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Abstract

Irregular problems arise in many areas of computational physics and other scientific
applications. A parallel solution for such a problem requires a suitable mapping
strategy to map the irregular problem to the interconnection topology of the parallel
machine so that communication overhead is as low as possible, there is proper load
balancing among the processors and, locality of the problem graph is preserved. As
a result, there is sufficient speedup in computation. In this thesis, we discuss some
general strategies and associated results in data-parallel solutions of such problems.
Some of these strategies use the geometrical co-ordinates of the nodes of the problem
graph for partitioning them to the processors. In certain situations, geometrical co-
ordinates alone may not capture the topology of the problem graph. To handle this,
we design a number of schemes for assigning topological co-ordinates to nodes, and
then use the same mapping strategies for partitioning nodes to processors based on
their topological co-ordinates. We test our strategies on experimental problem graphs
and discuss the resuits.



Résumé

Les problémes irréguliers se présentent dans plusieurs domaines de calcul de physique
et d’autres applications scientifiques. Une solution parallele pour un de ces problemes
requiert une stratégie appropriée pour configurer ce probléme irregulier & la topolo-
gie d’interconnection de la machine paralléle de fagon 3 ce que la communication
entre les processeurs soit minimale, qu'il y ait une distribution équilibrée du travail
entre les processeurs, et que la localité du graphe du probléme soit retenue. Par
conséquent il y aura une accélération suffisante dans le calcul. Dans cette these,
nous discutons de quelques stratégies générales et des résultats associés pour les
solutions paralleles de ces problemes. Quelques unes de ces stratégies utilisent les
coordonnées géometriques des noeuds du graphe du probléme pour les répartir entre
les processeurs. Daas certaines situations, les coordonnées géometriques seules ne
suffisent pas & capturer la topologie du graphe. Pour résoudre ce probléme, nous
concevons un nombre d’arrangements pour donner des coordonndes topologiques aux
noeuds, et par conséquent utiliser les mémes stratégies de configuration pour repar-
tir les noeuds entre les processeurs en se basant sur leurs coordennées topologiques.
Nous testons nos stratégies sur des graphes de problémes experimentaux et nous en
discutons les résultets.
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Chapter 1
Introduction

In fields like fluid dynamics, electromagnetics, hea.t'conduction, structural mechanics,
combustion, and many other scientific applications, the mathematical model of 2
problem is often represented by partial differential equation(s) over a given regular or
irregular domain, and initial and/or boundary conditions. One numerical approach
to solving these type of equations is to discretize the given continuous domain into
finite elements, and then convert the given system of differential equations into an
equivalent system of algebraic equations [1, 14, 15]. In a 2-dimensional case, either
triangular or 4-node or 8-node quadrilateral elements are chosen. In the case of
triangular elements, delaunay triangulation is the technique employed in discretizing
the domain [2, 11]. We call each corner of a triangle a problem node or simply a node.
A wrench shaped domain and its corresponding triangular discretization is illustrated
in Fig. 1.1.

The solution of these algebraic equations requires each node in the discretization
to exchange data with its neighboring nodes, and to subsequently perform some
computations with this data. In a direct iterative solution scheme, this procese of
communication and computation repeats over several iterations, until the computed
values converge to some fixed values. Since each node in the discretization performs
similar computations but on different sets of data, these types of problems are some
of the best candidates for data-parallel solution.

1
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Figure 1.1: An irregular domain

In the rest of our discussion, we will use the term problem graph to represent the
interconnection topology of the nedes in a discretization. Each node in a problem
graph is called a problem node or simply a node. Similarly, the term system graph will
represent the processor interconnection topology of a parallel machine. Each node
in a system graph is called a system node, or simply a processor. For any node in a
graph, all other nodes in the graph which are connected by a single edge to this node
are called neighbors of this node.

Reéulai‘ problems, where discretizations are fixed and topologically simple, can be

effectively mapped to the parailel machine topology and then solved in a data-parallel

way. In the case of irregular problems, where the number of neighbors of each node
varies from node to node, some strategy has to be adopted in mapping the irregular
problem graph to the system graph representing the interconnection topology of the
parallel machine so that neighboring nodes in the disczetization do not go far away
from each other after being mapped, and the locality of the nodes is not destroyed.
These issues are important, because the communication overhead in these machines
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is much higher in comparison with the computational time. Also, the communication
overhead increases significantly with increasing distance between two communicating

Processors.

The general mapping problem can be divided mnto two sub-parts. The first part
is to find a suitable initial mapping strategy so that nodes and neighbors are initially
mapped as close together as possible. The next part is to perform further adjustment
of nodes among processors, either sequentially or in parallel, so that nodes and neigh-
bors might come much closer. The present emphasis is to obtain some good initial
mapping strategy so that there is no need for further adjustment of nodes among
processors, which might save a considerable amount of pre-processing time.

One important issue here is load balancing. In a SIMD machine, where all pro-
cessors work synchronously under a global clock, the time taken in some compound
computation, for example a while loop, is the time taken by the last processor to
finish the computation. So, if the load is not balanced properly, the processor which
is loaded the most will have to do most of the work, while some other processors will
have to remairn idle until all the other processors finish. The total time is the time
taken by the busiest processor. Hence, in order to keep all processors equally busy,
load balancing is important.

In this thesis, we discuss some of the general strategies adopted in the initial map-
ping of an irregular problem graph to the system graph, keeping in mind the different
issues discussed previously. First, we discuss a greedy close neighbor heuristic, which
tries to map neighboring nodes in the problem graph as closely as possible. Being
greedy, this strategy is not optimal in situations and it destroys locality of nodes in
problem graphs. As an improvement over this, we design a quad-tree based map-
ping strategy which partitions nodes to processors based on geometric information of
the nodes. This strategy is better at maintaining geometric locality of the problem
graph over the previous strategy. However, it has got other limitations as well, which
we further rectify in a binary-decomposition based mapping scheme. In certain sit-
uations, geometric information alone may not capture the topology of the problem
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graph, because two nodes may be geometrically close enough, but they may not be
neighbors in the actual discretization. Or in situations, they may be geometrically
far off, but may be neighbors in the actual discretization. So, we bring in a notion of
assigning topological co-ordinates to nodes, and design at least two different schemes
for assigning topological co-ordinates to nodes. Finally, we combine all the ideas and
design quad-tree based and binary-decomposition based mapping strategies based on
topological co-ordinates of the nodes.

Some of these general strategies were implemented and tested on DECmpp12000/Sx,
which is a mesh connected SIMD machine with toroidal wrap-around. The languages
of implementation are C and MPL. It is found that both the quad-tree based and
the binary-decomposition based mapping strategies based on both geometrical and
topological co-ordinates give the best results.

1.1 Thesis background

A great deal of work has already been done in this direction. Some general readings
on the sequential and parallel solutions of fluid flow and similar problems can be found
in [16, 17, 18). Different numerical methodologies on solutions of fluid flow, aerody-
namics, and similar problems can be found in any journal on numerical methods for
engineering. Some of the prominent journals dealing with numerical methodologies
and computer solution techniques are International Journal for Numerical Methods

in Engineering, and Computer Methods in Applied Mechanics and Engineering, to
name a few,

An overview of the existing approaches on mapping of irregular problem graphs to
multiprocessors can be found in [7]. There the authors discuss the different existing
schemes, and conclude that methods based on recursive spectral bisection and recur-
sive clustering have the most potential. As it is discussed in the paper, the different
approaches commonly used for unstructured mesh decomposition are: simulated an-
nealing, recursive graph bisection, nearest neighbor, recursive spectral bisection, and
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recursive clustering. The last three approaches are the most prominent, and hence
we discuss them briefly.

1.1.1 Nearest neighbor approaches

Nearest neighbor algorithms can be useful for mapping certain unstructured meshes
with 2 fairly organized structure onto a multiprocessor configuration. Typically they
proceed in two steps: an initial mapping where neighboring elements are grouped into
clusters, and exchange of elements along boundaries to improve load balancing. The
initial mapping is done by a technique called strip partitioning. The mesh is divided
into horizontal and vertical strips. Techniques called 1-D and 2-D strip partitioning
for meshes with rectangular elements and a hypercube system, are discussed in detail
in (8, 13). It was found that these techniques did not always work well, particularly
with highly unstructured meshes. The reason being that, essentially the nearest
neighbor is a geometric approach, whereas the mesh decomposition is a topological
one.

Some techniques discussed in this thesis, namely the gquad-iree based and the
binary-decomposition based schemes, are conceptually similar to the above technique.
The noticeable differences are that, (i) we use triangular elements, (ii) load balancing
is taken care of in our initial mapping itself so that we do not perform a second phase
of boundary refinement, and (iii) the most important is that, we use the topologi-
cal information of the mesh in partitioning which should take care of unstructured
meshes.

A similar binary-decomposition technique dealing with irregular meshes with rect-
angular elements and using the geometric information of the mesh can be found in
[10]. There the authors theoretically study the communication cost of mapping this
partitioning onto different multiprocessors: a mesh-connected array, a tree machine,
and a hypercube.
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1.1.2 Recursive sprectral bisection

As explored in [T}, the recursive spectral bisection procedure(RSB) has been developed
separately by both R.D. Williams and H.D. Simon. The approach is based upon
the computation of a specific eigenvector of the Laplacian matrix of the connected
graph, G. The algorithm assumes that the decomposition will produce connected sub-
meshes. However, the authors in [7] point out that this is not guaranteed and it is
not then clear how the algorithm would proceed, since the underlying theory only
applies to connected graphs. Moreover, whenever the sub-meshes are connccted then
the resulting partition is nearest neighbor, and thus it has the advantages and suffers
the same disadvantages as the general nearest neighbor strategy. The pros and cons
of the nearest strategy have already been discussed previously.

1.1.3 Recursive clustering

This is an alternative topological approach which does not suffer the disadvantages
of the RSB, and is discussed in [19]. It works as follows:

1. Arbitrarily assign each element to one of two clusters A and B so that there is an
approximately equal number of elements in each cluster.

2. Evaluate the communication cost of this partition and find out which pair of
elements when swapped give the maximum reduction in cost.

3. Temporarily removing the previously swapped pair, find the next best pair and
continue until no more pairs remain.

4. From the set of all swaps, find the subset which minimizes the communication
cost. Make the swap.

5. Repeat steps 1..4 recursively to obtain 2" partitions.

This approach was found to work well on a wide variety of unstructured meshes.
However, it has a number of limitations:

1. The mesh can only be partitioned into 2" clusters.

2. Each split does not imply an overall optimal situation.

3. The optimization procedure tends to get caught in local minima.
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4. One more important point, which is not meationed in [7], is the pre-processing
cost. Intuitively one can predict that a large amount of computational cost is involved
in computing the communication cost for each swapped peir, and then finding the
minimal cost subset, as in steps 2..4. Moreover, this cost accumulates recursively.
In situations, this pre-processing cost might mask the benefit obtained from actual
parallel computation.

The authors in [7] suggest an eztended recursive clustering algorithm to take care
of some of the limitations of the above scheme. The above scheme is limited to splits
of 2" clusters. They suggest an alternative scheme, where the mesh is arbitrarily
split into N clusters, where IV is the number of processors in the parallel system.
As a next step, every pair of clusters is operated on to minimize the communication
cost as in the previous scheme. However, this scheme also has the tendency to get
stuck in some local minima. To take care of this, they suggest a change of the cost
function in the optimization procedure. The simplest function to minimize is the
total inter-processor distance traveled over the topology which enables all relevant
communication to take place. However, it still has a large pre-processing cost, as
pointed out in 4 above.

A similar technique has been used by the authors in [3] for mapping to CM-2,
which is an SIMD machine with 64K processors. The underlying topology is an 11-
dimensional hypercube of sprint nodes, where each sprint node is composed of 32
processors. The mapping comprises of an initial mapping which maps an equal num-
ber of tasks to each processor, followed by an iterative improvement of the mapping
- parallel pairwise exchanges of tasks between the processors, somewhat similar to
the above scheme, which also takes advantage of the interconnection topology and
parallel communication features of the underlying machine. This scheme also suffers
from the same limitations as pointed out in 2..4 above.

Some other mapping scheme specific to the Connection Machine system CM-2
have been discussed in [20]. The 65536 processors of the CM-2 the authors used were
- packed into 4096 16-processor chips, each having its own router node. The 4096 router
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nodes were arranged in a hypercube of dimension 12. To cope with this topology, they
proceed in two steps. First, the given mesh is decomposed into 4096 sub-meshes, each
containing 16 connected finite elements. Next, they apply 2 heuristic mapper which
identifies which hardware chip is to be mapped onto which sub-mesh. Finally, within
each sub-mesh, elements are assigned randomly to the processors of the corresponding
chip. The heuristic mapper in the second step above basically searches iteratively for
a better mapping candidate through a two-step procedure for the minimization of the
communication cost associated with a specific parallel machine topology.

However, the authors in [21] point out that although the above methods for CM-2
generate efficient mappings, the computational time required to compute a mapping
may represent a substantial part of the total processing time. This makes them
unsuitable for very large applications, and for applications where adaptive remeshing
may be necessary. Alternatively, the authors use some random mapping strategies for
their finite element solution of computational fluid dynamics problems on CM-2 and
CM-200. However, they point out that these random mappings are not necessarily

optimal for finite element problems, and the search for other mappings will be the
topic for future research.

