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Key points:  
• In settings with >2 exposure levels, multinomial high-dimensional propensity scores 

produce comparable results to traditional binomial propensity scores applied to all pairwise 
comparisons. 
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• Multinomial high-dimensional propensity scores may be preferable when investigators 
want to simultaneously estimate propensity scores for all treatment levels in a single cohort. 
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ABSTRACT 

Purpose: Little information is available on the performance of high-dimensional propensity scores 

(HDPS) in settings with >2 exposure levels. Our objective was to adapt the HDPS algorithm to 

allow for the inclusion of multilevel treatments and compare estimates obtained via this approach 

to those obtained via pairwise comparisons in a case study using real-world data. 

Methods: We conducted a retrospective cohort study of cardiovascular events associated with 

three smoking cessation drugs (varenicline, bupropion, nicotine replacement therapy (NRT)) using 

the Clinical Practice Research Datalink. We applied the binary HDPS algorithm adjusted for pre-

specified and empirically-selected covariates to cohorts formed by each treatment pair. We then 

constructed multinomial HDPS models on a cohort of incident users of any of the three drugs, 

adjusting for pre-defined covariates and different combinations of empirically-selected covariates. 

After trimming the area of non-overlap of the HDPS distributions, the effects of the study drugs 

on cardiovascular events were estimated with Cox proportional hazards models adjusted for 

propensity score category.  

Results: Outcome models adjusted for multinomial HDPS estimated treatment effects that were 

slightly more protective than those estimated in pairwise comparisons (varenicline vs NRT: 

HRMultinomial = 0.60-0.62, HRPairwise = 0.64; bupropion vs NRT: HRMultinomial = 0.70-0.72, HRPairwise 

= 0.76). Trimming rates were similar between the two approaches.  

Conclusions: The extension of HDPS to multilevel exposures is a valid and practical approach to 

confounder control that may be useful when comparing different classes of drugs prescribed for 

the same indication or different molecules within a given drug class.  
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INTRODUCTION 

The high-dimensional propensity score (HDPS) algorithm uses an automated, data-driven 

approach to augment traditional propensity score model with a set of empirically-derived 

confounders.1 The goal of using the algorithm is to improve the estimation of a patient’s probability 

to receive one treatment versus an alternative treatment for the purposes of adjustment, matching, 

or weighting in the outcome model. Schneeweiss et al. have described the main steps for defining 

and implementing the HDPS using administrative data.1 Briefly, the algorithm first scans 

predetermined dimensions of administrative data, and for each dimension, it selects the n most 

common codes. It then assesses the recurrence of each identified code and creates three covariates 

based on the frequency with which a given code occurs for every individual in the study cohort. 

The algorithm ranks these empirically-derived covariates across dimensions according to their 

potential for confounding control. For each candidate variable, a ‘bias-inflation factor’ is 

calculated as a function of the imbalance in prevalence of the candidate confounder among exposed 

and unexposed subjects as well as the independent association between the candidate variable and 

the study outcome. Finally, the top k covariates are selected for inclusion in the propensity score 

model along with variables prespecified by the investigator.  

The HDPS algorithm is not designed for multi-category exposures that may be encountered in 

studies of comparative effectiveness or safety, and little information exists on the performance of 

HDPS algorithm in these settings. When encountering >2 exposure levels, investigators typically 

estimate HDPS for all pairwise comparisons.2,3,4 That is, in a situation where a subject may be 

exposed to one of three drug categories, A, B, or C, the conventional use of the algorithm would 

result in three pairwise comparisons: A vs B, B vs C, and A vs C. In such cases, implementation 

of the HDPS algorithm results in models with three different sets of covariates empirically selected 
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by the algorithm. As a result, trimming of the initial population to groups with overlapping 

propensity scores may result in different populations for each comparison. The inclusion of 

different target populations could cause nontransitive estimates of the exposure effect (e.g., A is 

better than B, B is better than C, but A is worse than C).5  

If the comparisons of interest are targeted against one reference group, the pairwise approach may 

be acceptable since only the pairwise contrasts against the reference group are relevant. However, 

an investigator may be interested in comparing several treatments among subjects who had some 

chance of receiving any one of several treatment options.6 For instance, Spreeuwenberg et al. 

