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Dimly felt, sounds yet faint, 

now clarion, 

falls the shroud 

to behold the spring smile of 

a mountain flower. 
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Abstract 

A new distortion measure for audio coding is proposed, posed as a distance measure on the space 

of excitation patterns. We investigate the psychoacoustic properties of the measure, as well as the 

implementation issues that arise under a constrained-distortion co ding structure. Experimental 

results show that the excitation distortion metric pro duces higher-quality coded files than the 

usual Noise-to-Mask ratio measure, at the same rate. 
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Sommaire 

Une nouvelle mesure de distortion pour codage audio est proposée sous la forme d'une mesure 

de distance dans l'espace des formes d'excitation. Nous étudions les caractéristiques psycha

coustiques de la mesure, ainsi que les facteurs reliés à l'implémentation, issus d'une structure de 

codage contrainte par la distortion. Les résultats expérimentaux démontrent que la métrique de 

la distortion d'excitation produit des fichiers codés de meilleure qualité que ceux produits par la 

mesure conventionelle utilisant le rapport entre le bruit et le masque, lors du codage au même 

débit. 
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Prolegomena 

"Do your own thing. Your reward will be doing it, your punishment having do ne it." 

-K. Pot as 

1 

The problem of audio coding concerns the approximate representation of a sound signal, while 

utilising the fewest resources possible. We can exact if y this statement by replacing the word 

"approximation" with a distortion function D, and the word "resources" by the rate function R. 

If x is a target signal and i: its representation, audio co ding is nothing more than the goal of 

- in so far as it is possible to do - the simultaneous minimization of D(x, i:) and R(x, i:) - a 

classical problem certainly embracing applications of far greater generality than merely the class 

of audio functions. 

The apposite questions are, of course, how to define D and R appropriately. For the latter, 

there is a consensus: the definition should in sorne way quantify the cardinality of the set of 

representations, whether deterministically or statistically. More difficult, on the other hand, is the 

specification of D. Nearly everyone will agree with the following abstract definition: a distortion 

measure on a set S is a function D(x, y) : S x S -+ jR+ which quantifies the difference between 

two elements x, y from the set S. This prescription, naturally, contains insufficient structure to be 

useful even to mathematicians, who have gone lengths to find constraints on D that are intuitively 

appealing and le ad to generalised notions of closeness and continuity (such as those of metric and 

topological spaces). The aim of the psychoacoustician is to find models of D leading to faithful 

representations of physiological and psychological audit ory phenomena. An audio engineer seeks 

the constraints upon D which are useful (not necessarily truthful) to the application at hand: 

sorne approximation to the term "auditory distortion" - an ill-defined and somewhat subjective 

concept - which yet may be efficiently incorporated into coding structures. 

Subjective as the term may be, most contemporary audio coders do, nevertheless, make use 

of simple rules borrowed from the science of hearing, psychoacoustics, in an attempt to formulate 

rough measures of distortion. In particular, modern coders exploit the phenomenon of auditory 

masking. This is little more than the rendering of sorne sound inaudible by the simultaneous 
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presentation of a (usually stronger), masking sound. The phenomenon manifests itself in a myriad 

different ways in everyday life; noise from a passing train rende ring conversation impossible is 

one oft-experienced example. Models of mas king lead to the definition of a psychoacoustically 

motivated distortion function, known as the Noise-Mask-Ratio (NMR). That it has proved more 

successful than distortion functions rooted purely on mathematical concerns - squared error, 

for example - is a testament to the relative accuracy of the models in capturing the content of 

auditory difference. 

This thesis presents an alternative to the ubiquitous Noise-Mask-Ratio. lndeed we will ar

gue that conventional approaches utilising mas king results are often inappropriate, and should 

be replaced by a more general class of distortion measures, which we term measures of "Exci

tation Distortion" (ED). Like NMR, ED measures will be psychoacoustically founded; they will 

be, however, applicable in quantitating audit ory difference even in scenarios where mas king is 

not involved, while reducing to masking results in the appropriate limits. Our main goals will 

be to: 1) Construct a conceptually sound (both from the mathematical and psychoacoustic view

points) framework for ED, 2) Examine the issues which arise when applying ED in the coding 

process, 3) Develop efficient allocation algorithms for minimizing ED, and 4) Perform comparative 

experimental tests between ED and NMR under a coding context. 

The structure of the thesis naturally mimics the sequence of stated aims. We begin with a 

review of the concept of excitation pattern, which is so critical to both formulations of ED and 

NMR. Linearised models of the excitation transformation are developed, including a linear Bark

domain transformation. The relationship between the excitation pattern and absolute threshold 

is examined, for which purpose we introduce the concept of an internaI noise excitation den

sity. Finally, we tantalise the reader with the possibility of complex excitation patterns, which 

preserve sorne phase information. This idea may prove particularly germane toward a complete 

characterization of distortion. 

Chapter II proceeds to argue the deficiencies in the NMR approach, motivating the need 

for other distortion measures. The notion of excitation distortion is then formally introduced, 

buttressed with a mathematical groundwork consistent with psychoacoustic threshold phenomena. 

This cent ers around the concepts of gain-invariance and scale-invariance. The class of aIl gain

invariant functions is derived, as weIl as a generalisation to Zwicker's 1 dB just-noticeable criterion. 

We proceed to design and specify a parametric family of distortion measures, which are optimal 

approximations to loudness difference. We then examine the properties of this class, and its ability 

to predict key psychoacoustic results. 

The subsequent chapter considers the application of the newly-designed metrics to the audio 

coding problem. After an overview of the concept of equivalent distortion measures and basic ma

terial on quantization, we introduce the operational rate-distortion paradigm. Dependent versus 
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independent quantization problems are defined in a very general sense, and we show how ED can 

assume either form depending upon the domain of quantization. The possibility of excitation

domain coding is briefly touched upon. A constrained-distortion framework is setup, causal coding 

is considered, but discarded. Next, non-causal (global) constrained-distortion coding is investi

gated, most urgently in response to the issues raised by lapped transform representation. We 

review what the operational rate-distortion literature has to offer in terms of solving the bit

allocation problem for dependent quantization problems in an optimal way, as weIl as standard 

greedy approaches to bit-allocation. Both avenues turn out to be rather unsatisfactory, in terms 

of either time-complexity or inability to achieve distortion constraints. A new time-efficient incre

mental bit allocation algorithm is developed to minimize ED (as weIl a host of other measures) 

in the stream coding context. 

The final chapter exhibits our efforts to experimentally validate ED with respect to NMR. 

The techniques of the previous sections are applied to create constrained-distortion coded files, 

and matched-rate pairs are subjected to listening tests. 

While this thesis records - as much as it was within the author's ability to do so - a 

somewhat coherent and unified account of the always messy and non-coherent research process, 

there yet remain, from time constraints, a plenitude of un-investigated paths and possibilities. The 

present work will perhaps thus read less as a finished product, and more as the reminiscences of 

an organized diary, collecting sun dry theorems, notes, analyses and diversions that have occurred 

along the way. We have attempted to create a somewhat comprehensive record; a certain brevity 

has been correspondingly exacted. Thus, for instance, we have provided no proofs to any of the 

theorems. The omission allows a succinct presentation of qualitative content; at any rate, the 

intrepid reader will want to attempt these exercises for himself. In this way, it is hoped that the 

present document will serve as a use fuI initialization point for the tyro wishing to pursue these 

ideas further. 
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Chapter 1 

Aspects of the Excitation Mapping 

1.1 Basic Theory of Excitation Patterns 

An excitation pattern is a function quantifying the (average) physical activity of hair cells along 

the basilar membrane, in response to a stimulus. One of the most successful concepts in psycho a

coustics, excitation patterns provide unified explanations of such disparate phenomena as pitch 

discrimination, just-noticeable differences in amplitude, masking, loudness and absolute threshold, 

to name a few. 

The distributions are not usually measured directly with probes, but indirectly by observing 

masked audiograms, or calculated from the signal power spectrum via a model. Such models 

broadly conform to the sequence of steps delineated in Figure 1.1. What follows is a compact 

review of each of these components, and a collection of a few standard formulae which will prove 

use fuI for calculations. The reader may consult the standard references [37J and [17J for further 

elaboration. 

For the sequel, we use the following symbols to denote the signal at each stage: 1) P -

power spectrum, 2) P - ear-filtered power spectrum, 3) E - frequency-spread signal (excitation 

pattern), 4) E' - frequency spread signal plus internaI noise, 5) ft - time-spread excitation 

pattern. 

1.1.1 Fixed Ear Filter 

The frequency response of the transformation from free-field to the inner ear has been measured 

with fair accuracy, and the data enumerated in an ISO standard. Moreover, bounds on the 

response from the lOth-90th percentiles are known, as well as variation with respect to age [37J. 

Analytical approximations to the response data usually involve a tripartition: a term for each of 

low, middle and high frequencies respectively. One such example is the formula contained in the 
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Power Spectruffi 

Excitation Pattern 

Fig. 1.1 Generic Excitation Model 

ITU standard, "Perceptual Evaluation of Audio Quality (PEAQ)", valid for frequencies f > 0 

(Hz) [14]: 

HdB(W) = -2.184(f /1000)-0.8 + 6.5e-0.6(f/1000-3.3)2 - 0.001(f /1000)3.6 (dB). (1.1) 

1.1.2 Critical Band IntegrationjFrequency Spreading 

The cochlear membrane is most often modelled as a continuous bank of (possibly non-linear) 

auditory filters. The excitation pattern of a signal S at frequency f is then (theoretically) defined 

as the power at the output of each filter centered at frequency fin response to signal S. Practically, 

one obtains excitation data as follows. For simple stimuli, such as sinusoidal functions, the 

excitation pattern E is determined first by experimentally measuring the masking threshold M(w) 

for a noise masker and sinusoidal maskee S with frequency w. E is then assumed to be a scalar 

multiple of M, with the appropriate scaling constant set as the ratio between masker and maskee 

powers when w coincides with the center frequency of the noise masker. More complex excitation 

patterns are built up as superpositions of these basic sinusoidal excitation vectors. 

Perhaps the most coherent model of the excitation transformation, and one that summarises 

the description ab ove , is given by Moore and Glasberg [18], [8]. Instead of partitioning the 

excitation transformation into the distinct steps of 1) spectrum integration over unit Bark-lengths, 

and 2) frequency spreading, as do es Zwicker [37], the two are conflated by introducing auditory 

filters of infinite support but of finite area. This allows for compact representation of the excitation 

pattern E(D.) at frequency D. as: 



1 Aspects of the Excitation Mapping 6 

E(D) = 100 

Wp(w, D)P(w) dw (1.2) 

where Wp(w, D) is the kernel of audit ory filters and p(w) is the input (ear-filtered) power spec

trum. We have appended a subscript P to the kernel to indicate that the filters are level-dependent 

on the argument P. Otherwise, this transformation very much resembles a linear operation. In

deed, using sinusoidal inputs p(w) = o(w - w'), one sees that the basis functions are of the type 

W(w', D) with fixed w'. Assuming the following parametric form for the auditory filters, 

( 
lW-DI) ~ W(w, D) = 1 + p D e-P ri , (1.3) 

Moore and Glasberg fitted the experimental data to obtain an algorithm for the shape parameter 

p, as a function of P, and thus for W. We shall not reproduce it here, since the result is somewhat 

complicated; rather, we shall investigate a linearised version in Section 1.2. 

N on-Linear Addition of Patterns 

Let i\(w) and P2(W) be two power spectra with localized, disjoint supports. If the frequency sep

aration between the two signaIs is large, then (1.2) gives the total excitation pattern E(P1 + P2 ) ~ 

E(Pl) + E(P2 ) with E(Pi) the excitation due to Pi alone. If the shape parameter p is constant, 

then (1.2) is always a linear superposition of basis functions. It has been observed, however, that 

the masking threshold of the sum of two sinusoids is somewhat higher than that which would be 

predicted by a mere linear addition alone [16]. This "excess masking" has motivated sorne psychoa

coust ici ans to define a non-linear superposition property via E(P1 + P2 ) = (Eq(PI) + Eq(p2 ))1/q, 

o < q:S; 1, termed "spreading in the q-power domain". Typical values for q range from 0.2-0.4. 

One may define q-power domain spreading more generally using 

(
f'XJ )l/q 

Eq(D) = Jo Wp(w, D)Pq(w) dw (1.4) 

It is an immediate consequence of Jensen's inequality that Eq(D) :2: Eql (D) whenever q :s; q' -

thus low values of q increase the amount of additional spreading. 

Excitation and Masking 

As noted above, the excitation pattern is usually experimentally determined by observing the 

masking pattern for a critical-band noise masker with sinusoidal maskee. That it thus provides a 

way to compute the masking threshold for this case is hardly surprising. AlI that is required is 
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to determine the requisite scaling factor, or what is known as masking offset as a function of the 

masker frequency. Both Zwicker [37] and Kapust [32] have provided approximations to this data; 

the latter for w > 0 (Hz), 

SdB(W) = -2 - 2.05 arctan(w/4000) - 0.75 arctan (2.~6 C;or) , 
s(w) = lOsdB/IO. 

(1.5) 

(1.6) 

The masked threshold M(w) is then given by s(w)E(w). While convenient, the reader should be 

reminded that this formula is only valid rigorously in the noise-masker tone-maskee scenario. It is 

a commonplace experience, particularly in the audio engineering literature, to speak cavalierly of 

the mas king threshold for a given signal, independently of the target; this is a useful simplifying 

device, but only an approximation. 

Bark-domain Patterns 

It is well known that the bandwidths of the audit ory filters increase with center frequency. This 

is a direct consequence of the logarithmic-like mapping between the frequency of a sinusoidal 

stimulus and its place of maximum excitation along the cochlear. The transformation between 

linear frequency and what is called tonal frequency is a further warping that is sometimes included 

in models of excitation. Varying measures of tonal frequency have been formulated, su ch as the 

Barkhausen scale [37] or "number of ERBs (Equivalent Rectangular Bandwidth)" [18]. We shall 

make use of the Bark frequency conversion formula of [14]: 

n = 650 sinh(z/7), (1.7) 

where n is Hertz frequency and z Bark frequency. Its convenience lies in the fact that the 

expression is easily analytically invertible, something not shared by the conversion formula of 

[37], for instance. Such conversion is most usefully applied in re-scaling the frequency axis of 

an excitation pattern (more generally, any function of frequency), for instance by substitution of 

(1.7) into (1.2). 

1.1.3 InternaI Noise Excitation 

The commonly accepted mechanism behind absolute threshold is that omnipresent internaI noise 

masks low-Ievel inputs [37]. This noise excitation is an additive signal possessing strong low

frequency components, rapidly decaying above 500 Hz. Most computations of excitation in fact 

do not include this additive term; internaI noise finds application mostly in loudness models; for 



1 Aspects of the Excitation Mapping 8 

example that of [20]. One exception is the PEAQ standard [14], where an internaI noise term is 

added to the power spectrum prior to spreading. This has the effect of introducing a lower-bound 

on the mas king function, approximately accounting for absolute threshold in a way less heuristic 

than, for instance, Johnston's psychoacoustic model [15]. 

We can define €(w) as the noise excitation level per critical band necessary to mask a just

noticeable sinusoid at frequency w [37]. The definition gives a constructive way for its computation: 

if s(w) is the threshold factor in a general critical-band-wide noise-masking-tone situation (not 

necessarilyat absolute threshold), then 

( ) 
_ IH(wWA(w) 

€ w - s(w) (1.8) 

where IH(w)12 is the square magnitude response of the fixed outer-middle ear filter and A(w) is 

the power of a just-noticeable sinusoid. 

Since the threshold variable s is computed with respect to a unit critical-bandwidth noise 

masker, the form of the internaI excitation given above is appropriate for models using auditory 

filters of unit (l = 1) critical-band width. There are a number of psychoacoustic models in the 

engineering literature which integrate along sub-critical band lengths, among them the MPEG-I 

standard (l = 0.34 Bark-width), as well as PEAQ (l = 0.5 and l = 0.25). While these sub-critical 

band models are incapable of predicting even the simplest mas king phenomena, this does not 

me an they cannot be useful in applications. Our aim will be to provide a description of €1(W) 

which is consistent for a given bandwidth integration length l. 

As an initial step, we define the following intermediary: 

Definition 1.1. Let N[a,b] be the total internal noise excitation power lying in the frequency 

interval [a, b]. Then the internaI noise excitation density is defined as the function p(z) satisfying 

N[a,b] = J: p(z) dz, for all a, b > O. 

The main idea is this: ostensibly, the internaI noise power spectrum is sorne fixed power 

function. !ts excitation power spectrum density, and not the integrated critical band power, is 

then the more fundamental entityj obtaining the density allows the concept of internaI noise 

excitation to be "ported" to aH excitation models. In particular, we have the relation 

(1.9) 

where bl(Z) is an interval of length l centered on bark frequency z. 

The derivation now proceeds with the following prerequisites: (1) data (or an equation) A(z) 
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governing the absolute threshold of hearing, (2) data IH(z)1 2 governing the square magnitude 

response of the middle-ear transfer function, and (3) data s(z) governing the threshold factor 

for noise-masking-tone scenarios. From these elements, the excitation noise power density p is 

obtained. 