Some mapping strategies discussed above, namely the nearest-neighbor approaches,
did not work quite well with highly unstructured meshes, mainly because they used
the geometric information of the mesh for partitioning to processors. The idea of
assigning some form of topological co-ordinates to nodes relative to one reference set
and the subsequent mapping onto a processor array can be found in [8]. Similar
techniques with reference to two reference sets can be found in [9]. Some of the many
other interesting readings on the issue of mapping are [3, 4, 12].

1.2 Thesis organization

The thesis is organized as follows. First, we give a brief overview of a typical ir-
regular problem, and the numerical method employed to solve it. Then we give 2
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brief overview of the machine on which we implement and test these general solution
strategies. It is essential to adopt some suitable criteria to measure the quality of any
specific mapping strategy for effective comparison. We discuss it in chapter 8. In the
subsequent chapters, we discuss the different strategies adopted and their pros and
cons, followed by a discussion on the implementation details on DECmpp12000/Sx
and the results obtained with experimental problem domains. Finally, we conclude

the thesis with a note on future work.

The next two chapters are mainly reviews. Our contributions are discussed in the
subsequent chapters.



Chapter 2
An irregular problem

‘We consider a steady-state, 2-D, heat conduction type problem. As an example, lct
us consider a rectangular plate, one side of which is being constantly heated by a
steady heat source. There is no turbulent motion of the air surrounding the plate (or,
the plate is in vacuum) and, as a result, the temperature of the plate has reached a
steady-state. We are interested in finding the steady-state temperatures at different
points of the plate. The mathematical model of such a problem is composed of partial
differential equation(s), and some domain of interest, with given boundary conditions.
In cartesian co-ordinates, the governing equation for such problems is of the general
form:

2 2
ré(‘;xf + 3;: + g:f) +855=0 (2.1)

Here, ¢ is a general scalar dependent variable, Iy is the corresponding diffusion
coefficient, and S is the appropriate volumetric generation rate or the source term.
In the case of our example problem, the scalar dependent variable is the temperature
T, the diffusion coefficient is the thermal conductivity K of the material of the plate,
and St is the volumetric rate of heat generation. Given a domain of interest, with
given bc;undary conditions, we are interested in finding the steady-state temperatures
at different points of the domain.

10
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2.1 Derivation of the heat conduction equation

Let ¢ be the heat flux and Sz be the volumetric rate of heat generation. In vectorial

form, the heat flux at any point (z,y, z) can be represented as:
g= ng + Qy.;- +gq:k (2.2)

where ¢, ¢, and g, are the comporents along X, Y and Z axes respectively. Let us
consider a control volume AzAyAz, as in Fig. 2.1.

z

yray

XedX

Figure 2.1: Energy conservation in a control volume

By the energy balance of the control volume, we obtain
(g=+0: — 3=) D902+ (gray — ) DzOT + (grias — 2:)AT0y = St AzLy Az (2.3)

By Taylor’s series expansion, we have:

3q,

dorae = 0 + 2E(02) 4 (3) 2%

(8z)* + (24)
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Similarly, we can expand ¢y4a, and g:4a.. Now, substituting in (2.3) and simplifving,

(5‘qu +& )3q= d%q,

(82 + - )0yaz+ (Ray+ () F
9g: 1,8% Qx

3By + )

DzAz+ ( == (Az) +--)AzDy = StAzAyA:

A +()
0qz

> +()3aq:(A) )+(a"” GIE@D+ )b =5r @)

In the limiting case as Az, Ay, Az — 0, we obtain from (2.5),

3?.-, 3¢Iy an = ‘

Now, by Fourier law of thermal dlﬂ"usxon:

§=-~KVT
= g+ qi +ak =—K(5i+ 57+ k) (2.

t~
=]
j —

Combining (2.6) and (2.7), we obtain,

#T &T  &T
K(ge+ 52 + 5) +51=0 (2.8)

Equation (2.8) can be represeated in the form:
VAKVT)+Sr =0 (2.9)
where V = 27 + 88—1,3 + 2k.
In general, we are interested in solving equation of the form:

V.(TsVg) +Ss =0 (2.10)

2.2 Numerical solution of the problem

We consider 2 numerical solution for a 2-D case of such a problem. One numerical

way of solving these types of problems is the conirol volume finite element method,
CVFEM for short [1]. It involves the following steps:
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o Discretization of the calculation domain into finite elements.

o Prescription of suitable element based interpolation, or shape, functions for the

dependent variables.

o Derivation of discretization equations, which are algebraic approximations to

the governing equations.

¢ Solve the discretization equations.
Below, we elaborate the different steps.

o Step 1: This involves the discretization of the given domain into finite elements.
In a two dimensional case, either triangular or 4-node or 8-node quadrilateral el-
ements are chosen. In our case, we use triangular elements. The domain of inter-
est is divided into triangular elements. Delaunay triangulation using Bowyer’s

. algorithm [2] is the technique employed in triangulating the domain. As a next
step, the centroids of the triangular elements are joined to the midpoints of
the corresponding sides, which creates polygonal control volumes around each
node in the calculation domain. A sample domain discretization is shown in
Fig. 2.2. Here, the solid lines denote the domain and element boundaries, the
dashed lines represent the control-volume faces, and the shaded areas show the
control volumes associated with one internal and one boundary node.

In Fig. 2.3(a,b,c), the control volume around an arbitrary node ¢ is shown by 2
dashed outline. The values of ¢ are computed at the nodes of the discretization,
which correspond to the corners of the triangular elements.

¢ Step 2: This involves the prescription of suitable interpolation, or shape, func-
tions for the dependent variables ¢, I'y and S;. The reason being that, these
variables are available only at the interfaces of the control volumes, and are not
available within the triangular elements. The solution is to prescribe some suit-
able interpolation functions so that they can be defined inside these triangular
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a y b
{(a) Consrruction of control volume (b) Control volume around an internal
xound a pode i. node i.

i
(c) Control volume axround an external node L.

Figure 2.3: Control volume generation

14
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elements. For instance, the dependent variable ¢ is interpolated linearly by:
¢=Az+By+C (2.11)

where A, B and C are constants for a triangular element, and (z,y) is the co-
ordinate of the point where ¢ is to be computed, assuming 2 two dimensional
case. Thus, considering the triangular element 123 and its local x-y co-ordinate
system with centroid o as the origin as in Fig. 2.4, the values of ¢ at the three
corners of the triangular element are given by:

¢; = Az;+ By; +C, 1=1.3 (2.12)

where (z;,%), ¢ = 1..3, are the local co-ordinates of the three corners of the
triangular element.

1

A typlcal trianguler clemeont and tbhe local X, Y
corodinato systom.

Figure 2.4: A triangular element
From (2.12), A, B, and C can be computed for the triangular element as:

A = [(va—ys)ér + (v3 — y1)é2 + (v1 — ¥2)¢a) / DET (2.13)
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B = [(323 - 23)¢1 -+ (31 - 23)% + (:122 - z;)qba]/DET (2.14)
C = [(z2y3 — zay2)é1 + (Zays — Zays) b2 + (T1y2 — Tatn )6a]/DET
(2.15)

where DET = (z1y2 + Zays + T3ty — Y122 — Y223 — ¥3T1)-

Similarly, in each triangular element, the centroidal value of Ty is stored and
assumed to prevail over the corresponding element. The source term Sy is
assumed to prevail in the following form:

Se=Sc+ Spo (2.16)

Centroidal values of S¢ and Sp are stored and they too are assumed to prevail
over the corresponding element.

e Step 3: The basic idea is to apply the energy conservation principle to finite
control volumes in the calculation domain. Applying the integral conservation
. equation for (2.10) over a control volume V, as in Fig. 2.5,

ﬁ (V.(TeVg) + Sp)dV = 0

= ﬁ. VATV 6)dV + fv SedV = 0 (2.17)
Now, by Gauss’s divergence theorem:
}5, V([ V¢)dV = js (ToVé.5)dS (2.18)
where # is the unit normal vector to the surface. Now, from (2.16), we get:
js (TsV¢.7)dS + jv SedV =0 (2.19)

Now, let us consider a typical node ¢ in the calculation domain; it could be an
internal node or a boundary node as in Fig. 2.9. Applying (2.18) to the control

volume associated with node ¢ in Fig. 2.4, we get:
([ CsP44)dS + [[(C4T67)S+ [ S4dV)+ (similar
coniributions from other elements associated with node i)+

. (boundary conditions if applicable) = 0 (2.20)
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E’)

Figure 2.5: An arbitranly shaped control volume V
From (2.11), we obtain,

TeV¢ = Tol52+ 35.9)
= T4Ai+T,Bj (2.21)

With reference to the element 123 in Fig. 2.4, and its local x-y co-ordinate
system, we have:

08 = Zat + Yol (2.22)
and the unit normal vector to it is given by,
g = Vet (2.23)
joa
and, figy = 2ol (2.24)
jéo -

Similarly, we can represent 71, and fi,.. Combining (2.22) and (2.24), we get:

j: (TeV.ta)dS = f (T4A% + T4 B3). yatl ~lz¢,7 Yot —Za] ;q



' . CHAPTER 2. AN IRREGULAR PROBLEM 18

ll

f T'eAys :PéBzcdS
a |do}
_ TsAy. = I'yBz, 3|
o]
= [4Ay, —T4Bz, (2.25)

In a similar way,
j’ (CsV$.7)dS = T Ay + T'sBz. (2.26)

The equation involving the source term in (2.20) is approximated as:

fi“c SedV = %"Sc + '?—Spﬁ (2.27)

where A, = |[DET|/2 is the area of the element 123. DET is defined with

reference to (2.15). Now, substituting values of A, B and C from (2.15), and
then combining (2.20), (2.25), (2.26), and (2.27) we obtain,

® / *(C,V¢.3)dS+ / “(CsV6.7)dS+ |_SsdV = Ci1+Caa+ Catat By (2:28)
where,

Ci = parllte =3 =10 + (20 = 2)(@a—22)] - 3P (229

Cr = paslive = ue)(ss =) + (2 — 2)(ms = 1) (230
G = palive ~ 4ol = ) + (2= 2)(es = 22 2:3)
B = %5 (232

Expressions similar to (2.28) can be evaluated for all other triangular elements
associated with node i, as in Fig. 2.3. Substituting them in (2.20) we get:

aigi =3 (a;¢;) + b (2.33)

where the summation is performed over all the neighboring nodes of node i.
Here, a;’s and a;’s are coeflicients for each node, and are defined in terms of
. the co-ordinates of the nodes, I'y, S¢ and Sp. Thus, these coefficients can be
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computed beforehand. Equations similar to (2.33) can be derived for all internal
nodes in the calculation domain.

For nodes that lie on the boundary of the calculation domain, the discretization
equation for any boundary node i is replaced by the following equation:

@i = Pupecified (2.34)
where @ pecificd is the boundary value of that node specified beforehand.

e Step 4: This step involves the solution of the discretization equations specified
by (2.33) and (2.34) for all . These discretization equations form a set of
simultaneous algebraic equations. As a direct solution technique, the following
iterative procedure can be used to solve these equations:

1. Guess all unknown values of ¢ in the calculation domain.

2. Compute the new value of ¢; for each node i based on previous values of ¢;’s
. for all neighboring nodes j of :, as specified by (2.33).

3. Repeat step 2 above until all $’s converge.

2.3 Parallel solution of the discretization equa-

tions

Since each node { in the discretization has to perform similar computations with the
data from its neighboring nodes, as specified by (2.33), by performing them in a data
parallel way should give a large performance gain. The nodes in the discretization
can be mapped to the processors, and computations and communications can then
be carried out in paralle]l over several iterations until the computed values converge.
It is clear that communication occurs between nodes and their immediate neighbors.
Hence, the farther the nodes and neighbors are mapped, the more is the communi-
cation overhead. Here, the distance between a mapped node and one of its mapped
neighbors is measured by the minimum number of physical communication edges
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from the processor where the node is mapped to the processor where the neighbor
is mapped. In a subsequent chapter, we discuss this issue in more detail. The issue
of mapping nodes and neighbors close enough comes here, since the communication
overhead has to be as low as possible to obtain a good performance gain.

Another issue here is load balancing. At one extreme, we can imagine mapping
all the nodes to a single processor, which is equivalent to sequential processing. Ob-
viously, it will give the least performance gain. The key issue here is to keep all the
processors equally busy with a well balanced load during the entire process of com-
munication and computation. Since the domain of interest can be of any shape and

the number of neighbors of each node can vary from node to node, it is an irregular
problem.

We repeat the following for convenience to the reader. We use the term problem
graph to interpret the graph representing the interconnection topology of the nodes
in the discretization. Each node in a problem grapk will be called a problem node or
simply a node. The term system grapk will represent the processor interconnection
topology of the parallel machine, Each node in the system graph will be termed a
processor node or simply a processor. Hence, the mapping problem is to find some
suitable strategy to map the problem nodes to the processors so as to reduce the
communication overhead and to maintain a good locality of the nodes, as well as to
maintain a well balanced load on all the processors.



