NOTE TO USERS

This reproduction is the best copy available.






Flexible modelling for the cumulative
effects of time-varying exposure, weighted
by recency, on the hazard

Marie-Pierre Sylvestre
Doctor of Philosophy
Department of Epidemiology, Biostatistics and Occupational Health

McGill University
Montréal, Québec

April 28, 2008

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Doctor of Philosophy

(©Marie-Pierre Sylvestre, 2008



g

Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

Ottawa ON K1A ON4
Canada
Your file Votre référence
ISBN: 978-0-494-66680-7
Our file Notre référence
ISBN: 978-0-494-66680-7
AVIS:

L’auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques

formulaires secondaires ont été enlevés de

cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il N’y aura aucun contenu
manquant.



DEDICATION

Je dédie ma these a ma grand-mere, qui m’ encourage et m’inspire.



ACKNOWLEDGEMENTS

| sincerely want to thank my PhD supervisor, Dr. Michal Abrahamowicz, for his gen-
erous and skillful research guidance, for showing me the tricks of the trade, and for
helping me push my limits so that, even if it was difficult at times, | now have a thesis
that | am proud of. | greatly appreciated his contagious enthusiasm for research and
| am grateful for the sound advice he gave me during my PhD. | also want to thank
Dr. Tamblyn and Dr. Pilote for providing their expertise, and Dr. Hanley for general
discussions in statistics.

Mon doctorat n’aurait pas été le méme sans la présence de mon accolyte d’'études
et amie Marie-Eve Beauchamp, avec qui j'ai pu partager de facon presque quo-
tidienne mes angoisses professionelles, mes doutes théoriques et mes petites vic-
toires de recherche, dans un joyeux mélange d’humour et d’autodérision. Je remer-
cie Genevieve Lefebvre pour ses encouragements, ses commentaires pertinents sur
certains passages de ma thése et pour m’avoir motivée en terminant son doctorat
avant le mien! | was lucky to have Chris Delaney, because he was always ready for a
thought-provoking discussion of epidemiology and biostatistics.

During my PhD, | was part of a great research team. | really want to thank ev-
eryone for being supportive and for helping me with my thesis (Ella Huszti, Raluca
lonescu-Ittu, Aihua Liu, Georgia Panaritis, Yongling Xiao). Je tiens a remercier Jas-
mine Poole et Hugues Richard pour leurs encouragements chaleureux qui m’ont aidée
a garder le moral. Je remercie aussi Patrick Bélisle, autant pour ses connaissances en
programmation que pour les conversations sur I'art et la littérature qui m’ont permis
de temps en temps de m’évader de mon travall.

Mes parents et ma soeur m’'ont encouragée et m’'ont permis de consacrer le temps
et I'énergie nécessaire a ce projet de longue haleine. Je tiens a leur témoigner ma
plus vive reconnaissance. A mes amis Julie, Kristell, Pascal, Steph et Fred qui se
sont positionnés en fans no.1 de I'éternelle étudiante que je suis, depuis que je les
connais: un gros merci. Finalement, un grand merci a mon amoureux, Jérémie, pour
m’avoir allégé la vie et aidée a étre pragmatique durant la frénésie de la rédaction.

Acknowledgement of financial support. | received financial support from the
Department of Epidemiology, Biostatistics and Occupational Health for the first year
of my PhD. The Canadian Institutes for Health Research (CIHR) then provided fi-
nancial support through a three-year Doctoral Fellowship. Some of my thesis is



. also part of a CIHR funded grant (2006-2011), Development, validation and appli-
cations of new methods for analysing observational studies of medications (P!l Dr.
Abrahamowicz), for which | am a co-applicant.



ABSTRACT

Many epidemiological studies assess the effects of time-dependent exposures,
where both the exposure status and its intensity vary over time. The analysis of
such studies poses the challenge of modelling the association between complex time-
dependent drug exposure and the risk, especially given the uncertainty about the
etiological relevance of doses taken in different time periods.

To address this challenge, | developed a flexible method for modelling cumulative ef-
fects of time-varying exposures, weighted by recency, represented by time-dependent
covariates in the Cox proportional hazards model. The function that assigns weights
to doses taken in the past is estimated using cubic regression splines. Models with
different number of knots and constraints are estimated. Bootstrap techniques are
used to obtain pointwise confidence bands around the weight functions, accounting
for both the sampling variation of the regression coefficients, and the uncertainty at
the model selection stage, i.e. the additional variance due to a posteriori selection
of the number of knots.

To assess the method in simulations, | had to develop and validate a novel algorithm
to generate event times conditional on time-dependent covariates and compared it
with the algorithms available in the literature. The proposed algorithm extends a
previously proposed permutational algorithm to include a rejection sampler. While
all the algorithms generated data sets that, once analyzed, provided virtually unbi-
ased estimates with comparable variances, the algorithm that | proposed reduced the
computational time by more than 50 per cent relative to alternative methods.

I used simulations to systematically investigate the properties of the weighted cu-

mulative dose method. Six different weight functions were considered. Simulations



showed that in most situations, the proposed method was able to capture the shape
of the true weight functions and to produce estimates of the magnitude of the ex-
posure effect on the risk that were close to those used to generate the data.

| finally illustrated the use of the weighted cumulative dose modelling by reassessing
the association between the use of selected benzodiazepines and fall-related injuries,
using administrative data on a cohort of elderly who initiated their use of benzodi-

azepines between 1990 and 2004.
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ABREGE

Les études épidémiologiques évaluent fréquemment l'effet d’expositions com-
plexes dont le statut et I'intensité varient avec le temps. L’'analyse de ces études
pose un défi particulier, celui de modéliser I'association entre ces expositions com-
plexes et le risque, particulierement lorsque la pertinence étiologique des doses prises
lors de différentes périodes de temps est incertaine.

Pour aborder ce probleme, j'ai développé une méthode flexible pour modéliser les ef-
fets cumulatifs d’expositions qui varient dans le temps, dans laquelle les expositions
antérieures sont pondérées selon le temps écoulé depuis |'exposition, et cumulées
pour obtenir une variable qui varie dans le temps dans un modele de risques pro-
portionels de Cox. La fonction qui pondeére les doses prises rétrospectivement est
estimée a |'aide de B-splines cubiques de régression. J'ai estimé des modeles avec
des nombres différents de noeuds et de contraintes. Les intervales de confiance
ponctuels pour la courbe de pondération ont été estimés a I'aide d’'une méthode de
bootstrap qui tient a la fois compte de ia variance d’échantillonage des coefficients de
régreésion et de I'incertitude découlant de la sélection de modeles, c-a-d. la variance
additionelle découlant de la sélection a posteriori du nombre de noeuds.
Pour évaluer la méthode a I'aide de simulations, j'ai développé et validé un nouvel
algorithme pour générer des temps d'événements conditionnels a des variables qui
varient dans le temps et j'ai comparé cet algorithme avec les autres algorithmes
décrits précédemment dans la littérature. L'algorithme proposé est une extension de
I"algorithme permutationnel qui inclut une méthode d'échantillonage acceptation/re-

jet. Tous les algorithmes étudiés ont généré des jeux de données qui une fois analysés,
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ont fourni des estimés de coefficents au biais minimal et dont la variance étaient sem-
blables. Cependant, I'algorithme que j'ai proposé a réduit le temps de calcul de plus
de 50 pourcent en comparaison avec les autres méthodes.

J'ai utilisé des simulations pour étudier de facon systématique les propriétés de la
méthode de doses cumulatives pondérées. Six fonctions de pondération ont été en-
visagées. Les simulations ont démontré que dans la plupart des cas, la méthode que
j’al proposée a été capable de recapturer la vraie forme de la fonction de pondération
et de produire des estimés de l'effet des doses cumulatives pondérées sur le risque
qui étaient pres de ceux utilisés pour générer les données.

Je conclus en illustrant la méthode de doses cumulatives pondérées afin de réévaluer
I'association entre 'utilisation de quelques benzodiazépines et les blessures reliées
aux chutes. Pour ce faire, j'utilise des données administratives sur une cohorte de

personnes agées qui ont initié un traitement de benzodiazépine entre 1990 and 2004.

viii
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CHAPTER 1
Preface

1.1 Format of the thesis

This manuscript-based thesis consists of a collection of three papers, for which |
am the primary author, as well as separate chapters: Introduction, Literature review,
Objectives, and Discussion. The three manuscripts are related and complement each
other to form a cohesive body of research that addresses the objectives of the thesis.

The format of the papers respects the McGill University Guidelines for The-
sis Preparation* . Each manuscript corresponds to a chapter of the thesis. A
preamble to each of the manuscripts explains its rationale and its relation to the
other manuscripts and to the objectives of the thesis. In addition, two of the three
manuscripts are followed by a subsection that contains additional material that could
not be included in the manuscript due to space limitation but is relevant to the thesis.
All publications cited in each of the manuscript are listed in the References section,
at the end of the thesis. Finally, the findings of the three manuscripts are discussed
in the last chapter of the thesis.

This thesis has been typesetted with IKTEX within the open-source KDE Inte-

grated Environment.

! http://www.mcgill.ca/gps/current/programs/thesis/guidelines/
preparation/


http://www.mcgill.ca/gps/current/programs/thesis/guidelines/

1.2 Contributions of Authors

The topic, objectives and methods of my thesis was selected conjunctly with my
thesis supervisor, Dr. Abrahamowicz. | conducted and wrote the literature review,
which was refined in discussion with Dr. Abrahamowicz. | designed and wrote
all the programs necessary to implement the new statistical methods proposed in
manuscripts 1 and 2, to validate these methods in simulations, and perform all the
data management and empirical analyses reported in manuscript 3.

| interpreted and summarized the results, both from the empirical analyses and
simulations. | wrote the three scientific manuscripts and the other sections of the
thesis. Dr Abrahamowicz provided guidance and feedback on the methods, analyses,
design and interpretation of results and on the draft of all three papers.

The members of my thesis supervision committee, Dr. Pilote and Dr. Tamblyn,
provided clinical and epidemiological expertise and guidance regarding the interpre-
tation of the results. In addition, Dr. Tamblyn provided the data on benzodiazepine
use in the elderly, which were analyzed in the third manuscript, using the methods

developed in the second manuscript.



CHAPTER 2
Introduction

Epidemiological and medical research provides numerous examples of exposures
that vary over time, both in terms of status and intensity. Examples of time and inten-
sity varying exposures include histories of drug treatment in pharmacoepidemiology
[1, 2], repeated measurements of laboratory tests in clinical research [3], socioeco-
nomic position in social epidemiology [4], smoking patterns over time [5] in public
health, or long-term exposure to a pollutant in occupational health and environmental
epidemiology [6].

When modelling the association between complex patterns of exposure and the
risk of an outcome, it is crucial to take into account the temporal changes in exposure
status and intensity. Updating the exposure status in the model may be preferable
to using the baseline values only, as the predictive ability of the baseline values may
decrease over time [3]. More importantly, ignoring the timing of individual changes
from the unexposed to the exposed status may lead to serious bias in the estimates of
the association between the exposure and an outcome [7, 8, 9]. However, modelling
the association between complex patterns of exposure and the risk of an outcome
is challenging, especially given the uncertainty about the etiological relevance of
exposures taken in different time periods [10, 11, 12, 13].

At the modelling stage, time-dependent covariates may be used to represent
changes in exposure status and intensity {14, 15, 16]. Moreover, the specification of
the time-dependent variable appropriate for a given analysis depends on the underlying

assumptions about the association between exposure and the risk. A binary indicator



of current exposure status ignores the intensity of exposure, which, in the case of a
true dose-response relationship, may lead to a less precise and efficient estimation and
testing of the effect of exposure than current intensity of exposure [17]. On the other
hand, both current measures of exposure ignore the past history of exposure and,
thus, implicitly assume that exposure has no cumulative effects. Time-dependent
variables such as duration of past exposure or cumulative intensity, defined as the
sum of all past exposure intensities, take past exposures into account. However,
these measures implicitly assume that all past exposures had the same effect on the
current risk of an outcome, regardless of their timing.

These assumptions may likely be too stringent for many epidemiological and
clinical applications. A more general exposure metric, the weighted cumulative ex-
posure (WCE), has been suggested by both Breslow [18] and Thomas [19] and oper-
ationalized by Vacek [12]. It was suggested that past exposures should be weighted
according to a function that assesses their contributions to the current risk, and the
weighted exposures accumulated to create a cumulative weighted exposure metric.
In most applications of the WCE, only a limited set of a priori specified parametric
weight functions was considered and the weight function that had the best fit to
the data was selected [12, 14]. However, the correct analytical form of the weight
function is seldom known, and incorrect specification of the parametric form of the
exposure metric may lead to invalid results [12, 20].

Alternatively, the weight function may be estimated using flexible techniques that
avoid a priori assumptions about the analytical form of this function. A method has
been proposed to estimate the weight function in the context of a case-control study,
where only a single value of the weighted cumulative dose needs to be calculated
for each subject at her or his outcome or index date [11]. Case-control studies

are particularly useful when the data on the underlying cohort has not already been



collected and when it is more efficient to collect information on a sample of the
cohort only [21]. In many circumstances, studies are based on cohorts that have
already been assembled, such as administrative databases for pharmacoepidemiology
[22]. Consequently, it might be more straightforward to analyze these data with
survival models with time to event models, specifically developed for prospective
designs, such as the Cox proportional hazards model [23, 24, 25, 26]. To date, no
parametrization or estimation techniques have been suggested to estimate the effect
of a time-dependent WCE in the Cox proportional hazards model.

The primary objective of this thesis Is to develop a method for flexible estima-
tion of the cumulative effects of time-varying exposures in Cox proportional hazards
analyses of time-to-event data, while taking into account the timing of the exposure.
I will develop a weighted cumulative exposure metric (WCE) that assigns different
weights to past exposures according to their importance in explaining the current
risk of an event. The WCE will be incorporated in a Cox proportional hazards model
and the function that assigns weights to past exposure will be estimated using cu-
bic B-splines, which avoid the need for a priori assumptions regarding the shape of
the weight function. Modelling the WCE in the Cox model poses specific analytical
and computational challenges related to changes over time in both the patterns and
intensity of exposures and their recency, i.e. the distance in time from the current
date. The latter implies that the relative importance of the exposure on a given date
changes across risk sets.

I will use simulations to investigate and validate the properties of the proposed
estimates. However, to date there Is a lack of validated, efficient algorithms for gen-
erating event times conditional on complex time-varying exposures [27, 28]. There-
fore, to be able to carry out the necessary simulation studies, | will extend and validate

the use of the permutational algorithm, originally proposed to simulate event times



conditional on non-proportional hazards [29], to generate event times conditional on
time-dependent covariates.

Once the WCE method is validated, | will then illustrate the use of this method
to re-assess the associations between exposures to several benzodiazepines and fall-
related injuries in the elderly. Benzodiazepine-specific analyses will be conducted to
gain insights about the mechanisms that link individual patterns of use of particular

benzodiazepines with fall-related injuries.



CHAPTER 3
Literature review

This thesis involves three major components: (1) the development of a new
method for the flexible modelling of the cumulative effects of time-varying exposures,
weighted by recency, in the Cox proportional hazards model, (2) the development
of tools for validating and assessing the performance of this new method through
simulations, and (3) a real-life application of the method to re-assess the association
between different benzodiazepines and fall-related injuries in the elderly.

The literature review contains five separate sections, each summarizing selected
literature relevant for one of the three components of the thesis. Section 3.1 presents
the proportional hazards model for the analysis of time-to-event data. Section 3.2 de-
scribes selected techniques for flexible modelling of functional relationships. Section
3.3 provides an overview of the approaches used to model time-dependent exposures
in epidemiology. The literature review ends with section 3.4, which summarizes
the results and the methods used in published studies on the association between
benzodiazepines and fall-related injuries in the elderly.

3.1 The proportional hazards model

The semi-parametric version of the proportional hazards (PH) model, proposed
by Cox in 1972, is used extensively to investigate the association between covariates
and time-to-event in prospective studies [30, 31]. Before describing the PH model,

| will first introduce the basic concepts and notation of survival analysis.



3.1.1 Concepts and notation of survival analysis
Let X be a random variable describing the event times of a cohort of n subjects.
S(x) is the survival function that represents the probability that an individual survived

past time x, i.e.

S(x):Pr(X>><):/Oo f(v)dv (3.1)

with f the probability distribution function of the event times.
An important concept in survival analysis, that is also central to the PH model,
is the notion of hazard function. The hazard function can be viewed as the instan-

taneous risk of an event at time x and is defined as

P(x < X < x4+ Ax|X > x)

h(x) = Aljmo Ax (3.2)
The associated cumulative hazard function, H(x) is defined as:
H(x) = / h(v)dv (3.3)
0

The survival function S(x) can conveniently be written either in terms of the hazard
function h(x) or the cumulative hazard function H(x). For continuous X, the hazard

can be expressed as
f(x) _ —dIn(5(x))

hix) = S(x) dx (34)
It follows from (3.3) that
H(x) = /X h(v)dv = = In[S(x)] (3.5)
and thus that
S(x) = exp|—H(x)] = exp {—/0 h(v)dv} (3.6)



However, because of limited duration of follow-up, sample attrition, and com-
peting risks, event times may either be observed or censored (unobserved). Right-
censoring occurs if subjects are lost to follow-up or reach the end of the study with-
out experiencing the event. In such situations, the censoring time is shorter than the
event times and thus the event times are at the right of the censoring times. Let C
denote the censoring time and assume it has a cumulative distribution G(C). Under
right-censoring, the observed event times can be written as as T = min(C, X). In
addition, based on the comparison of C and X, we can construct an indicator of
non-censoring that takes the value of 1 only if the event for individual / is observed
during follow-up:

5, = 1[X; < C}. (3.7)

Otherwise, §; = 0. Given the distribution of event times and censoring times, we
can construct the likelihood of the data. In constructing the likelihood, we make the
critical assumption that the censoring is random (or noninformative), which states
that X and C are independent ' . Consequently, we can write the likelihood as
the product of the likelihood of all observations (8;, T;), i = 1, ..., n [31]. Subjects

censored at time t; (§; = 0) survived up to time t; so that

Pr(T = t,-,é,» = O) = S(t,') (38)

while for subjects who experienced an event at time t; during follow-up (§; = 1),

Pr(T =t,6=1)=f(t;), (3.9)

LIf, as required later, the event times or the censoring times are conditional on a
matrix of covariates Z then we need the censoring and event times to be conditionally
independent given Z.
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where f is the probability distribution function of the event times. Combining (3.8)

and (3.9) for each single observation, the likelihood can be written as:
Pr(T = t;,6;) = [F(t)[S ()]} 2. (3.10)

It follows that for a random sample of n subjects, assuming independence of obser-
vations, we can construct the likelihood as
L(t,8) = JIF()1P (S (3.11)
i=1
Finally, using equations (3.4) and (3.6), we can write f(t;) = h(t;)S(t;) and (3.11)

can be rewritten as:
(t,6) = H[s t)h(t)]% S(6)' (3.12)

— H[h(t,)]‘s"S(t,»).

3.1.2 Overview of Cox proportional hazards model
The proportional hazards model estimates how the hazard depends on a vector
of covariates values Z:

h(t]1Z) = ho(t) exp(B'Z), (3.13)

where h(t|Z) is the hazard at time t conditional on covariate vector Z, ho(t) is the
baseline hazard corresponding to Z = 0, and 3 is the vector of associated regression
coefficients, i.e. logarithm of hazard ratios associated with an unit increase in a given
covariate [30, 31]. The PH model relies on the assumption that the independent
variables act multiplicatively on the hazard function [32]. The PH model is considered
semi-parametric because a parametric form is assumed for the covariate effects, while
the baseline hazard is considered as a nuisance parameter in the estimation, and no

parametric assumption about its form is imposed.

11



The model proposed by Cox [30] assumes proportionality of the hazards, that is

the hazard ratio for two vectors of covariates values, Z; and Z5 is given by:

h(t|Z,)
h(t|Z2)

HR = = exp(B'(Z, — Z2)), (3.14)

and is constant over time, so that under model (3.13), any two hazard functions
are proportional to each other, regardless of the change in the absolute value of the
hazard over time. Violations of the proportionality assumptions may lead to biased
estimates [33]. Under noninformative censoring, non-proportionality of hazards will
bias the regression estimates toward the null [34]. Furthermore, the model-based
variance may not be asymptotically valid [33]. Several tests and corrections for non-
proportionality of hazards, including the use of time-dependent covariates, have been
proposed but are not discussed here [35].

The likelihood can be derived as a profile likelihood in which the baseline hazard
is considered a nuisance parameter [36, 37]. Consider the likelihood based on equa-
tion (3.12), which assumes assumes noninformative censoring, and the definition of
hazard given in (3.13), which is conditional on the vector of covariates Z. Then the
likelihood L can be written as:

n
L(B. ho(1)) = [ | ho(t)*[exp(B' Z1)1* S (1] Z;. B) (3.15)
i=1

Now, using equation (3.6),
S(ti|Zi, B) = exp[—Ho(t) exp(ti| Z;, B)] (3.16)

so equation (3.15) becomes

L(B, ho(t)) = Hho )2 [exp (B’ Z)]% exp[—Ho(t;) exp(B8'Z)))] (3.17)

12



Consider the profile likelihood for hy(t) obtained by fixing 8. When events do
not occur (6, = 0), the profile likelihood is maximized by setting Ho(t) = 0. This
implies that times t at which no events occur do not contribute to the likelihood
and can be dropped from the profile likelthood. In fact, the profile likelihood is better
known as the partial likelihood, because it does not include the nuisance parameter
that is part of the full likelihood [38, 39].

Now consider the case when §; = 1. Let the D event times be indexed as t;,
J=1,....D and ho(t;) be the corresponding values of the baseline hazard at those
time. Then, using (3.17) the profile likelihood for ho(t) can be written as

D
L(ho(tr), ... ho(tp)) o< [ [ ho(t) > exp(B'Zy) (3.18)
J=1 keR(t))
where R(t;) is the risk set at time t;, the set of all individuals that were still at risk
2

at time t;, including those who had an event at time t;.

The maximum likelihood estimator of hg;(t) is given by:

~ 1
ho(t;) =
olt) ZkeR(tJ)eXp(ﬁlzk)

(3.19)

By substituting (3.19) in (3.15), we obtain an expression of the profile likelihood

that does not depend on the baseline hazard hy(t):

Le) =] exp(6'Z))

3.20
=1 ZkeR(tj) exp(B8'Zx) ( )

2 When multiple events occur at the same time (ties), one can express the partial
likelihood by considering the ties as distinct times each of which has a risk set, which
is a valid approximation when ties are few [31]. Alternative methods are available
(e.g. Efron [31]) but are not discussed here.
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Iterative maximization of the likelihood can be used to estimate the 3 coefficients
[31].

The estimates of 8 are asymptotically normal so Wald test may be used to
test the null hypothesis that a component of the vector 3 is zero. For large n, the
likelihood ratio test may be used to test the hypothesis that several components of
the B vector are zero by comparing model My, which is nested in model M, and

computing the Likelihood Ratio Test (LRT) as:
LRT = 2(LL(M,) — LL(M,)) (3.21)

and compare it with the critical value taken from a x? distribution with degrees of
freedom given by the difference in the number of parameters in the two models.
3.1.3 The counting processes formulation of the proportional hazards model

The PH model can accommodate time-dependent (TD) covariates, i.e. covari-
ates that change in status or intensity over time [30]. Modelling of TD variables will
be covered in section 3.3 but their inclusion in the PH model is discussed here.

Consider the following model that include a TD covariate Z(t):

h(t|Z(t)) = ho(t)exp [5’Z(t)]. (3.22)

In order to estimate the PH model with TD covariates, it is helpful to describe the PH
within the general framework of models for counting processes developed by Aalen
and developed by Anderson and Gill for survival analysis [40, 41].

Consider N;(t), a process that counts the number of observed failure(s) of each
subject i,/ = 1,...,n, up to time t,t > 0. The counting process N;(t) is a step
function with N;(0) = 0. Let Y;(t) be a process that indicates whether the individual

i is at risk at time t, thatis, Y;(t) = 1[7; > t]. Then, N;(t) has an intensity function
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Xi(t), that represents the probability of an event occurring in the interval (¢, t + A):

Ai(t) = Yi(t)ai(t) (3.23)
where
(1) = A@o Pr[N;(t + A) — NA»(t) = 1|Yi(t) = 1] (3.24)

is analogous to the hazard in (3.2). The process N;(t) is a Poisson process with rate
(X,’(t).
If ag(t) is left unspecified, then we obtain the so called Anderson and Glll

generalization of the PH model [42]:
a(t) = ag(t)exp(B'Z). (3.25)

Expressing the PH model as a counting process facilitates the inclusion of TD
covariates. The data for a single subject are expressed as multiple observations (or
multiple rows in the covariate matrix Z), each of which describing the interval time
[t1, to) for which the TD covariates are constant.

The naive variance estimate of ﬁ in the PH model assumes that observations
are independent [31]. However, in the counting process version (3.25), observations
belonging to the same individual i are not independent of each other, so a robust
procedure must be used to obtain a variance estimate ofB that takes this clustering
into account [41]. Robust standard errors for B can be obtain using grouped jackknife
techniques [41]. Let 5_; be the vector of maximum likelihood estimates of the vector
3 obtained from a dataset from which all the observations pertaining to individual
i have been removed. Let the matrix J be the difference between each of the 6_,

estimates, i = 1, ..., n and 3 the maximum likelihood estimate obtained from (3.25).
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‘ Then the variance of § is estimated using a sandwich estimator of the form [41]:

Var(B) = (J - JY(J - J). (3.26)

16



3.2 Flexible modelling of functions

In this section, | discuss selected methods for flexible modelling functions f(x)
of a continuous variable x in regression analysis. Common examples of a function to
model are those of the relationship between a continuous covariate and an outcome
[20, 43]. In survival analysis, flexible statistical methods have been used to model
flexible functions of time representing either the hazard [44, 45] and density functions
[46j, or the time-dependent hazard ratio [47, 48, 49].

For simplicity, in this review, | focus on the estimation of the relationship between

x and y, which is represented with the smooth function f, such that
y="f(x)+e¢ (3.27)

In some specific settings, theoretical knowledge allows the use of a fully para-
metric model where the functional form of f(x) is explicitly specified [50], e.g. in
pharmacokinetics models of drug half-life elimination. In such parametric regression
models, f(x) is specified a priori and the task of the data analyst is limited to the
estimation of its parameter(s) [51].

When the functional form of f is correctly specified, using a parametric model
is both simple and efficient, because the number of parameters to estimate in the
parametric model is smaller than in its nonparametric counterpart, and because the
former avoids the risk of overfitting bias [52]. Another advantage of parametric
models is that their estimation and inference can easily be done using straightforward
methods based on their likelihood function [53].

However, although many parametric models may be robust to slight departures
from their own assumptions [54}, more severe departures will likely cause inconsistent

parameters estimates, that is, estimates that do not converge to the true maximum
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likelihood value [54, 52, 55]. Incorrect assumptions regarding the form of f(x) may
also lead to decreased power and/or incorrect etiologic conclusions [12, 20].