Consider the power spectrum of a test sinusoid with frequency z and level just at absolute 

threshold A(z). The power spectrum of the filtered test sinusoid is 1(z) = A(z)IH(z)1 2 • The 

integral of p(z) over a region in the Bark domain gives the power of the internaI noise in that 

frequency band. According to masking models, the ear integrates along one critical bandwidth, 

and hence the test sinusoid at bark frequency z is masked by the internaI noise in the critical 

band whose center is at z. The relation between the density and the power of the filtered test 

tone then must be 

l
Z+~ 1(z) 

1 p(u)du=-(), 
Z-"2 s z 

1 
z>- 2 (1.10) 

where s(z) is the threshold factor. Equation (1.10) de fines an integral equation which can be 

solved for p(z). We now have our first theorem: 

Theorem 1.1. The solution ta (1.10) is given by 

() 
1(00) ~s(u+i+~)1'(u+i+~)-1(u+i+~)s'(u+i+~) 

pu=--+~ 
s ( 00 ) i=ü s2 ( U + i + ~) , 

u;:::o (1.11) 

As an example, with the concrete formulae provided in previous sections, the boundary condi

tion reads ~t:j c:: 4.36, and p(u) is as shown in Figure 1.2. This function can now be used in (1.9) 

in conjunction with the frequency-bark conversion formula (1.7) to obtain El(W) for any l. The 

reader can prove as an exercise that with l = 1, El(W) reduces to (1.8). We can also define new 

perceptual variables E'(w) = E(w) + El(W), with the interpretation that E' represents the total 

physical activity along the basilar membrane, due to both external and internaI contributions. 

The name "total excitation pattern" seems appropriate for E'. 

1.1.4 Time-Spreading Models 

The use of time-spreading in excitation models is directly analogous to the function of frequency 

spreading; where the latter models simultaneous inter-frequency masking, the former can account 

for temporal masking. We will content ourselves with an abstract description of the common 

features of these models for the sake of completeness. 

Let E'(t, w) be a set of (total) excitation patterns, indexed by a time parameter t. Then the 
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Fig. 1.2 Internal Noise Excitation Density 

4 

time-spread excitation pattern can generally be given by: 

E(t,w) = i: K(Â,w)E'(t-Â,w)dÂ. 

10 

(1.12) 

The kernel of integration will consist of a type of double-sided decaying exponential, such as: 

(1.13) 

The time-constants of decay ki > 0 are directly related to the durations of forward and backward 

masking; when thus expect k 1 > k2 . Moreover, they may be functions of frequency (longer 

duration times for lower frequency), whence comes the dependence of K on w. In some models, 

such as the time-varying loudness model of [9], the parameters ki de pend upon the non-spread 

excitation itself - for instance the presence of a signal attack or decay, In this case, the linear 

convolution above becomes a nonlinear mapping, just as it was with level-dependent auditory 

filters in (1.2). A detailed discussion of the temporal window shape K as a function of frequency 

and level is given in [25]. 

1.2 Discrete Linear Excitation Transformation 

The parameter P appearing in (1.3) controls the slopes of the auditory filters. In general, p, (in 

addition to being dependent on filter center frequency z), will be a function of the overall power 

level Lz entering the auditory filter: p = p(z, Lz). Moreover, an even more precise modelling [8] 

assumes asymmetric auditory filters parameterized by upper and lower slopes values Pu and Ph 

respectively. However, for moderate sound levels, Pu ~ Pz = p. Suppose that we fix p constant for 



11 1 Aspects of the Excitation Mapping -- ....... _----_. .--==--_._-----------_._----------_._-----

the moderate sound level Lz = 50 dB SPL. Then p reduce$ to a univariate function of frequency, 

the kernel W in (1.2) is independent of the input power spectrum, and describes a linear operator 

on the space of power spectra. 
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Fig. 1.3 Excitation Pattern for 1 kHz sinsusoid at varying levels as computed by the 
excitation transform (1.2). Solid: level-dependent transform; dashed: linear transform. 

Figure 1.3 shows the predicted excitation pattern of a sinusoid at different power levels for 

both the full model and the linearised one. While there is a slight dependency on level in the 

lower slope of the patterns, the main difference lies in the so-called upward spread of masking at 

high power levels, which cannot, of course, be accounted for by the approximation. The linearised 

mapping still provides a reasonable replication of the true excitation pattern up to amplitudes in 

the ambit of 70 dB SPL, however. 

What motivations are there for such a linearisation - and the consequent loss of modelling 

accuracy? Besides the nearly captious observation that we gain in computational complexity 

of the transform, the main advantage is that the simplification allows for the existence of a 

simple analytic inverse to W, mapping from excitation to power spectrum. Indeed the idea of 

excitation-domain coding (Section 3.3.1) is only feasible from a computational point of view when 

a level-independent transform is used. We shall also see that the viewpoint of excitation as a 

linear operator on power spectra provides addition al insight into the boundaries of the excitation 

domain, and of so-called "negative" power spectra that may result from quantization points 

outside the domain. 

ln what follows it will be convenient to combine the steps of ear-filtering and frequency spread

ing into one operation, so that the mapping between a non-ear-filtered power spectrum P and its 
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excitation pattern E is given by: 

E(O) = 100 

Wp(w,O)IH(wWP(w)dw == 100 

Up(w, O)P(w) dw (1.14) 

For use in computer algorithms, (1.14) must be frequency-discretized. Typically, one is given 

a sampled version p of the continuous power-spectrum P, as calculated, for example, in the 

form of aN-point DFT. It should be obvious that (1.14) can be approximated with a matrix 

multiplication. When the kernel U is linearised, the matrix in question is fixed. We then seek a 

matrix U : !RN ---; !RM such that Wp is a sampled version of the continuous excitation pattern 

E(p).l 

There exist an infinite number of ways to approximate the integral (1.14) with a summa

tion (Riemann sums, trapezoidal sums etc.), hence an infinite number of possible transformation 

matrices. Moreover, the matrix will depend upon the location of the desired frequencies, and 

its dimensions dependent on the number of desired output frequencies (it is clear that one can 

compute the excitation pattern to any desired resolution, in a directly analagous way that a DFT 

can compute to arbitrary resolution the spectrum of finite-length sequences). 

Let us consider the special case N = M. How ought we to select the sampling locations of the 

excitation pattern? This will depend upon whether we seek a representation in linear frequency, 

or in Bark frequency. The former implies a uniform sampling in linear frequency, and the latter a 

uniform sampling in Bark frequency (correspondingly, non-uniform sampling in linear frequency). 

In practice, the power spectrum will always be delivered by a DFT; hence the sampling of the 

input is uniform in Hertz frequency. Let us assume then that p coincides with the spectrum at 

the frequency points Wk = kÎN, for k = 1, ... , N, and where Fs is the (time-domain) sampling 

frequency. 2 The following easy theorem then provides a sensible choice for the transformation 

matrix: 

Theorem 1.2. Let Wk = kÎN, for k = 1, ... , N. Let 0 = g(z) be a Bark-Herlz conversion 

formula. Then a matrix U mapping from power spectrum to excitation is given by 

1. (Linear-frequency Excitation Transform) 

(1.15) 

2. (Bark-frequency Excitation Transform) 

(1.16) 

1 Not E(P). 
2We ignore the De contribution. 
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where nk = 9 U.r g-l (11-)), and 'Y is an interpolation factor normally set to 'Y = ffi. 

Remark: The factor 'Y is used as an interpolation constant from the sam pIed power spectrum 

to the continuous spectrum. Sometimes it is useful to change the nominal value of 'Y, depending 

upon how much information is known about the spectrum. For instance, if it is known that P is 

a harmonic complex, with harmonic frequencies coinciding with the sampling points Wk, then the 

best selection is 'Y = 1. In the absence of other information, 'Y = ftt is a prudent choice. 

The Excitation Pattern and Invertibility: 

Having defined two concrete square matrices for the excitation transform, we may ask questions 

about their invertibility - or st ronger - their conditioning. Recall that if '" is the condition 

number of a matrix A, then loglo'" gives approximately the number of decimal digits lost in 

accuracy for the computation A -lx. In Figure 1.4, we have plotted the condition numbers for 

the two matrices described in Theorem 1.2, the latter computed using the Bark formula (1.7), 

and the assumption of sampling frequency Ps = 8000 Hz, as a function of matrix dimension N. 
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Fig. 1.4 Condition Number as a function of Transform Dimension. Solid: Bark-frequency 
excitation transform; Dashed: Hertz-frequency excitation transform. 

If 16 decimal digits of precision are available - as is standard in 64-bit fioating point rep

resentations, then we see that the linear excitation matrix is easily numerically invertible at the 

transform sizes considered, and invertible without the presence of audible artefacts in the power 

spectrum (one requires about 9 decimal digits of accuracy here), even at high dimensions. The 

Bark-frequency transform, however, is not invertible with any accuracy for this system - even 

at very small dimensions. Such ill-conditioning has to do, in fact, with the mismatch between 
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the spacing of the given power spectrum (uniform in Hertz), and the spacing of the excitation 

frequencies (non-uniform in Hertz). Since the audit ory filters of (1.4) depend directly on a term 

of the form e-klw-nl, we see that in the linear-frequency transform, most entries of the matrix 

will tend to be near zero, except along the diagonal, where Ok = Wk, because of the coincidence of 

excitation and power spectral frequencies, maximizing the entry. We thus obtain a large variation 

matrix value moving along any row/column. 

For the Bark-frequency transform, on the other hand, precisely because of non-coincidence 

of frequencies Ok with Wk, the exponential will tend to be rather small at every entry -- no 

maximization of the exponential occurs, the matrix variation moving along any row / column is 

smaIl, leading to poor conditioning. 

Nevertheless, the fact remains that both transforms are mathematically invertible -- a fact 

that will not surprise any psychoacoustician -- but may perhaps surprise a few audio engineers, 

given that most well-known excitation models for coders are non-invertible; for instance Johnston's 

[15], the MPEG models, and PEAQ. The misunderstanding may have to do with the meaning of 

the term "critical-band integration" -- in each of the cited models, frequency integration is per

formed on disjoint sets of critical (or sub-critical) bands. It did not help, of course, that Zwicker's 

influential book [37] produced a table which seemed to partition the frequency line into disjoint 

bands. This has led to the idea, seemingly widespread, that patterns such as excitation and 

loudness represent only coarse approximations to the power spectrum in terms of frequency reso

lution, with the transformation entailing much loss of "fine structure". The use of non-invertible 

models have lead to results like that of [13], in which a CELP coder produced "whispered speech" 

when the standard square-error criterion was replaced with a loudness difference minimization 

algorithm. The resulting spectrograms showed speech where the pitch had been entirely lost, due 

to the coarseness of the loudness pattern. 

The actuality is that the excitation pattern, as weIl as loudness pattern, both contain precisely 

the same amount of information as the power spectrum. This is only true, however, when one 

allows the bands of integration to overlap, as is manifestly plain in (1.2), where every band of 

integration, no matter the center frequency, is the infinite interval [0, CXJ). 

1.3 Complex Excitation Patterns 

One complaint concerning the power-spectrum derived excitation pattern is its insensitivity to 

phase. It clearly then cannot be a complete characterization of an internaI pattern, since the ear 

is capable of detecting relative phase distortion [37]. 

In this section we define and study the properties of a representation which is derived from a 

transform on the Fourier spectrum -- as opposed to the power spectrum. The pattern will turn 
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out to possess sorne strong similarities to the true excitation pattern, as well as sorne marked 

differences which allow a certain type of phase information to be preserved. 

When computing the excitation, say, according to (1.2), a rectification is first performed on 

the signal spectrum, followed by the frequency spreading. Suppose, on the contrary that these 

two pro cesses are reversed: that rectification (squaring) occurs after spreading a now complex 

spectrum. The resulting signal is still strictly positive, possessing the units of power - this we 

shall define as the Complex Excitation Power Spectrum, or CEPS for brevity. More formally, 

Definition 1.2. The CEPS of a Fourier spectrum X(w) is defined as 

(1.17) 

where U is the kemel of (1.14). 

The square root on the spreading kernel is chosen to match the units of amplitude on X. It 

will be convenient to work, for the remainder of this section, with its discrete version: 

(1.18) 

in obvious notation. 

In applying the spreading operator to complex signaIs - and not those restricted to be positive, 

we have performed a mathematical abstraction, with the result that the new pattern has no longer 

the physical meaning accorded to the excitation. The CEPS has no analogue in psychoacoustics 

- it may represent the activity of hair cells along the basilar membrane, in sorne sense or another, 

but probably not accurately as the true excitation pattern. Following Nietzsche, however, one 

ought not to confuse truth with utility. The CEPS do es capture information not included in the 

average activity of hair cells - information encoded in a different way than magnitude. It thus 

may prove to be the better internaI representation, in a global sense. Moreover, according to 

Moore in [19], the proper order of processing in the auditory system is first filtering, followed by 

rectification. This statement was made with reference to time-domain auditory filtering, and not 

a complex-valued filtering - the analogy is nonetheless suggestive. 

1.3.1 Properties of the complex excitation power spectrum (CEPS) 

Here we analyse a few relationships and differences between the complex excitation power spec

trum and the standard excitation pattern. We will assume, for the sake of making sorne of the 

relationships clearer, that the excitation transformation matrix U is fixed, thus dealing only with 

level-independent operators. 
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Notation is fixed as follows. In the Discrete Fourier domain, we use the basis vectors Sk == 
[0,0, ... ,0,1,0, ... ]Y, where 1 appears in the k-th position. A sinusoid (complex exponential) at 

discrete frequency k is then written as ÀkSk for sorne complex number Àk = Akej(h, where Ak is 

its amplitude and Ok its phase. A general DFT signal will be written x = I:k ÀkSk, and its power 

spectrum p = I:k IÀkl2sk' We will denote by Uk the k-th column from the auditory filter matrix 

U. It also represents the excitation pattern for a sinusoid in the k-th frequency bin. Finally, 

operations such as exponentiation and 1 . 1 on vectors are defined pointwise. 

CEPS for one sinusoid 

The complex excitation pattern for a single sinusoid is given, from (1.17), by: 

c = !U1
/

2 
Àk S k !2 

= IÀkl 2Uk 

(1.19) 

(1.20) 

Now compare this with the standard excitation pattern for a single sinusoid, with q-power law 

addition (discretized from (1.4)): 

(1.21 ) 

Equations (1.20) and (1.21) agree, leading to the property that the CEPS for a sinusoid of 

arbitrary magnitude and phase is the same as its standard excitation pattern, in any power-domain 

of spreading. 

CEPS for two sinusoids 

The situation for two sinusoids is much more interesting. First consider the case where the two 

sinusoids have the same phase. We write this signal as: 

x = Àkl Skl + Àk2 S k2 

'(J '(J 
= Akl eJ Sk1 + A k2 e J Sk2 

The CEPS is given by 

(1.22) 

(1.23) 

(1.24) 

(1.25) 
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The last line is in fact the standard excitation pattern for two sinusoids when O.5-power law 

spreading is used, leading to the fact that the CEPS of two sinusoids with the same phase and 

arbitrary magnitudes is equivalent to the standard excitation pattern of the two sinusoids obtained 

via 0.5 power-law do main spreading. 

Now consider two sinusoids that have different phase. We can derive an explicit expression 

for the CEPS. Supposing we have sinusoids of amplitudes Al and A2 with corresponding phases 

(h and e2 , it is easy to show the following: 

(1.26) 

The above expression makes explicit the dependence of the CEPS pattern on the relative phase 

el - e2. When el = e2, the pattern attains its maximum value, and is equivalent to the standard 

excitation pattern. The CEPS then differs from the standard pattern by the introduction of a 

multiplicative cosine factor in the cross-term. One can see this effect in Figure 1.5. 
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Fig. 1.5 Excitation Patterns and CEPS patterns for two sinusoids of equal magnitude 
under different phase conditions. Top: Standard excitation pattern = CEPS pattern, 81 -

82 = 0; Middle: CEPS pattern, 81 - 82 = 7r /2; Bottom: CEPS Pattern, 81 - 82 = 7r. 

As phase difference increases, the local minimum decreases. Generally, phase malignment 

reduces the CEPS level relative to the standard excitation pattern. This is due to destructive 

interference caused by the phase difference. Equality is achieved when the two sinusoids are in 

phase. The patterns at the main sinusoidal frequencies (maxima) are unaffected by the phase, 

because the component of each sinusoid at the other frequency, via spreading, is very small. 

Thus relative phase information is captured at frequencies somewhere in between the sinusoids. 
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The final observation is that the cross-term (and thus the phase effects), are most visible at 

the frequencies (indices) where the excitation product y'Ui; JUk2 is largest. If these patterns 

are approximately symmetric, then this location occurs approximately midway between the two 

sinusoidal frequencies. 

Sorne of the above observations may be easily generalised to any spectrum. We indeed have 

the following: 

Theorem 1.3. The CEPS pattern C(w) derived from spectrum X(w) satisfies the following: 

1. C(w) ::::; E(w), where E(w) is the standard excitation pattern for IX(w)12 in the O.5-power 

Law domain. Equality is achieved if the phase of X(w) is constant. 

2. (Rotation-invariance). C(w) is invariant under a constant phase multiplication to X(w). It 

is sensitive only to phase difference, not absolute phase. 

