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Montréal, Canada

Philippe Versailles
ASME Member

McGill University
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ABSTRACT
Increasingly stringent regulations on emissions in the gas

turbine industry require novel designs to minimize the environ-
mental impact of oxides of nitrogen (NOx). The development of
advanced low-NOx technologies depends on accurate and reli-
able thermochemical mechanisms to achieve emissions targets.
However, current combustion models have high levels of uncer-
tainty in kinetic rates that, when propagated through calcula-
tions, yield significant variations in predictions. A recent study
identified and optimized nine elementary reactions involved in
CH formation to accurately capture its concentration and im-
prove prompt-NO predictions. The current work quantifies the
uncertainty on peak CH concentration and NOx emissions gener-
ated by these nine reaction rates only, when propagated through
the San Diego mechanism. Various non-intrusive spectral meth-
ods are used to study atmospheric alkane-air flames. 1st - and
2nd-order total-order expansions and tensor-product expansions
are compared against a reference Monte Carlo analysis to assess
the ability of the different techniques to accurately quantify the
effect of uncertainties on the quantities of interest. Sparse grids,
subsets of the full tensor-product expansion, are shown to retain
the advantages of tensor formulation compared to total-order ex-

∗Corresponding author. Email: jeff.bergthorson@mcgill.ca

pansions while requiring significantly fewer collocation points to
develop a surrogate model. The high resolution per dimension
can capture complex probability distributions witnessed in rad-
ical species concentrations. The uncertainty analysis of lean to
rich flames demonstrated a high variability in NOx predictions
reaching up to 400 % of nominal predictions. Wider concentra-
tion intervals were observed in rich conditions where prompt-
NOx is the dominant contributor to emissions. The high variabil-
ity and scale of uncertainty in NOx emissions originating from
these nine elementary reactions demonstrate the need for future
experiments and data assimilation to constrain current models to
accurately capture CH for robust NOx emissions predictions.

INTRODUCTION
Nitrogen oxides (NO and NO2, labelled NOx) are primary

pollutants in the atmosphere, responsible for environmental and
human health problems. New combustion technologies devel-
oped to achieve higher efficiency in industrial gas turbines must
also reduce pollutants emissions. Increasingly accurate mod-
els and predictions are then required to identify and rank these
promising designs [1].

Various complex thermochemical mechanisms tailored for
specific applications have been developed to capture NOx emis-
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sions [2]. Combustion kinetics research has identified and dis-
cussed four NOx production routes for gaseous hydrocarbon
combustion: prompt (Fenimore), thermal (Zel”dovich), N2O,
and NNH [3]. Post-flame pathways in high temperature zones
motivated research, such as WLE and DLE combustion systems,
to reduce the thermal NOx contribution [4, 5]. Yet, emissions
reductions in the flame front are limited by the presence of the
flame. This motivated research in fuel-lean operating conditions
and biofuels to mitigate the impact of flame front NOx produc-
tion, such as prompt-NOx formation [6, 7].

An extensive series of NO and CH concentrations, as well
as temperature and velocity profiles, have recently been pub-
lished for lean to rich flames of C1-C4 alkane and alcohol fu-
els [8–10]. The atmospheric jet-wall stagnation flames showed
a fuel-independent linear relationship between the rapid prompt-
NO formation, and the peak concentration of methylidyne rad-
ical, [CH]peak, scaled by the characteristic residence time in the
CH layer, indicating that CH formation can be described by fuel-
independent elementary reactions. A wide variability in CH pre-
dictions was observed for various known thermochemical mech-
anisms, where none of the proposed models were able to accu-
rately capture quantitative absolute [CH]peak measurements ob-
tained with Laser-Induced Fluorescence (LIF) [10]. These in-
consistencies were found to hinder the ability to predict prompt-
NO formation, hence NOx concentration. Versailles et al. subse-
quently showed that optimizing only nine CH-sensitive and un-
certain reactions in the San Diego mechanism [11] reconciled
predictions with CH-LIF measurements for C1-C3 fuel-air mix-
tures with φ ranging from 0.7 to 1.5 [12].