In applications of regression analysis, there is typically no biological model or a
priori knowledge to guide the choice of a single functional form of f(x). In such
cases, it is possible to consider several models with different functional forms for
f(x) [12, 56] and to select the best model using a statistical criterion such as the
Akaike information criterion (AIC) [57], the Bayesian information criterion (BIC) [58]
or with other methods that are based on the residual analysis [59].

Alternatively, rather than specifying an explicit parametric form for f(x), it is
possible to represent f(x) with more flexible methods that simply assume that f(x)
will be a smooth function of arbitrary shape [60]. The challenge is to choose a
flexible method to model f(x) and to decide how smooth the estimate should be
[56]. Finding the functional form of f(x) involves two competing aims: obtaining a
good fit to the data while avoiding overfitting bias [61]. A model is overfitting the
data when it becomes too dependent on the particular feature of the sample so that
it produces an estimate of f(x) that fluctuates too much or too rapidly to reflect
the true form of f in the underlying population [61]. Models that are too flexible or
too complex for the data will likely produce overfitting bias. As the complexity of a
model increases, larger and larger amount of data are required to avoid unacceptably
large increases in variance {51, 62]. In fact, this issue should be considered while
keeping in mind the principle of Occam’s razor, as expressed by Clayton and Hills:
when considering two explanations for a given problem, the simplest explanation
consistent with the known fact should be preferred [36].

In this section, | discuss several methods that model f(x) smoothly, namely re-

gression polynomial, fractional polynomials, regression splines and smoothing splines,
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while highlighting some of their strengths and weaknesses. These methods were se-
lected because of their use in epidemiology and clinical research [56, 49, 63, 64]
and because they are available in most statistical software such as R, SAS, S and
Stata [65, 66, 67, 68]. Due to space restrictions, the following overview represents
a somewhat arbitrary selection of topics partly related to the relevance of specific
issues of my thesis research.

3.2.1 Polynomial regression

Polynomial functions of the form

F(x) = Z a,x’ (3.28)

where n € N, represents the degree of the polynomial, provide a simple method
to represent functions [69]. The functions in the polynomial basis x', i = 1,...,n
are easy to compute from the data and the resulting polynomial (3.28) is linear in
the parameters to estimate (ay, ..., a,) [60]. However, polynomial functions have
several limitations. First, the set of shapes that polynomials can represent is limited
[70]. Polynomials of high order are required to model more complex shapes, which
implies that a large number of parameters must be estimated. This may cause
overfitting bias and unstable estimates if there are not enough data points [70].
Second, high order polynomials are particufarly prone to local bias [60]: a change in
the behaviour of f(x) near a given point x* may cause important changes around
distant points x. This causes polynomials to be sensitive to outliers [71]. Finally,
while polynomial models may give a good fit to the observed data, they have poor
extrapolation properties, especially for higher order models [70]. Finally, for positive-
valued argument x, polynomials of different orders are highly correlated. This makes

this approach inefficient and increases the risk of near-multicollinearity.
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Fractional polynomials

The fractional polynomial approach provides a more refined approach to the
flexible modelling of functions [63].

A fractional polynomial of degree mis a function of ¢,,(x, 3, p) for x > 0, such
that®

bm(x.B,p) = ZﬁjHj(X) (3.29)

where for j =1, ..., m:

Hi(x) = XB ey # s (3.30)
Hi—1(x)In(x) if p; = pj—1
and where p; and p;_; belong to a vector of powers p € R, and B8 = {Bo, ..., Bm} is
a vector of real-valued coefficients. If p; = 0, then x” in (3.30) is replaced by Inx
[72]. Conditional on the values of m and p, ¢,(x, B, p) is a linear function of H;(x)
with coefficients B to be estimated.
In practice, polynomials of degree m < 2 are believed to be sufficient to model

most applications [72]. Consequently, equations 3.29 can be conveniently re-written

as two functions, FP1(x) and FP2(x):
FP1(x) = Byx® (3.31)

and

B x®P) 4 3 x(P2) if p1# p
FP2(x) = ' ’ Lo (3.32)

B1xP + BoxPinx if py = p, = p,

31f x <0, a change in the origin (x — 9) or a more complicated quasi-linear
transformation can be applied [72]
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Proponents of this technique suggest using the set of powers:

1 1
p:{—2,—1,—§,0,'§,1,2,3}. (333)

Thus, in addition to the shape of conventional polynomials, fractional polynomials
of degree m can represent curves with asymptotes, as well as curves with rapid
curvatures [72].

The model building strategy involves finding the best fitting models for FP1(x)
and FP2(x) using the deviance D = —2 x log-likelihood, with lowest deviance indi-
cating a better fit [72].

Once the best models for FP1(x) and FP2(x) are selected, they are compared
using a test where the best fitting model for F P2(x) is preferred over the best fitting

model for FP1(x) if
D(FP1(x)) — D(FP2(x)) < X3,0.00 (3.34)

The test in (3.34) has two degrees of freedom, respectively for the additional variable
due to the use of FP2(x) and the additional parameter p, to estimate.

In a similar fashion, one can test whether the best fitting FP1(x) has a better
fit than a straight line model by using comparing the difference in the deviance of
the two models in a fashion similar to (3.34).

In cases where a subset of models have similar deviances and tests do not select
an overall best-fitting model, the final choice of a model depends on the appearance
of the curves in relation to the data and on a priori knowledge of the problem [72].

Fractional polynomials have the similar disadvantages than conventional poly-
nomials, although often at a lesser extent: their lack of flexibility may lead to a poor
fit and they are also prone to local bias because each function in the basis spans the

entire range of argument values [63].
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3.2.2 Regression B-splines

Regression B-splines is an alternative to the flexible modelling of functions. A
regression B-spline function is a curve that is represented as a linear expression of a
B-spline basis, which is a set of piecewise polynomials of degree p, each defined over
a limited domain [73, 60]. A spline is formed of a sequence of adjacent polynomial
pieces, each covering a limited interval of x values, which are joined smoothly at pre-
specified points called knots. The smoothness of the spline is ensured because the
polynomials and their first and second derivatives are constrained to be equal at the
knots [45, 60]. For example, Figure (3-1) shows how a cubic B-spline (solid line)
can be constructed from four polynomial pieces (dotted lines). The vertical lines

indicate the knots where adjacent polynomials and their first and second derivatives

are equal.
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Figure 3—1: Four piecewise cubic polynomials forming a cubic spline (order 4)
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A B-spline basis is a collection of such splines. For example, in Figure (3-2), a

cubic B-spline basis is represented using dotted curves with arrows pointing at the
knots.
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Figure 3-2: Cubic B-spline basis with arrows pointing at knots position

The B-spline basis can be constructed as follows. Consider a B-spline basis of
order p defined over the interval [a, b]. Given m interior knot(s) k;, j = 1,...,m,
such that a < k; < b, the B-spline basis will consist of m + p polynomials of degree
p [74]. To construct such basis, we need to set p exterior knots on each side of the
interval [a, b] over which the spline basis is defined {11]. Assume, without lost of

generality, that ki_; = a, ... ki_p=a—p—1landthat k,=0b, ... ki, =a+p-—1.

Then, the B-spline basis functions can be defined recursively as [11]

1, if k < x < ki,
Bjo(x) = !

(3.35)
0 otherwise
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and

X = kj kj+n+1 — X

Bin(x) = Bjp-1(x) + Bjt1,p-1(x) (3.36)

G4p = Kj Kivnt1 — Kit
where a < x < b.

Figure (3—3) shows example of B-spline bases of order 1-4 (degrees 0-3), each
defined over the interval [0, 1], and each using three interior knots at 0.2, 0.4, and
0.7. Basis functions of degree 1 are step functions and degree 2 are broken lines,

which ensure continuity of the function but not of its derivatives. The first and

second derivatives of bases of degree 3 are continuous.
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Figure 3-3: B-spline basis functions of order 1 to 4 with interior knots at 0.2, 0.4,
and 0.7

Given pre-specified the B-spline basis, the spline function f(x) is defined as a

linear combination of the basis functions:

m+p

fx) = a;Bj(t) (3.37)
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where o are coefficients that need to be estimated. Figure (3-4) shows the spline
functions associated with each of the B-spline bases of Figure (3-3) for arbitrary* val-
ues of a;. Functions obtained from quadratic and cubic B-spline bases are smoother
than those obtained with the basis of order 1 or 2 and are, therefore, more clinically

plausible.
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Figure 3—4: Spline functions associated with the bases in Figure (3-3)

Choice of the number and location of knots

Given the pre-specified order of the B-spline basis, the flexibility of the estimated
spline function depends on the number of knots selected, with a larger number of
knots leading to a greater flexibility [60]. While there is no theoretical basis for

selecting a specific number of knots, parsimony is often preferred because the variance

* Values of a; for the bases of order 1 to 4 were, respectively: {0.6,0.9,0.4,0.2},
{0.6,0.9,0.4,0.2,0.2}, {0.6,0.6,0.9,0.4,0.2,0.2}, {0.6,0.6,0.6,0.9,0.4,0.2, 0.2}.
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of the estimated spline function and the risk of overfitting increases with the number
of knots [73]. In practice, up to 5 knots are deemed sufficient to model most nonlinear
functions of interest [75].

In settings where there is some prior information on the function to model,
for example when modelling the change in the incidence of a disease following the
introduction of a new treatment, knots may be placed where the estimated curve
is expected to show more curvature [73]. In most settings, however, the interest is
in the general shape of the curve and not the positions of the knots [73]. In these
cases, interior knots can be placed at equal distances over the interval over which the
spline basis is defined. Alternatively, the interior knots k, k = 1, ..., K can be placed
at the 7(% quantile of the distribution of x {45]. This approach ensures that each
segment of f(x) has comparable support from the data [45]. Then, several models
with different number of knots can be estimated and compared using criteria such
as the AIC or BIC to select the appropriate number of knots, and thus flexibility, for
the problem at hand [45, 11].

An alternative is to consider the knot location as an additional meta-parameter
that needs to be estimated. The main issue with doing so is that knots enter into
the regression problem in a nonlinear fashion, giving rise to all the known problems
of estimation and inference about models that are nonlinear in their parameters [76].

Furthermore, methods that attempt to estimate the number and position of knots

are quite computer-intensive and require specialized software [73].

Other regression spline bases

The previous section focused on B-spline basis but several other basis options

exist for regression splines [71, 60]. One option is the truncated power basis, which
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is based on the truncated power functions of order p defined as [71]:

(X B kj)i _ (X — kj)p if x > kj, (338)
0 ifx <k,

where k; are the knots. For a given set of knots, more coefficients need to be
estimated for the truncated power basis than for the B-spline basis [77]. In addition,
B-spline bases have a better numerical stability than truncated power bases because
of the collinearity between truncated power functions [78].

Another useful basis is the M-spline basis, which, like the B-spline basis, can be
defined recursively [60]. Each M-spline of degree m has the properties of a probability
density function over the interval between the knots k; and k;i,,, is positive and
satisfies the normalizing property that [60]

kj+m
/ M,(£)dt = 1. (3.39)
ki
Therefore, by constraining the spline coefficients «; in > a;M;(t) such that, a; > 0
and )" a; = 1, the resulting spline estimate also satisfy the properties of a density
function {79]. The main difference between the M-spline and B-spline bases concerns
the way they are normalized.

In some applications, the estimated function should be constrained to mono-
tonicity, while their other properties are unknown. For such situations, Ramsay
proposed the I-spline basis, whose basis functions are obtained by integration of the

M-splines:

(x) = /k "yt (3.40)

J

Because each M-spline is positive over its entire support interval, its integral, the

l-spline, is a monotonically increasing function of the argument t [60].
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Smoothing splines

An alternative approach to spline modelling involves smoothing splines. The
level of smoothness of regression spline estimates is controlled by the number and
location of their knots [77], while for smoothing splines, control over the smoothness
of the estimated curve is done by adding a penalty term to the regression equation
[80].

Suppose that the relationship between y; and x;, i = 1, ..., n 1s such that y; =
f(x;), and we want to estimate the functional form of f as in equation (3.27). For
simplicity, assume that both x and y are continuous, and that their relationship is

estimated through least squares [61]. The estimate that minimizes

n

Sy 6] (3.41)

i=1
will be a jagged curve that interpolates the data, which is unlikely to represent
the reality and will be seriously affected by overfitting bias [80]. To impose some
smoothness on the f(x), the estimate of f(x) a roughness penalty term X is added

to (3.41), so that the criterion to minimize in the estimation becomes [80] :

n

Sy =]+ 2 / [7(2)] dz. (3.42)

i=1
Indeed, the integral of the second derivative of f(x) is a measure of rapid local
variations [61], and penalizes models that fluctuate too much [80]. A linear estimate
has [f"(x)]?> = 0, as its second derivative is 0 for all values of x, while nonlinear
curves have [f”(x)]? > 0. While other forms of penalty terms have been proposed,
f[f”(z)rdz is commonly used [61, 80]. Reinsch has showed that 7(x) obtained
from minimizing (3.42) is a cubic spline with knots at the observed points x; and

that f(x) will be linear outside the range of the data [61].
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The coefficient A is the smoothing parameter that controls the size of the
smoothness penalty imposed [20]. In fact, A — oo leads to a straight line estimate
of f(x) while A = 0 provides an unpenalized spline estimate that interpolates the
data [80]. The smoothing parameter A can be selected a priori by the user [20] or
estimated [80].

A common method to estimate the value of X is cross-validation [61]. The
general idea is to remove a datum {x;, y;} from the dataset used for estimation and
find the value of A such that the corresponding f(x_,-) Is the best predictor of y;
[61]. This is done in turn for each i, i = 1, ..., n, and the estimate of X\ is found by

minimizing the cross-validation score [61]:

n

XVSC(A) = %Z [y,- - f;"(x,-)r. (3.43)

i
Cross-validation techniques such as (3.43) may be computationally cumbersome [80].
An alternative form of (3.43), the general cross-validation criterion, along with nu-
merical approximation algorithms, have been suggested to make the cross-validation
process less computationally-intensive [61].
3.2.3 Properties of regression splines versus other flexible modelling methods
Modelling a function f(x) using regression B-splines may offer several advan-
tages. First, the fact that splines are linear in the coefficients to be estimated implies
that standard methods of estimation and inference are implemented in commonly
used statistical software packages [73]. Second, regression splines are less sensitive
to local bias than polynomials or fractional polynomials [60, 72]. This arises from
the property that each of the B-spline basis of order m functions B; is nonnegative
only between the knots k; and k;, , and zero outside this interval. This implies that
a change in the coefficient o of the basis function B; in (3.37) will only affect f(x)

within the interval [k;, kj;m] [60]. Thus, outliers have a more local effect on the
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splines than on polynomials, because they will only affect the spline estimate over a
limited interval [71]). Third, regression spline functions can easily be constrained at
their boundaries [60]. For example, a cubic spline function can easily be constrained
to smoothly go to zero at the right-hand-side boundary of its support interval by set-
ting the coefficients a 43 and a3 in the spline function equation (3.37) to zero.
Alternatively, one can force a spline function to be linear in the tails where there is
less data and where the unconstrained spline estimates are quite unstable [64].

On the other hand, a disadvantage of regression spline modelling is that the fit of
the model depends on the number and the position of knots [56]. Finally, smoothing
splines are more flexible locally than regression splines. However, the estimation and
inference in regression spline models are more straightforward than for the smoothing
splines, which require a penalized maximum likelihood estimation [80]. Indeed, once
the number of knots and their position is selected, the regression spline function
becomes a linear combination of known B-spline basis functions, which avoids the
cross-validation process required to select the value of the penalty parameter for

smoothing splines [60].
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3.3 Modelling time-dependent exposure
3.3.1 Time-dependent exposure

Many exposures in epidemiology vary with time, both within and across indi-
viduals, whether in terms of duration of exposure, pattern of changes in exposure
intensity over time, or time of exposure initiation [19]. For example, Bartlett et
al. assessed the 5-year patterns of use of benzodiazepine in the elderly in Québec,
and observed a large individual variability in the number of periods of uninterrupted
use, the average duration of uninterrupted use, the average duration of interruptions
between periods of use, and of the patterns of change in dose over time [2]. Indeed,
time-related factors, if modelled appropriately, may provide insights regarding the
etiology and mechanisms of health-related outcomes [19].

In addition, in some settings, ignoring the time-varying aspect of an exposure
may create bias in its association with an outcome, which may be as severe as
reversing the association [3, 7, 8, 9]. An example of this is immortal time bias in
cohort studies in which subjects intiate their exposure at different times during the
follow-up [81]. If a fixed-in-time binary indicator is used to classify subjects into
exposed /unexposed groups, irrespective of when they started their exposure, the
individual person-times of exposure will not be accounted for properly [9]. Specifically,
the period of time between the beginning of follow-up and the beginning of exposure
will be wrongly classified as time exposed, and the lack of events during this time
period will be unduly attributed to the effect of the exposure on the time to event
[9, 7, 8]. If this is not taken into account in the analysis, then the survival time of
exposed will be artificially large, which may create a spurious protective effect of the
exposure [9].

The use of time-dependent (TD) variables, for which the status or the intensity

of the exposure is updated at each time t, may prevent such biases [8, 16]. In many
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cases, however, the time-dependent variables used is restricted to a binary indicator
of the status of exposure, which may cause loss of power and residual confounding
[82]. Moreover, when included in a model, TD variables such as the intensity of
exposure, x(t), or an indicator of the state of exposure, 1[x(t)], assume that the
effect of exposure does not accumulate over time. Alternatively, measures like the
cumulative intensity [’ x(t)dt or the cumulative duration of exposure Y g 1[X(¢)]dt
assume that exposures cumulate over time, at a constant rate. Equivalently, using
these cumulative measures in a model implies that the timing of exposures that
occurred in the past is irrelevant to how the current cumulative exposure affects the
current response variable.

Several methods have been proposed to model multiple features of time-varying
exposures such as duration, intensity and potential cumulative effects [12, 83]. |
first present the so called sliding time window methods, and exploratory method to
investigate the potential cumulative effects of time-varying exposures [83]. | then
discuss two exposure metrics that were proposed to represent exposures that are
both intensity and time-varying [12].

3.3.2 Sliding time window method

Hauptmann et al. proposed an exploratory method to investigate the potential
cumulative effects of a time-varying exposure x(t) on an outcome y in a case-study
[83]. The method consist in estimating a series of models of the form

logit[Pr(y; = 1|x(t), t € [0, T])] = Bo + B /OTx(t)dt+f)’2 /i:ix(t)dt. (3.44)

2

The two variables in (3.44) are cumulative variables that sum exposures over different
time windows. The first variable sums exposures over a time windows corresponding
to the study follow-up [0, T}, while the second cumulative variable sums exposures

over a shorter time window, centered at ¢ and of width k. A series of models are
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estimated, each of which corresponding to a different time window ¢ & g for the
second variable. As a result, the time window covered by different models covers
different sections of the follow-up time, hence the name of sliding window method.

The fit of the models with different boundaries ¢ &+ g are compared using sta-
tistical criteria to obtain insight on the effect of exposure on the risk at different
periods of time. For simplicity, equation (3.44) only includes the variables represent-
ing the time-dependent exposure of interest, but covariates may easily be added to
the model. Simulations show that the method is rather robust to random measure-
ment error in the pattern of exposure [83]. The principal drawback with this method
is that it assumes that exposures cumulate over time, at a constant rate.
3.3.3 Weighted cumulative dose metric

To alleviate this assumption of exposures cumulating at a constant rate, several
authors have proposed a more general cumulative exposure metric that takes the
timing of the exposures into account. Indeed, in separate publications, Breslow,
Vacek and Thomas discuss the concept of a time weighted cumulative exposure
z(u):

u
z(u) = /0 x(t)w(u — t)dt, (3.45)

where x(u)du represents the additional exposure received during a time interval
[u, u+ du] and w(u — t) is a function that assigns weights to exposure in the past
[18, 19, 12]. If exposure is measured at discrete time intervals, such as days or

weeks, then the WCE can be expressed as:

u

z(u) =Y wlu—t)x(t) (3.46)

This metric is flexible in the sense that it allows the user to specify how exposures

accumulate over time thought the choice of the weight function w. In its simplest
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case, where w(u—t) = 1, (3.46) is equivalent to the unweighted cumulative intensity
discussed earlier.

The exposure metrics in (3.46) require the user to define the form of the weight
function w. The weight function w can be selected a priori based on specific patho-
physiologic models, that is, parametric models that are derived from theory. Exam-
ples of weight functions are the exponential weight function w(u) = 1 —exp(—Au)/u
used by Berry et al. to model how asbestos fiber is eliminated from the lung at rate
X [84]. Lundin et al. used a lognormal distribution to weight cumulative exposure
to radiation in uranium miners [85]. However, the validity of such analysis depends
greatly on that of the underlying biologic models [86].

Alternatively, several different parametric form of w may be estimated in a model
and compared with a statistical criterion that indicates the model with the best fit.
For example, Vacek used a set of weight functions in her analysis of the relationship
between exposure to asbestos and lung cancer in Canadian asbestos workers [12].
She tested four time weight functions: a lagged weight function where exposure
previous to time C has no effect on the risk of outcome, but exposures at times after
C have all equal weights, an exponential function, a Gaussian cumulative distribution,
and a Gaussian density function [12]. Since all the models considered had the same
number of parameters to estimate, they were compared using the deviance statistics.
In the same spirit, In their analysis of the association between time-dependent use and
dose of specific benzodiazepines and fall-related injuries in the elderly, Abrahamowicz

et al. [14] used two half-Gauss curve functions:

w(u) = exp {;—;-uz] : (3.47)

with o selected a-priori to reflect either the 4-day half-life of benzodiazepine, w(4) =

0.5, or the clinical recommendation that benzodiazepine consecutive use should not
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exceed 30 days, w(30) = 0.5 [14]. Modéls of different dimensions were compared
using the AIC criterion [14].

A limitation of these approaches is that they require a priori selection of weight
functions. Yet, the correct analytical form of the weight function is seldom known,
while incorrect specification of the parametric form of the exposure metric may lead
to invalid results {20, 12].

The third approach to select a functional form for the weight function w con-
sists in estimating the functional form of the weight function from the data, using
flexible non- or quasi- parametric methods. Hauptmann et al. suggested estimating
the weight function using constrained regression splines within a generalized linear
model, which required a constrained maximization algorithm to jointly estimate the

regression parameters and the coefficients of the spline basis [11].
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3.4 Benzodiazepines and fall-related injuries

This section of the literature review focuses on the epidemiological studies on
the association between the use of benzodiazepines and fall-related injuries. The
pharmacology and pharmacokinetics of benzodiazepines are briefly presented. The
methodology and results of studies on the association between benzodiazepines and
fall-related injuries are then summarized and discussed.

3.4.1 Pharmacology and pharmacokinetics of benzodiazepines

Benzodiazepines are drugs that inhibit or depress the central nervous system
(CNS) via its major neurotransmitter, the GABA receptors («y amino butyric acid)[87].
Benzodiazepines are prescribed to decrease the symptoms of anxiety or panic disor-
ders, to treat insomnia, and to manage seizure disorders [88, 87]. However, benzo-
diazepines may cause adverse effects, mostly CNS-related, such as ataxia, dizziness,
lightheadedness, drowsiness, weakness, and fatigue [87].

Currently, more than a dozen of different benzodiazepines are available for pre-
scriptions [89]. Table 3—1 lists the benzodiazepines that are available in Canada [87].
The decision of which benzodiazepine to prescribe for a specific condition depends
mainly on the pharmacokinetic profiles of the different products. Pharmacokinetics
describes the way the body affects the action of the medication over time and in-
cludes properties such as the absorption, distribution, metabolism and excretion of
a drug [87, 90].

All the benzodiazepines have a similar short absorption rate, which implies that
the onset of the clinical effect of benzodiazepine is generally quick (0.5 to 4 hours
after ingestion) [88]. However, once they are absorbed, different benzodiazepines will
have different duration of action. The duration of action of a single dose depends
on how the drug circulates in the body and penetrates tissues to act and on its rate

of elimination [88]. As shown in Table 3-1, benzodiazepines can be classified in
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Table 3—1: Selected benzodiazepines with their main indication and half-lives [87]

Generic Brand name Anxiety Panic Insomnia Seizure Half-life
(hours)
Long half-life
Chlordiazepoxide Librax X 100
Clorazepate Tranxene X X X 100
Diazepam Valium X X 100
Flurazepam Dalmane X 100
Medium half-life
Clonazepam Rivotril X 20-80
Nitrazepam Mogadon X X 16-55
Alprazolam Xanax X X 12-15
Clobazam Frisium X 10-46
Temazepam Restoril X 10-20
Lorazepam Ativan X X 10-20
Bromazepam Lectopam X 8-30
Oxazepam Serax X 5-15
Short half-life
Triazolam Halcion X 1.5-5

short (1-5 hours), medium (6-90 hours), and long (> 90 hours) half-life categories
[87, 91]. Half-life is defined as the time required for the concentration of the drug
in the blood to decrease to half of its initial value. In fact, the accumulation rate
varies inversely with the half-life, with shorter half-life benzodiazepines accumulating
more rapidly then long half-life [88] products. For example, although diazepam has
a long half life (100 hours) it has a rapid distribution from blood into fatty tissues,
which implies that a single-dose effect will be short [92]. Lorazepam, on the other
hand, has a shorter elimination half-life of about 15 hours, but its distribution from
blood into fatty tissues is less rapid, and so an effective concentration may persist in
the blood for many hours [92].

In the case of a therapy in which consecutive doses of benzodiazepines are taken,
the drug will accumulate in the body until it reaches a steady-state plasma level [88].
[t usually takes the equivalent to 4-5 half-life periods after the treatment initiation for

benzodiazepines to accumulate to a steady-state level [88, 87]. However, the extent

37



or the amount of accumulation will depend on drug dosage and on the half-life of
each benzodiazepines [88, 87].

There may be important variability in clinical effects of benzodiazepines because
pharmacokinetics properties vary from an individual to another [88]. In addition,
the clinical effects of a benzodiazepine do not necessarily vary in proportion to blood
concentration of the drug when multiple doses are taken [88]. Tolerance may balance
out drug accumulation in the blood. It should also be noted that pharmacokinetics
are likely to be altered in the elderly because of the changes in organ function that
occur with the aging process [93]. With increasing age, the liver size, and thus its
activity, are decreased, delaying the extraction of drugs [93, 87]. As a result, the
prolonged effects produced by long-term use of benzodiazepines may be stronger in
the elderly than in younger users. In addition, by age 60, there is an exponential
decline in the ability of the kidney to excrete toxic substances, which puts the elderly
users at a higher risk of drug adverse events [93].

3.4.2 Summary of the methods and results of epidemiological studies of the
association between benzodiazepine use and risk of fall-related injuries
in the elderly

Benzodiazepine use is common in the elderly, with annual prevalence estimates
ranging from 10% to 30% [94, 95, 96, 97, 98]. Reported use of benzodiazepines
show important variation within and across individuals [99, 100, 2]. Elderly users also
tend to use benzodiazepines more than once and for longer periods [99, 100, 2]. In a
large cohort of new elderly users of benzodiazepines followed for up to five years, the
average duration of an uninterrupted period of use of benzodiazepines was 75.5 days
(SD 137.2), which is significantly longer than the recommended maximum of 30 days
[2, 101]. Elderly users had, on average, three uninterrupted periods of benzodiazepine

use (median of 2 periods, SD 3.3 periods) during the 5 years of follow-up {2]. In
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addition, the likelihood of receiving a higher dose of benzodiazepine in a subsequent
prescription increased with age [2].