simultaneously evaluated five psychotherapy interventions. In this setting, the probability of each 

treatment assignment can be estimated using a model for a categorical outcome such as 

multinomial logistic regression.7 The advantage of using one model to calculate treatment 

propensities versus separate models for each contrast is the simultaneous estimation of multiple 

exposures. The creation of a single study cohort that results from the use of a multinomial 

propensity model is uniquely consistent with “empirical equipoise”, the condition that patients 

should be plausible candidates for each treatment under study. 8  

Our objective was to adapt the HDPS algorithm to allow for the inclusion of multilevel treatments 

and to compare estimates obtained via this approach to those obtained via pairwise comparisons 

of each contrast. We applied both HDPS methods to a case study of smoking cessation drugs and 

the risk of cardiovascular events using real-world data. We used several sets of empirically-

selected covariates in multinomial HDPS models to explore different methods of variable selection 

with three exposure levels.  
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METHODS 

Data Source  

We conducted a population-based cohort study using data from the Clinical Practice Research 

Datalink (CPRD). The CPRD, which has been described in detail elsewhere9, is a population-based 

clinical database that contains detailed clinical records for more than 15 million patients seen at 

over 675 general practitioner practices in the UK.  Approximately 58% of CPRD data are linkable 

the Hospital Episode Statistics (HES) database10, which contains detailed hospitalization records. 

This study was approved by the Independent Scientific Advisory Committee of the CPRD 

(protocol number 13_045RA2 v2) and the Research Ethics Board of the Jewish General Hospital 

in Montreal, Canada. 

Case Study: Smoking Cessation Drugs and the Risk of Adverse Cardiovascular Events 

The case study was designed to assess the association between three smoking cessation drugs and 

the risk of adverse cardiovascular events. We formed a cohort of new users of smoking cessation 

therapy ≥18 years old who received a new prescription for bupropion, varenicline, or nicotine 

replacement therapy (NRT) between December 1st, 2006 and August 31th, 2012. We excluded 

patients who had: <1 year of medical history, a prescription for one of the smoking cessation drugs 

in the year before cohort entry, and those with a cardiovascular event in the year before cohort 

entry. The primary endpoint was a composite of myocardial infarction, coronary revascularization, 

stroke, and all-cause mortality, recorded in CPRD, with CPRD data supplemented by HES for 

patients for whom linkage was available. Patients were followed from their new prescription for a 

smoking cessation drug until the occurrence of an event or censoring due to discontinuation of the 

study medication, departure from the CPRD, end of follow-up (1 year), or end of the study period 

(December 31, 2012), whichever occurred first. The data dimensions for the HDPS algorithm 

included diagnoses, procedures, prescriptions, demographic characteristics, and general 
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practitioner practice characteristics, with covariates assessed in the year before cohort entry. An 

“as-treated” exposure definition was used, with patients censored 7 days after the end of their last 

prescription or upon switching drugs.  

Statistical Analyses  

We applied the HDPS algorithm to each pairwise contrast. The k top ranked covariates were 

selected empirically for each of the comparisons. To avoid overfitting, k was chosen according to 

the rule m/20<k<m/10, where m is the sample size of the smallest exposure group, resulting in 

k=500.11 For pairwise contrasts, our cohorts were comprised of only patients receiving one of the 

two relevant drugs. Pairwise HDPS models were adjusted for pre-defined variables and covariates 

empirically selected by the algorithm for the respective comparison. In the multinomial analyses, 

we used the whole study population of new users of one of the three smoking cessation drugs and 

adjusted HDPS models for pre-defined covariates and different combinations of k empirically 

selected covariates. Predefined confounders were measured at or before cohort entry and included: 

age, sex, geographic region, calendar year of cohort entry, lifestyle variables (alcohol use, obesity), 

comorbidities (atrial fibrillation, acute coronary syndrome and/or coronary artery disease, 

cerebrovascular disease, congestive heart failure, chronic obstructive pulmonary disorder, 

diabetes, depression, hypertension, hypercholesterolemia, peripheral vascular disease, previous 

myocardial infarction, previous coronary revascularization, previous stroke), previously 

prescribed drugs (aspirin, angiotensin-converting enzyme inhibitors, angiotensin receptor 

blockers, beta-blockers, calcium-channel blockers, diuretics, fibrates, non-steroidal anti-

inflammatory drugs, statins), number of drug classes prescribed in the previous year, and an 