Uncertainty analysis has been recognized as a necessary ef-
fort in any modelling attempt in combustion chemistry devel-
opment to quantify the impact of model inaccuracies [13, 14].
Recently, it was used to propagate parametric uncertainties to
obtain probable intervals on predictions [15], constrain prior dis-
tributions with experimental data [16], and optimize mechanisms
under uncertainty with PrIMe [17]. Historically, computationally
expensive sampling methods and response surfaces were used to
systematically treat the uncertainty of kinetic parameters [18,19].
The introduction of non-intrusive spectral methods, stemming
from the work of Wiener [20], provides an inexpensive strategy
to capture non-linear effects [21], and to perform optimization
under uncertainty to provide constrained models for the commu-
nity [16]. Using a Monte Carlo approach, Zsély and co-workers
identified the prompt-NO route as a major contributor to uncer-
tainty in NO concentration for lean to rich flames [19]. They
observed that uncertainty in kinetic rates, rather than heats of for-
mation, were responsible for the uncertainties in NO concentra-
tions. Similar results were found in [22, 23] for mixtures diluted
with exhaust gas components using linear sensitivity methods.

The current paper aims to identify an optimal uncertainty
quantification technique applicable to combustion kinetics to
quantify the uncertainties on [CH]peak and prompt-NOx arising

from the nine most CH-sensitive and uncertain reactions identi-
fied in [12]. Non-intrusive polynomial chaos expansions are used
to investigate C1-C3 atmospheric alkane-air flames. The spec-
tral techniques studied are: (1) total-order expansion, (2) tensor-
product expansion, and (3) sparse grids. These spectral tech-
niques are compared to Monte Carlo simulations to identify an
optimal method to quantify the inherent uncertainties in mecha-
nisms for robust emissions predictions.

METHODOLOGY
Response surfaces have been previously used to optimize

thermochemical mechanisms against experimental data sets [18].
The surfaces generated provide an economic approach to quan-
tify uncertainties and perform optimization in combustion prob-
lems since complex systems are expressed by algebraic equa-
tions. The entire space of parameters and operating conditions
can then be sampled at relatively low cost. Generating an accu-
rate response surface has traditionally been an expensive process
involving stochastic techniques. Introduction of spectral meth-
ods, also known as polynomial chaos expansions (PCE), enables
response surface mapping at a fraction of the cost of sampling
techniques, and provides the opportunity to study complex com-
bustion phenomena with accurate treatment of uncertainties.

In this work, a framework is developed to assess the impact
of parametric uncertainties propagated through the San Diego
mechanism [11], using the 2004-v2 nitrogen chemistry with the
2005 base chemistry. Figure 1 presents the work flow combining
direct one-dimensional flame simulations with Cantera 2.3 [24],
streamlined with Dakota 6.6 [25] to perform uncertainty anal-
yses. The Dakota package offers a variety of uncertainty tech-
niques, including sampling and spectral methods, to study the
impact of the choice of method on the accuracy of the gener-
ated response surface. The framework consists of three core sec-
tions. (1) The uncertain kinetic space, bounded by values found
in the literature, is sampled using random or structured colloca-
tion points. The sampled reaction rates are then imported to one-
dimensional flame simulations. The process is repeated until the
number of evaluations required to calculate the coefficients of the
expansion is reached. (2) Using the detailed complete solutions
from direct simulations, the coefficients of the spectral expan-
sion are evaluated to provide surrogate models. (3) The surro-
gate model, or polynomial expansion, can then be randomly and
exhaustively sampled over the entire uncertain space to obtain
probability distribution of the quantities of interest and provide
numerical “error bars” on predictions.

Uncertainty limits must first be identified for the reactions
studied to provide reasonable bounds for the analysis. Only pre-
exponential factors are considered in the analysis as they were
shown to have the greatest influence [12, 19, 23]. The uncertain-
ties of the pre-exponential coefficient, the temperature exponent,
and the activation energy are effectively lumped to provide un-
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Input �le: method and variables

Driver processing uncertain variables

Direct �ame simula�on with Cantera

Yes

PCE coe�cients evalua�on

More coloca�on 

points?

