
The anisotropic space-time scaling of the 

atmosphere: turbulence and waves 

Julien Pinel 

Department of Physics 

McGill University 

Montreal, Quebec 

February 2013 

A thesis submitted in partial fulfillment of the requirements 

of the degree of Doctor of Philosophy  

Julien Pinel 2013. All rights reserved



ABSTRACT

This thesis addresses the problem of understanding and quantifying the variability 

of the atmosphere over wide ranges of space-time scales. We present empirical tests of a 

scaling model, the 23/9D model, which is an intermittent and anisotropic generalization 

of classical laws of turbulence - such as the Kolmogorov law - which describes how the 

statistical properties of atmospheric fields vary with spatial scales. We first address this 

problem for vertical sections for which there is still an ongoing debate about the nature of 

atmospheric dynamics: whether it is isotropic with a break in the horizontal scaling or 

anisotropic, but in a scaling manner. We make the first direct estimate of the joint 

horizontal-vertical structure function using wind velocity data measured on 14500 aircraft 

flights segments and demonstrate that it strongly supports the 23/9D model. We also 

study the consequences of this spatial anisotropy for the full horizontal space-time 

statistics. By considering that small structures are advected by larger turbulent ones and 

by considering averages over the latter, we theoretically obtain scale functions (which are 

generalizations of the notion of scale) which allow us to estimate structure functions and 

spectra. We test these predictions using geostationary satellite infrared data over the 

range 5 km to ~10000 km, 1 hour to 2 months. We found that our model could accurately 

reproduce the 3D (kx, ky, ) spectral density over the range 1 hour to 4 days and 30 km 

to 5000 km. To obtain a more complete description of the statistics, we also found that 

our model accurately describes atmospheric radiances turbulent flux statistics (including 

infrared and passive microwave imagery over scale ranges of 100 km to 20000 km, 1 day 

to 1 year) with only small deviations at small and large scales. We finally show how to 

include atmospheric waves considered as strongly nonlinear phenomenon driven by 

turbulent fluxes and constrained by scaling symmetry, thus extending the 23/9D model. 

The theoretical development proposed is based on an effective turbulence - wave 

propagator which corresponds to a fractional and anisotropic extension of the classical 

wave equation propagator with dispersion relation similar to those of inertial gravity 

waves (and Kelvin waves) yet with anomalous (fractional) order Hwav/2. Using 

geostationary MTSAT IR radiances, we estimated the parameters finding that Hwav 0.17

(the classical value =2). 



RÉSUMÉ

Cette thèse s'intéresse au problème de comprendre et de quantifier la variabilité de 

l'atmosphère sur de grandes gammes d'échelles spatio-temporelles. Nous présentons des 

tests empiriques d'un modèle ''scaling'', le modèle 23/9D, qui est une généralisation 

intermittente et anisotrope des lois classiques de la turbulence - telle la loi de 

Kolmogorov - qui décrivent comment les propriétés statistiques des champs 

atmosphériques varient avec l'échelle spatiale. Nous abordons d'abord le problème pour 

des sections verticales par rapport auxquelles un débat sur la nature de la dynamique 

atmosphérique continue toujours: l'atmosphère est-il isotrope avec une brisure de 

symetrie d'échelle dans l'horizontal ou est-il décrit par une symétrie d'échelle, mais 

anisotrope ? Nous présentons le premier estimé direct de la fonction structure 

horizontale-verticale sur des vitesses de vent mesurées sur 14500 segments de vols 

d'avions et démontrons qu'elle supporte fortement le modele 23/9D. Nous étudions 

également les conséquences de cette symétrie d'échelle anisotrope sur les statistiques 

dans l'espace horizontal-temporel. En considérant que les plus petites structures 

turbulentes sont ''advectées'' par les plus grosses et en considérant un moyennage sur ces 

dernières, nous obtenons une forme théorique pour la fonction d'échelle (qui est une 

généralisation de la notion d'échelle), ce qui nous permet d'estimer les fonctions structure 

et les spectres. Nous testons ensuite ces prédictions à l'aide de données de rayonnement 

infrarouge prises par des satellites geostationnaires sur l'intervalle 5 km ~ 10000 km, 1 h 

~2 mois. Nous avons trouvé que notre modèle pouvait précisement reproduire la densité 

spectrale 3D (kx, ky, ) sur l'intervalle 1 h à ~ 4 jours et 30 km à ~5000 km. Afin d'obtenir 

une description statistique plus complète, nous avons également trouvé que notre modèle 

décrit précisement les statistiques des flux turbulents de rayonnements atmosphériques 

(dans l'infrarouge et pour les micro-ondes passives sur la gamme d'échelles 100 km a 

20000 km, 1 jour a 1 an) avec seulement de légères déviations à petites et grandes 

échelles. Finalement, nous démontrons comment inclure les ondes atmosphériques, 

considerées ici comme un phénomène fortement non-linéaire dirigé par les flux 

turbulents et contraint par la symétrie d'échelle; étendant donc le modèle 23/9D. Les 

développements théoriques présentes sont basés sur un propagateur effectif turbulence-
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ondes qui correspond a une extension fractionnaire et anisotrope du propagateur de 

l'équation d'ondes classique avec une relation de dispersion similaire à celle des ondes 

gravitationnelles inertielles (et des onde sde Kelvin), mais d'ordre anormal (fractionnaire) 

= Hwav/2 . À l'aide de données infrarouge du satellite géostationnaire MTSAT, nous avons 

estimé les paramètres du modèle, trouvant Hwav 0.17, (la valeur classique étant =2). 
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Chapter 1: Introduction 

The atmosphere is a highly nonlinear and complex turbulent system involving 

hierarchies of structures (eddies, vortices) of different sizes over wide ranges of spatial 

and temporal scales. The variability of such systems is characterized as a function of 

scale by the classical laws of turbulence. These laws are based on three features of the 

dynamical equations (e.g. the Navier-Stokes equations): the scale invariance of the 

nonlinear terms, the existence of scale by scale conserved fluxes and the fact that 

interactions are strongest between structures with similar sizes. Following the 

prototypical Kolmogorov law [Kolmogorov, 1941], they deduce the existence of a range 

of scales in which the fluctuations are scaling: 

H
I r r ;   I r I r r I r     (1.1) 

for a turbulent field I, where H is the scaling exponent, r is a position variable, r  is a 

''lag'' and its modulus r  is the scale over which I is estimated. The sign '' '' is to be 

understood as equality in probability distributions. is a scale by scale conserved 

turbulent flux which is transferred from one scale to another (e.g. from the coarser 

vortices to the finer). The Kolmogorov law, describing the velocity field, is recovered 

with H=1/3 and 1/3  where  is the energy flux transferred from large scales to a 

small ''dissipation scale'' at which the viscosity of the fluid dominates and the flux is 

dissipated. Similarly, the Corrsin-Obukhov law [Corrsin, 1951; Obukhov, 1949] for 

passive scalar advection has H=1/3 and 1/ 2 1/ 6  with  the passive scalar variance 

flux and the Bolgiano-Obukhov law [Bolgiano, 1959; Obukhov, 1959] for buoyancy-

driven turbulence has H=3/5 and 1/5  with  the buoyancy variance flux. Since the 

turbulent fluxes are transferred from one scale to another and this transfer is strongest 

between structures of similar sizes, the effects of large scale boundary conditions are 

progressively ''forgotten'' at small scales, so that the classical laws assumed turbulence to 

be, over their ranges of validity, isotropic and homogeneous. For the atmosphere, with 

gravity acting, the range of validity of the Kolmogorov law was believed to be only 

0.2 cm 100 m,r [Batchelor, 1953]. Paradoxically, Kolmogorov scaling was found 
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to hold for much larger (up to planetary) scales in the horizontal, but has not been 

observed at all in the vertical [see the review by Lovejoy and Schertzer, 2010]. 

Furthermore, the assumption of homogeneity of the process of transfer of the fluxes is 

unrealistic, as noted by Batchelor and Townsend, [1949] turbulence is ''spotty''. Therefore 

when such laws are applied to the atmosphere, two difficulties have to be addressed: the 

atmosphere's strong intermittency and stratification.  

The intermittency corresponds to the fact that the process of transfer of the 

turbulent fluxes from one scale to another is highly heterogeneous in space and in time. 

Up until the 1970s the intermittency was considered primarily as a source of small 

corrections to the spectral exponents so that its importance was underestimated. 

However, at the same time, explicit multiplicative cascade models [Novikov and Stewart,

1964; Yaglom, 1966; Mandelbrot, 1974] were developed in order to model intermittency. 

During the 80s, it was realized that multiplicative cascade models were the generic 

multifractal processes leading to non-classical ''multifractal intermittency'', [e.g. the 

universal multifractal model discussed in Schertzer and Lovejoy, 1987, 1997; Schertzer et 

al., 1997]. Cascades involve scale invariant mechanisms which, repeated scale after scale, 

generate multifractal fluxes  with different turbulent intensities obeying different scaling 

laws. This is responsible for the enormous variability of the atmosphere. In the 

atmosphere, the range of scales over which the fluxes are concentrated through the 

cascade mechanism is very large, so that the fraction of the total volume giving a 

significant contribution to, for instance, the energy flux 3v  is low 0.01 % (using 

typical values of atmospheric intermittency parameters), [Lovejoy and Schertzer, 2013]. 

Before cascade models can be applied to the atmosphere, the range of scaling 

must be established. In particular, the stratification characterized by a large aspect ratio of 

the atmosphere (20000 km/10 km, horizontal/vertical) needs also to be taken into 

account. When one tries to apply the classical laws of turbulence to the atmosphere, a 

choice is immediately faced: to drop either the isotropy or the scaling symmetry. 

Following the development of theories of 2D isotropic turbulence [Fjortoft, 1953; 

Kraichnan, 1967] and the quasi-geostrophic extension by Charney, [1971], the usual 

approach hypothesizes that the isotropic symmetry is fundamental, postulating 3D

isotropic dynamics at small scales and 2D isotropic dynamics at large scales - the 2D/3D 
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isotropic model of atmospheric turbulence - both regimes being separated by a break in 

the horizontal scaling at 10 km. However, gravity acts at all scales and it is argued in the 

alternative 23/9D model [Schertzer and Lovejoy, 1985a,b; 1987] that it induces 

anisotropies in a scaling manner so that the atmospheric dynamics are described by eq. 

(1.1) but with different vertical and horizontal fluxes  and exponents H, over the whole 

dynamically significant ranges of scales: a single anisotropic scaling regime characterized 

by the intermediate, non-integer dimension 23/9 2.56 which describes the scaling 

stratification of the atmosphere. This is described in the 23/9D model with the help of a 

''scale function'' (presented in detail in chapters 2 and 3) which is a generalization of the 

notion of scale and which is convenient for describing anisotropic scaling.

Despite increasing empirical and theoretical evidence pointing towards 

anisotropic scaling [Lovejoy and Schertzer, 2010; Tuck, 2008; Schertzer et al., 2012], the 

debate about the nature of atmospheric dynamics (isotropic with a break in the horizontal 

scaling vs. anisotropic scaling) continues. Virtually the only evidence supporting the 

2D/3D isotropic model is the break in the horizontal scaling of the horizontal wind 

measured by aircraft. Even this is problematic: the break is at a few hundred km, (not at 

10 km) and the transition is from H=1/3 at small scales to H=0.7 at large scales (and not 

to H=1 at large scales as predicted by the 2D/3D model). Since drop sondes in the 

vertical also found H~0.7 [Lovejoy et al., 2007], it was shown by Lovejoy et al., [2009a] 

that this break in the scaling could be explained by the aircraft followed gently sloping 

trajectories - such as isobars - so that at large enough scales, the vertical fluctuations 

(rather than horizontal ones) dominate the statistics. This implies that statistics measured 

by aircraft over isobars and isoaltitudes are different. The paper by Lovejoy et al. [2009a] 

sparked a debate [Lindborg et al., 2009, 2010 ; Lovejoy et al., 2009b, 2009c, 2010 ; 

Schertzer et al., 2011, 2012 ; Yano, 2009] and provoked Frehlich and Sharman [2010] to 

perform a new analysis using Tropospheric Airborne Meteorological Data Reporting 

(TAMDAR) commercial aircraft wind data. The key new element was that - for the first 

time for commercial aircraft - the TAMDAR data had GPS altimetry and were thus able 

to adequately distinguish isobaric and isoheight statistics. Although Frehlich and 

Sharman [2010] did not find a transition at 10 km, nor from H=1/3 at small scales to H=1

at large scales, they did make the claim that statistics measured over isobars and isoheight 
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were the same, bringing into question the arguments proposed by Lovejoy et al. [2009a]. 

This motivated chapter 2: the first estimate of the joint horizontal-vertical statistics from 

14500 flight segments giving a high precision confirmation of the theory (Del ~ 2.57 0.02

rather than 23/9 2.56).

The basic 23/9D model is for the spatial statistics. However, since the wind field 

connects space and time (not only dimensionally, also physically via advection), this 

model has consequences for the full space-time structure. If we want to understand the 

statistics in the more convenient Eulerian framework, a classical way to obtain temporal 

statistics which can be applied when the turbulent fluctuations are sufficiently small 

compared to an imposed mean flow - such as in laboratory turbulence - is provided by 

Taylor's hypothesis of ''frozen turbulence'' [Taylor, 1938], for which the imposed constant 

mean flow velocity relates temporal to spatial statistics. As argued in the 23/9D model, 

no such scale separation exists in the atmosphere and another model for space-time 

statistics is needed. As argued by Tennekes, [1975], even if we consider a flow with zero 

imposed mean horizontal velocity, smaller structures will still be advected by larger 

(planetary sizes) ones in the scaling regime. Based on the Galilean invariance of the 

dynamical equations and boundary conditions, we can easily consider the case of a 

constant deterministic advection. But since the statistical properties of real atmospheric 

fields are influenced by random turbulent velocities, following the work by Lovejoy and 

Schertzer, [2010], we consider averages over these to theoretically obtain scale functions 

(which are generalizations of the notion of scale) which allow us to estimate statistics 

(structure functions and spectra). Because (x, y, z, t) data sets spanning significant ranges 

of scales are not available, we only consider the horizontal (x, y, t) space-time. We extend 

the work by Lovejoy and Schertzer, [2010], obtaining theoretical expressions for 2D 

subsections of the 3D (kx, ky, ) spectral density and we test this empirically using two 

months of geostationary satellite infrared radiance. 

Atmospheric field space-time statistics can be further characterized considering 

the general feature of turbulent flows that there exists a statistical relation between size of 

structures and their lifetime (their ''eddy turnover time''). For the wind field, 

1/ 2 H
v t  with H =1/2. This is a Lagrangian relation which is used conceptually in 

meteorology in constructing space-time ''Stommel'' diagrams but has generally not been 
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directly calculated empirically, as it needs datasets with large scale 

ranges in both space and time. We investigate this using atmospheric radiance fluxes 

measured from geostationary as well as orbiting satellite. 

The basic space-time extension of the 23/9D model describes structures that are 

localized in space-time and live for a well defined duration, in accord with the usual 

turbulence phenomenology. Since it is only constrained by scaling symmetry, we can also 

consider the possibility of including in the description structures that are localized in 

space but unlocalized in space-time: atmospheric waves. Even though the atmosphere is 

highly nonlinear, atmospheric waves are modeled by linear (or weakly linear) theories; 

commonly with Taylor-Goldstein equations which are the results of linearization and 

from which we obtain the dispersion relations to be tested empirically [Nappo, 2002]. 

These linear theories also predict the space-time propagators relating wave forcings and 

responses; obtained from wave equations involving only integer powers of space and 

time differential operators which is an unnecessary constraint on the form of the 

propagators. In order to have a theoretically consistent approach (i.e. strong nonlinearity), 

we consider waves as a strongly nonlinear phenomenon driven by turbulence fluxes 

which are only constrained by scaling symmetries. This is described by a wave-extended 

23/9D model involving an effective turbulence-wave propagator which corresponds to 

possibly fractional wave equations driven by turbulent flux forcing. Extending the work 

by Lovejoy et al., [2008] to take into account the random large scale turbulent advection, 

we obtain a concrete form for the turbulence-wave propagator and test this using 

geostationary infrared radiance data. 

