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This article presents frequency responses calculated using a three-dimensional finite-element 
model of the cat eardrum that includes damping. The damping is represented by both mass- 
proportional and stiffness-proportional terms. With light damping, the frequency responses of 
points on the eardrum away from the manubrium display numerous narrow minima and 
maxima, the frequencies and amplitudes of which are different for different positions on the 
eardrum. The frequency response on the manubrium is smoother than that on the eardrum 
away from the manubrium. Increasing the degree of damping smooths the frequency responses 
both on the manubrium and on the eardrum away from the manubrium. The overall 
displacement magnitudes are not significantly reduced even when the damping is heavy 
enough to smooth out all but the largest variations. Experimentally observed frequency 
responses of the cat eardrum are presented for comparison with the model results. 

PACS numbers: 43.63.Hx, 43.63.Bq 

INTRODUCTION 

Helmholtz ( ! 869) proposed a theory of eardrum behav- 
ior in which the peculiar curvature of the drum is important. 
B6k6sy (1941) made measurements of eardrum vibration 
patterns using a capacitive probe, and the results were incon- 
sistent with Helmholtz' hypothesis. It now appeared that (at 
least below 2 kHz) the eardrum vibrated as a rigid body 
except for a small region around the periphery, and that the 
curvature was not particularly important. This view of ear- 
drum behavior was predominant, in spite of some conflicting 
experimental observations (see review by Funnell and 
Lassie, 1982), until a new set of vibration-pattern measure- 
merits were made by Khanna and Termdoff (1972) using 
laser holography. These new measurements disagreed with 
B6k6sy's measurements and demanded a new theory of ear- 
drum function. As pointed out by Khanna and Tonndorf, 
their data were more consistent with Helmholtz' hypothesis 
than with B6k6sy's. 

Most mathematical modeling of the eardrum has in- 
volved approximating it by only two distinct rigid regions, 
one of which is rigidly coupled to the ossicular chain (Onchi, 
1949, 1961; Zwislocki, 1957, 1962; M•!ler, 1961; Shaw, 
1977). Such models were consistent with B6k6sy's view of 
eardrum function; they continue to be interesting because of 
their simplicity. Early attempts to develop the theory of ear- 
drum vibration in more detail (Frank, 1923; Esser, 1947; 
Guelke and Keen, 1949; Gran, 1968) were seriously ham- 
pered by the mathematical complexity of the system. Re- 

cently a more successful analytical model has been derived 
using "small" parameters and asymptotic approximations 
(Rabbitt and Holmes, 1986a,b). 

A very powerful approach to the problem has been 
made possible by the availability of fast digital computers, 
and by the development of the finite-element method, which 
handles a complicated system by dividing it into a large num- 
ber of relatively simple parts. This is a method of analysis 
that has been used in engineering for more than 20 years. It is 
very well suited to biological problems because its strong 
point is its ability to handle the complexities, nonuniformi- 
ties, and irregularities that abound in living systems. 

The first finite-element model of the eardrum was pre- 
sented by Funnell and Laszlo (1978); it was a static three- 
dimensional linear model for the cat. Inertial effects were 

added to the model and natural frequencies and mode shapes 
were calculated in a later paper (Funnell, 1983a). The ef- 
fects of damping were not included in either of those versions 
of the model. 

This article presents a model to which damping has been 
added. The definition of the model and related computa- 
tional issues are discussed in Sec. I. The definition of the 

model includes the representation of the geometry and struc- 
ture of the eat eardrum and of its attachments to the malleus, 
and the mechanical parameters used. The computational is- 
sues include, among other things, the implementation of a 
uniform pressure stimulus, as opposed to the simpler but less 
realistic torque stimulus that was used in a preliminary study 
of the effects of damping (Funnell, 1983b). 
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Section II contains the simulation results. The steady- 
state behavior of the model is compared to the behavior of 
the earlier static model. Frequency responses with light 
damping are compared to the natural frequencies of an un- 
damped model. The effects of changing the type and magni- 
tude of the damping are investigated. Calculated frequency 
responses are compared to frequency responses measured 
experimentally in the cat ear. The effects of changing the 
ossicular load are calculated. Frequency responses calculat- 
ed using a torque stimulus are compared to those calculated 
using a uniform sound pressure over the eardrum as the 
stimulus. 