No

Surrogate model (surface response) and sta�s�cs

Random sampling of the surrogate model

Uncertainty distribu�on

Number of evalua�ons depends 

on the spectral method used.

Surface response genera�on

Uncertainty quan��ca�on

FIGURE 1. UNCERTAINTY QUANTIFICATION FRAMEWORK
USING DIRECT FLAME SIMULATIONS FOR SURROGATE
MODEL CONSTRUCTION.

certainty limits on the kinetic rate. A multiplier can then be ap-
plied on the nominal reaction rate.

Identification of parameters and distributions
Logarithmic sensitivities for [CH]peak were first obtained for

C1-C3 fuels over equivalence ratios ranging from 0.7 to 1.5. Re-
action uncertainty factors were then multiplied with logarithmic
sensitivities to obtain an uncertainty-weighted sensitivity index.
The nine reactions with the highest index, shown in Table 1, cor-
respond to the reactions identified in [12] and are used to perform
the uncertainty analysis. The uncertainty on kinetic reaction rates
is typically presented in terms of ∆ log10 ki for the ith reaction.
The bounds on reaction rates are provided as uncertainty factors
fi = 10∆ logki that are multiplied with nominal rates to perform the
analysis. The definition of uncertainty limits follows the work of
Versailles et al., with probable and physically realistic intervals
found in [26–28]. The relative errors are expressed as follows.

∆ki

ki

∣∣∣∣
low

=
ki/ fi − ki

ki
=

1
fi
−1 (1)

∆ki

ki

∣∣∣∣
high

=
ki · fi − ki

ki
= fi −1 (2)

The resulting asymmetric uncertainty bands retain the mech-
anism properties, obtained through model optimization with
multiple targets, while satisfying preferred physically realistic
uncertainty limits. Known relationships between uncertain pa-
rameter distributions and polynomial bases have been studied in
statistics [29]. To benefit from known bases, such as Legendre
polynomials, the uncertain rate parameters are normalized over
the uncertainty interval, taking values between [−1,1]. Since ex-
perimental results are too scarce to derive any significant statis-
tics from previous reaction rate measurements, uniform prior
distributions are used to avoid bias. Additional measurements
would be required to constrain the parameter space and identify
a different prior probability distribution.

Uncertainty quantification techniques
Uncertainties have traditionally been quantified with

stochastic (Monte Carlo) sampling techniques [19,30]. Response
surfaces could be fitted to multiple evaluations to perform model
optimization against experimental data [18]. The spectral ex-
pansion, introduced by Wiener [20], was shown to be an eco-
nomic alternative to perform uncertainty analyses for combus-
tion systems [13, 16]. Yet, it suffers from the curse of dimen-
sionality as the required number of collocation points increases
exponentially with the number of input parameters studied. This
paper examines various uncertainty quantification techniques for
fast and optimal predictions of quantities of interest. A Monte
Carlo method using Latin hypercube sampling (LHS) provides
reference [CH]peak and prompt-NOx distributions. 1st- and 2nd-
order polynomial expansions are then used to assess the accuracy
of traditional expansion techniques. Tensor-product expansions
with 2nd-order polynomials and sparse grid methods are studied
as alternatives for high-dimensional multivariate problems.

Monte Carlo and advanced sampling techniques, such as
Latin hypercube sampling shown in Fig. 2a, provide an intu-

TABLE 1. UNCERTAINTY BOUNDS, 1/ fi, low AND fi,high.

