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- infra-red optical absorption,
, ; ,

STRACT : .

|
’

arby- exclted states of Fe in Mgo have been.

L]

observed by

an spectroscopy for the first tzme._' We obgerved
Ion at

an Alg impuri 2 mode (185 En\l) and an electronic) trans:at
110.5¢ .8 cm T which we associate with the first le:ecited gtates
of the ferrou“ ion, r’ag; and . ﬂ'}g,\ previously oLser*{ed by far

|

Crystal field theory and group theory are used to
characterlze the energy levels and the wavefunctions of the
ferrous ion. The observed reductl}n in the spin-os’blt splitting
of the energy levels is accounted Tor by solving the Jahn-Teller

Hamiltonian in the. approximation 'of the cluster model.

Uniaxn.al stress appla.ed to the MgO:Fe

produced a shift in the observed electronic transitions. The
- gtress Hamiltonian is solved from Whlch is extracted the experi-

. ‘mental value of the strain coupling coefficlent to E '*‘g deforma-

tion (V 711&0 + 1800 cm l') which led,, ultimately. to the Jahn-

Teller coupling coefficients and to the Jahn-Teller energies

-1

((EJl)T = 80 cm and 3/2(“‘JT p = 150 em ) pert:ment to the

ferrous ion in Mgo. , \
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. - Les premle s eta’cs excltés du Fe dans le Mgo ont ete

observé par la spectrbscopn.e Raman pour la premiére fois.w Noug
-1
)

obser\rons un mode d' impureté de type Al (185 em ainsi qu'une‘
"cransition électronique a 110 5% .8 cm l que nous assoclons au
premier e\a't exc:.té de 1 ion ferreux, . t"3g et [ N dé ja
observé par’ absorption optique de 1' mi‘rarouge lointain,

. . la théorie du champ crysta.llln et la théorie des groupes
ont été utilisées pour deteminer les niveaux d'énergies et les

~ fonctions d'ondes correspondantes de l'ion ferreux. ' la separa-

u\ L
' \>tion réduite des niveaux d'énergies spin—or’oit qul est observee

s'explique en resolvant l'Ham:.l‘com.an Jahn-Teller da:ns 1’ approx1

i

ma’cion du modéle’ du cluster,

- Un stress uniaxial appiiﬂué aux échantilio_né de Mg0 zf‘éz*
.produit un déplacement des‘tran,sitions électroniqugs observées.
L'Hamiltonian du stress est résolu; ce 'qui permet ‘c:l;extraire
"la valeur expérimentale du coefficient 'clle couplag® aux déforma- )

‘ tions de type E (V"’?lho + 1800 cm l) ainsi que les coeffn.-
cients de couplage Jahn-'reller et les énergies Jahn-‘l‘eller
((EJT)E = 80 em™L et 3/2 (3 P T = 150 cm 1) pertinent a 1'ion

rd

) '
ferreux dans le MgO. A S

e
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o CHAPTER 1

~ INTRODUCTION

Since the disqoveryuof the laser in 1960, the .field
of spectroscopy has improved’greatly in the refinements of
techniques and in th? wealth of applications. One 'of thesge,
Raman spectroécopy, has attracted physicists again as a result
of the high photon density achieved by a lasery making possible
the detection of very weak Raman signals via photon-counting
equipment. Nowadays, Raman spectroscopy provides a powerful
tool to study electronic energy levels and vibrational states
of atoms and molecules, and complements infrared spectroscopy

-~

whose transitiag?selection rules are different.

In this thesis, we apply electronic Raman spectroscopy
to the study of a transition metal ion, the ferrous ion, sub-

stituting for divaleﬁt magnesium ion in single crystals of

"Mg0. The MgO:Fez+ complex pregents a good example of a

dynamical Jahn-Teller (JT) effect, i.e., the electron-phonon
coupling at the ferrous ion site reduces the electronic orbital
angular modentum leading to a reduced spin-orbit splitting of
the energy levels and a reduced electronic g-factor. By

applying different uniaxial stresses to the MngFe2+

samples,
we can determine the strain coupling coefficients which lead
to the JT coupling coefficients and the corresponding JT

energies. Existing and future theories pertinent to this JT

e Tt

4
"
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problem rely on accurate experimental Yalﬁes of theése .
coefficients. - In spite of many efforté over recent years,
iﬁ the field of Raman spectroscopy, no electronic traﬁsitions
for MgO:Fe2+ have been reported.

In the following chapter, the reader is introduceé to
crystal field theory and to some basic applicat%gns of group

3

theory. Explicit calculations show how the combined effect

of electron-electron interactions, ligand-electron and spin-

orbitrinteractions lead from the free ion enérgy levels +to

the spin-orbit ehergy levels and: the corresponding wavefunctions.

These results.are essential to solve the JT Hamiltonian and

the stress Hamilton%an as will be shown in chapters 3 and 5.

The concept of a JT effect, the different types of JT
coupling and the JT Hamiltonian are discussed in chapter 3.
Salculations are explicit ly carried out which demonstrate the
expected reduction in the spin-orbit splitting and the elec-
tronic g-factor due to the dynamical JT effect. Particularly,
the Ham reduction factors are presented in a new way which
emphasgiges theif origin and the necessity of such coefficients.

3 ——

The literature review of the most important research
of the MgOzFe2+ complex is given in chapter 4. A description‘
of%the experimental set-up tégether with information relaéive
to the Mg0 samples and their preéparation for the stress experi-

ment is also given. The theory and concept of Raman spectros-

L4
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"copy‘is i.ntroduced‘and\theléxﬁer;imnt\al Raman spectra of the
N MgOsF92+ samples taken at 1iquid He .temperature with.and

-Dwithout uniaxiei stress are presented,

In cha:pte;: 5,' the theory and concept Vof gtress ‘and
strain is established leading to an exl;resaion for the stress
Hamiltonian. The splitting of the energy levels for increasirig
stress are explicit-ly c;lculated and fltted to the experi-
mental data. The interpretation of the e:&perimental re:§1ts

follows.

The last éhapter summarizes the research presented in
this thesis. The salient results are'the value of the strain
‘deformations, i.e., ‘Vz. the corres-

g

coupling coefficient to E
ponding JT coupling coefficients and JT energies, i.é. (EJT);E

and (EJT)T‘
. X,
Any calculationa(or information relevant to the com-
pleteness of the thesis but not essential to the logical
development of the the;is have been relegated to the appendiceg.
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_CHAPTER 2 ..

"
[ -
/s

/ Energy levels of the ferrous ion

2.1  The free ion . -
2.1.1 The cen field approximation
The ferrous ion is consid‘ared 2s a point nucleus of

? each of mass M and

cfxarge +Ze surrounded by N electrons
charge -e. For the case of MgO:Fez*. the ferrous ionv replaces
Mgz* in the crystal lattice of Mg0 and interacts with its

surrounding neighbors. The Hamiltonian of such a system is

oM N ., N , N N
H==f -\ Ze“4+1 ¥ + H (2.1-1)
-2m ZA' Z 2 "E Z (i) so
i=1 i=1 i#j =1 i=1

where the different energies involved are defined to be

ith

-#%0\j the kinetic energy of the electron;

-26° the Coulomb energy of interaction between the nucleus
- .
| and the ith electron;
_g_z_ the Coulomb energy of interaction between the 1% ang
- _ o
I jth electron; A




o sy

prevents a separation of the variables in the Schrédinge

——
——
"

tJe Coulomdb eriergy of interaction bet&een the ith

j%ectron and the ligand;
Hsé(i) the energy of the ;;in-orbit interaction of tﬁexith

electron.

-
w ¢

To obtain the energy levels of the system, the \
Schrdinger equation ’
(2.1-2)
must be solved for E ., Due to the complexity of 'the inter-
actions. the Schrfdinger equation, H. (2.1-2), cannot be
solved analytically for N>1. Therefore, we have to_make
simplifying assumptions that will take into account Eﬁet
relative magnitude of the energy terms in Fq. (2.1-1). The

first such simplification is the central fielé\a proximation

which is known in' the literature as the Slater\th ry of atoms

and ions. »

The electron-electron interaction in Bq. (2.1-1

LI

equationn. This constraint may be relaxed if we separate the
total Hamiltonian, BEq. (2.1-1), into two parts aeépming that
an electron, moving around the ion, feels a potential that
can be approximately reproduced by'; function -U(ri)/b. In
doing so, we neglect the spin-orbit interaction and the
electron-ligand interaction for simplicity. This approxima-

tion will be justified in subsection 2.1.2, .The Hamiltonian,

-

B vl 5
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\ \ 7
within the central-f elé\gpproximation}\can be written as
' \
HeH +% , | (2.1-3)
where "
N
HO=Z ( I'l'u(ri)) v
i=1 N \
n o3 (262 Nuep ) 1L &
=1\ 1 ' 2 i#j Mij

Now we can solve the simpler Schr8dinger equation obtained by

replacing H for H  in Eq. (2.1-2),
Hocp = EOCD (2.1-4)

The Schr8dinger equation, Eq. (2.1-4),\can be separated into

i.e..

me-electron equations by choosing'<b as\g product of one-

electron functions and Eo as a sum of one-electron energies.
The resulting one-electron Schr¥dinger equation differs from
its equivalent expression for the hydrogen atom by the

potential -U(ri)/e substituting for -e2/r. Co equently, the

one-electron functions can be expressed in the same form as

hydrogeﬁic functions differing mainly by the radi#l\gart-whbh
depends on the central potential U(r). Thus, the one>electron
functions can be wfitteﬁ as , -
$nimp) = Rpy(r) Yym, (9, ) (2.1-5)
where the radial part is Rp(r) and the angular part is given
in term of the well-known spherical harmonics Y"n|(6i§b. We
must account for the spin of the electrons by multiplying the
N orhitg; functions by N spin functions. Because of the Pauli
exclusioh principle and the fact that two electrons cannot be
distinguished, the product of N one-electron functions and’

their corresponding spin functions must be antisymmetrised.

e 3 e
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The resulting functions, wpich are still solutions of the
Schr8dinger equation, are given by the famous Slﬁter deter-
minantal functions whose general expressiow is given by

Y= an W2y (af Py @ oimmg
where P is a permutation opperator vihic'h simultaneously inter-
changes the spatial and spin coordinates of any pair of
electrons; p is the parity of the permutation.

For the ferrous ion, the energies E,, Eq. (2.1-4), are
degenerate with respect to m; and g » the project?.on along
the z-axis of the orbital and spin angular momentum, respec-
tively, but not wth respect to the angular momentum itself.
The different energies E; can be distinguished by what is
called the electronic configuration

1522522p83523p%3a6
written more simply 3d6 for the ferrous ion. There exists 210
determinantal functions which describe the states available
to the six 3d-electrons implying that E°(3d) is also 210-fold

degenerate.

2.1.2 The electron interaction

We are interested in the 3d6

configuration in which’
all but the six 3d-electrons are in closed shells. These
8ix 3d-electrons are responsible for most of the chemical and
physical properties of the ferrous ion. So, we are concerned
in characterizing their available states, "the corresponding

- Ly
energies and wave functions.

SN / N
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The -degeneracy of Eo(3d) can be lifted if we account
for the electron-electron interaction by solving the per-
turbation potgntia:]. Hy,» Eq. (2.1-3). The first summation
in H; simply shifts the unperturbed energy Eo(jd) and the
second summation involving the distance between two electrons ¢
(z'ij ) correlates the electrons and splits the Hunpertur‘bed

energy. In fact, we define
N .
) H = ;_zr“_ e (2.1-6)
) ) ,
which commutes with the total orbital angular momentum L and
the total spin angular momentum S (seée Appex;dix A). Using
states which are linear combinations of determinantal functions

labeled by the guantum numbers LSMLMS. 'if is shown in'Appendix

.A that the matrix elements of H vanish if the following con-

ditions are satisfied for the ]LSMLMS> states when galculating \

"the matrix elements of H ’

My, A My
t L AL
| o Mg Amg ) .
/ . s #£8 |

Moreovar. t);e matrix elements of H are also independent of v

M and MS Therefore, the secular deteminant of the electron-
electro?x\intet-zcﬁnn bfeaks up into smaller determinants each

i

 labeled by a pair of quantum numbers LS and are (2L+1)(25+1)-

fold degenerate. The resulting energy levels are designated

) 'byk what is called a term, 25+l Usually, the three Hund's

rules are used t<_> clagsify empirically in an increg:sing order
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of magnitude these free ion energy levels. For the ferrous
iony; Hund's rzuljs are unapplicable except for the ground
state, 5D. the least energetic levels (or terms) beingz

] p (0 cm l) o ) ‘
343 33 (20000 em™1) ’
1y 3p1g | (30000 em™L)

ete. . o (2.1-7)

2.1.3 The weak crystalline field case

So f’ar, we nave neglected electron-ligand interaction
and spin-orbit interaction in the total Hamiltonian, Egq.

(2.1-1). This fact can be understood since the ferrous ion

_belongs to the transition metal series among wh elements

two cases can be distinguished with regard to the relative
magnitude of the energy terms of the total Hamiltonian. The

two casgeés are

(1) the strong cryétalline field case,
1 2
Vi) > 2 i:e >ZHso
~ (ii) The. wcak crys%alline field casge,

8> T) > Haoll)
For the first trans:.tion meta.l gseries, to which the ferrous
ion belongs, the electron-electron interaction and electron-
ligand interaction are of the same order of magnitude. Con-
sequently, the first transition metal series camnot be

unambiguously attributed to case (i) or (ii), whereas the

. gecond and third transition metal series deﬁnitel;} belong

\

€
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to case-{i). Caleulations and experimenta,l regsults have

shown, however, that the ferrous ion energy levels are well

described by case (ii). Therefore, we were perfectly allowed

in this section to treat the ferrous i:on as a free ion. In
the subsequent sections, the electron-ligand interaction and
spin-o rblt interaction are accounted for gequentially using

perturbation theory.

|
2.2 The crystalline electric field

{

2.2.1 -Group theoretical predictions

When the ferrous ion is embedded in the Mg0 crystal,
2+

i.e., Fe sui:stitgtes for Mg~ , the ferrous ion can no longer
be considered as a free ion. In fact, the ion mteracts with
its surrounding neiéhbors. the ligands, through Coulomb inter-

action. In MéO:Fez+. the ferrous ion is surrounded by six

'oxygens jons (ligands) forming ionic ‘bonds with them. We are

interested in the changes the electronic system of the central

ion (F32+) undergoes under the influence of the electric

» £ield produced by the ligands. We assume the Coulomb energy

of the interaction between the it'h

electron of the central ion
and the ligands to be more impor‘taﬁ‘b than .the spin-orbit inter-
action of the ith electron, according to subsection 2.1.3.

The ligands generate an inhomogeneous electric field -
that déstroys the isotropy of the previous.{y' free ion. Hence,

the symmetry group is reduced from that of the full three-
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hence lowering the site symmetry from spherical to octahedral

10

dimensional group plus inversion (spherical) to the subgroup
:assoc;iated with the ligands conﬁgurati?n: The reduction in
dimensionality of “the irreducible representation causes the

with the full spherical symmetry to be

degeneracy associat
lifted, In fact,, K the oxygen ions occupy the vertices of an
octahedron, Fig. 2.1, e ferrous ion being at the center,

(Oh). Moreover, from group theory, we knéw the highest !

irreduci‘éle representation dimensionality of 0, symmetry

is three (four for ions having odd number of electrons). The
crystalline electric field affects only the motion of the
electrons, i.e,, operates on the orbital part of the wave
functions and not on the spin part of the wave functions.

Since the orbital degeneracy of the ground state (5D) is five,
which does not exist under 0, symmetry, the ground state of the
®rrous ion must split. We can decompose the D-states into a

liﬁear combination of states that will transform according to

the irreducible representations of 0,, i.e.,

5p = 5 5
, D Eg+ ng

where the subscript "g" signifies that the states are even
under inversion. Such a decomposit.ion implies that the ground
state splits into a two-fold degenerate orbital state (5E ) :
of eéfective orbital angular momentum® L = 1/2, and into a
three-fold degenerate orbital state (Sng) of effective

1

orbijal angular momentum™ L = 1. The spin degeneracy is not

affected by the decomposition. We notice that the effect of
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The oxygen ions occupy the
vertices of an octazhedron
surrounding the ferrous ion

impurity in the Mg0 crystal.
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™ for the Coulomb energy of the interaction between the i

12

the crystal field is to partially reduce the orbital angular

momentum in the Eg states and T, states. In fact, the

2
effective orbital angular'momentjm is obtained by taking the
submatrices of Lx’ I‘y and I‘z. in the Eg states and ng states.
For example, the submatrix of the components- of L in the ng
states is identical to the corresponding matices in the P
states except each matrix element is multiplied by -1, yielding
L = .1. Formally, the Wigner-Eckart theorem can be used to
obtain the constant of proportionality between the matrix
elements of the orbital angular momentum in the D-states and

the matrix elements in a subspace of the D-states.

Group theory indicates kindly that the 5p ground state

~must split, but does not specify which way it splits and the

magnitude of the gplitting. To obtain this information, we
rely on ligand field theoryz. In this thesis, the Mulliken
notation is employed to label then orbital states and the Bethe
notation to label the spin-orbit states. The notations are

gspecified in Table 2.1.

2.2.2 The oc?@ed& electric_field

In order to find out which way the grourd state splits
and the corresponding splitting, we must find an expression
. th
electron and the ligands. Assuming a spatial charge dis-
tribution p(ﬁ) for a given ligand ion, e.g. 02~ ,- we obtain

the wanted expression for the Coulomb.energy directly fronm

e e e
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OCTAHEDRAL SYMMETRY O,
- MULLIKEN | BETHE BASIS
NOTATION | NOTATION IDENTITY | INVERSION FUNCTIONS
A’."g qg 1 ) 1 | X24 Yz"'Z2
Arg Mg 1 1| (AR ()
Eg % 2 o 12 | (225 x*v?),JB(x v?)
| Tig r“‘g 3 3\ Sx,Sy,Sz
Tog I5g 3 3 YZ,XZ,XY .
A r-iu 1 -1 r29 X Eu
Ay, G 1 -1 XYZ
Ey P 2 -2 ag * oy
L " 3 -3 X,Y, Z
‘ T2u l54 3 -3 [5g x [y
A
TABLE 2.1
; R S _ —
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the classical electrostatic potential
- $ -
v(ry) = ; v (Ty)

'R_r' ) ) (2.2-1)

where R is a vector pointing from the central ion (Fe2+) to a
point having P(I-i) at (R,&.,]) and T is a vector locating the
electron at (r,0,¢). Using the well-known expansion in
spherical harmonics,

A
A »
lﬁ-r{ Z :21 _rr_<x_ Z Y.\'x(e,‘P) Yox (6,@)

X=-A
we can write the electrostatic potential as,

ZZ [2"’” ». x'X(ecp)dT{I 6] (2.2-2)

X=-\
where ro = r and r» = R since Mg0 is an ionic crystal.
Obviously V' (F) will have the same symmetry as p(ﬁ)- ie.,
the octahedral symmetry, Fig. 2.1. The effect of V' (E) on
the ‘energy levels of the free ferrous ion is obtained by
perturbation theory to first order. The calculations involve

integrals ‘of the form,
V()

@)

where "01 is a product of one-electron functio\ns which we use

becausge V'(rk) is a one-electron operator. Consequently, the
matrix elements of the electrostatic potential are proportional

to a sum of one-electron terms irfw}olving three ’sphez‘ical'

harmonics which are functions of the electron coordinates.

Because of these spherical harmonics, the matrix elements will
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A

be zero unless certain conditions of symétry are satisfied.
The imposition of these conditions will considerably reduce
the number of terms in the expansion of the electrostatic
potential, Eq. (2.2-2), -and will make the- calculations

tractable. d

The addition theorem for spherical harmonics states
that this product of spherical harmonics is non-zero if
A <2L,vhere L= 2 for 3d-electrons. Moreover, from parity
considerations, A must be even and we obtain the restrictions,
A= 0, 2, 4 1 (2.2-3)
Besides, the electrostatic potential must be invariant for
all symmetry operations which belongs to Oh. The first
invariance requirement concerns a rotation of the coordinate
gystem by T/2 about a four-fold symmetry axis, i.e.
Gy V'(r) = V'(z) (2.2-4)
This\ invariance requirément restricts the x values to T 4n,
in Eq. (2.2-2), where n is a positive integer (including zero).
Moreov_er. a mirror reflexion in the XZ-plane must leave v (F)
unchanged, i.e., ,
q,V () = V(r) ’ (2.2-5) .
This condition imposes that Ay 4 = A, _y where, ,

Apx = 20 LRV (6,P)dn, . (2.2-6)
Finally, a rotation of the coordinate system by 273 about
the three-fold axis of the octahedron must bring V'(r) into
itgelr, i.e., |

03 V'(f) = V' (r) . | (2.2-7)




O

Q

~which implies that Az.o = 0 and Ah,l& i/{'}; Au.o.

Owing to the constraints, Eq. (2.2-3) to Eq. (2.2-5) and
Eq. (2.2-73. the expression for the electrostatic potential,
Eq. (2.2-2), can be simplified to

’ - L ,
V on(F) = Ago¥oq * Ayg ! [:Yuo 5 (Yuu* Y#.-b)}

In order to get an explicit expression for V (r). it is
usual to approximate the liga.nd charge distribution to point
charge. Therefore, the k ligand has a charge -q, and the
coordinates (R, ,0,,P,) so that we can rewrite Eq. (2.2-6) as,

16

AK'X 32}*12-:‘;” er) (2.2-8)'

¢
For the case .of MgO:Fe » all the ligands have the same

charge ( or -q) and the same distance from the central ion
(R) Thus, in the point charge approximation, the electro-

gstatic potential can be expressed as,

i 4
voh(r) \/_ 2,00 % a,r [Y40+ /%(Y4’4+Y4,_4)jl
where a = -Ang/R and a, = -41}q/9R5.

Once agaln, we rely on perturbation theory to obtain
the effect of the ligand field on the energy levels of the
5D ground state. The work is simplified by the choice of
appropriate wave functions which are nsymmetry adapted linear

combinations of one-electron 3d-wave functions, Eq. (2.1-6).

