
c:~ Q 
, 

':"*4/11 

, .. . r~ 

, , 
l 
'. '" - , 

'C 

r 

s 
. _ i 

1 
" 

. 1 
1 
1 

, 
, \ 

\ 

,0 

, . , .. , 
, 

-
{, 1 ~ .... 

EtEÇT~NIC RAMAN SPECTROSCOPY 

• ,OF IRON oopm MgO 

by 

ALAIN PO lRIER 's 

A Thesis 

·f 

.. 

submi tted to the Fa eu! ty of Graduate Studies and Research 

in partial fulfilment of the requirements 

for the degrge of 

Doctor of Philosophy 

Department of Physics 
, . 

M.cGill Uni versi ty 

Montreal.. Quebec, Canacla 

,:l! ___ ~ __ ---'-____ ~_" __ ' __ ' __ " . "'.-.... __ . 

\ 
\ 

'. 



, ' 
) l"t},~~ . ., 
-'f .... }.! 

, " 
IF r 

l~~. 'J 
"',", : ", 

~.. ;} 
~ ':.10 

'1 

;7 

! 

~)' .~ 

"' .. .'': 
\ li 

, " '. 

o 

" 

" 

" 
, 

" ',,: ~t \ 

'-' 

l
, ' 

• 1 

i 

)-

i 

'; 

.. 

, ~ ", 

" 

. ' 

, " 

,.. '. 

.. r '" ' i 

ELEOTRONIC RAMAN SPECTROSCOPY 

OF IRON, DoPD MgO 

" . 

. 
" 

) 

( 
( 

.. 

'. 

1. 1 .,. .... j.: ... 
,~<~.' \ 
q ~~ 

• 

, ,. 

" 

, ,~ 

Q , 

.. 

, , 

" 



, ' 

\.,. .. \ 

. , 
" . 

" 
L" 

. -, 

" 

, ' 

o 
, , 

• 1 

li 

o 

/ 
.. , • ~ 1 • ,,~ <1 

o , ... ... 

, ' 

states of Fê2+ in MgO - , 

, , 
l 

'. or-. 

~bserved by an spectroscopy for the .f~rst. ti~,e ,,' We ob e~ed 

an A'l'g ~puri _':! m,?de (185 dm':'~) and an elec1:r~ni~i. ~~ansi t on at 
, ~ 1 

11~.,5:!: .8 cm-, which we\ass?ciat,e Wit~- the :Cir~~ r~lted states 

of the ferrou: ion, ' r3g and " f4g ,' previousl~ o~seI'1(ed b~ far ... 

infra':'red. opti'cal apsorp~ion.. 1 

\' 1 i 

'(;-

Crystal field theory and group theory ~e uséd to 
1: -

character,ize the energy leve1s and, t'he-"wave.funct~ons of the , ), I~ 

ferrpuà ion. -\ The observed reduct2n, in ,the, 'BPin-,bi t ~l:l tti~g- 1 

o~ the energy levels la accounted for by solving the Jahn~Te11er 1 
v "., ~ 

Hamil tonian in the. approxilnation ',of th.e c1u~ter mo~el. , ~ 

Uniaxial stress ap~lied te the MgqIFe~+ t 
les 

prôduced a shift in the observed' electronic trans tions, The 
~ ~ . 

, s'tress Hamil tonian ia sol v:ed from whicl1 ia extt"acted the experi­

,men1:al yalue of th~ ,atrain coupiing coe~fici~ent to Eg defoma.­

tion (V2 =07140 !'1800 cm-1) which -Joèd" Ultlmatély , te the Jahn--. -Teller ceupling coefficients and to the Jahn-Teller erierg,ies 

«EJT)E = 80' cm-l,and J/2(EJT )T = 150 cm-1) pertinen~ to' the 

ferro us ion in ,MgO. 
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L4 s premie rs ~tats excH:éS'" du Fe dans ,le MgO ont été ' 
\, , '., .., P", • 

, , 

. , 
,,1 ~ l 

observé 'par la ~ectroscopie Raman pour la première ~ois. 'Nous 
"" 'l.'! ... , 

ob~\erVons un m'od!! d' imp~etl de type Alg ,. (185 cin -1) 'ainsi qu'une 

'tr'ansiti~n électronique à 110'.5 ' •• 8 cm"'1 que nous ~~socions au' 

premier éia~ excité d.e 1 :i?~ t'e~ux •. rJg~:t '('4g" déjà . 

observé par/absorption opt1.que de l'infrarouge lo.intain. 
; 

La. théorie 'du champ crys'tallin et la théo,~ie des groupe,s 

ont été uti1is~es pour' ~éterminer les niveaux d'énergies et les 

~ fonctions d'ondes correspondantes de r'ien ferreux. La aépara­

); 't~oh rédui te des ni veam: d' énergies spin-orbi t qui e ~t . observée: . 
., l , . 

s'explique ezj. résolvant. l'Hamil tonian Jahn-Teiier dans l' approxi-

f 

"\J" ' 
mation' du modèle'du c1ust$r. 

Un stress uniaxial apPl~ué' aux 6Chantillons 'de' M~I'F~2+ 
," 

produi t un déplacement des tra.I\si tiens électroniques observées. 

L'Hamiltonian du stress est r~solu; ce qui pe~et d'extraire 

'la valeur expérimentale du coeffic'ient de coupl~ aux dé:t'orma-
~' . 

tions de type E (VZ = 7i40 + l80à cm-l ) ainsi que les' coef:fT-
" g -'1 " 

cients de couplage Jahn-Tel1er.et les ~n~rgies Jahn-Teller . . . 
«EJT)E :t 80 cm-l et 3/2 (IJT)T = 1.50, cm-1 ) pertinent à fI j.on 

, ' • ' , ' .',,' .1 

terreux d~s le MgO. 
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CHAPTER 1 

• 1 

• 
INTRODUCTION 

" Slnce the dis~overy of the laser in 1960, the~ield 

of spectroscopy has improved greatlt in the refinements of 
f' 

techniques and in thi wealth of applications. One 'of these, 

R~an spectroscopy, has attracted physicists again as a result 

~ of the high photon density achieved by a laser} making possible 

the detection of very weak Ramàn signals via photon-counting 

equipment. Nowadays, Raman spectroscopy provides a powerful 

tool to study electronic energy levels and vibrational states 

of atome and molecules. and complements infrared spectrosèopy 

whose transi tian selection rules are different. 
( 

In.this thesis. we apply electronic Raman epectroscopy 

to the etudy Qf a transition metal ion, the terrous ion, sub- • 
. 

sti tuting for divalent magnesium ion in single crystals of 

'MgO. 2+ The MgOlFe complex presents a good example of a 

dynamical Jahn-Teller (JT) effect, i.e., the electron-phonon 

coupling at the ferrous ion site reduces the electronic orbital 

angular momentum leading to a reduced spin-orbit splitting of 

the energy'levels and a reduced electronio g-faotor. By 

applying different uniaxial stresses to the Mg01Fe2+ samples, 

we oan determine the strain coupling coefficients which lead 
~ 

to the' JT ooupling coefficients and the corresponding JT 

energies. Existing and future theories pertinent to this JT 

1 

! .. ____ ~, ',:!:,:,',,,'r-- ".~ - _o. ~"""-.-. ---r-1"":.;; .. J..-:----~~--~-
.. • "._":ê' >r;t ... ,,~·:~t-~'"'I!iilf'~~ii"< .... ~ -w... ' 

i' 

, ""i~: 
, " -~ ,t ~ 
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1 

problem rely on accurate experimental values of theae 
fi 
1 

coefficients. ' In spite of m~ efforts over reeent years, 

~n the field of Raman speetroscopy. no electronic transitions 

for MgOIFe?+ have been reported. 

In the following chapter. the reader ia introduced to 

crystal field theory and to some basic applicati9ns of group 
S 

theory. Explicit calculations show how the comblned e~fect 

of electron-eleetron interactions, ligand-electron and spin­

orbi t n'interactions lead from the free ~on eriergy l~vels to 

2 

the spin-orbit energy levels ~d,the corresponding wavefUnctions. 

These results-are essential to solve the JT Hamiltonian and 

the stress Hamiltonian as will be shown in chapters 3 and 5. 

The concept of a JT efrect, the difterent·t~pes of JT 

ooupling and the JT Hamiltonian are discussed in chapter ). 

..,ga1culations are e~lici t'Jly carried out whieh démon strate the 

expected reduction in the spin-orbit splitting and the elec­

trame g-factor due to the dynamical JT effect. Particularly, 

the Ham reduetion factors are presented in a new way which 

emphasises their origin and the necessity of sucn coefficients. 

" .------J 
The literature review of the Most important reaearch 

of the MgO 1 Fe2+ complex ia gi ven in ehapt~r 4. A description 
~ --of the experimental set-up t~gether wi th "information relative 

'\, 

to the MgO samples and their preparation for thè stress experi-

ment ls also gi ven. The theory and concept of Raman spe'ctros-

, , 

t 
1 .. .. , 
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'copy is 1ntroduce4'and the ëxPérlm.n~ Raman apectra of the 
.. • J " 

2+ ..... \ 
,_ MgO 1 Fe samples taken' at liquld ne, tempe rature wi th. and 

~, ... 0;, 

.J. , 

, without uniaxial stresa are presented. 

, 
In -cha.pte~ S, the theory ~d concept of stress and .. , , 

strain la establ1shed leading to ~ expression for t~e stress 

! f 

3 

Hamil tonian. The splitting of the energy levels 'tor increasi~ 
, 

stress are explicit~ly calc;ulated and fitted to :the exp~i-

mental data. The interpretat10n o,! the experimental res~ ts 

follows. 

The 1ast chapter summarlzes the researoh presented in 

this thes1s. The sallent %!,'esults are 'the value of the strain 
, 

ooupl~g coe~ficient to Eg'~eformations. i,e •• v2' the corre~-

ponding JT coupling coefficients and JT energies, i.e. (EJT)~ 

anG! (EJT ) T' 

1 
i· , 

Any calculations or in:f'ormat~on relevant ta the com­

pleteness of the th,esis but not 'essent1al to the 10g1081 

development of the thes'Îs have been relegated to the appendices. 
î. i ' 
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. CHAPTER 2 ... 

, 1. • 
f '. 

1 Energy ;tevela of-the ,f'errou8 ion 1 

2.1 The free ion 
, 

2.1.1 The centJ.?al field a~Eroximatlon 
, 

The ferrous ion ls consldered as a point nucleus of 

, charge +Ze 'Surrounded by N electrons~ each of mass M and 
2+ . 

charge -e. For the case of MgOlFe , the f'errous ion replaces 

Mg2+ in the crystal' 1attlce of MgO and inte~ets .with its 

surrounding nelghbors. The Hamil tonian of sueh a system is 

where the different energies involved are defined to be 

.",261 the kinetic' energy of the i th electronl 
2m 

~ 
rlj 

the Coulomb energy of interaction between the nucleus 

and the i th electron; 

the Coulomb energy of intenction between the i th and 

jth e1ectron. 

.--\' 

4 

, 
• 1 

, 1 

i 
1 
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j 

t~e Coulomb energy of interaction bet;een the i th 

efeotron and th; iigand 1 

the ~ergy Dt the ~n-orbi t interaction Dt tIi~ .. i th 

electron. 

To obtain the energy levels ot the system, the 

SchrOdinger equation 

\ 

H<p= E<!> (2.1-2) 

must be solved for E. Due to the comp1exit,r of 'the inter­

actions, the SchrOdinger equation, Bq. (2.1-2), cannot be 

solved analytically for N >1. Therefore, we have tO.....!f1ake -J-

simp1itying assumptions that will take into account the 

relative magnitude of the energy terms in Eq. (2.1-1)'. The 

first such simplification is the central fiel~ a pr~Ximation 
\ 

which ls known in' the 11teraturè as the S1ater\th ry ot atoms 

and ions. 

The electron-e1ectron interaction in Bq. 

prevents a separation o-r the variables in 

equation. This constraint May be relaxed if we separate 't~e 

total Hamiltonian, Bq. (2.1-1), into two parts aS.~ing that, 

an electron, moving &round the ion, teels a potenti~l that 

can be approximately ~eproduced by ~ functlon -u(r,)/., In 

doing so, we neglect the spin-orbi t interaction and the 

electron~1igand interaction for simplicity. This approxi.a-
- . 

tion will be Justified in 8ubsection 2.1.2. oThe Hamiltonlàn, 
1 

.-

• 
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\ 
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C";"traJ.-t al~~pro~tiOn~Can be writtan as within the 
\ \ (2.1-J) 

where 

H = t. (:1L 1 + U(ri~ . 
o i=l 2m ï 

Hl = t. (_ze2 
- U (r i ») + l~. ~, 

i=1 ri \ 2 i-J rU 
Now we can solve the simpler SC~dinger equation obtained by 

replac~~ H for Ho in Eq. (2.1-2) "S. e., 

Hoq) == Eo<P {2.1-4} 

The Schr~dinger equation. Eq. (2.1-4), ,can be separated into 

cne-electron equations by choosing <p as\~ product of 'one-

electron funetions and Eo as a sum of one lectron energies. 

The resulting one~electron Schr8dinger equa ion ditters trom 

its equivalent expression for the hydrogen at m by the 

potential -U(ri)/e substituting tor _e2/r. Co equently, the 

one-e1ectron tunctions can be expresseà in the s e form as 
, 

hydrogenic tunctions dittering mainly by the radial~art w:t'Jbh 

depends on the central potential Uer). Thus, the one~leètron 

funetions can be wri tten as 

= (2.1-.$) 

where the radial part is Rna (r) and the angular part ia given 

in term of the we1l-known spherical harmonies Ylm, (e,,,?). We 

must account tor the spin of the electrons by multip1ying the 

N orbital funetions by N spin functions. Because ot the Pauli 
, 

exclusion princip1e and the tact that two e1ectrons cannot be· 
\ 

di stingu i shed , the product ot N one-electron functions and' 

their corresponding spin tunctions must be antisymmetrised. 

l-
I 
1 
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The resul ting tunétions. .lch are still solutions ot the 

Schr&dinger equation. are .• iven by the tamous Slater de ter­

minantal tunctionS whose general expressioa is given by 

1". (NWl/2 ~(-lf P-Q- ~I (nlmlmal __ ~~) 
where P is a'permutation operator which simultaneously inter­

changes the spatial and spin coordinates of any pair ot 

e1ectronsJ p ia the parity ot the permutation. 

For the ferrous ion, the energies Eo' Eq. (2.1-4), are 

degenerate with respect to ml and ms ' the project~on along 

the z-axis ot the orbital and spin angular momentum, respec~ 

tively, but not ~h respact to the angular momentum itselt. 

The different anergies Eo can be distinguished by what ia 

fi called the electronic cont'iguration 

Is22S22p6)S2,p6,d6 

written more aimply )d6 tor the ferrous ion. There exists 210 

determinantal functions which àescribe the states avai1able 

to the six 3d-electrons implying that Eo(Jd) is also ZIO-fold 

degenerate. 

2.1.2 Th' electron interaction 

We are interested in the 3d6 con~iguration in which' 

al1 but the aix Jd ... electrons are in closed shells. These 

aix )d-electrons are responsible for moat of the chemical and 

physical properties ot the terroua ion. Sa. we are concerned 

in characterizing their avai1able states', the corresponding 

energies and wave tunctions. 

,':l 
~f, , 
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The 'degeneracy of Bo (3d) can be litted if ... account 

tor the electron-electron interact~on by solving the per­

turbation pot~ntlal Hl' Eq. (2.1-3). The tirst SUDIIlation 

in ~ s!mply shitts' the unpert11rbed ~nergy Eo (Jd) and the 

7 

second suilmation invol 'Ving the distance between two e1eetrons ) t 

(r IJ ) correlates the electrons and spl~ ta the unperturbed 
. 

energy. In tact, we detme 
N 

H' Il 1. >. e2 (2.1.6) 
2 if iij 

which commutes wi th the total orbi ta! anguiar momentum L and 

the total spin angular momentum S <,ëe Appel;Ùiix A}. Using 
, ~ '\ ; 1 

states which are linear combinations of determinantal tunctions 

labeled by the qu~tum numbers ~SMLMg, l t is shown ir Appendix 

E,A 'that the matrix elements of H vanish if the follawing c~n­

di tians are satisfied for the 1 LSMLMg> states when ~alculating 
, 

. the matrix elements of H • 

, 
/", S, S' 

. 1 
Moreover, ~e matrix elements , 

, 
of" H are alao independent of 

. - - . 
the secular determinant ot the electron­

eaks up into sma11er determinants'each 

labeled by a pair ot quantum numbers LS and are (2L+1)(2S+1)-

t01d degenerate. The resulting energy levels are designated 

by what la called a term, 2S+1L• Usually, the three. Hund's 
, 

rules are ~aed to classity empirically in an iBcre~ing order 

~-: 
~:l 

i< 
~, 

1 
·if 
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w-u' 
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of magnitude thèse !rae ion energy lev.ls i- For the ferrous 

ionl Hund 1 s ~s are '\unapplicable exeept tor the ground 

state, 5D, the least energetlc leve~s (or ter,ms) beingl 

5D 

.3H Jp )p )G 

II 3D lG 

etc. 

(o cm-l ) 

'(20000 cm-1 ) 

<.30000 cm-l) 

2.1.) '!rhe weak crYsta1line fie~d case 
, . 

So far, we, have neglected electron-ligand interaction 

and spin-orbi t iri.teraction in the total Hamil tonian, Eq. 

( 2 .1-1. ) • This f~ct can be undêrstood since the ferrous ion 

, be10ngs to the transition meta! series among wh elements . 
two cases can be distinguished wi th regard to the relative 

r magni tude of' the energy terms of the total. Hami1 tonian. The 

two cases are 

-
(i) the strong crystalline field case. 

)' v(rl) > ! ~ ~ >: t. Hso(i)' 
i 2 f.;J ri) .-1 

(ii) The ,weak crys"tal1ine field case, 

For the 

l ~f > [V(rl»~Hso(i) 
~ Ij 1 f="1 

tirst transition meta! series. to which the f'errous 

ion belongs, the elec1:ron-e1ectron interaction and electron­

ligand interaction are of the same order ot magnitude. Con­

s equently. the tirst transition metal series cannot be 
• 

unambiguousJ.y attributed to case (i) or (ii), whereas >,the 

, second and third transition metal series defini tely belQng 

i 
l' 

\ 
j, 



C) 

to oase -(i). Calcul.ations and experiment~ reau1 ta have 
1 shown, however, tha~ the ferrous ion energy levels are well 

desoribed by c'ase (ii). Theref'ore. we were perfectly allowed 

in this seotion to treat the ~erroua ion as a ~ee ion. In 

the subsè~ûent sections. the e1ectron-ligand interaotiott and 
\ 

spin-orbit tnteraotion are aocourted for ,equenti~y 'usi~g 

perturbatièn theor,y. 

) 

2.2 The cnstal1ine eleetric field 

2.2.1 'Group theoretioal predictions 

When \the terrous ion ia embedded in the MgO crystal, 

i.e., pe2+ s~bsti~tes for Mg2+, the ferrous ion'can no longe~ 
- \ 

be oonsidered as a free ion. In taot, the ïon interacts with 

i ts surrounding nei~bors, the ligands, through Coulomb inter-

action. 
{2+ . 

:In MgO 1 Fe , the ferrous ion is surrounded by six 

oxygens ions (ligands) forming ionie "bonds wi th them. We are 

interested in the changes the eleotronio ~st~ of the central 

ion (Fe2+) undergoes under the intluence of the electric 

, field produoed by the ligands. We assume the Coulomb energy 

'of the .il;lteraction between the i th ,~leotron of the eentral ion 
, , ' 

1 

9 

and the ligands to be more important than .the spin-orbi t inter-

action of the i th e1ectron, according to 'subsection 2.1.). 

The ligands generate an inhomogeneous electric field 'l . . 
.. ,,~ 1 

that dèatroys the isotropy ot the previous1y free ion. Hence, 
, • 0 

the symmetry group ls reduced from that of the full three-,. 

1 
l' 

1 

l' 
1 , 

' . . , 
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dimensionaJ. group p'lus inversion (spherlcal) to the subgroup 

'8.s80ciated wi th the ligands configuration; The reduction in 

dimensionality of' he irreducible representation causes the 

ci egeneracy associat wi th the full. spherical symmetry to be 

lifted) oxygen ions occupy the vertices of an 

octahedron. Fig. 2.1, e fe~ous ion being at the center, 

. hence lowering the si te symmetry :tram sphe~ical te octahedral 

(Oh) • Mereover, trom group theory, we know the highest 

irreducible representation dimensionallty of Oh ~y.mmetry 

ia \.hree (:t'our- for ions having,. odd number of electrons). The 

crystalline electric field affecta only the motion of the 

electrons, i.e., operates on the orbital part of the wave 

functiona and not on the spin part of the wave functions. 

10 

Since the orbital degeneracy of the ground state (Sn) is t'ive, 

which does not exist under Oh symmetry, the ground state of the 

~ous ion must split. We c~ decompose the D-states into a 
'-

linear combination of states that will transform according to 

the irreducible rep~esentations of Oh' i.e., 

= 
fi 

where the subscript ng" signifies that the states are even 

under inversion. Such a decomposi tion implies that the ground 

state splita into a two-fold degenerate orbital state (5Eg ) 

of 'e~:tective orbital ~ar momentuml L = ~2. and into a 

three~fold degenerate orbital state (5T2g) of effective 

orbilal angular momentuml L :1: 1. The spin degeneracy is not 

affected Dy the decomposition. We notice that the effect of 



, 
\ 

o 

o 

Fig. 2-1 

The oxygen ions occupy the 

vertices of an ootahedron 

surrounding the ferrous ion 

impurity in the MgO crystal. 

11 
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10 

the crystal field is to partially reduce tbe orbital angular 

momentum in the Eg sta:tes and T2g st~tes. In tact, the 

'" effective orbi ta! angular mo~entum is obtained by taking the 

1 2 

submatrices of Lx' Ly and Lz in the Eg states and T2g states. 

For example, the submatrix ot the components-of L in t~e T2g 

states is identlcal to the corresponding mattices in the P 

states except each matrix element ls multiplied by -l, yielding 

L = -1. Formally, the Wigner-Eckart theorem can be used to 

obtaln the constant of proportionali ty between the matrlx 

elements ot the oybi tal angular momentum in the D-states and 

the matrix elements in a subspace of the D-states. 

Group theory indicates kindly that the 5D ground state 

must split, but does not speclt"y which way i t spli te and the 

magnitude of the splitting. Ta obtain this information, we 

rely on ligand field theory2. In this thesis. the Mulliken 

no~ation is employed to label the orbital states and the Bethe 

notation to label the spin-orbi t states. The notations are 

~ecified in Table 2.1. 

2.2.2 The octahedral electric field 

In order to find out which way the grounl etate spli ta 

and the corresponding splitting, we must find an expression 

\, for the Coulomb energy of the interaction between the i th 

electron and the li'gands. Assuming a spatial charge dis­

tribution pCin for a given ligand ion, e.g. 02-, we obtain 

the wanted expression for the Coulomb.energy directly from 

1 

1 
[, 
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OCTAHEDRAl SYMMETRY 

MULLIKEN BETHE 
IDENTITY INVERSION 

NOTATION NOTATION 
\ 

~ 

kjg f1g 1 1 
, 

A29 12" 1 ~ 
Eg Ijg 2 " \2 

\ 

T19 ' '49 3 3\ 

T29 [5g 3 3 

A1u Gu 1 -1 

A2u '2u 1 -1 

Eu l3u 2 -2 

T1u ~u 3 -3 
, 

T2u rsu 3 -3 

TABLE 2.1, 

--- - .------- . 
~ 

Oh 

BASIS 

FUNCTIONS 

2 ~ 2 X .. +Z 

(X2_Y2) (Y2_Z2) (~_X2) 

' (2Z2- X2_y2) , Ji(X2_, y2) 

sx.SytSz 

YZ,XZ,XY ~ 1 

fig X fiu 
i 

XYZ 1 

fig x f2u 

X , Y, Z 

r5g x f1u 
\. 

CI \, 

tf ? F 
'-
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the elassleal electrostatic potential 

V(ri ) = 2; qk v' (ri) 

V'(r:i) 2f j?{R)dTR 
IR-ri , (2.2-1) 

where R ia a vector pointing trom the central ibn (Fe2
+) ta a 

, 
point having p(R) at (R, e.~) and r is a vector 'locating the 

electron' at (r,,9,cp). Using the well-known expansion in 

spherlcal harmonies, .. ~ 

III~il = L 21:1 ~)., L YA,x(9,.P) Y~x (e.<p) 
>,=0 X=-À 

we ean write the eleetrostatie poteptial as, 

• 
where r< :: r and r>:: R sinee MgO ls an ionie crystal.. 

