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Abstract

In this thesis, we are interested in many aspects of the Petersson inner product of theta

series attached to imaginary quadratic �elds. In the �rst part, we �nd closed formulas for

the Petersson norm of theta series attached to unrami�ed Hecke characters of varying

in�nity type. Using these, we �nd formulas for the Petersson inner product of theta series

attached to ideals. We then see how this generalizes a remark made by Stark in [Sta75]

about the connection between the Petersson norm of the theta series attached to certain

Artin representations and the value at s = 1 of the corresponding Artin L-functions. In

the second part of the thesis, we show that the Petersson inner product of theta series can

be p-adically interpolated when p splits in the imaginary quadratic �eld. We then evaluate

the constructed p-adic analytic function outside the range of interpolation and show how

the expression obtained can be seen as a p-adic analogue of the corresponding classical

expression. In the third and last part of the thesis, we present some computations to give

examples, illustrate the theory and support conjectures made in the text.
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Abrégé

Cette thèse se penche sur plusieurs aspects du produit scalaire de Petersson des foncti-

ons thêta associées aux corps quadratiques imaginaires. Dans la première partie, on donnera

des formules explicites pour le produit scalaire de Petersson des fonctions thêta associées à

une famille de charactères de Hecke. Ces formules serviront ensuite à trouver des formules

pour le produit scalaire des fonctions thêta associées à des idéaux fractionaires. On verra

ensuite comment ces formules permettent de généraliser une remarque faite par Stark dans

[Sta75] à propos d'une relation entre le produit scalaire de Petersson des fonctions thêta et

la valeur en s = 1 de certaines fonctions L de Artin. Dans la seconde partie de la thèse, on

montrera que le produit scalaire de Petersson d'une certaine collection de fonctions thêta

s'interpole p-adiquement pour certain nombres premiers p. On verra ensuite qu'en évaluant

la fonction p-adique obtenue à un entier non interpolé, on obtient une expression analogue

à l'expression classique correspondante. En�n, la dernière partie de la thèse contient plu-

sieurs exemples de calculs qui illustrent la théorie et supportent les conjectures faites dans

le texte.
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Introduction

L-functions are central objects in number theory. They can be attached to a variety of

mathematical objects, like Dirichlet characters, modular forms, algebraic varieties, Galois

representations, etc. and contain a surprisingly large amount of information about the

object to which they are attached.

For example, take the simplest possible L-function, the Riemann zeta function, which

is de�ned for <(s) > 1 by the Dirichlet series

ζ(s) =

∞∑
n=1

1

ns
.

The simple fact that it has a pole at s = 1 implies that there are in�nitely many primes.

With more work, one can also obtain the prime number theorem about the distribution of

primes using the fact that ζ(s) does not vanish close to the line <(s) = 1. It is also known

that one could obtain the best possible error bound on the Prime Number Theorem by

knowing the Riemann Hypothesis, which conjectures that the non-trivial zeroes of ζ(s) lie

on the line <(s) = 1
2 .

As another example, let χ be a Dirichlet character modulo N and consider the twist

of ζ(s) by χ:

L(χ, s) =
∞∑
n=1

χ(n)

ns
,

for <(s) > 0. When χ is not the trivial character modulo N , this function extends to an

analytic function of s ∈ C. In this case, the knowledge that L(χ, 1) is not zero implies that

there are in�nitely many primes congruent to a (mod N) for any a coprime to N .
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The above examples are all instances of Artin L-functions, which are attached to Galois

representations. Indeed, a Dirichlet character modulo N can be seen as a one dimensional

representation of the Galois group of the cyclotomic �eldQ(ζN ), where ζN is a primitiveNth

root of unity. As the above examples suggest, L-functions should contain some arithmetic

information at the point s = 1. This simple observation was turned into a set of deep and

relatively explicit conjectures by Stark in the seventies (in [Sta75] and the other papers in

the series). Those conjectures can be thought of as vast generalizations of the well-known

Class Number Formula, which states that

lim
s→1

(s− 1)ζF (s) =
2r1(2π)r2hF Reg(F )

wF
√
|DF |

,

where r1, 2r2, hF ,Reg(F ), wF and DF are, respectively, the number of real embeddings,

the number of complex embeddings, the class number, the regulator, the number of roots

of unity and the discriminant of the number �eld F . They are known to be true in two

important cases: the case of Galois representations of �nite abelian extensions of Q or of an

imaginary quadratic �eld K. The point that the two base �elds Q and K have in common

is that one has an explicit way of generating abelian extensions of these (using cyclotomic

units for Q, and Siegel units or elliptic units for K).

A remark of Stark

Throughout this thesis, let K be an imaginary quadratic �eld of discriminant D < 0.

Let F/K be an abelian extension and let ψ : Gal(F/K) −→ C× be a one-dimensional

Galois representation. Then, by class �eld theory, the �eld F is contained in the ray class

�eld mod f for some fractional ideal f of K. It follows that ψ can be seen as a ray class

character mod f (or Hecke character mod f). The Artin L-function of this representation

is then the same as the Hecke L-function attached to ψ. By the work of Deligne-Serre, this

L-function (or, more precisely, the L-function of the induced representation from K to Q)
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is also known to be modular. The modular form which corresponds to this representation

is a theta series.

In [Sta75], Stark noticed a connection between the special values of these L-functions

at s = 1 and the Petersson norm of the corresponding theta series when K = Q(
√
−23) (a

number �eld of class number 3). Let ψ be one of the two non-trivial character of the class

group of K. Then ψ can be seen as a one dimensional representation of the Galois group

of H/K, where H is the Hilbert class �eld of K. There is a unique newform

θψ ∈ S1(Γ0(23), χ−23),

where χ−23 is the Kronecker symbol, such that

L(θψ, s) = L(ψ, s).

As Stark noticed, the Petersson norm of θψ is

〈θψ, θψ〉 =
3
√

23

2π
L(IndQ

K ψ, 1) = 3 log ε,

where IndQ
K ψ is the representation of Gal(H/Q) induced from ψ and ε is the real root of

x3 − x− 1,

which generates the Hilbert class �eld of K. In this thesis, we study the Petersson inner

product of a collection of theta series which generalize the ones considered by Stark. In

particular, we see if and how Stark's observation generalizes to other imaginary quadratic

�elds.

Content and structure of the thesis

This thesis is divided in three parts. In the �rst one, we �nd explicit formulas for the

Petersson inner product of some theta series. In the second one, we use those formulas to

3



show that the Petersson inner product of theta series can be p-adically interpolated when

p splits in K. In the last one, we treat the computational and experimental aspects of the

project.

Part I: complex formulas

Let ψ be a Hecke character of conductor OK as above which is not a genus character

(i.e. its order does not divide 2). In Chapter 4, we prove that

〈θψ, θψ〉 =
−hK
3w2

K

∑
A∈ClK

ψ2(A) logN(A)6|∆(A)|,

where ∆ is the weight 12 and level 1 newform. As we discuss in Chapter 5, this is a direct

generalization of what Stark noticed.

More generally, one could consider higher weight theta series attached to (type A0)

Hecke characters ψ of conductor OK and in�nity type (2`, 0) for some ` > 0. Letting θψ be

such a theta series, we prove in Chapter 4 that

〈θψ, θψ〉 = (|D|/4)`
4hK
w2
K

∑
A∈ClK

ψ2(A)δ2`−1E2(A).

Using those formulas, one can then compute the Petersson inner product of the theta series

attached to a fractional ideals of K and ` > 0:

〈θa,`, θb,`〉 = 4(|D|/4)`
∑

ab̄c2=λcOK

λ2`
c δ

2`−1E2(c),

where the sum is over all ideal classes representatives c such that abc2 is principal and

generated by λc ∈ K×. This formula follows directly from the simple relation between the

two sets of theta series.

To �x notation and terminology, the classical theory of modular forms over C is in-

troduced in Chapter 1. In particular, the many Eisenstein series that come into play are

introduced. Chapter 2 is devoted to the task of computing the Petersson inner product in
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general using the Rankin-Selberg method. In Chapter 3, the relevant results of the theory of

Complex Multiplication are introduced. The last two chapters of the �rst part are devoted

to �nding the explicit formulas above and discussing the weight one case in more detail.

Part II: p-adic interpolation

For ` = 0, it is well-known that one can attach weight one theta series to fractional

ideals of K. Since those theta series are not cuspidal, it makes no sense a priori to compute

their Petersson inner product. However, one could still try to use the formula for the

Petersson norm of θψ when ` = 0 to compute it. This gives formally :

〈θa,0, θb,0〉 =
−1

3

∑
ab̄c2=λcOK

logN(c)6|∆(c)|.

In the second part, we show that the formulas for 〈θa,`, θb,`〉 when ` > 0 can be given

sense p-adically and that, when p splits in K, there exists a p-adic analytic function on

weight space

F :W −→ Cp

which p-adically interpolates those values. By evaluating this function at 0, which lies

outside the range of interpolation, one obtains a p-adic analogue of the above expression

for 〈θa,0, θb,0〉. This formula can be seen as a p-adic analogue of Kronecker's First Limit

formula.

The techniques used to p-adically interpolate the above quantities use the same techni-

ques that Katz used to construct the p-adic L-function attached to Hecke characters of

imaginary quadratic �elds in which p splits (see [Kat76]). Those techniques rely on the

theory of p-adic modular forms. The de�nition of these objects and the transition from

the classical theory modular forms over C to the theory of algebraic and eventually p-adic

modular forms is done in Chapter 6. We then re-visit the theory of complex multiplication
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from an algebraic point of view in Chapter 7. Finally, the theory introduced in those two

chapters is used to p-adically interpolate the Petersson inner product of theta series.

Part III: computations

A signi�cant part of my research time was devoted to doing computations and �nding

algorithms to compute the Petersson inner product of theta series, and so I felt it was

relevant to include some computations in this thesis. The computations are related to some

of the sections of this thesis. The sections which are marked with the symbol F have

computations attached to them (for example, Section 2.3 is one of them). The last chapter

of this thesis, Chapter 13, is exploratory and contains a series of experiments which lead to

various observations, conjectures and open questions.

To maximize the fun, the reader should read this last part with a computer nearby to

reproduce the computations in PARI/GP and run his or her own experiments!
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Part I

Complex formulas
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CHAPTER 1
Modular forms over C

In this �rst chapter, we give an overview of the classical theory of modular forms over

C, while in the next part we give an overview of the algebraic and p-adic theories. This is

done mostly to �x notation. Indeed, the notation is not standard (at least for Eisenstein

series and Poincarré series) and we need results from a few references (namely [DS05],

[RBvdG+08], [Shi10], [MM06] and [Coh07]).

We assume that the reader is familiar with the basic theory of classical modular forms.

If this is not the case, good references are [RBvdG+08, Part 1] and [DS05].

1.1 The spaces GL+, H, LΓ and Y (Γ)

As in [Kat76, Sec.1.0], let

GL+ = {(ω1;ω2) ∈ C2 : =(ω1/ω2) > 0} (1.1)

be the set of positively oriented R-bases of C. The notation (a; b) stands for a 2×1 column

vector (the semi-colon indicates a change of row, instead of column). This set is naturally

equipped with a structure of a smooth manifold by inclusion into C2.

As usual, let SL2(Z) denote the group of 2 × 2 matrices with integer entries and

determinant 1. This group acts on GL+ on the left asa b

c d


ω1

ω2

 =

aω1 + bω2

cω2 + dω2

 . (1.2)
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The group C× also acts on GL+ by scaling. Finally, GL+ is equipped with an involution ρ

de�ned as

(ω1;ω2)ρ = (ω̄1;−ω̄2), (1.3)

where the bar denotes complex conjugation. The involution ρ is essentially complex conju-

gation, just slightly modi�ed to preserve the orientation of bases.

The map

(ω1;ω2) 7→ ω1/ω2 (1.4)

from GL+ to the complex upper-half plane

H = {τ ∈ C : =(τ) > 0}

is surjective and induces a bijection

GL+/C× ' H. (1.5)

Note that this map also has a natural section

τ 7→ (τ ; 1) : H −→ GL+/C×. (1.6)

The action of SL2(Z) on GL+ descends to the quotient by C× and the induced action on

H via the above bijection corresponds to the usual action of SL2(Z) on H:a b

c d

 τ =
aτ + b

cτ + d
. (1.7)

The involution ρ on H sends τ to −τ̄ .

9



The quotient of GL+ by SL2(Z) is the set of lattices in C, denoted L. More generally,

let N be a strictly positive integer and let

Γ(N) =


a b

c d

 ∈ SL2(Z) : a, d ≡ 1 (mod N) and b, c ≡ 0 (mod N)

 (1.8)

be the kernel of the reduction mod N map on SL2(Z). A congruence subgroup is a sub-

group Γ of SL2(Z) which contains the subgroup Γ(N) for some N . The two most common

examples of congruence subgroups are

Γ0(N) =


a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)

 (1.9)

and

Γ1(N) =


a b

c d

 ∈ SL2(Z) : a, d ≡ 1 (mod N) and c ≡ 0 (mod N)

 . (1.10)

For a general congruence subgroup Γ, de�ne

LΓ = Γ \GL+. (1.11)

The group C× and the involution ρ act on LΓ in the obvious way. Note that ρ sends a

lattice L ∈ LΓ to L̄, as one might expect.

The quotient of GL+ by the action of a congruence subgroup Γ and C× is denoted

Y (Γ) and is called the open modular curve for Γ. It has the structure of a (non-compact)

Riemann surface (see [DS05, Ch.2]).

10



To summarize, the four spaces introduced in this section �t into the diagram

GL+

""||

H

!!

LΓ

||

Y (Γ)

(1.12)

where all the arrows are surjective and compatible with the actions of SL2(Z), C× and ρ

on the various spaces.

1.2 Weight and q-expansions

Let (k, s) ∈ Z×C. As in [Kat76, Sec.1.1], a C∞ function F : GL+ −→ C is said to be

of weight (k, s) if

F (λ(ω1;ω2)) = λ−k|λ|−2sF ((ω1;ω2)) for all λ ∈ C×. (1.13)

The notion of weight also applies to C∞ functions f : LΓ −→ C, since they can be viewed

as Γ-invariant functions on GL+. Such functions on LΓ are usually called homogeneous of

weight (k, s). A C∞ function f : H −→ C is said to be of weight (k, s) for Γ if

f

(
aτ + b

cτ + d

)
= (cτ + d)k|cτ + d|2sf(τ) for all

a b

c d

 ∈ Γ. (1.14)

For simplicity, a function of weight (k, 0) is said to be of weight k.

Now let F be a C∞ homogeneous function of weight (k, s) on LΓ. Then F induces a

C∞ function f on H which is of weight (k, s) for Γ by letting

f(τ) = F ((τ ; 1)). (1.15)
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Conversely, any C∞ function f on H of weight (k, s) for Γ induces a C∞ function F on LΓ

of weight (k, s) by de�ning

F ([ω1, ω2]) = ω−k2 |ω2|−2sf(ω1/ω2). (1.16)

Here, [ω1, ω2] denotes the Γ-equivalence class of (ω1;ω2) ∈ GL+ (if Γ = SL2(Z), then

[ω1, ω2] corresponds to the lattice spanned by ω1 and ω2 in C). One can check that those

maps induce a bijection between the set of C∞ homogeneous functions of weight (k, s) on

LΓ and the set of C∞ functions of weight (k, s) for Γ on H.

Now let f : H −→ C be a holomorphic function of weight k for Γ ⊃ Γ(N). Then

f(τ +N) = f(τ),

since 1 N

0 1

 ∈ Γ(N) ⊆ Γ.

It follows that f(τ) can be expressed as a holomorphic function of q = e2πiτ/N on the open

unit disc in C with the origin removed. This function of q, still denoted f , has a Laurent

expansion

f(q) =
∑
n

an(f)qn (1.17)

around the origin. This expression is called the q-expansion (or sometimes Fourier expan-

sion) of f .1 The complex numbers an(f) are called the Fourier coe�cients of f . Using

the above correspondence, one can also de�ne the q-expansion of a holomorphic function

of weight k on LΓ.

1 Note that this de�nition di�ers from the one given in [Kat76, Sec.1.1], but agrees with
the one in [DS05]. The convention adopted here is more common these days.
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1.3 Modular forms

In the �rst part of this thesis, modular forms over C will be viewed in two equivalent

ways.

Modular forms as functions on the upper half-plane

A weakly holomorphic modular form of weight k for a congruence subgroup Γ is a

holomorphic function f : H −→ C of weight k for Γ whose translates by elements of SL2(Z)

have meromorphic q-expansions (i.e. f is holomorphic onH and meromorphic at the cusps).

Note that this de�nition makes sense since the translate of f by an element γ ∈ SL2(Z) is

holomorphic and of weight k for the congruence subgroup γ−1Γγ.

If the q-expansions of the SL2(Z)-translates of f are holomorphic, we call f a (holo-

morphic) modular form of weight k for Γ. If those q-expansions all have no constant term,

we call f a cusp form. The C-vector spaces of modular forms (resp. cusp forms) of weight

k for Γ are denoted

Mk(Γ) (resp. Sk(Γ)).

If f is just C∞ (i.e. not necessarily holomorphic on H) and of weight (k, s) for Γ, we

call f a C∞ (or non-holomorphic) modular form of weight (k, s) for Γ.

Modular forms as functions on LΓ

Using the correspondence of the previous section, one can equivalently de�ne modular

forms as weight k functions on LΓ satisfying certain analyticity conditions. In particular,

modular forms for SL2(Z) can be viewed as functions on lattices.

Some important examples

A �rst simple example of a C∞ modular form of weight (0,−1) for SL2(Z) is

a(L) = area(C/L).
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As a function on GL+, it is given by

a((ω1;ω2)) = =(ω1ω̄2) =
ω1ω̄2 − ω̄1ω2

2i
.

As a function on H, it is simply

a(τ) = a((τ ; 1)) = =(τ).

A second less trivial example is given by the ∆ function, which is easier to de�ne via

its q-expansion as

∆(q) = q

∞∏
n=1

(1− qn)24. (1.18)

This holomorphic function on H is a weight 12 cusp form for SL2(Z) (see [RBvdG+08,

Prop.7]).

An example of weakly holomorphic modular form is given by 1/∆, since ∆ does not

vanish on H.

The Eisenstein series, introduced in the next section, give a lot of examples of modular

forms of various weight on SL2(Z). In particular, they can be used to construct other

modular forms. For example,

1728∆ = (240E4)3 − (504E6)2, (1.19)

where E4 and E6 are the weight 4 and weight 6 Eisenstein series, respectively. They also

enter in the construction of the most important modular function on SL2(Z), the j-invariant,

which is de�ned as

j(q) =
(240E4(q))3

∆(q)

= q−1 + 744 + 196884q + 21493760q2 +O(q3)

(see [RBvdG+08, Sec.2.4]).
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The q-expansion principle

The q-expansion principle says that modular forms are determined by their q-expansions.

This is obvious for modular forms over C, since the can be viewed as function on H and q

is given by e2πiτ for τ ∈ H. However, for algebraic modular forms, de�ned in the second

part, this is a less trivial and very useful fact.

1.4 Holomorphic and C∞ Eisenstein series

Eisenstein series are very useful in the theory of modular forms in general and they

play a central role in this thesis. For the rest of this section, let k ≥ 0 be an integer. The

simplest example of an Eisenstein series is

Gk(L) =
∑
λ∈L

′ 1

λk
for k > 2, (1.20)

where L ∈ L is a lattice and the ′ symbol means that the term corresponding to λ = 0 is

excluded. Then Gk is a weight k modular form on SL2(Z). To prove this, it is preferable

to �rst write Gk as a function on H

Gk(τ) =
∑
m,n∈Z

′ 1

(mτ + n)k
for k > 2, (1.21)

where the ′ symbol means that the term (m,n) = (0, 0) is excluded. For k > 2 this sum

converges absolutely. This proves that Gk(τ) is holomorphic on H and, by rearranging the

sum, that it is of weight k for SL2(Z). Finally, a direct application of Lipschitz's formula

shows that Gk has q-expansion

Gk(q) = 2ζ(k) + 2
(2πi)k

Γ(k)

∞∑
n=1

σk−1(n)qn, (1.22)

where σk−1(n) =
∑

d|n d
k−1 and ζ(s) is the Riemann zeta function (see [RBvdG+08,

Prop.5], keeping in mind that our notation di�er). It is convenient to normalize Gk in
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such a way that its q-expansion has rational coe�cients. De�ne

Ek =
1

2

Γ(k)

(2πi)k
Gk, (1.23)

so that

Ek(q) = −Bk
2k

+
∞∑
n=1

σk−1(n)qn, (1.24)

where Bk is the k Bernoulli number (note that Euler's evaluation of ζ(k) for k > 0 even in

terms of Bernoulli numbers is used). For example,

E4(q) =
1

240
+ q + 9q2 + 28q3 + . . . (1.25)

and

E6(q) = − 1

504
+ q + 33q2 + 244q3 + . . . . (1.26)

Those Eisenstein series can be generalized in many ways. In this text, the following

three generalizations will be needed:

1. Eisenstein series of weight k = 2;

2. C∞ Eisenstein series of weight (k, s);

3. Eisenstein series of higher level.

C∞ Eisenstein series for SL2(Z)

When k = 2, the series de�ning Gk in (1.21) diverges. One way to de�ne a weight 2

Eisenstein series is to introduce a parameter s ∈ C in the summation de�ning Gk:

Gk,s(L) =
∑
λ∈L

′ 1

λk|λ|2s
for <(2s) + k > 2. (1.27)

Then Gk,s is a C∞ modular form of weight (k, s) for SL2(Z). As above, this can be proven

by writing Gk,s(L) as an absolutely convergent sum over the upper half-plane

Gk,s(τ) =
∑
m,n∈Z

′ 1

(mτ + n)k|mτ + n|2s
for <(2s) + k > 2. (1.28)
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When k > 2, one can let s be 0 in (1.27) or (1.28) and recover the Eisenstein series

de�ned above:

Gk,0 = Gk for k > 2. (1.29)

When k = 2, the modular form G2,s is not de�ned at s = 0. However, one can de�ne G2(τ)

as the limit of G2,ε(τ) as ε tends to 0 from the right. Then one can prove that

G2(τ) = −8π2

(
−1

24
+
∞∑
n=1

σ1(n)qn

)
− π

=(τ)
(1.30)

(see [RBvdG+08, Prop.6], keeping in mind again that our notation di�er). This function

G2 is a C∞ weight 2 modular form for SL2(Z). Using the normalization introduced in

(1.23), one is lead to de�ne

E2(τ) =
1

2

1

(2πi)2
G2(τ), (1.31)

which has "q-expansion"
1

8π=(τ)
− 1

24
+
∞∑
n=1

σ1(n)qn. (1.32)

Note that since E2 is a modular form for SL2(Z), it can be evaluated on L using the

correspondence (1.16).

The C∞ Eisenstein series Gk,s can also be completed by introducing some factors at

in�nity as follows:

G∗k,s(L) =
1

2
Γ(s+ k)

(
a(L)

π

)s
Gk,s(L) for <(2s) + k > 2. (1.33)

Equivalently,

G∗k,s(τ) =
1

2
Γ(s+ k)

(
=(τ)

π

)s
Gk,s(τ) for <(2s) + k > 2. (1.34)
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Then G∗k,s is a C
∞ modular form of weight k (recall that a(L) and =(τ) have weight (0,−1))

and

Ek = (2πi)−kG∗k,0 for k ≥ 2. (1.35)

Moreover, the following Theorem holds.

Theorem 1. For every k ≥ 0 and τ ∈ H, the C∞ modular form G∗k,s(τ) can be continued

to a meromorphic function of s ∈ C, which is entire if k > 0, and has poles with residues −1
2

and 1
2 at s = 0 and s = 1, respectively, if k = 0. Moreover, G∗k,s(τ) satis�es the following

functional equation:

G∗k,s(τ) = G∗k,1−k−s(τ).

Proof. See [Shi10, Theorem 9.7]. Note that

G∗k,s(τ) =
1

2
Z1
k(τ, s; 0, 0)

in Shimura's notation.

When k = 0, Kronecker's �rst limit formula gives the constant term of the Taylor

expansion of G∗0,s at s = 1.

Theorem 2 (Kronecker's First Limit Formula). Around s = 1,

G∗0,s(L) =
1/2

s− 1
+ (γ − log 2)− 1

12
log(a(L)6|∆(L)|) +O(s− 1),

where γ is Euler's constant.