These wave functions must ‘transform the same way as the states

they describe. Since the ground state is orbitally five-fold

degenerate, we look for five such wave functions which will
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give rise to E, states and ng states. The wave functions’
are, -
Y (°E;q) = Ryyr) Yp0(6,P) (2.2-9a)
: YO Ege) = Rad(') Kz [Y22(6 Q) +Y,.,(0. ) (2.2-9b)
V) = g ()Y [r0:0) 134 (04]]  (2:250
¥ ngv) = Ryq )-V/3 [¥24(6,9) - Y4 (6 )] (2.2-94)
YOnpe8) = Ryq ()7 (2269 - Yz-z ©:2)] (2.2-9¢)

Using wave functions, we can easily carry on the pez:turbation
calculations and, according to group theoretical predictions,
we find out that the -D ground state is split with the 5T2g
states lowest, Fig. 2.2. The energy separation between the

58 states and ~T. states is defined as, 17

g 2g :
A ="10 bqg = o 4> (2.2-10)
:;Tf

Dq is a parameter frequently used in ligand field theory to
estimate the strength of the el"ectfostatic potential or ligand
field. In fact, an experimental estimate for Dq can be.
obtained from the‘separation of the ion spectral lines which,
when subgtituted in the previgps equations, compensate for
the point charge apprriximation.
e

Tanabe and Suganob’ calculated the effect of crystalline
electric field of octahedral symmetry on the free ion enexgy
levels of 3dN configuration. Their diagrams give the dis-
tribution of energy-levels relative to the ground state as a
function of Dg/B, where B is one of Racah parametersj. For

the case of MgO:EeZ+. it has been determined experimentallyu
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that Dg = 934 cm"l and B = 917 cm"l. TheSe values determine
the relative energies of the split components for the ter%as
(35*11), Eq. (2.1-8), via Tanabe and Sugano diagram’ for 3d°
ions.

2.3 The spin-orbit interaction

2.3.1 The _s_pin'-o'rbit Hami_]:htonian

Up to now, we have neglected the spin angular
momentum of individual electrons, according to the weak field
case, subsection 2.1.3. Invfact. this means that we have
treated the problem non-relativistically. Relativistic
corrections can be made using Dirac's equation for an electron
moving in the potential U (r) of the nucleus. The electron

moving in the electrostatic field of the nucleus, given by

E =-] dur) 7 (2.3-1)
q dr r
will feel, in its own frame of reference, a magnetic field
2 _=1 = = (2.3-2)
B = - vxE \
o2
which interacts with the electron intrinsic magnetic moment
m, s

where Vv is the speed of the electron (small compared with the

gspeed of light), q and m_ are the charge and the mass of the

e
electron, respectively. Thus, we can rewrite the magnetic

' field, Eq. (2.3-2), using equation (2.3-1),

, - —
B = —tm..d..dutn) PXr
B qc5 r dr Mg

where Vv = p/m_ has been used. The spin-orbit Hamiltonian is

19
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aum i.s (2.3-4)

where px¥ = -| , the o ar momentum, has been used,
A summation over all the electrons of the central ion results

in the well-)cnovm Russen-Sauﬁders o

L et BT

where we use the deflnition

E(r) = 1 M

mec f Ifnf i

ling expressed as

(2.3-5)

Equation (2.3-5) can be written in operator equivalent fo

Z Hgg (i)

i
where L is the total effective orbital angular momentum for

’

-A LS (2.3-6)

Nd

5T2g gtates, S is the total spin angular momentum and A is
the spin-orbit coupling parameter which is equal to its free

ion value given by

A= [ RaBeIRsg(r)ar (2.3+7)

For the ferrous ion, the accepted value6 A= -100 cm'l

is affected by spin-orbit interaction to distant terms with

S =1, Eq. (2.1-7), by any expansion of the electron orbitals
(RBd(r)) and by covalency effect. We follow Ham in neglecting
all these effects, but covalency effect which will be éccounted
for in chapter 3. A negative sign is assumed for the spin-
orbit coupling parameter if the ion has a shell which is more
than half-filled as is the case for 3d6 ions.

.
- — e " B
Fea, - 1, oo 1.0 . . . e e, .
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_ We.must also account for spin-orbit interaction
between 5T28 states and 5E states by second-or&er perturba’?ion

£
theory, and for the sliéhtly weakez“ spin-spin interaction.
Both are represented by the operator equi.va.].en‘t:b,'8

2,
E(Ls)+p (Ls)%+ p(LiSE+ Lysy+L3S7) . (2.3-8)

The parameters E.H.P (including the effect of spin-spin inter-
action) are given to the accuracy of second-order perturbation

theory7 8 by,

E s -2 emt
p=-2 et
1

e = +6 cm”

w

The total spin-orbit Hamiltonian, Eq. (2.3-6) and By. (2.3-7),
can be written in the operator equivalent form,

Heo(°Tog ) = Z(L's) + H(L-s)z;- P{Lfsf + %([Lf.,.l_f]
, [sf+ sf] + [L+L_+ L_L+]-[S+s_+ s_s,,])}

N )
w}{ere ;a = g-)\ . We have used the raising and lowering operators
defined as,

= Ly+ily
= Sx + 18y

I+ 4

N

AN

™~

B\e\fqre we solve the secular equation for the spin-orbit
interaction, it is instructive to analyse the group theoretical
predictions for an orbital gtate (ng) coupled to a spin state

(S = 2). Evidently, the resuiting 5T2g states are fifteen-fold

degenerate which is not allowed for octahedral symme&ry since
the highest irreducible representation (for ions with%

el
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. number of eleétrons) ha;s a dimenaiopality of threé. fhererore.
(“)4 ' we must decompose the 5T25 reducible representation into the
. irreducible representations of 0, using Koster's multiplication
table. In doing so, we obtain the splitting of the 5T2g states
under the effect of spin-o“)rbit interaction. The following

decomposition results

[sg X[(8=2) = [g+Myg+20g+2M5q

The Bethe notation, Table 2.1, is used for spin-orbit states.

Table 2.1 also gives the degeneracy of these irreducible
representations of 0 and indicates the transformation //JN
properties of the spin-orbit sta:bes in teérms of the coordinates

X2 Y2 and various bilinear combinations of the coordinates. !
Therefore, groyp, theory predicts that the spin-orbit Hamiltonian
Eq. (2:3-,-8). splits the 5ng states into six sets of states .‘

(or energy levels).

- €

-

2.3.2 [The energy levels and associated functions

P The spin states must be coupled explicitly to the ng

states, BEq. (2.2-9c) to Eq. (2.2-9e), to give the fifteen ‘

spinors

[‘ngg;ms> .Irzgﬂ;ms>v,729§““s>J . (2.3-9) j
where s = -2, -1, 0.’1. 2. We can solve the~s‘ecular equatiop *
resul ting :E'rpm the matrix representation °f.Hso(5T2g) using |
the spinors defined in (2.3-9). After a lengthy but simple
calculation we obtain the eigenvalues (energy levels) regrouped

O ' according to their J = L+ S values, i.e.,
N .
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=1 | .E(.a%),,‘ -34+ 9(.~+,‘ Ze .  (2.3%10m)
J=21 K G)=-§ v 20 : ~ (2.3-100)
ﬁ(ar;,) =-Z +p +30 | ( | (2.3-100)
7=3 E([})= 24+bpr2p . : (2.3-204)
B(,[) = 24+ bpsbo © (2.3-10e)
E(y[5) = 24+ b~ %ge U (2.3-10f)

where the energy levels are labeled as 'E( ri) accofding to the
representation of the state. The degeneracies are the same as
:t:h'e irreducible repreéentation that labels the 8state and
indicates its transformation properties. So, these results
corroborate the group theoretical predictions and represent'
the crystal fleld Iz;redictions for the spin-orbit energy levels,
Fig., 2.2.

By infrared optical absorption or as shown in this

- thesis by Raman spectroscopy, it is possible to observe

electronic transitions among some of these spin-orbit levels.
Consequently, the energy of the expected transitions, as
predicted by crystal field theory, are: ‘

I

E( [3) - E(aly) =192 cu™ — (2.3-11a)
E(afy) -‘E(‘al;) = 198 en”l _ 7(2.3-11b)
E( []) - E(a[}) = 460 ca™t _ (2.3-11c),
, E(QQ) i E(al}) = 492 em™t (2.3-114)
E(b[3) - E(aJ';') = 501 em™t (2.3-11e)

3
g
2
by 23
n
i

b2
N
e
s
%

¥

: '“.'}%i&i? %




9 .- f P N N '
e ’ 3 ' Pyt T A S P BS Ay e e o PR 2 v
A FRAEN LTS PR AL - Ay PR S Rty A B . LAY A T i
[rRT L RS .. Seee e AR e . e oAt v Y

- c " 24

The corresponding normalized e”fgenrunctions are listed
in Appendix B. They differ in a few respecta' from the
g published functions being linear combinations of them.

Figure 2.2 sux;narizea the \reffect of the crystalline
e;.ectrj.\g field and the Bs’pin—orb‘it interaction on the 5D ground
- : " ‘gtate of the free ion; accc;rdins to crystai field thaox;yz and
pérturbatiop theory.




CHAPTER 3
The Jahn-Teller effect

3.1 The electron-pheonon coupling

3.1.1 The Jahn-Teller theorem

It is usual, as we did in chapter 2, to consider the
moticn of the electrons and the nucleus of an atom to be
decoupled. Owing to their smaller mass, the elecirons move
much faster than the nucleus, so that the electrons réirrange

themselves adiabatically around the nucleus for any displace-

ment of the nucleus. This ig the Born-Oppenheimel:':LO approxi-

mation for non-degenerate states, and the corresponding Born-
Oppenheimer product}state is represented by a direct produgt
!

of a purely electrdo"xic function and a vibrational function.

In 1937, Jahn and Teller t
molecules with an orbitally degenerate ground state, that a
molecule would spontaneously distort in order to lower its
s;mmetry and, in so doing, would 1lift the degeneracy of its
ground state and attain a new equilibrium state. The next

12 oxtended the theorem to include spin effects

year, Jahn
showing that a molecule would spontaneously distort if the
ground state has a degeneracy other than Kramers degeneracy:

this is the Jahn-Teller (JT) theorem.

25

egstablished, for non-linear
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Due to the presence of phonons, the crystal lattice

‘ ig not a rigid entity as we agsumed in-chapter 2. Since the
strength and symmetry of the crystalline electric field depend
on the central ion-ligand configuration, we expect interesting
effects to occur to thé electronic energy levels from the
relative motion of the ligaqdé and the central ion. In 1939,
van Vieckll'1¥ adapféd the Jahn-Teller theorem to the paramag-

<netic impurities in crystals having a degenerate ground state.
He showed that the impurity's environment would distort with
no more than thezero point amplitude of a typical vibration
mode being necessary to reach a new nuclear configuration of
lower gsymmetry and lower energy. Consequently, when the coupled
motion of electrons and nucleus is no longer negligible, which
occurs for ions with degenerate ground ssates other than Kramer
states, the Born-Oppenheimer approximation breaks down and the

JT effect appears - a direct consequence of the JT theorem.

3.1.2 The guasi-molecular model

When a JT impurity ion is placed at an atomic site of
a certain symmetry, it is coupled to a continuous spectrum of
lattice modes via the Couli'b°interaction with its neighbors.
This many-frequency problem was first tackled by Sloncjewski15
for a.r‘g-electronic state and, due to the difficulty of the
problem, his treatment is complicated to follow and to assess
in physical terms. In fact, approximations must be made which

reduce the number of lattice modes of importance in the JT

e et e e e 3

)
( interactioA. Such an approximation is the construction of

e ot o e




developed by Cloizea 16 in the harmonic theory of lattice
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local modes, i.e., localized vibrations with well defined
gymmetries centered on the impurify_ion which was first
vibrations using generalized Wannier functions in complex :
energy bands. A relation between the crystal normal modesw
and the local modes can be establighed, so that we can defigf
local mode effective frequencies in terms of the various
frequenci;; and wavevectors of the crystal normal modes.
Several authorsl7’18'19 have treated the multi-mode full-
lattice problem and they all agree to the fact that the local
mode effective frequency model is a very good approximation
for weak electron-phonon interaction. In fact, O'Brienla.
Halperin and Englmanl9. have shown that the displacements of
the ion neighbors are well localized around the impurity ion,
i.e., the strain field around the ion decreases as R™2, where
R measures the distance from the ion. So, they concluded that
well-loca;ized modes can be used instead of the phonon con-
kinuum to describe the effect of eleetron-phonon coupling on
the electronic energy levels. This is essentially the quasi-
molecular model (or cluster model) used by Van Vlecklj'lu and
which wiil be used in this thesis.

&

The quasi-molecular model considers the central ion
and its nearest neighbors as a separate entity in the crystal
lattice. Hence, we consider only the wvibrations of the
octahedron shown in Fig. 3.1 and we neglect any explicit

effect of the surrounding lattice. The quasi-molecular model

\
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Fig. 3-1

The different collective displacements
of the oxygen ions surrounding the
ferrous igpurity in Mg0 crystal.

These displacements represent the
effective normal modes of vibration of
the cluster model. Their transformatipn-

properties are outlined in“Table 3.1. o
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.COLLECTIVE TRANSFORMATION -
: : DISPLACEMENTS
COORDINATES PROPERTIES
Q A x2 v2. 22 L Ix-x + +2 -2
o 19 Jo-Lt a LYtz Z,
2 2 1
Qc ﬁ[x - Y ] 2 [x1—x4-y2+y5]
Eg
’/ az> g’ A_[oz-22-x +x -
Qg 2/3 [223 6 1t%4 y2+y5]
1T N
Q YZ 2 _lz2-7 4y ~
5 2 Lzz Zs Y, ysd
1 [ T
T —_— - -
0'7 29 XZ 2 an XB'I'Z1 Zd-i
Q XY L —y -y +X-X -1
34 2 |11 74 T2 7s
TABLE 3.1
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has the advantages of simplicity and intuitive appeal over the
multi-mode full-lattice model where there has been more

. i
emphasis on mathematical sophistication than on the prediction

of observable effects.

®* The six ligands located at the vertices of the
octahedron have each three degrees of freedom for a total of
eighteen degrees of freedom for the octahedron. These degrees
6f freedom can be classified into fifteen degrees of vibra-

2T apd TZu) and fhree degrees of

2 1
rotation (Tlgf whiru the subscript "g”/is usea for collective
even displacements under inversion and “u"* for odd displace-
ments un%gr inversion. From group theory, it is a well-known
rule that the only operators giving non-zero matrif elements
among ng-states. e.&., the ground state of the ferrous ion,
are those transforming as one of the irreducible representé-
tions of the direct product ¢

‘ ) -
A, _ + Eg + Tlg + ng

Tog * T2g ~ f1g

Of these, only the operators transforming as Eg and ng
representations of Oh can 1ift the ground state degeneracy

(see chapter 5) and, consequently, lead to a JT effect. The
symmetry'of the electronic operators and the vibrational

modes being linked through the invariance of the JT ﬁamiltonian
(section 3.1.3), we conclude that only vibrational modes trans-
forming as the E_ and ng representations will interact with

g
the ng gstategs via the JT interaction.

<,<_4,..
&
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If a system of coordinates (X0 ¥p02,) is attached to
the KB ligand, we can form a linear combination of ligand
displacements that will transfofm according to the Eguor ng
representations. This linear oombination of displacements is
a unitary transformation of the (xk’Yk'zk) coordinates into
the Q, collective coordinates which define the local modes of
jibration. Table 3.1 gives the mode symmetry, the collective
coordinates (Qn) and their transformation properties. Figure
3.1 depicts the different collective displacements.

3.1.3 The Jahn-Teller Hamil+tonian
The lattice phonons will slightly displace the ligands

from their mean positions (Q, = 0) at the vertices of the octa-
hedron. Theée displacements being small with regard to the
lattice spacing, we can expand the Coulomb energy of inter-
action between the i electron and the ligands (Bg. (2.2-1))
into a Taylor series in terms of the collective coordinates

Qn. i-e-,

ziqi\ﬂ'(r,QPZiqi [Vbh +ZN(%& QN%}:NM(:’_%\‘I)_'_M)QNQM{](B.L“

where the partial derivatives are evaluated at Q, m = O- There-
’

fore the electrostatic potential can be separated into a static
contribution V'Oh obtained in chapter 2 and a dynamical part
which depends on Qn and which is responsible for the electron;
phonon interaction. In Appendix C, it is shown that we can
neglect the second-order terms in the Taylor expansion

(Eg. (3.1-1)) owing to the weak JT coupling coefficients,

Il Uk ot S bt i L A 1 AWMt w1 o e =

e s Bl A oo s 4 A
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Eq. (3.1-9). To completely define V’(r,Q), we need an explicit
expression for the partial derivative (QV'AQQn) which can be
obtained from the crystal field potential, Bg. (2.2-2),
rewritten as‘

VER) = ) ) MZ—-;-.- (e@)\ _—

) OI2A x=‘}

where

- * ) -
% = % (B - 313)

and k labels the¢ ligand ions on the octahedron. To differentiate

expression (3.1-2) with respect to Qs we must express the

collective coordinates in terms of Ry, the ion-ligand separation.

If we choose Q_, Table 3.1, as an example and we make the
following change of variables,

- R, t k=1,2,3

b,5,6

Ty = Ry

- ’
rk'--Rk + RO s k

Fs

where Ty stands for Xyo Yy OF Zy Ro is the ion-ligand separa-
tion at rest and Rk measures the distance between the displaced
ligand and the central ion. Hence, we can rewrite Q, as

QO = 21 [2(33 + R6) - (Rl +,R]+) - (RZ + RS)}
where Qe is expressed in terms of variables having the same

origin of coordinates. Now, we can get an expression for the

partial derivatives in Bg. (3.1-1) using for example
R, 2

ey (=)=,
aRk ade

e N
}: c® 2.
K IR o (3.1-4)
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with ¢; = ¢, = ¢ = cs = -1/2/3 and cy = cg = 1/4/3. In a more
general way the partial derivatives can be expressed, using

 Eq. (3.1-4) and Eq.- (3.1-2), ‘as

gL 0 '
5.(.): 3 sz Z: (1) Sl 1Y, 4(0,9) (3.1-5)

If we carry on the summation over k,x and \, in Eq. (3.1-5),
and use the expressions for the Tesseral harmonics in terms of
cartésian coordinates (see Appendix C), we obtain for the par-

ticular case of Qn = Q9

s s [ D gt

35 4_ 2 2
—TB-ﬁ?( 6X; yi+yl):] (3.1-6)

The Coulomb energy of the ion-ligand interaction results after

a summation of the energy qu(ri,R) over all the electrons of
the central ion. The éymmation, because of equations (3.1-1)

and (3.1-6), involves terms like

Zi ay (325 - =)

which can be transformed easily into electronic operators by
| ’ 20

4

Stevens' operator equivalent method This method is appli-
cable for evaluating matrix elements of the crystalline potential
between wavefunctions’characterized by one particular valﬁe of
angular momentum, i;e., Stevens operator equivaient method

applies within the o states of the ferrous ion. This method

21,22

2g

is a direct consequence of the Wigner-Eckart theorem which

B O,
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N

stip‘u.latels that the matrix elementé of the components of
angular momentum are proportiongl to the matrix eleme—nts‘ of

any tensor, in a specified subspace of J, e.g., the ground
state of the ferrous ion. Since, in the simple octahedral
group, the orﬁital ang&lar momentum transforms as the cartesian
coordinates, i.e., Q or T,, we can replace X,y and z by the
operator equivalent Lx’ I“y and Lz. respectiyely. "The non-
commutation of the components of angular momentum is accqunted
for by replacing bilinear combinations of L, Ly and L, divided
by the total number of combinations. As an example, following

Stevens' method, the summation over the electrons of .the central

ion can be transformed as

2_ - 2 2 _
Zqi(&i rf)- % g (r?) [31.2 L(Lﬂ)] (3.1-7)
' .
where o, = -2/21 for 3d6 jons.
)
The MgO crystal being a purely ionic crystal, the
electrons are well localized around the ferrous ion so that
e
4|, o S£2 1
][] <
where §, = 2/63 is a coefficient similar to Xy, but related to
the higher order terms of Eq. (3.1-6). Therefore, we tan
neglect the last two terms in Eq. (j.l-é). The"par‘l:ia.l
derivative, Eq. (3.1-6), is rewritten using Egq. (3.1-7) as
2\}’ . 2J/3 gq r2) 1 [SLz-L |_+1] '
(ao. )o,so‘ 7 AneR2 2Ll ¢ (Le9)],

= VEEO

(3.1-8)
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e , e
where we define the JT coupling coe‘fﬁciient‘ to Eg-modes bf
vibration, .
e 2 _a_ {2 |
B T TRt R ‘ (3.1-9)

s.l

and Ee is defined by Eg. (03.1-103,2: Consequently, for each
collective coordinate Qn' we can derive an expression for the

partial derivative similar to Eq. (3.1-8) and we can define an

aggociated electronic operator that transforms as the irreducible |

representation of the mode of vibration. The electronic -

operators are

Eg-REPRESENTATION: E = 1 [ 3L 2-L(1s1) (3.1-10a)
2 .
Ee =\3 [sz-L 2] (3.1-10b)
‘ 2 y
T,g-FEPRESENTATION: Tg = LoD +L T, (3.1-10¢)
Ty ’= . LLoLL, (3.1-104)
T¢ = LxLy+Lny - (3.1-10e)

We have obtained that the partial derivative with respect to Q,
in Eq. (3. 1-1). transforms the same way as its associated Qn

so that the summation over the electrons of the central ion

};T) Qy

transfoms as ‘che bilinear combinations of the type (Q2 + Q¢ 2)
and (Q; + Qv, +Q g) which are invariant under the symmetry
operations belonging to the octahedral group. This invariant

ig the JT Hamiltonian expressed as,-

Hopm = Vo (QE. + QE ) + V,(QgTg+ QuTy+ QeTye)
SJT E ‘Yo" e ee p{8gTg* Dy 53(3.141)

GRTY - 3 e o - - 3 TR } e n S
S e ARt o 1 R i . g . P T T e ARG e o
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where Vp igs the JT coupling coefﬁclent to the Tag-modes of
vibration which can be deﬁned by an expression similar to

Eq. (3.1-9). The point charge approximation leading to the
expressions for VE and Vo, based on érys!:al field theory appear
too crude and give no accordance with experiments. Angular
overlap model?? or linear dombination of atomic orbitals?
(LCca0) mehod give more consistent values to the experimental
results. - In all cases, the quality of the quagi-molecular
model is much improved when VE and VT beccme parameters deter-
mined experimentally in a similar fashion to Dq, Eq. (2. 2-10).'
in crystal field theory. According_ly. we determine the JT
coupling coefficients experimentally via the strain coupling

coefficients as shown in chapter 5. &

e

4

3.2 Thd weak Jahn-Teller effect

3.2.1 The molecular orbitalg
The six 3d-elettrons of the ferrous ion a.re distributed

over the five d-orbitals pictured in Fig. 3.2a. The crystalline
}
electric field disting\ushes two sets of orbitals: the two d-x

orbitals for Eg-states and the three de orbitals for ng-—sta‘bes

which lie lowest in energy. The ferrous ion assumes the high

" spin configuration, i.e., 1;{19 maximum total spin momentum given

by dsud-xz. Fig. '3.2b. In ﬁfxis configuratiop. the .electrons are
spread over the dy and ch ‘orbitals to minimize the Coulomb | )
energy of interaction between them, i:he energy bei‘r}g further
reduced by the quantum mechanical exchange energy which is null

for spin pairing.