I. METHODS 

A. Definition of the model 

Except for the addition of the damping terms, the model 
used here is identical to the one used previously (Funnell, 
1983a). The material of the eardrum is modeled as uniform 
and isotropic, ignoring possible mechanical implications of 
the highly organized layered structure of the eardrum (Fun- 
nell and Laszlo, 1982; Rabbitt and Holmes, 1986a,b). Also 
ignored are thickness variations, inhomogeneities such as 
blood vessels, and so on. The part of the model correspond- 
ing to the pars tensa (see Fig. 1 ) has a thickness of40/zm, a 
Young's modulus of 200 X 108 dyn/cm 2, a Poisson's ratio of 
0.3, and a density of 1 g/cm 3. The pars flaccida is modeled as 
being much less stiff than the pars tensa. The ligament separ- 
ating the pars tensa from the pars raceida is the same materi- 
al as the pars tensa but is 300/.tm thick. The drum's three- 
dimensional curvature is expressed by a "normalized radius 
of curvature" of 1.19 (Funnell, 1983a). The manubrium is 
constrained, by "slaving" its nodes to those on the axis of 
rotation, to be perfectly rigid. The ossicular load (including 
the effects of the malleus, incus and stapes, the middle-ear 
ligaments and muscles, and the cochlea) is an angular stiff- 
ness of 28 kdyn.cm/rad and a moment of inertia of 0.2 
rag. cm 2, both acting about the axis of rotation; the position 
of this axis is fixed. (The mass of the manubrium is included 
in the ossicular load.) The effects of the middle-ear cavities 

•xis oC rotation----- 

manubrium•rS Claccida 
llgaments 

anterio• 

point •• 
. . posterior 
i•) • point 

FIG. 1. Geometry of the eardrum model, with a nominal mesh resolution of 
12 elements/diameter. (a) Top view. Squares indicate the positions of the 
anterior, posterior, and umbo points at which frequency responses have 
been calculated. (b) Perspective view, showing the three-dimensional cur- 
vature. 

are not represented, so the model is equivalent to an experi- 
mental preparation with open bulla and a closed sound sys- 
tem. 

The new feature of the model is the inclusion of viscous 
effects, or damping. The equilibrium equation of the finite- 
element model is now 

Mii + Cfi + Ku = f, 

where u and f are the vectors of nodal displacements and 
applied forces, respectively, and M, C, and I( are the system 
mass, damping, and stiffness matrices. 

The representation of damping being used is that of 
Rayleigh (or proportional) damping; that is, the effective 
damping matrix is given in terms of the mass matrix and 
stiffness matrix as 

C = aM 

where a and ]g are two damping parameters that may be 
specified independently (Nelson and Greif, 1975; Bathe, 
1982). It can be shown that the resultant damping ratio b 
(that is, the damping level expressed as a fraction of critical 
damping) is given by 

b = (a/co +/?co)/2, 

where co is the angular frequency. In other words, the a term 
causes damping (expressed as a damping ratio) that de- 
creases with frequency, while the/g term causes damping 
that increases with frequency. These different effects will be 
illustrated in Sec. II C below. 

Note that, because of the way the damping is implemen- 
ted in this model, the same damping coefficients apply to the 
ossicular load as to the eardrum itself. The a term causes 

damping with the same frequency dependence as that repre- 
sented by the constant resistive damping coefficient normal- 
ly associated with the ossicles and cochlea in middle-ear 
models. 

B. Finite-element program 

As in the earlier papers, the SAP IV general-purpose 
finite-element package is used (Bathe et al., 1974), with the 
addition of a "master-slave" capability for slaving certain 
nodes to a master node (Funnell, 1983a). The program is 
now being run on a VAX- 11/750 computer (under the VMS 
operating system) rather than the PDP-11/70 used pre- 
viously. This has dramatically speeded up the calculations. 
It also means that it has been possible to restore the use of 
double-precision (8-byte) floating-point arithmetic that had 
been removed in order to make the program fit on the PDP- 
11. It has been verified that the use of single-precision arith- 
metic did not cause large errors in previously reported re- 
sults: for example, using dobble precision has increased the 
estimated lowest natural frequency by only about 2%, the 
second by 0.4%, and the rest by less. 