The 23/9D model is thus an anisotropic scaling multiplicative cascade model 

which is a generalization of the classical laws of turbulence and which basically describes 

the statistical properties of the turbulent atmosphere in the spatial domain. This thesis 

presents an empirical test of the model for vertical sections, as well as theoretical space-

time and wave extensions (and their corresponding empirical tests). Chapter 2 presents 

the empirical test of the 23/9D model for vertical sections using wind velocity measured 

by commercial aircraft. Chapter 3 presents the theoretical space-time extension of the 

23/9D model as well as the empirical test in horizontal space-time using geostationary 

satellite infrared radiances data. We also investigate the question of intermittency using 
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geostationary as well as orbiting satellites radiances in infrared and passive microwave. 

Finally, chapter 4 presents the extension of the 23/9D model to waves and the empirical 

test using geostationary satellite infrared radiances data. We conclude in chapter 5. 
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Chapter 2: Joint horizontal-vertical anisotropic scaling, 

isobaric and isoheight wind statistics from aircraft data 

The following reproduces the article: ''Pinel, J., S. Lovejoy, D. Schertzer, A. F. Tuck, 

(2012): Joint horizontal - vertical anisotropic scaling, isobaric and isoheight wind 

statistics from aircraft data, Geophysical  Research  Letters (GRL) 39, L11803, 

doi:10.1029/2012GL051689'' which investigates atmospheric turbulence in the vertical 

plane using aircraft wind data. 

Abstract

Aircraft measurements of the horizontal wind have consistently found transitions 

from roughly k
-5/3

 to k
-2.4

 spectra at scales xc ranging from about 100 - 500 km.  Since 

drop sondes find k
-2.4

 spectra in the vertical, the simplest explanation is that the aircraft 

follow gently sloping trajectories (such as isobars) so that at large scales, they estimate 

vertical rather than horizontal spectra.  In order to directly test this hypothesis, we used 

over 14500 flight segments from GPS and TAMDAR sensor equipped commercial 

aircraft. We directly estimate the joint horizontal-vertical ( x, z) wind structure function 

finding - for both longitudinal and transverse components - that the ratio of horizontal to 

vertical scaling exponents is Hz 0.57±0.02, close to the theoretical prediction of the 

23/9D turbulence model which predicts Hz = 5/9 = 0.556  This model also predicts that 

isobars and isoheight statistics will diverge after xc; using the observed fractal 

dimension of the isobars ( 1.79±0.02), we find that the isobaric scaling exponents are 

almost exactly as predicted theoretically and xc  160, 125 km, (transverse, 

longitudinal). These results thus give strong direct support to the 23/9D scaling 

stratification model. 

2.1 Introduction 

The classical laws of turbulence exploit the scale invariance of the dynamical 

equations to predict the scaling behaviour of the wind and other turbulent fields. For 

simplicity, they also assume statistical rotational invariance: isotropy. When applying 
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these laws to the strongly stratified atmosphere, one faces a choice: to drop either the 

scaling or the isotropy symmetry. Starting with the claimed discovery of the meso-scale 

gap [Van der Hoven, 1957], and the subsequent development of theories of 2D (isotropic) 

turbulence [Kraichnan, 1967] - and especially Charney's geostrophic variant [Charney, 

1971] - the dominant choice was to drop the scaling symmetry, to assume that the small 

scale dynamics were 3D isotropic and the large scale 2D isotropic with a scale break 

somewhere near the atmospheric scale height ( 10 km). 

Starting in the early 1980s the opposite proposal was made [Schertzer and 

Lovejoy, 1985b, 1987]: to drop isotropy but to maintain wide range horizontal scaling.   

In this framework, the vertical structure was also expected to be scaling but with different 

exponents than the horizontal. Since then, evidence in the horizontal and vertical from 

satellites, lidar, aircraft, radiosondes, drop sondes and reanalyses has accumulated, 

supporting the anisotropic scaling model (see the review Lovejoy and Schertzer [2010] 

and also Tuck [2008]). More recently, an (anisotropic) scaling (rather than a traditional 

scale) analysis of the governing equations [Schertzer et al., 2012] has allowed the 

derivation of new fractional vorticity equations with anisotropic scaling solutions. 

Until recently, the outstanding piece of evidence supporting the isotropic 2D/3D 

model and potentially falsifying the anisotropic scaling hypothesis was the observed 

break in aircraft spectra of the horizontal wind at scales of several hundred kilometers. 

However, using high quality scientific aircraft data, Lovejoy et al. [2004, 2009a] argued 

that the aircraft trajectories - and hence the wind measurements - would be affected by 

the turbulence and they predicted a transition from 
smallk spectra with small~ h and h

~5/3 at small horizontal scales to 
argl ek spectra at large scales where the aircraft 

essentially sensed the vertical rather than horizontal fluctuations; with vertical exponent 

large~ v and v~2.4. They also showed that essentially all the horizontal wind spectra and 

structure functions published to date were compatible with this transition – but not with 

the more drastic transition from small=5/3 to large=3 near 10 km predicted by the 

competing 2D/3D model. 

The paper by Lovejoy et al. [2009a] sparked a debate [Lindborg et al., 2009, 2010 

; Lovejoy et al., 2009b, 2009c, 2010 ; Schertzer et al., 2011, 2012 ; Yano, 2009] and 
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provoked Frehlich and Sharman [2010, hereafter FS] to perform a new analysis using 

Tropospheric Airborne Meteorological Data Reporting (TAMDAR) commercial aircraft 

data. The key new element was that the TAMDAR data had GPS altimetry and were thus 

- for the first time for commercial aircraft - able to adequately distinguish isobaric and 

isoheight statistics. This is important because most aircraft follow isobars and these are 

gently sloping. If these slopes are large enough, then the aircraft spectra will show a 

spurious transition from h to v at a scale which depends on the slope and the turbulent 

fluxes, thus explaining the observations. FS found neither a scale break near 10 km nor a 

structure function with exponent anywhere near 2 (corresponding to large=3) - so that 

presumably there was not a 2D/3D transition. However, they did make the strong claim 

that the statistics on isobars and isoheights were identical. If their claim was true, then 

another mechanism to account for the k
-5/3

 to k
-2.4

 transition would be required.

However, distinguishing the statistics on isoheights and isobars requires very high 

accuracy - both of wind but especially altitude - measurements. These accuracy 

requirements are too demanding for the older Aircraft Meteorological Data Relay 

(AMDAR) equipment (also discussed by FS). With the newer GPS equipped TAMDAR 

data, the requisite accuracy is possible to achieve if two conditions are met. First, we do 

not use wind differences from two different aircraft since this involves both larger 

(absolute) errors as well as nontrivial complications due to the very inhomogeneous 

distribution of TAMDAR flights paths over the US: the errors are unacceptably large. 

Second, the TAMDAR sampling protocol was ill adapted for our purpose, it was essential 

to use only the high quality ''cruise'' flight segments. Unfortunately, the copiously 

sampled ascent and descent segments had to be discarded because of their unacceptably 

low vertical resolutions (see Figure A.3 from appendix A). Using two aircraft differences 

and these low resolution segments, we could accurately reproduce the FS TAMDAR 

results (see Figures A.1 and A.2 from appendix A). 

Finally, we could mention that Lovejoy and Schertzer [2010] examined 

hydrostatic models and found that they also gave isobaric exponent ~2.4 and Lovejoy 

and Schertzer [2011] confirmed this in reanalyses, although with an extra complication 

due to a strong horizontal (zonal/meridional) scaling anisotropy (i.e. different exponents 

in orthogonal horizontal directions); so that these data are not appropriate for 
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distinguishing isoheight and isobaric statistics. With these differences, we therefore redid 

the FS TAMDAR analyses. 

2.2 Generalized Scale Invariance 

 Isotropic turbulent laws are of the general type: v = f | r|
H
, where v is a 

fluctuation in a turbulent field v, f is a scale by scale conserved turbulent flux, | r|=|( x,

z)| is the length of the horizontal, vertical lag vector over which v is calculated (for 

simplicity, we consider only a single horizontal component of the velocity field) and H is 

the scaling (non conservation, mean fluctuation) exponent. Anisotropic scaling 

turbulence has different vertical (Hv) and horizontal (Hh) exponents which result when 

different conserved turbulent fluxes dominate the corresponding dynamics, for example: 

1/3( ) hH
v x x          (2.1) 

1/5( ) vH
v z z

where  and  are the energy and buoyancy variance fluxes (i.e. 1/3 1/5,f respectively 

and Hh=1/3 and Hv=3/5). The horizontal law is the Kolmogorov, 1941 scaling and the 

vertical is the Bolgiano-Obukhov, 1959 scaling. The way to deal with this anisotropy 

while keeping an overall scaling symmetry is to replace the usual vector norm for the 

spatial separation by a different measure of scale - the (anisotropic) scale function - a 

simple example for vertical sections is: 

1/
[[ ]] zH

s s sl x l z lr        (2.2) 

where Hz=Hh/Hv=5/9 and ls is the ''sphero-scale'': the scale at which structures are 

''roundish''. (If needed, the scale function can be generalized for full space-time vector 

displacements.) The anisotropy is reflected by the exponent Hz 1 that describes the 

stratification of structures. Since Hz<1, at scales much smaller than ls, structures tend to 

be vertically aligned whereas at scales much larger than ls, they become horizontally 

flatter. With this scale function, we can write: 

1/3 1/3( ) [[ ]]v r r          (2.3) 
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which, for r=( x, 0), r=(0, z) reduces to equation (2.1). The vertical extent of 

structures of horizontal size L is zHL ; their volumes are elD
L with Del=2+Hz=23/9 ; this is 

the 23/9D model [Schertzer and Lovejoy, 1985a,b]). 

2.3 Data Analysis 

 TAMDAR equipped aircraft make short range flights at low altitudes mostly 

below 7 km; their sensors are the most modern in the AMDAR programme  [Moninger et 

al., 2008 ; Daniels et al., 2004] and were designed to measure atmospheric fields 

including wind, humidity, pressure and temperature, as well as location, time and altitude 

from a built-in GPS. The sampling protocol is important to understand: the system either 

makes measurements due to significant changes in pressure (changes of 10 hPa or 50 

hPa, depending on the altitude) or - if cruising at nearly constant pressure - it switches to 

a time-based protocol, making measurements every 3 or 7 minutes (again, depending on 

the level). For an aircraft flying at 500 km/h at an altitude of 5.5 km, the former 

corresponds to ~25 km. We analysed data for the year 2009 over roughly the continental 

US (20°N to 50°N latitude). In order to have good statistics and to minimize the strong 

altitude dependence, we confined our analysis to the layer between 5 and 5.5 km altitude 

using over 14500 aircraft legs. Only the highest quality data (according to automated 

quality control checks) were kept.

 A nonobvious problem arises since the data were passed through a 10 second 

smoother, so that ascents and descents at 250 km/h and angle of 15° correspond to a 

section 180 m thick. Including these low resolution segments led to biases of 7% at 200 

km, but this rapidly increased to 67% at 400 km, hence we discarded them (appendix A, 

Figure A.3). This bias, their use of multi-aircraft data pairs and the fact that FS took 

much thicker layers for isobars and isoheights (4 hPa, 200 m) compared to those used 

here (1.26 hPa, 20 m) led to our qualitatively different conclusions (Figures A.1 and A.2). 

Similarly to FS, we took only time intervals less than 1 hour to limit the effects of 

noninstantaneous measurements. 

 From the near-constant altitude and near-constant pressure levels, we estimated 

second order structure functions 
2 2

iiD ( ) ( ) (i i iv v vr r r r)  where .
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means ensemble average, i=N,L for transverse, longitudinal components respectively. 

The accuracies were estimated from the structure function at small enough lags; per 

component, the absolute calibration error is ±1.8 m/s, the relative calibration error is 

<±1.8 m/s and the altitude error is ±3 m (close to the manufacturer's values ±2-3 m/s on 

wind speed and ±3 m on altitude, [Daniels et al., 2004]). To eliminate the absolute 

calibration errors and numerous other problems introduced by the highly nonuniform 

distribution of TAMDAR trajectories, we always computed velocity increments with data 

coming from the same aircraft. 

2.4 Results 

 Taking ensemble averages of the square of equation (2.3), we obtain: 

(2)
2 222/3( ) [[ ]] ( )

h
zh

HH

s s sv v l x lr r

1/
z l    (2.4) 

where h(2) is the second order structure function exponent which takes into account the 

intermittency of . Since 
(2 /3)2 /3 [[ ]]

K
r , we have h(2)=2Hh-K (2/3) where K (2/3)

is a small intermittency exponent (~ -0.07, see [Lovejoy et al., 2010]). From its definition 

and the assumption of statistical translational invariance,
2 2

( ) ( )v vr r ; we 

also assumed left-right symmetry so that the four quadrants of 
2

( , )v x z are

symmetric. In order to test the theory, we estimated the parameters in equation (2.4) by 

regression. First, h(2) was estimated from linear regression using 1D structure functions 

(Figure 2.3a), yielding h,N(2)=0.81±0.02 and h,L(2)=0.76±0.03 which are close to the 

Kolmogorov value corrected for intermittency: 2Hh+0.07 0.74. Only vector lags with at 

least 500 independent aircraft v
2
 estimates were used, the average number over the 

regressions range 16 km < x < 400 km - see Figure 2.3 - was 24800. Since presumably 

h,N(2)= h,L(2), we took the value h(2)=0.8. Then, from multivariate regression on the 

joint lags (cross-section, Figure 2.1), we obtained Hz,N~Hz,L~0.57±0.02, ls,N~ls,L~1.0±0.1

mm and v(l
s
)

2

N

1/2

~ 3.2±0.2 mm/s, v(l
s
)

2

L

1/2

~ 2.0±0.2 mm/s. While Hz is close to 

the theoretical value Hz=Hh/Hv=(1/3)/(3/5) 0.56, the sphero-scale is a bit smaller than the 
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one estimated (ls~4-80 cm) by Lilley et al. [2004] ; Lovejoy et al. [2009a] and Lovejoy

and Schertzer, [2010]. From Hz, we can estimate the vertical scaling exponent v,N(2)= 

h,N(2)/Hz,N=1.42±0.06 and v,L(2)= h,L(2)/Hz,L=1.33±0.07 values consistent with direct 

estimates of vertical exponents ( v(2)~1.35 at 6 km) from drop sondes by Lovejoy et al.

[2007]. Interestingly, while both the horizontal and vertical (2) are little larger than the 

theoretical values (ignoring intermittency, 2/3, 6/5 respectively) yet, as expected, their 

ratio Hz is almost the same: 0.8/1.4=0.57. These exponents are far from the theoretical 

values of 2D isotropic turbulence h(2)=2, Hz=0. The overall fits (for | z| < 40 m and | x|

< 275 km) are shown in Figure 2.1, they are very good with mean relative deviations 

±6% and ±4% (transverse, longitudinal respectively). Although the vertical range of 

scales is short, to our knowledge, Figure 2.1 constitutes the first direct estimate of the 

joint horizontal-vertical structure function; and it gives strong support to the hypothesis 

of horizontal-vertical anisotropic scaling. 
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Figure 2.1: Contour plot of 
2

( , )v x z , in black: horizontal wind measured by 

TAMDAR. In purple, a fit with the help of the scale function (equations (2.2) and (2.3)). 

Up: transverse component. Bottom: longitudinal component. Parameters are : 

ls,N~ls,L~1.0±0.1 mm, h(2)=0.8 (from 1D structure functions fits) and 

Hz,N~Hz,L~0.57±0.02 and 
3/ 2

2 /3

N ~(10±1)x10
-6

 m
2
/s

3
,

3/ 2
2 /3

L ~(4.0±0.8)x10
-6

 m
2
/s

3
.

The average relative error between fitted and empirical curves, the mean of 

fit emp

fit

v v

v
 is ~ 6% (4%) for transverse (longitudinal) component. 

2.5 Fractal aircraft trajectories 

 In order to compare statistics at constant pressures and constant altitudes, we need 

to take into account the fractality of the aircraft trajectories. This fractality arises because 

aircraft at cruising altitudes fly on roughly isobaric levels and these are fractal [Lovejoy et 

al., 2004], (although, due to aircraft inertia, at scales < 3 km, the trajectories become 

smooth). This implies: 

( ) ( )

trH

f

f

x
z x z L

L
       (2.5) 

 where ( )z x  is the average vertical displacement of an aircraft over a horizontal lag 

x, Lf~180 km is the average length of our TAMDAR flight segments, (chosen as a 
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convenient reference scale) and Htr =Dtr-1 where Dtr is the fractal dimension of the 

''trajectory'' (more precisely, it corresponds to the fractal dimension of the set of points on 

our isobaric sample). From Figure 2.2, we find Htr = 0.79±0.02 and ( )fz L 19±2 m 

(which represents the average vertical displacement of the isobaric sample over Lf).