[

P

Fign 3'2

(a) The electrons are distributed over

* five d-orbitals. The two upper charge

distributions transform as Eg symmetry,
whereas the three lower charge distri-

butions transform as ng symmetry.

(b) High-spin configuration of the
ground state of the ferrous ion (3@6)
‘constructed from one-electron crystal

field states.
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The oxygen ligand (02') has its g-orbital and its
p-orbitals occupiﬂ]e;i. and form molecular bonds with the central
ion (Fez*). Two types of molecular honds are formed, as

depicted in Fig. 3.3:

(i) the o-bonding which is formed between the 2s and
2pe orbitals of the oxygen ion and the dX -orbité.ls of the

-

ferrous ion.

(1i) +themw-bonding between the 2p, orbitals of the

oxygen ion and the de -orbitals of the ferrous ion.

The ¢6-bonding is known to be very strong in octahedral complexes.
This phenomenon explains the occurence of strong JT effect for
Eg-states, whereas the m-bonding being weak in octahedral com-

plexes leads to weak JT effect for T, -states. To first order,

2g
the spin-orbit interaction mixes the de -orbitals, but this

#gituation has no consequences on the previous conclusion.

22 * ¢¢ ' \

In order to introduce the definition of the JT energy in
terms of the JT coupling coefficients, VE and VT’ and the con-
cept of reductior} coefficient (3). we choose to study the
heuristic case of an orbital triplet state (ng) coupled to a
doubly degenerate vibrational mode (eg). Subgection 3.2.4
discusses the general case of coupling to two different local

modes pertinent to the ferrous ion in Mgo0.

'
i
e ———_——

B r i it o S s o =
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Fig. 3-3

Two. types of molecular bonds are formed,
ag discussed in the text. In (i), dy
is identical with dx2_y2 (Fig. 3-2a).

Only one oxygen ilon 1is shown with

" its p-orbital, for clarity.

¥
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_ 8lectron-phonon interaction indhdes a kinetlc term, an elasgg?

.
[
.
« -
v
v

In this particular case, we consider the octahedron
formed by‘the ligands as an harmonic oscillator with its
equillbrium position given by Q = Q. = 0. The energy of the

term and a JT term. regpectively given by

H

xk * B

o+ Hop = 1/2pg (22 + P2)T +pa2(a? + o)1

b et i e s e

+ VE(QoEo*-Q‘E‘_) (3.2-1)

where p, is the momentum conjugate to Q ,pp and Wy denote,
regpectively, the effective mass and angular frequency for
E,‘modes and T is the identity matrice. As stipulated by the
JT theorem, the electron-phonon interaction (HJT) lowers the
energy of the ha;monic oscillator and distorts the atomic

site, i.e., displaces the equilibrium positions of the harmonic
oscillators. In minimizing equation (3.2-1), we obtain the

new equilibrium positions:

(1) -~ Q, = Q 3 Q =-/3Q
(11) Q, = 1 Q =/3Q |
(111) © Q, =-20 5 Q¢ = O (3.2-2)
where‘ l
/ 9 = ____V_E_
Zpptp?

. After substitution of these new equilibrium positions into

Eq. (3.2-1), we obtain the corresponding JT energy defined as
the shift in energy induced by the JT effect

(Epp)g = VE/2pgY% ‘ (3.2-3)
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The Hamiltonian, Eq. (3.2-1), is diagonal within the
vibronic functions so that the electronic states are not mixed i
by the electron-phonon inter;dtion.° The potential energy i
surface in QG.Q(-sﬁape consists of three disjoint paraboloids, i
as depicted by Liehrzs, Fig. 3.4. In fact, each paraboloid ?
corresponds to a static ﬁgtragonal distortion of the cluster %
along either i. Y or Z-axis, each diréction being perfectly ;
equivalerit and equally probable. Since the electronic functions
centered on each paraboloid are bdrthogonal to each other, the
cluster should undergo a static tetragonal deformation and
remain indefinitely in one of the paraboloids. This is
schematically what happens for a strong JT effect. Experi-
mentally, the static deformation is not always observed because
the spin-orbit interaction, which we have neglected in EKEg.
(3.2-1), admixes the electronic functions and allows, within
certain conditions, the cluster to oscillate between the.
different paraboloids. In that case,  we have a d&namic,JT
effect, i.e., the JT complex shows a statigtical distribution
of its states over the various possible distortion states.
Experimentally, we observe the time average of the cluster
oscillations between equivalent distortion states and, there-
fore, the JT complex shows a higher macroscopic symmetry than
predicted for a static deformation, e.g., O, symmetry for

Fe? in Mgo. ‘ 1

Since the effective orbital angular momentum has N

non-zero off-diagonal matrix elements and zero diagonal matrix




Sy

~Fig.'3.4

Potential energy surfaces corres-
ponding to an orbital tfiplet
state coupling linearly to a
vibrational mode (Qe, Q¢) of Eg-

symmetry, i.e., ng X eé.

42
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elements between the electronic ng states, these same matrix
elements are multip_liéd by a vibrational overlap integral 3?
which accounts for the reduced overlap of two paraboloids.

Hﬂ26

first conceived a simple analytical approach to this
problem using displaced harmonic oscillator wavefunctions to
describe the vibrational states. These vibrational states

are suitably represented by Glauber states which are effectively
displaced harmonic oscillator wavefunctions, as demonstrated

by Judd27. The Glauber states simplify appreciably the cal-
culations involved im more complv{cated problems of this type.

26

In the harmonic approximation, Ham“"~ gshowed that the overlap

integral ‘KE equ,als to

'b’E = exp(-BEJT/Zﬁu) ‘ (3.2-4)

When there is spin-orbit interaction, the dynamic JT
effect i established if the zero-point energy (fiw) is large
enough to bring fhe complex in the region where the vibraitional
functions overlap, i.e., the following inequallity condition

must bé Batisfied

Consequently, a weak JT effect is characterized by a dynamic

JT effect and moderately reduced matrix eleménts of the angular

ﬂ momentum. For the case of strong JT effect, i.e. EJT>ﬁw.

r3
Lthe overlap integral tends to zero and the complex is confined

to a particular paraboloid.

e o

'—’— 5
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'3.2.3 T, xt

2% 2g
The problem of an orbital triplet state (ng) coupled
to a triply degenerate vibrational mode (tZg) has been treated

26 and Judd27 following two different .

analytically by Ham
approaches and is similar in some respects to the previous
case of ng x eg. We can write the Hamiltonian for such a

situation in a similar fashion to equation (3.2-1), i.e.,

He + Hg o+ Hooo= 1/2p (P5 + P3 + BHIT + pe/2(a + 4§ + QBT
*Vp(QgTe + QT + QgTg) (3.2-6)
where P is the momentum conjugage to Q ,(, and W, denote,
respectively, the effective mass and angular frequency for
ng-modes and T is the identity matrix. We can establish four
linear combinations of the Qn which minimize the energy of the
Hamiltonian, Eq. (3.2-6), and which represent the four possible
trigonal distortions of the cluster, Fig. 3.3. Judd27 obtains

easily the equilibrium positions of the displaced harmonic

oscillators:

(1) Qyz = Q; sz z Q; Qxy = Q

(ii) Qyz = Q; sz =2-Q; Qxy = -Q°

(iii) Qyz =-Q; sz =-Q; Qxy = Q

(iv) Qyz =-Q sz = Q; qu = -Q
where

= 2VI
i Q 2
3tptp

The JT energy, as defined in the previous subsection, is

obtained after substitution of the equilibrium positiéns in

J
S

(SO
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Fig. 3-5

Trigonal distortion of, the octahedron
formed by the oxygen jons. ' Each oxygen
ions being at the face center of a cube,
four such distortions are possible 'along
the four different cube diagonals, result-
ing from the Jahn-Teller interaction

between an orbital T state and a t2g

2g
vibrational mode.

45

R AT S 1 oAt



46

e

the Hamiltonian, Eq. (3.2-6),
- .

(Ejplp = 2Vg
3P L (3.2-7)

In this case, the four vibronic functions which
characterize the states in each displaced paraboloid are
products of linear combination of the ng-electronic states
and Glauber states, and, consequently, alléw the complex to
tunnel between the possible trigonal distortions. This ability
of the osé;llator to tunnel introduces a tunneling splitting
in the lowered ng-states and removes the forbidden four-fold
degeneracy of the equivalent trigonal distortions. This is
the strong JT effect and the resulting potential energy sheets

are cubic hypersurfaces which have been depicted by Liehrzs.

Due to the reduced overlap of the oscillator vibrational

functions and of the purely electronic functions, Judd27 obtains

a reduction factor (¥nq) similar to that for Y5 M. (3.2-4),
Yp = -(1/3)exp(-4E;q/3Mw) (3.2-8)

Similarly to the previous case but without having recourse to
the spin-orbit interaction, a dynamic JT effect can be
egtablished between the four equivalent distortions if con-

dition (3.2-5) is satisfied.

3.2.4 ng.x (egﬁ+ ty ) .

The coupling of electronic ng-states to the two types

e St rn mon
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of vibrational modes, introduced in subsection 3.1.2, is much
more realistic than the previous cases discussed in sut;gec'tions
(5.2.2) and (3.2.3). This problem is also much more complicated
mathematically and no complete detailed analysis of the JT
interaction and its physical implications have been offéred -
up to now. Nevertheless, Opik and Pryce28 were able to show
that tetragonal and trigonal distortions coexist with saddle
points between the minima. They found that the potential
energy surface has tetragonal wells of lower energy than the
trigonal ones if (EJT)E >(EJT)T, Eq. (3.2-3) and (3.2-6).

In this case:'\\it is found that the matrix elements of electronic
o‘perators tran;forming as the T?_g irreducible representation,
between the vibronic functions, are much reduced with respect

to matrix elements of operators transforming as the Eg
irreducible) representation of Oh. For example, a uniaxial
tetragonal ?‘tress would split a degenerate energy level

belonging to these T,_-states, but a uniaxial trigonal stress

2g
would be inefficient to split the same energy level. The ’

converse is true if the interaction with ng-modes is stronger

than the interaction with Eg—modes of vibration, i.e., if

(Ezp)y > (Ejp)g- Fig. 3.6 shows the relative strength of the
reducing factors 3('1‘2) and X(E) for T,-electronic operator

and E:eiectronic operator, respectively.

For the special cage of equal coupling with ey and

t, . modes of vibration, i.e., (EJT)Ez (EJT)T' 0'Brien??

2g

aa,

[

B el
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Fig. 3-6

Orbital reduction factors X(Tl)' X(E) and
8('1‘20) as a function of the strength of
the Jahn-Teller interaction when the )
coupling is to bc?th‘eg
of vibration, T = V/(!:mwB)% and in eachF

case, three different values (0.6, 1, 1.65) 1
for the ratio [(Eyn)p/fwi]/ () o/ fuwy]

are given which indicates how the JT

and tZg ques

coupling is shared between eg and “tzg

vibrational modes.
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proposed a vibronic model called the D-mode model. Assuming

‘that the five vibrational modes are degenerate in enérgy

(D-mode) and that their JT éoupling is strong, the powerful
symme try properties of the five dimensional rotation group

(RS) may be used to solve the problem. This technique is
elegant and efficient but nevertheless restricted in its‘appli-
cation due to the assumption of equ@l coupling. Recently, an
attemptBo has been made to relax thé constraint of the D-mode
model by assuming degenerate frequencies but different

coupling strength.

For small JT coupling strength to eg and t2g modes of
vibration, it is found31 that the two types of modes operate
independently, i.e., the eg modes tend to stabilize the
tetragonal deformations without competing with the tZg modes
which tend to stabilize the trigonal distortions. The potential
energy surface is essentiélly five-dimensional containing
various minima, maxima and saddles points. Since the reducing
effect of the different modes on the matrix elements of
electronic operators are simply additive, we can separate the-
JT Hamiltonian into two parts including either e _ modes or

g

t,_ modes of vibration, and each part is treated by perturba-

2g
tion theory independently from the other. This is the approach

that we adopt for the particular case of MgOzFe2+l

3.3 The experimental evidences

s XA,
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3.3.1 The orbital reduction factors

As mentioned in subsection 3.2.2, the matrix elements
of the components of the orbital angular momentum or any L
operator with off-diagonal matrix elements between the orbital
gstates (ng) are reduced between the vibronic functigns from
their values in absence of JT effect. This is due to~&he
reduced overlap of the vibrational functions characterizing
each distortion of the cluster. These vibrational éverlap
integrals are called orbital reduction factors. Since the
spin-orbit interaction is expressed as a linear function of
the orbital angular momentum, Egq. (2.3-6), we prect the spin-
orbit splitting of the 5ng-states to be reduced from the
predicted crystal field value as well, Hy. (2.3-10a) to(2.3-10f).
Therefore, a set of spin-orbit energy levels :ppearing as
predicted by crystal field theory but with a reduced spin-
orbit splitting is the signature of a weak or intermediate

JT effect. Whereas, a strong JT effect would completely quench

a small spin-orbft interaction.

Van Vleck32'33 was the first to notice that a strong
spin-orbit interaction may stabilize the cluster against weak
JT deformations. In fact, the spin-orbit interaction of the

T,  orbital states lifts some of the degeneracies (spin-orbit

28
splitting). If, as a result, no degeneracy other than Kramers
degeneracies is left, no JT effect is expectgﬁ (JT theorem).
On the other hand, if some degeneracy is left, it may be

primarily spin-degeneracy in which case the matrix elements

AN o
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of the strain operators, see chapter 5, are much reduced and
the JT effect is correspondingly weak. Van Vleck32'33 has .
set an inequality relation between the spin-orbit coupling
parameter and the JT energy, i.e.,
X > Ee (3.3-1)

which establishes when the JT effect is expected to be
minimized by the strong spin-orbit interaction. As will be
shown in chapter 5, both conditions (3.2-5) and (3.3-1) are
satisfied for the ng—states of the ferrous ion in Mg0, so
that the assumption of weak JT effect for the ferrous ion in
MgO ig well justified in accordance with the expectations
from the type of molecular bonding. For instance, it is
generally found that those -systems having an orbital doublet
ground state (Eg) are particularly susceptible to JT effect
because there is little competition to the electron-phonon
interaction from other perturbations, e.g., spin-orbit inter-
action and trigonal distortions have zero matrix elements
between the Eg-orbital states. The opposite is true for the

ng-orbltal states.

A
Stevens34 has shown that if the JT complex is not

‘}urely ionic, as assumed by crystal field theory, but that a
small charge transfer exists between the central ion and the
ligands, 'E:he resulting weak covalent bonding reduces the
spin-orbit coupling parameter. In fact, the spin-orbit coupling

parameter, for a small admixture of d-orbitals from the central

W Ty Py

e e
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ion and p-orbitals from the ligands, is expressed34 as

€= o Lon = £ NS «x Z) (3.3-2)

where é;,is the one-electron spin-orbit parameter, EJ.

[ —

(2.3-7), Ny and xy are the normalization factor and the admixture

coefficient, respectively, ;; and f; are the spin-orbit para-

PR S S

meters for a 3d orbital (Fe2+) and for a 2p orbital (02').

respectively. Ham et a135 estimates, for the case of MgO:Fezr‘
that the covalent bonding is not likely to reduce )xby more f
than 10% from its free ion value, as being small. Consequently,

the covalent bonding simulate836 the JT effect by reducing )\

and, thus, the spin-orbit splitting.

3.3.2 The Ham reduction Factors

We have shown in section 3.1 that electronic operators

can be defined following Stevens'\bperator equivalent method2°'37

e.g.,» Egq. (3.1-7). These operators are multiplied by a
numerical consgtant o which depends on the configuration of
the particular ion (e.g. 3d6) and on the total angular momentum

1

of the electrons L (or J). We can determine the matrix

elements of these electronic operators38 either in the 5TZg ;
orbital states characterized by a given value of L, e.g., :

<1MLl}-;(BZ§ -rd) ) = ap (PPN | (312 - LGz o+ 1)) |myg)
" (3.3-3)
or, in the spin-orbit states characterized by a given value of

J, e.g.,
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@ylm3af - D) [amg) = g (P )y (302 - 3o v 1)) |omy)
. P & I 2
where a numerical value for the coeffgﬁientéth and &; which
depends on the detailed nature of the states can be obtained
by returning to the direct integration method of finding matrix
elements between single-electron determinantal functions.

B

The matrix elements of a given Hamiltonian can be

e

obtained easily in the spin-orbit states once the expression
of the same Hamiltonian in the orbital states is known. This
time-saving calculation technique was first explicitly used

by Ham et al35 and can be summarized by the relation
H(L) — (&) H(J) (3.3-5)

where H(L) and H(J) are the Hamiltonians which operate on the
orbital states and spin-orbit states, respectively, andch,

o, are defined in Egs. (3.3-3) and (3.3-4), respectively. The

J
ratio of the two constants in (3.3-5) is called the Ham

reduction factor which we define as
KAT) = (M) /o (P) (3.3-6)

where [ specifies a set of operators belonging as partners to

an irreducible representation of Oh. The Ham reduction factors

o e

result from a reduced effective orbital angular momentum due to
the mixing of the orbital functions and spin functions in the
spin-orbit states. The following example shows how to deter-

mine the Ham reduction factors for any given L and J value.
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5

Using the Clebsch-Gordon coefficients’, we can express
the spin-orbit states characterized by a given value of J in

terms of states characterized by a given value of L and §,

i.e.,
L S ‘
| ) = Z:-L Mzs;::s JLsimpig) (Tsimm | aug) . (3.3-7)
In the case of MgO:Fez*, we have L = 1 and S = 2 for the 5T

2g
states, and we can select J = M; = 1 for the a[gg—states. Con=

sequently, Eq. (3.3-7) gives ,

]1 1) = (1/10)*]12;10) +(3/1o?[12301) + (6/10)*|12;'-12>
(3.3-8)

From Bgs. (3.3-3), (3.3-4) and (3.3-8), we obtain the equality

oy - {11]eg@an|ie) =

J =

o [(1/10)<1|Ee|1> + (3/10)(0[E Jo) + (6/1o)<-l|E9|-l>]

(3.3-9)

where Ee is defined in Eq. (3.1-10a) and the label ML alone
has been retained on the right hand side of the equality. The
matrix elements in BEq. (3.3-9) can be determined easily and we
obtain the result

®y=1/ %=y =10

The same ratio is obtained for all the electronic operators
defined by Eqs. (3.1-10a) to (3.1-1l0e). Hence, the Ham

reduction factors for the spin-orbit ground states of the
ferrous ion in Mg0 are )
=\L/10

Kg(J = 1) = Kp(J = 1) (3.3-10)

e e s A —— =t i s . e -
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Following exactly the same procedure for the case J = 2, L = 1
and S = 2, we obtain the ratio of the constants &y _ , and
%, - equals to -1/6 establishing the Ham reduction factors
for the first two excited states r;g and alﬂug.
Kg(J = 2) = Ko(J = 2) = -1/6 (3.3-11)

Ham et al” specified that equation (3.3-10) also gives the
ratio of the ﬁatrix elements of the appropriate orbital operator
in the af;g ground states to the corresponding matrix elements
of the same operator among the orbital triplet states. This
assertion is true as long as we compare matrix elements of
orbital operators in orbital states and spin-orbit states
satisfying L = J. For example, we obtain a ratio of -1/6 for
the appropriate matrix elements of orbital operators in the

five D states (L = 2, Eg. (2.2-9)) and in the spin-orbit states

with J = 2, as expected from Eq. (3.3-11).

The Ham reduction factors are perturbed by the weak JT
effect. 1In order to calculate the appropriate corrections via
perturbation theory, as demonstrated in section 3.4, we follow
Ham et a135 ;n def;ning the reduction factors for orbital

operators transforming as Eg and ng representations by

representative matrix elements:

PrET T Y

ERSRPEO,

Rt
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(i) J = } (af;g-level)

C i
Kg(1) = - (P (alg) £, [f(all) ) = 1/10 (3.3-12a)
Kp(1) = - (P (al) |1 [€al)) = 1/10 (3.3-120)

(i) J =2 (fgg- and rhg-level) §

Kg(2) = (1/3) (P (G [E, | ()= -1/6 (3.3-12¢) |

kp(2) = (1/3){(@ ()| 1| $y(alf))= -1/6 (3.3-120)

The use of representative matrix elements to define the reduction
factors is justified since the factor Kg or KT comes out naturally
when the spin-orbit'states are used explicitly to calculate the

matrix elements of given orbital operators.

We restrict the analysis to the three levels (af;g.fsg
¥ i i i M da ol

and a ug) since the higher excited states (rig, b g b Sg)

cannot be observed experimentally for reasons given in chapter.

4, The Ham reduction factors are essential to extract the

value of the strain coupling coefficients from the experimental

e WD o A v

results, as demonstrated in chapter 5.
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3.3.3 The g-factor

2+

When the MgO:Fe~ sample is placed in a magnetic field

H, the electronic angular momentum interacts with the magnetic
field and same of the energy levels are split : this is the
Zeeman effects. The Hamiltonian of the Zeeman interaction is

written

H, = B(L'H + g° S+H)

where = efi/2mc is the Bohr magneton and g® = 2.0023 is the
gyromagnetic factor. To the accuracy of second-order per-
turbation theory, the effect of the Zeeman interaction on the

5T2g-states is expressed as

H,(°T, ) = (g°-8M\A) 8 SH - kgL H

Z 2g

~(2MA)B [(L+S)(LeH) + (L-H)(L'S)]

2 2 2
+(12VA) B (LS, H, + LS H + LS H )

(3.3-5)
where the parameter k has been introduced to account for
covalency effect and Lis the effective orbital angular momentum
(cf. subsection 2.2.1). We can define appropriate Ham reduction

factors, in analogy with Eq. (3.3-4), so that the Zeeman

splitting of the aig ground state is given35 by

€

) = 8a(J-H)

Hz(af;g | .

