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Abstract

Irregular problems arise in many areas of computational physics and other scientific

applica.tions. A parallel solution for such a problem requires a suitable mapping

strategy to map the irregula.r problem to the interconnection topology of the parallel

machine so tha.t co=unica.tion overhea.d is as low as possible, there is proper load

balancing a.mong the processors and, locality of the problem graph is preserved. As

a result, there is suflicient speedup in computation. In this thesis, we discuss some

general strategies and a.ssociated results in data-parallel solutions of such problems.

Some of these strategies use the geometrical co-ordinates of the nodes of the problem

graph for partitioning them to the processors. In certain situations, geometrical co­

ordinates alone may not ca.pture the topology of the problem graph. To handle this,

we design a number of schemes for assigning topological co-ordinates to nodes, and

then use the sa.me mapping strategies for partitioning nodes to processors based on

their topological co-ordina.tes. We test our strategies on experimental problem graphs

and discuss the results.

ü



•

•

•

Résumé

Les problèmes irréguliers se présentent dans plusieurs domaines de calcul de physique

et d'autres applicatiollS scientifiques. Une solution parallèle pour un de ces problèmes

requiert une stratégie appropriée pour configurer ce problème irregulier à. la topolo­

gie d'intercollllection de la machine parallèle de façon à. ce que la communication

entre les processeurs soit minimale, qu'il y ait une distribution équilibrée du travail

entre les processeurs, et que la localité du graphe du problème soit retenue. Par

collSéquent il y aura une a.ccélération suflisa.nte dans le calcul. Dans cette thèse,

nous discutollS de quelques stratégies générales et des résultats associés pour les

solutiollS parallèles de ces problèmes. Quelques unes de ces stratégies utilisent les

coordollllées géometriques des noeuds du graphe du problème pour les répartir entre

les processeurs. Dans certaines situatiollS, les coordollllées géometriques seules ne

suffisent pas à. capturer la topologie du graphe. Pour résoudre ce problème, nous

concevollS un nombre d'arra.ngements pour dOllller des coordollllées topologiques aux

noeuds, et par collSéquent utiliser les mêmes stratégies de configuration pour repar­

tir les noeuds entre les processeurs en se basa.nt sur leurs coordollllées topologiques.

Nous testOIlS nos stratégies sur des graphes de problèmes experi::nentaux et nous cn

discutollS les résult<..ts.

lU
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Chapter 1

Introduction

In fields like Huid dynamics, e1ectromagnetics, heat conduction, structural mechanics,

combustion, and many other scientific applications, the mathematical mode1 of a

problem is often represented by partial dift"erential equation(s) over a given regular or

irregular domain, and initial and/or boundary conditions. One numerical approach

to solving these type of equations is to discretize the given continuous domain into

finite e1ements, and then convert the given system of dift"erential equations into an

equivalent system of algebraic equations [1, 14, 15]. In a 2-dimensional case, either

triangular or 4-node or 8-node quadrilateral e1ements are chosen. In the case of

triangular e1ements, delaund.y triangulation is the technique employed in discretizing

the domain [2, 11]. We call each comer of a triangle a problem Rode or simplya Rode.

A wrench shaped domain and its corresponding triangular discretization is illustrated

in Fig. 1.1.

The solution of these algebraic equations requires each node in the discretization

to exchange data with its neighboring nodes, and to subsequently perform some

computations with this data. In a direct iterative solution scheme, this procese of

communication and compuWion repeats over severa! iterations, until the computed

values converge to some fixed values. Since each node in the discretization performs

similar computations but on dift"erent sets of data, these types of problems are some

of the best candidates for data-paralle1 solution.

1
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1

1

Figure 1.1: An irreguIar domain

In the rest of our discussion, we will use the term problem gnzph to represent the

interconnection topology of the nodes in a discretization. Bach node in a problem

graph is called a problem node or simplya node. Similarly, the term system graph will

represent the processor interconnection topology of a paraI1el machine. Each node

in a system graph is ca1led a system node, or simply a processor. For any node in a

graph, a1l other nodes in the graph which are connected by a single edge to this node

are ca1led neighbors of this node.

.Regul3.r problems, where discretizations are fixed and topologicalIy simple, can be

,..' efi'ectively mapped to the parallel maciJine topology and then 50lved in a data-parallel

way. In the case of irregula.r problems, where the number of neighbors of each node

varies from node to node, 5Omè:~rategy bas to be adopted in mapping the irregular

problem graph to the system grapil representing the interconnection topology of the

parallel machine 50 that neighboring nodes in the discretization do not go far away

from each other after being mapped, and the locality of the nodes is not destroyed.

These issues are important, because the communication overhead in these machines
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is much higher in compari5On with the computational time. Also, the co=unication

overhead increases significantly with increasing distance between two co=unicating

processors.

The general mapping problem can be divided into two sub-parts. The first part

is to find a suitable initial mapping strategy 50 that nodes and neighbors are initially

mapped as close together as possible. The next part is to perform further adjustment

of nodes among processors, either sequentially or in paraI1el, 50 that nodes and neigh­

bors might come much closer. The present emphasis is to obtain 50me good initial

mapping strategy 50 that there is no need for further adjustment of nodes among

processors, which might save a considerable amount of pre-processing time.

One important issue here is load balancing. In a SIMD machine, where all pro­

cessors work synchronously under a global clock, the time taken in some compound

computation, for example a while loop, is the time taken by the last processor to

finish the computation. So, if the load is not balanced properly, the processor which

is loaded the most will have to do most of the work, while 50me other processors will

have to remain idle until all the other processors finish. The total time is the time

taken by the busiest processor. Renee, in order to keep all processors equally busy,

load balancing is important.

In this thesis, we discuss 50me of the general strategies adopted in the initial map­

ping of an irregular problem graph to the system graph, keeping in mind the different

issues discussed previous1y. First, we discuss a greedy close neighbor heuristic, which

tries to map neighboring nodes in the problem graph as closely as posSible. Being

greedy, this strategy is not optimal in situations and it destroys locality of nodes in

problem graphs. As an improvement over this, we design a. quad-tree based map­

ping strategy which partitions nodes to processors based on geometric information of

the nodes. This strategy is better at maintaining geometric locality of the problem

graph over the previous strategy. Rowever, it has got other limitations as well, which

we further rectify in a. binary-decomposition based mapping scheme. In certain sit­

uations, geometric information alone may not capture the topology of the problem
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graph, because two nodes may he geometrically close enough, but they may not he

neighbors in the actual discretization. Or in situations, they may he geometrically

far off, but may he neighbors in the actual discretization. So, we bring in a notion of

assigning topological co-ordinates to nodes, and design at least two different schemes

for assigning topological co-ordinates to nodes. Finally, we combine all the ideas and

design quad-tree based and binary-decomposition based mapping strategies based on

topological co-ordinates of the nodes.

Someof these general strategies were implemented and tested on DECmpp12000/Sx,

which is a mesh connected SIMD machine with toroidal wrap-around. The languages

of implementation are C and MPL. It is found that both the quad-tree based and

the binary-decomposition based mapping strategies based on both geometrical and

topological co-ordinates give the best results.

1.1 Thesis background

A great deal of work has alreaciy been done in this direction. Some general readings

on the sequential and parallel solutions offluid flow and similar problems can he found

in [16, 17, 18]. DifFerent numerical methodologies on solutions of fluid flow, aerody­

namics, and similar problems can he found in any journal on numerical methoda for

engineering. Some of the prominent journals dea1ing with numerical methodologies

and computer solution techniques are International Joum41 for Numerical Methods

in Engineering, and Computer Methods in Applied Memanics and Engineering, to

namea few.

An overview of the existing approaches on mapping of irregular problem graphs to

multiprocessors can be found in [7]. There the authon discusa the different exiating

schemes, and conclude that methoda based on recmsive spectral bisection and recur­

sive clustering have the most potential. As it is discuseed in the paper, the difFerent

approaches commonly used for unatructured mesh decompoeition ale: 8Îmulated an­

nealing, recmsive graph bisection, neareat neighbor, recmsive spectral bisection, and
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recursive clustering. The last three approaches are the most prominent, and hence

we discuss them brieHy.

1.1.1 Nearest neighbor approaches

Nearest neighbor algorithms cao be useful for mapping certain unstructured meshes

with a fairly organized structure onto a multiprocessor configuration. Typically they

proœed in two steps: an initial mapping where neighboring elements are grouped into

clusters, and exchange of elements along boundaries to improve load balancing. The

initial mapping is done by a technique called strip partitioning. The mesh is divided

into horizontal and vertical strips. Techniques called l-D and 2-D strip partitioning

for meshes with rectangular elements and a hypercube system, are discussed in detail

in [8, 13]. It was found that these techniques did not always work well, particularly

with highly unstructured meshes. The reason being that, essentially the nearest

neighbor is a geometric approa.ch, whereas the mesh decomposition is a topological

one.

Some techniques discussed in this thesis, namely the quad-tTee ba.sed and the

binary-decomposition based schemes, are conceptually simj1ar to the above technique.

The noticeabledift'erences are that, (i) we use triangular elements, (ü) load balancing

is taken care of in our initial mapping itself 50 that we do not perform a second phase

of boundary refinement, and (ili) the most important is that, we use the topologi­

cal information of the mesh in partitioning which should take care of unstructured

meshes.

A simj1ar binary-decomposition technique dealing with irregular meshes with rect­

angular elements and using the geometric information of the mesh cao he found in

[10]. There the authors theoretically study the communication cast of mapping this

partitioning onto dift'erent multiprocessors: a mesh-connected array, a tree machine,

and a hypercube.
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As explored in [7), the recursive spectral bisection procedure(RSB) has been dcvclopcd

separatcly by both R.D. Williams and H.D. Simon. The approach is based upon

the computation of a specific eigenvector of the Laplacian matrix of the connectcd

graph, G. The algorithm assumes that the decomposition will produce connectcd sub­

meshes. However, the authors in (7) point out that this is not guaranteed and it is

not then clear how the algorithm would proceed, since the underlying thcory only

applies to connected graphs. Morcover, whenever the sub-meshes are connccted thcn

the resulting partition is nearest neighbor, and thus it has the advantagcs and suffcrs

the same disadvantages as the general nearest neighbor strategy. The pros and cons

of the nearest strategy have already been discussed previously.

1.1.3 Recursive clustering

This is an alternative topological approach which does not suifer the disadvantages

of the RSB, and is discussed in [19). It works as follows:

1. Arbitrarily assign each clement to one of two clusters A and B so that there is an

approximatcly equal number of clements in each cluster.

2. Evaluate the co=unication cast of this partition and find out which pair of

clements when swapped give the maximum reduction in cast.

3. Temporarily removing the previously swapped pair, find the next best pair and

continue until no more pairs remain.

4. From the set of all swaps, find the subset which minimizes the communication

cost. Make the swap.

5. R.epeat stcps 1..4 recursivcly to obtain 2" partitions.

This approach was found to work well on a wide variety of unstructured meshes.

However, it bas a number of limitations:

1. The mesh can ooly he partitioned into 2" clusters.

2. Each split does not imply an overall optimal situation.

3. The optimization procedure tends to get caught in local minima.
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4. One more important point, which is not mentioned in [7], is the pre-processing

cost. Intuitivelyone tan predict that a large amount of computational cast is involved

in computing the co=uniea.tion cast for each swapped pair, and then finding the

minimal cast subset, as in steps 2..4. Moreover, this cast accumulates recursively.

In situations, this pre-processing cast might mask the benefit obtained from actual

parallel computation.

The authors in [7] suggest an utended recursitle eIustering algorithm to take care

of some of the limitations of the above scheme. The above scheme is limited to splits

of 2" c1usters. They suggest an alternative scheme, where the mesh is arbitrarily

split into N c1usters, where N is the number of processors in the parallel system.

As a next step, every pair of c1usters is operated on ta minimize the co=unication

cost as in the previous scheme. However, this scheme also has the tendency to get

stuck in some local minima To take care of this, they suggest a change of the cost

function in the optimization procedure. The simplest function to minimize is the

total inter-processor distance traveled over the topology which enables all relevant

co=unication to take place. However, it still bas a large pre-processing cast, as

pointed out in 4 above.

A similar technique has been used by the authors in [3] for mapping to CM-2,

which is an SIMD machine with 64K processors. The underlying topology is an 11­

dimensional hypercube of sprint nodes, where each sprint node is composed of 32

processors. The mapping comprises of an initial mapping which maps an equal num­

ber of tasks to each processor, followed by an iterative improvement of the mapping

- parallel pairwise exchanges of tasks between the processors, somewhat similar to

the above scheme, which also takes advantage of the interconnection topology and

parallel co=unication features of the underlying machine. This scheme also suifers

from the same limitations as pointed out in 2••4 above.

Some other mapping scheme specifie to the Connection Machine system CM-2

have been discussed in [20]. The 65536 processors of the CM-2 the authors used were

packed into 4096 16-processor chips, each having its own router node. The 4096 router
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nodes were arranged in a hypercube of dimension 12. To cope with this topology, thcy

proceed in two steps. First, the given mesh is decomposed into 4096 sub-meshes, each

eontaining 16 connected finite elements. Next, they apply a heuristie mappcr which

identifies which hardware chip is to be mapped onto which sub-mesh. Finally, within

each sub-mesh, elements are assigned randomly to the processors of the eorresponding

chip. The heuristie mapper in the second step above basically searches iterativcly for

a better mapping candidate through a two-step procedure for the minimization of the

co=unication cast associated with a specifie parallel machine topology.

However, the authors in [21] point out that although the above methods for CM-2

generate efficient mappings, the computational time required to compute a mapping

may represent a substantial part of the total processing time. This makes them

unsuitable for very large applications, and for applications where adaptive remeshing

may be necessary. Alternatively, the authors use some random mapping strategies for

their finite element solution of computational fluid dynamics problems on CM-2 and

CM-200. However, they point out that these random mappings are not necessarily

optimal for finite element problems, and the search for other mappings will be the

topie for future research.

