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1. Introduction

The theory of affine connections is, roughly
speaking, a generalization of certain concepts of par-
allelism and differentiation defined in plane differ-
ential geometry, to the differential geometry of surfaces,
and, more generally, to the geometry of differentiable
manifolds. It is the purpose of this essay to relate the
various stages of this generalization, and to present the
essentials of the classical theory of affine connections

on a differentiable manifold.

2. Affine Connections on Surfaces in Three-Dimensional

Euclidean Space

2.1 Surfaces

In classical differential geometry, a surface
(strictly, a portion of a surface) is defined as a Ck
homeomorphism X of an open connected subset of the

Cartesian plane into Euclidean 3-space, denoted by E3 .



By a Ck mapping is meant, as usual, a mapping whose first
k derivatives (partial, or ordinary) are continuous; we
shall assume when speaking of Ck mappings, that k is large
enough to make the discussion meaningful, say, k > 3.
In terms of the homeomorphism X, where X represents the
position vector of any point of the surface, the equation
of the surface may be written as

X= i(ul,uz) = (xl(ul,uz), xz(ul,uz), x3(ul,u2)),

where ul,u2

are coordinates in the plane. If to the surface
we now adjoin the class of "allowable" coordinate trans-
formations, the surface becomes a two-dimensional diff-
erentiable manifold.

A curve C on the surface is a ck homeomorphism
of an open subset (a,b) of the real line into the surface,
gso that as a function of a parameter t, t € (a,b),the curve
may be represented by Xx(t) = i(ul(t),uz(t)).

The tangent at any point ug = ui(to) , i=1,2,

of the curve has the direction of the vector

X' = dx = iiui' (summation),
at |t=t
o
where ii = 93X . This vector is visualized
dut uizu;

as pointing into the space E3 in which the surface is

imbedded; furthermore, we may think of attaching to each

i

point ug of the surface a two-dimensional vector space

called the tangent plane, and spanned by the vectors 21’22 :



geometrically, this is the plane tangent to the surface.
A rule which assigns to each point ui of the surface a

iii is called a vector field ; if a tangent

tangent vector v
vector is defined at each point on a curve C, it is called

a vector field along the curve C.

2.2 Parallelism in the Plane and in Surfaces

In particular, we now consider a vector field
v(t) = iivi(t) defined along the curve C: wt = ui(t) in
the plane, which can be considered as the surface

i(ul,uz) = (ul,uZ,O) .
The vector field v(t) is called a field of (geodesically*)
parallel vectors (also, a parallel field of vectors) if
each vector of the field can be obtained from every other
vector of the field by a displacement; that is , for all
t, vi(t) = vi(to), where t  is some fixed value of the
parameter t . Equivalently, the field is parallel iff
V' = 0 , where as usual, ' denotes the derivative with

respect to t . This definition is of course motivated by
the well known properties of parallelism in the plane.
For example, for any two values tl,t2 of t, the vectors
vi(tl) and vi(tz) make equal angles with the geodesic
(that is, with the straight line) joining ui(tl) with ui(tz).

It is obvious that the above definition of par-

allelism is inadequate for vector fields on an arbitrary

* Laugwitz,page 48.



surface,since the coincidence of the tangent planes at all
points of a surface is a unique property of the plane.
Accordingly, the following definition of parallelism of
a vector field on a surface was proposed by Levi~Civita:
Definition 1
Let C: i(ui(t)) be a curve on the surface
% = %(ul), and ¥(t) a vector field along C. The field ¥(t)
is called (geodesically) parallel (with respect to the curve

xi.?' =0, i=1, 2; that is, iff the component of

V' in the tangent plane vanishes. Here "." denotes the inner

C) iff

product.

This definition will be shown in what follows
to have the essential properties of parallelism present
in the corresponding definition for the plane.

Theorem 1

Geodesic parallelism of vector fields is an in-
trinsic property of surfaces.