Chapter 3

DECmpp12000/Sx: An overview

The general strategies designed were implemented and tested on DECmpp12000/Sx.
We first give a brief overview of the machine before describing the different strategies.

DECmpp12000/Sx is a data parallel system, often called a single instruction, mul-
tiple data(SIMD) system {6]. In SIMD systems, a single program instruction can be
executed simultaneously on many relatively small processors, and on different data.
It consists of one instruction fetch unit, and more than one data processors. The in-
struction stream is processed serially, but all data processors function simultaneously
on independent data. With at least 1000 processors, it is a massively parallel system.

Massively parallel data systems can be many times faster than other systems for
suitable applications. Applications that make best use of DECmppl2000/Sx system
and the language MPL are those in which the same instruction is being executed on
thousands of data points at once. Examples of such applications include imaging,
fluid mechanics, and thermodynamics, to name only a few. The specific example
which we considered in the previous chapter falls in this category. In order to take
full advantage of the system, we should use some language, for instance MPL, which

21
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can address parallel data efficiently. We will discuss about the language MPL shortly.

The complete layout of the system is as follows. It consists of a console system,
which is either a DECsystem 5900 server or 2 DECstation 5000/240, and a data
parallel unit(DPU). The console system runs the ULTRIX operating system and uses
standard I/O. The DPU consists of an array control unit (ACU), an array of at
least 1K processor elements(PEs) which can go upto 16K, and PE communications
mechanisms. In fig 3.1, we show a conceptual diagram of the system. In the next
section, we give a brief outline of the different system components.

PE Communications
OO OOoOOde.
oooooooo-
— 00000000k |4
o I o o o o o o N R
o o o o o o Y
minininlinlululs
mininlinlulinli=nls
OooooOoOooOog
Standard 120
—Ethemet

Figure 3.1: A conceptual diagram of DECmpp12000/Sx

3.1 System components

e Console system: This is a scalar processor that runs the ULTRIX operating
system and provides standard I/O devices. The console system is either a
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DECsystem 5900 or a DECstation 5000/240.

o Data parallel unit(DPU): The DPU is where all parallel processing is done. It
includes the array control unit{(ACU) and the processor elements(PE) array.

o Array control unit{(ACU): The ACU is a processor with its own registers and
data and instruction memory. It has upto 22 32-bit registers available for user
declared register variables, 128 KB of data memory, and 1MB of RAM that
expands to 4 GB of virtual instruction memory. It controls the PE array and
performs operations on singular data. The ACU sends data and instructions to
each PE simultaneously.

o Processor elements(PEs): Each PE is an arithmetic processing element with
dedicated registers and RAM. Each PE has 40 32-bit registers, upto 33 of which
are available for user-declared register variables. Each PE has either 16 KB or
64 KB of RAM. Each PE receives the same instruction from the ACU, and if

. it is enabled, it executes the instruction on variables that reside on itself. In
MPL, any variable that is declared to be a PE variable is replicated exactly,
except for its value, on every PE.,

e PE array: It is the two-dimensional representation of all PEs in a system. A
system has 1K, 2K, 4K, 8K or 16K PEs, and these are arranged in a matrix
that has either an equal number of rows and columns or twice as many columns
as rows. A processor in the PE array can be identified by its co-ordinate (z,y),
where z and y denote the row and column respectively of the processor. The
first row/column is called the 0, row/column.

e PE communication: This constitutes communication between PEs and the ACU
and between two PEs in the PE array. Communication between PEs and ACU
takes place over a special bus. Communication between two PEs consists of the
XNet communication and the global router communication.

e XNet communication: It constitutes the synchronous direct communication be-
. tween any PE and any other PE that lies on a straight line from the original
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PE in one of the following eight directions in the PE array: north, northeast,
east, southeast, south, southwest, west, or northwest.

e Global router communication: It constitutes the asynchronous communication
between any particular PE and any other PE in the PE array.

3.2 DECmppl2000/Sx programming language

MPL is the lowest level programming language that the DECmpp12000/Sx system
supports. The purpose of MPL is to program the DPU, and can be used to encode the
appropriate portion of an application in a data parallel way. These MPL subroutines

can be called from the scalar program running in the console system, written in either
C or Fortran.

. MPL is based on ANSI C. All ANSI C language features are supported by the
MPL compiler. In addition, keywords, statements, and library functions have been
added to support data parallel programming. In general, the additions are:

¢ A new keyword, plural, distinguishes between two independent address spaces.
Variables defined using the keyword plural are located identically on each PE
in the PE array. Variables defined without this keyword are singular variables
and are allocated on the ACU.

e All arithmetic and addressing operations are supported for plural data types.

e SIMD communications are implemented. Two explicit constructs, XNet and
router, are used for data communication in the PE array.

e SIMD control statement semantics are supported. SIMD control flow also con-
trols the active set, which is the set of PEs that is enabled at any time during

execution. The size of this set can be no larger than size of the physical PE
array.
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Besides, the DECmpp Sx parallel programming environment includes tools to compile
and analyze programs. These tools constitute the compilers, debuggers, visualizers,

and profilers.

3.3 The communication primitives

There are two types of communication primitives, the synchronous XNet communi-
cation and the asynchronous rouler communication. There are also library routines
which use these two constructs. A detailed discussion regarding the timings with
these constructs can be found in {5, 6).

The performance of the router construct depends on the number of collisions.
Because of this reason, when one PE wants to broadcast some value to all other PEs,
it can be slower by a factor of the total number of processors, as compared to the case
when one PE communicates with only one other PE. Thus, it is efficient when many
PEs communicate with other PEs, and inefficient when every PE communicates with
the same PE. In our present experiments, we have adopted no measures to count the
number of collisions, or to reduce them.

3.4 The programming model

The recommended model for programming with MPL is:

1. Start with a DEC Fortran or C program.

2. Compile and run the program, and verify that it runs correctly under ULTRIX on
the console system.

3. Examine the program to find out what portion(s) of it can be executed in a data
parallel way. Also decide which variables should be redefined as plurael and operated
on in a data parallel way.
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4. Replace the code identified in step 3 with MPL subroutines, and call these sub-
routines using callRequest MPL library function.

An experienced MPL programmer can straightaway write the routines in C and
MPL without following the above model. We show some important constructs of the
language through a few examples.

3.4.1 Example 1: Console to DPU communication

This example shows a C program that calls an MPL subroutine. It shows how the
MPL subroutine is called by a scalar program and how data is passed to and from the
subroutine. First we show the scalar code in C and then the MPL code. The scalar
code is in standard C except for the call to the callRequest MPL library function.

#include <mpl.h>
extern mpl_sub(); /* MPL names must be declared "extern" in C to
be used */
main()
{
double arr1[1024], arr2[1024];
double £,g;
int 1;
for (i = 0; i<1024; i++)
arr2[i] = double(i);
g = 1.25;

/* Now call the MPL subroutine, passing the data addresses.
It is required to pass the addresses of everything that

one wants to transfer either into or out of the MPL sub-
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-routine using copyin, copyout or blockin, blockout.

x/
callRequest (mpl_sub, 16, &f, &g, arrl, arr2);

/* Above, we call the MPL routine "mpl_sub" from this scalar
routine. Here 16 is the size in bytes of the remaining
arguments in the call, four 4-byte pointers.

*/

printf("arr2[0] = %£, £ = %f\n",arr2[0],£);

To call an MPL subroutine from the scalar program, we have to use the callRequest
MPL library function, as shown in the above piece of static C program ruaning
. on the console. In order to pass arguments from the scalar program to the MPL
subroutines, we have to use the callRequest, copyln, copyOut, blockIn, and blockOut
MPL library functions. The third to the ny, arguments to callReguest are all passed
to the subroutine named in the first argument, mplsub in this case. The second
argument is the total number of bytes of the third through n., arguments.

The code for the MPL subroutine, mplsub, is as follows:

#include <mpl.h>

visible mpl_sub(); /* Must be declared "visible" for C in the console
to use it */
rpl_sun(fe_f_p, fe_g_p, fe_arrl_p, fe_arr2_p)
void *fe_£f_p;
void *fe_g_p;
void *fe_arri_p;
void »=fe_arr2_p;
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plural double arri, arr2;

double £, g;

copyIn(fe_g_p, &g, sizeof(g)); /* Transfer the value of "g" from
the C routine in comsole =/

blockIn(fe_arr2_p, &arr2, 0, 0, nxproc, nyproc, sizeof(arr2));

f = reduceAdd(arr2);

arrl = arr2/f + g;

copyOut(&f, fe_f_p, sizeof(f));

blockout (¥arr2, fe_arr2_p, 0, 0, nxproc, nyproc, sizeof(arr2));

Here, copyIn and blockIn routines are used to iransfer data from the console to the
DPU. Similarly, copyQOut and blockQut are used to transfer data from the DPU to
the console. Similar programming model and library functions are used in our im-
’ plementation of parallel CVFEM, and hence we bring in this example as a concise
illustration. :

3.4.2 Example 2: Pixel averaging

In this example, there is a rectangular array of image elements, each with an 8-
bit intensity measure. We want to smooth out the image by revising each value to
represent the average of itself and its eight nearest neighbors. We assume that cach
pixel element is mapped to a processor element, and there are an equal number of

pixel and processor elements. This example basically illustrates the applicability of
the Xnet.

#include <mpl.h>

/* The following subroutine averages each pixel with the values of
. its 8 neighbors, N, NE, E, SE, 5, SW, W, NW. We ignore the PE
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array edges,i.e. torroidal wraparcund is taken into account.
It turns out that only 4 Xnets are necessary, since the first
line accumulates the values of NE and NW neighbors to the N
neighbor, and the second line accumulates the values of SE and
SW neighbors to the S neighbor.

=/ '

plural int

average(src)

plural int src;

{
src += xmetW[1].src + xnetE[1].src;
src += xnetN[1].src + xnetS[1].src;
return(szrc);

}

3.4.3 Example 3: Greatest Common Divisor

The following example illustrates how the control flow in the PE array works out. This
is a plural version of Euclid’s classical Greatest Common Divisor algorithm. Values
of x and y may be different on each PE. The code works as expected in MPL in that
the while statement is not finished until all PE’s are finished with it, but PEs that
finish early are temporarily disabled until all PEs are finished. In the if statement,
some PEs may execute the then clause and some PEs may execute the else clause.

/* The following routine finds the GCD of two nunmbers x and y */

plural int GCD(x,y)
plural int x,y;
{ .
while (x != y).
if (x)y).-x-x-y;
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else y =y - x;

return (x);

The example is important because it demonstrates how some processors can be made
idle by the proper use of some flag. All processors whose flags are set can be made
to execute the if part of the statement, while the remaining processors can be made
to remain idle. Thus, with proper use of some active flag, we can effectively select
an active set of processors, which have to perform some specific operation at some
instant of time. The while loop above also illustrates why load balancing is important
in our application. The while statement is not finished until all processors are finished
with it. So, in a load-dependent while statement, it is essential to distribute loads
evenly on all processors in order to keep them equally busy.



Chapter 4
Some initial mapping strategies

Before we start our discussion on different initial mapping strategies, we have to first
fix some measure(s) which can suitably predict the quality of any mapping strategy.
The main objectives of our mapping strategies are to maintain a reduced commu-
nication overhead and a good locality of the nodes of the problem graph, as well as
maintain a well balanced load on all the processors. Accordingly, we should first define
one or more objective functions which can suitably measure some of these objectives.
The next step is to design the mapping scheme which can minimize the values of
specific objective function(s). Before defining our objective functions, we introduce a
few definitions which will be used in the rest of the discussion.

4.1 Measuring the quality of a mapping strategy

The discussion in this section regarding objective functions follows from the work
already described in [3, 4]. We first define a few terms which will be used in the rest
of tke discussion.

A problem graph Gp is formally defined as:

31
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Gp =< Vp, Ep >, where

Vp = (vpk|vpk is 2 problem node)

Ep = (&pij|epi; is a problem edge between problem nodes
vpi and vp;)

Here, Vp and Ep are the sets of problem nodes and problem edges respectively.

Let v,; and v,; be any two problem nodes. We say that they are connected if there
exists a path from one node to the other, where a path denotes a sequence of edges. A
path from v,; to vy; can be represented by e 1o.1,...1n.5 WhETE pitg, Entoly s - Eptni € Ep- A
problem graph Gp is connected if and only if each pair of nodes in Vp are connected.
From now on, whenever we consider a problem graph, we will assume that it is
connected.

The nominal distance between two problem nodes v,; and vy; is the length of the
shortest path between the two nodes. This nominal distance is denoted by Dj;;.

Similarly, we define the terms G's, Vs, and Egs for the system graph representing
the interconnection topology of the parallel machine. For convenience, we will denote
each system node in Vs as a processor node or simply as a processor. We denote
the nominal distance between two processors v,; and vy by D,u. For instance, in
the case of a Hypercube, this nominal distance between any two processors is the
Hamming distance between them. Similatly, in the case of DECmpp12000SX, which
is a two-dimensional mesh, the nominal distance between any two processors is the
minimal number of hops in the X and Y directions from one processor to the other,
taking toroidal wrap-around into account.