Some mapping strategies discussed above, namely the nearest-neighbor approaches,

did not work quite well with highly unstructured meshes, mainly because they used

the geometrie information of the mesh for partitioning to processors. The idea of

assigning some form of topological co-ordinates to nodes relative to one referenee set

and the subsequent mapping onta a processor array can he found in [8]. Similar

techniques with reference to two reference sets can be found in [9]. Some of the many

other interesting readings on the issue of mapping are [3, 4, 12].

1.2 Thesis organization

The thesis is organized as fonows. First, we give a brief overview of a typical ir­

regu1ar problem, and the numerical method employed ta solve it. Then we give a
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brief overview of the machine on which we implement and test these general solution

strategies. It is essential to adopt some suitable criteria to measure the quality of any

specifie mapping strategy for effective comparison. We discuss it in chapter 3. In the

subsequent chapters, we discuss the difi'erent strategies adopted and their pros and

cons, followed by a discussion on the implementation detaiis on DECmpp12000/Sx

and the results obtained with experimentai problem domains. Finally, we eO!lclude

the thesis with a note on future work.

The next two chapters are mainly reviews. Our contributions are discussed in the

subsequent chapters.



(2.1)

•

•

•

Chapter 2

An irregular problem

We consider a steady-state, 2-D, heat conduction type problem. As an examplc, let

us consider a rectangular plate, one side of which is being constantly hcatcd by a

steady heat source. There is no turbulent motion of the air surrounding the plate (or,

the plate is in vacuum) and, as a result, the temperature of the plate has rcachcd a

steady-state. We are interested in :linding the steady-state temperaturcs at diffcrent

points of the plate. The mathematical mode! of such a problem is composcd of partial

differential equation(s), and some domain ofinterest, with given boundary conditions.

In cartesian CCHlrdinates, the governing equation for 'such problems is of the general

form:

{J2~ {J2~ {j2~

r"({Jz2 + 8y2 + (Jz2) +S" =0

Here, ~ is a. general scalar dependent variable, r" is the corresponding diffusion

coefl'icient, and S" is the appropriate volumetrie generation rate or the source term.

In the case of our example problem, the scalar dependent variable is the temperature

T, the diffusion coefI'icient is the thermal conductivity K of the material of the plate,

and Sx is the volumetrie rate of heat generation. Given a domain of interest, with

given boundary conditions, we are interested in :linding the steady-state temperatures

at different points of the domain.

10
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2.1 Derivation of the heat conduction equation

11

Let qbe the heat flux and ST be the volumetrie rate of heat generation. In veetorial

form, the heat flux at any point (x,y,z) can be represented as:

(2.2)

•

where q:, qJl and q;: are the components along X, Y and Z axes respectively. Let us

consider a control volume ~x~y~z, as in Fig. ~.1.

z

x

Figure 2.1: Energy conservation in a control volume

By the energy balance of the control volume, we obtain

By Taylor's series expansion, we have:

•
(2.4)
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Similarly, we can expand qll+A~ and q.+A.. Now, substituting in (2.3) and simplif)"ing,

•

(ôq=.6.:c + (!.) ô
2q

=(.6.z? + .. .).6.y.6.= + (Ôq~.6.Y + (!.) ô2q~ (.6.y)2 + ...)
• 2~ ~ 2~

.6.=.6.z+ (~; .6.= + (~)~;; (.6.=? +... ).6.:c.6.y = ST.6.:c.6.y.6.=

(ôq= (1)Ô2q=(.6.) ) (Ôq~ (I)Ô2q~(.6.) )
~ ô:c+ 2 ôz2 :c+ •.. + ÔY+2 Ôy2 Y+",+,··=ST

In the limiting case as .6.z, .6.y, .6.= -+ 0, we obtain from (2.5),

ôq= + ôq~ +ôq. = ST
ô:c ôy ô=

Now, by Fourier law of thermal diffusion:

q=-K'~T

~ q=i +q~3 +q.k = -K(~i+ ~;3 + ~~k)

Combining (2.6) and (2.7), we obtain,

ô2T ô2T ô2T
K( ôz2 + Ôy2 + ôz2) +ST = 0

Equation (2.8) can be represented in the form:

V.(KVT) +ST =0

- 8' 8' 8"whe;:e 'il = -z +-. + -k8= 8~J 8.'

In general, we are interested in solving equation of the form:

2.2 Numerical solution of the problem

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

•
We consider a numerica.l solution for a 2-D case of sueb a problem. One numerica.I

way of solving these types of problems is the control volume finite e1ement method,

CVFEMfor short [1]. It involves the following steps:
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• Discretization of the calculation domain into finite e1ements.

13

•

•

• Prescription of suitable e1ement based interpolation, or shape, functions for the

dependent variables.

• Derivation of discretization equations, which are algebraic approximations to

the governing equations.

• Solve the discretization equations.

Be1ow, we e1aborate the different steps.

• Step 1: This involves the discretization of the given domain into finite elements.

In a two dimensional case, either triangular or 4-node or 8-node quadrilateral e1­

ements are chosen. In our case, we use triangular elements. The domain of inter­

est is divided into triangular elements. Delaunay triangulation using Bowyer's

algorithm [2) is the technique employed in triangulating the domain. As a next

step, the centroids of the triangular e1ements are joined to the midpoints of

the corresponding sides, which creates polygonal control volumes around each

node in the calcuIation domain. A sample domain discretization is shown in

Fig. ~.~. Here, the solid lines denote the domain and element boundaries, the

dashed lines represent the control-volume faces, and the shaded areas show the

control volumes associated with one internai and one boundary node.

In Fig. ~.3(a,b,c), the control volume around an arbitrary node i is shown by a

dashed outline. The values of </> are computed at the nodes of the discretization,

which correspond to the corners of the triangular elements.

• Step 2: This involves the prescription of suitable interpolation, or shape, func­

tions for the dependent variables </>, r. and S.. The reason being that, these

variables are available only at the interfaces of the control volumes, and are not

available within the triangular elements. The solution is to prescribe some suit­

able interpolation functions so that they can be defined inside these triangular
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Figure 2.2: Discretization of an irregular domain

l·t

• b
(a) CoDItnJcdoa orCODU'01 "iOlumc

mouud. DOde L
(b) CoDtZ'OI volume lIrOUDd lin intemlll

DodcL

•
i

(c) Coa1rOl "iOlumc aoUDd aD~DOde L

Figure 2.3: Control volume generation
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e1ements. For instance, the dependent varia.ble 4> is interpolated linearly by:

15

4>= Az+By+C (2.11)

where A, B and C are constants for a triangular e1ement, and (x,y) is the ccr

ordinate of the point where 4> is to he computed, assuming a two dimensional

case. Thus, considering the triangular element 123 and. its local x-y co-ordina.te

system with œntroid 0 as the origin as in Fig. ~.4, the values of 4> at the three

corners of the triangu1ar element are given by:

i = 1•.3 (2.12)

•

•

where (Xi, Yi), i = 1..3, are the local ccrordinates of the three corners of the

triangular element.

3
y

.. ............................
O'••••••••

•
1

A typac.l utaDaul.. ol_r aDd rbo 10CII1 X. y
cOl'OCÜD&Ea~

Figure 2.4: A triangular e1ement

From (2.12), A, B, and C cau he computed for the tria.ngular element as:

(2.13)
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B - [(Z3 - Z2)th + (Zl - Z3)t/>:z + (Z2 - zl)I63]1DET (2.14)

C - [(Z2Y3 - Z3Y2)9t + (Z3Y1 - ZlY3)4>:z + (ZlY2 - z2Y1)163]1DET

(2.15)

where DET = (ZlY2 +Z2Y3 + Z3Y1 - Y1Z2 - Y2Z3 - Y3Z1).

Simîlarly, in each triangular e1ement, the centroidaI value of r ~ is stored and

assumed ta prevail over the corresponding e1ement. The source term S~ is

assumed to prevail in the following form:

(2.16)

•

•

CentroidaI values of Sc and Sp are stored and they tao are assumed to prcvail

over the corresponding e1ement.

• Step 3: The basic idea is ta apply the energy conservation principle to finite

control volumes in the calculation domain. Applying the integral conservation

equation for (2.10) over a control volume V, as in Fig. e.5,

f,)v.(r/{j<p) + S~)dV - 0

~lvv.(r~V<p)dV+lvS~dV - 0 (2.17)

Now, by Gauss's divergence theorem:

Iv v.(r~V<p)dV= fs(r~V<p.n)dS (2.18)

where n is the unit normal vector ta the surface. Now, from (2.16), we get:

fs(r~V<p.n)dS+LS~dV=O (2.19)

Now, let us consider a typical node i in the calculation domain; it could he an

internai node or a boundary node as in Fig. e.9. Applying (2.18) to the control

volume associated with node i in Fig. 2-4, we get:

([(r/l<p.n)dS+ [(r~V<p.n)dS+fiaoc S~dV)+(similar
contributions fram other elements 48sociated with node i)+

(boundary conditions if applicable) = 0 (2.20)



CHAPTER 2. AN IRREGULAR PROBLEM 17

• Figure 2.5: An arbitrarily shaped control volume V

From (2.11), we obtain,

(2.21)

With referenœ to the element 123 in Fig. !../., and its local x-y co-ordinate

system, we have: - ~ ~oa = ZAt +Yc3

and the unit normal vector to it is given by,

(2.22)

(2.23)

(2.24)and, Rao -
~ .-:,

JAt -Zc3

IdOl
Similarly, we can represent R" and Roc. Combining (2.22) and (2.24), we get:

•
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In a similar way,

[(r~VtP.n)dS = -r~Ayc+ r~Bxe

The equation involving the source term in (2.20) is approximated as:

18

(2.25)

(2.26)

(2.27)

•
where Ac = IDETI/2 is the area of the element 123. DET is deJined with

reference to (2.15). Now, substituting values of A, B and C from (2.15), and

then combining (2.20), (2.25), (2.26), and (2.27) we obtain,

[(r~VtP.n)dS+[(r~VtP.n)dS+fÏGoc S~dV = Cl tPt+C2<P2+C3<P3+BI (2.28)

where,

Cl - D~T[(Y" - Ye)(Y2 - Y3) + (x.. - Xe)(X2 - X3)]- ~eSp (2.29)

C2
r~ (2.30)- DET[(Y" - Ye)(Y3 - YI) + (x.. - Xe)(X3 - XI)]

C3
r~ (2.31)- DET[(Y" - Ye)(Yl - Y2) + (x.. - Xe)(Xl - X2)]

BI Ae (2.32)- -Sc
3

Expressions similar to (2.28) an he evaluated for all other triangular elements

associated with node i, as in Fig. 2.S. Substituting them in (2.20) we get:

CitPi = I:(aitPi) + b;
i

(2.33)

•
where the summation is performed over all the neighboring nodes of node i.

Here, Ci'S and a/a are coefiicients for each node, and are deJined in terms of

the C<Hlrdinates of the nodes, r~, Sc and Sp. Thus, these coefiicients an be
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computed beforehand. Equations similar to (2.33) can be derived for all interna!

nodes in the calculation domain.

For nodes that lie on the boundary of the calculation domain, the discretization

equation for any boundary node i is replaced by the following equation:

(2.34)

•

•

where 4>opeàJicd is the boundary value of that node specified beforehand.

• Step 4: This step involves the solution of the discretization equations specified

by (2.33) and (2.34) for all i. These discretization equations form a set of

simultaneous algebraic equations. As a direct solution technique, the following

iterative procedure can be used to solve these equations:

1. Guess all unknown values of 4> in the calculation domain.

2. Compute the new value of 4>i for each node i based on previous values of q,j's

for all neighboring nodes j of i, as specified by (2.33).

3. Repeat step 2 above until all q,'s converge.

2.3 Parallel solution of the discretization equa­

tions

Since each node i in the discretization has ta perform similar computations with the

data from its neighboring nodes, as specified by (2.33), by performing them in a data

parallel way should give a large performance gain. The nodes in the discretization

can he mapped ta the processors, and computations and communications can then

be carried out in parallel over severa! iterations until the computed values converge.

It is clear that communication occurs hetween nodes and their immediate neighbors.

Hence, the farther the nodes and neighbors are mapped, the more is the communi­

cation overhead. Here, the distance between a mapped node and one of its mapped

neighbors is measured by the minimum number of physical communication edges
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from the processor where the node is mapped to the processor where the neighbor

is mapped. In a subsequent chapter, we discuss this issue in more detail. The issue

of mapping nodes and neighbors close enough comes here, since the communication

overhead has to he as low as possible to obtain a good performance gain.

Another issue here is load ba.lancing. At one extreme, we cao imagine mapping

all the nodes to a single processor, which is equivalent to sequential processing. Ob­

viously, it will give the least performance gain. The key issue here is to keep all the

processors equally busy with a well balanced load during the entire process of com­

munication and computation. Since the domain of interest cao be of any shape and

the number of neighbors of ea.ch node cao va;ry from node to node, it is an irregular

problem.

We repeat the following for convenience to the rea.der. We use the term problem

graph to interpret the graph representing the interconnection topology of the nodes

in the discretization. Ea.ch node in a problem graph will be called a problem node or

simply a node. The term system graph will represent the processor interconnection

topology of the parallel machine. Ea.ch node in the system graph will be termed a

processor node or simply a processor. Renee, the mapping problem is to find sorne

suitable strategy to map the problem nodes to the processors 50 as to reduce the

communication overhead and to maintain a good loca.lity of the nodes, as weIl as to

maintain a well ba.lanced load on a.ll the processors•
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Chapter 3

DECmpp12000/Sx: An overview

The general strategies designed were implemented and tested on DECmpp12000/Sx.

