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Abstract

This thesis identifies a formal connection between physical problems related to entan-
glement detection and complexity classes in theoretical computer science. In particular,
we prove that to nearly every quantum interactive proof complexity class (including
BQP, QMA, QMA(2), QSZK, and QIP), there corresponds a natural entanglement or
correlation detection problem that is complete for that class. In this sense, we can
say that an entanglement or correlation detection problem captures the expressive
power of each quantum interactive proof complexity class, and the contrast between
such problems gives intuition to the differences between classes of quantum interactive
proofs. It is shown that the difficulty of entanglement detection also depends on
whether the distance measure used is the trace distance or the one-way LOCC distance.
We also provide analysis for another problem of this flavour, which we show is decidable
by a two-message quantum interactive proof system while being hard for both NP and
QSZK, the first nontrivial example of such a problem.
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Sommaire

Ce mémoire met en évidence un lien formel entre les problèmes physiques de détection
d’intrication et les classes de complexité de l’informatique théorique. Plus particulière-
ment, nous établissons une correspondance entre la plupart des classes de complexité
naturelles issues de preuves interactives quantiques (incluant BQP, QMA, QMA(2),
QSZK, et QIP), et une intrication ou un problème de détection de corrélation qui
est complet pour cette classe. En ce sens, nous pouvons dire que l’intrication, ou
le problème de détection de corrélation, capture la puissance expressive de chaque
classe de complexité de preuve interactive quantique et que le contraste entre de tels
problèmes donne une idée sur les différences entre les classes de preuves interactives
quantiques. Il est démontré que la difficulté de la détection d’intrication varie con-
sidérablement du fait que la mesure de distance utilisée soit la distance de trace ou
LOCC unidirectionnel. Nous fournissons également l’analyse d’un problème similaire,
et montrons que celui-ci est décidable par un système de preuve interactive quantique
(de deux messages) tout en étant NP-dur ainsi que QSZK-dur, le premier exemple non
trivial d’un tel problème.
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1
Introduction

Certain families of decision problems have proven to be particularly versatile and
expressive in complexity theory, in the sense that slightly varying their formulation
can tune the difficulty of the problems through a wide range of complexity classes.
Adding quantifiers to the problem of evaluating a Boolean formula, for example, brings
the venerable satisfiability problem up through the levels of the polynomial hierarchy
[Sto76] all the way up to PSPACE [Sip96], at each level providing a decision problem
complete for the associated complexity class. Moreover, adding limitations to the
format of the Boolean satisfiability problem gives decision problems complete for a
variety of more limited classes.1 Likewise, in the domain of interactive proofs [Bab85,
GMR85, BM88, GMR89, Wat03, KW00, Wat09a], problems based on distinguishing
probability distributions or quantum states, depending on the setting, arise very
naturally.
In the domain of quantum information theory, quantum mechanical entanglement

is responsible for many of the most surprising and, not coincidentally, useful potential
applications of quantum information [HHHH09], including quantum teleportation
[BBC+93], super-dense coding [BW92], enhanced communication capacities [BSST99,
BSST02, CLMW10], device-independent quantum key distribution [Eke91, VV12,
BB84], and communication complexity [CB97]. Thus, deciding whether the correlations
in a given state represent true quantum entanglement is a prominent and long-standing
question that frequently resurfaces in different forms. The complexity of determining
whether a given mixed quantum state is separable or entangled therefore arose early
and was resolved: the problem is NP-complete with respect to Cook reductions when
the state is specified as a density matrix and one demands an error tolerance no
smaller than an inverse polynomial in the dimension of the matrix [Gur03, Gha10].

1 For example, it is known that if clauses of the Boolean satisfiability problem are limited to two
variables each, the resulting problem (2SAT) is NL-complete [Pap94], while if one allows only Horn
clauses the resulting problem (HORNSAT) is P-complete [CN10], and if one removes any such
limitations on clauses the problem (SAT) is NP-complete [Coo71].
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2 introduction

From a physics or engineering perspective, however, it is often more natural to
specify a quantum state as arising from a sequence of specified operations or the
application of a local Hamiltonian. In this thesis we explore several variations on the
complexity of determining whether or not a state specified by a quantum circuit is
entangled. We vary, for example, whether we allow general mixed states or restrict
to pure states. We also compare the difficulty of deciding whether entanglement
is present (separable versus entangled states) with the difficulty of identifying any
correlation whatsoever (product versus non-product states). One of the most subtle
and interesting variations is to alter the metric used to measure distance between
quantum states: we show that the complexity of detecting entanglement produced by
an isometry is either QMA(2)-complete or QMA-complete according to whether one
measures distance using the familiar trace distance or the more forgiving “one-way
LOCC” distance of Ref. [MWW09].
We consider all problems in terms of general multipartite states, though only

bipartite states are required for the hardness results—this indicates that in general,
detecting multipartite entanglement or correlation may be no more difficult than the
detection of bipartite entanglement or correlation. We also consider these problems
for quantum channels, asking whether there exists an input to the channel with the
specified properties. In most cases, the resulting problem proves to be complete for a
complexity class of quantum interactive proofs, providing characterizations of BQP,
QMA, QMA(2), and QSZK [Wat09a]. (We will define these classes below for those
unfamiliar with them.)



2
Summary of Results

Figure 1 provides a concise summary of our results. Refer to this table for a brief
description of the promise problems. Below we give more details of our results along
with their relation to prior results in the literature:

• QPROD-PURE-STATE is complete for the class BQP for any inverse polynomial
gap in completeness and soundness parameters, as stated in Theorem 12. We
demonstrate that this problem is in BQP by employing the “product test”
introduced in [MCKB05] along with the analysis of its success probability in
[HM10]. We also provide a simple reduction of a general BQP quantum circuit
to the problem of pure-state entanglement detection.

• QSEP-ISOMETRY1,1-LOCC is complete for the class QMA for any inverse polyno-
mial gap in completeness and soundness parameters. We show that this problem
is in QMA by building upon prior work of Brandão et al. [BCY11a] and the
notion of k-extendibility [Wer89a, DPS04]. The QMA proof system requires the
prover to provide: 1) a quantum input to the isometry such that the output is
close to some product state |ψ〉A ⊗ |φ〉B and 2) k copies of |φ〉B. The verifier
then checks whether the prover is being honest by performing phase estimation
over the symmetric group on all of the B systems [Kit95] (also called the “per-
mutation test” [BBD+97, KNY08]). This proof system extends naturally to the
multipartite case as well. We prove QMA-hardness of QSEP-ISOMETRY1,1-LOCC

by reusing the BQP reduction technique mentioned above.

• QSEP-STATE1,1-LOCC is decidable by a two-message quantum interactive proof
system for a wide range of parameters, is QSZK-hard, and is NP-hard with
respect to Cook reductions. Section 4.3.1 builds upon the approach of Brandão
et al. [BCY11b] and the notion of k-extendibility [DPS02, DPS04] in order to
provide a two-message quantum interactive proof to decide the problem. Section
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4 summary of results

Problem Summary Complexity Circuit

QPROD-PURE-STATE

Is the state generated by
the pure-state quantum
circuit close to a product
state?

BQP-
complete

A

B
U|0⟩

QSEP-
ISOMETRY1,1-LOCC

Is there an input to the
isometry such that the
output is close to a sep-
arable state in the trace
distance, or does every
input lead to an output
that is far from separa-
ble in 1-LOCC distance?

QMA-
complete A

B
U

|0⟩

Circuit
Input

QPROD-ISOMETRY
QSEP-ISOMETRY

Is there an input to the
isometry such that the
output is close to a pro-
duct/separable state?

QMA(2)-
complete

QPROD-STATE
Is the state generated by
the mixed-state circuit
close to a product state?

QSZK-
complete

R

A

B

U|0⟩

QSEP-STATE1,1-LOCC

Is the state generated
by the mixed-state cir-
cuit close to a separable
state?