Benzodiazepine use started to be linked to fall-related injuries in the late eighties,
in studies assessing predictors of falls in the elderly [102, 103, 104, 103]. Over
the last 20 years, two dozens observational studies were published on the topic
(randomized control trials cannot be conducted for obvious ethical reasons). The
review presented in this section is based on the 22 observational studies that reported
adjusted measures of association of the association between benzodiazepine use and
fall-related injuries in the elderly.

Early studies focused on the association between the current use of any benzodi-
azepine and the risk of falls or fractures. Current users were defined as having taken
a dose of benzodiazepine or having a prescription of benzodiazepine when the fall
occurred or at the index date. Table 3-2, at the end of this section, summarizes the
design, sample size, measures of benzodiazepine use, outcome measures and results
of theses studies. Many of these studies reported a statistically significant increase in
risk of fall-related injuries in benzodiazepine users compared with non-users, with OR
ranging from 1.34 to 2.05, irrespective of the type of outcome selected (fall® , hip
fracture or femur fracture). However, an appreciable proportion of studies did not
find any association between benzodiazepine use and the risk of falls in the elderly.

Several factors need to be considered in explaining the discrepancy in the early
study results. First, the quality of assessment of exposure may have had an effect
on the observed results. Studies either used questionnaires or prescription databases

to assess the current use of benzodiazepine. Questionnaires are prone to recall bias,

5 Fall was defined as an unintentional change in position resulting in coming to
rest on the ground or other lower level.
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which occurs when respondants incorrectly recall and assess their histories of drug
use [105]. The degree of recall bias may be influenced by the frequency and duration
of the drug use, the time since the last prescription was filled, the number of drugs
used, the age, and the type of questions [106, 105]. While exposure assessed from
medical or prescription records is not affected by patients recall, it may still be biased.
Indeed, prescriptions records provide information on the dispension of the drug but
not on the actual consumption of the medication [107]. These biases lead to expo-
sure misclassification and induce bias [105]. In both cases if the misclassification in
exposure is random, i.e. not related to the risk of fall-related injuries, then the mea-
sure of association will be biased towards the null [108]. Otherwise, the magnitude
and sign of the bias will depend on the underlying mechanism. However, there were
not systematic differences between the results of studies that used questionnaires
versus prescription records to assess exposure to benzodiazepines, suggesting that
the method of assessment, in and of itself, could not have explained the discrepancy
in the results.

The second factor that needs to be considered is the number of falls assessed in
each of the studies. A lack of statistical power can prevent a study from detecting
a statistically significant association that is present in the data. However, this is
not sufficient to explain why some studies did not detect an effect. In the studies
summarized in Table 3-2, however, there were both small scale studies that detected
an association [109, 104}, and large scale studies that did not [110, 111].

Finally, it is possible that the assumptions underlying the choice of the measure
of exposure that some of these studies used were not appropriate. Using a current
use indicator of benzodiazepine makes three underlying assumptions about the effect
of benzodiazepines. First, by combining all the benzodiazepines in one measure

of exposure, one assumes that all the benzodiazepines have the same physiological
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effect, irrespective of the differences in their pharmacokinetics properties such as their
half-life. The studies considered in Table 3-2 did not investigate the same groups of
benzodiazepines, which might have influenced the results if different benzodiazepines
have different effects on the risk of falls.

Moreover, modelling exposure using a binary indicator of current use ignores the
potential effect of the dose of the benzodiazepine on the risk of fall. If there is a
dose-response relationship in the association between benzodiazepine use and fall-
related injuries, then ignoring it by using an indicator of current can be seen as an
extreme case of dichotomizing a continuous variable at the cutpoint of zero. Doing
so leads to a decrease in precision and efficiency of the estimation in comparison to
a parametrization in the continuous scale [112]. Simulations have shown that the
loss in efficiency due to dichotomizing a continuous variable may be large [113, 112].
This may be a severe problem in studies that have low power [17].

In fact, modelling benzodiazepine use with a current use indicator ignores the
history of prior use of benzodiazepine. Consequently, this approach assumes that
there is no cumulative effect of using benzodiazepine over time, thus that the risk
of fall associated with the exposure to benzodiazepine is acute or instantaneous.
As discussed earlier, some benzodiazepines accumulate in the body [88], which can
potentially lead to a cumulating effect. If it is the case, using an indicator of current
use will bias the results because the current users category will combine both long
term and short term users of the drug, whose risk of fall may be very different.

Later studies attempted to address each of these modelling pitfalls, although
often in a different and separate ways. Several studies grouped the benzodiazepines
in categories based on short versus long half-life (in general, the cutoff of >24 hours
was used to indicate long half-life). These studies are summarized in Table 3-3.

Results were again discrepant. Most studies found a higher risk of falls for users
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of long half-life benzodiazepines, with OR associated with current use ranging from
1.45 to 2.18, [114, 115, 116, 117, 118] but other studies either did not find an effect
even if they had a large sample size [110] or found a larger risk for the use of short
half-life benzodiazepines [119, 120].

Five studies estimated separate effects of individual benzodiazepines, but still,
there is a large difference across studies for the same benzodiazepines [117, 119,
121, 122, 123]. For example, the OR for Lorazepam, varied from 1.2 [123] to 5.5
[117]. When considered separately, the OR for short half-life products did not seem
markedly smaller than that of long half-life benzodiazepines. However, a major issue
with these results is that most of the benzodiazepine-specific analyses relied on a
very small number of events and, thus, had very wide confidence interval. The study
of Tamblyn et al. was the only study with large number of cases for most individual
benzodiazepines and it reported some variations in ORs associated with current use
of specific benzodiazepines [123].

A few studies investigated the effects of dose of benzodiazepine use on the risk of
fall-related injuries by converting the dose into defined daily dose (DDD) equivalents
[124, 110, 119, 118]. The defined daily dose (DDD) is a comparative unit of drug
use, which is robust across therapeutic classifications, dosing forms, and populations
[125]. These studies are summarized in Table 3-5. All but one of theses studies
grouped the benzodiazepines together and found a dose-response pattern with higher
dose associated with higher risk of falls [124, 110, 119]. However, it is unclear to
what extent these results may be due to the differences in the effects of individual
benzodiazepines.

A small number of studies assessed the impact of the timing of the benzodi-
azepine exposure on the risk of falls by categorizing subjects depending on when they

used the drug and are summarized in Table 3-6. Ray and Neutel both found that
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the likelihood of a fall was higher in the 1-2 weeks following treatment initiation than
it was afterward [124, 121]. Neutel found an association between the duration of
treatment and the risk of fall [121].

Tamblyn et al. estimated several benzodiazepine-specific Cox PH models that
represented both the [123] current doses and past use of the drugs as time-dependent
variables. Model 1 estimated the effects of current use of benzodiazepines. In ad-
dition to the current use indicators of Model 1, Model 2 included benzodiazepine-
specific indicators of past use so that hazard ratio for current use represented the risk
associated with periods of use compared with periods of non-use in persons previ-
ously prescribed the same benzodiazepine. Model 3 expanded Model 1 by including a
standardized dosage so that HR for the indicator of current use represented the risk
associated with the current use at a common mean dose, relative to non-use, assum-
ing a common dose-response relationship for all benzodiazepines [123]. Finally, Model
4 estimated separate dose-risk relationships for each individual benzodiazepines. Out
of the ten benzodiazepines considered, four had a statistically significant association
with the risk of falls, a result that was robust across models 1 to 4 [123] . Two of
these benzodiazepines had short half-life, suggesting that short versus long half-life
was not an important factor in assessing the risk of fall associated with the use of
a specific benzodiazepines. While Tamblyn et al. modeled the separate effects of
current dose and of the past use of benzodiazepines, they did not investigate possible
cumulative effects of exposure [123].

Finally, Abrahamowicz et al. used the weighted cumulative exposure framework
(discussed in section 3.3.3 of the literature review) to reassess the associations be-
tween exposure to three benzodiazepines and fall-related injuries in the elderly within

the Cox proportional hazards model [14]. Exposure to three different benzodiazepine
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were modeled using a TD weighted cumulative exposure defined as:

u

z(u) = Z w(u — t)x(t) (3.48)

t=1
where x(t) represents the dose of benzodiazepine taken on day t and w(u — t)is a
function that assigns weights to exposure in the past. The parametric form of the

weight functions was defined a priori as:

w(u) = exp(;—;u2). (3.49)

Two versions of model 3.49 were considered with o selected a priori to reflect either
the 4-day half-life of benzodiazepine (w(4) = 0.5) or the clinical recommendation
that benzodiazepine consecutive use should not exceed 30 days (w(30) = 0.5) [14].
Additional models, with exposure represented as (i) the weighted cumulative duration
of treatment, which ignored the dose, and (ii) the current dose in addition to the
the weighted cumulative duration of treatment, were considered and their fit was
compared using the AIC criterion.

The results suggested a different mechanism linking the drug exposure and the
risk of falls for each of the three benzodiazepines considered. For Temazapam,
which had the shortest half-life (8-24 hours), the best-fitting model represented
exposure using the current dose and the weighted cumulative duration with w(30) =
0.5. For Flurzepam, which was the benzodiazepine with the longest half-life (40-
100 hours), the best model was the weighted cumulative dose with w(4) = 0.5.
Finally, the third benzodiazepine considered, Nitrazepam (half-life of 20-40 hours),
was better represented with the cumulative dose with w(30) = 0.5. Interestingly,
for the three benzodiazepine considered, models that only included current use or
current dose did not detect a statistically significant association with the risk of falls,

which would suggest that the recent use of benzodiazepine is not relevant in the
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current risk of falls. However, one limitation of this study, recognized by the authors,
related to the a priori selection of parametric form of the weight function [14]. This
a priori restriction does not allow an assessment of the validity of the modelling
assumption that the impact of benzodiazepine exposure decreases monotonically
with time since exposure. Moreover, incorrect specification of the parametric form
of the exposure metric may lead to biased results, decreased power and/or incorrect
etiologic conclusions [12, 20].

In conclusion, the studies reviewed clearly suggest an association between at
least some benzodiazepines and fall-related injuries. However, it is still unclear
whether this association is present for each benzodiazepine, and whether there is
a systematic difference between products with short versus long half-lives. While
studies suggest a dose-response relationship between current dose of benzodiazepine
and the risk of fall, other suggest an effect of the duration of treatment or past
exposure to benzodiazepines. Therefore, both dose and timing of use must be taken
into account in the estimation of the risk of fall related to the use of benzodiazepines,

and the possibility of a cumulative effect must be evaluated.
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CHAPTER 4
Objectives of the thesis

The primary objective of the present thesis is to develop and evaluate a flexible
method for modelling cumulative effects of time-varying exposures, weighted by re-
cency, represented by time-dependent covariates in the Cox proportional hazards
model.

Secondary objectives include: (i) developing an algorithm to generate event
times conditional on complex time-dependent and intensity-varying exposures to val-
idate the method described in the primary objective; and (ii) applying the method
developed in the primary objective to re-asses the association between selected ben-

zodiazepines and fall-related injuries in the elderly.
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CHAPTER 5
Manuscript 1: Comparison of algorithms to generate event times conditional
on time-dependent covariates

5.1 Preamble

This article addresses the specific question of generating time-to-event data
conditional on time-dependent covariates. This issue is essential for the simulations
that are presented in the manuscript 2, where the performance of the proposed
weighted cumulative exposure method was investigated and validated. The design
of the simulation studies presented in manuscript 2 comprised many scenarios, each
requiring the estimation of several models. As a result, | needed a data-generating
algorithm that was fast, yet precise and stable.

In this article, | first review the two classes of algorithms available in the litera-
ture, which could be used for generating event times conditional on time-dependent
covariates, (i) the permutational algorithm, and (ii) algorithms based on a binomial
model. | then proposed a modification of the permutational algorithm to incorporate
a rejection sampler, which was expected to enhance the efficiency of data genera-
tion. Finally, | designed and carried out simulations which compared the accuracy,
stability, flexibility and computational speed of the alternative algorithms.

Based on the results of this article, | used the permutational algorithm to gen-
erate the data required for the simulation reported in manuscript 2, which addressed
the main objective of this thesis.

This article was accepted for publication in Statistics in Medicine in August 2007
(DOI110.1002/sim.3092) and is available electronically at http://www3.interscience.

wiley.com/cgi-bin/abstract/116327580. The letter of acceptance is included
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in Appendix A, while the permission from the publisher to reproduce the manuscript
is in Appendix B.

The publications cited in Manuscript 1 are listed in the general reference section
at the end of the thesis. The R code for the permutational algorithm with and

without the rejection sampler can be found in Appendix A.
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Manuscript 1: Comparison of algorithms to generate
event times conditional on time-dependent covariates

Marie-Pierre Sylvestre! and Michal Abrahamowicz!

!Department of Epidemiology, Biostatistics, and Occupational Health, McGill Uni-

versity, 1020 Pine Avenue West, Montréal, Québec, Canada, H3A 1A2

This article was published in Statistics in Medicine and cannot be reproduced in
the copy of the thesis that is printed for the Library of Canada. The pages correspond-
ing to manuscript 1 (pages 58 to 85), have been omitted from the current copy. The
complete article has been e-published ahead of print and can be found on the website
of the publisher http://ca.wiley.com/WileyCDA/WileyTitle/productCd-SIM.
html using the DOI 10.1002/sim.3092. Please refer to Appendix E for more details

about the copyrights.
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CHAPTER 6
Manuscript 2: Flexible modelling of the cumulative effects of time-dependent
exposures on the hazard

6.1 Preamble

This article addresses the primary objective of the thesis, which is to develop and
evaluate a flexible method for modelling cumulative effects of time-varying exposures,
weighted by recency, on event times analyzed in prospective studies.

| propose a new method for estimating the weighted cumulative exposure metric
and model it as a time-dependent covariates in the Cox proportional hazards model.
The function that assigns different weights to past exposures is modeled using cubic
B-splines because they provide smooth estimates that are flexible enough to represent
a variety of clinically plausible shapes, and can easily be computed by any statistical
package. The choice of the number of knots and their location is discussed. Several
alternative spline models of different complexity are considered and the BIC criterion
is used to select the best-fitting model. | estimated both models that constrained
the weight function to decrease smoothly to zero after some pre-specified time in-
tervals and others that did not impose any constraint on the shape of the estimated
function. Pointwise confidence intervals around the estimated weight functions are
obtained using a non-parametric bootstrap re-sampling routine that accounts for
both the sampling variation of the regression coefficients, and the uncertainty at the
model selection stage. A LRT-based procedure is proposed to test the two relevant
null hypothesis of (a) no association, and (b) equal (constant) weights of all past
exposures. | discuss how to estimate the hazard ratios for the WCE corresponding

to specific patterns of exposure.
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Simulations are used to validate the proposed method. To this end, | rely on
the novel algorithm for generating event times conditional on time-dependent co-
variates, which has been developed and validated in Manuscript 1. In the manuscript
3, the method is applied to re-assess the associations between the use of several
benzodiazepines and fall-related injuries in the elderly.

The publications cited in Manuscript 2 are listed in the general reference section

at the end of the thesis. Additional material is provided at the end of the chapter.
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Manuscript 2: Flexible modelling of the cumulative ef-
fects of time-dependent exposures on the hazard

Marie-Pierre Sylvestre! and Michal Abrahamowicz?

1Department of Epidemiology, Biostatistics, and Occupational Health, McGill Uni-

versity, 1020 Pine Avenue West, Montréal, Québec, Canada, H3A 1A2
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Abstract
Many epidemiological studies assess the effects of time-dependent expo-
sures, where both the exposure status and its intensity vary over time.
One example that abundantly attracts public attention concerns phar-
macoepidemiological studies of the adverse effects of medications. The
analysis of such studies poses challenges for modelling the impact of com-
plex time-dependent drug exposure, especially given the uncertainty about
the way effects cumulate over time and about the etiological relevance
of doses taken in different time periods. We present a flexible method for
modelling cumulative effects of time-varying exposures, weighted by re-
cency, represented by time-dependent covariates in the Cox proportional
hazards model. The function that assigns weights to doses taken in the
past is estimated using cubic regression splines. We validate the method

with a simulation study.

KEYWORDS: Proportional hazards model; regression splines; simulations; survival

analysis; time-dependent covariates; pharmacoepidemiology
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6.2 Introduction

The aim of many epidemiological studies is to assess the effects of time-dependent
exposures, where both the exposure status and its intensity vary over time. Ade-
quately modelling such complex time-dependent exposures poses a particular chal-
lenge, especially given the uncertainty about whether and how exposure effects cu-
mulate over time and about the etiological relevance of doses taken in different time
periods [10, 12, 11].

Ignoring the complex time-varying nature of exposure, or restricting its modelling
to a subset of its components, such as current dose or duration of exposure, may
miss more complex forms of association between exposure and outcome, or lead to
etiologically incorrect conclusions [144]. A slightly more comprehensive measure of
exposure is the cumulative exposure, calculated as un-weighted sum of past exposures
[152, 153, 154}, assumes that all the exposures in the past had the same impact on
the current risk, which may be debatable in many instances.

Both Breslow and Thomas have discussed the general framework of weighted
cumulative exposure (WCE), that combine information about duration, intensity and
timing of exposure into a summary measure [18, 19]. In this framework, the WCE
at time v is formed by assigning weights to past exposures up to time u and then
summing up over time. Consider x(t), the instantaneous intensity of exposure at
time t. Let w(u — t) be a function that assigns weights to exposures in the past,
based on their impact on the risk of event occurring after the time interval v — t. If

exposure is measured at discrete time intervals, then the WCE can be expressed as:

u

z(u) = w(u— t)x(t) (6.1)

Vacek proposed parametric modelling of the weight function in case-control

studies, where u was fixed at the index date and a single value of the WCE for
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each subject was incorporated in a conditional logistic regression model [12]. Four
alternative parametric forms for the weight function were selected a priori and the
fit of the resulting models were compared to select the specification most consistent
with the data [12]. In the analysis of a case-control study of the impact of smoking
on lung cancer, Hauptmann et al. used the WCE framework to summarize the
individual smoking histories up to the date of cancer diagnosis for cases or index time
for controls [11]. They estimated the weight function using constrained regression
splines within a generalized linear model, which required a constrained maximization
algorithm to jointly estimate the regression parameters and the coefficients of the
spline basis.

Abrahamowicz et al. used the parametric WCE framework within the Cox pro-
portional hazards model to refine the assessment of the associations between ex-
posure to three benzodiazepines and fall-related injuries in the elderly [14]. The
parametric form of the weight function was a priori selected to reflect assumptions
about the pharmacokinetics properties of benzodiazepines and had two alternative
parameter values to represent different windows of clinically relevant exposure. The
weighted cumulative exposure models provided better fit to the data then models
that represented exposure using time-dependent variables for current dose or cur-
rent duration. In addition, the best-fitting WCE model was different for each of the
three benzodiazepines, possibly reflecting the differences in their elimination half-life
and/or withdrawal effects [14, 101].

However, modelling strategies that require selecting the parametric form of the
weight function in the absence of any prior knowledge about its shape may lead to
invalid results if the function is incorrectly specified [12, 86, 20]. An alternative
approach consists in estimating the functional form of the weight function from the

data, using flexible non- or quasi- parametric methods [11]. In the current article,
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we propose the regression spline based method for modelling the WCE as a time-
dependent covariate in the Cox PH model. This involves calculating the WCE at
each time t of the follow-up, in contrast to computing its value only once at the
end of follow-up, as it is done in the case-control framework [11, 12]. We propose a
parametrization of the WCE in the Cox proportional hazards (PH) model that does
not require constrained optimization, so that it can be readily estimated using most
statistical software packages.

Section 6.3 discusses the estimation of our model, the pointwise confidence
bands for the weight function, and hypothesis-testing procedures. Section 6.4 presents
the design and results of the simulations, which evaluated the performance of our
method. We finish with concluding remarks in Section 6.6.

6.3 Methods
6.3.1 Cox model with time-dependent weighted cumulative exposure

Consider a cohort in which individual exposure X;(t) varies over time. At any

time u during the follow-up, we represent the joint effect of the past exposures by

the weighted cumulative exposure (WCE) metric

u

WCE(u) = _ w(u—t)X(1), (6.2)

t=1
where t indexes times of exposure preceding u, and w(u—t) is the function assigning
weights to past exposures based on time elapsed since the exposure occurred. The
WCE is then modeled as a time-dependent covariate in the Cox proportional hazards

model [30]:

u

HOIX(0) 2(0) = hw) o[y Y wlu - X0+ YBZ)|. (63)

t=1
where X (u) represents the time-vector of the past exposure for 0 < t < u and each

Z(u) is a vector of fixed-in-time or time-dependent covariates.



We propose to estimate the weight function w(u — t) using cubic regression
-B-splines [74]:
wu—1t) =Y 6;Bj(u—t), (6.4)
j=1

where B;, j = 1,..., m, represent the m functions in the cubic spline basis and 6;,
j = 1,...,m, represent the estimable coefficients of the linear combination of the
basis splines.

Conceptually, w(u — t) in (6.3) estimates the shape of the weight function,
and -y estimates the magnitude of the effect of cumulative exposure on the hazard.
However, both 7y in (6.3) and 6;, in (6.4) reflect the strength of the association
between the exposure and the risk. Therefore, to avoid identifiability problem when

jointly estimating the parameters <y and 6;, we define:

a; = 6;7. (6.5)

Furthermore, estimation of model in (6.3) is largely facilitated by introducing artificial

time-dependent covariates [49]:

u

Di(u)=> Bi(u—t)X(t),j=1,...,m. (6.6)

t=1
Given (6.5) and (6.6), the model in (6.3) is redefined into a familiar form of the PH
regression model with time-dependent covariates D;(u):
m q
h(ulX(t), Z)(u) = ho(u) exp [Z a; D(u) + ZBSZS(U)} (6.7)
j=1 s=11
Once the m artificial time-dependent covariates D;(u) are calculated, any stan-
dard statistical software for Cox regression with time-dependent covariates can be

used to estimate the parameters of the model (6.7).
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It should be noted that since 7y is absorbed in the a vector, the magnitude of
the effect of cumulative exposure on the risk of an event cannot be summarized by
a single parameter. However, measures of relative risks, such as hazard ratios (HR),
may easily be calculated from model (6.7) by comparing the risk of event evaluated
for two different histories of exposure, keeping other variables constant:

m u

HR = exp {Z &; > Bj(u—1)[Xo(t) — Xy(t)] (6.8)

j=1 t=1
where B;(u — t) is the spline basis, &, are parameters estimated from model (6.7),
while Xg(t) and X;(t) represent the two exposure histories to compare. Depending
on the selected exposure histories, one can estimate the HR resulting from, for
example, (i) changing the dose, (ii) changing the duration and timing of exposure,
or (iii) any combination of (i) and (ii). Corresponding 95% confidence interval may
be obtained via bootstrap, as described in Section 6.3.4.
6.3.2 Choice of the cubic regression spline basis

We estimate the weight function in (6.4) using cubic regression splines because
they provide smooth estimates with continuous first two derivatives, that are flexible
enough to represent a variety of clinically plausible shapes [76], and can easily be
computed by any statistical package [155]. The number of knots determines the
flexibility of the estimated spline function and the model’'s degrees of freedom. A
cubic B-spline basis with m — 4 interior knots consists of m curves, whose linear
combination provides the estimated spline function. In general, not more than five
knots are enough to model a smooth uni- or bi-modal curve while reducing the risk
of major over-fitting bias [51]. In addition, the tail of a spline function can be
constrained to go smoothly to zero by setting the first (or last) two coefficients of

the linear combination of the spline basis to zero.
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Regression splines have a finite support interval, which has to be defined by the
user [60]. In our framework, the support interval corresponds to the time window
[u— a, u] of exposures that are considered potentially etiologically relevant at time u.
Outside of this interval, i.e. for t < u — a, the exposures are a priori believed to be
too remote in time to influence the risk of an outcome at time v so that w(u —t) is
a priori set to O for t < u — a. Therefore, the weight function in (6.4) is estimated
over the limited interval {0, a] only. Accordingly, we place three exterior knots at O
and three others at a. In the absence of prior knowledge about the potential shape
of the weight function, we place the interior knots at equal distances within the time
window [0, a].

In many, but not all applications, it may be a priori evident that very early expo-
sures that occurred near the beginning of the etiologically relevant window have no
impact on the current risk. Therefore, in addition to the unconstrained weight func-
tion models, in which the coefficients c; for all m artificial time-dependent variables
in (6.6) are estimated, we also considered constrained models in which the coeffi-
cients of the last two artificial time-dependent variables in (6.6), a,—1 and o, are
set to zero, which results in constraining the weight function, and its first derivative,
toreachQatt=u— a.

We a priori limit the number of the interior knots to be between one and three,
which implies that five to seven spline coefficients had to be estimated in the un-
constrained model, and three to five in the constrained model. We then rely on the
BIC to select the unconstrained and/or constrained model(s) that achieved the best
fit, as determined by the lowest BIC. Following [156], we define the BIC for a given
model as:

BIC = —2In(PL) + pIn(d) (6.9)
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where PL represents the partial likelihood function for the model, while p is the
number of estimable parameters in (6.7), and d corresponds to the number of un-
censored events.

6.3.3 Hpypothesis testing procedures

When significance tests are performed on the results of the model selected by
some data-dependent criteria based on goodness of fit, standard inference procedures
may be invalid because of inflated type | error [157, 158, 159].

The distribution of the test statistics conditional on an a posteriori selected
model and its unconditional distribution may be significantly different {157]. In the
context of our method, it implies that standard inference about the effects of expo-
sure based on the BIC-optimal mode! needs to take into account the uncertainty at
the model selection stage, and the interdependence of tests conditional on alternative
WCE models with different numbers of knots an/or different several time windows
of clinically relevant exposure [u — a, u] [159, 47, 49].

To obtain valid likelihood ratio tests for the association between the WCE rep-
resented by m time-dependent variables D;(u), j =1,...,min (6.7), and the risk of
an event, we propose a simulation-based approach. Our approach is similar to that
employed by Mahmud et al. to correct the significance level a* of the likelihood ratio
tests (LRT) of the effect of a continuous covariate on the hazard for a posteriori
selection of the functional form of the dose-response curve {159]. We first generated
1,000 datasets under the assumption of no association between exposure and out-
come (data generation procedures are discussed in section 6.4), and then selected
the BlIC-optimal WCE model for each simulated sample. We computed a LRT for
the joint effect of the m variables D;(u),

For the i/t simulated sample, we computed the m; — df LRT statistic, where m;

denotes the number of splines coefficients a estimated in the BIC-optimal model for
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this specific sample, and establish the corresponding, un-corrected, p-value. Next,
we construct the empirical distribution of the 1,000 resulting so-called conditional
p-values, across 1,000 samples generated under the null hypothesis. This distribution
will be shifted to the left, i.e. towards lower p-values, relative to the uniform distribu-
tion that would be obtained if a single model was selected a priori [159]. Therefore,
using an un-corrected significance level, e.g. a = 0.05, would lead to inflated type
| error, with the magnitude of inflation increasing as the sampling variation in the
BIC model selected increases [49]. However, the empirical distribution of conditional
p-values directly accounts for such inflation [159]. Therefore, we used the 5! per-
centile of the empirical distribution of the conditional p-values as the significance
level a* in the reported LRT to ensure a type | error rate of 0.05. Indeed, under the
null hypothesis, about 5% of the conditional p-values will be expected to fall below
the new significance level ag.