Proof: By definition, the vector field ¥(t) = X JvJ(t) is
parallel along C iff
0 = ii.(ijvj(t))' = ii.i'jkuk-vj + ’ii.'ijvj' ,i=1, 2
that is, iff

gyyv)' + [aed urvd = 0 (1)
where 8y = ii'ij denotes the metric tensor of the
surface, and bki] is the Christoffel symbol ofithe first
I E‘J‘*)
The result then follows by virtue of the fact that

kind, defined by [jki] =

* Kreyszig, page 148.
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and by the definition of "intrinsic" property.
By taking the inner product of equation (1)

with gih, we obtain the more convenient condition for
parallelism:
h h Y} k, Jj
v+ {j k}u wd =0 (2)
with

ijhk} = g'® [jki], the Christoffel symbols of the
second kind. As will be seen in the following, the Christ-
offel symbols of the second kind constitute the components
of an (unique in a certain sense) affine connection in the
Riemannian space determined by the metric tensor of the
surface. We first complete the analogy with parallelism
in the plane by means of the following theorem:

Theorem 2

If C: ui(t) is a curve on the surface X = i(ui)
and ai(t), bi(t) are fields of parallel vectors along C,
then 1) the lengths of the ai(t) are constant along C,

2) the angle between ai(t) and bi(t) is constant

along C.
. d i, j
Proof: Consider __( g, 48 bY)
dat
o8, ;
= iJ uk'albj + gijai'bj + g..aibj' .

duk +

i h

Using (2) with a 1, o0 for v, we have,as a consequence

of the parallelism of ai and bj,
i, _ iy k, n J Jl.ken
a ' = -{k n}u 'a and DbY' = '{k nsu 'd



Substituting these expressions, we get

Y- A .
d ij ij .k, 1i.3J i k n J
(gija bY) = - u 'a’d '{k ABu ' a gijb

dat ou

~{i a0 g

38; 4

duk

- {1} &a; _{kmj}gim utrated

after renaming summation indices. Thus,

2 (gijaibj) = bgij - [k1d - k4] walpd a0,

dt du

R

since differentiation of the identity 8ij = ‘i‘i%

LTS

shows that 1J =[ki;j] + [k:ji] (cf. the proof of
k
du

theorem 1 ).
As a result, the theorem is proved, since

1) the length of the vector at(t) is defined to be

(iiai).(ESaj) = gijaiaj, while

2) the angle @ between a® and bJ can be shown to be given
by the expression*

i Jj
g..8°b
cos 8 = ij

\ " et

Corollary
If ai(t) is a parallel vector field defined

* Kreyszig, page 110.



along a geodesic ‘C: ui(t), the angle between the tangent
vector to C at any point ui(t),and ai(t) is constant along C.
Proof: This follows at once from the fact that the tangent
vectors to a geodesic C form a parallel vector field . For,
the geodesics satisfy the equation ui" +{j1k}uj'uk' = 0,

and the tangent to the curve i(ui(t)) is X' = ;iui'(t) ;

ie, it is the vector field with components ui'.

2.3 Summary

The preseding section has shown that the defini-
tion of parallelism for surfaces given by Levi-Civite
has the essential properties of parallelism in the plane.
Furthermore, the corollary to theorem 2 has strengthened
the analogy between geodesics on surfaces and straight
lines in the plane: the tangent vectors of both types of
curve are geodesically parallel. In the next section we
define affine connections on a differentiable manifold,
and thereafter show how the Christoffel symbols furnish
such a connection on a surface seen as a differentiable

manifold.

3. Affine Connections on & Differentiable Manifold

3.1 Notation
In the following, M is a differentiable manifold
of class Ck ; this means that the charts at each p¢M are

related by coordinate transformations of class Ck.



If § , § are charts at a point p €M,

)] tUy—=Wy C B

] iUg—=Wg C B
then, as any point of W¢ can be represented by an n-tuple
(x],‘..,xn) , if qu¢ and (xl,...,xn) = P(q), (xl,...,xn)
are called the coordinates of q in the chart @. By def-
inition (of differentiable manifold), the mappings given
by (xl,...,xn) =g ﬁ-l(il,...,'x'n)

(&,...,3) = p g, ... 2

are differentiable of class Ck; they will be denoted
henceforth in the abbreviated form x* = xi(ij), i 'ii(xj Ye

In this notation, by definition,

det ( ax* );é 0
P

%9
3.2 The Tangent Space, and Tensor Fields

For completeness, we briefly review some of the
definitions regarding tangent spaces and tensor fields on M.
(1) AC® curve (m £ k) C in M is a mapping © :(a,b)-=M
such that for all t € (a,b) and for all charts § at 6(t),



g @ is C™. C is a curve through the point ©(t) for all

t € (a,b). When we identify the point ©(t) with ites coord-
inates, (xl,...,xn) =P o(t), we abbreviate the notation
for C to C: xi(t).