(2.2-2) 

Obviously V'(r) will have the same symmetry as peRl, Le •• 

the' oetahedral symmetry, Fig. 2.1. The effeet of V' (F) on 

theOenergy levels of the free ferrous ion is obtained by 

perturbation theory to first order. The çalculations involve 

integrals of the form, 

,<~ ~ Vh) .1{)) 
where ~i ls a product of one-electron fUnctio~s whlch we use 

, . 
because V (rk) ia , one-electron operator. Consequently, the 

14 

matrix elements of the electrosta.tlc potential are proportlçnal 

ta a sum of one-electron terme in'volvlng three, spheticaI 

harmonies which are f'lmctions of the eleetron coordinates. 
, . 

B-ecause of thesa spherlcal harmonies, the matrix alements will 

, 
1 

, 
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be zero unleas certain conditions ot symmetry are satisfied. 

The imposition of these conditions will considerably reduee 
~ . [ . 

the number of terms in the expansion of' the eleetrostatic 

potentiaJ., Eq. (2.2-2),- -and wUl malte the- calculations' 

tractable. ,. 

The addition theorem for spherical harmonies states 

that this product of spherical harmonies ie non-zero if 

À ~2L,where L= 2 tor 3d-electrons. Moreover, from parity 

considerations, À. must be even and we obtain the restrictions, 

À = 0, 2, 4 (2.2-3) 

Besides, the electrostatic potential must be invariant tor 

all symmetry operations which belongs to Oh" The first 

invariance requirement concerns a rotation of the coordinate 

system bY~/2 about a four-fold symmetry axis, i.e. 

C4 V'(r) = V'(r) (2.2-4) 
\ . 

This invariance requirement restricts the x values to t 4n, 

15 

in Bq. (2.2-2), where n is a positive 1nteger (including zero). 

Moreover, a mirror reflexion in the XZ-plane must leave V'(r) 

unchanged,' i. e. , 

cr V' (r) = V' (r) ( 2. 2-5) . 
xz -

This condition imposes that A4 ,4 = A4,_4 where, 

A)..x =- ia1 J :!~I) Y~x(e,~ )dTIt (2.2-6) 

F1nally, a rotation of the coordinate system by'2ft/3 about 

the three-fold axis of the octahedron must bring V' (r) into 

i teel%', 1. e. , 

(2.2-7 ) 
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which implies ~hat ~,O • 0 and A4,4 =~ A4.0. 

6wing to the constràints. Bq. (2.2-3) to Bq. (2.2-S) and 
. 

Bq. (2.2-7), the expression for the e~ectrostatic potential, 

Eq. (2.2-2), can be simp~ified to 

V' Oh (F) = AooYoo + A4Q ,4 [Y4Q + A (Y4•4, + Y4.-4 )] 

In order to get an explici t expression tor V' Oh (r), i t 1-s 

usual to approximate the ligand charge distribution to point 

charge. Theretore , the k th ligand has a charge -qk and the 

coordinates (Rk,ek'~k) 80 that we can rewrite Eq. (2.2-6) as, 

A = ~ \ -..9i..'Y~·Y(e "') (2.2-8) 
'" x 2),+1 Lk Rk

Atl -r k~k 
2+ r 

For the case ,of MgO 1 Fe • all the ligands have the same 

charge ( or -q) and the same distance from the central ion 

(R)/ Thus, in the point charge approximation, the electro­

static potential can be expressed as, 

V~h(') =A 80YOO +- -& 84 ,4 [V40 + Ja (Y4,4+Y4;4) ] 

.,here 8
0 

= -4nq/R and 84 = -4nq/9~. . 
f 

Once àga"in. we rel y on perturbation theory to obtain 

the effect ot the ligand, field on the energy levels of the 

5n ground state. The work ia. simplified by the choice of 

appropriate wave functions which are symmetry adapted linear 

combinations of one-e1ectron 3d-wave functions, Bq: (2.1-6). 

These wave functions must 'transform the same way as the states 

they describe. ' Since the ground atate ia orbi tally five-fold 

degenerate, we look for five such wave functiona which will 

16 
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give rise to Eg states and T2g Btates. The wave tunctionsJ 

are, 

'Y (5Ege) = R)d (r) Y2o(8,~) 
0/( 5Eg~:> • R)d (r) -Y.J2 [Y22 (e,~) + Y2-2(B.-Ç)] 

,'Y(5T2gJ ) s ~d (r)-1/J2 [Y21(e,~) +Y2-1 (6,{')] 
'Y(5T2g.,,) = ~d (r).1/J2 [Y21(9,'-{» ~Y2-1 (e.f)] 
'Y(5T2g~) = ~d (r).1/J2 [Y22(e.~) - Y2"2 (e,~)] 

(2.2-9a) 

(2. 2-9b) 

(2.2-9c) 

(2.2-9d) 

(2. 2 .. ge) 

Using Rve functions. we can easi~y carry on the perturbation 

calculations and, accordlng to group theoretical predictions, 

we find out that the Sn ground state 18 spll t wi th the ST2g 
states lowest, Fig. 2.2. The energv separation between the 

5Eg states and 5T2g states ls det'ined as, 'f? 

l:::. s lJ}lO Dq = -5A4<) <r4 > 7:;;- (2.2-10 ) 

Dq ls a parameter frequently used in ligand field theory to 

estimate the strength of the e~ectrostatlc potential or ligand 

field. In fact, an experimental estiDij:1.te for Lq can be: 

obtained from the' separation of -the ion spectral lines which, 

when substituted in the previous equations, compensate for 
" . 

the point charge approximation . 
... 

Tanabe and Sugano 4 calcula ted the effect of crystalline 

electric field of octahedral symmetry on the t'ree ion enet\:gy 

levels of :3dN configuration. Their diagrams gi ve the dis­

tribut1'Cm of energy -levels relative to the ground state ~s a 

function of Dg/B. where B is one ot' Racah parameters). For 
2+ 4 the case of MgO 1 Fe , i t- has been determined experimentally 

1 
! 
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Expected energy levels according 

to crystal field theory :for 3d 6 
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that ll1 :if 934 cm-1 and B =* 917 cm-1 • 
,. 

These values determine 
" , 
" the relative energies of the split components ror the terms 

(2S+1L). Eq. (2.1-8), via Tanabe and Sugano diagrâiii' tor 3d6 

ions. 

\ 
The spin-orbit interaction 

. . 
2.3.1 The spin-orblt H!mi~tonian 

Up to now. we have neglected the spin angular 

momentum of individual electrons. according to the weak field 

case, subsection 2.1.;. In tact, this me ans that we have 

treated the problem non-relativistically. Relativistic 

corrections can be made using Dirac's equation tor an electron 
, 

moving in the potential U (r) of the nucleus. The electron 

moving in the electrostatic field of the nucleus. given by 

- " 
E =-1 dU(r) L (2.3-1 ) 

q dr r .. 
will teel, in its own frame of reference, a magnetic field 

B =~. v xE \ (2.3-2) 
c 

~ich interacts with the electron intrinsic magnetic moment 

M = 9.2 s m 
e 

(2.3-) ) 

where v ia the speed of the electron (small. compared with the 

speed of light), q and me are the charge and the mass of the 

electron. ~espectively. Thua, we can rewrite the magnetic 

field, Bq. (2.3-2), uaing equation (2.)-1), , --B = 1 • ..1...dY(rJ.E r 
qëT r dr m. 

where v = p/me haa been used. The spin-orbi t Hamil tonian ls 

~. - -1 , -:d;~ .... !.~:~~~~'f;$ ~~ 
- ' .. 
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expressed a 

(2.3-4) 

-where pxr ::1 -1 has been used. 

A summation over al1 the central ion results 
,f 

in the well-known Russell-Sauna.rs ling expressed as 
N N 

~ Hso (1) = ~ ~ (ri) ~ ,SI (2.)-5) 

where we use the definition5 

l! (r ) - 1 1 dU'<r'f 
5i i - m cff.'" dr r.ri e 1 

Equation (2.,-;) can be written in operator equivalent fo as 

L Hso (i) = - À L'S 

i 
(2.J-6) 

where L la the total effective orbital ~ar momentum for 

5T2g states, S is the total spin angular momentum and À ls 

the spin-orbit coupling parameter which ls equal to its free 

ion value gi ven by 

For the ferro us ion. the accepted value6 À= -100 cm-1 

la affected by spin-orbit interaction to distant terms with 

20 

S = l, Eq. (2.1-7). by any expansion of the electron' orbitals 

(~d{r) and by covalency e~fect. We fo11ow Ham in neglecting 

al1 these effects, but covalency effect which will be accounted 

for ln c~ap~er 3. A negative sign la assumed for the spin­

orbit coupling parameter i~ the ion has a ahel1 which ls more 

than half-filled as is the case for Jd6 ions. 

'-
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o ~st also account tor spin-orbi t interaction 

be~en 5T2g~te8 and 5Eg states u,y second~order perturba~on 
! 

theory. and tor the slightly wealter spin-spin interaction. 
. . '7 8 

Both are represented by the operator equivalent ' 
J 

l! () 2 (2 2 2 2 2 2 )-.> L·S +.t-" (L·S.) + f LxSx+ LySy~ LzSz (2.3-8) 

The parameters ~ .t'. P (including the effect o~ spin-spin inter­

action) are given to the a~curacy ot second-order pertutbation 

theory7,8 by. 

~ Il -2 cm-1 

fA = -2 cm-1 

e • +6 
-1 cm 

, ' 

,. 
. 

The total spin-orbit Ham11tonian, Eq. (2.3-6) and Bq. (2.3-7), 

can be written in the operator e.qUivalent torm, 

2' { Hso(5T29) = ~(L·S) + ~(L.S) + f L:~: + i([L!+L~} 

[S~+S~J + (L+L_+ L.L+l[s+s_+s_s+J)} 

" wiere (=;- À. We have used the raising and lowering operators 

detined as, 

L:! = Lx! i Ly 
S + = ~x:!: i Sy 

Be~re we solve the secular, equation :t'or the spin-orbi t 

interaction, it is instructive to analyse the group theoretical 

predictions tor an orbital etate (T2g) coupled~o a spin state 

. (S lit 2). Evidently, the resulting 5T2g states ~e f'~t'teen-fo1d 

degenerate which is n~t ~lo~ed for octahedraJ. symm~ry si~ce 
the highest irreducible representation (tor ions 'Ni th ~ 

1 

1 . 
~ 
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) . 
number of eleetrons) has a dimensionali ty of three. Theretore, 

we must decompose'the ST2g reducible representatlon' into the 
'9 -

irreduclble representations of Oh using Koster's mul. tij)licati\on 

table. In doing so, we ob tain' the spli tting of the 5T2g states 

tmder the effect of spin-orbit interaction. The tollowing '. 
~ . 

decomposition r.sults 

The Bethe notation, Table 2.1, ls used for ~in-orbit states. 

Table 2.1 also givas the degeneracy of·- these irredueible ~ 

representations of Oh and indicates the transformation T 
, ) 1 

properties of the spin-orbi t states in têrms of the COOrd1tes 1 

x.y.z and various bilinear combinations of the coordinates. ; 

Theretore, gr~~ theory predio~s that the apin-orbit Hami1tonian 

Eq. (2 • .3~a), splits the 5T2g states into six set~ of states' 

(or energy levels). 
- , 

2. J • 2 The energY levels and associa ted tune tions 

" The spin states must be coupled explici tly to the T2g 
states, Eq. (2.2-90) to Eq. (2.2-ge), to give the tifteen 

apinors 

wh&re . s = -2, -1, 0, 1. 2. We oan solve the s_eoular equation 

resu! ting fr~m the matrix representation of Hso (5T2g ) using 

the spinors defin.ed in (2~J-9). M'ter a lengthy but simpl.e 

oalculati-on we obtain the eigenvalues (energy levels) regrouped . 
acoording ta their J = L+ S, value's. i.e •• 

\ 

• 1 

1 
1J"l' 

1 
1 
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l' - ~ , 

J = lI' E( a 15) • -,) t + 9 ~ +, f f 
J = 21 E( G) Il - ~ + r- + 2 e 

E(af4) Il - ~ + fA" + 3e 
J = JI E{ ri) =' 2 ~ + ~r + 2 P 

Ê(b (4) ,.:1 2 ~ + 4r'" 4 e 
E(b fS):I 2~,+ 4r'" ~ ~ 
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(2. ,=-10a) 

(2.)-10b) 

(2.3-100) 

(2. J"tlO~) 

(2'. ,.10e) 

(2.3-101') 

where the energy levels are labeled as ·È( ri) aocoXoding to the 

representation ot the state. The degeneracies are the same as 

the irreducible represèntation that làbels the ~state and 

indica tes i ta trans:t"9rma tion properties. So, these resUl. ts 

corroborate the group theoretical predictions and represè'Pt' 

the crystal field predictions for the spin-orbi t energy levels • . 
Fig. 2.2. 

By infrared optical absorption or as shown in this 

. thesis by Raman spectrosc,oPY. i t ia possibl.e to observe 

el.ectronic transitions among some of these spin-orbi t levels. 

ConsequEJtly, the energy of the expected ~ransitions. as 

predicted bl" cI7stal 1'1el.4 theory, are. 
, 
1 

cm-1 E( G) - E(ar,) = 192 -, , (2.3-l1a) 

E(a f4) -_ E(a rs) :1: 198 -1 cm ,,( 2.3-11b) 

E( fi) ~ E(ars) :1: 480 cm -1 (2.3-11c) 

E(~I4) - E(ars) cm-1 -= 492 (2.3-11d) 
-

E(b rs) -E{aJS) = SOl cm -1 (2.3-l1e) 

, " 

!, 
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The corresponding nonnalizad elgentunctions are listed 

in Appendlx B. They d-itter in a ~~w respects tro~ the 

published tunctlons being linaar combinations of them. 

. ! 

Figure 2.2 s~ariza8 the (atfect ot ,the cr.ystalline 

e~ectr~~-rield and thelsPin-orblt tnteràotion on the 5D ground 

. state of the :rree ion, adO~rding to Crystal t'ield theo~2 and 

perturbation the6ry . 

• 
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\ 
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CHAPTER J 

The Jahn-Teller effect 

3.1 The eleçtron-phenon coupl~ 

J.1.l The Jabn-Tel1er theorem 

It ls usual, as we did in chapter 2, to consider the 

motion of the electrons and the nucleus of an atom to be 

decoupled. Owing to the1r smaller mass. the electrons move 
'- . 

much faster than the nucleus, so that the electrons rearrange 

themselves adiabatically around the nucleus for any displace­

ment of the nucleus. This 1a the Born-OppenheimerlO approxi-
" 

mat10n for non-degenerate states" and the corresponding Bom-

Oppenheimer 

of a purely 

productlstate 1s represented by a direct produ9t 
\ J 

electr~1c funct10n and a vibrational funct1on. 
4 

o 

In 19J7, Jahn and Tellerll established, for non-linear 

molecules with an orbitally degenerate ground state, that a 

molecule would spontaneously distort in order te lower 1ts 

symmetry and, 1n so- -doing, would lift the degeneracy of 1 ts 

ground state and attain a new equ1librium state. The néxt 

year, Jahn12 extended the theorem to 1nclude spin effects 

showing that a molecule would spontaneously distort if the 

ground state has a degeneracy other than Kramers degeneracys 

this ia the J8hn-Teller (JT) theorem. 

25 
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Due to the presence of phonons. the crystal lattice 

\ ia not a rigid entity as we assumed in~chapter 2. Since the 

atre~gth and symmetry of' the crystalline electric field depend 

on the central ion-ligand configuration, we expect interesting 
, 

effects to oeeur to the electronic energy levels l'rom the 

relative motion of the ligands and the centràl ion. In 1939. 

Van Vleck1J•14 adapt~d the Jahn-Teller theorem to the paramag-

~netic impuritiea in cryatals having a degenerate ground etate. 

He ehowed that the impurity's environment would distort with 

no more than thezero point amplitude of a typical vibration 

mode being necessary to reach a new nuclear configuration of 
" 

lower symmetry and lower energy. Consequently, when the coupled 

motion of electrons and nucleus ia no longer negligible, which 

occurs for ions with degenerate ground ~ates other than Kramer 

states, the Born-Oppenheimer approximation breaks down and the 

JT effect appears - a direct consequence of the JT theorem. 

3.1. 2 The guaai-molecular model 

When a JT impuri ty ion is placed at an atomc si te of 

a certain symmetry, it is coupled to ~ continuous spectrum of 

lattice modes via the Coul~·interaction with its neighbors. 

This many-frequency problem was first tackled by SloncjeWSki15 

for ~-eleetronic state and, due ta the difficulty of the 

problem. hie treatment is èomplicated to tollow and to assass 

in physical terme. In tact, approximations must be made which 

~educe the number of lattice modes of importance in the JT 

interactioA. Such an approximation ia the construction of 

;' 
1 
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local modes, i.e., localized vibrations with weIL defined 

symmetr~es centered on the impurity .ion which was first 

,developed by Cloizeaux~6 in the harmonie theory 0'1 lattice 
J. , 

vibrations using generalized Wannier functions in complex 

energy bands. A relation between the crystal normal modes 

\ and the local modes can be established, so that we can define 
~ 

local mode effective frequencies in terms of the various , 
frequencies and wavevectors of the crystal normal modes. 

Several authors17•l8 ,19 have treated the multl-mode full­

lattice problem and they all agree to the fact that the local 

mode effective frequency model ls a very good approximation 

for weak electron-phon~n interaction. In fact, O'Brienl8 , 

Hal.perin and En glmanl 9 , have shown that the displaee~ents of 

the ion neighbors are well localized around the ~~urity ion, 

i.e., the ~train field around the ion decpeases as R-2, where 

R measures the distance' from the ion. So, they concluded that 

well-localized modes can be used instead of the phon'on con­

tinuum to describe the effect of eleatron-phonon coupling on 

the electronic energy levels. This ls essentially the quasi­

molecular model (or cluster model) "used by Van VlecklJ ,14 and 

which will be used in this thesis. 

The quasi-molecular model ,considers the central ion 

and 1 ts nearest neighbors as a separate entl ty in the crystal 

lattice. Hence, We consider only the vibrations of the 

octahedron shown in Fig. J.l and we neglect any explicit 

effect of the surrounding lattice. The quasi-molecular model 

____________ l ____ _ 
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Fig. )-1 

The different collective displacements 

of the oxygen ions surrounding the 

ferrous ~mpurity in MgO crystal. 

These displacements represent the 

effective normal modes of vibration of 

the cluster model. Their transformation­
'''-. 

properties are outlined in;Table ).1. 
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TRANSFORMATION 
D'SPLACEMENTS 

PROPERT'ES 
, 

A19 
X 2+y2+Z2 .-1- [X-X +~-y. +z -Z ] " 

J6,14 536 

Ji[X2_ y2] + [X1-X4-Y2+Y5] 
E" 

9 
2 2 

_1_[2Z -2Z '-X +X .-y, +" ] 3Z - R 
213 3 6 1 4 2 5 

" 

YZ ....L [z -z +1 -Y. ] 
~ 2 2 5 3 6 

T2g XZ -L [x -x +Z -z ] 2 3 6.1 4 

Xy ..L [y -Y. +x -x ] 
- 2 1 4 2 5 

TABLE 3.1 
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has the advantages of simpliei ty and intui ti ve appeal over the 

multi-mode fttll-lattiee model where there has b~en more 
\ 
l 

emphasis on mathema~ieal sophiatieation than on the prediction 

of observable effects. 

The six ligands located at the vertice~ of the 

oetahedron have each three degrees of freedom for a total of 

eighteen degrees of freedom for the octahedron. These degrees 

of freedom can be classified into fifteen degrees of vibra­

.tions (~g' Eg,T2g,2Tlu ~ T2u ) and :hree de~ees of 

rotation (Tlg ) wn.ere the subscript "g~ ls used for collective 

even displacements tmder inversion and '~Ulll for odd displace­

mente under inversi·on. 

" 
Frqm group theory, it is a well-known 

\ 
rule that the only operators giving non-zero matrix elements 

among T2g-states, e.g., the ground state of the ferrous ion, 
• are those transforming as one of the irreducible repres~nta-. 

tions of the direct product 

T2g x T2g = Alg + Eg + Tlg + T2g 

Of these, only the operators transforming as Eg and T2g 
representati~s of Oh can lift the ground state degeneracy 

(see chapter 5) and, consequently, lead to a JT effect. The 
1 

symmetry of the electronic operators and, the vibrational 
Il 

modes being linked through the invariancè of the JT Hamil tonian 

(section ;.l.J), we conclude that only vibrational modes trans­

forming as the Eg and T2g representatiarls will interact with 

the T2g states via the JT interaction. 

.' 

" 
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c ~ If' a system of' coordinates (Xk, Yk , Zk) is attached to 

the K th ligand, ye can torm a linear combination or li,and 

displacements that will transt'orm according to the Eg ·,or T2g 

representations. This linear oombination or displacements is 

a unitary transformation or the (Xk,Yk,Zk) coordinates into 

th~ Qn cQllectiv~ coordinates which derine the local modes of 

vibration. Table J.l gives the mode symmetry, the collective 

coordinates (~) and their transrormation properties. Figure 

J.l depicts the different collective displacements. 

J.l. J The Jann-Teller Hamiltonian 

The lattice phonons will slightly displace the ligands 

from their mean positions (Qn = 0) at the vertices of the octa-

hedron. These displacements being small with regard to the 

lattice spacing, we can expand the Coulomb energy of inter­

action between the i th electron and the ligands (Eg. (2.2-1» 

into a Taylor series in terms of the collective coordinates 

Qn' Le., 

Liqi'i(r,Q). Liqi [VOh + LJ;::)QN+iL.J~~J~a.:·J(J·l-l) 
where the partial derivatives are evaluated a~ Qn,m = O. There­

fore the electrostatic potential can be separated into a static 

contribution V'Oh obtained in chapter 2 and a dynamical part 

which depends on ~ and which is respo~sible fo~ the electron­

phonon interaction. In Appendix C, it is shown' that we can 

neglect the second-order terms in the Taylor expansion 

(Eq. ().1-1» owing to the weak JT coupling coe,rficients, 

-----------:-----~, -- --~ ~~---·----------_c"!i__:_--'"..V_III 
...... , !;"J,.~. ~1;,,; 
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Eq. (J.1-9). To complet«tly de fine, V'{r,Q),. we need an explici-t 

expression tor the partial derivative (dV'/dQn) which can be 

obtained from the crystal field potential, Eq. (2.2-2), 

rewritten as 
x 

V'(r,R) = L L 2~:1 ) 
~ = 0,2,4 x=-~ 1t (J.1-2) 

where 

8 k = ,.qk Y~(9k~k) . (J.l-)) 
/ 

and k labels thf ligand ions on the octahedron. To differentiate 

e~ression (J.1-2) w;th respect to ~, we must express the 

collective coordinates in terms of Rk , the ion-ligand separation. 

If we choose Qe' Table J.l, as an example and we make the 

following change of variables, 

1 k = 1,2,) 

where r k stands for xk ' Yk or zk' Ro is the ion-ligand separa­

tion at rest and ~ measures the distance between the displaèed 

ligand and the central ion. Hence, we can rewrite Qe as 

Q .. • ty;- [2(R:; + R6 ) - (11. +, R4 ) - (Il:! + Rs) ] 

where Qe is expressed in terms of variables having the same 

origin of coordinates. Now, we can get an expression for the 

part~al derivatives in Eq. (J.l-l) using for example 

*. = ~ (JQ,,)...?. 
dRk ~Rk_ 

L c·~· = 
k k ciRk (J.1-4) 

--'-'~ -.- --.- ------~-
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with cl = c2 :: c4 :: Cs :: .-1/2./5 and CJ = C6 :II 1/JJ. In a more 

generai way the partial deri vati ves can be expressed. using 

Eq. t3. ~-4) .and Eq •. (J.1-2); 'as 

(3.1-5) 

Ii" we carry on the summation over k.x and X, in Eq. (3.1-5), 

and use the expressions for the Tassera! harmonics in terms of 

cartésian coordinates (see Appendix C), we obtain for the par-

ticular case of ~ = Qe' 

( JV \ = -q . ..L [~(3Z~-~)+ 25 (35z1-30~1+3r1) 
~ae /Oe=O 4TtE,.R~ 2ft Rt 1 16R~ . 

(J.1-6) 

The Coulomb energy of the ion-ligand interaction results atter 

a summation of thé energy qiV(ri,R) over al1 the e1ectrons of 

the central ion. The tummation, becàuse of equations ().1-1) 

and (3.1-6), inyo1ves terme 1ike 

~ qi(Jz~ - rfl 

33 

which can be· transformed easily into elec~ronic operators by 

Stevens" operator eq~iValent method20 ., This method is appli­

cable for evaluating matrix elements of the crystal1ine potentlal 

between wavefunctions characterized by one p~ticular value of 

angular momentum, i.e., Stevens operator equivalent method 

applies within the 5T2g states of the _ferrous ion. This method 

is a direct co~sequence of the Wigner-Eckart theorem21 ,2Z which 

--....... ~_""~_ ......... .-____ ~ __ ~, __ -,-,·'-'-'--'---r' - _. - ___ o. - __ ~ 
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.. . 
stipulates that the matrix elements of· the cOlDPonents of 

. -
angular momentum are proportional to the matrix elements of 

. 
any tensor, in a sPecified subspace of J. e. g., the ground 

state of the ferrous ion. Since. in the s~ple oct8hedral 
~ 

group, the orbital angular momentum transforma as the cartesian 

coordinates. i.e •• ~ or Tl' we can replace x,y and z by the 

operator equivalent Lx' ~ and Lz' respecti~ely. '>!The non­

commutation of the components of angul.ar momentum is accqunteâ 

for by replacing bl1inear combinations of Lx' Ly and Lz divided 

by the total number of combinations. As an example, following 

Stevens' method, the Summation over the e1ectrons Qt .tne central· 

ion can be transformed as 

2: qi (3z~-1) = O(l q (,2) [3l! - l(L+1) ] 
1 

where ~L = -Gl2l for Jd6 ions. 