In QIP(2),
QSZK-hard,
NP-hard

QSEP-
CHANNEL1,1-LOCC

Is there an input to the
channel such that the
output is close to a sep-
arable state in trace dis-
tance or does every in-
put lead to an output
that is far from separa-
ble in 1-LOCC distance?

QIP-complete

R

A

B

U
|0⟩

Channel
Input

Figure 1: The collected results of entanglement detection problems and their complexity.
The leftmost column gives the name of the promise problem. Problem names
subscripted with “1, 1-LOCC” indicate that the distance measure for yes-instances
is the trace distance while the distance measure for no-instances is the one-way
LOCC distance. The second column gives a question to which the problem
corresponds. The third column states our complexity-theoretic characterization of
the problem. The final column depicts a quantum circuit corresponding to the
promise problems.
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4.3.2 gives a reduction from the QSZK-complete promise problem QUANTUM-
STATE-DISTINGUISHABILITY to QSEP-STATE1,1-LOCC that is somewhat similar
to a previous reduction of Rosgen and Watrous [RW05], but the setting here
is different and thus requires a different analysis. Section 4.3.3 shows that
NP-hardness follows from the fact that the matrix version of the quantum
separability problem is NP-hard, though we require some results of Knill which
show that one can encode a quantum state efficiently by a unitary circuit if
given a matrix description of the state [Kni95].

• QSEP-CHANNEL1,1-LOCC is QIP-complete for a wide range of completeness and
soundness parameters. The reasoning for this proof is similar to that of our
earlier results for QSEP-STATE1,1-LOCC, and we again exploit the results of
Rosgen and Watrous [RW05] (in particular, the fact that QUANTUM-CIRCUIT-
DISTINGUISHABILITY is QIP-complete).

• QPROD-ISOMETRY and QSEP-ISOMETRY are both complete for the class
QMA(2) for any inverse polynomial gap in completeness and soundness parame-
ters. We give a QMA(2) proof system in which the verifier performs the product
test mentioned above, and we can employ the QMA(k)-amplification results of
Harrow and Montanaro to reduce the completeness and soundness errors to
become negligible [HM10]. We then show that these problems are QMA(2)-hard
by reducing a general QMA(2) verifier circuit to one for which the output can
be made product if and only if there exist two product inputs to the original
general QMA(2) circuit that would cause the verifier to accept.

• QPROD-STATE is complete for the class QSZK for a wide range of completeness
and soundness parameters. This problem differs from the BQP-complete problem
QPROD-PURE-STATE in that it allows for a mixed-state quantum circuit to
generate the state rather than a unitary circuit. We show that QPROD-STATE
is in QSZK by specifying a statistical zero-knowledge proof system that decides
it, and we show QSZK-hardness by giving a reduction from the canonical QSZK-
complete promise problem QUANTUM-STATE-DISTINGUISHABILITY (QSD)
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[Wat02, Wat09b] to QPROD-STATE using a similar reduction to the one used
in the analysis of QSEP-STATE1,1-LOCC.

This thesis thus gives a variety of entanglement or correlation detection promise
problems that are complete for BQP, QMA, QIP, QMA(2) and QSZK, along with a
problem that is in QIP(2). The thesis is structured around this set of of correlation de-
tection problems, beginning with preliminary concepts related to quantum information
and quantum interactive proof classes. In the subsequent chapter, we give detailed
definitions and justify our aforementioned claims that these various entanglement de-
tection problems are in one-to-one correspondence with BQP, QMA, QIP, QMA(2) and
QSZK, as well as prove the stated properties of QSEP-STATE1,1-LOCC. In Section 4.7,
we briefly mention how our various proof systems provide operational interpretations
for several geometric measures of entanglement (see Refs. [WG03, CAH13] and refer-
ences therein). Finally, we conclude in Chapter 5 with a summary of our results and
a discussion of directions for future research.



3
Background

In this section, we review concepts and complexity classes that will be used through-
out the paper, though general background knowledge of both quantum information
theory and quantum computational complexity theory is assumed. For more in
depth overviews of these fields, consult [NC00, Wil11, Wil13] and [Wat09a, Aar13],
respectively.

3.1 Quantum states and channels

A quantum state is a positive semidefinite, unit-trace operator (referred to as the
density operator) acting on some Hilbert space H. Let D(H) denote the set of density
operators acting on a Hilbert space H. An extension of a quantum state ρ ∈ D(HA)
is some state ω ∈ D(HA ⊗HB) (on a larger Hilbert space) such that ρ = TrHB {ω}.
A quantum state is pure if its density operator is unit rank, in which case it has an
equivalent representation as a unit vector |ψ〉 ∈ H. A purification of a density operator
ρ ∈ D(H) is a pure extension of ρ. Throughout this work, we restrict ourselves to
finite-dimensional Hilbert spaces, so that a d-dimensional Hilbert space is isomorphic
to Cd. A quantum channel is a linear, completely positive, trace-preserving (CPTP)
map N : D(Hin)→ D(Hout). The Stinespring representation theorem states that every
CPTP map can be realized by tensoring its input with an ancillary environment system
in some fiducial state |0〉E ∈ HE where dim (HE) ≤ dim(Hin) dim(Hout), performing
some unitary operation on the joint Hilbert space Hin ⊗HE, factoring the unitary’s
output Hilbert space as Hout ⊗HE′ , and finally tracing over the Hilbert space HE′

[Sti55]. That is, for every CPTP map N , there exists some unitary U such that the
following relation holds for all ρ ∈ D(Hin):

N (ρ) = TrE′
{
U (ρ⊗ |0〉 〈0|E)U †

}
.

7



8 background

This theorem is the essential reason for the equivalence in computational power between
the unitary and mixed-state circuit models of quantum computation [AKN98].

In this section, we review concepts and complexity classes that will be used through-
out the paper, though general background knowledge of both quantum information
theory and quantum computational complexity theory is assumed. For more in
depth overviews of these fields, consult [NC00, Wil11, Wil13] and [Wat09a, Aar13],
respectively.

3.1.1 Distance measures

One distance measure often used in quantum information theory to quantify the
distance between quantum states is the trace distance, induced by the trace norm.
The trace norm of an operator A is ‖A‖1 ≡ Tr{

√
A†A}. The trace distance has

an important operational interpretation as the bias in distinguishing two states ρ
and σ, each elements of D(H), so that the maximum probability psucc of successfully
discriminating them is given by

psucc = 1
2

(
1 + 1

2 ‖ρ− σ‖1

)
.

A variational characterization of the trace distance is as follows:

‖ρ− σ‖1 = 2 max
0≤Λ≤I

Tr{Λ(ρ− σ)},

where the measurement {Λ, I − Λ} that achieves this maximum is known as the
Helstrom measurement [Hel69, Hol72, Hel76]. This also leads to the following useful
inequality that holds for all Γ such that 0 ≤ Γ ≤ I:

Tr{Γρ} ≥ Tr{Γσ} − ‖ρ− σ‖1 . (1)
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The quantum fidelity F (ρ, σ) between two quantum states ρ and σ is another
measure of distinguishability, defined as follows:

F (ρ, σ) ≡
∥∥∥√ρ√σ∥∥∥2

1
. (2)

Uhlmann proved that the fidelity is the optimal squared overlap between any two
purifications of ρ and σ [Uhl76]:

F (ρ, σ) = max
|φρ〉,|φσ〉

|〈φρ|φσ〉|2 .