(ii) A function f: M—sReals is differentiable (of class
c¥) at a point p € M iff for all charts @ at p, § £ is CX
at p. Again, if p is identified with its coordinates, we
write f(xi) instead of f(p).

(iii) Let Dp be the class of differentiable functions at
p, and ¢,xi a chart at p. If C: xi(t) is a C® curve
through p, with g(p) = xi(to), the tangent vector to C

at p is the operator L: D;—-Reals defined by L = 2,

i
with ax
i) =t 2f| = & 2o
3x"|p dt t=t
i dxi
and L~ = « It can be shown that the set of
dt t=to

operators so defined form a vector space of dimension n,
called the tangent space Tp at p*. Furthermore, the tangent
vectors _9 to the n curves defined by

3x*

C. : xt(t) = xi(to) + (t-to)S‘i , k=1,...,n,

k
form a basis for this vector space; hence, any tangent
vector L at p (ie, any LeTp) can be represented (in the

chart §,x') as the sum L = L(x}) _d_ . Note that each
ox"

* Cohn, page 1l.



10
xi is a differentiable function on the coordinate neigh-
borhood U¢ .
(iv) An important consequence of the above definitions is
that a coordinate transformation xi—a-ii at p induces the

linear transformation =T defined by

¥ = dx* .9 , as follows
oz 358 p ox

from (iii) . This is important, because if T is an (r,s)
i....1

tensor*, represented by components tjl Jr in the
l'.' s
basis { ) } of Tp corresponding to the chart xi, then
axt
the law of transformation of the components of T induced
by the coordinate transformation >3t is
k k _dq J
tkl'”kr _ il...ir bxl dx T éxl Jz 8 (3)
h ...h haad j ...J LI 2R 3 L IR ]
1 8 1 8 -1 i h h
dFL 3z T axl %x°

3.3 The Covariant Derivative

In order to generalize the ideas of parallelism
to differentiable manifolds (which lack the structure
afforded by the metric tensor gij of surfaces), we first
try to find an invariant definition of the derivative

of a contravariant vector field. For, if we consider

the contravariant vector field with components vi and Fi

i

in the charts x* and El,respectively, then on account of

* that is, T€ T_ @ T ) T QT QT (8)0 o*
] p p®oooo® pQ p®Tp®ooo®Tp

cf. Auslander and MacKenzie, page 195.
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-1 %t «x
the law of transformation (3), v© = v, we have
k
that 2‘
k h y=i =i h
v?j - v éx‘ X + oK % dx (4)
2P axd Ak dxKdxB 3%
-1 avt
where v, = s by definition. Because of the

3zl
presence of the right-hand term in (4), v}j is not
a tensor, and consequently does not in general have a
meaning invariant under coordinate transformations.
Accordingly, the following definition is made:
Definition 2

The covariant derivative of a contravariant

vector field vi (with respect to xj) » denoted by v%j ’
s
is defined by the equation
i i i ry _k
vig o= vy o+ Ajk(xi) v (5)
The functions A?k are arbitrary, except that their law
of transformation must be such that V%J is a (1,1) tensor;
’
that is,
-i a3zt Pk
Y59 T — Vih (6)
dx° %I
To calculate this law of transformation, let
K;k denote the values of the functions A;k in the chart
3t ; then,
=i e § i =k
YT g tRaY (

Substituting (5) and (7) into (6) we get the following:

* Laugwitz, page 96.



12

i h
?ij + Kj.'k ¥+ = 3T dx (vl‘[h + Aﬁm v )
’ X d3d ’

Using (4) for ?iJ

. 1t follows that
14
h =i =i h
k 3x 2% +vk azx dx +I§k;k

v,h — —
273 2K dx ozt d%d

3zl 3B x kK _m
- (vh+Ah.mv) ’
dx é§3 ’