& o Bt

B Tt
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where

5 = |&™-BVAlsk- [aAfk + [123)K (3.3-6)

ki

L

and J is the effective angular momentum defined with respect
to the ar5' g vibronic ground state. Within the ar;g ground
state, the Ham reduction factors in equation (3.3-6) are '

defined35 to be

K (alg) = i(¥(all,) | L[H(all,) o (3.3-7a)

kg(als) = i(Gy(alg )]s, [f(alg)) (3.3-7v)

Ky(alg) = 1(G(alf) [ (1e8)s, + 1,(L+8)|[&(al,)) (3.3-7¢)
_ 3 2

K(all,) = (% (al)|Lls, [§(al,) (3.3-74)

where the f&(r}) are given in Appendix B.

The experimental g-factor in the algg ground state of
MgﬁhFez* is found to be reduced from its_predicted crystal
field value 3.5, Eq. (3.3-6). Ham et al>> have shown that
the observed reduction in the ground state g-factor and the
spin-orbit splitting are in large part the result of the JT
effect, the covalency effect accounting for a maximum of 19%
of the observed reduction. For the self-consistency of the

model, the reduction in the spin-orbit splitting and of the

ground state g-factor must be compatible with the strain

At s e e W b s e o e o
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coupling.coefficieﬁts. determined in chapter 5, which can be

related to the JT coupling coefficients. The self-consistency

R 3
of the model is discussed in chapter 5.

3.4  Calculations by perturbation theory

3.4.1 The vibronicdfunctions
In section 3.2,.we have shown that the assumption of

a weak JT effect in the 5ng—states of the ferrous ion in Mg0

1

is reasonable from 3 theoretical point of view or from a
molecular orbital approach, and Ham came to the same conclusion
following his interpretation of Wong's results (see chapter 4).
Therefeore, we follow Ham in treating the JT Hamiltonian (HJT)’
Eq. (3.1-11), as a perturbation on the total Hamiltonian,

Eq. (2.1-1), including the kinetic energy and the elastic

energy associated with the motion of the ligands, Egs. (3.2-1)

and (3.2-6).

Since HJT includes electronic and vibrational operators,

vibronic states must be constructed, i.e., states which are

symmetry adapted linear combinations of electronic and
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and vibrational product states, e.g.,
. \ o
RAGINE > a(nene) |Q(5) ) e (3.8-1)
J 'k iv]
Ngte i
Where l‘:] refers to the repregentation of the electronic
function, r'k refers to the representation of the vibronic
function, n, and n, are vibrational quantum ocgupation numbers,
and N =n_ + n.. The electronic functions are given in
Appendix B and the a.i(ne. n.) are coupling coefficients
tabulated by Koster et a19 for the octahedral group for the
case of one excited quantum of vibration. The Qn terms in
HJT can be converted to a second quantized form by means of
the quantum mechanical operators "a** which creates a phonon
and "a" which annihilates a phonon, by making the replacement

Q, = (WapaP(al + a) (3.4-2)
where n = e,¢ ort8,n., 7. X

We see that the vibrational operator Qn has non-zero
matrix elﬂemen‘cs only bgtween no-phonon states (n, = 0) and
one-phonon states (ni,1 = 1). In the absen;:e of a JT effect, each
one-phonon state lies at an energy ﬂu.)2 or ﬂ“’i‘ above the
correspox;xding no-phonon state depending on which t;;rpe of mode

is excited. Fig. 3.7 shows the vibronic energy levels.for

T, X% ta with several vibrational quanta excited as a function

~

2g e




E+2/3 k2

0 1.0 20 3.0
STRENGTH OF JT COUPLING (k)

L

Fig. 3-7
The vibronic energy levels resulting from
the interaction of a ng electronic state

with tzg vibrations. In this case, k =

VT/(Hﬁu%)‘% . (After ref. 85)
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of the JT energy. The li_nle combination of irreducible
[ representations into which each one-phonon state can be
decomposed, Table 3.1, is given by the space product l_'i X f'"j

where Fl is the representation of the corresponding no-phonon

g s

vibronic state and r:] is the vibrational mode representation.

O

The one-phonon vibronic states have degeneracy higher than
e ) % !

what is allowed under 0h symmetry and, consequently, are split

-~

T e SR et 5 X s

| by the HJT in accordance with group theoretical predictions.

i
- 7
-~

The correction to the energy, to second-order of x’per-

—

trbation theory, Eq. (3.4-5), involves matrix elements é)f HJrIl

E in the vibronic states
- 0 l t y H
SHGIMIEE S(p1ed) (3.4-3)
. , s
Which transforms according to the representation product }
e x [ x [ (3.4-4)

where we ‘have used the fact that HJT is a scalar, i.&. {
!
i

, '[-'(HJT) = Fl Moreover, the matrix element, (3.4-3), must be ~
¢ |

'a scalar for the correctipn to the energy to be a scalar. Con-

J
/
x

sequently, according to the well-lmowx139 group theoretical

rule, the identity ri must appear in the reﬁuction of the
¥

C) representation product (3.4-4) for the matrix element (3.4-3)
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¢

to be non-zero. This condition is fulfilled when

[';( = (';(‘ in (3.4-4), V’Jhich means that H;n has non-zero matrix
-elements only between vibronic states of identical symmetry.
In this case, group theory reduces considerably the number of
terms to be calculated in the summation of Eq. (3.4-5) and
shows that the transformation properties of the perturbed

7 L ]

vibronic functions (Eq. (3.4-7)) are conserved.

k4
/
{

3.4.2 The reduction in the spin-orbit splitting

Since HJT is linear in Qn which have non-zero matrix
elements between vibrational states of different occupation
number, the perturbation calculation must be carried out to
second-order in Vp and VT. Consequently, the correction to

t he unperturbed energies, Egs. (2.3-10a) to (2.3-10f), is

-

expressed as

LT (VLR g [
OEq 2 <"‘E "IEE' (3.4-5)
n p

where n and p label the different no-phonon and one-phonon

2
|

vibronic states, respectively, and their corresponding energies.

* This correction to the energy can be separated in two contri- \

-

butions. one from the n.g-modes of vibration and the other from .

the ng-modes of vibration, as specified in subsection 3.2.4.

e
&3 %
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The corrections to the energy for the three lowest states are,

in agreement with Ham's results35 ,

E( [3g) = -(Egp)gFy(ep) -%(EJT)TFu(wT) (3.4-6b)

where the following definitions apply

1 3 fw 27 Tw 3 fw
Fiw) = 55+30 fio+198 750 fw+501 T 10 Fw+a92

A e P 1w 1 flw L2 e 68 fiw
100 ° 10 fjw+192 20 Rw+198 5 fwW+d480 5 THw+492 25 f§,,+501

Fz((.-)) =

1]

1 1 Aw
FB(U) 2 + 2 Tw+288

.1 .3 fw 1 N LI )
Fu(w) = 4 + 20 fw-192 + 2 Hw+300 + 10 Th+309

1 3 fw LI 1. Nw
F5("‘)) T4 + 20 m-198+ 2 ﬂu+294+ 10 fw+303

et Po 1 Bo 8 T
Fé(w) i + 6 Rw-6 + 20 ‘hw_198+ 15 Thy+303

The energy difference between the no-phonon states is given
in reciprocal centimeters, Eg. (2.3-10).

We observe Athat the three lowest vibronic energy levels
are simply shii.‘teg (lowered) by the JT interaction. This is to
be expected, according to group theory, since the JT Hamiltonian
is totally symmetric under the transformations of the octa-

hedral group and cannot split states spanning an irreducible

» o
E
:
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representation of the same group. Figures 3.11 and 3.13 sﬂow
the shift of the energy lewels {&given values of VE’ VT'

Ay, and hur, according to Eqs. (3.4-6). These figures also
show the reduction in the spin-orbit splitting which is mainly
due to the different Ham reduction factors for the different
spin-orbit states. The frequency dependent terms of each
Fi(w). Eqs. (3.4-6), give approximately the same contribution,
but the constant terms, given by the appropriate Ham reduction
factors squared (except for Fj(w)). determine the relative
magnitude of each Fi(l.d) and, thus, the relative magnit'ude of

the shift.

Ham et al35 verified the &dccuracy of this perturbation
approach by direct numerical diagonalization of the energy
matrix for the case in which the JT interaction is with the
Eg-modes alone. They used eigenstates of the unperturbed
Hamiltonian which had fewer than four vibrational gquanta

excited. Their results are shown in Fig. 3.8 for two different

1l 1

vibrational quanta, 300 cm™ ™ and 400 em™~. As mentioned in

chapter 4, a typical vibrational quantum lies in the range

300 en~l o koo em™l, For increasing value of the JT energy,

[

3
'
1
1

v

N
- . . N . L e e
- —— Lo, x| . N L. - ) :gru g -
MR % - - A . i PR S R A i&t'ﬁ‘
Sben ‘flzﬁ?‘?%“« .. - N a0t . - ikl 3 Y.
TRLT R i

Iy
TR SRR st

[



[IUpS—— "

»

Ry o i g e e

Fig.w3-8

Shift in the spin-orbit energy levels
versus the strength of the Jahn-Teller

interaction with one Eg-vibrational mode,

The solid lines represent the ground P

o,
state and the first two excited states, -

as calculated from the second-order per-
turbation treatment of HJT' The points
indicate the same levels calculated

from a direct numerical diagonélization
of the energy matrix. The states
had fewer than four vibrational quanta
excited. The calculations were made for

1

a spin-orbit-parameter A = 100 em™* and

an effective mode energy (A) Mwy = 300

cm'l and (B) ﬂboE = 400 cm—l. Second-

order spin-orbit splitting of the energy

lévels is neglected (After ref.35 ).
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. .
the perturbation approach will break déwn sooner for Nw smaller

than 300 t:m'l owing to the terms involving an energy difference
in Fi«A) with i = 4, 5, 6. The magnitude of these terms
increases rapidly as the denominator tends to zero, and their
contributions to the correction in energy is exaggerated
compared to the contributions from other terms. These author335
concluded that the perturbation approach is accurate in estimat-
ing the reduced energy separation of the spin-orbit states

1

out to E;n =200 cm™ ~., As is shown in chapter 5, we optain JT

JT
energies well below this breakdown limit, therefore justifying

the use of perturbation theory.

3.4.3 Reduced Ham factors

The Ji interaction affects the Ham reduction factors,
Eqs. (3.3-3) and (3.3-7), in perturbing to first-order, the
no-phonon vibronic functions used to define those reduction
factors. According to second-order perturbation theory, the

perturbed functions are written

YR = ¥, Z el (G ) (rf’)f" (GR)

(3-“-7)

where Iq( > is the unperturbed vibronic state defined in

- ———— - N

Y . i
R 7 1\ SR Y
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Eq. (3.4-1) and Eo(r':].f'};) is the associated energy. A per-
turbed function including corrections to all orders of per-
turbation becomes the Glauber state mentianed in subsection
3.2.2. The perturbed Ham reduction factors ar“e obtained by

recalculating the matrix elements in Bgqs. (3.3-3) and (3.3-7),

using the perturbed vibronic fune{fons, By. (3.4-7). The per-

turbed Ham factors are given jA Appendix D.

Ham et 3135 compared the reduction factors evaluated
from the eigen-states obtained in a direct matrix diagonaliza-
tion with the results of perturbation theory. The comparison
is shown in Fig. 3.9 where good agreement is obtained between
the two calculation techniques. This figure shows that the
reduction factor Ka for the spin is weakly perturbed by the JT
effect, whereas the reduction factor KL is diminished signi-
ficantly (~20%) from its crystal field value -0.5, indicating

a partial quenching of the orbital angular momentum.

Figure 3.10 shows the behavior of the reduction

factors KE and KT for the three lowest spin-orbit states

(a GB'@LFBS and ar,ls) for both coupling to Eg modes and T,

&
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; Fig. 3-9

Reduction factors Ko KT' K, and KS
for the r3g ground state of the
ferrous ion versus the strength of
the Jahn-Teller interaction with
one Eg-vibrational mode. The solid

; lines represent the calculations
from second-order perturbation treat-
ment of HJT‘ The crosses indicate
the results of a direct numerical
diagonalization of the energy matrix.
The eigenstates had fewer than four
vibrational quanta excited. The com-
bination ZKS-KL gives the grodhd-
state g-factor when covalent effects

and higher order corrections are

neglected. (After ref. 35 ).
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modes. (The parameters used in the calculation are given in

the figure caption). In this case, the coupling to Eg modes

is stronger, resulting in an important reduction ¢f KT(Z)—~24%

by the JT effect at (EJT)E = 100 cm'l. and a 15% reduction for
KE(Z) at the same JT energy. The reductions are less severe
in the afgg ground state with 4% for KE(%) aﬁd 14% for KT(l).
Fig. 3.11 shows the shift of the energy levels and the reduced
spin-orbit splitting obtained from the same parameters used

in Fig. 3.10. It is interesting to note the reduced second-

order spin-orbit splitting between the fzg and the F;g levels

as was observed by Meyer et a1%9, )

The reduction facto::LkE and KT' in Fig. 3.12, result

from a slightly stronger coupling to ng modes and a weaker

coupling to Eg modes. In this case, where we have almost
equal coupling to both modes of vibration, KE and KT are
diminished by a comparable amount by the JT effect showing the
independent stabilization of their respective distortions. A
comparison of Fig. 3.10 and 3.12 shows that the stronger
coupling always dominates the ﬁ;ctﬁre. ag discussed in sub-

gection 3.2.4., TFig. 3.13 showsgthe shifts of the energy levels

and the reduced spin-orbit splitting obtained from the parameters

e Lo e ¥ e e
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Fig. 3-10
The magnitude of the Ham reduction
factors (KE and KT) versus the
A}
strength of the Jahn-Teller inter-
action. The effective mode energies

ﬂwE = 345 em™t 1

and “I‘\uT = 303 cm”
are used in the calculation, as

explained in the text.
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Figo 3‘11

The shift in the spin-orbit energy
levels versus the strength of the
Jahn-Teller interaction. The -

effective mode energies ﬂwE =

345\cm'1 and fiwgy = 309\&:‘1 are

used in the calculation, as explained
in *;he text. The ve:;-tif:al dash line .
indicates the JT energy, (EJT)E'
which fits best the experimental

regsul ts.
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: of Fig. 3.12. Fig. 3.11 and 3.13 are remarkably similar which

© -~ ‘

con_trasts with the marked difference between the related

Tigures 3.10 and 3.12. In other words, many different (ﬁind -of

- coupling strength to Eg and Tz‘g modes can fit-the exﬁerimen’tal

T e

L

results of Wong (cf. chapter 4) indicated-by a vertical dashed
LY -
line on each figure. :
‘ " Fig. 3.14 indicateshow the g-factor can be made to agree

with the reduced spin-orbit splitting simply by adjusting the
parameter k in Eq. (3.3-6) which accounts for the covalent

! effect. To obtain unambiguously the respective coupling
strength to E_ and ng modes of vibration, new experimental .

g

. evidence is required. Such new evidence is provided from the

determination of the straih coupling coefficients, &as described

in chapter 5.
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X Fig- 3"'13

The shift in the’ spin-orbit energy
lgvgls versus the strength of the -
Jahn-Teller interaction. The
effective mode gnergies ﬁwq 345
em™t and ‘hu.),f— b/bo em™t are used
in the calgulation, as explained
in the te’:;ct. The ve;tical dash
line 1ndlcates the JT energy. (EJT)E'
which flts best the experimental
results. ‘
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© ‘Fig, 3-1b : .

. The magnitude_ of ‘the e‘iectr_onic/ g-factor )

versus the strength of the Jahn-Teller
intei‘aétion. Two curves; A and B, are

calculated using the’ effective mode

Jejnergiés given in Figs. 3-13 and 3-11,

;-e“spectively. For each curve, the para-
meter k (covalent effects) is varied from:
1 to 0.9. The dash~dot linevigdicates
tﬁe experimental value (g = 3,428) and
the dash lines show agreement with the
results o'f'Figs. 3-13 and B—il. |
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CHAPTER &4 - -

-

THE EXPERIMENTAL RESULTS

4.1 The literature review

4.1.1 The direct evidence

The: direct measurement of the energy epartation
between the ground state and the first excited states of the
ferrous ion’in Mg0 by far infrared optical absorption was
first reporte& by Wong and Sc:l'xawlow""]"l"'2 in 1967. They inves-
tigated t'he energy range from 10 to 220 cm'l for two samples

of MgO:Fe2+ having different iron concentrations. At a tem-

perature of 20K, they observed an absorption peak 9 cm'1 in

width at an energy of 105 emt. Red ion, oxidation and X-*

irradiation data togédther with a direct relationship between
Fe2+ concentration and line streng‘;h"toﬁfi‘med the origin of
the peaic ag due to the presence of ferrous ions in the Mg0

crystal. The absorption 1.>eak was attributed to the magnetic

itions' .>C _ana [ . ¢ i 2
dipole transitions 58 '3g an Lg rystal field theory
predicts, however, a spin-orbit splitting of 200 cm'l and an

1

between the first excited states
*
Gg and [?&g' Since they were not able to resolve the two

en°ergy separation of 6 cm™

levels, they concluded that the JT effect is reducing their

N

separation to less than 2 cm™t (spectrometer resolution) and

reducing the spin-orbit.-splitting by 50%.
x
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Ham et al.?> were able to explain the discrepancies in

~

Wong's results from the predickt_ions of crygtglw field theory as
due to the partial reduction of the orbité.l angular momentum by
a weak dynamic JT coupling to two different local modes of

vibration. Their approach has been discussed iﬂ chapter 3 of

th}s thesis.

Lo

Meyer et al. were able to resolve the two electronic

transitions [_—>[. and f; y in the far infrared absorption '
sg Bg g ' ' * Q
spectrum of MgOsFe2+, at 106.9 em ! and 110.5 cm™t. Hjortsberg

43,4

r * \0 )
et al. studied extensively the shift and the splitting of

the two absorption peaks in the presence of a magnetic field.

They estimated the oscillator strength of each peak and they

concluded that the r;g level lies lowest in energy at 106.9 cm'l

and the mg level corfesponds to the peak at 110.5 en™ L,

Hjortsbergl"3 and Mansor et al.l"'5 observed a hot line

at 90K in the near infrared absorption spectrum of MgO:Fez"'

1 from the °T,—» o zero-phonon line,

2g g
Fig. 2.2, The hot line is attributed to infrared absorption

which ‘appeared 105 cm”

from the first excited states (l';.g and'mg) which_are sguffi-

ciently populated at 90K for the transition to be observed.
. v

Therefore, the existence of electronic states Qf the

1

ferrous ions in Mg0 at,~110 cm™ is well established by

infrared optical absorption. As we will see in the following

Al

.



-

l/\\\l
. v'

\ 7o

1
o~

o

subsection, “the observed spm-orbit splitting is Jconﬁrmed by

other experimental techniques. |, J

-

b

l\l-.l.z The inferred evidence v
Pipkorn and I'ae.i.:der46 observed a quadrup¢le déublet in

the Mossbauer spectrum of the ferrous ion i at T <1A4K.
They proposed, for TX1hK, that a static JT deformation of
the cluster surrounding the ferrous ion was at the origin of

the electric field gradient producing the quadrupole splitting.

" For T 14K, a dynamical JT effect was believed to dominate the ’

situation produging a time average octahedral symmetry leading

to the so-called motional narrov}ing of the spectrum. Hamw?

showed, however, that the electric field gradijent produced at

‘the nucleus iny the valence electrons of the ferrous ion, the

presence of random S't:ra.in.-:;“8 in the Mg0 crystal- which split

the r;g ground state and sui"tably long electronic relaxation

\ \ ’
times could very well explain the appearance of a quadrupole

doublet at sufficiently low temperatur:e. Consequently, s no

strong JT effect :’LS. required to explain the motional narrowing

~at T >14K, but rather rapid electronic transitions among the

three strain-split states of the [;g ground state of Fe2”. ) ~

For"in'stance,, rapid reorientation of the valence electrons
around the nucleus with respect' to the quadrupole precession
time produces an isotrop‘ic electric field at the nucleus lead-
ing to a vanishing splitting. Ham ca.lcﬁlg.ted the electronic
transition time T via the transition probabil:.ty P per unit

time, since 7~1/3P, for phonon-induced transitions between two

oz
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of the strain-split f;g states. Ham found that the most ,
) . ) ,
likely process for such a transition is an Orbach proc:es.s49
% ‘
(i.e., resonant Raman process) through the first excited spin-

orbit states, Gg and r; The transition probability for

g.
this process is proportional to an exponential term of the

fom. .
|

P o exp(-&YkT) (4.1-1)

where A isg -the spin-orbit splitting between the ground state

and the first excited states. On the basis of this model, Ham

adjusted Nin Eq. (4.1-1) so that P gives an electronic transi-

tion time which would explain the disappearance of the quadru-

pole splitting at TD>14K., Ham's result of D= 95 em™!

is the
firgst experimental farediction of the reduction in the spin-
orbit splitting with respect to the predicted crystal field
value of 200 cm'%. Leider and Pipkom5o studiéd the Mossbauver
spectrunm of MgOz;‘i‘ea" extensively and obtained a spin-orbit
splitting of 93 cm"l in good agreement with Ham's eétimate.
Ham's way of extracting the spin-orl?it splitting fron} the .
relaxation time lead to a series of new exper"imen(ts. For

2* in Mgo

ingtance, electron spin resonance studies5l’52 of Fe
showed that the spin-relaxation time at T >8K can be described-

by a phonon-relaxation process involving an electronic excited,

state of energy\ 100+10 em™t

above the ferrous ion ground state.
Although less accurate, this energy separation corroborates

the previous results for A.

k]
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King et a;L.53 measured the microwave acoustic attenua-

tion in samples of iron doped Mg0 as a function of temperature.
From the temperature dependent relaxation time which is deter-
mined from an analysis of the form of the attenuation peak of

a [lOO]—propagating ‘compressional wave, they were able to —

‘ predict the existence of an electronic excited state at 110+2

cm™l above the ground state of the ferrous.