Because the spline space also includes the constant weight model, we used
a similar procedure to test whether the WCE models provided a better fit to the
data then the conventional unweighted cumulative exposure model [49]. This time,
the corrected critical cutoff value aj was selected to be the 5 percentile of the
empirical distribution of the conditional p-values obtained from samples simulated
while assessing that the true model was the unweighted cumulative dose, i.e. that
all past exposures had the same weight, regardless of their timing.
6.3.4 Pointwise confidence bands for the estimated weight function

To assess the precision of the estimated weight function w(u — t), we relied on
non-parametric bootstrap re-sampling [160]. The bootstrap routine should account
for both (1) the sampling variation of the regression coefficients, and (2) the uncer-
tainty at the model selection stage, i.e. the additional variance due to a posteriori

selection of the number of knots [45, 49]. Accordingly, for each of the B bootstrap
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samples, alternative versions of model (6.7) with 1-3 interior knots are estimated and
the BIC is use to select the best estimate of w(u — t) for a given bootstrap sample.
The percentile method can then be used to compute a 95% pointwise confidence
band, for each w(u — t). Next, for each 0 < t < u, the empirical distribution of the
B point estimates of w(u — t), each corresponding to the BIC-optimal model for a
given bootstrap sample, is constructed.
6.3.5 Software specification

The algorithms for the data generation and for computing the time-dependent
covariates in 6.7 were coded in R version 2.6.1 [65] with the Mersenne-Twister
random number generator [150]. To analyze the simulated data, we used the R
procedure coxph [161]} with Efron method for tie handling. The scripts are available
from the authors.
6.4 Design of simulations and data generation

We validated our model and investigated its properties using simulations. We
simulated a hypothetical prospective cohort study, which aims at assessing the asso-
ciation between exposure to a single drug and time to an event. The cohort consisted
of 500 new users of the drug, and time zero was defined as the first day of the drug
use as in [123]. Individuals could interrupt and resume their treatment repeatedly
thereafter. The follow-up was limited to a year. In the next three sub-sections, we
describe: (i) the generation of a matrix of individual drug use patterns that we kept
fixed across the simulations; (ii) the selection of alternative weight functions and
parameters used in different data-generation scenarios; and (iii) the generation of
adverse event times conditional on the weighted cumulative doses.
6.4.1 Exposure generation

The drug treatment was assume to vary in dose and duration both between

individuals and over time within an individual. The duration of the initial treatment
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for individual /, was defined in multiple of 7 days and was generated from a lognormal

distribution :

187 292
duration; = X [1 + round(/ogN(Iogp, =——,logo = —-—))] (6.10)

2
365 365’ 365
with mean of log(0.5) and standard deviation of 10g(0.8). A subsequent period of
interruption, when the subject was assumed not to be exposed to the drug, was
generated using a similar distribution. Successive periods of use and interruptions
were generated similarly until the end of follow-up was reached (365 days). For
each uninterrupted period of use, the standardized daily dose [123] was assumed
to remain constant across the entire period. The daily dose corresponded to the
time-dependent variable X(t) in Equation (6.3), with X(t) = 0 for all periods of
interruption. Specifically, the dose was generated to be 0.5, 1, 1.5, 2, 2.5, or 3 times
the recommended dose, with each of the six values assigned with equal probability
of 2.
6.4.2 Weight functions

We first considered 6 different scenarios, each corresponding to a different true
weight function that were defined over a [0, 1] interval, corresponding to one year.
The six true weight functions are shown in Figure (6—1). Notice that the time axis in
Figure (6—1) runs backwards, so that u—t = 0 corresponds to the current exposure.
The first two scenarios assumed that weights decreased monotonically as time since
exposure increased. For scenario 1, we used an exponential decay function with
w(u — t) = 777~ while for scenario 2, we used a Bi-linear function w(u — t) =
1-— 5(‘)’/;325 forv—t< % and zero otherwise. Scenarios 3 and 4 corresponded to
functions with a bump within the interval [u, u—180/365] so that the weights increase

until t = 0.2 year and then decrease as time since exposure increases. The /nverted

U function for scenario 3 corresponded to the density function of a N{0.2;0.06]
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distribution, while Early peak function of scenario 4, to the density of a N[0.04; 0.05]
distribution, both left-truncated at t = 0. In comparison with the /nverted U, in the
Early peak scenario, the maximum weight was assigned to more recent doses and
the weights declined more sharply afterward. Scenario 5 corresponded to a Constant
weight function with w(u—t) = zi=, so that the resulting WCE was in fact a standard
un-weighted time-dependent cumulative dose variable over the follow-up period. In
the last scenario (Sc 6), we considered a weight function that intially increased,
reached a plateau at around v — t = 180/365 and then started to decrease to zero
around v — t = 240. This function was labeled Hat and was specifically designed
to investigate the impact of constraining the weight function to go to zero around
u— 180/365 where the true weight function was actually at its maximum value. To
enhance comparability, the weight functions were standardized so that the area under
each six true weight functions summed up to 1 over the interval [u, u — 180/365].

Finally, we investigated type | error by considering the case where there was
no association between weighted cumulative dose and the outcome. In this case,
the event times were generated from the marginal distribution described in the next
section and randomly assigned to individuals independently of their exposure pattern.
6.4.3 Events generation

For each scenario and each subject, / = 1,...,500, we calculated the vector
WCE;(u) of the true value of the time-dependent variable WCE in (6.2), based
on individual patterns of drug exposure and the relevant weight function, for each
day of potential follow-up: v = 0, %S ..., 1. Next, we assumed that the strength
of the exposure impact on the hazard corresponded to vy = In4 in (6.3), i.e. that
an unit increase in WCE corresponded to a 4-fold increase in the hazard (HR=4).

Notice that because the weight function was standardized, an unit increase in WCE

corresponded to, e.g., a difference between (a) an individual prescribed a standard
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dose of 1 for the entire year, and (b) a subject not exposed at any time during the
year.

Finally, we generated event times conditional on the WCE, using the permu-
tational algorithm, specifically developed and validated for simulating event times
conditional on time-dependent covariates and/or effects [29, 162]. The permuta-
tional algorithm involves three major steps: (i) generating individual covariate values
over time; (ii) generating the event times from the pre-specified marginal distribu-
tions, independent of covariates; (iii) matching individual event times with individual
covariate vectors based on pre-specified assumptions about the covariates impact on
hazard [49]. Matching at step (iii) is performed so that probability of a subject, who
remained at risk until time t, with a particular covariate vector x;(t) being matched
with the event at time t is proportional to the subject’s current hazard h(t|x;(t))
[29, 162]. A detailed description of the algorithm and its validation can be found
in [162]. We generated event times assuming their marginal distribution is uniform
U[0, 1] and assumed a 50% rate of right random censoring, resulting in approximately
250 events per simulated sample.

6.4.4 Analysis of the simulated datasets

For each of the 1,000 samples simulated for a given scenario, we estimated

unconstrained and constrained models with 1 to 3 interior knots, and used the BIC

to select the best fitted model. Regardless of the true shape of the weight function,

o 180

. 3¢2] as the window

we assumed that the user would select a six-month interval |

180

sex Tor all spline models

of etiologically relevant exposure. Accordingly, we used a =

estimated in our simulations.
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. We first assessed the accuracy of our estimates of the exposure impact on the
hazard, we simply reconstructed 4 as
a m
=3 a;B(r). (6.11)
7=0 j=1

When generating the data, we used the true weight functions defined so that

/aw(t)dt _ 1 (6.12)
0

This implied that «y used to generate events represented the In(HR) between a
subject exposed at a constant dose X(t) = 1 for the entire window of the relevant
exposure [u — a, u] against an unexposed subject X(t) =0, u—a <t < u. We
then compared the distribution of the estimated <y, across simulated samples, with
the true y by calculating the relative bias "_% and the standard deviation (SD) of
the estimates obtained from (6.11).

Next, we assessed the accuracy of the simulated weight functions. To this end,
we obtained the normalized version of the estimated weight function, which respected

the constraint:
m

Pu-t) =3 %Bj(u _h) (6.13)

j=1

where 4 was calculated from (6.11). We then plotted a random sample of 100
normalized weight functions against the true weight functions to investigate the
ability of the method to recover the shape of the true weight function used to
generate the data.

We also estimated two alternative simpler models in which the exposure was
expressed with a time-dependent variable: (1) current dose, DOSE = X(u) and (2)

cumulative (unweighted) dose CUMDOSE = >~/ _, X(u). The fit of all of these
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models were compared using the BIC. Finally, we performed a likelihood ratio test
(LRT) on each of the models to evaluate type-I error.
6.5 Simulation results

In this section, we report the results of the analysis of 1,000 simulated datasets
for each of the six true weight functions described in Section 6.4.2.
6.5.1 Accuracy of the estimated weight functions

We calculated the normalized estimated weight functions as described in section
6.4.4 from each of the BIC-optimal unconstrained and constrained WCE models and
plotted them against the true weight functions used to generate the data. Figures
6—2 and 6—3 show a random sample of 100 normalized estimated weight functions
obtained from the unconstrained and constrained models, respectively. In each of
the Figures' panels, the true weight function used to generate the data is plotted in
white. In every scenario, except for the Hat and the Constant functions, most of the
estimated weight functions were able to capture the shape of the true weight func-
tions, albeit with some variation in the amplitude of the curves. In the unconstrained
models, the estimation was less satisfactory in the right tail of the plot, especially
in scenarios when the exposures that occurred relatively long ago had httle impact
on the risk. Instability at the tails of the estimated function is a known feature of
B-splines [56]. As Figures 6—2 and 6—3 show, constraining the weight functions to

smoothly go to zero at the end of the exposure time window considerably reduced

180

the variation of the estimates, even if the window [0, 3¢

] was selected a priori and
was often much longer than the time window of relevant exposures (with non-zero
impact).

6.5.2 Model selection

For each scenario, we used the BIC to select the overall best model among the

unconstrained and unconstrained spline-based WCE models, and the two alternative
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models with time-dependent exposure (current dose and cumulative dose), as de-
scribed in section 6.4.4. Table 6—-1 shows the number of times, out of 1,000, that
each of the models was selected as the best model by scenario. Table 6-2 shows
similar results, stratified by WCE versus alternative models. Table 6-2 also shows, in
parenthesis, the proportion of simulated samples that found a statistically significant
association between the exposure and the outcome using the likelihood ratio test
with the corrected critical cutoff value ag = 0.039.

For scenarios 1-4, corresponding to the weight functions that decreased to zero
near u — t = 180/365, the constrained WCE models had the best fit in more than
90% of the simulated data sets. The number of knots selected for these models
depended on the curvature of the weight function. For monotone functions like
the Bi-linear and the Exponential functions, the BIC selected models with 1 interior
knot in more than 90% of the samples (Table 6-1). This reflected the fact that for
monotone functions, the additional flexibility provided by adding extra knots did not
improve the fit enough to compensate for the penalty due to increasing the model
dimension.

Models with 2 knots were selected more frequently for the two weight functions
that had a bump within the support interval [u—180/365, u], namely the Early peak,
and the Inverted U (Table 6-1). This reflected the need for a greater flexibility in
modelling functions that had a local extremum and one or two inflexion points within
the support interval. Constrained models with two knots were selected as the best fit
models in more than half of the simulated samples for the Inverted U scenario, while
in the case of the Early peak weight function, more than two thirds of the models
with the lowest BIC were the constrained models with 1 knot. The Early peak weight

30

function had a narrow and sharp peak around v — t = 3= which, in many samples,

was not detected by the WCE method. Indeed, as Panels (c) of Figures 6-3 and 6-2
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show, several estimated weight functions for the Early peak scenario were decreasing
monotonically and required only one knot.

In addition, for Scenarios 1-5, the alternative non-spline based models were never
selected as the best model, except for the unweighted cumulative dose model, which
had the best fit in 58 and 22 samples out of 1,000 for the Exponential and Inverted
U functions, respectively. Using the corrected aj = 0.039, the LRT indicated that
the WCE models provided a better fit to the data then the unweighted cumula-
tive exposure model in more than 95% of the simulated samples for the Bi-Linear,
Exponential, Early Peak and Inverted U scenarios.

In scenarios 1-4, where the true weight functions decreased to zero within the
[u — 180/365, u] interval, all of the LRT tests for both constrained and the uncon-
strained modeled rightfully detected a statistically significant association between
the exposure and the event. In comparison, the unweighted cumulative dose model
missed a statistically significant association in about 70.9% of the simulated samples.
The current dose model was usually able to detect an association in the majority of
Scenarios 1, 2 and 4 but yielded statistically significant results in less than 5% of the
samples for Scenario 3. This is because, unlike in Scenarios 1, and 4, the /nverted U
weight function in Scenario 3 does not assign large weights to current or very recent
doses (Figure 6-1).

In the scenario where the true model was the unweighted cumulative exposure
(Constant weight in Figure 6-1), the correct model with the cumulative unweighted
exposure variable (CUMDQOSE) had the best fit in 924 out of 1,000 simulated sam-
ples. In comparison, the spline based WCE models did not perform well because of
their larger number of estimated parameters penalized their BIC values. While the
CUMDOSE model had a statistically significant LRT tests in 75.1% of the times,

the spline based WCE models detected an association between the exposure and
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the outcome in about only 40% of cases on average. This relatively low power,
even for the correct CUMDOSE model, reflect the fact that in this scenario, the
true association was more difficult to detect. Since the area under the true weight
function summed to 1 over the [u — 180/365, u] interval, the weight assigned to
exposures on a single day was relatively small, as shown in Figure 6-1. That and the
fact that the generated average duration of the exposure periods was relatively short
(21 days), implied that, for most simulated subjects, the effective hazard ratios in
the Constant weight scenario were relatively small and more difficult to detect than
those associated with the other weight functions.

Finally, in Scenario 6, the true weight function Hat increased until 180/365 and
decreased after v = 180/365. This example was specifically selected to assess the
performance of the method in a difficult situation when the selected support interval
for the estimated weight function, [u—180/365, u], was not wide enough to capture
the entire time window of etiologically relevant exposure. As Panel (f) of Figure 6-3
shows, in this scenario, the constrained weight function estimates were forced to go
to zero at v — t = 180/365, where the true function was in fact at its maximum.
Accordingly, the constrained WCE models provided very biased estimates. On the
other hand, in contrast to other scenarios, in Scenario 6, the unconstrained models,
were performing better in approximating the true shape of the weight function, at
least within the [u—180/365, u] window, selected as the best model in 158 simulated
samples out of 1,000. In the remaining samples, the best model was that with the
unweighted cumulative dose variable.

Both the unweighted cumulative dose model and the unconstrained WCE esti-
mates showed in panel (f) of Figure 6-3 suggest that even those exposures at the
right end of the support window, near u—180/365, which occurred about half a year

earlier, have a marked impact on the current risk. Moreover, the shapes of almost all
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unconstrained weight functions suggest that exposures that occurred more than half
a year ago may be much more important than most of the more recent exposures.
This should provide a strong suggestion that the support interval [u — 180/365, u],
a priori set by the hypothetical user, is actually much too short. In this sense, these
results suggest that if the true situation corresponded to our Hat scenario, then the
use of alternative models would provide a strong evidence that the initially selected
support interval is too short. We believe that, given such evidence, most users would
re-analyse the data while using a considerably larger support interval. Therefore, we
carried out additional sensitivity analyses, linked to the Scenario 6. Specifically, we
modified the window of the support interval for the splines from [u — 180/365, u]
to[u — 1, u] and the the constrained WCE models were selected as the best model
in more than 90% of the case (Results not shown).
6.5.3 Estimated regression coefficient for the weighted cumulative dose

We also investigated whether the estimated magnitude of the effect of the WCE
on the risk of an event that were estimated by WCE models reflected the true value
of v in Equation 6.3, i.e. the regression coefficient used to generate the simulated
data sets. To this effect, we compared the normalized estimates of «y, obtained by
summing the estimated values of the weight function over the 180 days, with the
true value of «y. The results are shown in the left-hand-side of Table 63, under the
All models heading. We repeated the analysis, this time on the subset of simulated
samples for which the WCE model had the best fit (lowest BIC). The results are
shown in right-hand-side of Table 63, under the Best B/IC models heading.

For Scenarios 1-4, the relative bias for 4 were relatively small (-2.9% to 2.8%
for unconstrained models and -5.0% to 5.8% for constrained models). When only

the models with the best BIC were considered, the bias was reduced to less than
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1% for the constrained models. In comparison, the number of unconstrained models
with the lowest BIC is too small to assess the relative bias accurately.
6.6 Discussion

We proposed flexible method for modelling cumulative effects of time-dependent
exposures, weighted by recency, in the Cox’s proportional hazards model. Our method
avoids making a priori assumptions about the shape of the function that assigns
weights to exposures in the past, by estimating it with cubic regression B-splines.
The proposed parametrization of our flexible WCE model allows its estimation with
any standard statistical package.

Our simulations illustrated that the WCE model is able to capture a variety
of clinically plausible shapes of the true weight function and to produce relatively
accurate estimates of the strength of the association between exposure and out-
come. We proposed a strategy to test if the WCE model detects a statistically
significant cumulative exposure effect and provides a better fit to the data than the
conventional unweighted cumulative exposure model. This simulation-based testing
strategy accounts for sampling variation at the model selection stage and, thus, can
be for hypothesis-testing in other flexible models where the test is conditional on the
BIC-optimal spline model [49]. Pointwise confidence bands may be obtained using a
bootstrap method that also accounts for data-dependent BIC-based selection of the
number of interior knots and/or length of the etiologically relevant exposure window.
Even if the estimated spline coefficients do not have a meaningful interpretation,
the strength of the cumulative effect may be assessed by estimating hazard ratios
corresponding to contrasts between pre-specified patterns of exposure histories.

While the method is generally able to capture the overall shape of the weight
function, it may fail to accurately reflect sudden and rapid change in the function,

resulting in high local curvature. In cases where such functional behavior is expected,
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the user may improve the fit of the model by adding knots where the change in the
function is expected to occur. Otherwise, the location of the knots inside the window
of etiologically relevant exposure needs to rely on some arbitrary rule. It has been

suggested to place the interior knots tx, k = 1,..., K at the ket quantiles of

K+1
the distribution of the exposure variable, to ensure that each segment of f(x) has
comparable support from the data [45]. However, this generic approach may be of
limited use in our context. Indeed, in our model, the individual values of the time-
dependent WCE variable need to be calculated every time a risk set is formed due to
the occurrence of an event. At the time of each event, past exposures that occurred
during the pre-specified time window of etiologically relevant exposure are used to
construct the WCE variable. The accuracy of the weight function estimation depends
on the variance in the observed exposure status and/or dose during this window. In
most applications, past periods of exposure versus non-exposure, as well as past
doses, are randomly distributed over the entire follow-up. Thus, one may expect
that local variance in the exposure status and dose will be proportional to the length
of the support interval. Such considerations motivated our decision for equal spacing
of the knots within this window.

Among many alternative smoothing techniques, we opted for regression B-
splines to model the weight function mainly because they allowed a simple parametriza-
tion of the WCE model. Conditional on the choice of the number and location of
knots, regression B-splines are linear in the coefficients to be estimated, which implies
that standard methods of estimation and inference may be used [73]. Polynomials
and fractional polynomials are also linear in the coefficients to estimate, but they are

more sensitive to local bias than regression splines [60, 72]. In addition, regression

spline functions can easily be constrained at their boundaries [60]. The latter property
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is of particular importance in our context as, in most applications, the weight func-
tion will be a priori expected to smoothly decay to 0 in its right tail. Indeed, in our
simulations, the constrained spline model fit the data almost uniformly better than
the unconstrained model whenever the true weight function assigned weights close
to O for exposure that occurred in relatively remote past. Finally, while smoothing
splines are more flexible locally than regression splines {80], the penalty term required
to estimate the smoothing spline function would not have allowed the use of artifi-
cial time-dependent variables, which are essential to implement the WCE model with
widely available software.

While our simulations mimic a hypothetical study of the adverse events of a drug,
where exposure is measured daily, applications of the WCE method are not limited
to pharmacoepidemiological studies. Possible applications of the method include any
exposure that vary over time and may have cumulative effects with different impacts
of exposures that occurred a different times in the past. Pharmacoepidemiological
studies based on prescription databases have the advantage of providing individual
time-dependent measures of exposure over a fine time grid [163]. Additionatl simu-
lations studies are required to evaluate the behaviour of the proposed WCE method
when the individual measures of exposure over time are more sparse or coarsely
measured.

In addition, the use of the weighted cumulative exposure metric is not restricted
to the investigation of the effect of cumulative intensity of exposure (or doses)
on the event of interest. Extensions of the model presented here include using a
similar approach for the weighted cumulative duration of past treatment, in which
the exposure history is represented with a time-dependent binary indicator of the
status of exposure instead of its intensity. As proposed in [14], models that include

both a time-dependent variable representing the current intensity of exposure and
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the weighted cumulative duration of treatment can also be fitted to disentangle the
effects of the current dose from that of the duration of past treatment.

In conclusion, although the concept of the recency-weighted cumulative dose
metric has been present in the literature over more than twenty years [18, 19], its use
has been restricted to a couple of studies [12, 11, 84, 85, 14], practically all of which
represented individual exposure history with a time independent covariate. Yet, the
prospective cohort design with time-dependent covariates provides a natural setting
for evaluating the impact of longitudinal changes in exposure status and intensity. We
hope that our implementation of the flexible modelling of the weighted cumulative
dose in the familiar Cox proportional hazards model will motivate a more widespread
use of this metric. We also believe that the WCE model can provide useful insights
regarding the mechanisms linking the history of time-dependent exposure with the
risk of events investigated in clinical and epidemiological studies.
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Figure 6—2: A random sample of 100 normalized estimated weight functions for the
unconstrained models with the true weight function in thick white: Bi-linear (b);
Exponential (a); Early peak (c); Inverted U (d); Constant (e); Hat (f)
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Table 6-3: Estimated <y from 1,000 simulations for each of the weight function

scenarios
All models Best BIC models
Weight Truey mean(d) SD(§) % Bias mean(4) SD(®) % Bias #Samples
Unconstrained models
Exponential 1.386 1.346 0.328 -2.886% 0.987 0.963 -28.788% 3
Bi-linear 1.386 1.390 0.385 0.289% 0.672 1.123 -51.515% 4
inverted U 1.386 1.425 0.352 2.814% 1.344 0.511 -3.030% 25
Early peak 1.386 1.385 0.361 -0.072% 1.671 0.686 20.563% 5
Constant 1.386 0.689 0.315 -50.289% 0.000 - -100.000% 1
Hat 1.386 1.388 0.304 0.144% 1.515 0.323 9.307% 151
Null 0 -0.024 0.322 -2.400% 0.000 - 0.000% 1
Constrained models
Exponential 1.386 1.317 0.269 -4.978% 1.318 0.271 -0.068% 938
Bi-linear 1.386 1.372 0.299 -1.010% 1.373 0.298 -0.938% 995
inverted U 1.386 1.467 0.322 5.844% 1.470 0.324 0.084% 951
Early peak 1.386 1.372 0.305 -0.014% 1.372 0.305 -0.014% 994
Constant 1.386 0.546 0.251 -60.606% 0.993 0.337 -28.355% 5
Hat 1.386 0.785 0.287 -43.362% 0.815 0.329 -41.198% 20
Null 0 -0.009 0.259 -0.099% 0.000 - 0.000% 1
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Figure 6—4: Estimate of the weight functions (solid line) and pointwise 95% boot-
strap confidence interval (dashed line): Bi-linear Unconstrained (a) and Constrained
(b); Exponential Unconstrained (c) and Constrained (d); Early peak Unconstrained
(e) and Constrained (f); /nverted U Unconstrained (g) and Constrained (h)
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6.8 Additional material

In manuscript 2, | generated time-dependent exposure patterns and | the value

of v = In4 to generate the event times conditional on the exposure. This may seem

like a large magnitude of effect, but in reality, it leads to plausible magnitude of

effects once the individual patterns of exposure are considered, using the method

describe in equation (6.8). Table (6—4) shows, for 1 simulated sample and for every

scenario considered, the individual HR resulting from contrasting each of individual

patterns of use over 180 days with periods of non-use. The corresponding histograms

are showed in Figure 6-5.

Table 6-4: Quantiles for the distribution of individual hazard ratios for Scenarios 1-6

from 1 simulation

Estimated weight Minimum 25% 50% 75% Maximum
functions

Bi-Linear 1.00 1.42 2.05 347 19.36
Exponential 1.00 1.42 181 245 11.40
Early peak 1.00 1.42 204 330 1890
Inverted U 1.00 1.12 161 222 11.15
Constant 1.00 1.12 126 139 211

Hat 1.00 1.00 1.13 162 588
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CHAPTER 7
Manuscript 3: Re-assessing the associations between selected
benzodiazepines and fall-related injuries in the elderly

7.1 Preamble

In manuscript 2, | proposed a novel method for modelling the weighted cumula-
tive exposure (WCE) metric in the Cox proportional hazards model where the function
that assigns weight to past exposures iIs estimated using cubic B-splines. Using the
simulations methods developed in the manuscript 1, the proposed approach was val-
idated in manuscript 2. In the present manuscript 3, | llustrate the use of the WCE
method by re-assessing the associations between the use of selected benzodiazepines
and fall-related injuries in the elderly.

The choice of this real-life example was motivated by both discrepant results
reported in pharmacoepidemiological studies of benzodiazepines and the pharma-
cological literature that indicated that pharmacokinetics properties differed among
benzodiazepines. The latter findings implied that some benzodiazepines accumulated
in the body for a longer time, suggesting the potential for cumulative effects, which
likely differed across different benzodiazepines. 1 wanted to investigate this hypothesis
by using the weighted cumulative exposure methodology developed in manuscript 2
separately for each of the eight benzodiazepines available in the dataset. | used three
alternative representations of the past history of benzodiazepine use, each based on
the proposed WCE methodology: (1) weighted cumulative dose; (2) weighted cumu-
lative duration of past use; and (3) a combination of weighted cumulative duration
of past use and current dose. | also estimated alternative models with unweighted

time-dependent representations of current and cumulative exposure.
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‘ The publications cited in Manuscript 3 are listed in the general reference section
at the end of the thesis. Additional material is provided at the end of the chapter.