We first give a brie! overview of the machine before describing the different strategies.

DECmpp12000/Sx is a data parallel system, often called a single instruction, mul·

tiple data(SIMD) system [6]. In SIMD systems, a single program instruction can be

executed simultaneously on many relatively small processors, and on different data.

It consists of one instruction fetch unit, and more than one data processors. The in·

struction stream is processed serially, but all data processors function simultaneously

on independent data. With at least 1000 processors, it is a massively parallel system.

Massively parallel data systems can he many times faster than other systems for

suitable applications. Applications that make best use of DECmpp12000/Sx system

and the language MPL are those in which the same instruction is being executed on

thousands of data points at once. Examples of such applications include imaging,

fiuid mechanics, and thermodynamics, ta name only a few. The specific example

which we considered in the previous chapter falls in this category. In order to take

full advantage of the system, we should use some language, for instance MPL, which

21
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•

can address puallel data efficiently. We will discuss about the language MPL shortly.

The complete layout of the system is as folIows. It consists of a console system,

which is either a DECsystem 5900 server or a DECstation 5000/240, and a data

parallel unit(DPU). The console system runs the ULTRIX operating system and uses

standard 1/0. The DPU consists of an array control unit (ACU), an array of at

least lK proccssor elements(PEs) which can go upto 16K, and PE communications

mechanisms. In fig 3.1, we show a conceptual diagram of the system. In the nc.xt

section, we give a brief outline of the dift"erent system components.

PBCnLnnJntioaa

OOOOOOOOp
OOOOOOOOE

o,o'Olc
OOOOOOOO~ Arroy

Syolem Control

OOOOOOOO~ UDI.

ooooooooy
00000000
00000000
00000000

StaDdordVO- 1

Figure 3.1: A conceptual diagram of DECmpp12000/Sx

3.1 System components

• Console system: This is a sca.la.r proccssor that runs the ULTRIX operating

system and provides standard 1/0 devices. The console system is either a
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DECsystem 5900 or a DECstation 5000/240.
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• Data parallel unit(DPU): The DPU is where all parallel processing is done. It

includes the array control unit(ACU) and the processor elements(PE) array.

• Array control unit(ACU): The ACU is a processor with its own registers and

data and instruction memory. It has upto 22 32-bit registers available for user

declared register variables, 128 KB of data memory, and 1MB of RAM that

expands to 4 GB of virtual instruction memory. It controls the PE array and

performs operations on singular data. The ACU sends data and instructions to

each PE simultaneously.

• Processor elements(PEs): Bach PE is an arïthmetic processing element with

dedicated registers and RAM. Bach PE has 40 32-bit registers, upto 33 of which

are ava.ilable for user-declared register variables. Bach PE has either 16 KB or

64 KB of RAM. Bach PE receives the same instruction from the ACU, and if

it is enabled, it executes the instruction on variables that reside on itself. In

MPL, any variable that is declared to be a PE variable is replicated exactly,

except for its value, on every PE.

• PE array: It is the two-dimensional representation of all PEs in a system. A

system has 1K, 2K, 4K, 8K or 16K PEs, and these are arranged in a matrix

that has either an equal number of rows and columns or twice as many columns

as rows. A processor in the PE array can be identified by its co-ordinate (x,y),
where x and y denote the row and column respectively of the processor. The

first row/column is called the Olh row/column.

• PE co=unication: This constitutes co=unicationbetween PEs and the ACU

and between two PEs in the PE array. Co=unication between PEs and ACU

takes place over a special bus. Co=unication between two PEs consists of the

XNet co=unication and the global router co=unication.

• XNet co=unication: It constitutes the synchronous direct co=unication be­

tween any PE and any other PE that lies on a straight line from the original
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PE in one of the followbg eight directions in the PE array: north, northeast,

east, southeast, south, southwest, west, or northwest.

• Global router co=unication: It constitutes the asynchronous communication

between any particular PE and any other PE in the PE array.

3.2 DECmpp12000/Sx programming language

MPL is the lowest level programming language that the DECmpp12000/Sx system

supports. The purpose of MPL is to program the DPU, and can be used to encode the

appropriate portion of an application in a data parallel way. These MPL subroutines

can be called from the scalar program running in the console system, written in either

C or Fortran.

MPL is based on ANSI C. AlI ANSI C language features are supported by the

MPL compiler. In addition, keywords, statements, and library functions have becn

added to support data parallel progra=ing. In general, the additions are:

• A new keyword, plural, distinguishes between two independent address spaces.

Variables defined using the keyword plural are located identically on each PE

in the PE array. Variables defined without this keyword are singular variables

and are allocated on the ACU.

• AlI arithmetic and addressing operations are supported for plural data types.

• SIMD co=unica.tions are implemented. Two explicit constructs, XNet and

router, are used for data co=unication in the PE array.

• SIMD control statement semantics are supported. SIMD control flow aIso con­

troIs the active set, which is the set of PEs that is enabled at any time during

execution. The size of this set can he no lll.rger than size of the physical PE

array.
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Besides, the DECmpp Sx parallel programming environment includes tools to compile

and analyze programs. These tools constitute the compilers, debuggers, visualizers,

and profilers.

3.3 The communication primitives

There are two types of co=unication primitives, the synchronous XNet communi­

cation and the asynchronous router co=unication. There are aIso library routines

which use these two constructs. A detaiIed discussion regarding the timings with

these constructs can he found in [5, 6].

The performance of the router construct depends on the number of collisions.

Because of this reason, when one PE wants to broadcast some value to aIl other PEs,

it can be slower by a factor of the total number of processors, as compared to the case

when one PE co=unicates with only one other PE. Thus, it is efficient when many

PEs co=unicate with other PEs, and inefficient when every PE co=unicates with

the same PE. In our present experiments, we have adopted no measures to count the

number of collisions, or to reduce them.

3.4 The programming model

The reco=ended model for programming with MPL is:

1. Start with a DEC Fortran or C program.

2. Compile and run the program, and verify that it runs correctly under ULTRIX on

the console system.

3. Examine the program ta find out what portion(s) of it can be executed in a data

paraIlel way. AIso decide which variables should he redefined as plural and operated

on in a data paraIlel way.
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4. Replace the code identified in step 3 with MPL subroutines, and caU thcse sub­

routines using calŒequest MPL library function.

An experienced MPL programmer can straightaway write the routines in C and

MPL without following the above mode!. We show seme important constructs of the

language through a few examples.

3.4.1 Example 1: Console to DPU communication

This example shows a. C program that caJls an MPL subroutine. It shows how the

MPL subroutine is calIed by a scalar program and how data is passed to and from the

subroutine. First we show the scalar code in C and then the MPL code. The scalar

code is in standard C except for the calI ta the calŒequest MPL library function .

#include <mpl.h>

ertern mpl_subO; ,* MPL names must be declared "ertern" in C ta

be used ..,

main0
{

double arrl [1024]. arr2 [1024] ;

double t.g;

int i;

tor (i • 0; i<1024; i++)

arr2[i] • double(i);

g .. 1.25;

,* NOll call the MPL subroutine. passing the data addresses.

1t is required to pass the addresses ot everything that

one llutS to truster either into or out ot the MPL sub-
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-routine using copyin, copyout or blockin, blockout.

callRequest(mpl_sub, 16, t:f, kg, uri, =2);

/* Above, we call the MPL routine "mpl_sub" from this scalar

routine. Bere 16 is the size in bytes of the remaining

arguments in the call, four 4-byte pointers.

printf("arr2[O] • Xf, f • Xf\n",arr2[O],f);

}

To call an MPL subroutine from the scalar program, we have to use the callRequest

MPL library function, as shown in the above piece of static C program running

on the console. In order to pass arguments from the scalar program to the MPL

subroutines, we have to use the callRequest, copyln, copyOut, blockIn, and blockOut

MPL library functions. The third to the nIA arguments to calIRequest are all passed

to the subroutine named in the first argument, mpLsub in this case. The second

argument is the total number of bytes of the third through nIA arguments.

The code for the MPL subroutine, mpLsub, is as follows:

#include <mpl.h>

visible mpl_subO i /- Must be declared "visible" for C in the console

to use it -/

mpl_sUl:l(fe_f_p, fe..g..p, fe_arr1_p, fe_arr2_p)

void *fe_f_pi

void *fe..g..p;

void *fe_uri_Pi

void *fe_ur2_Pi
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{

plural double arrl, arr2;

double f, g;

copyln(fe~p, li:g, sizeof(g); 1* Transfer the value of "g" from

the C routine in console *1

blockln(fe_arr2_p, li:arr2, 0, 0, nxproc, nyproc, sizeof(arr2»;

f =reduceAdd(arr2);

arrl • arr2/f + g;

copyDut (li:f, fe_f_p, sizeof(f» ;

blockout(li:arr2, fe_arr2_p, 0, 0, nxproc, nyproc, sizeof(arr2»;

}

28
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Here, copyln and blockIn routines are used to ~ransfer data from the console to the

DPU. Similarly, copyOut and blockOut are used to transfer data from the DPU to

the console. Similar programming mode! and library functions are used in our im­

plementation of paralle! CVFEM, and hence we bring in this example as a concise

illustration.

3.4.2 Example 2: Pixel averaging

In this example, there is a rectangular array of image e!ements, cach \Vith an 8·

bit intensity measure. We want to smooth out the image by revising each value to

represent the average of itself and its eight nearest neighbors. We assume that cach

pixel e!ement is mapped ta a processor e!ement, and there are an equal number of

pixel and processor e!ements. This example basically illustrates the applicability of

the Xnet.

#include <mpl.h>

1* The folloving subroutine averages each pixel vith the values of

its 8 neighbors, N, NE, E, SE, S, Si, i, Ni. ie ignore the PE
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array eciges,i.e. 'torroidal wraparound is 'taken in'to account.

It turns out that only 4 Xnets are necessary, since the first

lue accumulates 'the values of NE and ml neighbors to the N

neighbor, and the second lue accumulates the values of SE and

SW neighbors to the S neighbor.

*1
plural int

average(src)

plural int src;

{

src +- xnetW[1].src + xnetE[1].src;

src +- xnetN[1].src + xnetS[1].src;

return(src);

}

3.4.3 Example 3: Greatest Common Divisor
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The following example illustrates how the control f10w in the PE anay works out. This

is a. plurol version of Euc1id's classical Greatest Co=on Divisor a.lgorithm. Values

of x and y may be difFerent on ea.ch PE. The code works as expected in MPL in that

the while statement is not finished until all PE's are finished With it, but PEs that

finish early are tempora.rily disabled until all PEs are finished. In the if sta.tement,

some PEs may execute the then cla.use and some PEs may execute the else clause.

1* The folloving rou'tine finds 'the GCD of 'tvo n1llllbers x and y *1

plural in't GCD(x,y)

plural in't x,y;

{

vhile (x !- y)

if (x > y) x - x - y;



• CHAPTER 3. DECMPP12000jSX: AN OVERVIEW

else y • y - x;

ret= (x);
}
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The example is important because it demonstrates how some processors can he made

idle by the proper use of some fiag. AlI processors whose fiags are set can be made

to execute the ifpart of the statement, while the rema.ining processors can be made

to remain idle. Thus, with proper use of some active fiag, we can e1fective1y select

an active set of processors, which have to perform some specific operation at sorne

instant of time. The while loop above also illustrates why load balancing is important

in our application. The while statement is not finished until all processors are finished

with it. So, in a load-dependent while statement, it is essential to distribute loads

evenly on all processors in order to keep them equally busy•
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Chapter 4

Sorne initial rnapping strategies

Before we start our discussion on di1Ferent initial mapping strategies, we have to first

fix some measure(s) which cm suitably predict the quality of any mapping strategy.

The main objectives of our mapping strategies are ta maintain a reduced co=u­

nieation overhead and a good locality of the nodes of the problem graph, as weIl as

maintain a weIl balanced load on all the proœssors. Accordingly, we should first define

one or more objective functioJlS which cm suitably measure some of these objectives.

The next step is to design the mapping scheme which cm minimire the values of

specifie objectivefunction(s). Before defining our objectivefunctions, we introduee a

few definitions which will be used in the rest of the discussion.

4.1 Measuring the quality of a mapping strategy

The discussion in this section regarding objective functions follows from the work

already described in [3, 4]. We first define a few terms which will he used in the rest

of the discussion.

A problem graph GP is formally defined as:

31
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GP =< Vp,Ep >, where

Vp = (vpklvpk is a problem node)

Ep = (ep;jlep;j is a problem edge between problem nodes

Vpi and Vpj)

32
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Here, Vp and Ep are the sets of problem nodes and problem edges respective1y.

Let vpi and Vpj be any two problem nodes. We say that they are connected if there

exists a path from one node to the other, where a path denotes a sequence of edges. A

path from vpi to Vpj cao be represented by ep;,lo,l,-,lnJ where ep;1.,l:plol, , •• , l:pl.j E Ep. A

problem graph Gp is connected if and onIy if each pair of nodes in Vp are connected.

From now on, whenever we consider a problem graph, we will assume that it is

connected.

The nominal distance between two problem nodes Vpi and Vpj is the length of the

shortest path between the two nodes. This nominal distance is denoted by Dpij.

SimiIarly, wc define the terms Gs, Vs, and Es for the system graph representing

the interconnection topology of the parallel machine. For convenience, we will denote

each system node in Vs as a processor node or simply as a processor. We denote

the nominal distance between two processors Vu and Vol by Dold. For instance, in

the~ of a Hypercube, this nominal distance between any two processors is the

Hamming distance between them. SimiIarly, in the case of DECmppI2000SX, which

is a two-dimensional mesh, the nominal distance between any two processors is the

minima! number of hops in the X and Y directions from one processor to the other,

taking toroidal wrap-around into account.