Uhlmann’s characterization gives the fidelity an operational interpretation as the
optimal probability with which a purification of ρ would pass a test for being a
purification of σ. Since all purifications are related by unitary transformations acting
on the purifying system, it follows that

F (ρ, σ) = max
U
|〈φρ| (U ⊗ IH) |φσ〉|2 (3)

for any fixed purifications |φρ〉 and |φσ〉 of ρ and σ, respectively. The equivalence
between (2) and (3) is commonly known as Uhlmann’s theorem. The fidelity and
trace distance for general states are related by the Fuchs-van-de-Graaf inequalities
[FvdG99]:

1−
√
F (ρ, σ) ≤ 1

2 ‖ρ− σ‖1 ≤
√

1− F (ρ, σ), (4)

with the following equality holding for pure states

1
2 ‖ψ − φ‖1 =

√
1− F (ψ, φ). (5)

The final relevant distance measure that we require is based on the maximum
distinguishability of two states when restricting to local operations and one-way
classical communication between the systems of the two states. This distance measure
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is known as the one-way LOCC distance (1-LOCC), induced by a 1-LOCC norm
[MWW09]:

‖ρAB − σAB‖1-LOCC ≡ max
ΛB→X

‖(IA ⊗ ΛB→X)(ρAB − σAB)‖1 ,

for two bipartite states ρAB, σAB ∈ D(HA ⊗HB) and where the maximization on the
RHS is over all quantum-to-classical channels

ΛB→X(ω) ≡
∑
x∈X

Tr{Λxω} |x〉 〈x| ,

with Λx ≥ 0 for all x ∈ X , ∑x∈X Λx = I, and {|x〉} some orthonormal basis. (Note
that we could also define the 1-LOCC distance with respect to measurement maps on
the A systems, which generally gives a different value). This distance is the natural
distance measure in the setting of Bell experiments [Bel64] or quantum teleportation.
It is also clear from the definitions that

‖ρ− σ‖1-LOCC ≤ ‖ρ− σ‖1 , (6)

because a 1-LOCC protocol to distinguish states cannot do any better than a general
protocol.
The 1-LOCC distance measure has been extended to multipartite quantum states

in [LW12, BaC12, BaH13]. On an l-partite system, the l-partite 1-LOCC distance is
given by

‖ρA1···Al − σA1···Al‖1-LOCC ≡ max
ΛA2 ,...,ΛAl

‖(IA1 ⊗ ΛA2 ⊗ · · · ⊗ ΛAl)(ρA1···Al − σA1···Al)‖1 ,

(7)
where each of ΛA2 , . . . ,ΛAl are quantum-to-classical channels. The interpretation here
is that the last l − 1 parties each perform a local measurement on their system and
communicate the results to the first party, who then does her best to distinguish the
two states.
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3.1.2 Separability and k-extendibility

A multipartite state ρA1···Al ∈ HA1 ⊗ · · · ⊗ HAl is said to be separable if it admits a
decomposition of the following form:

ρA1···Al =
∑
y∈Y

pY (y)σ1,y
A1 ⊗ · · · ⊗ σ

l,y
Al
, (8)

for collections {σ1,y
A1 }, . . . , {σ

l,y
Al
} of quantum states and some probability distribution

pY (y) over an alphabet Y [Wer89b]. By applying the spectral theorem to each density
operator, we can always find a decomposition of any separable state in terms of pure
product states:

ρA1···Al =
∑
z∈Z

pZ(z) |ψ1,z〉〈ψ1,z|A1 ⊗ · · · ⊗ |ψl,z〉〈ψl,z|Al . (9)

States which cannot be written in this form are entangled. Let S denote the set of
separable states. Throughout this work we refer to states in S as states that are
separable across all named systems unless a specific cut is indicated.
States of the form σ1

A1 ⊗ · · · ⊗ σlAl (such that the distribution pY (y) in (8) is
degenerate) are known as product states. Let P denote the set of product states. P is
not a convex set, and the convex closure of P is the set S. Operationally, product
states are those that are completely uncorrelated between systems and so can be
prepared on systems in complete isolation, while separable states can be prepared by
means of classical communication between the systems. Furthermore, the correlation
exhibited in separable states may be simulated by classical systems in a non-locality,
Bell-like test [Wer89b].
Separability has a close connection with the notion of k-extendibility. A bipartite

state ρAB ∈ D(HA ⊗HB) is k-extendible [Wer89a, DPS02, DPS04] if there exists a
state ωAB1···Bk ∈ D(HA ⊗HB1 ⊗ · · · ⊗ HBk) such that

1. Each Hilbert space HBi is isomorphic to HB for all i ∈ {1, . . . , k}.
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2. The state ωAB1···Bk is invariant under permutations of the systems B1 through
Bk. That is,

∀π ∈ Sk : ωAB1···Bk =
(
IA ⊗W π

B1···Bk

)
ωAB1···Bk

(
IA ⊗W π

B1···Bk

)†
, (10)

where Sk is the symmetric group on k elements and W π
B1···Bk is a unitary trans-

formation that implements the permutation π on the B systems.

3. The state ωAB1···Bk is an extension of ρAB:

ρAB = TrB2···Bk {ωAB1···Bk} .

Let Ek denote the set of k-extendible states. Every separable state is k-extendible
for all k ≥ 2, because the following state,

∑
x∈X

pX(x) |ψx〉 〈ψx|A ⊗ |φx〉 〈φx|B1
⊗ · · · ⊗ |φx〉 〈φx|Bk ,

is a suitable k-extension of any separable state ∑x∈X pX(x) |ψx〉 〈ψx|A ⊗ |φx〉 〈φx|B.
On the other hand, if a state is not separable, there always exists some k for which
the state is not k-extendible, and furthermore, for every l > k, the state is also not
l-extendible [DPS02, DPS04]. This forms a hierarchy of approximations to the set of
separable states, becoming exact in the limit as k →∞.

The bipartite notion of k-extendibility has been further expanded in [DPS05, BaH13]
to multipartite states, which requires that every system is extendible according to
the conditions above. Specifically, a multipartite state ρC ∈ D(HA1 ⊗ · · · ⊗ HAl) (we
abbreviate the combined systems A1 · · ·Al as C for simplicity) is k-extendible if there
exists a state ωC1···Ck ∈ D(HC1 ⊗ · · · ⊗ HCk) such that

1. Each Hilbert space HCi,j is isomorphic to HAj for all i ∈ {1, . . . , k} and j ∈
{1, . . . , l}, where the notation Ci,j refers to the jth subsystem of Ci.

2. For all parties j ∈ {1, . . . , l}, the state ωCC2···Ck is invariant under permutations
of the systems C1,j through Ck,j. Note that there are l · k! such permutations.
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3. The state ωCC2···Ck is an extension of ρC :

ρC = TrC2···Ck {ωCC2···Ck} .

Let Ek denote the set of k-extendible states for l parties (we suppress the dependence
of Ek on l as it should be clear from context). A fully separable state σA1:···:Al of the
form in 9 has a k-extension of the following form for all k:

∑
x∈X

pX(x)
(∣∣∣ψ1

x

〉 〈
ψ1
x

∣∣∣
A1

)⊗k
⊗ · · · ⊗

(∣∣∣ψlx〉 〈ψlx∣∣∣Al
)⊗k

. (11)

The following lemma is essential for some of our quantum interactive proof systems
and expands Theorem 2 of [BaH13] to establish a notion of approximate k-extendibility.
The proof of Lemma 1 is straightforward and can be found in Appendix A.

Lemma 1 Let ρA1···Al be ε-far in one-way LOCC distance from the set of fully sepa-
rable states, for some ε > 0:

min
σA1···Al∈S

‖ρA1···Al − σA1···Al‖1-LOCC ≥ ε.

Then the state ρA1···Al is δ-far in trace distance from the set of k-extendible states:

min
σA1···Al∈Ek

‖ρA1···Al − σA1···Al‖1 ≥ δ,

for δ < ε and where

k =
⌈
l + 4l2 log |C|

(ε− δ)2

⌉
.