¢

A marked minimum in the thermal conductivity of MgO:Fe®™

at 80K, was found by Morton a'nd_ Lewis.su to correspond to the

1

resonant scattering of phonons of energy, 105 cm™ — interacting

with two sets of magnetic levels of the ferrous ion.
o

It is inte;estiné to note that the discrepangy in the
relative energy of the first excited states of the ferrous ion,
Gg and | Qg. ‘measured by infrared foptical absorption as co;npared
with. the results from Orbach spin-lattice relmtion rates or
from the Mossbauer experiments can be accounted for by the
effect of finite width’? of the excitdd levels. The existence .

1 is now

of electronic levels of the ferrous/ion at 110 cm™
well accepted but, however, not much knowledge has been gained
as to the kind and strength of the JT coupling. This matter will
be discussed in chapter 5. | ’

- " s
L.1.3 The vibrational sp_ectrun‘ij of Mg0 cry.sta;

&
Mon56 obtained for the first time in 1965, the second-

order vibrational Raman spectrum of pure MgO samples. Shortly

U s
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" other things, a broad structured band extending from f%o cm

»

BN

aftgf', Mon57- was also sfz/ccessful in recording the first-order
vibrational Raman spectrum induced by ferrous ion impurities
in Mg0. The first-order Raman spectrum is’bbserved only wﬁen
the translation property of the crystal. lattice is perturbed
by the presence of a defect, e.g.@. an impurity sit'e. Billat
et al.58'59 studied extensively the first-order vibrational

Raman spectrum‘'of iron doped Mg0 crystal and observed, among
1

1l

1 which peaks at 180 cm™~. The band is obsgerved for

to 350 cm~
both MgO:Fe3* and MgOzFe2+ showing that the modification of

the force constants between nearest neighbors is the same for

both types of iron ions, in agreement with the observation of
Low and Wegerz. which leads to the assignment of a Alg resonance

mode at 180 em™t for MgO:Fe2+. B{1lat &t al.”” also observed

that the firgt-order Raman' spectrum, in the range 300 cm'l to

1

450 em™—, reproduces very well the one-phonon density of state

which is mainiy of Eg and ng symmetry in that range .

Monghz and Hjor‘bsberg% did not observe the Al g

regsonance mode for the simple reason that vibrational mode of

.

even symmetry are not infra-red active, but Raman active only.

In fact, a lattice resonance mmietSO

1

of vibrational energy

403 em™" is the only infra-red active vibration reported and

is in agreement with the known phonon density of statesél'éz.

o

' Peckhamsl first measured the phonon dispersion relations

in Mg0 through neutron scattering technique. A more accurate
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frequency disfribution wag obtainell by¢Sangster et al.f’2
which, when compared with the theoretical histogram59 of the

’

pro jected densityq of states for lattice phonons indicates that

l‘t'.o

Ehe JT active phonons cover the energy range from 300 cm~
Lso cm"'l. Fig. 4.1. As Ham3§ suggested, tr:e effective mode
frequency is chosen to lie in the region of the peaks of the
frequency distribution function fb;*the lattice phonons in Mgo0

: crystal. ' ’

-

L.1.4 The g-factor
Paramagnetic resonance s‘cud.ies?"é3 are the earliest

2+ which demonstrated the exigtence of a JT

works on\M*gOsFe
effect as a reduction in the g-factor with ' respect to the value
3.53 predictedz by crystal field theory. However, if there ig
a strong JT effect, the orbital contribution to the g-factor
isv quenched and a superposition of anisotropic EPR spectra
having g=2 should be observed. Moreover, when JT coupling is

only to one mode of vibration, the reduction parameters used

to account for the 50% reduction in the spin-orbit splitting

' give g=3.25 which disagrees with the experimental value. Ham

et al.35 could explain the experimental g-value usingka weak
dynamic JT coupling to both Eg and ng modes of vibration and
a small covalent bond‘ing34’36.

6h and acoustic para-

Acoustic saturation measurements
magnetic resona.nce65 confirmed the isotropy of the g-factor

and give g = 3.4277.
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(B)

Fig. b-1

" Frequency distribition function

as calculated from 2048000 points
in the Brillouin zone (neutron

scattering data; after ref.62 ). .-

Histogram of the projected density
of states for unperturbed phonons

of A, , (C) E_ and"(D) T

1g g 2¢g
for Mg0 (after ref. 59 ).
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4,2 The experimental get-u
-

4.2.1 The Raman system

The excitation of the electronic Raman spectrum was by
a'Spectra Physics 171 krypton ion laser using 200 mW of
focused lightxat 20995 em™t and 18834 ;m'l. The las;r beam
is passed through an Anaspef 300S laser filter monochromator
congisting of six air-glass interfaces providing an 80% power
throughput and a 20 em™t bandwidth which canxbe set for any
wavelength of the vigible spectrum. The Anaspec laser filter
is required to remove the several plasma lines, inherent in
the krypton ion laser, which interfere with the electronic
Raman spectrum. The laser tube is provided with Brewster
windows which polarize the laser beam vertically. The plane of
polarization is rotated at will via a half-wave plate in order
to obtdin the different scattering geometries required to
identify the different electronic transitions or vibrational
modes, as discussed in section 4.4. A 90°-scattering geometry
was employed, as shown in Fig. 4.2, to avoid the troublesome
radiation due to Rayleigh scattering which, otherwise would
extend considerably the laser wing and thus obscure the

electronic Raman spectrum.

The laser beam is focused in the bulk of the crystal
and the scattered light, collected by a f/8 optical system
having an image magnification of four, is focused on the

entrance slit of the spectrometer. The scattered light is



. JFig. 4-2 |
Experim;ntal set-up showing the~90°-" ’ -
scattering geometry employed. The
lager beam is filtered by the Anaspec
laser filter (LF), its polarization is "

., changed via the half-wave plate (HW)
and its intensit& is attenuated through
the neutral density filters (ND). ™
and L refer to front surface mirrors and
lenses, respectively, both having anti-
reflexion coatings. The MngFé'sample
is cooled down to liquid He temperatures
in the Janis optical dewar. The scattered

light is analysed bythe Jobin Yvon spectro-

meter. HG and s refer to the holographic
gratings and the slits. The scattered |
photons are detected by the photomultiplier o
(PM)'and photon-counting equipment (PC).

The electronic Raman gpectrum appears on .

the chart recorder.

W by ey .t v, T R R T
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" then épacfrally analysed using a Jobin Yvon HG 25 double mono-

chromator equipped with holographic gratings of one-meter focal
length. An interesting property of the hologfaphic grating is
its capability to polarize a light signal, i.e., only the
light having its electric vector perpéhd;cular to the ruling

of the grating will be diffracted. This property of the holo-
graphic gratings eliminated the need of an analyser to polarize
the scattered light from the crystal: The spectrometer design
includes four electrohically controlled slits independently

ad justable which achieve a stray light rejection of 10"1’+

1 resolution for a

at 20 em™L from the Rayleigh line and 2 cm”
2009 slit width which was used most of the time. The exit slit
is directly coupled to a cqoled GaAs Hamamatsu R666S photo-
multiplier tube equipped with standard photon counting gquiﬁ-
ment. The spectrum scan rate, the sensitivity of the photon
counting system and the integration time together with the
spectrum chart recorder are adjusted from a control module.

The typical background noise of the system using a 4.7s

integration time is 10 photon-counts/s. \

The crystal, glued by one edge with a drop of Duco
cement to prevent an excessive stress to develop, is mounted
on a copper sample holder in a Janis 8 DT optical dewar. The
sample\§3ace can be cooled either by flowing cold He gas or
simply by flooding the space with liquid He. The crystal

temperature was monitered by a DT-500-KL silicon diode hounted




()

'

-

“directly on the copper sample holder. All the experiments

were performed at 1.6K in liquid He or ét 10K in a reduced’
atmosphere of He gas with a tempe;&ture st %ility of +0.5K.

1t muét be mentioned that laser heating inevitably occurs near
the laser beam waist in the cryétal an8\this phenomenon con-
tributes to broadening of the eleétronic an line.' This
heating effect is minimized, however, by the very good optical

\

Ll

quality of the crystal.

™y
\

L.2.2 The stress apparatus

For the stress experiments, th®e crystdl must be prepared
with two parallel surfaces on which the stressxwill be applied.
As a precaution, a piece of computer card and alsmall amount
of grease establish the contact between the par%llel surfaces
of the crystal and the jaws of the stress apparatus, Fig. 4.3.
The gas pressure driven piston appliés the stress to the crystal
via a steel rod which is supported by the top jaw. The bottom
jaw rests on a piezoelectric pressure sensor which is hooked
Up to a charge detector and amplifier. The pressure sensor

calibration was checked using alternatively several pressure

'regulators which controlled the pressure in the piston chamber.

The results of these tests are plotted on Fig. 4.4 where a
slope of 10.3 + .5 PSI/V is obtained (at liqu;; He temperatu}e)
in agreement with the 10.0 PSI/V calibration. Therefore, we |,
agsume an accuracy of + 5% on the stress quoted in this and
the folloﬁing chapter. Typically, a MgO sample breaks when
the gtress exceeds 40 KG/MM2 which explains why this value is

never exceeded.



Fig. 4-3
Details of the stress apparatus. The
rod which moves freely in its tubﬁlar
wguide carries the ﬁfessure from the
piston (room temperature) to the
sample (liquid He temperature) via the
upper jaw. The sample is installed
between the upper jaw and the lower
jaw. The applied pressure is measured
from the pressure sensor. Everything
within the bbx, standing for the Jaﬁis
optical dewar, is at or near:.liquid He
temperature. The drawing has been simpli—

fied and is not drawn to scale.
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Pregsure sensor calibration done at

liquid He temperature. The slopeuﬂ%

calculated from a least square fit
is 10.3 + .5 PSI/V. .
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4,2,3 The iron-doped Mg0 samples
| The iron-doped Mg0 single crystals employed in these
investigations were grown by means of the submergéd arcrfusion
techniqueéé. ﬁbpiqg of the Mg0 samples was achieved_by mixing

an appropri%te amoﬁnt of Fe203 (~1% nominal) with high-purity
Mg0 powder p?ior to the arc meltidg’process. The optica;
samples were\cleaved from the resulting large ( 3x2x1.5 qu)'
sing}e cryst#@ graing., . Evern though t&e exact iron concentra-
tion is not known, samples with differeﬁiﬁir;n concentration
could be distinguished from the.yellow tint ofvthe crystal

| which is darker for higher iron concentration. The electronic
Raman peak was observed wi%h the darkest samples only. The
electronic Raman signal being so weak (on the 100 photon;counta/s
gscale) care must be takén not to lose too many photons. Con-
sequently, the surfaces of the sample must be cleaved to obtéin

a single plane of atoms énd, hence, minimize the surface r
scattering. But, Mg0 cleaves only along its (100)-plane and,
being a very hard material, it¢is difficult to cleave neétly.
So, more often than not the faces of the éample must be
poliqu@ mechanicaely down to one micron or less using A1203
lapping sheets.

In order to obtain the different (100), (110) and
(111)-configuration, sée Figg. 5.1 to 5.3, an X-ray Laue
picture of the crystal is obtained and, then, know;ﬁg the

orientation of the crystal planes, the crystal is properly.cu%
with a circular diamond saw. The (100) and (110) configurations

G-t .
o,
ERRER -t
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3

are obtained to :lo and the (1l1) configuration which involves

_ two cutting steps is obtained to :3°. Besides, the Mg0 samples

mus‘t be prepared with very sharp edges. since the laser beam
must be focused in the bulk of the crystal very close to the
surface facing the optical collecting system to minimize
reabsorption gnd internal scatte;ing of the electronic Raman
signal during its travel in the crystal.

The EPR line shape’énd the zero-phonon line shape of
optical spectra were found to be much broader than the expected
broadening from spin-spin interaction. In fact, the electronic
energy levels are split by internal strains of E and T2 symmetry
in the host crystal. The magnitude of the splitting depends on

th%:type;and gstrength of the strain field at the impurity site

of *interest. The microscopic strains are caused by several
J’x,; y

differdnt species of strain source - for example, point defects,

L8, 67

straight edges and screw dislocations. Stoneham showed

that rfndom strains in the crystal cause a broadening of the
line shape, which can be of the order of a few wavenumbers for

68: The resulting line shape depends on the

severe gtrains
statis¥ical distribution of the imperfections and their indi-

vidual .strain field which will be different from sample to

sample, depending on the method of formation and o he mechani-

cal history of the crystal investigated.

e
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4.3 The electronic Raman effect

4.3.1 The scattering tensor
The well-known Rayleigh scattering is a first-order

process in which the frequency of the photon is preserved,
whereas Raman scattering is a second-order process in which a
shift in the frequency of the scattered photon with respect to
the incident photon is observed. Moreover, compared with the
optical infrared absorption which is essentially a direct
transition between two discrete energy levels, the Raman scatt%z:—
ing is rather an indirect transition from an initial state to

a set of probable intermediate (or virtual) states instantan-

eously followed by a transition down to the final state, Fig. &4.5.

In a crystal, the frequency shift of the Raman scatter-
ing is either due to the creation or annihilation of a phonon
which characterizes the vibrational Raman scattering, or to the
excitation (or deexcitation) of the electronic state of an ion
w}%ch characterizes the electronic Raman scattering. The first
unambiguous observation of electronic Raman scattering was made
by Das Gupta69. as late as 1959, who had to use the intense and
narrow line of an X-ray source owing to the elusiveness of the
phenomenon. In the following years, the discovery of the laser,
an ideal light source for Raman spectroscopy, and the proposal
by Elliot and Loudon’® (1963) of Raman scattering as a useful
method to investigate the low-lying electronic states of para-

magnetic impurity ions in crystal, promoted considerably the

electronic Raman spectroscopy.
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The Raman transition K and N label the
initjial and final states, respectively;

R labels the intermediate states. hviand
hv, represent the initial and final

photon energies of the Raman sacttering

process.
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The Born approach71 to the Raman effect maké; use of
the semi-classical radiation theory to calculate the electric
moment (M) induced in the crystal by the electric field (E)
of the incident light beam. In fact, the incident radiation
polarizes the electronic: ¢cloud around the ions, and the
scattered photon is produced by re-radiation of energy by the
oscillating dipole moment of the polarized electronic cloud.
In these terms, it is possible to define an electronic polar-

izability tensor %ps for a crystal according to the relation
e Y

M, = ZO(P‘E‘ (4.3-1)

6

_where Mf’ and E4 are the components of the electric moment and
electric field, respectively, taken along the principal axes
of the crystal. We define also th/e/R scattering efficiency
S as the ratio of the number of"séattzz photons produced per
unit time per unit cross-sectional area of the crystal solid
angle about the direction of observation to the number of
incident photons crossing a unit area in a unit time. For
incident and scattered photons having a definite polarization
in the directions of unit vectors e; and ey regpectively, the

components of the polarizability tensor can be used to calculate

the scattering efficiency

2
S = A [Z ot tpeos ] (4.3-2)
po

where A is a constant of proportionality, egl and e; are the
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components of the unit vectors ﬂor(gilze crystal principal
axes © and o . Equatiop (4.3-2) stregses the fact that
the components of the polarizability tensor determine the
intensity of the Raman scattered radiation, and as we will see,

give information on the symmetry of the transition.

Analogous to the dipole operator that governs optical
absorption, we can define a scattering operator a,,o— which
takes, K the scattering entity from state k to state n by a Raman
process, Fig. 4.5. The average value of the scattering operator,

between an initial state k and a final state n is given by

(%00 )en = (Yal&per| Yic) (%.3-3)

where the operator is de)‘.‘ined72 to be

Sor = 1 MY ) (Wil Me |, Mol ) (WiMe (b 3o8)
) Vi = Ve Vo * Vo
r

W, refers to the intermediate states, V, is the frequency of
the incident radiation, Vp is the transition frequency between
the initial state k and the states r, and Ven is the transi-
tion frequency between the states r and the final state n.

Mgy is the transition moment of a component of the electric
dipole operator along the axis of a Cartesian coordinate system
and, therefore, transforms according to the coordinates X, Y or

Z. We can form new moments Mup and M, whose product makes the
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) scattering operator &ruito transform according to irreducible

¢’ representation of octahedral symmetr¥y. Lo_udon73 calculated
the different scattering fensors for different crystal |
symmetries; the corresponding matrices‘for 0, symmetry are

given in Appendix E.

4.3,2 Selection ruleg and symmetry of the trangitions

For the electronic Raman transition to become a physi-
cally observable quantity, the average value of the symmetry
adapted scattering operator, BEg. (4.3-3), must be non-zero.
Group theoretically, this means that the identity must appear39

in reducing the representation product

$

P,, X l'(;o- x l“k (k.3-5)

For a given crystal orientation, the polarization of the incident
and scabdtered photons determine the components of the scatter-
ing tensors involved in the Raman scattering process via Eq.
(4.3-2). The selected components of the tensors give the
irreducible representations to be used in the representation
product, Eq. (4.3-5). Besides, the scattering operator &?f is
an even operator since Mp and Me both change sign simultan-
eougly under inversion. Therefore, Eq. (4.3-3) ig non-zero if
the initial state and the final state are states of thé same
parity. This parity requirement implies that electronic Raman

gstates of the ferrous

(j) transitions are permissible among the 5T2g

ion. '



Fig. 4-6

Allowed Raman transitions for dgi}erent
crystal deformations: (a) D3d corres-
ponds to a trigonal deformation, the
sample being oriented as showﬁﬂin Fig.
4-9y (b) Dy, corresponds to a tetragonal
deformation, the sample being oriented
as shown in Fig. 4-8; (c¢) and (d) Dop
corresponds to an orthorhombic deforma-
tion, the sample being oriented as shown
in Fig. 4-10 and Fig. 4-11, respectively.
The two polarizations YY and XY are also

indicated.
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%

MgO has octahedral symmetry and hence the scattering
tensor has thefir.'reduc;ible representations Alg’ Eg and ng.
L_c>}.1don73 has calculated these Raman tensors for a crystal
having its principal axes [100], [010] and [001] alignea with
the laboratory frame of reference X, Y and Z, respectively.

For any other orientation of the crystal with respect to the
laboratory frame of reference, the Raman tensors must be trans-

fomed7u’75. as instructed in Appendix E, before Eq. (4.3-2)

—p—————

-

can be usged.

Fig. 4.6 shows the allowed transitions corresponding

“~.to the different crystal orientations and polarization of

)

incident and scattered photons ﬁs"ed in the experiments described
in section 4.4, The notation i(jk)1 where i, j, k, 1 —> X, Y,
Z means that the incident photon has its k-vector parallel to
the i-axis and is polarized along the j-axis; the scattered
photon has its k-vector parallel tothe l-axis and is polarized
along the k-axis. It must be mentioned that the impurity
induced local mode observed in the Raman spectrum of MngFez"'.

Fig. 4.7, can be treated in a similar fashion to determine its

symmetry properties, -,

»

L, 4 The Raman spectrum of iron doped Mg0 crystal

L.,4.1 The electronic Raman transition

Figure 4.7 shows the Raman spectrum of an MgO:Fe2+

gsample immersed in liquid He, at a temperature below the lambda



Fig. b4-7

Electronic Raman spectrum of iron doped
Mg0 taken at liquid He temperature (2K)
using 200 mW of laser power (18834 em™L

line). The spectrum is identical using

the 20997 cm'l laser line. The electronic
Raman transitions to the r}g and Fug
levels peak at 110.5 em™ Y, The Alg'

vibrational mode is centered at 185 em™ L,

Incident light wavevector // [110] and
scattered light wavevector // [110] .
polarized parallel to [110] and [001] .

respectively. The resolution is 2 em™L,
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point (i.e.,.1.6K)., We observe a narrow emission peak at
110.5 cm™! and an emission band which peaks at 185 cm™'. No

1 1

other features appear in the range 15 ¢m™ te. 220 em - as

opposed to Wong42 and Hjortsberg's43 observationg. This fact
confirms, as Wong and Hjortsberg suggested, that the additional
peaks observed in their gpectra .are due to other impurity

systems.

Samples with different iron cqncentrations were examined
by Raman spectroscopy. The electronic Raman peak observed at

1 and the impurity mode at 185 em ! were found only in

110.5 cm™
the dark yellow samples which have the highest iron impurity
concentration among the samples we studied; as opposed to the

pure and perfectly clear MgO sample which gives a flat Raman
spectrum up to 500 em™L from the Rayleigh line. The signal
strength is found to be proportional to the iron impurity con-
centration, although no quantitative relation can be established
since the exact ferrous ion concentration in the doped Mg0O sample }I
is not known and due to the 10% variation in the signal strength
from experiment to experiment. This 10% fluctuation in the
signal strength is mainly caused by the non-uniform impurity -
distribution in the crystal which can be judged from the color
variation. Consequently, the 50rx diameter laser begm is never
guaranteed to probe exactly the same volume in the crystal each
time a sample is reinstalled in the Raman system leaaing to
variation in the signal strength.  No extensive reduction,

oxidation or X-irradiation studies were attempted on these

A} E




()

expected at energies below 200 cm

*

samples since. particularly, the oxidatidn process destroys
the surface quality of the M0 samples. Hence, the previous

experimental conditions can never be"recovered making any

" estimate of the relative change of the ﬁ,signal strength irrel-

event. Moreover, Wong42 showed that only a small fraction of

the ferrous ions are converted into ferric ions during the

oxydation process. b

At this point it would be legitimate to ask if the
110.5 em™t

4

peak could be vibrational in nature.

In subsection 4.1.3, we have discussed the fact that
the first-order vibrational Raman scattering was found to
rueproduce quite well the one-phonon density of states of the
host Mg0 crystal. Fig. 4.1 shows that no lattice phonons are
1

peak could only be an impurity induced local mode of E

g
symmetry analogous tgp the Alg mode at 185 em™L. But then, we

or ng

would be dealing with a JT active vibration which would inter-
act with the electronic levels, rég and Gg. since they would
have the same energy. This fact goes against Hjortsberg's
observations of the behavier of the electronic levels in the
presence of a magnetic field.

4

Billat et al.59 have observed the first-order Raman

3+

gspectrum of MgO:Fe” which shows two overlapping peaks of Alg_

symmetry at 129 em~land 148 em™l. These features are not

. Conseguently, the 110. 5 cm”

102

1l
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observed in our spectra and cannot be confused with the 110.5 cm™

peak. Thus, we eliminate the posgibility that the observed

3

peak is induced by the ferric ions.