Now we are in a position to define one of our criteriafor quality measurement. One

of the objectives of the mapping problem is ta find a suitable surjection 'I/J : Vp -+ Vs,

so that the value of the objective function ,\ is minimized. We define À as follows:

•
À = EDold' ep;j E Ep

~j

(4.1)
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Thus we are trying to minimize the sum of the message distances between mapped

nodes and neighbors. It is important to note here that in our practical applications,

it is not necessary that message between two processors will always follow the minimal

path between the processors. Still, the above measure gives an idea of the proximity

of the nodes after being mapped. At a first g1ance, it looks as if it shouid be the only

criterion for optimization, but we sbouid he slightly careful at this point. It shouid be

noted that reduction of this À alone does not mean speedup in actual computation.

In fact, speedup depends on sorne other factors as well. For instance,

• Load balancing is one important factor to be taken into consideration. In one

extreme, we can make À equal zero by mapping all the nodes to a single proces­

sor, but this will make things highly sequential. Ifwe don't take load balancing

into account, making À small might resuit in an imbalanced load on all the

processors. This can make things equally worse, because some processors might

have to wait idIe, while some others might do most of the work, and the net

eH'ect is the time taken by the busiest processor.

• Another issue is the number of collisions in the message paths. For instance, in

the case of DECmpp12000/Sx, co=unications are through the Xnet and the

router. In the case of router co=unication, the co=unication time depends

on the number of co!1isions in the co=unication paths. When we compute À

for mapping onto this machine, we assume that all co=unication takes place

exclusively through the Xnet. But in practice, this is not possible due to the

irreguIar nature of the problem. 50 the entire co=unication has to be divided

between the Xnet and the router. 50, a reduced À, which is computed on the

basis of exclusive Xnet co=unication, may not always give a reduced time in

the solver. Still, a measurement of À gives some idea about the closeness of the

mapped nodes and neighbors, and hence it can suitably predict the quality.

Taking the above issues into consideration, we adopt the following criteria. for a
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quality mapping: a reduced À together lDÏth a tDeII balanced load on a11 the processors.

Presently, we don't take the issue of collisions into consideration.

Ali the genera! strategies designed were implementedand tested on DECmpp12000/Sx.

They were compared in the following way.

Whenever we have to compare two diiferent mapping strategies, we take the same

problem graph and then apply both strategies to map this problem graph ta the

system graph under identical conditions. The mappings are such that a weil balaoccd

load is maintained on ail the processors. Then we compare the corresponding ..\s.

The mapping strategy giving the lower value of À consistently for severa! graphs is

definitely the better strategy. We also compare the timings in the solver, which are

identical for both the mapping strategies. It is found that a lower value of ..\ with

a well ba!anced load gives better timing, with very few exceptions which cao be

attributed to collisions in router co=unication as described before.

Now we are in a position to discuss the diiferent strategies•

4.2 A bad Random Mapping strategy

The next important issue is to compare the performance of any mapping heuristic

with some other bad mapping scheme, which does not follow any heuristic. This way

we will be able to know the benefit we derive by applying the heuristic. That bad

strategy may be the sequentia! counterpart of the problem, but it is not a sensible idea

to compare the performance of two implementations on two difrerent architectures.

50, we adopt a random m4pping strategy, which simply sea.ns through the nodcs and

then maps nodes to the processors in a random fashion. Since any node can go to

any processor depending on the order it is entered, it is in a sense random and it has

a tendency to completely destroy the locality of the nodes in the problem graph. It

simply goes as follows.

Let N he the total number nodes in the problem graph, and let 71proc be the tota!

number of processors. Let us also assume that the processors are numbered from 0 to
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(nproc-l) in any arbitrary fashion. Then n = r.$0.1 is the average number of nodes

that should go to ea.ch processor. Nodes O••(n -1) are mapped tl processor 0, nodes

n..(2n -1) are mapped to processor 1, and 50 on. In genera.l, nodes kn..«k+ l)n -1)

are mapped to processor k, where le =O••(l~J -1). Fewer than n nodes will go to

the remaining processors depending on whether N is a proper multiple of np..oc or not.

Everything else is the same as in the other heuristic. Then we compare the results,

i.e. the mea.sures of À as well the computa.tiona.1 time in the 50lver with experimenta.l

àomains. The results for DECmpp12000/Sx are illustrated in a subsequent chapter.

4.3 A Greedy close-neighbor heuristic

We start with a naive algorithm to map the nodes to the processors. It is based on the

simple requirement that whenever we map anode, we see that it is mapped as close

as possible to its neighbors. First we give the restricted algorithm, which assumes

that the number of problem nodes is at most equa.l to the number of processors.

Subsequently we genera.lize it for any number of problem nodes. We discuss the

heuristic next.

4.3.1 The restricted algorithm

In the following discussion, we use the term close vicinity of any processor Il.k in the

system gra.ph. In simple terms, it implies any available neighboring processor of lin,

to which at lea.st one more node can he ma.pped. We can have different criteria to

find this close vicinity, depending on the processor interconnection topology. We first

describe the algorithm before elabora.ting it further:

1. Reset active fIa.g on aU processors.

2. Repeat

2.1. for ea.ch node Il,. in Vp

do
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2.1.1. if Vpi is the first node to he mapped

then
2.1.1.1. map it arbitrarily to any processor V.k in Vs.

2.1.1.2. set active f1ag on V.k.

2.1.1.3. for each unmapped neighbor Vpj of vpi

do

2.1.1.3.1. map Vpj to some inactive processor Vol

in close vicinity of V.k.

2.1.1.3.2. set active f1ag on Vol.

od

else
2.1.1.4. if vpi is already mapped to some processor

v....Cas neighbor of some other node)

then
2.1.1.4.1. for each unmapped neighbor Vpj of vpi

do

2.1.1.4.1.1. map Vpj to some inactive

processor v... in close vicinity of v.....

2.1.1.4.1.2. set active f1ag on V....

od

else
2.1.1.4.2. if some of its neighbor Vpk is already

mapped to some processor Vq

then
2.1.1.4.2.1. map vpi to some processor v.q in

close vicinity of vq

2.1.1.4.2.2. set active f1ag on voq.

2.1.1.4.2.3. for each unmapped neighbor Vpj

ofvpi

do

2.1.1.4.2.3.1. map Vpj to some inactive

36
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processor v... in close vicinity of V.q•

2.1.1.4.2.3.2. set active flag on v....

od

else

(don't map it now)

od

until ail nodes in Vp are mapped.
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AlI nodes should he mapped in a single iteration of the Repeat loop, provided

they are 50rted in proper order. This is found to be the general requirement for ail

experiments conducted.

Assuming that the number of nodes is less than or equal to the number of proces­

sors, a.t most one node should be mapped per processor. We dec1are a parallel flag

called active on ea.ch processor. Initially, ail processors are made inactive, i.e. their

active flags are reset. As saon as anode is mapped to a processor, it's active flag is

set. We can have difi'erent criteria in selecting an available inactive processor in the

close vicinity depending on the processor interconnection topology.

For instance, in case of DECmpp12000/Sx, which is a two dimensional mesh with

toroidal wraparound, ea.ch processor has eight immediate neighbors at a distance

one, sixteen neighbors at a distance two, and 50 on. Whenever we sea.rch the close

vicinity of a processor for an inactive neighboring processor, we first sea.rch the eight

i=ediate neighbors at distance one in a clockwise/counterclockwise fashion, then

the sixteen neighbors at distance two, and 50 on. The sea.rch continues until we can

find the first available processor. The node is mapped to this processor, and its active

flag is set. Since our algorithm grabs the first available processor without thinking

about the future, it is gTeedy.

4.3.2 The generalized algorithm

To generalize the above algorithm, we should have a previous knowledge of the total

number of nodes and the total number of processors 50 that we can find the average
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number of nodes that should go to each processor. Let this average be n, as computcd

in the previous section. The changes in the implementation are that, first cach

processor has to be partitioned to hold more than one node and second, there is a

different strategy in finding the next available processor in the close vicinity. Now,

we do not use an active flag. Instead, a processor is selected for mapping if the tota!

number of nodes already mapped to it is less than the average n. The rcst of the

procedure remains unaltered. We try to maintain a fair load on all the proccssors by

not allowing to map more than the average number of nodes that should go to cach

processor.

Bach mapped node should contain information about where (i.e. processor id

and partition index on that processor) all its neighbors are mapped so that it can

co=unicate with them in the parallel solver. This information is set up in the

same scan or in a subsequent scan through the nodes in Vp. We discuss about the

implementation details in a subsequent chapter•

4.3.3 Setting up communication

One important issue is ta set up co=unication between mapped nodes and neighbors

in the parallel salver part. As mentioned earlier, each mapped node should contain

information about where(i.e. processor id and partition index on that processor) all

its neighbors are mapped sa that it can co=unicate with them. In the parallel

solver, computation and co=unication proceeds in a data parallel way over a fuced

number of iterations, which is large enough sa that computed values are guaranteed

to converge. We keep this number of iterations fixed sa that we can compare the

performance of different mapping strategies.

Setting up co=unication primitives depends entirely on the underlying machine,

but the basic idea is the same. We slightly elaborate this co=unication issue for

our implementation on DECmpp12000/Sx•
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Figure 4.1: Synchronous Xnet communication

There are two types of communication in DECmppI2000/Sx, one is the asyn­

chronous router communication, and the other is the synchronous Xnet communica­

tion. The Xnet is much faster as compared with the router. But in using the Xnet,

at any instant of the global dock, all communicating processors have to communicate

with their neighbors in an identical way, i.e. in the same direction and distance.

We cao keep 50me parallel fiag 50 that a. processor communica.tes with its neighbor

if and ooly if its corresponding fiag is set, i.e. it is a. communicati'1.g processor at

that instant. It should be noted that, in the case of an irregular problem, at some

instant 50me processor might want to communica.te with 50me neighboring processor

in some specifie direction and distance, but another processor might have to remain

icne beca.use none of the neighboring problem nodes are mapped to its corresponding

neighboring processor. This is illustrated in Fig. 4.1.

In the above figure, at 50me instant of the Xnet communicationwith the immediate

North neighbors, processors V.2, V.:s, v~ and V.u are idle. Processor v~ is made idle

at that instant by proper use of some flag because (i)either none of the neighbors of
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the problem node vpi mapped to processor V09 are mapped to its immcdiate North

neighbor VaS or (ii)no node is mapped to processor V09' For convenicncc, wc ha,"c

assumed that at most one node is mapped per processor. The same hoids truc for

the other 3 processors. Thus, it is evident that an exclusive use of the Xnct might

degrade performance.

Instead, we do a compromise between the Xnet and router communication. Wc

divide the entire co=unication pattern into two parts, one through the Xnct and thc

other through the router. The Xnet co=unication is restricted only to a distancc

of one, because anything more than one is found to degrade performance. Thc rest

of the co=unication is done through the router.

4.3.4 Limitations

One obvious limitation of the above scheme is that it is greedy, and hence thc mapping

obtained and the corresponding ,\ are not necessarily optimal. It is clear that somc

nodes and neighbors in the discretization may not remain neighbors or cven remain

close to one another after being mapped. This is because we have destroyed Iocality

by transforming a multi dimensional problem graph into a one dimensional ma~~ing

problem. The strategy has to he modified 50 that locality is Dot destroyed.

In the next chapter, we discuss quad-tree based and binary decomposition based

mapping strategies for 2-dimensional problem graphs. They can be gcneralized for

any arbitrary d dimension.

4.4 A layer by layer scheme

In the layer by layerscheme, we pick up an arbitrary node and put it in a queue. Then

we pick up all its neighboring nodes and queue them. We proceed along the queue,

and keep on queueing neighbors until all nodes are exhausted. Thus wc procccd in

a layer-by-layer fashion, as illustrated in Fig. i.fJ, starting with an arbitrary node
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which is the layer 0 node. Its immediate neighbors constitute the layer 1 nodes, the

ncighbors of the layer 1 nodes constitute the layer enodes, and this \Vay the layering

continues in a breadth first fashion. It can be put in the following fonn:

1. Pick up an arbitrary node vpi !rom Vp.

2. Queue Vpi and make nut-queue pointer point to it.

3. Assign layer of vpi = O.

4. Repeat

4.1. Pick up next node Vpj pointed by nut-queue pointer.

4.2. For ea.ch unqueued neighbor Vpk of Vpj

do

4.2.1. Queue Vpk.

4.2.2. Assign layer of Vpk = layer of Vpj + 1.

od

4.3. Advance nut-queue pointer.

until end of queue(nut-queue pointer points to NULL).

After arranging the nodes in this layer by layer fashion, we map them in such a

way that the adjacent layers are mapped close to one another, i.e. layer i nodes are

adjacent to layer (i-I) nodes as well as layer (i+I) nodes.

For this, we compute the average n of nodes that should go to ea.ch processor, as

before. Then we scan along the queue. The first n nodes in the queue are mapped to

an arbitrary processor Voi, the next n nodes are mapped to an neighboring processor

v.j of Voi, the subsequent n nodes are mapped to a processor V.k adjacent to both

Voi and v.j. In general, let V.k denote the processor where nodes kn..(k + l)n - 1

are mapped. The numbering of nodes sta.rts with 0 at the head of the queue. Then,

processor V.o is selected arbitrarily. Vol is selected as a neighboring processor of

V.o. Processor V., is selected adjacent to both processors V.(I-l) and V.(1_2) for 1 =
2..(l~J -1).

Obviously it is not a. comfortable mapping scheme, beca.use it has a. tendency to

destroy locality of the nodes as in the previous scheme. However, our experiments on
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Figure 4.2: Layering of nodes

DECmpp12000/Sx show it to be a better scheme than the random mapping scheme.