A consequence of the second property is that any distortion measure composed between the 

CEPS patterns will have the phase-factor-invariant property: D(ei{}c, ê) = D(c, ê). This would 

not be true, for instance, of a simple squared error between complex DFT spectra D(x, x) = 

Ilx- xI1 2. 
Finally, we observe that, given the identity of CEPS to standard excitation in the case of 

constant phase spectrum, it appears reasonable to apply the same models for the internaI noise 

excitation pattern (Section 1.1.3), and time-spreading (Section 1.1.4), to the CEPS. Thus, we 

define the total complex excitation power spectrum as the variable C'(w) = C(w) + E(W), and 

the time-spread complex excitation power spectrum induced from a time-indexed family of CEPS 

patterns C'(t, w) by: 

C(t,w) = i: K(À,w)C'(t - À,w) dÀ (1.27) 
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Chapter 2 

Distortion Measures and Excitation 

Distortion 

It is difficult to give mathematical form to the term "auditory distortion". Variability from subject 

to subject, an insufficient grasp of higher-Ievel brain processes, and the immense range of possible 

contexts and stimuli combine to complicate the study. Moreover, auditory difference is certainly 

a multi-dimensional object. The distortion incurred by corruptive white noise is qualitatively 

distinct from the distortion caused by frequency shifts in a harmonie complex, whieh is again 

quite different from distortion due to phase discontinuities in a sinusoid. 

Nonetheless, a great deal of energy has been devoted to finding accurate models of auditory 

difference (in one sense or another), because significant gains, with respect to the traditional 

warhorses of distortion: mean-square error and signal-to-noise ratio, have been observed from the 

application of perceptual theory. 

Perhaps the most prominent use of this theory occurs in modern audio coders. Other applica

tions include the objective measurement of audio quality, phoneme discrimination, and residual 

selection algorithms in speech coders. AlI of the above examples make use of distortion functions 

rooted on perceptual features. For example, audio coders use the noise-to-mask ratio in the bit 

assignment for noise control; objective quality measurements typically employ sorne type of differ

en ce in internaI patterns (e.g. excitation or loudness) to predict mean opinion scores; the partial 

loudness of an error difference can be used as a basis for vowel discrimination. 

This chapter considers the construction of general (principally magnitude) distortion functions 

for perceptual coding. Our focus will be somewhat one-sided, in that we shall not con si der the 

constraints put on us by a coder, or the implementation of these distortion functions in a coder (for 

that, see the next Chapter). Rather, we aim to generate a cornucopia of psychoacoustically sound 

distortion functions whieh, although initially arguing from the coding viewpoint, should prove 
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useful for any number applications, including the ones enumerated in the previous paragraph. 

We first suggest that conventional approaches which use masking results are inappropriate. 

Rather, we propose supra-threshold distortion measures which, in the appropriate limits, reduce to 

masking results. As with objective evaluators of audio quality, the measures con si st of differences 

in internai representations, functions quantifying activity along the place dimension of the cochlear 

membrane. 

Even once internai distributions are chosen as the fundamental variables, an appropriate metric 

still must be selected. It might be argued that the exact mathematical form of the distortion 

function is a matter falling to experimental science. While this is unreservedly true to sorne 

extent, we do posit the existence of certain criteria - consistency relations - which constrain the 

infinitude of possible distance measures considerably. It will in fact turn out that these constraints 

rule out the use of many distortion functions that have been suggested in the literature. 

Much of psychoacoustics has been concerned with threshold results: masking, absolute thresh

old, and just-noticeable differences, to name a few, are among the most well-verified and weU

examined auditory phenomena. On the other hand, there is a relative paucity of supra-threshold 

results. It seems natural, then, to design a framework which constrains the space of perceptual 

distortion functions to those which, at least, model thresholds correctly. 

The constraint cornes in the form of gain invariance, which is introduced and defined. We de

rive the class of aU gain-invariant distortion functions; these functions are the only ones consistent 

with the psychoacoustics literature, in the sense that masking, and more broadly - threshold 

phenomena - are subsumed. Moreover, Zwicker's classical 1 dB difference limen (in excitation) 

can be generalised as a limen on a gain-invariant function. While each member of this family 

of functions gives identical and consistent threshold results, the predictions for supra-threshold 

distortion vary, affording extra degrees of modelling freedom. The new class of measures includes 

the classical logarithmic distortion function as a special case. Our main contribution is thus 

the introduction of a natural generalization to the first of aU excitation-distortion measures: the 

"dB-distance" between excitation patterns. 

2.1 Mis-applications of Psychoacoustics: A critique 

In order to motivate the use of general auditory difference functions, we provide a sampling of 

applications where context-specific psychoacoustics have been applied, not always entirely appro

priately, to engineering applications. 



2 Distortion Measures and Excitation Distortion 21 

Noise-Shaping for Audio Coding 

Johnston, in [15], is generally credited with the introduction of psychoacoustic models for improved 

audio coding. His method, subsequently generalised, has become the basis for a number of modern 

approaches to this problem. The idea is to compute the masking threshold Mx(w) from the short

term power spectrum of an audio signal x. Assuming that the quantizer introduces distortion 

that is modelled as additive noise, Le. x(t) = x(t) + n(t), the noise spectrum IN(w)12 is shaped 

to lie beneath the threshold Mx(w). Put another way, the coder searches for an allocation of bits 

minimizing the distortion fun ct ion 

(2.1) 

The above criterion is referred to as the noise-to-mask ratio (NMR). 

The traditional arguments concerning the unsuitability of the derived masking thresholds, 

as can be found enumerated in [34], are that (1) the thresholds in psychoacoustics typically 

consider only tonal targets, whereas co ding noise is broadband, (2) the effect of multiple maskers 

is uncertain with respect to masking addition, and (3) the effect of masking multiple targets is 

uncertain. 

The above objections are criticisms in detail as opposed to principle: they concern the divide 

between the simplicity of stimuli in most psychoacoustic experiments and the relative complexity 

of the audio coding reality. We find the concept of masked quantization noise, itself, problematic, 

based on the following observation: modelling coding distortions, particularly large ones, as addi

tive uncorrelated noise is inconsistent with the decoded signal. More precisely, quantization noise 

is in general not a power-additive distortion. Indeed, for optimal minimum mean-square error 

quantization, the average energy of the reconstructed signal i; is always smaller than the original 

signal x, the difference being the quantization error e, 

(2.2) 

This result for optimal scalar quantizers attains the following form for vector quantizers, with R 

denoting covariance matrices for the respective variables: 

Rx=Rx-Re (2.3) 

In particular, the constraint on the diagonal elements demonstrates that the result also holds 

component-by-component in the multivariate case. More generally, regardless of the particular 

structure of the quantizers used, coding distortion will not be power-additive, particularly at low 

rates where many spectral regions are coded as zero. 
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Note that the signal that is conventionally considered to be the maskee is actually subtractive. 

This is in obvious contradiction to masking experiments, where the listener is presented with a 

sum of two signaIs, the power of which is larger than the power of any one signal presented 

alone. In particular, aIl four of the tone-noise masker-maskee combinations from which modern 

audio coders derive their psychoacoustic rules utilise a masker signal which is less in power than 

the sum of masker and target together. The concept of signal masker and noise maskee is thus 

unsuited for describing the perceptual effects of quantization, except perhaps, and even then only 

approximately, in the low distortion regime. 

We can reinforce the point by extremizing our thought-experiment. In low rate coding, many 

spectral regions are reproduced as zero. In this case, the distortion is equal to the signal itself, 

and the conventional masking argument asserts that the original signal masks a noise equivalent 

to itself. Of course, there is no masking because no sound reaches the ear! While an extreme 

position, this scenario do es occur aIl the time in practical audio coding: rate savings can be 

obtained at the lowest rates only by zeroing transform coefficients. And indeed, one of the oldest 

methods of transform coding is precisely to zero out aU coefficients below sorne threshold; nor 

is such a procedure antiquated - take threshold = masking threshold, for example. Thinking 

along such lines can lead to amusing paradoxes. For instance, by one reckoning, on average 50% 

of transform coefficients lie under the masking threshold of a frame of audio, as predicted by 

standard models [21]. By zeroing out these coefficients, a coder violates the very assumptions 

which make such a calculation permissible in the first place. 

To be sure, it is of course possible to allow non power-additive distortion (such as quantiza

tion noise) to be made sufficiently small so that its addition remains undetectable. But such a 

phenomenon is no longer masking - it falls under the more general phenomena of just-noticeable 

differences, namely that of amplitude JNDs (of which masking is a special case [37]). And it is 

precisely those models of just-noticeable difference that we shall turn to when constructing the 

new distortion measures. 

Masking Weights for CELP Coding 

In code-excited linear-predictive speech coding, a finite-order alI-pole filter is used to model the 

vocal tract; the output of this filter is further processed with a pitch predictor to obtain a residual. 

This residual is then quantized, usually with a codebook containing the reproduction points of a 

vector quantizer. 

The codevector search can be driven by minimizing the standard square error et = (Xi - Xi)2, 
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or more typically, a perceptually weighted criterion such as: 
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(2.4) 

where {Md is the mas king threshold for signal x. Such a scenario occurs, mutatis mutandis, in 

the work of [30], for example. 

The objection levelled in the first example applies here as weU: the error incurred in the 

residual quantization is not generally power-additive, and the use of masking thresholds obtained 

from experiments involving uncorrelated noise maskees can be misleading. 

Partial Loudness for Vowel Discrimination 

The work of Rao et al in [27] investigated the application of Moore's partialloudness model [20] as 

a metric for estimating perceptual effects of modifications to the spectral envelope of a harmonic 

sound. Partial loudness should be viewed as an out come of partial masking - in other words, a 

measure of supra-threshold activity. As a distortion function, it can be used in the foUowing way: 

the error e = x - x is defined as the target in question, the background sound is equated with 

the original signal x, and the perceptual distortion is given by the partialloudness Lp (e, x) of the 

target e submerged in background x. 

A partialloudness model can only be applied under the assumptions with which it was formu

lated, however: under the conditions where target and background are power additive. Indeed, 

the model requires the computation of three different excitation patterns: that of the total sound, 

that of the background sound and that of the noise target, the last of which implicitly assumes 

an additive stimulus. The model cannot account for arbitrary - in particular, subtractive-

distortions. 

The approach to this issue taken in [27] is to redefine the total and background sound excitation 

patterns via max{Ex, Ex} and min{Ex, Ex} respectively. The redefinition forces the difference 

(corresponding to the target excitation pattern) to be positive - but at the loss of physical 

interpretation with respect to the masker and maskee. The artifice shows aU the more plainly the 

conundrum that is faced when dealing with non-additive spectral distortion. 

The foregoing examples serve to illustrate a recurring theme: the ubiquitous decomposition of 

the distortion problem as an original, uncorrupted signal in the presence of additive noise, and the 

search for measures to quantify the loudness, or detectability of this disturbance even when it is 

a fictitious entity not physically present at the receiver. In the first two examples, masked coding 

noise notwithstanding, the charge that equations (2.1) and (2.4) are only useful for quantitating 

at-thresh01d behavior can also be levelled. The mas king threshold does not readily lend itself to 



2 Distortion Measures and Excitation Distortion 24 

measuring the amount of audible distortion (supra-masking threshold), and hence this distortion 

cannot be properly minimized. 

2.2 General Auditory Distortion Functions 

We now turn our attention to the construction of more general perceptual difference functions not 

requiring the assumption of spectrum-additive distortion. In what follows, we will take an abstract 

view of the excitation computation pro cess, making use of the generic concepts without relying 

on specific formulae for their computation. The reader, if so desired, may make the translation 

of the term "excitation pattern" into either the term "total excitation pattern", or "time-spread 

excitation pattern", via any one of the concrete formula presented in the first chapter - even 

those of the complex excitation power spectrum. Thus, the functions derived can be tailored 

to meet a range of data for acoustical quantities such as absolute threshold of hearing, masking 

offsets, critical bandwidths and the like. Only in Section 2.3 do we make use of specific methods 

- by way of example - to give sorne feeling for model predictions. 

2.2.1 Distortion Functions on InternaI Representations 

Excitation patterns are examples of so-called "internaI representations". The specific loudness 

pattern, obtained by a pointwise nonlinear mapping on the excitation pattern, is another internaI 

representation. InternaI representations are functions lying in a perceptual space, and, ostensibly, 

distance metrics on such spaces should provide superior modelling with respect to subjective 

distortion than traditional metrics in the time or power-spectral domain. At the very least, they 

have been used to formulate models of just-noticeable differences. Zwicker's criterion [37] states 

that two excitation patterns x(w) and y(w) are indistinguishable if they differ everywhere by less 

than 1 dB. In symbols: 

110 10glO x(w) - 10 10glO y(w) 1 < 1, Vw (2.5) 

or equivalently 

D(x;y) = max 110 log 10 x(w) -1010g lO y(w)1 < l. 
w 

(2.6) 

The threshold value of 1 dB has been debated, with sorne estimates as low as 0.1 dB [19]; the 

variable may also depend upon frequency, as well as context. In spite of these limitations, the 

criterion is still an extremely useful conceptual tool, providing a generalised way of determining 

perceptual equivalence. 

Equation (2.6) not only defines the just-noticeable difference between two signaIs, but im

plicitly defines a distortion function D(x; y) for arbitrary excitations x and y. It is thus a more 



2 Distortion Measures and Excitation Distortion 25 

general entity than the noise-mask ratio of (2.1), applying to situations even when the distortion 

is not power-spectrum additive. 

Given two excitation distributions, (2.6) is not the only way to quantify their difference. We 

assert the existence of certain constraints, however, governing the form of any plausible measure. 

These properties are investigated in the following section. 

2.2.2 Gain-invariant Distortion Functions 

For simplicity of discourse, we present the theory in terms of discrete distributions. In any 

event, one is always presented with a dis crete excitation pattern in practice. It is, however, 

straightforward to extend all results to the continuous case. 

Let x = (Xl, ... , xn) and y = (YI, ... , Yn) be two excitation patterns well above absolute 

threshold. We begin by noticing that the difference limen of (2.6) is invariant un der the replace

ment X -t (alxl, ... ,anxn), Y -t (alYI, ... , anYn), for any choices of non-zero constants al, ... , an. 

Since the replacement corresponds to a gain transformation on both excitation patterns, we say 

that the distortion function D(x; y) is invariant under the group of gain transformations. For

mally: 

Definition 2.1. A distortion function D(x; y) is gain-invariant (with respect to the arguments X 

and y), if for aU non-zero al, ... , an E lR, 

The following thought experiment rein forces the physical significance of this property: Let 

x and Y be two excitation patterns within 1 dB of another. They are, by Zwicker's criterion, 

perceptually indistinguishable. Now if the gain transformation T(u) = (alul, ... , anun) is applied 

to both patterns, the resulting patterns T(x) and T(y) remain within 1 dB of one another. Hence 

the patterns T(x) and T(y) are indistinguishable. More generally, the invariance states that 

perceptual differences between signaIs do not change under gain transformations to the excitation 

patterns - as long as the same transformation is applied to both patterns. 

Note that the criterion states nothing about the perceptual difference between x and T(x) 

- only between T(x) and T(y). Since gain-invariance is a natural characteristic of the just

noticeable limen, any perceptual distortion function must possess this property to be able to 

predict threshold phenomena. We will take it as a fundamental hypothesis. 

The next observation to make concerning the criterion of (2.6) is that it is a function of the 

pointwise ratio between its two arguments. We make the following definition: 

Definition 2.2. A distortion D(x; y) is a pointwise function of the ratio of its arguments if there 



2 Distortion Measures and Excitation Distortion 26 

exist funetions F and Dl, ... ,Dn sueh that 

(2.7) 

The representation introduced in the definition, though not necessary, is a very useful structural 

decomposition. It consists of a set of local distortions Dl, ... , Dn defining a distortion pattern 

'D = (Dl, ... ,Dn), and a grouping function F(·), which computes sorne overall distortion by, for 

example, integrating over the distortion pattern. The function F should satisfy sorne constraints: 

for instance that it be increasing in each dimension. Norms make very natural choices for F. 

It is obvious that every distortion function satisfying Definition 2.7 is gain-invariant. Not so 

obvious is the converse: 

Theorem 2.1. If a distortion funetion D(x; y) is gain-invariant, then it is a pointwise function 

of the ratio of its arguments. 

The constraint of gain-invariance is very strong, and allows one to eliminate seemingly rea

son able choices for a distortion function. For example, both the correlation coefficient between 

two excitation patterns 

(2.8) 

and the Minkowski distance 

(2.9) 

are not gain-invariant distortions. 

There is another type of invariance which is sometimes desired of a distortion function, that of 

an invariancewith respect to the overall scales of the patterns. We will call this seale-invariance 

(also called gain-optimized in [10]); in symbols: 

Definition 2.3. A distortion funetion D(x; y) is seale-invariant if for all non-zero a, b E lR 

Distortion measures satisfying such a condition are immune to scaling (loudness) transforma

tions of either of the input patterns; two signaIs that differ only in their loudness are considered 

identical. Such a property is often desired of objective evaluators of audio quality. If the distortion 

function is symmetric (D(x; y) = D(y; x)), one method of imposing scale-invariance is to define 

D'(x; y) = inf D((3xI, ... , (3xn ; y). 
/3>0 

(2.10) 
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It is easy to see that D'(x; y) is scale-invariant. Generally, the algorithmic implementation of 

a scale-invariant measure will be complicated by the fact that there rarely exist closed-form 

expressions for the minimization (2.10). Nevertheless, Appendix A discusses and der ives a few 

such formulae in the cases where analysis is tractable. 

