———————
31.1 30.9 30.7 30.5 30.3 30.1 29.9 29.7
f1 (ppm)

273



Appendix I11: NMR Spectra and HPLC Chromatograms of Chapter 4

'H NMR (500 MHz, CDCls) spectrum of 4.2a
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13C (*H) NMR (126 MHz, CDClI3) spectrum of 4.2a
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'H NMR (400 MHz, CDCls) spectrum of 4.2b
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13C (*H) NMR (101 MHz, CDClIs) spectrum of 4.2b
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'H NMR (400 MHz, CDCls) spectrum of 4.2¢
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13C (*H) NMR (101 MHz, CDClIs) spectrum of 4.2¢
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'H NMR (500 MHz, DMSO) spectrum of 4.2d
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13C (*H) NMR (126 MHz, DMSO) spectrum of 4.2d

20°02T
€0°T2T
61°2CT
9E'VTT
EPPCT A
8b°SZT
1S°SZT
$S°STT
£5°STT
25°92T
06921
£6'92T 7
96'921
66'92T
88'82T
S0°62T
1€°62T
85°62T |
¥8'62T
88'pET

N

9€'LET
zLer

20°02T —

n

6T°CCT —

9€pCT
EP'HTT V

8b'SCT
T9'ser
vS'SeT
L5°STT

75'9TT
06'92T

€6'9CT
96°9CT
66°9CT

88°8CT

m

5662F

TE°62T ~
85°671 —
vg6eT

88°VET —

9ETLET ~
8LET

T

T

T

T

T

T

T

T

T

T

138 136 134

T
130 129 128 127 126 125 124 123 122 121 120
f1 (ppm)

f1 (ppm)

-10

T T T T T T T T T
200 190 180 170 160 150 140 130 120

210

f1 (ppm)

281



¥F (*H) NMR (471 MHz, DMSO) spectrum of 4.2d
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'H NMR (400 MHz, CDClIs) spectrum of 4.2e
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13C (*H) NMR (101 MHz, CDClIs) spectrum of 4.2e
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'H NMR (400 MHz, CDClIs) spectrum of 4.3a
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13C (*H) NMR (101 MHz, CDClI3) spectrum of 4.3a
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31p(*H) NMR (162 MHz, CDCl; of 4.3a
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'H NMR (400 MHz, CDClIs) spectrum of 4.4a
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13C (*H) NMR (101 MHz, CDClI3) spectrum of 4.4a
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31p(*H) NMR (162 MHz, CDCl; of 4.4a
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Chiral HPLC chromatogram of 4.4a
[] DAD1C, Sig=220,8 Ref=360,100 (IFENNA MBAEZUE\IMO7-155-RAC.D)
mAU 4 E 5
5003 a =
400 |
300
200
1004 [
0+ — — ST S —— —
é 1ID IIE 2'0 25 EID ‘mm
[ 1 DADI1 C, Sig=220 B Ref=360,100 (IFENNA MBAEZUE\IM07-160-RUN4.D)
mAU E
800 :
800 |
400 < ‘
200 ©
0 S S S — -
6 .": 1‘0 ||5 ZIU 2‘5 B‘D ‘mm
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU* 5] [mAU] %
- [———= == | ———=—— | === [ === I
1 13.897 BB 0.5729 2.40475e4 627.78516 49.8024
2 17.929 BB 0.7458 2.42383e4 486.01501 50.1976
Peak RetTime Type Width Area Height Area
+ [min] [min] [MAT*s] [mAT] %
- | === === |=—— | ———— | —————
1 13.943 BB 0.5756 4128.88232 106.66958 7.2840
2 17.725 BB 0.7512 5.25553e4 1040.61011 52.7160
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'H NMR (400 MHz, CDCls) spectrum of 4.5a
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13C (*H) NMR (101 MHz, CDClI3) spectrum of 4.5a
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$1P(*H) NMR (162 MHz, CDCl; of 4.5a
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f1 (ppm)
Chiral HPLC chromatogram of 4.5a
[T DADT A, Sig=254 4 Ref=380,100 (IFENNA MBAEZUE'IM07-23_RAC D)
mAU 2 o
E g =

500 f n

400
300
200

100

0 —

T : , : ‘ \ \ -
) 2 4 3 2 10 12 14 16 18 min
[ DAD1 A, Sig=254,4 Ref=360,100 (IFENNA MBAEZUEIMO7-29.D)

mAU 'g
200 I
180 ‘ |
1004

504

o T T T — T T : T T

0 2 4 -] -] 10 12 14 18 18 min
Peak RetTime Type Width Area Height Area

# [min] [min] [mMAU*s] [mAU] %

1 10.288 BV
2 11.773 VB

0.3350 1.4660le4
0.3849 1.47280e4

Peak RetTime Type Width Area
# [min] [min]