indicator variable for whether the patient was linkable to HES.  
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Ranking and selection of the empirically identified covariates was performed separately for each 

pairwise comparison, and all duplicate variables were eliminated. In multinomial HDPS models, 

the combinations of the empirically selected covariates included: 1) covariates selected by all 

pairwise comparisons (concordant covariates); 2) top k covariates, including all concordant 

covariates and the next top ranked covariates from each comparison; and 3) all the top ranked 

covariates from each contrast. The multinomial logistic models estimated two propensity scores 

for each patient: one for each medication versus the referent category. For both multinomial and 

pairwise analyses, the area of non-overlap was trimmed from the propensity score distributions. In 

the case of pairwise contrasts, we adjusted the outcome models for age, sex, and propensity score 

deciles; in case of the multinomial treatment models, we adjusted for age, sex, and propensity score 

quintiles (eight dummy variables; four for each of the two propensity scores). To evaluate the 

degree of confounding and additional adjustment attributable to HDPS, we compared the results 

from the outcome models using HDPS for adjustment to the estimates from the unadjusted 

outcome models and models with propensity scores estimated with pre-defined covariates only. 

  



9 
 

RESULTS 

Our base study population included 233,738 patients receiving a new prescription for a smoking 

cessation drug: 68,468 varenicline users, 9,931 bupropion users, and 155,339 NRT users (Figure 

1). A total of 90 events occurred among varenicline users, 13 events among bupropion users, and 

513 events among NRT users. The distribution of baseline characteristics was similar among 

varenicline and bupropion users (Table 1). In comparison, NRT users were substantially older than 

members of the other treatment groups and had a higher prevalence of comorbidities and 

medication use.  

The difference in the HDPS-adjusted hazard ratios, as compared to the crude hazard ratios, ranged 

from 0.01 to 0.37 for the pairwise comparisons and from 0.17 to 0.33 for the multinomial 

comparisons. The inclusion of empirically-selected variables in the propensity score model 

resulted in an additional change in the estimated hazard ratios of 0.05 – 0.08 as compared to 

adjustment with pre-defined covariates only. Overall, estimated treatment effects were similar for 

each analytic strategy (Table 2). Treatment effects of bupropion and varenicline estimated by 

multinomial HDPS were slightly more protective as compared to the results of pairwise 

comparisons. However, the differences were not clinically important. The use of multinomial 

models to estimate HDPS resulted in a higher proportion of subjects excluded from the outcome 

model for all analyses except for the multinomial HDPS analysis including only the concordant 

empirically-selected variables (Table 2, Analysis 1). As mentioned above, the NRT population 

was substantially different from the comparator groups, and across all the HDPS comparisons, 

there was a higher proportion of NRT users trimmed due to non-overlap of the HDPS distribution. 

Hazard ratios for varenicline were similar between the pairwise contrasts and the multinomial 

propensity score analyses. The results for bupropion were more heterogeneous, likely due to the 
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small number of bupropion-exposed events; there was little statistical power to further investigate 

the observed differences. 
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DISCUSSION 

HDPS represents one of the most popular methods to reduce confounding and selection bias in 

pharmacoepidemiologic research, though its application has historically been limited to two 

treatment categories. The current study builds on previous research on generalized propensity 

scores and extends the evaluation of HDPS performance to a multilevel treatment setting.5,12,13,14,15 

We applied HDPS to a setting with three exposures and compared estimates obtained via 

multinomial HDPS models adjusted for combinations of empirically-selected covariates to those 

obtained via pairwise comparisons of each possible contrast. In this case study, we observed no 

important differences between the single HDPS models (multinomial logistic models) versus 

separate HDPS models (separate binomial logistic models).  