Proof. This is proved in [Coh07, Thm.10.4.6], for example.
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C∞ Eisenstein series on Γ0(N)

Let N ≥ 1 be an integer. One can de�ne a C∞ Eisenstein series for Γ0(N) as

Gk,s,N (τ) =
∑

t∈(Z/NZ)×

∑
(m,n)≡(0,t) (mod N)

′ 1

(mτ + n)k|mτ + n|2s

=
∑
m,n∈Z

′ 1N (n)

(mNτ + n)k|mNτ + n|2s
for <(2s) + k > 2,

where 1N (n) = 1 if gcd(n,N) = 1 and 0 otherwise (this is the trivial character mod N).

A straightforward computation shows that Gk,s,N is a C∞ weight (k, s) modular form

for Γ0(N). De�ne

G∗k,s,N (τ) =
1

2
Γ(k + s)

(
=(τ)

π

)s
Gk,s,N (τ) for <(2s) + k > 2. (1.36)

Then one has the following

Theorem 3. For k ≥ 0 and N > 1, the C∞ modular form G∗k,s,N can be continued to a

meromorphic function of s ∈ C, which is entire if k > 0, and has a pole with residue ϕ(N)
2N2

at s = 1 if k = 0. Here, ϕ(N) is Euler's phi function.

Proof. This is [Shi10, Theorem 9.7] again, using the fact that

G∗k,s,N (τ) =
1

2

∑
t∈(Z/NZ)×

ZNk (τ, s; 0, t)

in Shimura's notation.

Recall that ϕ(N) has the simple expression

ϕ(N) = N
∏
p|N

(1− p−1). (1.37)
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We conclude this section by introducing Poincaré series, which are used in the Rankin-

Selberg method. For γ =

a b

c d

 ∈ SL2(Z), de�ne the automorphy factor j(γ, τ) as

j(γ, τ) = cτ + d. (1.38)

Then the Poincaré series Pk,s,N is de�ned as

Pk,s,N (τ) = =(τ)s
∑

γ∈Γ∞\Γ0(N)

j(γ, τ)−k|j(γ, τ)|−2s for <(2s) + k > 2, (1.39)

where

Γ∞ =

±
1 m

0 1

 : m ∈ Z

 .

Taking the set 
 a b

cN d

 : ad− bcN = 1, d > 0


as a set of representatives for the quotient Γ∞ \ Γ0(N) (see [MM06, Lemma 7.1.6]), we see

that

Pk,s,N (τ) = =(τ)s
∑

gcd(cN,d)=1,d>0

1

(cNτ + d)k|cNτ + d|2s
.

It follows that
1

2
=(τ)sGk,s,N (τ) = ζN (2s+ k)Pk,s,N (τ), (1.40)

where

ζN (s) =
∏
p|N

(1− p−s)ζ(s).

When k = 0, one has

P0,s,N (τ) =
∑

γ∈Γ∞\Γ0(N)

=(γτ)s for <(s) > 1, (1.41)
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since

=(γτ) = |j(γ, τ)|−2=(τ) (1.42)

(note that this equation is just saying that =(τ) has weight (0,−1)). Using relation (1.40),

one sees that P0,s,N extends to a meromorphic function of s ∈ C. Completing G0,s,N in

(1.40) and taking residues at s = 1, one sees using Theorem 3 when N > 1, Theorem 1

when N = 1 and (1.37) that

1

2N

∏
p|N

(1− p−1) =
ϕ(N)

2N2
= ress=1G

∗
0,s,N (τ) =

ζN (2)

π
ress=1P0,s,N (τ).

It follows that

ress=1P0,s,N (τ) =
3

Nπ

∏
p|N

(1 + p−1)−1 = Vol(Γ0(N) \ H)−1, (1.43)

where the volume is computed in the hyperbolic measure on H (see [RBvdG+08, Sec.1.3]).

1.5 Operators on Mk(Γ0(N), χ)

A detailed exposition of the material of this section can be found in [DS05, Ch.5], for

example.

A basic, but non-trivial property of the spaces Mk(Γ1(N)) is that they are �nite

dimensional over C (see [RBvdG+08, Prop.3]). For Γ = SL2(Z), one can show that the

Eisenstein series E4 and E6 introduced above generate the graded C-algebra of modular

forms for SL2(Z) (see [RBvdG+08, Prop.4]):

⊕
k≥0

Mk(SL2(Z)) = C[E4, E6]. (1.44)

It follows that,

Mk(SL2(Z)) = C− span of {Ea4Eb6 : 4a+ 6b = k},
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which shows in particular that Mk(SL2(Z)) is �nite dimensional for every k ≥ 0. For

example,

1. M0(SL2(Z)) = C;

2. M2(SL2(Z)) = 0;

3. Mk(SL2(Z)) = CE4,CE6,CE2
4 ,CE4E6 for k = 4, 6, 8 and 10, respectively;

4. M12(SL2(Z)) = CE3
4 ⊕ CE2

6 and S12(SL2(Z)) = C∆.

Throughout this section, the q-expansion of a modular form f ∈Mk(Γ1(N)) is denoted

f(q) =

∞∑
n=0

anq
n.

The diamond operators and the space Mk(Γ0(N), χ)

Let f be a modular form of weight k on Γ1(N). The homomorphism

Γ0(N) −→ (Z/NZ)× (1.45)

which sends a matrix γ ∈ Γ0(N) to its lower right entry is surjective and has Γ1(N) as

kernel. It follows that Γ0(N) normalizes Γ1(N), and so Γ0(N) acts on Mk(Γ1(N)) by

precomposition (i.e. (fγ)(τ) = f(γτ) for γ ∈ Γ0(N)). Since Γ1(N) acts trivially on that

space by de�nition, one gets an induced action of

Γ0(N)/Γ1(N) ∼= (Z/NZ)× (1.46)

on that space. To each d ∈ (Z/NZ) one attaches a linear operator 〈d〉, called a diamond

operator, de�ned as 0 if gcd(d,N) > 1 and as

(〈d〉f)(τ) = f(γdτ), (1.47)

where γd is any preimage of d (mod N) under the isomorphism (1.46), otherwise.
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Now let

χ : (Z/NZ)× −→ C×

be any Dirichlet character, extended to Z/NZ in the usual way and de�ne

Mk(Γ0(N), χ) = {f ∈Mk(Γ1(N)) : 〈d〉f = χ(d)f, ∀d ∈ Z/NZ}. (1.48)

An element of Mk(Γ0(N), χ) is called a modular form of weight k, level N and character

χ. By de�nition, if f is such a modular form, it satis�es the functional equation

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kf(τ) for all

a b

c d

 ∈ Γ0(N). (1.49)

The space Sk(Γ0(N), χ) is de�ned in a similar way (just note that the diamond operators

preserve Sk(Γ1(N))).

The Up operator on Mk(Γ0(N), χ)

Let p be a prime number and let f ∈ Mk(Γ0(N), χ). The Up operator is de�ned on

q-expansions as

(Upf)(q) =
∞∑
n=0

apnq
n. (1.50)

Viewing f as a function on the upper half-plane, one can express Up as

(Upf)(τ) =
1

p

p∑
j=1

f

(
τ + j

p

)
. (1.51)

If p|N , the operator Up preserves the spaces Mk(Γ0(N), χ) and Sk(Γ0(N), χ) (see

[DS05, Prop.5.2.1]). However, if p - N , it does not.
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The Vm operator on Mk(Γ0(N), χ)

Let m be an integer and f ∈ Mk(Γ0(N), χ) be as above. The Vm operator is de�ned

on q-expansions as

(Vmf)(q) =
∞∑
n=0

anq
mn. (1.52)

Equivalently, Vm has the simple expression

(Vmf)(τ) = f(mτ). (1.53)

The operator Vm never preserves the space Mk(Γ0(N), χ); it sends f to a form of level mN

(this is exercise 1.2.11 in [DS05]).

As operators on q-expansions, the Vm operators satisfy the following relations:

Vm =
∏
pr‖m

(Vp)
r.

The Hecke operator Tm on Mk(Γ0(N), χ)

First, let p be a prime number and let f be as above. The Hecke operator Tp of weight

k on Mk(Γ0(N), χ) is de�ned as

Tp = Up + χ(p)pk−1Vp. (1.54)

Here the character χ is extended to all Z/NZ in the usual way, so that

Tp = Up if p|N.

The operator T1 is de�ned as the identity and Tpr , for r ≥ 2, is de�ned recursively as

Tpr = TpTpr−1 − χ(p)pk−1Tpr−2 . (1.55)
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Note that this equation simpli�es to

Tpr = (Up)
r

if p|N . Finally, for positive integers m, de�ne

Tm =
∏
pr‖m

Tpr . (1.56)

The de�nition of Tm can be written more succinctly as an equality between formal power

series in X as

∞∑
m=1

TmX
m =

∏
p|N

(1− TpX)−1
∏
p-N

(1− TpX + χ(p)pk−1X2)−1. (1.57)

The Hecke operators have the following explicit expression on q-expansions:

(Tmf)(q) =
∞∑
n=0

 ∑
d|(m,n)

χ(d)dk−1amn/d2

 qn, (1.58)

where the inner sum is taken over positive common divisors of m and n (see [DS05,

Prop.5.3.1]).

An important fact is that the Hecke operators Tm of weight k preserve the spaces

Mk(Γ0(N), χ) and Sk(Γ0(N), χ) (see [DS05, Prop.5.2.2]), and that they all commute with

each other (see [DS05, Prop.5.2.4]).

The Hecke operators also have nice expressions on modular forms considered as functi-

ons on LΓ. For example, in level one (i.e. Γ = SL2(Z)) one has

(Tmf)(L) = mk−1
∑

L′⊆L:[L:L′]=m

f(L′), (1.59)

where the sum is taken over all sub-lattices of index m in L (see [RBvdG+08, Sec.4.1]).
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The ρ operator on Mk(Γ0(N), χ)

It was shown in Section 1.1 that the spaces GL+, LΓ and H could be equipped with

an action of complex conjugation, which was denoted ρ. One can also de�ne an action of ρ

on f ∈Mk(Γ0(N), χ) by letting

fρ(q) =

∞∑
n=0

anq
n. (1.60)

Then fρ is a modular form in Mk(Γ0(N), χ), where as usual χ(n) = χ(n) = χ(n)−1 for any

n prime to the level (this is in [Shi76, Sec.2], for example). Equivalently,

fρ(τ) = f(τρ) = f(−τ̄), (1.61)

when τ ∈ H or

fρ(L) = f(Lρ), (1.62)

when L ∈ LΓ1(N).

Using (1.24), it is clear that

Eρk = Ek for k > 2. (1.63)

In weight 2, it follows from (1.32) that

E2(−τ̄) = E2(τ). (1.64)

It follows that

Ek(•ρ) = Ek(•) for k ≥ 2, (1.65)

where • ∈ L or H.
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1.6 Petersson inner product and Atkin-Lehner Theory

The Petersson inner product

Let x and y be the standard coordinates on the upper half-plane, so that

τ = x+ iy,

and let

dµ =
dxdy

y2

be the SL2(Z)-invariant hyperbolic measure onH. For any two cusp forms f, g ∈ Sk(Γ0(N), χ),

the function

F (τ) = f(τ)g(τ)=(τ)k

is a C∞ modular form of weight 0 for Γ0(N). Since f(τ) goes to 0 exponentially fast as τ

approaches the cusps, so does F (τ). The Petersson inner product of f and g is de�ned as

〈f, g〉 =

∫∫
Γ0(N)\H

f(τ)g(τ)=(τ)kdµ, (1.66)

which is a well-de�ned integral by the properties of F (see [DS05, Sec.5.4]). This de�nes a

Hermitian inner product on Sk(Γ0(N), χ).

The adjoint of the Hecke operator Tm with respect to the Petersson inner product is,

by de�nition, the operator T ∗m on Sk(Γ0(N), χ) such that

〈Tmf, g〉 = 〈f, T ∗mg〉.

Proposition 1. If p - N , the adjoint of Tp under the Petersson inner product is

T ∗p = χ̄(p)Tp.

It follows that the Hecke operators Tm for m prime to N are normal (i.e. they commute

with their adjoint).
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Proof. [DS05, Theorem 5.5.3].

Newforms

Since the Hecke operators Tm, for gcd(m,N) = 1, form a commuting family of normal

operators on the space Sk(Γ0(N), χ), this space has a basis of orthogonal eigenvectors for

all Tm with gcd(m,N) = 1. Those eigenvectors are called eigenforms.

Fix an integer m prime to the level, let f be an eigenform and let λm be such that

Tmf = λmf.

Then

a1(Tmf) = λma1(f).

Using (1.58), one sees that

a1(Tmf) = am(f).

It follows that

am(f) = a1(f)λm, (1.67)

which implies that the Fourier coe�cients with index prime to the level of an eigenform are

determined by its eigenvalues and the leading term of its q-expansion.

De�ne the space of oldforms Sold
k (Γ0(N), χ) as the C-vector-space spanned by the

modular forms Vdg for d|N/M , d > 1, M |N and g ∈ Sk(Γ0(M), χ), where the modular

form Vdg of level Md is viewed as a modular form of level N under the natural inclusion

Sk(Γ0(dM), χ) ⊆ Sk(Γ0(N), χ).

The new subspace of Sk(Γ0(N), χ), denoted Snew
k (Γ0(N), χ), is de�ned as the orthogonal

complement (under the Petersson inner product) of Sold
k (Γ0(N), χ).
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Proposition 2. The subspaces Sold
k (Γ0(N), χ) and Snew

k (Γ0(N), χ) are stable under the

Hecke operators.

Proof. [DS05, Proposition 5.6.2].

If f is in the old subspace, it is clear that an(f) = 0 whenever gcd(n,N) = 1. The

Main Lemma in Atkin-Lehner theory says that the converse also holds.

Theorem 4 (Main Lemma). If f ∈ Sk(Γ0(N), χ) has Fourier expansion f(q) =
∑∞

n=1 an(f)qn

with an(f) = 0 whenever gcd(n,N) = 1, then f ∈ Sold
k (Γ0(N), χ).

Proof. [DS05, Theorem 5.7.1].

If f is in an eigenform in the new subspace, a1(f) 6= 0 by the Main Lemma and (1.67).

Therefore it makes sense to de�ne a newform as an eigenform which is normalized in such

a way that a1(f) = 1. Using the Main Lemma and (1.67) again, one can then prove the

following

Proposition 3. Let f be a newform. Then f is an eigenvector for all Hecke operators with

eigenvalue

Tmf = am(f)f.

In particular, all the Fourier coe�cients of a newform, hence the newform itself, are

determined by the eigenvalues of that newform under the action of the Hecke operators.

1.7 Di�erential operators on modular forms

De�ne the D operator as

D =
1

2πi

∂

∂τ
= q

d

dq
, (1.68)

so that

D

( ∞∑
n=0

anq
n

)
=

∞∑
n=1

nanq
n (1.69)
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on q-expansions. If f ∈ Mk(Γ1(N)) is a modular form, Df is holomorphic, but does not

behave well under the action of Γ1(N). In fact,

Df

(
aτ + b

cτ + d

)
= (cτ + d)k+2Df(τ) +

k

2πi
c(cτ + d)k+1f(τ) (1.70)

(see [RBvdG+08, Eq.52]). Note that if there was no second term, Df would be a modular

form of weight k+2. To get rid of the second term, one can introduce a "correction factor".

This leads to the Shimura-Maass operator

δk = D − k

4π=(τ)
=

1

2πi

(
∂

∂τ
+

k

τ − τ̄

)
. (1.71)

Using (1.42), one can show that δkf has weight k + 2 under Γ1(N) (see [RBvdG+08, after

Eq.55]). However, it is not holomorphic anymore (but still C∞). Note that the D operator

extends to C∞ functions by letting

∂

∂τ
=

1

2

(
∂

∂x
− i ∂

∂y

)
. (1.72)

One can therefore iterate this operator. De�ne

δrk = δk+2r−2 ◦ . . . δk+2 ◦ δk.

The Shimura-Maass operator on modular forms on SL2(Z)

The Shimura-Maass operator on Mk(SL2(Z)) can expressed in terms of the Eisenstein

series E2, E4 and E6 as follows:

δ2E2 =
5

6
E4 − 2E2

2 (1.73)

δ4E4 =
7

10
E6 − 8E2E4 (1.74)

δ6E6 =
400

7
E2

4 − 12E2E6. (1.75)
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To prove the second equation, for example, �rst compute

(δ4E4 +8E2E4)(τ) =

(
DE4(τ)− E4(τ)

π=(τ)

)
+

(
E4(τ)

π=(τ)
− (PE4)(τ)

3

)
= DE4(τ)− (PE4)(τ)

3
,

where

P (τ) = E2(τ)− 1

8π=(τ)
= − 1

24
+
∞∑
n=1

σ1(n)qn.

Since the left hand side is of weight 6 for SL2(Z) and the right hand side is holomorphic,

δ4E4 + 8E2E4 is a modular form of weight 6 for SL2(Z), so it is a multiple of E6.

It follows from the above formulas that the graded C-algebra generated by E2, E4 and

E6 is preserved by the Shimura-Maass operator (by acting on each graded piece). A weight

k element of this algebra is called a nearly holomorphic modular form of weight k on SL2(Z).

The Shimura-Maass operator on C∞ modular forms on SL2(Z)

Recall that the C∞ Eisenstein series G∗k,s has weight k. Therefore is makes sense to

apply the Shimura-Maass operator to it. Using term-by-term di�erentiation, one shows

that

δkG
∗
k,s = (2πi)−2G∗k+2,s−1 (1.76)

for <(s) large enough and then for all s (see [Shi10, Section 9.4]).

1.8 The L-function of modular forms

Let f =
∑∞

n=0 anq
n ∈ Mk(Γ0(N), χ) be a modular form. One can naturally attach a

Dirichlet series to it:

L(f, s) =

∞∑
n=1

an
ns
. (1.77)

This function of s ∈ C converges for <(s) > k/2 + 1 if f is a cusp form and for <(s) > k

otherwise. When f is a newform, it is an L-function.

Theorem 5. Let f =
∑∞

n=1 anq
n ∈ Sk(Γ0(N), χ) be a newform and de�ne

L∗(f, s) = N s/2ΓC(s)L(f, s) for <(s) > k/2 + 1, (1.78)
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where ΓC(s) = (2π)−sΓ(s). Then

1. L∗(f, s) extends to a holomorphic function on C;

2. L∗(f, s) satis�es the functional equation

L∗(f, s) = εL∗(f, k − s),

where ε = ±1;

3. For <(s) > k/2 + 1, L(f, s) can be expressed as an Euler product

L(f, s) =
∏
p

(1− app−s + χ(p)pk−1p−2s)−1.

Proof. See [DS05, Theorem 5.10.2] for the �rst two points and [DS05, Theorem 5.9.2] for

the third point.
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CHAPTER 2
Computing the Petersson inner product of cusp forms

In this chapter, the main tools and formulas to compute the Petersson inner product

of modular forms are introduced, in decreasing order of generality.

2.1 The Rankin-Selberg method

The Rankin-Selberg method is a simple but clever manipulation of integrals that leads

to an explicit relation between the Petersson inner product of two modular forms and a

residue of a Dirichlet series. Another exposition of this method is given in [Shi76, Sec.2],

for example.

Let f, g ∈ Sk(Γ0(N)) be two modular forms with q-expansions
∑
anq

n and
∑
bnq

n, re-

spectively. Recall that the Poincaré series P0,s,N of weight (0, 0) for Γ0(N) can be expressed

as

P0,s,N (τ) =
∑

γ∈Γ∞\Γ0(N)

=(γτ)−s

for <(s) large enough. Since the function

F (τ) = f(τ)g(τ)=(τ)k

is also of weight (0, 0) for Γ0(N), the integral

I(s) =

∫∫
Γ0(N)\H

F (τ)P0,s,N (τ)dµ(τ) (2.1)

converges for <(s) > 1. The idea of the Rankin-Selberg method is to compute the residue

at s = 1 of I(s) in two di�erent ways.
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On the one hand, since P0,s,N (τ) has a simple pole at s = 1 whose residue does not

depend on τ , it follows that

ress=1I(s) = Vol(Γ0(N) \ H)−1〈f, g〉, (2.2)

by (1.43) and the de�nition of the Petersson inner product of f and g.

On the other hand, for <(s) large enough∫∫
Γ0(N)\H

F (τ)P0,s,N (τ)dµ(τ) =

∫∫
Γ0(N)\H

∑
γ∈Γ∞\Γ0(N)

F (τ)=(γτ)sdµ(τ)

=
∑

γ∈Γ∞\Γ0(N)

∫∫
Γ0(N)\H

F (τ)=(γτ)sdµ(τ)

=
∑

γ∈Γ∞\Γ0(N)

∫∫
Γ0(N)\H

F (γτ)=(γτ)sdµ(τ)

=

∫∫
Γ∞\H

F (τ)=(τ)sdµ(τ).

A fundamental domain for the region Γ∞ \ H is given by {τ ∈ H : 0 ≤ <(τ) ≤ 1}, so that

the last integral can be written as∫∫
Γ∞\H

F (τ)=(τ)sdµ(τ) =

∫ ∞
0

∫ 1

0
F (x+ iy)ys−2dxdy.

Now

f(τ)g(τ) =
∞∑

m,n=1

anbme
2πinze−2πimτ̄ =

∞∑
m,n=1

anbme
2πi(n−m)xe−2π(m+n)y,

so ∫ 1

0
F (x+ iy)dx =

∞∑
n=1

anbne
−4πnyyk

and ∫ ∞
0

(∫ 1

0
F (x+ iy)ysdx

)
dy

y2
=

Γ(s+ k − 1)

(4π)s+k−1

∞∑
n=1

anbn
ns+k−1

.

34



Taking the residue at s = 1, we get

ress=1I(s) =
Γ(k)

(4π)k
ress=kD(f, gρ, s), (2.3)

where

D(f, g, s) =
∞∑
n=1

anbn
ns

.

Putting (2.2) and (2.3) together, one obtains the following

Theorem 6 (Rankin-Selberg). Let f, g ∈ Sk(Γ0(N), χ). Then

〈f, g〉 = Vol(Γ0(N) \ H)
Γ(k)

(4π)k
ress=kD(f, gρ, s),

where

Vol(Γ0(N) \ H) =
π

3
N
∏
p|N

(1 + p−1).

Thanks to this theorem, the computation of the Petersson inner product is reduced to

the computation of the residue of a Dirichlet series at s = k.

2.2 Rankin- Selberg convolution and symmetric square L-functions

Suppose now that f and g are common eigenforms for all Hecke operators with a1 =

b1 = 1. Those conditions hold when f and g are newforms, for example. Let

L(f, s) =
∏
p

(1− app−s + χ(p)pk−1p−2s)−1 =
∏
p

((1− αpp−s)(1− βpp−s))−1

be the Euler product of L(f, s). Recall that χ(p) = 0 if p|N . By convention, let βp = 0 if

p|N . It follows that

αp + βp = ap (2.4)

and

αpβp =


χ(p)pk−1 if p - N

0 if p|N
.
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The numbers αp and βp are called the roots of the Hecke polynomial of f at p. Similarly,

let α′p and β
′
p be the roots of g at p.

Twisted modular forms

Let ω be a primitive Dirichlet character mod M and let χ0 be the primitive Dirichlet

character corresponding to χ. Then the q-expansion

∞∑
n=1

ω(n)anq
n (2.5)

is the q-expansion of a modular form of level lcm(N,M2,M cond(χ0)), character χ0ω
2 and

weight k (see [Shi71][Prop 3.64]). This modular form is called the twist of f by ω and is

denoted fω. Here χ0ω
2 is viewed as a lcm(N,M2,M cond(χ0))-periodic function on Z (in

particular, it may not be a primitive character).

It is not hard to see that the roots of fω at p are ω(p)αp and ω(p)βp.

Twisted symmetric square L-function

The symmetric square L-function of f twisted by ω is de�ned by the Euler product

L(Sym2 f, ω, s) =
∏
p

[(1− ω(p)α2
pp
−s)(1− ω(p)αpβpp

−s)(1− ω(p)β2
pp
−s)]−1 (2.6)

for <(s) large enough.

The following theorem of Shimura is very useful when dealing with L(Sym2 f, ω, s).