1.0 1.5 2.0 2.5
Log 10 x (km)

- 2.5

- 2.0

- 1.5

- 1.0

Log 10< z>(km)

Figure 2.2: Mean vertical displacement as a function of horizontal separation. In orange: 

structure function calculated over near-constant pressure levels ( p<1.26 hPa). In purple: 

structure function calculated over near-constant pressure levels with an additional 

constraint on the slope ( z/ x > 3x10
-4

). Reference lines have slopes 0.8 and 1.0. The 

near-constant altitude (orange) curve shows a break in scaling symmetry for x<16 km 

due to poor statistics. 

To investigate the consequences for the velocity fluctuations statistics, we can use 

equation (2.2) and make a rough ''mean field'' type argument [see Lovejoy et al., 2009a], 

where, in the scale function (equation (2.2)), we replace z with ( )z x  from equation 

(2.5):

(2)

2

0

( )

h
tr zH H

s

x x
v x

l x
;

1/

0
( )

trH

s
f

f

l
x L

z L
   (2.6) 
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Since Htr>Hz , for isobars, there is a critical scale xc for which, (taking v(2)= 

h(2)/Hz~0.8/0.57~1.4) :

2 (2) 0.8
( ) hv x x x cx x  ; 

1

0

tr z
tr z

H H
H H

c sx x l   (2.7) 

2 (2)
( ) tr vH

v x x x
1.1

cx x

The value of xc depends on the turbulent fluxes (through the parameter ls) and on x0.

Figure 2.3 (top) compares the horizontal structure functions for near-constant pressure 

and altitude levels. As expected, the two curves are nearly identical for scales smaller 

than xc,N ~160 km, xc,L  ~125 km, and follow a straight line with slope h(2)~0.8. As 

predicted, for scales larger than xc, the near-isobaric (orange) curve follows a new line 

with slope Htr v(2)~1.1. At the extreme large scale limit of our data (~300 km), there is a 

small deviation in the scaling of the longitudinal component. We checked that at this 

scale, there was a 25% difference in the contribution to 
2

( )Lv x for positive and 

negative vL ; since the aircraft mostly made round trips, this must be a consequence of 

the pilot modifying the trajectories depending on the weather - particularly affecting 

longitudinal components - hence introducing correlations between the aircraft and wind. 

By taking the ratio of the isobaric and isoaltitude 
2

v we largely eliminate this effect 

(Figure 2.3b): as predicted, the isoheight to isobar ratio continues to grow with scale with 

exponent 0.3.  
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Figure 2.3: a) : 
2

( , )v x z for the transverse (upper curves) and longitudinal (lower 

curves) components of the wind measured by TAMDAR. The curves for transverse 

components were displaced in the vertical by 0.5 for clarity. In green: 
2

( , )v x z calculated over near-constant altitude levels ( z<20 m). In orange: 

2
( , )v x z calculated over near-constant pressure levels ( p<1.26 hPa). In purple: 

2
( , )v x z calculated over near-constant pressure levels with an additional constraint 

on the slope ( z/ x > 3x10
-4

). Reference lines have slopes 0.8, 1.1 and 1.4. b) : in orange 

(red) : difference between the logs of 
2

( , )v x z calculated on near-constant pressure 

and near-constant altitude levels for the transverse (longitudinal) component. In Purple 

(blue): difference between the logs of
2

( , )v x z  calculated on near-constant pressure 

with the additional constraint on the slope ( z/ x > 3x10
-4

) and near-constant altitude 
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levels for the transverse (longitudinal) component. Reference lines have slopes 0.3 and 

0.6.

This 2+Hz=2.57 dimensional turbulence has transverse to longitudinal ratio 

DNN/DLL~1.78±0.08, somewhat higher than the theoretical 3D, 2D isotropic turbulence 

values (DNN/DLL~4/3, 5/3, respectively [Monin and Yaglom, 1975; Ogura, 1952 ; 

Lindborg, 1999]).

 In order to further test the 23/9D theory, we show the results for data pairs 

constrained to have slopes > 3x10
-4 

(roughly the mean isobaric slope at 400 km 

resolution), this sampling is linear (Htr~1, top, Figure 2.2) so that we expect exponents 

Htr v(2)~1.4. This is confirmed by Figure 2.3a (top) at scales > 40 km: it is the slope, not 

the pressure that is important. For these conditional isobaric curves, Figure 2.3a indicates 

xc~36 km, a value close to xc~40 km estimated using equation (2.7) and parameters 

estimated on Figures 2.1 and 2.2. The bottom of Figure 2.3 shows the difference between 

isobaric (with and without the condition on the slopes of the smaple) and near-constant 

altitude cases. For increasing horizontal lags, the difference between the isobaric and 

near-constant altitudes curves increase, showing the relevance of the 23/9D model and 

the effect of fractal trajectories/sampling as described by equation (2.5). Interestingly, the 

previous studies cited (from flights near the top of the troposphere, including Figures 1, 2 

of FS) find (2)~1.4 so that presumably for these, Htr~1.

2.6 Conclusions 

The horizontal wind field is anomalous in that it has a break in the scaling at 

scales typically in the range 100 - 500 km with small scale spectra roughly k
-5/3

transitioning at lower wavenumbers to k
-2.4

. Both the transition scale and exponent are 

quite different from those predicted by theories of isotropic 3D and isotropic 2D 

turbulence (  10 km and k
-3

).   A simple explanation is that the aircraft trajectories are 

gently sloping (e.g. they are isobaric) so that at a critical scale, the vertical fluctuations 

are dominant implying k
-2.4

 for the sloping spectra (as in the vertical). In order to test this 

directly, high accuracy altitude and wind measurements are required; when carefully used 

the TAMDAR commercial aircraft sensors are adequate.  However, due to degraded 
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vertical resolution on ascending and descending flight segments, only cruise altitude data 

should be used and stringent pressure and altitude bounds are needed to define the 

isoheights and isobars (±10 m, ±0.63 hPa). 

Using data from over 14500 flights, for the first time we were able to estimate the 

joint horizontal-vertical structure functions providing strong support to the 23/9D 

anisotropic scaling theory (Figure 2.1), and estimating the key stratification exponent as 

Hz=0.57±0.02, quite close to the theoretical value 5/9.  Using this, and the observed 

fractal dimension of the isobars (Dtr=1.79±0.02), we were able to theoretically calculate 

the isoheight, isobaric and constant slope structure function exponents (0.8, 1.1, 1.4 

respectively) as well as the critical isoheight/isobar transition distance ( 160 km, 125 km, 

transverse, longitudinal). The results of this study give the strongest and most direct 

support to date for the 23/9D anisotropic scaling model. 
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Chapter 3: The Horizontal Space-Time Scaling and Cascade 

Structure of the Atmosphere and Satellite Radiances

The following reproduces the article ''Pinel, J., S. Lovejoy, D. Schertzer, (2013): The 

horizontal space-time scaling and cascade structure of the atmosphere and satellite 

radiances'' submitted to Atmospheric Research in February 2013. It presents the first 

study of the consequences of the anisotropic spatial scaling (addressed in the previous 

chapter) on the statistics in the full horizontal space-time domain. 

Abstract

Even today, there is still no agreement about the space-time statistical properties 

of the atmosphere. Classically, spatial statistics have been modelled by a hierarchy of 

different isotropic scaling regimes. However, gravity acts at all scales and theory and 

observations now point towards an atmosphere described by a single anisotropic scaling 

regime where two different scaling laws apply in the horizontal and vertical; the 23/9D 

turbulence model. However, the implications of this anisotropic spatial scaling for the full 

space-time scaling are not clear and are the subject of this paper. By considering that 

small structures are advected by larger turbulent structures and by considering averages 

over the latter we approximate the structure functions and spectra with the help of scale 

functions. In order to test these predictions, we analyze geostationary satellite MTSAT 

data which provide wide scale ranges in both horizontal space and time (5 km to ~10000 

km, 1 hour to 2 months). We found that our model could accurately reproduce the 3D (kx,

ky, ) spectral density over the range 1 hour to 2 weeks and 30 km to 13000 km. The 

1D spectral exponents were the same in the 3 space-time directions (i.e horizontal space-

time isotropy for the exponents), with ~1.55 0.01, comparable to the passive scalar, 

Corrsin-Obukhov value with intermittent corrections ( =5/3-K(2) 1.55 0.01)). To obtain 

a more complete description of the statistics, we found that we can describe atmospheric 

radiances turbulent flux statistics (including TRMM's infrared and passive microwave 

over scale ranges 100 km to 20000 km, 1 day to 1 year) by a multiplicative cascade 

model over large ranges of spatial scales with typically slight deviations at small and 
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large scales. Analogous temporal analyses showed similar agreement at small scales, but 

with significant deviations at scales larger than a few days (2 to 14 days), marking two 

regimes, associated with weather and climate. This allows us to find a statistical relation 

between typical sizes of structures and their lifetimes - relation expressed by an effective 

velocity - that characterizes the space-time statistics. 

3.1 Introduction 

Turbulent flows have long been recognized for their complexity, randomness and 

myriad of structures of different sizes and lifetimes. Typically, one describes the statistics 

of the corresponding fluctuations with the help of scaling laws. For instance, the 

celebrated Kolmogorov law [Kolmogorov, 1941] describes how turbulent mean wind 

fluctuations change with scale. In real space, this law has the form: 1/3 Hv x  where 

 is a fluctuation in the turbulent horizontal wind field v,v x  the spatial separation over 

which  is calculated, H is the mean fluctuation scaling exponent and is the flux of 

energy from large to small scales. The Kolmogorov law applies to statistically isotropic 

turbulence in three spatial dimensions and the classical arguments based on the energy 

flux yield H=1/3. We can also express these laws in Fourier space where (neglecting 

intermittency) they follow 

v

2/3( )E k k where E(k) is the power spectrum of the 

turbulent field, k the wavenumber and 1 2H , hence the famous ''5/3 law''.

If we attempt to apply the Kolmogorov law to the atmosphere, a basic question 

that must be addressed is the stratification due to gravity which introduces anisotropy at 

all scales. Either the stratification breaks the scaling somewhere near the atmospheric 

scale height (~10 km) allowing the law to hold at least approximately over smaller scales, 

or alternatively, the isotropic laws are always poor approximations and new laws are 

required. Indeed, empirical evidence points towards the latter: a spatially anisotropic 

scaling atmosphere (see the review by Lovejoy and Schertzer [2010; 2013]). In this 

model, the turbulence is never isotropic so that (even ignoring intermittency) the 

Kolmogorov law never holds, nevertheless, the energy flux and Kolmogorov exponent 

govern the horizontal statistics (from the small dissipation scale (~1 mm) up to the 

largest, planetary scales. In the vertical, the buoyancy variance flux with a different 
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exponent - the Bolgiano-Obukhov exponent - is relevant: Hv=3/5 (or v =11/5) (Bolgiano, 

1959 ; Obukhov, 1959), leading to overall 23/9D turbulence, intermediate between flat 

(2D) and isotropic (3D) turbulence [Schertzer and Lovejoy, 1985a]. This model thus has a 

single anisotropic scaling regime describing the stratification of turbulent structures in the 

atmosphere, from millimeters to planetary scales. 

This 23/9D model provoked a debate [Lovejoy et al., 2009a; Lindborg et al.,

2009, 2010; Lovejoy et al., 2009b, 2009c, 2010; Schertzer et al., 2011; Yano, 2009; 

Frehlich and Sharman, 2010] followed by the recent [Pinel et al., 2012, i.e. Chapter 2] 

re-evaluation of commercial aircraft measurements, and the derivation [Schertzer et al.,

2012] of fractional vorticity equations respecting anisotropic scaling symmetries. The 

latter provide respectively empirical and theoretical arguments in favor of the 23/9D 

model that are difficult to refute. This raises the question: if the spatial structures do 

indeed respect anisotropic scaling, what are the implications for the temporal evolution, 

i.e. the full space-time scaling? Since (x, y, z, t) data sets spanning significant ranges of 

scales are not available we consider the simpler problem: what are the horizontal-

temporal statistics ? 

Although our goal is to understand Eulerian (fixed frame) statistics, first recall 

that a general feature of turbulent flows is that there exists a statistical relation between 

size of structures and their lifetime (their ''eddy turnover time''); for Kolmogorov 

turbulence this is 1/ 2 H
v t  with H =1/2. This is a Lagrangian relation which is used 

conceptually in meteorology in constructing space-time ''Stommel'' diagrams but has 

generally not been directly calculated empirically, (see e.g. Dias et al., 2012). In this 

paper, instead we estimate the corresponding Eulerian space-time relationships. A 

classical way to obtain Eulerian statistics is to consider the case when the turbulent 

fluctuations are sufficiently small compared to an imposed mean flow, such that a clear 

scale separation exists, Taylor's hypothesis of ''frozen turbulence'' developed for wind 

tunnels experiments [Taylor, 1938] can then be used. In this case, a constant (mean flow) 

velocity V relates temporal to spatial statistics so that so that H
1/31/3v V t =1/3 (or 

=5/3). However, in the atmosphere, we have argued that no scale separation exists so 

that another model for space-time scaling is needed. 
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 Rather than assuming a scale separation, Tennekes [1975] argued that in the 

Eulerian framework, for a flow with negligible externally imposed mean velocity, the 

turbulent eddies would ''sweep'' the small eddies. The largest eddies with largest 

velocities Ve would dominate so that  and thus H
1/3

~ ev V t =1/3 so that the Eulerian 

exponent would be different from the Lagrangian one. On the empirical side, Radkevich

et al. [2008] found support for this by analyzing passive scalar concentrations in the 

atmosphere (using lidar backscatter as surrogate), finding values of H  mostly 1/3 but 

occasionally 1/2. It was argued that the latter values were consequences of the vertical 

wind dominating the statistics, not a manifestation of the Lagrangian exponent [Lovejoy

et al., 2008].

Unfortunately, full (3D) space-time data with wide ranges of scale are not 

available and reanalyses have limitations - due amongst other reasons - to the use of the 

hydrostatic approximation; see [Stolle et al., 2010, 2012]. Therefore, to better understand 

the horizontal Eulerian statistics, we present a spectral study of the space-time scaling of 

atmospheric variability and its (horizontal) space-time statistical relations, using infrared 

radiances measured by geostationary satellite Multi-Functional Transport Satellite 

(MTSAT). These infrared radiances are probably the best data currently available for this 

task as they cover wide scale ranges in both space and time (5 km to ~10000 km, 1hour 

to months, years) and they don't suffer from significant sensor remapping issues. The use 

of passive thermal emission bands or active sensing is necessary to avoid strong diurnal 

effects. In comparison, planetary scale active sensors (satellite-borne radars and lidars) 

have low temporal resolutions with return times of days for existing systems. We 

therefore consider thermal IR from a geostationary satellite which is the best available for 

the purpose. Nevertheless, along with MTSAT data, we also analyzed infrared and 

passive microwave radiances measured by the Tropical Rainfall Measuring Mission 

(TRMM) orbiting satellite whose sampling protocol is not conveniently adapted for 

temporal spectral analysis but still allows us to investigate the intermittency. 

On the theoretical side, we use a concrete anisotropic scaling model based on 

multiplicative cascades (see below) to interpret the results. Section 2 presents a review of 

the model. In section 3, we present the results of the spectral study made on MTSAT IR 

data. Section 4 presents an application of our method in understanding the Atmospheric 
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Motion Vectors which are used to estimate the wind. In addition to the spectral analysis, 

we also present a more detailed investigation of the scaling behaviour of the atmosphere 

and its space-time statistical relations by examining its intermittency (Section 5). 

3.2 Review and development of the anisotropic scaling model 

3.2.1  Anisotropic scaling in real space 

If the turbulent field I has anisotropic space-time scaling, then for each space-time 

direction: 

( ) hH

hI x x          (3.1) 

( ) hH

hI y y

( ) vH

vI z z

( )
H

I t t

where I is a fluctuation in a turbulent field I, 's are scale by scale conserved turbulent 

fluxes, x, y and z are the spatial (or temporal) scales over which I is estimated and 

H is the ''non conservation'' or ''mean fluctuation'' exponent. As in the case of the 

horizontal velocity, equation (3.1) assumes unique horizontal, vertical and temporal 

exponents Hh and Hv, H . If I is a horizontal wind component, we have already described 

how arguments from classical turbulence theory and dimensional analysis yield for 

isotropic 3D turbulence: h=
1/3

, Hh=1/3 and =
1/2

, H =1/2. Schertzer and Lovejoy

[1985a] proposed that in the vertical, the scaling exponent Hv =3/5 on the assumption that 

a different quadratic invariant: the buoyancy variance flux ( v=
1/5

) dominated the 

dynamics; see [Lovejoy et al., 2007) for empirical confirmation using drop sondes. This 

value was proposed by Bolgiano, [1959] and Obukhov, [1959] for the isotropic buoyancy 

subrange. Analogous laws for passive scalar concentrations  can be obtained by making 

the following change: 3/ 2 1/ 2  where  is the passive scalar variance flux. 