Reactions 1/ fi, low fi,high

CH+O2 ↔ HCO+O 0.4747 2.456
CH2 +OH ↔ CH+H2O 0.2409 2.168

CH2 +H ↔ CH+H2 0.7579 127.6
H+CH3(+M)↔ CH4(+M) 0.2577 3.246

CH3 +OH ↔ CH∗
2 +H2O 0.3653 2.324

CH+H2O ↔ CH2O+H 3.823 ·10−2 5.295
CH2 +O2↔ CO+OH+H

↔ CO2 +H2
0.8482 8.482

CH2CO+O ↔ CH2 +CO2 5.808 ·10−3 1.502
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-1 -0.5 0 0.5 1

x
1

-1

-0.5

0

0.5

1

x 2

Monte Carlo - LHSa)

-1 -0.5 0 0.5 1

x
1

-1

-0.5

0

0.5

1

x 2

Tensor-Product Pointsb)

-1 -0.5 0 0.5 1

x
1

-1

-0.5

0

0.5

1

x 2

Sparse Grid Pointsc)

FIGURE 2. COLLOCATION POINTS USED TO EVALUATE THE COEFFICIENTS IN A SPECTRAL EXPANSION OF TWO VARIABLES. a)
MONTE CARLO - LHS. b) TENSOR-PRODUCT USING GAUSS-PATTERSON. c) SPARSE GRID USING GAUSS-PATTERSON, THE ACCU-
RACY ON A PER-DIMENSION BASIS IS MAINTAINED.

itive way to assess numerical uncertainties. Provided that enough
randomly distributed samples are evaluated, the solution should
approach the true distribution based on the law of large num-
bers. Stochastic sampling techniques generally require minimal
modifications to existing numerical tools to cover the parameter
space. They are independent of the dimensions of the problem
since the entire space can be sampled simultaneously, but suffer
from major drawbacks: (1) they show slow convergence, hence
high computational costs; and (2) they only provide moments
of the statistical distributions of interest and do not identify the
relationship between parameters.

Spectral methods address some of the shortcomings of
sampling techniques. Fewer evaluation points are needed to con-
strain surrogate models used for uncertainty quantification, op-
timization, and inference. Additionally, they provide parame-
ter interactions and offer the opportunity to sample subset of the
surrogate model. For these reasons, stochastic spectral methods
have been gaining popularity and have followed an intense pe-
riod of development [31, 32].

Polynomial chaos expansion is based on the assumption that
a given response can be expressed as an infinite series of mul-
tivariate polynomials. Practically, the series is truncated to the
desired order p, resulting in high-order approximations of mul-
tivariate phenomena. In other words, spectral expansion relates
the quantity of interest R to the n-element vector of uncertain
parameters x using the compact notation:

R(x)≈
K

∑
k=0

αk

n

∏
i=1

ψtk
i
(xi), (3)

where αk is the kth coefficient in the expansion, ψtk
i

is the one-

dimensional polynomial of the ith uncertain variables, and tk
i

matches the desired polynomial order of the kth term for the
variable i. In traditional total-order expansions, the resulting re-
sponse surface has a maximum polynomial order of p, where the
total number of terms K in Eq. 3 can be expressed as:

K =
(n+ p)!

n!p!
. (4)

The number of terms K defines the required number of eval-
uations to constrain the calculation of coefficients. Using ran-
domly selected collocation points (Fig. 2a), polynomial coef-
ficients can then be evaluated through linear regression, or ex-
tracted from orthogonal projections on each basis function. Al-
though this approach uses random sampling similar to Monte
Carlo, it requires fewer sample points as it uses predetermined
polynomials to evaluate coefficients.

Alternatively, structured grids (Fig. 2b and c) can be used
instead of random points to ensure systematic coverage of the
uncertain space. Tensor-product expansions (Fig. 2b) use struc-
tured grids with known weights and integration points to evaluate
polynomial coefficients, instead of random collocation points. In
this approach, the bound on the polynomial order is defined per
dimension, or variable, and not on the total expansion. Hence
the combination of all one-dimensional polynomials yields a to-
tal polynomial order of p× n. To constrain the coefficients, the
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number of evaluations required for this expansion is:

K =
n

∏
i=1

(pi +1), (5)

where the n and pi represent the number of uncertain variables
studied and the polynomial order of the ith basis, respectively.
The tensor-product expansion suffers from the curse of dimen-
sionality more severely than traditional total-order expansion.
Hence, it is not recommended for analyses with large numbers of
parameters. An advantage of tensor-product formulation is that it
supports anisotropic expansion, where the polynomial order can
be different on a per-variable basis to increase the resolution of
specific parameters.