C. Stimulus 

In an earlier paper (Funnell, 1983b), the damped model 
was driven with a step function of torque applied about the 
axis of rotation. This stimulus was particularly simple to 
implement since it could be represented as a load applied at a 
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single location in the m.odel. However, the normal stimulus 
to the eardrum is an acoustic pressure acting over its surface, 
rather than a force at a single point. At low frequencies this 
pressure is uniform over the surface of the eardrum; at high 
frequencies the pressure is not uniform (Khanna and Stin- 
son, 1985; Stinson, 1985) but the detailed pressure distribu- 
tion is not known. 

In this article the stimulus will be a step function of 
pressure applied uniformly over the surface of the drum. For 
the purposes of the finite-element software, this pressure 
must be translated into a set of forces normal to the surface: 

f= •pA 3 ' 

where f is the three-dimensional force vector applied to a 
given node, p is the pressure, and the summation is over all of 
the elements attached to the given node. Here A is a vector 
normal to the element with a length proportional to the ele- 
ment area, calculated using a vector cross product: 

A = (x2 -- x,)X(x3 -- x,)/2, 

where xt, x2, and x 3 are the coordinate vectors of the three 
nodes of the triangular element. The forces are calculated by 
a pre-processor program and fed to the SAP IV program. 

The pressure stimulus has been fixed at 100 dB SPL for 
all of the calculations in this article. 

D. Direct time integration 

The introduction of damping into the model means that 
one can no longer use the procedures of matrix inversion and 
eigenvalue extraction that were used for the static and natu- 
ral-frequency calculations. The SAP IV program offers two 
alternative approaches to calculating damped responses: ei- 
ther superposition of the previously calculated undamped 
natural modes, or direct time-domain integration. The su- 
perposition method is computationally cheaper ifa reasona- 
bly small number of modes is adequate to represent the sys- 
tem response, but the fact that the natural frequencies of the 
eardrum model are very closely spaced means that a large 
number would have to be included. The direct-integration 
method is therefore better in the present application. In SAP 
IV, the integration is done using the Wilson 0 method, which 
is unconditionally stable. The method effectively low-pass 
filters the response, with the degree of filtering depending on 
the size of the time step used for the time-domain computa- 
tions. The effects of changing the size of the time step will be 
discussed in Sec. I F below. Details of the implementation 
are given in the Appendix. 

E. Frequency characteristics 

The frequency response of a selected node is calculated 
by differentiating the step response to form an impulse re- 
sponse and then doing a Fourier transform. The differenti- 
ation is done using the forward difference equation 

x• ---- ( --xi+2 + 4xi+• -- 3x•)/2At. 

The Fourier transform is done using a mixed-radix FFT 
(Singleton, 1979) which does not require that the number of 
samples be a power of 2, only that it be a multiple of 2. The 

only modification to the FFT program as distributed by the 
IEEE has been to increase the size of the array that can be 
handled. 

For the results presented here, the time-domain simula- 
tion was usually continued until the oscillation of the step 
response had settled to within less than 0.1% of the final 
value before calculating the frequency response. However, 
the frequency characteristics are in fact changed only very 
little even if the step response is terminated when the ampli- 
tude of the oscillation is still Several percent of the final val- 
ue. 

Note that the model results are expressed in terms of the 
components of the displacements perpendicular to the plane 
of the tympanic ring, comparable to the displacements mea- 
sured experimentally by Khanna and Tonndorf (1972). 

F. Time step and mesh resolution 

A critical factor in the finite-element simulations is the 

choice of values for the size of the time step used in the time- 
domain integration, and for the number of elements in the 
mesh. Decreasing the size of the time step or increasing the 
number of elements improves the accuracy of the model at 
the expense of rapidly increasing the computation time. It is 
therefore important to determine the largest time step and 
the coarsest mesh resolution that will give an adequate accu- 
racy. 