1 

(J.1-7) 

The MgO crystal being a pure1y ionic crystal, the 
.. 

electrons are we1l localized around the ferrous ion so that 

~L~J. [~L~r« 1 
where ~L = 2/6J ls a coefffcient simi1ar to otL , but re1ated to 

the higher order terms of Eq. (3.1-6). Therefo~e, we ban 
" 

neglect the last two terms in Bq. (3.1-6). The partial 

derivative, Eq. (3.1-6), is rewritten using Bq. (3.1-7) as 

(ii:..\ - 2..[3, q ,(r~}.1[3L:-L(L+1)], 
d Q, 10.= 0" 7 ~"r,.R.2 Rf 2 

(J.1-e:) 

, 
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wherè we de:f'ine the JT coupling coe':tfic.lent to Eg-modes of 

'vibration. 

, ,U 

,.35 

V
E 

Il 2J5 q Ir2} 
. 7 ' 411E:.A~ ~ Ch 1-9 ) 

and Es is defined by Eq. (J.I-Ioa~. Consequently, for each 

coll.ective coordinats ~, we can derive an expres~ion for the 

partial derivative s1Inilar to Eq. ().l-S) and we can define an 

associated electronic ope,rator that transforms as the irreducible 

representation of the mode of vibration. 

operators 'are 

The electronlc . 

Eg-REPRESENTATION, Es = i [JLz 2_L (L+l>] (J.I-1Oa) 

E( = :E [L 2_L 2] (J.I-IOb) 
2 x y 

T2g-REPRESENTATIONI TJ = LyLz+LzLy (J.I-IOc) 

T, '= , Lz~x+LxLz (J.l-10d) 

T$ = LxLy+L~x (J.l-10e) 

We have obtained ~at the partial derivative wi th resPect to Qn' 

in Eq ... () .1-1 >, transforms the same way as i ts associated ~, 
. , 

so that the summation oVer the electrons of the central ion 

~ ql ~(~') QN 

transforme as ,the bUinear combinations of the +"""'e (Q2 + Q2) } VJ~ e ( 

an~ (Qi + Q~ + Q}) which are invariant under thé symmetry 

operations belonging to the octahedral group. This invariant 

ia the JT Hamil tonian expressed as,' 

r" 
1 



l ' 

l ) 

.() 

where YT ls the JT coupling coefficient to the T2g-modes of 

vibration which can 'be defined by an expression simiiar to 

Eq. (3.1-9). The point ch~ge approximation leading to the 

exPressions for VE and VT based on CryS~al field theory appear 

too crude and give no accordance wi th experimênts. Angular 

overlap.modei23 or ,linear c~mbination of atomiè orbitals24 
. 

>(LCAO) m~od give more consistent values to the experimental 

results .. In al1 cases, the quality of the quaai-molecular 

model la much ~proved when VE and VT become parametera. de ter-
.' , 

mined experimentall.y in a similar fashion to Dq, Eq. (2.2-10). 

in crystal field theory. Accordine;ly, .we de termine the JT 

coupling coefficients experimentally via the strain coupling 

coefficients as shawn in chapter 5. ~ 

, li· 
3.2 Th~ weak Jahn-Teller effect 

3.2.1 The mo1ecul.ar orbitals 

The six Jd-electrons of the ferrous ion are distributed 

36 

over the five d-orbitals' pictured in Fig. J.2a. Tpe crystalline 1 
' ). 

electric field distinguiShes two sets of orbitals. t~e two d~ • 
1 

orbitals for Eg-states and the three d~ orbitals for T2g-states 

wh!ch lie lowest in ene~gy. The ferrous ion assumes the high 

spin configuration, i.e., ~he maximum total spin ~ment~ given 
,\ 

4 2' ·1 

by de dl t Fig. 3.2b. In this configuration, the electrons are 

spread over the d1 and d~ 'orbi tals to minimize the Coulomb . " 
-

energy of interaction between them, the energy being f'urther . ~ 

reduced . by the quantum mechanical exchange energy which 1s null 

for spin pairing. 

1 . 
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Fig. )-2 

(a) The electrons are distributed over 

five d-orbitals. The two upper charge 

distributions transf.orm as Eg symmetry, 

whereas the three lower charge distri-

butions transform as T2g symmetry. 

(b) High-spin configuration of the 
... 6 

ground state of the ferrous ion (J~ ) 

'constructed from one-electron crystal 

field states. 
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The oxygen ligand (02-) has its s-orbital and its 
1 -

p-orbl tals occupi!ed, and form molecul8.f bonds wi th the central 

ion (Fe2+). Two types of molecular 'bonds are formed, as 

depicted in Fig. 3.31 

(i) the O"-bonding which ls formed between the 2s and . 
2pcr orbi tals of the oxygen ion and the dO" -orbi tals of the 

ferrous ion. 
., 

(ii) the Tt-bonding between the 2Pn orbitals of the 

oxygen ion and the d" -orbi tals of the ferro us ion.' 
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The 6-bonding ie known to be very strong in octahedral complexes. 

This phenomenon explains the oecurence of strong JT effect for 

Eg-states, whereas the 7f-bonding being weak in octahedral com-
, 

plexes leads to weak JT effect for T2g-states. To first order, 

the spin-orbit interaction mixes the d~ -orbitals, but this 

~situation has no consequences on the previous conclusion. 

3·2.2 T2g x eg 

In order to introduce the definition of the JT energy in 

terms of the JT coupling coefficients, VE and VT, and the con-

cept of reductio~ coe~ficient (~), we choose to study the 

heuristic case ot an orbital triplet state (T2g) coupled to a 

doubly degenerate vibrational mode (eg ). Subsection 3.2.4 

discusses the general case of coupling to two different local 

modes pertinenj; to the ferrous ion in MgO. 
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Two" types of molecular bonds are formed, 
, 

as discussed in the text. In (i), di 

16 identical wi th d x 2 2 (Fig. )-2a). 
-y . 

Only one oxygen ion is shown wi th 

1 t6 p-orbi tal, for clari ty. 
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In this partieular case, we consider the octanedron 

to~ed b~:the lisand& as an harmonie oscillator with its 

e~uilibrlum p~aition given by Q. = Q~ = o. The.en~Fgy of the 

alectron-phonon interaction ~dUdes a kinetic term, an e1as~ 
term and a .TT term, respectively given by 

~ 2 
1/2t'E ~(.p; +. P~ ~:I. +t'"Ec;t'2( Q! 

+ VE(Q E +Q E ) • e c' 

where Ph la the,momentum conjugate to ~'~E and ~ denote, 

reapectively, the effective mass and angular frequency for 

Eg~modes and l is the identity matrice. As stipuiated by the 

JT theorem, the electron-phonon interaction (HJT ) 10wers the 

energy Of the harmonie oscillator and distorts the atomie 
, . 

40 

site, i.e., displaces the equilibrium positions of the harmonie 

oscillators. In minimizing' equation (}.2-1), we obtain the 

new equilibrium positions', 

(i) -
Q. = Q, Qt: =-JjQ 1 

, 
=~JjQ (ii) Qg = Q J Q( 

(iii) Q = -2Q J QE, = 0 (J.2-2) • 
where 

1 Q = 

. After substitution of these new equilibrium positions into 

Eq. (J.2-1), we obtain the corresponding JT energy defined as 

the shift in energy induced by the JT affect 

(EJT)E = Vil2~~i (J. 2-3) 

l' 

, 

) 
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The Hamil tomant Eq. (3.2-1). is diagonal wi thin the 

vibronie funetions so that the e1ectronic states are net mixed 

by' the electren-phonon interadtion." The potential energy 
" 

~ 

s.trfaee in Qe,Q(-spa~e consists of three disjoint paraboloids, 

as depicted by Liehr25 , Fig. 3·4. In fact, eaeh paraboloid 

correspo~ds ta a statie ~etragonal distortion of the cluster 

along either X, y or Z-axis, each direction being perfeétly , 

equivalerit and equally prooable. Since the electronic functions 

cent~red on each paraboloid are orthogonal to each other, the 
, 

cluster shoulà undergo a static tetragonal deformation and 

remain indefini tely in one of the paraboloids. This is 

schematically what happens for a strong JT effect. Experi­

mentally, the static defopmatien ls not always observed because 

the spin-orbit interaction, which we have neglected in Eq. 

().2-1), admixes the e1ectronic functions ~d allows, within 

certain condi tions, the cl us ter to oscilla te between the. 

different paraboloids. In that case,' we have a àynamic,JT 

effect, i.e., the JT complex snows a statistical distribution 

of its states over the various possible distortion states. 

Experimentally, we observe the time average of the cluster 

oscillations between equivalent distortion states and, there­

fore, the JT complex shows a highet macroscopic symmetry than 

predicted for a static deformation, e.g., Oh symmetry for 

Fe2+ iil MgO. 

Since the effective or~ital angular momentum has 

non-zero off-diag~al matrix elements and zero diagonal matrix 

! 
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Pote.ntial energy surfaces corres­

ponding to an orbital triplet 

state coupling linearly to a 

vibrational mode (Qi, Q€) of Eg­

symmetry, i. e" T2g x e g, 
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elementa between the electronic T2g states, these same matrix 
o 

elements are mu! tip~ied by a vibrational. overlap integral i 
which aecounts t'pr the reduced overlap of two paraboloids. 

H .. 26 first eonceived a simple analytical approaeh to this 

problem using displaced harmonie oscillator wav~functions to 

describe th~ vibrational states. These vibrational states 

are suitably represented by Glauber states whieh are effectively 

displaced harmonie oscillator wavefunctions, as demonstrated 

__ by Judd27 • The Glauber states simpllfy: appreciably the cal-

$ 

.. 
culations involved in more eomplicated ~roblems of this type. 

In the harmonie approximation, Ham26 showed that the overlap 
1 

integral i E equals to 

(J. 2-4) 

When there is spin-orbit in~eraction, the dynamic JT 

effect ls established if the zero-point energy (ftc..J) i9 large 

enough to bring the eOlllplex in th9 region where the vibrational 

functions overlap, i.e., the following ineqaallity condition 

must 'b1fsatisfied 

~onsequently, a weak JT effect ls cbaracterized Dy adynamie 

JT effect and moderately redueed ma trix eleménts of the angular 

momentum. For the case of strong JT effect, i. e. EJT »1\w , 

l the overl~p integral tends to zero and the complex is eonfined 

to a particular paraboloid. 
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The problem of an orbital triplet state (T2g ) eoupled 

to a triply degenerate vibrational mode (t2g ) has been treated 

analytfeally by Ham26 and Judd27 following two different ,,, 

approaohes and is similar'in some respects to the previous 

case o~ T2 xe. We can write the Hamiltonian for such a g . g 

situation in a similar f~shion ta equation (J.2-1), Le., 
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where P n ls the momentum conjuga~e to Qn 'f-LT and c..JT denote, 

respectively, the effective mass and angular frequency for 

T2g-modes and 1 is the identlty matrix. We can establish four 

linear combinations of the Qn whieh minimize the energy of the 

Hamil tonian, Bil. (J. 2-6) 1 and whioh represent the four possible 

trigonal distortions of the cluster, Fig. J.5. Judd 27 obtains 

easily the equilibrium positions of the displaced harmonie 

oscillators J 

(1) 

(ii) 

(iii) 

(iv) 

where 

QyZ = QI 

Qyz = QI 

QyZ =-Q; 

QyZ =-Q 

Q= ~ 

Jt"T~ 2 

Qzx = Qi Q = xy Q 
1 

Q =-Q; Qxy = -Q . 
zx 

Q =-Q; Qxy = Q zx 

Qzx = QI Q.xy = -Q 

The JT energy, as defined in the prèvious subsection, is 
. 

obtained after substitution of the equl1ibrium positions in 

1 
1 
:' 



( ) 

.' 

Fig. )-5 

Trigonal distortion of, the octahedron 

formed by the oxygen ions. 'Eac~ oxygen 

ions being at the face center of a cube, 

four such distortions are possible 'along 

the four differen't cube diagonals. resu~ t­

ing t'rom the Jahn-Teller interaction 

between an orbitaJ. T2g state and a t 2g 

vibra:tional mode. 
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( 

the Hamiltonian, Bq. (3.2-6), 

In this case. the four vibronic ~ctions which 

character1ze the states in each displaced paraboloid are 

products of linear combination of the T2g-electronic states 

J 

and Glauber states, and, consequently, all~w the complex to 

tunnel between the possible trigonal distortions. This ability -of the oscillator ta tunnel introduces a tunneling splitting 
• 

in the lower~d T2g-states and removes the forbidden four-fold 

degeneracy of the equivalent trigonal distortions. This is 

the strong JT effect and the resulting potential energy sheets 

are cubic hypersurfaces which have been depicted by Liehr25 . 

Oue to ,the reduced overlap of the oscillator vibrational 

functions and of the purely electropic fUnctions, Judd27 obtains 

a reduction factor (lT) similar to that for iE' Eq. (3.2-4), 

(J.2-8) 

Similarly to the previous case but without having recourse to 

the spin-orbit interaction. adynamie JT effect can be 

established between the four equivalent distortions if con­

dition (3.2-5) is satisfied. 

The coupling of electronic T2g-states to the two types 
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Of vibrational modes, introduced in subsection 3.1.2, ls much 

more realistic than the previous cases discussed in su~eétlons 
(3.2.2) and (3.2.J). Thi~ problem is also much more complicated 

1 

màthematically and no complete detailed analysis of the JT 

interaction and i ts physical implications have been offê'red 

up to now. Nevertheless, Opik and Pryce28 were able to show 

that tetragonal and trigonal distortions coexist with saddle 

points between the minima. They found that the potential 

energy surface has tetragonal wells of lower energy than the 

trigonal ones if (EJT)E > (EJT)T' Eq. (J.2-3) and ().2-6). 
, 

In this case,' \ i t is found that the matrix elements of electronic 
\ 

~peràtors tran~orming as the T2g irreducible .representation, 

between the vibronic f'unctions, are much reduced wi th respect 

to matrix elements of operators transforming as the Eg 

irreducible representation of Oh. For example, a uniaxial 

tetragonal ~ress would split a degenerate energy level 

belonging to t~ese T2g-states, but a uniaxial trigonal stress 

would be inefficient to split the same energy level. The 

converse ia true if the interaction with T2g-modes is stronger 

than the interaction with Eg-modes of vibration, i.e., if 

(EJT)T > (EJT)E. Fig. 3.6 shows the relative strength of the 

reducing factors i (T2 ) and '8( E) for T2-electronic operator 

and &-electronic operator, respectively. 

For the special case of equal coupling wi th eg and 

t 2g modes of vibration, Le., (EJT)E = (tJT)T' O'Brien29 

1 
! 

1 
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Fig. J··6 

Orbi tal reduction factors i( Tl ) , 

'd( T2 ) as a function of' the, strength of 

the Jahn-Teller int~raction when the 

coupling i6 to b~th. e g and t 2,g m~des 

of vibratio~. T = v/<r1lwJ)! and in eache­

case, three diff~rent values (0.6-, 1,1.6.5) 

, for the ratio [(EJT)Jt'1t~J/t('EJT)rI'ftwT] 

l. 

.1 

are given which indicates how the JT 

coupling i8 shared between e g and 't2g 

vibrational modes. 
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proposed a vibronic model called the D-mode'model. Assuming 

-that the'five vibrational modes are degenerate in energy 
-\ 

(D-mode) and that their JT coupling is strong, the powerful 

symmetry properties of the five dimensional rotation group 

(R5) May be used to solve the problem. This techniqùe is . 
elegant and efficient but nevertheless restricted in its appli-

cation due to the assumption of eq~al coupling. Recently, an 

attempt)O has been made to relax th~ constraint of the D-mode 

model by assuming degenerate frequencies but different 

coupling strength. 

For small JT coupling strength to eg and t 2g modes of 

vibration, it is foundJl that the two types or modes operate 

independently, i.e., the eg modes tend to stabilize the 

tetragonal deformations without competing with the t 2g modes 

which tend to stabilize the trigonal distortions. The pot~tial 

energy surface is essentially five-dimensional containing 
r 

various minima, maxima and saddles points. Since the reducing 

effect of the'different modes on the matrix elements of 

electronic operators are simply additive, we can separate the­

JT Hamiltonian into two parts including either eg modes or 

t 2g modes of vibration, and each part is treated by perturba­

tion theory independently from the other. This is the approach 
. • 2+, 

that we adopt for the partlcular case of MgOIFe . 

J.) The experimental evidences 

1 
'1 
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J.).1 The orbital reduction factors 

As mentioned in subsection 3.2.2, the matrix elements 

of the components of the orbital an8'Ùar momentum or any 

operator with off-diagonal matrix elements between the orbital 

states (T2g ) are reduced between the vibronic functions from 

their values in absence of JT effect. This is due to ~he 

reduced overlap of the vibrational functions characterizing 

each distortion of the- c1uster. These vibrational overlap 

integrals are called orbital reduction factors. Since the 

spin-orbit interaction i6 expressed as a linear function of 
(7 

the orbital angular momentum, Bq. (2.)-6), we expect the spin-

50 

arbit splitting of the 5T2g-states to be reduced from the 

predicted crystal field value as well, Bq. (2.)-lOa) to(2.]-lOf). 
~ 

Therefore, a set of spin-orbit energy levels appearing as 

predicted by crystal field theory but with a reduced spin­

orbit splitting is the signature of a weak or intermediate 

JT affect. Whereas, a strong JT effect would completely qùench 
, 

a small spin-arbit interaction. 

~an VleckJ2 •JJ was the first to notice that a strong 

spin-orb~t interaction may stabilize the cluster against weak 

JT d&formations. In fact, the spin-orbit interaction of the 

T2g orbita! states lifts some of the degeneracie6 (spin-orbit 

spli tting)-. If, as a resul t, no degeneracy other than Kramers 

degeneracies is left, no JT effect is expecte} (JT theorem). 

On the other hand, if some degeneracy is left, it may be 

primarily spin-degeneracy ~n which case the matrix elements 

• 
-- ---"' .~ __ •• • __ • ~ - 0- __ 
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of the strain operators, see chapter 5. are much reduced and 

the JT effect is correspondingly weak. Van Vleck32,33 has 

set an inequality relation between the spin-orbit coupling 

parameter and the ~T energy, i.e., 

which establishes when the JT effect is expected ta be 

minimi~ed by the strong spin-orbit interaction. As will be 

shawn in chapter 5, both conditions {).2-5} and (3.;-1) are 

satisfied for the T2g-states of the ferrous ion in MgO, sa 

that the assumption of weak JT effect for the ferrous ion in 

MgO ia weIl justified in accordance with the expectations 

from the type of molecular bonding. For instance, it is 

generally found that those -systems having an orbital doublet 

ground state (Eg) are particularly susceptible to JT effect 

because there is little competition to the electron-phonon 

interaction from other perturbations, e.g., spin-orbit inter-

action and trigonal distortions have zero matrix Elements 

between the Eg-orbital states. The opposite is true for the 

Tzg-orbital states. 

) 4 1 
Stevens has shown that if the JT complex is not .. 

purely ionic, as assumed by crystal field theory, but that a 

small charge transfer exists between the central ion and the 

ligands, the resulting weak covalent bonding reduces the , 

51 

spin-orbit coupling parameter. In fact, the spin-orbit coupling 

parameter, for a small admixture of d-orbitals from the central 

._--- -------- -

1 . 
~ 



-. -- ------~---_._--- -------

( 

52 

ion and p-orbitals from the ligands, is expressedJ4 as 

(J.J-2) 

where ~~.is the one-electron spin-orbit parameter, Bq. 

(2. J-7), Nn and ex". are the normalization factor and the admixture 

cOèfficient, respectively, ~d and (p are thè spin-orblt para­

meters for a Jd orbital (Fe 2+) and for a 2p orbi'tal (02-), 

respectively. Ham et ~J5 estimates, for the case of MgOaFe2;' 

that the covalent bonding is not like1y to reduce À. by more 

than 10% from its free ion value, a~ being small. Consequently, 

the covalent bonding s1mulatesJ6 the JT effect by reducing À 

and, thus, the spin-orbit splitting. 

J, J. 2 The Ham reduction -raètors 

We have shown in section J.1 that e1ectronic operators 

can be defined following Stevens ''bperator equivalent method20 ,J? 

e.g., Eq. (J.l-?). These operators are multiplied by a 

numerical constant ~L which depends on the configuration of 

the particular ion (e.g. Jd6 ) and on the total angular momentum 

of the e1ectrons L (or J}v We c~ determine the matrix 

e1ements of these electroRic operatorsJ8 either in the 5T2g 

o~bital states characterized by ~ given value of L, e.g., 

(J.)-J) 

or, in the spin-orbit states characterized by a given value of 

J, e.g., 
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(Jlv1JI~(3,z~ 2 
1 JMJ) (r

2
) (Jlv1 J 1 (3J ; - J(J + l»IJMJ ) r. ) = <x'

J 
1 1 

i' (J. 3-4) . 
where a numerical value for the 

'J ' 
coefficients otL and ocJ which 

depends on the detailed nature of the states can be obtained 

by returning to the direct integration method ~f finding matrix 

elements between single-electron determinantal functions~ 

The matrix eleménts of a given Hamiltonian can be 

obtained easily in the spin-orbit states once the expression 

of the sarne Hamiltonian in the orbital states is known. This 

time-saving calculation technique was firet explicitly used 

by Ham et al35 and can be summarized by the relation 

(J.J-5) 

where H(L) and H(J) are the Hamiltonians which operate on the 

orbi tal states and spin-orbi t states, respecti vely, and O<.L' 

~J are defined in Eqs. (J.J-) and ().J-4), respectively. The 

ratio of the two constants tn (J.)-5) is called the Ham 

reduction factor which we de'fine as 

(J.)-6) 

where r specifies a set of operators belonging as partners to 

an irreducible representation of Oh' The Ham reduction factors 

result from a reduced effective orbital angular momentum due to 

the Înixing of, the orbital functlons and spin functions in the 

spin-orbit states. The following example shows how to deter­

mine the Ham reduction factors for any given L and J value. 

1 
\ 

1 , 
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Using the Clebsch-Gordon coefficients5 , we can express 

the spin-orbit states characterized by a given value of J in 

terms of states characterized,by a given value of L and S, 

i. e. , 

(J. )-7) 

~ 5 In the case of MgOlFe , we have L = 1 and S = 2 for the T2g 
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states, and we can select J = MJ = 1 for the arsg-states. Con~ 

sequently, Eq. (J.J-7) gives 

Il 1) = (1/10)t 112; 10) + (J/IOP 112; 01) + (6/10) i 1121,-12) 
(J.)-8) 

From 'Bqs. ().J-J), (J.)-4) and (J.)-8), we obtain the equality 

O/.J = 1. (1 11 ()J:-J(J+l) Il 1) = 

O/.L = 1 [( 1/1 a ) <liE e Il) + ( J/l 0 ) <9 1 E el a ) + (6il 0 ) (-11 E e 1-1 ~ 
(J.)-9) 

where Ee la defined in Bq. ().l-lOa) and the 1~~~1 ML alone 

has been retained on the right hand side qf the equality. The 

matrix elements in Bq. ().)-9) can be determined easily and we 

obtain the resul t 

cx.J = 1 / cx.L :: 1 = 1/10 

The same ratio lS obtaine~ for all the e1ectronic ope ra tors 

defined by Eqs. ().1-10a) to ().1-10e). Hence, the Ham 

reduction fac~ors for the spin-orbit ground states of the 

ferrous ion in MgO are \ 

KE(J = 1) = ~(J = 1) .\l/10 (J.J-1a) 
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Fo11owing exact1y the same procedure for the case J = 2, L = 1 

and S = 2, we obtain the ratio ,of the constants ~J = 2 and 

~L = 1 equals to -1/6 estab1ishing the Ham reduction factors 

for the first two excited states rJg and a r 4g , 
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(J.)-ll) 

Ham et alJ5 specified that equation (3'.3-10) also gives the 

ratio of the matrix e1ements of the appropriate orbital operator 

in the a~g ground states to the corresponding matrix e1ements 

of the same operator among the orbital triplet states. This 

assertion ia true as long as we compare matrix e1ements of 

orbital operators in orbital states and spin-orbit states 

satisfying L = J. For examp1e, we obtain a ratio of -1/6 for 

the appropriate matrix e1ements of orbital operators in the 

five D states (L = 2, Eq. (2.2-9)) and in the spin-orbit states 

with J = 2, as expected from Eq. (J.;-ll). 