Now we are in a position to define one of our criteria for quality measurement. One
of the objectives of the mapping problem is to find a suitable surjection ¢ : Vp —» V5,
so that the value of the objective function A is minimized. We define A as follows:

A=3"Du, ei;€EpP (4.1)
e
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where, ¥(vy) = ve, and P(vp;) = vat.

Thus we are trying to minimize the sum of the message distances between mapped
nodes and neighbors. It is important to note here that in our practical applications,
it is not necessary that message between two processors will always follow the minimal
path between the processors. Still, the above measure gives an idea of the proximity
of the nodes after being mapped. At a first glance, it looks as if it should be the only
criterion for optimization, but we should be slightly careful at this point. It should be
noted that reduction of this A alone does not mean speedup in actual computation.
In fact, speedup depends on some other factors as well. For instance,

e Load balancing is one important factor to be taken into consideration. In one
extreme, we can make A equal zero by mapping all the nodes to a single proces-
sor, but this will make things highly sequential. If we don’t take load balancing
into account, making A small might result in an imbalanced load on all the
processors. This can make things equally worse, because some processors might
have to wait idle, while some others might do most of the work, and the net
effect is the time taken by the busiest processor.

e Another issue is the number of collisions in the message paths. For instance, in
the case of DECmpp12000/Sx, communications are through the Xnet and the
router. In the case of roufer communication, the communication time depends
on the number of collisions in the communication paths. When we compute A
for mapping onto this machine, we assume that all communication takes place
exclusively through the Xnet. But in practice, this is not possible due to the
irregular nature of the problem. So the entire communicatior has to be divided
between the Xnet and the router. So, a reduced A, which is computed on the
basis of exclusive Xnet communication, may not always give a reduced time in
the solver. Still, a measurement of A gives some idea about the closeness of the
mapped nodes and neighbors, and hence it can suitably preé.ict the quality.

Taking the above issues into consideration, we adopt the following criteria for a
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quality mapping: a reduced A together with a well balanced load on all the processors.

Presently, we don’t take the issue of collisions into consideration.

All the general strategies designed were implemented and tested on DECmpp12000/Sx.
They were compared in the following way.

Whenever we have to compare two different mapping strategies, we take the same
problem grapk and then apply both strategies to map this problem graph to the
system graph under identical conditions. The mappings are such that a well balanced
load is maintained on all the processors. Then we compare the corresponding Ms.
The mapping strategy giving the lower value of X consistently for several graphs is
definitely the better strategy. We also compare the timings in the solver, which are
identical for both the mapping strategies. It is found that a lower value of A with
a well balanced Joad gives better timing, with very few exceptions which can be
attributed to collisions in router communication as described before.

Now we are in a position to discuss the different strategies.

4.2 A bad Random Mapping strategy

The next important issue is to compare the performance of any mapping heuristic
with some other bad mapping scheme, which does not follow any heuristic. This way
we will be able to know the benefit we derive by applying the heuristic. That bad
strategy may be the sequential counterpart of the problem, but it is not a sensible idea
to compare the performance of two implementations on two different architectures.
So, we adopt a random mapping strategy, which simply scans through the nodes and
then maps nodes to the processors in a random fashion. Since any node can go to
any processor depending on the order it is entered, it is in a sense random and it has
a tendency to completely destroy the locality of the nodes in the problem graph. It
simply goes as follows.

Let N be the total number nodes in the problem graph, and let np., be the total
number of processors. Let us also assume that the processors are numbered from 0 to
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(nproc—1) in any arbitrary fashion. Then n = [&] is the average number of nodes
that should go to each processor. Nodes 0..(n — 1) are mapped t> processor 0, nodes
n..(2n —1) are mapped to processor 1, and so on. In general, nodes kn..((k+1)n—1)
are mapped to processor k, where k = 0([_% — 1). Fewer than n nodes will go to
the remaining processors depending on whether N is a proper multiple of npro or not.
Everything else is the same as in the other heuristic. Then we compare the results,
i.e. the measures of A as well the computational time in the solver with experimental
domains. The results for DECmpp12000/Sx are illustrated in a subsequent chapter.

4.3 A Greedy close-neighbor heuristic

We start with a naive algorithm to map the nodes to the processors. It is based on the
simple requirement that whenever we map a node, we see that it is mapped as close
as possible to its neighbors. First we give the restricted algorithm, which assumes
that the number of problem nodes is at most equal to the number of processors.
Subsequently we generalize it for any number of problem nodes. We discuss the
heuristic next.

4.3.1 ‘The restricted algorithm

In the following discussion, we use the term close vicinity of any processor v, in the
system graph. In simple terms, it implies any available neighboring processor of vy,
to which at least one more node can be mapped. We can have different criteria to
find this close vicinity, depending on the processor interconnection topology. We first
describe the algorithm before elaborating it further:

1. Reset active flag on all processors.
2. Repeat
2.1. for each node v, in Vp
do
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2.1.1. if vy; is the first node to be mapped
then
2.1.1.1. map it arbitrarily to any processor v,; in Vs.
2.1.1.2. set aclive flag on v,
2.1.1.3. for each unmapped neighbor v,; of v,
do
2.1.1.3.1. map vp; to some inactive processor v,
in close vicinity of v,.
2.1.1.3.2. set active flag on v,;.
od
else
2.1.1.4. if vy is already mapped to some processor
Vam(2s neighbor of some other node)
then
2.1.1.4.1. for each unmapped neighbor vp; of v
do
2.1.1.4.1.1. map v,; to some inactive
Processor U,y in close vicinily of vym.
2.1.1.4.1.2. set active flag on v,n.
od
else
2.1.1.4.2. if some of its neighbor v,y is already
mapped to some processor v,,
then
2.1.1.4.2.1. map v,; to some Processor v,q in
close vicinity of v,y
2.1.1.4.2.2. set active flag on v,,.
2.1.1.4.2.3. for each unmapped neighbor vp;
of vy;
do
2.1.1.4.2.3.1. map v,; to some inactive

36
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PTocessor v,y in close vicinity of v,,.
2.1.1.4.2.3.2. set active flag on v,,.
od
else
(don’t map it now)
od
until all nodes in Vp are mapped.

All nodes should be mapped in a single iteration of the Repeat loop, provided
they are sorted in proper order. This is found to be the general requirement for all
experiments conducted.

Assuming that the number of nodes is less than or equal to the number of proces-
sors, at most one node should be mapped per processor. We declare a parallel flag
called active on each processor. Initially, all processors are made inactive, i.e. their
active flags are reset. As soon as a node is mapped to a processor, it’s active flag is

. set. We can have different criteria in selecting an available iractive processor in the
close vicinity depending on the processor interconnection topology.

For instance, in case of DECmppl2000/Sx, which is a two dimensional mesh with
toroidal wraparound, each processor has eight immediate neighbors at a distance
one, sixteen neighbors at a distance two, and so on. Whenever we search the close
vicinity of a processor for an inactive neighboring processor, we first search the eight
immediate neighbors at distance one in a clockwise/counterclockwise fashion, then
the sixteen neighbors at distance two, and so on. The search continues until we can
find the first available processor. The node is mapped to this processor, and its active
flag is set. Since our algorithm grabs the first available processor without thinking
about the future, it is greedy.

4.3.2 The generalized algorithm

: To generalize the above algorithm, we should have a previous knowledge of the total
. number of nodes and the total number of processors so that we can find the average
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number of nodes that should go to each processor. Let this average be n, as computed
in the previous section. The changes in the implementation are that, first each
processor has to be partitioned to hold more than ore node and second, there is a
different strategy in finding the next available processor in the close vicinity. Now,
we do not use an active flag. Instead, a processor is selected for mapping if the total
numnber of nodes already mapped to it is less than the average n. The rest of the
procedure remains unaltered. We try to maintain a fair load on all the processors by

not allowing to map more than the average number of nodes that should go to each
processor.

Each mapped node should contain information about where (i.e. processor id
and partition index on that processor) all its neighbors are mapped so that it can
communicate with them in the parallel solver. This information is set up in the
same scan or in a subsequent scan through the nodes in Vp. We discuss about the
implementation details in a subsequent chapter.

4.3.3 Setting up communication

One important issue is to set up communication between mapped nodes and neighbors
in the parallel solver part. As mentioned earlier, each mapped node should contain
information about where(i.e. processor id and partition index on that processor) all
its neighbors are mapped so that it can communicate with them. In the parallel
solver, computation and communication proceeds in a data parallel way over a fixed
number of iterations, which is large enough so that computed values are guaranteed
to converge. We keep this number of iterations fixed so that we can compare the
performance of different mapping strategies.

Setting up communication primitives depends entirely on the underlying machine,
but the basic idea is the same, We slightly elaborate this communication issue for
our implementation on DECmpp12000/Sx.
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Figure 4.1: Synchronous Xnet communication

There are two types of communication in DECmpp12000/Sx, one is the asyn-
chronous router communication, and the other is the synchronous Xnet communica-
tion. The Xnet is much faster as compared with the router. But in using the Xnet,
at any instant of the global clock, all communicating processors have to communicate
with their neighbors in an identical way, i.e. in the same direction and distance.
We can keep some parallel flag so that a processor communicates with its neighbor
if and only if its corresponding flag is set, i.e. it is a communicating processor at
that instant. It should be noted that, in the case of an irregular problem, at some
instant some processor might want to communicate with some neighboring processor
in some specific direction and distance, but another processor might have to remain
idle because none of the neighboring problem nodes are mapped to its corresponding
neighboring processor. This is illustrated in Fig. {.1.

In the above figure, at some instant of the Xnet communication with the immediate
North neighbors, processors v,2, v,3, v,9 and v,;; are idle. Processor vy is made idle
at that instant by proper use of some flag because (i)either none of the neighbors of
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the problem node v,; mapped to processor v, are mapped to its immediate North
neighbor v,s or (ii)no node is mapped to processor v,9. For convenience, we have
assumed that at most one node is mapped per processor. The same holds true for

the other 3 processors. Thus, it is evident that an exclusive use of the Xnet might
degrade performance.

Instead, we do a compromise between the Xnet and router communication. We
divide the entire communication pattern into two parts, one through the Xnet and the
other through the router. The Xnet communication is restricted only to a distance

of one, because anything more than one is found to degrade performance. The rest
of the communication is done through the router.

4.3.4 Limitations

Ore obvious limitation of the above schemeis that it is greedy, and hence the mapping
obtained and the corresponding A are not necessarily optimal. It is clear that some
nodes and neighbors in the discretization may not remain neighbors or even remain
close to one another after being mapped. This is because we have destroyed locality
by transforming 2 multi dimensional problem grapk into a one dimensional mapping
problem. The strategy has to be modified so that locality is not destroyed.

In the next chapter, we discuss quad-tree based and binary decomposition based
mapping strategies for 2-dimensional problem graphs. They can be generalized for
any arbitrary d dimension.

4.4 A layer by layer scheme

In the layer by layer scheme, we pick up an arbitrary node and put it in a queue. Then
we pick up all its neighboring nodes and queue them. We proceed along the queue,
and keep on queueing neighbors until all nodes are exhausted. Thus we proceed in
a layer-by-layer fashion, as illustrated in Fig. {.2, starting with an arbitrary node
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which is the layer 0 node. Its immediate neighbors constitute the layer I nodes, the
neighbors of the layer 1 nodes constitute the layer 2 nodes, and this way the layering
continues in a breadth first fashion. It can be put in the following form:

Pick up an arbitrary node v; from Vp.
Queue v,; and make nezt-queve pointer point to it.
Assign layer of vy; = 0.

L e

Repeat
4.1. Pick up next node v,; pointed by nezt-queue pointer.
4.2. For each unqueued neighbor vy of vp;
do
4.2.1. Queue vp;.
4.2.2. Assign layer of v, = layer of vp; + 1.
od
4.3. Advance nezt-queue pointer.
until end of queue(nezt-queue pointer points to NULL).

After arranging the nodes in this layer by layer fashion, we map them in such a
way that the adjacent layers are mapped close to one another, i.e. layer ¢ nodes are
adjacent to layer (i-1) nodes as well as layer (i+1) nodes.

For this, we compute the average n of nodes that should go to each processor, as
before. Then we scan along the queue. The first n nodes in the queue are mapped to
an arbitrary processor v,;, the next n nodes are mapped to an neighboring processor
v,; of v,;, the subsequent n nodes are mapped to a processor v,; adjacent to both
vy and v,5. In general, let v,; denote the processor where nodes kn..(k + 1)n — 1
are mapped. The numbering of nodes starts with 0 at the head of the queue. Then,
processor v, is selected arbitrarily. v,; is selected as a neighboring processor of
v50- Processor v, is selected adjacent to both processors v,-1) and v,-2) for I =
2.(1%] - 1).

Obvi_ously it is not a comfortable mapping scheme, because it has a tendency to

destroy locality of the nodes as in the previous scheme. However, our experiments on
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. Figure 4.2: Layering of nodes
DECmpp12000/Sx show it to be a better scheme than the rendom mepping scheme.
The results are illustrated in a subsequent chapter.