Theorem 7. Let f ∈ Mk(Γ0(N), χ) be a common eigenfunction for all Hecke operators

and let L(Sym2 f, ω, s) be the symmetric square L-function of f twisted by ω. Then the

function

R(Sym2 f, ω, s) = ΓR(s)ΓR(s+ 1)ΓR(s+ 2− k − δ)L(Sym2 f, ω, s),

where δ is 0 or 1 according as χ(−1)ω(−1) = 1 or −1 can be continued to a meromorphic

function of s ∈ C, which is holomorphic except for possible simple poles at s = k and
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s = k − 1. Moreover, the function R(Sym2 f, ω, s) has a pole at s = k if and only if the

following conditions are satis�ed:

1. χω is a non-trivial character of order 2;

2.
∫

Φ fḡ=(τ)kdµ 6= 0, where g(τ) =
∑∞

n=1 ω̄(n)ane
2πinτ and Φ is a fundamental domain

for Γ0(NM2) \ H.

Proof. This is a combination of Theorems 1 and 2 of [Shi75].

An identity between Dirichlet series

The following lemma gives an expression for the Euler product of D(f, g, s) in terms

of the roots of f and g.

Lemma 1. Suppose we have formally

∞∑
n=1

an
ns

=
∏
p

((1− αpp−s)(1− βpp−s))−1,

∞∑
n=1

bn
ns

=
∏
p

((1− α′pp−s)(1− β′pp−s))−1.

Then

∞∑
n=1

anbn
ns

=
∏
p

(1−αpβpα′pβ′pp−2s)((1−αpα′pp−s)(1−αpβ′pp−s)(1−βpα′pp−s)(1−βpβ′pp−s))−1.

Proof. See [Shi76][Sec.3, Lemma 1].

If L(s) is a Dirichlet series which has an Euler product expansion, the expression LN (s)

denotes the Dirichlet series with the Euler factors at the primes dividing N removed. For

example,

L(1N , s) = ζN (s),

where L(1N , s) is the Dirichlet series attached to 1N , the trivial Dirichlet character mod N .
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Proposition 4. Let f ∈ Mk(Γ0(N), χ) be a newform and let ω be a primitive Dirichlet

character of conductor M . Then

LMN (χ2ω2, 2s+ 2− 2k)D(f, fω, s) = LMN (χω, s+ 1− k)L(Sym2 f, ω, s)

for all s ∈ C.

Proof. For <(s) large enough, this follows easily from computing the Euler factors at all

primes p of the four Dirichlet series involved (using Lemma 1, in particular). The result

then follows for all s by Theorem 7.

By the Rankin-Selberg method, the Petersson norm of f can be expressed in terms

of the residue of D(f, fρ, s) at s = k. On the other hand, the last proposition establishes

a relation between D(f, fω, s) and L(Sym2 f, ω, s). In the next two sections, relations

between D(f, fρ, s) and D(f, fω, s), for some ω, are found.

2.3 F Petersson norm of newforms and special values of their symmetric
square L-functions

This section is based on the argument of [Hid81][Sec.5].

The general case

From now on, suppose that f is a newform. Using the fact that the adjoint of the

Hecke operator Tn under the Petersson inner product is χ̄(n)Tn, for n coprime to N , one

sees immediately that

ān = χ̄(n)an for gcd(n,N) = 1. (2.7)

It follows that

DN (f, fρ, s) = DN (f, f χ̄0 , s),

where χ̄0 is the primitive Dirichlet character attached to χ̄. Since f is new of level N ,

Equation (2.7) also holds for gcd(n,N ′) = 1, where N ′ is the conductor of χ. It follows
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that

DN ′(f, f
ρ, s) = DN ′(f, f

χ̄0 , s). (2.8)

Let N ′p and Np be the p-part of N ′ and N , respectively (note that N ′p|Np for all primes

p). Then

apāp = pk−1 if p|N and Np = N ′p, (2.9)

apāp = pk−2 if p|N and Np = p,N ′p = 1, (2.10)

ap = 0 if p2|N and Np = N ′p (2.11)

(see [Hid81][Eqn.5.10]). It follows that the Euler factors of the Dirichlet series in (2.8) di�er

only at the primes for which N ′p = Np. This proves the following

Proposition 5. Let f ∈ Sk(Γ0(N), χ) be a newform, let N ′ be the conductor of χ and let

N ′p and Np be the p-parts of N ′ and N , respectively. Then

D(f, fρ, s) =
∏

p:N ′p=Np

(1− pk−1−s)−1D(f, f χ̄0 , s).

Using this, one can now prove the following

Theorem 8. Let f ∈ Sk(Γ0(N), χ) be a newform and let N ′ be the conductor of χ. Then

〈f, f〉 =

(
π

2

φ(N)

NN ′φ(N/N ′)

(4π)k

(k − 1)!

)−1

L(Sym2 f, χ̄0, k),

where φ is the Euler totient function.

Proof. Using Proposition 4 with ψ = χ̄0, Proposition 5 and by comparing residues at s = k,

one sees that

∏
p:N ′p=Np

(1− p−1)ζN (2) ress=kD(f, fρ, s) = ress=1 ζN (s)L(Sym2 f, χ̄0, k)
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⇔
∏

p|(N/N ′)

(1− p−1)−1
∏
p|N

(1− p−2)
π2

6
ress=kD(f, fρ, s) = L(Sym2 f, χ̄0, k).

Using the Rankin-Selberg method to relate D(f, fρ, s) and 〈f, f〉, we get

∏
p|(N/N ′)

(1−p−1)−1
∏
p|N

(1−p−2))
π2

6

 3

π
N−1

∏
p|N

(1 + p−1)−1 (4π)k

(k − 1)!
〈f, f〉

 = L(Sym2 f, χ̄0, k)

⇔ π

2

1

N

∏
p|N

(1− p−1)
∏

p|(N/N ′)

(1− p−1)−1 (4π)k

(k − 1)!
〈f, f〉 = L(Sym2 f, χ̄0, k).

The theorem follows since

φ(N) = N
∏
p|N

(1− p−1).

The special case where f has trivial character

In the special case where the character of f is trivial, i.e. f ∈ Sk(Γ0(N)), the formula

of Theorem 8 simpli�es to

〈f, f〉 =

(
π

2N

(4π)k

(k − 1)!

)−1

L(Sym2 f, 1, k). (2.12)

In this case, the completed symmetric square L-function

L∗(Sym2 f, 1, s) = (N2)sΓR(s)ΓR(s+ 1)ΓR(s+ 2− k)L(Sym2 f, 1, s)

satis�es the functional equation

L∗(Sym2 f, 1, 2k − 1− s) = L∗(Sym2 f, 1, s).

This information allows e�cient computations with PARI/GP.
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In particular, this formula applies to the newforms

∆(q) = q
∞∏
n=1

(1− qn)24,

∆5(q) = q

∞∏
n=1

(1− qn)4(1− q5n)4 and

∆11(q) = q
∞∏
n=1

(1− qn)2(1− q11n)2

in S12(SL2(Z)), S4(Γ0(5)) and S2(Γ0(11)), respectively.

2.4 F Petersson norm of newforms with real Fourier coe�cients

In the special case where f is twisted by the trivial character, the formula of Proposition

4 gives

LN (χ2, 2s+ 2− 2k)D(f, f, s) = LN (χ, s+ 1− k)L(Sym2 f, 1, s).

Suppose now that f has real Fourier coe�cients and that χ is not the trivial character

mod N (since this case was treated in the previous section). Then, using the formula of

Theorem 6, one sees that L(Sym2 f, 1, s) has a pole at s = k (since LN (χ, s) is analytic

for χ non-trivial). It then follows from Theorem 7 that χ has order 2. This leads to the

following

Theorem 9. Let f be a newform with real Fourier coe�cients and non-trivial character.

Then

〈f, f〉 =

(
π

2

φ(N)

N2

(4π)k

(k − 1)!

)−1

LN (χ, 1) ress=k L(Sym2 f, 1, s).

Proof. From the previous discussion, we have

ζN (2) ress=kD(f, f, s) = LN (χ, 1) ress=k L(Sym2 f, 1, s).
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Since f = fρ, Theorem 6 gives

∏
p|N

(1− p−2)
π2

6

 3

π
N−1

∏
p|N

(1 + p−1)−1 (4π)k

(k − 1)!
〈f, f〉

 = LN (χ, 1) ress=k L(Sym2 f, 1, s)

⇔ π

2N

∏
p|N

(1− p−1)
(4π)k

(k − 1)!
〈f, f〉 = LN (χ, 1) ress=k L(Sym2 f, 1, s),

from which the result follows.
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CHAPTER 3
Complex multiplication and modular forms over C

The theory of complex multiplication is certainly one of the most beautiful subject in

number theory. It is also vast. For this reason, only the results that are needed in this

thesis are introduced.

Some notation

From now on in this thesis, let K be an imaginary quadratic �eld of discriminant

D embedded in C. Moreover, let H be its Hilbert class �eld, that is the maximal abelian

unrami�ed extension of K, which has degree hK over K. Let also OK be the ring of integers

of K, IK be the group of fractional ideals of K and ClK be the ideal class group of K.

3.1 CM points in H, L and Y (SL2(Z))

Let a ∈ IK be a fractional ideal of K. Then a is a free Z-module of rank 2 and

a⊗ R = K ⊗ R = C,

so a can be viewed as a lattice in C, i.e. an element of L. This gives a map

(Ω, a) 7→ Ωa : C× × IK −→ L.

The points of L in the image of this map for some K are called CM points.

Note that one can map a fractional ideal a to H in many ways by �rst �xing an

oriented basis (i.e. by taking a preimage in GL+) and then mapping it to H. Since there is

no canonical choice for this basis, there is no canonical map from IK to H. One may still
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call a point of H which can be obtained from this procedure a CM point of H. Note that

those are simply the points of H which are algebraic of degree 2 over Q.

3.2 F CM values of modular functions

A central object in the automorphic side of complex multiplication is the modular

function j introduced in the �rst chapter. Then one has the following important

Theorem 10. Let a ∈ IK be a fractional ideal of K and let A ∈ ClK be an ideal class of

K. Then

1. j(A) is an algebraic integer in H,

2. [K(j(A)) : K] = [Q(j(A)) : Q] = hK and so K(j(A)) = H,

3. the j(A) are Galois conjugate over K and Q as A ranges over the classes in ClK ,

4. if p is a prime of K, then

j(a)

(
H/K

p

)
= j(p−1a),

where
(
H/K
p

)
∈ Gal(H/K) is the Artin symbol.

Proof. This is a restatement in terms of ideal classes of [Sil94][Thm.4.3] and [Sil94][Thm.6.1].

See the second part of this thesis for the correspondence between ideal classes and elliptic

curves with complex multiplication.

The values of j at CM points are called singular moduli.

It is a basic fact that modular functions on SL2(Z) can be seen as rational functions

in j with coe�cients in C, i.e. as element in

C(j).

Then it follows from the above theorem that
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Corollary 1. Let f be a modular function on SL2(Z) with algebraic Fourier coe�cients,

i.e. an element of Q̄(j). Then if f is de�ned at an ideal class A,

f(A) ∈ Q̄.

3.3 F Siegel units

Siegel units form a collection of units in the Hilbert class �eld of K that will appear

later in the formulas for the Petersson inner product of weight one theta series.

As above, let a be a fractional ideal of K and de�ne

ϕa =
∆(OK)

∆(a−1)
. (3.1)

This quantity has weight 12 in the ideal a in the sense that

ϕza = z−12ϕa (3.2)

for all z ∈ C×. Then one has the following

Theorem 11. Let a and ϕa be as above. Then

1. ϕa is an algebraic number in H;

2. ϕaOH = a−12OH ;

3. if p is a prime of K, then

ϕ

(
H/K

p

)
a = ϕapϕ

−1
p ,

where
(
H/K
p

)
∈ Gal(H/K) is the Artin symbol.

Proof. See [DS87, Sec.2.2] or [Lan87][Ch.12, Sec.2] (the formulation is slightly di�erent

there).

It follows directly from this theorem that

δa = α12ϕhKa = α12

(
∆(OK)

∆(a−1)

)hK
, (3.3)
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where αOK = ahK , is a unit in the Hilbert class �eld of K which depends only on the ideal

class of a. Those units are called Siegel units.

Let N(a) denote the ideal norm of a. Then N(µa) = |µ|2N(a) for any µ ∈ K and

N(a) =
2a(a)√
|D|

, (3.4)

where a is the modular form de�ned in Section 1.3. With α as above, we see that N(a)hK =

|α|2 and so

|δa| = (N(a)6|ϕa|)hK (3.5)

is a unit in H which depends only on the ideal class of a. In fact, one can see using the

second point of the previous theorem that

(N(a)6|ϕa|)2

is also a unit in the Hilbert class �eld (see [Lan87][Ch.12, Sec.2]).

3.4 F CM values of modular forms

If f is a modular form of weight greater than 0, the statement "f is algebraic at CM

points" does not make sense. One can salvage this by introducing periods in the statements.

Proposition 6. Let f be a modular form of weight k and level 1 with algebraic Fourier

coe�cients, and let K be an imaginary quadratic �eld. Then there exists a constant Ω(K),

depending only on K, such that

f(a) ∈ Ω(K)kQ̄

for all fractional ideals a of K (equivalently, for all τ ∈ K ∩H).

Proof. This is [RBvdG+08][Ch.1, Prop.26].

Note that this constant Ω(K) is well-de�ned only up to an algebraic number. However,

using the Chowla-Selberg formula, one can �nd an explicit expression for an Ω(K).
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Proposition 7. One can choose Ω(K) to be

ΩK =
1√

4π|D|

|D|−1∏
n=1

Γ

(
n

|D|

)χD(n)
wK/(4hK)

in the previous proposition.

Proof. This result is proved in [RBvdG+08][Ch.1, Formula (97)], for example, and follows

directly from the Chowla-Selberg formula.

The complex number ΩK is called the Chowla-Selberg period attached to K.

3.5 F CM values of nearly holomorphic modular forms

Recall that the graded C-algebra of nearly holomorphic modular forms for SL2(Z) is

generated by the Eisenstein series E2, E4 and E6. From the previous section, it follows

that the modular forms E4/Ω
4
K and E6/Ω

6
K take algebraic values at fractional ideals of K.

The following proposition proves that a similar statement is true for E2.

Proposition 8. Let E2 be the C∞ Eisenstein series of weight 2 on SL2(Z) and let a be a

fractional ideal of K. Then

E2(a) ∈ Ω2
KQ̄.

Proof. This is [RBvdG+08][Ch.1, Prop.28].

Corollary 2. Let f be a nearly-holomorphic modular form of weight k on SL2(Z) with

algebraic Fourier coe�cients, i.e. an element of Q̄[E2, E4, E6], and let a be a fractional

ideal of K. Then

f(a) ∈ Ωk
KQ̄.
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CHAPTER 4
Petersson inner product of theta functions

In this chapter, the Rankin-Selberg method is used to compute the Petersson inner

product of theta series attached to K in terms of L-functions of Hecke characters, C∞

Eisenstein series and derivatives of nearly-holomorphic Eisenstein series.

4.1 F Hecke characters of type A0 with trivial conductor

Let K, OK , etc. be as in the previous chapter. A Hecke character of K of type

A0 with trivial conductor is given by the following data: a pair of integers (k1, k2) and a

homomorphism

ψ : IK → C×

such that

ψ((α)) = αk1ᾱk2

for all α ∈ K×. For simplicity, a Hecke character of type A0 is often represented by the

function ψ. The pair (k1, k2) is called the in�nity type of ψ. To this pair, one can attach

the function

X : K× → C×

which sends α to αk1ᾱk2 . Note that for ψ to be well de�ned, X has to be trivial on O×K .

Hecke characters of in�nity type (0, 0) are called class characters, since they naturally

descend to characters of the class groups ClK = IK/{(α) : α ∈ K×}. Any two Hecke

characters with the same in�nity type di�er by a class character, since their quotient has

in�nity type (0, 0). In particular, there are only �nitely many Hecke characters of a �xed

in�nity type.
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Given a class character χ and a function X on K× as above which is trivial on O×K ,

one can obtain a Hecke character by sending a ∈ IK to X(µ)χ(a0), where µ ∈ K×, a0 is an

integral ideal and a = (µ)a0. By the above remarks, all Hecke characters of type A0 can be

obtained in this way. This gives a simple and explicit way to construct Hecke characters,

since the class group can be computed explicitly.

L-functions of Hecke characters

Let ψ be a Hecke character as above and de�ne

L(ψ, s) =
∑
a

ψ(a)

N(a)s
for <(s) >

k1 + k2

2
+ 1, (4.1)

where the sum is taken over all integral ideals of K. In its region of absolute convergence,

this Dirichlet series has an Euler product expansion

L(ψ, s) =
∏
p

(1− ψ(p)N(p)−s)−1, (4.2)

where the product is taken over all primes of K.

Theorem 12. Let K be an imaginary quadratic �eld of discriminant D and let ψ be a Hecke

character of type A0 with in�nity type (k1, k2) as above. De�ne the completed L-function

attached to ψ as

L∗(ψ, s) = |D|s/2ΓC(s−min(k1, k2))L(ψ, s) for <(s) >
k1 + k2

2
+ 1,

where ΓC(s) = (2π)−sΓ(s). Then

1. L∗(ψ, s) extends to a meromorphic function on C, with poles at s = 0 and s = 1 if

and only if ψ is the trivial character;

2. L∗(ψ, s) satis�es the functional equation

L∗(ψ, 1 + k1 + k2 − s) = W (ψ)L∗(ψ̄, s),
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where W (ψ) is some complex number of absolute value 1 and ψ̄ is the Hecke character

de�ned as ψ̄(a) = ψ(a).

Note that L(ψ, s) is simply the Dedekind zeta function of K when ψ is the trivial

character.

Proof. This follows from [MM06][Thm.3.3.1]. Indeed, it su�ces to note that

ψ(a) = ξ(a)N(a)
k1+k2

2 ,

where ξ is a Hecke character as de�ned in the reference. Then

L∗(ψ, s) = cΛ

(
ξ, s− k1 + k2

2

)
for some constant c and the theorem follows.

The number W (ψ) that appears in the functional equation can be computed explicitly

in terms of Gauss sums (see [MM06][Sec. 3.3]).

4.2 F Theta functions attached to imaginary quadratic �elds

From now on, the term Hecke character will always refer to Hecke characters of type

A0 and conductor 1, as they were de�ned in the previous section.

Theta functions attached to Hecke characters of conductor one

Let ψ be such a character of in�nity type (k1, k2) and consider the following q-expansion

θψ(q) = cψ +
∑
a

′ψ(a)qN(a), (4.3)

where the sum is taken over all non-trivial integral ideals of K and

cψ =


0 if ψ is non-trivial

hK
wK

if ψ is the trivial character

.
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For θψ to be the q-expansion of a modular form, it is necessary that k1 = 0 or k2 = 0. To

see this, suppose that θψ was a modular form. Then its L-series would be

L(θψ, s) = L(ψ, s) (4.4)

and then one sees that the gamma factor of L(ψ, s), namely Γ(s − min(k1, k2)), can be

the gamma factor of a modular form only if min(k1, k2) = 0. Furthermore, by looking

at the exponential factor and the weight of L(ψ, s), one sees that θψ would have weight

max(k1, k2) + 1 and level |D|. Finally, by computing ap(θψ) and by looking at the Euler

factor at p of L(θψ, s), one can deduce that θψ would have character the Kronecker symbol

χD de�ned as

χD(p) =


1 if p splits in K

−1 if p is inert in K

0 if p is inert in K

.

As it turns out, the condition k1 = 0 or k2 = 0 is also su�cient for θψ to be a modular

form.

Note that there is no loss of generality in supposing that ψ has in�nity type (k1, 0),

since then ψ̄ has in�nity type (0, k1) and the equality θψ̄ = θρψ implies that

θψ̄ = θψ,

since θρψ = θψ. To prove the last equality, compute ap(θψ) and note that

ψ(p̄) = ψ̄(p)

for any prime ideal p in K since

ψ(p)ψ̄(p) = N(p)k1 = ψ(N(p)OK) = ψ(pp̄) = ψ(p)ψ(p̄).
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From now on, let ψ is a Hecke character of in�nity type (2`, 0) for some ` ≥ 0 (note that

k1 + k2 must be even when the conductor is OK , since ±1 ∈ O×K).

Theorem 13. Let ψ be a Hecke character of in�nity type (2`, 0) for some ` ≥ 0. Then

θψ(q), given by (4.3), is the q-expansion of a modular form

θψ ∈M2`+1(Γ0(|D|), χD),

where χD is the Kronecker symbol introduced above. If ` 6= 0, the modular form θψ is a

newform. If ` = 0, the modular form θψ is a newform unless ψ2 is the trivial class character,

in which case it is an Eisenstein series.

The class characters of order dividing 2 are called genus characters and the Eisenstein

series θψ attached to them are called genus Eisenstein series.

To prove Theorem 13, it is convenient to introduce another collection of theta series.

Theta functions attached to ideals

Let a be a fractional ideal of K, let ` ≥ 0 be an integer as above and consider the

following q-expansion

θa,`(q) =
∑
λ∈a

λ2`qN(λ)/N(a). (4.5)

Note that there is no loss of generality in supposing that a is integral, since

θµa,`(q) = µ2`θa,`. (4.6)

Note also that

θρa,` = θā,`. (4.7)

The following result is well-known.
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Theorem 14. Let a be an integral ideal of K and let ` be a positive integer. Then θa,`(q),

given by (4.5), is the q-expansion of a modular form

θa,` ∈M2`+1(Γ0(|D|), χD),

where χD is the Kronecker symbol. Moreover, the modular form θa,` is a cusp form if and

only if ` > 0.

Proof. First, note that a is a free Z-module of rank 2 and soN(λ)/N(a) is a binary quadratic

form which has integral coe�cients. Second, a direct computation shows that λ2` is a

spherical polynomial for this quadratic form. The result then follows from the general

theory of classical theta series (see [Iwa97, Thm.10.9], for example).

The relation between the theta functions attached to ideals and those attached to

Hecke characters is given in the following

Proposition 9. Let ψ be a Hecke character of in�nity type (2`, 0) and let a1, . . . ahK be a

set of integral ideal class representatives of ClK . Then

θψ(q) =
1

wK

hK∑
j=1

ψ−1(aj)θaj ,`(q)

and

θa,` =
wK
hK

∑
ψ

ψ(a)θψ,

where the sum is over the hK Hecke characters of in�nity type (2`, 0).

Proof. Let a be an integral ideal. Then since the a−1
j are also representatives of ClK , one

can write a = λa−1
j for some unique j and some λ ∈ aj which is unique up to a unit.

Therefore

θψ(q) =
1

wK

hK∑
j=1

∑
λ∈aj

ψ(λa−1
j )qN(λ)/N(aj) =

1

wK

hK∑
j=1

ψ−1(aj)
∑
λ∈aj

λ2`qN(λ)/N(aj).
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The second equality follows from this equality and the following orthogonality relation:

∑
ψ

ψ(a) =


λ2`hK if a = λOK for some λ ∈ K

0 otherwise
. (4.8)

To prove this, �x a Hecke character ψ0 of in�nity type (2`, 0) and note that

∑
ψ

ψ/ψ0(a) =


hK if a = λOK for some λ ∈ K

0 otherwise
,

by the orthogonality relation for characters of the abelian group ClK .

It is now possible to prove Theorem 13.

Proof. (of Theorem 13) It is clear from the modularity of the θa,` and Proposition 9 that

the θψ are modular forms of the correct weight, level and character.

For ` 6= 0, the cuspidality of the θa,` also implies that of θψ. Moreover, the fact that

L(θψ, s) has an Euler product of the right shape proves that θψ is a newform (see [DS05,

Thm.5.9.2], which is a partial converse to Theorem 5).

For ` = 0, a �ner analysis is needed to prove that θψ is an Eisenstein series if and only

if ψ2 is trivial. See [Kan12, Thm.14], for example. Once this is known, the same argument

as above proves that θψ is a newform when it is cuspidal.

The identities in the previous proposition can also be used to obtain the well-known

decomposition of L-functions of Hecke characters in terms of Eisenstein series evaluated at

CM points. To see this, �rst note that

L(θa,`, s) = N(a)sG2`,s−2`(ā). (4.9)

Then

L(θψ, s) =
1

wK

hK∑
j=1

ψ−1(aj)L(θaj ,`, s)
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and so

L(ψ, s) =
1

wK

hK∑
j=1

ψ−1(aj)N(aj)
sG2`,s−2`(āj). (4.10)

The space of theta functions

By Proposition 9, the modular forms θa,` and θψ span the same space insideM2`+1(Γ0(|D|), χD)

as a ranges over all fractional ideals of K and ψ ranges over the Hecke characters of in�nity

type (2`, 0). Let ΘK,` ⊆M2`+1(Γ0(|D|), χD) denote this space.