Sparse grids were proposed by Smolyak [33] to provide
similar accuracy as tensor-product expansions with significantly
fewer quadrature points. The approach includes only a subset
of the full expansion by removing multivariate high-order terms
from the expansion. Figure 2c shows a sparse grid extracted from
the two-dimensional tensor-product expansion presented in Fig.
2b. The resolution on a per-dimension basis is conserved, while
correlation points between the two variables are reduced to re-
move higher order interactions in the expansion. The resulting
grid can then provide high polynomial accuracy per dimension,
while still capturing 1st- or 2nd-order cross-correlation effects be-
tween parameters.

The choice of quadrature method and level of accuracy re-
quired in sparse grids affect the number of evaluation points, and
no simple and unique formula for the required number of points
is available. Examples in [32] show significant reduction in
calculation costs for various problems with high-dimensionality.
For instance, a problem with 50 parameters and a 5th-order ex-
pansion would require 5101 points using sparse grids and over
8× 1034 evaluations with a tensor-product expansion. For com-
parison, a total-order expansion with lower resolution would re-
quire 3.5×106 random evaluations to constrain the coefficients,
and a Monte Carlo analysis could require 1×108 evaluations for
similar accuracy.

RESULTS
The impact on [CH]peak, NOx, and reference flame speed,

Su, caused by parametric uncertainties for atmospheric C1-C3
alkane fuel-air mixtures were quantified for the nine reactions
in Table 1. To account for different flame positions caused by the
varying flame speed, NOx concentrations are taken 1 ms after the
[CH]peak to systematically compare emissions.

The quantities of interest are studied with 5 techniques to
assess their ability to accurately capture the distribution of a ref-

erence Monte Carlo method with 4000 evaluations. Legendre
polynomials are used as bases to develop the response surfaces
since uniform prior distributions are used. Total-order expansion
is used to investigate traditional uncertainty quantification tech-
niques used in combustion with (1) a 1st-order expansion with
the minimum number of collocation points, (2) a 2nd-order ex-
pansion with the minimum number of collocation points, and (3)
a 2nd-order expansion with four times the minimum number of
collocation points. Tensor-product expansion is applied for a (4)
2nd-order expansion and (5) a level 2 sparse grid with a nested
Gauss-Patterson quadrature rule to assess the accuracy of struc-
tured grids for combustion phenomena.

Additionally, nominal solutions of known mechanisms used
in industrial gas turbine applications are compared to the uncer-
tainty distributions to verify that they fall within the most prob-
able interval obtained from uncertain numerical predictions. For
the purpose of this study, the last version of the thermochemical
mechanism developed through the effort of the Gas Research In-
stitute, GRI-Mech 3.0 (GRI) [34], and the 2005 version of the
San Diego mechanism (SD) [11] with NOx chemistry are used
to assess the accuracy of two small detailed mechanisms widely
used in the industry for emissions predictions.

Method Accuracy
The distributions of the five uncertainty quantification tech-

niques are shown in Fig. 3 against the Monte Carlo distributions.
A selection of lean to rich mixtures of fuels from methane to
propane is shown to illustrate the ability of the methods to cap-
ture various features of flames with significantly different uncer-
tainty distribution shapes. Furthermore, distribution means and
standard deviations are given in Table 2 for methane only.

Every technique studied produces reasonable estimates of
the statistics for the three quantities of interest, as shown in Ta-
ble 2. The simplest 1st-order approximation captures relatively
well the average value of the distributions and the standard de-
viations. Without a Monte Carlo analysis to provide probability
distributions, and only looking at the first two moments, any of
the techniques studied would appear to be a good option. How-
ever, upon detailed inspection of the distribution shown in Fig.
3, all techniques are not equal.