The Ham reduction factors are perturbed by the weak J~ \ 

effect. In order to calculate the appropriate corrections via 

perturbation theory, as demonstrated in section 3.4, we fol1ow 

Ham et al35 in defining the reduction factors for orbital 

operators transforming as Eg and T2g representations by 

representative matrix e~ementsl 

1 
!, 

, .. 
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(i) J = ~ (a ~g -1 evel ) 

KE(l) = - (4'1 (a ~g) 1 Es l'Pl (a ~g) ) = 1/10 (J.3-12a) 
, 

~(l) = - (fI (a ~g) ITry If2(a ~g) > = 1/10 (J. 3-12b) 

(ii) J = 2 (Gg- and r4g-1eve1) l 
~ 

KE(2) = (1/3) <~l (Gg) /Ee / <RI (rJg »)= -1/6 (J.J-12c) i 

KT (2) = (-1/3)(f1 (a~g)1 T."I 'f3(ar4g»= -1/6 (J.3-l2d) 

The use of representative matrix elements to define the reduction 

factors is justified sinee the factor KE or KT cornes out naturally 

when the spin-orbit states are used explicitly to ca1cu1ate the 

matrix elements of given orbital operators. 

We restrict the analysis to the three levels (a 'sg' Gg 

and a r4g ) since the higher exci ted states (G.g , br4g and b ~g) 

cannot be observed experimentally for reasons given in chapter. 

4. The Ham reduction factors are essential to extract the 

value of the strain coup1ing coefficients from the experim~ntal 

results, as demonstrated in chapter 5. 
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J.J.J The g-factor 

2+ When the MgOIF~ sample is placed in a magnetic field 

H, the electronic angular momentum interacts with the magnetic 

field and seme of the energy levels are split 1 this ia the 

Zeeman effect5. The Hamiltonian of the Zeeman interaction is 

written 

HZ = ~(L'H + gO S·H) 

where ~ = efi/2mc is the Bohr Magneton and gO = 2.002; is the 

gyromagnetic factor. To the accuracy of second-order per-

turbation theory, the effect of the Zeeman interaction on the 

5 T2g-states i8 expressed as 

HZ(5T2g ) = (gO-8~16) @ S'H - k~L'H 

-(2VL~)~ [(LoS){1'j{) + (L'H)(1'S)] 

+(12)//,) A (L2S H + 1 2S H + 1;SzH.I) 
~t' XXX yyy ... ~ 

(J.J-5) 

where the parame ter k has been intro~uced to account for 
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covalency effect and Lis the effective orbital angular momentum 

(cf. subsection 2.2.1). We can define appropriate Ham reduction 
, 

factors, in analogy with Eq. (J,;-4), 80 that the Zeeman 

spli tting of the a ~g ground state Is givenJ5 by 

-- -~--'---;-. - ---
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where 

g = [gO -6A4:~}s-kKr. - [Zl/.6.]KA +JIZ.v'.6.]K:! 
',' 

, (;.;-6) 

and J is the effective angular momentum defined wi th res'pect 

to the a ~g vibronic ground state. Wi thin the a çg ground 

state, the Ham reduction factors in equation '(J.J-6) are ' 

defined;5 to be 

KL (a f5g) = i<~2(ar;g) 1 Lzl~J(aGg) (J,J-7a) 

Ks(a ~g) = i<~2(a ~g) Isz IfJ{a r;g) (J. J-7b) 

KA (a fSg) = i ( ~2 ( a f5g) 1 (L' S ) S z + L z (L • S) I-PJ ( a ~g) ) (J,)-7c) 

KB{a r;g) = i < tf'2(a rsg) / L~Sz /If?; (a rjg) (J, J-7d) 

where the fi ( ~) are gi ven in Appendi~ E. 

The experimental"g-factor in the açg ground state of' 

MgChFe2+ ls found to be reduced from its.predicted crystal 

field value ;.5, Eq. ().;-6). Ham et alJ5 have shown that 

the observed reduction in the ground state g-factor and ~he 

spin-orbit splitting are in large part th~ result of the JT 

effect, the covalency affect accounting for a maximum of 10% 

of the observed reduction. For the se1f-consistency of the 

model, the reduction in the spin-orbit splitting and of the 

~ound state g-factor must ba compatible with the strain 

1 
~ 
1 , 
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coupling,coef~icients. determined in chapter 5, which can be 

related to the JT coupling coefficients. The self-consistency .. 
of the, model ~s discussed in chapter 5. 

3.4 Calculations by perturbation theory 

3.4.1 The vibronic fUnctlons 

In section 3.2,.we have shown that the assumptlon of 

a weak JT effect in the 5T2g-states of the ferrous {~~in MgO 

ls reasonable from ~ theoretical point of view or from a 

molecular orbital approach, and Ham came to the sarne conclusion 

following his interpretation of Wong's results (see chapter 4). 

Therefore, we fo1low Ham in treating the JT Hamiltonian (HJT ), 

Eq. (J.1-11), as a perturbation on the total Hami1 toQi an , 

Eq. (2.1-1), including the kinetic energy and the e1astic 

energy associated with the motion 0f the ligands, Eqs. (J.2-1) 

and (J. 2-6) • 

Since HJT includes electronic and vibrational opera tors , 

vibronic states must be constructed, i.e., states which are 

symmetry adapted linear combinations of e1ectronic and 

*' 

j , 
1 
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and vibrational product states, e.g., 

l'Y N(G Çl)· t I:'i( nen.ll'P.(Gl )Ine,n,) 
nO,nE i 

(.3.4-1 ) 

Where rj refers to the representation of the electronic 

function. rk refers to the representation of the vibronic 

function. ne and n, are vibrational quantum ocqupation numbers. 

and N = ne + ne' The electronic functions are given in 

Appendix B and the ai(n , n€) are coupling coefficients 
o e 

tabulated by Koster et al9 for the octahedral group for the 

case of one excited quantum of vibration. The Qn terms in 

H JT can be converted to a second quantized form by means of 

the quantum mechanical operators ';a+" which creates a phonon 

and "ail which annihilates a phonon, by making the replacement 

().4-2) 

where n = e,E. 

We see that' the vibrational operator Qn has non-zero 

matrix elements only between no~phonon states (n = n 0) and 

one-phonon states (~ = 1). In the absence of a JT effect, each 

one-phonon state lies at an energy 1tCA.]; or ft~ above the 

corresponding no-phonon state depending on,which type of mode 

is excited. Fig. J.7 shows the vibronic energy levels.for 

T2g x t 2g wi th severa! vibrational quanta exei ted as a tunction 

r 
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Fig. )-7 

The vibronic energy levels resulting from 

the interaction of a T2g electronic state 

with t 2g vibrations. In this case, k = 
V~(r"W~),t. (Atter ret. 85) 
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of ... the JT energy. . The li~ 'combination of irreducible 

repreaentations into which each one-phonop state can be 

decoIDPosed, Table 3.1, is given by the space product ri x rj 

where fi. is the represen ta tion of the eorresponding no-phonon 

vibronic etate and rj ia the vibrational mode representation. 

The one-phonon vibronic states have degener~cy higher than 
lc' ~ 

what ia allowed under Oh symmetry and, eonsequently, are split 

by the HJT in accordance ri th group theoreticaJ. predict'ions. 

-/ .. 
" The correction to the energy, to second-order of per-

~bation the~ry, Bq. (3.4-5), involves matrix eléments ~f HJT 

in the vibronie states 

('Y~( rj ~) /HJTrr;<rjrk) ) (J. 4-J) 
~ 

which transforme according to the representation product 

rk X G. X rk ' ( J . 4-4 ) 

where we 'have used the tact that HJT is a sca1a.r, i.t., 

. 
Moreover, the matrix element, (J.4-J), must be 

a ecalar for the correction to the energy to be a scalar. Con­
f 

sequentIy. according to the well-knownJ9 group theoretical 

rule, the identi ty rI must appear in the rJduction of the 

representation product (3.4-4) for the matrix element (3.4-3) 
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to be non-zero. This condition is f'ulfilled when 

~ = ~. in ().4-4). which means that HJT has non-zero matrix 

'elements only between vibronic states of identical 5 ymme try • 

In this case, group theory reduces considerably the number of 

terms to be calcula ted in the summation of Eq. (J. 4- 5) and 

shows that the transformation properties of the perttU'bed 

r -
vibronic functions (Eq. (J.4-7» are conserved. 

, 
( 

).4,2 The reduction in the spin-orbi t sEli tting 

Since HJT ls linear in Qn which have non-zero matrix 

elements between vibrational states of different occupation 

number, the pertur):>ation calculation must be carried out to 

second-order in VE and VT , Consequently, the correction to 

the unperturbed energies, Eqs. (2.J-10a) to (2.)-lOf), is 

expressed as 

(J.4-5) 

where n and p label the different no-phonon and one-phonon 

vibronic states, respectively, and their corresponding energie~. 

This correction to the energy can be separated in two contri-

butions, one froIq the Eg-modes of vibration and the other from 

the T2g-modes of vibration, as speci:fied in subsection ).2.4. 

i -
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The corrections to the energy for the three lowest states are, 

in agreement with Ham's resultsJ5 , 

(J.4-6a) 

E( rJg) = -(EJT)~J(wE) -~(EJT)TF4(WT) 

E(af4g) = -(EJT)~5(WE)-~(EJT)'l'F6(WT) 

wher~ the following 4efinitions apply 

1 3 ftw 27 'ftw 3 ftw 
FI (w) = 100 +1<f1\W+198 +. 50 '1\W+S01 + 101\w+492 

(J. 4-6b) 

(J. 4-6c) 

F (w) = -L+ -1-. ftw +_1_. ftw + 1 ftw + 2 ft(,J + 6 1\w 
2 100 10 "".1+192 20 ftc.J+ 198 5 ftw+480 5 'ftw+492 25 ftw-t501 

FJ (w) =..!.... +-1- 1\c.J 
2 2 ftw.288 

F
4

(W) = _1_ +2- 1\w +_1_. ftw +..2..-. "ft~ 
4 20 ftw-192 2 ftw+300 10 '&>.309 

1 3 1\w 1 'ftw 1 1\w = - +_. +_. +_.~---

4 20 'ftc.J-198 2 "ftl.)+ 294 10 'ftw+303 

( ) = _1_ + -1- ftw + -1-. ft,..; + -lL. l\w 
F 6 w 4 6 'ftw- 6 201\w-196 15 1tw+303 

The energy difference between the no-phonon states la given 

in reciprocal centimeters, Eq. (2.J-IO) . 

... 
We observe that the three lowest vibronic energy levels 

are simply shi~ted (lowered) by the JT interaction. This ls to 

be expected, according to group theory, sinee the JT Hamiltonian 

is totall.y symmetric under the transformations of the octa-

hedral group and cannot split states spanning an irreducible 

j 
,~-----,.-' - -. .' , . , . , 

l' 

1 
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representation of the same group. Figures J.ll and J.1J show 

the shitt of the energy le"e1s ~ gi ven values o~ VE, VT, 

ft"k and ",~, according to Eqs. (J.4-6). These figures also 

show the reduction in the spin-orbi t spli tting which ls mainly 

due to the different Ham reduction factors for the different 

spin-orbit states. The frequency dependent terms of each 

Fi (w), E'qs. (J. 4-6), give approximately the same contribution, 

but the constant terms, gi ven by the appropriate Ham reduction 

factors squared (except for F J (W) ), determine the relative 

magnitude of each Fi(W) anà, thus, the relative magnitude of 

the shift. 

Ham et alJ5 verified the accuracy of this perturbation 

approach by direct numerical diagonalization of the energy 

matrix :for the case in which the JT interaction ls wi th the , 

They used eigenstates of the unperturbed 

Hamil tonian which had fewer than foup vibrational quanta 

65 

excited. Their results are shown in Fig. J.8 for two di~ferent 

vibrational quanta, '00 cm-l and 400' cm-l. As mentioned in 

chapter 4, a typical. vibrational quantum lies in the range 
,', .. 

-1 cm • For increasing value of the JT energy, 
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Fig ."",3- 8 

Shift in the spin-orbit energy levels 

versus the strength of the Jahn-Teller 

interaction wi th one Eg-vibrational mode. 

The solid lines represent the ground » 
state and the first two excited states, 

as calcula ted from the second-order per­

turbation treatment of HJT • The points 

indicate the sarne levels calculated 

from a direct numerical diagonalization 

of the energy matrix. The states 

had fewer than four vibrational quanta 

excited. The calculations were made for 

a spin-orbi t-parameter À = 100 cm- I and 

an effective mode energy (A) ,,~= )00 

cm -1 and (B) ftw
E 

= 400 cm -1 Second­

arder spin-orbit splitting of the energy 

levels is neglected CAfter ref. 35 ). 
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the perturbation approach will break dàwn sooner for ftwsmaller 

than 300 cm-1 owing to the terms involving an energy difference 

in Fi{W) with i = 4. 5. 6. The m~itude of these terms 

increases rapidly éS the àenominator tends to zero. and their 

contributions to the correction in energy is exaggerated 

compared to the contributions from other terms. These authorsJ5 

concluded that the perturbation approach is accurate in estimat-

ing the reduced energy separation of the sp1n-orbit states 

out to EJT !:::200 cm-l . As la shown in chapter 5, we oàtain JT 

anergies wel~ below this breakdown limit, therefore justifying 

the use of perturbation theory. 

J.4.J Reduced Ham factors 

The JT interaction affects the Ham reduction factors, 

Eqs. (3.3-J) and (J.3-7), in perturbing to first-order,the 

no-phonon vibronic functions used to define those reduction 

factors. According to second-order perturbation theory, the 

perturbed functions are written 

where l 'Y.(~~) ia the unperturbed vibronic etate de:fined in 

.... . ~ ----.. ... - _. 
: __ 'Î:;,·.e~Z"\I1f~"":L"· _-. 
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( ) 
Eq. (J.4-l) and EO

( fj fk) is the associated energy. A per-

turbed function including corrections to all orders of per-

turbation becomes the Glauber state mentianed in subsection 

J.2.2. The perturbed Ham reduction factors are obtained by 

recalculating the matrix elements in Eqs. (J.J-J) and (J.J-7), 

using the perturbed vibronic ons. Ell. (J. 4-7). The per-

turbed Ham factors are given Appendix D. 

Ham et alJ5 compared the reduction factors evaluated 

from the eigen-states obtained in a direct matrix diagonaliza-

tion wi th the resul ts of perturbation theory. The comparison 

is shown in Fig. J. 9 where good agreement is obtained between 

the two calcu.lation techniques. This figure shows tha t the 

reduction factor Ka for the spin is weakly perturbed by the JT 

effect, whereas the reduction factor KL ls dimlnished signi-

ficantly (-20%) from its crystal field Value -0.5. indicating 

a partial quenching of the orbital angular momentum. 
) 

Figure J.IO shows the behavior of the reduction 1· 
1 

factors KE and KT for the three lowest spln-orbit states t 

(a fSg. ~ rJg and a ~g ) for both coup,ling to Eg modes and T2g tf 



1 1 

1 
! 

1 

1 

J 

t 

1/ 

- ------- _.~---

Fig. J-9 

Reduction factors KE , KT' K1 and KS 

f'or the r5g ground state of the 

f'èrrous ion versus the strength of 
4 

the Jahn-Teller interaction with 

one Eg-vibrational mode. The solid 

lines represent the calculations 

f'rom second-order perturbation trea t-

ment of' HJT' The crosses indicate 

the results of a direct numerical 

diagonalization of the energy matrix. 

the eigenstates had f'ewer than four 

vibrational quanta excited, The com-. 
bination 2KS-KL gives the ground-

state g-factor when covalent effects 

and higner order corrections are 

neglected. (After ref. 35 ). 
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modes. (The parameters used in the calculation are given in 

the figure caption). In this case, the coupling to Eg modes 

is stronger, resul ting in an important reduction 6f ~(2) -24% 

by the JT effect at (EJT)E = 100 cm-l, and a 15% reduction for 

KE(2) at the saroe JT energy. The reductions are less severe 

in the a ~g ground state with 4% for KE(1' and 14% for ~T(l). 

Fig. J.ll shows the shift of the energy levels and the reduced 

spin-orbi t spli tting obtained from the SaIne parameters used 

in Fig. J.IO. lt ia interesting to note the re~uced second-

order spin-orbit spli ttin~ between the f4g and the Sg levels 

40 as was observed by Meyer et al . 

The reduction facto~E and ~, in Fig. ).12, result 

from a slightly stronger coupling to TZg modes and a weaker 

coupling to Eg modes. In this case, where we have almost 

equal coupling to both modes of vibration, KE and KT are 

diminished by a comparable amount by the JT effect showing the 

independent stabilization of their respective distortions. A 

comparison of Fig. 3.10 and J.12 shows that the stronger 

coupling always dominates the p~cture, as discussed in sub-
~ 

" 
section ).2.4. Fig. J.l) shows:the shifts of the energy levels 
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and the reduced spin-orbi t spli tting obtained from the parameters 
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Fig. 3-10 

The magnitude of the Ham reduction 

factors (KE and KT) versus the 
\ 

strength of the Jahn-Teller inter-

action. The effective mode energies 

'ftw
E 

= J45 cm-1 and 'ftw
T 

= JOJ cm-1 

are used in the calculation, as 

explained in the texte 
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The shift in the spin-orbit energy 

1eve1s versus the strength of tne 

Jahn-Te11er interact'ion. The . 

e'f'f'ective mode energies 1\wE :: 

:345 \ cm -1 and ftwT >;= JO,\cm -1 are 

used in the câlculation r \S exp1ained 

in the text. The vertical èlash line -

indicates the JT energy, (EJT)E' 

which fits best the experim~ntal 

resul ts. 
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of Pige ~.12. Fig. J.l1 and J.13 are ranarkably siml1ar whieh 
r ( 

eon .... trasts wi th the marked dif:t'erence between the related 

figures 3.10 and '.12. -.In other words. many dif:t'erent ~indof 

- c~~pling -strength ta Eg and T2g modes can fit· the experlmental 

resul ts of Wong (cf. chapter 4) indiea ted . by a vertical dashed 

~ 

line on each figure. 
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~lg. :3 .14' indicateshow the g-factor CF be made to agree 
, 

wi th the reduced spin-orbi t spli tting simply by adjusting the 

parameter k in Eq. (J.'-6) which accounts for the covalent 

effect. To ob tain unambiguously the respective coupling 

st!rength to Eg and T2g modes of vibration, new experimental , 

evidenc'e is required. Such new evidence is provided trom the 

determination of the stré.ih coupling coefficients, âs described 

in chapter 5, 
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The magrti tude of the Ham reduction 
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strength of th~ Jahn-Teller inter­

a\Çtion. The effective mode energies 
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= 400 cm-1 
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explained 'in\~he text. 
,< 

-

o 



o 100,' 200 

'(e JT) E. IN CM-
1 

o 



. , 

1 
" 

'1 
1 

,1 

Fig. 3-13 

The shift .in the' spin-orbi t energy 

.1~v~ls versus' the strength of the· 
, . \, ~. . . 

. i~-Te11er interactiqn. The 

é"ffective mode ~nergies 'ft,w,.,. = ;45 
\. ~ 

cm""l and 1\wr = ~4bo cm -1 are used 
- fT 

in the cal9ulation, as explained 

in the text. The vertical daeh . 

line indicates the JT 'energy. (EJT)E' 
.. ' p' ~ 

whioh fits best the experimental 

resul te • 
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The magnitûdè_9f-the e1ectr~niç~g-tacto~ 

Nersus the strength of the,Jahn-Tellar 

i~tera~tion. Two curves. A and- B. are 
, Il 

caJ.culated using the e~fective mode 

anergies gi ven in Fige. 3-1.3 an~ 3-11. 
J ' 

r~spectively. For each curva, the,para­

meter k {cov~ent effects) is varied from' 

l to 0.9. The dash-dot line indicatas 

the experimen tal val ue (g = 3.428) and 

the 4ash 1ines show agreement with the 

results of Fige. 3-13 and 3-11. 
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CHAPTER 4· . 
, . 

THE EXPERIMENTAL RESULTS 

4.1 
, 0 

The 1iterature revlew 
) 

The direct evidence 

Theodirec~ measurement of ,the ~ep~ation 
between the ground state and the first exei ted states of the 

ferrous ion~ in MgO by far int'rared optical. absorption was 

first reported by Wong and Schaw1ow41 ,42 in 1967. They inves­

tigated the energy range from 10 tc:v 220 cm -1 for two samp1es 
~ , 

of MgOl Fe2+ having different iron concentrations. At a tem-

perature ot' 20K, they observed- an absorption peak 9 cm-1 in 

width at an energy of 105 cm..-l.. Red~on, oxidation and X_o.­

irradiation data toge:ther wi th a direct relationship between 

Fe2+ concentration and line strength---confirmed the origin of 
. 

the peak as due to the presence of f'errous ions in the MgO 
. 

crystal. The absorption peak was attributed to the magnetie . 
dipole transitions' fSg Sg and f4g , Crystal. field theory2 

predicts. however, a spin-orbit splitting of 200 cm-1 and an 

en~rgy separation of 6 cm-l between the firat exei ted states 

-Since the~ were not ab1 e to reso1 ve the two 

levals, they concluded that the JT effect la reducing their 

separation to less than 2 cm-1 (~ectrometer ~esolution)~d 
reducing the spin-orbit·splitting by 50%. 

r 
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Hsm et al. JS were able to explain the discrepancies in .. 
, .. 

Wongls re,ults trom the predict~ons of cryst~ tield theory as 

due to the partial reduction of the orbital a.t1guJ.ar momentum by 

a weak dynamic JT coupling to two different local modes of 

vibrat~on. Their approach has been dlscussed in chapter J of 

this thesis. 
a 

Meyer et al. 40 were'able to resolve the two electronic 

transi tions ~? Sg and f4g • in th~ :t'ar, in:f'r~ed absorption 
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, 
spectrum of Mgo.Fe2+. at +.06.9 cm-l and ll~.S cm-l. Hjortsberg 

et al. 4J ,44 studied extensively ~ift and the splitt~g of 

the two absorption peaks in the presence of a magnetic field. , . 

They estimated the oscillator strength o:t' each peak and they 

concluded that the r;g level,liés lowest in' energy at 106.9 cm-l 

and the f4g level cor~esponds to the pe~ at 110.5 cm-l. 

Hjortsberg43 and Manson et al. 45 observed a hot line 

at 90K in the near infrared absorption s~ectrum of Mg01Fe2+ 

whlch'appeared 105 cm-l :t'rom the 5T2~5Eg zer9-phonon iine. 

Fig. 2.2. The hot line ia attributed to infrared absorption 
.~ 

troQl the tirst exei ted states (fJg, and . f4g) which, are suffi­

ciently poP\Ùated at 90K for the transition to be observed • 
• 

Therefore, the existence d:t' electronic states of the 
"'<> 

:t'errous ions in MgO at,~110 cm~l is well established by 

infrared optic~ absorption. As we will see in the following 

" 
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subsection, -thé observeà spin-orbi~ S~litti~g isJc~nfirmed by 

other experimental techniques. e 

The inferred evidence • ~.l.2 

Pipkorn and Lei:der46 ob'served. a qUadrupy1'e d~ublet in , 

the Mossbauer spectrum of the fer~ous ion ~ at T < l4K. 

They proposed, for T <14K, that a static JT deformation of 
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the cluster surrounding the ferrous ion was at the origin of 

the 71ectric tield gradient producing the quadrupole splitting. 

For T >14K, a dynamical JT éffect was believed to dominate the ) 

situation produwing a time average octahedral symmetr,y leading 

to the so-called motional narrowing o~ the speétrum. ,0 Ham47 

showed, however, thàt the electric field gradient produced at 
~ 

'the nucleus by ,the valence electrons cif the ferrous ion, tlae 

. d' 48. . al' i presen~e of ran om stra~ns ID the MgO cryst ,. wh~ch spl t 

the ~g ground state and sui tabl.y long electroni~ relaxation 
'\ " 

times could very well explain,the appearance of a quadrupole 
>:: 

'. <, doublet at sufficiently low temperature. Consequently, s no 

strong JT effect ~s require~ ta explain the motional narrowing 

at T >14K, but rather rapid electronic transitions among the 
\ a. / .... 

three'strain-split states of the ~g ground state of Fe~+. 