As mentioned above, the Wilson t• method used here for 
the time-domain integration effectively performs a sort of 
low-pass filtering of the response. It seriously reduces the 
contributions from modes of vibration whose periods 
T( = l/f) are not large compared to the time step At used; 
for example, with 0 = 1.4 as in SAP IV, a mode for which 
At/T = 0.05 decays by about 1% per cycle during the course 
of the temporal integration (Bathe, 1982). (For At = 10ps, 
for example, this figure for At/T corresponds to a modal 
frequency of 5 kHz.) Figure 2 shows a series of frequency 
responses computed for a point on the eardrum away from 
the manubrium for various values of the time step At. The 
curves for 5 and 10ps arc practically identical. The curve at 
20ps has started to fall off faster than it should above about 
12 kHz; the one at 50ps falls off above 5 kHz and has also 
smeared out the details; and the one at lOOps has smeared 
out even the main features. (It should be noted that it took 
about 45 h of computer time, spread out over 6 nights, to 
calculate the curve at 5 ps.) In light of these observations, 
the results below were all calculated with a time step of 10ps. 

As discussed in an earlier article (Funnell, 1983a), the 
number of triangular elements in the finite-element mesh for 
the eardrum is controlled by a mesh-resolution parameter, 
expressed as a nominal number of elements across the diam- 
eter of the model. In that article it was concluded that a 

resolution of 12 elements/diameter (illustrated in Fig. 1) 
was a reasonable choice. Figure 3 shows frequency responses 
for a point on the manubrium calculated with meshes of 12 
and 15 elements/diameter. The two curves are extremely 
similar, indicating that a resolution of 12 elements/diameter 
is again sufficient. All results discussed below were comput- 
ed with that resolution. (Frequency responses for points off 
the manubrium are also similar for the two different meshes, 
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FIG. 4. Contour map of calculated static displacement amplitudes. The 
contours represent amplitudes evenly spaced between 0 and the maximum 
displacement. The position of the maximum is indicated by a filled triangle. 

FIG. 2. Displacement frequency responses calculated with five values of the 
time step At. The frequency responses for 5, 10, and 20/is are nearly identi- 
cal, indicating that 10/•s is an acceptable step size. 

but cannot be compared exactly since the positions of auto- 
matically generated nodes in the two meshes do not match 
exactly. ) 

661.7 nm at 100 dB SPL, which is within 0.1% of the figure 
calculated with the static model; by comparison, Tonndorf 
and Khanna ( 1971 ) reported a maximal drum displacement 
(at 600 Hz) of 1500 nm at 111 dB SPL, corresponding to 420 
nm at 100 dB SPL. The ratio of peak displacement to manu- 
brial-tip displacement in the static case is about 2.7 for the 
model; Khanna and Tonndorf (1972) reported a ratio equal 
to 3 at low frequencies. 

II. RESULTS 

A. Static displacements 

The static or very-low-frequency displacement pattern 
of the drum is calculated using time-domain integration by 
computing the damped step responses at all nodes and fol- 
lowing them out to a time large enough that the system has 
reached steady state. The resulting displacement contour 
map is shown in Fig. 4. (The same result is obtained regard- 
less of the values of the damping parameters a and/•. ) The 
contours are indistinguishable visually from those calculat- 
ed with the static model (Funnell, 1983a). The maximum 
displacement (in the posterior region of the pars tensa) is 

10.U- 

• 1.u- 
• 100.n- 
• 10.n- 
• 10.U' 

100.n' 
10.n' lb) 15 •l.•m•nt•/d• 

1.1( 10.k 
Frequency (Hzl 

FIG. 3. Displacement frequency responses on the manubrium calculated 
using different mesh resolutions. (a) 12 elements/diameter. (b) 15 ele- 
ments/diameter. The two are very similar, suggesting that a mesh resolu- 
tion of 12 elements/diameter is adequate. 