Chapter 5

A Quad-Tree based mapping
strategy

We initially discuss a quad-tree based mapping strategy based on geometrical co-
ordinates of the nodes. In this scheme, we try to cluster geometrically close nodes
together and map them to the same or neighboring processors. We presume that
maintaining geometrical closeness will automatically preserve the topology, which
comes from the node-neighbor relationship in the discretization. It is not necessar-
ily true, because two geometrically close nodes may not be neighbors in the actual
discretization. We try to resolve this problem in subsequent modifications. In the
following discussion, we will assume a 2-dimensional problem graph.

The basic idea is to partition nodes to different branches of a quad-tree based
“on their geometrical co-ordinates. The root of the quad-tree contains all the nodes
of the problem graph. Then tﬁey are routed to the four branches of the quad-tree
based on their X and Y co-ordinate values. We call each intermediate node of the
quad-tree as a quadrant. This partitioning process continues recursively with nodes
belonging to each of the quadrants, and stops at a depth which we are going to
discuss shortly. Each leaf of the quad-tree contains a bunch of nodes geometrically
close to one another. The mapping problem now focuses on mapping these leaves to

43
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the processors in the system graph so that neighboring leaves are not separated by a
large distance. It works as follows:

e Step 1: Find the four extreme co-ordinates of the nodes, i.e. leftmost X co-
ordinate Zj.y, rightmost X co-ordinate z,ig:, topmost Y co-ordinate y¢op, and
bottommost Y co-ordinate yp.eom. Construct a rectangle through the corner
nodes (zgdg,ym), (zg,;g,ybom), (z,,-,m,ym,), and ('.':,.,-,hg, ymgm). All nodes
fall on or within this rectangle. This rectangle corresponds to the root of the
quad-tree.

e Step 2: Find the average co-ordinates z,, = (Ziest + Trigne}/2 and yo =
(Ytop + Yottom)/2, and then divide the rectangle into four equal quadrants by
drawing lines through these averages. These quadrants are numbered fron 0
to 3 as illustrated in Fig. 5.1. They correspond to the four branches of the
corresponding quad-tree at level 1. Problem nodes are partitioned to different

. quadrants based on their X and Y co-ordinate values. For instance, a node vy,
with co-ordinate (z,y) will be routed to quadrant 0 if z 2> z,, and ¥ 2 Yau-
Similarly, it will be routed to quadrant 1 if z < 2,4, and ¥ 2 y,., and so on.
Note that each quadrant will contain a variable number of nodes, i.e. load is
not balanced across quadrants. From now on, we will use the terms brench of a
quad-tree, and quedrant interchangeably. We call each problem graph quadrant
simply as a problem quadrent.

Simultaneously partition the system graph into four equal system quadrants.
Conveniently map each problem quadrant to a system gquedrant so that neigh-
boring problem quadranis do not go far. In practice, each problem quadrent
is assigned an id which uniquely identifies the system quadrant to which it is
mapped.

e Step 3: For the purpose of load-balancing among the processors, adjust the
sizes of the quadrants, i.e. exchange nodes among the quadrants ‘respecting
geomelrical closeness of the nodes, so that almost an equal number of nodes
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goes to each quadrant. This can be achieved as follows. First exchange nodes
between quadrants 0 and 3, and quadrants 1 and 2. This can be termed as the
ezchange along the Y dimension. Then exchange nodes between quadrants 0
and 1, and quadrants 2 and 3. This is the ezchange clong the X dimension.
Thus each quadrant will finally contain an almost equal number of nodes.

» Step 4: Recursively follow steps 1..4 with each of the four problem quadrants
and the corresponding system quadrants.

e Step 5: Stop when the depth of recursion is k¥ — 1, where & = log,(no_of
_processors). We assume that the no_of_processors is such that we get an
integral value for k. Note that this k is the height of the corresponding quad-
iree.

At the bottom level of the quad-tree, we have a number of leaves, each containing

0 or more nodes. We assume that the number of leaves is equal to the number of

. processors. Each leaf is assigned with an id, which uniquely identifies 2 processor to
which all nodes belonging to this leaf are to be mapped.

A simple mapping can be on a two-dimensional square mesh, as in the case of
DECmpp12000/Sx. In the next section, we discuss a quad-tree based mapping strat-
egy for such a square mesh. In case the mesh is not a square, the length of the longer
dimension is an integral multiple of the length of the shorter dimension. Hence, we
can divide the mesh into an integral number of square meshes, and then apply the
same algorithm with some modifications.

5.1 Implementation on DECmpp12000/Sx

In a DECmpp12000/Sx processor mesh, processors are numbered as in Fig. 5.2. We
design and implement a quad-tree based mapping strategy for this machine. The
algorithm is illustrated below in a C like pseudo code. As we can see, at each level
. of recursion, each quadrant is labeled with an id, called quadn-id for n = 0..3, which



CHAPTER 5. A QUAD-TREE BASED MAPPING STRATEGY 46

QUADO 1 2 3

==
et Ll

——
% Qnmy Quadrant2 Quadrant3

Fiehds of & quadh-tree node and the Load balancing among quadrants.
corresponding geometrical representation.

Figure 5.1: A Quad-tree based strategy
is passed as a parameter. An id associated with a quadrant identifies the processor
partition to which it is to be mapped. At the lowest level of recursion, when we
reach the leaves, these ids become the corresponding processor numbers. All nodes

belonging to a leaf are mapped to the corresponding processor. Below we summarize
the implementation in a C like pseudo code:

/* The following algorithm is applicable only when log,(no-of _processors)
is a proper integer, and the processor mesh is a perfect square.
*/
quad-tree *build-tree(original-problem-node-list, level, id, x, y)
begin
/* Some variable declarations */
quad-tree *new-node;
problem-node-list *quad0-list, *quadl-list;
problem-node-iist.*quad2-list, *quad3-list;
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int quad0-id, quadl-id;
int quad2-id, quad3-id;
int k;

/* And other declarations */

k = log,(no_of processors); /* An integral value */
new-node:=(quad-tree *) create-new-node-for-quad-tree();
if (level=k) then /* We have reached a leaf of the tree */
begin
step 1:
new-node->problem-node-list:=original-problem-node-list;
step 2:
Assign id to all problem nodes in original-problem-node-list;
step 3: T
new-node->quad0:=NULL;
new-node->quadl:=NULL;
new-node->quad2:=NULL;
new-node->quad3:=NULL;
step 4:
Set appropriate values to other fields of new-node;
Step 5:
return(new-node);
end
else

begin
step 1:

x:=x/2;

y=y/2

47
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step 2:
quad0-id:=id + x;
quadl-id:=id;
quad2-id:=id + y;
quad3-id:=id + x + y;
step 3:
/* The following lists are sorted as described in next
subsection */
quad0-list:=the list of nodes from original-problem-node-list which
go to quadrant 0;

step 4:
[* The following is for load-balancing, and is discussed
in the next subsection.*/
Exchange problem nodes among quadrants in such 2
way that each quadrant contains almost an equal number
of them.
step 5:
new-node->quad0:=build-tree(quad0-list, level + 1,
quad0-id, x, ¥);
new-node->quadl:=build-tree(quadl-list, level + 1,
quadl-id, x, y);

step 6:
return(new-node);
end; /* Of else part */
end; /* Of build-tree() */
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main() /* Call from the main routine */
begin
int X, y;

quad-tree *root;

/* nxproc = number of processors in X-direction */
/™ nyproc = number of processors in Y-direction */

if ((nxproc = nyproc) and (log (ro.of -processors) is a proper
integer)) then
begin
Xi=DXproc;
y:=nxproc * nyproc;
root:=build-tree(original-problem-node-list, 0, 0, x, y);
end;
else

begin
/* Some other scheme to be designed */
end;
end. /* Of Main */

Until now, we have assumed that the processor mesh is a perfect square and &k =
log,(no_of processors) is a proper integer. The next step may be to design a general
algorithm with a proper numbering scheme that can be applied to any processor
mesh. In DECmpp12000/Sx, either nzproc = nyproc or nzproc = 2 * nyproc. We
can think of the following possibilities:

e Wken log(ro-of.processors) is not an integral value, we can add some dummy
processors in order to make it a perfect integer, and then redesign the above
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Figure 5.2: An implementation on DECmpp12000/Sx

scheme so that it takes care of the dummy processors, and does not assign any
leaf to them.

Another possibility may be that we take a suitable subset of the processor mesh
to make k integral. In this case, some processors will not be assigned any nodes,
i.e.they will be iractive. It can be taken care of, if after the initial assignment
we perform a second phase of redistribution to move some of the problem nodes

to the inactive processors.

When nyproc = m * nzproc, or vice versa for some integer m, we can divide
the processor mesh into m equal sub-meshes, each of size nzproz * (nyproc/m).
Similarly, we can divide the problem graph into m sub-grapks, each containing
almost an equal number of nodes to take care of load-balancing, and then apply
the same algorithm to map a sub-graph to a sub-mesh.
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5.1.1 Load Balancing

In step 4 of the above implementation, we mentioned exchanging nodes amongst
quadrants so that almost an equal number of nodes goes to each quadrant. Whenever
nodes are exchanged amongst quadrants, the geometry of the problem graph has
to be respected so that geometrical locality is not destroyed, i.e. nodes cannot be
exchanged arbitrarily. In order to achieve this, nodes are sorted into X and Y sorted
lists in each quadrant depending on their geometrical X and Y co-ordinate values,
instead of sorting them into just one list called quadn-list, n = 0..3, as described in
step 8 of the algorithm.

In each quadrant, nodes are sorted in different ways. For instance, in quadrant 0
they are sorted in increasing X and Y sorted lists, while in quadrant 1 they are sorted
in decreasing X and increasing Y sorted lists. This is illustrated in Fig. 5.2, The
reason for this will be clear when we visualize the exchange of nodes between any two
adjacent non-diagonal quadrants at any level of recursion.

For instance, let us suppose that we bave to move some nodes from quadrant 1
to quadrant 0 so that both quadrants contain an equal aumber of nodes. This can
be achieved simply by scanning through the decreasing X sorted list of quadrant 1,
removing nodes from its head, and adding them to the head of increasing X sorted list
in quadrant 0. Whenever a node is removed from the X sorted list in quadrant 1, it
is also removed from the Y sorted list in the same quadrant. To achieve this without
adding any extra complexity in the search process, we maintain a side link between
the two lists so that following this link from one list, we can obtain the position of
the node in the other list. Similarly, whenever we add a node in the head of the
increasing X sorted list in quadrant 0, we add it in the appropriate position of the
Y sorted list for the same quadrant. In this case, we have to search through the Y
sorted list from the head, until we reach the appropriate posiﬁon.
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5.1.2 Limitations

The above scheme has a number of limitations which we rectify in subsequent modi-
fications. One limitation is that, we have used geometrical co-ordinates of the nodes
for partitioning them to different quadrants. We have assumed that maintaining ge-
ometrical proximity of nodes will autematically preserve their topology, which comes
from their node-neighbor relationship in the discretization. But this is not necessarily
true. This is because two nodes may be geometrically close to each other, but they
may not be neighbors in the actual discretization. In some cases, two nodes may be
geometrically far off, but they may be neighbors in the actual discretization.

To handle this, we device at least two schemes to assign topological co-ordinates to
nodes, and then apply the same quad-tree based mapping strategy to partition them

to quadrants based on their topological co-ordinates. We discuss it in a subsequent
section.

Another limitation is that, while routing a node to a particular quadrant, we have
to insert it in the proper position in a sorted list. We use insertion sort for this
purpose, which has a time complexity of O(N?), where N is the number of nodes in
the problem graph. This is quite high when the number of nodes is very large. We
modify the algorithm so that we can use some other less expensive sorting techniques
like merge sort instead of using the insertion sort. It improves the time complexity of
the sorting to O(NlogzN). In this modified algorithm, the number of processors has

to be an integral power of 2, instead of being an integral power of 4 as in this case.
We discuss it next.

5.1.3 A binary-decomposition based scheme

We implement a binary-decomposition scheme, somewhat similar to the one described
in [10]. Tke problem graph is alternately divided in horizontal and vertical partitions
in a recursive manner, while load-balancing is taken into account. This recursive
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partitioning process stops when the number of leaves is equal to the number of pro-
cessors, assuming that the number of processors is an integral power of 2. If & is the
height of the corresponding binary tree, then k = logz(no_of processors).
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Figure 5.3: A binary-decomposition based scheme

This is illustrated in Fig. 5.8. The problem graph is first divided by a verti-
cal line into horizontal partitions 0 and 1. Each of these two partitions contains
an approximately equal number of nodes. Then, each of these two partitions is di-
vided into equally weighed vertical partitions by horizontal Lines, these partitions
are numbered 00, 01 and 10, 11 for partitions 0 and 1 respectively. This process of
binary-decomposition of the problem graph continues recursively and stops when the
number of leaves is equal to the number of processors. The mapping problem now

focuses on mapping the leaves, each containing 0 or more nodes, to the processors. It
works as follows:

o Step 1: Assign flag=0.

o Step 2: If flagis even then sort all nodes in the X direction, otherwise sort them
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in the Y direction into an array. We can use merge sort for this purpose.

e Step 3: Divide this sorted array in two equal partitions by dividing it exactly
in the middle. So each partition contains an equal number of nodes. We name
these two partitions as problem partitions.