3.1.3 Quantum interactive proofs

We now formally introduce the quantum interactive proof complexity classes that are
relevant to this work. Quantum interactive proof systems involve multiple parties
who exchange quantum information: a verifier who has access to a computationally
bounded quantum computer and one or more untrustworthy provers who have access
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QMIPne

QMA(2)

QIP(3) = PSPACE

QIP(2)

QSZKQIP(1) = QMA

QIP(0) = BQP
NP

P

Figure 2: The quantum interactive proof hierarchy and related classes referenced in this
paper. A line denotes inclusion of the lower class in the higher class, for example
P is a subset of NP. Classes for which there is an entanglement detection problem
proven to be complete are in bold type.

to powerful quantum computers bounded only by the laws of quantum mechanics
(these provers can perform any unitary operation). The verifier aims to decide whether
one of two promises is true—he can receive help from the provers by exchanging
quantum messages with them, but he must perform tests to make sure that the provers
are not trying to fool him. QMA(2) is the only multi-prover quantum interactive proof
complexity classes that we consider in this work. All others that we consider (BQP,
QMA, QIP(2), QIP(3), and QSZK) have just one prover.

3.1.4 BQP

The least powerful class within the quantum interactive proof hierarchy consists of
a verifier who does not exchange any quantum messages with a prover. Bounded
error quantum polynomial time (BQP) includes all promise problems that can be
decided by a quantum verifier in polynomial time, and it is the most natural quantum
extension of BPP and P, the classical probabilistic and deterministic verifier regimes,
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respectively. (The term verifier is used for consistency with what follows. However, in
this case, there is no proof being verified—the verifier is simply working on his own.)

Definition 2 (BQP) Let A = (Ayes, Ano) be a promise problem, and let c, s : N →
[0, 1] be polynomial-time computable functions such that the gap c − s is at least
an inverse polynomial in the input length. Then A ∈ BQP(c, s) if there exists a
polynomial-time generated family of circuits U = {Un : n ∈ N} that satisfies the
following properties:

1. Completeness: For all input strings x ∈ Ayes, the probability of acceptance is at
least c(|x|).

2. Soundness: For all input strings x ∈ Ano, the probability of acceptance is at
most s(|x|).

We define BQP = BQP(2/3, 1/3), though note that one can amplify the gap between
c and s such that they become exponentially close to their extremes by employing
parallel repetition. Thus BQP = BQP(1− 2−p(n), 2−p(n)) for any polynomial function
p(n).

3.1.5 QMA

Giving the verifier access to a quantum proof, also called a witness state, seems to
greatly expand the set of problems that the verifier can decide in polynomial time. This
class is known as Quantum Merlin-Arthur (QMA) [Kit99, Wat00], after the analogous
probabilistic verifier class, Merlin-Arthur (MA) [Bab85], in which a computationally
bounded verifier (Arthur) wishes to solve a problem with the help of a computationally
unbounded but potentially dishonest prover (Merlin). This class is the most natural
fully quantum extension of the famous deterministic class NP.

Definition 3 (QMA) Let A = (Ayes, Ano) be a promise problem, and let c, s : N→
[0, 1] be polynomial-time computable functions such that the gap c − s is at least
an inverse polynomial in the input length. Then A ∈ QMA(c, s) if there exists a
polynomial-time generated family of circuits U = {Un : n ∈ N} that satisfies the
following properties:



16 background

1. Completeness: For all input strings x ∈ Ayes, there exists a witness state on a
polynomial number of qubits such that the probability of acceptance is at least
c(|x|).

2. Soundness: For all input strings x ∈ Ano and all witness states, the probability
of acceptance is at most s(|x|).

Note that it suffices for the prover to provide a pure quantum witness state rather
than a mixed one. By a simple convexity argument, one can see that for every
mixed quantum witness state there exists a pure quantum witness state which has an
acceptance probability that is only larger than or equal to that of the mixed witness
state.

It is conventional to define QMA = QMA(2/3, 1/3), but note that, as in the case of
BQP, one can amplify the gap between c and s such that they become exponentially
close to their extremes and thus QMA = QMA(1− 2−p(n), 2−p(n)) for any polynomial
function p(n). To obtain this result, one can exploit the QMA amplification technique
of Marriott and Watrous in [MW05] or the more recent fast amplification procedure
of Nagaj et al. in [NWZ09].

3.1.6 QIP(m)

We now formally define the namesake family of quantum interactive proof classes.
The class QIP(m) is defined as the class of problems that a verifier can decide if he is
allowed to exchange at most m messages with the prover, and it is analogous to the
class IP(m) [GMR89] in the classical probabilistic verifier regime.

Definition 4 (QIP) Let A = (Ayes, Ano) be a promise problem, and let c, s : N →
[0, 1] be polynomial-time computable functions such that the gap c− s is at least an
inverse polynomial in the input length. Let m be a positive integer no larger than a
polynomial in the input length. Then A ∈ QIP(m, c, s) if there exists an m-message
quantum interactive proof system with the following properties:

1. Completeness: For all input strings x ∈ Ayes, there exists a prover that causes
the verifier to accept with probability at least c(|x|).
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2. Soundness: For all input strings x ∈ Ano, every prover causes the verifier to
accept with probability at most s(|x|).

We define QIP(m) = QIP(m, 2/3, 1/3), though Kitaev and Watrous proved in [KW00]
that QIP(m) = QIP(3, 1− 2−p(n), 2−p(n)) for all m ≥ 3 no larger than a polynomial in
the input length. As such, we refer to the class QIP(3) as QIP. For the case that m = 2,
it is known that QIP(2) = QIP(2, 1−2−p(n), 2−p(n)) using the error reduction procedure
of Jail et al. in [JUW09]. A recent breakthrough result in quantum computational
complexity theory is that QIP = PSPACE [JJUW10].
We also note that any promise problem in BQP and QMA can be decided by a

quantum interactive proof system, as QIP(0) = BQP and QIP(1) = QMA. This gives
rise to a four-level quantum interactive proof hierarchy, ranging from the verifier
alone to a verifier who exchanges no more than three messages with the prover. This
hierarchy is shown in Figure 2 along with related classes.

There exist trivially complete promise problems for QIP(2) and QIP(3) called CLOSE-
IMAGE and CLOSE-IMAGES respectively, which amount to rewriting the definitions of
the classes [RW05, Ros09], and which we define below:

Problem 5 (CLOSE-IMAGE) Fix two constants c, s ∈ [0, 1] such that c > s. Given
are a mixed-state quantum circuit to generate the m-qubit state ρ0 and a mixed-state
quantum circuit Q1, with an n-qubit input state and an m-qubit output state. Decide
whether

1. Yes: There exists an n-qubit state ρ1 such that

max
ρ1

F (ρ0, Q1 (ρ1)) ≥ c.

2. No: For all n-qubit states ρ1, it holds that

max
ρ1

F (ρ0, Q1 (ρ1)) ≤ s.

Problem 6 (CLOSE-IMAGES) Fix two constants c, s ∈ [0, 1] such that c > s. Given
are two mixed-state quantum circuits Q0 and Q1, each accepting n-qubit inputs and
having m-qubit outputs. Decide whether
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1. Yes: There exist n-qubit states ρ0 and ρ1 such that

max
ρ0,ρ1

F (Q0 (ρ0) , Q1 (ρ1)) ≥ c.

2. No: For all n-qubit states ρ0 and ρ1, it holds that

max
ρ0,ρ1

F (Q0 (ρ0) , Q1 (ρ1)) ≤ s.

The following promise problem is also complete for QIP(3), but proving so requires
more than a trivial rewriting of the definition of QIP(3) [RW05, Ros09]:

Problem 7 (QUANTUM-CIRCUIT-DISTINGUISHABILITY) Fix a constant ε ∈
[0, 1). Given are two mixed-state quantum circuits Q0 and Q1, each with n-qubit inputs
and m-qubit outputs. Decide whether

1. Yes: There is a quantum input for which the circuits are distinguishable:

max
ρ∈D(HR⊗Hin)

‖(IR ⊗Q0) (ρ)− (IR ⊗Q1) (ρ)‖1 ≥ 2− ε.