For instance,.rapld reorientation of the valence electrons 

around the nucleus with respect to the quadrupole precession 
} 

time produces an iso~rop,c e~ectric field at the nucleus lead- • 

ing to a vanishing spli tting. Ham calc~ted the electronic 
~ ~.~ . 

transition time T via the transition probability P per unit 
J 

time, aince ~-1/3P, for phonon-Lnduced transition~ between two 
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\ 

ot the strain-s~lit . " ,) 

like1y process fo~ such 

~g states. Ham found' that, the most 

a transition la an Orbach pro~es.s49 , . 
t 

(Le., resonant, Raman process) thro-qgh the tirst excited spin-

orbi t states, r;g ~d f4g' The transition probabili ty for 

this process ls proportional to an exponential term of the 

fOrln" 

p 0(. exp ( -o/kT) (4.i-l) 

where !:::. ls -the spin-orbi-t spl1 tting between the ground state 

and the tiret excited states. On the basie of this mod'el, Ham 

adjusted ~in Eq. (4.1-1) so that P ~ives an electronic iransi~ 

tion time which would explain the disappear~c e of the quadru­

pole S.plitt~ng at T>14K. Ham's result of 6= 95 cm-1 is ,the 
, 

first experimental prediction of the reduction in the spin-

orblt splitting with respect to the'predicted crystal field 

value of 200 cm -1. Leider 2?d PipkomSO studi~d the Mo ssbauer, 

spectrul\... of MgO 1 ;e2+ extensi vely and obtained aspin-orbi t 

splitting- of 93 cm-l in good agreement with Ham's estimate. 

Ham's way of extracting the spin-orbit spl~tt~g fro~ the 
, 

relaxation time lead to a series of new experimel'tts. For 

instance, electron spin resonance studiesS1 •S2 of Fe 2+ in MgO 

showed that the spin-relaxation time at T >8K can be described'­

by a phonon':'relaxation process irivolving an electronic exei t~d. 

~& of energy lOO!lO cm-l above the ferrous ion ground state. 

Although lesa accurate, this energy separation corroborates 

the previous results for ~. 
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, \" 
_ King et ~. 53 me,asured the microwave aeousti,c" attenua-

ticin in samples Gf iron doped MgO as a, function of temperature. 

From the temperature dependent relaxation time which is deter­

mined from an an8J.ysie o~ tFte form of the attenuation peak: of 

a' [10o]-propagating "'compressional wave, they were able to 

prediet the existencevof an e1ectronic exei ted state at 110+2 

em-1 above the ground state ot the ~errous. 
Il 

, . , 

A marked minimum in the therm.al conducti vi ty of MgO 1 Fe 2+ 
. 54 at SOK. was ~ound by Morton and_ Lewis, to correspond to the 

reso~ant' s~attering of phonons of e~ergy.,. lOS cm-l interaettng 

wi th two sets of m~gnetie 1eve1s of: the ferrous ion. 
, i 

It is inte:r:-esting to note that the d~screp~ in the 

relative energy of 'the first exei ted states of the ferrous ion, 

Sg and , I4g , . measured by infrared :optical absorption as compared 

with.the results from Orbach spin-lattice relaxation rates or . ' 

t'rom the Mossbauer experiments Cart be accounted ~or Dy the 

effect of fini te width55 of the exci tdd levels. The existenc'e . 

of eleetronic levels of the ferrous)ion at 110 cm-l is now 

well àccepted but. however, ,not much knowledge has been gained 
, , 

as to the kind and strength of the JT coupling. This matter will 

be discussed in chapter 5. 
\ 

4.1.3 Thë vibrational spectruni of MgO Crystal 
\ 

, ,1 

Mon56 obtained for the tiret time in 1965. the second-

arder vibrational Raman spectrum of pure MgO samples. Shortly 

r 
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attJr, MonS?, was &lso su'oOE'ssful in recording the :first-order 

vibrational Raman spectrum induced by ~errous ion impurities 

in MgO, The first-ord~r Raman spectrum islhbserved only when 

the translation property of the crystal. lattice is perturbed 

by the presenoe of a detect. e.g., an impurity site. Billat 
~ . 

et al. 58 ,S9 studi~d ex~ensively the tirst-order vlbrational 

Raman spectrum l'of iron doped MgO crystal. and observed, among 

other things, a broad structuredn band extending trom tto cm-1 

t~ 350 om-l which peaks at 180 om-l. The band is observed for 

both MgOIFeJ+ and Mg01Fe2+ showing that the modification of 

the force constants between nearest neighbors ia the sarne for 

both types of iron ions, in agreement with the observation of 
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Bow and weger2, which leads to 

mode at 180 cm-1 for' MgOi Fe2+ • 

the assignment of a Alg resonance 

B!11at ét al. 59 also observed 
.... ~-

that' the fïrft-order Raman'spectrum, in the range 300 om-l to 

450 cm-l, reproduces very weIl the one-phonon density of state 

which is mainly of Eg and T2g symmètry in ,that range. 

,wong42 and Hjortsberg4; did not observe the Alg 
resonanoe mode for the simple reason that vibrational mode of 

even symmetry are not infra-red active, but Raman active onay . 
.--" ' , 

. ' -

In fact, a lattice resonance mode60 of vibrational energy 

403 cm-1 is the only infra-red aotive vibration reported and 

is in agreement with the known p,honon densi ty of states6l , 62 • 

Peckham6l first measured the phonon dispersion relations 

in MgO through neutron soattering technique. A more accurate 



\ 
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frequency distribution was obtained by'Sangster et al. 62 

which, when compa~ed with the theoretical histogram59 of the 
, 0 

projected density of states for lattice phonons indicates that 

the JT active phonons cover the energy range from 300 cm-l to 
(j 

450 cm-l. Fig. 4.~. As HamJ5 suggested, the effective mode 

frequency ls chosen to lie ;;, the ;:;gion of the peak s of the 

frequency distribution :funC~iOn for the lattice phonons in MgO 

crystal. 1, 

" 

r 
4.1.4 The g-factor 

Paramagnetic resonance studies2,6J are the earliest 
, ~ 2+ 

works on MgOIFe which demonstrated the existence of a JT 
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effect as a reduction in the g-f~ctor with'respect to the value 

J.53 predicted2 by crystal field theory. Ho~ever, if there is 

a strong JT effect, the orbital contribution to the g-factor 

is quenched and a superposition of anisotropie EPR spectra 

having g=2 should be observed. Moreover, when JT coupling is 

only to one mode of vibration, the reduction paramet.ers used 

to account for th~ 50% reduction in the spin-orbit splitting 

gi ve g=J. 25 which disagrees wi th the experimental value. Ham 

et al. J5 could explain the experimental ~-value using"a weak 

dynamic JT coupling te both Eg and T2g modes of vibration and 

a small covalent bondin~4. 36• 

Acoustic saturation measurements64 and acoustic para­

magnetic resonance65 confirmed the isotropy of the g-factor 

and gi ve g = 3. 4277 • 
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Fig. 4-1 
1 

, 
CA) . Frequency distrib~tion function 

as calculated from 2P48pOO points 

in the Bri110uin zone (neutron 

sea ttering data i after ret'. 62 )., /r', 

(B) Histogram of the projected density 

of states for unperturbed phonons 

of A1g, (C) Eg and'(D) T2g symmetry 

for MgO (after ref. 59 ). 
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4.2 The experimental set-up 

4.2.1 The Raman system 

The excitation of the electronic Raman spectrum was by 

a Spectra Physics 171 krypton ion laser using 200 mW of 
• 

focused light,at 20995 cm-l and 188)4 ~m-l. The laser beam 

is passed through an Anaspec 300S laser filter monochromatbr 
< ' 

consisting of six air-glass interfaces providing an 80% power 

throughput and a 20 cm-l bandwidth which can be set for any 
\ 

wave1ength of the visible spectrum. The Anaspec laser fil ter 
~ 

is required to remove the several plasma lines, inherent in 
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the krypton ion laser, which interfere with the electronic 

Raman spectrum. The laser tube is provided with Brewster 

windows which polarize the laser beam vertically. The plane of 
" 

polarization is rotated at will via a half-wave plate in order 

to obtain the different scattering geometries required to 

identify the different electronic transitions or vibrational 

modes, as discussed in section 4.4. A 90o-scattering geometry 

was'employed, as shown in ~ig. 4.2, to avoid the troublesome 

radiation due to Rayleigh scattering which, otherwise would 

; e~tend considerably the laser wing and thus obsc~e the 

e1ectronic Raman spectrum. 

The laser beam is focused in the bulk of the crystal 

and the scattered light, co11ected by a f/8 optical system 

having an image magnification of four, is focused on the 

entrance slit of the spectrometer. The scattered light is 
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Fig. 4-2 '. 
o . 

Experimental set-up showing the,90 -

The scattering geometry employed. 
l 

laser beam is filtered by the Anaspee 

laser fil ter (LF). its polarization i8 

. changed via the' half-wa~e plate (HW) 
-

and its intensity i8 attenuated through 

the neutral dansi ty fil tere (ND). !VI 

and L refer to front surface mirrors and 

lenses, respeetively, both having anti­

refiexion eoatings. The MgOl Fe sample 

ls eooled down to liquid He temperatures 

1 
; 

j' 

in the Janis optical dewar. The scattered 

light is analysed bythe Jobin Yvon spectro­

meter. HG and s refer to the holographie 

gratings and the alita. The seattered 

photons are detected by the photomul tiplier 

(PM) and photon-counting equipment {PC). 

The electronie Raman spectrum appears on 

the ehart recorder. 
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~hen 'sp3ctr~ly analysed using a Jobin Yvon HG 25 double 'mono­

chromator equipped wi th holographie gratings of one-me'ter focal 

length. An inte,resting property of the holographie grating is 

its eapability to polarize a light signal, i.e., only the 

light having i ts electrie veetor perpéndl.cular to .,the ruling 

of the grating will be diffraeted. Th~s property of the holo­

graphie gratings eliminated the need of an analyser to polarize 

the seattered light from the crystal. The spectrometer design 
, 

includes four electronically controlled slits independently 

adjustable which achieve a stray light rej~etion of 10-14 

at 20 cm-l from the Rayleigh line and 2 cm-l resolution for a 

200~ slit width which was used-most of the time. The exit slit 

is directly coupled to a eqoled GaAs Hamamatsu R666S photo­

multiplier tube equipped with standard photon eounting ~quip­

ment. The speetrum scan rate, the 'sensitivity of the photon 

eounting system and the integration time together with the 

speetrum ehart recorder are adjusted trom a control module. 

The typieal background noise .of the system using a 4.7s 
t , 

integration time is 10 photon-count~s. 
, 
\ 

The crystal, glued by one edge with a drop of Duco 

cement to prevent an excessive stress to develop, is mounted 

on a eopper sample holder in a Janis 8 DT optieal dewâr. The 

sample~ace can be cooled either by flowing cold He gas or 

" simply by flooding the space with liquid He. The crystal 

tem~erature was monitered by a DT-500-KL silicon diode mounted 



( ) directly on the copper sample holder. All t e experiments 

were performed at l.6K in liqui~ He or at 1 K in a.. reduced' 
.' ~ 1 

atmosphere of He gas with a temper~ture st bility of ~0.5K. 
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tt must be mentioned that laser heating vitably occurs near 
V' 

the laser beam waist in the crystal an&~th s phenomenon con-

'ributes to broadening ~f the electron~c 

heating effect ls minimized, however, by 

quali ty of the crystal.'. 

4.2.2 The stress apparatus 

an line. This 

very good optical 

For the stress experiments, th~ cryst~ must be prepared 
, 

with two parallel surfaces on which the stress ,will be applied. 

As a precaution, a piece of computer card and a small amount , , 
of grease establish the contact between the pa~lel surfaces 

. 
of the crystal and the jaws of the stress apparatus, Fig. 4.;. 

The gas pressure driven piston a~plies the stress to the crystal 

via a steel rod which is supported by the top jaw. The bottom 

jaw rests on a piezoelectric pressure sensor which is hooked 
, 

tip to a charge detector and amplifier. The pressure sensor 

calibration was checked using alternatively severa! pressure 

'regulators which controlled the pressure in the piston chamber. 

The results of these tests are plotted on Fig. 4.4 where a 
,-- . 

slope of 10.3 = .5 PSI/V is obtained (at liquid He temperature) 

in agreement with the 10.0 PSI/V calibration. Therefore, we 

assume an accuracy of + 5% on the stress quoted in this and 

the following chapter. Typically, a MgO sample breaks when 

the stress exceeds 40 KG/MM2 which explains why this valUé Is 

never exceeded.. 
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Fig. 4-3 

Details of the stress apparatus. The 

rod which moves freely in its tubular 

guide carries the pressure from the 

piston (roo,m tempera ture) to tile 

sample (liquid He temperature) via the 

upper jaw. The sample ,is installed 

between the upper jaw and the lower 

jaw. The applied pressure is measured 

from tpe pressure sensor. Eve ryth ing 

within the bbx, standing for the Janis 

optical 4ewar. is at or n~ar'liquid He 

temperature. The d!awing has been simpli­

fied and is not drawn to scale. 
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Pressure sansor calibration done at 

liquid He temperaturé. The slope 
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calculated from a least square fit 

i s 10_ J ! . 5 PSI/V. 
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4.2~3 The iron-doped MgO samples 

The iron-doped MgO single crystals employed in these 

investigations were grown by means ot the submerged arc-:fusion 

teChnique66• Dopi~g o~ the MgO samples was achieved by mixing 

an appropri~te amount of Fe20) (-1% nominal) with high-purity 

MgO powder prior to the arc mel ti4 process. The optical 
\. 'J ' samples were \cleaved from the resul ting large ( 3x2xJ..5 qm ) 

single crystal grains. . Even thOug~ tJe exact ,iron concentra-
~ 1 

tion is not ~own. samp1es with dif~erent'iron concentration 

oould be distinguished ~rom the~yellow tint of~the crystal 

which is darker for higher iron concentration. The electronic 

Raman peak was dbserved wi th the' darkest samp1es only. The 
, 
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e1ectronic Raman signal being so'weak (on the 100 photon-counts/s 

scale) care must be takên not to 10se too many photons. Con­

sequently, the surfaces of the sample mus,t be cleaved to ob tain 

a single plane of atoms and, hence, minimize the sur~ace 

scattering. But, MgO cleaves only alo~g its,(lOO)-plane and, 

being a very hard material, i ~ ls difficuJ. t to cleave neatly. 
. " 

So, more o~ten,than not the faces o~ the samp1e must be 

polish~d mechaniCarlY down to one micron op 1ess using A1203 
lapping sheets. 

,In order to obtain the different (100), (110) and 

(lll)-configuration, see Fige. 5.1 to 5.), an X-ray Laue 

piQture of the crystal is' obtùned and, then, knowing the 
~ 

..; 

orientation of the crystal planes, the crystal 1s properly.cut 

with a circular diamond saw. The (100) and (110) configurations 

• 

" 

i 
1 

" 

" )' 
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are obtained ta !10 and the (111) con~iguration which invo1ves 

two cutting a~eps ia obtained to !3°. Besides, the MgO samples 

must be prepared wi th v.ery sharp edges. aince the laser beam 

must be i'ocused in the bulk of the crystal very close to the 

( surface i'acing the optical collecting system to minimize 

reabsorption and internal scattering of the el.ectronic Raman 

signal during i ts travel in the crystal. 

The EPR line shape-ând the zero-phonon line shape of 

optical spectra were ~o\md to be much broader than the expected 

broàdening ~rom spin-spin interaction. In fact, the electronic 

energy levels are spli t by internaJ. strains of' E and T2 symmetry 

in the host crystal. The magnitude of the splitting depends on 

the( t~e :,and strength of' the strain field at the impuri ty si te 
. ,,)' 

Of~i~~rrest. The microscopie strains are caused by several 

dift~~t species of strain source - for example, point defects, 

, straight eqges and screw dislocations. Stoneham48 ,67 showed 

that rtndom strains in the crystal cause a broadening of the 

line shape, which can be of' the order of' a few wavenùmbers for 

severe strains68 : The resul ting line shape depends on the 

statistical distribution of the imperfections and their indi­

vidual,strain field which will be different trom sample to 

sample, depending on the method of formation and 0 

~ history o~ the crystal investi~ated. 

mechani-
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4.; The electronic Raman effect 

4.;.1 The scattering tensor 

The well-known Rayleigh scattering i6 a firat-order 

process in which the frequency of the photon i8 pre8erved, 

whereas Raman scattering is a second-order process in which a 

shift 'in the frequency of t~ scattered photon wi th respect to 

the incident photon is observed. Moreover, compared wi th the 

opticaJ. infrared absorption which is essential1.y a direct 
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transi tion between two discrete energy levels, th'e Raman scatter­
C" 

ing i s rather an indirect transition from an initial state to 
• 

a set of probable intermediate (or virtual) states instantan-

eously followed by a transition down to the final state, Fig. 4.5. 

In a crystal, the frequency shift Qf the Raman scatter-

ing is ei ther due to the creation or annihilation of a phonon 

which characterizes the vibrational Raman scattering, or to the 

excitation (or deexcitation) of the electronic state of an ion 
/ 

~ wn1ch characterizes the electronic Raman scattering. The first 

unambiguous observation of electronic Raman scattering was made 

by Das Gupta 69, as late as 1959, who had to use the intense and 

narl"ow line of an X-ray source owing to the elusi veness of the 

phenomenon.ln lhe following years, the discovery of the laser, 

an ideal light source for Raman spectroscopy, rund the proposal 

by El1.iot and Loudon70 (1.96;) of Raman scattering as a useful 

method to ~nvestigate the low-lying electronic states of para­

magnetic 'impuri ty ions in crystal, promoted considerably the 

e1.ectronic Raman spectroscopy. 
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Fig. 4-5 

The rtarnan transi tion K and N label the 

initial and final states, respectrvel~1 

R labels the intermedia te states. hv i and 

hVf represent the initial and' final 

photon energies of the Raman sacttering 

process. 
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The Born approach 71 to the Raman effect mak~~ use of 

the semi-classicaJ. radiation theory to calculate the electric [J" 
J 

moment (00) indu~ed in the crysta1 by thë electric field (E) 

of the incident light beam. In t'act. the incident radiation 

polarizes the electronic c10ud around the ions, and the 

scattered photon is produced by re-radiation of energy by the 

oscillating,dipole moment of the polarized electronic c1oud. 

In these terms, i t is possible to define an e1ectronic po1ar­

izabil~ tensor otrcf for a crystal according to the relation 

(4.)-1) 

. where Mr and E6" are the components of the e1ectric moment and 

electric field, respecti vely, talc en along the principal axes 

of the crystal. We define also t~,/'R~ scattering efficiency 

S as the ratio of the number of"/scattere~ photons produced per 

uni t time per unit cross-sectional area of the crystal solid 

angle about the direction of' observation to the number of' 

incident photons crossing a unit area in a unit time. For 

incident and scattered photons having a definite polarization 

in the directions of unit vectors e i and es' respecti vely, the 

components of the po1arizability tensor can be used to calculate 

the scattering ef'ficiency 

S=A[I: 
~~ 

(4.3-2') 

where A ia a constant of proportionali ty, ei and e~ are the 



( ) 

96 

components of the unit vectors alo~e ~rystal princ,ipal 

axes f and fS Equation (4.3-2) streS'ses the t'act that 
1 

the components of the polariz~bili ty tensor detennine the 

intensity of the Raman'scattered radiation. and as we wi11 see, 

give information on the symmetry ot' the transition. 

Analogous to the dipole operator that governs optical 
..... 

absorption, we can define a scattering operator Olp(S" which 
. 

takes,the scattering entity t'rom etate k to atate n by a Raman 

process, Fig. 4.5. The average vaJ.ue ot' the scatteri,ng operator, 

between an initial etate k and a final etate n ie gi ven by 

(4. J-J) 

where the operator is defined72 ta be 

/" _1h \ CX~<1" = L 
r 

M~~[) (1;1 Mç + M~I~r> (;l'rIMer 

Vrk - '110 \lrn + \Jo 
(4.3-4 ) 

1Vr refera to the intermediate states, Yo is the frequency of 

the incident radiation, vrk is the transition frequency between 

the initial state k and the states r, and vrn is the transi­

tion frequency between the states r and the final state n. 

M tJ' is the transition moment of a component of the electric 

dipole operator along the axis of ~ Cartesian coordinate system 

\ and, therefore, transfo'rms according to the coordinates X, Y or 

Z. We can t'orm new moments Ml"" and M v whose· produc t makes the 



\ ) 
scatt'ering operator ~t-'v to tr~sform according to irreducible 

representation of octahedral symmétry. Loudon?J calculated 

the different scattering tensors for different crystal 

symmetries; the corresponding matrices for Oh symmetry are 

given in Appendix E. 

4·3.2 Selection rules and symmetry of the transitions 

For the electronic Raman transition to become a phys~­

cally observable quantity, the average value of the symmetry 
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adapted scattering operator. Bq. (4.J-3), must be non-zero. 

Group theoretically, this means that the identity must appearJ9 

in reducing the representation product 

(4.3-5 ) 

For a given crystal orientation, the polarization of the incident 

and sca~ered photons determine the components of the scatter­

ing tensors involved in the Raman scattering process via Eq. 

(4.3-2). The selected components of the tensors give the 
. 

irreducible representations to be used in the representation 

product, Eq. (4.)-5). :aesides. the acattering operator Ô:p~ is 

an even operator aince Me and Mer both change sign simul tan­

eously under inversion. Therefore, Bq. (4.)-3) is non-zero if 

the initial state and the final state are states of thé same 

parity. This parity requirement implies that electronic Raman 

trans~tions are permissible among the 5T2g states of the ferrous 

ion. 



Fig. 4-6 

Allowed Raman transitions for d~erent 
crystal deformationsl (a) D3d corres­

ponds to a trigona1 deformation, the 
1 

samp1e being oriented as shown in Fig. 

4-9, (b) D4h corresponds to a tetragonal 

deformation, the samp1e being oriented 

as shown in Fig. 4-8; (c) and (d) D2h 
corresponds to an orthorhombic deforma­

tion, the samp1e being oriented as shown 

in Fig. 4-10 and Fig. 4-11, respective1y. 

The two po1arizations YY and XY are a1so 

indicated. 
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( ) MgO has octahedral symmetry and hence the scattering 

tensor has the' irreducible representations ~g' Eg and T2g • 

Loudon73 has ca.lculated these Raman tensors for a crystal 

having i ts principal axes [100]. [010J and [001] al.igned wi th 

the laboratory frame of reference X. y and Z. respectively. 
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For any other orientation of the crystal. wi th respect to the 

laboratory frame of reference, the Raman tensors must be trans­

formed74•75 , as ins~ructed ln Appendix E. before Èq. (4.3-2) --
can be used. 

Fig. 4.6 shows the allowed transitions correspàndlng 

';--.-.to the dif'ferent crystal orientations and polarization of' 
• 

incident and ecattered photons used in the experiments described 

in section 4.4. The notation i(jk)l where i, j, k, 1 ~ X, Y, 

Z means that the incident photon has i ts K-vector parallel to 

the i-axis and ls po1arized along the j-axis; the scattered 

photon has i te K-vector para,].lel 1;0 the l-axis and is polarized 

along the k-axls. It must be mentioned that the impuri ty 

induced local mode ~bserved in the Raman spectrum of' MgosFe 2+, 

Fig. 4.7, can he trea ted in a similar fashion to deterrnine i ts 

symmetry properties. ,Â, 

4.4 The Raman speètrurn of' iron doped MgO crystal. 

4.4.1 The electronic Raman transition 

o Figure 4.7 shows the Raman spectrurn of' an MgO 1 Fe2+ 

samp1e immersed in ~iquid He. at a temperature below the lambda 
1 



-

, 

Fig. 4-7 

Electranic Raman spectrum af' iron daped 

MgO taken at.liquid He temperature (2K) 

u6ing 200 mW of laser power (18834 cm-l 

line) • The spectrum is iden tical using 

the 20997 crn-l laser line. The electronic 

Raman transitions ta the rJg and r4g 

levels peak at 110.5 cm-l, The Alg-

vibra tional mode i6 centered at 185 cm-li 

Incident light wavevector /" [llOJ and 

scattered light_ ~vevector / / [lio], 

palarized par.allel ta [110] and [001] 
respectively. The resolution ls 2 cm-l. 

o 

o 
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( ) 
point (i.e.,.1.6K). We observe a narrow emission peak at 

110.5 cm-l and an emission band whlch peaks at 185 cm-l •. No 

other features appear in the range 15 cm-1 ~_~20 cm-l as 

opposed to Wong42 and Hjortsberg ' s4; observations. This fact 
. 
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confirms, as Wong and Hjortsberg suggested, that the additional 

peaks observed in their spectra ,are due to other impurity 

systems. 

Samples with different iron cqrcentrations were examined 

by Raman spectroscopy. The electronic Raman peak observed at 

110.5 cm-l and the impurity mode at 185 cm-l were found only in 

the dark yellow samples which have the highest iron impurity 

concentration among the samples we studied; as opposed to the 

~ure and perfectly clear MgO sample which gives a flat Raman 

spectrum up to 500 cm-l from the Rayleigh line. The signal 

strength is found to be proportional to the iron impurity con­

centration, although no quantitative relation can b~ established 

since the exact ferrous ion concentration in the doped MgO sample ) 1 

is not known and due to the 10% variation in the signal strength 

from experiment to experiment. This 10% fluctuation in t~e 

signal strength is mainly caused by the non-uniform impurity 

distribution in the crystal which can be judged from the color 

variation. Consequentl.y, the 50 r- diameter laser beam is never 

guaranteed te probe exactly the sarne volume in the crystal each 

time a sample is reinstalled in the Raman system leading te 

variation in the signal strength •. No extensive reduction. 

ox';dation or X-irradiation studies were a:ttempted on these 
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• 

samples ainee. parti cul ar1y, the oxidation process destr.oys 

the surface qual.ity of the Mgo samples. Henee, the previous 
, 

experimental conditions ean never be recov~red making any 

estimate of the relative change of' the 6' signal. strength irre1 ... 

event. Moreover, wong42 showed that onl.y a small fraeti.on of 

the ferro us ions are converted into ferric ions during the 

oxydation procese. 