The way to combine these laws for any space-time vector displacements is 

described by Schertzer and Lovejoy, [1985b], using the formalism of ''Generalized Scale 

Invariance''. It consists in replacing the usual vector norm for the space-time increments 
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by a different measure of scale - the scale function R  - that takes into account the 

anisotropy. A simple example of such a ''canonical'' scale function is:  

,
( )

hH

h R
I R R ;          (3.2) 

1/ 2
2 2 2/ 2/

2(1/ 1)

z t

z

H H

H

w s

w w w w

x y z t
R L

L L L
     

where R=( r, t) with r=( x, y, z); Lw is a convenient reference scale (see below), 

of the order of the size of the Earth (Le=20000 km) and w=
-1/3

Lw
2/3

 is the corresponding 

duration, the lifetime planetary scale structures; the subscript ''w'' is for ''weather''. 
,h R

is the turbulent flux governing the dynamics in the horizontal at resolution R  and 

s=Lw/ls where ls=
-3/4 5/4

 is the ''sphero-scale'' (i.e. the scale at which structures in the 

vertical plane are roughly roundish). Here we introduced the exponents Hz=Hh/Hv,

Ht=Hh/H  that characterize the vertical/horizontal and (horizontal) space-time 

stratifications. For the wind and passive scalars, Hh=1/3, Hv=3/5, H =1/2 and Hz=5/9, 

Ht=2/3. Note that the temporal exponents are Lagrangian, not Eulerian; equation (3.2) 

assumes no mean advection. When r is aligned with one of the axes in our coordinate 

system, (e.g.  R=( x, 0, 0,0)), we retrieve equation (3.1) for that particular direction. 

Using the scale function, taking the q
th

 order moments and averaging, the statistics of the 

space-time fluctuation ( )I R follow: 

( )
( ) hqH qq q

R
I R R R  ;      (3.3) 

( )K q

q w

R

L

R
; ( ) ( )q qH K q         

where the function K(q) takes into account the intermittency of the flux  and yields the 

overall structure function exponent (q) as indicated. Its statistical behaviour is 

determined by multiplicative cascades whose external scale is Lw and which we discuss in 

section 5. 

The scale function (equation (3.2)) uses only the Lagrangian temporal scaling; it 

ignores advection. In the Eulerian frame, we also need to take into account the mean 
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advection of structures. For a fixed advection velocity v=(vx, vy, vz), we can use the 

Galilean transformation r r-vt ; t t, to obtain: 

1/ 2
22 2

2(1/ 1)

/

z t

z

H H

y Hx z
w s

w w w w

y v tx v t z v t t
R L

L L a L

/ 2 /

 (3.4) 

where we also introduced a, a parameter that describes the possible trivial (scale 

independent) zonal/meridional anisotropy in the horizontal spatial plane.

The basic problem now is that equation (3.4) holds only for a fixed, constant and 

uniform advection v whereas the actual v is a turbulent field, i.e. we must consider an 

''effective'' scale function that takes into account the turbulence. The situation is 

complicated by the fact that at fixed location (i.e. x= y= z=0), there are four temporal 

terms and each can in principle be dominant depending on the v field. In [Lovejoy et al.,

2008 ; Radkevich et al., 2008], it was argued that sometimes the vertical wind can 

dominate the statistics of the horizontal wind, producing Hv t with H 0.5 scaling. To 

see how this might arise, take z=0, so that the vertical term in equation (3.4) is 

1/ zH

zv t . Unlike the horizontal wind, the vertical wind has typically small values and 

follows vz
H

zv t with
zvH -0.2. From equation (3.4), taking Hz=5/9 and neglecting 

the intermittency, we find: ,1/
(0,0,0, ) v z effz

H H H
t t t with H ,eff=0.7~Ht=2/3;

hence 0.5v t scaling when this vertical term is dominant. In the following, we 

consider only satellite radiance fields, which are (x, y, t) fields. The consequence of the 

vertical wind on the radiances is therefore quite different. Since our field is horizontal, we 

take R=( r, t) where r=( x, y), so that for constant advection ,x yv v v , (i.e. vz=0

in equation (3.4)) we have: 

1/ 2
22 2

/

tH

yx
wadvec

w w w

y v tx v t t
R L

L L a

/

    (3.5) 

However, as argued by Tennekes, [1975], the largest eddies with speed 

/w wV L w advect all the others so that the ''effective'' Eulerian scale function will 

involve averages over v's ranging up to Vw. Using this in equation (3.5) for vx and 
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ignoring vy, we see that whenever wt , the corresponding advection term 

w

w w

V t t

L
 will dominate the temporal scaling term 

1/ 3/ 2tH

w w

t t
. Indeed, as argued 

by Radkevich et al. [2007] using meteorological analyses from a component of the 

operational Canadian Meteorological Centre Global Environmental Multiscale (GEM) 

model, the empirical probability that the transition scale - from horizontal advection 

scaling to pure time evolution scaling - is shorter than w (~10 days) is low, hence we 

drop the Lagrangian term. There will be two main effects of the turbulence on the scale 

function equation (3.5). The first is the advection by the mean v, the second is to 

determine the space-time relationship given by the typical turbulent velocity, which is 

conveniently estimated from its variance. The two effects can be conveniently understood 

by considering the square of the scale function: 

22

2 2

/advec

yx
w

w w

y v tx v t
R L

L L a
     (3.6) 

2 2 2 2 2 2

2 2

2
2

x y yx
w

w w w w w w

v a v a v yv xx a y t
L t

L L L L L L

Averaging this over the turbulence, we obtain: 

T

R R B R           (3.7) 

where , ,R x y t , (not to be confused with unit a vector) and 

2 2

2

1 0

0

1

x

y

x y

B a a

a

        (3.8) 

where we have used the dimensionless parameters : 

w

x
x

L
;

w

a y
y

L
;

w

t
t ;

x
x

w

v

V
;

y

y

w

v

V
; ( , )x y       (3.9) 
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and , ,x y xv v v v v vy  and 
1/ 21/ 2

2 2 2 2 2 2

w x y w x yV v a v V v a v  where v  is 

the overall mean advection in the region studied and Vw is a large-scale turbulent 

velocity; 2v is the mean square. Note that since 
22v v , , 1x y . These results are 

generalizations of those presented by Lovejoy and Schertzer [2010]. 

3.2.2  Anisotropic scaling in Fourier space 

If the increments in a turbulent field I are described by the scaling equation (3.3), 

then, we expect the spectral density P(K) to be scaling as well, but with a different 

(Fourier space) scale function (
F

K ). To derive this, we start from the general relation 

between structure functions and spectra (a corollary of the Wiener-Khintchin theorem): 

2
( ) 2 (1 ) (i K R )I R d K e P K       (3.10) 

with , ,x yK k k  ; the k's being the wavenumbers in the horizontal plane and  the 

frequency. In order to determine the form of 
F

K , we define the dimensionless wave 

vector: , , , ,x y w x w y wK k k L k L k  and use the relation:

(2) ( (2))

2 1
D

i K RR K e d K       (3.11) 

where |.| is the usual vector norm. Equations (3.10) and (3.11) state that, if the integral 

converges and the (isotropic) spectral density obeys a scaling behaviour (i.e. 

( ) ~
s

P K K ), then R is scaling as well and their scaling exponents are related by s=

(2)+d (with d=3). For real fields, the scaling is always only valid for a finite range of 

scales and the corresponding truncated integral always converges. If we make the change 

of variable 
1

K C K , (with 
1

C  a real matrix), we obtain: 

2(2)2
( ) ~ ( ) ( )

s

F
I R R P K I K K ; s= (2)+3  (3.12) 

1/ 2 1/ 2
1

T T

F
R R B R K K B K ;

T
B CC  ; det 0B

with:
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2 2

1 2 2

2 2 2

1
1

(1 )
1

1

y x y x

x y x

x y

x y

a

B
a

ya      (3.13) 

from equation (3.8). The result fordet 0B  cannot be obtained from this approach and 

has qualitatively different behaviour [see Lovejoy and Schertzer, 2013; Pinel and 

Lovejoy, 2013, (i.e. Chapter 4)]. Since 2 2 2 2 det 0Bdet 1 x yB a a ,  when 

2 2 2 1x ya , a condition which is always satisfied here. Notice that we introduced the 

exponent (2) in equation (3.11) that takes into account the non-conservation exponent H

as well as the second order intermittency correction (see below). 

 We can further simplify the form of 
F

K  by introducing: 

2 2 21

x
x

x ya 2 2 21

y

y

x ya
 ; ;

2 2 21 x ya
        (3.14) 

to obtain : 

1/ 21/ 2 2 22
1

T

x y
F

K K B K k k k a     (3.15) 

with ,x yk k k  and the final expression for the spectral density: 

/ 2
2

2

0 0( )

s

s

P K P K P k k     (3.16) 

where P is a dimensional constant and 
1/ 22 2

2/x yk k k a0 is a Fourier spatial scale 

function. Note that we can express the parameters:
y

y

v

v
x

x

v

v
; with 

2 2
2 2 2 2

v x x y yv v a v v
yx e

x y v

V
 so that  ; the parameter being directly 

related to the mean advection. 
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Directly testing the prediction that the horizontal space-time spectral density is of 

the form of equation (3.12) is unwieldy; it is more convenient to consider various 2D and 

1D subspaces, obtained by successively integrating out , ,x yk k  in 

( ) , ,x yxytP K P k k . To do this, we use the Wiener-Khintchin theorem that relates the 

autocorrelation function to the spectral density: 

( )3( , , ) (2 ) , , x yi k x k y t
x y x yR x y t P k k e dk dk d    (3.17) 

If we successively put x=0, y=0, t=0, we obtain: 

( )2( , ,0) (2 ) , x yi k x k y
x y x yxyR x y P k k e d k d k  ;   , , ,x y x yxyP k k P k k d ;

2 ( )( ,0, ) (2 ) , xi k x t
x xxtR x t P k e d k d  ;     , , ,x x y yxtP k P k k d k

( )2(0, , ) (2 ) , yi k y t
y yytR y t P k e dk d ;      , , ,y x yytP k P k k d k x

(3.18)

From equation (3.18) and developments similar to equations (3.11)-(3.13), we find: 

( 1)

, ,
s

x xxt
xt

P k k
( 1)

, ,
s

x y x yxy
xy

P k k k k  ;    (3.19) 

( 1)

, ,
s

y yyt
yt

P k k

with:

2 2
2,

2

x y x

xy

k k k a k y         (3.20) 

2 2 2

,x x xx x
xt

k k k
1/ 2 1/ 22 2 2

2 2 1

x x
x

y
v y

v

aa v

 ; 

1/ 2
21

x

x

;
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2 2 2

,y y yy y
yt

k k k  ; 
1/ 2 1/ 22 2

2 1

y y

y

x
v x

v

v

 ;  

1/ 2
2 21

y

ya

Similarly, for the 1D subspaces, we obtain: 

( ) , ,x x y y xxE k P k k d dk k 2s     (3.21) ;

( ) , ,y x y xyE k P k k d dk k y       

( ) , ,x y x ytE P k k dk dk

3.3 MTSAT spectra 

We now test the spectrum equation (3.16) with infrared radiance data measured 

by the MTSAT satellites which are a series of geostationary weather satellites operated 

by the Japan Meteorological Agency. MTSAT-1R, the first of the series, was launched in 

2005 and replaced the older series of Geostationary Meteorological Satellites (GMS, also 

called ''Himawari'', operational since 1977). It measures radiances from the region 

centered on longitude 140° East (Japan, tropical western Pacific, Australia) over five 

channels: one visible (0.55-0.90 m), four infrared (10.3-11.3 m ; 11.5-12.5 m ; 6.5-

7.0 m and 3.5-4.0 m). MTSAT-1R has a maximal resolution of 1 km (visible) and 4 

km (infrared) at nadir. The temporal resolution is 30 minutes (above the equator) and 1 

hour (full disk), [Takeuchi et al., 2010; Puschell et al., 2002 ; 2003].

We analysed 1386 images (~ two months of data, September and October 2007), 

from the first (''thermal'') infrared channel (10.3-11.3 m, sensitive to temperature at 

(roughly) the top of clouds) taken from the Atmospheric Radiation Measurement 

database that archives MTSAT-1R data at 5 km and 1 hour resolutions over latitudes 

40°S - 30°N and longitudes 80°E - 200°E (see Figure 3.1). This corresponds to 1675 x 

2672 pixels (north-south, east-west) covering a region 8375 by 13360 km. 
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Figure 3.1: Thermal IR MTSAT-1R image taken on September 9, 2007, at 5 km 

resolution; between latitudes 40°S - 30°N and longitudes 80°E - 200°E. We can easily 

recognize the shape of Australia at the bottom and observe several examples of 

(presumably) cloud structures. 

We separated the MTSAT sample into five 277 hr (~12 day) blocks (with 

resolutions, 30 km, 1 hr), calculating for each block, the spectral density on fluctuations 

of the field with respect to the mean image (over the 2 month period; we used a standard 

Hann window to reduce spectral leakage). Although the images are variable in both space 

and time due to the land and ocean surfaces as well as clouds, it is the latter that dominate 

the variability over the scales considered here. After averaging over the five blocks to 

improve the statistics, we compared the results to the theoretical form (equation (3.16)). 

Figures 3.2 and 3.3 show the comparisons between MTSAT data and a regression from 

equation (3.16). Because we have to determine the value of the constant P0 in equation 

(3.16) from the regression, only the ratio (Vw=Lw/ w) can be uniquely determined. We 

thus fixed one parameter, taking L =Lw e= 20000 km and estimated the time scale w=

Lw/Vw. The parameters we found are (see also Table 1): 
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Vw = 41 3 km/h ( 1000 km/day) ; w= Lw/Vw ~ 20 1 days ; a~ 1.2 0.1       (3.22) 

s~3.4 0.1; ~ -0.3 0.1 ; ( xv ~ -12 4 km/h  -300 km/day) ;   x

y~ 0.10 0.08 ; ( yv  ~ 4 3 km/h  100 km/day);  P0=2.8 0.2 °C
2
 km

2
h

From Figure 3.2, we see that the 1D spectra are very close to power laws over the 

range of scales 120-5000 km in space and 3-100 hrs in time (except for diurnal cycle 

contributions at 12 and 24 hrs). The exponents are ~1.55 0.01, a bit smaller than the 

non-intermittent passive scalar, Corrsin-Obukhov value =5/3, (with intermittency 

corrections, the latter are nearly identical, see (Lilley et al., 2008)). We thus have space-

time isotropy in the spectral exponents, as predicted. However, the scaling is even better 

than suggested by the near linearity displayed in Figure 3.2. Indeed, we expect deviations 

from log-log linearity due to the space-time anisotropy coupled with our finite sample 

size which breaks the scaling symmetry at high and low wavenumbers/frequencies. When 

the integrals in equation (3.21) are performed on the discretized, numerically integrated 

theoretical expressions, we see (Figure 3.2) that much of the curvature at both ends of the 

spectra can be explained, although for spatial scales  6000 km or temporal scales longer 

than ~100 hrs, deviations become important. Note that the regression value Vw=Lw/ w= 41 

km/h is also consistent with the values Lw=5000 km and w=120 hrs (with P =0.03 °C
2

0

km
2
h), which are roughly the scales at which the scaling is broken; these are denoted Ld

and d for space and time respectively (table 1; see Figure 3.2 in the north-south 

direction, Lw/a  4300 km). 
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Statistical Moments Spectra

This study Lovejoy et al., [2009d] 

MTSAT MTSAT VIRS-

5

TMI-8 VIRS-5 TMI-8

Space

(km) 

30 30 100 100 8.8 13.9

Resolutions

Time 1 1 24 24 - -

(hrs)

C - 0.07 0.07 0.05 0.084 0.102 1

- 1.5-1.6 1.8 2 1.63 1.90

E-W (km) - 50000 25000 12600 L 12600 6300eff

(orb. dir.) (orb. dir.) N-S (km) - 32000 12600 8000

Time 

(days) 

- 48 57 57 - -eff

E-W (km) 5000 6000 12000 5000L 10000 2500d

(orb. dir.) (orb. dir.) N-S (km) 2500 2000 9000 2000

Time 

(days) 

4 2 14 4 - -d

V (km/day) 1000 ~800 ~340 ~120 - -

a 1.2 ~1.35 ~1.4 1.1 - -

Table 3.1: A comparison of different parameters obtained from the spectral method 

(section 3) and from statistical moments (section 5) as well as results from a previous 

TRMM analysis in the along track direction [Lovejoy et al., 2009d]. L  and d d are the 

(large) spatial and temporal scales respectively beyond which the scaling symmetry 

breaks down. The speed V provides an estimate of the statistical relation between the size 

of structures and their lifetimes, i.e. it corresponds to Vw evaluated by the spectral method 

(section 3) or an averaged (north-south, est-west) Veff evaluated from the cascade analysis 

(section 5). The parameter a from the spectral method was directly estimated from the 

regression while for the statistical moments, a is an averaged value from the ''shifting 

method'' and from the Eulerian Stommel diagrams (section 5.3). Generally, values of 

parameters obtained for MTSAT by spectral and statistical moments methods are 

comparable. We find small discrepancies between parameters found for MTSAT, VIRS-5 

and TMI-8, even though the values of C1 and a are comparable (except for TMI-8). 