B. Lightly damped responses 

Figure 5 shows a set of frequency responses calculated 
for a case of light damping--for the solid curves the mass- 
proportional damping parameter a = 0 s-t and the stiff- 

10.U' 

1.p' 

100.n' 

10.n' 

ß I0 

(b) Anterior •• 

I. IIIIII!ll . 
1 ,k 10'.k 

FIG. 5. Displacement frequency responses calculated with/g = 2 X 10 -6 s 
(solid lines) and 10X 10 -6 s (dashed lines); in both cases at = 0. Both fre- 
quency and amplitude scales are logarithmic. The model stimulus is a uni- 
form sound pressure at 100 dB SPL. (a) Umbo. (b) Anterior point away 
from manubrium. (c) Posterior point away from manubrium. (d) Vertical 
bars representing the frequencies of the first 40 natural modes of vibration of 
the undamped model. The numerous narrow minima and maxima in the 
lightly damped frequency responses (solid lines) correspond approximate- 
ly to the system's undamped natural modes. Heavier damping (dashed 
lines) smooths the frequency responses but does not affect their overall lev- 
els.or slopes much. 
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ness-proportional damping parameter/5' = 2 X 10 -6 s. The 
ß three sets of curves correspond to three different positions on 
the model. Part (a) corresponds to displacements at the 
umbo, on the manubfium. Parts (b) and (c) correspond to 
the displacements of two points on the pars tensa away from 
the manubrium (see Fig. 1 ). 

The most striking feature of these frequency responses is 
the presenc e of numerous narrow minima and maxima in the 
curves corresponding to points away from the manubrium. 
These peaks and troughs correspond to the system's natural 
vibration modes. Their positions are different for the two 
points, reflecting the fact that different points on the ear- 
drum participate differently in the various natural modes of 
vibration. For example, in an undamped case, modes 1, 2, 5, 
and 6 involve mainly the posterior region of the eardrum, 
while modes 3 and 4 involve both the anterior and posterior 
regions (Funnell, 1983a). Furthermore, one point on the 
drum may be at or near the place of maximal displacement 
for a given mode, resulting in a peak in the frequency re- 
sponse for the point at the frequency corresponding to that 
mode, while another point in the same region may happen to 
lie near a line of zero displacement for that mode, resulting in 
a trough at the same frequency. 

Part (d) of Fig. 5 shows the natural frequencies corre- 
sponding to the first 40 undarnped natural modes of vibra- 
tion of the model. [This is an extension of the results of 
Funnell (1983a), where only the first six natural frequencies 
were calculated. ] As a general principle, lightly damped nat- 
ural modes will occur at frequencies similar to those of the 
corresponding undamped modes, but shifted slightly due to 
the damping. 

For the point on the manubrium [part (a) of Fig. 5 ] it is 
striking how much the narrow minima and maxima have 
been smoothed out. It is evident that the nature of the manu- 

bfium's coupling to the eardrum serves to integrate the con- 
tributions of different parts of the structure. The resultant 
smoothing effect is powerful precisely because the different 

local modes are numerous and closely spaced in frequency, 
so they tend to cancel each other out. 

C. Effects of modifying damping 

There are few experimental data available on which to 
base an estimate of the actual degree of damping in the ear- 
drum, or indeed in any collagenous material, especially at 
high frequencies. Witnauer and Palm (1961) estimated a 
damping parameter of 103 s- ' for leather (which is collagen- 
ous) at 15 to 20 Hz. That the degree of damping decreases 
with increasing frequency is suggested by measurements at 
up to 100 Hz in samples of eardrum tissue (Decraemer et al., 
1980) which showed a viscoelastic restoring force which in- 
creased only slowly with frequency. This is consistent with 
some very indirect evidence that the viscosity of the ground 
substance in collagenous tissue may decrease with increasing 
shear rate or frequency (Wilkes et al., 1973). 

In view of the lack of an experimental basis for specify- 
ing the damping parameters, we have tried a range of values 
for a and/•. To begin with, the dashed lines in Fig. 5 show the 
frequency responses obtained by increasing the stiffness-pro- 
portional parameter/• from 2 • 10 -6 to 10X 10 -6 S, leaving 
the mass-proportional parameter a at 0. It can be seen that 
increasing the damping has smoothed the frequency re- 
sponses, lowering the peaks and raising the troughs. All but 
the largest local fluctuations have disappeared. The overall 
levels and slopes of the frequency responses have changed 
very little, and the low-frequency amplitude in particular 
has not changed at all. (In general, the effect of damping, 
unless it is extremely heavy, is seen mainly in the neighbor- 
hoods of resonances and antiresonances. This can be ob- 

served in the behavior of a simple second-order mass- 
spring-dashpot, or inductor-capacitor-resistor, system. ) 