Simultaneously partition the system graph into two equal and adjacent system
partitions. Map each problem partition to a system partition. In practice, each
problem pertition is assigned an id which uniquely identifies a system partition
to which it is mapped.

e Step 4: Assign flag = flag + 1.

e Step 5: Repeat steps 2..5 recursively with nodes belonging to cach problem
partition. Also simultaneously divide the corresponding system partitions.

e Step 6: Stop when the depth of recursion is k—1, where k = log.(no_of_processors).

Thus, as before, each leaf is assigned an id which uniquely identifies the processor

to which it is to be mapped. All nodes belonging to that leaf are mapped to that
processor.

Speedup in pre-processing time over the previous quad-tree based mapping strat-
egy is one obvious advantage of this scheme. Another advantage is that, in this case
the number of processors has to be an integral power of 2, which is a more general
case than being an integral power of 4 as in the previous scheme. Both these schemes
do partition nodes based on their geometrical co-ordinates, which need not always
preserve the topology of the problem grapkh.

5.1.4 An implementation for DECmpp12000/Sx

Below we describe a binary-decomposition based mapping scheme fox; DECmpp12000/Sx
in a C like pseudo code:
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/* The following routine is applicable only when log,{no_of_processors)
is a proper integer, and either the processor mesh is a perfect square
or nzproc = 2xnyproc, where nzproc and nyproc are number columns
and rows respectively in the processor mesh.

*/

bin-tree *build-tree(original-problem-node-list, level, id, flag, x, y)

begin

/* Some variable declarations */

bin-tree *new-node;

problem-node-list *partition-0-list, *partition-1-list;
int part0-id, partl-id;

int k;

/* And other declarations */

-

k = log,(no_of _processors); /* An integral value */
new-node:=(bin-tree *) create-new-node-for-bin-tree();
if (level=k) then /* We have reached a leaf of the tree */

begin
step 1:
new-node->problem-node-list:=original-problem-node-list;
step 2:
Assign id to ail problem nodes in original-problem-node-list;
step 3:
new-node->partition-0:=NULL;
new-node->partition-1:=NULL;
step 4:
Set appropriate values to other fields of new-node; —
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Step 5:
return(new-node);
end
else
begin
Step 1:
flag:=flag mod 2;
if (fag = 0) then /* Divide into horizontal partitions */
begin
Step 2:
Sort nodes in original-problem-node-list in increasing X-direction.
Step 3:
partition-0-list:=first half of sorted lList;
partition-1-list:=second half of sorted list;
Step 4:
x:=x/2;
Step 5:
part0-id:=id;
partl-id:=id + x;
end
else /* Divide into vertical partitions */
begin
Step 2:
Sort nodes in original-problem-node-list in increasing Y-direction.
Step 3:
partition-0-list:=first half of sorted list;
partition-1-list:=second kalf of sorted list;
Step 4:
y=y/2%
Step 5:
part0-id:=id + y;
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partl-id:=id;
end
Step 6:
new-node->partition-0:=build-tree{partition-0-list, level 1,
part0-id, flag + 1, x, ¥);
new-node->partition-1:=build-tree(partition-1-list, level+1,
partl-id, flag + 1, x, y);
step T:
return{new-node);
end; /* Of else part */
end; /* Of build-tree() */

main() /* Call from the main routine */
begin

int x, y;

bin-tree *root;

/* nxproc = number of processo:s in X-direction */
/* nyproc = number of processors in Y-direction */

if ({(nxproc = nyproc) or {nxproc = 2*nyproc) and
(logs(no_of processors) is a proper integer)) then
begin
X:=DXproc;
y:=nxproc * nyproc; _
root:=build-tree(original-problem-node-list, 0, 0, 0, %, ¥);
end; -
else

57
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begin
/* Some other scheme to be designed */
end;

end. /* Of Main */

Here, partn-id, for n = 0..1, specifies the processor partition where a particular
problem graph partition is to be mapped. At the bottommost level of recursion, this
id identiiies 2 unique processor to which a set of nodes, belonging to original-problem-

node-list, are to be mapped. This is done in Step 2 of the then part of the outermost
if statement.

Speedup over the previous quad-tree based mapping strategy is one obvious advan-
tage of this scheme. Another advantage is that, in this case the number of processors
has to be an integral power of 2, which is a more general case than being an integral
power of 4 as in the previous scheme. Both these schemes do partitioning of nodes
based on their geometrical co-ordinates, which need not always preserve the topology
of the problem graph.

In the next section, we will discuss a number of schemes for assigning topological
co-ordinates to nodes.

5.2 Assigning ‘opological co-ordinates to nodes

Topological co-ordinates are assigned to nodes for the purpose of capturing the topol-
ogy information of the problem graph, which comes from the node-neighbor intercon-
nection. After assigning topological co-ordinates, we can apply the same quad-tree
and binary-decompositios based mapping strategies, as discussed above, for parti-
tioning nodes to processors.

Topological co-ordinates are assigned to nodes, based on their topological distances
from certain reference sets(s). We design and implement at least two different schemes
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for assigning topological co-ordinates to nodes. We fix one or more reference sets, and
then assign co-ordinates to all nodes relative to nodes in these sets. First we discuss
a scheme based on one reference set, and subsequently rectify its limitations in a
modified scheme.

5.2.1 A one reference set based scheme

We consider a 2-D, closed and connected domain as in Fig. 5.4. After perform-
ing domain discretization, we construct a reference set consisting of some connected
boundary nodes. We call this set Rg. Let V5 denote the set of all boundary nodes.
Other terms are already defined in chapter 4. The set Rp satisfies the following
properties:

1. |[Rg| 2 2.

2. v,,.-ER3=>v,.-eV3.

3. Vu,; € Rp, 3vy; € Rp such that Dy;; = 1.

4. We call a node v,; € Rp an extreme node iff there exists one and only
one node v,; € Rp so that I).;; = 1. There exists at most two such
eztreme nodes in Rp.

It would be clear that for each node v,; € Rp, there can be at most two other
nodes satisfying property 3. Together with property 4, it ensures the continuity of the
nodes in the set. We illustrate such a reference set in Fig. 5.{. Two extreme nodes
vy, and vy, are shown in the same figure. Note that if Ry = Vg then it does not
contain any exireme nodes.

Though there is no fixed rule regarding how to select this set and how big it should
be, we followed the following eriterion for our implementation on DECmpp12000/Sx.
We first compute the average number of nodes that should go to each processor, let
it be n. We start with an arbitrary boundary node, which becomes the first element
to enter set Rg. We then keep on adding nodes to Rp satisfying the above properties



CHAPTER 5. A QUAD-TREE BASED MAPPING STRATEGY 60

Layer O nodes. l\
Extreme node

vpiO Nodes in this range belong to the vpll
reference set.

Figure 5.4: Assigning topological co-ordinstes to nodes
until either all the boundary nodes are exhausted or the number of nodes in the set
is exactly n *nzproc, where nzproc is the number of columns in the processor array.

The next issue is to assign topological co-ordinates to nodes relative to this refer-
ence set. We follow the following steps:

Step 1:
Arrange ali the nodes in Rp along the X axis, i.e. they are assigned Y
co-ordinate=0.

Step 2:

case 1:Rp # Vp

1. Select one ertreme node from Rp, queue it, assign its X co-ordinate=0,

~ and make next-queue pointer point to this first and only entry in the
queue. '

2. Repeat
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2.1. Pick the next node v, from queue 2s pointed by nert-queue
potnter.

2.2. Select v,; € Rp so that D; = 1.

2.3. Queue vy;, and assign X co-ordinate of v,;=X co-ordinate of
Upi 1.

2.4. Advance nezt-queue pointer.
until all nodes in Ry are queued.

case 2:Rg =Vp.

1. Select any arbitrary node from Rp, queue it, assign its X co-ordinate=0,
and make nezt-queue pointer point to this first and only entry in queue.

2. Follow the same steps in 2 as in the previous case.

Step 3:
1. Make next-queue pointer point to the head of the queue.
2. Repeat
2.1. Pick the next node v,; from the queue 2s pointed by nezt-queue
poinier.
2.2. Let vy, .., Ui, be its n neighbors so that Dy, =1, k= 1..n,
and none of them are already queued.
23. fork=1..ndo -
begin
2.3.1. Queue v,;,.
2.3.2. Assign Y co-ordinate of vpi,=Y co-ordinate of vy; + 1.
2.3.3. Assign X co-ordinate of v,;, =X co-ordinate of v, +
(k—-1).
end
2.4. Advance nezt-queue pointer.
until all nodes in queue are exhausted(i.e. nezt-queue pointer points to
NULL).
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Here, we have performed a breadth first search in assigning topological co-ordinates
to nodes. The nodes in the initial set Rp are laid along the X axis and can be termed
as the Oy layer nodes. All other nodes which are immediate neighbors of these 0
layer nodes are the 1,; layer nodes and are assigned Y co-ordinate 1, and this way
the layering continues in a breadth first fashion. X co-ordinates are assigned to nodes
based on the X co-ordinates of their immediate neighbors.

The next step is to map these nodes based on their topological co-ordinates.
We apply the saine quad-tree or binary-decomposition based mapping strategics to
partition nodes to different processors as described in the previous section. The only
difference is that, this time we use the topological co-ordinates of the nodes, rather

than using their geometrical co-ordinates. The results are illustrated in the next
chapter.

5.2.2 Limitation

One obvious limitation is that more than one node might get assigned the sanie
topological co-ordinates. In that case, it is not fully successful in preserving the
topology information, and hence partitioning of nodes to processors may not always
cluster neighboring nodes together. We design another scheme, which should resolve
this problem. We discuss it in the next subsection, and name the corresponding co-

ordinates as polar topological co-ordinates of nodes because of their similarities to the
polar co-ordinate system.

5.2.3 Another scheme for assigning topological co-ordinates

In this scheme, nodes are assigned co-ordinates (r, #), somewhat similar to the polar
co-ordinate system. The angle co-ordinate 8 is the same angle co-ordinate as in the
polar co-ordinate system, and thus it captures the geometrical information of the
nodes. The difference is that, the distance co-ordinate r here does not specify the
distance from the origin as in the polar system. Instead, it preserves the topological



CHAPTER 5. A QUAD-TREE BASED MAPPING STRATEGY 63

information of the problem graph, and is assigned in a similar layer-by-layer fashion
as described previously. Thus, one co-ordinate captures the geometry and the other
captures the topology information of the problem graph. It is illustrated in Fig. 5.5.

(a) Azsigning Polar topological co-Ordinatas to nodes.

Figure 5.5: Assigning Polar topological co-ordinates to nodes

One possible way in which two nodes might get the same co-ordinates is illustrated
in Fig. 5.6. In reality, such a situation will rarely occur.

Below, we discuss the scheme in some detail.

1. Select one leftmost node v,; from problem graph, as in Fig. 5.5.

2. Assign its r co-ordinate = 0.

3. Assign its 8 co-ordinate = 8;, which is the corrzsponding polar angle.
4. Queue v,; and make nezt-in-queue pointer point to it.

5. while there is some node in queue do

begin
5.1. Pick up next node vy; as pointed by nezt-in-queue pointer.
5.2. Let v3,..,vp;, be its n neighbors so that D,;;, =1, k= 1..n,
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and none of them are already queued.
fork=1.ndo
begin
5.2.1. Queue vp;,.
5.2.2. Assign its r co-ordinate = r co-ordinate
of vy; + 1.
5.2.3. Assign its 8 co-ordinate = §;; which is the
corresponding polar angle.
end.
5.3. Advance nezt-in-queue pointer.
end.

After nodes are assigned their polar topological co-ordinates, they are partitioned
in a similar way as before to different processors, either by the quad-tree based or the
binary tree based mapping strategies. The results are illustrated in the next chapter.



Chapter 6
Implementation details and results

The general strategies discussed in the previous chapters were implemented and tested
on DECmppl2000/Sx for experimental domains. The languages of implementation
are C and MPL. In the following discussion, we first give a brief overview of the
implementation issues and then discuss the results.

The complete implementation can be divided into two major components. One is
the sequential component which runs in the front-end console system and is written in
the C language. The other is the parallel component which runs in the back-end data
parallel unit{DPU) and is written in MPL. More details about the system components
can be found in chaepter 3. The sequential component is composed of routines for data
input/output, domain discretization, coefficient assembly and portions of the specific
mapping strategy. The parallel component can be further divided into two sub-
cornponents. One component runs in the array control unit{ ACU) and is composed
of sequential mapping related routines. The other component is composed of data
parallel routine(s) for the parallel solver and it runs on the PE array. The back-end
MPL routines are called from the front-end C routines through the callRequest MPL
library routine. Different components of the implementation are illustrated in Fig.
6.1.

The solver is the routine which takes the maximum percentage of the total program
execution time. Hence, an efficient implementation of the solver and some good
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Figure 6.1: CVFEM program components
mapping strategy are the key issues for speedup. The total time spent in the mapping
related routines, which we can call the pre-processing time, is very small compared to
the time in the solver. If the mapper can do some good job in data placement, the
pre processing time can be masked by the additional speedup obtained in the solver.