2. No: No quantum input can distinguish the circuits:

max
ρ∈D(HR⊗Hin)

‖(IR ⊗Q0) (ρ)− (IR ⊗Q1) (ρ)‖1 ≤ ε.

In what follows, we abbreviate QUANTUM-CIRCUIT-DISTINGUISHABILITY as QCD.

3.1.7 QMA(2)

Although we have considered only single-prover classes so far, we can also consider a
natural extension of QMA in which the verifier has access to unentangled quantum
proofs from multiple quantum provers. It is clear that entanglement is a powerful tool
in quantum information, and the ways in which the prover can fool the verifier in QMA
are directly related to their ability to entangle the witness state. The class QMA(k)
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consists of all promise problems that can be decided with the help of k unentangled
quantum witness states.

Definition 8 (QMA(k)) Let A = (Ayes, Ano) be a promise problem, and let c, s :
N → [0, 1], k ∈ N be polynomial-time computable functions such that the gap c − s
is at least an inverse polynomial in the input length. Then A ∈ QMA(k, c, s) if there
exists a polynomial-time generated family of circuits U = {Un : n ∈ N} that satisfies
the following properties:

1. Completeness: For all input strings x ∈ Ayes, there exist k unentangled quantum
witness states on a polynomial number of qubits each, such that the probability
of acceptance is at least c(|x|).

2. Soundness: For all input strings x ∈ Ano and all possible k unentangled witness
states, the probability of acceptance is at most s(|x|).

Note that allowing classical communication between the provers does not change this
complexity class. Indeed, by coordinating with classical communication, they could
prepare a separable state to send to the verifier. However, it suffices for the provers to
provide a pure, product quantum witness state rather than a mixed separable state.
Again, by a simple convexity argument and the decomposition in (9), one can see
that for every separable quantum witness state there exists a pure product quantum
witness state which has an acceptance probability that is only larger than or equal to
that for the separable state; classical communication does not help them cheat.
This family of classes was originally defined in [KMY01]. We define QMA(k) as

QMA(k, 2/3, 1/3), though Harrow and Montanaro recently showed in [HM10] that
QMA(k) = QMA(2) for k no larger than a polynomial in the length of the input x,
and further that QMA(2) = QMA(2, 1 − 2−p(n), 2−p(n)) for any polynomial function
p(n). It remains unclear exactly how powerful QMA(2) is in relation to other quantum
interactive proof classes, but there is evidence that the guarantee of unentangled
proofs is a very powerful resource [ABD+09]. Estimating the minimum energy of a
sparse Hamiltonian over all bipartite product states is a non-trivial promise problem
that is complete for QMA(2) [CS12]. This thesis gives another non-trivial promise
problem that is complete for QMA(2).
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3.1.8 QSZK

Classical zero-knowledge proof systems were first considered by Goldwasser et al. in
the same paper that introduced the classical interactive proof hierarchy [GMR89]. In
their work they also introduced knowledge complexity as a measure of the amount of
knowledge that the prover must transfer to the verifier in order to convince him of
the truth of some statement. An interactive proof system for a language is said to
be zero-knowledge if for every x ∈ Ayes, the prover can convince the verifier to accept
without the verifier learning anything that he could not have computed himself. In
statistical zero knowledge, it is required that in a YES instance, the interaction with
the prover must be below some constant in trace distance (traditionally 1/10) to a
distribution corresponding to a computation that the verifier can perform themselves.

Quantum statistical zero-knowledge extends this definition to apply to a quantum
interactive proof system instead [Wat02, Wat09b], with the requirement being that in
a YES instance a computationally bounded quantum computer could simulate the
verifier’s state at any point to within some constant trace distance.

Definition 9 (QSZK) A promise problem A = (Ayes, Ano) is in QSZK(c, s) if there
exists a statistical zero-knowledge quantum interactive proof system that satisfies the
following properties:

1. Completeness: For all input strings x ∈ Ayes, the prover can convince the verifier
to accept with probability at least c(|x|).

2. Soundness: For all input strings x ∈ Ano, the prover can convince the verifier to
accept with probability at most s(|x|).

The traditional definition of QSZK is QSZK(2/3, 1/3), though [Wat02] proved that
QSZK = QSZK(1 − 2−p(n), 2−p(n)) for any polynomial function p(n). Several facts
are known about QSZK: it is closed under complement, any QSZK proof system can
be parallelized to two messages, and honest-verifier QSZK is equal to QSZK with
a potentially cheating verifier [Wat09b]. The canonical QSZK-complete problem is
QUANTUM-STATE-DISTINGUISHABILITY, commonly abbreviated QSD, and defined
as follows:
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Problem 10 (QUANTUM-STATE-DISTINGUISHABILITY) Fix a constant ε ∈
[0, 1). Given is a mixed-state quantum circuit to generate the n-qubit states ρ0 and ρ1.
Decide whether

1. Yes: ‖ρ0 − ρ1‖1 ≥ 2− ε.

2. No: ‖ρ0 − ρ1‖1 ≤ ε.





4
Results

4.1 QPROD-PURE-STATE is BQP-complete

In order to set the stage for problems in the upcoming sections, we begin with the
simplest of our entanglement detection promise problems: determining if a quantum
circuit generates a state close to a product state. Unlike the problems in the subsequent
sections, the analysis of QPROD-PURE-STATE does not require the help of a prover; it
is a straightforward application of the prior results of Harrow and Montanaro [HM10]
combined with a reduction from a general BQP circuit.

Problem 11 (QPROD-PURE-STATE(δc, δs)) Given is a description of a quantum
circuit to generate the n-qubit pure state |ψ〉A1···Al, along with a labeling of the output
qubits for systems A1, . . . , Al. Decide whether

1. Yes: There is a product state |φ1〉A1
⊗ · · · ⊗ |φl〉Al that is δc-close to |ψ〉A1···Al in

trace distance:

min
|φ1〉,...,|φl〉

∥∥∥|ψ〉 〈ψ|A1···Al − |φ1〉 〈φ1|A1
⊗ · · · ⊗ |φl〉 〈φl|Al

∥∥∥
1
≤ δc. (12)

2. No: Every product state is at least δs-far from |ψ〉A1···Al in trace distance:

min
|φ1〉,...,|φl〉

∥∥∥|ψ〉 〈ψ|A1···Al − |φ1〉 〈φ1|A1
⊗ · · · ⊗ |φl〉 〈φl|Al

∥∥∥
1
≥ δs. (13)

Theorem 12 QPROD-PURE-STATE(δc, δs) is BQP-complete if there exist polynomial-
time computable functions δc, δs : N → [0, 1] such that the difference 11

2048δ
2
s − 1

2δ
2
c is

larger than an inverse polynomial in the circuit size.

Proof. We first show that QPROD-PURE-STATE(δc, δs) ∈ BQP. The BQP algorithm
for deciding QPROD-PURE-STATE(δc, δs) is to generate two copies of the state |ψ〉A1···Al

23
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by running the circuit twice, then to perform SWAP tests over each of the pairs of l
systems separately, and to accept if and only if all SWAP tests pass. This procedure
is known as the product test [MCKB05, HM10].
The promise in (12) implies that

max
φ1,...,φl

|〈ψ|φ1 ⊗ · · · ⊗ φl〉|2 ≥ 1− δ2
c

4 ,

by employing the Fuchs-van-de-Graaf equality in (5). The promise in (13) likewise
implies that

max
φ1,...,φl

|〈ψ|φ1 ⊗ · · · ⊗ φl〉|2 ≤ 1− δ2
s

4 .