Moreover, in Raman spectroscopy as welf as in infi‘ared
absorption or in photol:uminescence, we can make the qualitative
observation that the narrowmness of the 110.5 em™t line width
(9 cm"l) is typical of an electronic transition whereas the
breadth of the 185 cm L band (50 em™l) is typical of a vibra-
tional mode (for example, see Refs. 45 and 762. For all the
reagons mentioned a‘bove. and from the results of the stress

experimefﬁs\(see chapter 5), it becomes evident that the 110.5

cm"l peak is- the electronic transitions observed by IHonng2

e

and

Hjortsbergu'3, v, f;g—> [-'Bg and r,l

g’ .
The existence of random strains in Mg0 crystals has been

48,63 spectra.

2+a

established from the asymmetrical line shape of EFR
Acoustic paramagnetic resonance65 (APR) studies of MgOiFe s
well as the study by microwave acoustic aﬂl:'!;enua.’cic:vns3 (MAA) in
the same material must inglude the presence of random strains
in their corresponding theories to explain somé, of the experi-
mental results. In MngFe2+, the ‘average random strains dis-
tribution has been estimated from different considkrati«ons and
different experimental techniques to be: 2 X 10'5 from EPR63

b7 4 from EPRL"8 and MAASB, and 2 X 1079

and Mossbauer ', 2 X 10

from APRéS. We see that the average random strains distribu-

[N

tion seems to vary very much depending on the technique used to

1




theory to be five times stronger than that for the ground [,

. 104

”
investigate the sample, EPR being the least sensitive to the

random strains. Besides, an average random strain distribution

of 2 X 10”7 is sufficient to broaden the r;g ground state of
1

the ferrous ion to approximately 1 ecm —, in accordance with

the fact that optical trangitions are easily broaden to a few

wavenumbers (cm-l) by large enough random strainséa. The

coupling of the rég and rl‘#g levels to strain is predicted by

58
level, as mentioned by Ham35. Accordingly, the first excited

states rjg and Qg are broadened individually to 5 em™t where

1 and the 2 crn"l resolution of the

1

their separation of 3 cm”
spectr@meter make up the observed line width of 10 cm” This
obgervation implies that optical transitions as well as APR
transitions are very sensitive to random strains in crystals.

]

b.4.2 The electronic Raman transitions under uniaxial stress

The theory and concept of stress and strain are dis-
cugsed in details in chapter é togeth:er with 't}:le interpreta-
tions of the experimental results presented in’ thié subsection.

Three different types of uniaxial stress were appiied
to the Mg(; samples, each type being chlara,ctefized by the
symmetry axis along which the stress is applied. We chose two

scattering geometries, i.e., Z2(YY)X and Z(XY)X where the

-notation is explained in subsection 4.3.2. In certain cases,

depending on the crystal orientat\'\in and the stress applied,
different Raman trangsitions are allowed for each of the two

scattering geometries chosen. .
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Using the Z(YY)X scattering geometry with the Mg0
samples prepared for tetragonal stress (applied along the
[pOl]-axis of the crystal), only the r;g—>f1g transition is
allowed (in the J = 2 multiplet) and the peak position is
observed at 112 + 0.5 em™L from the Rayleigh line. Using the
Z(XY)X geometry with the same crystal, both f;gre>r3g g

Raman transitions are allowed, and the peak position is observed
1

and [2
¢

at 110.5 + 0.5 cm~ Al though any attempt to deconvolute the

peaks in order to obtain accurately the position of the r;g-afgg
trangsition is absolutely hopeless in our case, we still observe
that the rlg level is higher in energy than the r}g level.
Moreover, from the apparent displacement of the electronic peak
in going from one scattering geometry to the other and assuming
that both transitions, lgg—e>r;g and (Lg’ have the same inten-

p
sity, their ®separation can be estimated to be 3 + 2 cm"1 in

agreement with Meyer et al.uo and Hjorsberg's43

observation of
3.6 em L. In the analysis of chapter 5, we choose a separation
of 3 cm'l between the r}g and [;g levels which fits best the

data.

A tetragonal stress of 41 K G/MM? applied to a suitably

prepared Mg0 crystal induced an appreciable shift of 4.5 em™t

with the 2(YY)X geometry and 6.0 em™t

with the Z(XY)X geometry,
as shown in Fig. 4.8. Actually no shift as such is to be
expected since only the Alg component of the strain produces

a shift of the center of grgvity of a given electronic level

(in Kaplyanskii's tErm77). and this shift ie the same for all



Fig. 4-8

Electronic Raman spectra of MgO:Fe2+

taken at liquid He temperature (4K) using

_]_)

200 mW of laser power (18834 cm with

and without a tetragonal stress applied.
Incident light wavevector // [1%0] and
scattered light wavevector // [110] The
correspo&dlng polarlzatlons and stress
for each spectrum are indicated on the

-1

figure. The resolution is 2.5 cm and

the sensitivity is 100 photon-counts/s

(full scale) with a 4.7s time constant.

The arrows indicate the peaks at 110.5 cm™*
and 116.5 o L.
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the levels of the 5T2g states since all the functions of

Appendix B are eigenfunctions of the operator L(L+l1) with an
- Y
eigenvalue of 2. Chapter 5 clears up this situation.

The trigonal stress applied along the [;lilwaxis of a
suitably prepared Mg0 crystal induces a small shift of 1.5 cm’l
of the electronic Raman peak using a stress of 36 KG/MMZL In
this case represented by Fig. 4.9, both scattering geometries
allow the transitions f;g-’rLg and rsg to be observed.

Thus, the two transitions cannot be distinguished and the spectra
corresponding to the two scattering geometries exactly super-
pose. A posteriori, we observe that the JT complex couples
somewhat more strongly to the tetragonal stress than to the
trigonal stress.\ In fact, the notion of coupling strength is
clarified in chapter 5 where the strain coupling coefficients

are determined and their relation to the JT coupling coefficients

is established.

Finally, an orthorhombic stress applied along the [1&0]-
axis of a properly cut Mg0O ssmple was considered for two
different crystals, as shown in Figs. 4.10 and 4.11. The
Z(XY)X geometry allows the transition rég-—a-rhg alone which
is shifted by 2 cm™! when a stress of 36 KG/MM2 is applied to
the sampl;. The Z(YY)X geometry allows transitions to bolh

F;g and rLg levels, and no shift of the electronic Raman peak
i1s observed within the experimental error. Without stress, it

y

is not" possible to observe if the rLg level is higher in energy



Fig. 4-9 K
Electronic Raman spectra of MgO:Fez+
taken at liquid He temperature (4K) using
200 mW of laser power (18834 cm'l) with and
without a trigonal stress applied. Incident
light wavevector // [110] and scattered
light wavevectog // [ll?]. The correspond-
ing polarizations and stress for each
spectrum are indicated on the figure. The

1

resolution is 2.5 cm ~ and the sensitivity

is 100 photon-counts/s (full scale) with a

4.7s time constant. The arrow indicates

the peak at 110.5 cm t:
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with respect to the r;g level simply by changing the scatter-
ing geometries, gs was done with the crystals prepared for the
uniaxial tetragonal stress. This gituation is mainly caused

by the poorer surface quality of the samples which had to be

cut and polished to obtain the required orientation and, accord-
ingly, the signal quality has degraded. But still, under stress,
we observe that the ‘Lg level is shifted on the high energy
gide, i.e., away from the Rayleigh line. Under uniaxial orthor-
hombic stress, it is shown in chapter 5 that the rgg states

and the flg states interac£ with each other. 1In such a case,
as shown in Fig. 5.6, the levels tend to repel each other:

the level which is higher in energy moves to the high energy
side and vice-versa. Therefore, we conclude that the rLg

level is higher in energy, in agreement with our previous state-

ment.

Each one of Fig. 4.8 to Fig. 4.11 compares two
spectra, one taken without stress and the other taken with the
highest applied stEess during the corresponding experiment. In
fact, several spectra were taken where the magnitude of the
stress was varied between the two extreme values shown on each
f;gure. These complete results are presented in Fig. 5.4 +to

Fig. 5.7 together with the theoretical curves obtained from

the stress Hamiltonian introduced in chapter 5.



Fig. 4-10

Electronic Raman spectra of MgO:Fe2+
taken at liquid He temperature (4K) using
200°mW of laser power (18834 em™ 1) with

and without an orthorhombic stress applied.
Incident light wavevector // [OOl] and
scattered light wavevector // {110]. The
corresponding polarizations and stress \
for each spectrum are indicated on the

1 and

figure. The resolution is 2.5 em”
the sensitivity is 100 photon-counts/s
(full scale) with a 4.7s time constant.
The arrow indicates the electronic Raman

peak at 110.5 cm™ T,
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Fig. 4-11

'
Electronic Raman spectra of MgO:Fe2+ tiken
at liquid He temperature (4K) using 200 mW
of laser power (18834 cm'l) with and without
an orthorhombic stress applied. Incident
light wavevector // [111] and scattered
light waveveector // [lliq. The correspond-
ing polarizations and stress far eacg
spectrum are indicated on the figure. The

1

resolution is 2.5 cm ~ and the sensitivity

is 100 photon-counts/s (full scale) with a
L.7s time constant. The arrow indicates

the peak at 110.5 cm™T.

!
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CHAPTER 5

O

THE UNIAXIAL STRESS

5.1 Ham's phenomenological approadh

£ 5.1.1 The strain components

We have showed in chapter 3 that the 2lectronic energy
levels are perturbed by any disgplacements either static or
dynamic of the nearest neighbors. We ca.n. deliberately impose
a static deformation of the octahedron surrounding the impurity
ion by applying a uniaxial stress along one of the symmetry
axes of the Mg0 crystal using the technique described in chapter
b, After deformation, the resulting site symmetry being lower
than octahedral, some of the orbital degeneracies of the spin-
orbit states must be lifted, i.e., the energy levels are split
by the applied uniaxial stress. Schawlow et 31.78 were the
first to attempt successfully such an experiment. They applied
uniaxial stresses along different symmetry axes of MngCr3+
samples and they observed both a shift and a splitting of a
purely cubic field fluorescence line.

The ability to split an electronic energy level resides
in the kind and magnitude of the distortion of the octahedron
surrounding the impurity which, in turn, depends on the stiff-
nesg of the crystal lattice, i.e., its compliance to an

externally applied stregss. The deformation or strain of a

" 12
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crystal.lattice is usually described in-terms of strain com-

ponents79 e ; whose magnitude ﬁ\ezends on the physical properties

of the material. Let's assume that X, y and z are orthonormal
¥éctors embedded securely in ;hhe unstra:.ned crystal. After a
small force per unit area or gtress has been applled to the
crystal, a ugiform deformation of the lattice ‘has taken place.
The new distorted axes x', y*' and z' can be defined in terms

of the old ones

- 1T Mo
x 1+ EXX_ exy Xz 2
V' E | Eyx P8y & )Y ,

L. J L 22, ..E.J

i o d

The dimensionless coefficients Eig define uniguely the magni-

(5.1-1),

tude and the symmetry of the deformation (stran.n) Assume that
the distance between two atoms before the deformation is given
by T = xx + yy + 22, and the same distance is given by r' = xx'
The relative digplacement

+ yy' + 2zz' after the deformation.

of the two atoms due to the deformation of the lattice is given

by

o

R=r'-r

-
it

x(x'-X) + y(y'-%) + z(z'-%)

——

e

which becomes after substitutinn of ILg.

[

(5.1-1) 7

T
St -
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R= (xE +y€yx+zézx)§ *(XEXY*'YEYY‘HEIY);

+(x€xl+ yEyz"' zE,, ) z

More generally, the displacement can be expressed as,
R(r) = u(r)x +v(r)y+w(r) z (5.1-2)

where u(r), v(r) and w(r) represent the small relative dis-
placements of the two atoms measured along the orthonormal
vectors of the previously unstrained crystal. Therefore, we
will use Z2q. (5.1-2) to measure the deformation with respect
to the unstrained crystal taken as a reference frame. We can
define the components Eij used in Jg. (5.1-1) as the rate of

change of.the components of the relative displacements, .ig.

114

(5.1-2), along a particular direction X, y or z of the unstrained

L
crystal. The strain components e; s are def™ed generally as

%

a linear combination of Ei i.e.,

j'

eij=l/2 (eij+ 8“) Dij=xy,z

and

€ * IR, I, ‘ (5.1-3)

with Rx=u(r), R, =v(r), R, =w(r)and r_, = x, r_ =y, r, = g.

Y 2 X y

"J
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»
We &an also define a linear combination of strain coefficients
designated by the irreducible representation of the symmetry

of the deformation. These symmetry adaipted strain coefficients

are

o(A) = eyt o,y oy R (5.1-ba)
o(E) = ez -1/2 (ey,+ey) (5.1-4b)
e (E) = /32 (exx~ eyy) (5.1-ke)
e,(T) = ey, (5.1-4d)
9,,(T) = 0,y (5.1-Le)
eg(T) = Oyy (5.1-4f)

\i\
Let the force acting on the crystal element of surface

AAJ. (perpendicular to the j-axis) have components AFi. We can

define the stress tensor as

Ty = limAOF; /AL
where i, j = X, y» 2. The theory of elasticity assumes Hooke's
law in postulating that the stress is prbportional to strain
(for sufficiently small strains). In this approximation, the

elements of the stress tensor can be expressed as a linear

"'v
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&
combination of strain components

Y

hi = Ez: Sij ®i (5.1-5)
j=1
where i, j = 1(xx), 2(yy), 3(zz), 4(yz), 5{(zx), 6(xy) and the
proportionality constants °i3 are called the elasticity constants
(or stiffness constants). The set of linear, homogenegus,
independent equations represented by BEg. (5.1-5) can be solved

for the ej in terms of the elements of the stress tensor 'I‘i and

leads to the following linear combination

6
° = Z Sij Ti (5.1-6)

i=1
where the coefficients 84 j are called elastic compliance factors.
Using the technique of ultrasonic continuous wave resonance80
(sound velocity measurement), the elasticity constants Cij can
be determined experimentally as a function of temperature. The

elasticity compliance factors sij are given in terms of the cij

by the following relationsal.

Cyy *Cyy
s = (5.1-7a)
B (e11= € ,) (&y4+2¢, ;)

s = 12 (5.1-7b)
2 (°11' ¢, 2) (c11+2°12)
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D, . (010]

(100]

Fig. 5-1

Tetragonal deformation. Mechanical stress
(P) applied perpendicularly to the (001)-
plane displaces the upper and lower oxygen
ions inward by Dl; the four other ions are

displaced outward by D,.

e . .
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- 1 .
344 - c (5'1‘70)
44

which are the only coefficients required to completely define

the situation.

Depending on the type of deformation, we can relate the
symmetry adapted strain components, Eq. (5.1-4), to the extgmal
pressure (element of the stress tensor) via the elastic compliance
factors, Eq. (5.1-6). The pressure P is the unjaxial stress
applied to the crystal and is chosen to be negative for com-
pression. We distinguish three types of deformation, pictured
in Figs. 5.1 to 5.3, for which Egs. (5.1-6) are written expli-

citly.

Type (i), the tetragonal deformation (D,, symmetry)

O“(A) = (s11 + 2312) P (5.1-8a)
°9(E) = (s, - s,,) P (5.1-8b)
ofE) = o[1) = ofr)= ofr) = 0 (5.1-80)

Type (ii), the orthorhombic deformation (D,y) symmetry)

()

e“(A) = (311 + 2812) P (5.1-92a)
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Fig., 5-2

Trigonal deformation. Mechanical stress
(P) applied perpendicularly to the (111)-
plane displaces all the oxygen ions inward
by Dy. The angle ¥ is in a plane defined
by the [ll%]—axis and any of the corres-

ponding oxygen-ferrous ion axis.
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o(E) = - (s,, -3,,) P/2 (5.1-9b)
o(E) = -¢(T) = ¢(T) = 0 (5.1-9¢)
eg(r) = s,, P/2 (5.1-9d)

°a(A) = (311 "’2312) P (5.1-10a)
ofE) = e(E) = O (5.1-10b)
eg(T) = %(T) = o(T) = s, P/3 (5.1-10c)

80

Marklund and Mahmouds

recently measured the elasticity constants

C§ ; of MgO crystal at 4.2K. Their experimental results (+0.1%)

are

11

€12

Cuy

The corresponding elastic compliance factors s.

from Egs. 5.1-7.

10 2
30.67 x 100" N/M N

9.371 x 1010 w/m?

15.76 x 1019 n/m?

13 are obtained

d



Fig. 5-3

Orthorhombic deformation, Meq&anical
stress (P) applied perpendicularly to
the (110)-plane displaces the upper
and lower oXygen ions outward by DZ;
the four other ions are displaced
inward by Dj. The angle © is in the

(001 )-plane.

121
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5.1.2 The stress Hamiltonian
We have seen in éhapter 3, that deformations of the
lattice site are produced by the electron-phonon interaction

between a JT impurity ion and the lattice vibrations trans-

forming as the Eg or T representation of the octahedral group.

2g
Since the strong JT effect leads to a static deformation of the
cluster surrounding the ion, i.e., a permanently shifted equili-
brium position of the distortion modes. Then, we may assume

that the effect of strain in the crystal is that of shifting

the equilibrium position of the distortion modes.

We can integrate BEQ. (5.1-3b) to obtain an expression
for the shift of the equilibrium position of a given distortion
mode. Choosing the static tetragonal distortion, for example,

the shift is expressed as

AQG = 1/J/3 [A'zs"' AL '12' (A),(1+Ax4 +Ay, +Ay5”

2RA/3 [°zz —% (exx - eyy)}

which can be written as

DAy = [2R/ﬁ] & = Keg (5.1-11)

where R is the lattice constant (2.1 A) and e, is given by’

Eq. (5.1-4b). In doing this calculation, we have made the
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reagonably accurate assumption that the electronic states are
coupled only to the nearest neighbors, based on the fact that

the strain field is decreasing as r~2 away from the impurity’

W"-

ion. Consequently, we can write a new set of collective d%§-
placements Qn' Table 3.1, describing the wvibrations of the

octahedron about the displaced equilibrium positions

Q= - Ke, (5.1-12a)
Q; =Q, - Ke (5.1-12b)
Qg = Qg - K'eg L (5.1-12¢)
Ay = Qy - K'ey (5.1-12d)
QY = Q¢ - K'ey (5.1-12e)

where K' = 2R can be obtained in a similar fashion to K. In
the presence of strain, the elastic energy of the system measured

from the displaced. equilibrium positions is given by

2

Hzl = % hwf [(09 -K 09)2*' (@ - Ke‘ﬂ'l
+ % {"rwf [(Q; - K’e;) + (0,7 - K’e,,)z-i- (Qf"K'Q{ﬂ-I

(5.1-13)

Together with the kinetic energy and the JT energy in Egs.
(3.2-1) and (3.2-6), we constitute the Hamiltonian of the

system. Accordingly, we can make the change of variables given

:
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by Eq. (5.1-12), and the corresponding transformation of the
canonical momenta P; = Pn' In terms ;f the primed variables,
the elastic energy and the kinetic energy are expressed by the
corresponding expressions in Egs. (3.2-1) and (3.2-6), but the

JT energy includes additional terms, i.e.,

Hyp = Hypp + H°
where b
H® = VK (e E + &E)
+ VpK'(egTg + e,Typ + egTy) (5.1-14)

where HJT is given by Eq. (3.1-11) and the electronig operators
are defined by Egs. (3.1-10). Therefore, we see that the effect
of strain in the crystal is described phenomenclogically by an
Hamiltonian H® identical in form to the JT Hamiltonian where

the dynamical variables Qn have been replaced by the static ones
enR. The effects of static strains on the 5T2g states are des-
cribed by the stress Hamiltonian HS(Sng), given by Eq. (5.1-14).
Now, we can use the Ham reduction factors, Eq. (3.3-3), to

write the stress Hamiltonian as an operator in the space of the

spin-orbit states,

S = B 7
H3(T) = Vg(d) (e E, + e E,)

+ VBKT(J) (egTg + eyTy + egTg)  (5.1-15)
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where V2 = VEK and V3 = VTK' define the strain coupling coeffici-

ents and J specifies the set of gpin-orbit states.

At this point, it is important %o remember that we
have made the assumption of a cluster model, i.e:. the Qn are
normal modes of the cluster (the octahedron formed by the six
nearest neighbors of the central ion) having unique frequencies
&é and Wne We also made the crude approximation that the mode

effective magss is given by the mass of one of the oxygen neigh-
-

bor, Pp= tp =M (0%7),

so that the canonical relations

P =t¢Qn can be written in Egs. (3.2-1) and (3.2-6). So, we
expect the rela%ions between the strain coupling coefficients
and the JT coupling coefficients to give agreement only within
the accuracy of the above approximations. A careful determina-
tion of the JT coupling coefficients from the experimental
results of stress experiments would have to bypass the question
of an effective frequency and an e:fective mass (mode) in the
calculations. A multi-mode full lattice model should be used

in such a case.

5.1.3 The effect of uniaxial stress
The pressure P applied aloﬁg a symmetry axis of the P

Mg0 crystal lowers the site symﬁetry around the ferrous ion.

In such a case, group theory predicts that the orbital degeneracy

of the spin-orbit states is partially lifted and a splitting of

the energy levels occurs. The degeneracies and the transforma- -

tion properties of the new states are obtained from the compati-




)
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bility tab1e99 for the octahedral group. The group %oretical
predictions with regard to the new states for the tpree types
of strain, EZgs. (5.1-8) to (5.1-10), are summarized in Table
5.1. We see from the Table that the orthorhombic strain liftsw
all the degeneracies of the energy levels considerea' ,h v.vherea:
the tetragonal and the trigonal strains 1lift only .partially the
orbital degeneré.cies. Moreover, the trigonal strain is inopera-
tive on the [_'Bg

JT effect, that states transforming as Eg do not couple to

level 'showing clearly, in the concept of the

vibrations (deformations) of ng representation since the

product

+ E
2g g

=

»
t
"

A

g * “g 1g * A

does not include Tz Group theory does not give which. way the

energy levels @plitgand the magnitude of the splitting. To get
this information, we rely on the stress Hamiltonian, Eq.. (5.1-15).
In the case of MgO0 crystals, the straip splitting of the
energy levels is expected to be of the same or';ier of magnitude
as the second-order spin-orbit splitting, Eq. (2.3-8). There-
fore, the second-order spin-orbit Hamiltonian and the stress
Hamiltonian must be treated simultaneously by first-order pertur-
bation theory in thé spin-orbit states. It must be noted that
the JT Hamiltonian‘is accounted for by second-order perturbation
theory and, consequently, can be treated independently from the

spin-orbit Hamiltonian and the stress Hamiltonian. Besides, the
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r) JT effect on the strain splitting of the energy levels is
accounted for via the Ham reduction factors which were calculated

using the JT perturbed vibronic functions (see Appendix D).
| .