The results are ill~tratedin a subsequent chapter•
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Chapter 5

A Quad-Tree based mapping

strategy

We initially discuss a qua.d-tree based mapping strategy based on geometrical c.r

ordinates of the nodes. In this scheme, we try to cluster geometricalIy close nodes

together and map them to the same or neighboring processors. We presume that

maintaining geometrical closeness will automaticalIy preserve the topology, which

comes !rom the i1ode-neighbor relationship in the discretization. It is not necessar­

ily true, beca.use two geometricalIy close nodes may not be neighbors in the a.ctual

discretization. We try to resolve this problem in subsequent modifications. In the

following diS<=Sion, we will assume a 2-dimensional problem graph.

The basic idea. is to partition nodes to difFerent branches of a quad-tree based

on their geometrical co-ordina~. The root of the quad-tree contains aIl the nodes

of the problem graph. Then they are routed to the four branches of the quad-tree

based on their X and Y co-ordinate values. We calI ea.ch intermediate node of the

quad-tree as a quadrant. This partitioning process continues recursively with nodes

belonging to ea.ch of the quadrants, and stops at a depth which we are going to

discuss shortIy. Ea.ch leaf of the quad-tree eontains a bunch of nodes geometricalIy

close to one another. The mapping problem now focuses on mapping these lea.ves to

43
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the processors in the system graph 50 that IleighboriIlg leaves are Ilot separated by a

large distance. It works as follows:

• Step 1: Find the four extreme CXHlrdiIlates of the Ilodes, i.e. leftmost X co­

ordillate xle/to rightmost X CXHlrdiIlate Xrighh topmost Y co-ordinate Ylop, and

botto=ost Y CXHlrdinate Yboltom. Construct a rectangle through the corner

Ilodes (Xle/to Ylop), (Xle/to Ybottom), (Xright, Ylop), and (Xr;ghto Ybol/ .... ). Ail nodes

fal! on or within this rectangle. This rectangle corresponds to the root of the

quacl-tree.

• Step 2: Find the average CXHlrdinates Xcv = (Xle/l + xright)/2 and Y.v =
(YIOP + Yboltom)/2, and then divide the rectangle into four equal quadrants by

drawing Iines through these averages. These quadrants are numbered from 0

to 3 as illustrated in Fig. 5.1. They correspond to the four branches of the

corresponding quacl-tree at levell. Problem nodes are partitioned to different

quadrants based on their X and Y CXHlrdinate values. For instance, anode vp;

with CXHlrdinate (x,y) will be routed to quadrant 0 if X ~ x.v and y ~ Y.v.

Similarly, it will be routed to quadrant 1 if x $ xcv and y ~ Y.v, and so on.

Note that each quadrant will contain a variable number of nodes, i.e. load is

Ilot balanced across quadrants. From IlOW on, we will use the terms branch of a

quad-tree, and quadrant interchangeably. We call each problem graph quadrant

simply as a problem quadrant.

Simultaneously partition the system graph into four equal system quadrants.

Conveniently map each problem quadrant to a system quadrant so that neigh­

boring problem quadrants do Ilot go far. In practice, each problem quadrant

is assigned an id which uniquely identifies the system quadrant to which it is

mapped.

• Step 3: For the purpose of load-ba1ancing among the processors, ,!:djust the

sizes of the quadrants, i.e. exchange Ilodes among the quadrants 'respecting

geometrical closeness of the nodes, 50 that a1most an equal number of Ilodes
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goes to each quadrant. This tan be achieved as follows. First exchange nodes

between quadrants 0 and 3, and quadrants 1 and 2. This tan be termed as the

ezchange aIong the Y dimension. Then exchange nodes between quadrants 0

and 1, and quadrants 2 and 3. This is the ezchange aIong the X dimension.

Thus each quadrant will finally contain an almost equal number of nodes.

• Step 4: Recursively follow steps 1•.4 with each of the four problem quadrants

and the corresponding system quadrants•

• Step 5: Stop when the depth of recursion is le - 1, where le = lo~(no-Of

..processors). We assume that the no-Of..processors is such that we get an

integral value for le. Note that this le is the height of the corresponding quad­

tree.

At the bottom level of the quad-tree, we have a number of leaves, each containing

oor more nodes. We assume that the number of leaves is equal to the number of

processors. Ea.ch leaf is assigned with an id, which uniquely identifies a processor to

which all nodes belonging to this leaf are to be mapped.

A simple mapping can be on a tw~dimensional square mesh, as in the case of

DECmppI2000/Sx. In the next section, we discuss a quad-tree based mapping strat­

egy for such a square mesh. In case the mesh is not a square, the length of the longer

dimension is an integral multiple of the length of the shorter dimension. Hence, we

tan divide the mesh into an integral number of square meshes, and then apply the

same algorithm with some modifications.

5.1 Implementation on DECmpp12000/Sx

In a DECmpp12000/Sx processor mesh, processors are numbered as in Fig. 5.2. We

design and implement a quad-tree based mapping stra.tegy for this machine. The

algorithm is illustrated below in a C like pseudo code. As we can see, at each level

of recursion, each quadrant is la.beled with an id, called quadn-id for n =0..3, which
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• Figure 5.1: A Quad-tree base<! strategy

is passed as a parameter. An id assoclated with a quadrant identifies the proccssor

partition to which it is to be mapped. At the lowest level of recursion, whcn wc

reach the leaves, these ids become the corresponding processor numbers. AU Dodes

beloDging to a leaf are mapped to the corresponding processor. Below we summarize

the implementation in a C like pseudo code:

•

/* Thefollowingalgorithmis applicableonly when lo~(noJ)f_processCYrs)

is a proper integer, and the processor mesh is a. perfect square.

*/
quad-tree *build-tree(original-problem-node-list, level, id, x, y)

begin

/* Some variable declarations */

quad-tree *new-node;

problem-node-list *quadD-list, *quadl-list;

problem-node-lliit>*quad2-Iist, *quad3-list;
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int quado-id, quadl-id;

int quad2-id, quad3-id;

int k;

/* And other declarations */

k = lo~(no.of_processors); /* An integral value */
new-node:=(quad-tree *) crea.te-new-node-for-quad-treeO;

if (level=k) then /* We have reached a leaf of the tree */
begin

step 1:

new-node->problem-node-list:=original-problem-node-list;

step 2:

Assign id ta all problem nodes in original-problem-node-list;

step 3:

new-node->quadO:=NULL;

new-node->quadl:=NULL;

new-node->quad2:=NULL;

new-node->quad3:=NULL;

step 4:

Set appropriate values ta other fields of new-node;

Step 5:

retum(new-node);

end
else

begin

step 1:

x:=x/2;
y:=y/2;
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step 2:

quadG-id:=id +Xj

quadl-id:=idj

quad2-id:=id + y;

quad3-id:=id + x + Yj

step 3:

/* The following lists are sorted as described in next

subsection */
quadG-list:=the list of nodes from original-problem-node-list which

go to quadrant Oj

quadl-list:=•••

step 4:

/* The following is for load-balancing, and is discussed

in the next subsection.*/
Exchange problem nodes among quadrants in such a.

wa.y tha.t ea.ch quadrant conta.ÎDs almost an equal number

ofthem.

step 5:

new-node->quadO: build-tree(quadG-list, level + 1,

quadG-id, x, Y)j

new-node->quadl:=build-tree(quadl-list, level + 1,

quadl-id, x, y);

step 6:

retum(new-node)j

endj /* Of else part */
end; /* Of build-treeO */
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mainO 1* Call from the main routine */
begin

int x, y;

quad-tree *root;

1* nxproc = number of processors in X-direction */
1* nyproc = number of processors in Y-direction */

if «nxproc = nyproc) and (1o~(no..of_processors)is a. proper

integer» then

begin

x:=nxproc;

y:=nxproc * nyproc;

root:=build-tree(original-problem-node-Iist, 0, 0, x, y);

end;

else

begin

/* Some other scheme to be designed */

end;

end. /* Of Main */

49
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Until now, we have assumed tha.t the processor mesh is a. perfect squa.re and k =
lo~(no..of..processors) is a. proper integer. The next step ma.y be to design a. general

algorithm with a. proper numbering scheme tha.t can be a.pplied to any processor

mesh. In DECmpp12000/Sx, either nzproc = nyproc or nzproc = 2 *nyproc. We

can think of the following possibilities:

• When lo~(no..of..processors) is not an integral value, we can add some d'llmmy

processors in order to make it a. perfect integer, and then redesign the a.bove
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Figure 5.2: An implementation on DECmpp12000/Sx

scheme so that it takes care of the dummy processors, and does not assign any

leaf to them.

• Another possibility may he that we take a suitable subset of the proccssor mcsh

to make Ir: integral. In this case, some processors will not be assigned any nodcs,

i.e.they will be inactive. It can be taken care oi, if after the initial assignment

we perform a second phase of redistribution to move some of the problem nodes

to the inactive processors•

• When nyproc = m *m:proc, or vice versa for some integer m, we can divide

the processor mesh into m equal sub-meshes, cath of size m:proz*(nyproc/m).

Similarly, we can divide the problem graph into m sub-graphs, cath containing

almost an equal number of nodes to take care of load-balancing, and then apply

the same algorithm to map a sub-graph to a sub-mesh•
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5.1.1 Load Balancing
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In step 4 of the above implementation, we mentioned exchanging nodes amongst

quadrants 50 that almost an equal !1umber of nodes goes to each quadrant. Whenever

nodes are exchanged amongst quadrants, the geometry of the problem graph has

to be respected 50 that geometrical locality is not destroyed, i.e. nodes cannot be

exchanged arbitrarily. In order to achieve this, nodes are 50rted into X and Y sorted

lists in each quadrant depending on their geometrical X and Y co-ordinate values,

instead of 50rting them into just one list called quadn-list, n = 0..3, as described in

step 3 of the algorithm.

In each quadrant, nodes are 50rted in difi'erent ways. For instance, in quadrant 0

they are 50rted in increasing X and Y 50rted lists, while in quadrant 1 they are sorted

in decreasing X and increasing Y 50rted lists. This is illustrated in Fig. 5.2. The

reason for this will be clear when we visualize the exchange of nodes between any two

adjacent non-diagonal quadrants at any level of recursion.

For instance, let us suppose that we have to move 50me nodes from quadrant 1

to quadrant 0 50 that both quadrants contain an equal number of nodes. This can

be achieved simply by scanning through the decreasing X sorted list of quadrant 1,

removing nodes from its head, and adding them ta the head of increasing X sorted list

in quadrant O. Whenever anode is removed from the X 50rted list in quadrant 1, it

is also removed from the Y sorted list in the same quadrant. To achieve this without

adding any extra complexity in the search process, we maintain a side link between

the two lists 50 that followïng this link from one list, we can obtain the position of

the node in the other list. Similarly, whenever we add a node in the head of the

increasing X 50rted list in quadrant 0, we add it in tlle_appropriate position of the

y sorted list for the same quadrant. In this case, we h&ve ta search through the Y

sorted list from the head, until we reach the appropriate position.



• CHAPTER 5. A QUAD-TREE BA5ED MAPPING 5TRATEGY

5.1.2 Limitations
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The above scheme has a number of limitations which we rectify in subsequent modi­

fications. One limitation is that, we have used geometrical co-ordinates of the nodes

for partitioning them to different quadrants. We have assumed that maintaining ge­

ometrical proximity of nodes will aut('matica1ly preserve their topology, which cornes

from their node-neighbor relationship in the discretization. But this is not necessarily

true. This is because two nodes may be geometrica1ly close to each other, but they

may not be neighbors in the actual discretization. In some cases, two nodes may be

geometrica1ly far off, but they may be neighbors in the actual discretization.

To handIe this, we device at least two schemes to assign topological co-ordinates to

nodes, and then apply the same quad-tree based mapping strategy to partition them

to quadrants based on their topological co-ordinates. We discuss it in a subsequent

section•

Another limitation is that, while routing anode to a particular quadrant, we have

to insert it in the proper position in a. sorted list. We use insertion sort for this

purpose, which has a time complexity of O(N2), where N is the number of nodes in

the problem graph. This is quite high when the number of nodes is very large. We

modify the algorithm so that we cao use some other less expensive sorting techniques

like merge sort instead of using the insertion sort. It improves the time complexity of

the sorting to O(Nlog2N). In this modified algorithm, the number of processors has

to be an integral power of 2, instead of being an integral power of 4 as in this case.

We discuss it next.

5.1.3 A binary-decomposition based scheme

We implement a. binary-decomposition scheme, somewhat similar to the one described

in [10]. The problem graph is alternate1y divided in horizontal and vertical partitions

in a. recursive manner, while load-balancing is taken into account. This recursive
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partitioning process stops when the number of lea.ves is equal to the number of pro­

cessors, assuming that the number of processors is an integral power of 2. li k is the

height of the corresponding binary tree, then k = l092(no..of_processors).

CDaIIaue~1II~lDdvclcal

~".-opwll.a""'~~
......10 lM lIlIIDlIWors-c-

Figure 5.3: A binary-decomposition based scheme

This is illustrated in Fig. S.S. The problem graph is first divided by a. verti·

cal line into horizontal partitions 0 and 1. Each of these two partitions contains

an approximate1y equal number of nodes. Then, ea.ch of t.hese two partitions is cli­

vided into equally weighed vertica.l partitions by horizontallines, these partitions

are numbered 00, 01 and 10, 11 for partitions 0 and 1 respective1y. This process of

bi~ary·decompositionof the problem graph continues recursivelyand stops when the

number of lea.ves is equal te the number of processors. The mapping problem now

focuses on mapping the leaves, each containing 0 or more nodes, to the processors. It

works as follows:

• Step 1: Assign Jlag =O.