Traditional total-order expansion techniques with 1st- and
2nd-order polynomials show their inability to fully capture the
distribution profiles of all the quantities of interest studied. As
expected, the 1st-order expansion does not capture the actual
shape of the distributions as it uses the simplest response sur-
face, and it provides significantly wider distributions. The large
distribution tails can extend to negative concentrations caused
by approximation errors in the regression to build the surrogate
model. These negative concentrations are physically impossible,
and are clearly shown by the sharp Monte Carlo distribution at
0 ppm. The 2nd-order total-order expansion better captures the
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TABLE 2. AVERAGE AND STANDARD DEVIATION COMPARISON OF PCE TECHNIQUES FOR METHANE-AIR MIXTURE (φ = 0.9).

Method
CH peak (ppm) NOx (ppm) Su (m/s)

Average Std. Deviation Average Std. Deviation Average Std. Deviation
MC-LHS (4000 points) 1.563 1.494 22.43 8.107 0.3384 0.02967

1st-order total-order (9 points) 1.539 1.144 21.16 6.029 0.3399 0.02821
2nd-order total-order (45 points) 1.568 2.000 22.49 11.54 0.3405 0.03547

2nd-order total-order (180 points) 1.543 1.438 22.34 7.975 0.3402 0.03169
2nd-order tensor-product (6561 points) 1.539 1.382 22.37 7.833 0.3400 0.02764

l2 sparse grid (161 points) 1.548 1.394 22.45 7.890 0.3464 0.03017

FIGURE 3. SPECTRAL METHODS COMPARISON TO MONTE
CARLO SIMULATIONS FOR VARIOUS QUANTITIES OF INTER-
EST. : MONTE CARLO - LHS DISTRIBUTION (4,000 SAM-
PLES). TOTAL-ORDER EXPANSION WITH RANDOMLY DIS-
TRIBUTED COLLOCATION POINTS, –: 1st-ORDER (9 POINTS),
–: 2nd-ORDER (45 POINTS), –: 2nd-ORDER (180 POINTS).
STRUCTURED METHODS, –: l2 NESTED SPARSE GRID US-
ING GAUSS-PATTERSON QUADRATURE (161 POINTS), –: 2nd-
ORDER TENSOR-PRODUCT (6561 POINTS).

peaks of [CH]peak and NOx distributions, but is unable to cap-
ture more complex distribution shapes, as exhibited by the flame
speed distributions. Increasing the number of collocations points
used to calculate the coefficients, from the minimum number of
45 to 180 points, yield a more accurate response surface with
tighter concentration distributions. It follows that the distribu-
tion shapes are better captured. The increased number of points
allows a better mapping of the uncertain space and reduces the
extrapolation error when the regression is performed to construct
response surfaces. It better quantifies uncertainties, but the tech-
nique is still limited to the low-order approximation of a complex
multi-physics phenomenon.

The higher-order approximation developed with a 2nd-order
tensor-product expansion requires 6561 evaluations to fully con-
strain the expansion. The tensor product formulation is able
to capture high-order interactions between multiple parameters
since it does not limit the order of the total polynomial expan-
sion. It accurately captures the distributions shown in Fig. 3 for
the three targets, but represents a significant investment to per-
form complex multivariate simulations.

The alternative is to use only a subset of a tensor-product ex-
pansion, with sparse grids, to retain the accuracy while reducing
the number of evaluations. The nested sparse grid requires 161
simulations, or collocation points, and accurately captures the
peaks in [CH]peak and NOx. The double-peaked distribution of
laminar flame speed is captured and the width of the polynomial
approximation is consistent with Monte Carlo sampling. With a
comparable number of collocation points as the dense 2nd-order
total-order expansion (180 points), the sparse grid technique ex-
hibits more accurate approximations of the phenomenon. Con-
trary to the total-order expansion, sparse grids do not overesti-
mate the tails of the distributions. As a result, they are considered
the optimal compromise between accuracy and cost compared to
tensor-product expansion.