At this point i t would be legi timate to ask if the 

110.5 em-1 peak could be vibrational in nature. 

In subsection 4.1.3, we have discussed the faet that 

the :first-order vibrational Raman seattering was found to 

reproduee quite well the one-phonon density of states of the 

host MgO crystal. Fig. 4.1 shows that no 1attice phonons are 
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expected at energies bel.ow 200 em -1. Consequently, the 110.5 cm-1 

peak: could only be an impuri ty indueed local mode of :Eg or T2g 
symmetry analogous tç the A1g mode at 18.5 cm-l.. But then, we 

, 
would be dealing wi th a JT active vibration which would inter-

act wi th the elec-tronie levaIs, Sg and f4g, sinee they would 

have the saroe energy. This tact goes against Hjortsberg's 

observations ot the behavior of the e1ectronie levels in the 

presence of a magneti'c field. 

~ 

Billat et al • .59 have observed the tirst-order Raman 

spectrum of Mg(] 1 Fe3+ which shows WO overlapping peaks of Alg 
symmetry a t 129 cm-land 148 cm -1. Theae features are not 
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observed in our spectra and oannot be co~sed with the 110.5 cm-1 

p~ak~ Thus. we ~1iminate the possibility ,that the observed 

peak is induced by the f'erric ions. 

\r 

More.over, in Raman spectroscopy as well as in infrared 

absorption or in photol. uminescence, 'Ile can malte the q uali tati ve 

observation that the narrowness o'f the 110.5 cm-1 line width 

(9 cm-1 ) is typical of an electronic transition whereas the 

breadth of the 18,5 cm-1 band (50 cm-1 ) is typical bf' a vibra­

tional. mode (for example. see Refs. 45 and 76). For all the 

reasons me~tioned above. and t'rom the resul ts of' the stress 
- , 

experime~(see chapter 5), i t becomes evident that the 110.5 

cm-l peak ia' the electronic transi tians observed by wong~2 and 

Hjortsberg4J , 1. e. , r;g~ r3g and I4go • 

The existence of random strains in MgO crystals has been 

estabJ.ished from the asymmetrical line shape of' EPR48 • 63 spectral 

Acoustic paramagnetic resonance65 (APR) etudies of Mg01Fe2+ as 

weIl as the study by microwave acoustic attenuation53 (MAA) in 

the same material JDust in?lude the presence of random strains 
, 

in their corresponding theories to explain some, of the experi-

mental resuJ. ts. In. MgO' Fe2
+, the 'average random strains dis­

tribution has been estimated from dif'ferent considkati,ons and 
different exper,imental techniques to bel 2 X 10-,5 trom EPR6J 

and Mossbauer47 , '2 X lO~4 from EPR48 and MAA5) t and 2 X 10-J 

t'rom APR65. We see that the average random strains distribu­

tion seeme to vary very Diuch depending on the technique used to 

, l 

, ' 
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.. 
investigate the ~amp1e, EPR being the least sensitive to the 

random strains. Besides, an average random strain distribution 

of 2 X 10-3 is sufficient to broaden the r;g ground state of 

the ferrous ion to approximately l cm-l, in accordance with 

the fact that optical tran~i tions are easily breaden te a few 

wavenumbers (cm-l ) by larg~ enough random strains68 • The 

coupling oÏ' the Sg and f4g leve1s to strain is predicted by 

theory to be fi ve times stronger than tha t for the greund rSg 

level, as mentioned by Ham35 . Accordingly, the first excited 

stat~s !Jg and f4g are broadened indi vidually to S cm-1 where 

their separation of 3 cm-l and the 2 cm-l resolution of the 

spectrometer make up the observed line width of 10 cm-l, This· 

observation implies that optical transi tions as weIl as APR 

transi tions are very sensi ti ve to random strains in crystal s, 
.. 

4.4.2 The electronic Raman transitions under uniaxial stress 

The theory and concept of stress and strain are dis-
, 

cussed J,.n details in chapter ~ together wi th the interpreta-

tiens of the experimental results presented in" this subsection . 

. 
Three different types of uniaxial stress were applied 

.... 
to the MgO samples, .each type being char~cterized by the 

symmetry axis along which the stress is applied. We chose two 

scattering geometries, i.e., Z(YY)X and Z(XY)X where the 

. notation is explained in subsection 4. J. 2. In certain cases. 
't< (t 

dependl.I~.g on the crystal orienta~àn and the stress applied. 

different Raman transitions are allowed for each of the two 

scattering geometries chosen. 



( 

Using the Z (yy)X scattering geometry wi th the MgO 

samples prepared for tetragonal stress (applied along the 

[001] -axis of the crystal), only the rsg~ f4g transition i8 

allowed (in the J;= 2 multiplet) and the peak position is 

observed at 112 ! 0.5 em-l from the Rayleigh line. Using the 
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Z (XY)X geometry wi th the saroe crystal, both r;g--"!J> r3g and ~g 

Raman transitions are al1owed, and the peak position is observed} 

-1 at 110.5 ! 0.5 cm Although any attempt to deeonvolute the 

peaks in order to obtain accurately the position of the r;g~ Gg 

transition ia absolutely hopeless in our case, we still observe 

that the Sg level ia higher in energy than the Sg level. 

Moreover, from the apparent displacement of the electronic peak 

in going from one scattering geometry te the other and assuming 

that both transitions, ~g~ Gg and f4., have the sarne in ten-
g ) 

si ty, their °separation can be estimated to be .3 ! 2 cm -1 in: 

agreement with Meyer et al. 40 and Hjorsberg's4.3 observation of 

6 -1 J. cm In the analysis of ehapter 5, we choose a separation 
-1 r of .3 em between the \ Jg and f4g levels which fi ts best the 

data. 

A tetragonal stress of 41 KG~~2 applied to a suitab1y 

prepared MgO crystal indueed an appreciable shift of 4.5 cm- l 
• 

with the Z(YY)X geometry and 6.0 cm-l with the Z(XY)X geometry, 

as shown in Fig. 4.8. Actually no shift as such is to be 

expected sinee only the A1g component of the strain produces 

a shift of the center of gravit y of a given electronic level 

(in Kaplyanskii' s tern?7). and this shift 18 the sarne for all 
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Fig. 4-8 

. F 2+ Electronlc Raman spectra of N'IgO 1 e 

taken at liquid He temperature (4K) using 

200 mW of laser power (188)4 cm-1 ) wi th 

and without a tetragonal stress applied. 

Incident light wav.evector Il [110J and 
\ 

scattere~2i"gni wavevector /1 [lïo] The 

correSP~ding pOlar~zations and stress 

for each spectrum are indicated on the 

figure. The resolution is 2.5 cm-l and 

the sensitivity is 100 photon-counts/s 

(full scale) with a 4.7s time constant. 

The arrows indicate the peaks at 110.5 cm-1 

-1 and 116.5 ~ . 



( ) 

- ---- -- ------~-------~~-----------------------------

m 
Z 
m 
:D 
Cl 
~ 

.---
(') 

~ 
1 ... -

PHOTON- COUNTS /S (ARS. 

Or-------------------------------~----~------------~ 

(JI 
0 

.. .. 
p 
(JI .. .. 
œ . 
(JI 

'::1 .... , 
8 

~ .. -....... 
"';> ....--• ___ fII 

~_.---

" -------,..' 
,J 
• 

~ 

..L 
T 

106 



<. 

5 the levels of the T2g states since all the functions of 

Appendix B are eigenfunctions of the operator L(L+l) with an , 
eigenvalue of 2. Chapter 5 clears up this situation. 
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The trigonal stress applied along the [lll} -axis of a 

suitably prepared MgO crystal induces a small shift of ~.5 cm-l 

;2' of the electronic Raman peak using a stress of J6 KG/rvIM. In 

this case represented by Fig. 4.9. both scattering geometries 

allow the transitions .rsg--' rl.j.g and rJg to be observed. 

Thus. the two transitions cannot be distinguished and the spectra 

corresponding to the two scattering geometries exactly super-

pose. A posteriori, we observe that the JT complex couples 

somewhat more strongly to the tetragonal stress than to the 

trigonal stress~ In fact. the notion of coupling strength is 

clarified in cha~ter 5 where the strain coupling coefficients 

are determined and their relation ta the JT coupling coefficients 

is established. 

Finally. an orthorhombic stress applied along the [l,OJ­

axis of a properly cut MgO sample was considered for two 

different crystals. a~ shown in Figs. 4.10 and 4.11. The 

Z(XY)X geometry allows the transition r5g -+r4g alone which 

is shifted by 2 cm-l when a stress of J6 KG/~~2 is applied to 
• the samp1e. The Z(YY)X geometry allowé transitions to bo~h 

Sg and Gg levels. and no shift of the electronic Raman peak 

i6 observed within the experimental error. Without stress, it 

is not'possible to observe if the r4g level is higher in energy 



Fig. 4-9 î 

• F 2+ Electron~c Raman spectra of MgO: e 

taken at liquid He temperature (4K) using 

200 mt.v of laser power (18834 cm -1) wi th and 

without a trigona1 stress app1ied. Incident 

light wavevector Il [lïO] and scattered 

light wavevector Il [11~]. The correspond­

ing polarizations ~d stress for each 

spectrum are indicated on the figure. The 

resolution is 2.5 cm-l and the sensitivity 

is 100 photon-counts/s (full scale) with a 

4.7s time constant. The arrow indicates 

the peak at 110.5 cm-1~ 
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• 
with respect to the rJg level simply by ch~ging the scatter­

ing geometries, ~s was done with tne crystals prepared for the 
• 
1 

uniaxial tetragonal stress. This situation is mainly caused 

by the poo~er surface quality of the samples which had to be 
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eut and polished to obtain the required orientation and, accord-

ingly, the signal quality has degraded. But still, under stress, 

we observe that the ~g level is shifted on the high energy 

side, i.e., away from the Rayleigh line. Under uniaxial orthor­

hombic stress, it is shown ~n chapter 5 that the Sg states 

and the f4g states interact with each other. In such a case, 

as shown in Fig. 5.6, the levels tend to repel each otherl 

the level which is higher in energy moves to the high energy 

side and vice-versa. Therefore, we conclude that the ~g 

level is higher in energy, in agreement with our previous state-

ment. 

Each one of Fig. 4.8 to Fig. 4.11 compares two 

spectra, one taken without stress and the other taken with the 

highest applied stress tluring the corresponding experiment. In 
~ 

fact, several spectra were taken where the magnitude of the 

stress was varied between the two extreme values shown on each 
J 

figure. These complete results are presented in Fig. 5.4 to 

Fig. 5.7 together with the theoretical curves obtained from 

the stress Hamiltonian introduced in chapter 5. 
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Fig. 4-10 

Electronic Raman spectra of MgOIFe 2+ 

taken at liquid He temperature (4K) using 

200~mW of laser power (18834 cm-l ) with 

and without an orthorhombic stress applied. 

Incident light wavevector Il [OOlJ and 

scattered light ~vevector Il [110]. The 

corresponding polarizations and stress ~ 
for each spectrum are indicated on the 

figure. The resolution is 2.5 cm-l and 

the sensitivity is 100 photon-counts/s 

(full scale) with a 4.7s time constant. 

The arrow indicates the electronic Raman 

peak at llO.5 cm-l. 
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Fig. 4-11 

2+ (7 
Electronic Raman spectra of MgO:Fe taken 

at liquid He temperature (4K) using 200 mW 

of laser power (18834 cm-l ) with and without 

an orthorhombic stress applied. Incident 

1ight wavevector /1 [lllJ and scattered 

1ight wavevector Il [112]. The correspond­

ing polarizations and stress for each 

spectrum are indicated on the figure. The 

resolution is 2.5 cm-l and the sensitivity 

is 100 photon-counts/s (full scale) with a 
• <. 

4.7s time constant. The arrow indicates 

the peak at 110.5 cm-l. 
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CHAPTER 5 

-THE UNIAXIAL STRESS 

5.1 Ham's phenomenological approa6h 

5.1.1 The strain components 

We have showed in chapter J that the alectronic energy 

leve1s are perturbed by any displaeemen~s ei ther static or 

dynamic of the nearest neighbors. We can deliberately impose 

a static deformation of the octahedron surrounding the impurity 

ion by applying a uniaxial stress along one of.' the symmetry 

axes of the MgO crystal using the technique described in chapter 

4. Af'ter deformation, the resul ting si te syrnmetry b-eing lower 

than octahedral, some of the orbital degeneracies o~ the spin­

orbit states must be lif'ted, i.e., the energy leve1s are split 

by the applied uniaxial stress. Schawlow et al. 78 were the 

first to at~empt successful1y such an experiment. They applied 

uniaxial st'resses along different symmetry axes of MgO 1 cz3+ 
samp1es and they observed both a shift and a spli tting of a 

pure1y cubic field fi uorescence line. 

The abi1i ty to split an electronic energy level resides 

in the kind and magnitude of the distortion of the octahedron 

surraunding _ the, impuri ty which. in turn, depends on the stiff­

ness of the crystal lattice" i.e., .. its compliance ta an 

externally applied stress. The defonnation or strain of a 

'1 112 
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crystal, la ttice i s usUally d.escri bed in· terms of strain com­

ponents79 eij whose magni.tude ~epend~ o~ the :hysical properties 

of the material. Letia ass~e t'hat x. y and z are orthonormal 
1 J 

~ctors embedded securely in .;tltie unstrained crystal. After a 
/ / 

small force per unit'" area or stress has been applied to the 

crystal, a uaiform deformation of the lattice has' taken place. 

The new distorted axes x', y' and z 1 can be det"ined in terme 

of the old ones 

x' l+E xx ê xy ê xz --
y' - "c l + E é Y - yx. yy yz 

z • E.zx ~Zy l + êzz z (5.1-1), 

"\ j 
The dimensionless coefficients t. ij define ,uniquelY the magni­

tude and the symmetry of the deformation (strain): Assume that 

the distance between two atoms before the deformation is given 

by r = xi ... yY + ZZI and the, same distance is given b;y 'r' = xx' 

+ yy' + zz' after the deformation. The relative displacement 

of the two atoms g.ue to the deformation of the lattice is gi ven 

by 

R = -ri - r 

= x(x'-x) + y(y'-Y) + z(z'-z) 

which becomes after substi tuti.on of E.q. (5.1-1) i' 
'. 

1 

1 
1 

1 
! 

, 
:1, , 

f -

I-I 
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R= 

More general1y. the displacement can be expressed as, 

R(r) = u(r)i +v(r)y+w(r) Z (5.1-2) 

where u(r), v(r) and w(r) represent the smal! relative dis-

placements of the tw~ atoms measured along the orthonormal 

vectors of' the previously unstrained crystal. Therefore, we 

will use 3q. (5.1-2) to measure the deformation with respect 

to the unstrai!1.ed crystal taken as a reference frame. 'de can 

define the components E, .• used in 2q. (5.1 ... 1) as the rate of lJ 
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change of'~the co~ponents of the relative displacements, 3q. 

(5.1-2), along a particular direction X, y or z of the unstrained 

crystal. The strain components e ij are def~ed generally as 
~ 

a l inear combina tian of E. .. , i. e •• 
1 l.J 

i,j=x,y,z 

and . 

(5.1-)) ) 

wi th Rx = u ( r) t Ry = v ( r), Rz = W ( r) and r x = x, r y = y, r z = ~. 
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t'le êan also define a linear combination of strain coefficients 

designated by the irreducible representation of the symmetry 

of the deformation. These symmetry adapted strain coefficients 

are 

8",(A) - e xx + 8 yy + 8zz 
\ (5.1-4a) - ~ 

8e(E) - ezz - 1/2 (.xx + .yy) (5.1-4b) 

8€(E) - 13/2 (8xx - 8 yy ) (5.1-4c) 
, 

e.(T) = 8 yz (5.1-4d) 

8 (T) - e zx (5.1-4e) 
." 

~(T) - 8 xy (5.1-4f) 

"-~ 
Let the force acting on the" crystal element of surface 

~A. 
J 

(perpendicular to the j-axis) have cornponents ~Fi' We can 

define the stress tensor as 

where i, j = x, y. z. The theory of elastici ty assumes Hooke 1 s 
.. /6 

law in postulating that the str·ess is proportional to strain 

(for sufficiently small strains). In this approximation, the 

e1ements of the stress tensor can be expressed as a linear 

........ 
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combination of strain components 

6 

= L Ci' e. J J 
j = 1 

where i, j = l(xx), 2(yy), J(zz), 4(yz), 5{z:k), 6{xy) and the 

proportionali ty constants cij are ca.l.led the e1astici ty constants 

(or stit'fness constants). The set ot' 1inear, homogeneçus, 

independent equations represented by &i. (5.1-5) can be solved 

:for the e j in terms of the e1ements of the stress tensor Ti and 

leads to the fol1owing linear combination 

6 

e
j = L s .. T. 

1 J 1 (5.1-6) 
i =1 , 

where the coefficients Sij are cal1ed e1astic comp1iance factors. 

80 Using the tecèmique of ul. trasonic continuous wave resonance 

(Ii?ound veloci ty measurement). the elastici ty constants c ij can 

be determined experimentally as a function of temperature. The 

elastici ty compliance factors s· . are given in terms of' the c .. 
~J ~J 

by the f'ollowing relations81 • 

(5.1-7a) 

(5.1-7b) 
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Fig. 5-1 

Tetragona1 defonnation. Mechanica1 stress 

(p) applied perpendicularly to the (001)-

plane disp1aces the upper and lower o'xygen 

ions inward by 1\: the four other ions are 

displaced outward by D2 . 
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s =' 44 (5.1-7c) 

which are the only coefficients required to completely define 

the situation. 
\ 

Depending on the type ~f deformation, we can relate the 

symmetry adapted strain components, Eq. (5.1-4), to the external 

pressure (element of the stress tensor) via the elastic compliance 

factors, Eq. (5.1-6). The pressure P is the uniaxial stress 

applied to the crystal and is chosen to be negative for com­

pression. We distinguish three types of deformation, pictured 

in Figs. 5.1 to 5.J, for which Eqs. (5.1-6) are written expli­

citly. 

Type (i), the tetragonal deformation (D4h symmetry) 

(S.1-8a) 

(5.1-8c) 

~e (ii), the orthorhombic deformation (D2d ) symmetry) 

.. .-/ 
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Fig. 5-2 
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~PJ.(111) 

F 2+ 
• 
2-o 

[010] 
---

Trigonal deforma tion. Mechanica1 stress 

(p) applied perpendicularly to the (111)-

plane displaces al1 the oxygen ions inward 

by D4' The angle cp is in a plane defined 

by the [111J -axis and any of the corres­

ponding oxygen-ferrous ion axis. 
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ejT} = 8 44 P/2 

Type (iii), the trigonal deformation (D)d symmetry) 

(5.1-10a) 

eJe} = ~(E) = 0 (5.1-10b) 

~(T) = «;(T) = ~T} = 8 44 P/3 (5.1-10c) 

Marklund and Mahmouds80 recently measured the elasticity constants 

Cij of MgO crystal at 4.2K. Their experimental results (:0.1%) 

are 

cIl = )0.67 x 1010 N/M2 

c12 = 9·371 x 1010 N/M2 

c44 = 15.76 x 1010 N/M2 

The corresponding elastic compliance factors Sij are obtained 

trom Eqs. 5.1-7. 



) 

( 1 

[001J 

Fig. 5-J 

• o 
F 2+ • 
2-o 

Orthorhomb ic deforma ti on. Mechani cal 
"\:l 

stress (p) applied perpendicularly ta 

the (llO)-plane displaces the upper 

and lower oxygen ions outward by D2 ; 

the four other ions are displaced 

inward by DJ' The angle e is in the 

(001) -pla.'Y1e. 
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" 5.1.2 The stress Hamiltonian 
J 

We have seen in chapter J, that deformations of the 

lattice site are produced by the e1ectron-phonon interaction 

betw9ln a JT impurity ion and the 1attice vibrations trans­

forming as the Eg or T2g representation of the octahedral group. 

Since the strong JT effect leads to a static deformation of the 

c1uster surrounding the ion, 1. e., a permanently shifted equi1i­

bri um posi tion of the distortion modeS'. Then, we May assume 

that the effect of strain in the crystal is that of shifting 

the equi1ibrium position of the distortion modes. 

We can integrate Bq. (5.1-Jb) to ob tain an expression 

for the shift of the equi1ibrium position of a given distortion 

mode. Choosing the static tetragonal distortion, fo r examp1e, 

the shift i s expressed as 

which can be wri tten as 

(5·1-11) 
~ 

i 
\ . 

where R is the 1attice constant (2.1 A) and e i8 given by' e 

Eq. (5.1-4b). In doing this calculation, we have made the 
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( ) reasonably accurate assumption that the electronic states are 

coupled only to the nearest neighbors, based on the fact that 

the strain field is decreasing as R- 2 away from the impurity· ...... 
ion. Consequently, we can write a new set of collective d~~-

• 
placements ~, Table J.l, describing the vibrations of the 

octahedron about the displaced equilibrium positions 

123 

Q' = Q - Ke (5.1-12a) 
9 9 9 

Q' (. = QE, - Ke( (5.1-12b) 

Q$ = Q1 K' e,i (S.1-12c) 

Q~ = Q'1 - K' e1] (S.1-12d) 

Q~ = Q~ - K'e~ (5.1-12e) 

where K' = 2R can be obtained in a similar fashion to K. In 

the presence of strain, the elastic energy of the system measured 

from the disp1aced equilibrium positions is given by 

H:, = ~~w; [(Oe-Kee)2+ (a€.-K.~~.l 

+ ~ rTW~ ~O! - K' e~)2+ (a~ - K'e?)2+ (O~ -K·~:!}J.1 
(5.1-1J) 

Together with the kinetic energy and the JT energy in Eqs. 

(J.2-l) and (J.2-6), we constitute the Hami1tonian of the 

system. Accordingly, we can make the change of variables given 

\ 



( ) by Eq. (5.1-12), and the corresponding ~~sformation of the 
• 

canonical momenta Pn = Pn' In terme of t~e primed variables, 

"t>he e1astic energy and the kinetic energy are expressed by the 

corresponding expressions in Eqs. ().2-1) and ().2-6), but the 

JT energy includes additional terms. i.e., 

where 

= V.J<:(eE +e .. E",) 
.L:; e e .. ~ 
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(5.1-14) 

where HJT is given by Eq. ().1-11) and the e1ectronic operators 

are defined by Eqs. ().1-10). Therefore, we see that the effect 

of strain in the crystal is described phenomeno1ogical1y by an 

Hamiitonian HS identical in forro to the JT Hami1tonian where 

the dynamical variables ~ have been rep1aced by the static ones 

enR. The effects of static strains on the 5T2g states are des­

cribed by the stress Hami1tonian HS (5T2g ), given by Eq. (5.1-14). 

Now, we can use the Ham reduction factors, Eq. (3.)-)), to 

write the stress Hami1tonian as an operator in the space of the 

spin-orbit states, 

(5.1-15) 
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where V2 = VEK and VJ : V~· define the strain coupling coeffici­

ents and J specifies the set of spin-orbit states. 

At this point, it is important to remember that we 

have made the assumption of a cluster model, i.e., the Qn are 

normal modes of the cluster (the octahedron formed by the six 

nearest neighbors of the central ion) having unique frequencies 

w~ and WT. We also made the crude approximation that the mode 
!!. 

effective mass is given by the mass of one of the oxygen neigh-

- ( 2-) .. bor, t"" E = r"'T = MO, so that the canon~cal relat~ons 

Pn =~Qn can be written in Eqs. ().2-1) and ().2-6). So, we 
• 

~xpect the relations between the strain coupling coefficients 

and the JT coupling coefficients to give agreement only within 

the accuracy of the above approximations. A careful determina­

tion of the JT coupling coefficients from the experiment~ 

results of stress experiments would have to bypass the question 

of an effective frequency and an effective mass (mode) in the 

calculations. A multi-mode full lattice model should be used 

in su ch a case. 

5.1.) The effect of uniaxial stress 
\ 

The pressure P applied along a symmetry axis of the 

MgO crystal lowers the site symmetry around the ferrous ion. 