The R code for the WCE models can be found in Appendix B.
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Abstract
Purpose: Evidence suggests that the use of benzodiazepines increases the risk of
fall-related injuries in the elderly. However, the possibility of cumulative effects have
not be thoroughly investigated.
Methods: The associations between the use of eight benzodiazepines and the risk
of fall-related injuries is assessed using a weighted cumulative exposure metric that
assigns to each dose taken in the past a weight that represents the importance of
that dose in explaining the current risk of fall.
Data: Administrative database for a cohort of 23963 new users of benzodiazepines,
aged 65 and older, in Québec, Canada, between 1990 and 1994.
Results: Current dose of Flurazepam was associated with an increased risk of fall-
related injuries (HR = 1.67, 95% Cl 1.14-2.46). The first day of use of Nitrazepam
was associated with a HR of 1.82 (95%Cl 1.22-2.22) but the HR increased to 6.35
(95%C!H 3.25-11.17) after a week of uninterrupted use. The effect of a 30-day ex-
posure to Alprazolam was 1.27 (1.13-1.42).
Conclusion: Mechanisms affecting the risk of falls differ across benzodiazepines so
benzodiazepine-specific analyses should be preferred over simpler analyses that group
all benzodiazepines together or assume the effects are similar within categories of

half-life.

KEYWORDS: benzodiazepines, elderly, injuries, pharmacoepidemiology; proportional

hazards model; time-dependent covariates, cumulative exposure.
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7.2 Introduction

There is mounting epidemiological evidence supporting the link between the
use of benzodiazepines and fall-related injuries in the elderly [114, 115, 116, 117,
127, 129, 104, 119, 118]. This is of particular concern since benzodiazepine use is
common in the elderly, with annual prevalence estimates ranging from 10% to 30%
[94, 95, 96, 97, 98], and elderly users tend to use benzodiazepines repeatedly and
for longer periods than recommended [99, 100, 2].

However, what constitutes a high risk use of benzodiazepines is still uncertain.
Indeed, it remains unclear whether the risk of fall is present for each benzodiazepine
[128, 119, 121, 122, 123], and whether there are systematic differences between
products with short versus long half-lives [114, 115, 116, 117, 118, 110, 120}. In
addition, while some studies suggest a dose-response relationship between current
dose of benzodiazepine and the risk of fall [110, 119], others suggest an effect
of the duration or timing of the treatment of benzodiazepines [124, 121]. These
findings underline the need for further benzodiazepine-specific analyses, in which
both the dose and the timing of exposure are taken into account. The possibility of
a cumulative effect must be evaluated, as the pharmacokinetics literature suggests
that effective concentrations of some benzodiazepines may persist in the blood for
many hours after their intake {92, 88].

Yet, adequately modelling exposure to benzodiazepines poses a particular chal-
lenge, especially given the uncertainty about the etiological relevance of doses taken
in different time periods, and the potential cumulative effects of exposure over time
[10, 12, 11]. To address this challenge, we propose to combine the information about
duration, intensity and timing of exposure into a time-varying summary measure, the
weighted cumulative exposure (WCE) [18, 19, 12]. The WCE is obtained by (i)

multiplying each dose taken in the past by a weight that represents the importance
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of that dose in explaining the current risk of fall, and (i) summing the weighted past
doses up to the current time.

The use of the WCE framework already offered insights regarding the risk of
falls associated with the use of three benzodiazepines (Flurazepam, Nitrazepam, and
Temazepam) [14]. In that study, Abrahamowicz et al. provided empirical evidence
that the effect of recent doses of benzodiazepines on the risk of fall was cumulating
over time, a feature that conventional models that accounted for only current use
or current dose of benzodiazepine could not capture [14]. Furthermore, their results
suggested a different mechanism linking the drug exposure and the risk of falls for
each of the three benzodiazepines considered, possibly reflecting the differences in
their elimination half-life and/or withdrawal effect {14]. However, as the authors
recognized, their modelling approach was limited by the a priori selection of the
parametric form of the function that assigns the weights to the benzodiazepine doses
taken in the past [14]. Indeed, an incorrect specification of the parametric form
of such weight function may lead to biased estimation, decreased statistical power
and/or incorrect etiologic conclusions [12, 20].

We have recently proposed and validated a flexible method that addresses this
limitation by estimating the weight function used in the WCE framework directly
from the data, without the need for arbitrary a priori assumptions regarding its
parametrization [164]. In addition to avoiding the issues related to potential mis-
specification of the form of the weight function, the new method provides empirical
insights regarding the mechanisms linking the pattern of medication use with the risk
of outcomes.

In the current paper, we re-assess the associations between the use of eight ben-

zodiazepines and the risk of fall-related injuries using the new flexible WCE method.
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7.3 Methods
7.3.1 Data source

We re-analyzed a cohort of new users of benzodiazepines that was previously
assembled by Tamblyn et al. from administrative databases from the province of
Québec, Canada, where all residents aged 65 years and older have public insurance
coverage for prescription drugs, and hospital and medical care [123]. Specifically,
four RAMQ (Régie de I'assurance maladie du Québec) databases were linked with
encrypted individual identifiers. The physician claims dataset provided information
on the date, diagnosis and medical services supplied at each medical visit, while the
hospitalization database provided admission and discharge dates as well as diagnostic
causes for admission (International Classification of Diseases, Ninth Revision (ICD-
9)). The prescription database provided information on the drugs prescribed, the
dose, the duration of the treatment, and the date when the prescription was filled.
Finally, demographic information contained in the beneficiary database included sex,
age and date of death. The use of these administrative databases for pharmacoepi-
demiological studies has been validated elsewhere [165, 166, 167].
7.3.2 Study population

The initial cohort consisted of a random sample of 517,450 community-dwelling
elderly people, who were listed in the administrative database and were aged 65 years
or older on January 1, 1989 [123]. The prescription, hospitalization and medical ser-
vices records of the cohort members were retrieved for the following five year period,
ending on December 31, 1994. A cohort of 78,367 new users of benzodiazepines
was formed by selecting all of elderly persons who had been prescribed at least one
benzodiazepine between January 1st, 1990 and the end of follow-up, but had not
been prescribed any benzodiazepine in 1989 [123]. Elderly who had died in 1989 or

who were institutionalized for the complete follow-up period were excluded.
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We then formed eight mutually-exclusive sub-cohorts, each of which included
users of a particular benzodiazepine. Individuals were assigned to a given sub-cohort
based on the first benzodiazepine prescribed during follow-up. Subjects who switched
to another benzodiazepine during follow-up, or those who were prescribed two or more
different benzodiazepines, were censored at the time when the second benzodiazepine
was prescribed.

7.3.3 Fall-related injuries

The outcome was defined as the first fall-related injury occurring between Jan-
uary 1 1990 and December 31, 1994. Fall-related injuries consisted of a fracture
of the hip, upper or lower extremity, pelvis, skull and thorax, or soft tissues-injuries
[123].

7.3.4 Benzodiazepine use

We considered eight benzodiazepines (Alprazolam, Bromazepam, Chlordiazepox-
ide, Clonazepam, Flurazepam, Lorazepam, Nitrazepam, and Temazepam). Each in-
dividual history of benzodiazepine exposure was reconstructed from the drug type,
date, dosage, number of pills, and duration of consecutive benzodiazepine prescrip-
tions. Whenever two prescriptions of the same drug overlapped by less than 5 days,
we assumed that the the second prescription represented an early refill, and that it
would only start when the first prescription had been completed [123].

Daily dosage of each benzodiazepine was computed by first dividing the number
of pills in a prescription by the duration of the prescription, and then multiplying that
by the dose of a single pill [123]. To allow comparisons across benzodiazepines, for
each product, we calculated a standardized daily dose by dividing the daily dosage by
the World Health Organization recommended daily adult dose for that benzodiazepine

[123, 168].
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7.3.5 Statistical analysis

We used the Cox proportional hazards model with time-dependent covariates to
assess the effect of exposure to benzodiazepines on the risk of fall-related injuries
[30]. Time zero corresponded to January 1st, 1990. Elderly subjects were followed
up until the first fall-related injury, or the end of follow-up (December 30, 1994),
whichever came first. Since subjects initiated their first benzodiazepine use at dif-
ferent periods during follow-up, they enter the risk set only on the date they started
their benzodiazepine prescription. We censored individuals who died, moved out of
the province, or were institutionalized before their first fall-related injury.

Because of the uncertainty about the potential mechanisms linking the benzo-
diazepine exposures and fall-related injuries, for each product, we estimated seven
alternative Cox models, each of which represented benzodiazepine exposure differ-
ently. All seven models was also adjusted for sex, age at baseline and the occurrence
of an injury in 1989 {123, 14].

The first four models considered used conventional time-dependent variables to
represent benzodiazepine exposure. Model 1 included an indicator of current use,
taking the value of 1 when the elderly person was using a benzodiazepine and 0
otherwise. Model 2 represented exposure using the the current daily dose. Model
3 included the cumulative (unweighted) duration of use, a variable that counted the
number of days within the last 90 days for which the benzodiazepine was prescribed.
Finally, Model 4 represented expsure using a cumulative (unweighted) dose variable,
calculated as the sum of all past daily doses in the last 90 days, from the beginning
of the first relevant prescription to the current day. For each model, we used a
likelihood ratio test to test for an association between the corresponding measure of

benzodiazepine exposure and the hazard of fall-related injury, using a critical value

128



of @ = 0.05. We used the BIC [156] for time-to-event analysis to select the best-
fitting model for current exposure (between Model 1 and Model 2) and the best
best-fitting model for cumulative exposure (between Model 3 and Model 4), for
each of the benzodiazepines.

7.3.6 Weighted cumulative benzodiazepine exposure

In addition to four aforementioned, conventional models, we estimated three
models that relied on weighted cumulative exposure metrics (WCE) [12, 14, 11, 164].
Each metric assigns differential weights to past exposures, according to the time
elapsed since the exposure. These weights represent the relative importance that
exposures at different times have on the current risk of fall [12, 14, 11, 164]. In
each WCE models, exposure to benzodiazepine of each subject was represented by
a time-dependent weighted cumulative exposure metric, that was updated at each
time u from the beginning to the end of follow-up.

Model 5 represented the exposure by the weighted cumulative dose. Standard-
ized daily doses taken prior to time u, represented by X(t), t = 1, ..., u were assigned
a weight w(u — t) that was based on the time elapsed since the current time u and
that represented the importance of the dose at time (u—t) on the risk of fall-related
injury at time u. For example, a decreasing weight function would assign smaller
weights to doses more remote in time and, thus, would assume that the recent
doses were more important in explaining the current risk of fall-related injuries than
doses taken in the past. At each time u, the corresponding past weighted doses,
prior to time u, were summed to form a time-dependent weighted cumulative dose
variable:

u

WCDose(u) = > w(u - t)X(1), (7.1)

t
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The weight function, w(u — t), was estimated using cubic regression B-splines,
i.e. piecewise cubic polynomial functions [74, 60]. Cubic regression splines provide
smooth estimates that are flexible enough to represent a variety of clinically plausible
shapes [76], and that can easily be computed [155]. The flexibility of the spline
function is determined by the number of interior knots, which are the points where
adjacent polynomial pieces join each other.. We estimated models with 1 to 3 knots,
which is generally considered sufficient to model a smooth uni- or bi-modal curve and
reduces the risk of major over-fitting bias [51]. Knots were placed at equal distances
within the etiologically relevant exposure window (see below).

We a priori assumed that doses taken three or more months ago could not affect
the current risk of falls. Accordingly, we restricted the weight function to smoothly
decrease to zero for exposures that occurred 90 or more days ago. In sensitivity
analyses, we also considered alternative etiologically relevant exposure windows of
60 and 180 days. The fit of alternative models, with different number of knots, and
different sizes of the etiologically relevant exposure window, was compaired using the
BIC, and the best-fitting WCE model for a given benzodiazepine was selected.

In a similar fashion, in Model 6, we constructed a weighted cumulative duration
of treatment variable (WCDur), obtained by replacing the standardized daily doses
X (t) in equation (7.1) by binary time-varying indicators of exposure status, that were
taking the value of 1 on days where the subject was prescribed a benzodiazepine and
0 otherwise.

In Model 6 it was represented by the weighted cumulative duration of treatment
(WCDur); in Model 7 exposure to benzodiazepine was represented by two time-
dependent variables: the current dose and the weighted cumulative duration.

To assess the precision of our estimates, pointwise confidence intervals for the

weight function w(u — t) were obtained using non-parametric bootstrap re-sampling
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technique [160] that accounted for both the sampling variation of the regression
coefficients, and the uncertainty at the model selection stage [45, 49]. In each
model, we tested the association between the corresponding WCE and fall-related
injury using the likelihood ratio test with the appropriate degrees of freedom [49].
For Model 7, we tested the hypothesis that the two measures of benzodiazepine
exposure, current dose and weighted cumulative duration, improve the fit to the
data, by using the joint likelihood ratio test with degrees of freedom calculated as
the degrees of freedom for the weighted cumulative duration plus 1 for the current
dose effect.

To illustrate the implications of the estimated association between WCE and the
risk of fall-related injury, for each model we computed different histories of exposure,
keeping other variables constant. As showed in Table (7-1), for the spline-based
models, we estimated five hazard ratios corresponding to following five comparisons:
(i) we estimated the effect of a single dose of the benzodiazepines by comparing a
current user at the recommended daily dose who has not used the benzodiazepine
previously to a non-user over that same period; (ii) similarly, we estimated the effect
of short-term use of benzodiazepine by comparing a current user, at the recom-
mended daily dose who has used the benzodiazepine for the last 7 days versus a
non-user over that same period; (iii) we estimated the effect of the timing of the
exposure by comparing a current user at the recommended dose who has used the
benzodiazepine for 7 days and a past user who has used the benzodiazepine for a
week, between 14 and 7 days ago, at the recommended dose; (iv) we estimated the
effect of the duration of the treatment by comparing a current user at the recom-
mended dose who has used the benzodiazepine for 30 days and a current user at the
recommended dose who has used a benzodiazepine for 7 days; (v) we estimated the

joint effect of differences in both the timing and the dose by comparing a current
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user at the recommended dose who has used the benzodiazepine for 14 days and a
past user who used the benzodiazepine at twice the recommended dose 7 days ago
for 14 days.

7.4 Results

The baseline characteristics of each of the benzodiazepine users are reported
in Table 7—2. The Chlordiazepoxide cohort had the smallest number of fall-related
injuries (50 falls, 6.4%), while the Lorazepam cohort had the largest (841 falls,
15.8%). In fact, since the cohort for Lorazepam had both a large sample size and
the highest number of events, we stratified the analysis of its effects by sex. The
mean age in 1989 was very similar across cohorts, and varied between 72 and 73 years
(SD around 5 years). The proportion of subjects who had an injury in 1989 ranged
from 4.1% in the Bromazepam cohort to 6.4% in the Chiordiazepoxide cohort. The
proportion of males varied between 38.6% in the Bromazepam cohort to 55.9% in
the Flurazepam cohort.

We analyzed each of the cohorts with both the conventional and the weighted
cumulative exposure (WCE) models, and compared the fit of the models using the
BIC. Table 7—3 shows the three best-fitting, among the seven candidate models, for
each benzodiazepine. For the second and third best models, we show the difference
in BIC (A BIC) relative to the minimum BIC model. Aserisks indicate models for
which the variable(s) representing the benzodiazepine exposure had a statistically
significant association, at a = 0.05, with the fall-related injuries. Table 7-4 shows
the estimated hazard ratios (HR) obtained from the conventional models (Models
1-4) representing current or cumulative measures of exposure or dose. The weight
functions estimated with the best-fitting WCE models for Alprazolam, Flurazepam,

Nitrazepam and Temazepam are shown in Figure 7-1. Finally, Table 7-5 shows the
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estimated HR for the five comparisons summarized in Table (7-1) from the WCE
models for selected benzodiazepines.

For two of the benzodiazepines (Flurazepam and Nitrazepam), the best-fitting
models were those that represented exposure using the WCE metric. For Flurazepam,
the best model was Model 5, which represented exposure using the weighted cumula-
tive dose over 60 days. The estimated weight function, as well as its 95% pointwise
confidence band, is shown in Panel (a) of Figure 7—1. The estimated weight function
was relatively flat in the first 10 days but decreased thereafter. This shape suggests
cumulative effects of exposures to flurazepam during first 10 days. On the other
hand, doses more than 20 days ago were given weights close to zero, suggesting the
effect did not last beyond three weeks after exposure.

Hazards ratios obtained from the conventional models indicated that while the
higher current dose of Flurazepam was associated with an increased risk of fall-
related injuries (Model 2 HR = 1.67, 95% CI 1.14-2.46), the cumulative dose over
90 days was not (Model 4 HR = 1.12 95% Cl 0.94-1.34). This pattern of findings is
consistent with the estimated weight function for Flurazepam, which suggests that
the effects of Flurazepam cumulate only during the first 20 days of use, with higher
weights assigned to recent doses (Panel (a) of Figure 7-1). This suggests that
Model 4, which represented unweighted cumulative Flurazepam dose over 90 days,
summed the doses over periods of use that were not contributing to the current risk
of falls, resulting in a very weak association. The HR obtained from the best-fitting
weighted cumulative dose model (Model 5) for comparing the risk associated with
the use of Flurazapam for the last 7 days, at the recommended daily dose, relative to
a period of non-use was 1.68 (95% Cl 0.68-3.05). The uncertainty in the estimation
of the early part of the Flurazapam curve, as indicated by the large width of the

95% pointwise bootstrap confidence band in Panel (a) of Figure 7-1, explained the
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wide 95% ClI for this association. Still, the WCE curve showed in Panel (a) of Figure
7-1 fitted the data slightly better (p < 0.001) than the model that assumed no
association, which emphasizes the importance of short-term, cumulative effects of
Flurazepam.

The best-fitting model for Nitrazepam was Model 6, which represented exposure
using the weighted cumulative duration over an exposure window of 60 days. The
estimated weight function for Nitrazepam is shown in Panel (b) of Figure 7-1. In
comparison to that of Flurazepam, the weight function for Nitrazepam assigned much
higher weights to very recent doses, and decreased more rapidly, so that exposures
that occurred more than a week ago were given a weight close to zero. Thus, Model
6 indicated that the higher risk of fall was associated with the use of Nitrazepam in
the previous week. This finding was consistent with the conventional Model 1, which
had a statistically significant hazard ratio of 4.68 (95% Cl 2.91-7.52) for current
use of Nitrazepam. However, the weighted cumulative duration model fit these data
better (Table 7-3) and provided more accurate assessment of the impact of recent
use of Nitrazepam.

According to the weighted cumulative duration of exposure model, the first day
of use of Nitrazepam was associated with about 80% risk increase (HR=1.82 95%Cl
1.22-2.22) but the relative risk increased to about 6 after a week of uninterrupted use
(HR=6.35 95%Cl 3.25-11.17) and to about 15 after a month of uninterrupted use
(HR=15.31 95%Cl 7.29-34.10) (Table 7-5). This large HR associated with a 30-day
period of uninterrupted Nitrazepam use is in part due to the bump in the estimated
weight function that occurred at around 25 days after the initiation of Nitrazepam
use ( Panel (b) of Figure 7-1). As a results, on a given day, exposures to Nitrazepam
that occurred from 20 to 35 days ago are assigned positive weights, which resulted in

a large hazard ratio. It is unclear whether the bump in the estimated weight function
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for Nitrazepam is due to overfit bias, or whether it reflects the true mechanism that
links Nitrazepam use to fall-related injuries. However, the weight functions estimated
by the three best models for Nitrazepam (Table 7-3) had a similar shape (graphs not
shown), and the pointwise bootstrap confidence band around the estimated weight
function in Panel (b) of Figure 7-1 is fairly narrow, indicating that the estimation of
the weight function for Nitrazepam was relatively robust.

In the case of Alprazolam, the best-fitting model was the conventional model
that represented exposure by its unweighted cumulative duration, and produced a
HR of 1.27 (95%CI 1.13-1.42) for the effect of a 30-day exposure to Alprazolam.
Interestingly, Model 6, which represented exposure using the weighted cumulative
duration of treatment over 180 days, was selected as the third best-fitting model by
the BIC, and also detected a statistically significant association between Alprazolam
and fall related injury. The estimated weight function for Alprazolam is shown in
Panel (c) of Figure 7-1. Compared to the other weight functions shown in Figure 7—
1, the weight function for Alprazolam was relatively flat with weights decreasing very
slowly with increasing time since exposure. Thus, the WCE estimate is consistent
with the best-fitting unweighted cumulative duration model, which corresponds to
using the WCE metric with a constant weight function, which assigns the same
weight to all exposures in the past.

Similarly, the best-fitting model for Clonazepam was the unweighted cumulative
duration of treatment. The increase in risk of fall-related injuries associated with
30 days of uninterrupted use of Clonazepam was around 20% (HR = 1.23 (95%Cl
1.01-1.46). None of the WCE models were selected as the three best models for
Clonazepam.

Finally, the BIC-optimal models failed to detect a statistically significant associ-

ation with fall-related injuries for the other four benzodiazepines (Chlordiazepoxide,
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Lorazepam, Temazepam and Bromazepam). On the other hand, the previous study
that used the parametric WCE metric had found that it accurately described the
association between Temazepam and fall-related injuries [14]. Therefore, we investi-
gated further the results obtained from the best WCE model for Temazepam, which
was Model 7 with a relevant exposure time window of 180 days. Similarly to the
best-fitting model in [14], Model 7 included both the current dose of Temazepam,
and the weighted cumulative duration of exposure. A likelihood ratio test applied the
joint effects of both the current dose and the cumulative use detected statistically
significant association with the risk of fall-related injury (p=0.017).

Interestingly, while the effect of the current dose was protective (HR=0.38), the
estimated weight function, as shown in panel (d) of Figure 7—1, decreased as time
since exposure increased, suggesting an increase in risk of falls with cumulating use
of Temazepam. The joint effect of the current dose and the weighted cumulative
duration of Temazepam use was summarized by the HR showed in Table 7-5. The
HR associated with cumulative use of Temazepam at the recommended daily dose
for 1, 7, and 30 days was, respectively, 0.42 (95% CI 0.16-0.97), 0.63 (95% CI 0.29-
1.15), and 1.17 (95% Cl 0.66-2.01) (Table 7-5). Overall, Model 7 suggested that
there is no risk of fall-related injuries associated with cumulative use of Temazepam.
7.5 Discussion

We re-assessed the associations between the use of selected benzodiazepines and
fall-related injuries using both conventional models (current exposure, unweighted cu-
mulative exposure) and models that represented exposure using weighted cumulative
exposure (WCE) metrics. In the WCE framework, past exposures are weighted ac-
cording to a function that assesses their contributions to the current risk, depending
on the time elapsed since exposure. Then, the weighted exposures are accumulated

to create a time-dependent covariate representing the current value of the WCE
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[12, 11, 14, 164]. We used a recently developed flexible method [164] that allowed
us to estimate the weight function directly from the data, thus avoiding making a
priori assumptions about the form of this function.

Our results highlight the importance of considering the hypothesis that the ef-
fects of benzodiazepines may cumulate over time. Indeed, while previous studies did
not detect any association between the current use of Nitrazepam and Alprazolam
[117, 119, 122, 123], our results suggest statistically significant and clinically impor-
tant associations between cumulative use of these benzodiazepines and fall-related
injuries. Indeed, our estimates show that subjects who used Nitrazepam for a week,
at the recommended daily dose, may have a six-fold increase in the risk of fall-related
injuries. Furthermore, the lower bound of the 95% confidence interval suggests that
the risk is increased by a factor of a least three (scenario (ii) in Table 7-5).

In addition, similar to previous studies, we provide evidence of a statistically
significant association between the use of Flurazepam and the risk of fall-related
injuries [122, 123, 14]. However, the use of the weighted cumulative dose metric
offered additional insights regarding the mechanism linking Flurazepam use to the
risk of falls, by suggesting that, on a given day, the window of etiologically relevant
exposure for Flurazepam is limited to approximately the 10 previous days.

All but one [122] of the previous studies that investigated the effect of Temazepam
on fall-related injuries detected a statistically significant association [117, 119, 123,
14]. Consistent with [14], we find that the use of Temazepam only has a statistically
significant association with the risk of fall-related injuries when both the current dose
and the cumulative use are taken into account. However, the corresponding hazard
ratios suggest that there is no risk of fall-related injuries associated with cumulative

use of Temazepam.
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Our results for Bromazepam are consistent with other studies, who also did not
find any association between Bromazepam use and fall-related injuries [122, 123].
Unlike the current study, the only study that considered the effect of current use
of Chlorazepoxide on the risk of fall-related injury detected a statistically significant
association (HR = 1.83 (1.04-3.22)) [123]. Our cohort of Chlorazepoxide users
had the smallest number of fall-related injuries (n=50), and the low statistical power
might have prevented us from detecting a statistically significant association. Finally,
unlike other studies, our results did not suggest a statistically significant association
between Lorazepam and fall-related injuries [122, 119, 123].

It has been suggested that the use of benzodiazepines with a long half-life was
riskier than shorter half-life benzodiazepines because a prolonged elimination half-life
implied a longer presence of the drug in the body [131]. Our results agree with
two previous studies that did not support the hypothesis that the half-life of benzo-
diazepines explains the differences in the risk associated with their use [110, 119].
Similarly, our results do not suggest any systematic effect of the dose of benzodi-
azepine. In fact, while dose seem to be an important risk factor for Flurazepam, it
is not for other benzodiazepines such as Alprazolam, Nitrazepam and Clonazepam,
for which the duration of treatment seems to be a more important determinant of
the risk of fall-related injuries.

Although the WCE models provided more insight than the conventional models
regarding the associations between exposure to selected benzodiazepines and the risk
of falls, they tended to produce estimates with slightly wider 95% confidence intervals
than the conventional models. This is common to nonparametric methods, where
attempts to avoid incorrect specification of the parametric form of the exposure
metric lead to more complex models, which in turn result in increased variance and

wider confidence intervals [63].
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In addition, the interpretation of our results should account for the limitations
related with the use of administrative datasets for pharmacoepidemiological studies.
First, our measure of exposure was based on prescriptions of benzodiazepines, and
not on their actual use [163, 169, 26]. This, combined with the fact that benzodi-
azepines may be prescribed on an as-needed basis (PRN pro re nata), could cause
misclassification of the exposure [123]. It was reported that the proportion of falls in
users of PRN and non PRN benzodiazepines was relatively similar [110], which would
imply that the exposure misclassification was non-differential, and, thus, would lead
to attenuated estimates of the hazard ratios [163, 123]. Furthermore, although our
analyses controlled for age, sex, and previous falls, we did not account for other
factors that could have partly confounded the association between benzodiazepine
exposure and falls-related injuries, such as other medication use or co-morbidity
[163, 169].