Similar findings have been documented in a previous study of general propensity score estimation 

and adjustment.13 In our study, slightly more subjects were excluded due to non-overlap of the 

HDPS distributions when using multinomial HDPS models. However, it may be expected that in 

any three-way comparison, the area of three-way “equipoise” will be smaller than the area for any 

two-way comparisons. The pairwise comparison method was as valid as the more complex 

multinomial HDPS algorithm, and it may generally be preferred due to its straightforward 

application. However, it does not allow for direct comparison of all treatment categories. The 

multinomial approach involves the estimation of fewer treatment and outcome models, and it uses 

only one population to compare the treatments.  Multinomial modeling ensures appropriate 

estimation of treatment probabilities and provides higher efficiency in parameter estimation as 

compared to pairwise model fitting.8 For each participant, one can estimate a vector of all treatment 

probabilities at once and compare to individuals with similar generalized propensity scores 

(!"($),' 	"())',"(*)'+! = !"($)',"())',"(*)'+" for individuals i and j).  In contrast, pairwise 
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comparisons may include subjects with similar probability of receiving drug A, but disregard the 

differences in probability of receiving other drugs (!"($),' 	"())',"(*)'+" ≠

!"($)',"())',"(*)'+#while "($)' " =	"($)'# for individuals j and k).16 Moreover, it may be easier 

to test that the propensity score assumptions are satisfied using the estimates from a single model.  

Regardless of which modeling approach is used for propensity score estimation, covariate balance 

may be assessed through the use of quintile regression and standardized differences (if matching 

or weighting by HDPS) or weighted conditional standardized differences (if adjusting for HDPS) 

17,18. The multinomial approach may be particularly useful when comparing different classes of 

drugs prescribed for the same indication or within class comparisons of different molecules.19,20 

For instance, Leonard et al. used a variation of HDPS to estimate the associations between 

concomitant use of warfarin plus one of eight anti-hyperlipidemic drugs and the risk of 

gastrointestinal bleeding and intracranial hemorrhage.15  

We should note that the use of one model to estimate propensity scores for >2 agents implies that 

individuals under study are plausible candidates for each study drug. However, the assumption of 

empirical equipoise for multiple agents may be inappropriate in some situations, for instance, in 

comparisons of monotherapy vs combination therapy, or in evaluations where the potency of the 

molecules within a class differs, such as comparison of atorvastatin against other, lower potency 

statins.  

Our study has some potential limitations. We restricted our multinomial analyses to three 

combinations of empirically-selected covariates, though other combinations are possible. 

However, the results did not vary much between the multinomial analyses performed, and it is 

reasonable to assume that similar estimates would have been obtained using other permutations of 
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empirically-selected covariates. Also, we did not explore other methods of confounding control 

such as matching or weighting on propensity scores. In addition, this case study involved a three-

way comparison; the discrepancy between binomial and multinomial HDPS may grow as the 

number of treatment levels increases. We adjusted for propensity score decile in our pairwise 

comparisons and propensity score quintiles for the multinomial analyses; the former may result in 

better confounding control. However, due to low event counts among bupropion and varenicline 

users and the potential for overfitting, we preferred to keep a similar number of parameters used 

in the outcome models. Finally, our use of an as-treated exposure definition resulted in a short 

duration of follow-up given the short prescription of smoking cessation drugs.  Consequently, our 

study included a modest number of events, resulting in imprecise effect estimates.  
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CONCLUSIONS 

We have demonstrated a possible implementation of a multinomial HDPS algorithm. We have 

presented a novel HDPS method that compares three treatment choices simultaneously and 

contrasted our method with the standard approach. The results obtained from various multinomial 

analyses and pairwise treatment comparisons were similar. We believe that the extension of the 

HDPS algorithm to multiple exposure categories could be practical when one wants to 

simultaneously compare multiple treatment categories. 
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Table 1. Patient characteristics of new users of smoking cessation drugs (prior to trimming). 

Characteristic  Varenicline 
(n = 68,468) 

Bupropion 
(n = 9,931) 

NRT 
(n = 155,339) 

Age (years) 
   

  Mean ± SD 44.2 ± 13.1 44.0 ± 12.6 45.8 ± 15.6 
  Median (min-max) 44.0 (18-106) 43.0 (18-88) 45.0 (18-108) 
Women (n, %) 34,819 (50.9) 5,021 (50.6) 85,088 (54.8) 
HES linkage available (n, %) 39,997 (58.4) 6,551 (66.0) 87,921 (56.6) 
Year of cohort entry (n, %) 

   

  2006 0 (0.0) 243 (2.4) 2,191 (1.4) 
  2007 10,056 (14.7) 5,015 (50.5) 44,792 (28.8) 
  2008 13,873 (20.3) 1,950 (19.6) 29,472 (19.0) 
  2009 12,919 (18.9) 1,317 (13.3) 27,391 (17.6) 
  2010 13,200 (19.3) 743 (7.5) 22,457 (14.5) 
  2011 11,868 (17.3) 481 (4.8) 18,642 (12.0) 
  2012 6,552 (9.6) 182 (1.8) 10,394 (6.7) 
Body mass index (n, %) 