1 11.867 BB 0.3817 5646.22412

660.74292 49.8947
578.75311 50.1053

Height Area
[mAU] %

224.26785 100.0000
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'H NMR (400 MHz, CDCl3) spectrum of 4.5b
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13C (*H) NMR (101 MHz, CDClIs) spectrum of 4.5b
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$1P(*H) NMR (162 MHz, CDCls of 4.5b

o
B
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240
f1 (ppm)
Chiral HPLC chromatogram of 4.5b
[ 1 DADT A, Sig=254,4 Ref=360,100 (IFENNA MBAEZUEIMO7-117_RAC.D)
mAU 1 ] 2
250 ; =
2004 \
150
100
04 — e =~
: | ‘ ; | :
0 2 4 ] a 10 12 14 16 18 min
1 DADT A, Sig=254 .4 Rei=360,100 (FENNA MBAEZUE\MO7-50.0)
mAU é
150
125
100
75
50
25
0 S —
‘ , . : ‘ ; ;
0 2 4 [:] 8 10 12 14 16 18 min
Peak RetTime Type Width Area Height Area
# [min] [min] [(mAU*s] [mAU] %
- I - - | ———————- |
1 8.265 BB

0.2700 5050.08691

2 9.809 BB 0.3258 5026.75732

283.22394 50.1158
234.81137 49.8842

Peak RetTime Type

Width Area Height Area
# [min] [min] [MAU* s3] [mAU] E

T

1 9.631 BB 0.3286 3921.87842 182.59357 100.0000
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'H NMR (400 MHz, CDClI3) spectrum of 4.5¢
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13C (*H) NMR (101 MHz, CDClIs) spectrum of 4.5¢
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31p(*H) NMR (162 MHz, CDCl; of 4.5¢

o
4
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
140 120 100 80 60 40 20 0 20  -40 60  -80  -100 -120  -140  -160  -180  -200  -220  -240
f1 (ppm)
[ DADTA Sig=254.4 Ref=350,100 (IFENNA MBAEZUEIMO7-115_RAC.D)
mAU = ]
g =
200 R
150
100
504
LE — J +
25 5 75 10 125 15 175 2 225 mir
[ DADTA, Sig=254 4 Ref=380,100 (IFENNA MBAEZUEIM07-46.0)
mau | &
b
400 B
300 |
200
100
o T T T T T T T T T T
25 ] 75 10 125 15 175 20 225 min|
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

] B R e R | —mm e R |
1 10.660 BB 0.3717 ©6300.75342 257.25934 49.7209
2 12.200 BB 0.4378 ©371.49219 222.65724 50.2791

Peak RetTime Type Width Area Height Area
# [min] [min] [mAU* 3] [mAU] %
e e e | === | === [-=————- \
1 12.331 BB 0.4381 1.46712e4 509.32068 100.0000
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'H NMR (400 MHz, CDClIs) spectrum of 4.5d
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13C (*H) NMR (101 MHz, CDClI3) spectrum of 4.5d
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¥F (*H) NMR (377 MHz, CDCls) spectrum of 4.5d
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3P (*H) NMR (162 MHz, CDCls) spectrum of 4.5d
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140 120 100 80 60 40 20 0 20 40 -60  -80  -100 -120  -140  -160  -180  -200  -220  -240
f1 (ppm)
Chiral HPLC Chromatogram of 4.5d
[ DAD1A, Sig=254 4 Ref=380,100 (IFENNA MBAEZUEIMD7-148.D)
mAU 2 2
4 H
200 \
150
100
50
0 _ - -
T e A e e e e A T T T T T T
1 2 3 4 5 -] 7 9 mil
1 DADT A Sig=254 4 Ref=360,100 (IFENNA MBAEZUEIMO7-76.0)
mAU 5 ”g‘
150 3 i
1256 B
1004
754
504 -
253 8
2
° ; T S e i
0 1 2 3 4 -] [} 7 8 ] min
Peak RetTime Type Width Area Height Area
¥ [min] [min] [mAU*s ] [mAU] %

el | === | = |- |- | ——————- |
1 4.339 BB 0.1338 2355.38135 264.70190 49.9562
2 5.048 BB 0.1585 2359.50903 224.77470 50,0438

Peak RetTime Type Width Area Height Area
4 [min] [min] [MAU*s] [mAU] %
- [——— = |- [-————— |-
1 4.333 BB 0.1538 76.02120 7.28187 4.0083