Table 2.1 su mm arises the possibilities and gives examples for different combinat ions of con

straints. 

Table 2.1 Distortion functions satisfying various invariances 

Type 

Gain-invariant only 

Scale-invariant only 

Gain-invariant and Scale-invariant 

Neither 

2.2.3 Additional Constraints 

Example 

m?tx 1 log 10 (Xi/Yi) 1 
t 

Li XiYi 
(Li x;)1/2(Li yn l/2 

minm?tX IloglOCBxi/Ydl 
f3>O t 

(Li(xi - Yi)p)l/P 

Returning to the decomposition of (2.7), it is reasonable to impose the following pseudo-metric 

constraints on the local distortion functions Di: 

1. (Positivity) Di(Xi/Yi) 2:: 0 with equality iff Yi = Xi 

Note that a symmetric distortion function can still predict mas king asymmetry (see Section 2.3.2). 

The reader is referred to Appendix B for a more detailed elucidation of the various types of 

symmetry properties that distortion measures may satisfy. 

Assuming sorne type of "frequency equalization" has occurred in the transformation from 

power spectrum to excitation, a good first approximation is to take Dl = ... = Dn. The positivity 

assumption implies Di(xi/Yi) = If(xi/Yi) 1 for suit able f. Comparison of this form with the 

excitation distortion of (2.6) - which is itself reminiscent of a loudness difference - suggests 

that generally, f is an increasing compressive nonlinearity. The foregoing can be summarised 

with the following hypotheses: 

1. D is gain-invariant, with 

D(x; y) = F(lf(xI/Ydl,·.·, If(xn/Yn)l) 

2. f is concave and increasing 
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3. f(l) = 0 

4. f(r- 1) = - f(r) 

As for the grouping function, taking inspiration from loudness and partialloudness models, where 

integration of the patterns is assumed, suggests the Minkowski grouping functions: 

( ) 

l/p 
D(x; y) = L If(xi/Yi)!P . (2.11) 

There is some recent evidence that the ear has the ability to integrate distortion across auditory 

filters [24] - in this case, the Minkowski functions model a range of such integration, from 

the global (p = 0), to the local (p = (0). For classical predictions of threshold [37], as weIl as 

comparisons with masking models, which assume detection at the location of maximum distortion, 

we shall use p = 00. Interestingly, the case p = 2 and f = log(·) is the excitation-domain analogue 

of the well-known spectral distortion measure [23] in speech coding. 

2.2.4 Generalized Thresholds of Discrimination 

Having established the class of gain-invariant distortion functions with respect to excitation, it 

becomes straightforward to transfer the classical models of just-noticeable difference to thresholds 

on the new functions. Assume that Zwicker's just-noticeable criterion holds at T > 0 dB. Then 

we have the following: 

Theorem 2.2. Let D(x; y) = maxi(J(xi/Yi)) be a distortion function satisfying the hypotheses 

of Section 2.2.3. Then two excitation patterns x and y are perceptually equivalent if D(x;y) < 
f(10T / 1O ) • 

It will be also convenient to define normalised versions of the distortion functions 

(2.12) 

In this case, two excitation patterns x and y are imperceptibility different if Df(x; y) < l. Since 

the overall scale of the distortion function is irrelevant for the purposes of its minimization, the 

normalised forms define natural equivalence classes. Comparisons between two gain-invariant 

distortion me as ures will always be done between the normalised versions. 

From the generalised threshold, we can define the set of frequencies for which there is audible 

distortion, via 

(2.13) 
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A new distortion function quantifying the audible distortion can then be prescribed: 

(2.14) 

This measure is used in Section 2.3 to predict supra-threshold distortion. 

2.2.5 Distortion Functions on Loudness Patterns 

A loudness distribution models the further nonlinear transformation of intensity to perceptive 

strength-a type of neural excitation. The level-transformed excitation pattern is termed the 

specific loudness pattern, and gives loudness as a function of (tonal) frequency. Steven's law, the 

general hypothesis that perceived strength is a power function of physical magnitude, predicts 

Lx = cxk , where Lx is the loudness pattern of excitation x, for sorne constant k < 1. This 

expression is generally accurate for levels above threshold, but requires modification for low-Ievel 

stimuli. 

Since a specific loudness pattern accounts for both the non-ideal frequency selectivity and the 

nonlinear level compression of the ear, it would appear that distortion functions should be con

structed in the loudness domain, as opposed to the excitation domain. Actually, the formulations 

are equivalent above threshold-with the constraint of gain-invariance-as the following shows. 

Loudness is in general an invertible function of excitation: Lx(i) = g(Xi), for sorne compressive 

nonlinearity g, so that any distortion function on excitation also induces a distortion function on 

loudness densities: 

(2.15) 

Similarly, a distortion function D(Lx; Ly) defined on the loudness space induces a distortion 

function on the excitation patterns, given by D'(x;y) = D(g(Xi);g(Yi))' The following now holds: 

Theorem 2.3. If Steven's law holds between excitation and loudness, then a distortion function 

D(x; y) is gain-invariant with respect to excitation if and only if the induced distortion D'(Lx; Ly) 

is gain-invariant with respect to loudness. 

Thus Steven's law provides a sufficient condition for a gain-invariant distortion function on 

excitation patterns to be gain-invariant with respect to loudness, and vice-versa. It follows that 

there is no advantage to using loudness patterns over excitation patterns, ab ove threshold. Near 

threshold, there is in fact a disadvantage to using loudness patterns, since by definition, a signal 

below absolute threshold has zero loudness1 . In this scenario, indeterminate forms appear in the 

lIndeed, modeis of Ioudness make use of the internaI noise excitation E to obtain this resuit. 
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ratio Lxi Ly of a gain-invariant function. Distortion functions on the total excitation patterns 

(Section 1.1.3) thus provide the most convenient way of mediating between the two regions. 

2.2.6 Design Example: Loudness Difference and Gain-Invariance 

Let Lx(w) and Ly(w) be the loudness densities for the excitation patterns x and y (we revert 

to continuous frequency variables for notational convenience in this section). One can define a 

distortion function by 

D(Lx; Ly) = (J ILx(w) - Ly(w)IP dw) l/p (2.16) 

This loudness difference has been popular in a number of applications, including: vowel discrimina

tion [3], objective evaluation of speech quality [35], perceptual audio quality measure (PAQM) [2], 

and audio coding [4]. In particular, the results of [35] and [2] show that (2.16) correlat es well with 

me an opinion scores. 

The measure (2.16) directly utilises internaI patterns, without recourse to a fictitious "noise". 

It is, however, not gain-invariant, and hence not consistent with limen results. Nonetheless, 

given its relative experimental success, it may be used as the basis for constructing a class of 

gain-invariant functions. More specifically, we can pose the following question: what distortion 

function satisfying the hypotheses of Section 2.2.3 approximates a loudness difference with min

imum error? Since both the desired distortion function and (2.16) are pointwise, it suffi ces to 

minimise the error between the local distortion functions f(x(w)ly(w)) and Lx(w) - Ly(w) for 

fixed w, over some region in the (x, y) excitation plane. For levels above threshold, Lx - Ly is 

well approximated by c(xk_yk), and we can thus formulate the problem mathematically as follows: 

Find f such that 

foUfoU [f (~) - c(xk - yk)f dxdy is minimized (2.17) 

The optimization problem thus posed is infinite-dimensional, since the unknown variables form 

a continuous set. The solution attains a surprisingly simple structure: 

Theorem 2.4. The solution ta (2.17) is 

(2.18) 
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The normalised form Î is independent of the region of optimization, given by 

x>y 
(2.19) 

x<y 

It is easily verified that Î satisfies the hypotheses of Section 2.2.3; Le. Î is concave and increasing, 

Î(l) = 0, and Î(r- 1) = -Î(r). An equivalent form for the local distortion function is 

(2.20) 

which is a relative loudness difference. In summary, the optimal normalised gain-invariant (mean

square) approximation to the distortion function of (2.16) is given in continuous excitation vari

ables by 

D X' - 1 Ix(w) - y(w) IP dw 
( 

k k )1~ 
( ,y) - 1_1O-Tk/ lO J max{x(w)kp,y(w)kp} 

(2.21) 

Figure 2.1 compares the newly derived class of nonlinearities with the logarithmic nonlinearity. 
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Fig. 2.1 Local distortion function 11(1')1. Solid: 1 = 1OIloglQ(1')li Dashed: Eq. (2.20), 
top to bottom: k = 0.23, k = 0.5, k = 0.9. The shaded area defines the boundaries 
of the generalised just-noticeable limen with T = 1. Two excitations points x and y are 
indistinguishable if their ratio l' = x/y lies on a curve within the region. 

A rather surprising result is obtained by examining the limit of (2.19) as the loudness exponent 
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k approaches zero. We have 

(2.22) 

and similarly 

. -l+(~t 1 
hm -Tk/l0 = T10IoglO(X/Y), x < y 
k-+O 1 - 10 

(2.23) 

Thus 

(2.24) 

which is the classical (normalised) logarithmic distortion function. The standard dB-distance 

between excitation patterns is then seen to be a special case of the derived class of distortion 

measures (2.20), in the limit as the loudness exponent approaches zero. 

2.3 Masking Properties of General Auditory Distortion Functions 

In this section we narrow the scope of the discussion to a single class of threshold phenom

ena: masking thresholds. Any distortion function seeking to replace noise-mask measures must 

subsume masking results in the appropriate limits. We will investigate three such conditions: 

1) absolute threshold, 2) tone-masking-noise (TMN), and 3) noise-masking-tone (NMT). In the 

course of the analysis, a refinement to (2.12) in the form of a weighting function will be derived 

to account for the frequency dependence of the masking offset. Finally, we give an example of 

supra-threshold predictions in the case of a partially masked tone. 

2.3.1 Absolute Threshold 

Let x and y be two excitation patterns. For the purposes of threshold calculations, we will use 

the distortion function of (2.11), p = 00, where the excitation pattern is taken explicitly to be the 

standard total excitation, reiterated in continuous form here, with the internaI noise contribution 

presented explicitly: 

Df(X; y) = mîx If (~~:? : :~:?) 1 (2.25) 

where E(W) is the excitation due to internaI noise. 

Under absolute threshold conditions, x(w) = Ewc(w), the excitation pattern of ajust-noticeable 

sinusoid at frequency Wc, and y(w) = O. For the detection of a sinusoid at frequency Wc against 

internaI noise, only the main excitation is relevant; the peak deviation of the distortion pattern 
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will occur at the frequency Wc. This is because the slopes of a sinusoidal excitation decay more 

rapidly than the noise excitation. Rence the distortion function reduces to: 

Dwc(X, y) = m:x If (Ewc(:~w~ €(W)) 1 

= f (1 + Ewc(wc)) 
€(wc ) 

= f (1 + s(wc )) 

where s(wc ) is the threshold factor of (1.5). 

(2.26) 

(2.27) 

(2.28) 

If the excitation distortion model is valid, then we must have f((l + s(wc )) = f(lOT/lO), or 

T = 10 log 10 (1 + s(wc )). The factor s(wc ) is frequency-dependent, showing that the difference 

limen fluctuates with frequency even in the relatively simple masking context, as is well-known. 

For many applications, however, it is often useful to have a single number describing the just

noticeable difference irrespect ive of frequency. This can be accommodated by introducing the 

frequency weights 
1 

W (w) - -:-:---:--:-:
- f (1 + s(w)) 

and redefining the distortion function (2.25) as 

1 
(

X(w) + €(w)) 1 
Dj(x; y) = m:x W(w) . f y(w) + €(w) 

It is now obvious that 

(2.29) 

(2.30) 

(2.31) 

expresses the condition of absolute threshold. In fact, the weighting function f(l + s(w)) of (2.29) 

is a generalisation of the threshold normalisation factor introduced in (2.12). Figure 2.2 gives a 

plot of the frequency weighting function, with f = 10 log 10 ( .) and Kapust's equation (1.5) for the 

Noise-Masking-Tone (NMT) threshold factor. 

2.3.2 Masking 

N oise-Masking-Tone 

The distortion function as described in the previous section already has the capability to predict 

the masking threshold for general noise-masking-tone contexts, since absolute threshold itself is 

a special case of NMT. More formally, assume that x(w) = Ewc(w) + EN(W) is the combined 
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excitation pattern of a sine wave of frequency Wc in noise, and y(w) = EN(W) is the excitation 

pattern of the noise alone. Once again, the detection of the sine wave only involves the auditory 

filter tuned to the frequency Wc and the distortion function reads: 

For levels larger than absolute threshold, this becomes 

which verifies the model. 

Tone-Masking-N oise 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

While the phenomenon of noise-masking-tone has been well investigated in the psychoacoustics 

literature, there has been comparatively little work on the tone-masking-noise case. Given the 

fact that excitation patterns are generally derived from masked audiograms involving NMT ex

periments, and given that the weighting function derived in Section 2.3.1 involved masking offsets 

taken from the NMT case, it seems doubtful that the distortion function of (2.30) can account 

for tone-masking-noise phenomena. 
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The key qualitative difference between these two masking contexts is that in tone-masking

noise, the detection point do es not occur at the frequency of the masking sinusoid. To illustrate 

this characteristic, let us consider the distortion patterns of the two cases. Above threshold, we 

have 

( 
ET(W)) 

'DNMT(W) = W(w) . f 1 + EN(W) (2.36) 

( 
EN(W)) 

'DTMN(W) = W(w) . f 1 + ET(W) (2.37) 

in obvious subscripts. These distortion patterns are plotted in Fig. 2.3 for a 1 kHz tone and 

critical-band wide noise centered at the same frequency, with relative powers chosen so that neither 

masks the other. The distortion is computed with the logarithmic measure f = 10 10glO(-), but 

any normalised gain-invariant metric would pro duce a qualitatively similar result. 

1000 2000 
Frequency (Hz) 

3000 4000 

Fig. 2.3 Distortion patterns 'D for tone masker, noise probe (solid), and tone probe, noise 
masker (dash). 

Referring to the plot, when noise is considered masker, and tone the probe, maximum distor

tion occurs at the frequency of greatest excitation, 1 kHz. However, when the roles are reversed, 

the tone must coyer the larger bandwidth noise, and in general, maximum deviations occur at 

the audit ory filters to the si de of the center frequency. While there are two sidelobes, the lower 

frequency sidelobe tends to dominate detection because the upwards spread of the tone excitation 

provides stronger coyer for higher frequencies. This type of off-frequency listening manifests any 

time the bandwidth ratio between masker and probe is less than one. Observe also that in the 

region of main activity, the two patterns are roughly reciprocals of one another, with the local 

maximum exchanged for a local minimum, in compliance with the form of (2.36) and (2.37). At 

frequencies farther away from the center, both excitation patterns reach low levels and hence are 

masked by internaI noise, driving distortion to zero. 
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The above implies that off-frequency listening plays a role in determining the masking offset 

whenever the probe bandwidth is larger than the masker bandwidth, with the possibility of 

contributing to the well-known masking asymmetry. To explore this further, we used the model 

to predict masking offsets for both TMN and NMT cases; smoothed versions of these are displayed 

in Fig. 2.4. 

15 1 
/ 

o~----~------~------~------~~ 
o 5 10 15 20 

Frequency (Bark) 

Fig. 2.4 Model predictions for 1) noise-masking-tone (solid) and 2) tone-masking-noise 
(dash) masking offsets 

For this experiment, the noise masker /maskee is of 1 Bark bandwidth. As expected, the mask

ing offset predictions for noise-masking-tone are excellent, in the 5 dB range, increasing slightly 

with frequency. Sorne masking asymmetry is predicted, anywhere from 5-10 dB of additional 

masking with atone masker and noise probe, but the overall values are short of the more realistic 

15-35 dB masking offset typical of TMN. Hall in [12J has suggested that off-frequency listening is 

insufficient to account for the asymmetry of masking--in particular, the qualitative change that 

occurs when probe bandwidth exceeds masker bandwidth. The temporal information contained 

in the phase of atone may be part of that mechanism -- lost as it is to the standard excitation 

pattern. 

2.3.3 Supra-Threshold Distortion 

We have repeatedly emphasized that aU gain-invariant functions, by virtue of the transferability of 

limen discussed in Section 2.2.4, possess identical threshold properties. Thus the masking offset 

predictions, illustrated by example with the logarithmic distortion, are inherited by the entire 

class of normalised gain-invariant measures. 

The same is not true for supra-threshold phenomena. lndeed, this is where the utility of the 

new family enters: as generalised functions consistent with threshold phenomena but offering 
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modelling freedom for the relatively uncharted territories of audible distortion. As an example, 

Fig. 2.5 uses the measure of (2.14) to give distortion predictions for the case of a partially masked 

tone. 
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Fig. 2.5 Supra-threshold distortion predictions for tone (1 kHz, 50 dB SPL) partially 
masked by critical-band wide noise. Solid line: f = 10 loglQ(-) , dash: Eq. (2.20); top to 
bottom: k = 0, k = 0.5, k = 0.95. Dotted line: TMN masking threshold 

In this scenario, a 1 kHz tone of 50 dB SPL is submerged in critical-band wide noise of varying 

level. The excitation patterns x = ET + EN and y = ET, with ET and EN the patterns of tone 

and noise respectively, are used as the arguments for D(x; y) to quantitate the distortion to the 

tone. When the noise power is below mas king threshold, there is no distortion to the tone. As 

threshold is exceeded, a rise in audible distortion, similar to the loudness recruitment of partially 

masked probes, occurs. Four different gain-invariant functions are displayed, each predicting an 

identical threshold but providing alternative extensions. 