Figure 6 shows the results ofsetting/• to 0 s and giving a 
values of 1.5X 10 3, 5• 10 3, and 10• 10 3 S -1. The value of 
1.5• 10 3 $-1 for a was chosen to give roughly the same 

10.IJ' 

1.1a' 

100.n 

10 .n' 

ß 104a' 

.•100.m 

FIG. 6. Displacement frequency responses cal- 
culated with the stiffness-proportional damping 
parameter/g = 0, and various values for the 
mass-proportional damping parameter a. (a) 
a=l.5X10 3 s -l. (b) a=5XlO • s -l. (c) 
a=10X10 3 s -•. Increasing the damping 
smooths the curves more and more but leaves 

the overall levels and slopes unchanged. 
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damping ratio around 2 kI-Iz as found for/? = 10X 10 -6 s 
when at = 0. It can be seen in Fig. 6(a) that the shapes of the 
frequency responses around 2 kHz are indeed very much like 
those for/• = 10X 10 -6 s (Fig. 5, dashed lines). At higher 
frequencies, however, the damping due to at is lighter than at 
low frequencies (as discussed in Sec. I A above), and the 
parts of the curves above 3 kHz in Fig. 6 (a) look more like 
the curves for the lower value of/• (Fig. 5, solid lines). In- 
creasing at [ Fig. 6 (b) and (c) ] smooths the curves more and 
more but leaves the overall levels and slopes unchanged, in 
the same way as noted for increases in/?. 

Figure 7 shows frequency responses measured on the 
manubrium and eardrum of a single cat ear using laser inter- 
ferometry. (The details of the experiments will be reported 
in another article.) The frequency responses were measured 
directly using sinusoidal stimuli. The curves shown repre- 
sent measurements on the manubrium at the umbo [part 
(a) ] and at two positions on the eardrum [parts (b) and 
(c) ]. These latter positions are approximately the same as 
the positions of the nodes used earlier for presenting the 
model results. The low-frequency amplitude on the umbo of 
this particular ear was about 56 nm; this is about 2.5 times 
smaller than the figure reported by Khanna and Tonndorf 
(1972), and about 4 times smaller than the figure obtained 
with the present model. Other animals in this experimental 
series yielded amplitudes about twice as large, thus agreeing 
more dosely with the older observations. 

Three separately measured frequency responses have 
been plotted for the point on the manubrium, and two each 
for the points on the eardrum. The frequency responses mea- 
sured at the points on the eardrum exhibit sharp variations in 
amplitude, especially at high frequencies. By comparison, 
the frequency response measured on the manubrium is quite 
smooth, just as found with the model. (The large dip at 4 
kHz is due to the resonance in the middle-ear cavity that is 
not included in the model.) 

The model displays a displacement-amplitude roll-off 
proportional •o l/f 2 (that is, a slope of - 12 dB/oct) at 

1.' 

tO0 .m' 

10 .m' 

• 100.m' 
• 10.m' 

(a) Umbo 

(b) •nterior 

:•) Poslerior • 
1 Jk 10'.k 

Frequency (Hz) 

• (a) Umbo 

FIG. 8. Impulse responses calculated with a = 1.5)< 10 3 s -• and/g= 0. 
Both time and amplitude scales are linear. (a) Umbo. (b) Anterior point. 
(c) Posterior point. The appearances of these curves are dominated by a 
low-frequency component at about 2 kHz. 

frequencies above several kilohertz. This agrees with the 
measurements of Guinan and Peake (1967), for example, 
and indicates that mass effects are dominant at high frequen- 
cies. However, the measured cat data in Fig. 7 suggest a 
slower roll-offat these frequencies. Svane-Knudsen and Mi- 
chelsen (1986) found the same thing in their indirect mea- 
surements in humans, as did Wilson and Johnstone (1975) 
in guinea pigs. The significance of this is not clear, especially 
in view of the difficulties in both model and experiment at 
high frequencies. 