Harrow and Montanaro have determined bounds on the success probability of the
product test in Theorem 1 of [HM10]. The verifier accepts if every swap test passes,
the probability of which is no smaller than 1− δ2

c

2 in a YES case, while in a NO case
the probability of every swap test passing is no larger than 1− 11δ2

s

2048 . Thus, so long as

11
2048δ

2
s −

1
2δ

2
c

is larger than an inverse polynomial in the circuit size, repetition of this procedure no
more than a polynomial number of times is sufficient to place the problem in BQP.

We now show that QPROD-PURE-STATE is BQP-hard. Let U denote a quantum cir-
cuit for an arbitrary promise problem in BQP acting on p(n) qubits with completeness
and soundness error each less than ε, where the decision to accept or reject is based on
a measurement of one of the output qubits (the decision qubit) in the computational
basis.
We reduce this circuit to QPROD-PURE-STATE by appending three qubits in the

state |0〉A1
|Φ+〉A2A3

to the output of the BQP circuit U . We perform a bit flip on
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D

G
U|0⟩

|Φ+⟩

|0⟩
A

A

A3

2

1

Figure 3: Reduction from a general BQP circuit U to QPROD-PURE-STATE. The constructed
circuit works by initializing a Bell state across the A2 and A3 systems and swapping
it with |0〉 on A1 controlled on the value of the decision qubit. This causes the
output of the circuit to be product across the DGA1 : A2A3 cut if the decision
qubit is equal to |1〉 (and otherwise entangled if the decision qubit is equal to |0〉).

the decision qubit and a controlled-SWAP from the decision qubit to the qubits in
systems A1 and A2. The resulting state is as follows:

|ψ〉DGA1A2A3
≡ (|1〉 〈1|D ⊗ IG) |φ〉DG |0〉A1

∣∣∣Φ+
〉
A2A3

+ (|0〉 〈0|D ⊗ IG) |φ〉DG |0〉A2

∣∣∣Φ+
〉
A1A3

,

where |φ〉DG denotes the state U |0〉⊗p(n). This reduction is shown in Figure 3.
We could then feed the result of this computation into an instance of QPROD-

PURE-STATE and use an algorithm that decides QPROD-PURE-STATE to determine
whether the state is product (or close to product) with respect to the bipartite cut
DGA1 : A2A3. Given an arbitrary problem in BQP with completeness and soundness
error ε, then in a YES instance the following acceptance probability is high:

‖(|1〉 〈1|D ⊗ IG) |φ〉DG‖
2
2 ≥ 1− ε.
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Thus, after performing the additional steps mentioned above, the resulting state
|ψ〉DGA1A2A3

has a high fidelity with

|φ〉DG ⊗ |0〉A1
⊗
∣∣∣Φ+

〉
A2A3

because∣∣∣∣〈ψ|DGA1A2A3

(
|φ〉DG ⊗ |0〉A1

⊗
∣∣∣Φ+

〉
A2A3

)∣∣∣∣2 ≥ |〈φ|DG (|1〉 〈1|D ⊗ IG) |φ〉DG|
2

= ‖(|1〉 〈1|D ⊗ IG) |φ〉DG‖
2
2

≥ 1− ε.

By the Fuchs-van-de-Graaf inequalities, it then follows that
∥∥∥|ψ〉 〈ψ|DGA1A2A3

− |φ〉 〈φ|DG ⊗ |0〉 〈0|A1
⊗ Φ+

A2A3

∥∥∥
1
≤ 2
√

2ε,

so that the state is approximately product with respect to the bipartite cut DGA1 :
A2A3, and thus

min
|ζ〉,|θ〉

∥∥∥|ψ〉 〈ψ|DGA1A2A3
− |ζ〉 〈ζ|DGA1

⊗ |θ〉 〈θ|A2A3

∥∥∥
1
≤ 2
√

2ε. (14)

So a YES instance of any promise problem in BQP reduces to a YES instance of
QPROD-PURE-STATE.

On the other hand, in the case of a NO instance, the following rejection probability
is high:

‖(|0〉 〈0|D ⊗ IG) |φ〉DG‖
2
2 ≥ 1− ε.

Thus, after performing the additional steps mentioned above, the resulting state
|ψ〉DGA1A2A3

has a high overlap with

|φ〉DG ⊗ |0〉A2
⊗
∣∣∣Φ+

〉
A1A3

,



4.1 qprod-pure-state is bqp-complete 27

because∣∣∣∣〈ψ|DGA1A2A3

(
|φ〉DG ⊗ |0〉A2

⊗
∣∣∣Φ+

〉
A1A3

)∣∣∣∣2 ≥ |〈φ|DG (|0〉 〈0|D ⊗ IG) |φ〉DG|
2

= ‖(|0〉 〈0|D ⊗ IG) |φ〉DG‖
2
2

≥ 1− ε.

Now, we consider the maximum separable fidelity [Wat04, CAH13] of |φ〉 〈φ|DG ⊗
|0〉 〈0|A2

⊗ Φ+
A1A3 with respect to the cut DGA1 : A2A3

max
σDGA1:A2A3∈S

F
(
|φ〉 〈φ|DG ⊗ |0〉 〈0|A2

⊗ Φ+
A1A3 , σDGA1:A2A3

)
. (15)

Since the first state is pure, the fidelity takes the special form

〈φ|DG 〈0|A2

〈
Φ+
∣∣∣
A1A3

σDGA1:A2A3 |φ〉DG |0〉A2

∣∣∣Φ+
〉
A1A3

,

and it is clear that a pure product state optimizes (15). Furthermore, it is clear that
we can take the state σ on the systems DG and A2 to be |φ〉DG |0〉A2

since this state
is product with respect to the cut DGA1 : A2A3. We find that (15) is equal to

max
|ζ〉,|θ〉

∣∣∣∣〈Φ+
∣∣∣
A1A3
|ζ〉A1

|θ〉A3

∣∣∣∣2 = 1
2 ,

where the equality follows from [Wat04]. Exploiting the Fuchs-van-de-Graaf inequali-
ties once again, we find that

∥∥∥|ψ〉 〈ψ|DGA1A2A3
− |φ〉 〈φ|DG ⊗ |0〉 〈0|A2

⊗ Φ+
A1A3

∥∥∥
1
≤ 2
√

2ε,

min
|ζ〉,|θ〉

∥∥∥|φ〉 〈φ|DG ⊗ |0〉 〈0|A2
⊗ Φ+

A1A3 − |ζ〉 〈ζ|DGA1
⊗ |θ〉 〈θ|A2A3

∥∥∥
1
≥ 2

(
1− 1√

2

)

≥ 1
2 .

Using the triangle inequality, we end up with

min
|ζ〉,|θ〉

∥∥∥|ψ〉 〈ψ|DGA1A2A3
− |ζ〉 〈ζ|DGA1

⊗ |θ〉 〈θ|A2A3

∥∥∥
1
≥ 1

2 − 2
√

2ε, (16)
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so that a NO instance of any promise problem in BQP reduces to a NO instance of
QPROD-PURE-STATE. Since the gap between the lower bound in (16) and the upper
bound in (14) is equal to a positive constant 1/2− 4

√
2ε for small enough ε, it follows

that QPROD-PURE-STATE is BQP-hard.

4.2 QSEP-ISOMETRY1,1-LOCC is QMA-complete

In this section, we provide a proof of the QMA-completeness of QSEP-
ISOMETRY1,1-LOCC, the problem of determining if an isometry can generate a state
close to some separable state in the trace distance or if all inputs to the isometry
lead to a state far from all separable states in the one-way LOCC distance. There
are many other problems known to be QMA-complete, including the problem of test-
ing whether a quantum channel (specified by a mixed-state quantum circuit) is not
close to an isometry [Ros11], estimating the ground state of a k-local Hamiltonian
[KKR06, KSV02] and many more (see [Boo12] for an overview). Nonetheless, it is of
interest to note that this problem is QMA-complete when the soundness condition is
defined in terms of the one-way LOCC distance, in comparison to the result in the
subsequent section that QSEP-ISOMETRY is QMA(2)-complete.