L A N R A S o =

The secular determinants of the spin-orbit and stress

Hamiltonian can be solved easily if we neglect the matrix

0 R el s <

, elements between states belonging to different J values, the

magnitude of these terms being negligible compared with the
energy separation between different J-states. These matrix

\
elements are required to 1ift the accidental degeneracy occuring

when states of different J values cross each other (which does

not apply inyour case). The resulting splitting of the energy
\\ L
levels is calculated from the stress Hamiltonian for the tetra-

gonal, trigonal ‘grid orthorhombic strain as shown in Appendix F.

5.2 The interpretation of the‘experimenta,l/results

T e -

! 5.2.1 The procedunge

In the recensft years, the first-and the second excited
states of the ferrous ion in MNgo, FBg and l—,:,_g levels respec-
tively, have been observed by optical infrared absorption to be

1 1

at 106.9 cm ~ and 110.5cm ~. A confusion was created by Meyer

et al.u'o with regard to the assignment of each peak. This ’
confusion has been clarified by Hjortsberg et a_l.‘.q'3 whose con-
clusion is confirmed by us, i.e., the rjg level is the lowest

in energy with respect to the rllg level as established in

~
3
"

chapter 4. Also in chapter 4, we have concluded, however, that
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the regpective energy of the first excited states was slightly

1 for the [

higher than -Hjortsberg's observation at 109 cm~ 3

states and 112 cm'1 for the’l I’;g states. The crystal fie‘ld
-theory predicts the energy of these two levels to be 198 cm_l
( Mg) and 192 em™ ( Mg Eas. (2.3-11a) and (2.3-11b). e
have seen in chapter 3 that the JT effect is expected to shift
the energy levels and to reduce the spin-orbit splitting.
Assuming that the shift of the energy levels is entirely due to
the JT effect, we can use Eqs. (3.4-6) to calculate the JT
energies (EJT)E and (EJT)T for different values of the quanta

of vibration ﬁwE and ﬁqr from the  expressions

(EJT)E - 83 [FE (wy) = Fg(wl',]_ 86 [F4(UI) - FQ(QJI’J (5.2-1)
Fai ~ Fyy
where 4

Fiy = [Fa(“s)' F1“‘"E):I [Fs“'-’r’_ Fz(‘"?r):l

Fsy = [Fs(“"s)*- F1(“E)] [F4(""‘T)" Fz(“’r’]

and

86 - (Ey7)e (Fstws) - Fiiwe) )

Fywp) = Fiwy)

372 (Byr)y = (5.2-2)
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where we have used a reduction of the spin-orbit splitting of

-83 em™t

between the rsg and (;g levels, and a reduction of
-86 cm'l between the rLg and [;g levels in accordance with

our experimental results. Knowing the JT energies corresponding
to a given set of quanta of vibration, we can calculate the JT
corrections to the Ham reduction factors, Appendix D. 'The strain
splitting of the energy levels considered, Eqs. (5.2-2), (5.2-4)
and (5.2-6), is dependent on the magnitude of the strain compon-
ents e which can be calculated from the knowledge of the
pressure and the elasticity constants, and is dependent on

terms like KEVZ and KTVB' The magnitude of these 14st two terms
can be estimated from the experimental results and, knowing the
Ham reduction factors Kd and KT’ we can extract the value of the
strain coupling coefficients V2 and Vj' Moreofer. the value of
the strain coupling coefficients so obtained must be in agreement
with the strain coupling coefficients estimated from the splitt-
ing of the EPR lines under uniaxial stress. Finally, for the
self-consistency of the cluster model, as discussed in sub-
section 3.3.3, the same parameters used to extract the value of

the strain coupling coefficients must be used to explain the

orbital redu;¥§on in the experimental g-factor, g = 3.428.

However, since the effective mode quantum of vibration

cannot be related in any unique way to the host lattice phonon

61,62 1 1

and must be chosen in the range 300 cm™™ +to 450 cm”
/

only a range of values for the JT energies can be determined

spectrum

which fit the reduction in the spin-orbit splitting and the

[ L N S




® !
f""e 303 303 345 345 345 400 400
®
fiw, 303 3as 303 345 400 345 400
®
(Ey)e | 74 64 100 88 77 118 | 105
3 e
5(Ex) | 108 | 134 94 120 | 148 [ 103 | 130
. -
vV, 6152 | 5722 | 8143 | 7639 | 7146 | 10256 | 9675
[

Vy 9103 | 11545 | 8493 | 10926 | 14068 | 10122 | 13185
KE(1) 092 088 096 092 087 .096 .092
KE(z) -129 |-130 |-142 |{-141 |-141 |[-153 |-139
KT(1) 091 092 087 089 .089 | 085 086
KT(z) -127 | =137 |-126 |-135 |-144 |-134 | -142

K, [(-447 |-441 [-442 [-437 |-430 [-431 [-425

K, 1494 | 1494 | 1494 | 1494 | 1494 | 1494 | 1.494

K, 2872 | 2862 | 2.864 | 2855 | 2.845 | 2847 | 2837

Ka 1172 1166 1176 1170 | 1164 1174 1168

k -

.90 .91 .91 92 .94 .94 .95
(g=3;423)[

Ocm-1

TABLE 5.2
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g-factor, Table 5.2. Moreover, due to the large error in the
strain coupling coefficients esti@ated from the EPR82, APR83

and Mossbauergu experiments and due to the lattitude in our fit
to the experimental results we can only hope to determine a range

of the most probable values for the strain coupling coefficients,

and this within the scheme of the cluster model.

5.2.2 The fit to the experimental results

As mentioned in subsection 4.4.2, the position of the
electronic Raman peak was measured for different values of
stress, for each type of strain, using the two scattering
geometries: 2(¥Y)X and Z2(XY)X. These results are presented in
Figs. 5.4 to 5.7 together with the theoretical splitting of the
corresponding energy levels as calculated from Egqs. (F-2),
(F-4) and (F-6). PFor each case, the allowed Raman transitions
are given in Fig. 4.6. Since the™ r;g ground state is also
split by any of the three types of strain, the theoretical curves
represent all the possible transitions originating from the
gplit components of the ground state. Besides, the ground
state is only weakly coupled to strains in the crystal and
split to a maximum of 1.6 em™t at 40 KG/MMZ. Consequently,
all the split components of the ground state are thermally
populated at 10K (due to local laser heating) and lead to

potentially observable transitions.

Fig. 5.4 represents the effect of increasing the tetra-

gonal strain, in a MgOzFe2+ sample, on the position of the
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Figo 5‘14'

Theoreticaf fit of the energy of the
electronic Raman transitions measured
for increasing tetragonal stress. The
different electronic transitions are
labeled from A to H. The theoretical
fit is calculated as discussed in the
text. The dash lines and the solid
lines refer to transitions originating
from the doublet and singlet components

of the ground state, respectively.
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electronic Raman line. Group theoretically, the Z(YY)X
scattering geometry allows transitions B and = to be observed,
see Fig. 4.6. In this case, the energy corresponding to the
difference between =Zqs. (F-2e) and (F-2a) constitute the transi-
tion ®nergy labeled B on the figure and fits the experimental
results identified by open squares on the figure. Group theoreti- |
cally, the Z(XY)X scattering geometry allows transitions to A,
Cc, D, E, F and G, see Fig, 4.6. Since, under Oh symmetry, this
scattering geometry allows transitions to both the rég and

FLg levels, we still expect transitions to some of the compon-
ents of the two levels under Dbh symmetry. However, the shift
of the peak position being even larger with this scattering

1 L with the previous

geometry (6.0 cm =~ with respect to 4.5 cm”
scattering geometry), only the allowed transitions A, C and D
can possibly be observed to explain these experimental results.
The corresponding energy of the transitions A, C and D are cal-
alated from the difference between Eqs. (F-2e) and (F-2b),

Egs. (F-2c) and (F-2b), Egs. (F-2c) and (F-2a), respectively.

Owing to the unique transition B to be fitted by the
theoretical curve, with the Z(YY)X scattering geometry, we
obtain a good estimate for the only parameter of the stress
Hamiltonian in this case

1

Kg(2)V, = -1000 + 150 cm” (5.2-3)
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Therefore, KE(Z) only remains to be determined to obtain the

value of the strain coupling coefficient to Eg-type of strain,

v

2-

The interpretation of the behaviour of the electronic

Raman line in the case of trigonal strain, Fig. 5.5, is not as

et W WL e & AR

obvious as the case of tetragonal strain. The reason is that
transitions, A, B, D, E and F are all group thecoretically
allowed with the Z(YY)X scattering geometry as well as with
the Z(XY)X geometry. When a uniaxial stress of 36 KG/MM2 is

1

applied to the sample, a small 1.5 cm — shift of the peak is

observed. Two explanations can be offered for such a behaviour
of the electronic line, which will determine a range of values
for the parameter KT(Z)V3 in Egs. (F-4). Since in absence of
stress, the peak position is observed at 110.5 + .8 cm"l, it
impli hat both (.. and
mplies that bo r;g_, 3e [

58
obgerved. Consequently, we expect all the allowed transitions

-ﬁ>ng transitions are

A, B, D, E and F to be observed, and the electronic Raman line
follows the center of gravity of these transitions. This
assertion, however, does not restrict the splitting of the rhg
level (Oh). i.e., the energy difference between A, B and C, E
transitions is still left arbitrary. Nevertheless, we can
postulate that a 2 c‘m‘l resclution of the spectrometer and a
random strain broadening of 35 cm'l should broaden the split
components of the rLg level (Oh) to at least 6 cm'l, so that |

we should distinguish a splitting of the electronic Raman line,

using Rayleigh's criterion, at an energy difference between

U VEOUQ G D i - AR S R T VRS

4 . - f
- Wl g
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Fig. 5-5

Theoretical fit of the energy of the

electronic Raman transitions measured
for increasing trigonal stress. The

different electronic transitions are

labeled from A to F. The theoretical
fit is calculated as discussed in the
text. Thedash lines and solid lines

refer to transitions originating from
the doublet and singlet components

of the ground state, respectively.
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Eqs. (F-4b) and (F-4a) equals to 6 em L, This situation is

depicted in Fig., 5.5 and leads to an upper limit for the value
*

of the strain coupling coefficient
Kp(2)V5(MAX) = -8L0 em™? (5.2-4)

The lower limit for the value of the strain coupling coefficient

1 shift of the Raman

can be set to zero and, still, the 1.5 cm”
line for large trigonal strain can be understood if a reduction
in the transition probability to the rbg (th) level takes

place for increasing stress. In such a case, for sufficiently

high stress, we would mainly observe the [, ‘—ﬁ,lzg (Oh)

58
transition at 112 cm'l. However, since the intermediate states
of the ferrous ion at energies larger than 10,000 cm"l needed

to compute Eq. (4.3-2) are not known, it is not possible to
obtain a sufficiently accurate value for the Raman inten§ities
(or transition probabilities) relevant to this problem that
would help us to decide between the upper limit value given by
Eq. (5.2-4) or the lower limit, V3 = 0.

The orthorhombic strain, which combines both a tetra-
gonal strain (expansion) and a component of trigonal strain
(compression), provides evidence for the upper limit value given
by Eq. (5.2-4). With the Z(YY)X scattering geometry, all the
transitions shown on Fig. 5.6 are allowed and the corresponding
peak position (110.5 + .8 cm'l) is not affected by the applied

stress within the experimental errors. Again, we observe the

*



Fig. 5-6

Theoretical fit of the energy of the
electronic Raman transitions measured
for increasing orthorhombic stress.

The different electronic transitions
are labeled from A to 0. The theoreti-
cal fit is calculated as discussed in
the text. The dash lines, solid lines
and dash-dot lines ref'ei to transitions
originating from the three different

singlet components of the ground state.
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center of gravity of all the allowed transitions of Fig. 5.6
and not'much can be extracted as to the behaviour of the indi-
vidual energy levels under stress. The Z(XY)Y scattering

geometry is more restrictive and allows transitions A to I,

inclusively, all issued from the rLg (Oh) level., To be con-

‘sistent with our interpretation of Fig. 5.4, where, as far as

the ng (Oh) level is concerned, transitions are mainly to

the singlet state rég

expect the tetragonal strain component of the orthorhombic,
A

strain to induce transitions to the corresponding singlet state

(D),.), i.e., transitions A and B, we
4h

now represented by transitions D, E, F on Fig. 5.6. T?e theoreti-
cal curves of Fig. 5.6 have beén’c;lculated using the experimental
results given by Egs. (5.2-3) and (5.274). These curves show
that, indeed, the center of gravity of all the transitions is
preserved and that the singlet state (transitions D, E, F)
reproduces very well the experimental results represented by

open circles on Fig. 5.6, as expected from Fig. 5.4. Again, no
measurable broadening of the electronic Raman peak is observed
which could be due to weak transitions probabilities for A,~B,
Cand M, N, O transitions of Fig. 5.6. The theoretical curves
based on the equations which lead to Fig. 5.6 were calculated

for the case V3 = 0, and are presented in Fig. 5.7. The experi-
mental results represented by open circles belong to the Z(XY)X
scattering geometry which allows transitions A, B, C and D
originating from the rLg (0,) level in abs?nce of stress.

These experimental results cannot be unambiguously attributed to

the center of gravity of the four allowed transitions or even to

-



Fig. 5«7

Theoretical fit of tHe energy of the
electronic Raman transitions measured

for increasing orthorhombic stress.

The different electronic transitions
are labeled from A to H. The theoreti-
cal fit is calculated assuming V3 = 0,
v as ékﬁlained in the text. The dash
lines and solid lines refer to transi-

" tions originating from the doublet and

i singlet compenents of the ground state,

respectively.
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any of the group of transitions A, B or C, D. Therefore, we
conclude that Fig. 5.6 providé{@the begt fit to the experimental
results obtained for thét case of orthorhombic strain and corro-
borates the evidences obtained from the experimental results
presented in Fig. 5.4. Since the value of the parameter K,I,(Z)V3
given by Eq. (5.2-4) provides the best fit to the experimental
results shown on Figs. 5.5 and 5.6, this value will be used to
verify the consistency of the cluster model keeping in mind that
a large error is attributed to it. At this point, KE(Z) and
KT(Z) must be determined to extract the range of values for V,
and V3.

Table 5.2 gives a range of values for K‘E(Z) and Kp(2)
which were obtained from vibrational gquanta and JT energies
suitably chosen to fit both the reduction in the spin-orbit
splitting and the reduction in the g-factor. These values for

the Ham reduction factors are

i

KE(Z) -0.140 014 (5.2-5)

'V

.010 (5.2-6)

1}

KT(Z) -0.135

i+

which lead directly to an estimate for the strain coupling

coefficients via Egs. (5.2-3) and (5.2-4), i.e.,

1l

14 .

V2 7140 1800 cm™

(5.2-7)

V(MAX) = 6220 + 460 cn”l (5.2-8)

t

t
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The coupling coefficient to Eg-type of strain, Eq. (5.2-7) is
affected by the compounded errors of E;Jqs. (5.2-5) and (5.2-3),
whereas Eq. (5.2-8) represents the maximum value of the coupiing
coefficient to ng-type of strain which only affected by the
error in Eq. (5.2-6). It must be remembered that V3 can actually
take any value between 0 cm™T and V5(MAX), but that V,(11AX) best
fits the experimental resulfs presented in Fig. 5.6 and is
retained as the representative value of the V3 coupling coeffi-

cient.

The strain coupling coefficients for the r;g ground
“\

/

state of the ferrous ion AN Mg0 have been measured by three

82

different techniques, i.e., from the splitting of the EPR " and

AP383 lines under applied stress and from Mossbauer spectroscopysu

Using the notation of Watkins and Feher 82 , the strain splitting

of the Fsg ground state is described by the Hamiltonian

H8( () = J-8D-J

where J is an effective angular momentum (see Eq. (3.3-6)) and
the tensor &D is related to the strain components via the

following expression

8Dy ’Zj Gij ®j (5.2-9)

In this case, Voigt notation is assumed, i.e., SDl = SDx.x'

SDu = SDyz. etc., but e;_ = e . € = Zeyz, etc. Assuning
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with Watkins and Feher that the trace of the tensor SI)
vanishes, i.e., Gy = =2Gy 59 and comparing Zq. (5.2-9) with

Eg. (5.1-15), we obtain the equivalences

V,K.(1)

2 G

11 (5.2-10)

¥

VK. (1)

3K 2Gy,,, (5.2-11)

Table 5.3 gives the different experimental values for Gll and
Guu' Although not quoted, the errors on these experimental
values are known to be large as can be judged from the marked
discrepancy in the values. Again, from Table 5.2, we can déier-
mine a ranée of values for the Ham reduction factors (with J = 1)

in accordance with the reduction in the spin-orbit splitting

and the g-factor,

KE(l) . 092

(K 4

.008 (5.2-12)

KT(l) .088 + ,005 (5.2-13)
Using these values, V2 and V3 of Table 5.3 were estimated.
Besides, if abgolute values of Gil and Guu are difficult to
estimate, their relative value can be obtained more accurately.
From APR65 and acoustic saturation measurementséu. a reasonably

accurate ratio is found for MgO:Fez+ samples,

Gy, /Gy, = 1.59 % .09 (5.2-14)
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’ B4
‘cm-t EPR’ APR | MOSSBAUER
[
G, 800 647 585 o
[ ]
2G,, 1080 814 (738)
Gy, /Gy, 1.48 159 —_—
@
v, 8700 7000 6400
- . K
Vy 12300 9200 (s400)
TABLE 53
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This result is used to obtain Ege value for ZGQQ in parant?eses
in Table 5.3. Our result for V,, iq. (5.2-7), compares favor-
ably with the three corresponding values of Table 5.3, whereas

our estimate of V3 seems anomalously low,

In following the phenomenological approach, the change

of variables, igs. (5.1-12), proylded a relation between the
phenomenological strain coupljrg coefficients, V, and V3, and
the JT coupling coefficienys, Vi and Vi. This relation is given
by Eq. (5.1-15), i.e., V, = KV, with K = 2R/(3)i’ and Vy = K'Vq
with K' = 2R. As we already mentioned, the justification of the
relations between the strain and JT coupling coefficients are
subjected to the approximations inherent to the cluster model.
If we were to account for the displacements of more distant
atoﬁs than the nearest neighbors, or if the elastic constants

in the neighborhood of the ferrous lon should be different from
those of the bulk MgO crystal, the constants of proportionality
K and K' could haye expressions much different from those of

Zq. (5.1-15). Using expressions (3.2-3) and (3.2-7) for Va

and Vp, respectively, and . (5.1-15), we can relate the‘strain
coupling coefficients to the JT energy and vibrational quantum

of the approprjate mode in the following way

v, = 2,360 Ry (E;0E et (5.2-15)
v3 = 2.891 LI (33JT/2)$ em™t (5.2-16)
>

-»?&.2 .ﬁ’ o

D A Pt PP

[P Yy




()

()

146

Again, using the results of Table 5.2 pertinent to the reduction

in the spin-orbit splitting and the g-factor, we obtain

1

4
<t
1}

7900 + 2500 cm”

1

<
1]

11100 + 3300 cm”

The phenomenoclogical relation between V2 and VE gives the right
estimate for V2 to a better extent than we would have expected
since it corroborates all the experimental resultpTef Table
5.3. The estimate for V3 also corroborates the results of

Table 5.3 but overestimates.our result given by Eq. (5.2-8).

Now that it is well established that the trigonal strain
resulting from a non-zero component of stress along the [llﬂ-—
axis of a lig0 crystal is somewhat smaller than expected; a
simple explanation of the phenomenon can be prgsented.

Lange65 determined the paramagnetic behaviour of Fe”
in Mg0 using acoustic resonance technigques. The coupling of
the hypersﬁnic acoustic wave (lO9Hz) to the par;magnetic state
is observed to be related to the local vibrational components
which interact with the electronic states. Lange deduced that
the Fgg ground state of the ferrous ion is split into a
singlet Alg state and a doublet Eg state due to an internal

strain field of Eg symmetry.

- - Ll h T - - - o ) x
O P . -~ ar . st e B
ST - IR A
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King et 31.53 measured the microwave acoustic attenua-

tion of hypersonic waves in samples of single-crystal iron

doped lMgd. A comparison of the magnitude of the attenuation '
of the (Eg) compressional mode with theory together with the

absence of a peak in the (ng) shear mode attenuation are in
2+

a5 ey e

fair agreement with a model which supposes that the Fe™ 1ions

are subjected to random static strains which are predominantly

2t T

compressional (Eg) in nature.

Consequently, Lange65 and King et al.53 established the ‘

presence of strong static strains of E_ symmetry in iron doped

g
Mg0. Assuming that such random strains exist in our sample, as

LS

can be judged from the width of the Raman line, we can account

for the apparently reduced trigonal strain coupling of the

ferrous ion.

In chapter 5, we have substantiated the analogy between
the JT effect and the static strains, expressed the stress
Hamiltonian in terms of electronic operators of Eg and ng
symmetry. In subsection 3.2.2, we have treated the JT problem
of an electronic triplet state coupled to a doublet vibrational
mode. In that context, Ham 20 showed that the (Eg) strain ,
electronic operator is diagonal in the spin-orbit states and

its matfix elements within the vibronic states are written

|

f
|

(Y, N 0 (eg)| ¥ MN) = (¥,[oEg) ¥, )- (5.2-17)
- 1) S MMSNN

T,
S
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On the other hand, the (ng) strain electronic operator is of
the off-diagonal type and its effect in the vibronic states is
reduced, according to the reduced overlap of the vibrational

functions (see subsection 3.2.2). Its matrix elements within

the vibronic states are written

(Y, MN[0(Tog) [V MN') = (V| O(Tog) i) (MM) (NIN')  (5.2-18)

Ham concludes from Zgs. (5.2-17) and (5.2-18), that the stress
Hamiltonian is expressed in terms of V2 and V3, as in Eq.
(5.1-15), but ‘chat~V3 alone is multiplied by an exponential

term (orbital reduction factor) which tends to zero in the limit
of static JT deformation of Eg symmetry. This behaviour is

imposed by the Ham reduction fiftors in 9. (5.1-15), as can

be seen from Fig. 3.6.