=k
or, sincew'ik= OX vm,

dx®

5l 3 m _Aﬁmvm axt Pt . Fxt o axh (8)
ax™ ox% axd IxByP 3xd

Since (8) must hold for all vector fields vi » Wwe find

that the Ai must transform according to

jk
-k -1 h 2.4 h

K%k % - Alkim dxt dx - dxt dx (9)
A axX 3% 383 9%Y

3.4 Parallel Displacement

As for the existence of such functions A§k ’
it is easily verified that for surfaces the Christoffel

symbols of the second kind , {j

ing to (9). Furthermore, by referring to equation (2)

ik} , transform accord-

it can be seen that a vector field v*(t) defined along

a curve C: ui(t) on a surface x = i(ui) is parallel iff
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i i i
BZ = 0 , where Bz = v?j wlr = Ez +{jik}vkuj' ’
14
dt dt dt
by definition. EZ is clearly a tensor of the same kind
dt
as vi , and is called the absolute derivative of vi .
Motivated by the theory of surfaces, given a
differentiable manifold with functions A?k as above,
we make the following
Definition 3
Let vi(t) be a vector field along the curve
C: x1(t) on a differentiable manifold M. Then v>(t) is

called parallel with respect to C iff

i i ok _j,

v.oxdo= v Ajk v ox =0 (10)

we |

J

Furthermore, a solution vi(t) of the differential equations
(10) (which are easily seen to be the components of a

contravariant vector, cf. Eisenhart,page 13) satisfying

vi(to) = W , W € Tp , and where p€M is the point on C

with coordinates xi(to) y 1s said to have been obtained

by parallel displacement along C from wt,
Definition 4
The functions Ai are called the components

. Jk
(in the chart x*) of a linear connection A on M.

This terminology has arisen, because the func-
tions A?k connect the tangent spaces at different points
of the manifold in the following sense:*

* Laugwitz, page 99.



14

let vi(t) be a solution of equations (10) . Then, as
these equations are linear in vi, vi(t) = Bi(t)vk(to) ’
80 that the parallel displacement induces a linear transa-

formation B with matrix Bf(' , B: D,—=T
0

is the tangent space at the point of M with coordinates

, Where '1‘t

" "
xi(t). This linear transformation serves to connect

the (distinct) tangent spaces at distinct points of M.

3.5 Affine Connections

Definition 5

A linear connection A is called an affine

i i
Jk kj

are symmetric in their subscripts.

connection iff A = A 3+ that is, iff the components
From equation (9) it is clear that if the
components are symmetric in one coordinate system, then
they are symmetric in all coordinate systems.
The terminology "affine connection" arises
from the following important theorem:
Theorem 3
A linear connection A on M is symmetric iff
for all p € M there is a chart @ at p such that Aik(¢fp)) = 0.
Proof: Let #(p) = (xi,...,xg) , and let P be a second chart
at p with B(p) = (X ,...,%0). If AJi.k(xg) = 0 , then by
9) ,

. <k 2_3 h
I;k X" - 0% dx , all evaluated at p.

A" Bzt axd

e

0x4

After multiplication of both sides by y Wwe get
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=

2 %) Ix¢
=(_ Bzii bxm\> 3xk
oxEa® 231/ a3l

- K
= (Ki bxn) 9x ) (by (9) again)
qn K -
ox %Y

i n _ Ti
K S‘j _qu

qn

so that the components are symmetric.

Conversely, let the components of A be

symmetric, and let § be a chart at p with @(p) = x_ .

Then,

by
xt = (%
i
Then, dx = S‘i
-h
0%
_ i
= gh
i
= Sh
i
Since det ox
X

admissible.

ig) + 11t
2

P

z;k(zg) - x;;}i(zg)

Consider the (analytic) coordinate transformation defined

ik

=i
+ %AJ h
=i 2]
+ _.':12; Ihﬁ(x Q)

+

iz _ =
Ihj(x‘] - o) .

() (E - THEF -

J_-J)sk + lKl -k -k)gj
2

i (g3 o 3d
+ %‘-Ihj(x - x3)

(11)

1 # 0, the transformation is
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a4 . ,
Further, afm:-h = Kij S i = Kim (12)
TTo0X

Rewriting (9) in the appropriate form gives

k i y<h 2 j =h
A;.k éx = I}h!m axl 31. - bxl 3:: , (13)
Y ATE 3 IFMFR )

and substitution of (12) into (13) results in

i bxk - azxk Bxi bih _ Bin aih
k - .
J AT MR 3K dxd  aFMazR ayd

A

Evaluation at p then gives, using (11),

L T &
k cnm—— ] ]
ATz 2xd 2EMxD

i i k
Ajk(xo)gm

A}k(xg) = 0, as required.
Note that the chart xi has the property that xg = 0, 80
that we have in.fact that A;k(O) = 0.
The coordinates x* are called ( by Weyl )
geodesic at p. Furthermore, the theorem shows the signif-

icance of the term affine connection, since in the plane

with rectangular Cartesian coordinates, it is true that
{Jik} = O for all points; this follows because when the

plane is so parametrized,

1, i=j
83 % [ o, 14 .