While the functions in Figure 2.5 do resemble classicalloudness recruitment curves (see [37] 

for an example), too much emphasis should not be placed on finding parameters for a precise 

matching. This is because, 1) loudness recruitment is typically experimentally investigated under 

fairly simple conditions (sinusoid in noise, for instance), and 2) partial loudness is in itself only 

one particular quality, one face of the multi-faceted, multi-valued object of audit ory distortion. 

2.4 Chapter Summary and Caveats 

This chapter analyzed the general form of perceptual distortion functions consistent with psy

choacoustic threshold phenomena. We also analyzed the form of a variety of distortion measures 
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topical in current applications and, notwithstanding their relative experimental success, observed 

that they either 1) tacitly relied on a decomposition of the corrupted signal into signal + uncorre

lated noise, which was not usuaHy appropriate, or 2) were not consistent with, and hence unable 

to predict, threshold results. To address the first issue, we formulated measures as distances in 

the space of excitation (standard or CEPS) representations. Using the just-noticeable difference 

limen, the second issue was addressed by the hypothesis of invariance with respect to certain gain 

transformations; proposed as a starting point, this concept le ad to a generalisation of Zwicker's 1 

dB rule and a dass of distortion functions among which the logarithmic distortion function was 

a special case. The dass inherited aH the at-threshold properties of the logarithmic function, but 

gave different predictions for the important case of supra-threshold (audible) distortion. 

It is worth emphasizing that we make no daims to having found the ultimate quantifier of au

ditory distortion. By looking for me as ures on the space of excitations, we have restricted ourselves 

to the information that can be obtained from just such a representation. Further restrictions are 

incurred, depending upon the precise types of excitation variables used. For instance, should non

time-spread excitation be used, temporal masking phenomena cannot be subsumed; if standard 

excitation is used, and not CEPS, the distortion measures are restricted further to only indude 

quantitation of magnitude distortion, and, as such, even the noise-to-mask ratio function is not 

entirely subsumed by the proposed measure. A more complete characterization would indude 

measures for not only different degrees, but also qualitatively distinct types of distortion. The 

perception of these types of differences are also modified by the contexts under which they are 

presented; towards this end, sorne type of "cognitive" modelling would undoubtedly be necessary 

for best performance. 
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Chapter 3 

Excitation Distortion for Audio 

Coding 

In the previous chapter, we derived a family of functions possessing sound psychoacoustical prop

erties. The general form of that class was 

D(XiY) = 1 WP(w) x (w) - y w dw 
( 

1 
k k( )IP )l/P 

1 - lO-kllO J max{xkp(W) , ykp(w)} 
(3.1) 

with x and y total excitation patterns, 0 ::; k ::; 1, p > 0, and where W(w) is a weighting 

function having the structure (2.29), if desired. We used the term "Excitation Distortion" to 

denote distortion functions of the ab ove type. 

In this chapter, we raise the question of how to incorporate (3.1) in audio coding structures. 

Before we begin, however, let us review a few standard ideas about distortion measures and 

quantization. 

3.1 Equivalent Distortion Measures 

There are two notions of "equivalent" distortion measures, both introduced in [10]. The first is 

directly taken from the idea of equivalent metrics (or topologies) from mathematics. Given two 

distortion measures d(x, y) and d'(x, y) defined on a set S, we say that d is st ronger than d', 

writing d » d', if small d implies small d'. More precisely, d» d' if, for any € > 0, there exists 

8 > 0 such that d < 8 implies d' < €. If both d » d' and d' » d, then d and d' are equivalent, and 

we write d == d'. 

The above definition of mathematical equivalence is fairly weak. The equivalence only states 
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that d and d' measure approximately the same effect. For the J:.,P metrics defined by 

(3.2) 

Minkowski's inequality shows that dp » dq whenever p ~ q. However, if the space is finite

dimensional, so that a finite sum replaces the integral in (3.2), then aIl the J:.,P metrics become 

equivalent. This is easily shown by the two inequalities (L:r=l IXiIP)l/p ~ n 1
/
p max~l IXil, and 

maxf=llxil ~ (L:r=llxiIP)l/p. Even more, it can be shown that ail metrics arising from a norm on 

a finite-dimensional space are equivalent. Since, in any practical computer implementation, the 

spaces are of necessity finite-dimensional, the concept of mathematical equivalency is generally 

toothless. 

What we are more interested in is whether two distortion measures will pick different repre

sentation points among a set of possible representations. Along these lines, the second notion of 

equivalence introduced in [10] is more useful, called nearest-neighbor equivalence. To define it, let 

d(x, y) and d'(x, y) be two distortion metrics on a set S, and let ReS be a set (finite or infinite) 

of reproductions. Then d and d' are nearest-neighbor equivalent if, for any x E S, 

argmind(x,y) = argmind'(x,y) 
yES yES 

(3.3) 

This notion of equivalence is much more in li ne with the kind of equivalence we want in using 

distortion measures for quantization applications. If two distortion measures are equivalent in the 

nearest-neighbor sense, then they will produce identical quantization choices. A simple example 

is as follows: define d' = f(d). Then d' and d are nearest-neighbor equivalent whenever f is an 

increasing positive function. 

We can apply these notions of equivalency to the excitation distortion family (3.1). How 

different are the measures for parameters k, p and weighting function W(w)? The following 

theorem provides an answer. 

Theorem 3.1. The family of ED functions (3.1), restricted to the space of finite-dimensional 

discrete excitation patterns: 

1. Define equivalent metrics over ail parameters (k,p, W(w)), 

2. Are not nearest-neighbor equivalent for different choices of parameters (k,p, W(w)). 

Thus, while every function in (3.1) approximately quantitates distortion in the same way, they 

will not in general select the same reproduction points in a quantization algorithm. 
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3.2 Quantization Structures 

3.2.1 Basic Ideas 

A quantizer on the set S is a function q : S --t T where T is a finite subset of S. The values Yi E T 

form the set of reproduction values, and the sets Ci = q-l ({Yi}) partition S into cells. Thus the 

complete specification of q requires only the definition of the cells Ci and the reproduction set 

Yi associated with each cell. If D is a distortion measure on S, then the distortion incurred by 

quantizing x is given by D(x, q(x)). Let us further suppose that there is a probability measure 

on S, with density f(x), xE S. Then one defines the average distortion incurred by q as 

D(q) == E[D] = 1s D(x, q(x))f(x) dx (3.4) 

A given quantizer will also have a rate R(q) associated with it. Usually this is defined as 

the average length of the codewords used to enumerate T. Without actually specifying a coding 

scheme, one can also use more abstract definitions such as R(q) = log21TI or R(q) = entropy T. 

Typically, D is small only when the number of reproduction points is large, hence one obtains a 

trade-off between Rand D. One naturally seeks to obtain the optimal trade-off, which is given 

by the distortion-rate function [11]: 

D(R) = inf D(q) 
q:R(q)s,R 

(3.5) 

The question, of course, is how to design q so that it operates near the optimal D(R) curve. 

One methodology is the so-called "unconstrained" approach. For instance, fixing the rate R, 

one can try to obtain the best partitioning {Ci} and reproduction set Yi E T minimizing D. 

Classic results along this line include the Lloyd conditions for optimal quantization [7]. While 

general, the unconstrained approach can le ad to designs which are impossible in practical systems. 

For instance, many of the D-R bounds can only be approached by a block-encoding where the 

block-size approaches infinity, implying long delay and large memory requirements. 

The other approach, which is pervasive in much of audio, image and video coding, is the 

"operational" rate-distortion paradigm. Here, one abandons the idea of unconstrained optimality. 

Instead, a coding structure is first fixed, a priori, which satisfies the complexity and memory 

requirements of the system. The structure is parameterized by a number of variables, and then 

one searches for the best rate-distortion performance among those parameters [22]. 

A simple example will serve to illustrate the method. Define a set of N scalar uniform 

quantizers q = {qi}, each parameterized by step-size 15 = {t5i }, acting upon N variables x = 

{xd E S. By making a choice of step-size parameter 15, we fix the quantizers and thus specify 
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a single rate-distortion point (D( q), R( q)). By sweeping 8 over aIl possible values of step-sizes 

in (lR+)N, we obtain the set of aIl achievable rate-distortion points. The convex hull of this set 

defines the operational rate-distortion curve. It is called operational because the points on the 

curve are directly achievable by the system for sorne step-size parameter 8. 

A special case of importance occurs when the set of possible parameters is finite - for example, 

in the ab ove , by restricting the step-sizes, say, to values (1/2)k, for positive integer k less than 

sorne number. The set of achievable rate-distortion points is then also finite, and the problem of 

finding good operating points becomes one of (finite) discrete optimization. 

We used a probabilistic definition for the distortion D above. This involves finding sorne 

statistical model for the sources to be coded. For many natural sources (audio, images etc.), it 

may be impossible to find good models which can fully characterise a given source, - particularly 

for non-stationary pro cesses. In this case, one may move from a system involving fixed parameters 

optimizing an average distortion, to a system where the parameters dynamically change depending 

upon input, and where average distortion is replaced with actual distortion. 

Returning to our scalar quantization example, suppose the variables to be quantized {xd 
are discrete Fourier coefficients of audio, where the coefficients are computed over some time

frame. Instead of trying to design the step-sizes to obtain the optimal trade-off between average 

distortion over aU possible sam pie points, versus rate, we can attempt, given an actual vector 

of coefficients {Xi}, to find the parameters 8 which trade-off the actual distortion D(x, q(x)) (to 

rate). Since the step-sizes change with every input, an additional coding system needs to be 

designed for the parameters, to be sent as side-information, with an associated rate cost R( 8). 

The rate-distortion trade-off then becomes one of balancing actual distortion D(x, q(x)) on the 

one hand, and total rate due to both quantizer and side-information: R = R( q) + R( 8). In this 

system, the rate-distortion optimization is carried out every frame. 

3.2.2 Classification of R-D Optimization Problems 

Having defined the set of operational rate-distortion points, we can now formulate two types of 

problems: rate-constrained versus distortion-constrained. Let the quantizers q be parameterized 

over a set P. They are given by: 

1. (Rate-canstrained Prablem). Fixing a target rate R', 

min D( q), subject ta 
qEP 

R(q) ~ R' 

(3.6) 

(3.7) 



3 Excitation Distortion for Audio Coding 

2. (Distortion-constrained Pro blem). Fixing a target distortion D', 

minR(q), subjectto 
qEP 

D(q):::; D' 

Independent and Dependent Quantization 
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(3.8) 

(3.9) 

If the set of coder parameterizations P is finite, then one obvious solution exists for finding the 

optimal solution to either of the formulations (3.7) and (3.9): namely the brute-force approach of 

computing all the rate-distortion data for every operating point in P. Sometimes this is the only 

course of action, especially when there is no structure to either D or R, or when IFI is small. More 

often than not, however, either D or R admits sorne decomposition which allows more efficient 

algorithms than exhaustive search. One well-researched and convenient assumption is the case 

when D is additively separable; i.e. 

(3.10) 

for sorne functions dl, ... ,dn . Equation (3.10) is quite strong: it essentially reduces the multi

variate function D into a sequence of single-variate functions di. Such simplification is the key to 

a variety of efficient algorithms, such as Lagrangian relaxation [31]. 

Sometimes a function may not possess the decomposition (3.10), but a weaker representation: 

n 

D(XI, ql(XI), ... , Xn, qn(xn)) = L di(xi-a, qi-a(Xi-a), ... , Xi+a, qi+a(Xi+a))1 
i=l 

(3.11) 

for sorne functions di, and a positive number a. Here, each of the functions di depend upon a 

range of quantizers, from i - a to i + a, instead of a single quantizer, as in (3.10). Depending 

upon how large a is, one obtains more or less dependency of the functions di. In the case each 

di is a function of all quantizers, one has a global dependency and the representation (3.11) is 

entirely trivial, of course. 

Based on the preceding discussion, it should not be a surprise that if a distortion measure has 

the form (3.10), then the rate-distortion optimization problem is called an independent quantiza

tion problem, and if it should have the form (3.11), for sorne a> 0, then it is called a dependent 

quantization problem. 

The ab ove example illustrated the case where the functions were additively separable. We now 

provide a more general notion of independent and dependent quantization. Towards this end, let 

IThe subscript notation means that i - a = max{l, i - a}, and i + a = min{n, i + a}. 
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us make the following definition: 

Definition 3.1. A function f of the variables {xi}i=l' {qi}i=l is called F-separable (or more 

succinctly separable) if there exists a function F increasing in each dimension and functions 

Udi=l such that f admits the decomposition: 

(3.12) 

This definition gives a natural generalization to the notion of additive separability. In par

ticular, additive separability occurs when F = L:i 1 . 1. If f > 0 is separable, there is no loss in 

generality in assuming that F > 0 and fi > O. Hence the representation (3.12) implies sorne type 

of grouping or integration of individual distortions (or rates) fi. We now define an independent 

quantization problem as one in which both the rate function R and the distortion function D are 

separable, and a dependent quantization problem as one in which at least one of Rand D is not 

separable. We shall also say that, in the case that f is not separable, that it is "F-type" if it has 

the dependent decomposition: 

(3.13) 

for sorne function F increasing in each dimension, and sorne positive number a. Once again, this 

provides a natural generalisation of (3.11), which is additive-type. 

Broadly speaking, dependent quantization problems pose greater difficulties than indepen

dent problems in terms of optimal bit-allocation. For instance, certain dynamic programming 

algorithms increase in computational complexity as the neighborhood of dependency increases 

[29], and standard incremental bit allocation can fail when the quantizers are dependent [5]. We 

shall not try to provide any survey of the large literature on independent and dependent bit

allocation, however; instead we invoke the germane approaches when required for our specific 

problem (Section 3.3.5). 

3.3 Quantization with Excitation Distortion 

3.3.1 Quantization Domain 

Let us assume an operational rate-distortion paradigm, by fixing a set of uniform scalar quan

tizers {qd acting on variables {xd, parameterized by step-sizes {Ji}' One question which arises 

immediately is: what domain should the quantization variables {xd be chosen in? The standard 

transform domains are the DFT, DCT and MDCT domains. But the fact that the excitation pat

tern can be viewed as an invertible linear transform on power spectra (Section 1.2) also suggests 
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yet another possibility: quantization in the excitation domain itself. 

To explore this possibility, let us turn back to the distortion measure (3.1). It is obvious that 

if the variables to be quantized consist of discrete total excitation variables, then D is separable, 

with F = O::::i 1· l)l/p, and the single-variate distortions given by 

di = WP(Wi) Ixk(Wi) - yk(Wi)IP . 
max{ Xkp(Wi), ykp(Wi)} 

(3.14) 

Moreover, in the case k = 0, one obtains the logarithmic distortion, and ifwe choose to quantize 

logarithmic excitation variables log(xi), then the distortion measure D is not only separable, 

one even converts the ratio measure D into a weighted /:..;P difference metric! Note that for no 

other parameter k is it possible for D to be a differenee measure, because f = log x is the only 

(continuous) function satisfying f(x/y) = f(x) - f(y), and henee the only transformation that 

can turn the ratio measure into a difference measure. 

In contrast, now suppose that the quantizers act on a standard domain, such as the DFT 

domain. One may still admit a decomposition of the form (3.14), but due to the spreading 

operator U, each di is a function of every quantizer qj, giving rise to a very non-separable distortion 

function. The upshot is then this: quantizing in a DFT (or any other non-spread) do main results 

in a (globally) dependent quantization problem, whereas quantizing in the excitation (or more 

generally spread) domain results in a simpler independent quantization problem. 

The picture is not quite as convenient as this, however. First, for simplicity, let us confine 

the discussion to the standard excitation pattern, instead of the CEPS. The dis crete excitation 

transform is then an invertible linear mapping U from ]Rn to ]Rn. The space of power spectra 

however, is S = (]R+)n C ]Rn. The spaee of excitation patterns C then occupies a subset of 

]Rn, given by the image U(S), which is the convex cone spanned by the columns of the matrix 

representative U. 2 Moreover, sinee the entries in U are positive, the convex cone of excitations 

is always a subset of (R+)n. 

Figure 3.1 provides an illustration of the situation with n = 2. Because the set of excitation 

spectra lie in a subset of the positive octant, the use of a rectangular lattiee (such as occurs with 

scalar quantizers) can easily contain reproduction points lying out si de the convex co ne C. These 

points, under the action of the inverse U-1, are mapped outside of the positive octant in Figure 

3.1(b) and henee do not form valid power spectra. 