Numerical uncertainties on predictions
The sparse grid methodology better captures the distribu-

tions of species concentrations, independently of fuel and operat-
ing conditions. For both [CH]peak and NOx concentration, the dis-
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FIGURE 4. [CH]peak DISTRIBUTION FOR C1-C3 ALKANE-AIR MIXTURE. : MC-LHS (4,000 SAMPLES). ONLY POLYNOMIAL EXPAN-
SIONS WITH SIMILAR NUMBER OF TERMS ARE SHOWN, –: 2nd-ORDER TOTAL-ORDER PCE (180 POINTS). –: l2 NESTED SPARSE
GRID PCE (161 POINTS). VERTICAL LINES ARE NOMINAL THERMOCHEMICAL MECHANISM RESPONSES FOR SD(- -) AND GRI (-·-).
THE SHADED RED AREA ( ) REPRESENTS THE EXPERIMENTAL RANGE MEASURED BY VERSAILLES AND CO-WORKERS [12].

tribution shapes are accurately identified with sparse grids. Re-
taining the advantages of tensor-product expansion, sparse grids
provide high-order polynomials per variable to capture rapidly
changing targets with the desired accuracy. For distributions with
sharp features, such as CH concentration, a low-order response
surface is not able to capture the shape, but can provide an ap-
proximation of the average value and standard deviation. How-
ever, traditional 2nd-order expansion techniques are still over pre-
dicting the tails of the distributions.

In the following, only the sparse grids and 2nd-order total-
order expansions (180 points) are shown in Figs. 4 and 5 for the

data set studied. Methods with a similar number of evaluations,
or similar costs, are used to facilitate comparison between the
accuracy of probability distributions.

The [CH]peak distributions in Fig. 4 are shown for C1-C3
alkane-air mixtures for lean (top) to rich conditions (bottom). In-
terestingly, the distribution width increases towards stoichiomet-
ric conditions before reducing slightly for rich conditions. The
higher uncertainty in rich distributions compared to lean show
that uncertain reaction rates in the CH route have a greater impact
in stoichiometric and fuel rich conditions where prompt-NOx is
favoured. The width of stoichiometric distributions, predicting
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FIGURE 5. [NOx] DISTRIBUTION ATTRIBUTED 1 MS AFTER THE PEAK CH CONCENTRATION FOR ALKANE-AIR MIXTURE. : MC-
LHS (4,000 SAMPLES). ONLY POLYNOMIAL EXPANSIONS WITH SIMILAR NUMBER OF TERMS ARE SHOWN, –: 2nd-ORDER TOTAL-
ORDER PCE (180 POINTS). –: l2 NESTED SPARSE GRID PCE (161 POINTS). VERTICAL LINES ARE NOMINAL THERMOCHEMICAL
MECHANISM RESPONSES FOR SD(- -) AND GRI (-·-).

up to 400% of the nominal value, identifies the need for future
experiments to constrain the uncertainty space of reactions in-
volved in CH formation to enhance prediction accuracy.

Similar conclusions are obtained from the NOx distributions
shown in Fig. 5 for the same operating conditions. Studying only
the nine CH-sensitive and uncertain reactions, a variation reach-
ing up to 400% of nominal values is again observed in stoichio-
metric cases. The uncertainty in NOx shown here is only caused
by the prompt route initiated by the attack on nitrogen by CH
radicals and is larger where the prompt mechanism dominates
NOx formation. The already large uncertainty in predictions is
expected to increase with the addition of the other inherently un-

certain NOx formation routes. As the equivalence ratio increases,
it is interesting to note that distributions become smoother. The
sharp peak with low concentration is absorbed and the 2nd-order
polynomials are able to capture the distribution shapes.