Interestingly, the values of Leff found in the north-south direction are comparable with 

those found by [Lovejoy et al., 2009d] in the direction of the orbit. 
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Figure 3.2: 1D spectra. In black: the theoretical spectrum using parameters estimated by 

regression from equation (3.16) and taking into account the finite space-time sampling 

volume. The parameters are: L ~ 20000 km ; ~ 20 1 days ; (V ~L /w w w w w= 41 3 km/h 

1000km/day) ; a~ 1.2 0.1 ; s~ 3.4 0.1 ; xvx~ -0.3 0.1 ; (  -12 4 km/h  -300 

km/day) ; y~ 0.10 0.08 ; ( yv  4 3 km/h  100 km/day) ; P0=2.8 0.2 K
2
 km

2
h. In 

color: MTSAT thermal IR radiances. The straight lines are reference lines with slopes -

1.5 (blue) and -0.2 (red). Upper left: zonal spectrum. Upper right: meridional spectrum. 

Bottom: temporal spectrum. 

To understand the break in the temporal spectrum at large scales, we recall that 

there is a statistical relation between size of structures and their lifetimes. As the scaling 

symmetry seems to generally hold in space for scales as large as planetary scales (see the 

review by Lovejoy and Schertzer, [2010]), it was estimated by Lovejoy and Schertzer

[2010] from ''first principles'' (i.e. using the energy flux due to solar radiation) and from 

ECMWF reanalyses that structures of planetary scale Le have typical lifetimes of       

e=
-1/3

Le
2/3

~10 days. It was also observed that atmospheric fields all undergo a transition 

in their statistics at a scale w e, from a small scale regime ( t< w) to a different larger 

scale regime ( t > w); the two regimes having qualitatively different scaling behaviours 

with fluctuations growing or decreasing with scale respectively (the sign of H changed 
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Lovejoy and Schertzerfrom positive to negative at w). It was proposed by , [2010, 2013] 

to identify the former regime with weather and the latter as low frequency or 

''macroweather'', (the subscript ''w'' refers to ''weather''). 

In order to investigate this more fully, we can examine 2D rather than 1D spectra 

(equation (3.18)). Regressions on the 2D spectra also reproduce the data relatively well, 

but there are still residuals (see Figure 3.3). The mean deviations between the two 

surfaces (for the three 2D cases shown in Figure 3.3) are of the order of 14%, even 

though the signal ( )P K  varies over ~ six orders of magnitude. The orientation of the 

contours of Log10P(kx, ) (in zonal wavenumber/frequency subspace) is a consequence of 

the non zero (and relatively large) mean zonal advection xv ~ -12 4 km/h (-300 km/day). 

Hence, with our contours, we can estimate the overall mean advection. The area analyzed 

in this paper is not perfectly symmetric with respect to the equator so that we found a 

small advection in the meridional direction.  

The functional form equation (3.16) was derived by assuming that the structures 

were localized, turbulent like; however, there is a longstanding phenomenology of 

wavelike disturbances (localized in space but not in space-time) so that we may expect 

that the residual differences between the empirical and theoretical regression space may 

be associated largely with waves. This is the basic idea behind the technique developed 

by Wheeler and Kiladis, [1999] who also used IR radiances (although at somewhat larger 

space-time scales). In order to study the residual spectrum believed to be associated with 

waves, they removed a turbulent background. However, instead of using a theoretically 

motivated characterization of this turbulent component, they used an ad hoc averaging 

technique and estimated the wave part of the spectrum as deviations from this. The idea is 

then to try to identify the remaining dominant variability using dispersion relations based 

on classical linearized wave equations. We discuss this for MTSAT data and our 

anisotropic model in [Pinel and Lovejoy, 2013 (i.e. Chapter 4); Lovejoy and Schertzer,

2013] where it is argued that the waves are on the contrary an emergent phenomenon 

arising from strongly nonlinear but scaling dynamics. 
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Figure 3.3: Contours of Log of spectral densities projected on to 2D subspaces. In color: 

the fit from theoretical expression (equation (3.16)) with parameters : L ~ 20000 km ; w w~

20 days ; (V ~L / = 41 3 km/h 1000 km/day) ; a~ 1.2 0.1 ; s~ 3.4 0.1 ; w w w x~ -0.3 0.1 ; 

( yv
xv  -12 4 km/h -300 km/day) ; y~ 0.1 0.08 ; (  4 3 km/h 100 km/day) ; 

P0=2.8 0.2 °C
2
 km

2
h. In black: MTSAT thermal IR radiances. Upper left : Log10P(kx, )

; zonal wavenumber/frequency subspace. Upper right: Log10P(ky, ); meridional 

wavenumber/frequency subspace. Bottom: Log10P(kx, ky) ; spatial spectral density. 
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3.4 Application to Atmospheric Motion Vectors 

As an application of the model, we now show that equation (3.16) gives a 

theoretical basis for extracting ''Atmospheric Motion Vectors'' (AMV's) from sequences 

of IR satellite images [Leese et al., 1970 ; Szantai and Seze, 2008] which are used to 

determine cloud (or water vapour) ''motion'' vectors in near real-time from geostationary 

satellite data; these are used as surrogates for wind vectors for weather forecasting 

applications. Although several techniques exist to estimate AMV's, they are all variants 

of the maximum cross correlation technique which is based on the displacement maxr

which yields the maximum cross correlation between successive images. From this, the 

motion vector: max
motion

r
v

t
 is obtained, where t  is the time interval between 

consecutive images.  

We now estimate maxr and motionv from the structure function: 2 ( )S r  (equation 

(3.3) for q=2). maxr  can be found, from the condition on the cross-correlation function: 

max( , ) { ( ,
r

)}R r t max R r t  where ( , ) ( , , ) ( , , )R r t I x y t I x x y y t t

           (3.23) 

Using 2

1
( , ) (0,0) ( , )

2
R r t R S r t , we can derive motionv in terms of the matrix B as

follows. Both functions follow 2{ } {
r r

max R r min S r }  and we only need to 

minimize 2S r  for a fixed t. From equations (3.3)-(3.9), we find that: 2 0S r  so 

that
max max;x y

yx

t t
. We thus see that the cross correlation techniques used to 

estimate AMV's do indeed correspond to the mean advection in the region considered. In 

contrast, if the spectra are used to estimate the advection from (k , ) and (kx y, ) sections, 

using equation (3.20), we estimate the  velocities which are related to the  velocities 

measured by AMV's by an extra normalization factor (however these represent an 

average over the total sample, as we'll see in the next section). 
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3.5 Intermittency 

3.5.1  Cascades 

Up until now, we have used Fourier techniques since these are straightforward, 

well understood and allowed us to validate the basic space-time turbulence model. The 

main limitation is that spectra are second order statistics so that - unless the statistics are 

quasi-Gaussian - they only give a partial description of the process. In order to obtain a 

full description, we must consider statistics of all orders; this takes into account 

intermittency. A full validation necessitates a characterization of the flux  which, in this 

model, is the result of a multiplicative cascade process. In such processes, a large 

(''mother'') eddy breaks up into smaller (''daughter'') eddies, transferring to each of them a 

fraction of its turbulent flux , according to a stochastic rule. The process is scale 

invariant and repeats down to smaller and smaller scales (until scales at which viscosity 

becomes dominant are reached). The resulting flux at resolution  will have the following 

statistics where, generally, different moments and intensities have different scaling 

behaviours:

( )

1

q

K q

q q
M

eff

eff

L

x
/wL x; ; ;   /eff w effL L (3.24)

where K(q) is the multi-scaling exponent, Leff is the effective outer scale of the cascade, 

L Lw e=20000 km is the size of the earth and  is the scale ratio with respect to the 

reference scale and with respect to the effective outer (initial) cascade scale in which is 

determined empirically. < 1> is the large scale mean of the flux and serves as a 

normalisation factor. <.> means ensemble average. For temporal analysis, instead of 

using L , we can use a reference time scale w ref = the duration of our sample. Equation 

(3.24) states that for a pure cascade, if, for different values of q, we plot the log of the 

normalized statistical moments versus the log of the scale ratio, we should observe 

straight lines with slopes K(q) and these lines should intersect at Leff (or if the analysis is 

in the time domain, eff). These stochastic multiplicative cascades are the generic 

multifractal process and K(q) is a convex function. For the ''generator'' of the cascade (i.e. 

of the multiplicative factors determining how  is transferred from one scale to another at 

each step of the cascade), we can apply the additive central limit theorem [Schertzer and 
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Lovejoy, 1987, 1997], so that K(q) can be expressed as a stable and attractive (universal) 

form depending on two parameters:  

1( ) ( )
1

C
K q q q          (3.25) 

where C1 is the ''codimension'' of the mean (i.e. a measure of the sparseness of the 

dominant contribution to the mean flux) and   ( 0 2 ) is the (Lévy) index of 

multifractality. For 2 , this is only valid for 0q ; for 0q , the moments diverge. 

3.5.2 The space-time cascade structure of MTSAT and TRMM radiances 

To quantify the intermittency of the cascade, we calculate the statistical moments of  as 

a function of spatial (or temporal) scale x and see if they follow equation (3.24). Since 

MTSAT was over-sampled in the east-west direction [Kigawa and Sullivan, 1998], there 

was spurious lower variability at the smallest scale (5 km) and we therefore spatially 

averaged the data to 10 km resolution. We then estimated the normalized flux: 

'
I

I          (3.26) 

The fluctuation in the field was estimated as 

( , ) ( , ) , ( , ) ( , )I Max I x x y I x y I x y y I x y  for each pixel where x and y are 

coordinates in east-west and north-south directions respectively and x= y=10 km, the 

resolution at which the flux was estimated, (I is the thermal IR radiance intensity 

measured by MTSAT). The ''max'' was used to partially compensate for residual 

measurement artefacts (excessive small scale smoothness). This improved the scaling 

somewhat at the smallest scales, but is not essential. 

We can verify the predictions of the cascade model (equation (3.24)) by degrading 

(averaging) the resolution of the flux, taking ensemble averages of different powers of the 

flux for each scale of the degradation process, (we took 10 points per order of magnitude 

of scales, equally spaced on a log scale). Figure 3.6 shows the results for the zonal and 

meridional directions. The ''effective'' outer spatial scales of the cascade are found to be 

Leff=50000 km and 32000 km in the east-west and north-south directions respectively, i.e. 

somewhat larger than planetary scales. This is possible because even at planetary scales 

there are nonlinear interactions with other atmospheric fields, which are responsible for 
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the additional planetary scale variability. We see that for spatial analyses, the predictions 

of the cascade model are well verified for smaller scales, up to ~ 6000 and 2000 km for 

east-west and north-south directions respectively; for scales beyond this we observe 

deviations from pure scaling. The upper scaling regime limit is smaller than Leff (the outer 

cascade limit) and is comparable to the spectral scales Ld (5000 km and 2500 km for E-W 

and N-S directions respectively) from the spectral method in section 3 (table 1). These 

large scale deviations may be at least partly due to the anisotropy discussed earlier. 

Therefore, it is interesting to average the moments in both directions: 

( ) ( )

( )

2

EW NS

q qEWNS

q

M M
M . When this is done (Figure 3.4), we observe almost perfect 

scaling over the available range of scales.

For the temporal analysis, we had to deal with an extra complication due to the 

resolution of the data. MTSAT images are taken every hour, but the radiances are not 

averaged over one hour (i.e. they are basically snapshots). However, it is the resolution in 

space-time that is important: averaging snapshots in space at resolution L has the same 

space-time resolution as averaging data with very small spatial resolution in time over 

durations =L/V  where Vw w is the velocity estimated from the spectrum i.e. 40 km/h. In 

order to sample at the appropriate time scale and to keep the highest resolution possible, 

we averaged our estimated flux over a 30 km scale. 

In Figure 3.4, we observe that up to about ~2 days, the data are well described by 

the model, beyond which we observe significant deviations from scaling (the effective 

outer cascade scale eff ~48 days estimated by regression is the outer scale required so that 

the smaller scale statistics are accurate). As mentioned earlier, atmospheric dynamics 

undergoes a drastic change in its variability from a weather regime at time scales less 

than ~10 days to a macroweather regime at larger scales. As expected, the MTSAT data 

exhibit a breakdown in the scaling, but at scales a little bit smaller than this (2 days), even 

though it is not completely obvious to determine the transition scale from these curves. 

Here we see a large spread between the outer cascade scale (48 days) and the scale where 

the cascade scaling becomes poor (~2 days) and the scale at which the spectral scaling 

breaks down (~4 days, see table 1). At small time scales - the weather regime - the 

statistics of the turbulent flux are described by a cascade. At larger scales - the macro 
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weather - the spatial degrees of freedom are effectively quenched and there is a 

''dimensional transition'' leading to different, low intermittency statistics. 
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Figure 3.4: Log-log plot of the moments Mq of the normalized flux ' for MTSAT 

thermal IR as a function of the scale ratio  (dots correspond to data). Each curve 

corresponds to a single value of q, from q=0 at the bottom to q=3 at the top, by step of 

0.2. Straight blue lines are a fit with the constraint that they all intersect at a unique scale, 

Leff. Each graph corresponds to a different direction in which the degradation of the 

resolution was done. Top-left: east-west, Leff=50 000 km. Top-right: north-south, Leff=32

000 km. Bottom-left: time, eff =48 days. Bottom-right: average of east-west and north-

south directions, Leff=32 000 km. 

In order to further substantiate this space-time scaling model, we also used 

Tropical Rain Measuring Mission (TRMM) data. The TRMM satellite was launched in 

1997 by the National Aeronautics and Space Administration (NASA) to monitor the 

atmosphere in tropical regions. Its orbit is between 38  of latitude at an altitude of 350 

km, (period ~90 minutes; average return period ~2 days. See Figure 3.5). The satellite 
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measures radiances in 5 bands in infrared and visible (VIRS) - at wavelengths: 12.2 m ; 

10.8 m ; 3.75 m ; 1.60 m and 0.63 m - as well as in the microwave region (TMI) at 

frequencies 10.65 GHz, 19.35 GHz, 21.3 GHz, 37 GHz and 85.5 GHz. TRMM thus has 

the advantage (over MTSAT) of providing access to larger scales (in the zonal direction) 

as well as extra wavelengths not provided by MTSAT. The VIRS instrument is primarily 

sensitive to clouds whereas TMI is a radiometer that is also sensitive to rain (NASDA, 

2001). Below, we analyzed 359 days in 1998 of VIRS channel 5 (~12.2 m, sensitive to 

the temperature near the top of clouds, resolution 2.2 km, swath width 720 km) and TMI 

channel 8 (85.5 GHz, that has a strong signal from rain, resolution 4.4 km, swath width 

760 km). 

-50 0 50 100 150100150 --
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Figure 3.5: One day (i.e. ~16 orbits, in blue) of TRMM VIRS-5, (2.2 km resolution) 

degraded at 100 km resolution. The temporal resolution is higher near 38 .