   

  <30 41,832 (61.1) 6,075 (61.2) 96,115 (61.9) 
  ≥30 12,886 (18.8) 1,766 (17.8) 30,369 (19.6) 
  Missing 13,750 (20.1) 2,090 (21.0) 28,855 (18.6) 
Alcohol abuse (n, %) 7,259 (10.6) 896 (9.0) 21,667 (13.9) 
Comorbidities (n, %) 

   

  Coronary artery disease 4,447 (6.5) 576 (5.8) 13,209 (8.5) 
  Atrial fibrillation 475 (0.7) 57 (0.6) 2,091 (1.3) 
  Cerebrovascular disease 1,445 (2.1) 160 (1.6) 5,022 (3.2) 
  Congestive heart failure 336 (0.5) 41 (0.4) 1,559 (1.0) 
  Previous coronary revascularization 868 (1.3) 87 (0.9) 2,233 (1.4) 
  Previous myocardial infarction 1,244 (1.8) 146 (1.5) 3,657 (2.4) 
  Previous stroke 916 (1.3) 95 (1.0) 3,024 (1.9) 
  Hypertension 8,250 (12.0) 1,002 (10.1) 25,801 (16.6) 
  Peripheral vascular disease 2,216 (3.2) 299 (3.0) 6,952 (4.5) 
  Hypercholesterolemia 5,064 (7.4) 624 (6.3) 13,450 (8.7) 
  Chronic obstructive pulmonary disease 7,494 (10.9) 1,010 (10.2) 20,568 (13.2) 
  Diabetes 3,267 (4.8) 378 (3.8) 9,857 (6.3) 
  Depression 23,891 (34.9) 3,689 (37.1) 64,091 (41.3) 
    
Medications in the year prior to cohort entry 
(n, %) 

   

  Number of distinct drug class 
   

      <4 29,506 (43.1) 4,531 (45.6) 50,213 (32.3) 
      4-6 18,666 (27.3) 2,851 (28.7) 42,316 (27.2) 
      7+ 20,296 (29.6) 2,549 (25.7) 62,810 (40.4) 
  Aspirin 4,995 (7.3) 613 (6.2) 16,379 (10.5) 
  Angiotensin-converting enzyme inhibitors 5,387 (7.9) 614 (6.2) 16,016 (10.3) 
  Angiotensin receptor blockers 1,343 (2.0) 147 (1.5) 4,050 (2.6) 
  Beta-blockers 4,138 (6.0) 544 (5.5) 13,237 (8.5) 
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  Calcium-channel blockers 4,016 (5.9) 451 (4.5) 12,858 (8.3) 
  Diuretics 3,955 (5.8) 531 (5.3) 14,247 (9.2) 
  Fibrates 226 (0.3) 29 (0.3) 644 (0.4) 
  Statins or statin combinations 9,099 (13.3) 1,089 (11.0) 25,880 (16.7) 
  Non-steroidal anti-inflammatory drugs 15,173 (22.2) 2,193 (22.1) 36,690 (23.6) 

Abbreviations: HES: Hospital Episode Statistics; NRT: Nicotine replacement therapy; SD: 
Standard deviation. 
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Table 2. Association between smoking cessation therapy and rate of cardiovascular events using pairwise and multinomial HDPS 
modeling approaches. 

Exposure 
Number of 

Events/Patients 

Total Number 
of Person-

Years 

 
 
 

Rate* 

Hazard Ratio (95% CI) 

Crude 
Adjusted 1 – pre-

specified only†  

Adjusted 2 – pre-
specified + 

empirically selected§  
       

Pairwise Comparisons 
       
Varenicline 90/68,319 8,348.2 10.8 1.01 1.02 (0.54, 1.90) 1.08 (0.57, 2.04) 
Bupropion 13/9,930 1,216.9 10.7 1.00 1.00 (Ref) 1.00 (Ref) 
       
Varenicline 90/68,467 8,366.3 10.8 0.38 0.56 (0.45, 0.71) 0.64 (0.51, 0.81) 
NRT 512/155,272 18,162.8 28.2 1.00 1.00 (Ref) 1.00 (Ref) 
       