We discuss below the important issues related to the sequential and parallel pro-
gram components. We start witk a discussion on the sequential component.

6.1 The sequential component

The sequential component comprises of routines for input/output of data, domain
discretization (routines related to delaunay triangulation of the domain), coefficient
assembly and portions of mapping related routines (for example, in the case of quad-
tree based mapping strategy based on topological co-ordinates, it may involve routines
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for assigning topological co-ordinates to nodes, and routines for building tke tree
and simultaneous processor partitioning). The data here maybe in two different
formats, either as nodes which specify a discrete domain without the interconnection
pattern, or as iriangles and nodes which completely specify the discrete domain and
the problem graph. In the second case, the phase of delaunay triangulation is to be
skipped. We first discuss about the data portion, mainly the representation of nodes
and triangles.

6.1.1 Representation of the discrete domain

Most of the following work on the sequential component part was done by Clark
Verbrugge who is presently working for his doctoral degree at McGill University.
Some modifications were made for the parallel machine in order to lnk with the
parallel component(s) and to take care of the memory constraints.

Given a domain of interest, we pick up a set of boundary and internal points,
whichk we call nodes. Each node is specified by its X and Y co-ordinate values and a
flag to indicate whether or not it is a boundary node. For simplicity, the X and Y
co-ordinate values are all taken to be positive without any harm, i.e. the domain sits
in the first quadrant of the cartesian co-ordinate system. The nodes are read in from
a file called nodedata file, and are arranged in such a way that all boundary nodes
come first and then come the internal nodes.

In the internal representation, nodes are arranged in a linked list of records as they
are read in sequentially from the nodedata file. Each node is a record with fields: its X
and Y co-ordinate values; its topological co-ordinate values; a flag to indicate whether
or not it is 2 boundary node, and whether or not it is part of the triangulation yet;
another flag to indicate whether or not it is mapped to any processor yet; if so then
the identity of that processor; its ¢ value and other coefficient values; pointers to the
head and tail of all the triangles with which this node is associated; a pointer to the
next record in the list; and other fields for ease of programming.
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While performing delaunay iriangulation of the domain, new nodes are added to
the list, and nodes, which are not part of the triangulation, are removed. Finally what
we get is a set of nodes and a set of triangles, which completely specify the discrete
domain and the triangulation information. This information of nodes and triangles is
stored in another file called zzz.iré, where zzz 1s the identity of the triangulation file.
Whenever we run the same program on the same domain another time, the delaunay
triangulation part can be skipped by directly reading in data from the triangulation
file.

Similar to the representation of nodes, triangles are also arranged in a linked list
of records. In the case of delaunay trianguletion, this list is built dynamically with
the triangulation process. In the case when the triangulation information is read in
from a file, this list is built dynamically as data is read in from the file. In both cases,
the final internal representations of the nodes and the triangles are identical.

Each triangle is a record with fields: the three corners of the triangle; a flag to
indicate some specific status information; and a pointer to the next triangle in the
list. Each corner of a triangle is a record with fields: pointer to the specific node
associated with this corner; coefficients of the other two corner nodes relative to this
corner; and pointers to the next and previous triangles associated with this corner
which form a doubly linked list of triangles. We discuss it next.

Given any node, we should be able to find out all the triangles associated with
this node, i.e.all triangles which have this node as a corner. By knowing about all its
associated triangles, we will be able to find out all its neighboring nodes. Similarly,
given a triangle we should be able to obtain information about all its corner nodes.

The internal representations of nodes and triangles are such that we can obtain this
information easily.

The following method can be adopted to find the triangulation and neighborhood
information for a node. This is illustrated in Fig. 6.2 Given any node v,;, we
want to find all its neighboring nodes. Each node has pointers, called thead and ttail
respectively, pointing to the head and tail of the triangles associated with this node.
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By following the thead pointer of v,;, we reach the first triangle 1 as in the figure.
The three corners of this triangle are marked as A, B and C respectively, of which A
is the corner associated with this node. By following the pointer to the next triangle
from corner A, we reach triangle 2. Corner D of triangle 2 is associated with this
node. We follow the pointer from corner D to the next triangle 3, and proceed in a
simnilar way until we finally reach the last triangle numbered as 6, which is also the
triangle pointed to by #ail As we know about all triangles associated with this node
Upi, We can now easily know about all its neighboring nodes just by looking at the
other corners of these triangles.

‘ triangle 4 1

Figure 6.2: Neighborhood information of a node.

After reading in data from the file, the next sequence of operations involve the
delaunay triangulation of the domain, in case it is not already performed, and the
coefficient assembly. We are not going to discuss here the routines for delaunay trian-
gulation and coefficient assembly, since they are not directly related to our mapping
issue. A description on coefficient assembly can be found in chapter 2 More about
delaunay triangulation can be found in [2, 11). Instead, we will o-iefly discuss the
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front-end portion of the implementation related to the specific mapping strategy. The
following discussion assumes a quad-tree based mapping strategy based on topologi-
cal co-ordinates. So we will resume our discussion from the point where we already
have the nodes and the triangles.

6.1.2 Mapping related routines

For 2 quad-tree based mapping strategy based on topological co-ordinates, it involves
routines for assigning topological co-ordinates to nodes, and routines for building the
tree and simultaneous partitioning of the processor mesh. We have a choice between
running these routines in the front-end console system or in the back-end ACU. We
decided to run them in the console because of memory constraints of the ACU. The
drawback is that the user has to inform the console about the present configuration of
the back-end PE array, mainly the number of rows and columns. This can be taken
care of by allowing the console read in this information from the ACU.

The process of assigning topological co-ordinates to nodes by one of the two
schemes already described involves the scanning of the node list and queueing the
nodes in a layer-by-layer fashion. For the purpose of queueing nodes, we keep an-
other linked list, each entry of which contains a pointer to a node. Each node contains
a flag to indicate whether or not it is already queued. This is necessary because each
node may be a neighbor of many other nodes and thus there is a very high possibility
that a node will be multiply queued by all its neighboring nodes. Thus it will be as-
signed multiple co-ordinates leading to a conflicting situation. To avoid this, a node
is allowed to be queued only once as the neighbor of only one of 2ll its neighboring
nodes.

The next issue is the building of the quad-tree or the binary tree, as described in
the previous cha.pter: on top of the existing data structures for nodes and triangles.
One important point to note here is that, in any case we are only interested in the
information at the level of the leaves and hence the intermediate nodes of the tree
can be freed in the building process, thus saving memory. At the end, the whole tree
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can be discarded as soon as each problem node is marked with the processor id to
which it is to be mapped. The next step is to scan through the linked list of nodes
and then map each node to the processor where it is destined. We discuss it next.

6.2 The parallel component

As discussed previously, the parallel component consists of routine(s) for transferring
data between the console and the DPU, mapping related routines for data placement,
the data parallel solver, and routine(s) for transferring computed data back to the
console. All these routines are invoked from the single procedure called mplsub,
which runs on the ACU. The mpl library routine callReguest acts as a bridge between
the front-end console and the back-end DPU. The back-end routine mplsub is in-
voked from the front-end console process by the callRequest library routine. This is
illustrated in Fig. 6.9. The console process resumes its execution as soon as the the
call to the back-end system, i.e. the mplsub routine, completes.

6.2.1 Data transfer between the console and the DPU

There are foor MPL library routines, called copyln, copyQut, blockln and blockOut,
for transferring of data between the front-end console and the back-end DPU. The
last two routines are for direct block transfer of data between the console and the PE
array, and are not useful in our app' - tion. Instead, in our case we have to transfer
data in an element by element fashion from the linked list of nodes in console to
the ACU, and then place each node in its destined processor. Thus it is a two step
process, firstly to read in data from the console to the ACU and secondly to transfer
data from the ACU to the PE array. We use the copyln and copyQOut library routines
for the first step, and the proc library routine for the second.

It w7q1;ks as follows. Two of the parameters for the call to callRequest library routine
from console are the starting addresses of the linked Lists of nodes and triangles. Let
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Figure 6.3: The CVFEM program model
them be fe_nhead_p and fe_thead_p respectively, where fe stands for front-end. Let us
suppose that the ACU wants to read in the nodes one by one from the linked list in
front-end console, and then map them to the PE array. The ACU has its local copy
of a node record, of the same type as in the console. Let the address of this record
be be_node_p, where be stands for back-end. In an iterative loop, the ACU calls the
copyln library routine. The call to copyIn has its parameters: fe.nhead_p, be_node_p
and nodesize, which is the size in bytes of a node record. In the first iteration, it copies
the first node record from the console to the local copy in ACU pointed by be_node_p.
The ACU reads appropriate fields from this record including the processor id to which
it is to be mapped, and then places data from these fields to the appropriate processor,
which we will discuss shortly. It also reads the address of tke next record in the {ront-
end linked list, as specified by the nezt field, and modifies the fe_nhead_p accordingly.
So, in the next iteration, it reads in the next node from the new address of fe_nhead_p
to the same local copy in the ACU. It continues iterating until fe_nhead p points to
NULL. In actual implementatior, things may vary slightly, but the basic idea is the
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same.

We do not want to create a replica of the front-end linked list in the ACU, obvicusly
for its memory limitations. Instead, we copy one node at a time from the console
to the ACU, and then map each node to the destination processor. The temporary
copy of the node in the ACU is erased as soon as the next node is read in from the
front-end linked list. So the ACU acts as a base camp for each node on its way to its
final destination in the PE array.

As we read in a node from the console to the ACU, we already know the identity of
the processor to which it is to be manped, since it is already decided by the front-end
quad-tree. What we do not know is the specific partition on that processor to which
it will be mapped, since it is decided only dynamically. We consider it in the next
section.

6.2.2 Dynamic mapping to the PE array

Theoretically, each processor in the PE array is partitioned into as many parts as
the average number of nodes n that should go to each processor, as discussed in the
previous chapter. In actual implementation, we have an array of records of length
n allocated to each processor. Each element of this array holds information about a
particular node, which is mapped to that processor. All n entries of this array hold
information about all n nodes that are mapped to that processor. Let us call this
array the node-array.

Each mapped node is uniquely identified by two parameters: the processor id to
which it is mapped, and the index of its entry into node-array on that processor.
The processor id is determined by the quad-tree or some other mapping strategy.
But the index is determined dynamically as the node is actually mapped to that
processor. This index information is stored back in the node record in the console so
that the mapped node can be correctly identified in subsequent operations such as,
communicating with neighbors and retrieving computed data back.
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Bach eatry of node-array has fields for storing: ¢ value of the node, its coefficient
values, and an array of records called neighbor-array. Each entry of this neighbor-
arrey contains information about where one particular neighbor is mapped, identified
uniquely by the processor id and index on that processor, together with some other
field related to coefficient assembly. This neighbor-array for each mapped node is
filled i a subsequent scan through the node list, after all nodes are mapped and their
partition index information on the corresponding processors are known. With these
information, each node can correctly communicate with all its neighbors, take their
old ¢ values from the previous iteration, and compute its new ¢ value, as is discussed
in chapter 2. The partitioning of a processor in the PE array is shown in Fig. 6.4.
Actually this neighbor-array contains information about all neighbors which are to
be communicated through the router, and it will be clear in a short while.
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Figure 6.4: Partitioning of a processor in the PE array

Finally, on the average n nodes are mapped to each processor in the PE array.
Each mapped node is uniquely identified by its processor id and partition index
on that processor, and this information is stored in the front-end console so that
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data retrieval and communication proceed correctly. Each mapped node contains
information about its ¢ value and other coefficient values, as discussed in chapier
2. Each mapped node also contains information about where all its neighbors are
mapped. Each neighbor is identified by its processor id and partition index on that
processor. The next issue is to set up the communication primitives so that each
node can communicate with its neighbors, exchange data, and perform computations
in the parallel solver. We discuss it next.

6.2.3 Setting up communication

As discussed in a previous chapter, there are two communication primitives: one
is the Xnet for fast and synchronous close neighbor communication, and the other
is the router for asynchronous communication. We divide the entire node-neighbor
communication pattern into two parts: onme is through the Xnet and the other is
through the router or some other MPL library routine using router depending on

whichever is more convenient.

The problem with the Xnet communication is that, all active processors are re-
quired to communicate in an identical way at any instant of communication. What
we mean by identical is that, each communicating processor has to communicate with
another processor in the same direction and distance as all other communicating pro-
cessors do at that instant. In case of an irregular problem, it isvery difficu’t to bring
in this harmony. Still, if by som~ trick we can bring this harmony, we pay some
price as some processors might have to remain idle at any instant of communication
through the Xnet. This will be clear through an example. Let us consider an 8 * 8
processor mesh, as in Fig. 6.5. Here, at some instant of communication through
the Xnet, each active processor is communicating with its immediate north neighbor.
Processors ( and 9 are inactive, i.e not taking part in communication, at that instant.
It is because, either none of the nodes mapped to these two processors have its neigh-
boring nodes mapped to its immediate north processor or, at this instant no node
mapped to these two processors is required to communicate with its north neighbors.
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Whatever is the case, these two processors have to remain idle. How many processors
have to remain idle at an instant is a factor in deciding the speedup. The lower is
this number, the better is the speedup. The rest of the communication, which could
not be done through the Xnet, is to be completed through the router or seme other
MPL library routine using router. Below, we elaborate it further.