When ` = 0, relation (4.7) becomes

θa,0 = θā,0. (4.11)

Letting Z/2Z act on the set {θa1,0, . . . , θahK ,0} via ρ, where the aj are representatives of

ClK , one sees using Burnside's Lemma that this set contains (hK + gK)/2 orbits, where

gK = [ClK : Cl2K ] is the number of genera.

This relation (4.11) and relation (4.6) are the only relations between theta functions,

for any ideal and any ` ≥ 0. More formally:

Proposition 10. Let ` ≥ 0 and let {a1, . . . , ahK} be representatives of ClK . Then

� if ` = 0, the C-vector space ΘK,` has dimension (hK + gK)/2;

� if ` 6= 0, the C-vector space ΘK,` has dimension hK .

Proof. This is well-known and follows from the classical theory of integral binary quadratic

forms. See [Kan12, Prop.7], for example.

One can then prove the following

Corollary 3. Let ψ1, . . . , ψgK be the gK genus characters of ClK . Then the Eisenstein

series θψj for j = 1, . . . , gK are C-linearly independent. Moreover, the space spanned by

the hK − gK cusp forms θψ, for ψ a class character of order greater than 2, has dimension

(hK − gK)/2.
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4.3 F Petersson inner product of theta functions attached to imaginary qua-
dratic �elds

In this section, the Rankin-Selberg method is used to �nd formulas for the Petersson

norm of cuspidal theta functions.

Symmetric square L-function of theta functions attached to Hecke charac-
ters

Recall that the Petersson norm of a newform is related to a special value or to the

residue of a twist of its symmetric square L-function. For theta functions, this L-function

is related to the L-function of a Hecke character.

Proposition 11. Let ψ be a Hecke character of in�nity type (2`, 0) for some ` ≥ 0 and let

ω be a primitive Dirichlet character. Then

L(Sym2 θψ, ω, s) = LD(ω, s− 2`)
∑
a

ω(N(a))ψ2(a)

N(a)s
,

where the sum is taken over all integral ideals of K.

Proof. For <(s) large enough, all Dirichlet series involved have an Euler product expansion

and the statement follows from a straightforward calculation.

Corollary 4. The following equalities hold:

L(Sym2 θψ, 1, s) = ζD(s− 2`)L(ψ2, s)

and

L(Sym2 θψ, χD, s) = L(χD, s− 2`)LD(ψ2, s).

Proof. The �rst equation is clear and the second follows from the fact that χD(N(p)) is 1

if p divides a prime of Q which is unrami�ed in K and 0 otherwise.
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Petersson norm of cuspidal theta functions attached to Hecke characters

Let ψ be a Hecke character of in�nity type (2`, 0) which is not a genus character. Then

θψ is a newform and θρψ = θψ, so one can apply either the formula of Theorem 9:

〈θψ, θψ〉 =

(
π

2

φ(|D|)
D2

(4π)2`+1

Γ(2`+ 1)

)−1

L(χD, 1) ress=2`+1 L(Sym2 θψ, 1, s) (4.12)

or the general formula of Theorem 8:

〈θψ, θψ〉 =

(
π

2

φ(|D|)
D2

(4π)2`+1

Γ(2`+ 1)

)−1

L(Sym2 θψ, χD, 2`+ 1).

For no particular reason, let us use the �rst formula. Of course, the second gives the same

result.

Proposition 12. Let ψ be a Hecke character of in�nity type (2`, 0) which is not a genus

character. Then

〈θψ, θψ〉 =
4hK
wK

√
|D|Γ(2`+ 1)

(4π)2`+1
L(ψ2, 2`+ 1).

Proof. Using the previous Corollary, one sees that

ress=2`+1 L(Sym2 θψ, 1, s) = ress=1 ζD(s)L(ψ2, 2`+ 1) =
∏
p|D

(1− p−1)L(ψ2, 2`+ 1).

The formula then follows from a simple calcuation, using (4.12) and the class number

formula

L(χD, 1) =
2πhK

wK
√
|D|

.

Note that if ` = 0 and ψ is a genus character, the above formula for 〈θψ, θψ〉 is not

well-de�ned since in this case L(ψ2, s) is the Dedekind zeta function of K which has a pole

at s = 1.
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Using (4.10) and the previous proposition, it follows that

L(ψ2, s+ 2`+ 1) =
1

wK

hK∑
j=1

ψ−2(aj)N(aj)
s+2`+1G4`,s−2`+1(āj).

If ` 6= 0, the Eisenstein series G4`,s−2`+1 is well-de�ned at s = 0 and so

L(ψ2, 2`+ 1) =
1

wK

hK∑
j=1

ψ−2(aj)N(aj)
2`+1G4`,−2`+1(āj).

Using Equation (1.76) and (3.4), one can compute

δ2`−1
2 E2(a) = 2−1(2πi)−2δ2`−1

2 G∗2,0(a)

= 2−1(2πi)−4`G∗4`,−2`+1(a)

= (2π)−4` 1

4
(2`)!

(√
|D|N(a)

2π

)−2`+1

G4`,−2`+1(a)

= (2π)−1−2` 1

4
(2`)!(

√
|D|N(a))−2`+1G4`,−2`+1(a),

and so

L(ψ2, 2`+ 1) =
4(2π)2`+1

√
|D|2`−1

wK(2`)!

hK∑
j=1

ψ−2(aj)N(aj)
4`δ2`−1

2 E2(āj). (4.13)

If ` = 0, Theorem 1 says that the Eisenstein series G∗0,s+1, and hence G0,s+1, has a

pole at s = 0. Using Kronecker's �rst limit formula, equation (3.4) and the orthogonality

relation for the non-trivial character ψ2, one sees that

L(ψ2, 1) = − π

3wK
√
|D|

hK∑
j=1

ψ−2(aj) log(N(aj)
6|∆(aj)|). (4.14)

All those computations essentially prove the following
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Theorem 15. Let ψ be a Hecke character of in�nity type (2`, 0) which is not a genus

character. Then if ` 6= 0,

〈θψ, θψ〉 = (|D|/4)`
4hK
w2
K

∑
A∈ClK

ψ2(A)δ2`−1
2 E2(A),

while if ` = 0,

〈θψ, θψ〉 = − hK
3w2

K

∑
A∈ClK

ψ2(A) log(N(A)6|∆(A)|).

Proof. When ` > 0, �rst note that

N(a)4`δ2`−1
2 E2(ā) = δ2`−1

2 E2(a−1)

and that

ψ(a)δ2`−1
2 E2(a)

quantity depends only on the ideal class of a. The formula for 〈θψ, θψ〉 follows then from

Proposition 12 and (4.13).

When ` = 0, it su�ces to use Proposition 12 and (4.14), since

N(a−1)6|∆(a−1)| = N(a)6|∆(a)|

and since this quantity depends only on the ideal class of a.

Note that it follows from those formulas that

〈θψ, θψ〉 = 〈θψ−1 , θψ−1〉

when ` = 0, as expected (since θψ = θψ−1 in this case).

Corollary 5. Let ψ be a Hecke character of in�nity type (2`, 0) which is not a genus

character and let ΩK be the Chowla-Selberg period attached to K as in Proposition 7. Then

〈θψ, θψ〉 ∈ Ω4`
KQ̄.
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Proof. This follows from the previous theorem and the corollary to Proposition 8 applied

to the nearly holomorphic modular form δ2`−1
2 E2.

Obtaining the case ` = 0 from the case ` > 0

The formula of Theorem 15 for ` > 0 does not make sense for ` = 0 since it involves

the expression

δ−1
2 E2.

However, if this expression made sense, it would have to be a C∞ modular form of weight

zero such that

δ0F = E2.

We claim that

δ0 log(=(τ)6|∆(τ)|) = −12E2(τ),

where

δ0 =
1

2πi

d

dτ
.

This follows from the well known fact (see [RBvdG+08, Prop. 7]) that

d

dq
log ∆(q) =

1

2πi

d

dτ
log ∆(τ) = 1− 24

∞∑
n=1

σ1(n)qn. (4.15)

Indeed, since

log |∆(τ)| = <(log ∆(τ)),

it implies that
d

dτ
log |∆(τ)| = 1

2

d

dτ
log ∆(τ)

(since dF̄
dτ = dF

dτ̄ = 0 if F (τ) is holomorphic). Letting

δ−1
2 E2(a) = − 1

12
log(N(a)6|∆(a)|) + C,
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where C is some constant, in the formula of Theorem 15 for ` > 0 gives exactly the formula

for ` = 0.

This relation between E2 and the logarithmic derivative of ∆ is the starting point of

the calculations that will be done in the second part of this thesis.

Petersson inner product of theta functions attached to ideals

When ` > 0, one can use Proposition 9 and Theorem 15 to prove the following

Proposition 13. Let ` > 0 and let a and b be two fractional ideals of K. Then

〈θa,`, θb,`〉 = 4(|D|/4)`
∑

ab̄c2=λcOK

λ2`
c δ

2`−1
2 E2(c),

where the sum is over a set of representatives c of ideals classes in ClK such that ab̄c2 =

λcOK .

Then one has the following

Corollary 6. Let ` > 0 and let a and b be two fractional ideals of K which are not in

the same genus, i.e. their classes in ClK di�er mod Cl2K . Then θa and θb are orthogonal

under the Petersson inner product.

Proof. The sum in the above expression for 〈θa,`, θb,`〉 is empty.

This last corollary can be proved without the explicit formulas of the previous propo-

sition. However, it is not clear how one could prove the following corollary without those

formulas.

Corollary 7. Let ` > 0 and let a, b and c be fractional ideals of K. Then

〈θca,`, θcb,`〉 = N(c)2`〈θa,`, θb,`〉.

Proof. Clear from the previous proposition.
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CHAPTER 5
Petersson norm of weight one theta functions

In weight one, one can use the formula of Theorem 15 to obtain more algebraic infor-

mation about the Petersson norm of theta series attached to class characters.

5.1 F Petersson norm of theta functions and Siegel units

Recall (see (3.3) and (3.5)) that the absolute value of Siegel units is given by

|δa| = (N(a)6|∆(OK)/∆(a−1)|)hK .

When ψ is a class character which is not a genus character, one can rearrange the formula

in Theorem 15 to get

〈θψ, θψ〉 =
1

3w2
K

hK∑
j=1

ψ2(aj) log |δaj |. (5.1)

Note that wK is always equal to 2 with these assumptions on ψ.

5.2 F On Stark's observation

Throughout this section, let K = Q(
√
−23) and as before let H denote the Hilbert

class �eld of K. Recall Stark's observation in the introduction on the relation between the

Petersson norm of a theta series and the special value at s = 1 of an Artin L-function. He

observed that the Petersson norm of the weight one theta function attached to a degree 2

Artin representation of Gal(H/Q) ' S3 has Petersson norm

3 log ε,

where ε is a real root of x3 − x− 1, which generates the Hilbert class �eld of K (over K).
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With our notation, the theta series considered by Stark is θψ, where ψ is one of the

two non-trivial class characters of K. Its Petersson norm could be expressed as a linear

combination of logarithms of Siegel units as in (5.1), but to obtain Stark's result one has

to work directly from the formula of Theorem 15. Then

〈θψ, θψ〉 = −1

4

3∑
j=1

ψ2(aj) log(N(aj)
6|∆(aj)|) = −3

3∑
j=1

ψ2(aj) log(
√
N(aj)|η(aj)|2),

where

η(q) = exp(2πiτ/24)
∏
n=1

(1− qn)

is the Dedekind eta function. As is well known, the function |η(τ)|2 on H is a C∞ modular

form of weight (0, 1) (this follows from [DS05, Prop.1.2.5], for example), so it has a well-

de�ned value on lattices in L. De�ne

Φ(a) =
√
N(a)|η(a)|2.

Then Φ depends only on the ideal class of a and has the property that

Φ(a) = Φ(a) = Φ(a−1).

Moreover, (
Φ(OK)

Φ(a−1)

)12hK

= |δa|. (5.2)

With this notation,

〈θψ, θψ〉 = −3
3∑
j=1

ψ2(aj) log Φ(a−1
j ) = 3 log

3∏
j=1

Φ(a−1
j )−ψ

2(aj).

Letting a be any non-principal ideal of K, we see that

〈θψ, θψ〉 = 3 log
Φ(a−1)

Φ(OK)
.
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This computation uses the fact that

ψ2(a) + ψ2(a−1) = 2<(ζ3) = −1,

where ζ3 is any non-trivial third root of unity. As one can verify numerically,

Φ(a−1)

Φ(OK)

is a real root of x3 − x− 1, so we recover Stark's example.

5.3 F On generalisations of Stark's observation

Based on the above computation and the formula

〈θψ, θψ〉 = hK log

hK∏
j=1

Φ(aj)
−ψ2(aj), (5.3)

it might seem reasonable to conjecture that

κψ =

hK∏
j=1

Φ(aj)
−ψ2(aj) (5.4)

is a unit in the Hilbert class �eld of K. Note that the individual numbers Φ(a) are usually

transcendental and that ψ2(a) is a root of unity. In fact, when ψ is a genus character κψ

can be computed explicitly in terms of the Chowla-Selberg period de�ned in Proposition

7 (actually, this statement is equivalent to the Chowla-Selberg formula, see [RBvdG+08,

Sec.6.3]). It follows from those observations that the algebraicity of κψ depends crucially

on the character ψ.

Generalisation to class number 3

There are exactly 16 imaginary quadratic �elds of class number 3, the one with the

largest discriminant in absolute value being Q(
√
−907) (see [Wat04, Table 4]). In this case,
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the same computation as above shows that

〈θψ, θψ〉 = 3 log
Φ(a−1)

Φ(OK)
,

where ψ is one of the two non-trivial class characters of K and the following lemma shows

that κψ is a unit.

Lemma 2. Let K be an imaginary quadratic �eld and let a be an ideal of K. Then

Φ(a−1)

Φ(OK)

is an algebraic integer and a unit.

Proof. It su�ces to note that (
Φ(a−1)

Φ(OK)

)12hK

= |δa|.

When K has class number 3, it appears numerically that the unit Φ(a−1)/Φ(OK) is in

fact in the Hilbert class �eld of K. This gives numerical evidence that Stark's observation

generalizes to all imaginary quadratic �elds of class number 3.

Generalisation to class number 5

When K is one of the 25 imaginary quadratic �elds of class number 5 (see [Wat04,

Table 4]), Stark's observation does not seem to generalize. In other words, the complex

number κψ does not seem to be a unit for any class character ψ.

The main di�erence between the class number 3 and class number 5 case is that the

later involves non-trivial 5th roots of unity, which do not have rational real part.

The general case

The above observations lead to the following
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Proposition 14. Let ψ be a character of the class group of K as above and suppose that ψ2

is a non-trivial character with rational real part. Then κψ is an algebraic integer which is a

unit. If ψ2 is a non-trivial genus character corresponding to the factorization D = D1D2,

with D1 > 0, then

κψ = ε

4hD1
hD2

wKwD2
D1

,

where εD1 is a fundamental unit of Q(
√
D1), hDj is the class number of Q(

√
Dj) and wD2

is the number of roots of unity in Q(
√
D2).

Proof. Since ψ2 is non-trivial,

κψ =

hK∏
j=1

Φ(aj)
−ψ2(aj) =

hK∏
j=1

(
Φ(aj)

Φ(OK)

)−ψ2(aj)

.

The �rst claim follows from the previous lemma and the observation that(
Φ(a)

Φ(OK)

)−ψ2(a)( Φ(a)

Φ(OK)

)−ψ2(a)

=

(
Φ(a)

Φ(OK)

)−2<(ψ2(a))

if a is not equivalent to a in ClK and(
Φ(a)

Φ(OK)

)−ψ2(a)

=
Φ(a)

Φ(OK)

otherwise.

For the second part, �rst note that

L(ψ2, s) = L(χD1 , s)L(χD2 , s),

where χDj is the Kronecker symbol attached to the discriminantDj (see [Coh07, Prop.10.5.19]).

Then

L(ψ2, 1) = L(χD1 , 1)L(χD2 , 1) =
4πhD1hD2

wD2

√
|D|

log εD1
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by the class number formula and so by Proposition 12

hK log κψ = 〈θψ, θψ〉 =
4hK

√
|D|

wK(4π)
L(ψ2, 1) = hK

4hD1hD2

wKwD2

log εD1 .

Note that the power of εD1 which appears in the above proposition is not always

integral. For example, with D = −39, D1 = 13 and D2 = −3, the proposition gives

κψ = ε
1
3
13. This example also proves that κψ is not always in the Hilbert class �eld (since

H/K has degree 4 in this case).

It also follows from that proposition that κψ, does not always generate the Hilbert

class �eld of K (even when it is in H).

Since ψ2 has rational real part if and only if it has order dividing 4 of 6, it follows that

κψ is a unit for some ψ whenever gcd(hk, 6) > 1. We believe that the converse is true.

Conjecture 1. If K has class number coprime to 6, then κψ is not algebraic for any ψ.

Numerical evidence for this conjecture is given in Chapter 12.
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Part II

p-adic Interpolation
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CHAPTER 6
p-adic modular forms

In the next few sections, test objects, weight space and Tate curves will be introduced

over rings, leading to the de�nition of algebraic modular forms and generalized p-adic

modular forms. Our treatment of the theory of algebraic and generalized p-adic modular

forms follows closely Chapters II and V of [Kat76], respectively. The �rst section is there

to motivate the passage from the classical analytic theory (formulated in terms of points

in the upper half-plane and lattices) to the algebraic theory (to be formulated in terms of

moduli spaces of enhanced elliptic curves). The fact that the algebraic theory of modular

forms is equivalent over C to the theory presented in Chapter 1 will lead to an algebraic

interpretation of the complex formulas of the �rst part. One can then use the powerful

theory of p-adic modular forms to interpolate them.

6.1 Towards an algebraic theory of modular forms

Throughout this section, the notation is the same as in Chapter 1.

The idea of the algebraic theory of modular forms is to interpret modular forms as

functions on moduli spaces of elliptic curves with extra structure. To see why this idea is

not far fetched, let L ∈ L be a lattice. Then it is well-known that the quotient space C/L

is a smooth Riemann surface of genus one, i.e. a torus. One can also explicitly realize this

space as the set of complex points of an elliptic curve over C via the map

φL : C/L −→ EL(C)

z 7−→ [℘L(z) : ℘′L(z) : 1],
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where ℘L is the Weierstrass ℘ function attached to the lattice L and

EL : Y 2 = 4X3 − g2(L)X − g3(L),

with

g2 = 60G4 and g3 = 140G6.

(see [Sil09, Coro.5.1.1]). This illustrates the fact that, loosely speaking, the set of lattices

L can be thought of as a set of elliptic curves over C.

To view modular forms as functions of elliptic curves, one should �rst turn this last

statement into an actual bijection by �nding a way to attach a lattice to an elliptic curve

E over C. The way one can do this depends on how this elliptic curve E is presented. If E

is de�ned by a Weierstrass equation

EA,B : Y 2 = 4X3 +AX +B,

then it is well known (see [Sil09, Thm.5.1]) that there exists a unique lattice L(A,B) such

that

g2(L(A,B)) = −A and g3(L(A,B)) = −B.

However, if E is given geometrically as a nonsingular curve over C with a distinguished

point, there is no canonical way to attach a Weierstrass equation to it. To solve this

problem, recall that one can recover L from the space C/L by integrating the translation

invariant di�erential dz along the elements of the singular homology group H1(C/L,Z):

L =

{∫
γ
dz : γ ∈ H1(C/L,Z)

}
(see [Sil09, Prop.5.6]). Letting

L(E,ω) =

{∫
γ
ω : γ ∈ H1(E(C),Z)

}

70



for any elliptic curve E over C and any invariant di�erential ω on E, it follows that

L(EL, ωL) = L,

where

ωL = dX
Y .

This proves that there is a sequence of bijections of sets

L ∼→
{
Y 2 = 4X3 +AX +B : A3 − 27B2 6= 0

} ∼→ {(E,ω)} / ≈,

where (E,ω) ≈ (E′, ω′) if there is a isomorphism φ : E
∼→ E′ such that φ∗(ω′) = ω. A

couple (E,ω) is called a framed elliptic curve.

Now let f be a modular form of weight k and level one. By de�nition, it satis�es

f(λL) = λ−kf(L)

for all λ ∈ C× and L ∈ L. It is a simple exercise to see that if L ∈ L corresponds to the

framed elliptic curve (E,ω), the lattice λL corresponds to the framed elliptic curve (E, λω).

Viewing f as a function on framed elliptic curves, this is saying that

f(E, λω) = λ−kf(E,ω).

At the level of Weierstrass equations, the change from L to λL corresponds to the change

of variables

X = λ2X ′ and Y = λ3Y ′.

This proves that the weight of a modular form can be recovered from the corresponding

function on framed elliptic curves.
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One can also recover the q-expansion from this function on framed elliptic curves. To

see this, �rst note that for �xed τ0 ∈ H, one has the following sequence of equalities in C

f(τ0) = f([τ0, 1])

= f (C/[τ0, 1], dz)

= f

(
Y 2 = 4X3 − g2(τ0)X − g3(τ0),

dX

Y

)
= f

(
Y 2 = 4X3 − g2(q0)X − g3(q0),

dX

Y

)
,

where q0 = e2πiτ0 ∈ H. The Weierstrass equation

Y 2 = 4X3 − g2(q)X − g3(q)

de�nes an elliptic curve over C((q)) (use (1.22)). Applying the change of variables

X = (2πi)2X ′ and Y = (2πi)3Y ′

gives an isomorphism(
Y 2 = 4X3 − g2(q)X − g3(q),

dX

Y

)
≈
(
Y ′2 = 4X ′3 − (2πi)−4g2(q)X ′ − (2πi)−6g3(q),

1

2πi

dX ′

Y ′

)
and the last elliptic curve is de�ned over Q((q)). In fact, one can do even better by letting

X ′ = x+
1

12
and Y ′ = x+ 2y,

which gives an isomorphism(
Y ′2 = 4X ′3 − (2πi)−4g2(q)X ′ − (2πi)−6g3(q),

dX ′

Y ′

)
≈
(
y2 + xy = x3 +B(q)x+ C(q),

dx

x+ 2y

)
,
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where

B(q) = −5
∞∑
n=1

n3qn

1− qn

C(q) = − 1

12

∞∑
n=1

(7n5 + 5n3)qn

1− qn
.

Note that this last elliptic curve is now de�ned over Z((q)) (in fact, it has coe�cients in

Z[[q]]). Its discriminant is

∆(q) = q
∞∏
n=1

(1− qn)24.

It follows from this last sequence of change of variables that

f(q0) = (2πi)kf

(
y2 + xy = x3 +B(q0)x+ C(q0),

dx

x+ 2y

)
.

One might hope that

f(q) = (2πi)kf

(
y2 + xy = x3 +B(q)x+ C(q),

dx

x+ 2y

)
, (6.1)

where now q is seen as a variable. However, this equality does not make sense yet, since f

is only de�ned on lattices and the elliptic curve

y2 + xy = x3 +B(q)x+ C(q)

is not de�ned over C (so one cannot attach a lattice to it). This idea still leads to a good

de�nition of the q-expansion and one can indeed make sense of this equality.

73



6.2 Test objects and trivialized elliptic curves

Let R be a ring (commutative with 1). An elliptic curve over R is de�ned as a smooth

and proper morphism

E

��

Spec(R)

whose geometric �bres are connected curves of genus one, together with a section

E

��

Spec(R)

e

HH .

Let E be an elliptic curve over a ring R and let N ≥ 1 be a positive integer. The kernel

of multiplication by N is a �nite �at commutative group scheme over R of rank N2, which

is denoted E[N ]. It is étale if and only if N is invertible in R.

6.2.1 Level N test objects

As above, let N ≥ 1 be a positive integer and let E/R be an elliptic curve over R. As

in [Kat76, Sec.2.0], a Γ(N)arith level structure is de�ned as an isomorphism

β : µN × Z/NZ −→ E[N ]

of group schemes over R such that the Weil pairing on E[N ] corresponds to the canonical

pairing

〈(ζ1, n), (ζ2,m)〉 =
ζm1
ζn2

on µN × Z/NZ. A Γ(N)arith-test object over R is a triple

(E/R, ω, β),

where
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� E/R is an elliptic curve over R;

� ω is a nowhere vanishing invariant di�erential on E;

� β is a Γ(N)arith level structure

(see [Kat76, Sec.2.1]).