In conclusion, our study highlights the importance of considering the possibility
that the effects of use of some benzodiazepines on fall-related injuries may cumulate
over time. It also indicates that mechanisms affecting the risk of falls differ across
benzodiazepines. This suggests that benzodiazepine-specific analyses, which consider
both the dose and the timing of the exposure, should be preferred over simpler
analyses that group all benzodiazepines together, assume the effects are similar within
categories of half-life, and/or limit exposure measurement to current use or current
dose. These methodological recommendations might likely apply to the studies of

other medications, where the patterns of use and/or dose vary over time.
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Table 7-1: Scenarios for estimating the relative risks (adjusted hazard ratios) from
the weighted cumulative exposure models

Pattern of use Reference
Dose Duration Timing Dose Duration  Timing
Scenario (i) 1 1 day current not exposed 180 days current
Scenario (i) 1 7 days current not exposed 180 days current
Scenario (i) 2 7 days current 1 7 days current
Scenario (iv) 1 7 days current 1 7 days 14 to 7 days ago
Scenario (v) 1 14 days  current 2 14 days  seven days ago
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Table 7-4: Conventional estimates of the association between benzodiazepines and
fall related injuries

Benzodiazepines Current exposure!  Cumulative exposure!
HR  95% CI HR 95% CI
Flurazepam?* 1.67 (1.14-2.46) 1.12 (0.94-1.34)
Chlordiazepoxide®* 1.33 (0.53-3.35) 1.16 (0.75-1.80)
Clonazepam 13 1.19 (0.77-1.83) 1.23 (1.04-1.46)
Nitrazepam?:3 468 (2.91-752) 120 (1.04-1.39)
Alprazolam?-3 1.46 (1.11-1.92) 1.27 (1.13-1.42)

Lorazepam (men)!* 0.96 (0.68-1.35) 1.14 (0.93-1.43)
Lorazepam (women)?3 0.69 (0.47-1.03) 0.99 (0.85-1.15)
Temazepam?!:3 1.06 (0.74-1.50) 1.10 (0.96-1.26)
Bromazepam?-3 0.93 (0.63-1.39) 1.11 (0.95-1.30)

1 HR associated with a 1-day exposure to benzodiazepine at the standard dose compared to a day
of non-use, as estimated by the lowest BIC model between the model with current use Model 1 and
the model with current dose Model 2. The first superscript beside the name of the benzodiazepine
represents the model used for the current exposure.

T HR associated with a 30-day exposure to benzodiazepine at the standard dose compared to a 30-
day period of non-use as estimated by the lowest BIC model between the model with unweighted
cumulative duration (Model 3) and the model with unweighted cumulative dose (Model 4). The
second superscript beside the name of the benzodiazepine represents the model used for the cumulative
exposure.
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Figure 7-1: Estimated weight function and 95% pointwise bootstrap confidence
intervals (dotted curves); (a) Flurazepam, weighted cumulative dose, 60 days; (b)
Nitrazepam, weighted cumulative duration of treatment, 60 days; (d) Alprazolam,
weighted cumulative duration of treatment, 180 days; (d) Temazepam, weighted
cumulative duration of treatment and current dose, 180 days.
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. 7.6 Additional material
The results of the models are presented for each benzodiazepine and each time

window considered.
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‘ Table 7-6: Summary of findings for the association between alprazolam use and
fall-related injuries in the elderly - Exposure time window of 60 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1961.46 3939.69
Weighted cumulative dose

1 knot - 0.098 (3) -1958.31  3950.17

2 knots - 0.045 (4) -1956.58  3952.29

3 knots - 0.064 (5) -1956.25  3957.23
Weighted cumulative duration

1 knot - 0.001 (3) -1953.31  3940.17

2 knots - < 0.001 (4) -1950.87  3940.88

3 knots - 0.001 (5) -1950.47  3945.66
Weighted cumulative duration and current dose

1 knot -0.9743 < 0.001 (4) -1950.65  3940.43

2 knots  -0.8313 < 0.001 (5) -1948.94  3942.61

3 knots -0.8038 < 0.001 (6) -1948.69  3947.7
Alternative TD models
Indicator of current use 0.3774 0.01 (1) -1958.15  3938.65
Current dose 0.2786  0.226 (1) -1960.73  3943.82
Unweighted cumulative use 0.008 < 0.001 (1) -1953.00  3928.37
Unweighted cumulative dose 0.007 0.139 (1) -1958.434 3939.23

Table 7-7: Summary of findings for the association between alprazolam use and
fall-related injuries in the elderly - Exposure time window of 90 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1961.46 3939.69
Weighted cumulative dose

1knot - 0.118 (3) -1958.53  3950.6

2 knots - 0.135 (4) -1957.95 3955.04

3 knots - 0.103 (5) -1956.88  3958.48
Weighted cumulative duration

1 knot - 0.001 (3) -1952.87 3939.29

2 knots - 0.001 (4) -1952.62  3944.37

3 knots - 0.001 (5) -1951.04 3946.82
Weighted cumulative duration and current dose

1 knot -1.01 < 0.001 (4) -1949.83 3938.79

2 knots -0.9815 < 0.001 (5) -1949.9 3944.52

3 knots -0.8657 < 0.001 (6) -1948.96 3948.23
Alternative TD models
Indicator of current use 0.3774 0.01 (1) -1958.15  3938.65
Current dose 0.2786  0.226 (1) -1960.73 3943.82
Unweighted cumulative use 0.008 < 0.001 (1) -1953.00  3928.37
Unweighted cumulative dose 0.007 0.139 (1) -1958.434 3939.23
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Table 7-8: Summary of findings for the association between alprazolam use and
fall-related injuries in the elderly - Exposure time window of 180 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1961.46 3939.69
Weighted cumulative dose

1 knot - 0.107 (3) -1958.41  3950.37

2 knots - 0.187 (4) -1958.37  3955.89

3 knots - 0.286 (5) -1958.35  3961.43
Weighted cumulative duration

1 knot - 0.001 (3) -1952.7 3938.95

2 knots - 0.001 (4) -1952.52 3944.19

3 knots - 0.003 (5) -1952.45  3949.63
Weighted cumulative duration and current dose

1 knot -0.9016 < 0.001 (4) -1949.82  3938.77

2 knots  -0.9232 < 0.001 (5) -1949.74 39442

3knots -1.0251 < 0.001 (6) -1949.31  3948.94
Alternative TD models
Indicator of current use 0.3774 0.01 (1) -1958.15  3938.65
Current dose 0.2786  0.226 (1) -1960.73  3943.82
Unweighted cumulative use 0.008 < 0.001 (1) -1953.00  3928.37
Unweighted cumulative dose 0.007 0.139 (1) -1958.434 3939.23

Table 7-9: Summary of findings for the association between bromazepam use and
fall-related injuries in the elderly - Exposure time window of 60 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1395.9 2807.56
Weighted cumulative dose

1 knot - 0.239 (3) -1393.79 2819.1

2 knots - 0.269 (4) -1393.31  2823.39

3 knots - 0.229 (5) -1392.46  2826.93
Weighted cumulative duration

1 knot - 0.136 (3) -1393.13  2817.78

2 knots - 0.177 (4) -1392.75  2822.26

3 knots - 0.038 (5) -1390.02  2822.05
Weighted cumulative duration and current dose

1knot -0.246  0.227 (4) -1393.08 2822.92

2 knots  -0.1175 0.275 (5) -1392.73  2827.49

3 knots 0.1668  0.066 (6) -1389.99 2827.25
Alternative TD models
Indicator of current use -0.07 0.731 (1) -1395.84  2812.7
Current dose 0.0459  0.91 (1) -1395.9 2812.8
Unweighted cumulative use 0.003 0.207 (1) -1395.11  2811.23
Unweighted cumulative dose 0.006 0.304 (1) -1395.37  2811.76
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‘ Table 7-10: Summary of findings for the association between bromazepam use and
fall-related injuries in the elderly - Exposure time window of 90 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1395.9 2807.56
Weighted cumulative dose
1knot - 0.383 (3) -1394.37  2820.26
2 knots - 0.396 (4) -1393.86  2824.49
3 knots - 0.435 (5) -1393.48  2828.98
Weighted cumulative duration
1knot - 0.344 (3) -1394.24  2819.99
2 knots - 0.188 (4) -1392.83  2822.42
3 knots - 0.206 (5) -1392.3 2826.62
Weighted cumulative duration and current dose
1 knot -0.5572 0.413 (4) -1393.93 2824.62
2 knots  -0.2316 0.282 (5) -1392.78 2827.57
3 knots  -0.2177 0.294 (6) -1392.26 2831.78
Alternative TD models
Indicator of current use -0.07 0.731 (1) -1395.84  2812.7
Current dose 0.0459 0.91 (1) -1395.9 2812.8
Unweighted cumulative use 0.003 0.207 (1) -1395.11 2811.23
Unweighted cumulative dose 0.006 0.304 (1) -1395.37  2811.76

Table 7-11: Summary of findings for the association between bromazepam use and
fall-related injuries in the elderly - Exposure time window of 180 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1395.9 2807.56
Weighted cumulative dose

1 knot - 0.563 (3) -1394.88  2821.27

2 knots - 0.685 (4) -1394.77  2826.3

3 knots - 0.707 (5) -1394.43  2830.87
Weighted cumulative duration

1 knot - 0.532 (3) -1394.8 2821.12

2 knots - 0.705 (4) -1394.82  2826.4

3 knots - 0.472 (5) -1393.62  2829.26
Weighted cumulative duration and current dose

1 knot -0.8939 0.39 (4) -1393.84  2824.45

2 knots -0.911  0.562 (5) -1393.95  2829.91

3 knots -0.6015 0.508 (6) -1393.26  2833.79
Alternative TD models
Indicator of current use -0.07 0.731 (1) -1395.84 28127
Current dose 0.0459 0.91 (1) -1395.9 2812.8
Unweighted cumulative use 0.003 0.207 (1) -1395.11  2811.23
Unweighted cumulative dose 0.006 0.304 (1) -1395.37  2811.76
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‘ Table 7-12: Summary of findings for the association between flurazepam use and
fall-related injuries in the elderly - Exposure time window of 60 days

Model and exposure Baose  LRT p-value (df) Likelihood BIC
No exposure - - -1875.31 3767.2
Weighted cumulative dose

1 knot - < 0.001 (3) -1865.17  3763.51

2 knots - < 0.001 (4) -1864.92  3768.54

3 knots - 0.001 (5) -1864.78  3773.79
Weighted cumulative duration

1 knot - < 0.001 (3) -1865.81  3764.8

2 knots - 0.001 (4) -1865.49  3769.69

3 knots - 0.001 (5) -1865.19  3774.62
Weighted cumulative duration and current dose

1 knot  0.1303 0.001 (4) -1865.77  3770.25

2 knots  0.2293 0.001 (5) -1865.37  3774.98

3 knots 0.2724 0.002 (6) -1865.02  3779.81
Alternative TD models
Indicator of current use 0.2917 0.089 (1) -1873.86  3769.85
Current dose 0.5138 0.014 (1) -1872.27  3766.66
Unweighted cumulative use 0.002 0.468 (1) -1875.04  3772.21
Unweighted cumulative dose 0.004  0.234 (1) -1875.60  3771.31

Table 7-13: Summary of findings for the association between flurazepam use and
fall-related injuries in the elderly - Exposure time window of 90 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1875.31 3767.2
Weighted cumulative dose
1 knot - < 0.001 (3) -1865.4  3763.97
2 knots - < 0.001 (4) -1865.22 3769.14
3 knots - 0.001 (5) -1864.86 3773.96
Weighted cumulative duration
1 knot - 0.001 (3) -1866.93  3767.04
2 knots - 0.001 (4) -1865.91  3770.53
3 knots - 0.001 (5) -1865.46  3775.16
Weighted cumulative duration and current dose
1 knot -0.1169 0.002 (4) -1866.89 3772.49
2 knots  0.0994  0.002 (5) -1865.89 3776.01
3 knots  0.2097  0.003 (6) -1865.36 3780.48
Alternative TD models
Indicator of current use 0.2917  0.089 (1) -1873.86  3769.85
Current dose 0.5138 0.014 (1) -1872.27 3766.66
Unweighted cumulative use 0.002 0.468 (1) -1875.04  3772.21
Unweighted cumulative dose 0.004 0.234 (1) -1875.60  3771.31
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‘ Table 7-14: Summary of findings for the association between flurazepam use and
fall-related injuries in the elderly - Exposure time window of 180 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1875.31 3767.2
Weighted cumulative dose
1 knot - 0.001 (3) -1866.58  3766.33
2 knots - 0.001 (4) -1865.31  3769.33
3 knots - 0.001 (5) -1865.33  3774.89
Weighted cumulative duration
1 knot - 0.003 (3) -1868.23 3769.63
2 knots - 0.002 (4) -1866.8  3772.31
3 knots - 0.005 (5) -1866.96 3778.15
Weighted cumulative duration and current dose
1 knot 0.1724  0.006 (4) -1868.11 3774.93
2 knots -0.0708  0.004 (5) -1866.79  3777.81
3 knots -0.1331 0.01 (6) -1866.91 3783.59
Alternative TD models
Indicator of current use 0.2917  0.089 (1) -1873.86  3769.85
Current dose 0.5138 0.014 (1) -1872.27  3766.66
Unweighted cumulative use 0.002 0.468 (1) -1875.04 3772.21
Unweighted cumulative dose 0.004 0.234 (1) -1875.60 3771.31

Table 7-15: Summary of findings for the association between nitrazepam use and
fall-related injuries in the elderly - Exposure time window of 60 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -563.6 1141.13
Weighted cumulative dose
1 knot - < 0.001 (3) -528.61  1085.09
2 knots - < 0.001 (4) -522.62 1077.75
3 knots - < 0.001 (5) -523.47  1084.1
Weighted cumulative duration
1 knot - < 0.001 (3) -523.34 1074.56
2 knots - < 0.001 (4) 51454  1061.59
3 knots - < 0.001 (5) -515.96 1069.07
Weighted cumulative duration and current dose
1 knot 0.4982 < 0.001 (4) -520.7 1073.9
2 knots  0.3718 < 0.001 (5) -513.14 1063.43
3 knots 0.3682 < 0.001 (6) -514.63 1071.05
Alternative TD models
Indicator of current use 1.5427 < 0.001 (1) -537.41 1093.4
Current dose 0.8527 < 0.001 (1) -541.25 1101.08
Unweighted cumulative use 0.006  0.031 (1) -561.26 1141.10
Unweighted cumulative dose 0.004  0.031 (1) -561.28 1141.15
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Table 7-16: Summary of findings for the association between nitrazepam use and
fall-related injuries in the elderly - Exposure time window of 90 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -563.6 1141.13
Weighted cumulative dose
1knot - < 0.001 (3) -526.12  1080.11
2 knots - < 0.001 (4) -526.09 1084.68
3 knots - < 0.001 (5) -525.5 1088.15
Weighted cumulative duration
1knot - < 0.001 (3) -522.72  1073.3
2 knots - < 0.001 (4) -522.05  1076.61
3 knots - < 0.001 (5) -520.74  1078.64
Weighted cumulative duration and current dose
1 knot 0.4232 < 0.001 (4) -520.7 1073.91
2 knots 0.4966 < 0.001 (5) -519.4 1075.96
3 knots  0.4235 < 0.001 (6) -518.9 1079.59
Alternative TD models
Indicator of current use 1.5427 < 0.001 (1) -537.41 1093.4
Current dose 0.8527 < 0.001 (1) -541.25  1101.08
Unweighted cumulative use 0.006 0.031 (1) -561.26 1141.10
Unweighted cumulative dose 0.004  0.031 (1) -561.28 1141.15

Table 7-17: Summary of findings for the association between nitrazepam use and
fall-related injuries in the elderly - Exposure time window of 180 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -563.6 1141.13
Weighted cumulative dose
1 knot - < 0.001 (3) -526.11 1080.09
2 knots - < 0.001 (4) -524.96 1082.43
3 knots - < 0.001 (5) -524.35 1085.85
Weighted cumulative duration
1knot - < 0.001 (3) -523.72  1075.32
2 knots - < 0.001 (4) -521.33 1075.17
3 knots - < 0.001 (5) -521.33  1079.82
Weighted cumulative duration and current dose
1 knot 0.434 < 0.001 (4) -521.14 1074.78
2 knots  0.3331 < 0.001 (5) -519.98 1077.12
3 knots  0.4089 < 0.001 (6) -519.43 1080.65
Alternative TD models
Indicator of current use 1.5427 < 0.001 (1) -537.41 1093.4
Current dose 0.8527 < 0.001 (1) -541.25 1101.08
Unweighted cumulative use 0.006  0.031 (1) -561.26 1141.10
Unweighted cumulative dose 0.004  0.031 (1) -561.28 1141.15
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Table 7-18: Summary of findings for the association between clonazepam use and
fall-related injuries in the elderly - Exposure time window of 60 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -620.64 1255.12
Weighted cumulative dose

1knot - 0.735 (3) -620.0 1267.69

2 knots - 0.609 (4) -619.29  1270.88

3 knots - 0.711 (5) -619.17 1275.27
Weighted cumulative duration

1 knot - 0.225 (3) -618.46 1264.61

2 knots - 0.077 (4) -616.41 1265.14

3 knots - 0.114 (5) -616.2 1269.32
Weighted cumulative duration and current dose

1 knot -0.7935 0.336 (4) -618.36 1269.03

2 knots -0.4212 0.131 (5) -616.38 1269.69

3 knots -0.3215 0.179 (6) -616.18 1273.9
Alternative TD models
Indicator of current use 0.1709  0.447 (1) -620.35 1259.16
Current dose 0.6812  0.564 (1) -620.47  1259.4
Unweighted cumulative use 0.007 0.018 (1) -617.83 1254.12
Unweighted cumulative dose 0.017 0.194 (1) -619.79 1258.05

Table 7-19: Summary of findings for the association between clonazepam use and
fall-related injuries in the elderly - Exposure time window of 90 days

Model and exposure Bdose LRT p-value (df) Likelihood BIC
No exposure - - -620.64 1255.12
Weighted cumulative dose

1 knot - 0.574 (3) -619.64 1266.97

2 knots - 0.676 (4) -619.47 1271.25

3 knots - 0.718 (5) -619.2 1275.31
Weighted cumulative duration

1 knot - 0.124 (3) -617.76 1263.21

2 knots - 0.15 (4) -617.26 1266.83

3 knots - 0.145 (5) -616.53 1269.98
Weighted cumulative duration and current dose

1knot -1.0787 0.191 (4) -617.58 1267.47

2 knots  -0.7793  0.225 (5) -617.17 1271.25

3 knots -0.5333 0.217 (6) -616.48 1274.5
Alternative TD models
Indicator of current use 0.1709  0.447 (1) -620.35 1259.16
Current dose 0.6812 0.564 (1) -620.47 1259.4
Unweighted cumulative use 0.007 0.018 (1) -617.83 1254.12
Unweighted cumulative dose 0.017 0.194 (1) -619.79 1258.05
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Table 7-20: Summary of findings for the association between clonazepam use and
fall-related injuries in the elderly - Exposure time window of 180 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -620.64 1255.12
Weighted cumulative dose
1knot - 0.423 (3) -619.23  1266.16
2 knots - 0.399 (4) -618.61  1269.53
3 knots - 0.536 (5) -618.59 1274.1
Weighted cumulative duration
1knot - 0.078 (3) -617.23  1262.16
2 knots - 0.073 (4) -616.35 1265.0
3 knots - 0.097 (5) -615.97 1268.87
Weighted cumulative duration and current dose
1knot -0.6818 0.138 (4) -617.15  1266.61
2 knots  -1.0762 0.112 (5) -616.18 1269.27
3 knots  -0.9087 0.144 (6) -615.85  1273.24
Alternative TD models
Indicator of current use 0.1709  0.447 (1) -620.35 1259.16
Current dose 0.6812  0.564 (1) -620.47 1259.4
Unweighted cumulative use 0.007 0.018 (1) -617.83 1254.12
Unweighted cumulative dose 0.017 0.194 (1) -619.79 1258.05

Table 7-21: Summary of findings for the association between Chlordiazepoxide use
and fall-related injuries in the elderly - Exposure time window of 60 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -292.17 596.08
Weighted cumulative dose

1 knot - 0.823 (3) -291.71 606.9

2 knots - 0.899 (4) -291.64 610.66

3 knots - 0.952 (5) -291.61 614.51
Weighted cumulative duration

1 knot - 0.996 (3) -292.14 607.75

2 knots - 0.985 (4) -291.98 611.35

3 knots - 0.938 (5) -291.54 614.37
Weighted cumulative duration and current dose

1 knot  0.5547 0.965 (4) -291.88 611.15

2 knots  0.5139 0.978 (5) -291.77 614.84

3 knots 0.599  0.934 (6) -291.25 617.71
Alternative TD models
Indicator of current use -0.069 0.883 (1) -292.16 599.97
Current dose 0.2833 0.592 (1) -292.03 599.7
Unweighted cumulative use 0.002  0.770 (1) -292.13 592.25
Unweighted cumulative dose 0.005 0.524 (1) -292.17 591.93

154



Table 7-22: Summary of findings for the association between Chlordiazepoxide use
and fall-related injuries in the elderly - Exposure time window of 90 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -292.17 596.08
Weighted cumulative dose
1 knot - 0.823 (3) -291.72 606.9
2 knots - 0.91 (4) -291.67 610.73
3 knots - 0.936 (5) -291.52 614.35
Weighted cumulative duration
1 knot - 0.998 (3) -292.15 607.77
2 knots - 0.999 (4) -292.16 611.7
3 knots - 0.912 (5) -291.42 614.13
Weighted cumulative duration and current dose
1 knot 0.5709 0.959 (4) -291.85 611.08
2 knots  0.5803 0.988 (5) -291.87 615.04
3 knots 0.4862 0.93 (6) -291.23 617.67
Alternative TD models
Indicator of current use -0.069 0.883 (1) -292.16 599.97
Current dose 0.2833 0.592 (1) -292.03 599.7
Unweighted cumulative use 0.002 0.770 (1) -292.13 592.25
Unweighted cumulative dose 0.005 0.524 (1) -292.17 591.93

Table 7-23: Summary of findings for the association between Chlordiazepoxide
and fall-related injuries in the elderly - Exposure time window of 180 days

use

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -292.17 596.08
Weighted cumulative dose
1 knot - 0.807 (3) -291.68 606.84
2 knots - 0.751 (4) -291.21  609.81
3 knots - 0.888 (5) -291.32 613.93
Weighted cumulative duration
1 knot - 0.996 (3) -292.14 607.75
2 knots - 0.991 (4) -292.03  611.45
3 knots - 0.999 (5) -292.11 615.52
Weighted cumulative duration and current dose
1 knot 0.4796 0.969 (4) -291.9 611.18
2 knots  0.447 0.985 (5) -291.84 614.97
3 knots  0.5306 0.996 (6) -291.85 618.92
Alternative TD models
Indicator of current use -0.069 0.883 (1) -292.16 599.97
Current dose 0.2833 0.592 (1) -292.03 599.7
Unweighted cumulative use 0.002 0.770 (1) -292.13 592.25
Unweighted cumulative dose 0.005 0.524 (1) -292.17 591.93

155



. Table 7-24: Summary of findings for the association between temazepam use and
fall-related injuries in the elderly - Exposure time window of 60 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1156.47 2328.26
Weighted cumulative dose

1 knot - 0.593 (3) -1155.52 2341.68

2 knots - 0.62 (4) -1155.15  2346.05

3 knots - 0.664 (5) -1154.85 2350.56
Weighted cumulative duration

1knot - 0.22 (3) -1154.26  2339.16

2 knots - 0.332 (4) -1154.18 2344.1

3 knots - 0.345 (5) -1153.66  2348.17
Weighted cumulative duration and current dose

1 knot -0.9371 0.04 (4) -1151.46  2338.67

2 knots  -0.9551 0.074 (5) -1151.44 2343.74

3 knots -0.8938 0.112 (6) -1151.32 2348.59
Alternative TD models
Indicator of current use 0.0548 0.76 (1) -1156.42  2333.27
Current dose -0.0041 0.98 (1) -1156.47 2333.37
Unweighted cumulative use 0.003 0.170 (1) -1155.53  2331.49
Unweighted cumulative dose 0.001 0.523 (1) -1156.27  2332.97

Table 7-25: Summary of findings for the association between temazepam use and
fall-related injuries in the elderly - Exposure time window of 90 days

Model and exposure Baose LRT p-value (df) Likelihood BIC
No exposure - - -1156.47 2328.26
Weighted cumulative dose

1 knot - 0.318 (3) -1154.71  2340.05

2 knots - 0.471 (4) -11%4.7 2345.14

3 knots - 0.579 (5) -1154.57  2349.99
Weighted cumulative duration

1 knot - 0.209 (3) -1154.21  2339.05

2 knots - 0.313 (4) -1154.09  2343.93

3 knots - 0.429 (5) -1154.02  2348.89
Weighted cumulative duration and current dose

1 knot  -0.8861 0.036 (4) -1151.33 23384

2 knots  -0.9326 0.065 (5) -1151.28  2343.41

3 knots -0.9676 0.103 (6) -1151.2 2348.35
Alternative TD models
Indicator of current use 0.0548 0.76 (1) -1156.42  2333.27
Current dose -0.0041 0.98 (1) -1156.47  2333.37
Unweighted cumulative use 0.003 0.170 (1) -1155.53  2331.49
Unweighted cumulative dose 0.001 0.523 (1) -1156.27  2332.97
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‘ Table 7-26: Summary of findings for the association between temazepam use and
fall-related injuries in the elderly - Exposure time window of 180 days

Model and exposure Bdose LRT p-value (df) Likelihood BIC
No exposure - - -1156.47 2328.26
Weighted cumulative dose

1 knot - 0.705 (3) -1155.77 2342.18

2 knots - 0.845 (4) -1155.77 2347.29

3 knots - 0.289 (5) -1153.38  2347.61
Weighted cumulative duration

1 knot - 0.316 (3) -1154.7  2340.04

2 knots - 0.515 (4) -1154.84 2345 .42

3 knots - 0.08 (5) -1151.55  2343.95
Weighted cumulative duration and current dose

1 knot -0.9547 0.017 (4) -1150.48 2336.7

2 knots -1.0192 0.041 (5) -1150.68 2342.21

3 knots  -0.8338 0.02 (6) -1148.96 2343.88
Alternative TD models
Indicator of current use 0.0548 0.76 (1) -1156.42  2333.27
Current dose -0.0041 0.98 (1) -1156.47 2333.37
Unweighted cumulative use 0.003 0.170 (1) -1155.53  2331.49
Unweighted cumulative dose 0.001 0.523 (1) -1156.27  2332.97

Table 7-27: Summary of findings for the association between lorazepam use and
fall-related injuries in elderly men - Exposure time window of 60 days

Model  Coefficient LRT p-value (df) Likelihood BIC
No exposure - - -1497.89 3006.41
Weighted cumulative dose

1 knot - 0.425 (3) -1496.49  3019.58

2 knots - 0.161 (4) -1494.61  3021.13

3 knots - 0.152 (5) -1493.85 3024.93
Weighted cumulative duration

1 knot - 0.24 (3) -1495.79 3018.16

2 knots - 0.078 (4) -1493.69  3019.3

3 knots - 0.065 (5) -1492.69 3022.6
Weighted cumulative duration and current dose

1 knot  -0.5712 0.257 (4) -1495.23 3022.38

2 knots  -0.36 0.116 (5) -1493.47 3024.18

3 knots -0.2419 0.101 (6) -1492.59 3027.72
Alternative TD models »
Indicator of current use -0.0465 0.787 (1) -1497.85  3011.66
Current dose 0.0292 0.919 (1) -1497.88  3011.72
Unweighted cumulative use 0.001 0.676 (1) -1497.8 3011.56
Unweighted cumulative dose 0.0046 0.229 (1) -1497.16  3010.28

157



‘ Table 7-28: Summiary of findings for the association between lorazepam use and
fall-related injuries in elderly men - Exposure time window of 90 days