In such a case, group theory predicts that the orbital degeneracy 

of the spin-orbit states is partially lifted and a splitting of 

the energy levels occurs. The degeneracies and the transforma-­

tion properties of the new states are obtained from the compati-
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bility tables9 for the octahedral group. The group ~oretical 

prediction~ wi th regard .to the new states :for the three types 

of strain. Eqs. <.5.1-8) -to (5.1-10). are summarized in Table 

5.1. We see from the Tab1e that the orthorhombic straln lifts 
JI. w • _____ --

all the degeneracies of the energy leve1s considered. whereas 

the tetragonal and the trlgonal strains lift only -partially the 

orbital degeneracies. Moreover, the trigonal strain is inopera­

ti ve on the r,3g level • showing clearly, in the concept of the 

JT effect, that states transforming as Eg do not couple to 

vibrations (de:formations) of T2g representation slnce the 

product 

= 

does not include T2g. Group theory does not give which. way the 

energy levals ~li t and the magnitude of the spli tting. To get 

this infonnation, we rely on the stress Hamll tonian. Eq •. (5.1-15). 

In the case of MgO crystals. the strain splitting of the , , 
'[Ci energy levels is expected ta be of the same order ot: magnitude 

as the second-order spin-orbit splitting. Bq. (2.3-8). There-
, 

fore. the second-order spin-orbit Hamlltonian and the stress 

Hami1 tonian must be treated sirnul taneously by first-order pertur­

bation theory in thé spin-orbi t states. It must be noted that 

the JT Hamiltonian ia accounted for by second-order perturbation 

theory and, consequently" can be treated independent1y frQrn the 

spin-orbit Hami1tonian and the stress Hamiltonian. Besides, the 
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JT effect o~ the strain splittin9 of the energy levels is 

accounted for via the Ham reduction factors which were calculated 

using the JT perturbed, vibranie functions (see Appendix D). 

The secular determinants of the spin-orbit and stress 

Hami1 tonian can be solved easily if we neg1ect the matrix 

elements between states belQnging ta different J values, the 

magnitude of these terms being negligib1e compared with the 

energy separation between different J-states. These matrix 

" elements are required ta lift the accidental degeneracy occuring 

when states of different J values cross each other (which does 

not apply in ~our case). The resul ting spli tting of the energy , 
\ 

leve1s is calc\Ù.ated from the stress Hamil tonian for the tetra-
~_. 

gonal, trigonal and orthorhombic strain as shovm in Appendix F. 

The interpretation of the l experiment~Tesul ts 

5.2.1 The proceduT 

In the recent years, the first-and the second excited 

states of the ferrous ion in MgO, r)g and r4g levels respec-

tively, have been observed by optieal infrared absorption ta be 

at 106.9 cm-l and llq.) cm-1 A confusion was created by Meyer 

et al. 40 with regard to the assignment of each peak. This 

confusion has been clarified by Hjortsberg et al,.4) whose con­

clusion is eonfirmed by us, i. e., the r;g teve1 is the 10west 

in energy with respect to the G:g levei as established in 

chapter 4. Also in chapter 4-, we have concluded, however, that 

.. 
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the respective energy of the first excited states was s11ght1y 

higher than -Hjortsberg's observation at 109 cm-1 for the rJg 

states and 112 cm-1 for the" f4g states. The crystal field 

-theory predicts the energy of these two levels to be 198 cm -1 
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( r4g ) and 192 cm-1 ( Gg)' Eqs. (2.J-11a) and (2.)-11b). We 

have seen in chapter J that the JT effect is expected to shift 

the energy levels and to reduce the spin-orbit splitting. 

Assuming that the shift of the energy f~vels is entire1y due to 

the JT effect, we can use Eqs. ().4-6) t'o calculate the JT 

energies (EJT)E and (EJT)T for different values of the quanta 

of vibration ft~ and ft4r from the'" expressions 

where 

F31 --
F

S1 = 

and 

83 [Fe (wx) - F2(wy,]- 86 [F4(wy) - F2(WX'] 

F3i - F51 

[F
3

(U
E
)- F1(c..,)E l ] [F6 (WTl- F2(~T) ] 

[Fs(WE) ":'" F1(We)] ~4(WTl- F2(w r ) ] 

86 - (EJT)E (F5(wg) - F,(WE) ) 

F4(wr ) - F1(w T) 

(5.2-1) 

(5.2-2) 



---------

where we have used a reduction of the spin-orbit splitting of 

8 -1 r. - J cm between the Jg and 

-86 cm- l between the ~, and 14g 

~g levels, and a reduction of 

~g levels in accordance with 

130 

our experimental resul ts. J'J1owing the JT energies corresponding 

to a given set of quanta of vibration. we can calculate the JT 

corrections to the Ham reduction factors, Appendix D." " The strain 

splitting of the energy levels considered, Eqs. (5.2-2), (5.2-4) 

and (5.2-6), is depenJent on the magnitude of the strain compon­

ents ei which can be calculated from the knowledge of the 

pressure and the elasticity constants, and is dependent on 

terms Iike KEY 2 and KTV 3' The magni tude of these l~st two tenns 

can be estimated from the experimental results and, knowing the 

Ham reduction factors K, and KT' we can extract the value of the c 

strain coupling coefficients V2 and 'i)' Moreover, the value of 

the strain coupling coefficients 50 obtained must be in agreement 

with the strain coupling coefficients estimated from the splitt­

ing of the EPR lines under uniaxial stress. Finally, for the 

self-consistency of the cluster model, as discussed in sub-

section 3.3.;. the sarne parameters used to extraet the value of 

the strain coupling coefficients must be used to explain the 

orbital redu~on in the experimental g-faetor, g = 3.428. 

However. sinee the effective mode quantum of vibration 

cannet be related in any unique way to the host lattice phonon 

spectrum6l ,62 and must be chosen in the range 300 cm-I ta 450 
~ 

-1 cm , 

only a range of values for the JT energies can be determined 

which fit the reduction in the spin-orbit splitting and the 
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) 

• ), 
'ftwe 303 303 345 345 345 400 400 

• "'WT 
303 345 303 345 400 345 400 

• 
. (EJT)e 74 64 100 88 77 118 105 

• 
~(EJTh 108 134 94 120 148 103 130 

• V2 6152 5722 8143 7639 1146 10256 9675 

• V3 9103 11545 8493 10926 14068 10122 13185 

Ke(1) .092 088 096 .092 .087 .096 .092 

Ke(2) -.129 -130 -142 -.141 -.141 -.153 -.139 

KT (1) .091 092 087 089 .089 085 086 

KT (2) -.127 -137 -.126 -,135 -.144 -.134 -.142 

K
L 

-.447 -.441 -.442 -.437 -.430 -.431 -.425 

KS 1.494 1.494 1.494 1.494 1.494 1.494 1.494 

KA 2.872 2.862 2.864 2.855 2.845 2.847 2.837 

K 1.172 1.166 1116 1110 1.164 1.114 1.168 
B , 

k ... 
(9=3.428; 

. 90 .91 .91 92 .94 .94 .95 

TABLE 5.2 



g-factor. Table 5.2. Moreover, due to the large error in the 

strain coupling coefficients estimated from the EPR82 , APR8) 
>-
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and Mossbauer84 experiments and due to the latti tude in our fi t 

to the experimental results we can only hope to determine a range 

of the most probable values for the strain coupling coefficients, 

and this within the scheme of the cluster model. 

5.2.2 The fit to the experimental results 

As mentioned in subsection 4.4.2, the position of the 

electronic Raman peak was measured for different values of 

stress, for each type of strain, using the two scattering 

geometriesl Z(yy)X and Z(XY)X. These results are presented in 

Figs. 5.4 to 5.7 together with the theoretical splitting of the 

corresponding energy leve2s as calculated from Eqs. (F-2), 

(F-4) and (F-6). For each case, the allowed Raman transitions 

are given in Fig. 4.6. Since the~ ~g ground state is also 

split by any of the three types of strain, the theoretical curves 

represent all the possible transitions originating from the 

split components of the ground state. Besides, the ground 

state is only weakly coupled to s~rains in the crystal and 

split to a maximum of 1.6 cm- l at 40 KG/rmM2. Consequently, 

aIl the split components of the ground state are thermally 

populated at lOK (due to local laser heating) and lead to 

potentially observable transitions. 

Fig. 5.4 represents the effect of increasing the tetra-
2+ gonal strain, in a MgO J Fe sampI e, on the position of the 



Fig. 5-4 

Theoretical fit of the energy of the 

electronic Raman transitions rneasured 

for increasing tetragonal stress. The 

different electronic transitions are 

labeled from A to H. The theoretical 

fit is calculated as discussed in the 

texte The dash lines and the solid 

lines refer to transitions originating 

from the doublet and sinelet components 

of the ground state, respectively. 

\ 
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electronic Raman line. Group theoretically, the Z(YY)X 

scattering geometry allows transitions B and 2 to be observed, 

see Fig. 4.6. In this case, the energy cerrespending te the 

difference between Eqs. (F-2e) and (F-2a) constitute the transi­

tion ~nergy labeled B on the figure and fits the experimental 

results identified by open squares on the figure. Group theoreti­

cally, the Z(XY)X scattering geometry allows transitions to A, 

C, D, E, F and G, see Fig. 4.6. Since, under oh symmetry, this 

scattering geornetry allows transitions ta both the rJg and 

r4g leveIs, we still expect transitions to sorne of the compon­

ents of the two levels under D4h symmetry. However, the shift 

of the peak position being even larger with this scattering 

geometry (6.0 cm-1 with respect to 4.5 cm-1 with the previous 

scattering geometry), only the allowed transitions A, C and D 

can possibly be observed to explain these experimental results. 

The corresponding energy of the transitions A, C and D are cal-

Wlated :from the dif:ference between Eqs. (F-2e) and (F-2b), 

Eqs. (F-2c) and (F-2b), Eqs. (F-2c) and (F-2a), respectively. 

Owing te the unique transition B te be fitted by the 

theoretical curve, with the Z(YY)X scattering geometry, we 

obtain a good estimate for the only parameter of the stress 

Hami1tonian in this case 

= -1000 + 150 cm-1 

t '::. ............ ____ _ 
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Therefore, K~(2) only remains to be determined to obtain the 

Jo!. 

value of the strain coupling coeffici~nt ta Eg-type of strain, 

V2 • 

The interpretation of the behaviour of the electronic 

Raman line in the case of trigonal strain, Fig. 5.5, is not as 

obvious as the case of tetragonal strain. The reaSQn i9 that 

transitions, A, E, D, E and F a~e all group theoretically 

allowed with the Z(YY)X scattering geometry as weIl as with 

the Z (XY) X geometry. When a uniaxial stress of 36 KG/MM2 is 

applied to the sample, a small 1.5 cm- l shift of the peak is 

135 

observed. Two explanations can be offered for such a behaviour 

of the electronic line, which will determine a range of values 

for the parameter KT(2)V
3 

in Eqs. (F-4). Since in absence of 

stress, the peak position is abserved at 110.5 : .8 cm-l, it 

implies that bath rsg~ Sg and fSg---' r4g transi tians are 

observed. Consequently, we expect all the allowed transitions 

A, B, D, E and F to be observed, and the electronic Raman line 

follows the center of gravit y of these transitions. This 

assertion, however, does not restrict the splitting of the r4g 

level (Oh)' i.e., the energy difference between A, B and C, E 

transitions is still left arbitrary. Nevertheless, we can 

h 2 -1 . postulate t at a cm resolutlon of the spectrometer and a 

random strain broadening of 5 cm- l should broaden the split 

components of the r4g level (Oh) ta at least 6 cm-l, so that 

we should distinguish a splitting of the electronic Raman line, 

using Rayleigh's criterion, at an energy difference between 
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Fig. 5-5 

Theoretical fit of the energy of the 

electronic Raman transitions measured 

for increasing trigonal stress. The 

different electronic transitions are 

labeled from A to F. The theoretical 

fit is calculated as discussed in the 

text. The dash lines and solid lines 

refer to transitions originating from 

the doublet and singlet cornponents 

of the ground state, respectively. 
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Eqs. (F-4b) and (F-4a) equals to 6 cm-l. This situation is 

depicted in Fig. 5.5 and leads to an upper limit for the value 
lit 

of the strain coupling coefficient 

= -840 -1 cm (5.;2-4) 

The lower limit for the value of the strain coupling coefficient 

can be set to zero ~d, still, the 1.5 cm-l shift of the l~an 

line for large trigonal strain can be understood if a reduction 

in the transition probability to the r3g (D4h ) leve~~Jlakes 

place for increasing stress. In such a case, for sufficiently 

high stress, we wou»d mainly observe the r;g~ Gg (Oh) 

transition at 112 cm-l. However, sinee the intermediate states 

of the ferro us -ion at energies larger than 10,000 cm-1 needed 

to compute Zq. (4.)-2) are not known, it is not possible to 

obtain a sufficiently accurate value for the Raman inte~ities 

(or transition probabilities) relevant to this problem that 

would help us to decide between the upper limit value given by 

Eq. (5.2-4) or the lower limit. v) = o. 

The orthorhombic strain, which combines both a tetra­

gonal strain (expansion) and a component of' trigonal strain 

(compression), provides evidence for the upper limit value given 

by Eq. (5.2-4). With the Z(YY)X scattering geometry, all the 

transitions shown on Fig. 5.6 are allowed and the corresponding 

peak position (110.5 + .8 cm-1 ) lS not affected by the applied 

stress within the experimental errors. Again, we observe the 

.. 



Fig. 5-6 

Theoretical fit of the energy of the 

electro'nic Raman transitions measured 

for increasing orthorhombic stress. 

The different electronic transitions 

are labeled froID A te O. The theereti-

cal fit is calculated as discussed in 

the texte Th~ dash li~s, solid lines 

and dash-dot lines refe~ te transitions 

originating frOID the three different 

singlet components of the ground state. 
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center of gravi ty of all the 'allowed transi tions of' Fig. 5.6 

and no~much can be extracted as to the behaviour of the indi-

vidual energy levels under stress. The Z(Xy)y scattering 

geometry is more restrictive and allows transitions A to l, 

incl usi vely, all issued from the 14g (Oh) l.evel. To be con-

'sistent with our interpretation of Fig. 5.4, where, as far as 

the flj.g (Oh) l evel i s conc erned, transitions are mainly to 

the singlet state r2g (D4-h)' Le., transitions A and B, \Ve 

expect the tetragonal strain component of the orthorhombic, 
1 
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strain to induce transitions to the corres~onding singLet state 

now represented by transitions D, E, F on Fig. 5.6. T~e theoreti-
\ " " 

cal curves of Fig. 5~ 6 have be~' caJ,.culated using the experimen-cai 

results given by Eqs. (5.2-3) and (5.2-4). These curves show 

that, indeed, the center of gravit y of all the transitions ls 

preserved and that the singlet state (transitions D, E, F) 

reproduces very weIl the experimental results represented by 

open cireles on Fig. 5.6, as expected from Fig. 5.4. Again, no 

measurable broadening of the electronic Raman peak is observed 

whieh could be due to weak transitions probabilities for A, B, 
t-

e and M, N, a transitions of Fig. 5.6. The theoretical eurves 

based on the equations which lead to Fig. 5.6 were calculated 

for the case VJ = 0, and are presented in Fig. 5.7. The experi­

mental resul ts represented by open circles belong to the Z (XY)X 

scattering geometry which allows transitions A, B, C and D 

originating from the r4g (Oh) levei in abs;nce of stress. 

These experimental results cannot be unambiguously attributed to 

the center of gravit y of the four al~owed transitions or even to 
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1 

Fig. 5-7 

1 

Theoretical fit of the energy of the 

electronic Raman transitions measured 

for increasing orthorhombic stress. 

The different electronic transitions 

are labeled from A to H. The theoreti-

cal fit is calculated assuming V
J 

= 0, 

as éxplained in the text. The dash 

lines and solid lines refer to transi-

tions originating from the doublet and 

singlet cornponents of the ground state, 

respecti vely. 
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any of the group of transi tians A, B or C, D. Therefore, we 

conclude that Fig. 5. 6 provid~the best fit to the experimental 

resul ts obtained for th~ case of orthorhombic strain and corro-

borates the evidences obtained f'rom the experimental resul ts 

presented in Fig. 5.4. Since the value of' the parameter KT(2)Y
J 

gi ven by Eq. (5.2-4) provides the best fit to the experimental 

results shawn on Figs. 5.5 and 5.6, this value will be used to 

verify the consistency of the cluster model keeping in mind tha t 

a large errar is attributed to it. At this point, 1\.2:(2) and 

KT (2) must be determined to extract the range of values for V 2 

and YJ' 

Table 5.2 gives a range of values for KE(2) and KT(2) 

which were abtained from vibrational quanta and JT energies 

sui tably chosen ta fit both the reduction in the spin-orbi t 

splitting and the reduction in the g-f'cactor. These values for 

the Ham reduction factors are 

(5.2-5) 

(5.2-6 ) 

which lead directly to an estimate for the strain coupli-ng 

coefficients via Eqs. (5.2-J) and (5.2-4), i.e., 

,', (5 .. 2-7 ) 

(5.2-8 ) 
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The coupling coefficient to Eg-type o~ strain, Bq. (5.2-7) is 

affected by the compounded errors of Eqs. (5.2-5) and (5.2-J), 

whereas Bq. (5.2-8) represents the maximum value of the coupling 

coefficient to T2g-type of strain which only affected by the 1 
error in. Eq. CS. 2-6). It must be remembered th,at VJ can actually 

take any value between 0 cm-1 and VJ(MAX), but that VJ(rllAX) best 

fits the experimental resul~ presented in Fig. 5.6 and is 

retained as the representative va~ue of the VJ coupling coeffi­

cient. 

/' The strain coupling coefficients for the r;g gz:-\ound 

~tate of the ferrous ion,J;n 'MgO have been measured by t~ee 
different techniques, i.e., from the splitting of the EPR82 and 

AFRa] lines under applied stress and from Mossbauer spectroscopy84. 

Using the notation of Watkins and Féher 82, the strain spli tting 

of the r5g ground state is described by th~ Hamiltonirun 

where J ia an effective angular momentum (see Eq. (J. J-6 )) and 

the tensor 6D is related to the strain components via the 

fol1owing expression 

G •. e
J
. lJ 

In this case, Volgt notation la assumed. 1. e., 3Dl :: S Dxx' 

g D4 :: â Dyz' ete., but e~ :: exx' e4 = 2eyz ' etc. AS,suming 



1 ) 
wi th ~'Jatkins and Feher that the trace of the tensor è D 

vanishes, i.e., G11 = -2G12 , and comparing Bq. (5.2-9) with 

Bq. (5.1-15), we obtain the equivalences 

143 

V
2
K,( 1) 

J:!. = (5.2-10) 

= (5·2-11) 

Table 5.) gives the d!fferent experirnental values for Gll and 

G44 . Although not quoted, the errors on these experimental 

values are known to be large as can be judged from the marked 
1 
1 

discrepancy in the values. Aga in , from Table 5.2, we can dèter-

mine a range of values for the Ham reduction factors (with J = 1) 

in accordan~e with the reduction in the spin-orbit splitting 

and the g-factor. 

= .092 + .008 (5.2-12) 

= .088 + .005 

Using these values, V2 and VJ of Table 5.J were estimated. 

Besides, if absolute values of GII and G44 are difficult te 

estimate, their relative value can be obtained more accurately. 

From APR65 and acoustic saturation measurements64 , a reasonably 
2+ accurate ratio ia found for MgOtFe saroples, 

= 1.59 ! .09 (5.2-14) 
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83 
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• 
G

11 
800 647 585 0 

• 
2G

44 
1080 814 (736) 

G11 /G44 
1.48 1.59 

• 
V2 8700 7000 6400 

• 
V3 

12300 9200 (8400) 

TABLE 5.3 
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This result is used to ob tain ~e value for 2G44 in par~~eses 
in Table 5.J. Our result for V

2
, t:q. (5.2-7), compares favor­

ably wi th the three corresponding values of Table 5. J, whereas 

our estimate of V J seems anomalously low, 

In following the phenomenological approach, the change 

#ilf variables. ~s. (5.1-12), pro ded a relation between the 

phenomenological strain coupl' g coefficients, V2 and V
J

, and 

the JT coupling coefficien and VT, This relation i6 g~ ven 

by Eq. (5.1-15), i. e., V2 = KVE with K = 2R/(J)t and V
J 

= K'VT 
with K' = 2R. As we already mentioned, the justification of the 

relations between the strain and JT coupling coefficients are 

subjected to the approx~ations Inherent te the cluster model. 

If ·we were to account for the displacements of more distant 

ato~s than the nearest neighbors. or if the elastic constants 

in the neighborhood of the ferrous ion should be different from 

those of the bul.k MgO crystal, the constants of proportionali ty 

K and K' could haye expressions much different from those of 

Eq. (5.1-15), Using expressions (J.2-J) and (J.2-7) for ~E 

and VT, respectively, and Eq, (5.1-15), we can relate the strain 

coupling coefficients to 1;he JT energy and vibrational quantum 

of the appropr~ate mode in the following way 

(5.2-15 ) 

- ---~--. -
:,-i.<i .il' : .' 

1 
! 
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Aga in , using the results of Table 5.2 pertinent to the reduetion 

in the spin-orbit splitting and the g-factor, we obtain 

Y2 = 7900 + 2500 em-l 

Y
J 

= 11100 + 3300 -1 cm 

The phenomenological relation between V2 and Vè gives the right 

estimate for V2 to a better extent than we would have expected 

sinee i t corroborates all the experimental resul t~ Table 

5. J. The estimate for VJ also c,orroborates the resul ts of 

Table 5. J but overestimates ..our resul t gi ven by Eq. (5.2-8). 

Now that it is weIl established that the trigonal strain 

resul ting from' a non-zero component of ::ltress along the [ll1J­

axis of a VIgO crystal is somewhat amaller than expected 1 a 

simple explanation of the phenomenon can be presented. 

Lange65 determined the paramagnetic behaviour of Fe 2+ 

in MgO using acoustic resonance techniques. The coupling of 

the hypersonie acoustic wave (109Hz) to the paramagnetic state 

is observed to be related to the local vibrational eomponents 

which interact with the electronic states. Lange deduced that 

the r5g ground state of the ferrous ion i6 split into a 

singlet ~g etate and a doublet Eg state due te an interna! 

strain field of Eg symmetry. 

-- ------ ----
·.if,i!fét1i;~ _. 

1 
J 
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King et al. 53 measured the microwave acoustic attenua­

tion of hypersonic waves in samples of single-crystal iron 

doped MgO. A comparison of the magnitude of the attenuation 

of the (Eg) compressional mode with theory together with the 

absence of a peak in the (T2g ) shear mode attenuation are in 

fair agreement with a model which supposes that the Fe2+ ions 

are subjected to random static strains which are predominantly 

compressional (Eg) in nature. 
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Consequently, Lange65 and King et al. 53 established the 

presence of strong static strains of E symmetry in iron doped g 

MgO. Assuming that such rand am strains exist in our sample, as 

can be judged from the width of the Raman line. we can account 

for the apparently reduced trigonal strain coupling of the 

ferrous ion. 

In chapter 5, we have substantiated the analogy between 

the JT effect and the static strains, expressed the stress 

Hamiltonian in terrns of electronic operators of Eg and T2g 
symmetry. In subsection ).2.2, we have treated the JT problem 

of an electronic triplet state coupled to a doublet vibrational 

mode. In that context, Ham26 showed that the (Eg) strain 

electronic operator ls diagonal ln the spin-orbit states and 

its matrix elements within the vibronic states are written 

('Y,"'N 1 0 (Eg) J 'YJM'N') = ('Y;lo(Eg) l'Yj)' 
. 6'j ~ U'MdN'N 

~~-~ ~---~-~-~. ~ . 
.., .~;: 

\~ 
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On the other hand, the (T2g ) strain e1ectronic operator is of 

the off-diagonal type and its effect in the vibronic states is 

reduced, according to the reduced over1ap of the vibrational 

functions (see subsection ).2.2). Its matrix e1ements within 

the vibronic states are written 

Ham conc1udes from 3qs. (5.2-17) and (5.2-18), that ~he stress 

Hami1tonian is expressed in terms of V2 and V)' as in Eq. 

(5.1-15), but that 'V
J 

alone is mu1tip1ied by an exponential 

term (orbital reduction factor) which tends to zero in the 1imit 

of static JT' deformation of Eg symmetry. 

imposed by the Ham reduction f,ctors in 

be seen from Fig,- J. 6. ; 

This behaviour is 

Eq. (5.1-15), as can 

If we conc1ude random strains of predominant1y 2g 

symmetry in our JT prob1em, we ob tain a simi1ar effect as if 

the JT coupling to Eg deformations was stronger than the 

coup1ing te T2g deformations. The 1attice site of the ferrous 

ion is distor~ed by the superposition of an Eg static strain 

(random) and both Eg and T2g dynamical JT deformation. In 

accordance with Ham's treatment of static strain26 • the result-

ing effect of the Eg static random strains is to reduce the 

strain coupling coe~ficient to T2g strain, i.e., V
J

. No suitab1e 

theory could be round in the 1iterature or set up by the author 

• 
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ta relate the average strength of the strain field ta a rand am 
1 

strain reduction factor. Th~s model provides a simple explana-
.'-

tion for the consistency of our value for V2 with the results 

of Table 5.) and with the prediction of the cluster model, and 

accounts for the discrepancy in our v~ue for VJ when cdmpared 
4 w1th Table 5.J. 