6.2.2 Trivialized elliptic curves

A p-adic ring B is de�ned as a ring which is complete and separated with respect to

its p-adic topology (e.g. Zp or Fp, but not Qp).

Let E/B be an elliptic curve over B. As in [Kat76, Sec.5.0], a trivialization of E is

de�ned as an isomorphism

ϕ : Ê −→ Ĝm

of formal groups over B. Note that a trivialization ϕ of E/B is equivalent to a compatible

sequence of inclusions

µpr ↪→ E

for r ≥ 0. In particular, trivialized elliptic curves are �bre-by-�bre ordinary (note that the

residue �eld of every maximal ideal of B is of characteristic p). A Γ(N)arith level structure

β on E/B is said to be compatible with the trivialization ϕ if the composition of maps

µpr
β
↪→ Ê

ϕ−→ Ĝm

is the inclusion, where pr||N and Gm is the multiplicative group scheme. A trivialized

Γ(N)arith elliptic curve over B is a triple

(E/B, ϕ, β),

where

� E/B is an elliptic curve over B;

� ϕ is a trivialization of E;
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� β is a compatible Γ(N)arith level structure

(see [Kat76, Sec.5.1]).

6.3 Weight and Tate curves

Throughout this section, let N ≥ 1 be a positive integer, and let (E/R, ω, β) and

(E/B, ϕ, β) be as above.

6.3.1 Weight

Let f be a map from the set of Γ(N)arith-test objects over R to R. For λ ∈ R×, de�ne

the map [λ]f as

[λ]f(E,ω, β) = f(E, λ−1ω, β). (6.2)

Then f is said to be of weight k ∈ Z if

[λ]f = λkf for all λ ∈ R×. (6.3)

Note that in level 1 over C one recovers the notion of weight introduced in Section 1.2.

Now let f be a map from the set of trivialized Γ(N)arith elliptic curves over B to B.

In this case it is not as straightforward to de�ne the weight of f , since there is no obvious

action of B× on trivialized Γ(N)arith elliptic curves. However, one can let Z×p act on a

trivialization ϕ : Ê −→ Ĝm by viewing a ∈ Z×p as a compatible sequence of elements in

(Z/prZ)× for r ≥ 1. If (E/B, ϕ, β) is a trivialized Γ(N)arith elliptic curves over B, then so

is

(E/B, a
−1ϕ, β ◦ (a, a−1)).

More generally, following [Kat76, Sec.5.3], let

G(N) =
{

(a, b) ∈ Z×p × (Z/NZ)× : a ≡ b (mod pr), where pr||N
}

(6.4)
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and for (a, b) ∈ G(N), de�ne the map [a, b]f as

[a, b]f(E/B, ϕ, β) = f(E/B, a
−1ϕ, β ◦ (b, b−1)). (6.5)

Then f is said to be of weight κ, where κ is a continuous character

κ : G(N) −→ B×,

if

[a, b]f = κ(a, b)f for all (a, b) ∈ G(N). (6.6)

If κ = κk · χ, where

κk(a, b) = ak

for some k ∈ Z and χ is a �nite order character of G(N), then f is said to be of weight k

and character (or nebentypus) χ.

6.3.2 Tate curves

In Section 6.1, it was shown that the elliptic curve

Tate(q) : y2 + xy = x3 +B(q)x+ C(q) (6.7)

is de�ned over Z((q)). This elliptic curve is called the Tate curve of level one. Note also

that Tate(q) is equipped with a canonical di�erential

ωcan =
dx

x+ 2y
,

so that

(Tate(q), ωcan) (6.8)
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is a level one test object (see [Kat76, Sec.2.2]). Using the same notation as in Section 6.1,

one has the following isomorphisms of test objects:

(C/[τ0, 1], dz) ≈ (C/2πi[τ0, 1], 2πidz) ≈
(
C×/qZ0 ,

dt

t

)
,

where the �rst map is z 7→ 2πiz, the second is z 7→ e2πiz, and t = e2πiz is the parameter on

C×. Therefore, one can think of Tate(q) as "Gm/q
Z". In level N , the relevant Tate curve,

denoted Tate(qN ), is given by the Weierstrass equation

Tate(qN ) : y2 + xy = x3 +B(qN )x+ C(qN ) (6.9)

and can be thought of as "Gm/q
NZ". With that in mind, it is clear that the N -torsion of

Tate(qN ) should correspond to the N2 points

ζiNq
j for 0 ≤ i, j ≤ N − 1,

where ζN is a primitive Nth root of unity. This gives a canonical Γ(N)arith level structure

βcan : µN × Z/NZ −→ Tate(qN )

and so

(Tate(q), ωcan, βcan) (6.10)

is a Γ(N)arith-test object (see [Kat76, Sec.2.2]). Over the ring Ẑp((q)), the p-adic completion

of Zp((q)), one can also trivialize the Tate curve Tate(qN ) in a canonical way (the formal

completion of Gm/q
NZ is Ĝm). Since this trivialization, denoted ϕcan, is compatible with

βcan, one obtains trivialized Γ(N)arith elliptic curves

(Tate(qN ), ϕcan, βcan)

(see [Kat76, Sec.5.2.0]).
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6.4 Algebraic and generalized p-adic modular forms

As in the previous section, let N ≥ 1 be an integer.

6.4.1 Algebraic modular forms

Let R be a ring and let A be an R-algebra. Following [Kat76, Sec.2.1], an algebraic

modular form de�ned over R of weight k ∈ Z and level Γ(N)arith is a rule f which assigns

to every Γ(N)arith-test object

(E/A, ω, β)

over A an element

f(E/A, ω, β) ∈ A

and which satis�es the following properties:

� The value f(E/A, ω, β) depends only on the isomorphism class of (E/A, ω, β);

� If R′ is a R-algebra, the formation of f commutes with base change from R to R′.

Symbolically,

f((E/A, ω, β)⊗R R′) = f(E/A, ω, β)⊗R 1

inside A ⊗R R′, where (E/A, ω, β) ⊗R R′ is the test object obtained from (E/A, ω, β)

by base change from R to R′;

� For every λ ∈ A×,

f(E/A, λ
−1ω, β) = λkf(E/A, ω, β).

The R-module of algebraic modular forms is denoted

V alg
k (R,Γ(N)arith).

As in [Kat76, Sec.2.2], the q-expansion of an algebraic modular form of level Γ(N)arith

is de�ned as

f(Tate(qN ), ωcan, βcan) ∈ R⊗ Z((q)) ⊆ R((q)).
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The very important q-expansion principle says that the map

V alg
k (R,Γ(N)arith) −→ R((q)) (6.11)

which sends algebraic modular forms to their q-expansion is injective (see [Kat76, Sec.2.2.6]).

Moreover, if R ⊆ R′, then

V alg
k (R,Γ(N)arith) ↪→ V alg

k (R′,Γ(N)arith)

and an element f ∈ V alg
k (R′,Γ(N)arith) lies in V alg

k (R,Γ(N)arith) if and only if its q-

expansion lies in R((q)) (see [Kat76, Sec.2.2.6]).

Finally, note that there is an action of diamond operators on V alg
k (R,Γ(N)arith) as

follows: for b ∈ (Z/NZ)× de�ne

〈b〉f(E/A, ω, β) = f(E/A, ω, β ◦ (b, b−1)) (6.12)

for f ∈ V alg
k (R,Γ(N)arith) (see [Kat76, Sec.5.4.8]). If

〈b〉f = χ(b)f

for some homomorphism χ : (Z/NZ)× −→ R×, then f is said to be of character (or

nebentypus) χ.

6.4.2 Generalized p-adic modular forms

Let B be a p-adic ring, let A be a p-adic ring which is also a B-algebra. Following

[Kat76, Sec.5.1], a generalized p-adic modular form de�ned over B of level Γ(N)arith is

de�ned as a rule f which assigns to every trivialized Γ(N)arith elliptic curve

(E/A, ϕ, β)
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over A an element

f(E/A, ϕ, β) ∈ A

and which satis�es the following properties:

� The value f(E/A, ω, β) depends only on the isomorphism class of (E/A, ω, β);

� If B′ is p-adic ring which is also a B-algebra, the formation of f commutes with base

change from B to B′.

The B-module of such objects is denoted

V gen(B,Γ(N)arith).

Let

κ : Z×p −→ B×

be a continuous homomorphism. Then, as in [Kat76, Sec.5.3], a generalized p-adic modular

form is said to be of weight κ if

[a, b]f(E/A, ω, β) = κ(a, b)f(E/A, ω, β)

for every (a, b) ∈ G(N). The B-module of generalized p-adic modular forms of weight κ is

denoted

V gen
κ (B,Γ(N)arith).

As in [Kat76, Sec.5.1], the q-expansion of a generalized p-adic modular form is de�ned

as

f(Tate(qN ), ϕcan, βcan) ∈ B̂((q)).

The q-expansion principle says that the map

V gen
κ (B,Γ(N)arith) −→ B̂((q)) (6.13)
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which sends generalized p-adic modular forms to their q-expansion is injective (see [Kat76,

Sec.5.2.1]). Moreover, if B ⊆ B′, then

V gen
κ (B,Γ(N)arith) ↪→ V gen

κ (B′,Γ(N)arith)

and an element f ∈ V gen
κ (B′,Γ(N)arith) lies in V gen

κ (B,Γ(N)arith) if and only if its q-

expansion lies in B̂((q)) (see [Kat76, Sec.5.2.2]).

6.5 Comparison between modular forms

6.5.1 Classical and algebraic modular forms over C

The correspondence between elliptic curves over C and lattices in C, presented in

Section 6.1, gives a map

V alg
k (C,Γ(1)arith) −→M !

k(Γ(1)),

where M !
k(Γ(1)) denotes the space of weakly holomorphic modular forms of level 1 (i.e. the

space of modular forms which are only required to have meromorphic q-expansion at the

cusps (see Section 1.3)). A priori, there is no map in the other direction, since one cannot

attach a lattice in C to every elliptic curve over a C-algebra. As it turns out, this map is

bijective and generalizes to higher level (see [Kat76, Sec.2.4]). However, this natural map

does not quite preserve q-expansions1 . For this reason, consider instead the normalized

map which sends

f ∈ V alg
k (C,Γ(N)arith)

1 In [Kat76, Sec.2.4], Katz mentions that this map is a q-expansion preserving bijection.
This is because his de�nition of the q-expansion of a classical modular form di�ers from ours.
We prefer the de�nition given here since it is the most widely used. For example, according
to Katz's de�nition, the Eisenstein series G4(τ) =

∑
m,n(mτ + n)−4 has q-expansion with

rational coe�cients.
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to the function

fan : GL+ −→ C

de�ned as

fan(ω1;ω2) = (2πi)−kf

(
C/[ω1, ω2], dz, β(e2πia/N , b) =

aω1 + bω2

N
mod L

)
(6.14)

(note the power of 2πi). Then fan is Γ(N) invariant and homogeneous of weight k. More-

over, one has the following

Proposition 15. Let R be a subring of C. Then the above map f 7→ fan induces a q-

expansion preserving bijection between V alg
k (R,Γ(N)arith) and the set of weakly holomorphic

modular forms in M !
k(Γ(N)) whose q-expansion coe�cients are in R.

In particular, if the q-expansion of a classical modular form f is de�ned over R and

the elliptic curve C/[ω1;ω2] is de�ned over R (i.e. g2(ω1;ω2), g3(ω1;ω2) ∈ R), then

(2πi)kf(ω1;ω2) ∈ R.

Proof. The �rst part of the proposition is a restatement of [Kat76, Sec.2.4]. To prove the

second statement, note that if f ∈ Mk(Γ(N)) corresponds to falg ∈ V alg
k (R,Γ(N)arith),

then

(2πi)kf(ω1;ω2) = falg (C/[ω1;ω2], dz, β) ∈ R,

by the de�nition of algebraic modular forms.

By de�ning

M !
k(R,Γ(N)) = {f ∈M !

k(Γ(N)) : f(q) ∈ R((q))}, (6.15)

one can interpret this proposition as saying that the map

V alg
k (R,Γ(N)arith) −→M !

k(R,Γ(N))
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de�ned above is a q-expansion preserving bijection.

6.5.2 Algebraic and generalized p-adic modular forms

The following proposition says that there is a q-expansion preserving map

V alg
k (B,Γ(N)arith) −→ V gen(B,Γ(N)arith)

which also preserves the nebentypus (see [Kat76, Sec.5.4] for a de�nition of the map).

Proposition 16. Let B be a p-adic ring and let f ∈ V alg
k (B,Γ(N)arith) be an algebraic

modular form of nebentypus χ : (Z/NZ)× −→ B×. Then the corresponding generalized

p-adic modular form has weight k and nebentypus χ, i.e. it has weight κ = κk · χ0, where

χ0 : G(N) −→ B× sends (a, b) to χ(b) and κk(a, b) = ak.

Proof. See [Kat76, Lem.5.4.10].

6.6 p-adic Eisenstein series

Recall (see (1.24)) that the Eisenstein series Ek has q-expansion

Ek(q) = −Bk
2k

+
∞∑
n=1

σk−1(n)qn for k ≥ 4,

and so it follows directly from Proposition 15 that there exist algebraic modular forms with

those q-expansions. In weight 2, the Eisenstein series

E2(τ) =
1

8π=(τ)
− 1

24
+

∞∑
n=1

σ1(n)qn

of Section 1.4 is not holomorphic on H and so one cannot apply the same reasoning.

However, one has the following

Proposition 17. Let k ≥ 2. Then there exists a p-adic modular form

Ek ∈ V gen
k (Zp,Γ(1))⊗Qp
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such that

Ek(Tate(q), ϕcan, βcan) = −Bk
2k

+
∞∑
n=1

σk−1(n)qn.

Proof. For k > 2, this follows from the above discussion and Proposition 16.

For k = 2, the proof is more involved and the reader is referred to [Kat76, Lem.5.7.8]

for an algerbo-geometric de�nition of E2.

Note in particular that the p-adic modular form E2 ∈ V gen
2 (Zp,Γ(1)) ⊗ Qp has q-

expansion

E2(q) = − 1

24
+
∞∑
n=1

σ1(n)qn

This abuse of notation (using the symbol Ek to denote classical and p-adic Eisenstein

series) should not cause any confusion; the Eisenstein series considered will be clear from

the context and the expression E2(q) will always be equal to the last equation.

6.7 Changing the level at p

It follows from the previous results that most of the modular forms considered so

far can be viewed as generalized p-adic modular forms. From now on, generalized p-adic

modular forms will be simply called p-adic modular forms.

The following proposition is characteristic of the p-adic theory of modular forms.

Proposition 18. Let B be a p-adic ring, let N0 ≥ 1 be an integer coprime to p and let

r ≥ 0. Then there is a G(prN0) ∼= G(N0) equivariant, q-expansion preserving isomorphism

V gen(B,Γ(prN0)arith) ∼= V gen(B,Γ(N0)arith).

Proof. See the discussion below and [Kat76, Sec.5.6] for a proof.
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To see why such an isomorphism should exist, consider the following example. First,

it follows from the results of Section 1.5 that the classical modular form E
(p)
k de�ned as

E
(p)
k (q) = Ek(q)− pk−1VpEk(q) = (1− pk−1)

−Bk
2k

+

∞∑
n=1

σ
(p)
k−1(n)qn,

where σ(p)
k−1(n) =

∑
p-d|n d

k−1, has weight k for Γ0(p), hence also for Γ(p). For most primes

p, there exists a p-adic modular form in

V gen
k (Zp,Γ(p)arith)

with q-expansion E
(p)
k (q). By the previous proposition, it follows that E(p)

k can be seen

as a p-adic modular form of weight k and level Γ(1)arith. In this case, one can prove this

directly. To do so, let ki be a sequence of even integers which tend to ∞ in R and to k in

G(1) = Z×p . Then for any n ≥ 1, one sees that

lim
i→∞

σki−1(n) = σ
(p)
k−1(n)

in Qp. Moreover, it is also true that

lim
i→∞

(1− pki−1)
−Bki
ki

= lim
i→∞

ζp(1− ki) = ζp(1− k) = (1− pk−1)ζ(1− k),

by the continuity of the Kubota-Leopoldt p-adic L-function. It follows that

lim
i→∞

Eki(q) = E
(p)
k (q)

in Zp[[q]]⊗Qp. Viewing each Eki(q) as an element of

V gen(Zp,Γ(1)arith)⊗Qp

and using the q-expansion principle, it follows that E(p)
k can also be viewed as a p-adic

modular form of level 1.
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6.8 Operators on generalized p-adic modular forms

In the classical case, the operator Vp sends a modular form

f(q) ∈Mk(Γ0(N))

to the modular form

Vpf(q) = f(qp) ∈Mk(Γ0(pN)).

In the p-adic theory of modular forms,

V gen
κ (B,Γ(N)arith) ∼= V gen

κ (B,Γ(pN)arith),

and so it seems like a p-adic analogue of the Vp operator, if it exists, should preserve the

level p-adically. This is indeed the case.

Proposition 19. Let N ≥ 1 be an integer and let B be a p-adic ring. There exists an

endomorphism Vp of

V gen
κ (B,Γ(N)arith)

which acts on q-expansions as Vpf(Tate(qN ), ωcan, βcan) = f(Tate(qpN ), ωcan, βcan) (i.e.

Vpf(q) = f(qp)).

Proof. See [Kat76, Sec.5.5].

The operator Vp is also called the Frobenius operator, since in characteristic p (e.g. if

B = Fp) it satis�es the equation

Vpf(q) = f(qp) = f(q)p.
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6.9 Theta operator on generalized p-adic modular forms

In the classical case, recall that the Shimura-Maass operator was de�ned in (1.71) as

δkf(τ) =
1

2πi

(
∂f(τ)

∂z
+
kf(τ)

τ − τ̄

)
on weight k modular forms. Recall also that it increases the weight by 2 and does not

preserve holomorphicity. However, it preserves the ring of nearly holomorphic modular

forms, which in level one is simply

C[E2, E4, E6].

The analogue of this di�erential operator in the p-adic theory is Serre's theta operator,

which will be denoted DN .

Proposition 20. Let N ≥ 1 be an integer. There exists an endomorphism DN of

V gen(Zp,Γ(N)arith)

which acts on q-expansions as q ddq , i.e. it makes the following diagram commutative:

V gen(Zp,Γ(N)arith)
DN //

��

V gen(Zp,Γ(N)arith)

��

Ẑp((q))
q d
dq

// Ẑp((q))

,

where Ẑp((q)) is the p-adic completion of Zp((q)). Moreover, it is of weight 2, in the sense

that

[a, b] ◦DN = a2DN ◦ [a, b]

for all (a, b) ∈ G(N).
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Proof. The proof involves an analysis of the Gauss-Manin connection on the DeRham co-

homology of the universal elliptic curve over V gen(Zp,Γ(N)arith) and will not be given here.

See [Kat76, Sec.5.8].
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CHAPTER 7
Complex multiplication from an algebraic point of view

Recall that in this text, K denotes an imaginary quadratic �eld and OK denotes its

ring of integers.

In Chapter 3, the analytic theory of complex multiplication was introduced. In parti-

cular, CM points in L were de�ned as the set of lattices of the form

Ωa,

where Ω ∈ C× and a is a fractional ideal in K. One may wonder if the associated elliptic

curve

C/Ωa

has special properties. To answer this, �rst note that if

C/L ∼−→ E(C) and C/L′ ∼−→ E′(C),

then any isogeny φ : E −→ E′ over C corresponds to a unique λ ∈ C× such that

λL ⊆ L′

(see [Sil09, Thm.4.1, Ch.VI]). In particular,

EndC(C/L) = {λ ∈ C : λL ⊆ L}

and so

EndC(C/Ωa) ⊇ OK .
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In other words, the elliptic curve C/Ωa has extra endomorphisms (other than the trivial

ones).

Conversely, one can show that if L ∈ L and λ ∈ C× are such that

λL ⊆ L,

then λ is an element in an order in a quadratic imaginary �eld. Therefore the endomorphism

ring of elliptic curves over C is either Z or an order in an imaginary quadratic �eld. In

the later case, the elliptic curve is called a CM elliptic curve or is said to have complex

multiplication.

It follows from the above discussion that the set of elliptic curves over C with CM by

the maximal order OK of an imaginary quadratic �eld K is in bijection with the CM points

of L corresponding to K (as de�ned in Chapter 3). It also follows that there are exactly

hK isomorphism classes (over C) of elliptic curves with CM by OK . See [Sil94, Ch.II] for a

detailed exposition of the theory of CM elliptic curves.

7.1 F CM values of algebraic modular forms

The �rst step in passing from the classical theory of complex multiplication to the

algebraic one was to go from lattices in C to framed elliptic curves. The next step is to

analyse the �eld of de�nition of CM elliptic curves.

Proposition 21. Let E be an elliptic curve over C with CM by the maximal order OK .

Then

1. E is isomorphic over C to an elliptic curve de�ned over H (the Hilbert class �eld of

K);

2. Suppose that E is de�ned over a number �eld F . Then every endomorphism of E is

de�ned over FK, the compositum of F and K.
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Proof. The �rst point follows from the fact that the j-invariant of CM elliptic curves is an

algebraic integer in the Hilbert class �eld of K (see Proposition 10).

Then second point is proved in [Sil94, Ch.II, Thm.2.2], for example.

Now let (E/F , ω, β) be a Γ(N)arith-test object over a number �eld F and suppose

that E has complex multiplication by OK . Suppose also that the complex multiplication

endomorphisms are de�ned over F . Then one has the following

Proposition 22. Let f ∈Mk(F,Γ(N)) be a classical modular form with Fourier coe�cients

in F and let (E/F , ω, β) be a Γ(N)arith-test object as above. Then

(2πi)2a+2b+kδa2b+kE
b
2f(ω1;ω2) ∈ F

for any a, b ≥ 0, where (ω1;ω2) is the point of LN = Γ(N) \GL+ corresponding to the test

object (E/F , ω, β) base changed to C.

Note that this Proposition could equivalently have been stated in terms of algebraic

modular forms.

Proof. If a = b = 0, this follows directly from the correspondence between algebraic and

classical modular forms and the de�nition of algebraic modular forms.

The main di�culty, and the only place where the hypothesis of complex multiplication

is used, is in proving that

(2πi)2E2(ω1;ω2)

lies in F . This is proved in [Kat76, Thm.4.0.4] (note that Katz's function S corresponds to

the function 24(2πi)2E2 in our notation).

In particular, one has the following

Corollary 8. Let f ∈ F [E2, E4, E6] be a nearly holomorphic modular form of weight k with

Fourier coe�cients in a number �eld F containing the Hilbert class �eld H of K, and let
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a be a fractional ideal of K. Then there exists a complex number Ωa depending only on a

such that

f(a) ∈ (2πiΩa)
−kF.

Proof. The elliptic curve

C/a

is isomorphic over C to an elliptic curve (E/F , ω) de�ned over F (since F contains the

Hilbert class �eld of K). Let L ∈ L be the lattice corresponding to the complexi�cation of

E/F . Then there exists Ωa ∈ C× such that

a = ΩaL.

The claim follows from the equality

(2πiΩa)
kf(a) = (2πi)kf(L)

and the previous proposition.

This Corollary may look stronger than Proposition 6, since the number �eld in which

f takes values at CM points is known. However, this is not really the case, since the extra

ambiguity in Proposition 6 (coming from the fact that the values were only required to be

algebraic) allowed us to choose the period ΩK explicitly (using the closed formula in the

Chowla-Selberg formula) and independently of the fractional ideal a.

7.2 CM values of p-adic modular forms

As above, let (E/F , ω, β) be Γ(N)arith-test object with CM. In this section, �x a prime

P of F and let p be the rational prime which it divides in OF . In order to talk about

"CM values" of p-adic modular forms, one must make a few assumptions about the test

objects. First, suppose that the test object (E/F , ω, β) has good reduction at P, in the
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sense that there exists a Γ(N)arith-test object over the ring OF,P of P-integers of OF which

gives (E/F , ω, β) after extension of scalars from OF,P to F . Second, suppose that E has

ordinary reduction at P (note that this hypothesis is equivalent to p being split in K).

Given such a test object (E/F , ω, β) and an embedding of F in C, one can attach an ele-

ment (ω1;ω2) ∈ LN to its complexi�cation. On the other hand, one can consider it as a test

object (E/FP
, ω, β) over the P-adic completion FP of F at P. On the modular forms side,

any algebraic modular form f ∈Mk(F,Γ(N)arith) can be considered as a classical modular

form with Fourier coe�cients in F or as p-adic modular form in V gen
k (Zp,Γ(N)arith)⊗ FP.