When analysing TRMM radiances, we degraded the data resolution by a factor 2 

before estimating the fluxes (in order to avoid possible spuriously smooth data at highest 

resolution). In order to investigate the temporal scaling in the weather and low-frequency 

weather regimes, we averaged the data at resolutions 1 day and 100 km in time and space 

(see Figure 3.5). The return period of the satellite is shorter at higher latitudes from the 

equator and can be as much as 4 days for certain areas near the equator. The space-time 

resolutions were thus chosen as a compromise, so the analysis could benefit from the 
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highest temporal resolution possible while having enough values to provide a good 

spatial average on and reasonable statistics. We rejected every resulting 100 km pixel 

having less than a critical fraction (75%) of data coverage. Similarly, when testing 

equation (3.24) for different spatial or temporal resolutions, we rejected degraded pixels 

with more than 25% missing values. 

Figures 3.6 and 3.7 show the results for VIRS-5 and TMI-8. For VIRS-5, we see 

that for the east-west spatial analysis, predictions of our cascade model are generally well 

verified except for small deviations at small scales for high order statistical moments. The 

outer scale is Leff=25000 km, a little smaller than for MTSAT (~50 000 km) in the same 

direction. The scaling in the north-south direction is not as good with additional, although 

small, deviations at larger scales. The outer scale of the north-south cascade is Leff=12600

km, again smaller than what we found for MTSAT. For the temporal analysis, we 

observe that equation (3.24) gives an accurate description (with an outer scale eff=57 

days) for small scales, up to ~14 days, scale beyond which, once again, we observe 

significant deviations from scaling, (corresponding to a transition towards a different 

scaling regime). (See table 1) 
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Figure 3.6: Log-log plot of the moments Mq of the normalized flux ' for VIRS-5 as a 

function of the scale ratio  (dots correspond to data). Each curve corresponds to a single 

value of q, from q=0 at the bottom to q=2.8 at the top, by step of 0.2. Straight blue lines 

are a fit with the constraint that they all intersect at a unique scale, Leff. Each graph 

corresponds to a different direction in which the degradation of the resolution was done. 

Top-left : east-west,  Leff=25000 km. Top-right : north-south, Leff=12600 km. Bottom-

left : time, eff =57 days. 

For TMI-8, the cascade model predictions are well followed for spatial scales up 

to 4000 and 2000 km for east-west and north-south directions respectively. At larger 

scales, we observe slight deviations from pure scaling. Similarly to MTSAT and VIRS-5, 

the north-south moments have lower variability than predicted by the cascade model at 

large scales, while variability of east-west moments is slightly higher than the model 

predictions. The outer scales are Leff=12600 km and 8000 km for east-west and north-

south directions respectively; scales smaller than for MTSAT and VIRS-5. For the 

temporal direction, we can identify a weather regime at small scales (< 4 days), even 

though there are only a few data points. The outer scale is eff=57 days, just like VIRS-5. 

For time scales larger than 4 days, we observe the usual transition. 
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We can compare these values with analyses of VIRS-5 and TMI-8 data in the 

satellite orbit direction made by Lovejoy et al. [2009d] at higher resolutions (8.8 km and 

13.9 km for VIRS-5 and TMI-8 respectively) from the months of January and February 

1998 (Table 1). Interestingly, the values of Leff and Ld found in their analyses are 

comparable with our values in the north-south direction. 
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Figure 3.7: Log-log plot of the moments Mq of the normalized flux ' for TMI-8 as a 

function of the scale ratio  (dots correspond to data). Each curve corresponds to a single 

value of q, from q=0 at the bottom to q=2.8 at the top, by step of 0.2. Straight blue lines 

are a fit with the constraint that they all intersect at a unique scale, Leff. Each graph 

corresponds to a different direction in which the degradation of the resolution was done. 

Top-left : east-west,  Leff=12600 km. Top-right : north-south, Leff=8000 km. Bottom-left : 

time, eff =57 days. 

From Figures 3.4, 3.6 and 3.7 we can estimate the multi-scaling exponent K(q)

with the parameter C1 and  for the three directions (east-west, north-south, time). We see 

from Figure 3.8 that the intermittency of MTSAT data is nearly the same in all directions. 

Similarly to MTSAT, the intermittency of the VIRS-5 and TMI-8 fluxes is almost 

isotropic (Figure 3.8), with small differences in the different directions for higher 
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statistical order. We estimate C1 using 1 (1)C K  (see equation (3.25)). All the values are 

close to each others and are comparable to those found by Lovejoy et al. [2009d], 

(although our value for TMI-8 is a little bit smaller, see table 1.) 
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Figure 3.8: Top-left: Characterization of the intermittency of MTSAT thermal IR 

turbulent flux by its moment scaling exponent K(q) estimated from Figure 3.4. In blue: 

north-south direction, C1=0.07. In magenta: east-west direction, C1=0.07. In black 

(superposed to the north-south curve exactly): in time, C1=0.07. Top-right: 

Characterization of the intermittency of VIRS-5's turbulent fluxes by its moments scaling 

exponent function K(q) estimated from Figure 3.6. In red: north-south direction, C1=0.06.

In green: east-west direction, C1=0.05. In brown: temporal direction, C1=0.05. Bottom: 

Characterization of the intermittency of TMI-8's turbulent fluxes by its moments scaling 

exponent function K(q) estimated from Figure 3.7. In red: north-south direction, C1=0.06.

In green: east-west direction, C1=0.05. In brown: temporal direction, C1=0.08.

With the help of eq. (3.25), we can also estimate the parameter . We calculate the 

''reduced moments'': 1( 1) ( ) Cq q

q qM M . If the log of the moments follow equations 

(3.24) and (3.25), all the curves should collapse - the ''Lévy collapse'' - onto a single 

curve 1C  (up to a critical value qc beyond which K(q) becomes linear, expressing the 

fact that the moments of order q > qc are dominated by the maximum value in a finite 
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sample. We can estimate  for the cascade by identifying the value for which we find the 

best collapse. The values of  for our three datasets vary, though they are all 1.5. (See 

Figure 3.9 and Table I). 

0.5 1.0 1.5 2.0 2.5
Log 10

0.02

0.04

0.06

0.08

0.10

0.12

Log 10Mq'

0.5 1.0 1.5 2.0 2.5 3.0
Log 10

0.05

0.10

0.15

0.20

Log 10M'q

0.5 1.0 1.5 2.0 2.5
Log 10

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Log 10Mq'

E-W

N-S

time

time

N-S

E-W

time

N-S

E-W

Figure 3.9: Levy collapse for the value of  that minimizes the deviations. Top-left: 

MTSAT IR fluxes: ~1.5-1.6. Top-right: VIRS-5 fluxes: ~1.8. Bottom: TMI-8 fluxes: 

~2.2 (since theoretically 2, presumably, ~2). Note that the outer scale 

(corresponding to =1) in the spatial analyses was 20000 km whereas in time it was 2 

months (MTSAT) and 359 days (VIRS-5, TMI-8). 

3.5.2 Probability distributions of MTSAT and TRMM radiance fluxes 

In the last section, in order to study the intermittency, we presented a detailed 

analysis of the statistical moments of radiance fluxes. We can also, in an equivalent way, 

describe the fluxes by looking at their probability distributions. A general prediction of 

cascade models is that their extreme probability tails are ''hyperbolic'' or ''fat-tailed'': 

Pr Dq
s s   ;    ; 1s

Dq q      (3.27) 

The value qD depends on the bare cascade, but also on the space-time dimension D over 

which the bare cascade is averaged. Distributions with an exponent qD have statistical 

moments that diverge for all orders Dq q . If the sample size is sufficiently large, we can 
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observe this hyperbolic tail as a straight line on a log-log plot. Figure 3.10 shows the 

results for MTSAT and TRMM fluxes. While VIRS-5 and TMI-8 fluxes fairly 

convincingly exhibit this hyperbolic behaviour with qD 7, MTSAT fluxes have 

distributions which fall off much more rapidly. In comparison, Lovejoy and Schertzer

[2013] present a summary of similar analyses including horizontal wind for which qD=5-

7.5 and temperature for which qD=4.5-5.5 was found. The existence of hyperbolic tails 

has theoretical implications since it means that certain models of the atmosphere such as 

Log-Poisson or microcanonical cascades can be ruled out. 
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- 2

Log10P >s))

Figure 3.10: Probability distributions for the radiances fluxes exceeding a fixed threshold 

s. In red: MTSAT fluxes at 30 km, 1 hr resolutions. In purple: VIRS-5 fluxes at 100 km, 

1 day resolutions. In blue: TMI-8 fluxes at 100 km, 1 day resolutions. The orange 

reference lines all have absolute slopes qD = 7. 

3.5.4  Space-time statistical relation from atmospheric radiance fluxes 

In order to further characterize the space-time statistics, we may estimate the 

Eulerian size/lifetime statistical relation. A method is to find a correspondence between 

spatial and temporal resolution for which the variability is the same:  

/ref ref

q q

L L/           (3.28) 

i.e. an implicit relation between  and L. The fact that the K(q) functions are close for 

space and time shows that this relation is the same for all q's and that there is a constant 
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value - with the dimensions of a velocity - describing this space-time relation. If the 

scaling were perfect with identical K(q) in space and time, we would obtain: 

eff

eff

eff

L
V           (3.29) 

To test this, we may estimate Veff by superposing the curves from Figures 3.4, 3.6 and 3.7 

and horizontally shift one set of curves (spatial or temporal), such as to make them 

overlap as much as possible (Figures 3.11, 3.12 and 3.13). From this shift, we can 

identify the relation between L and (giving the same variability) and can extract Veff. We 

found for MTSAT (Figure 3.10) Veff=33 km/h =792 km/day (average of east-west and 

north-south directions), comparable with V found from spectral methods (~41 km/h 

1000 km/day, see Table 1). This effective velocity implies that a structure in the flux of 

size 33 km will ''live'' for 1 hr. These velocities are typical values of turbulent wind in the 

atmosphere (~36 km/h=10 m/s). Although a linear relation between spatial and temporal 

statistics is predicted by the ''frozen turbulence'' hypothesis; our interpretation is quite 

different. In ''frozen turbulence'', relative motion within structures is negligible and Veff is 

a constant deterministic advection velocity whereas in our case, Veff is a turbulent velocity 

(e.g. a RMS velocity). Similarly, we can compare statistics in east-west and north-south 

directions, a relation expressed with the parameter a that describes the horizontal space 

trivial (scale independent) anisotropy. We found a 1.2 so that structures are typically 1.2 

times wider (E-W) than their N-S extents. (c.f. the value a~1.2 from MTSAT IR spectra ; 

see Table 1). 
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Figure 3.11: Comparison of statistical moments of radiances fluxes. One set of curves is 

shifted to match the other set. An effective velocity Veff is extracted from that shift, 

characterizing the statistical size/lifetime relation for atmospheric structures measured by 

MTSAT. Upper-left: space (east-west: magenta) vs time (black), Veff=36 km/h. Upper-

right : space (north-south : blue) vs time (black), Veff=30 km/h . Bottom: space (north-

south: blue) vs space (magenta), a=1.2 (characterizing horizontal trivial anisotropy). 

Values of q shown: 0.0 ; 0.4 ; 0.8 ; 1.2 ; 1.6 ; 2.0 ; 2.4 ; 2.8.

Figures 3.12 and 3.13 show the corresponding matches of statistical moments for 

VIRS-5 and TMI-8. From the shift applied, we can extract an effective velocity: Veff=14

km/h=336 km/day and for Veff=5 km/h=120 km/day for VIRS-5 and TMI-8 respectively, 

smaller than for MTSAT (Table 1). The spatial anisotropy parameters a are on the 

contrary all comparable. 

51



0.5 1.0 1.5 2.0 2.5 3.0
Log 10

0.1

0.2

0.3

0.4

0.5

Log 10M

0.5 1.0 1.5 2.0 2.5 3.0
Log 10

0.1

0.2

0.3

0.4

0.5

Log 10M

0.5 1.0 1.5 2.0
Log 10

0.1

0.2

0.3

0.4

0.5

Log 10M

Figure 3.12: Comparison of statistical moments of VIRS-5's fluxes. One set of curves is 

shifted to match the other set. An effective velocity Veff is extracted from that shift, 

characterizing the statistical size/lifetime relation for atmospheric structures measured by 

VIRS-5. Upper left : space (east-west : green) vs time (brown), Veff=15 km/h. Upper 

right : space (north-south : red) vs time (brown), Veff=12 km/h. Bottom : space (north-

south : red) vs space (green), a=1.3 (characterizing horizontal trivial anisotropy). Values 

of q shown : 0.0 ; 0.6 ; 1.0 ; 1.6 ; 2.2 ; 2.8. 
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Figure 3.13: Comparison of statistical moments of TMI-8's fluxes. One set of curves is 

shifted to match the other set. An effective velocity Veff is extracted from that shift, 

characterizing the statistical size/lifetime relation for atmospheric structures measured by 

TMI-8. Upper left : space (east-west : green) vs time (brown), Veff=5 km/h. Upper right : 

space (north-south : red) vs time (brown), Veff=5 km/h. Bottom : space (north-south : red) 

vs space (green), a=1.1 (characterizing horizontal trivial anisotropy). Values of q shown: 

0.0 ; 0.6 ; 1.0 ; 1.6 ; 2.2 ; 2.8. 

We can also compute the Eulerian space-time diagrams and its spatial counterpart 

space-space diagrams (see Figure 3.14) for MTSAT and VIRS-5 fluxes. Unfortunately, as 

can be seen in Figure 3.13, in the case of TMI-8 we only have three data points in the 

weather regime which is insufficient for a reliable estimate. From Figures 3.4 and 3.6, we 

chose an order of statistical moment (q=1.8) that is well estimated and, from the values of 

the chosen moment, we found a correspondence between spatial and temporal lags (for 

which the moment values are the same). We see on Figure 3.14 straight lines with slopes 

1, reflecting the good scaling we obtained on Figures 3.4 and 3.6. A structure 100 km 

zonal extent will on average last 3 hrs, a 1000 km structure (a little bit less in the 

meridional direction) will last 30 hrs, etc. From Figure 3.14, we can also estimate the 

parameters Veff and a. We found values all consistent with those found from the previous 
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method, when shifting all the moments, (for MTSAT: Veff~33 km/h=792 km/day and 

a=1.5 - for VIRS-5: Veff=14 km/h=336 km/day and a=1.5).
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Figure 3.14: a) Left : Space-time diagram for q=1.8 and t<63 hrs (belonging to the 

weather regime) for MTSAT fluxes. Magenta: east-west direction ; Veff=36 km/h. Blue: 

north-south direction ; Veff =30 km/h. Right: MTSAT fluxes space-space diagram for 

q=1.8 ; a=1.5. b) Left : Space-time diagram for q=1.8 and t<8 days (~weather regime) 

for VIRS-5 fluxes. Magenta: east-west direction ; Veff=16 km/h. Blue: north-south 

direction ; Veff=12 km/h. Right: VIRS-5 fluxes space-space diagram for q=1.8 ; a=1.5.

Reference lines have slope =1 corresponding to linear space-time (space-space) relations. 

3.6 Conclusions 

Understanding the space-time statistical behaviour of atmospheric fields as 

functions of scale is a fundamental yet little studied problem. Indeed, it is troubling that 

in spite of the plethora of data now available, that there is no agreement about the 

theoretical or empirical space-time statistical properties of the atmosphere including the 

power spectrum. However, we argue that over wide ranges, the atmospheric spatial 

variability is well described by an anisotropic scaling model where two different scaling 

laws apply in the horizontal and vertical. In this model, no scale separation exists and 

Taylor's frozen turbulence hypothesis is not justified. Since in the Eulerian frame 

54



advection is the key ingredient in relating spatial to temporal statistics, this anisotropic 

spatial scaling will have direct consequences for the temporal scaling. 

We discussed this theoretically, making the assumption that the largest (planetary 

scale) eddies advect the smaller ones, averaging over these random advections. The result 

is that the structure functions and spectra are both power laws of scale functions, 

themselves approximately quadratic forms in (x, y, t) and (kx, ky, ) spaces respectively. 

The parameters depended on the mean advection velocity as well as the turbulent velocity 

and a mean north-south/east-west aspect ratio. 