The possibility of "negative" power spectra when quantizing in the excitation domain is in

timately related to the problem of masking threshold deconvolution, as raised by Johnston in 

[15]. In that paper, the author realised that the computed masking threshold M had to be 

2Recall that the convex cone spanned by VI, ... ,Vn is the set of all vectors of the form al VI + ... anvn , with 
ai;:::: O. 
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(a) Set of Power Spectra (b) Set of Excitation Spectra 

Fig. 3.1 Action of U on the set of power spectra. The image of the shaded area in (a) 
under mapping U is the shaded area in (b), bounded by the column vectors [UI, U2] = U. 
U = [UI,U2] 
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"deconvolved" into an unspread domain for comparison with the error signal. This was done 

by multiplying the masking threshold by the (non-singular) inverse spreading matrix. Johnston, 

however, noted the proeess "often leads to artifacts such as negative energy for a threshold, zero 

threshold etc.". The cause of this remained somewhat mysterious: "The unusual errors come 

about because the deconvolution proeess seeks a strictly numerical solution that disregards the 

physical and acoustical realities of the situation" . 

From the perspective of our present view, the phenomenon of negative thresholds in decon

volution is hardly unusual. It is a simple manifestation of the fact that, while the excitation 

pattern E is a member of the convex cone C, the masking threshold M, given by the division of 

E and a non-frequency-constant masking offset, is usually not a member. Renee M is mapped by 

the inverse transform to a point outside the positive octant. If the masking offset is constant in 

frequency, it is easy to check that MEC, and the deconvolution proeess never produees negative 

thresholds. But because the convex cone of excitations occupies such a small volume out of ]Rn, 

the process of masking offset division generally moves the excitation point outside of C, resulting 

in the phenomena. 

The problem of reproduction vectors lying outside the space of excitation patterns is a serious 

one, and for that reason, we shall heneeforth assume a co ding structure where the quantizers qi 

act in a non-spread frequency domain Xi. This does not mean that it is impossible to code in the 

excitation domain. In particular, the thesis [33] provides one method of overcoming the issue. 
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3.3.2 Framework 

Our main goal will not be to design a complete coder driven by the excitation distortion measure, 

but merely a prototype of one sufficiently sophisticated and general to produce both ED-coded and 

NMR-coded files, thereby permitting experimental comparisons between the two metrics (Chapter 

4). Consequently, we shall not be concerned with the design of an entropy coder mapping the 

reproduction values qi(Xi) to binary sequences, nor even the coding of the side-information h 
In order to attain sorne generality, we shall pose no restrictions on the sampling rate, number of 

quantizers, or even the domain of the variables Xi- other than the fact that they lie in sorne 

standard non-spread frequency domain (DFT, MD CT etc.). 

Of the two types of R-D optimization problems, we will choose the constrained-distortion 

framework (3.8). This mode of operation is useful for a variety of reasons. First, transparent 

coding can be expressed as a constant-distortion criterion: D(x, q(x)) = K for sorne threshold K. 

Second, a qualitative understanding of supra-threshold distortion incurred from using a particular 

psychoacoustic model can only be evaluated subjectively when every frame is coded to the same 

distortion. Third, a distortion-constrained scheme can form the kernel for a rate-constrained 

scheme. In particular, a constant-distortion engine can find a relative allocation of bits bi, while 

an outer algorithm adjusts the absolute sizes of bi to meet the rate constraint. This pro cess occurs 

in the MPEG coding standard, for ex ample, where the inner loop adjusts the relative step-sizes of 

the quantizers qi to meet a distortion constraint (masking threshold), while an outer loop varies 

a global gain factor to meet the rate target. 

3.3.3 Causal Co ding versus Non-Causal Co ding 

The standard speech or audio coder is a causal coder; namely, a file of data is sectioned into 

overlapping time frames, transformed into a frequency representation and quantized. Each frame 

is processed sequentially, and in as much that there is any dependence between frames in terms 

of quantization decisions, only past frames n - 1, n - 2, ... can influence the co ding out cornes of 

the n-th frame. 

Our distortion measure (3.1), like most other audio metrics, is posed as a measure between two 

spectra occurring simultaneously3 (this ho Ids even in the case when time-spread excitations are 

used) , hence the standard causal coding paradigm would at first glance also seem suitable: namely, 

the data is divided into overlapping frames, the short-term reference spectra X(w) computed and 

quantized to X(w) so that the reconstructed excitation pattern E(X(w)) at frame n matches as 

closely as possible the reference excitation pattern E(X(w)) at frame n, in the sense of (3.1). The 

3More precisely, if E( t, w) is one set of time-indexed excitations and F( t, w) is another set, then the distortion 
measure only utilises differences between E( tl, w) and F( t2, w) for tl = t2 
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constrained-distortion optimization is carried out every frame; moreover, if the distortion target 

K is kept fixed for every frame, then the output file is distortion-constrained in the strong sense 

that D < K for aU time frames. It is true that each frame now has a different rate Ri associated 

to it, but there still exist reasonable notions of rate for the entire file; for instance the average 

iv 2:~1 Ri over aU frames. 

The situation is actuaUy much more complicated. Figure 3.2 gives a block-diagram overview 

of the coding pro cess just named, illustrated in the case of 50% overlaPi however, the following 

points will apply at any overlap greater than zero. Observe that there are actually two versions of 

the "reconstructed" excitation pattern that one may sensibly define. Version 1 is derived directly 

from the quantized spectral coefficients. Version 2 is derived from a spectral analysis of the final 

time-domain coded signal, after overlap-add. 

Generally, these two versions of excitation patterns will not be the same, unless there is no 

overlap in frames. It is also clear that the true reconstructed excitation pattern is the one obtained 

only after time-domain addition, because this is the signal upon which the listener performs the 

perceptual processing. The comparison between reference and reconstruction thus must be an 

end-to-end process; the intermediary Version 1 excitation pattern is litt le more than a by-product 

of the signal decomposition. 

What ramifications does this have for quantization? The most important one is that the 

excitation-distortion allocation problem becomes not only frequency-dependent, but also time

dependent. This is readily seen by observing that the Version 2 reconstructed excitation pattern 

at frame n is a function of the quantized spectral coefficients of both frame n -1 and frame n + 1, 

in addition to the spectral coefficients of frame n. 

The time-frequency dependency need not be confined to excitation distortion alone. The fact 

that the reconstructed spectrum after overlap does not match the quantized spectral coefficients 

implies that any measure posed in the frequency domain gives rise to a time-frequency dependent 

allocation problem, including NMR, Spectral Distortion (SD), as weIl as ED. Figure 3.3 shows the 

dependencies in the time-frequency plane for different types of measures and transform overlaps. 

The grid represents sorne time-frequency decomposition, and each square is associated with both 

a quantizer and a distortion point. The lightly shaded area denotes the neighborhood of aIl 

quantizers which have sorne influence over the single darkly shaded time-frequency distortion 

point. 

An implication of the time dependency is that constrained distortion optimization in the 

strong sense (Dn < K for aIl time frames n) is not generaIly possible with causal coding. This is 

because there is no guarantee that, even if the first n frames are quantized to satisfy Dn < K, it 

is possible to achieve the distortion constraint for frame n + 1, Le. Dn+l < K. For instance, it 

is very easy to find an example where the end-to-end excitation distortion in aIl frames k, k < n 
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Fig. 3.2 Coding Pro cess with 50% frame overlap. Because of overlap-add reconstruction, 
the quantized frequency coefficients are not the same as the reconstructed frequency coeffi
cients. 
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Frame number (Time) Frame number (Time) 

(a) Independent Quantization (b) Frequency Dependent Quantization 

Frame number (Time) 

(c) Frequency /Time Dependent Quantiza
tion 

Fig. 3.3 Quantizer Dependencies. Diagram (a) is descriptive a measure like NMR, with 
no coder overlapj (b) applies for ED, with no coder overlapj (c) applies for any distance 
measure on frequency spectra, at coder overlap 0 satisfying 0% < 0 ~ 50%. 
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are below 1 dB, but such that it is impossible to bring the end-to-end excitation distortion in 

frame n below 1 dB - even with perfect co ding of the n-th frame. This is a direct consequence of 

frame-dependency and the sensitivity of error propagation in the overlapped coding system. Nor 

are such examples rare; we have found, experimentally, that it is more often the case than not 

that past quantization decisions made in previous frames make it impossible to achieve distortion 

targets in future frames. 

There exist two obvious solutions to the posed dilemma. The first is to forego overlapped 

representations, so that one obtains only a frequency-dependent problem, making constrained

distortion causal coding feasible. There are a few problems with this approach. First, it prohibits 

any lapped-transform decomposition; among them the MD CT decomposition, which is perhaps 
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the most popular and widely-used transform in audio coding. Second, the quantized coefficients 

must come from a non-overlapped analysis; by the Nyquist conditions for perfect reconstruction, 

the only time-window that may be used is a rectangular one, which has relatively poor sidelobe 

suppression properties. Finally, it is well-known that non-overlapped reconstruction in transform 

coders result in discontinuities at frame boundaries due to quantization: the result is a highly 

audible low-frequency clicking at all but the very highest rates. 

The other possibility, and the one which we shall pursue, is to renounce causal coding in 

favor of non-causal coding4 . That is, instead of processing time frames sequentially, we view 

the rate-distortion optimization over an entire audio file in the time-frequency plane, without 

constraints on which parts of the file need to be processed first. Non-causal coding increases the 

computational complexity of the coder, besides introducing a larger delay; on the flip-side, we 

obtain great generality and applicability in the retention of overlapped representations. 

3.3.4 Non-Causal Coding: Formulation 

Let us now setup our problem more concretely. Given an input signal S, we assume the existence 

of sorne (invertible) time-frequency transform which pro duces the discrete time-frequency repre

sentation X(ti,Wj) == x(i,j) for S, with 1 ::; i ::; M and 1 ::; j ::; N. For every (i,j) coefficient, 

we associate a set of uniform scalar quantizers qi,j,b, parameterized by the whole number b (a 

quantity similar to "bits"), assigning a step-size to the quantizer through the formula: 

(3.15) 

where Ki,j is chosen large so that qi,j,o(x(i,j)) = 0 (for instance, Ki,j > 2x(i,j)).5 Thus the signal 

is quantized to zero, when 0 bits (b = 0) are used for each quantizer. Moreover, we will write 

b = b( i, j) as a way of indicating the quantizer used in the location (i, j), so that b( i, j) has the 

interpretation of being a bit-allocation. For instance, b( i, j) = 3 codes the state in which a scalar 

quantizer of step-size l\j,3 is used in the time-frequency location (i, j). 
We can define the rate in a couple of natural ways, without explicitly constructing a code for 

the quantized coefficients. One definition is the empirical entropy of the quantization levels, thus 

estimating, in sorne sense, the rate of a coder whose quantized spectral coefficients are Huffman 

coded. This definition is rather intractable for the purposes of R-D optimization, however, since 

it can only be computed once every coefficient in the whole file is quantized.6 Thus the rate 

4 Alternative synonyms include global or stream coding. 
5The step-sizes of the quantizers constitute side-information, which can be further decomposed as side

information representing Ki,j and b. One can choose here to decrease the amount of side-information by, for 
instance, setting Ki,j = const Vi,j. Then the quantizers are completely parameterized by the integer b. 

6 Given a coded file, we will use empirical entropy as a measurement of rate in Chapter 4, however, since it gives 
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function R becomes globally dependent over the entire file! It will be more convenient to use a 

localised measure of rate. We shall define it as the average bit-allocation over the entire file: 

1 M N 

R= NMLLb(i,j) 
i=l j=l 

(3.16) 

Observe that R is additively separable. It will, of course, tend to correlate with the empirical 

entropy, since distortion is reduced as b increases. 

Let Di(x(i,j),x(i,j)) be a distortion measure, defined between two spectra x(i,j) and x(i,j) 

for fixed time index i (such as ED (3.1) or NMR (2.1)). In line with our goal of constrained 

distortion, we define the distortion D as the maximum distortion over all time frames: 

(3.17) 

Now our problem can be stated thusly: Given a target distortion K, to find a bit allocation b(i, j) 

su ch that D < K with minimal rate R. 

3.3.5 Optimal and IncrementaI Approaches to Bit Allocation 

Having formulated specifically the rate-distortion problem of interest in the previous section, we 

can now give a discussion of which bit allocation algorithms may be applicable. For the purposes 

of an algorithmic complexity analysis, let us define the following variables: B for the number 

of quantizers associated with each time-frequency coefficient, M the number of time-frames, N 

the number of frequency coefficients per frame (so that in total there are N M time-frequency 

locations), and finally n the size of the neighborhood of dependence (see Figure 3.3). 

We can also give reasonable values for each of these parameters. For instance, N = 20 fre

quency subbands; audio files a few seconds long so that M = 100 time frames. The neighborhood 

of dependency, for overlapped (~ 50%) representations, is then n = 3N = 60. To compute B, 

we need to estimate the maximum number of bits required for transparent coding. Assuming 

a step-size reduction factor r = 0.9 in (3.15), we have 6 = 2Ixl(0.9)b, where x is the transform 

coefficient. The maximum error incurred by a uniform quantizer of step-size 6 is 6/2, hence the 

ratio between reconstructed and reference coefficients is approximately: 

(
IX±6/21) b 20log lO Ixl ç::;;; 20 log 10 (1 + (0.9) ) (3.18) 

Setting the right-hand si de to 1 dB (just-noticeable threshold) and solving for b gives b ç::;;; 20; for 

a more realistic emulation of rate in a real coder. 
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Moore's more conservative estimate of 0.1 dB we obtain b:;::j 40. Thus anywhere between 20 to 40 

bits (for r = 0.9) may be required per coefficient for transparent coding. Let us use the optimistic 

B = 20 in the sequel. In all of the following methods, the dominating factor in time-complexity is 

the number of evaluations of the distortion function. We shall thus write complexity in the form 

O(cp), where cp is the number of distortion function evaluations. 

Optimal methods 

Brute Force: A brute-force evaluation of the distortion for all possible combinat ions of bit allo

cation is of complexity O(BNM ) rv 102000 which is of course unfeasible. 

Dynamic ProgmmmingjLagmngian Relaxation: A classical approach to the problem of con

strained optimization is the theorem of Everett [6], which shows, roughly stated, that a solution 

to the unconstrained minimization of the Lagrangian 

(3.19) 

is a solution to the constrained-distortion problem (3.9). What is remarkable about this theorem 

is its generality: essentially no restrictions are made on the rate or distortion measures, other that 

they be real functions on quite arbitrary sets. While the unconstrained optimization problem may 

seem easier than the constrained one, computational savings are unfortunately obtained only in 

the case that the rate and distortion measures are additively separable. Under such conditions, 

efficient algorithms are available, such as the one of Shoham, [31], the algorithm of Westerink 

[36], or the algorithm of Riskin [28]. Unfortunately, the distortion measure under consideration 

(3.17) is neither separable, nor even of additive-type. These algorithms thus do not apply. 

It is, however, a distortion measure of the "max-type" admitting the weaker, dependent de

composition (3.13), with F = maxi(')' The so-called "min-max" distortion has received less 

attention than the "min-average" problem, perhaps because it is not amen able to Lagrangian 

relaxation. Nevertheless, Schuster and Katsaggelos have formulated a trellis-search approach to 

both separable (independent) and non-separable (dependent) variants of the max-type optimiza

tion problem. Aggarwal [1] essentially lifted this procedure and applied it to the case of optimal 

selection of parameters in minimizing maximum NMR in an MPEG-IV coder. The method is not 

restricted to fin ding points on the rate-distortion convex hull, since no relaxation is used. The 

search will find the optimal rate-distortion parameters. 

It is possible to apply this algorithm to our problem. First, we build a one-to-one association 

between quantizers and distortion, and hence a one-to-one association between distortion and rate. 

This can be accompli shed by defining the distortion pattern in the (i,j) location as D ij = Di, for 
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all j, with Di as in (3.17). Let D = K be our distortion target. The trick now is to redefine the 

rate function as: 

b'(i,j) = ' ~,J 
{

oo D·· > K 

b(i,j), Di,j:SK 
(3.20) 

with the induced re-specification of the overall rate 

R = ~N Lb'(i,j). 
i,j 

(3.21) 

This cost function is additive -- however, it is not separable because the redefinition (3.20) 

transfers the dependencies implicit with D into dependencies with b'! Nevertheless, trellis search 

remains applicable for non-separable functions, as long as they are of additive-type. For instance, 

the algorithm for additive dependent quantization of Ramchandran [26] can now be applied. The 

constraint on the maximum distortion is carried in the new rate-definition b'; any branch leading 

to a trellis point which pro duces distortion larger than the constraint is associated infinite cost; 

hence the minimizing path cannot pass through any such a state, as long as there exist parameters 

for which the distortion target can be satisfied. 

Unfortunately, there does exists a downside: the computational complexity of such a procedure 

is O(NM(B)n) -- exponential in the size of the neighborhood of dependency n [29]. Using our 

previous estimates, this cornes out to approximately 1081 distortion evaluations -- better than 

brute force -- but still entirely unfeasible. 

Sub-Optimai IncrementaI Aigorithms 

Given the enormous complexity of the algorithms presented in the previous section, we must forego 

rate-distortion optimality and make use of more heuristic procedures. One class of such methods 

are called "greedy" algorithms. They are useful when there is a way to order the quantizers in 

terms of increasing rate and quality, such as a sequence q1, q2, q3 ... satisfying limb->oo qb(X) = x. 

In our case, the natural sequence is qi,j,O, qi,j,1, qi,j,2, ... where qi,j,b is defined in Section 3.3.4. 

When this ordering is available, the parameter search is empowered with sorne sense of "direc

tion", whereas for completely general definitions of rate R and distortion D there is no such 

structure. 