These experimentally observed frequency responses 
suggest fairly light damping, comparable to that displayed 
by the model when at = 1.5 X 103 s- • and/• = 0 [ Fig. 6 (a) ]. 
Figure 8 shows the impulse response of the model corre- 
sponding to these values of the damping parameters. The 
decay from one cycle to the next is on the order of 50%. 
Brkrsy (1960, Fig. 5-17) showed a tracing of a manubrial 
response to an acoustical pulse, with the amplitude decaying 
by about 50% to 70% from one cycle to the next. Recent 
impulse-response data measured in humans by Svane-Knud- 
sen and Michelsen (1986) show a decay on the order of 30% 
per cycle for one subject but more like 50% for a second 
subject. These experimental estimates are comparable to the 
decay seen in the model results in Fig. 8. Note that since the 
gross waveform of the impulse response is dominated by fre- 
quencies around 2 kHz, these estimates of the amplitude 
decay give an idea only about damping in that frequency 
range. 

FIG. 7. Displacement frequency responses measured experimentally in cat. 
Both frequency and amplitude scales are logarithmic. The units are arbi- 
trary for the amplitude scale. (a) Umbo (three separately measured curves 
in sam• ear). (b) Anterior point (two curves). (c) Posterior point (two 
curves). The positions of the three points correspond approximately to 
those used in the model. 

D. Effect of oSsicular load 

The undamped natural frequency of the ossicular load 
itself, calculated with the formulaf = (k//) •/2/2•r, where k 
is the angular stiffness and Iis the moment of inertia, is 1883 
Hz for the load parameters used here. This is very close to 
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FIG. 9. Displacement frequency responses calculated after removal of ossi- 
cular load, with a = 0 and/5' = 2 X 10-6 s. The curve corresponding to the 
umbo (a) has a very-low-frequency amplitude about 15% higher than the 
ease with an ossicular load, and has lost the plateau from 5 to 7 kHz. On the 
other hand, the curves for points on the eardrum away from the manubrium 
[ (b) and (c) ] are quite similar to the case with an ossicular load. 

FIG. 10, Displacement frequency responses calculated with a torque of 1 
dyn-cm applied to the axis of rotation, instead of a uniform pressure stimu- 
lus. The damping parameters are a = 0 and/9 = 2 X 10- 6 s, as for the solid 
curves in Fig. 5. Note that the vertical scale is not the same as in Fig. 5. The 
manubrial curve (a) drops off more slowly at high frequencies, and the off- 
manubrium curves (b) and (c) drop off more quickly than do the curves 
calculated with a pressure stimulus. 

the lowest natural frequency of the overall eardrum model; 
the significance of this coincidence is not clear. The frequen- 
cy responses shown in this article depend mainly on the ear- 
drum itself--reducing the ossieular stiffness from 28 to 10 
kdyn-cm/rad, for example, just shifts the lowest peak down- 
ward by about 100 Hz, and has even less effect at higher 
frequencies. This is consistent with the earlier observation 
that neither doubling nor halving the parameters of the ossi- 
cular load has a very large effect on the undamped natural 
frequencies (Funnell, 1983a). 

Figure 9 shows frequency responses for the extreme case 
of removing the ossicular load altogether. It can be seen that 
there is no longer a plateau from 5 to 7 kHz in the manubrial 
frequency response--instead, the response continues to drop 
by about 12 dB/oct until past 10 kHz [part (a) ]. There is 
also an increase of about 15% in the very-low-frequency 
manubrial amplitude. For the points away from the manu- 
brium, on the other hand, the very-low-frequency ampli- 
tudes are unchanged; there are changes in the details of the 
curves but the overall forms are similar to those with the 

ossicular load, except perhaps for the posterior point [part 
(c) ] above 5 kHz. In all three cases the peak below 2 kHz 
has shifted about 100 Hz to the right. 

E. Torque versus pressure 

In a preliminary analysis of the effects of damping 
(Funnell, 1983b), the stimulus driving the eardrum model 
was a step of torque applied about the axis of rotation, rather 
than a step of pressure applied uniformly to the drum. For a 
comparison of the effects of these two different types of stim- 
ulus, Fig. 10 shows the frequency responses calculated with 
an applied torque, for the same points and model parameters 
as in Fig. 5. For the torque stimulus the manubfial frequency 
response drops off more slowly at high frequencies, and the 
off-manubfium responses drop off more quickly, than for 
the pressure stimulus. The size of this difference might be 

interpreted as a measure of reduced drum-manubrium cou- 
pling at high frequencies. 