The theory was tested on 1-D and 2-D spectral cross-sections using infrared 

radiances measured by geostationary satellites which allow us to estimate space-time 

statistics over wide ranges of scale. Estimating spectra from infrared MTSAT data, we 

found that our theoretical spectra accurately reproduce the observed 3D (kx, ky, )

spectral density over the range 1 hour to 4 days and 30 km to 5000 km. Multivariate 

regressions provided the best fit parameters w~ 20 1 days (using Lw~Le=20000 km), the 

mean lifetime of planetary structures, Vw~ 41 3 km/h, their typical relative velocity as 

well as the average overall advections in zonal ( xv ~ -12 4 km/h) and meridional ( yv ~

4 3 km/h) directions over a ~2 month period for a region centred slightly south of the 

equator in the western Pacific. The 1D spectral exponents were the same in the 3 space-

time directions (i.e horizontal space-time isotropy for the exponents), with ~1.55 0.01,

comparable to the passive scalar, Corrsin-Obukhov value with intermittent corrections 

( =5/3 - K(2) 1.55)). While the data comes primarily from the tropics, we consider high 

level emergent statistical laws; there is no reason to assume that they contradict the usual 

(deterministic) laws of tropical meteorology. 

 Spectra are only second order statistics; to obtain a more complete description of 

the statistics, we found that we can describe atmospheric radiances (including TRMM's 

infrared and passive microwave) turbulent flux statistics by a multiplicative cascade 

model over large ranges of spatial scales with typically slight deviations at small and 

large scales. Analogous temporal analyses showed similar agreement at small scales, but 

with significant deviations at scales larger than a few days (2 days for TMI-8, 14 days for 

VIRS-5 and 4 days for MTSAT), marking two regimes. It was proposed that these two 
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regimes separated by this temporal scale break (associated with planetary scales in space) 

could be identified as a ''weather regime'' at short time scales and a ''macroweather'' 

regime at longer time scales, providing a concrete way to characterize the dynamical 

processes associated with weather and determine their corresponding space-time scales. 

(This break in the scaling symmetry is also present in the temporal spectrum, although 

only for the few low frequency data points.) With the help of a multiplicative cascade 

model, we were able to describe how the space-time statistics change with scales with the 

help of only a few parameters C1 (the intermittency near the mean),  (the degree of 

multifractality), Leff (the effective outer spatial scale), Veff (the effective space-time 

transformation speed) and a (the zonal/meridional aspect ratio). Although the values of 

C1 and a are all close to each other for our three data sets (MTSAT, VIRS-5 and TMI-8), 

we observe some differences in the remaining parameters. The values of Leff is somewhat 

different for the three datasets, but its values (in the north-south direction) are comparable 

to those obtained by (Lovejoy and al., 2009d) (along with C1) in the direction of the orbit 

of the satellite. The three datasets being associated with different wavelengths, they were 

sensitive to different types of structures (rain, clouds, etc.). The parameter  which gives 

a measure of how ''extreme'' (or multifractal) is the field was found to vary between 1.5 

and 2. We have to mention that the method we used to estimate  is very sensitive on the 

scale of range considered and errors could be responsible for the discrepancies observed. 

We also showed that TRMM's VIRS-5 and TMI-8 fluxes exhibit nonclassical behaviour 

regarding the extreme values in the fact they follow hyperbolic probability distribution 

with exponent characterizing the extreme tails qD=7. MTSAT fluxes seemed to involve 

much higher values of qD. This can be used to rule out some models such as 

microcanonical and Log-Poisson cascades. 

These results contribute to our understanding of atmospheric dynamics at a 

fundamental level, but could also be useful in applications such as improving the 

efficiency of meteorological measurements, as they prescribe the relation between the 

space-time resolutions at which these measurements should be made. This framework 

also provides a theoretical basis for interpreting IR satellite derived ''Atmospheric Motion 

Vectors'' in terms of turbulent winds. Although the model presented in this paper was 

used to describe turbulent field statistics, it can be extended to take into account 
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atmospheric waves as well. For this, our theoretical form can be used to determine the 

''turbulent background'' and the residual can be interpreted in terms of waves. Wheeler 

and Kiladis [1999] similarly argued that atmospheric waves would be detectable from IR 

thermal spectral density, after the (ad hoc) removal of a turbulent background. We pursue 

this question in [Pinel and Lovejoy, 2013, (i.e. Chapter 4)]. 

Other questions for the future include comparing the statistics over land and over 

oceans. This could be done using geostationary data for a different geographical region 

(for instance, those covered by GOES satellites, which also has a high temporal 

resolution (30 minutes)). Also, it would be interesting, to extend the spectral analysis to 

lower frequencies in order to study the space-time statistics and scaling in the 

macroweather regime (which only seemed to appear for the last few large scale data 

points in our analysis). Corresponding spatial analyses can be made and another space-

time statistical relation should be found (although this question is already discussed by 

Lovejoy and Schertzer, [2013]). Finally, the non-obvious effect of the vertical wind on 

the space-time scaling of the atmosphere still needs to be clarified. 
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Chapter 4: Atmospheric Waves as Scaling, Turbulent 

Phenomena 

The following reproduces the article ''Pinel, J., S. Lovejoy, (2013): Atmospheric waves as 

scaling, turbulent phenomena'' submitted to Atmospheric Chemistry and Physics in 

February 2013. It presents an extension of the 23/9D anisotropic scaling model in the 

Fourier horizontal space-time domain (presented in the previous chapter) to take into 

account the statistical description of atmospheric waves; as well as an empirical test of 

this new developments using atmospheric radiances data (which were also used in the 

previous chapter). 

Abstract

A paradox of atmospheric science is that the dynamics are highly nonlinear, 

turbulent and scaling, yet atmospheric waves are invariably modelled by linear or weakly 

nonlinear theories. We postulate that wave laws are analogous to the turbulent laws and 

are also constrained by scaling. We propose an effective turbulence - wave propagator 

which corresponds to a fractional and anisotropic extension of the classical wave 

equation propagator with dispersion relation similar to those of inertial gravity waves 

(and Kelvin waves) yet with anomalous (fractional) order Hwav/2.

Using geostationary IR radiances, we estimate the parameters finding that Hwav

0.17 0.04 (the classical value =2). Our results have important consequences for energy 

transport and for understanding atmospheric dynamics. 

4.1 Introduction 

The atmosphere is a highly turbulent system with the ratio of nonlinear to linear 

terms - the Reynolds number - typically of the order 10
12

. At the same time, there is no 

doubt that atmospheric waves exist and play an important role in transferring energy and 

momentum. These empirical facts only become problematic when we consider the 

numerous apparently successful studies comparing data with linear (or weakly nonlinear) 

theory, commonly (for gravity waves) with the Taylor-Goldstein equations. Indeed, in the 

58



words of [Nappo, 2002] ''Almost all of what we know about the nature of gravity waves 

is derived from the linear theory'' (emphasis in the original). From this, one may easily 

get the impression that linear wave theories have been empirically confirmed. 

A closer look reveals that what has actually been scrutinized are the linear theory 

dispersion relations and that these have mostly been tested in the horizontal (and 

occasionally in the vertical) directions. Other predictions of linear theory - «polarization 

relations» - are invoked but are only used in a diagnostic mode so that they cannot be 

considered to have been convincingly validated. However, linear theory also predicts the 

entire space-time propagators relating the wave forcings and responses. A key 

characteristic of linear theories is that they involve integer powers of the (space and time) 

differential operators, and this strongly constrains the form of the propagators; below, we 

show how this allows us to test the theory by seeking possible anomalous propagator 

exponents.

In the last few years, scaling theories of waves have become more compelling.  

This is because empirical evidence and theoretical arguments have amassed to the effect 

that atmospheric dynamics give rise to emergent high Reynolds number scaling laws with 

different horizontal and vertical exponents. This allows the horizontal scaling to 

accurately apply over huge ranges in scale, (see [Lovejoy and Schertzer, 2010], [Lovejoy 

and Schertzer, 2013] for recent reviews). Although based on the classical laws of 

turbulence, they involve extensions to account for (multifractal) intermittency and 

anisotropy. Their success underlines the fundamental role of scale symmetries in 

constraining the high Re dynamics. It motivates the question: are atmospheric waves also 

scaling turbulent phenomena? If this is the case, we may logically expect anomalous 

wave propagators that could easily have dispersion relations identical or nearly 

indistinguishable from their classical counterparts, while simultaneously having 

nontrivial consequences for the dynamics and for understanding. Below, we investigate 

this using geostationary satellite infra red radiances. 

59



4.2 Fractional propagators and turbulence 

Consider the classical wave equation for the wave I with forcing f:

/ 2
2

2

2 2

1
( , ) ( , )

H

I r t f r t
V t

 (4.1) 

where V is the wave velocity, r is the position vector and t the time variable. The usual 

wave equation has H = 2, but below we will consider the possibility that it is noninteger.   

As usual, we can solve equation (4.1) by taking Fourier transforms (denoted by 

tildas): 

I(k, ) g(k, ) f (k, ); g(k, ) 2 V 2 k
2

H /2

 (4.2) 

where k is the wavevector,  the frequency and ( , )g k the propagator. When H is a 

positive and even integer, the above follows directly, in other cases, we could define the 

fractional operator in equation (4.1) by the inverse Fourier Transform of  g(k, ) 1
. If we 

seek the real space solution, we can use the fact that Fourier space products (eq. (4.2)) 

correspond to real space convolutions (''*'') hence the solution to equation (4.1) is: 

I (r,t) g(r,t) f (r,t)  so that the propagator links the forcing (f) to the response (I).  

Note that the above propagator is symmetric with respect to an isotropic space-time scale 

transformation by factor :

g 1 k, H g k, (4.3)

In order to estimate the g(r,t) we can appeal to the method of stationary phase 

(e.g. [Bleistein and Handelsman, 1986]) which ensures that the dominant contribution to 

g(r,t)  is due to the wavenumber-frequency region over which g(k, )  is singular, this 

singularity defines the dispersion relation and accounts for its origin and significance.  

From equation (4.1), we find the classical dispersion relation: 

V k           (4.4) 

which is therefore of fundamental importance, a fact which is true for any H>0, not only 

for positive even integer values of H.

Before attempting to estimate propagators of real data, we must take into account 

the fact that atmospheric waves occur in the presence of turbulence. Indeed the spectrum 
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is so strongly dominated by a ''turbulent background'' that it must first be removed before 

evidence of any wavelike propagator can be observed. This is paradoxical since the 

wavelike part is singular set over a surface in (kx, ky, ) space and should be easy to 

detect (actually, the topology need not be so simple, see section 5).  However, the 

singularity is of sufficiently low order and spectral estimates are sufficiently noisy that 

the surface is hard to observe.  Indeed it is much easier to study 2-D subspaces obtained 

by integrating out one of the spectral coordinates (which also reduces the ''noise'') but this 

can integrate out the singularities.  This is presumably the reason why one of the main 

techniques for empirically investigating atmospheric waves used an ad hoc averaging 

technique to observe various theoretically predicted dispersion relations by removing the 

turbulent contribution to the spectrum which was then studied on a single (kx, ) 2-D 

space [Wheeler and Kiladis, 1999], [Hendon and Wheeler, 2008].

Although we also use IR imagery (but at hourly not daily resolution), we use 

instead a theoretically motivated turbulent spectrum to search for evidence of anomalous 

wave propagators. To understand this, recall the classical Kolmogorov law of three 

dimensional isotropic turbulence: 

I r r
H

; 1/3; H 1/ 3 (4.5)

where I is a component of the wind, I is a fluctuation, r  is a vector displacement,  is 

a driving turbulent flux,  is the turbulent energy flux and the equality is understood in a 

statistical sense.  In Fourier space this becomes: 

I k g
tur

k k ; g
tur

k k
H

(4.6)

comparing this with equation (4.2), we see that k  is the forcing and g
tur

k  is the 

spatial part of a propagator (a Green's function). Now recall that for real I, that 

I k I k , if in addition we assume statistical translational invariance (''statistical 

homogeneity''), then we may define the spectral densities PI, P , by: 

( )II k I k k k P k ; ( )k k k k P k  (4.7) 

so that 
2

IP k I ,
2

P k  where ''<
.
>'' denotes ensemble averaging.  
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To obtain the classical Kolmogorov-Obhukhov k
-5/3

 law we use: 

0 ; 1
s

P k P k s D K (2)  (4.8) 

where P0 is a dimensional constant, d is the dimension of space and K(2) is the  second 

order intermittency correction. This yields: 

2 2 2

0 0( ) ( ) ;
s H s H

I tur
P k P k g P k P k k k

 (4.9)

The angle integrated (''isotropic'') spectral density E(k) is then given by integrating P over 

shells in Fourier space.  Ignoring constant factors (2  in d = 2, 4  in d = 3), we obtain 

the (intermittency corrected) isotropic Kolmogorov law: 

E k P
I

k k d 1 k ; 1 2H K 2
 (4.10)

(since H=1/3, we see that the nonintermittent K(2)=0 law does indeed have exponent 

=5/3).

A basic consequence of wide range spatial scaling of atmospheric fields (in 

particular the wind) is that the spectrum and spectral density of the turbulent fluctuations 

in horizontal wavenumber - frequency (kx, ky, ) space follow the straightforward space-

time extension of equation (4.6): 

2

( , ) ( , ) ( , ); ( , ) ( , ) ( , )Itur turI k g k k P k g k P k     (4.11)

where P
I
(k, ) , P (k, )  are space-time spectral densities, ( , )turg k  is the turbulent 

propagator.  To yield turbulent-like behaviour, ( , )turg k  must be localized in space-time 

and hence it must have no singularities for nonzero real frequencies and wave vectors 

[Lovejoy and Schertzer, 2010] and [Pinel et al., 2013, i.e. Chapter 3]. Using scaling 

symmetries, it was further argued that g
tur

can be expressed in terms of scale functions 

k  which are anisotropic generalizations of the vector norm k  in equation (4.6): 

1, ;
turH

turg k i k k      (4.12)

For our purposes, we may take a scale function k  with the particularly simple form 

22 2

x yk k k a ; a is the zonal (x) / meridional (y) aspect ratio. The transformation 
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 corresponds to a mean advection by velocity  and  accounts for the statistical 

variability of the (large scale) advection wind about its mean. The parameters are: 

v
x
,v

y
/ V

w
; V

w
v

x

2 a2 v
y

2
1/2

; 1
x

2 a2

y

2
1/2

  (4.13) 

where xv and yv are mean advection velocities, v
x

2 , v
y

2 , are the variances so that Vw is the 

large-scale turbulent wind speed at planetary scale (size Le= 20000 km). In equation 

(4.10), the wavenumbers have been nondimensionalized by Vw and the frequencies by

the corresponding eddy turn-over time ''lifetime'' Le/Vw of the planetary scale structures.  

Note that a) the factor i in equation (4.12) is necessary so that the propagator respects 

causality, and b) overall g
tur

respects the same isotropic scaling symmetry as the wave 

propagator, equation (4.3) but with exponent Htur.

4.3 Fractional propagators and waves 

With the exception of the weak singularities associated with waves, the turbulence 

dominates the spectral density, the P
I
(k, ) given in equation (4.11) with the propagator 

equation (4.12) already gives a good approximation to the empirical spectral density. This 

may be seen in Figure 4.1 using MTSAT data (described below) which shows the 1-D 

spectral densities E(kx), E(ky), E( ) obtained by successively integrating out various pairs 

of variables from ,  (see [PI kx ,ky, Pinel et al., 2013, i.e. Chapter 3]). This turbulence 

part corresponds to the ''background'' spectrum obtained by [Wheeler and Kiladis, 1999]; 

any wave behaviour is to be found in deviations from this.   

 A simple model that takes into account waves while respecting both the space-time 

scaling and the turbulent forcing and background is obtained by including a factor g
wav

in the overall propagator.  To be ''wave-like'', g
wav

 must be unlocalized in space-time and 

must also be chosen so that the overall scaling symmetry of the system (eq. (4.3)) is  

respected by g
I
(k, ) . Inspired by equation (4.2) and equation (4.11), we can use the 

form: 
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I (k, ) g
I
(k, ) (k, ); g

I
(k, ) g

wav
(k, )g

tur
(k, )    (4.14) 

with  given by equation (4.12) and g
tur

g
wav

 given by: 

/ 2
22 2( , ) /

wavH

wavwav
g k v k  (4.15) 

this is a generalization of equation (4.2) to account for spatial anisotropy (with k k ).