Then one has the following

Theorem 16. With the hypotheses and notations as above, the quantity

Da
NE

b
2f(E/FP

, ω, β) ∈ FP

actually lies in F and is equal to the quantity

(2πi)2a+2b+kδa2b+kE
b
2f(ω1;ω2) ∈ F.

Proof. If a = b = 0, this is clear.

The main di�culty is to compare the complex value

(2πi)2E2(ω1;ω2)

with the P-adic value

E2(E/FP
, ω, β),

where now E2 is the p-adic modular form de�ned in Section 6.6. For a proof of this, see

[Kat76, Thm.8.0.9].
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CHAPTER 8
p-adic interpolation of Petersson inner product of theta series

In this chapter, a few p-adic measures are constructed, including one with values in the

p-adic ring of generalized p-adic modular forms and one with values in a subring of Cp. The

second measure naturally gives rise to a Cp-valued analytic function on the p-adic weight

space

W = Homcont(Z×p ,Z×p ).

By evaluating this function at a point outside the range of interpolation, namely at κ = −1,

a p-adic analogue of the Petersson inner product of two weight one theta series attached

to ideals is found. This result can be interpreted as a p-adic analogue of Kronecker's �rst

limit formula.

8.1 Review of p-adic integration theory

Part of the material of this section is contained in [Kat76, Sec.6.0]. Other, more

detailed, references are [Col04, Sec.1.4] and [MSD74, Ch.7].

As before, let B be a p-adic ring and let

G = lim←−
n

G/Gn,

where

G1 ⊇ · · · ⊇ Gn · · · ⊇ ∩Gn = {1},

be a pro�nite group (e.g. Zp or Z×p ).
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De�ne a B-valued measure on G as a B-linear map

µ : C0(G,B) −→ B,

where C0(G,B) is the ring of B-valued continuous functions on G. Note that µ is auto-

matically continuous (C0(G,B) is equipped with the p-adic topology). The value of µ on

f ∈ C0(G,B) is denoted ∫
G
fdµ or

∫
G
f(g)dµ(g).

Equivalently, one could de�ne a B-valued measure as a �nitely additive map µ on com-

pact open subsets of G, i.e. as a B-valued distribution on G. Indeed, any such distribution

extends uniquely to a B-linear map

µ : LC(G,B) −→ B,

where LC(G,B) is the ring of locally constant B-valued functions on G. Using the density

of LC(G,B) in C0(G,B), one can then show that µ extends uniquely to a B-valued measure

on G.1

8.1.1 Integration over Zp

When G = Zp, one has a lot more information about the set of B-valued measure on

Zp, thanks to the structure theorem for C0(Zp,Zp).

1 Note that B is simply assumed to be a p-adic ring and so it is not necessarily pro�nite
or equipped with an absolute value. In particular, one cannot de�ne p-adic measures as
bounded p-adic distributions, as in the classical theory. However, the density of LC(G,B)
in C0(G,B) and the extension property can still be proved using only the fact that B is
complete and separated with respect to its p-adic topology.
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Theorem 17 (Mahler's Theorem). Any f(x) ∈ C0(Zp,Zp) can be uniquely written as

f(x) =
∞∑
n=0

an(f)

(
x

n

)
,

where (
x

n

)
=
x(x− 1) . . . (x− n+ 1)

n!
for all n ≥ 0

and

an(f) =
n∑
i=0

(−1)i
(
n

i

)
f(n− i) −→

n−→∞
0 in Zp.

Conversely, for any sequence {an} of p-adic integers tending to 0 p-adically, the series

f(x) =
∞∑
n=0

an

(
x

n

)
converges for x ∈ Zp and de�nes an element f(x) ∈ C0(Zp,Zp) which is such that

an(f) = an for all n ≥ 0,

where an(f) is de�ned as above.

Proof. This theorem is contained in many places. See [Col04, Thm.1.3.2], for example.

By tensoring with B over Zp and using the fact that

C0(Zp, B) = C0(Zp,Zp)⊗̂ZpB = C0(Zp,Zp)⊗Zp B,

one has the following corollary (this is [Kat76, 6.0.3]).

Corollary 9. Suppose that B is �at over Zp (equivalently, B is of characteristic 0). Then

any f(x) ∈ C0(Zp, B) can be uniquely written as

f(x) =

∞∑
n=0

an(f)

(
x

n

)
,
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where

an(f) =
n∑
i=0

(−1)i
(
n

i

)
f(n− i) −→

n−→∞
0 in B,

and conversely (as above).

This structure theorem for C0(Zp, B) allows one to formally attach the power series

Aµ(T ) =

∫
Zp

(1 + T )xdµ(x) =
∞∑
n=0

(∫
Zp

(
x

n

)
dµ(x)

)
Tn ∈ B[[T ]]

to any B-valued measure µ on Zp. This map is sometimes called the Amice transform.

In fact, the Amice transform is more than a formal link between measures and power

series. To illustrate that, let z ∈ 1 + pB and consider the series

fz(x) =
∞∑
n=0

(z − 1)n
(
x

n

)
.

By Mahler's theorem, this series de�nes a B-valued continuous function on Zp, which is

such that

fz(k) = zk for all k ∈ Z≥0.

Because fz satis�es the above interpolation property, fz(x) is denoted zx. Using this nota-

tion, one has the following

Lemma 3. Let B be a p-adic ring which is �at over Zp, let z ∈ 1+pB and let µ ∈ D0(Zp, B).

Then

Aµ(z − 1) =

∫
Zp
zxdµ(x).

Proof. This is a generalization of [Col04, Lem.1.4.3]. By the normal convergence of the

series de�ning the function zx (i.e. for any M ∈ Z≥0, there exists an index nM such that∑∞
n=nM

(z−1)n
(
x
n

)
∈ pMB), one can interchange the sum and the integral in the expression∫

Zp

∞∑
n=0

(z − 1)n
(
x

n

)
dµ(x).
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Now suppose that B is �at over Zp and for every integer n ≥ 0 de�ne ck(n) ∈ Zp for

1 ≤ k ≤ n in such a way that (
x

n

)
=

n∑
k=0

ck(n)xk.

It is then clear that a measure µ on Zp is determined by its moments

mk(µ) =

∫
Zp
xkdµ, for k ∈ Z≥0.

Conversely, one has the following

Lemma 4. Let B be a p-adic ring which is �at over Zp and let {mk}k≥0 be a sequence of

elements of B. Then there exists a measure µ ∈ D0(Zp, B) with moments m0,m1, . . . if

and only if
n∑
k=0

ck(n)mk ∈ B

for every n ≥ 0. If it exists, the measure is unique.

Proof. This is [Kat76, Lem.6.0.9].

8.1.2 Integration over Z×p

When p is an odd prime, the natural exact sequence

1 −→ Γ −→ Z×p −→ F×p = µp−1 −→ 1,

where µp−1 is the group of p−1 roots of unity and Γ = 1+pZp, gives a canonical isomorphism

Z×p ' µp−1 × Γ. (8.1)

If x ∈ Z×p , let ω(x) and 〈x〉 denote the images of x under the projection to the �rst and

second factors of the isomorphism (8.1), respectively.
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Recall (Subsection 6.3.1) that the weight of a generalized p-adic modular form of level

one with coe�cients in B is by de�nition a continuous character

κ : Z×p −→ B×.

The space of all such weights

W(B) = Homcont(Z×p , B×)

is called the weight space (with values in B). In the case where B = Zp, this space is simply

denoted W.

Using the decomposition (8.1), one sees that any element of W is of the form

κi,s(x) = ωi(x)〈x〉s

for some i ∈ Z/(p− 1)Z and s ∈ Zp. It follows that W decomposes as a direct product of

p− 1 copies of Zp, indexed by the characters of µp−1:

κi,s 7→ (i, s) :W ∼−→ (Z/(p− 1)Z)× Zp. (8.2)

In fact, this decomposition also respects the group operations on both sides. The natural

injection from Z into W, which sends the integer k to the character

κk(x) = κk,k(x) = xk,
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then corresponds to the natural map from Z into the product decomposition (8.2). This

injection induces a topology on Z which makes it dense in W.2 The weights in the image

of Z are called classical weights.

Similarly to the case of Zp, the space W(B) decomposes as a product of copies of B×

indexed by

µ∗p−1(B) = Hom(µp−1, B
×).

Now let

µ ∈ D0(Z×p , B)

be a measure on Z×p . By mapping W to C0(Z×p , B), one obtains a continuous function on

weight space

Lµ :W −→ B

whose values at integers k ≥ 0 are the moments of µ:

Lµ(k) = Lµ(κk) =

∫
Z×p
xkdµ.

Then one has the following

Proposition 23. Let µ ∈ D0(Z×p , B) be a p-adic measure, let i ∈ Z/(p − 1)Z and let

u = 1 + p. Then there exists a unique measure Γ
(i)
µ ∈ D0(Zp, B) on Zp such that∫

Z×p
ωi(x)〈x〉sdµ(x) =

∫
Zp
usydΓ(i)

µ (y)

for all s ∈ Zp.

2 This induced topology is the one where two integers are close if they are p-adically close
and congruent mod p− 1.
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Proof. This is a straightforward generalization of the proof of [Col04][Prop.1.5.9] to the

case of measures with values in p-adic rings.

The measure Γ
(i)
µ is sometimes called Leopoldt's gamma transform. In the notation of

the previous proposition, one sees using Lemma 3 that∫
Zp
usydΓ(i)

µ (y) = A
Γ
(i)
µ

(us − 1), for all s ∈ Zp.

It follows that the function Fµ has a power series expansion in s on each of the p − 1

components of W. Indeed, for each �xed i ∈ Z/(p− 1)Z one has

Lµ(κi,s) =

∫
Z×p
ωi(x)〈x〉sdµ(x) = A

Γ
(i)
µ

(us − 1),

which can be expressed as a power series in s (since us − 1 = sv + s2v2/2 + . . . , where

v = log u). Such functions on Zp (or W) are called p-adic analytic.

To summarize, p-adic measures on Z×p naturally give rise to continuous functions on

weight space, which in turn can be viewed as a �nite collection of p-adic analytic functions

on Zp which interpolate the moments of the measure.

8.2 Construction of measures with values in the ring of generalized p-adic
modular forms

From now on, suppose that p is di�erent from 2 and 3 and let V denote the p-adic ring

of generalized p-adic modular forms of level one:

V = V gen(Zp,Γ(1)arith).

8.2.1 The measure µE on Zp with values in V

One has the following
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Lemma 5. There exists a unique measure µE on Zp with values in V whose moments are

given by ∫
Zp
xkdµE = Dk

1E2 for all k ≥ 0.

Proof. By Lemma 4, it su�ces to show that

n∑
k=0

ck(n)Dk
1E2 ∈ V

for all n ≥ 0. But an easy computation using the q-expansion of Dk
1E2 shows those p-adic

modular forms have q-expansions

∞∑
m=1

(
m

n

)
σ(m)qm if n > 0

and

E2(q) = − 1

24
+
∞∑
m=1

σ1(m)qm if n = 0,

which are in V (i.e. their q-expansions have coe�cients in Zp). Note that the assumption

p 6= 2, 3 is needed when n = 0.

The calculation done in the proof of this lemma can be used to prove the following

Proposition 24. Let µE be the measure of Lemma 5 and let f ∈ C0(Zp, V ). Then∫
Zp
fdµE = −f(0)

24
+
∞∑
n=1

f(n)σ(n)qn.

Proof. The proof of Lemma 5 shows that the statement is true for the functions
(
x
n

)
∈

C0(Zp, V ). The result then follows from Corollary 9, the fact that

a0(f) = f(0)

and the continuity of µE .
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8.2.2 Restriction of µE to Z×p

Since integration over Z×p gives rise to analytic functions on weight space, it is desirable

to restrict µE to Z×p . De�ne

µ
[p]
E ∈ D

0(Z×p , V )

as ∫
Z×p
g(x)dµ

[p]
E (x) =

∫
Zp
g0(x)dµE(x) =

∫
Zp
g0(x)χZ×p (x)dµE(x),

where g ∈ C0(Z×p , V ) and g0 ∈ C0(Zp, V ) is g extended by 0 on pZp. Then one has the

following

Proposition 25. Let µ
[p]
E be the measure de�ned above. Then∫

Z×p
xkdµ

[p]
E = Dk

1E
[p]
2 ,

where the p-adic modular form E
[p]
2 with q-expansion

E
[p]
2 (q) =

∑
(n,p)=1

σ(n)qn

is the p-depletion of E2(q).

Proof. This follows directly from the de�nition of µ[p]
E and Proposition 24.

That E[p]
2 is a p-adic modular form of level Γ(1)arith follows formally from the previous

proposition, since µ[p]
E is a p-adic measure with values in V . One can also prove directly the

following

Lemma 6. As in the previous proposition, let

E
[p]
2 (q) =

∑
(n,p)=1

σ(n)qn.

Then if
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�

E2(τ) =
1

8π=(τ)
− 1

24
+
∞∑
n=1

σ(n)qn

is the nearly holomorphic modular form of Chapter 1, one has the equality

E
[p]
2 (q) = E2(τ)− (p+ 1)VpE2(τ) + pV 2

p E2(τ),

where q = e2πiτ . Moreover, E
[p]
2 (q) is a holomorphic modular form in M2(Γ0(p2)).

�

E2(q) = − 1

24
+

∞∑
n=1

σ(n)qn

is the p-adic modular form of Chapter 6, one has the equality

E
[p]
2 (q) = E2(q)− (p+ 1)VpE2(q) + pV 2

p E2(q).

Moreover, E
[p]
2 (q) is a p-adic modular form in V gen

2 (Zp,Γ(1)arith).

Proof. For the �rst point, note that the non-holomorphic parts in the right hand side of

the equation cancel. The claim then follows from a computation on q-expansions and the

general fact that the Vp operator sends weight k functions on SL2(Z) to weight k functions

on Γ0(p2).

The second point follows from the same computation on q-expansions and the fact that

the Vp operator preserves the level p-adically.

More generally, one sees that ∫
Z×p
xκdµ

[p]
E = Dκ

1E
[p]
2 ,

where Dκ
1 is de�ned as

Dκ
1E

[p]
2 (q) =

∑
(n,p)=1

nκσ(n)qn
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and xκ = κ(x) denotes the image of x ∈ Z×p under κ ∈ W. It then follows from the theory

exposed above that the measure µ[p]
E on Z×p induces a p-adic analytic function

L
µ
[p]
E

:W −→ V,

which is de�ned as

L
µ
[p]
E

(κ) = Dκ
1E

[p]
2 . (8.3)

8.3 Construction of a measure with values in Cp

Our goal in this section is to evaluate the p-adic modular forms L
µ
[p]
E

(κ) at CM points

and to relate those values to the CM values of the Shimura-Maass derivatives of E2 which,

as was shown in the �rst part of this thesis, intervene in the formulas for the Petersson

inner product of theta series. In order to do so, one has to attach trivialized Γ(1)arith

elliptic curves to ideals in quadratic �elds.

8.3.1 Trivialized elliptic curves attached to CM elliptic curves

This is well explained and done in more generality in Section 8.3 of [Kat76], so we only

recall the main idea here.

As usual, let K be an imaginary quadratic �eld and let H be its Hilbert class �eld.

From now on, let a be a fractional ideal of K and suppose the p splits as

pOK = pp̄

in K. 3

3 Asking for p to split in K is a big restriction, since only half of the prime in Q do so.
However, this restriction is necessary since the CM elliptic curves attached to K are not
ordinary at the inert primes of K, which means that they cannot be trivialized. Since the
di�erential operator D1 does not preserve overconvergence in general, it is impossible to
evaluate all the p-adic modular forms Dk

1E
[p]
2 (for k ∈ Z≥0) at non-ordinary elliptic curves.
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Fix an isomorphism

ϕ̃ : Qp/Zp
∼−→
⋃
n≥1

p̄−na/a (8.4)

and let

H(p̄∞) =
⋃
n≥1

H(p̄n),

where H(p̄n) is the ray class �eld mod p̄n over K.

By CM theory, the couple (a, ϕ̃) determines a complex embedding of H(p̄∞). 4 Fix

a place p∞ of H(p̄∞) which divides p and let Op∞ be its valuation ring. Then the elliptic

curve over C determined by a has a model Ea over H ∩ Op∞ . Suppose that the action of

OK on H0(Ω1) is compatible with the inclusion OK ↪→ H ↪→ C.

Over H ∩ Op∞ , there is a canonical splitting

⋃
n≥1

ker(pn) =
⋃
n≥1

ker(pn)×
⋃
n≥1

ker(p̄n).

Taking the Cartier dual of ϕ̃ and using the Weil pairing on pn torsion, one obtains an

isomorphism

ϕ :
⋃
n≥1

ker(pn) =
⋃
n≥1

p̄−na/a
∼−→ µp∞ (8.5)

Out of the above data, one can extract at least two things. First, the isomorphism

ϕ−1 × ϕ̃ : µp∞ ×Qp/Zp
∼−→
⋃
n≥1

ker(pn) (8.6)

4 The part of CM theory used to prove such a statement was not covered in this thesis.
The missing result is that, roughly speaking, the p̄n torsion points of elliptic curves with
CM by OK generate the extension H(p̄n).
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gives rise to Γ(pn)arith-level structures on Ea for every n ≥ 0. Second, passing over to Ôp∞ ,

the isomorphism ϕ becomes equivalent to a trivialization

ϕ : Êa
∼−→ Ĝm.

In this way, to any couple (a, ϕ̃) one can attached trivialized Γ(pn)arith elliptic curves

(Ea, ϕ, βn)
/Ôp∞

for all n ≥ 0.

8.3.2 The measure on Z×p with values in Cp

Let (a, ϕ̃) be as above. By evaluating generalized p-adic modular forms at the triviali-

zed elliptic curve attached to (a, ϕ̃), one obtains a measure valued in the p-adic ring Ôp∞ .

For reasons that will become clear later, it is preferable to view our measures as valued in

p-adic modular forms of level p2 rather than 1. This leads to the de�nition of

L
µ
[p]
E

((a, ϕ̃), κ) :W −→ Ôp∞

as the composition

W −→ C0(Z×p ,Z×p )
µ
[p]
E−→ V gen(Zp,Γ(1)arith)

∼−→ V gen(Zp,Γ(p2)arith)
eval−→ Ôp∞ .

This function can be seen as a Cp-valued p-adic analytic function on W.

Our next goal is to relate the values of this function at classical weights to the CM

values of some classical modular form, using Theorem 16. In order to do so, it is necessary

to go from trivialized elliptic curves to elliptic curves equipped with di�erentials. As in the

previous subsection, we follow [Kat76, Sec.8.3]. Let

(Ea, ϕ, βn)
/Ôp∞
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be a trivialized elliptic curve over Ôp∞ . Then the trivialization

ϕ : Êa −→ Ĝm

gives rise to the di�erential ϕ∗(dT/1 + T ) on Ea de�ned over Ôp∞ (see [Kat76], right

before paragraph 8.3.16, for more details). Since Ea is de�ned over H ∩ Op∞ , there exists

Ωp(a) ∈ Ô×p∞ such that

Ωp(a)ϕ∗(dT/1 + T )

is de�ned over Op∞ . Using the complex embedding of Op∞ , one can also �nd ΩC(a) ∈ C×

such that

Ωp(a)ϕ∗(dT/1 + T ) = ΩC(a)dz.

The period lattice of Ea is then ΩC(a)a.

Theorem 18. Let k ∈ W be a classical weight. Then using the notation introduced above,

one has the following equality in H

L
µ
[p]
E

((a, ϕ̃), k)

Ωp(a)2k+2
=

δkE
[p]
2 (a)

((2πi)−1ΩC(a))2k+2
. (8.7)

Proof. After all this work, the proof is a relatively simple computation using the previous

calculations and Theorem 16:

L
µ
[p]
E

((a, ϕ̃), k) = Dk
1E

[p]
2 (Ea, ϕ, β2)

/Ôp∞

= Ωp(a)2k+2Dk
1E

[p]
2 (Ea,Ωp(a)ϕ∗(dT/1 + T ), β2)/H∩Op∞

= Ωp(a)2k+2(2πi)2k+2δk2E
[p]
2 (ΩC(a)a)

= Ωp(a)2k+2(2πi)2k+2ΩC(a)−(2k+2)δk2E
[p]
2 (a).

Note that the fact that E[p]
2 is a holomorphic modular form of weight 2 and level Γ0(p2) is

used when Theorem 16 is applied.
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8.4 p-adic interpolation of Petersson inner product of theta series

Our goal in this section is to see how one could p-adically interpolate the quantities

δk2E2(a),

where a is some fractional ideal of K, which are directly related via Proposition 13 to the

Petersson inner product of theta series. To do so, it will be necessary to use the following

technical

Proposition 26. Let f ∈ V gen(Zp,Γ(pn)arith) and let (Ea, ϕ, βn) be the trivialized Γ(pn)arith

elliptic curve de�ned over Ôp∞ which was attached to the couple (a, ϕ̃) in the previous

section. Then, letting (Ea, ϕ, β0) denote the trivialized Γ(1)arith elliptic curve attached to

(a, ϕ̃) and letting f (0) be the level Γ(1)arith p-adic modular form corresponding to f under

the canonical isomorphism of Proposition 18, one has the following equalities:

f (0)(Ea, ϕ, β0) = V n
p f(Ea, ϕ, βn) = Frobnp (f(Ea, ϕ, βn)),

where Frobp =
(
H(p̄∞)/K

p

)
is the Artin symbol.

Proof. This is [Kat76, Lem.8.3.25].

It follows from Lemma 6 and the fact that

DNVp = pVpDN ,

as operators on V gen(Zp,Γ(N)arith), that

Dk
1E

[p]
2 = (1− pk(1 + p)Vp + p2k+1V 2

p )Dk
1E2 = (1− pkVp)(1− pk+1Vp)D

k
1E2.

Using the de�nition of

L
µ
[p]
E

((a, ϕ̃), k),
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and the previous proposition, it then follows as in the proof of Theorem 18 that

Frob2
p(Lµ[p]E

((a, ϕ̃), k))

Ωp(a)2k+2
= (1− pk Frobp)(1− pk+1 Frobp)

(
δk2E2(a)

((2πi)−1ΩC(a))2k+2

)
or equivalently

L
µ
[p]
E

((a, ϕ̃), k)

Ωp(a)2k+2
= (Frob−1

p −pk)(Frob−1
p −pk+1)

(
δkE2(a)

((2πi)−1ΩC(a))2k+2

)
(8.8)

Finally, one can prove that the Petersson inner product of theta series of weight greater

than one can be p-adically interpolated, at least when K has genus one.

Theorem 19. Let K be an imaginary quadratic �eld of genus one with Hilbert class �eld

H and let a and b be two fractional ideals which are such that

abc2 = OK .

Let also θa,` and θb,` be the theta series of weight 2`+ 1 attached to a and b for some ` > 0.

Then for any prime p > 3 which splits in K, say pOK = pp̄, and any isomorphism

ϕ̃ : Qp/Zp −→
⋃
n≥1

p̄−nc/c,

there exists a p-adic analytic function

F :W −→ Cp

with the property that

F (`)

Ωp(c)4`
= (Frob−1

p −p2`−1)(Frob−1
p −p2`)

(
〈θa,`, θb,`〉

((2πi)−1ΩC(c))4`

)
for all ` > 0,

where Frobp =
(
H/K
p

)
is the Artin symbol.
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Proof. Note that it follows from the theory of complex multiplication and the explicit

formulas of Proposition 13 that (
〈θa,`, θb,`〉

((2πi)−1ΩC(c))4`

)
∈ H,

so it makes sense to apply Frobp to it. In the light of the above computations and the

explicit formulas of Proposition 13, it su�ces to take

F (κ) = 4(|DK |/4)κL
µ
[p]
E

((c, ϕ̃), 2κ− 1).

Note that

(|DK |/4) ∈ Z×p ,

so (|DK |/4)κ is analytic on W.

8.5 p-adic analogue of Kronecker's First Limit Formula

Recall that when ` = 0, the theta series attached to ideals in imaginary quadratic �elds

are not cuspidal and so it makes no sense a priori to consider the quantity

〈θa,0, θb,0〉.