Problem 13 (QSEP-ISOMETRY1,1-LOCC(δc, δs)) Given is a description of a quan-
tum circuit to implement a unitary U acting on an n-qubit input and m ancilla qubits,
as well as a labeling of the systems A1, . . . , Al. Decide whether

1. Yes: There is an input ρS such that the output of U is δc-close in trace distance
to a separable state:

min
ρ,σA1···Al∈S

∥∥∥U(ρS ⊗ |0〉 〈0|⊗m)U † − σA1···Al

∥∥∥
1
≤ δc. (17)

2. No: For all inputs ρS, the output of U is at least δs-far in 1-LOCC distance
from a separable state:

min
ρ,σA1···Al∈S

∥∥∥U(ρS ⊗ |0〉 〈0|⊗m)U † − σA1···Al

∥∥∥
1-LOCC

≥ δs. (18)
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Theorem 14 QSEP-ISOMETRY1,1-LOCC(δc, δs) is QMA-complete if there are
polynomial-time computable functions δc, δs : N → [0, 1] such that the difference
δ2
s/8− 4

√
δc is larger than an inverse polynomial in the circuit size.

Proof. We first show that QSEP-ISOMETRY1,1-LOCC(δc, δs) ∈ QMA. Note that by
Lemma 27 in Appendix B, the condition in (17) implies the existence of pure states
|ψ〉 , |φ1〉 , . . . , |φl〉 such that

∥∥∥U(|ψ〉 〈ψ|S ⊗ |0〉 〈0|
⊗m)U † − |φ1〉 〈φ1|A1

⊗ · · · ⊗ |φl〉 〈φl|Al
∥∥∥

1
≤ 4

√
δc. (19)

In a YES instance, the prover can provide the state |ψ〉 and k copies of the states
|φ1〉,. . . ,|φl〉 to the verifier. The verifier then runs U on |ψ〉S ⊗ |0〉

⊗m to generate a
state close to |φ1〉A1

⊗ · · · ⊗ |φl〉Al and performs a permutation test over all copies on
each of the systems (see Section 4.3.1 for details of the permutation test).

The promise in (17) implies that the permutation test will succeed with probability
at least 1− 4

√
δc for any k. This follows from applying (1) to (19).

In a NO instance, we can employ the promise in (18) and Lemma 1 by requiring k
to be larger than ⌈

l + 4l2(n+m)
(δs − δ′s)2

⌉
,

in order to guarantee that

min
σA1···Al∈Ek

∥∥∥U(ρS ⊗ |0〉 〈0|⊗m)U † − σA1···Al

∥∥∥
1
≥ δ′s,

for δ′s strictly less than δs, which can be enforced by setting δ′s = δs/
√

2. This gives
the following bound on the probability that the permutation test succeeds (for the
full analysis of the permutation test see Section 4.3.1):

max
σA1···Al∈Ek

F (U(ρS ⊗ |0〉 〈0|⊗m)U †, σA1···Al) ≤ 1− δ2
s/8.

Note that l cannot be larger than the total number of qubits acted upon, and thus
the promise that δ2

s/8− 4
√
δc is larger than an inverse polynomial is sufficient to place

the problem in QMA.
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Figure 4: Similar to the BQP reduction, the constructed circuit works by initializing a Bell
state across the A2 and A3 systems and swapping it with |0〉 on A1 controlled on
the decision qubit being equal to |0〉. This causes the input to be separable across
the DGA1 : A2A3 cut if the decision qubit is close to |1〉.

The QMA-hardness of QSEP-ISOMETRY1,1-LOCC follows similarly to how we proved
BQP-hardness of QPROD-PURE-STATE, by swapping a Bell state across the output
systems controlled on the decision qubit being equal to |0〉. This reduction is shown
in Figure 4. This reduction creates a unitary for which the analysis in a YES instance
proceeds identically to the analysis in Section 4.1, so that a YES instance of a general
QMA problem becomes a YES instance of QSEP-ISOMETRY1,1-LOCC with δc = 2

√
2ε.

In a NO instance, we wish to show that the one-way LOCC distance from the output
of the circuit in Figure 4 to the nearest separable state is larger than an appropriate
constant. To show this, we proceed by using the A1 and A3 systems in the CHSH
game (a reformulation of a Bell experiment as a nonlocal game [CyTW04]), so that
we can distinguish the output of the circuit from all separable states by means of a
one-way LOCC protocol. In such a protocol, we imagine that Alice has system A1

and flips a coin x to choose one of two binary-outcome measurements to perform on
her qubit. She sends both x and the measurement outcome a to Bob who we imagine
has system A3. Bob then flips a coin y and performs one of two binary outcome
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measurements on his qubit, naming the measurement result b. Bob declares the state
to be a Bell state in the case that x ∧ y = a⊕ b and otherwise declares that it is not.
It is well known that the probability of winning such a game with a Bell state is equal
to cos2(π/8) ≈ 0.85, while the maximum probability of winning such a game with any
separable state is equal to 0.75 [CyTW04]. From this, we can easily lower bound the
one-way LOCC distance of the final state from the reduction:

min
ρ, σDGA1:A2A3∈S

∥∥∥V (ρS ⊗ |0〉 〈0|⊗m)V † − σDGA1:A2A3

∥∥∥
1-LOCC

≥
∥∥∥Φ+

A1A3 − σA1:A3

∥∥∥
1-LOCC

−
∥∥∥Φ+

A1A3 − TrDGA2{V (ρS ⊗ |0〉 〈0|⊗m)V †}
∥∥∥

1-LOCC

≥ 0.2− 2
√
ε,

where V denotes the transformation realized by U and the controlled-SWAP and 1− ε
is a lower bound on the fidelity between the state of the decision qubit and |0〉 as in
the BQP reduction. The second inequality follows from the fact that the fidelity of
V (ρS ⊗ |0〉 〈0|⊗m)V † with Φ+ over the A1 : A3 system is equal to the fidelity of the
decision qubit with |0〉 (due to the controlled swap). After the reduction, then, this
becomes an instance of QSEP-ISOMETRY1,1-LOCC with δs = 0.2− 2

√
ε.

Thus, as long as ε is small enough (so that 0.2 − (2 + 2
√

2)
√
ε > 0), there is

an appropriate gap between the completeness and soundness errors, and as such
QSEP-ISOMETRY1,1-LOCC is QMA-hard. With this, we conclude the proof that QSEP-
ISOMETRY1,1-LOCC is QMA-complete.

4.3 QSEP-STATE1,1-LOCC and QIP(2)

Given the many applications of entanglement, it is clearly important to be able to
decide if a particular bipartite state is separable or entangled. When the state is
specified as the rational entries of a density matrix acting on a finite-dimensional
Hilbert space H = HA ⊗HB, one can formulate several variations of the problem, all
of them being known collectively as the quantum separability problem, and characterize
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their computational complexity [Gur03, Gha10, BCY11b] (also see Ref. [Ioa07] for a
useful, though now somewhat outdated review). Gurvits proved that it is NP-hard
(with respect to Cook reductions) to decide if a state ρAB ∈ S or if