We note that the previous theorem may be ext-
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ended to the following more general result by Levi-Civitad;
a proof is given in Non-Riemannian Geometry , by Eisenhart.

Theorem 5

If p€ M and C is an arbitrary curve through p,
then there exist. an interval (a,b) and a coordinate
system x*  such that Ag.'k(xr(t)) = 0 for t+€ (a,b) .
3.6 Covariant Differentiation of Arbitrary Tensors

By making the following two requirements, the
covariant differentiation defined above for contravariant
vector fields may be extended to arbitrary tensor fields:

1) covariant differentiation of the sum, diff-
erence, inner and outer products should obey the same
rules as ordinary differentiation ;

2) for a scalar field ¢(xi) , ¢(xi);j = 2P .

ad

Consider, for example, the covariant vector field

0y

w, » and let vJ be an arbitrary (1,0) tensor. Since wivl

is a scalar field, we have from 2),

(wivi);j = (wivi)’J = wi’jvi + wivfj (14)

and by ].),(wivj’).:j = wi;jvi + wiv:'j (15)

Also, vi,j = v+ 3 + A?kvk R (16)
? ]

so that combining the last three equations we get

i i i k i i
wi;jv + Vv ,jwi + Ajk \' wi = W,
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i i _k i

Thus, w i = wi jv - Ajk \'4 wi , and as v~ was
?

Vv
133
arbitrary, we must have

k

QO.ir

i
In general, if t.l j are the components of an arb-
8

Jl...
itrary (r,s) tensor, it must follow that

. (u) | 3

N r .
1loooir il...ir 2 lu lloomoolr 2 m 1100~ooir
% T =4, 1T >auyg - A8 ¢ .
jl...Js,j Jpeecdgrd u=l Jm Jl.....js =1 Jdy jl.zms.a8
u/

(equation (17))

3.7 The Curvature Tensor
Although covariant differentiation has many of
the properties of ordinary differentiation, it does not

share them all. In particular, it does not generally

follow, for a vector field v>, that v, ... = Vi, .. »
HR ) < sk d
For,
i i i r r i
Vink T V5k YA Vg T g Ve
i i r i r
v ’j:k+Ajr’kv +AJrv v K
i r i.,r 8 r i r , i._s
+ Ak v )3 + AkrAjs Vv - Akj v r " Akjﬁrsv

. . i i i r i._r
and similarly, v sk § =V K, + Akr,jv + Akrv )
i._r i,r_s r. i _,r,i 8 (19)
+ AJrv Jk + AjrAksv Ajkv 7 AjkArs v

(18)



19

Subtracting (19) from (18) and using the symmetry of al

jk
we get
i i _(al i,r s
Vosisk TV sk "(Ajr,k kr J)v + (Akr js A;l,rAks)v ’
i i
O Viink TV 5k
N T i,» _,i,r s
- (Ajs.k bes,j * Purtye AjrAks>‘V (20)
i i i,r i,r
Putting stk =455,k " Aks,j * Pertje T Ajrfks 0 (21)
then, as the left-hand side of (20) is a tensor, so is R:jk ,
and,
i i i 8
. - = R .
Viiisk TV ki T Tsgk Y (22)

jok .i8 the curvature tensor of the affine connection.

The terminology arises from the theory of surfaces, in
particular, from the Theorema Egregium of Gauss, which
states that K.g = g, R{lz , where, (23)
g = det gij y and K is the Gaussian curvature. Equation
(23) shows that the curvature tensor is not in general
zero, since K =0 iff the surface is developable.

i $0 an

By applying the method used above for v
arbitrary (r,s) tensor, in conjunction with equation (17),
one gets the generalized identities of Ricci:

til...l - .t l
Jpeeedg 1 ik jl...j ,k J

£ 4 coBo.ig coot
1 3
= thk :ES 5 h..g R?ﬁjk ,

u--l jloot.oj u_l Jl

o.ol
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Finally there is
Iheorem 6
The curvature tensor Rijk of an affine

connection satisfies the following identities:

i i

1) stk + Rskj =0
i i i

2) Rgyp + Bjpg + Bgy =0

3) rE + R +RE = 0 (Bianchi)
sjk;h skh; j shj;k
i i i i ~

4) Bosesn * Rish;j * Bukjss * Rynesk = ©

(Veblen)