• Step 2: H jlag is even then sort a1l nodes in the X direction, otherwise sort them
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in the Y direction into an array. We can use merge sort for this purpose.

• Step 3: Divide this sorted array in two equal partitions by dividing it exactly

in the middle. So each partition contains an equal number of nodes. Wc name

these two partitions as problem partitions.

Simultaneously partition the system graph into two equal and adjacent system

partitions. Map each problem partition to a system partition. In practice, each

problem partition is assigned an id which uniquely identifies a system partition

to which it is mapped.

• Step 4: Assign 11ag = 11ag + 1.

• Step 5: Repeat steps 2.•5 recursively with nodes belonging to each problem

partition. AIso simultaneously divide the corresponding system partitions.

• Step 6: Stop when the depth ofrecursion is 1:-1, where 1: = log2(no_of_processors).

Thus, as before, each leaf is assigned an id which uniquely identifies the processor

to which it is to be mapped. AIl nodes belonging to that leaf are mapped to that

processor.

Speedup in pre-processing time over the previous quad-tree based mapping strat­

egy is one obvious advantage of this scheme. Another advantage is that, in this case

the number of processors has to be an integral power of 2, which is a more gencral

case than being an integral power of 4 as in the previous scheme. Both these schemes

do partition nodes based on their geometrical co-ordinates, which nced not always

preserve the topology of the problem graph.

:':

5.1.4 An implementation for DECmpp12000jSx.. ,

Below we describe a binary-decomposition based mapping schemefor DECmpp12000/Sx

in a C Iike pseudo code:
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/* The following routine is applicable only when log2(no..of_processors)

is a proper integer, and either the proœssor mesh is a perfect square

or n:z:proc = 2*nyproc, where n:z:proc and nyproc are number columns

and rows respectively in the processor mesh.

*/
bin-tree *build-tree(original-problem-node-list, level, id, f1ag, x, y)

begin

/* Some variable declarations */

bin-tree *new-node;

problem-node-list *partition-D-list, *partition-l-listj

int partD-id, partl-idj

int k-1

/* And other declarations */

k = log2(no..of_processors)j /* An integral value */

new-node:=(bin-tree *) create-new-node-for-bin-treeOj

Ü (level k) then /* We have reached a leaf of the tree */

begin

step 1:

new-node->problem-node-list:=original-problem-node-listj

step 2:

Assign id ta aU problem nodes in original-problem-node-listj

step 3:

new-node->partition-O:=NULLj

new-node->partition-l:=NULLj

step 4:

Set appropriate values to other fields of new-nodej-

55
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Step 5:

retum(new-node);
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end

eise

begin

Step 1:

fiag:=fiag mod 2;

if (fiag = 0) then /* Divide into horizontal partitions */
begin

Step 2:

Sort nodes in original-problem-node-list in increasing X-direction.

Step 3:

par'".ition-D-list:=first half of sorted list;

partition-1-list:=second half of sorted list;

Step 4:

x:=x/2;

Step 5:

partD-id:=id;

part1-id:=id + X;

end

else /* Divide into vertical partitions */
begin

Step 2:

Sort nodesin original-problem-node-list in increasing Y-direction.

Step 3:

partition-D-list:=first half of sorted list;

partition-1-list:=second half of sorted list;

Step 4:

y: y/2;

Step 5:

partD-id:=id +y;
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part1-id:=id;

end

Step 6:

new-node-> partition-O:-build-tree(partition-G-list, Ieve1+1,

partG-id, fiag + l, x, y);

new-node->partition-1:=build-tree(partition-1-list, Ieve1+1,

partI-id, fiag + l, x, y);

step 7:

retum(new-node);

end; /* Of else part */

end; /* Of build-treeO */

mainO /* Call from the main routine */

begin

int x, y;

bin-tree *root;

1* nxproc = number of proœsso:::! in X-direction */

1* nyproè = number of processors in Y-direction */

if «(nxproc = nyproc) or (nxproc = 2*nyproc) and

(Iog2(no..of-P'"ocessors) is a proper integer)) then

begin

x:=nxproc;

y:=nxproc * nyproc;

root:=build-tree(orlginal-problem-node-Iist, 0, 0, 0, x, y);
end; -

else

57
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begin

/* Some other scheme to be designed *1
end;

end. /* Of Main *1

58
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Here, partn-id, for n = 0••1, specifies the processor partition where a particular

problem graph partition is to be mapped. At the bottommost level of recursion, this

id identifies a unique processor to which a set of nodes, belonging to original-problcm­

node-list, are to be mapped. This is done in Step 2 of the then part of the outermost

ifstatement.

Speedup over the previous quad-tree based mapping strategy is one obvious advan­

tage of this scheme. Another advantage is that, in this case the number of proccssors

has to be an integral power of 2, which is a more generai case than being an integral

power of 4 as in the previous scheme. Both these schemes do partitioning of nodcs

based on their geometrical co-ordinates, which need not always preserve the topology

of the problem graph.

In the next section, we will discuss a number of schemes for assigning topological

co-ordinates to nodes.

5.2 Assigningf.opologica1 co-ordinates to nodes

Topological co-ordinates are assigned to nodes for the purpose of capturing the topol­

ogylnformation of the problem graph, which comes !rom the node-neighbor intercon­

nection. ACter assigning topological co-ordinates, we can apply the same quad-tree

and binary-decompositioli- based mapping strategies, as discussed above, for parti­

tioning nodes to processors.

Topological co-ordinates are assigned to nodes, based on their topological distances

!rom certain reference sets(s). We design and implement at least two differeni schemes
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for assigning topological co-ordinates to nodes. We fuc one or more reference sets, and

then assign co-ordinates to all nodes relative to nodes in these sets. First we discuss

a. scheme based on one reference set, and subsequently ~ectify its limitations in a

modified scheme.

5.2.1 A one reference set based scheme

We consider a 2·D, closed and coIlIlected domain as in Fig. 5.4. After perform­

ing domain discretizatiOIl, we construct a reference set consisting of some cOIlIlected

boundary nodes. We call this set RB. Let VB denote the set of all boundary nodes.

Other terms are already defined in chapter 4. The set RB satisfies the following

properties:

1. IRBI ~ 2.

2. vpi E RB '* vpi E VB.

3. VVpi E RB, 3vpj E RB such that Dpii = 1.

4. We call anode vpi E RB an eztTeme node üf there exists one and oilly

one node Vpj E RB 50 that D;-;j = 1. There exists at most two such

eztreme nodes in RB.

,It would be clear that for each node vpi E RB, there can be at most two other

nodes satisfying property 9. Together with property 4, it ensures the colltinuity of the

Ilodes in the set. We illustrate such a reference set in Fig. 5.4. Two extreme nodes

Vplo and vpl, are shown in the same figure. Note that if RB = VB then it does not

contaïn any ezt. tme nodes.

Though there is no fuced rule regarding how to select this set and how big it should

be, we followed the followïng criterioD for our implementation on DECmpp12000/Sx.

We first compute the average number of nodes that should go to each processor, let

it be n. We start with an arbitrary boundary node, which becomes the first e1ement

to enter set RB. We then keep on adding nodes te RB satisfying the above properties
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Figure 5.4: Assigning topological co-ordin;.tes to nodes

until either aIl the boundary nodes are exhausted or the number of nodes in the set

is exactly n *nxproc, where nxproc is the number of columns in the processor array.
•

Extreme Dode ---------~
vplO

Extreme oode
"PU

•

The next issue is to assign topologica1 co-ordinates to nodes rela.tive to this reCer­

ence set. We follow the following steps:

Step 1:

Arrange aU the nodes in RB along the X axis, i.e. they are assigned Y

co-orc1inate=O.

Step 2:

case 1:RB #:. VB
1. Select one utreme node from RB, queue it, assign its X co-ordinate=O,

and make nut-queue pointer point to this first and only entry in the

queue.

2. Repeat
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2.1. Pick the next node Vpi from queue as pointed by nat-queue

pointer.

2.2. Select VlIj E RB 50 that Dpij = l.

2.3. Queue VlIj, and assign X co-ordina.te of VlIj-X co-ordinate of

Vpi + l.

2.4. Advance nul-queue pointer.

until a.\l nodes in RB are queued.

case 2:RB = VB .

1. Select any arbitrary node from RB, queue it, assign its X co-ordinate=O,

and make nul-queue pointerpoint 10 this first and only entry in queue.

2. Follow the same steps in 2 as in the previous case.

Step 3:

1. Make nul-queue pointer point 10 the hea.d of the queue.

2. &peet

2.1. Pick the next node vpi from the queue "lS pointed by nul-queue

pointer.

2.2. Let vpi" ••, vpi.. be its n neighbors 50 that Dpi;. = 1, k = l ..n,

and none of them are a.1rea.dy queued.

2.3. for k = l..n do

begin

2.3.1. Queue vpi••

2.3.2.' Assign Y co-ordina.te of Vpi. Y co-ordinate of vpi +1.

2.3.3. Assign X co-ordinate of vpi.-X co-ordinate of vpi +
(k -1).

end

2.4. Advance nul-queue pointer.

until a.\l nodes in queue are exha.usted(i.e. nul-queue pointer points to

NULL).

61
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Here, we have performed a breadth first search in assigning topologica1 co-ordinates

to nodes. The nodes in the initial set RB are laid along the X axis and can be terrned

as the Ou. layer nodes. AIl other nodes which are immediate neighbors of thcse O'h

layer nodes are the l.t layer nodes and are assigned Y co-ordinate 1, and this way

the layering continues in a breadth first fashion. X co-ordinates are assigned to nodcs

based on the X co-ordinates of their immediate neighbors.

The next step is to map these nodes base<! on their topologica1 co-ordinatcs.

We apply the same quad-tree or binary-decomposition base<! mapping strategies to

partition nodes to dift'erent processors as described in the previous section. The only

difference is that, this time we use the topologica1 co-ordinates of the nodcs, rather

than using their geometrica1 co-ordinates. The results are illustrated in the nc.'(t

chapter.

5.2.2 Limitation

One obvious limitation is that more than one node might get assigned the sa&le

topologica1 co-ordinates. In that case, it is not fully successful in preserving the

topology information, and hence partitioning of nodes to processors may not always

c1uster neighboring nodes together. We design another scheme, which should resolve

this problem. We discuss it in the next subsection, and name the corrcsponding co­

ordinates as polar topological co-ordinates of nodes because of their similarities to the

polar co-ordinate syllte:n.

5.2.3 Another scheme for assigning topological co-ordinates

In this scheme, nodes are assigned co-ordinates (r,6), somewhat similar to the polar

co-ordinate system. The angle co-ordinate 6 is the same angle co-ordinate as in the

polar co-ordinate system, and thus it captures the geometrica1 information of the

nodes. The dift'erence is that, the distance co-ordinate r here does not specify the

distance from the origÎIl as in the polar 8Y8tem. Instead, it preserves the topologica1
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information of the problem graph, and is as5igned in a similar Iayer-by-Iayer fashion

as described previously. Thus, one co-ordinate captures the geometry and the other

captures the topology information of the problem graph. It is ilIustrated in Fig. 5.5.
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Figure 5.5: Assigning Polar topological co-ordinates to nodes

One possible way in whicb two nodes might get the same co-ordinates is ilIustrated

in Fig. 5.6. In reality, sucb a situation will rarely occur.

Below, we discuss the scheme in some detail.

1. Select one leftmost node vpi from problem graph, as in Fig. 5.5.

2. Assign its r co-ordinate =O.

3. Assign its (J co-ordinate =(J" which. is the corresponding polar angle.

4. Queue Vpi and mm nut-in-queue pointer point to it.

5. while there is some node in queue do

begin

5.1. Pick up next node v,i as pointed by nezl-in-queue pointer.

5.2. Let v,il, ••,v,i" he its n neighbors 50 that D,ii,. = l, k =1..n,
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Figure 5.6: A possible conflict

and none of them are already queued.

for le = l ..n do

begin

5.2.1. Queue Vpj".

5.2.2. Assign its r co-ordinate =r co-ordinate

of Vpj + 1.

5.2.3. Assign its 6 co-ordinate =9ile which is the

corresponding polar angle.

end.

5.3. Advance nut-in-queue pointer.

end.

6·t

•
Aiter nodes are as5igned their polar topologic4l co-onlinates, they are partitioncd

in a similar way as before to ditterent processors, either by the quad-trce based or the

binary tree based mapping strategies. The results are iIlustrated in the next chapter.
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Chapter 6

Implementation details and results

The general strategies discussed in the previous chapters were implemented and tested

on DECmpp12000/Sx for experimental domains. The languages of implementation

are C and MPL. In the folIowing discussion, we :6rst give a brie! overview of the

implementation issues and then discuss the results.

The complete implementation can be divided into two major components. One is

the sequential component which runs in the front-end console system and is written in

the C language. The other is the parallel component which runs in the back-end data

parallel unit(DPU) and is written in MPL. More details about the system eomponents

can be found in chapter 9. The sequential component is composed of routines for data

input/output, domain discretization, coefIicient assembly and portions of the specifie

mapping strategy. The parallel component can he further divided into two sub­

components. One component runs in the array control unit(ACU) and is composed

of sequential mapping related routines. The other component is composed of data

parallel routine(s) for the parallel solver and it runs on the PE array. The back-end

MPL routines are called from the front-end C routines through the callRequest MPL

library routine. Di1Ferent components of the implementation are illustrated in Fig.

6.1.

The solver is the routine which takes the maximumpercentage of the total program

execution time. Henee, an efficient implementation of the solver and some good

65
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Figure 6.1: CVFEM program components

mapping strategy are the key issues for speedup. The total time spcnt in the mapping

related routines, Vlhich we can call the pre-processing Ume, is very small compared ta

the time in the solver. If the mapper can do some good job in data. placement, the

pre processing time can be masked by the additional speedup obtained in the solver.