However, one can makes sense of F (0), since F is analytic on W. Using the de�nition of F

given in the proof of Theorem 19, one sees that

F (0) = 4L
µ
[p]
E

((c, ϕ̃),−1) = 4

∫
Z×p
x−1dµ

[p]
E (Ec, ϕ, β2).

Using the ideas of Propositions 24 and 25, one sees that∫
Z×p
x−1dµ

[p]
E = D−1

1 E
[p]
2 =

∑
(n,p)=1

n−1σ(n)qn.
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Our goal in this section is to �nd an expression for the p-adic modular form given by the

q-expansion above in terms of known objects. It will then appear that our formula can be

seen as a p-adic analogue of Kronecker's First Limit formula.

Let g0 be the modular unit given by

g0 =
∆

Vp∆
, (8.9)

where ∆ ∈ S12(SL2(Z)) is the classical modular form de�ned in Chapter 1, whose q-

expansion is given by

∆(q) = q
∏
n≥1

(1− qn)24. (8.10)

Then g0 is a weakly holomorphic modular form of level Γ0(p) and weight 0. De�ne its

p-depletion as

g
(p)
0 =

Vpg0

gp0
=

(Vp∆)p+1

∆pV 2
p ∆

. (8.11)

Then one has the following

Lemma 7. Let g
(p)
0 be as above. Then

g
(p)
0 ∈ 1 + pV gen

0 (Zp,Γ(p2)arith).

Proof. To see that

g
(p)
0 ∈ V gen

0 (Zp,Γ(p2)arith),

it su�ces to note that g(p)
0 ∈M0(Γ0(p2)) and that it has q-expansion given by

g
(p)
0 (q) =

∏
n≥1

(
(1− qpn)p+1

(1− qn)p(1− qp2n)

)24

,

which is an element of Zp[[q]]. To see that g(p)
0 ∈ 1 + pV gen

0 (Zp,Γ(p2)arith), it su�ces to

show that

g
(p)
0 ≡ 1 (mod pZp[[q]]),

113



which follows directly from the fact that

(1− qpn)p+1 ≡ (1− qpn)p(1− qpn) ≡ (1− qp2n)(1− qn)p (mod pZp[[q]]).

Since the power series

log(1 + x) =
∑
n≥1

(−1)n+1xn

n

converges for any x ∈ pV gen
0 (Zp,Γ(p2)arith), one can take the logarithm of g(p)

0 and obtain

a p-adic modular form

logp g
(p)
0 ∈ V gen

0 (Zp,Γ(p2)arith).

Here, logp denotes the function de�ned by the above power series for x ∈ pV
gen

0 (Zp,Γ(p2)arith).

Then one can prove the following p-adic analogue of Kronecker's First Limit formula.

Proposition 27. In the above notation, one has that

D−1
1 E

[p]
2 =

∫
Z×p
x−1dµ

[p]
E =

−1

24p
logp g

(p)
0 .

Proof. First note that the following equality holds in Zp[[q]]:

logp
∏
n≥1

(1− qprn)24 = 24
∑
n≥1

σ−1(n)qp
rn
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for any integer r ≥ 0, where σ−1(n) =
∑

d|n d
−1. It then follows that

logp g
(p)
0 = −24

p∑
n≥1

σ−1(n)qn − (p+ 1)
∑
n≥1

σ−1(n)qpn +
∑
n≥1

σ−1(n)qp
2n


= −24p

∑
n≥1

σ−1(n)qn − (1 + p−1)
∑
n≥1

σ−1(n)qpn + p−1
∑
n≥1

σ−1(n)qp
2n


= −24p

∑
(n,p)=1

σ−1(n)qn

= −24pD−1
1 E

[p]
2 .

A slightly more conceptual way of proving the above result is as follows. When k ≥ 4,

�rst note that the q-expansion of Ek, which is given by (1.24), can be written as

Ek(q) =
ζ(1− k)

2
+
∑
n≥1

σk−1(n)qn.

When k = 0, the above formula does not make sense because the Riemann zeta function

has a pole at s = 1. However, forgetting the constant term, one can de�ne formally

E0(q) =
∑
n≥1

σ−1(n)qn.

Then one can show that

TpE0 = (Up + p−1Vp)E0 = (1 + p−1)E0

in the same way as one shows that

TpEk = (1 + pk−1)Ek
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when k ≥ 4. It then follows formally that

E0−(1+p−1)VpE0 +p−1V 2
p E0 = E0−Vp(Up+p−1Vp)E0 +p−1V 2

p E0 = (1−VpUp)E0 = E
[p]
0 .

Since

E
[p]
0 (q) = D−1

1 E
[p]
2 (q)

and

logp
∏
n≥1

(1− qprn) = V r
p E0(q),

this gives another proof of the above Proposition.

The above proposition implies that

−1

24p
D1 logp g

(p)
0 = E

[p]
2

(compare with the computations done at the end of Section 4.3) and so

F (0) = 4D−1
1 E

[p]
2 (Ea, ϕ, β2) =

−1

6p
logp g

(p)
0 (Ea, ϕ, β2). (8.12)

Generally speaking, one usually hopes that evaluating a p-adic L-function outside

its range of interpolation gives an expression which is analogous in some sense to the

corresponding complex value. Think of Kubota's formula for that value at 1 of the p-adic

zeta function, for example. In the case of (8.12), the corresponding complex analogue would

be the Petersson inner product of weight one theta series attached to ideals, which is of

course not de�ned. However, one could still formally use the formula of Theorem 15 for

` = 0 and obtain

〈θa,0, θb,0〉 =
−1

3
log(N(c)6|∆(c)|)
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(we still suppose that K has genus one and that ab̄c2 = OK). Using the same kind of

reasoning that lead to (8.8), one can then see that

F (0) =
−1

6
(Frob−1

p −p−1)(Frob−1
p −1) logp ∆(c)

formally (since ∆ 6∈ 1 + pV gen(Zp,Γ(1)arith)). Notice how the last equation looks like the

p-stabilized version of the one before it.
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Part III

Computations
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In the third and �nal Part of this thesis, many computations and numerical experiments

are presented. Almost all computations were done using the PARI/GP computer algebra

system (see [PAR16]).

Using the scripts

A big e�ort was made to make the code written for this project easy to use for anyone

who is a little bit familiar with PARI/GP. Some functions in PARI/GP 2.9 are required,

so it is necessary to have a version of PARI/GP which is ≥ 2.9.

To download the code, one can access the url [Sim] and download manually the whole

ENT repository or simply run the command

git clone https://github.com/NicolasSimard/ENT.git

on the terminal of any machine which has the git version control system installed (see

[Git]). Once the code is downloaded, navigate to the ENT/ folder and start the PARI/GP

calculator there.

PARI/GP Session 1.

git clone https :// github.com/NicolasSimard/ENT.git

cd ENT

gp

About the PARI/GPSessions

It is assumed that every PARI/GP session is run directly from the ENT/ folder. Most

PARI/GP sessions start with the read("init.gp") command, which loads the main scripts

that were written for this project. The functions that where written by the author are

highlighted in green and in slanted form. The output of the commands are sometimes

truncated to save some space. This is indicated by the symbol [...].
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CHAPTER 9
Petersson inner product

This chapter contains examples of computations of Petersson norm of newforms.

9.1 Petersson norm of ∆

To compute the Petersson norm of the modular form ∆, one could use directly the

de�nition of the Petersson inner product as a double integral:

PARI/GP Session 2.

gp > default(realprecision , 50);

gp > delta(x) = eta(x,1) ^24;

gp > intnum(x = -1/2, 1/2, intnum(y = (1-x^2) ^(1/2) ,[[1],4*Pi], \

norm(delta(x+y*I))*y^10))

%1 = 1.0353620568043209223478168122251645932249079609504 E-6

The last command runs in 4 seconds. A much more e�cient method consists in de�ning

the symmetric square L-function of ∆ and Formula (2.12).

PARI/GP Session 3.

gp > default(realprecision , 50);

gp > N = 1; k = 12;

gp > a = (n -> vector(n,i,sumdiv(i, d, \

(-1)^bigomega(d)*d^(k-1)*ramanujantau(i/d)^2)));

gp > L = lfuncreate ([a,1,[0,1,2-k],2*k-1,N^2,1]);

gp > (Pi /2*(4* Pi)^k/(k-1)!/N)^-1*lfun(lfuncreate(Ldata),k)

%1 = 1.0353620568043209223478168122251645932249079609373 E-6
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The formula for the coe�cients of the Dirichlet series are taken from [Coh13, Thm.2.1].

The last command runs in a few milliseconds, nearly 100 times faster than the previous

one. Note that the time it takes to initialize the L-function may not always be negligible. It

depends, in particular, on how e�ciently one can compute the coe�cients of the Dirichlet

series.

There are many more ways of computing the Petersson norm of ∆, like Poincaré series,

Haberland's formula, periods or other formulas involving special values of Dirichlet series.

Some methods, like Haberland's formula, are even faster than the symmetric square L-

function method. For more on those methods, see [Coh13].

9.2 Petersson norm of ∆5(τ) = (η(τ)η(5τ))4

The modular form ∆5(τ) = (η(τ)η(5τ))4 is a newform of weight 2 and level Γ0(5). To

compute its Petersson norm, one could again use the de�nition. To do so, one needs to �nd

a fundamental domain for Γ0(5) \ H. Taking the set
0 −1

1 0


 ∪


1 0

j 1

 : 0 ≤ j ≤ 4


as a set of representatives for the quotient SL2(Z)/Γ0(5), one can write the double integral

over Γ0(5) \ H as a sum of integrals over translates of the fundamental domain of SL2(Z)

by these representatives. Another method is to use (2.12) again.

PARI/GP Session 4.

gp > default(realprecision , 50);

gp > k=4; N=5; anf(n) = lfunan(lfunetaquo ([1 ,4;5 ,4]),n);

gp > avec(n) = {

my(an=anf(n), ap2);

direuler(p=2,n,

if(N%p==0,

1/(1 - an[p]^2*X), /* factor at the bad primes */
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ap2 = an[p]^2-p^(k-1);

1/(1 - ap2*X + p^(k-1)*ap2*X^2 - p^(3*(k-1))*X^3)))};

gp > L = lfuncreate ([n -> avec(n) ,1,[0,1,2-k],2*k-1,N^2 ,1]);

gp > (Pi /2*(4* Pi)^k/(k-1)!/N)^-1*lfun(L,k)

%1 = 0.00087080010497869125684556081325455557786399599585989

This last computation is more than 1000 times faster than the previous one. The

expression for the Euler factors at p of the symmetric square L-function in terms of the

Fourier coe�cients are easily obtained directly from the de�nition (2.6).

9.3 Petersson norm of ∆7(τ) = (η(τ)η(7τ))3

The modular form ∆7(q) = (η(q)η(q7))3 is newform of weight 3, level Γ0(7) and cha-

racter χ−7, the character attached to the quadratic �eld of discriminant −7 (given by the

Kronecker symbol).

To compute the Petersson norm of ∆7, one can use Theorem 8 or Theorem 9. For

technical reasons, we use the �rst one.1

PARI/GP Session 5.

gp > default(realprecision , 50);

gp > k=3; N=7; chi(n) = kronecker(-7,n);

gp > anf(n) = lfunan(lfunetaquo ([1 ,3;7 ,3]),n);

gp > avec(n) = {

my(an=anf(n), ap2);

direuler(p=2,n,

if(N%p == 0,

1/(1-p^(k-1)*X), /* factor at the bad primes */

1 The second formula involves the computation of the residue of an L-function. In general,
this data is required to de�ne the L-function in PARI/GP. In some cases, the function
lfunrootres() can be used to �nd this data numerically, but we have not been able to
compute it in this case.
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ap2 = an[p]^2-chi(p)*p^(k-1);

1/(1 - chi(p)*ap2*X + chi(p)*ap2*p^(k-1)*X^2 - p^(3*(k-1))*X^3)))};

gp > L = lfuncreate ([n -> avec(n) ,1,[0,1,2-k],2*k-1,N^2 ,1]);

gp > (Pi/2* eulerphi(N)*(4*Pi)^k/N^2/(k-1)!)^-1*( lfun(L,k)*6/7) /*Note the 6/7*/

%1 = 0.0052288338547890255263565535732901581103627066353333

Note that the one has to multiply L(Sym2 ∆7, χ−7, s) by the Euler factor

(1− p2−s)−1

at the bad prime p = 7 to obtain a nice functional equation (this explains the presence of

the factor 6/7 in the above computation). In general, �nding the bad Euler factors can

be di�cult. In this case, it turns out the ∆7 is also a theta series and so one can use

Proposition 4 to guess the missing Euler factor.
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CHAPTER 10
Complex multiplication

10.1 Singular moduli

In this section we illustrate the statements of Theorem 10, which is in some sense the

starting point of the theory of complex multiplication. The following calculation illustrates

the �rst three points of this Theorem.

PARI/GP Session 6.

gp > read("init.gp"); default(realprecision , 500);

gp > K = bnfinit(x^2+47); reps = redrepshnf(K); hK = #reps;

gp > f = algdep(ellj(idatouhp(K,reps [1])),hK) /* Verify point 1*/

%1 = x^5 + 2257834125*x^4 - 9987963828125*x^3 + 5115161850595703125*x^2 -

14982472850828613281250*x + 16042929600623870849609375

gp > nfisincl(f,polcompositum(K.pol ,quadhilbert(K.disc))[1]) != []

%2 = 1

gp > poldegree(polcompositum(K.pol ,f)[1]) == 2*hK /* Verify point 2*/

%3 = 1

gp > f == round(prod(i=1,hK,x-ellj(idatouhp(K,reps[i])))) /* Verify point 3*/

%4 = 1

The last point of Theorem 10 could also be veri�ed, but we didn't try to. Note that

the fact that the polynomial f is monic proves numerically that the singular values are

integral.
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10.2 Siegel units

In this section we illustrate the statements of Theorem 11.

PARI/GP Session 7.

gp > read("init.gp"); default(realprecision , 500);

gp > phi(K,ida) = delta(idatolat(K,1))/delta(idatolat(K,idealinv(K,ida)));

gp > K = bnfinit(x^2+71); reps = redrepshnf(K); hK = #reps;

gp > f = algdep(phi(K,reps [2]) ,2*hK) /* Verify point 1*/

%1 = 68719476736*x^6 + 2785017856*x^5 + 14351421440*x^4 + 412493295*x^3 +

3503765*x^2 + 166*x + 1

gp > nfisincl(f,polcompositum(K.pol ,quadhilbert(K.disc))[1]) != [] /* phi(K,ida) \

is in H*/

%2 = 1

gp > factor(polcoeff(f,6)) /* Verify point 2*/

%3 =

[2 36]

gp > idealfactor(K,reps [2]) /* Verify point 2*/

%4 =

[[2, [0, 1]~, 1, 1, [1, -6; 1, 0]] 1]

It should also be possible to verify point 3 of Theorem 11, but we haven't tried.

In the following PARI/GPsession, we experiment with Siegel units.

PARI/GP Session 8.

gp > read("init.gp"); default(realprecision , 500);

gp > phi(K,ida) = delta(idatolat(K,1))/delta(idatolat(K,idealinv(K,ida)));

gp > siegelunit(K,ida) = complexgen(K,idealpow(K,ida ,hK))^12* phi(K,ida)^hK;

gp > K = bnfinit(x^2+31); hK = K.clgp.no; reps = redrepshnf(K); /* hK = 3 */

gp > f = algdep(siegelunit(K,reps [2]) ,2*hK) /* Siegel units are... units!*/
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%1 = x^6 - 1590927*x^5 + [...] + 896395574769*x^2 - 1590927*x + 1

gp > nfisincl(f,polcompositum(K.pol ,quadhilbert(K.disc))[1]) != [] /* Siegel units \

belong to H*/

%2 = 1

Note that the fact that the leading and constant terms of f are both equal to 1 proves

numerically that this Siegel unit is indeed a unit.

10.3 CM values of modular forms: classically and algebraically

Recall the the Chowla-Selberg period attached to K, de�ned in Proposition 7 as

ΩK =
1√

4π|D|

|D|−1∏
n=1

Γ

(
n

|D|

)χD(n)
wK/(4hK)

,

could be used to algebraize the values of level one modular forms at lattices corresponding

to fractional ideals in K.

PARI/GP Session 9.

gp > read("init.gp"); default(realprecision , 500);

gp > K = bnfinit(x^2+23); Om_K = CSperiod(K.disc); reps = redrepshnf(K);

gp > factor(algdep(delta(idatolat(K,reps [2]))/Om_K ^12 ,10))

%1 =

[x + 1 1]

[262144*x^6 - 1617920*x^5 + 5304960*x^4 - 15701487*x^3 + 25590080*x^2 - 3235840*x +

262144 1]

gp > factor(algdep(delta(idatolat(K,reps [2]))/Om_K ^12 ,20 ,100)) /*Retry , see below.*/

%2 =

[x 2]

[262144*x^6 - 1617920*x^5 + 5304960*x^4 - 15701487*x^3 + 25590080*x^2 - 3235840*x +

262144 1]
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gp > factor(algdep(E(2,idatolat(K,1))/Om_K ^2,20)) /* Suspicious output */

%3 =

[14270068201587690836857*x^20 + [...] - 116255875884396643732694 1]

gp > default(realprecision , 1000); /* Need to increase precision. */

gp > K = bnfinit(x^2+23); Om_K = CSperiod(K.disc);

gp > factor(algdep(E(2,idatolat(K,1))/Om_K ^2,20))

%4 =

[x 1]

[47952687595882920802373496471552*x^18 - 280961949079190786543261319168*x^12 -

22089242062943952187392*x^6 - 5411082280083481 1]

The degree of the polynomial output by algdep() was chosen at random, since the

only information we have about the quotients ∆(a)/Ω12
K and E2(a)/Ω2

K is that they are

algebraic. To convince ourselves that the polynomial for ∆(a)/Ω12
k was good, we increased

the degree and used only the �rst 100 digits of the quotient in the second call to algdep().

Since both polynomials have a common factor, it seems plausible that the quotient is a root

of this common factor. For E2, the �rst call to algdep() output a suspicious polynomial

(it has degree equal to 20, large height and is a sum of monomials of every degree less than

20). After doubling the precision, the polynomial becomes much simpler and one is lead

to believe that the quotient attached to E2 is a root of it. One could again double the

precision and see that the polynomial remains the same.

It was shown in Chapter 7 that one could attach a period Ωa to any fractional ideal a

of K in such a way that

f(a) · (2πiΩa)
k ∈ H,

where f is any nearly holomorphic modular form of weight k and level 1. Note that here

there is control over the algebraic �eld in which the numbers land.
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PARI/GP Session 10.

gp > read("init.gp"); default(realprecision , 500);

gp > K = bnfinit(x^2+31); hK = K.clgp.no; /*hK = 3*/

gp > reps = redrepshnf(K); Om_ida = canperiod(K,reps [2]);

gp > ida = idatolat(K,reps [2]); /* Lattice attached to ideal reps [2]*/

gp > f = factor(algdep(delta(ida)*(2*Pi*I*Om_ida)^12,2*hK))

%1 =

[x 1]

[10230338448241477052305617123765768999*x^3 + [...] + 6330188685371917375801 1]

gp > f = f[2,1];

gp > nfisincl(f,polcompositum(K.pol ,quadhilbert(K.disc))[1]) != [] /*Lands in H*/

%2 = 1

gp > pol = shimuramaass(E2 ,3) /*d^3E_2*/

%3 = -48*E2^4 + 120*E4*E2^2 - 14*E6*E2 + 25*E4^2

gp > z = substvec(pol ,[E2 ,E4,E6],[E(2,ida),E(4,ida),E(6,ida)]); /*d^3E_2(ida)*/

gp > f = algdep(z*(2*Pi*I*Om_ida)^8,2*hK)

%4 = 4182444282330998785530422041377681*x^3 - [...] - 2480023220943452566129

gp > nfisincl(f,polcompositum(K.pol ,quadhilbert(K.disc))[1]) != [] /*Lands in H*/

%5 = 1

The period Ωa, returned by the function canperiod(), is computed by �rst �nding

an elliptic curve de�ned over H isomorphic to C/a over C (this can be done explicitly by

cooking up a Weierstrass equation out of the value j(a) ∈ H) and then calling the built-in

function ellperiods on this elliptic curve.

As one can see, by using the period Ωa, one trades the explicit Chowla-Selberg formula

for more information about the algebraicity of the values.
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CHAPTER 11
Petersson inner product of theta series

11.1 Hecke characters

One advantage of Hecke characters of type A0 (as opposed to general Hecke characters)

is that they are easy to compute with. To see this, let K be an imaginary quadratic �eld,

let {a1, . . . , ad} be a set of generators of ClK , let oi be the order of ai in ClK , let a be any

fractional ideal of K and let ψ be a Hecke character of in�nity type T = (k1, k2). Then

ψ(ai)
oi = ψ(aoii ) = ψ(αi) = αk1i ᾱi

k2 ,

where aoii = (αi)OK , so

ψ(ai) = ζoiα
k1/oi
i ᾱi

k2/oi

for some othi root of unity ζoi and so

ψ(ai) = exp(2πici/oi)α
k1/oi
i ᾱi

k2/oi

for some 0 ≤ ci < oi. Writing

a = µ
d∏
i=1

aeii ,

for some 0 ≤ ei < oi and µ ∈ K×, it follows that

ψ(a) = µk1 µ̄k2 exp

(
2πi

∑
i=1

eici/oi

)
d∏
i=1

α
k1ei/oi
i ᾱi

k2ei/oi .

Therefore, ψ is completely determined by its in�nity type and the tuple c = (c1, . . . , cd).

Conversely, it is clear that any such sequence and in�nity type (satisfying a certain parity

condition) de�nes a Hecke character. For this reason, such a Hecke character is represented
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by the tuple

[c, T ]

in the ENT/ repository.

PARI/GP Session 11.

gp > read("init.gp");

gp > K = bnfinit(x^2+17*23*47); qhcdata = qhcinit(K);

gp > K.clgp.cyc /* order of cyclic components of Cl_K*/

%1 = [24, 2, 2]

gp > qhc = [[15 ,1 ,0] ,[8 ,0]]; /*some Hecke character of oo-type (8,0)*/

gp > p11 = idealprimedec(K,11) [1]; /*a prime of K above 11*/

gp > qhceval(qhcdata ,qhc ,p11)

%2 = 12495.16962[...] - 7630.83331[...]*I

gp > factor(round(norm (%))) /*The above number has norm 11^8, as expected */

%3 = [11 8]

11.2 Theta functions

To compute the q-expansion of the theta function attached to a Hecke character, one

could use the built-in PARI/GPfunction ideallist, which returns a list of all ideals of

norm less than a bound. However, it turns out to be more e�cient to compute θa,` for each

a in a set of representatives for ClK and then use the identity in Proposition 9.

PARI/GP Session 12.

gp > read("init.gp"); default(realprecision , 5000); default(seriesprecision ,1000);

gp > K = bnfinit(x^2+13*31); qhcdata = qhcinit(K);

gp > K.clgp.cyc /* order of cyclic components of Cl_K*/

%1 = [2]
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gp > qhc = [[0] ,[4 ,0]]; /*some Hecke character */

gp > L = ideallist(K,default(seriesprecision));

gp > F(qhc)=q*Ser(apply ((L->sum(i=1,#L,qhceval(qhcdata ,qhc ,L[i]))),L),q);

gp > F(qhc); /*few seconds */

gp > bintheta(K,qhc); /*few milliseconds */

gp > vecmax(abs(Vec(F(qhc)-bintheta(K,qhc)))) /*the two q-exp are equal*/

%2 = 1.5223063546968858611 E-5003

11.3 Petersson inner product of theta functions

Of course, the formulas used in Chapter 9 could be used to compute the Petersson

norm of theta series. However, it is often more e�cient to use the formulas

〈θψ, θψ〉 =
4hK
wK

√
|D|Γ(2`+ 1)

(4π)2`+1
L(ψ2, 2`+ 1) (11.1)

and

〈θψ, θψ〉 = (|D|/4)`
4hK
w2
K

hK∑
j=1

ψ2(aj)δ
2`−1
2 E2(aj) (11.2)

of Proposition 12 and Theorem 15, respectively. To see this, take again the �eld K =

Q(
√
−7). Then the subspace of theta functions in S3(Γ0(7), χ−7) is one-dimensional and

θOK = 2θψ,

where ψ is the unique Hecke character of K of in�nity type (2, 0). A trivial bound for the

dimension of S3(Γ0(7), χ−7) as a C-vector space is 3 (see [RBvdG+08, Prop.3]) and so it

follows from a q-expansion calculation that

∆7 = θψ.