Proof: 1) follows immediately from the definition of jok .
To prove 2), by theorem 3, we may choose at every point

of the manifold a geodesic coordinate system xi, so that
A?k(xi) = 0 . Adding equation (21) to itself three times
with the appropriate indices, the result follows for the
geodesic coordinate system; as 2) is a tensor equation,

it holds in all coordinate systems. To prove 3), we again

choose geodesic coordinates xl, so that Ri i

sjkz;h = stk,h 3
i

this follows since Ajk(xr) = 0 ., However, from equation

(21) we then get

i

i
R ks,j,h (24)

— 1 -
ajk;h = Ajs,x,n ~ A

Now adding (24) to itself three times with the appropriate
indices, the result follows. The proof of 4) is similar.
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3.8 Geometric Significance of R;jk
Following Laugwitz, we prove the following
theorem, which yields a geometric interpretation for
the curvature tensor in an affinely connected manifold.
Theorem 7
The curvature tensor is a measure of the change
in the components of a vector under parallel displace-
ment around infinitesimal parallelograms.
Proof: Let § be a chart at p € M with coordinates x' such
that @(p) = O, and A‘}k(O) = 0 ; this chart exists by

3 ’ z- be the components of fixed, lin-

theorem 5. Let n

early independent contravariant vectors, and for each
€ > 0, define the curve Wy : x (§) by

. rtent, oOst<1

x(t) = Eni + (t=1) €zi , 1St<2

E(ni+zi)-(t-2)€ni, 2Tt <3

\ ezl(1-(t-3)) , 35ty

(equation (25) ; see figure below )

vt (3)

‘Cu .
v v'e)

plt=o, t = 4) t=1



22

Let vi(0) € T p » and let vi(t) be the vector obtained

from vi(O) by parallel displacement around W, .

By Taylors theorem,

i 2.1
vi(t+l) = vi(t) + EZ + 87 L. (28)
dt dté

However, since vi(t) is a parallel vector field along WE ’

i

d i _k_J
_V = - A;k v XJ' (27)
dt
and, 2.1 k
a~v: _ _ 1 k Jj, By _ 41 3, av
5 = Ajk,h vxi'x Ajkx —_—
at dt

= - A}k’hvkxj'xh' + A?kAgs vOxd 15 , (28)

where all functions are evaluated at t.
Again by Taylor's theorem,
i _ a3 i h
A5 (t) = a5(0)  + AG, ,(0) Ax™(%)

A§k’h(0) A=t(t) . (29)

Now the change in the component vi(t) as a result of

displacement around W is

€
k)

vi(4) - v (0) = % (vi(3+1) - vH(3))  (30)

avt d2vi
To calculate this change, we find _~ (t) and (t)
2
dt dt
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at the appropriate values of t, and use (30) and (26) :
from (27),

i
a) 27(0) = - 43,(0) ¥¥(0)x¥1(0) = 0 (31a)
dt
i . .
b) 37(1) = - a5, () W) ()
dt
- - A?k,h(O)kah(l)vk(l)xj'(l) by (29)
= - jk h(O)E‘ vk(l)Ez , 8ince
n h axB
AxP) = Ax*0) + X (0) At + ..
dt
= €n? ( as At = 1).
Therefgre,
(1) = - €A, p(0) ¥(L)n® (31b)
dat
c) ﬁ‘_vl(Z) = - A;'k(Z) v(2)xd1(2)
dt
= - A3, (0) AxP(2) ¥¥(2) (-€nd).
h
Now Axh(2) = Axh(l) + E (1) At = €l + E2P , 80
dt
i
4v72) = + €Al (0) vE(2) nd(al + 2P) (31c)

Ayx,n
dt

i .
a) I(3) = - a3,(3) ¥(3) 2" (3)
dt
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= + €% (0) vE(3) 29P (314)

jk,h

h
since Axh(B) = Axh(z) +E(2)At
dat

= €(n?+ zh) Y
Similg.riy, from (28),
e) 177(0) = - a3, ,(0) v¥(0) xI'(0) "1 (0) + 0

atl
= - A'_jik’h(O)Vk(O)njnh (31e)
2 1
d“v i k J h,
f) (1) = - A K h(l)v (L)x*(1)x"" (1)
pre ST
+ A;k(l) Aﬁs(l)vs(l)xj'(l)xr'(l)
= - &5 (v el )
23 2 i 2 4 2 i
Similarly, 2_21(2) =370) anda ¥V (3) = 2V (1)
at® at® at2 ate
(31g)