The replacement k is the classical advection transformation (see e.g. [Nappo,

2002]); as in the turbulent propagator, we have included the extra factor  to take into 

account the statistical variation of the large scale advection.  Finally, the parameter vwav is 

the phase speed nondimensionalized by the turbulent velocity Vw (eq. (4.13)). Note that 

the overall propagator g
I

 satisfies the scaling symmetry equation (4.3) with H = 

Htur+Hwav. Due to , the overall propagator g
wav

g
I
 yields the dispersion relation: 

wavk v k  (4.16) 

With respect to the ''background'' advection ( ), wavv is the effective wave speed which 

takes into account the true mean wave speed (vmax) and the statistical variability via .

By taking appropriate scale functions k  one can obtain dispersion relations close to 

gravity and other waves (see Lovejoy et al., 2008b).

Of more relevance here are Kelvin waves which are the low Coriolis parameter/ 

high ''effective thickness'' limit of the inertial gravity (Poincaré) wave dispersion relations 

often invoked at these space-time scales.  First, for only one spatial (zonal) dimension, 

we may note that Kelvin waves are a special case of eq. (4.16) with xk k . Considering 

the full horizontal plane, Kelvin waves are ''channelled'', only propagating in the zonal 

direction. To obtain some channeling while maintaining the same overall scaling 

symmetry, we could replace use the spatial (Fourier) scale function 
1/ 2

2 2 2

x yk k a k

by
1/ 2

2 2 2

x yk k a k  which only allows meridional propagation for small scale (high 

wavenumber) structures.  For example, when = 0, large structures with kx < /( vwav)

cannot propagate in the meridional direction, they are ''channelled''.  
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Finally, combining equations (4.12), (4.14) and (4.15), we obtain the turbulent – 

wave spectral density: 

/ 2
2 22 2 2( , ) ( , ) / ;

tur wavH H

I wP k P k k v kav

/ 2
22

0
( , ) ; /

s

P k P k k

(4.17)

In equation (4.17), we have followed the assumption in the isotropic case (eq. (4.8)) that 

the forcing of the flux has the same scale symmetries as g tur

2

; s  is the spectral exponent 

of the flux and, P0 a dimensional constant determined by the climatological (low 

frequency) average forcing. 

4.4 Data Analysis 

We follow [Wheeler and Kiladis, 1999], [Hendon and Wheeler, 2008] but 

estimate the turbulent background using regressions to estimate the parameters of g
I
 (i.e. 

of g
tur

 and ). The data set was comprised of 1386 images (~ two months of data, 

September and October 2007) of radiances measured by the first ''thermal'' infrared 

channel (10.3-11.3 m, particularly sensitive to temperature near the top of clouds) of the 

geostationary satellite MTSAT over south-west Pacific at resolutions 30 km and 1 hr over 

latitudes 40°S - 30°N and longitudes 80°E - 200°E. We separated the sample into five 

277 hr (~12 day) blocks, calculating for each block, the spectral density of fluctuations of 

the field with respect to the mean image (we used a standard Hann window to reduce 

spectral leakage).  

g
wav

To see how a purely turbulent spectrum already provides a good approximation, 

we performed a multivariate regression on the empirical MTSAT spectral density and 

theoretical form (eq. (4.17)) with Hwav = 0. Figure 4.1 shows the 1D spectra obtained by 

integrating the 3D density over the complementary coordinates using s  = 2.88 0.01 and 

Htur = H = 0.26 0.05. The fit is good over the range of scales 120-5000 km in space and 

3-100 hrs in time (except for small diurnal contributions at 12 and 24 hrs), it is especially 

good if we numerically take into account finite sample size effects at the large and small 

scales (the curvature in the black line in Figure 4.1). The excellent superposition confirms 
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the scale symmetry of the type equation (4.3): P
I
( 1 k, )

s
I P

I
(k, )with sI = s + 2 

H = 3.4 0.1 (eq. (4.17)). 

Log10

1

2

3

Log10 E( )
-1

(10000)
-1

(1000)
-1

(100)
Log10k (km)

-1

-1
(10 days)

-1
(1 day)

-1
(10 h)

Figure 4.1: 1D spectra from MTSAT data; blue: temporal; orange: meridional; purple: 

zonal and a multivariate regression curved due to the finite empirical domain; black, 

using Hwav = 0, Vw = 41 3 km/h; w= Le/Vw  20 1 days; a  1.2 0.1 ; sI 3.4 0.1;

P0=2.8 0.2 °C
2
 km

2
h; x  -0.3 0.1; ( xv  -12 4 km/h); y  0.10 0.08; ( yv  4 3 km/h ), 

= 0.95 0.03 (reproduced from [Pinel et al., 2013, i.e. Chapter 3]). 

We now consider the three 2D spectra, obtained by successively integrating the 

3D spectral density over kx, ky and . The fit is sufficiently good that we can use the 

above regression with Hwav = 0 to estimate all the turbulent parameters. However for the 

1-D spectra to have fixed exponents, when fitting the wave part we must use the 

constraint H = Htur+Hwav so that the 1-D spectral slopes are not affected. In this way we 

find an optimum relative weighting for the turbulence and wave contributions. Figure 4.2 

shows these for three different values of Hwav. As before, the purely turbulent (Hwav = 0) 

case gives a good fit with mean deviations 14% in the three 2D spaces (excluding the 

diurnal spikes and the origin). The orientations of the contours of P(kx, ), P(ky, ) is a 
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consequence of the non zero mean zonal velocity xv ~ -12 4 km/h and smaller 

meridional v
y

~ 4 3 km/h, the wave part is the residual: 

/ 2
2 2( , )

turs H

wav Ig P k k
2

, see equation (4.5). Although this is noisy, the value 

Hwav  0.17 0.04 (so that Htur = H - Hwav = 0.09 0.06, H = 0.26 0.05 is fixed) gives the 

best overall fit and nondimensional wave speed vwav =1.0 0.8. The latter means that the 

wave speed is nearly equal to the turbulent wind so that on average the waves can be 

roughly stationary.
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Figure 4.2: Comparison of 2D spectral densities from MTSAT data and a multivariate 

regression from theoretical P
I
(k, )given by eq.17 for three different values of Hwav. The 

2D subspaces (top to bottom) are ( , kx), ( , ky) and (kx, ky). The ranges are  from (2 h)
-

1
 to (277 h)

-1
; kx from (60 km)

-1
 to (  13000 km)

-1
 and ky from (60 km)

-1
 to ( 8000 km)

-1
.

The three different values of Hwav are 0, 0.17 and 1 from left to right (with Htur = H - 

Hwav, H = 0.26 0.05, s = 2.88 0.01). Hwav = 0 corresponds to the purely turbulent case, 

Hwav = 0.17 0.04 to the regression value with Vw = 41 3 km/h; w= Le/Vw  20 1 days; a

1.2 0.1; sI 3.4 0.1; P0 = 2.8 0.2 °C
2
 km

2
h; x  -0.3 0.1; ( xv  -12 4 km/h); y

0.10 0.08; ( yv  4 3 km/h) hence,  =0.95 0.03  and nondimensional wave speed vwav = 

1.0 0.8.

4.5 Refined singularity analysis 

The above analysis is paradoxical since our hypothesis is that there is a singular 

surface in (kx, ky, ) space yet analysis of the 1-D and 2-D sections showed no direct 

evidence of singular behaviour. This is consistent with the finding that 0<Hwav<1

implying that the singularities are integrated out in the lower dimensional sections. In 

order to display potential singularities, we are therefore forced to study the full 3D 

density P(kx, ky, ) recognizing that most of the variation is due to the turbulent part and 

that the wave part - being only weakly singular - is expected to manifest itself in local 

maxima, perhaps with surface-like topology (line-like in (kx, ky) sections). To this end, we 

implemented an ad hoc singularity detection algorithm that ''scans'' parallel to the axes to 

estimate local maxima successively in the kx, ky directions. In principle considering the 

maxima in a single direction is adequate, but in practice the singular surface has parts that 

are roughly parallel to a given axis; the resulting ambiguity can be resolved by 

determining maxima in two orthogonal directions.   

The results are shown in Figure 4.3, where we compare such an analysis with the 

theoretical behaviour for constant  sections. A drawback of the method is that it does 

not distinguish maxima due to the turbulent contribution and from the (presumed) wave 

contribution and in the empirical case, the separation is not always evident. In the figure, 

the two have been distinguished by the color of the lines. We see that although far from 

perfect, the ellipses indicating the theoretical singularity (dispersion relation) are close to 

the empirical ones especially at the higher . Given that we used a straightforward 

generalization of the classical wave equation with only one new parameter vwav (two if we 
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include Hwav = 0.17 0.04 but this doesn’t affect the singular surface), the results are quite 

encouraging, yet they indicate some of the difficulties. 
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Figure 4.3: Left to right, top to bottom, four (kx, ky) sections of P(kx, ky, ) for  = 2, 3, 5, 

10 hr
-1

, origin in the centre. The black line is the theoretical singularity (dispersion) curve 

(eq.14); the blue, the empirically estimated curve using the ad hoc algorithm and the 

green and red show maxima but presumed to originate in the turbulence ''background'' 

(they are very close to the axes). 

4.6 Conclusion 

The atmosphere is highly nonlinear yet displays both turbulent and wavelike 

behaviour over huge ranges of space-time scales. Theories explaining the turbulent 

aspects assume that the dynamics are strongly nonlinear and scaling, in contrast, the 
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corresponding wave theories have been linear or weakly nonlinear. We proposed that the 

paradox can be explained by noting that although linear theory predicts propagators, only 

the relations implied by the singular part of the latter - the dispersion relations - have 

been tested to any extent. The mathematical structure of the turbulent laws that link the 

observables to driving turbulent fluxes (such as energy fluxes) use scaling (turbulent) 

propagators which are very similar to that of wave equations except that the latter are 

singular. To account for both waves and turbulence, the actual propagators need only 

respect scale symmetries and can be modelled as products of turbulent-like and wave-like 

(space-time localized and unlocalized) propagators with both involving anomalous 

exponents. The wave propagator we used involves the mean horizontal turbulent wind 

and energy flux as well as a mean background wave advection velocity, obtained as a 

(anisotropic, fractional) generalization of the classical wave equation (which is 

approximately satisfied by inertial gravity waves and Kelvin waves). Using geostationary 

IR radiances, we found that the best fit involved an anomalous wave scaling exponent, 

Hwav  0.17 0.04.

This paper is simply an early attempt to understand waves in highly turbulent 

media using scaling symmetries as contraints. Ideally, other fields should be studied over 

wide scale ranges and this in the full (x, y, z, t) space. 
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Chapter 5: Conclusions 

This thesis addresses the problem of understanding and quantifying the variability 

of atmospheric fields over wide ranges of space-time scales. It is surprising that even 

with the increase in the quantity and quality of atmospheric data, there is still no 

consensus on the basic nature of atmospheric dynamics and how its statistical properties 

change with scale. 

We have presented space-time wave extensions of a scaling model, the 23/9D 

model, which is a generalization of the classical laws of turbulence and which describes 

atmospheric dynamics taking into account the strong intermittency and stratification of 

the atmosphere. In this model, the scaling symmetry holds from the dissipation scale up 

to planetary scales in an anisotropic manner. This contrasts with the standard 2D/3D 

isotropic model of atmospheric turbulence which retains the isotropy assumption, 

involving two scaling regimes: a 3D isotropic regime at small scales and a 2D isotropic 

regime at large scales; the two regimes being separated at 10 km by a break in the 

horizontal scaling. The only empirical evidence giving any support to the 2D/3D 

isotropic model is from horizontal wind measured by aircraft which exhibit a break in the 

horizontal scaling at few hundreds of km (not at 10 km) and from a H=1/3 regime at 

small scales to a H=0.7 regime at large scales (but not to a H=1 regime at large scales as 

is predicted by the 2D/3D model). Since H=0.7 is a value measured by drop sondes in the 

vertical, a simple explanation is that aircraft follow gently sloping trajectories - such as 

isobars - so that for large enough scales, vertical (rather than horizontal) fluctuations 

dominate the statistics. In order to test this, we used GPS and TAMDAR sensor equipped 

commercial aircraft data and obtained for the first time the joint horizontal-vertical 

structure function. The results provide strong support to the 23/9D model. We estimate D

~ 2.57 0.02, (to be compared to the theoretical value 23/9 2.56) which is far from the 

d=2 (large scales) and d=3 (small scales) values of the standard theory. 

In chapter 3, we studied the consequences of this spatial anisotropy for the full 

horizontal space-time statistics. Using the fact that smaller structures are advected by 

larger ones and by considering averages over the latter we estimated the scale function 

and hence the statistics and tested these predictions using geostationary satellite MTSAT 
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IR data over the range (5 km to ~10000 km, 1 hour to 2 months). We found that our 

model could accurately reproduce the 3D (kx, ky, ) spectral density over the range 1 hour 

to 4 days and 30 km to 5000 km. To test our model, we needed a dataset with large 

enough ranges of scales available in space and time. Such datasets are not available at the 

moment in full (x, y, z, t) space so that we used atmospheric radiances measured by 

geostationary satellite which are (x, y, t) fields. If high resolution (x, y, z, t) atmospheric 

fields become available, they will make possible an understanding of the role of the 

vertical wind.

To obtain a more complete description of the statistics, we also found in chapter 3 

that we can describe atmospheric radiances turbulent flux statistics (including TRMM's 

infrared and passive microwave over scale ranges 100 km to 20000 km, 1 day to 1 year) 

with our model over large ranges of spatial scales with typically slight deviations at small 

and large scales. This also allowed us to characterize space-time statistics with the 

Eulerian relation between sizes of structures and their lifetimes (''eddy turnover time'') 

which is used to construct Eulerian space-time and space-space diagrams. 

 In chapter 4, we presented an extension of the 23/9D model to include 

atmospheric waves (and not only turbulence) in the description. The theoretical 

development proposed is based on an effective turbulence - wave propagator which 

corresponds to a fractional and anisotropic extension of the classical wave equation 

propagator with dispersion relation similar to those of inertial gravity waves (and Kelvin 

waves) yet with anomalous (fractional) order Hwav/2. Using geostationary MTSAT IR 

radiances, we estimated the parameters finding that Hwav 0.17 (the classical value =2). 

Even though we tested our model with a very simple propagator (a fractional extension of 

the classical wave equation), since the only constraint on the form of the propagators is 

the scaling symmetry, different forms of propagators leading to different dispersion 

relations should be investigated in the future. 

Characterizing the space-time statistical properties of atmospheric fields as a 

function of scale is essential for our fundamental understanding of the dynamics of the 

atmosphere. It has also direct applications, whether it is to validate or improve weather 

models (for instance with stochastic sub-grid parameterizations). It also prescribes the 

space-time resolutions at which measurements should be made in order to improve their 
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efficiency. It also provides a consistent theoretical basis for the description of 

atmospheric waves or to interpret Atmospheric Motion Vectors in terms of turbulence.         
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Appendix A 

This appendix contains the supplementary material related to the paper ''Pinel, J., 

S. Lovejoy, D. Schertzer, A. F. Tuck, (2012): Joint horizontal - vertical anisotropic 

scaling, isobaric and isoheight wind statistics from aircraft data, Geophys. Res. Lett. 39, 

L11803, doi:10.1029/2012GL051689'' which is presented in chapter 2. 

1.5 2.0 2.5 3.0 3.5

1.0

1.5

2.0

2.5

Log10< v >(m/s)2
2

Log 10 x (km)

Figure A.1: Comparison of our analysis with the results obtained by Frehlich and 

Sharman. We show second order structure function for the transverse component of the 

wind measured by TAMDAR. Unlike the figures in the paper, here we include the low 

resolution ascending and descending flights segments; we also compare structure 

functions from two aircraft (top pair), and single aircraft (bottom pair). This analysis was 

made on the same latitude band as Ferhlich and Sharman (40N-50N) and between 

roughly the same altitude levels (5km-6km), using the same criteria for near-constant 

pressure ( p<4 hPa) and altitude ( z<200 m) levels. In Blue: data from the same aircraft 

at near-constant altitude levels. In brown: data coming from the same aircraft at near-

constant pressure levels. In green: data coming from different aircraft at near-constant 

altitude levels. In red: data coming from different aircraft at near-constant pressure levels. 

The large black dots are reproduced from the Frehlich and Sharman TAMDAR analysis. 
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Figure A.2: Same as Figure A.1, but for longitudinal component. 
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Figure A.3: Difference between log of second order structure functions for cruising parts 

only and for complete flights, including ascending and descending parts (after take off 

and before landing). In blue (red): transverse (longitudinal) component. This is for 

complete year 2009 for latitudes 20N-50N, between 5-5.5 km of altitudes.  
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