We discuss below the important issues related to the sequential and parallel pro­

gram components. We stan with a. discussion on the sequential component.

6.1 The sequential component

The sequential component comprises of routines for input/output of data, domain

discretization (routines rela.ted ta de1aunay triangulation of the domain), coefficient

assembly and portions of mapping related routines (for exa.mple, in the case of quad­

tree based mapping strategy based on topologîcal co-ordinates, it may involve routines
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for assigning topological co-ordinates to nodes, and routines for building the tree

and simultaneous processor partitioning). The data here maybe in two different

formats, either as nades which specify a discrete domain without the interconnection

pattern, or as trùlngles and nodes which completely specify the discrete domain and

the problem graph. In the second case, the phase of delaunay triangulation is to be

skipped. We first discuss about the data portion, mainly the representation of nodes

and triangles.

6.1.1 Representation of the discrete domain

Most of the following work on the sequential component part was done by Clark

Verbrugge who is presently working for his doctoral degree at McGill University.

Some modifications were made for the parallel machine in order to link with the

parallel component(s) and to take care of the memory constraints.

Given a domain of interest, we pick up a set of boundary and internai points,

which we call nodes. Bach node is specified by its X and Y co-ordinate values and a

fiag to indicate whether or not it is a boundary node. For simplicity, the X and Y

co-ordinate values are all taken to be positive without any harm, i.e. the domain sits

in the first quadrant of the cartesian co-ordinate system. The nodes are read in from

a file called nodedata file, and are arranged in such a way that all boundary nodes

come first and then come the internai nodes.

In the internai representation, nodes are arranged in a linked list of records as they

are read in sequentially from the nadedata file. Bach node is a record with fields: its X

and Y co-ordinate values; its topological co-ordinate values; a fiag to indicate whether

or not it is a boundary node, and whether or not it is part of the triangulation yeti

another fiag to indicate whether or not it is mapped to any processor yet; if so then

the identity of that processor; its ~ value and other coefIicient values; pointers to the

head and tail of all the triangles with which this node is associated; a pointer to the

Den record in the list; and other fields for ease of programming.
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While performing delaunay triangulation of the domain, new nodes arc addcd to

the list, and nodes, which are not part of the triangulation, are removcd. Finally what

we get is a set of nodes and a set of triangles, which completely specify the discrcte

domain and the triangulation information. This information of nodes and triangles is

stored in another file called =.tri, where = is the identity of the triangulation file.

Whenever we run the same program on the same domain another time, the delaunay

triangulation part cao be skipped by directly reading in data from the triangulation

file.

Similar to the representation of nodes, triangles are also arrangcd in a linked lisL

of recoràs. In the case of delaunay triangulation, this list is built dynamically with

the triangulation process. In the case when the triangulation information is read in

from a file, this list is built dynamicallyas data is read in from the file. In both cases,

the final internai representations of the nodes and the triangles are identical.

Each triangle is a record with fields: the three corners of the triangle; a flag to

indicate seme specific status information; and a pointer te the next triangle in the

list. Each corner of a triangle is a record with fields: pointer to the specific node

associated with this corner; coefficients of the other two corner nodes relative to this

corner; and pointers te the next and previous triangles associated with this corner

which form a doubly linked list of triangles. We discuss it next.

Given any node, we should be able to find out all the triangles associated with

this node, i.e.all triangles which have this node as a corner. By knowing about ail its

associated triangles, we will be able te find out all its neighboring nodes. Similarly,

given a triangle we should he able te obtain information about all its corner nodes.

The internai representations of nodes and triangles are such that wc cao obtain this

information easily.

The following method cao be adopted to find the triangulation and neighborhood

information for a node. This is illustrated in Fig. 6.2. Given any node vpi, we

want te find all its neighboring nodes. Each node bas pointers, called thead and ttail

respective1y, pointing te the head and tail of the triangles associated with this node.



CHAPTER 6. IMPLEMENTATION DETAILS AND RESULTS 69

By following the thead pointer of vP;, we reach the first triangle 1 as in the figure.

The three corners of this triangle are marked as A, B and C respectiveIy, of which A

is the comer associated with this node. By following the pointer to the next triangle

from comer A, we rea.ch triangle 2. Corner D of triangle 2 is associated with this

Dode. We follow the pointer from corner D to the next triangle 3, and proceed in a

similar way until we finally reach the last triangle numbered as 6, which is aIso the

triangle pointed to by ttaiL As we know about all triangles associated with this node

Vpi, we cao now easily know about all its neighboring nodes just by Iooking at the

other comers of these triangles.

• H

•

Figure 6.2: Neighborhood information of anode.

Mter rea.ding in data from the file, the next sequence of operations involve the

delaunay triangulation of the domain, in case it is not already performed, and the

coefficient assembly. We are not going to discusa here the routines for delaunay trian­

gulation and coefficient assembly, since they are not directly rela.ted to our mapping

issue. A description on coefficient assembly cao he found in chapter f. More about

delaunay tria.ngu1a.tion can be found in [2, 11]. Instead, we will ,.,'defly discuss the
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front-end portion of the implementation related to the specifie mapping strategy. The

following discussion assumes a quad-tree based mapping strategy based on topo\ogi­

cal co-ordinates. So we will resume our discussion from the point where we already

have the nodes and the triangles.

6.1.2 Mapping related routines

For a quad-tree based mapping strategy based on topological co-ordinates, it invo\vcs

routines for assigning topological co-ordinates to nodes, and routines for building the

tree and simultaneous partitioning of the processor mesh. We have a choice betwccn

running these routines in the front-end console system or in the back-end ACU. Wc

decided to run them in the console because of memory constraints of the ACU. The

drawback is that the u&er has to inform the console about the present configuration of

the back-end PE array, mainly the number of rows and columns. This can be taken

eue of by aIlowing the console read in this information from the AGU.

The process of assigning topological co-ordinates to nodes by one of the two

schemes aIready descrlbed involves the scanning of the node list and queueing the

nodes in a. layer-by-layer fashion. For the purpose of queueing nodcs, we kccp an­

other lînked list, each entry of which contains a pointer to anode. Each node contains

a fiag to indicate whether or not it is aIready queued. This is necessary because each

node may be a neighbor of many other nodes and thus there is a very high possibility

that a node will be multiply queued by ail its neighboring nodes. Thus it will be as­

signed multiple co-ordinates leading to a C7.lnfiicting situation. To avoid this, anode

is aIlcwed to he queued only once as the neighlY..r of only one of ail its neighboring

nodes.

The next issue is~the building of the quad-tree or the binary tree, as described in

the previous chapter, on top of the existing data structures for nodes and triangles.

One important point to note here is that, in any case we are only intercsted in the

information at the leve1 of the leaves and hence the intermediate nodes of the tree

cao be freed in the building process, thus saving memory. At the end, the whole tree
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can be discarded as soon as each problem node is marked with the processor id to

which it is to be mapped. The next step is ta scan through the linked list of nodes

and then map each node to the processor where it is destined. We discuss it next.

6.2 The parallel component

As discussed previously, the parallel component consists of routine(s) for transferring

data between the console and the DPU, mapping related routines for data placement,

the data parallel solver, and routine(s) for transferring computed data back to the

console. AU these routines are invoked from the single procedure cal1ed mpLsub,

which runs on the AGU. The mpllibrary routine callRequest acts as a bridge between

the front-end console and the back-end DPU. The back-end routine mpLsub is in­

voked from the front-end console process by the callRequest library routine. This is

illustrated in Fig. 6.S. The console process resumes its execution as soon as the the

cal1 to the back-end system, i.e. the mpLsub routine, completes.

6.2.1 Data transfer between the console and the DPU

There are fc..:r MPL library routines, cal1ed copyln, copyOut, blockIn and blockOut,

for transferring of data between the front-end console and the back-end DPU. The

last two routines are for direct block transfer of data between the console and the PE

array, and are not useful in our apr'··:r.tion. Instead, in our case we have to transfer

data in an element by element fashion from the linked list of nodes in console to

the AGU, and then place each node in its destined processor. Thus it is a two step

process, firstly to read in data from the console to the AGU and secondly to transfer

data from the AGU to the PE array. We use the copyln and copyOut library routines

for the first step, and the proc library routine for the second.

It w~r.ksas foUows. Two ofthe parameters for the call ta callRequest library routine

from console are the starting addresses of the 1inked lists of nodes and triangles. Let
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Figure 6.3: The CVFEM program model

them be fe..nheatLp and fe..theatLp respectively, where fe stands for front-end. Let us

suppose that the AGU wants to read in the nodes one by one from the linked list in

front-end console, and then map them to the PE array. The AGU has its local copy

of a node record, of the same type as in the console. Let the address of this record
"

be be..node..p, where be stands for back-end. In an iterative loop, the AGU calls ti;e

copyIn library routine. The call to copyln has its parameters: fe..nheatLp, be..node..p

and nodesize, which is the size in bytes of a node record. In the first iteration, it copies

the first node record from the console to the local copy in AGU pointed by be..node..p.

The AGU reads appropriate fields from this record including the processor id to which

it is to be mapped, and then places data from these fields to the appropriate processor,

which we will discuss shortly. It also reads the address of the next record in the front·

end linked list, as specified by the nul field, and modifies the fe..nheatLp accordingly.

50, in the next iteration, it reads in the next node from the new address of fe_nheatLp

to the same local copy in the AGU. It continues iterating until fe..nheatLp points to

NULL. In actual implementation, things may vary slightly, but the basic idea is the
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We do not want to create a repliœ ofthe front-end linked list in the AGU, obviously

for its memory limitations. Instead, we copy one node at a time from the console

to the AGU, and then map each node to the destination processor. The temporary

copy of the node in the AGU is erased as soon as the next node is read in from the

front-end linked list. 50 the AGU acts as a base camp for each node on its way to its

final destination in the PE array.

As we read in anode from the console to the AGU, we already know the identity of

the processor to which it is to be ma'>ped, sinœ it is already decided by the front-end

quad-tree. What we do not know is the specific partition on that processor to which

it will be mapped, sinœ it is decided only dynamically. We consider it in the next

section.

6.2.2 Dynamic mapping to the PE array

Theoretically, each processor in the PE array is partitioned into as many parts as

the average numher of nodes n that should go to each processor, as discussed in the

previous chapter. In actual implementation, we have an array of records of length

n allocated to each processor. Each e1ement of this array holds information about a

particular node, which is mapped to that processor. AlI n entries of this array hold

information about all n nodes that a.ooe mapped to that processor. lP.t us call this

array the node-array.

Each mapped node is unique1y identified by two parameters: the proœssor id to

which it is mapped, and the index of its entry into node-array on that proœssor.

The processor id is determined by the quad-tree or some other mapping strategy.

But the index is determined dynamically as the node is actually mapped to that

processor. This index information is stored back in the node record in the console so

that the mapped node Gan he correctIy identified in subsequent operations such as,

co=unicating with neighbors and retrieving computed data back.
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Each entry of node-array has fields for storing: .p value of the node, its coefficient

values, and an array of records called neighbor-array. Each entry of this neighbur­

array contains information about where one particula.r neighbor is mapped, identified

uniquely by the processor id and index on that processor, together with sorne other

field related to coefIicient assembly. This neighbor-array for ea.ch mapped node is

filled in a subsequent scan through the node list, aÏter all nodes are mapped and their

partition index information on the corresponding processors are known. With thcse

information, ea.ch node cao correctIy co=unica.te with all its neighbors, ta.ke their

old 4> values from the previous iteration, and compute its new 4> value, as is discussed

in chapter S. The partitioning of a processor in the PE array is shown in Fig. 6...{.

Actually this neighbor-array conta.Îns information about all neighbors which are to

be co=unica.ted through the router, and it will be clea.r in a short while.

NOImI
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Figure 6.4: Partitioning of & processor in the PE array

Finally, on the average n nodes are mapped to ea.ch processor in the PE array.

Bach mapped node is uniquely identified by its processor id and partition index

on that processor, and this information is stored in the front-end console so that
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data retrieval and communication proceed correctly. Each mapped node contains

information about its tP value and other coefficient values, as discussed in chapter

2. Each mapped node also contains information about where all its neighbors are

mapped. Each neighbor is identified by its processor id and partition index on that

processor. Tl:e next issue is to set up the communication primitives so that each

node cau communicate with its neighbors, exchange data, and perform computations

in the parallel solver. We discuss it next.

6.2.3 Setting up communication

As discussed in a previous chapter, there are two communication primitives: one

is the Xnet for fast and synchronous close neighbor communication, and the other

is the router for asynchronous communication. We divide the entire node-neighbor

communication pattern into two parts: one is through the Xnet and the other is

through the router or some other MPL library routine using router depending on

whichever is more convenient.

The problem with the Xnet communication is that, all active processorsare re­

quired to communicate in an identica1 way at any instant of communication. What

we mean by identica1 is that, each communicating processor has to communicate with

another processor in the same direction and distance as all other communicating pro­

cessors do at that instant. In case of an irregular problem, it isvery diffi~~ to bring

in this harmony. Still, if by som~ trick we cau bring this harmony, we pay some

price as some processors might have to remain idie at any instant of communication

through the Xnet. This will he clear through an example. Let us consider an 8 *8

processor mesh, as in Fig. 6.5. Here, at some instant of communication through

the Xnet, each active processor is communicating with its Îmmediate north neighbor.

Processors 0 and 9 are inactive, i.e not taking part in communication, at that instant.