Now all functions occurring in equations (31)
can in fact be replaced by the same functions evaluated
at O 1if we use their Taylor expansions about O and neglect
terms with factors €° and higher. Calling the resulting
equations (31') , substituting (31') into (26), and the

resulting equations into (30), we get

vi(4) - vi(O) = €aA§:k,h(O)(njzh - nth) vk(O) + 83(...)
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= ET(Af 1 (0) - ay 5(0) ) ¥E(0) w2+ €.

3

= E'R,(0) ¥¥(0)ad® + E°(..), (32)

i
jk = 0.

From (32) it is clear that the change in v

as followa from (21) with A
i
becomes proportional to R}kl(o) when & is chosen
sufficiently small, and this completes the proof.

3.9 Paths

It was shown in section 2 that the geodesics
on a surface have many of the properties of parallelism
which straight lines have in the plane. In particular,
the tangent vectors to a geodesic are related by para-
llel displacement along the curve. The curves on a diff-
erentiable manifold which have this property are called
pgggg* (auto-parallels). Noting that two vectors vi and
wi defined at a point p &€ M have the same direction
at p iff v o= K - , K£ 0 , we have, analogous to the
theorem for geodesics, the following result:

Theorem 8

For every p € M and for every direction vi at p
( ie, specified by a vie Tp ) ,» there exists a path
through p having the direction vi. Furthermore, this

path is uniquely determined throughout some neighborhood

* Eisenhart, page 14.
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of p.

Proof: Let @ be a chart at p with coordinates x*

and
g(p) = xi ; let C: xi(t) be a path on M. Then the points
of C satisfy the equation

xif’

+ A%k g =0 (33a)
These differential equations have, by a well known
theorem, for sufficiently small t , exactly one solution

x*(%) such that

I
™
O -

xl(to) (33p)

i
X '(to) = Vv

To show that the path xi(t) is uniquely deter-
mined by p and the direction at p, we show that the

initial conditions xi(tl) = xi i

, xi'(tl) = Kv® , E# O,
yield the same solution. However, this follows because a
solution corresponding to the latter initial conditions
is given by

2H(t) = 2 K(t-t)) + t) ; by the

uniqueness of solutions of (33) , it is the only solution.

4. Riemannian Spaces

It was mentioned in section 2 that the Christ-
offel symb018‘§jlk} constitute the components of an
(unique, in a sense) affine connection on a surface with

metric tensor gij .
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We now show that in a general Riemannian
space (that is, a differentiable manifold on which a
symmetric (0,2) tensor gij is defined),there is only
one affine connection which preserves the lengths of
vectors under parallel displacement.

Theorem 9

In a Riemannian space with metric tensor gij

there is an unique affine connection, given by

ir
Ajk = 22-.3 ( gjr,k + grk,j - g:jk,r) ’

which preserves the lengths of parallel vector fields.
i

Proof: The proof of the fact that the connection Ajk
defined above preserves the lengths of vectors under
parallel displacement is identical to the proof given for
{jik} in theorem 2. Thus, it is only necessary to show that

if B;k is any other affine connection on M, then

i

i
B = Ajk .

jk
Let vi(t) be a parallel vector field along the
curve C: xi(t) on M. If the lengths of parallel vectors

are to be preserved, we must have

0 = _i ( gikvlvk) = gik,hxh'vivk + gikvi.vk + gikvlvk'

dt
h, ik k i nm i k m
= gik,hx vV o+ 85V (-anv x ') + 81" (-anvnx ')

, r r h ik
( 80in = 8rkBhi = BirPpk ) X' VYV

]



As this must hold for all xi, vi, we must have that

r

r
Bpi 85y Bpy -

€ix,h = &rk

1k , it follows that

Using the symmetry of gij and Bj
€in,k * Onk,1 = Gik,n = 2 &y Biy ¢
After inner multiplication by % hj sy Wwe get
i i

Bjk = Ajk y 88 required.

LR N B B B BN BN B B B NN AN )
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