It is also remembered that the effect of random strains 

on the value of y) is more severe in this case because the 

first exci ted states 1 rJg and r4g , couple more strongly to 

.the stress than the ground state. The values of Y2 and v) in 

Table 5.3 have been obtained from the effect of stress on the 

ground etate of the ferro us ion. 

Moreover, choosing "<..JE = )45 <ml-l, Le., at the peak 

of the density of states for MgO phonons of Eg symmetry, Fig. 

4.1, and using Eqs. (5.2-1), (5.2-2), (5.2-7) and (5.2-15), a 

range of values for the JT energies can be calculated that 

satisfies the reduction in the epin-orbit splitting and in the 

g-factors 

= 80 + )8 cm- l 

= 151 + 70 cm-l 

These values for the JT energies correspond to the'co1umn of 

Table 5.2. which satisfies the equali ties 'ftW,.. = 345 lem -1 and 
J:. 

~ - ~ -- ----"..---r'---~-~_._-- - - '.' '; 
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o ftWT = 400 cm-1 
t as expected trom Flg. 4.1. 

Chapter 6 summarizes the resul ts and conclusions 

estab1ished in this chapter and the previous chapters. 

1 

() 
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CHAPTER 6 
" 

" CONCLUSION 

The nearby exei ted states of Fe2+ in MgO have been 
• 1> l 

observed by Raman speetroscapy for the f'irst time. ~~e have 

identified an A1g impurity mode (185 cm-l ) and an electronic 

transition at l10.5! .8 cm-1 whieh we associate with the 

first exci ted states of the f'errous ion, 

pl'eviously ,observed by far infrared optical absorption.' Three 

Raman speetra wi th dif'f'erent input-output polari~ations ditfer­

entiate unambiguously the electronic transitions from the 

impuri ty mode transi tian. 

In changing the pOlarization o~ the incident laser beam 
\ 0& 

from T2g ta Eg polarization, we observe a 1.5 cm-I displacement 

of the e1ectronic Raman 1ine to 112 cm-l •· This ls as expected 

sinee the only allowed transition in such a case Is 

Consequently, we assigned t;he r4g level at 112 cm- I and the 

rJg 1~~e1 at 109 cm-l, making the simple assumption of equal 

intensi ty t'or both, transi tions rsg~ rJg and f5g-+ r4g · 

The J cm-1 separation between the Gg and I4g levels ia in 

good agreement wi th the J.6 em-1 separation observed by Hjorsberg 

'" et al., and fits best our experimental data from the stress 

experiments. 

Jhree dii'ferent uniaxialstre.ses were appli ed to the 

MgO sampljes whichproduced a shift in the observed e~ectronic 

1 

) t51 

1 
, / 
~ J 

1 

-: ' 
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transitions. The' stress Hamiltonian has bee~ solved and the 

.1 energy level spl}tting have been fitted to the experimental 

data. Chapter 5 discusses the bast fit in detail. From the 

~owledge of the Ham reduc~ion factors corrected for the JT 
,r- '\ 

erfect, we extract an accutate value for the strain coupl~ng 

coefficient to Eg deformation, i.e., V2 = 7140 : 1800 cm- l 

" • • & 

At first sight, the strain cpupling coe:-f'Lci,ent to ':C Zg deforma-

tion, i.e., V3, seems much too weak to explain both the reduced 

spin-orbit sp1ittlng of the energy levels and the reduced elec-

tronic g-factor. Moreover, the value for V
J 

does not c9rrobor­

ate the results obtain~d from other techniques and already 

pub1ished in the literature. This fact is understood when we 

consider the random strain of predominantly Eg symmetry which 

has been reported by several authors and gives the 9 cm-1 line­

width to the electronic transitions observed. As discussed by 

Ham, this Eg random strain reduces the effect of the trigonal 

stress apd leads ta ~ apparently reduced value for VJ without 

affecting the coefficient v2 : For this reason, we are not able 

to'provide an ésti~ate for the strain coupling coefficient VJ , 

Nevertheless, 
r ... 

,~ 

JT energ1es, 

the value for V2 leads to\an estimate for both 

Le., (EJT)E = 80 cm-1 and 3/2(EJT"~T = 150, cm-l, 

as explained in chapter 5. 

~ Theae more accurate experimental resUl ts are essentia.1. 

ta substantiate existing and future theories about the JT 

effect of this transition metal ion. The author would like ~o 
, " 

point out the lack of experimental resul ts and adequate theories 
{ 
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of random strain, in crystals wi th JT impuri iles and 

its influence on the JT effect. 
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APPENDIX A 

It Is a simple matter to shdW tha t the oomp~ments ot 
. , 

the orbital angular momentum commute wi th the Hamil toni'an H 
. ~ 

of the, electron-electron interaction. For examp1.e~ the' 
, 

commutator of Lz and H is palculated using, 

H'= 

-- (A-l) 

and 

(A-2) 

The codtator applied to a certain linear oombination of 

determinantal product state jt"is given by, , . ...... 
" 

or 

which will be zero, ~.e,~d Lz will commute, if the 

operato~ LzH' is shown t6 be zero. From eq. A-l and eq. A-2, 

we obtain after a straight forward calculation, 

L H' z 

= O. 
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The same procedure can be followed' for the Lx an~ Ly components 
~ . ~ 

of the orbipta!l. angular momentum. Since H·. contains no spin ... . 
terms. i t commutes trivially wi th the components of the spin. 

angular moméntum. 

Defining states which are lipear com~inations of deter-

minental functions labeled by the quantum numbers LSM LM , we . s 

The 

/ 

show that the mat,rix e:yements of H· 

following ~alities ~ satisfiedl 

(LSML Ms IH1a:S'M~M;) M~ 

vanish if ~ 1 ~. / 

- (L S M M 1 H'L 1 i:s'M' M' ) - L S Z L S 

= < LSML MsILzH~llS'M~ M;) 
.:. M < LS M M 1 H'I ~S'M' M') -. L L S L S 

2 2 Replacing Lz by ei ther L • S . qr Sz' ",e show similarly that 
• •• 

the matrix el~ments of H must vanish if L 1 L , sis or 
• 

M.s 1 Ms in the two determinen1:al. functions invol ved for a 

particular matrix element. 

L __ --7 - ,,". ="'i- ,-
-"'-- r r". ..~: ~ ~~-... ~ 'ri3~:1.~ 

~ -- ~--- -~---~- , 
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APPENDIX B 

In this Appendix are listed the, fifteen spin-orbit 

functions of the 5T2g-st~tes. The functions are .d.trfe~ent') . 

o:)':thonorm8.J. 1ine~ combinations of the splnors~' deflned by 

.Eq. (2.3-9), Le •• 

• 
[ 1 S ;5) : 1"1; s). 1 -(; V ] 

where S = 2, l, .0, -1. -2 ls the M value. The 'spin-orbit-, - s ~ 

~unctions are 4~signated' by Qi ( fj) where ~ rel'e'rs ta the . 
irreducible representatlon of the spin-orbit states, Eq. 

(2.)-10), and the subscript, i distinguishes the partners of 
. 

a given irreducibl~ representation. The fifte-en spin-orbi t 

functions are 1 

, 

'f12 (a ~g) = &.( ~$2) - 1['12)] + U~-2)+ 1/'1-2)])-io . ( [$0) ) 
't , 

. f3 (a çg) = -!fs{~[§2) + ['12)] - ~1~-2)- r-2)])-io· ( l'ID) ) 

~1(çg)=~{~1*1)'- l'11)} ~I~~*·( ~2) -[}'-2») 
~ J 

1{12(ra9)= -=;- . (~1;1)" 1"'11>] + ~I ~-1) - 1"~-1)]) 

- .. : ' '~., 1 .. 

~...----,-..,. __ "'-'7"'"~~ 

• '... ~?<- - \ " 
1 l ..! :. 

( 

f, , 
1 

) c 
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, ... ' <f~(6'49) = &s H$1} ... 1/'11>}[H-11 '7 ~>]) *" (1 52} + 1 ~-2) ) 

1 
, 1 
, ' 

() 

<{J2(a ~9) ~ t73([S2) -11~2)]-J~:2)+tjJ+[~1)+ ,i~]) j} (1'10» 

~3(a~9) = ~Œ~2)-"12)Hs ~+I/ '7 '2)N~ l)-I~-l)]) ~(I~O») , /.' 

~( ~g)~ reŒ5~-1'71)]+[II$-1}+I7)-1}]"i[~,2j-I~~J) '. 

~(b ~g) = ;- ~51}\: Il'71)]- U'5 -l}-1i YJ -VJ- U-<2) !" 1 ~ -2)D, ' 

%(b ~g) = 2JeŒ:52)~il'72}H ~-~- 211'1.'-2~-2 ~~l)-I~-l)J) tt+S 0» 
.. 

<Ç3(b~g) = ~Œ,'~2)-,7) 2}J- rlls-2)~I'7-2>J+ 21~~1>+IHJ)=}(I'7 0») 

fl(bi~g) = *Œ~1)-11'11)H~ -1)+ Il'1-1)J) + ~ ~ ~ 0») . 

<Ç2(&'59) = 2Fo Œls2)+ 211'12)] + ~1~-2) - 2iIYJ-2)J+ 2 ~~1)-1 ~-1)])- ~~5~) 

{l3(bÇ;g) = 2Fo ([211 52)- 31'7 2}]- §11-S-2}+ 31 '1~]-21 [~1)+ 1~-l)J)- ~(i'10») 
1 
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1 
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1 

," 

" :' ~ --- --, _ -, -" -.. ;.;-g~~' '~-" ,rlf-,<> "-, -'.' 
I~ ~' \ , ........... M..R.l""WW,}l.jfë CI 



" 
, ~,-________ ~ ______ ~t_, __________ ~~ __ ~~ ___ ~~"_'~'~ ________________________ __ 

" i 
j 

'1 
1 

o APPENDIX C ~ 
§ 

, f 
/ , 

1 

It must be shown that \~ can neglect the second-order' 
, . 

terme in the Taylor expansion of the ,Coulomb energy of inter-

action between the i th e1ectron' and the ligands. Eq. (3.1-1). 

We can combine the first-order and seèond-~rder terms in Eq. 

(3.1-1) so as, to ob(ain, 
• , 0 

1 -

V'(r,O) = VOh(r,O) +~ ~ d~N [V'+ ~(2~J ~ ON + OP 

(C-1) 

The expression (C-1) can be rewri tten us~ (J .1-5) • The 

right hand sid~ term. becomee, 

.. 
We seé that the second-order terms in Eq. (3.1-1) result in a 

correction to Bq. ().1-5). The corr~ction terms invo1ve the 

ratio Qr/Ro which is smal1er than 0.01 for weak JT coup1ing, 

as calcùlated t'rom Eq. (J.2-2). The who1& correction ls 

smal1er than '1% and, therefore, can be neg1ected since 1arger 

errors are \xpected from thecluster mOdel. 
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,..or. commonly occurrlng Te88.ral harmC)nlc~: 

\ .. 
a 3 (35 )'/1 [1' ( l J)/ ., ] Z44 = 6

16
;:; 4 x y - y x r 

'" Zno· y no 

c 
Znm :1 

s 
Znm= 

(1/J2)[Yn.~ + (-1 )m Ynm ] 

(i/fi)[Vn_m - (_l)m .Ynm ] 

--: - .,-_ .. _-.,.-.. "',.----- ~-­
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APPENDI~ P 

The Ham ~~~uct1't>n factors. KE and KT,' as defined" in 
. , , 

Cha~ter '~ • are perturbèd",bY' --the JT in'te1iaction between.;. the 
...,. 

no-pnonon state~.and the one-phonon states; Only the reduction 

factors corresporuUn,g to the,,/J = l and ~ =' 2 spin-orbi t states _ 
. / , -" 

" are considered s~c& the J = ) level'S are not obsjrved experi-

mentally. Chapter 3 gives the gu~delines ~e perttbation 

, calculations. 'l'he perturbed reduction factors are 1 

t! 
1 

KE(1) = -Tc + X.E~1(~'WE) + XTG2 (~'~J) 

K (1) == ..L ,+ XE G2(~"WE)+ XTG3(~'wJ 6 10. -) \ " 

(ii) J = 2 ( r;g , a çg levels) 

~(2) = -~ [~o + XEG4(~'WE)+ XTG5(~'w~)J 

KT(2) '. -~ t~"; + XEG5~~'WE)+' XyG6(~,WT~ 
, 

The following definitions are used, 
", 

( 

( 

\ 

/ - . 

, 1 
! 

1 

1 , 

,',b 
, i 

1 

1 
1 

"""1' 

_ n ' 

~" -a;~r;i,t~::,· ". ' , . -. , ,"" 

. , , 

.. 



J 

o 
j. 

• 

\ 

n 

l' . ( .. , 
, , . . 

1 

G (-" ",) - 1 ' +.3 U + 27 U 24 U + '17 V . 
1 >,"'" - 1000 40 22 125 55 -12s 25 i2s 25 \ 

.1 

G (""w) = -1 "+~u +l.i~ _mu ... 1!Zv . 
2 ?-' 2000 80 22 125 55 1000 25 1000 25 

. . 
G (J ) - 1 + 1 'U -+ 26", 221 u ~ V 

3 >,.C-JJ - 2000 1ë 22 12'5 55 - 1000 25:," ~o 25 

where 

_
- -1 3 R 2 R 23 R 5 S +- 22-- 55-- 23-- 23 16 400 25 200 8 . 

" 

-1 1 R . 2 R 59 R 7 S +- 22-- 55+- 23-- 23 
48 400 75 200 8 

,. 2 2 
I,U22 = (1\w) / (1\~+2~) . 

U55 • (ftw )2/ (1\w+ 5 -1)2 . 
2 . 

U25 = (ft(,.))/ ('ftW+2~)(~w +5:() 

V25 = ~ftw/ (1\w+2~)(1\W+5~) 
2 < 

R2\2 = (1\W)! (ftW-2~)2 ; 

. 2 2 
R33 = (ftw); (ftW+3{) 

R23 = (ftw); (1\w - 2~)( 1h.",) +3~) 

S23 = -tftw/ ('ftw- 2~) (ftW+3~) 
" 

n r .. 
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APPENDIX E 

In this Appendix are gi ~en th~ dif'f'erent Raman intensi ty 

matrices, as mentioned in subsection 4.).2 • Lon~.on7i calcu1ated 

the ~aman scattering ter;sors '~or crystals of .\IÔh S~ry. The 

correspon~ing Raman intenslty matrices for. Crys~ h~Ving 
their symmet~ axis [OO~, [010] and [100]. aligned with the.' 

1 

laboratory frame of refer,nce Z, y and X, respectively, are 

obtained by squaring the elem~nts of the Raman scattering 

tensors calculated by London, i.e., 
,... 

[~ 
0 

~] 
• 

~ 
0 

~] [~ 
1 

~] " l 1 0 

0 0 l 

~g Eg T2g (Eil) 

Knowing the scattering geometry, we obtain the irreducible 

representation of the scattering tensor with the help of 

Eq. (4.)-2). From (E-l), we ob tain a 

z(YY)x > '~g+ Eg 

/ Z(XY)X > T2g 
, , 

ii' the! [lOOJ and [OllJ axes oi' the crystal are 

aligned. wi th thec.Z and Y axes of the laboratory ~rame of 

ref'erence, C,E-l) must be trans:f'ormed acco~ingly by. choosing 
, . 

the proper linear combination of e1ements of ~Raman"scatte.r-

ing tensors. So, ~Y-+x(y + z) = zy + XZ, where f' y, z belongs 

f' 

1 

.Yf'~ 1 
'" 

! 
; 
'. 
i 

" , 

i ' 
f' 
1 

" 

1 

1 
r 
1 , 
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, . 
elements Rzy of :the Raman_ sçatterlng 1;en~or. ié1,)givel'l by a. 

ltne~ combination ~xy + Rxz of th.L?ndon·s" ~ scattering 
• 

tensora. ' . 
(\, 

1 • 
In the tollo~ing are gi ven the Ram~ \ intensi ty matrices,' 

-appropriate for the crystal orientations of Fige. 5 .lk ta' S. 6. . . 
, 

(1) B10]"'Z, to01] ..... V, [1~OJ~X 

~ ~ ~] 
L~ 0 ,. 

1: 

l'I 
1 . 

f 
i , -

z (X V)X *--.. T29 . 
[. -
1 

[~ n [~ :] ;] 
~ 

~ , 0 2 r ~ 1 - i 
", 

r 

Y3 4f.3 0 ' . 
1 

1 

21J %- r·. 1 0 2 
1 
1 

A19 Eg T29· 
1 

1 

f .. \ l 
1 z(vv).x ~ A19 +4/3T29 ; Z(XY)X'-'2E9 + %T29 1:' ." 

o 
(' 

l' ;. 

l 



'0 

,0 

.. - ' 

j 

1 , 

"1 

, . '1 

o 

.. ~ 
. , , . 

. . 

! ' .. · r: "~l' : 
l~ . 0 ;J 
, 

~19 
'" . 

: ,ç:') · .~is4 
~ ~ <' ' ~ 

,., ~ 

.' ~ - .... l' , 

[àl1]-+x- ' 
~,~ . , '" , 

(" 

~] ~ 3 . 3' 1 

o ' 9 

\1 Eg 

Z (v v) X':"'" A
19

+ Eg + ·T2G ; Z'(XV) X-+3Eg 

" 

• , . 

[

1 0' ,0] 
o ,1 0 

o 0 1 
[: ~ :] ': ' 

2'. ~ 0 

Eg 
1> 

Z (VV)X-+A g+ ~g + T2~'; Z(X'V) X:"" Eg -f%~29 

Il 

li 

1 

\ 
\ 
, 
, ) 
, 
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APPENDIX F 

In this Appendix is shown how to calctiiate the splitting , 

of the spin-orbit energy levels in the presence of uniaxial 

stress. The stress Hamiltonian, Eqr~.1-15, is solved for the 

threê different~types'ot strain, i.e., tetragonal. trigonal 
~ . 

and orthorhombic strain represented by Figs. 5-1 to 5-3. res-

peetively • 

The tetragonal strain 

When an external pressure ie app1ied along the [100]­

axis of the MgoaFe2+ sample, Fig. 5.1. a tetragonal strain 

oceurs which lifts partially the orbital degeneracies of the 

energy levels prior to the deformation. 'see Table 5.L The 

res~ting sPlit~ng of the energy levels is calculated from 

the stress Hamiltonian for tetragonal strain 
\ 

(F-l) 

where the definition of the eleQtronic operator, Ee' Eq. 

(3.1-10a)" has been used. In the spin-orbi t states. we must 

solve a secular de terminant for each value of J. In agreement 

with Table 5.1. we obtain the fo11owing energy leve1sa 

(i) . J = l 
() 'h 

çg: - 3 -t + 9~ +-~f - KE (1) V2 ., (F-2a) 

~g: '1. 27 -3 +~-5P+KE(') V2 ~ (F-2b) 
.' 



(J 

-~~.'-

o 

7 "ni 5 tW' 

(ii) ,1'= 2 

~g: -~+~+2f + 3 K
E
(2)V

2 
8 e \. (F-2cl 

r;g: -1+t'"+2f - 3K
E
(2)V

2 
8 e (F-2d) 

.:.-
" 

~g: -~+r- +3f + 3KE(~.)V2 8 e (F-2e) 

rsg: - '$' + \" + 3 f -3 KE(2)V2 ~ 
2 

<.F-2f') 

where the Ham réduction factors KE(J) are given in Appendix D. 

In section 5.), these energy le~ls are used to fit the experi­

mental results presented in Chapter 4. 

The trigonal strain 

A uniaxial force applied along the [ll~ ;,axis of the 
• 2+ MgOtFe~ sample, Fig. 5.2, causes a trigonal deformation of 

the lattice which lifts partially the degeneracy of the energy 

levels prior to the d~ation, but leaves the r;g level 

unsplit. The resulting splitting of the energy levels 1s 

calculated using the stress Hamil tonian for trigonal strain, 

which can be rewri tten in a more tractable form using the 

166 
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() 

,. 

raising and lowering operators, 

. 
= V3KT e(t21 { J; - J~ • (1 + i)(J.Jz .~JzJ+) 

21. 

(F-3) • 
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where we h~e used e(T2) =8j=8,=81, Eq. (5.1-10c) and the 

·def'.llrltion of the e1ectronic operators Tl' T'l' T~, Eqs. (3.1-10c) 

ta (3.1-10e). Again, taking account of the second-arder spin-
. 

orbi t Hamll ton~an. we must solve a secular determinant for 

each value of' J which give, in agreement with Table 5.1, the 

fol1owing energy levels 1 

(i) J = l 

(F-4a) 

(il) J = ~ 

(
fi Z 2 J'I2) -t + t'" +3f -1 ~+2p +~~-2~) + 8~ (F-4c) 

~~ +tf+3f-l( ~+~ -~~-~)'+8~'r) (F-4d) 

(F-4e) 

where 13=6K
T

(2)VJe(,T2 ). We observe that the stress Hamlltonian 

maltes the two Gg states inter~ and admlxes their. wavefunctioms. 

1 

" 1 1 
1 
1 

J , 

, 

~ .. -_:-. ----, -\-,.,..,....-.-.,...,. "....~, -~-"",'j.l.~~.:- - -:-:;-~ --;-. . ,;."-r;J '~",:r-, 'o/e1 - ....... -_ ............... ., -.,'~' .... ~ •• -.• I-' ,'-,' J 
.,. " • ;. ~," .1," ... ~ .. ,. )~~.., ...... '" . ;~~:~~1'.: . ... ~_:. _;.\ '. ;;»Jr,z," _i~ .. ;:" ... ~.· .-0-~.'!!:.::.:' -~;. ~.----.:.::...:..-..~ 
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~ 

This interaction causes the two doublet energy levels issued 

f'rom the Sg and f4g levels (Oh symmetry) to repel each other. 

Eventually, the singlet state issued trom the ~g level, 

Eq. (F-4e), will cross the doublet state Sg' Eq. (F-4c), at 
" . 

suff'iciently high stress. In f'act, this accidenta! degeneracy 

is lif'ted if' re account f'or the matrix ele~ents betwéen these 

~levels and the J = 1 states. 

sma!1 i t can be neglected. 

The orthorhombic strain 

this correction being 

An appropriate stress applied alang the [llOJ -axis of' 

an MgOIF~2+ samples causes a unif'orm orthorhombic strain. as 

168 

shown in Fig. S.;, which lifts completely the orbital degeneracy 

,'of' all the energy levels considered. The arthorhombic strain 

is obtained schematically f'rom a tetragonal expansion and a 

suitable component of' a trigonal compression. The resulting 

~litting of' the energy levels ia calculated f'rom the stress 

Hami~ian for orthorhombic strain 

H
S

(P2d) = ~-+e'/2) (JJ~ J(J + 1») 
ff 

+ KTV; e~(JxJy + JyJx) (F-5) 

where the richt hand side term can be written alternatively in 

ter-ms of' raising and lowering operator-s as 

1 
1 
1 

1 

1 

. . l ' . 
, --------------------~~--,\ ... 'i~' .,;,.;" .... 
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169 1 

The orthorhômbic stress Hamiltonian and the second-order spin-, 
II> 

orbit Hamiltonian are treated simultan~ously t~ ,yield the .... 
following eigenvalue,s of the secular determinant for each 

value of JI 

• 

(i) J'=, 1 

r: . 
~ 

-s-1+ 9 r- +~r-KJ1}V2 ee ( F-6a) 

\ 

~g: -3~+9r+2I~+K (1)V2 !It-Kf1"3 e-J 
5 E 2 

(F-6b) 

~g: -3.( +9~ +~f+KE(1)V2 ]t-K,l1N3 e~ (F-6c) 

(ii) J :1 2 

çg: - 1+ \" +2 f +3K~2"2 e9 (F-6d) 

1/1 • 

çg: -~ +r +~f-l ~2_2'" (f-~) +i ~2J (F-6e) 

, , 1/1 '" 
~g: -~+ l"'"_~ ~f+~ [(2Ik (p -~) +~ ~ 2J (F-6r) 

.. ",/ 

çg: - ~+ f+3f -3K~2"2~+3KF'N3 et (F-6g) 

~g : -t+r:+3f -3K'2"2~-3K\2)V3 e~ (F-6h) 

where ~ -6KE(2)V2ee and ~=6~(2)VJel· In this case, we see 

t-hat the fJ.g level,' Bq. (F-6e), issued from the Gg leve'! (Oh) 
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1 . 

interacts wi th the r;g level, Eq. (F-6i'). iSBued i'rom the T4g 
• level (Oh) and, efi'ectively, repel, each other. 

It is interesting ta note, 'as mentioned in subsection 

4.4.2. that the energy levels preserve,their center of gr~vity?7 . 
when split by either of the three dii'ferent strain in the 

crystal if the split energy levels do not inSeract between them. 
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