Processors O an 9 are idle at an instant of X(net
Communication

Figure 6.5: An instant of Xnet communication

Each processor has an array called Xnet-com, which determines whether a pro-
cessor should remain active or inactive at some instant of Xnet communication. The
length of this array is a multiple of 8. This is because, there are 8 directions of Xnet
communication, namely north, south, east, west, north-east, north-west, south-cast
and south-west. The first 8 entries determine Xnet communication with processors in
these 8 directions at distance one, the next 8 entries. - ‘termine Xnet communication
with processors at distance two, and so on. Let us say that the length of this array
on each processor is 8 * XDIST, where XDIST is the distance to which we want to
communicate through the Xnet. Obviously, XDIST is a parameter which determines

speedup. We have to fix some suitable value for XDIST for obtaining the optimal
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speedup. There is also another parameter, which determines exactly what is the max-
imum number of times any two processors can be allowed to communicate through
the Xnet. We discuss it next.

Each entry of Xnet-com is itself an array, called Indz-array, whose length Xindzsize
is another adjustable parameter. Each entry of Indz-arrayis a flag, together with two
other fields called source-indez and dest-indez. If the flag is set, it indicates that the
source processor has to communicate with the destination processor at that instant
of iteration, and source-indez and dest-indez specify the indices of a node-neighbor
pair in the source and destination processor respectively. If the flag is not set, the
source processor does not have to communicate with the destination processor at
that iteration, i.e. it has to remain inactive(or, we can say idle), and hence we do not
have to refer to the other two fields. In Fig. 6.6, we illustrate the Xnet-com array
on an arbitrary processor. The length of this array is 8 indicating that we want to
communicate through the Xnet with the immediate 8 neighbors at distance one.

hb*wLx}uM XDIST = 0— |

THi5958095y

Complete layout on & procsssor in the PE asray for sstting up
conxsmalostion

Figure 6.6: Communication layout on a processor
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What Xindzsize actually determines is the maximum number of times each pro-
cessor can communicate with another processor through the Xnet. How many times
each processor has to communicate with another processor is actually determined by
how many node-neighbor pairs are mapped to these two processors. The problem
is that, Xindzsize has to be identical on all the processors, whereas this number of
node-neighbor pairs varies from processor to processor. We fix a value of Xindzsize
depending on the size of the problem. As a result, some processor might commu-
nicate through the Xnet with another processor Xindzsize times, while some other
processor might do the same less then Xindzsize times, and remain idle for the rest
of the time, It is also possible that more than Xindzsize times Xnet communications
may be necessary between some processor pairs, though it is not allowed. Thus, this
Xindzsize is a parameter which is to be selected carefully depending on the problem
size, as it determines the number of processors that have to remain active or inactive
at an instant of Xnet communication.

The rest of the communication, which could not be done through the Xnet, is to
be completed through the router, or some other library routine using the router. We
have already discussed about neighbor-array in the previous subsection. Each valid
entry of neighbor-erray actually contains information about a neighboring node which
has to be communicated through the router. If 2 node can communicate with all its
neighbosing nodes through the Xunet, all entries of neighbor-array for this particular
node would be empty(or, we can say invalid).

Finally, we have two adjustable parameters, namely XDIST and Xindzsize, which
determine the speedup of the solver. In all applications, an XDIST value of 1 is found
to be the optimal. Xindzsize actually depends on the problem size, and has to be
fixed accordingly.

Now we are in a position to discuss the parallel solver.
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6.2.4 The parallel solver

The solver works as follows. Each node in the discretization smoothens its ¢ value
based on previous ¢ values of itself and 2ll its neighbors. This smoothing operation
continues over several iterations until computed values converge for all nodes. This
is already discussed in detail in chapter 2. We can imagine a big outermost loop,
which goes upto 1000 or more iterations. In every iteration of this loop, each node
communicates with all its neighboring nodes, take their old ¢ values from the previous

iteration, performs some computations with them, and modifies its own ¢ value, as
is already discussed.

In the sequential solver, in each iteration of the outermost locp, one has to scan
through the entire node list, and subsequently scan through all neighbors of each node.
This operation continues over a large number of iterations until all computed values
converge. Thus the solver consumes the maximum amount of the whole program
execution time. In our data paralle] solver, each processor ir the PE array works
with its own share of nodes in every iteration of the outermost loop, and thus it
speeds up computation. We stop when ¢ values or all nodes converge. Alternately,
in order to compare the performances of the different mapping schemes, we keep some
fixed value for this number of iterations, say around 1000. This big value generally
guarantees convergence. Below, we elaborate the solver.

In each iteration of the outermost loop, each processor in the PE array per-
forms three types of operations: (1)it completes all Xnet communication by scan-
ning through the array called Xnet-com ; (2) after completing Xnet communication,
it scans through its own node-array whose each entry contains information about a
particular node. For each node in node-array, it scans through the valid entries of
neighbor-arrey and performs communication with these neighbors through the router.
Finally, (3) after communication and data transfer with all neighbors is complete, each
node computes its new ¢ value before moving to the next entry in the node-array.
All these operations within a big outermost loop are illustrated in Fig. 6.7
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Whils {(no convergence) do { The outerrmost loop}
begin

Complote all possible Xnet communication with neighbors for
nodes mapped to this procossor.,

For each node in Nodo-mtay do
bogln$

completo all ining jcation through the router
with oach wvalid neighbor in Noighbor-array.

!

Computo its new ¢.

Move 1o the noxt ootry in MNodo-array.
ond.

¢

Chock for convergence{ optional if we takeo tho numbor of
iterations in the cutarmost loop

largo onough so that it gurantoos
. convergoncoo. }

Figure 6.7: A model of the parallel solver on each processor
After all ¢’s converge, the computed values are transferred back to the [ront-
end console. As before, this data transfer operation takes place in two steps where
the ACU acts as the intermediate rest camp. Since each mapped node is uniquely
identified by its (processor,indez) pair, and this information is already stored in the
console, this transfer operation can proceed correctly.

6.3 Computing A

As already discussed in chapter {, X is some measure which, together with proper load
balancing, can judge the quality of a specific mapping strategy. For the measurement
of A, we assume that messages between two processors always travel by the shortest
path connecting them. In rezlity this may not be the case, as message passing is
highly machine dependent. Still, this measurement of A gives a good information
about locality and thus, irrespective of the machine, it gives some good idea about
the quality of the mapping strategy, which is of particular concern.
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In case of the DECmppl2000/Sx, we assume that all messages between any two
processors travel by the minimal distance path connecting them, as in the case of
Xnet communication. However we have already seen that all communication cannot
be completed exclusively through the Xnet. Thus the computed valve of A may
not always give the precise information regarding the message distances. Still this
information is reliable enough to give some idea about how good the mapping is in
preserving the locality.

If [z1,31) and [z3,y2] are the locations of two processors v,; and v,; in the PE
array, then the minimal distance between them, dencted by D,;; as already discussed
in chapter {4, can be given by:

Dyi; = minz + min, (6.1)

where min. = min(|(z) —22)}, nzproc—|(z; — z3)|), min, = min(|(y1 —y2)|, nyproc—
(1 —¥2)|), min(z,y) = minimum of z and y, and nzproc and nyproc are the number
of rows and columns respectively in the PE array.

In the actual implementation, after knowing about the mapping information of
all nodes due to a specific mapping strategy, it is straightforward tc compute D,;;
for any two processor pairs where a node-neighbor pair is mapped. For each node-
neighbor pair (v, vp;), we find the corresponding processor pair (v,k,v,) where they
are mapped, and then compute D,;; as above. The summation of all D,;; for a1l node-
neighbor pairs gives the value of A, as is already discussed in 2 previous chapter. For
simplicity, we treat (v, vp;) and (vp;, vp:) as distinct pairs, and hence distances are
counted twice. Obviously this does not affect the final judgment.

6.4 Results

All the strategies discussed previously were implemented and tested on the DECmpp12000/Sx.

Some of the results with these strategies on different irregular problem domains are
illustrated below:
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(2)Problem graph 1: Wrench (253 nodes):

Different Strategies A | Time in solver
(in Sec.)
Random mapping 22852 6.09
General Close-neighbor heuristic 15539 5.34
Quad-tree (Geometric) 10636 2.68
Binary-decomposition (Geometric) 11792 2.62
Binary-decomposition (Polar topological) | 13528 2.56

(b) Problem graph 1: Irregular plate as in Fig. 6.8(553 nodes):

Different Strategies A | Time in solver
(in Sec.)
Random mapping 42156 7.21
. General Close-neighbor heuristic 25636 6.56
Quad-tree (Geometric) 15040 4.66
Binary-decomposition (Geometric) 15380 4.56
Binary-decomposition (Polar topological) | 19552 4.82

(c)problem graph 2 Arc of a circle (4194 nodes and 8062 triangles):

Different Strategies A Time in solver
(in Sec.)
Random mapping 351908 33.8
General Close-neighbor heuristic 124296 31.1
Quad-tree (Geometrical) 65564 26.8
Binary-decomposition (Geometric) 63176 26.7
Binary-decomposition (Polar topological) | 55892 26.1

. (d)problem graph 8: Wrench (49238 nodes and 96384 triangles):
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Different Strategies A Time in solver
(in Sec.)

Random mapping 5828126

General Close-neighbor heuristic 1765148 322.9

Binary-decomposition (Geometric) 161084 286.8

Binary-decomposition (Polar topological) | 237452 290.4

The timings above are the a.erage timings with at least three observations. The
timings vary slightly depending on system load.

The discussion about timings is not complete unless we give some idea about the
pre-processing times. In ths case of the quad-tree based and the binary decomposi-
tion based mapping strategies, these pre-processing times are the times required to
construct the corresponding trees. In the case of the topological co-ordinate based
schemes, it also includes the extra time in assigning topological co-ordinates to the

(a) Irregular plate as in Fig. 6.8(553 nodes):

Different Strategies

Pre-processing time (in sec.)

Quad-tree 0.08
Binary-decompasition(geometric) 0.06
Binary-decomposition(polar topological) 0.08

(b) Arc of a circle (4194 nodes and 8062 triangles):

Different Strategies

Pre-processing time (in sec.)

Quad-tree 6.99
Binary-decomposition(geometric) 0.59
Binary-décomposition(polar topological) 0.83

nodes. Below we give some illustrations of pre-processing times for some of the ex-
perimental domains:
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(c) Wrench (7917 nodes and 14265 triangles):

Different Strategies Pre-processing time (in sec.)
Quad-tree 26.96
Binary-decomposition(geometric) 1.22
Binary-decompusition(polar topological) 1.63

(d) Wrench (49238 nodes and 96384 triangles):

Different Strategies Pre-processing time (in sec.)
Quad-tree 1456.8
Binary-decomposition(geometric) 11.48
Binary-decomposition(polar topological) 43.33

As it is evident from above, with small domains, all three strategies take compa-
rable pre-processing times. But, with larger domains, the quad-tree based strategy
becomes very expensive in terms of the pre-processing time. Since all three strategies
take almost an equal amount of time in the solver, the quad-tree based strategy is
cbviously inferior to the other two for larger domains.

The parallel solvers with different mapping strategies are all identical. We measure
the time in the solver after a fixed number of iterations, say 1000, which is large
enough for convergence. It is evident that a reduction in ) does not always guarantee a
reduction in time. The reason for this has already been discussed previously. When we
compute A, we assume that all communication is done through the Xnet, and it follows
the shortest message paths. But in actual implementation, some communication has
to be completed through the router. Router communication can give variable timing
depending on the number of collisions in the communication path. Once again, we
stress that this issue is highly machine dependent.

Some of the experimental irreguliur domains are illustrated in Figs. 6.8, 6.9, and
6.10.
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6.5 Conclusion and future work

This work is part of EPPP(environment for portable parallel programs) project jointly
sponsored by Centre de recherche informatique de Montreal(CRIM), IBM Canada,
Digital Equipment Canada, Alex Parallel Computers, and Iﬁdustry Canada. The
project focuses on the development of a portable parallel programming eavironment
which can be used over a wide variety of architectures.

The present trend is on the implementation of some of these algorithms in HPC,
which is a data parallel language under development as part of the EPPP project.

In HPC, the user can define a virtual machine suitable to his needs. This virtual
machine can be a linear array of virtual processors, or a two dimensional mesh similar
to DECmpp12000/Sx, or maybe something else. He can apply the same algorithms
described previously to map the irregular problem graph to these virtual processors.
A second phase of mapping is to be performed by the compiler to map these virtual
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processors to the underlying physical processors. The underlying machine need not
necessarily be an SIMD machine. For instance, the present underlying physical config-
uration is a cluster of RS6000 connected by a high speed IBM switch. Data references
across processors are transformed into corresponding send and receive messages by
the compiler. This mechanism is transparent to the user.

Mapping of the virtual processors to the physical system plays a crucial rule in
communication, and is itself an active area of research. Present emphasis is on the

study of the communication overhead under these situations and how to improve
them.
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