2 5.047 BB 0.1607 1820.59058 173.06908 95.9917
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'H NMR (400 MHz, CDCl3) spectrum of 4.5¢

OMe

8TT~
[

08¢ —

189
189
89
789
€8'9
89
89
587

oL V_
912
AVE
ST
81
6T,
61°L
612
0z,
E.&
L

1z
wL
e
L
€L
€L
vTL
vTL
sTL
sTL
sTL
9TL
vEL
vEL
seL
bSL
vSL
ssL
9L
9L
st
85,
8L
65,

18'9

18'9 W
78'9~C
89—
£8'9—
v8'9 -

89
589 s/

Elwa

9T’L V
orL—
61°L

6T, V
61,7
0T'L \
(2N
Yl
YL —7

STL \
szl \

€12aD 9T,

veEL—
vEL—
SE€L—

vS'L

bS'L %
SS°L AN
95, w
9S°L

NmN*
85, \\‘

85°L

f1 (ppm)

f1 (ppm)

=€0'¢

1T
701
%E.N
LT'E

0T
H/wﬁ.N

f1 (ppm)

304



13C (*H) NMR (101 MHz, CDClI3) spectrum of 4.5e
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$1P(*H) NMR (162 MHz, CDCls) of 4.5e
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140 120 100 80 60 40 20 0 20 -40 60  -80  -100 -120  -140  -160  -180  -200  -220  -240
f1 (ppm)
Chiral HPLC Chromatogram of 4.5e
[ DAD1 A, Sig=254.4 Ref=360,100 (IFENNA MBAEZUE\IMO7-130_RAC_RUN4.D)
mAU 3 §
50 § 8
40 il g
30 i A
20 \
10 \
0 . . — PR S AR N _ _ B -
1] 10 20 JID 4ID 50 80 min
[ ] DADTA, Sig=254 4 Ref=360,100 (IFENNA MBAEZUE\IM07-105.D)
mAU 3 8
2004 5]
1503 ‘
‘UJU;
50
o] J N _
0o 10 20 30 40 50 60 mi
Peak RetTime Type Width Area Height Area
4 [min] [min] [MAU* 5] [mAU] %

1 23.505 BB 0.6812 2798.60913 62.41037 50.294z2

2 42.169 BB 1.1808 2765.86987 34.81707 49.7058
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s ] [mAU] %

e | === |- |- R | -——————- |
1 42.006 BB 1.2597 2.05294e4 252.19910 100.0000
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'H NMR (800 MHz, CD,Cl;, 0 °C) spectrum of 4.5f
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13C (*H) NMR (201 MHz, CD,Cly, 0 °C) spectrum of 4.5f
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$1P(*H) NMR (162 MHz, CD,Cl,) of 4.5f

32.16
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T T T
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f1 (ppm)
Chiral HPLC Chromatogram of 4.5f
[_] DAD1 A, Sig=254,4 Ref=360,100 (IFENNA MBAEZUEIMO7-120_RAC.D)
mAU 5 g
1403 ©
1203 |l _
1003 I =
80 \ E
603 I fa
40 I
203 | AN
odF——— " . N N W ——
T T T T T T T T
0 2.5 ] 7.5 10 12.5 15 17.5 20 min|
] DAD1A, Sig=254.4 Ref=360,100 (IFENNA MBAEZUE\IM07-30.D)
mAU 8
500 o
400 I
300
200
100
0 v a — —
6 2!5 .ét 7!5 1b 12‘.5 1‘5 17!.5 2‘0 Imm
Feak RetTime Type Width Area Height Area
4 [min] [min] [MAU* s ] [mAU] %
il Bt [ === | ———— [-——————- [—==———
1 6.918 BB 0.2392 2607.63281 160.76247 49.7802
2 15.811 BB 0.5770 2630.66235 68.34666 50.2198
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*3] [mAU] %
== [-—— === |————— - [-———- [-==————-
1 6.906 BB 0.2450 9773.82910 59%0.76819 100.0000
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'H NMR (800 MHz, CD,Cl;, 0 °C) spectrum of 4.5g
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13C(*H) NMR (200 MHz, CD:Cl,, 0 °C) of 4.5g
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31p(1H) NMR (162 MHz, CD2Cly) of 4.5¢
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Chiral HPLC Chromatogram of 4.5g

[T DADT A, Sig=254 4 Ref=360,100 (IFENNA MBAEZUEVMO7-95_RAC D)
mAU o o
7004 & 3
-
600 & &
500 4 \ f
400 ‘ |
300 4 | |
2001 | |
100 / \
0 _ P A N S S
T T T T T T T
0 5 10 15 20 25 30 35 min