Model  Coefficient LRT p-value (df) Likelihood BIC
No exposure - - -1497.89  3006.41
Weighted cumulative dose

1 knot - 0.494 (3) -1496.69 3019.97

2 knots - 0.256 (4) -1495.23 3022.37

3 knots - 0.229 (5) -1494 .44 3026.12
Weighted cumulative duration

1 knot - 0.113 (3) -1494.9 3016.4

2 knots - 0.041 (4) -14929  3017.7

3 knots - 0.052 (5) -1492.4 3022.03
Weighted cumulative duration and current dose

1 knot  -0.7842 0.087 (4) -1493.82 3019.55

2 knots  -0.5419 0.052 (5) 14924  3022.02

3 knots  -0.4507 0.07 (6) -1492.06 3026.67
Alternative TD models
Indicator of current use -0.0465 0.787 (1) -1497.85 3011.66
Current dose 0.0292 0.919 (1) -1497.88 3011.72
Unweighted cumulative use 0.001 0.676 (1) -1497.8 3011.56
Unweighted cumulative dose 0.0046 0.229 (1) -1497.16  3010.28

Table 7—29: Summary of findings for the association between lorazepam use and
fall-related injuries in elderly men - Exposure time window of 180 days

Model  Coefficient LRT p-value (df) Likelihood BIC
No exposure - - -1497.89  3006.32
Weighted cumulative dose

1knot - 0.419 (3) -1496.47  3019.31

2 knots - 0.53 (4) -1496.3  3024.25

3 knots - 0.529 (5) -1495.82 3028.55
Weighted cumulative duration

1 knot - 0.169 (3) -1495.37  3017.1

2 knots - 0.155 (4) -1494.56 3020.76

3 knots - 0.062 (5) -1492.63 3022.17
Weighted cumulative duration and current dose

1 knot  -0.2759 0.248 (4) -1495.19  3022.01

2 knots -0.5115 0.172 (5) -1494 .03 3024.97

3 knots -0.8349 0.044 (6) -1491 .41 3025.01
Alternative TD models
Indicator of current use -0.0465 0.787 (1) -1497.85  3011.52
Current dose 0.0292 0.919 (1) -1497.88  3011.59
Unweighted cumulative use 0.001 0.676 (1) -1497.8 3011.42
Unweighted cumulative dose 0.0046 0.229 (1) -1497.16  3010.15
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' Table 7-30: Summary of findings for the association between lorazepam use and
fall-related injuries in elderly women- Exposure time window of 60 days

Model  Coefficient LRT p-value (df) Likelihood BIC
No exposure - - -5307.75 10628.45
Weighted cumulative dose

1 knot - 0.264 (3) -5305.77 10643.88

2 knots - 0.35 (4) -5305.54  10649.89

3 knots - 0.118 (5) -5303.37 10652.03
Weighted cumulative duration

1 knot - 0.532 (3) -5306.66  10645.67

2 knots - 0.413 (4) -5305.78  10650.38

3 knots - 0.062 (5) -5302.5 10650.29
Weighted cumulative duration and current dose

1 knot -1.1275 0.03 (4) -5302.41 10643.65

2 knots -1.0546 0.05 (5) -5302.21 10649.72

3 knots -0.8739 0.017 (6) -5300.02 10651.81
Alternative TD models
Indicator of current use -0.1837 0.067 (1) -5306.08  10631.57
Current dose -0.3651 0.059 (1) -5305.97 10631.34
Unweighted cumulative use -2e-04 0.851 (1) -5307.74  10634.89
Unweighted cumulative dose -4e-04 0.871 (1) -5307.74 10634.9

Table 7-31: Summary of findings for the association between lorazepam use and
fall-related injuries in elderly women - Exposure time window of 90 days

Model  Coefficient LRT p-value (df) Likelihood BIC
No exposure - - -5307.75 10628.45
Weighted cumulative dose

1knot - 0.941 (3) -5307.56  10647.47

2 knots - 0.2 (4) -5304.76 10648.35

3 knots - 0.298(5) -5304.71  10654.72
Weighted cumulative duration

1knot - 0.95 (3) -5307.58  10647.51

2 knots - 0.367 (4) -5305.61 10650.04

3 knots - 0.431 (5) -5305.32  10655.93
Weighted cumulative duration and current dose

1 knot  -1.2339 0.022 (4) -5302.02 10642.87

2 knots  -1.1137 0.027 (5) -5301.43 10648.16

3 knots -1.0964 0.05 (6) -5301.45 10654.67
Alternative TD models
Indicator of current use -0.1837 0.067 (1) -5306.08  10631.57
Current dose -0.3651 0.059 (1) -5305.97 10631.34
Unweighted cumulative use -2e-04 0.851 (1) -5307.74  10634.89
Unweighted cumulative dose -4e-04 0.871 (1) -5307.74  10634.9
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Table 7-32: Summary of findings for the association between lorazepam use and
fall-related injuries in elderly women - Exposure time window of 180 days

Model  Coefficient LRT p-value (df) Likelihood BIC
No exposure - - -5307.75 10628.45
Weighted cumulative dose

1 knot - 0.992 (3) -5307.71 10647.77

2 knots - 0.998 (4) -5307.69  10654.21

3 knots - 0.993 (5) -5307.52 10660.33
Weighted cumulative duration

1 knot - 0.523 (3) -5306.63  10645.62

2 knots - 0.68 (4) -5306.6  10652.03

3 knots - 0.814 (5) -5306.63  10658.56
Weighted cumulative duration and current dose

1 knot  -0.958 0.024 (4) -5302.15  10643.12

2 knots -1.1297 0.024 (1) -5301.27 10647.83

3 knots -1.2345 0.036 (1) -5301.03 10653.82
Alternative TD models
Indicator of current use -0.1837 0.067 (1) -5306.08  10631.57
Current dose -0.3651 0.059 (1) -5305.97 10631.34
Unweighted cumulative use -2e-04 0.851 (1) -5307.74  10634.89
Unweighted cumulative dose -4e-04 0.871 (1) -5307.74  10634.9
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CHAPTER 8
Discussion

Exposures that vary over time, both in terms of status and intensity, are fre-
quently encountered in clinical and epidemiological research. While ignoring the
time-varying nature of the exposure may lead to biased estimates of the association
between the exposure and an outcome [7, 8, 9], modelling complex patterns of expo-
sure is a challenging task, partly because the etiological relevance of past exposures
is often unclear [10, 11, 12, 13]. The overall objective of this thesis was to develop a
flexible method to combine the information about the duration, intensity and timing
of exposure into a time-varying summary measure, the weighted cumulative expo-
sure, in the Cox proportional hazards (PH) model [18, 19, 12]. In the WCE method,
a weight function assigns each exposure in the past a weight that represented the
importance of that exposure in explaining the current risk, and the current WCE is
obtained by summing the weighted past exposures up to the current time. | proposed
a novel parametrization of the Cox proportional hazards model with time-dependent
covariates, which allows for a convenient estimation of the weight function using re-
gression cubic B-splines. The flexibility of the cubic regression splines allowed me to
avoid the restrictive assumptions about the functional form of the weight function.

The development of the weighted cumulative dose method presented in manuscript
2 involved several methodological challenges, and some of the proposed solutions,
which may be useful in other flexible modelling applications. First, the proposed
parametrization of the initially non-linear model into a linear model, illustrated how

nonlinear functions of time-dependent covariates, or time-dependent effects [49],
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can be represented by artificial time-dependent variables and estimated with stan-
dard software. Second, manuscript 2 offered a pragmatic solution, adapted from
a different context [159], to perform hypothesis testing conditional on models that
have been selected a posteriori, based on goodness of fit criteria. This addresses a
major problem related to inference about flexible models, where a posteriori selection
of the model complexity, or degree of smoothness, improves the accuracy of the esti-
mates, but, at the same time, invalidates conventional statistical inference [47, 49].
Third, the bootstrap method used to calculate pointwise confidence bands around
the weight function incorporated the uncertainty at the model selection stage, in
addition to the sampling variation of the regression coefficients.

Conceptually speaking, the idea of a time-weighted cumulative exposure metric
is related to that of time-varying coefficients in the PH model, where the con-
stant log HR B is replaced by B(t) [11]. One common application of the general
varying-coefficient models proposed by Hastie and Tibshirani is the Cox PH model, in’
which the coefficients of baseline or fixed-in-time covariates are allowed to changed
smoothly over the follow-up time [170]. This relaxes the assumption of proportional
hazards and estimates how the hazard ratios associated with a given covariate change
over time [31].

In comparison, while regression the coefficient associated with the WCE vari-
able does not depend on time, the estimated weight function provides an indication
of how the risk associated with an exposure changes over time. However, in the
time-varying coefficient model, B(t) is generally multiplied by a baseline or fixed-
in-time exposure, and the model does not incorporate potential cumulative effects.
In contrast, the WCE framework allows to investigate how the effect of past doses
cumulate over time to produce the current risk on a given day, and allows assessing

different importance of past exposures. This is reflected in the calculation of hazard
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ratios associated with specific patterns of exposure, which vary according to both
timing and intensity of past exposures. Extensions of the coefficient-varying Cox
PH model have been suggested to incorporate time-dependant variables but they are
restricted to indicators of one-time change in exposure status [171, 172]. Conse-
quently, in comparison to the models with time-varying coefficients, the proposed
WCE model offers a richer representation of past exposure history, and allows for
both cumulative and time-dependent effects of current and past intensity of exposure
on the hazard.

In manuscript 3, the WCE method was applied to re-assess the association
between exposure to benzodiazepines and fall-related injuries. It provided substantive
evidence that different benzodiazepines had different mechanisms underlying their
association with the risk of fall-related injuries, and supported to the conjecture that
the effects of some benzodiazepines cumulated over time. This application provided
an illustration of potential advantages due to the use of a more precise representation
of exposure than conventional exposure metrics based on current use, current dose,
or indicators of use during specific time windows.

Furthermore, the application of the WCE for the benzodiazepine and fall-related
injuries association also highlighted several features of the WCE model. First, in
manuscript 3, it was showed how the WCE model could be adapted to model cumu-
lative duration of exposure, with or without an additional time-dependent variable
representing the current dose [14]. This proved useful as the best WCE model varied
for different benzodiazepines. In addition, the use of several time windows provided a
way to test the robustness of the estimated weight function. However, the example
for Nitrazepam also illustrated that, in real-life applications with a limited number of

events, it could be difficult to assess whether a more bumpy weight function were
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representing the true underlying, complex mechanism or whether it simply reflected
the overfitting bias.

The application of the WCE method to re-assess the associations between ben-
zodiazepine use and the risk of fall-related injuries also generated programming chal-
lenges, whose solutions might prove useful in future analyses of large datasets. The
database, which spanned over five years of daily data, had to be restructured in a
counting process format where each individual day of follow-up was represented by
a row in the data matrix. Careful programming was required to restrict the com-
putational burden on the computer’s memory. Accordingly, generic programs were
created to partition the data in manageable subsets, in which WCE-related variables
were created, before being subsequently merged together to create a data matrix.
To optimize the estimation of the WCE models, the rows of the data matrix that
corresponded to days when events occurred were extracted to form a smaller data
matrix, on which the models were estimated. This reduced the size of the dataset
considerably, without impacting on the accuracy of the estimation, since the lines
that corresponded to a day on which no event did occur would not appear in any of
the risk sets used to estimate the Cox PH model. While, alternatively, the WCE-
related variables could have been created dynamically at the estimation stage, this
would have required keeping excessively large data matrices in memory. With these
automated approaches, the WCE method ended up being a computationally efficient
alternative approach to nested case control for the analyses of cohort studies.

The WCE model developed in manuscript 2 was validated using simulations.
Since the WCE method was computer-intensive, efficient methods were required to
accurately generate cohorts in which the event times were conditional on complex
time-dependent covariates. This motivated the use of the permutational algorithm

and the development of its extension to include a rejection sample, which significantly
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reduced the computational time. In addition to its ability to generate datasets that,
once analyzed, provided virtually unbiased estimates with small variances, the class
of permutational algorithms allows the user to easily select the marginal distribution
of the event and/or censoring times.

It is important that researchers facilitate the replication of their findings by other
researchers in order to accumulate scientific evidence [173]. One step towards that
is to make the computer code or instructions for the analysis available publicly [173].
In that sense, the commented code for the proposed permutational algorithm and
the code associated with the permutational algorithm and the WCE method will be
publicly available on request and are included in Appendix A and B. Ideally, inte-
grated, dynamic documents that contain text, code, data, and any auxiliary content
needed to recreate the computations would be available [174]. Accordingly, | will
also consider writing a R package for the class of permutational algorithm and for
the WCE models [65].

The validity of the estimates from the WCE model depends on three underlying
assumptions that warrant some discussion, especially in order to guide its use in fu-
ture applications. First, similar to standard Cox proportional models, the proposed
WCE model relies on the assumption of proportionality of hazards (PH) [30]. In our
context, the PH assumption would be violated if two identical patterns of exposure
that occurred at different times were leading to different effects on the risk. For
example, in cohorts with long follow-up, early versus late effects of the same treat-
ment may have different effects because of a change in risk over time, for example,
due to the underlying aging process or disease progression. In the context of our
application, this could occur if the prescribing of benzodiazepines changed over time,
for example, if the tendency to prescribe a given benzodiazepine to individuals who

were suspected to be at a greater risk of falls would become weaker over time.
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Several methods have been proposed to check the PH assumption, ranging from
a visual inspection of the Schoenfeld residuals to many formal tests [175]. All these
methods are either performed on the complete model, or on each of the variables
in the model. This becomes problematic in the case of the WCE model, because
the hazard ratio for the weighted cumulative exposure is not directly estimated, but
constructed from each of the coefficients of the artificial time-dependent covariates
used to represent the exposure. In order to use the available methods to check
the proportionality of hazards assumption | would either need to check each of the
coefficients of the artificial time-dependent covariates, or use a global test of the
proportionality of hazards for the entire model. It remains unclear how the violation of
the proportional hazards assumption by one of the artificial time-dependent variables
used in the WCE model would affect the accuracy of the entire WCE model. Neither
testing each artificial time-dependent covariates coefficients nor the global model
is a completely satisfying approach to test the proportionality of hazards and this
issue needs to be investigated further. This does not affect the results reported in
manuscript 2 since the simulations conducted in manuscript 2 were designed so that
the proportionality of hazards assumptions would hold. If the assumption is violated,
in some cases, an alternative could be to use an accelerated failure time model [176]
or flexible extensions of the PH model that account for time-dependent effects [49].

Second, the WCE model assumes a linear effect of the weighted cumulative dose
on the log hazard for the event. In the case of a non-linear dose-response relationship,
the WCE model may provide biased estimates of the effect and even fail to detect
existing associations. It is unlikely that the results of the use of the WCE model to
re-assess the association between benzodiazepine exposure and fall-related injuries
would be significantly affected by a violation of the linearity assumption. Indeed,

the empirical range of the daily doses of benzodiazepine was restricted to a very few
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values, in most cases corresponding to 0.5, 1 or 2 times the recommended adult daily
dose. However, the linearity assumption may not be plausible in other applications of
the WCE model. As Vacek suggested [12] the weighted cumulative metric may ac-
commodate the assumption of nonlinearity of the effect of the exposure by replacing
the dose X(t) by a smooth dose-response function of the dose g(X(t)). The dose-
response function can be estimated with a flexbile method such as regression splines
but the resulting WCE model is no longer linear in the coefficients to estimate, so
the conventional estimation techniques used in this thesis cannot be used [12, 140].
Still, in future, it may be possible to simultaneously estimate the weight function and
the dose-response effect by using more sophisticated estimation techniques such as
alternative conditional estimation, as described in [177].

Finally, in our analyses, | assumed that there were no time-dependent covariates
that confounded the association between the exposure and the risk of an event.
If the time-dependent exposure is both affected by and affecting a time-dependent
covariate that is also related to the event, then the time-dependent covariate is both
a confounder and an intermediate variable in the pathway between the exposure
and the outcome [178]. Standard adjustment methods will give biased results for
the estimates of the exposure on the hazard because they will also adjust for the
effect of the exposure on the confounder [179]. If a time-dependent predictor of the
risk of an event also predicts subsequent treatments, specialized methods such as
structural equation modelling, estimated with g-estimation can be used [180, 181].
In depth discussions of the problem of time-dependent confounding include Hernan
et al. [182], Robins and Greenland {183] and Robins [184].

Depending on the specific application, it remains unclear to what extent the
WCE model is affected by violations of the assumptions described below. Since

the simulations in manuscripts 1 and 2 were designed to meet these assumptions,
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additional simulations may be needed to check whether the WCE will (or not) be
robust to mild and more severe violations of assumptions.

The use of the WCE model was validated using simulations based on clini-
cally plausible assumptions that resembled general features of the data analyzed in
manuscript 3. However, additional simulations may be required to evaluate the effect
of the following parameters: (i) how the estimates and statistical power would be
affected by the use of the WCE method on a dataset with a markedly smaller number
of events (e.g. < 100); (ii) how the ability of the WCE method to capture the shape
of the weight function would be affected weakening of the exposure effect (e.g. log
hazard for the WCE < 2); (iii) how the WCE method would perform in a case where
the measure of exposure are sparse in time, for example if the method was used on
the biannual assessments of the cardiovascular risk factors in the Framingham cohort
[178].

Furthermore, the interpretation of the results of manuscript 3 must account for
the limitations related with the use of administrative datasets for pharmacoepidemi-
ological studies, such as the potential exposure misclassification due to using pre-
scriptions as a proxy for the actual medication use [163, 169]. In addition, although
our analyses controlled for age, sex, and previous falls, they did not account for other
factors that could have partly confounded the association between benzodiazepine
exposure and falls-related injuries, such as other medication use or co-morbidity [123].

In conclusion, with the underlying assumptions and limitations of the WCE
method in mind, | see various potential applications where it could be used instead
of more conventional models to possibly gain additional insights regarding the effect
of the intensity, duration and timing of exposure on an outcome. Pharmacoepidemi-

ological studies of both therapeutic or adverse events of drugs whose patterns of
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use change over time would likely benefit from using the WCE methods. Alterna-
tively, the WCE method could be used in environmental or occupational epidemiology
studies of the health effects of long-term exposure to poliutants.

Furthermore, the method can be employed to assess the etiological relevance of
risk factor values measured at different times or ages. For example, in cardiovascular
epidemiology there is an ongoing controversy regarding the relative importance of
risk factor values one had in middle life versus in older age [185, 186]. Similarly, the
latency or lag of exposures such as smoking may vary considerably depending on the
outcome [13]. The ability of the proposed method to estimate differential weights
assigned to exposures that occurred at different periods in the past, while avoiding
a priori assumptions about the shape of the weight function, makes it a promissing
tool to address such complex issues.

Additionally, it will be interesting to develop an extension of the WCE model that
allows for non-linear dose-response relationships and to validate this more complex
version of the proposed method with simulations. The extended WCE method could
then be applied to investigate the effect of lifetime patterns of cardiovascular risk
factors, such as blood pressure, on cardiovascular risk, from data sources like the
Framingham study where such variables are measured biannually. Indeed, several
cardiovascular risk factors have been shown to have non-linear effects on the risk of
myocardial infarction [187, 188] or cardiovascular mortality [189]. This application
would warrant additional simulations on the effect of using the WCE on a more
sparse matrix of exposure.

In conclusion, | hope that the implementation of the flexible modelling of the
weighted cumulative dose in the familiar Cox proportional hazards model will motivate

a more widespread use of the recency-weighted cumulative dose metric, provide useful
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‘ insights regarding the mechanisms linking the history of time-dependent exposure

with the risk of events investigated in clinical and epidemiological studies.
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Appendix A - R code for the permutational algorithm

This Appendix contains the code for the permutational algorithm with and with-
out rejection sampling. It is written for a model that uses three fixed-in-time variables,
age, sex, comorbidity, and one TD covariate, bin.exp. It is also written assuming
that the coefficient of the sex variable is negative but that can obviously be easily

changed.

BUUBRBBRER B BB BB R RN VHRBRRARRNRRBERBERBURBBRRBARRRURBRRNBRBBERE BB RB R BB RBRBRRRN
#
# Code for the permutational algorithm and its extension
# Goal is to generate event times conditional on time-dependent covariates
#
BUBHBBRBERBRRBRBRERRB B LB BB BB YRR BRBRRBR BB BB R AR BB R BRRB BN RRBRABRBARBRBR BB RBUNS
#
Author: Marie-Pierre Sylvestre
Department of Epidemiology, Biostatistics and Occupational Health,
McGill University, Montreal, (uebec, Canada.

RUBRBRBBBBBBBBRRBBRBERRBRBRARR BB BRB RV ERBRRERBR BB RBRERRBRARRRERRBRBBRRRARARR RS

This program is meant to be used for non-commercial purposes only.
Please report any problems/ suggestions to Marie-Pierre Sylvestre at:
marie-pierre.sylvestre@mail.mcgill.ca

Please reference the manuscript below 1if the results of this program are
used in any published material.

Sylvestre, MP and Abrahamowicz, M. Comparison of algorithms to generate event
times conditional on time-dependent covariates. Statistics in
Medicine, 2008 (e-print).

#

#

#

#

#

#

#

#

#

#
BRBBBRERRBBHRBHRBRBBRBRB BN RRB R BB BB BB AR B EABARERANBRBBRBRBERAREBRRRB B RRRRBRR R
#

#

#

#

#

#

#

#

BRERB BB BB RN R ER AR RR BB AN RRB RN BB B R RBRRBEABRBEBBRRRBBRBRGERRRERRARB B ERRRBRR#
#

# This file contains two algorithms, PA and PARS for the two models in the
# paper.

#

library{(survival)

BRBBB R R BB R RN R BB BN BB BB BB RRRRRRRBBRBR BB BABBB B AR BRR BB B RBRE BB BRERBRRRRARRERRRHS
334

### Functions

%24
BRBRRRBRBARBRBREBBRBRARRE R BB R R ERBRL LB BRBRBARRBERAR BB ERB GG ARRRRBRARB BB HRRRR

# need to evaluate partial hazard from a given risk set and with given
#parameters AT A GIVEN time t

# covlist is the list of covariates as index in mylist (listed by individual
#then timexvar)

# returns a vector of lengh(ID) with partial.hazard at that time.
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‘ # model 1

partial .hazard.t.matrix <- function(betas,covmatrix,t, idlist ,m){
PH <- vector(length=length(idlist)) # storage vector
for (i in 1:length(idlist)){
id=idlist [i]
ind.data=covmatrix [((id-1)*m+1) : (id*m),]
bin.at.t=ind.datalt,h4]
age=ind.datalt,1]
sex=ind .datal[t,h 2]
comorb=ind.datal[t,3]
PH[i]l=exp(betas[1]*age + betas[2]*sex + betas[3]*comorb +
betas [4] *bin.at.t)
T
return (PH)

# generates a vector according to a given marginal dist’n and round if necessary
# dist is the distribution, par are the parameters, round is the number of
#decimal places when rounding
# returns a vector of simulated values
gen <- function(dist,n,parl,par2,round){

vec=round(dist (n,parl,par2),round)

return(vec)?}

# choose.min
# choosing the minimum of two items in two columns (to put in an apply)
chose.min <- function(vec){

min=min (vec [1], vec([2])

return{(min)}

HUBHBBR R BRRBRR BB BN RBERRRR R RL BB ERRR AR BB BN RHBBRRB BB NRORB BB BB BRBBRBRBR BN YRR Y
f224

### PA Algorithm without Rejection sampling

###

HUBBRBBBBR BB RRB BB LB BB RRABBRBRBRERBRRB YRR BB R BHRRRARBRRR BB LR RBRBRARUBB BB BRR NSRS

# IMPORTANT! In the perm algo with RS, the min max have to be changed according
#to the signs of the true betas!!'!!

# parameters are passed through parms.v

# n is number of subjects, m is the length of follow-up

# H calibrate the random censoring function

# mymatrix is a (n*m) x 5 matrix of predictors of the form cbind(age, sex,
#comorb, bin.exp, time)) where time indexes the follow-up time.

perm.algo <- function(n, m, T.dist, parms.v , H, betas, mymatrix)({

### Step 1: Survival times

T.star <- gen(T.dist, n, parms.v{1,6], parms.v[2,6], 0)

### Step 2: Censoring times

C <- round(runif(n,1,H),0) # I have assume uniform censoring but any other
#distribution can be used.