It is because, either none of the nodes mapped to these two processors have its neigh­

boring nodes mapped to its Îmmediate north processor or, at this instant no node

mapped to these two processors is required to communicate with its north neighbors.
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Whatever is the case, these two processors have to remain idle. How many proccssors

have to remain idle at an instant is a factor in deciding the speedup. The lowcr is

this number, the better is the speedup. The rest of the communication, which could

not be done through the Xnet, is to be completed through the router or sorne other

MPL library routine using router. Be1ow, we e1aborate it further.

Procc..cxa 0 an 9 ce id1a • an 1DRaDt orXne~
CoIlDSD.UD1catiOD

Figure 6.5: An instant of Xnet communication

Each processor bas an anay called XnetMcom, which determines whetber a pro­

cessor should rem.ain active or inactive at some instant of Xnet communication. The

length of this array is a multiple of 8. This is because, there are 8 directions of Xnet

communication, name1y north, south, east, west, northMeast, north-west, souihMcast

and southMwest. The first 8 entries determine X:1et C<?mmunication with processors in

these 8 directions at distance one, the next 8 entries>.~, 'termine Xnet communication

with processors at distance two, and so 00. Let us say that the length of this array

on each processor is 8 • XDIST, where XDIST is the distance to which we want to

communicate through the Xnet. Obviously, XDIST is a parameter which determines

speedup. We have to fut some suitable value for XDIST for obtaining the optimal
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speedup. There is also another parameter, which determines exactly what is the max­

imum number of times any two processors can be allowed to commUIlÏcate through

the Xnet. We discuss it next.

Each entry of Xnet-com is itselfan anay, caJled lndz-array, whose length Xindzsize

is another adjustable parameter. Each entry of Indz-array is a fiag, together with two

other fields caJled souf'Ct-indez and dest-indez. H the flag is set, it indicates that the

source processor has to commUIlÏcate with the destination processor at that instant

of iteration, and souf'Ct-indez and dest-indez specify the indices of a node-neighbor

pair in the source and destination processor respectively. H the flag is not set, the

source processor does not have to communicate with the destination processor at

that iteration, i.e. it has to remain inactive(or, we ca.n say idle), and hence we do not

have to mer to the other two fields. In Fig. 6.6, we illustrate the Xnet-com array

on an arbitrary processor. The length of this array is 8 indicating that we want to

communicate through the Xnet with the immediate 8 Deighbors at distance one.

CIIIICII_1IQI'CIU&_ -1II'Il C ...ct. PB-."''''''up.......

Figure 6.6: Communication layout on a processor
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'.Vhat Xindzsize a.ctually detennines is the maximum number of times each pro­

cessor ca.n co=unica.te with another processor through the Xnet. How many timcs

ea.ch processor has to co=unica.te with another processor is actually determined by

how many node-neighbor pairs are mapped to these two processors. The problcm

is that, Xindzsize has te be identical on all the processors, wherea.s this number of

node-neighbor pairs varies from processor to processor. We fix a value of Xindxsi::e

depending on the size of the problem. As a result, some processor might commu­

nica.te through the Xnet with another processor Xindzsize times, while sorne other

processor might do the same less then Xindzsize times, and remain idle for the rcst

of the time. It is also possible that more than Xindzsize times Xnet communications

may he necessa.ry between some processor pairs, though it is not allowed. Thus, this

Xindzsize is a parameter which is to be selected ca.refully depending on the problem

size, as it determines the number of processors that have to remain active or inactive

at an instant of Xnet co=unica.tion•

The rest of the co=unication, which could not be done through the Xnet, is to

be completed through the router, or some other Iibrary routine using the router. We

have already discussed about neighbor-array in the previous subsection. Ea.ch valid

entry of neighbor-arrayactually contains information about a neighboring node which

has to be co=unica.ted through the router. If anode ca.n co=unicate with all its

neighbo.ing nodes through the Xnet, all entries of neighbor-array for this particular

node would be empty(or, wc ca.n say inva.Iid).

Finally, we have two adjustable parameters, namely XDIST and Xindzsize, which

determine the speedup of the solver. In all applica.tions, an XDIST value of 1 is found

to be the optimal. Xindzsize a.ctually depends on the problem size, and has to be

fixed accordingly.

Now we are in a position to discuss the parallel soIver•
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The solver works as follows. Each node in the discretization smoothens its 4> value

based on previous 4> values of itself and ail its neighbors. This smoothing operation

contint,es over several iterations until computed values converge for ail nodes. This

is already discussed in detail in chapter f. We can imagine a big outermost loop,

which goes upto 1000 or more iterations. In every iteration of this loop, each node

communicates with ail its neighboring nodes, take their old tP values from the previous

iteration, performs some computations with them, and modifies its own 4> value, as

is already discussed.

In the sequential solver, in each iteration of the outermost loop, one has to scan

through the entire node list, and subsequently scan through ail neighbors of each node.

This operation continues over a large number of iterations until all computed values

converge. Thus the solver consumes the maximum amount of the whole program

execution time. In our data paralle1 solver, each processor ir the PE array works

with its own share of nodes in every iteration of the outermost loop, and thus it

speeds up computation. We stop when 4> values on ail nodes converge. Alternate1y,

in order to compare the performances of the dilFerent mapping &chemes, we keep some

fixed value for this number of iterations, say around 1000. This big value generally

guarantees convergence. Be1ow, we e1aborate the solver.

In each iteration of the outermost loop, each processor in the PE array per­

forms three types of operations: (l)it completes ail Xnet communication by scan­

ning through the array ca11ed Xnet-com j (2) after completing Xnet communication,

it scans through its own node-array whose each entry contains information about a

particu1ar node. For each node in node-array, it scans through the valid entries of

neighbor-arrayand performs communication with these neighbors through the router.

Finally, (3) alter communication and data transfer with ail neighbors is complete, each

node computes its new tP value before moving to the next entry in the node-arrayo

All these operations within a big outermost loop are illustrated in Fig. 6.7.
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Figure 6.7: A model of the parallel solver on each processor

After all t/J's converge, the computed values are transferred back to the front­

end console. As before, this data transfer operation takes place in two steps whcre

the ACU acts as the intermediate rest camp. Since each mapped node is uniquely

identified by its (pr0ces.5or, index) pair, and this information is already stored in the

console, this tr~er operation can proceed correctly.

6.3 Computing.À

As a1ready discussed in chapter 4, >. is some measure which, together with proper Joad

balancing, can judge the quality of a specific mapping strategy. For the rncasurement

of >., we assume that messages between two processors always travel by the shortest

path connecting them. In reality this may not be the case, as message passing is

highly machine dependent. Still, this measurement of >. gives a good information

about locality and thus, irrespective of the machine, it gives sorne good idea about

the quality of the mapping strategy, which is of particular concern•
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ln case of the DECmppI2000/Sx, we assume that a.ll messages between any two

processors travel by the minima.1 distance path connecting them, as in the case of

Xnet communication. However we have a.lready seen that a.ll communication cannot

be completed exc1usively through the Xnet. Thus the computed value of >. may

Dot a.1ways give the precise information regarding the message distances. Still this

information is re1iable enough to give some idea. about how good the mapping is in

pl'eServing the loca.lity.

If [Xl, YI] and [X2' Y2] are the locations of two processors VR and v.j in the PE

array, then the minimal distance between them, dencted by DRj as a.lrea.dy discussed

in chapter i, ca.n be given by:

DRj = min,. +minv (6.1)

•

•

where min,. =min(l(xl-x2)1, nxprOC-I(Xl-x2)1), minv =min(!(Yl-Y2)I, nyproc­

I(Yl-Y2)1), min(x,y) = minimum of X and y, and nxproc and nyproc are the number

of rows and columns respectively in the PE array.

ln the a.ctua.1 implementation, after knowing about the mapping information of

a.ll nodes due to a specific mapping strategy, it is straightforward to compute D';j

for any two processor pairs where a node-neighbor pair is mapped. For ea.ch node­

neighbor pair (vpi, vl'j), we find the corresponding processor pair (v.l<, V.,) where they

are mapped, and then compute Ddl as above. The summation of a.1l D .101 for 3011 node­

neighbor pairs gives the value of >., as is a.lready discussed in a previous chapter. For

simplicity, we trea.t (vpi, vl'j) and (vl'j, Vpi) as distinct pairs, and hence distances are

counted twice. Obviously this does not afFect the fina.1 judgment.

6.4 Results

AlI the strategies discussed previously were implemented and tested on the DECmpp12000/Sx.

Sorne of the results with these strategies on düFerent irregula.r problem domains are

illustrated below:
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(a)Problem graph 1: Wrench (253 nodes):

Different Strategies À Time in solvcr

(in Sec.)

Random mapping 22852 6.09

General Close-neighbor heuristie 15539 5.34

Quad-tree (Geometrie) 10636 2.68

Binary-decomposition (Geometrie) 11792 2.62

Bina.lj·-decomposition (Polar topological) 13528 2.56

(b)Problem graph 1: Irregular plate as in Fig. 6.8(553 nodes):

Different Strategies À Time in solver

(in Sec.)

Random mapping 42156 7.21

General Close-neighbor heuristie 25636 6.56

Quad-tree (Geometrie) 15040 4.66

Binary-decomposition (Geometrie) 15380 4.56

Binary-decomposition (Polar topological) 19552 4.82

(e)problem graph S: Arc of a circle (4194 nodes and 8062 triangles):

Different Strategies À Time in solver

(in Sec.)

Random mapping 351908 33.8

General Close-neighbor heuristie 124296 31.1

Quad-tree (Geometrical) 65564 26.8

Binary-decomposition (Geometrie) 63176 26.7

Binary-decomposition (Polar topological) 55892 26.1

(d)problem graph 3: Wrench (49238 nodes and 96384 triangles):

82
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Different Strategies >. Time in soh·er

(in See.)

Random mapping 5828126

General Close-neighbor heuristie 1765148 322.9

Binary-deeomposition (Geometrie) 161084 286.8

Binary-deeomposition (Polar topological) 237452 290.4
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The timings above are the a;erage timings with at least three observations. The

timings vary slightly depending on system lcad.

The discussion about timings is not complete unless we give sorne idea about the

pre-processing times. In ths case of the quad-tree based and the binary deeomposi­

tion based mapping strategies, these pre-processing times are the times requircd to

construct the corresponding trees. In the case of the topological co-ordinate based

schemes, it also includes the extra time in assigning topological co-ordinatcs to the

nodes. Below we give some illustrations of pre-processirig times for sorne of the ex­

perimental domains:

(a) Irregular plate as in Fig. 6.8(553 nodes):

Different Strategies Pre-processing time (in sec.)

Quad-tree 0.08

Binary-decomposition(geometric) 0.06

Binary-decomposition(polar topologîcal) 0.08

(b) Arc of a circle (4194 nodes and 8062 triangles):

Different Strategies Pre-processing time (in sec.)

Quad-tree 6.99

Binary-decomposition(geometric) 0.59

Binary-decomposition(polar topological) 0.83
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(c) Wrench (7917 nodes and 14265 triangles):

Different Strategies Pre-processing time (in sec.)

Quad-tree 26.96

Binary-decomposition(geometric) 1.22

Binary-decompvsition(polar topological) 1.63

(d) Wrench (49238 nodes and 96384 triangles):
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Different Strategies Pre-processing time (in sec.)

Quad-tree 1456.8

Binary-àecomposition(geometric) 11.48

Binary-decomposition(polar topological) 43.33

As it is evident !rom abo\"C, with smaIl domains, aIl three strategies take compa­

rable pre-processing times. But, with larger domains, the quad-tree based strategy

becomes very expensive in terms of the pre-processing time. Since aIl three strategies

take almost an equal amount of time in the solver, the quad-tree based strategy is

obviously inferior to the other two for larger domains.

The parallel solvcrs with different mapping strategies are aIl identical. We measure

the time in the solver after a fixed number of iterations, say 1000, which is large

enough for convergence. It is evident that a reduetion in À does not always guarantee a

reduction in time. The reason for this has already been discussed previously. When we

compute À, we assume that aIl co=unication is done through the Xnet, and it fol1ows

the shortest message paths. But in aetua1 implementation, some co=unication has

to be completed through the router. Router co=unication cao give variable timing

depending on the number of collisions in the co=unication path. Once again, we

stress that this issue is highly machine dependent.

Some of the experimental irreguh..r domains are illustrated in Figs. 6.8, 6.9, and

6.10.
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Figure 6.8: An irregular domain

• Figure 6.9: A wrench shaped domain
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Figure 6.10: Arc of a circle

6.5 Conclusion and future work
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This work is part of EPPP(environment fOl' portable para1IeI programs) project jointly

sponsored by Centre de recherche informatique de Montrea1(CRIM), mM Canada.,

Digital Equipment Canada, Alex Parallel Computers, and Industry Canada. The

project focuses on the development of a. portable pa.raIle1 programming environment

which can be used over a. wide va.riety of architectures.

The present trend is on the implementation Qf some of these algorithms in RPC,

which is a data parallella.nguage onder deve10pment as part of the EPPP project.

In HPC, the user cau define a virtual machine suitable to his needs. This virtual

machine cau be a linear array of virtual processors, or a two dimensional mesh similar

to DECmpp12000/Sx, or maybe something eIse. Be cau apply the same algorithms

described previous1y to map the irregular problem graph to these virtuaI processors.

A second phase of mapping is to he performed by the compiler to map these virtuaI
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processors to the underlying physica1 processors. The underlying machine nccd not

necessariIy be an SIMD machine. For instance, the present underlying physical config­

uration is a. c1uster of RS6000 connected by a. high speed IBM switch. Data referenccs

a.cross processors are transformed into corresponding send and TCceive messages by

the compiler. This mechanism is transparent to the user.

Ma.ppîng 0: the virtual processors to the physica1 system pIa.ys a. c.-ucial rule in

communica.tion, and is itself an active area. of research. Present empha.sis is on the

study of the co=unica.tion overhea.d under these situations and how to improve

them.
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