Bupropion 13/9,929 1,216.8 10.7 0.39 0.71 (0.41, 1.24) 0.76 (0.43, 1.33) 
NRT 493/154,894 18,120.1 27.2 1.00 1.00 (Ref) 1.00 (Ref) 
       

Multinomial HDPS 
       
Analysis 1€  
       
Bupropion 13/9,924 1,216.0 10.7 0.38 0.65 (0.38, 1.14) 0.70 (0.40, 1.23) 
Varenicline 90/68,414 8,359.8 10.8 0.38 0.55 (0.44, 0.70) 0.60 (0.48, 0.76) 
NRT 507/155,059 18,139.4 28.0 1.00 1.00 1.00 (Ref) 
       
Analysis 2£  
       
Bupropion 13/9,930 1,216.9 10.7 0.39 0.66 (0.38, 1.15) 0.72 (0.41, 1.26) 
Varenicline 90/68,301 8,345.0 10.8 0.39 0.57 (0.45, 0.72) 0.62 (0.49, 0.79) 
NRT 488/154,232 18,040.6 27.1 1.00 1.00 1.00 (Ref) 
       
Analysis 3¥  
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Bupropion 13/9,930 1,216.9 10.7 0.38 0.66 (0.38, 1.15) 0.70 (0.40, 1.23) 
Varenicline 90/68,407 8,358.7 10.8 0.39 0.56 (0.44, 0.70) 0.62 (0.49, 0.78) 
NRT 502/154,633 18,090.6 27.7 1.00 1.00 1.00 (Ref) 
       

Abbreviations: CI, confidence interval; HDPS, high-dimensional propensity score; NRT, nicotine replacement therapy.   
*Rates are expressed as events per 1,000 person-years.    
† Propensity score model is based on predefined covariates only. In pairwise comparisons, adjusted for age, sex, propensity score deciles 
(9 dummy variables). In multinomial comparisons, adjusted for age, sex, propensity score quintiles (eight dummy variables; four for 
each of the two propensity scores). 
 
§ Propensity score model is based on predefined covariates and the variables empirically selected by the HDPS algorithm. In pairwise 
comparisons, adjusted for age, sex, HDPS deciles (9 dummy variables). In multinomial comparisons, adjusted for age, sex, HDPS 
quintiles (eight dummy variables; four for each of the two propensity scores). 
€Only the covariates that were among the top 500 in all three comparisons were used in the multinomial propensity score model, resulting 
in the adjustment for 263 empirically selected covariates. 
£A total of 500 empirically selected covariates, including all concordant covariates and the next top ranked covariates from each 
comparison, were used in the multinomial propensity score model. 
¥The top 500 covariates from the three comparisons were used in the multinomial propensity score model, resulting in the adjustment 
for 589 empirically selected covariates. 
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FIGURE LEGENDS 

Figure 1. Construction of cohort of new users of smoking cessation drugs.  Abbreviations: 

NRT: Nicotine replacement therapy; Rx: Number of prescriptions. 
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Figure 1.  
 

 

Exclusions: 
• Prescription of two smoking cessation 

drugs on the same day (Rx=816) 
• Myocardial infarction, stroke, or 

coronary revascularization in the prior 
year (Rx=6,173) 

Eligible patients 
(n=439,607) 

Patients received ≥1 prescription for 
bupropion, NRT, or varenicline in the 

study period (n=439,607; Rx=1,911,617) 
 

New prescriptions without the use of 
bupropion, NRT, or varenicline in the 
prior year (n=239,792; Rx=297,474) 

 

Patients with ≥1 prescription for NRT, 
bupropion, or varenicline  

(n=528,462) Exclusions: 
• Less than 18 years old during the study 

period (n=2,717) 
• Less than 1 year of medical history (n= 

86,138) 
 

Exclusions: 
• Prescription of bupropion, NRT, or 

varenicline in the year prior (n= 
199,815; Rx=1,614,143) 

Selected prescriptions (Rx=290,485) 

Study population of new users of 
bupropion or varenicline (n=233,738) 

Bupropion: n=9,931 
NRT: n=155,339 

Varenicline: n=68,468 
 

Exclusions: 
• Patient already included via earlier 

prescription (Rx=55,551) 
• Non-smoker or patient with missing 

smoking status (Rx=1,196) 