The experimental use of a mechanical stimulus applied 
directly to the manubrium might be a way to avoid the un- 
certainties associated with the difficult-to-quantify nonuni- 
formity of the acoustical stimulus. The torque stimulus sim- 
ulated here is equivalent to a point force applied directly to 
the manubrium, at least under the assumption of a fixed axis 
of ossicular rotation. 

III. CONCLUSIONS 

The addition of the effects of damping to the finite-ele- 
ment model of the eardrum has permitted the simulation of 
dynamic forced responses for the first time. In particular, by 
applying step functions and then taking Fourier transforms 
it has been possible to compute frequency responses for the 
model. 

The frequency responses for points on the eardrum 
away from the manubrium of the malleus tend to show sharp 
variations of amplitude as the frequency increases beyond 
about 2 kHz. These variations reflect the fact that the vibra- 

tion pattern of the eardrum breaks up into complex patterns 
at high frequencies. For points on the manubrium, however, 
these variations are smoothed out. This is evidently the re- 
sult of a sort of spatial integration over the eardrum, due to 
the fact that the manubrium is rigid and is coupled to the 
drum along its whole length. This elongated coupling, which 
in the cat extends over more than two thirds of the diameter 

of the drum, effectively averages out all but the largest local 
variations of response. 

Increasing the degree of damping in the model reduces 
the amplitude variations in the frequency response, both on 
the manubrium and on the eardrum away from the manu- 
brium. In fact, even a rather small amount of damping has a 
considerable smoothing effect. Even for a degree of damping 
that completely obliterates all but the very largest peaks and 
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troughs, the overall level of the displacement amplitude is 
not noticeably decreased. This suggests that damping in the 
eardrum results in very little loss of the energy being deliv- 
ered to the middle ear. 

In spite of the complex vibration patterns on the ear- 
drum, the overall transmission of energy to the middle ear 
has a smooth frequency characteristic. This cannot be just 
because of the nature of the ossieular lead, since the smooth- 
ing occurs even when there is no ossicular lead at all, as 
shown in Fig. 9. The smoothing effects of both spatial inte- 
gration and damping are very strong, due to the fact that the 
natural frequencies of the eardrum are very dosely spaced. 
This in turn is partially due to the asymmetrical form of the 
system. If the eardrum were more symmetrical, there would 
be a greater tendency for the natural vibration modes of dif- 
ferent regions to reinforce each other--this would result in 
peaks and troughs in the frequency response which were less 
numerous, but larger and less easily extinguished. 

Experimental frequency responses measured directly in 
the cat have been presented. Comparison of the model re- 
sults with these experimental data indicates that the damp- 
ing can be fairly well represented by a mass-proportional 
damping coefficient on the order of 1-5 X 10 3 s- •. This is 
consistent with other less direct experimental evidence cited 
in Sect. II C. It results in damping which is moderate at high 
frequencies and heavier at low frequencies. 
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APPENDIX: PROGRAM IMPLEMENTATION DETAILS 

At each time step, the displacement vector is calculated 
by a matrix inversion consisting of a forward reduction fol- 
lowed by a back substitution. As implemented in SAP IV, 
the back substitution in..volves a sequence of FORTRAN BACK- 
SPACE'S through a file containing the system stiffness matrix, 
which in general is too large to fit into high-speed memory. 
This turns out to be an extremely time-consuming operation 
under operating systems like VMS (or RSX on PDP-1 l's) 
which use file structures with variable-length records, since 
a BACKSPACE from record n to record n-1 implemented as a 
REWIND followed by n-1 RE^D'S. This inefficiency has been 
avoided under the VMS operating system by creating an ar- 
ray of file-record pointers extracted from the operating sys- 
tem's internal file descriptors, and then using the system rou- 
tine SYSSFINU to locate any required record. The same thing 
is accomplished under the RSX operating system using the 
system routines .MARK and .POINT. This modification is 
critical to the use of the direct-integration mode of SAP IV 
under these two operating systems. 

Note that it has also been necessary to add a stop/restart 
capability to SAP IV to permit long simulations to be run 
overnight, stopped in the morning, and then restarted the 
next night. This requires that the set of all nodal displace- 
ments, velocities, and accelerations be saved at the end of the 
run and then be read in again as starting conditions. 
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