The stoichiometric and rich distributions of NOx show that
greater uncertainty exists in predictions at those conditions. In
gas turbine applications, where homogeneous near-perfect mix-
ing is often sought, the impact of hot spots characterized by
richer mixtures could, not only increase NOx predictions, but
also produce wider uncertainty bands on those predictions. Al-
though the predictions of both mechanisms are within one stan-
dard deviation of the means, predictions with the San Diego
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mechanism are generally below the average concentrations, re-
sulting from the optimization performed during its development.
For robust and accurate predictions to achieve emissions targets,
a constrained description of uncertain reaction rates in the NOx
pathways is required. With the actual uncertainty attached to
the kinetic rates, predicting which design can yield sub-10 vppm
levels of NOx with any confidence can be seriously questioned as
the uncertainty in only nine reactions already produces a proba-
ble interval in NOx predictions ranging over 100 ppm.

CONCLUSION
Uncertainties in CH and NOx concentrations arising from

nine CH-sensitive and uncertain elementary reactions identified
by Versailles and co-workers [12] were quantified. The uncer-
tainty in kinetic rates were propagated through the San Diego
mechanism [11] with several techniques to provide accurate pre-
diction intervals with minimal computational effort.

Sparse grid methods were identified as the most promis-
ing technique to accurately capture fast-radical formation with
reasonable costs. Traditional total-order expansions using 1st-
and 2nd-order polynomials showed limited accuracy, even with
increased number of collocation points, when compared to
Monte Carlo sampling. The over-prediction of distribution tails
and misidentification of peaks showed that traditional uncer-
tainty quantification strategies introduced significant modelling
discrepancies in probability distributions of species concentra-
tions. The reference Monte Carlo distributions could be repro-
duced with structured methods based on tensor-product expan-
sion. Among them, sparse grid techniques benefited from the
high-order expansion per dimension, which is necessary to cap-
ture complex distribution shapes, without the added contribution
of high-order interactions between parameters. This approach
demonstrated its capacity to accurately quantify uncertainties in
numerical predictions, and is recommended for future uncer-
tainty quantification and model optimization efforts.

The probability distributions of peak CH concentrations for
C1-C3 alkane-air mixtures demonstrated that uncertainty limits
from the literature, for only nine elementary reactions in the CH
pathways, can currently allow for concentration predictions rang-
ing between 0 and 25 ppm, corresponding to a variation of up
to 400% from the nominal values. In comparison, experimen-
tal data only present uncertainties of approximately ±20%. This
discrepancy between uncertainties in numerical predictions and
experimental measurements highlights the need of future exper-
iments to constrain the uncertainty of thermochemical mecha-
nisms to, not only provide robust models to the combustion com-
munity, but also increase the confidence in predictions by reduc-
ing residual uncertainties.

As part of the prompt-NOx pathway, uncertainties in the
nine reactions also propagated through the NOx sub-models to
yield significant uncertainties in emissions predictions. Probable

prediction intervals, consistent with [CH]peak distributions, cover
similar relative concentration ranges up to 400% of nominal pre-
dictions. NOx distributions demonstrate that, within chemically
recommended limits, it is possible to tune a combustion model
to completely suppress the prompt contribution to the total NOx
predictions, as shown by near-zero [CH]peak and the 0 ppm NOx
concentrations of fuel-rich conditions that have a finite proba-
bility. Again, these findings reinforce the need of constrained
mechanisms for accurate emissions predictions. Moving for-
ward, emissions predictions should be given with uncertainty
bands to reduce the risks associated with sub-10 vppm combus-
tion technology development for gas turbine engines.
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PCE Polynomial chaos expansion
SD University of California, San Diego [11]

REFERENCES
[1] Lieuwen, T., Chang, M., Amato, A., et al., 2013. “Sta-

tionary gas turbine combustion: Technology needs and
policy considerations”. Combustion and Flame, 160(8),
pp. 1311–1314.

[2] Schofield, K., 2012. “Large scale chemical kinetic models
of fossil fuel combustion: Adequate as engineering models
- No more, no less”. Energy & Fuels, 26(9), pp. 5468–
5480.

[3] Miller, J. A., and Bowman, C. T., 1989. “Mechanism and
modeling of nitrogen chemistry in combustion”. Progress
in energy and combustion science, 15(4), pp. 287–338.

[4] Göke, S., Schimek, S., Terhaar, S., Reichel, T., Göckeler,
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