Greedy Search: The standard greedy algorithm approaches the rate-distortion problem in the 

following way: beginning with an initial bit-allocation b( i, j) = 0 for all i, j, the algorithm finds 

the (i, j) location for which the bit increase b( i, j) = b( i, j) + 1 results in a maximal decrease in dis

tortion D. Computational complexity for this algorithm is upper-bounded by O(B(N M)2) == 107 , 
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which is large but feasible. 

Unfortunately, while performing well for independent quantization problems, the greedy algo

rithm can fail to haIt for dependent quantization problems [5]. In particular, allocation distribu

tions can arise such that for no time-frequency location do es the bit increase b(i,j) = b(i,j) + v 

result in a decrease in distortion, for any positive integer v. This phenomenon is essentially 

the consequence of trying to minimize an irreducibly multivariate, non-separable distortion func

tion by checking changes in the objective function only along the axial directions (1,0,0, ... ), 

(0,1,0,0, ... ), (0,0,1,0,0, ... ) etc. lndeed the very notion of separability implies a function that is 

"naturally" oriented along axial directions 7 . This explains why search directions parallel to the 

axes (such as occur in "single-coefficient" updates) work well for these types of functions. It is 

also why the greedy search tends to perform poorly or not at all for non-separable functions. 

Reverse Allocation 

The idea of a "reverse" greedy algorithm may have first been introduced by the present author in 

[5]. It was formulated in that paper under restricted conditions, for an excitation distortion mea

sure of a specific type. However, the experimental results therein showed that reverse allocation 

could meet distortion targets at approximately 50% the rate of a suitably defined multi-coefficient 

(forward) greedy algorithm. We now provide a general formulation for reverse allocation, appli

cable for the bit-allocation of a wide range of distortion measures. 

The basic idea is extremely simple and consists of the following: we first obtain, by any 

method, a bit allocation satisfying the distortion constraint without necessarily worrying about 

rate-optimality; this bit allocation is used as an initialization to a de-allocation algorithm, which 

successively removes bits until the distortion constraint is breached. More specifically, at each 

iteration a bit is removed from the location (i, j) which results in the smallest updated distortion. 

The pro cess continues until the constraint D < K is first breached; the last allocation for which 

the target is achieved is retained. 

It is important to observe that while a greedy search driven by a non-separable distortion 

function is used for the removal of bits, it does not suffer from the same issues as a forward greedy 

algorithm. For instance, the halting problem do es not occur here since a decrease in distortion in 

de-allocation-though generally unexpected-is a positive resuIt, whereas a generally unexpected 

increase in distortion in the forward algorithm is a negative outcome. lndeed, the reversaI of 

priorities in the inverse algorithm can transform the weaknesses of the forward greedy search into 

strengths in the reverse case. 

7For instance, consider the additively separable function f(x,y) = ax2 + cy2 as opposed to the non-separable 
fun ct ion g(x,y) = ax2 + bxy + cy2. The level sections of 9 are ellipses rotated with respect to the x and y axes 
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There are a variety of ways of obtaining the initializing bit distribution. In [5] an initializing 

bit allocation was found by utilising the fact that, under certain conditions, there exists a simpler 

non-spread measure that can over-bound the excitation distortion. A standard forward greedy 

algorithm minimizing the non-spread measure obtained the desired initialization. With general 

distortion measures, one do es not always have the luxury of such a structure. There always ex

ists one crude estimate, however: simply set b( i, j) = B, Vi, j with B sufficiently large. A more 

intelligent design is to use sorne type of forward multi-allocation algorithm: 

Algorithm 3.1 (Initialization) 

Given a distortion target K, 

1. Set b(i, j) = 0, Vi, j 

2. Compute the distortion pattern Dij using bit allocation b( i, j) for all i, j. 

3. If maxi,j D ij < K stop. If not, locate (i*, j*) = arg maXi,j Dij. 

4. Find the set P of all indices (i, j) such that Di' j' is a function of qi,j. 

5. Set b(i,j) = b(i,j) + 1 V(i,j) E P. 

6. Go to Step 2. 

Step 4 of the algorithm involves finding the "dependency" neighborhood of the distortion 

point Di'j' (see Figure 3.3). When the coding pro cess involves an overlapped representation with 

overlap 0 such that 0% < 0 < 50%, this neighborhood is always given by P = {(i, j) : i* - 1 ::; 

i ::; i* + 1}. The above initialization algorithm is guaranteed to converge as long as the distortion 

function Di of (3.17) satisfies the continuity requirement 

(3.22) 

and the quantizers are "well-designed" in the sense that limb-+oo qi,j,b(X) = x. 

We now give a formal description of the de-allocation process. In the pro cess we shall introduce 

a complexity-scaling parameter that allows the user to trade-off time-complexity for rate-distortion 

optimality. 

Algorithm 3.2 (De-allocation) 

We assume that sorne initialization pro cess has already arrived at a bit allocation b( i, j) satisfy

ing the distortion constraint K. Begin by partitioning the set of time-frequency locations into 

disjoint sets Ab 1 ::; k ::; L. Let us define the function Tb( i, j) as the updated distortion D that 
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occurs when the bit allocation b( i, j) is replaced with b( i, j) - 1 (only in the (i, j) location) when 

b( i, j) 2: 1 and when the updated distortion satisfies D :::; K. We define Tb( i, j) = 00 if either 

b(i,j) = 0, or if the updated distortion D > K. 

1. Compute Tb(i, j) for all (i, j) E Al' 

2. Find (i*,j*) = argmini,jTb(i,j). 

3. Set b(i*,j*) = b(i*,j*) -1 if Tb(i*,j*) < 00. 

4. Go to Step 1, and repeat Steps 1-3 for each of A2' A3, Ak, .. . , AL. 

5. If at least one bit was removed through Steps 1-4, repeat Steps 1-5. If not, the algorithm 

terminates. 

We shaH call the concatenation of the Initialization Algorithm and De-allocation Algorithm by 

the title "Reverse Allocation Algorithm". It is a rather general procedure, which can be applied 

to any distortion function, separable or not, which satisfies the continuity property (3.22). The 

algorithm is guaranteed to haIt in a finite number of iterations, for any distortion target K. 

The partitioning of the time-frequency locations into sets Ak provides a way of trading off 

computational effort and rate-distortion optimality. The main point to the partitioning is in 

reducing the number of distortion function evaluations required before removing one bit. For 

instance, if L = 1 and one takes Al the entire set of indices, the algorithm must test every 

location in the file before removing a single bit. On the other hand, by choosing a fine partition 

so that A = maxk IAkl is small, the algorithm is required at most to evaluate the distortion A 

times before attempting to remove a bit. Thus the latter algorithm can generally run up to N M / A 

times faster than the former. However, because the search-field in the latter is far more restricted 

than in the former, it will tend to remove relatively fewer bits before exceeding the distortion 

constraint. 

The complexity of the Initialization Algorithm is no more than O(B(NM)), while the com

plexity for De-allocation is no more than O(B(N M)2). The combined complexity of Reverse Allo

cation is therefore no more than that O(B(N M)2) - the same as the standard greedy algorithm. 

Depending on how well localised the neighborhood of dependence is, a careful implementation 

of the partitioning {Ad can obtain O(ABNM), so that it is even possible to have complexity 

O(BN M) in some cases by using the finest partition Ak possible: each Ak a singleton. 

The following table summarises the complexity of the allocation algorithms discussed. 
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Table 3.1 Complexity of Various Allocation Algorithms 

Algorithm 

Brute-Force 
Dynamic Programming 

Greedy Algorithm 
Reverse Allocation 

Complexity 

O(BNM ) 

O(NMBn ) 

O(B(NM)2) 
O(BNM) to O(B(NM)2) 

Typical No. of Evaluations 

'" 102000 

'" 1081 

'" 107 

'" 105 
- 107 
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Chapter 4 

Experimental Results 

The investigations of Chapter 2 suggested that, conceptually at least, ED should quantitate 

distortion in a way doser to human audition than does NMR. Chapter 3 looked at the issues 

that arose when attempting to implement the new measure in transform coders, and in particular 

developed a new bit allocation algorithm for dependent, non-causal coding. In this final chapter, 

we integrate aIl of the findings of the past chapters to build a non-causal constrained-distortion 

ED and NMR coder, with the rate-distortion optimization driven by Reverse Allocation. The 

resulting coders are not complete, of course, but do provide the basis for a fair experimental 

comparison between the measures. 

4.1 Phase and Magnitude Quantization 

Time permits us only to investigate the performance of excitation distortion when the standard 

excitation pattern is used, as opposed to the Complex Excitation Pattern (Section 1.3). The 

resulting ED distortion measure is thus phase-blind. As a consequence, we will choose to design the 

quantizers in a magnitude-domain, with the assumption of perfect phase coding. More specifically, 

we define our domain of quantization to be the space of square-root power spectra IX(w)l, where 

X (w) is the Fourier transform of the signal. This domain has the advantage that NMR retains 

the squared-error form it assumes in the Fourier domain; i.e. if re iO and fe iO are the unquantized 

and quantized magnitude spectra respectively, then: 

N(w) 
M(w) 

IreiO 
- fe iO I2 

M(w) 
Ir - fl 2 

M(w) (4.1) 

which is a structure not obtained, for instance, if quantization were to occur in the power spectral 

domain. 
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The fact that we quantize only in the magnitude domain do es nat mean that there is no phase 

distortion in the coded signal, however. This is due, once more, to the overlap-add coding process. 

No phase distortion exists when comparing a reference spectra to the intermediary quantized 

spectra of Fig. 3.2, but certainly phase distortion will exist in an end-to-end comparison between 

reference spectra and the final spectra ajter overlap-add. We sim ply use distortion measures that 

ignore phase effects. 

4.2 Specifies of the Coding Structure 

We shall work with audio sampled at 8000 Hz. The time-frequency decomposition is achieved using 

30 ms time frames (240 samplesjframe) overlapped by 50%, windowed by a square-root Hanning 

function, and transformed via DFT into a 121 point magnitude spectrum representation x( i, j). 

For every frame, these coefficients are divided into 18 subbands of unit critical-bandwidth, which 

we index by k. Each group Gk of coefficients is given a product scalar quantizer parameterized 

by a single step-size 6k' The step-sizes are allowed to attain values on the discrete set defined by 

(3.15), with r = 0.9, K ij = 2.01maxGk:iEGk IXijl. 

Model of Excitation, Masking Threshold, Noise 

Given a power spectrum, we calculate the total excitation pattern E'(Wi) by first applying the 

excitation transform U (1.14), and then adding the internaI noise E(Wi) according to (1.7). The 

masking threshold associated with that power spectrum is given by M(Wi) = s(wi)E(Wi), with 

threshold factor S(Wi) as in (1.5). We thus take care to use the same excitation transformation 

model for bath NMR and ED. An important observation is that both the NMR and ED patterns 

are of high-resalutian - they are computed on the same frequency resolution as the DFT, and 

not the resolution of the subbands. Finally, we define the noise variable N(Wi) as the squared 

error Ix(i) - x(i)12, passed through the middle outer ear filter of (1.1). 

Rate-Distortion Optimization 

The Reverse Allocation algorithm of Section 3.3.5 is applied to find, given a target K, the step

size parameters necessary to drive D < K. We define the overall rate of a coded file as the 

average empirical entropy of the quantization levels. This emulates the rate of a coder in which 

the quantization levels are Huffman coded. More specifically, the integer quantization levell of a 

coefficient x using step-size 6 is given by: 

l = round(xj6). (4.2) 
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The specification of the step-sizes 6 then define a time-frequency matrix of integer quantization 

levels. The empirical entropy H(i) of each frequency bin i is computed according to: 

H(i) = - L r(l, i) log2 r(l, i) 
1 

(4.3) 

where r(l, i) is the relative frequency of levell among aIllevels in bin i, over aIl time. The empirical 

rate R of a coded file is then defined as the average entropy over frequency: 

(4.4) 

The ED distortion function of (3.1) is used with p = 00, hence minimizing maximum excitation 

distortion (over frequency). Similarly, per frame, we define the NMR distortion function DNMR 

as the maximum NMR over frequency: 

(4.5) 

Given the definition of the global file distortion in (3.17) as the maximum distortion over aIl time 

frames, the coded files will be such that the NMR and ED patterns are no greater than the target 

K, in both time and frequency. 

4.3 Matched-Rate Comparison 

To compare coded files, the distortion targets are tuned until the files have the same empirical 

entropy. Our first test consisted of coding a male speech file. The ED function (3.1) was tested 

with a number of different parameters. As a notational convenience, let us use the foIlowing 

symbols: 1) ED - logarithmic excitation distortion, weighting function W(w) = 1, 2) EDw -

logarithmic distortion, weighting function W(w) as in (2.29), 3) EDf - excitation distortion with 

f the optimal approximation to loudness difference, W(w) = 1. 

Four rate settings were fixed, distributed from approximately 0.65 bits/coefficient to 1.4 

bits/coefficient. The latter files are in the high-quality/near-transparent regime, while the file 

at the lowest rate has significant distortion. In every case, an informaI cadre of trained listeners 

agreed with the foIlowing quality ranking: 

ED f = ED > EDw > NMR (4.6) 

Our second test file consisted of a vocal quartet - qualitatively quite different from the male 
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speech. Once again, we have found that EDf produces a subjectively higher quality coded file 

than that of NMR, at all rates. 

4.4 Conclusion and Future Work 

The above experimental results, though small in number, are sufficiently encouraging to suggest 

that the class of excitation distortion measures holds promise in improving the quality of existing 

audio coders. 

There exist many research projects, of which only the shallowest of forays have been undertaken 

in this thesis, that may now be fruitfully pursued. Among them are: 

1. Perform a comprehensive set of listening tests between ED and NMR coded files, for a range 

of parameters k,p and weighting function W(w). 

2. Test ED when the Complex Excitation Power Spectrum is used, in lieu of the standard 

excitation. In this case, phase distortion can be incorporated and quantization performed 

in the DFT domain. 

3. Investigate the performance of ED when an MDCT representation is used in conjunction 

with sorne binary phase coding algorithm. 

4. Create a framework which allows quantization in the excitation domain and takes into ac

count lapped transform representation (quantized excitation is not the same as reconstructed 

excitation). 

5. Experimentally quantify the trade-off between computational complexity and rate-distortion 

optimality in the choice of partition Ak for Reverse Allocation. 

6. Create a framework for dealing with time-spread excitation distortion, as well as time-spread 

CEPS, which takes into account lapped transforms. 
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Given any symmetric distortion D(x, y) on veetors x and y one ean define a seale-invariant version 

of the measure via 

D'(x,y) == minD(,6x,y) 
(3)0 

(A.l) 

Sueh measures are often useful for quality measurement sehemes. The minimum of the above 

equation ean be diffieult to evaluate, however, depending on the nature of the original distortion 

funetion D. An iterative seareh for the minimum eould be eomputationally expensive espeeially 

in analysis-by-synthesis pro cesses where the distortion funetion must be called often. It would 

be useful to find closed-form solutions for the scale-invariant measure D'. We look at sorne 

particularly tractable cases when D is the NMR or ED funetion. 

A.1 Scale-invariant NMR Distortion 

Consider the following NMR funetion, ignoring phase, as a function only of the root power spectra 

x and y given by: 

(A.2) 

The case p = 1 quantifies average NMR, p = 2 mean-square NMR, and p = 00 maximum NMR. 

As discussed in Appendix B, the NMR function is not metrieally symmetric in its arguments 

(since the masking threshold of the reference signal x is singled out). The seale-invariant version 
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then must be defined carefully with the scale-factor applied to the reproduced signal y, so that 

(A.3) 

Now we attempt to find a closed-form solution for D'. This will consist in finding a closed-form 

solution for the minimizing scale-factor (3 as a function of the other parameters. 

It suffices to minimize 

where the se arch is conducted over real (3 > 0 

Taking the derivative, we obtain: 

(A.4) 

(A.5) 

It is evident if p is a positive integer, solving this equation is tantamount to fin ding the (real 

and positive) root(s) of a 2p - 1 order polynomial. Closed-form solutions only exist for p = 1 

(linear) and p = 2 (cubic polynomial). No closed-form solutions exist for the roots of quintic and 

higher polynomials. Let us give the solution explicitly for p = 1. In this case, the cost function is 

quadratic and the minimum is unique. With a litt le algebra, we have 

Since x and y are root power spectra, they are positive and (3 > O. Therefore, 

Theorem A.1. The seale-invariant funetion minimizing average NMR is given by 

where 

(A.6) 

(A.7) 

(A.8) 
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A.2 Scale-invariant ED with weighting function 

The distortion function to be considered here is 

(A.9) 

where x > 0 and y > 0 are the total excitation patterns. 

Let us consider the case where p is a positive even integer. Then it suffices to minimize 

n 

J = L wi(ln(f3xdYi))P (A.lO) 
i=l 

Now the problem of finding an optimal f3 proceeds identically to that of the NMR problem. We 

shall provide the final result, leaving the pro of to the reader. 

Theorem A.2. 

1. Closed-form expressions for the minimizing scale factor f3 in (A.1 0) are possible only with 

p = 2 and p = 4. 

2. The scale-invariant function minimizing weighted mean-square ED (p = 2) is 

n 

D'(x, y) = L wdln(f3xdYi))2 (A.11) 
i=l 

where 

(A.12) 
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This appendix de fines and investigates a nurnber of syrnrnetry properties of distortion functions. 