### Step 3 Sorting
# observed time is the minimum between event time and censoring time

obs.t=apply(cbind(T.star,C),1,chose.min)
# d is a non-censoring indicator that takes value of ! when C>T.star

d=rep(1l,n)
. d{C<T.starl=0
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# id.tuples keeps track of tuples as they were created and before they were
sorted by event time

id.tuples=seq(l,n)

tuples=cbind(obs.t,d,id.tuples)

tuples[,2) (tuples(,1]>m & tuples[,2]1==11=0 # if event after m then censored
tuples{,1]{tuples[,1)}>m]l=m # if obs after m then admin censoring
T.star[T.star>m]=m

obs.t[obs.t>m]l=m

sorted.tuples=tuples[order(tuples(,1]),]
sorted.tuples=data.frame(sorted.tuples)

### Step 4 Pairing

# k is the number of distinct outcome events

# number of similar T.star

# ’unique’ returns a vector, data frame or array like ’x’ but with duplicate
elements removed.

distint.Tstar=sort(unique(T.star))

k=length(distint .Tstar)

# remaining id will be a list of id updates so that people are not chosen twice

’

# starting at earliest observed time... (will put that in a loop)
distinct.obs.t=sort(unique (obs.t))

# how many distinct observed times???

kk=length(distinct.obs.t)

# these are two elements to keep track of who is matched and who is moving in
#and out of risksets or availability

matched.id=c(0,0)

idlist=seq(1l,n) # at first, everybody is in

# we will pair the event with an individual at time ’current time’
# we will have to repeat this step kk times BUT the indexing 1s done over the
#observed times
for (i in 1:kk){
# what is current time
current.time=distinct.obs.t[1i]
current .tuples <- subset(sorted.tuples, sorted.tuples$obs.t==current.time)
# who is in the risk set 7 People still alive and not censored at current time
# still alive
current .risk.set <- subset(sorted.tuples, sorted.tuples$obs.t>current.time)
#### this 1s people at risk + current events
number . tuples=dim(current.tuples) [1]
# to record the selected
selected=vector (length=number.tuples)
for (h in 1:number.tuples) { # we matched every individual who has an event
#now
if (current.tuples$d[h]==1) { # so the person is not censored
# select individual who has a failure at current time from corresponding
#risk set with prob proportional to HR at current time
if (length(idlist)==1) {current.ind=idlist[1]} # if reached end of list
if (length(idlist)!'=1) {
current .PH <- partial.hazard.t.matrix(betas,mymatrix,current.time,
idlist ,m) # NEED NOT SUM TO 1
current .ind <- sample(idlist,1,replace=FALSE, prob=current.PH)
¥
# someone has been chosen so update idlist
idlist=idlist[idlist!=current.ind]
selected[h]l=current.ind
}
if (current.tuples$d{h]==0) {
if (length(idlist)==1) {current.ind=idlist[1]} # if reached end of 1list
if (length(idlist)!=1) {
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# select 1individual who 1s censored at current time by SRS from
#corresponding risk set (since censoring ind of cov)
# so sample from the list
# so I select out of cov (list.id) who have not been matched to tuples yet
#and I do that at current.time
current.ind=sample(idlist ,1, replace=FALSE, prob=NULL)} # current.ind is
#then the id from mylist
# someone has been chosen so update idlist
idlist=idlistf[idlist!=current.ind]
selected [h]=current.ind

}

### so here we have tuples matched with cov.id so we can update the dataset
matched.id=rbind(matched.id, cbind(current.tuples$id.tuples ,hselected))

}

matched.id=data.frame(matched.id)
matched.id=matched.id[-1,] # remove the bogus column
names(matched.id) [1] <- ’tuples.id’

names (matched.id) [2] <- ’cov.id’
ordered.matched.id=matched.id[order(matched.id$tuples.id),]

### Construct the data set
data=matrix{(nrow=m#*n, ncol=13)
info=data.frame(cbind(tuples ,cov.id=ordered.matched.id$cov.id))

ordered.info=info[order(info$cov.id),]

ID
event redundant
censored

data[,1}=RepSeqfun(n,m)
datal[,2]=RepVeqfun(ordered.info$d,m)
data[,3]=RepVeqfun((i-ordered.info$d) ,m)

datal,4]=mymatrix[,1] age
datal,5]=mymatrix[,2] sex
datal,6]=mymatrix[,3] comorbid
data{,7l=mymatrix[,5] time

# R B R R H R W

datal[,8}=RepVeqfun(ordered.info$obs.t,m) obs . time

datal[,8][datal[,7])>datal[,8]]=NA # data[,6][datal[,6]>0]=1
# Change it to 1

datal,8][datafl,8])'=datal[,7]1]=0

datal[,8][datal[,8]>1]=1

dataf,9]=datal,8] # event.time

datal,9]}[datal,3]==11=0

data[,10]=RepVeqfun(ordered.info$obs.t,m)

datal[,11)=mymatrix[,4] # bin

datal,12)=datal,7]-1 #

datal,13]=datal,7]

data=data.frame(data)

data=subset(data,is.na(datal[,8])==FALSE) # delete what happens after censoring

or event time

names (data) <- c(’id’, ’event’, ’censored’, ’age’, ’sex’, ’comorb’,
’time’, ’obs.time’, ’event.time’, ’fu.time’, ’bin.exp’, ’start’ ’stop’)

dd <- subset(data, data$time==1)
ne <- sum{dd$event)
nc <- sum(dd$censored)

# returns a list with the data set, the number of events and the number of

subjects censored.
return(list(data = data, ne=ne, nc=nc))}

191



HEBERB R RERAN R R G RB R R BB B BB R BB R BB R BB BB R R R R BB BB R RO RBA AR B RR R R R R R4 #
#H#

### Algorithm with Rejection sampling

224

HERBRB R R R R R VAN BB LB R R RRRRARRRBRB BB BB BB R RRRB R B BB RARB B BB RRRRN NV RR R R R B R B H

# Replace Step 4 in the previous function by the following:
### Step 4 Pairing with rejection sampling

elements removed.
distint.Tstar=sort(unique(T.star))
k=length(distint.Tstar)
distinct.obs.t=sort(unique(obs.t))
kk=length(distinct.obs.t)

matched.id=c(0,0)

idlist=seq(l,n) # at first, everybody is in

# we will pair the event with an individual at time ’current time’
# we will have to repeat this step kk times BUT the indexing is done over the
# observed times!!!

count <- 0
# theoritical max 1is for someone who would have been exposed all the time but
#this is WAY too high!
#max.h <-
exp(betas[1] *max(mymatrix[,1])+betas[2]+betas [3]1*max(mymatrix[,3])+betas (4] +
betas [5] *seq(1,m))
fixed <- subset(mymatrix, mymatrix([,5}==1)
maxl <- max{(fixed[,1])
max2 <- min(fixed[,2])####s#n### because beta2 is negative!
max3 <- max(fixed[,3])
which.max1 <- which.max(fixed[,1])
which.max2 <- which.min(fixed[,2])#######44## because beta2 is negative!
which.max3 <- which.max(fixed[,3])

if (betas[4]1>0) current.max.h <-
exp(betas[1]*maxl+betas[2] *max2+betas [3]*max3+betas[4]*(1)) else current.max.h
<- exp(betas[i]*maxi+betas[2]*max2+betas[3]*max3+betas[4]*(0))

for (i in 1:kk){
# what is current time
current .time=distinct.obs.t[i]

current.tuples <- subset(sorted.tuples, sorted.tuples$obs.t==current.time)
# who is in the risk set 7 People still alive and not censored at current tinme
# still alive
current.risk.set <- subset(sorted.tuples, sorted.tuples$obs.t>current.time)
#### this is people at risk + current events
number .tuples=dim(current.tuples) [1]
# to record the selected
selected=vector(length=number.tuples)
for (h in 1l:number.tuples) { # we matched every individual who has an event
#now
if (current.tuples$dfhl==1) { # so the person is not censored
# select individual who has a failure at current time from corresponding
risk set with prob proportional to HR at current time
if (length(idlist)==1) {current.ind=idlist{1]} # if reached end of list
flag <- 0
if (length(idlist)!=1) {
while(flag<1){
U <- runif(1)
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X <- sample(idlist,h1)

if (U <= exp(betas[1)*(mymatrix[(m*(X-1)+current.time) ,1]) +
betas[2] *(mymatrix [(m*(X-1)+current.time) ,2]) +
betas [3] *(mymatrix [(m*(X-1)+current.time) ,3]) +
betas [4]*(mymatrix [(m*(X-1)+current.time) ,4})) / current.max.h)

current.ind <- X
flag <- 1 }

if (U > exp(betas[l)*(mymatrix[(m*(X-1)+current.time),1]) +
betas [2] * (mymatrix [(m*(X-1)+current.time) ,2]) +
betas [3]*(mymatrix [(m*(X-1)+current.time) ,3]) +
betas [4] * (mymatrix [(m*(X-1)+current.time) ,4]1)) /
current .max.h){
count <- count+1}

}
# someone has been chosen so update idlist
idlist=idlist[idlist!=current.ind]
selected[h]l=current.ind
# IF necessary, modify max
if (current.ind == which.max1) {
# choisir dans ce qui reste
maxl <- max(fixed[idlist ,1])
which .max1l <- which.max(fixed[idlist ,11)
if (betas[4]>0) current.max.h <-
exp(betas[i]*maxl+betas [2] *max2+betas [3] *max3+betas[4]*(1)) else current.max.h
<- exp(betas[1]*maxl+betas[2]*max2+betas[3]*max3+betas[4]1*(0))}
if (current.ind == which.max2) {
# choisir dans ce qui reste
max2 <- min(fixed[idlist ,2]) H###AARRBAARRELR Decause betal is
#negative!!!
which.max2 <- which.min(fixed[idlist ,h2]})
if (betas[41>0) current.max.h <-
exp(betas[1] *maxi+betas[2] *max2+betas [3] *max3+betas[4]*(1)) else current.max.h
<- exp(betas[1]*maxl+betas[2] *max2+betas[3]*max3+betas[4]*(0))}
if (current.ind == max1) {
# choisir dans ce qui reste
max3 <- max(fixed[idlist ,b3])
which.max3 <- which.max(fixed[idlist,b3])
if (betas[4]>0) current.max.h <-
exp (betas[1]*maxi+betas [2] *max2+betas [3] *max3+betas [4]*(1)) else current.max.h
<- exp(betas([1] *maxl+betas[2]*max2+betas[3]*max3+betas[4]*(0))

}
} #END OF IF NOT CENSORED

if (current.tuples$d[h]l==0) {
if (length(idlist)==1) {current.ind=idlist[1]} # if reached end of list
if (length(idlist)!=1) {
# select individual who is censored at current time by SRS from
#corresponding risk set (since censoring ind of cov)
# so sample from the list
# so I select out of cov (list.id) who have not been matched to tuples yet
#and I do that at current.time
current.ind=sample(idlist ,1, replace=FALSE, prob=NULL)} # current.ind is
#then the id from mylist
# someone has been chosen so update idlist
idlist=idlist[idlist!=current.ind]
selected{h]}=current.ind
# IF necessary, modify max
if (current.ind == which.max1) {
# choisir dans ce qui reste
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maxl <- max{fixed[idlist ,1])

which.max1l <- which.max(fixed[idlist , 1])

if (betas[4]>0) current.max.h <-
exp(betas[1]*maxl+betas [2] *max2+betas[3] *max3+betas[4]*(1)) else current
<- exp(betas[1]*maxl+betas [2]*max2+betas[3] *max3+betas[4]*(0))}

if (current.ind == which.max2) {

# choisir dans ce qui reste

max2 <- min(fixed[idlist ,2]) ##HAAARABRRRARH bDecause betal is
#negativel!!

which.max2 <- which.min(fixed[idlist ,2]) ####xus#ssns#tst# because
#is negativel!!

if (betas[4]1>0) current.max.h <-

exp(betas{1]*maxl+betas [2] *max2+betas[3] *max3+betas[4]*(1)) else current.

<- exp(betas[l1]+*maxl+betas[2]*max2+betas[3]+*max3+betas[4]1*(0))}
if (current.ind == max1l) {

# choisir dans ce qui reste

max3 <- max(fixed[idlist ,3])

which.max3 <~ which.max(fixed[idlist ,b3])

if (betas[4]>0) current.max.h <-
exp(betas (1]} *maxl+betas [2] *max2+betas[3] *max3+betas[4]1*(1)) else current
<- exp(betas[1]*maxl+betas[2]*max2+betas[3]*max3+betas[4]*(0))}

}
}

.max.h

beta2

max .h

.max.h

### so here we have tuples matched with cov.id so we can update the dataset

matched.id=rbind(matched.id,cbind(current.tuples$id.tuples,hselected))
}

matched.id=data.frame(matched.id)
matched.id=matched.id[-1,] # remove the bogus column

names (matched.id) [1] <- ’tuples.id’

names (matched.id) [2] <- ’cov.id’
ordered.matched.id=matched.id[order(matched.id$tuples.id),]
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Appendix B - R code for the WCE model

This Appendix contains the code for the WCE model for the manuscript 3. Its
input is a dataset in the counting process format that contains the variables: id, sex,
age, injury at baseline (labelled as comorb), dose, fu.time, event.time, start, stop.
If individual / had an event, then for this individual, event.time=1 on the day of the
event and event.time = 0 otherwise.

HUBR AR RER AR BB R BB RN R R RRA RN R BB BB R U BB B R BR AR BB B BB ERHRUBR BB L RRERRBRB R RBRR R
#
# Code for the WCE models
#
HURERRERBRRBERBL R RR BB R B BHRRBRBRBRRRBRBRRRARRNB B R BB R BB R BRERBRRB BB B RRRRR R Y
#
Author: Marie-Pierre Sylvestre
Department of Epidemiology, Biostatistics and (Occupational Health,
McGill University, Montreal, Quebec, Canada.

BHERL R R R R RRARBNN BB R BB RBRRBBRRRAR BN BB RN R B R R RV R R LR R BB R BB RERRRBR BB BB R R RR Y

This program is meant to be used for non-commercial purposes only.
Please report any problems/ suggestions to Marie-Pierre Sylvestre at:
marie-pierre. sylvestre@mail.mcgill.ca

HBHARBBRRRRBRBEBBRBBRB RN BRARBE RN BB B RBRRBERB R BRRVGRRR BB RBRRHBBRRRBARBERARBERARR

Please reference the manuscript below if the results of this program are
used in any published material.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
# Sylvestre, MP and Abrahamowicz, Flexible modelling of the cumulative effects
# of time-dependent exposures on the hazard (unpublished)

#

#

HURRB R R R R RRRBNN N BB R B BB G R H BB R AR BB RA N BN DR R RNRRV RN NRR N RN RRR

library(splines)
library(survey)

# functions required:

# equidistant interior knots
period.
knots.equi <- function(n.knots, m){
if (n.knots==1){ f <- round(quantile(seq(1,m),seq(0,1,
by=1/(n.knots+1))) ,0) [2]}
if (n.knots>1){
f <- round(quantile(seq(1l,m),seq(0,1, by=1/{(n.knots+1))),0) [-11}
return(f[1:(length(£)-1)1)}

# adding the outter knots
augm.knots <- function{(inner, f.up){

return(c(-3,-2,-1,0, inner, f.up,(f.up+1), (f.up+2), (f.up+3)))}

# Functions for spline modelling
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# start by calculating Dj(t) for 1 j for 1 individual and for 1 t
DForiForit <- function(vec, ColBmatrix,t){

elt <- sum(ColBmatrix[1:t]*rev(vec[1:t]))# this parts
return(elt)}

# repeat for all t

# need to apply this to all t of a vec

DForl <- function{(vec, ColBmatrix){

u <- length(vec)

whatever <~ unlist(lapply(l:u, function(i) DForiForilt(vec, ColBmatrix, i)))
return(whatever)}

# repeat for all D’s

Al1lD <- function(vec, Bmatrix)({
return(matrix(unlist(lapply(l:dim(Bmatrix) [2], function(i) DForil(vec,
Bmatrix[,i]))), ncol=dim(Bmatrix)[2], byrow=FALSE))}

# repeat for all individuals

BuildD <- function(n, Bmatrix, data)({

beg <- index.beg(data)

end <- index.end(data)

return(do.call("rbind", lapply{(l:n, function(i) AllD(data$doselbeglil:end(il],
Bmatrix))))}

# have the list of lengths
uGet <- function(data){
return(subset (data, data$start==0)$fu.time)}

# have the list of indexes

index.beg <- function(data){

u <- c(0, uGet(data)[1l:(length(uGet(data))-1)1)
beg <- cumsum(u)+1

return(beg)}

index.end <- function(data){
end <- index.beg(data)+ uGet(data)-1
return(end)}
# BIC
my.bic <- function(mod, n.events){
bic <- -2*(mod$loglik{2]}) + length(coef(mod)) * log(n.events)
return(bic)}
# LRT
LRT .exp <- function(model,null ){
LRT <- -2*null$loglik[2] + 2*model$loglik[2]
df <- length(model$coefficients)-length(null$coefficients)
cat("\n" ,"LRT: ", LRT, " with ", df, " p-val ", (1-pchisq(LRT, df)),”\n")

HRERBUBEBRBBL YRR R R R R U BRBBRARR BB BB R RRB N BB BB BB VBB RR AR RRBRBRBRARRBRRBRR AR RUB Y
# input data

# benzo name
b.name <- "Alpra"
cutoff <- 60

dir.create(paste("/home/mariepierre/PhD/Thesis/Splines/Benzo", b.name,
"Results", sep="/"), showWarnings = TRUE, recursive = FALSE)
dir.create(paste("/home/mariepierre/PhD/Thesis/Splines/Benzo", b.name,

"Results", paste("Cutoff", cutoff, sep=""), sep="/"), showWarnings = TRUE,
recursive = FALSE)

# dir
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input.dir <- paste("/home/mariepierre/PhD/Thesis/Splines/Benzo", b.name,
sep="/")

output.dir <- paste("/home/mariepierre/PhD/Thesis/Splines/Benzo", b.name,
"Results", paste("Cutoff", cutoff, sep=""), sep="/")

# input data set in the counting process format
load(paste(input.dir, "data.RData", sep="/"))

n <- length(unique(data$id))

n.event <- sum(subset(data, data$event.time==1)$event)
m <- max(data$fu.time)

BRAARRBARRBBBRRRRB R R BB B RGR BB R B ERBRBRBRBRBRRRRRRRRRERERR LB BB BB BB G R BB R Y28t %

# calculate the b-spline basis

kevl <- augm.knots(knots.equi(l, cutoff), cutoff)
Bbasis <- splineDesign (knots = kevl, x = 1l:cutoff, ord=4)

Bmatrixl <- rbind(Bbasis, matrix(0, ncol=dim(Bbasis) [2], nrow=m-dim(Bbasis) [1]))

kev2 <- augm.knots(knots.equi(2, cutoff), cutoff)
Bbasis <- splineDesign(knots = kev2, x = l:cutoff, ord=4)

Bmatrix2 <- rbind(Bbasis, matrix(0, ncol=dim(Bbasis)[2], nrow=m-dim(Bbasis) [1]))

kev3 <- augm.knots(knots.equi(3, cutoff), cutoff)
Bbasis <- splineDesign {(knots = kev3, x = l:cutoff, ord=4)

Bmatrix3 <- rbind(Bbasis, matrix(0, ncol=dim(Bbasis)[2], nrow=m-dim(Bbasis) [1]))

#split data in manageable chunks

last.id <- data$id[dim(data) [1]]
max.size <- round(last.id/12)
iter <- 12

i.beg <- rep(0,iter)
i.end <- rep(0,iter)

block <- rep(0, dim(data)[1])

for (i in 1:iter) {
i.begl[i] <- (i-1)*max.size + 1
i.end[i] <- i.begli] + max.size
if (i.end[i] > last.id) i.end[i] <- last.id
first <- which(data$id==1i.begl(i]) [1]
lala <- which(data$id==i.end[i])
last <- lala[length(lala)]
block[first:last] <- i}

block[block==0] <- iter
data$block <- block

split.data <- split(data, data$block)

rm(data)

save(split.data, file = paste(input.dir, "splitdata.RData", sep="/"))
rm(split.data)

# evaluate the D variables on each chunk and save
partDl <- function(i, output.dir, Bmatrix){
load{(paste(input.dir, "splitdata.RData", sep="/"))
data <- split.datal([i]]
rm(split.data)
n <- length(unique(data$id))
gc ()
assign(paste("D1", i,sep=""), data.frame(BuildD(n, Bmatrix, data))})
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save(list=paste("D1", i,sep=""), file=paste(output.dir, "/","D1", i," RData",
sep=""))
rm(list=paste("D1", i,sep=""))
gc O
}
partD2 <- function(i, output.dir, Bmatrix){
load(paste(input.dir, "splitdata.RData", sep="/"))
data <- split.datal[i]]
rm(split.data)
n <- length(unique(data$id))
gc ()
assign(paste("D2", i,sep=""), data.frame(BuildD(n, Bmatrix, data)))
save(list=paste("D2", i,sep=""), file=paste(output.dir, "/","D2", i,".RData",
sep=""))
rm(list=paste("D2", i,sep=""))
gc O
}
partD3 <- function(i, output.dir, Bmatrix){
load(paste(input.dir, "splitdata.RData”, sep="/"))
data <- split.datal[i]]
rm(split.data)
n <- length(unique(data$id))
gc )
assign(paste("D3", i,sep=""), data.frame(BuildD(n, Bmatrix, data)))
save{(list=paste("D3", i,sep=""), file=paste(output.dir, "/","D3", i,".RData",
sep=""))
rm(list=paste("D3", i,sep=""))
gc O
}
for (i in 1:iter){
gc O
partD1(i, output.dir, Bmatrixi)
partD2(i, output.dir, Bmatrix2)
partD3(i, output.dir, Bmatrix3)
#partD4 (i, output.dir, Bmatrix4)
gcO)
¥

# put it all together now

load(paste(output.dir, "/","D1", 1," RData", sep=""))
D1 <- D11

for (i in 2:iter){

load(paste(output.dir, "/","D1", i,".RData", sep=""))

D1 <- rbind(D1,get(paste("D1", i, sep="")))
rm{(list=paste(”D1”, i, sep=""))

gc )

}

save(D1, file=paste(output.dir, "/","D1.RData", sep=""))
rm(D1)

load(paste(output.dir, "/","D2", 1,".RData", sep=""))

D2 <- D21

for (i im 2:iter){

load(paste(output.dir, "/","D2", i," RData", sep=""))

D2 <- rbind(D2,get(paste("D2", i, sep="")))
rm(list=paste("D2", i, sep=""))

gc )

}

save(D2, file=paste(output.dir, "/","D2.RData", sep=""))
rm{(D2)

load(paste(output.dir, "/","D3", 1,".RData", sep=""))
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b3 <- D31

for (i in 2:iter){

load(paste(output.dir, "/","D3", i,".RData", sep=""))

D3 <- rbind(D3,get(paste("D3", i, sep="")))

rm(list=paste("D3", i, sep=""))

gc ()

}

save(D3, file=paste(output.dir, "/","D3.RData", sep=""))

rm(D3)

load(paste(input.dir, "data.RData", sep="/"))

# deal with hospitalization (Benzo-relate issue - not required for other WCE
# applications

# When people are hospitalized, and 15 dats after their hospitalizations, they
# are not considered at risk, so they

# should *not*x be in any risk set. Now that the variables have all been

# computed, I will simply remove the lines.

AddNA <- function(vec){

if (length(vec)>14){

for (i in (length(vec)-14):1 ){

if (is.na(vec[i])==
}}

return(vec)}

TRUE){ vec[i:(i+14)] <- NA}

data$hosp <- unlist(sapply(split(data$old.dose,data$id) ,h AddNA))

save(data,

# Now back to WCE

file= paste(input.dir,

"dataNA.RData", sep="/"))

# Remove lines that do not enter any risk set

load(paste(input.dir,
# event times

"dataNA.RData",

sep=”/“))

e.time <- sort(unique(data$fu.time[data$event.time==1]))

# remove from dataset

flag <- rep(0, dim(data)[1])
flagldata$stop %in¥% e.timel=1
NEWDATA <- dataf[flag==1,]
save (NEWDATA , file =
rm(NEWDATA)

rm(data)

gec )

# remove from D
load(paste(output.dir,
names (D1) <- paste("D1",

paste(output .dir,

"D1.RData",
1:dim(D1) [2],

"NEWDATA .RData", sep="/"))

sep=”/"))
sep="")

sumD <- apply(Di,2,sum, na.rm=TRUE)

D1 <- D1[, which(sumD>0) [1]:
NEWD <- Di[flag==1,]

# merge data and D

load(paste(output.dir, "NEWDATA.
newdatal <- cbind(NEWDATA, NEWD)
rm (NEWDATA)

rm (NEWD)

ge()

which(sumD>0) [length(sumD [sunD>0])]]

RData", sep="/"))

newdatal <- subset(newdatal,is.na(newdatal$hosp)==FALSE)

save{(newdatal, file =
rm(newdatal)

rm(D1)

paste(output.dir,

"newdatal.RData", sep="/"))
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gc O

load(paste(output.dir,
names (D2)

D2 <- D2[,
NEWD <- D2[flag==1,]

load(paste(output.dir,
newdata2 <-
rm (NEWDATA)
rm(NEWD)
gcO)

<- paste("D2",
sumD <- apply(D2,2,sum,
which(sumD>0) [1]:

cbind (NEWDATA ,

"D2.RData",
1:dim(D2) [2],
na.rm=TRUE)

"NEWDATA .RData",
NEWD)

sep="/"))
Sepznn)

sep=“/"))

newdata2 <- subset(newdata2,is.na(newdata2$hosp)==FALSE)

file =

save(newdata?2,
rm(newdata?2)
rm(D2)

gec )

load(paste(output.dir,

names (D3) <- paste("D3",
sumD <- apply(D3,2,sum,
which(sumD>0) [1]:

D3 <- D3[,
NEWD <- D3[flag==1,]

load(paste(output.dir,
newdata3 <-
rm (NEWDATA)
rm (NEWD)
gc )

cbind (NEWDATA ,

paste{output .dir,

"D3.RData",
1:dim(D3) [2],
na.rm=TRUE)

"NEWDATA .RData",
NEWD)

"newdata2.RData",

sep="/”))
sep="")

Sep:n/n))

newdata3 <- subset(newdata3,is.na(newdata3$hosp)==FALSE)

save(newdata3, file =
rm(newdata3)
rm(D3)

gc )

# Estimation

load(paste(output.dir,
load(paste(output.dir,
load(paste(output.dir,

DVAR1 <- c("D11","D12",
DVAR2 <- c("D21","D22",
DVAR3 <- c("D31","D32"

newdata <-

rm{(newdatal)
rm(newdata?2)
rm{newdata3)
gc )

# Formulas

cbind (newdatal,

paste(output.dir,

"newdata3.RData",

"newdatal.RData", sep="/"))
"newdata2.RData", sep="/"))
"newdata3.RData", sep="/"))
"D13")

"D23", "D24")

,"D33","D34", "D35")

newdata2[,DVAR2],

formulal<- as.formula(paste("Surv(start,
+ cluster(id)+", paste(DVAR1l, collapse=
formula2<- as.formula(paste("Surv(start,
+ cluster(id)+", paste(DVAR2, collapse=
formula3<- as.formula(paste("Surv(start,
+ cluster (id)+", paste(DVAR3, collapse=
formula5<- as.formula("Surv(start, stop,
cluster(id)+ bin")

formulab<-

as.formula("Surv(start, stop,

stop, event.time)
II+II)))
stop, event.time)
n+u)))
stop, event.time)
l|+n)))
event .time) ~ sex
event.time) ~ sex
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which(sumD>0) [length(sumD[sumD>0])]}]

sep="/"))

which(sumD>0) [length(sumD [sumD>0])]]

sep="/"))

newdata3[,DVAR3])

sex

seXx

sex

age

age

age + comorb
age + comorb
age + comorb
comorb +

comorb +



cluster(id)+ dose")

formula7<- as.formula("Surv(start, stop, event.time) ~ sex + age + comorb +
cluster (id)+ cum")

formula9<- as.formula("Surv(start, stop, event.time)
cluster(id)+ cum.dose™)

sex + age + comorb +

# Cox models

coxl <- coxph(formulal, data=newdata, method="efron", singular.ok=TRUE,
robust=TRUE, model=FALSE, x=FALSE, y=TRUE, iter.max =20, eps=1le-04)
cox2 <- coxph(formula2, data=newdata, method="efron", singular.ok=TRUE,
robust=TRUE, model=FALSE, x=FALSE, y=TRUE, iter.max =20, eps=1e-04)
cox3 <- coxph(formula3d, data=newdata, method="efron", singular.ok=TRUE,
robust=TRUE, model=FALSE, x=FALSE, y=TRUE, iter.max =20, eps=le-04)
coxb5 <- coxph(formulab, data=newdata, method="efron", singular.ok=TRUE,
robust=TRUE, model=FALSE, x=FALSE, y=TRUE, iter.max =20, eps=1e-04)
cox6 <~ coxph(formula6, data=newdata, method="efron", singular.ok=TRUE,
robust=TRUE, model=FALSE, x=FALSE, y=TRUE, iter.max =20, eps=1e-04)
cox7 <- coxph(formula7, data=newdata, method="efron", singular.ok=TRUE,
robust=TRUE, model=FALSE, x=FALSE, y=TRUE, iter.max =20, eps=1e-04)
cox9 <- coxph(formula9, data=newdata, method="efron", singular.ok=TRUE,

robust=TRUE, model=FALSE, x=FALSE, y=TRUE, iter .max =20, eps=1e-04)
null .mod <~ coxph(Surv(start, stop, event.time) ~ sex + age + comorb +

cluster(id), data=newdata, method="efron", singular.ok=TRUE, robust=TRUE,
model=FALSE, x=FALSE, y=TRUE, iter .max =20, eps=1e-04)
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