Before trituration/crystallisation

[ 1 DAD1A, Sig=254,4 Ref=360,100 (IFENNA MBAEZUE\IMO7-98_BEFORE_TIRTURATION_CRYST.D)
mAU 7 4
350 B
300 N
2504 (
200
1503
100 \ 3
50 ki @
04 . \_._.T_.,_‘ _
é 1b 1‘5 ZIO 2‘5 Eb 35 min(

After trituration/crystallisation

[ ] DAD1A, Sig=254.4 Ref=360,100 (IFENNA MBAEZUE'IMO7-98_AFTER_CRYST.D)

mAUé é
200—5 ‘oru‘
150 A
1003
LE — e - — -
0 5 10 15 20 2 30 3 min
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s ] [mAU] %
- |-———= === |- |-—————— | ———————-
1 20.323 BB 0.6848 3.45564de4 777.08307 51.5465
2 23.800 BB 0.8670 3.2482%e4 573.35223 48.4535
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s] [mAU] %
e |- - | —————— [——————— |
1 21.174 BB 0.7196 1.80496e4 381.7309%6 97.4310
2 23.426 BB 0.8061 475.92056 8.13980 2.5690
Peak RetTime Type Width Area Height Area
# [min] [min] (mAU*s] [mAU] 5
= |- -==———= |- | -———————— | ———————- |
1 20.864 BB 0.7446 1.29933e4 267.54233 100.0000
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'H NMR (800 MHz, CD-Cl,, 0 °C) spectrum of 4.6
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13C (*H) NMR (200 MHz, CD,Cly, 0 °C) spectrum of 4.6
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$1P(*H) NMR (162 MHz, CD.Cl,) of 4.6

-26.53
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Chiral HPLC Chromatogram of oxidised 4.6
] DADT1A, Sig=254 4 Ref=380,100 (IFENNA MBAEZUE\IM07-128_RAC.D)
mAU 5 e
150 8 g
125 I i
100 I
75
50 | |\
25 | I\
/ o/ \«.
o - SN -
T — —T— L R e S T A R "
5 10 15 20 25 30 35 40 mir
[T DAD] A, Sig=254 4 Ref=360,100 (IFENNA MBAEZUE\MO7-163-H20Z-OXIDISED D)
mAU §
i
&
1500 A
1000 |
500 |
0 JoN
5 10 15 2 P 3 35 40 mirl
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s] [mAU] 2
- [l [——————— [-=———- [ ===
1 20.901 BB 0.7247 8270.82910 172.72525 51.0129
2 23.675 BB 0.8943 7942.39014 133.45621 48.9871

Peak RetTime Type

#

[min]

Width Area
[min] [mAU*s]

Height Area
[mAU] %
,,,,,,,,,, ‘ [
122.21436 100.0000
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'H NMR (400 MHz, CDClIs) spectrum of 4.9
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13C (*H) NMR (101 MHz, CDClI3) spectrum of 4.9
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Chiral HPLC Chromatogram of 4.9

[ 1 DAD1A, Sig=254 4 Ref=360,100 (IFENNA MBAEZUE\SL2055-RAC-7TH-DEC-2024.D)

mAU g )
35 Y -
30 [ ﬁ
25 \ \
20
15
10
5
05 —
[‘] min
mAU E
100
g0
60%
404
207;
04 — - - -
0 é 1‘0 1|5 ZIO 2‘5 3b 3‘5 min
Chromatogram of product from mother liquor after crystallisation
[ 1 DAD1A, Sig=254,4 Ref=360,100 (IFENNA MBAEZUE\IM07-132_MOTHER_LIQ.D)
mAU | §
80 ﬁ
60 f\
40 JK
20 [
ot _ e —
0 T &I': T 1b T 1‘5 2IO 2‘5 3‘0 3‘5 min
Peak RetTime Type Width Area Height Rrea
# (min] [min] [MAU*s ] [MAU] %
- [—= - |- |- |-
1 18.875 BB 0.5784 1527.46094 38.87504 50.5723
2 21.152 BB 0.6222 1492.89111 34.96113 49.4277
Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s) [mAU] %
—— e |- |- |- |
1 19.028 BB 0.5427 384.30673 10.45941 6.8359
2 21.118 BB 0.6586 5237.59570 118.27800 93.1641
Peak RetTime Type Width Area Height Area
# [min] [min] [mMRU*5] [mAU] %

il B | === === | === | =—====————— | —=====——
0.6597 4319.62012 97.72627 100.0000
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'H NMR (500 MHz, CDClIs) spectrum of 2H-4.2a
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13C (*H) NMR (126 MHz, CDCls) spectrum of 2H-4.2a
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