PARI/GP Session 13.

gp > read("init.gp"); default(realprecision , 100); default(timer ,1);
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gp > K = bnfinit(x^2+7); hK = K.clgp.no; ell = 1; qhc = [[] ,[2*ell ,0]];

gp > Lsym2 = lfuncreate(lsym2data(K,qhc));

gp > Lpsi2 = lfuncreate(qhcLdata(K,2* qhc));

time = 16 ms.

gp > (2* ell)!*abs(K.disc)/(4*Pi)^(2* ell+1)*2/Pi*lfun(Lsym2 ,2*ell+1)

time = 1,607 ms.

%5 = 0.005228833854789025526356553573290158110362706635333268951985345514[...]

gp > 4*hK/K.tu[1]* sqrt(abs(K.disc))*(2* ell)!/(4*Pi)^(2* ell+1)*lfun(Lpsi2 ,2*ell +1)

time = 15 ms.

%6 = 0.005228833854789025526356553573290158110362706635333268951985345514[...]

gp > pnorm(pipinit(K),qhc)

%7 = 0.005228833854789025526356553573290158110362706635333268951985345514[...]

Compare the results of these computations with those of the PARI/GPSession 5.

Note that the formula using the Hecke L-function is about 100 times faster that the

one using the symmetric square L-function. The reason for this is that the symmetric

square L-function has degree 3, while the Hecke L-function has degree 2. Note also that

the function pnorm, which uses (11.2), runs in a negligible amount of time.

The main advantage of (11.2) is that the derivatives of E2 can be expressed recursively

in terms of E2, E4 and E6 (see (1.73), (1.74) and (1.75)), and so the evaluation of δ2`−1
2 E2(a)

boils down to the evaluation of a 3 variable polynomial (which depend only on `) at the

point (E2(a), E4(a), E6(a)) ∈ C3. The only problem is that the degree and the height of that

polynomial grows with ` and it becomes expensive to compute. However, since it depends

only on ` it can be computed in advance and stored. The large use of computation power
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is then transferred to a large use in memory.1 This leads to the search for yet another

algorithm which would scale well with `. An idea is to compute explicitly the "q-expansion"

of δn2E2 using the formula

δn2E2(τ) =
n∑
r=0

(−1)n−r
(
n

r

)
(r + 2)n−r

(4π=(τ))n−r
DrE2(τ),

where (a)d = a(a+ 1) . . . (a+ d− 1) is the Pochhammer symbol and

D =
1

2πi

∂

∂z

(see [RBvdG+08, Eqn.56]). A calculation then shows that

δn2E2(τ) =(−1)n
(

1

8π=(τ)
− n+ 1

24

)
n!

(4π=(τ))n

+
∑
m≥1

σ(m)

(
n∑
r=0

(−1)n−r
(
n

r

)
(r + 2)n−r

(4π=(τ))n−r
mr

)
qm.

(11.3)

The running time of all those formulas can be compared for varying ` and precision. Here is

a small comparison of the timing of the computation of the Petersson norm of θψ for some

Hecke character ψ of K = Q(
√
−47) of in�nity type (2`, 0) using 4 di�erent algorithms at

1000 digits of precision. The timings are in seconds.

`

1 25 50 100

Eq. (11.1) 5.3 9.2 14.9 31.0

Algorithms
Eq. (11.2) 0 0.2 1.7 25.5

Eq. (11.3) 0.4 2.5 6.3 18.8

Eq. (11.3)' 0.4 0.6 0.7 1.2

1 For example, the �rst 220 polynomials δ1
2E2, . . . , δ

437
2 E2 take about 900 Mb of space.

133



Here, equation (11.3)' is a vectorized implementation of the formula (11.3), i.e. it uses

a di�erent algorithm to evaluate the q-expansion. Here is the same comparison, but with

2000 digits of precision.

`

1 25 50 100

Eq. (11.1) 23.3 35.3 50.7 84.1

Algorithms
Eq. (11.2) 0 0.3 2.6 31.2

Eq. (11.3) 1.9 8.4 18.5 47.4

Eq. (11.3)' 1.8 2.4 2.8 4.1

As expected, equation (11.2) behaves well when the precision increases, but behaves

badly when ` increases. One also sees that the vectorized implementation of (11.3) does

consistently well.

One advantage of having more than one formula to compute a quantity numerically is

that one can have an idea of the number of correct digits of the results by comparing the

output of two di�erent algorithms. Here is an example.

PARI/GP Session 14.

gp > default(realprecision ,1000); read("init.gp");

gp > K = bnfinit(x^2+53); pipdata = pipinit(K); K.clgp

%4 = [6, [6], [[3, 2; 0, 1]]]

gp > pnorm(pipdata ,[[1] ,[10 ,0]])-pnorm(pipdata ,[[1] ,[10 ,0]] ,"qexpv")

%5 = 1.8923323355184722792 E-991 + 8.480963825248301816 E -1006*I

The �rst call to pnorm uses (11.2), while the second uses the vectorized implementation

of (11.3). The di�erence between the two quantities suggest that around 990 out of the

1000 digits of precision are correct.
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Finally, in the next PARI/GPsession, we verify (4.14), which gives an expression for

the value at s = 1 of Hecke L-functions of non-trivial class characters.

PARI/GP Session 15.

gp > read("init.gp");

gp > K = bnfinit(x^2+47); wK = K.tu[1]; reps = redrepshnf(K);

gp > qhc = [[2] ,[0 ,0]]; /*some class character */

gp > Psi(ida) = qhceval(qhcinit(K),qhc ,ida);

gp > Lpsi2 = lfuncreate(qhcLdata(K,2* qhc));

gp > F(ida) = idealnorm(K,ida)^6* abs(delta(idatolat(K,ida)));

gp > lfun(Lpsi2 ,1)

%1 = 0.64666083128645259893546663118873725573 - 7.4[...] E-60*I

gp > -Pi/3/wK/sqrt(abs(K.disc))*sum(i=1,#reps ,Psi(reps[i])^-2*log(F(reps[i])))

%2 = 0.64666083128645259893546663118873725572 + 0.E-38*I
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CHAPTER 12
Stark's observation on weight one theta functions

12.1 Stark's original observation in the �eld Q(
√
−23)

Stark noticed that if θψ is the theta function attached to a non-trivial class character

of K = Q(
√
−23), then

〈θψ, θψ〉 = 3 log ε,

where ε is a real root of x3 − x− 1. This is easy to verify numerically.

PARI/GP Session 16.

gp > read("init.gp"); default(realprecision , 500);

gp > Phi(K,ida) = my(L=idatolat(K,ida)); \

sqrt(idealnorm(K,ida))*abs(L[1]^ -1* eta(L[2]/L[1] ,1)^2);

gp > K = bnfinit(x^2+23); data = pipinit(K);

gp > qhc = [[1] ,[0 ,0]]; /*A non -trivial class character */

gp > algdep(exp(pnorm(data ,qhc)/3) ,3)

%1 = x^3 - x - 1

gp > p31 = idealprimedec(K,31) [1]; /*31 splits in K*/

gp > abs(pnorm(data ,qhc) -3*log(Phi(K,idealinv(K,p31))/Phi(K,1)))

%2 = 2.583511420128310153 E-500

12.2 Generalizing Stark's observation to class number 3 quadratic �elds

One may wonder if the Petersson norm of theta functions is always the logarithm of a

unit in the Hilbert class �eld. This was proven to be the case for all class number 3 number

�elds and can be seen numerically.
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PARI/GP Session 17.

gp > read("init.gp"); default(realprecision , 1000);

gp > L = discofclassno (3); /*There are 16 of them*/

gp > test(K) = polredbest(algdep(exp(pnorm(pipinit(K) ,[[1] ,[0 ,0]]) /3) ,3));

gp > for(i=1,#L,print("D=",L[i],": ",test(bnfinit(x^2-L[i]))))

D=-907: x^3 - x^2 - 7*x + 12

D=-883: x^3 - 2*x^2 - 12*x - 11

D=-643: x^3 - 2*x - 5

D=-547: x^3 - x^2 - 3*x - 4

D=-499: x^3 + 4*x - 3

D=-379: x^3 - x^2 + x - 4

D=-331: x^3 - x^2 + 3*x - 4

D=-307: x^3 - x^2 + 3*x + 2

D=-283: x^3 + 4*x - 1

D=-211: x^3 - 2*x - 3

D=-139: x^3 - 8*x - 9

D=-107: x^3 - x^2 + 3*x - 2

D=-83: x^3 - x^2 + x - 2

D=-59: x^3 + 2*x - 1

D=-31: x^3 + x - 1

D=-23: x^3 - x - 1

gp > for(i=1,#L,print("D=",L[i],": ",polredbest(quadhilbert(L[i]))))

D=-907: x^3 - x^2 - 7*x + 12

D=-883: x^3 - 2*x^2 - 12*x - 11

D=-643: x^3 - 2*x - 5

D=-547: x^3 - x^2 - 3*x - 4

D=-499: x^3 + 4*x - 3

D=-379: x^3 - x^2 + x - 4

D=-331: x^3 - x^2 + 3*x - 4

D=-307: x^3 - x^2 + 3*x + 2

D=-283: x^3 + 4*x - 1

D=-211: x^3 - 2*x - 3

D=-139: x^3 - 8*x - 9

D=-107: x^3 - x^2 + 3*x - 2
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D=-83: x^3 - x^2 + x - 2

D=-59: x^3 + 2*x + 1

D=-31: x^3 + x - 1

D=-23: x^3 - x - 1

12.3 Generalizing Stark's observation to other quadratic �elds

In this section, we give examples of computations which support the claims and con-

jectures made in Section 5.3. Recall the notation

〈θψ, θψ〉 = hK log κψ,

where

κψ =
∏

a∈ClK

Φ(a−1)−ψ(a)2 .

PARI/GP Session 18.

gp > read("init.gp"); default(realprecision , 1000);

gp > Phi(K,ida) = my(L=idatolat(K,ida)); \

sqrt(idealnorm(K,ida))*abs(L[1]^ -1* eta(L[2]/L[1],1)^2);

gp > k_psi(K,qhc) = {

my(reps=redrepshnf(K));

prod(i=1,K.clgp.no,Phi(K,reps[i])^(-qhceval(qhcinit(K),qhc ,reps[i])))};

gp > Q(D) = bnfinit(x^2-D); /*for convenience */

gp > algdep(k_psi(Q(-47) ,[[1] ,[0 ,0]]) ,50) /*Class number 5: hummm*/

%1 = 388601289028*x^50 - [...] - 6975618148752847

gp > factor(algdep(k_psi(Q(-87) ,[[1] ,[0 ,0]]) ,50)) /*Class number 6: it is a unit!*/

%2 =

[ x - 1 1]

[x^6 - x^5 - 6*x^4 - 17*x^3 - 6*x^2 - x + 1 1]

gp > nfisincl (%[2,1], polcompositum(Q(-87).pol ,quadhilbert (-87))[1]) != [] /*Is in \

H*/
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%3 = 1

gp > D10 = discofclassno (10) [ -1.. -1][1]; /*Class number 10*/

gp > algdep(k_psi(Q(D10) ,[[1] ,[0 ,0]]) ,50) /* Garbage for this Hecke char*/

%4 = 387398835037687*x^50 + [...] + 4477373333556254

gp > algdep(k_psi(Q(D10) ,[[5] ,[0 ,0]]) ,50) /*Works with this Hecke char*/

%5 = x^31 - 8*x^30 - x^29

Many other experiments like these where run and they all support the conjectures

made in Chapter 5.
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CHAPTER 13
Computational experiments and conjectures

In this last chapter of the thesis, we present some computational experiments which

lead to some conjectures. For most of these conjectures, we have only numerical evidence.

13.1 Gram matrix of the Petersson inner product on the space of theta series

If f1, . . . , fn ∈ Sk(Γ0(N), χ) are cusp forms, de�ne

Gram(f1, . . . , fn) = det(〈fi, fj〉)1≤i,j≤n.

This is the determinant of the Gram matrix of the space spanned by f1, . . . , fn and equipped

with the Petersson inner product.

When ` > 0, recall that by Proposition 10 the space

ΘK,` ⊆M2`+1(Γ0(|D|), χD)

of theta series has dimension hK . It is then natural to consider

Gram(θψ1 , . . . , θψhK ),

where the θψi are the theta series attached to Hecke characters of in�nity type (2`, 0). This

quantity depends only on K and ` and by Corollary 5, it is an algebraic multiple of Ω4`hK
K ,

where ΩK is the Chowla-Selberg period attached to K. In fact, numerically we �nd that

this algebraic number, denoted

A(K, `) =
Gram(θψ1 , . . . , θψhK )

Ω4`hK
K

=

∏hK
i=1〈θψi , θψi〉

Ω4`hK
K

, (13.1)
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is almost always an integer (some small powers of 2 and 3 appear in the denominator

sometimes when ` = 1).

In the following PARI/GP session, the function invA returns A.

PARI/GP Session 19.

gp > read("init.gp"); default(realprecision , 500);

gp > ell = 1; for(D = 5, 50, if(isfundamental(-D),print(-D,": \

",algdep(invA(-D,ell) ,5))));

-7: 3*x^5 - x^4

-8: 2*x - 1

-11: x - 1

-15: x - 4

-19: 3*x^5 - 13*x^4

-20: x - 64

-23: x - 621

-24: x - 196

-31: x - 7254

-35: x - 324

-39: x - 4076800

-40: x - 3364

-43: 3*x - 214

-47: x - 538443750

gp > ell = 2; for(D = 5, 50, if(isfundamental(-D),print(-D,": \

",algdep(invA(-D,ell) ,5))));

-7: x - 1

-8: x - 5

-11: x - 10

-15: x - 6084

-19: x - 142

-20: x - 21904

-23: x - 7303581

-24: x - 318096

-31: x - 404717958
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-35: x - 5702544

-39: x - 16446807606528

-40: x - 36820624

-43: x - 22588

-47: x - 480609496085043750

This observation about the rationality of the normalized product of special values of

Hecke L-functions in (13.1) is similar in nature to what was observed by Gross and Zagier

in [GZ80] or by Villegas and Zagier in [VZ92]. In those papers, they observe (and prove

in certain cases), that the central critical value of Hecke characters attached to CM elliptic

curves is an integral multiple of powers of the corresponding Chowla-Selberg period, up to

some explicit factors.

One strategy to prove this rationality property would be to introduce a Galois action

and to show that the product in (13.1) is Galois invariant. The following experimentation

explores this idea.

PARI/GP Session 20.

gp > read("init.gp"); default(realprecision , 2000);

gp > K = bnfinit('x^2+23); data = pipinit(K); Om_K = CSperiod(K.disc);

gp > ell = 1; qhcs = qhchars(K,[2*ell ,0]);

gp > for(i = 1, K.clgp.no , print(algdep(pnorm(data ,qhcs[i])/Om_K ^(4* ell) ,10)))

x^9 - 6966*x^6 + 11569230*x^3 - 239483061

x^9 - 6966*x^6 + 11569230*x^3 - 239483061

x^9 - 6966*x^6 + 11569230*x^3 - 239483061

gp > ell = K.clgp.no; qhcs = qhchars(K,[2*ell ,0]);

gp > for(i = 1, K.clgp.no , print(algdep(pnorm(data ,qhcs[i])/Om_K ^(4* ell) ,10)))

x - 5055

x^6 - 16287872873193*x^3 + 30021979248651078296845875

x^6 - 16287872873193*x^3 + 30021979248651078296845875
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Many observations can be made after those computations. First, one sees that the

quantities

N(ψ, `) =
〈θψ, θψ〉

Ω4`
K

are Galois conjugate over Q when ` is not a multiple of hK (this phenomenon repeats not

only when ` = 1). Moreover, the N(ψ, `) are hKth roots of an algebraic integer. Also,

there is this interesting phenomenon that when ` is a multiple of hK , one of the N(ψ, `)

is rational and the other two are Galois conjugate over Q. Similar observations were made

for all the number �elds tested (including some number �elds with more than one genera).

The last observation suggests that one Hecke character is singled out when ` is a

multiple of the class number, which is surprising at �rst. However, one sees that when

hK |`, the map

ψ0,`(a) = α2`/hK ,

where α is a generator of ahK is a well-de�ned Hecke character of in�nity type (2`, 0). This

ψ0,` is the singled out Hecke character. In the notation of Section 11.1, it corresponds to

the tuple c = (0, . . . , 0). Note that when ` = 0, this is just the trivial characters. It would

be interesting to see what can be said about the special values of the Hecke L-function

corresponding to this special Hecke character.

13.2 Invariant theta series attached to imaginary quadratic �elds

When ` > 0, one can also compute the determinant of the Gram matrix of the Petersson

inner product on the space ΘK,` with respect to a basis consisting of theta series attached

to fractional ideals of K. If {a1, . . . , ahK} is a choice of representatives of ClK , one could

choose the basis of ΘK,` to be

{θa1,`, . . . , θahK ,`}.
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The problem is that

Gram(θa1,`, . . . , θahK ,`)

depends on this choice. Indeed,

Gram(θa1,`, . . . , θµai,`, . . . , θahK ,`) = N(µ)2` Gram(θa1,`, . . . , θai,`, . . . , θahK ,`) forall µ ∈ K×.

The obvious way to solve this problem is to normalize the Gram determinant using the

norm function. This leads to the quantity

B(K, `) =
Gram(θa1,`, . . . , θahK ,`)

Ω4`hK
K

∏hK
i=1N(ai)2`

,

an algebraic number which depends only on K and `. Numerically, one notices that B(K, `)

is rational. In fact, this follows from the observation that A(K, `) is rational, because of

the following

Proposition 28. Let A(K, `) and B(K, `) be the quantities de�ned above. Then

B(K, `) =

(
w2
K

hK

)hK
A(K, `).

Note that the proportionality factor does not depend on `.

Proof. Let

B1 = {θa1,`, . . . , θahK ,`}

and

B2 = {θψ1 , . . . , θψhK }

be bases for the space ΘK,`. Using Proposition 9, one computes that

Gram(θa1,`, . . . , θahK ,`) = det(T t) Gram(θψ1 , . . . , θψhK ) det(T ), (13.2)
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where T is the hk × hk matrix whose ij entry is wk
hK
ψi(aj), the bar denotes complex conju-

gation and the t denotes transposition.

Now

det(T ) =

(
wK
hK

)hK  hk∏
j=1

ψ1(aj)

 det

(
ψi
ψ1

(aj)

)
.

As i goes from 1 to hK , the class character χi = ψi/ψ1 goes through all the class characters

exactly once. Letting M be the matrix with ij entry χi(aj), one then sees that

det(T tT ) =

(
wK
hK

)2hK
(
hk∏
i=1

|ψ1(ai)|2
)

det(M tM) =

(
wK
hK

)2hK
(
hk∏
i=1

N(ai)

)
det(M tM).

Now the ij entry of M tM is

hK∑
k=1

χk(ai)χk(aj) = hKδi,j ,

so that

det(M tM) = hhKK .

Putting everything together, one has

Gram(θa1,`, . . . , θahK ,`) =

(
w2
K

hK

)hK ( hk∏
i=1

N(ai)

)
Gram(θψ1 , . . . , θψhK ), (13.3)

which proves the claim.

Note also that by Corollary 7, one has the equality

Gram(θa1,`, . . . , θahK ,`)∏hK
i=1N(ai)2`

= det
(
〈θOK ,`, θa−1

i aj ,`
〉
)

1≤i,j≤hK
.

Although the computations with the invariantA(K, `) seem to suggest that the Chowla-

Selberg is a good choice of period to normalize the Petersson inner product of theta series,

it would be nice to �nd a way to get rid of this choice of period. In what follows, we do

this when DK < −4.
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First, de�ne

θA,` =
θa,`

E2(a−1)`
,

where A ∈ ClK and a is a representative of A.1 Then the set {θA1,`, . . . , θAhK ,`}, where

ClK = {A1, . . . ,AhK} is a basis of ΘK,` with the property that

〈θAi,`, θAj ,`〉 ∈ H

for any 1 ≤ i, j ≤ hK by the theory of complex multiplication. Note that no choice of

period is involved in the previous statement. Moreover, note that when ` = 0, we recover

the usual theta series θA,0.

De�ne

C(K, `) = Gram(θA1,`, . . . , θAhK ,`).

Then

C(K, `) =
Gram(θa1,`, . . . , θahK ,`)∏hK

i=1 |E2(a−1
i )|2`

,

where {a1, . . . , ahK} is any choice of class representative for ClK . Numerically, one notices

that C(K, `) is rational whose denominator is a 2`th power of a �xed number (as usual,

up to powers of 2 or 3). Here is a table of the denominators that appear for class number

1, 2, 3 and 4 and small values of `

1 The reason for the exclusion of the imaginary quadratic �elds of discriminant −3 and
−4 is that E2 vanishes at the CM point corresponding to them.
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K

Q(
√
−163) Q(

√
−187) Q(

√
−23) Q(

√
−203)

`

1 2 · 3 · 1812 24132 4192 24572592

2 241814 210134 4194 212572594

3 2101816 218136 4196 218572596

4 281818 210138 4198 572598

5 21218110 2261310 41910 2325725910

6 21918112 2361312 41912 2405725912

7 21918114 2401314 41914 2525725914

8 22018116 2421316 41916 2525725916

9 22318118 2441318 41918 2465725918

10 22518120 2521320 41920 2645725920

Those numbers also appear in a relation between the invariants B and C. Indeed, it

seems numerically that

B(K, `) =
n(K)2`

(122|D|)hK`
C(K, `),

where n(K) is the number such that n(K)2` is the denominator of C(K, `). Of course, this

conjecture is not very precise, but hopefully the following computations might convince the

reader that it makes sense.

PARI/GP Session 21.

gp > read("init.gp"); default(realprecision , 1000);

gp > D = -23; hK = qfbclassno(D)

%1 = 3

gp > for(ell = 1, 10, \

print(ell ,":",factor(invB(D,ell)/invC(D,ell)*(12^2* abs(D))^(hK*ell))))

1:Mat([419 , 2])
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2:Mat([419 , 4])

3:Mat([419 , 6])

4:Mat([419 , 8])

5:Mat([419 , 10])

6:Mat([419 , 12])

7:Mat([419 , 14])

8:Mat([419 , 16])

9:Mat([419 , 18])

10: Mat([419, 20])

gp > default(realprecision , 2000); D = -95; hK = qfbclassno(D)

%1 = 8

gp > for(ell = 1, 10, \

print(ell ,":",factor(invB(D,ell)/invC(D,ell)*(12^2* abs(D))^(hK*ell))))

1:[1531 , 2; 242798651 , 2]

2:[1531 , 4; 242798651 , 4]

3:[1531 , 6; 242798651 , 6]

4:[1531 , 8; 242798651 , 8]

5:[1531 , 10; 242798651 , 10]

6:[1531 , 12; 242798651 , 12]

7:[1531 , 14; 242798651 , 14]

8:[1531 , 16; 242798651 , 16]

9:[1531 , 18; 242798651 , 18]

10:[1531 , 20; 242798651 , 20]

It would be interesting to see if the numbers n(K) can be related to K in some other

way.
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Conclusion

As was seen in this thesis, Stark's observation on the relation between the Petersson

norm of the weight one theta series attached to a non-trivial character of K = Q(
√
−23)

and the logarithm of a unit can sometimes be generalized to other number �elds. It would

be interesting to see if Conjecture 1 holds. In any case, it was shown using the explicit

formulas of Theorem 15 that the Petersson norm of weight one theta series attached to

class characters of imaginary quadratic �elds is a linear combination of logarithms of Siegel

units.

In the second part, it was shown that the Petersson inner product of higher weight

theta series can be p-adically interpolated. At the point corresponding to weight one, which

was outside the range of interpolation, it was shown that one obtains a p-adic analogue of

the Petersson inner product of weight one theta series (if it could be de�ned).

The possibility of e�ciently computing the Petersson inner product of theta series

allows one to experiment with them and observe some interesting patterns. Some expe-

riments were presented in the last chapter. It would be interesting to further investigate

the many open questions that were made there. In particular, the relation between the

invariant C(K, `) and the Chowla-Selberg period seems worthy of interest.

Another direction for further research would be to study the Petersson inner product

of theta series attached to type A0 Hecke characters with non-trivial conductor. Those

theta series share many common properties with the ones considered in this thesis and all

of the steps in �nding the explicit formulas of Theorem 15 should generalize.
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