If we conclude random strains of predominantly Eg
symmetry in our JT problem, we obtain a similar effect as if
the JT coupling to Eg deformations Qas gstronger than the
coupling to ng deformations. The lattice site of the ferrous
ion is distorted by the superposition of an Eg static strain
dynamical JT deformation. In

2g
accordance with Ham's treatment of static strain26. the result-

(random) and both Eg and T

ing effect of the Eg static random strains is to reduce the

gstrain coupling coefficient to ng strain, 1i.e., V3. No suitable

theory could be found in the literature or set up by the author
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to relate the average strength of the strain field to a random
strain reduction factor. This model provides a simple explana-
tion for the consistency of our value for V2 with the results

of Table 5.3 and with the prediction of the cluster model, and
accounts for the discrepancy in our value for V3 when cdmpared

with Table 5.3.

It is also remembered that the effect of random strains
on the value of V3 is more severe in this case because the
first excited states, Fsg and rLg. couplé.more strongly to
the stress than the ground state. The values of V2 and V3 in
Table 5.3 have been obtained from the effect of stress on the

ground state of the ferrous ion.

-1, i.e., at the pesk

Moreover, choosing ‘HwE = 345 em
of the density of states for Mg0 phonons of Eg symmetry, Fig.
4.1, and using Egs. (5.2-1), (5.2-2), (5.2-7) and (5.2-15), a
range of values for the JT energies can be calculated that
satisfies the reduction in the spin-orbit splitting and in the

g-factor:

-

1

3
3
n

80 + 38 cm™

%2(Ejp)p = 151 % 70 em™+

These values for the JT energies correspond to the column of

-1

Table 5.2 which satisfies the equalities flwiy = 345 em ~ and

\
s PR e - - . -
. g ) "—-".y:g*" "f‘:'\:w Bes . © L N e =~ T el gtk
’ &5 YR LTS I R . . LN - W, R . j g T A
P A ; . ", e 2 4
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fico, = 400 cm~*t

p » as expected from Fig. 4.1.

Chapter 6 summarizes the results and conclusions

P

established in this chapter and the previous chapters.

-
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CHAPTER 6

CONCLUSION

«

_ The nearby excited states of Fe?*

in MgO have been

. b 1 .
observed by Raman spectroscopy for the first time. We have

identified an A, _ impurity mode (185 cm"l) and an electronic

1lg

trangition at 110.5 + “1 which we associate with the

previously observed by far infrared optical absorption.' Three

%
Raman spectra with different input-output polarizations differ-

.8 cm

first excited states of the ferrous ion,

entiate unambiguously the electronic transitions from the

impurity mode transition.

In changing the polarization of ‘bhe incident laser beam

from TZg to E polamzatlon, we observe a 1.5 cm -1 displacement
of the electronlc Raman line to 112 cm'l.' This is as expected
since the only allowed transition in such a case is [ -—*f‘ug
Consequently, we assigned the r,; e level at 112 cm'l and the
F3g lenx’rel at 109 cn™ %, making the simple assumption of equal
intensity for both. transitions r; ~ r and r‘Sg Fug

The 3 et separation between the

F a.nd
3
-1 &

Qg levels is in

good agreement with the 3.6 cm ~ separation observed by Hjorsberg

et al., and fits best our experimental data from the stress

-

experiments.

Jhree different uniaxial stresses were applied to the

Mg0 samples which produced a shift in the observed electronic
] - (r [
) . 161
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ate the results obtained from other techniques and already

. stress and leads to an apparently reduced value for V3 without

3
152 :
w“ - e |
transitions. The stress Hamiltonian has been solved and the
energy level splitting have been fitted to the experiméntal
data. Chapter 5 discusses the best fit in detail. From the
knowledge of t&g Ham reduction factors corrected for the JT f \

~
effect, we extract an accurate value for the strain coupling
coefficient to Eg deformation, i.e., V, = 7140 + 1800 em™t.
A - b

At first sight, the strain coupling coefficient to ng deforma-

tion, i.e., VB' seems much too weak to explain both the reduced

spin-orbit splitting of the energy levels and the reduced elec-

tronic g-factor. Moreover, the Qalue for V3 does not ceprrobor- :

published in the literature. This fact is ﬁnderstoqd when we !
consider the random strain of predominantly Eg symmetry which !

has been reported by several authors and gives the 9 Cm'l

line-
width to the electronic transitions observed. As discussed by

-

Ham, this Eg random strain reduces the effect of the trigonal

affecting the coefficient Vzi For this reason, we are not able

to provide an éstimate for the strain coupling coefficient V3. .

Nevertheless, the wvalue for V2 leads to ‘an estimate for both

P
JT energiegf i.e., (EJT)E = 80 cn ! and 3/2(EJT&T = l50.cm"1, "

as explained in chapter 5.

’
4 -

B Tﬁese more accurate experimental results are essentiad
to substantiate existing and future theories about the JT ) f

effect of this transition metal ion. The author would like to
! & . B

point out the lack of experimental results and adequate theories

ot A

-
‘
:
TR T T ———— e m—

- s Nooe W Ae vn A

R




‘ B 4 - . - C - .t
S . R R - . A
: . . N P s RN Lo - B R T PR
e . h . PR LI VTS RO SR SN N
- ” s A o
N *‘1‘
3 5
A < -
» - f - ¢ v
' - oy
‘ " 163
\ - . , A
e v '
. ‘ . .
.

va r ‘\ - —

' ' its influence on the JT effect. C y
. roo. ;




-3

&

v g

APPENDIX A

It is a simple matter to shdw that the components of
the orbital angular'uiomentum commute with the Hamiltonian H
of the electron-electron interaction. For t-:xamI.)".'I.e:ﬁls the -

commutator of I’z and H' is calculated using,

—

2 -1/2

2 .
+ (,yi'yj) + (zi-;z‘i) ] (A-1)

and

L,= —iZ(x@- yip%j ) _d (a-2)

The comnﬁtator applied to a certain linear combination of

determinantal product state Vis given by, -~
‘ \

L (Y] - WY

or

WL, V) + (L)Y - W (L) .

which will be zero, i.e.\:[_ly,;hnd L, will commute, if the
operator LZH' is shown t0 be zero. From eq. A-1 and eq. A-2,

we obtain after a straight forward calculation,

2 N
L H = & X - WX,
zZ 2 r3
k=1 Imk ik o

Q - o |
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The same procedure can be followed for the L, and Ly components

. . , .

of the orbital angular momentum. Since H' contains no spin ’
&, : ’ ’

terms, it commutes trivially with the components of the spin.

- angular momentum.

Defining states which are linear combinations of deter-
minental functions labeled by the quantum numbers LSMLMS. we
tan show that the matrix Z:ments of H* vanish if M £ M;J Vel

The following equalities satisfied: . N .

(LSM M |WLSM M; ) M

(LSMM|HL | LSM M)

‘ (LSM M|LH] UM M)

/ ‘ M LSM M| H| LS'MM;)

Replacing Lz by either Lz. Sz. or Sz. ,.we“ show similarly that
the matrix elements of H must vanish if L 4 L, s Z s or
M £ M, in the two determinental functions involved for a

particular matrix element.

)
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In this Appendlx are listed the fifteen sp:.n-orbrt:

{f functions of the 5’1‘ ~gtates.

2g

The functions are. dffferent

o:pthonormal lineay combinations of the splnors defined by

.EqJ (203-9)’ ioe-.

L IEs) S ms) L 4s) ]

¥

where S =

*unctions are designated by Q( r:.']) where

2, 1, 0, -1, -2 is the M vaJ.ue

e

J

The ‘spin-orbit-
[ refers to ‘the

1rreducible representation of the spin-orbit states, Eq.

(2.3-10), and the subscript. i distinguishes the partners of

a given irreduciblg representation.

functions are:

‘\01 (a5 59)

oy -4

[Igz)-— il’?2)

N
O'!

[lg-i); 5|77-1>:)+

[Ig-g% Ilﬂ;2>:)

The fifteen spin-orbit

N TH
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= )= g (ranifs0-t09]) 3 (1£24152)

k)= 2 fs0 -ina)- l§12>+'lvf>'+ﬂf1>+‘?*>])i1—-(‘” 9)

@3(8Gg)=—,—’f(ﬂisz%umz)}iiraﬂm L o-13- 1>]) (|§o>) /.
= =L ([igh-1 e g 9+17] 4[ 2-154])
Al Gs) - J———(ﬁ@ 17918 9-17 9]-[ 2 + I$2>D

Glo e —&—_(ﬁ;a\m +| €~ 2lma)-2[I¢)- |f1>]) -—;—(E >)

éxld

“Q,(bg = -\.‘-/-_ %ulﬁz) [72}] [2i|§,-2);|77-2)]+ 2Iﬂ{1)+|§-1)]):-;—<|’7 o)

\__/

Qo) = = €7 1)}-[ -1)+i|’7-1)]>+ % (\ 40))

1

= 1 (3|§2>+2ilnz) 3|8-2) - 2i|9- 2>]+2[|*>’1> -|3- 1)]) J-\—?:(E@)
59 5'\7;"'—0' (

21|§2) 3|172) 2.‘§ 2+ 3|7 2>] 21[g1)+|g1)]> \/—_\_7__(‘7,0)>

. N z T T

“ PR i 10, e ir‘% .
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o

It must be shown that \ve can neglect the second-order-

terms in the Tayl‘cr expansion of the Coulomb s\am;x'g,r of inter-
' action betwsen the 1'" electron and the ligands, Eq. (3.1-1).
} \ " We can combine the first-order and seépnd-crrder terms in Eq.

(3.1-1) so as. to ob?ain.

/

V'(r,Q) = Von(r,0) + %Z ;%,[V’+Z(%)%} Gt (c-1)

. T o

) M

\

The expression (C-1) can be rewritten usM (3.1-5). The

right hand side term becomes,

A, X - i

’, l A+ N . - Q
. (L i ) i) ) a2
- ' N k (c-2)

L J

We see that the second-order terms in Eq. (3.1-1) result in a
correction to Eq. (3.1-5). The correction terms involve the
ratio Qu/R, which is smaller than 0.01 for weak JT coupling,
as calculated from Eq. (3.2-2). The whole correction is
smaller than 1% ahd, therefore, can be neglected since larger

errors are gxpected from thecluster model.
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More commonly occurring Tesseral harmonics:
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APPENDIX . ) ‘

The Ham i'egiuct‘?on factors, KE and KT. as defined in
Chapter 3 , are perturbéd.\bj *he JT interaction betweenythe
no-phonon states and the one-phonon states. Only the reduction

. { .
factors corresponding to the,J =1 and J =2 spin-orgi)t gstates

- are considered since the J = 3 levels are not obsdrved experi-

mentally. Chapter 3 gives the guidelines he pert\.srbation

' ‘ca.lcu-lations. The perturbed reduction factors are:

(i) J=1 (algg level) |
7 ’ ‘
4 ,

T16 + X'EGJ("”‘“’E) + xTGZ (g’ “‘JT)

e
m
~~
-l
N’
L]

X
-—f
—
—d
S
n

-%— ~+‘ pd E GQ(g’n““‘E):" XTGs(f,wT))

- TN
(11)  J=2 ([3q,al,y levels)

KE(2) = 12;— [—;— + 1564('5’“’5)"‘ 'ers({’w+)]

- 1. i ,/
.{ \\
The following definitions are useds ~ ‘

XE= (EJT)E/ﬁwE b

% = 3(E7)y / 20

Rt td 2

R R S LT A AL W L
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ol G.(Lw) = 143U 427y __24y _ 27V,
0 A(5) = 55 40 227125 357125 2‘”125 25

1.3 24 279 117 ;
G,(Zw U, +=2U 11 "/ :
(%) 2000 T80 213125 % 000 25 Y000 25 A

. 1 1,
G = PO | IRy '359
al%) 2000 16 22 125 Ves- 1000 a5+ 00

E 1 R s 5
2 23 23

2

AN

£
i

: ==l _+3R,.2R__23R __55s
G5(2) = 55 4oo 227725 %7200 378 3 .

-
-1 1 R .2 R 593 _____s .
28 ta00 22775 55%300 22" g 22

(9]
(]
P~
&
]

where

) C Uy, = (8o (Rwt2g)

Uyg = (Resf/ (Rt s2)’

\\ “ U, = (ﬁw)/ ('hw+2§)(1‘_"-)+é§)
V,, = S0/ (fuw+2f)(fw+5%)

2 ¢

Ry = (R (Rw-22f

Ry, = ()7 (Rw+ag)

7

R,, = (fw)/ (fio-25) (nw +33)

S,; =\§ﬁw'/ (fiw - 29) (fiw +3<)

5T T = e B o ~
' IR TR L o b . oy Tewy ui tAE g PO '
At r e i - - ¥ ":’.“ - R R . a T ke, 3 by R NN VR S,
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O APPENDIX E

s ‘ In this Appendix are giiren the d‘.i.fferént~ Raman intensity
h matrices, as mentioned in subsection 4,3.2 . London”\ calculated
the §aman scattering \:en‘sors for crystals of"‘éh symn#try. The
corresp;md_ing Raman intensiqty matrices for crystals having
their symmetry axis [001], [010] and [100] aligned with the}
laboratory frame of reference Z, ¥ and X, respecti‘vely, are

obtained by squaring the elements of the Raman scattering

tensors calculated by London, i.e.,

- 1 0 o] . i 0 0 : 01 1
01 0 01 0 ) 1 0 1
0 0 1 0 0 &4 1 1 o
A1g Eg ' vTZg (Ecl)

Knowing the scattering geometry, we obtain the irreducible
representation of the scattering tensor with the help of

Eq. (4.3-2). PFrom (E-1), we obtain:

~

Z(YY)X ——> 'Alg + E
Z(XY)X —> T

S

NNow. if the’ [100] and [Oll] axes of "the crystal are

2g

aligned with thesZ and Y axes of the laboratory frame of
reference, (E-1) must be transformed accqrdingly by choosing
the pfoper linear combination of elements of Raman’,scattelr-

ing tensors. So, 2Y-»x(y + z) = zy + xz, where X, y, z belongs

.
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X . . ' ARG
ir\,‘""’” PRV Rt / ¢)§7‘ A w.‘»;x lbg,,%i;‘zgfﬁ‘ﬂ;*gi.(
- i
to the ‘crystal fz‘axﬁe‘ of« 'referencé. Gonéeguant?ly. the new
elements Rzy of the Raman sca‘ctering tensor isugiven by a.
T linear combination Rey * Rz OF the London's Ramen scattering
l " tensors._ //\

B ‘-‘ ? i “ i i r “ /
In the following are given the Rama:f\intensifcy matrices -
P -appropriate for thecrystal orientations of Figs. 5.4 to 5.61

| (1) [110]=>2z, [ooi»Y, [170]=xX

,\ ’ | -

: 1 0 O 1 0 3 1 10
o 1+ o 0 4 0 10
. 0 0 1 3 0 1) 0 1 1
,A1g Eg T2g
’ L}
Z(YY)X —> Ag+4Eg ; Z(XY)X—> Tpg
* ) .
1 - & ) .
: () (1Z)>z, {111y, [170]-X _ .
: , . .
g ‘ 1 0 0] 1 1 11 24
! o 1 of ° 2 2 Y3 % 1
|
| 0 0 1 12 tf 24 Y5 1 ¢
k Asg Eg . Te
Z(YY) X > Ag+¥%T,g i Z(XY)X->2Eg +14T,g
: - -
, ,
AT oy pnincy vy T o -
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(m [100 ~,>z,

&

Z(vy)X—> Aig*Eg+ Tyg;

(i) Eﬁ]»i, (iio]->y, [111]—

Z(YY)X—>K g+Eg+ Ty

1]-sv, [oT1]>x

2]

O o~ W

/\

.‘ R ¢ _

171 0 ~1

o 1 A

4 B B0 I P ¢

Z(xY) x—>3Eg

2
L]

x |

2 1 %
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APPENDIX F

) .~ In this Appendix is sﬁown how to calcéiate the splitting
of the spin-orbit energy levels in the presence of uniaxial
stress. The stress Hamiltonian, Hg, ,5.1-15, is solved for the

_ three different.types of strain, i.e., tetragonal, trigonal
and orthorhombic s€iain represented by Figs. 5-1 to 5~-3, res-
pectively. *

The tetragonal strain

. When an external pressure is applied along the [ioo]-

2+ sample, Fig. 5.1, a tetragonal strain

axis of fhe Mg0O: Fe
occurs which 1ifts partially the orbital degeneracies of the
energy levels prior to the deformation, see Table 5.1. The
resdlting splitﬁgng of the energy levels is calculated from

the stress Hamiltonian for tetragonal strain
' %
2
HO(Dyy) = VyKgp(e,/2) (377 - J(J # 1)) (F-1)

where the definition of the electronic operator, Eg Eq.
(3.1-10a), has been used. In the spin-orbit states, we must
solve a secular determinant for each value of J. In'agreement

with Table 5.1, we obtain the following energy levels:
.- (1) . J=1
0 : 27
(ag: =3Z+op+ P -K . Vy 8y (F-2a)

b gt  -3f+op-Zpskmy, % (F-2b)
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) (11)  Ja'=2
| Gg: - Zrp+20 43KV, o . \  (F-2c)

¥ 3g: '{W‘ +2p -3K@V, o (F-lZd) '
Get - {+t.a. +30 +3K@N, o (-2e)
Bat  -Leprap -3KeN, % (P-2f)

where the Ham reduction factors KE(J) are given in Appendix D.
In section 5.3, these energy leg}ls are used to fit the experi-

mental results presented in Chapter 4. i

§ Thé trigonal strain )
A uniaxial force applied along the [}lg ~axis of the

MéOzFe§+ sample, Fig. 5.2, causes a trigonal deformation of
the lattice which 1lifts partially the degeneracy of the energy
levels prior to the d;;sfmation. but leaves the rSS level

b unsplit. The resulting splitting of the energy levels is

calculated using the stress Hamiltonian for trigonal strain,
8 -
H(Dyq) = Vakp (eg(Iyd, + T80 + en(3,0, + 1.0,)
+ eg(Jny + Jny))

@ which can be rewritten in a more tractable form using the

T yrA
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* raiging and lowering operators,

H3(Dgq) = VgHqy 2(1) ( 2% )(,g, %3 7,)
1 . . ‘
+ (1-1)(0 3, + 3,90 - (F-3) . .

where we have used e(T,) =6¢=@y=8¢, Eq. (5.1-10c) and the

definition of the electronic operators Ty, T», T¢, EZqs. (3.1-10c)

to (3.1-10e). Again, taking account of the second-order spin-
orbit f{amilton';an. we must solve a secular determinant for
each value of J which give, in agreement with Table 5.1, the

following energy levels:

(1) J=1
lg -3{+9t1-+-2-5-7-(3 - 2K (1)V, e(1) (F-4a)
g -3 ¥ +9p +%_-,Z<> +K1N; e(1p) (F»4b)

(1) J= 2 | i

’ Yo
Ge:  -¢ +t‘+3(3"21i(@*29 +[((3-2(’)2+ ﬁﬂ ) (F-be)
. 1 (o tte add ] "

[;9. -{+tn+3€-z @+2(J -!(5-29)-#-8@] (F-#d)
g -{+t;+3€ -6K(2)V; o(1,) (F-ke)

where @=6KT(2)V3e(JT2). We observe that the stress Hamiltonian

makes the two Gg states interact)and admixes their wavefunctions.

S
7
i
A

|
|
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|
i
|
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This interaction causes the two doublet eﬁergy levels issued

from the [;g and [Zg levels (0, symmetry) to repel each other.

Eventually, the singlet state issued from the (Zg level,

Eq. (P-b4e), will cross fhe doublet state[;g. Eg, (F-4¢), at

sufficiently high stress. In fact, this accidental degeneracy

is lifted if e account for the matrix elements betwéen these
.levels and the J = 1 states. Aﬁain. this correction being

small it can be neglected. \\

—

The orthorhombic strain

An appropriate stress applied along the [ll@ -axis of

an MgO:Fe2+

samples causes a uniform orthorhombic strain, as
shown in Fig. 5.3, which 1lifts completely the orbital degenefacy
“of all the energy levels considered. The orthorhombic strain
is obtained schematically from a teﬁragonal expansion and a
suitable component of a trigonal compression. The resulting

splitting of the energy levels is calculated from the stress

Hamiltenian for orthorhombic strain

HO(D,y) = Kp¥yte /2) (302 - (7 + 1))
d

v Ky ex(3,00 + J.0,) (F-5)

where the right hand side term can be written alternatively in

terms of raising and lowering operators as

(Tpdy + 3,0,) = (1/21) (3% - 52).

b T, g g Y LN v LA - EN - . .t :
EDEE DL COdd S0 P . M3 L R g [
FESWIN Lo T P RTINS .1 . - -, AT & ,@ Lor . woot
R ol oAk - “ L e W @ i

J




('3 The, orthorhdmbic stress Hamiltonian and the second-order spin-.

orbit Hamiltonian are treated simultaneously to yield the

bl

following eigenvalues of the secular determinant for each

value of J:
(1) =1 ’
Fay -8¢+9p +2Lp K1V, e, (F-6a)
%9/ t* 5 E( 2
gg’ _3§+9\"' +251€ +K OV, 322'K10~3 o4 (F-6b)
. gg: -3‘{+9‘¢ +251(> +K (Y, %!-prg C (F-6c)
(11) J=2
(1‘9 - {+(.;.+2€ +3K[2N, e (F-6d)
5 [ 2 ks ’
. - hd — - - auy 5 -
o {*t”zf’ %f 2“(? 02‘)"3(5 (F-Ge)
— v -2 ~
; 5,.1102 402
Gat  -Trpedpeiio-: p-%)+20 J (F-61)
~ 0k
[;g: -f+r+3€ -3K£2N2%Q+SK§2N3 ey (F-6g)
g - -{+tu3(: - 3K2W, 83-3K(PV; e (F-6h)
() where & =6K.(2)V,e  and (5=6KT(2)V3eg. In this case, we see
that the rig level, Bq. (F-6e), issued from the Gg level (0,)

JE
3

— : e i - -
g g - Ry R RTINS R A A = Bk
A\,‘,a.)ﬁ?%‘ A, R . el . « x R - : PO
3ot 7 T R R o 4 ' % h e
-V."_,N‘!‘ i Wk . A N , e
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() interacts with the rég level, BEg. (F-6f), issued from the rl:x-g
" level (0,) and, effectively, repel each other. ’
It is interesting to note, ‘as mentioned in subsection
4.4,2, that the energy levels preserve. their center of grayity”
when split by either of ‘the three different strain in the h oo
1
crystal if the split energy levels do not in{eract between then. |
' v
\\
/
1
& . ,%;i'
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