We consider distortion functions D defined between two power spectra x(w) and y(w). We will 

omit the frequency variable whenever convenient. 

Typically a distortion function can be defined by introducing a distortion pattern 

'D(w) = g(x, y) (B.l) 

where g is a two-variable operator and then defining the distortion as sorne norrn of the distortion 

pattern 

D(x, y) = Il'DII (B.2) 

Sorne exarnples of the distortion functions which we will study, falling into the ab ove class are 

listed below: 

1. 'D = (x - y)2 (squared-error) 

(x(yt 2. 'D = Mx (N oise-to-Mask Ratio) 

where M(x) is the rnasking threshold of spectrurn x. 

3. 'D = IL(x) - L(y)1 (Loudness difference) 
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where L(u) is the loudness distribution of the spectrum u. 

4 TJ = 1 I[T(x)]k - [T(y)]k~ 
. 1 - lü-kIlO max{[T(x)]\ [T(y)] } 

(Relative loudness difference) 

where T is the transformation from spectrum to excitation pattern. This is the gain-invariant 

distortion function introduced by fin ding optimal gain-invariant approximations to loudness 

difference (Section 2.2.6). 

5. TJ = ~t~~ -ln (~t~~)-l (Itakura-Saito Distortion on Excitations) 

In each case, a distortion pattern can be defined by using D(x, y) = IITJII. A notable example 

for which the distortion is not defined this way is the audible distortion criterion (2.14), defined 

by 

D(x, y) = L ITJI (B.3) 
Saud 

where TJ is the gain-invariant distortion pattern fourth in the list ab ove , and Saud is the set of 

frequencies for which there is audible distortion (defined as regions where TJ exceeds the generalised 

JND). 

Instead of using a norm, we can also use a general grouping function F, so that D = F(TJ). 

We then require that F be increasing in each dimension. 

B.l Symmetry Properties 

There are many notions of symmetry j asymmetry available. We discuss the foIlowing types: 1) 

metrical symmetry, 2) additivejsubtractive distortion symmetry, 3) masking symmetry jasymmetry 

for tone-noise and noise-tone masking. The first two notions are available for aIl distortion func

tions, whereas the last property only makes sense in the context of distortion measures that are 

psychoacousticaIly motivated: i.e. take into account excitation or masking elements of human 

audition. Any distortion measure formulated with a distortion pattern in the excitation domain 

can potentiaIly exhibit masking asymmetry. The noise-to-mask ratio criterion can potentiaIly ex

hibit asymmetries in masking situations by adjusting the masking threshold M(x) appropriately. 

From here we consider only the first two types of asymmetry, which make sense for aIl distortion 

measures. 
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B.1.1 Metrical Symmetry 

A distortion measure is metrically symmetric if 

D(x, y) = D(y, x) (B.4) 

The term "metric" is used because this pro pert y is the second pro pert y of metric spaces (the 

first being positivity and the third being the triangle inequality). The conceptual point of this 

property is that there is no a priori reference pattern, both x and y are on equal terms. Ultimately, 

it means that the distance from x to y is the same as the distance from y to x. The perceptual 

significance of this formaI attribute is clear in many of the simple psychoacoustic experiments, for 

instance, evaluating JNDs in amplitude or frequency changes of sinusoids. Given two sinusoids 

81 and 82, the distance between them shouldn't depend upon which of them is used as the first 

variable, or in other words, which of them is used as the "reference". 

When realistic spectra are used, taken from speech or audio, it is usually possible for the 

human to identify the "undistorted", reference signal, thus there may be sorne motivation to use 

asymmetric distortion functions, though it is not really clear if it is necessary. 

The squared-error distortion function is metrically symmetric, as are the loudness difference 

and the relative loudness difference measures. 

On the other hand, both the NMR and Itakura-Saito distortion measures are metrically asym

metric. They both single out a "reference" pattern x; NMR uses the masking threshold of x and 

not y. 

For gain-invariant functions like the Itakura-Saito distortion and relative loudness difference, 

the measures are complet el y parameterized by a function f(r), where r is the ratio r = x/y. In 

this case, the symmetry condition requires f(r) = f(r- 1), or that the functions exhibit symmetry 

about a vertical axis when the x-axis is plotted logarithmically. It is easy to see from the following 

figure that the Itakura-Saito distortion is metrically asymmetric and that the relative loudness 

difference is metrically symmetric. 

B.1.2 AdditivejSubtractive Distortion Symmetry 

A distortion function can sometimes penalize additive distortion more than subtractive distortion, 

or vice versa. By the terms "additive" and "subtractive" distortion we mean power-spectrum (or 

excitation-spectrum) additive and subtractive. Hence n is an additive distortion if the distorted 

spectrum is y = x + n and subtractive if y = x - n. 

A distortion function penalizes additive distortion more than subtractive distortion if 

D(x;x+n»D(x;x-n), x>n (B.5) 
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and vice versa if the inequality sign is reversed. It penalizes additive and subtractive distortion 

symmetrically if 

D(x; x + n) = D(x; x - n), x> n (B.6) 

The Noise-to-Mask Ratio (and squared error, a special case) is an example of a distortion 

function which treats additive and subtractive distortion equally, since 

(x-(x-n))2 
M(x) 

(x - (x + n))2 
M(x) 

(B.7) 

The Loudness Difference and Relative Loudness Difference both penalize additive distortion 

less than subtractive distortion. To see this, it is easiest to recast the distortion measures in the 

excitation domain with corresponding excitation patterns u and v for power spectra x and y, 

where the distortion patterns can be distilled into the simpler (and for the second measure, more 

general) forms: 

1. 1)(u, v) = Ih(u) - h(v)l, (Loudness difference) 

where h is an increasing compressive nonlinearity 

2. 1)(u, v) = f(u/v), (General gain-invariant symmetric distortion) 
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where f(r) is increasing when r > 1 and also the metrical symmetry condition f(r) = f(r- 1) 

is satisfied. 

Since these distortion measures are naturally formulated in the excitation domain, we then 

ask whether a distortion penalises excitation-additive or excitation-subtractive distortion (which 

is generally the same concept as power-additive and power-subtractive distortion, and exactly so 

if the excitation transform is linear). Thus we say that a distortion function defined in the exci

tation domain penalizes excitation-additive distortion less than excitation-subtractive distortion 

if D(u, u + e) < D(u, u - e) and so on. 

Now consider the case of Loudness Difference. Since h is a compressive nonlinearity, 

h(u + e) - h(u) < h(u) - h(u - e). 

Both sides of this equation are positive, since h is an increasing function, and so 

Ih(u + e) - h(u)1 < Ih(u) - h(u - e)1 

1>(u, u + e) < 1>(u, u - e) 

(B.8) 

(B.9) 

(B.I0) 

Since one distortion pattern is less than the other everywhere, taking the operator F (which in

creases in each dimension) on each side preserves the inequality sign, and thus Loudness difference 

penalizes additive distortion less than subtractive distortion. 

The general symmetric gain-invariant function, of which Relative Loudness difference is a special 

case, also penalizes additive distortion less than subtractive distortion. To show this, begin with 

the inequality 
u u+e -->--, 

u - e u 
u>e (B.ll) 

which is easily verified by cross-multiplying. Now, both sides of the inequality are larger than 1, 

and since f is increasing when its argument is larger than 1, then 

which implies, from the symmetry condition f(r) = f(r- 1 ) that 

( u) (u) f - >f-
u-e u+e 

1>(u, u - e) > 1>(u, u + e) 

(B.12) 

(B.13) 

(B.14) 
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Thus the Relative Loudness Difference, and also the dB-distance, penalize excitation-additive 

distortion less than excitation-subtractive distortion. 

The Itakura-Saito Distortion also penalizes additive distortion less than subtractive distortion. 

The proof runs as follows: we need to show that D(u, u + e) < D(u, u - e), or that 

_u -ln (_u ) _ 1 < _u -ln (_u ) _ 1, u> e 
u+e u+e u-e u-e 

After sorne algebra, this is so if and only if 

u u 
f(u) = -- - -- + ln(u - e) -ln(u + e) > 0, u > e 

u-e u+e 

Checking the derivative, we see that: 

') 2e 2e 4e
2 

0 
f(u =-(u-e)2+ (u-e)(u+e) =-(u-e)2(u+e) < 

(B.15) 

(B.16) 

(B.17) 

Thus f is always decreasing. It is easily checked that f(u) -t 0 as u -t 00, which together with 

the fact that f is continuous and decreasing on u E (e, (0) implies that f > 0 on that interval, 

proving the statement. 

B.2 Summary 

1. Squared-error distortion measure is metrically symmetric, and penalizes both power-additive 

and power-subtractive distortion equally 

2. Noise-to-Mask Ratio distortion measure is metrically asymmetric, and penalizes both power

additive and power-subtractive distortion equally 

3. Loudness Difference measure is metrically symmetric, and penalizes excitation-additive dis

tortion less than excitation-subtractive distortion 

4. Relative Loudness Difference measure is metrically symmetric, and penalizes excitation

additive distortion less than excitation-subtractive distortion 

5. Itakura-Saito Distortion measure on Excitations is metrically asymmetric, and penalizes 

excitation-additive distortion less than excitation-subtractive distortion 

Finally, if the excitation transformation T is linear, then items 3, 4 and 5 hold also with 

excitation-additive and excitation-subtractive replaced with power-additive and power-subtractive 
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distortion. If the transformation is not linear, then the situation is much more complicated. For in

stance, if we allow level-dependence of the auditory filters, increasing the amplitude of a sine wave 

generally causes a more significant increase in the slopes of the upper excitation pattern than a 

power decrease of the same magnitude in the sine wave. Because of the nonlinear level-dependence 

of the excitation transformation, it is possible in this case for the additive power distortion to 

significantly change the excitation pattern in the upper slopes in this case, so much so that the 

overall distortion is higher for power-additive distortion than power-subtractive distortion. 



73 

References 

[1] A. Aggarwal. "Towards Weighted Mean-Square Error Optimality of Scalable Audio Coding". 

Ph.D. thesis, University of California: Santa Barbara, 2002. 

[2] J. Beerends, J. Stemerdink, "A Perceptual Audio Quality measure Based on a Psychoacoustie 

Sound Representation", J. Audio Engineering Soc., Vol. 40, No. 12, pp. 963-978, 1992. 

[3] R. Blandon, B. Lindblom, "Modeling the judgement of vowel quality differences", J. Acoust. 

Soc. Am" 69, pp. 1414-1422, 1981. 

[4] R. Der, P. Kabal, W.-Y. Chan, "Towards a New Perceptual Coding Paradigm for Audio 

Signals", Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (Hong Kong), 1-824-1-

827, April 2003. 

[5] R. Der, P. Kabal, W.-Y. Chan. "Bit Allocation for Frequency and Time Spread Perceptual 

Coding". Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing. (Montreal, QC), pp. 

IV-201-IV-204, May 2004. 

[6] H. Everett. "Generalised Lagrange Multiplier Method for Solving Problems of Optimal Al

location of Resources". Operations Research. Vol. 11, Issue 3, pp. 399-417, 1963. 

[7] A. Gersho and R. Gray, Vector Quantization and Signal Compression, Kluwer Academie 

Press, 1992. 

[8] B. R. Glasberg, B. C. J. Moore, "Derivation of auditory filter shapes from notched-noise 

data", Hearing Research, 47, pp. 103-138, 1990. 

[9] B. R. Glasberg, B. C. J. Moore. "A Model of Loudness Applicable to Time-Varying Sounds" , 

J. Audio Eng. Soc., vol. 50, pp. 331-342, May 2002. 

[10] R. Gray, A. Buzo, A. Gray, W. Matsuyama. "Distortion Measures for Speech Processing". 

IEEE Trans. on Acoustics, Speech and Signal processing. Vol. 28, pp. 367-376, Aug. 1980. 



References 74 

[11] R. Gray, D. Neuhoff. "Quantization". IEEE Trans. on Information Theory. Vol. 44, pp. 

2325-2383, Oct. 1998. 

[12] J. L. Hall, "Asymmetry of masking revisited: Generalization of masker and probe band

width", J. Acoust. Soc. Am., 101 (2), pp. 1023-1033, Feb. 1997. 

[13] M. Hauenstein, N. Gortz. "On the Application of a Psychoacoustically Motivated Speech

Quality Measure in CELP Speech-Coding". Proc. European Signal Processing Conf. (Rhodes, 

Greece), pp. 1421-1424, Sept. 1998. 

[14] ITU-R, Geneva, "Recommendation BS.1387-1, Methods for Objective Measurements of Per

ceived Audio Quality", Nov. 2001. 

[15] J. D Johnston, "Transform Coding of Audio SignaIs Using Perceptual Noise Criteria", IEEE 

J. Selected Areas Commun., Vol. 6, No. 2, pp 314-323, Feb. 1988. 

[16] R. Lutfi. "Additivity of simultaneous masking". J. Acoust. Soc. Am., 73, pp. 262-267, 1983. 

[17] B. C. J. Moore, An Introduction to the Psychology of Hearing, Macmillan, 1977. 

[18] B. C. J. Moore, B. R. Glasberg, "Formulae describing frequency selectivity as a function of 

frequency and level, and their use in calculating excitation patterns", Hearing Research, 28, 

pp. 209-225, 1987. 

[19] B. C. J. Moore, "Masking in the Human Auditory System", Collected Papers on Digital 

Audio Bit-Rate Reduction, Audio Engineering Society, 1996. 

[20] B. C. J. Moore, "A Model for the Prediction of Thresholds, Loudness, and Partial Loudness", 

J. Audio Engineering Soc., Vol. 45, No. 4, pp. 224-239, April 1997. 

[21] H. Najafzadeh. Perceptual Coding of Narrow-band Audio Signals. Ph.D. Thesis, Dept. Elec

trical and Computer Engineering, McGill University, 2000. 

[22] A. Ortega, K. Ramchandran. "Rate-Distortion Methods for Image and Video Compression". 

IEEE Signal Proc. Magazine, pp. 23-50, Nov. 1998. 

[23] K. Paliwal, B. Atal, "Efficient Vector Quantization of LPC parameters at 24 bits/frame", 

IEEE Trans. Speech, Audio Processing, Vol. 1, No. 1, pp. 3-14, 1993. 

[24] S. van de Par, A. Kohlraush, G. Charestan, and R. Heusdens. "A New Psychoacoustical 

Masking Model for Audio Coding Applications". Proc. IEEE Int. Conf. Acoustics, Speech, 

Signal Processing. (Orlando, FL), pp. 1806-1808, May 2002. 



References 75 

[25] C. J. Plack, B. C. J. Moore. "Temporal Window Shape as a Function of Frequency and 

Level", J. Acoust. Soc. Am., vol. 87, pp. 2178-2187 (1990). 

[26] K. Ramchandran, A. Ortega, and M. Vetterli, "Bit allocation for dependent quantization with 

applications to multiresolution and MPEG video coders," IEEE Trans. Image Processing, vol. 

3, pp. 533-545, Sept. 1994. 

[27] P. Rao, R. van Dinther, R. Veldhuis, A. Kohlrausch, "A measure of predicting audibility 

discrimination thresholds for spectral envelope distortions in vowel sounds", J. Acoust. Soc. 

Am., 109 (5), pp. 2085-2097, May 2001. 

[28] E. Riskin. "Optimal Bit Allocation via the Generalised BFOS Algorithm". IEEE Trans. on 

Information Theory. Vol. 37, pp. 400-402, Mar. 1991. 

[29] G. M. Schuster, G. Melnikov, A. K. Katsaggelos. "A review of the minimum maximum 

criterion for optimal bit allocation among dependent quantizers". IEEE Trans. Multimedia, 

Vol. 1, pp. 3-17, Mar. 1999. 

[30] D. Sen, W. H. Holmes, "Perceptual enhancement of CELP speech coders", Proc. IEEE Int. 

Conf. Acoustics, Speech, Signal Processing (Adelaide), pp. II-105-II-108, April 1994. 

[31] Y. Shoham, A. Gersho. "Efficient Bit Allocation for an Arbitrary Set of Quantizers," IEEE 

Trans. Acoustics, Speech, Signal Processing, vol. 36, pp. 1445-1453. 

[32] T. Thiede, "Perceptual Audio Quality Assessment Using a Non-Linear Filter Bank", Ph.D. 

thesis, Fachbereich Electrotechnik, Technical University Berlin, 1999. 

[33] S. Vakil. Gaussian Mixture Madel Based Coding of Speech and Audio. Masters Thesis, Dept. 

Electrical and Computer Engineering, McGill University, 2004. 

[34] R. Veldhuis, "Bit Rates in Audio Source Coding", IEEE J. Selected Areas Commun., Vol. 

10, No. 1, pp. 86-96, Jan. 1992. 

[35] S. Wang, A. Sekey, A. Gersho, "An Objective Measure for Predicting Subjective Quality of 

Speech Coders", IEEE J. Selected Areas Commun., Vol. 10, No. 5, pp. 819-829, June 1992. 

[36] P.H. Westerink, J. Biemond, D. E. Boekee. "An optimal bit allocation algorithm for sub-band 

coding" Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, 1-757-1-760, April 1988. 

[37] E. Zwicker and H. Fastl, Psychoacoutics: Facts and Models, Springer-Verlag, second edit ion, 

1999. 