min
σAB∈S

‖ρAB − σAB‖2 ≥ ε,

where ‖A‖2 ≡
√
Tr{A†A} is the Hilbert-Schmidt norm and ε is some positive number

larger than an inverse exponential in dim (H). Gharibian later improved upon this
result by showing that this formulation of the quantum separability problem is
strongly NP-hard with respect to Cook reductions: it is still NP-hard even if ε is
promised to be larger than an inverse polynomial in dim (H). Brandão, Christandl,
and Yard then offered a quasi-polynomial time algorithm that decides the quantum
separability problem if it is promised that ε is a positive constant [BCY11b], by
appealing to their Pinsker-inequality-like lower bound on the squashed entanglement
[BCY11a] and to the k-extendibility separability test of Doherty et al. [DPS02, DPS04].
They also considered a variant of the promise problem where the Hilbert-Schmidt
distance is replaced by the one-way LOCC distance [MWW09], which characterizes
the distinguishability of ρAB and S if Alice and Bob are allowed to perform local
operations and to send one message of classical communication (from either Alice
to Bob or Bob to Alice). See [Bei10, HM13] for other results related to separability
testing and computational complexity.
In the circuit model of quantum computation, quantum states are generated by

unitary circuits acting on some number of qubits (with some of them being traced
out in the mixed-state circuit model [AKN98]), and we measure the complexity of
a quantum computation by how the circuit size (number of gates and wires) scales
with the length of the input [Wat09a]. (Note that if the circuit size is polynomial
in the input length, then the number of qubits on which the circuit acts is likewise
polynomial in the input length.) Thus, from the perspective of quantum computational
complexity theory [Wat09a], one might consider the prior formulations of the quantum
separability problem to be somewhat restrictive. The reason is the same as that given
in [Ros09]: the mathematical description of a bipartite quantum state is polynomial in
the dimension of the Hilbert space, but this Hilbert space is exponential in the number
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of qubits in the state. Thus, the matrix representation is exponentially larger than it
needs to be when we are in the setting of the circuit model of quantum computation.
Also, the circuit model is natural physically, as the evolution induced by a time-varying
two-body Hamiltonian can be efficiently described by a quantum circuit [BACS07].

In this section—with this dual computational and physical motivation in mind—we
take an approach to the quantum separability problem along the above lines. We
define QSEP-STATE1,1-LOCC and give a protocol for deciding QSEP-STATE1,1-LOCC in
QIP(2), followed by a proof of QSZK-hardness, and finally a proof of NP-hardness
with respect to Cook reductions

4.3.1 QSEP-STATE1,1-LOCC is in QIP(2)

Problem 15 (QSEP-STATE1,1-LOCC (δc, δs)) Given is a mixed-state quantum circuit
to generate the n-qubit state ρC, along with a labeling of the qubits in the reference
system R and the output qubits for each system A1, . . . , Al ∈ C. Decide whether

1. Yes: There is a fully separable state σC ∈ S that is δc-close to ρC in trace
distance:

min
σC∈S

‖ρC − σC‖1 ≤ δc.

2. No: All fully separable states are at least δs-far from ρC in 1-LOCC distance:

min
σC∈S

‖ρC − σC‖1−LOCC ≥ δs.

Theorem 16 QSEP-STATE1,1-LOCC (δc, δs) ∈ QIP(2) if there are polynomial-time com-
putable functions δc, δs : N→ [0, 1], such that the difference δ2

s/8− 2
√
δc is larger than

an inverse polynomial in the circuit size.

Proof. Figure 5 depicts a two-message quantum interactive proof system for QSEP-
STATE1,1-LOCC. The protocol begins with the verifier preparing the state |ψρ〉RC ,
a particular purification of ρC , by running the quantum circuit Uρ as given in the
problem instance. The verifier transmits the reference system to the prover, who
then acts on R and some ancillary qubits with a unitary P1 that has output systems
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Figure 5: A two-message quantum interactive proof system for QSEP-STATE1,1-LOCC. The
proof system begins with the verifier executing the circuit Uρ that generates the
state ρC . He sends the reference system to the prover. In the case that ρC is
fully separable, the prover should be able to act with a unitary on the reference
system and some ancillas in order to generate a k-extension of ρC to the systems
C2 through Ck. The prover sends all of the extension systems back to the verifier,
who then performs the permutation test in order to test if the state sent by the
prover is a valid k-extension.

R′, C2, . . . , Ck. The prover transmits systems C2, . . . , Ck to the verifier. The verifier
then performs phase estimation over the symmetric group [Kit95, BBD+97] (also
known as the “permutation test” [KNY08]) on the registers C, C2, . . . , Ck, using
the qubits in system D as the control. This control register requires dlog(l · k!)e
qubits because the permutations included in the test are those from the definition of
multipartite k-extendibility. The verifier performs a computational basis measurement
on all of the qubits in the control register D and accepts if and only if the measurement
outcome is all zeros.
This protocol is just an implementation of a k-extendibility test on a quantum

computer. We can build intuition for why it works on YES instances by examining
the exact case, when ρC is actually a separable state. In this case, we know that ρC
has a decomposition of the form given in (9), and as such, it has an extension of the
form in (11) for all k > 1. Thus, the following state is a purification of ρC :

|φσ,k〉R′CC2···Ck ≡
∑
x∈X

√
pX (x)|x〉R′

(
|ψ1
x〉A1

)⊗k
⊗ · · · ⊗

(
|ψlx〉Al

)⊗k
, (20)
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where {|x〉R′} is some orthonormal basis for the reference system. Since all purifications
are related by unitaries on the reference system, the prover can append ancilla qubits to
the R system received from the verifier and perform a unitary P1 that takes |ψρ〉RC |0〉
to |φk,ρ〉R′CC2···Ck . The prover then sends the systems C2, . . . , Ck to the verifier.
The verifier performs a permutation test on the systems C, . . . , Ck. Since the state
|φk,ρ〉R′RC···Ck is invariant under permutations of the systems C, . . . , Ck, the qubits in
the control register D do not acquire a phase. Thus, after the final quantum Fourier
transform is applied, the qubits in the control register D are in the all-zero state with
certainty.
The analysis for a YES instance follows the above intuition closely. In this case,

there is some state σC ∈ S that is δc-close in trace distance to ρC . By Uhlmann’s
theorem and the Fuchs-van-de-Graaf inequalities in (4), there is a purification |ψσ〉RC
of σC such that ∥∥∥|ψρ〉 〈ψρ|RC − |ψσ〉 〈ψσ|RC∥∥∥1

≤ 2
√
δc. (21)

Thus the prover can just operate as above, but choosing his unitary P1 to correspond
to the state |ψσ〉RC instead. Writing as U the unitary corresponding to P1 followed by
the permutation test, we obtain the following lower bound on the probability with
which the verifier accepts:

Tr
{
|0〉 〈0|D U

(
|ψρ〉 〈ψρ|RC

)
U †
}

= Tr
{
U † |0〉 〈0|D U

(
|ψρ〉 〈ψρ|RC

)}
≥ Tr

{
U † |0〉 〈0|D U (|ψσ〉 〈ψσ|RC)

}
−
∥∥∥|ψρ〉 〈ψρ|RC − |ψσ〉 〈ψσ|RC∥∥∥1

≥ 1− 2
√
δc, (22)

where the first inequality follows from (1), and the second inequality follows by
applying (21) and because the protocol accepts with probability one for a separable
state.
The analysis for a NO instance has two components:

1. demonstrating that the maximum k-extendible fidelity is an upper bound on
the maximum acceptance probability
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2. using Lemma 1 regarding approximate k-extendibility and the first item above
to specify how large k should be in order to obtain a good upper bound on the
maximum acceptance probability.1

For the protocol in Figure 5, the state generated by the verifier’s first circuit is as
follows:

ρC ⊗ |perm〉 〈perm|D ,

where |perm〉D is a superposition over all possible permutations of k elements over all
l systems resulting from an application of the quantum Fourier transform [NC00] to
the state |0〉D:

|perm〉D ≡
1√
l · k!

∑
π∈S⊗l

k

|π〉D , (23)

so that the D register requires dlog2 (l · k!)e qubits. (Note that Figure 5 depicts the
verifier generating |perm〉D later in the protocol, but we could just as easily reorder
things so that he generates this state in the first step.) The channel generated by the
inverse of the verifier’s circuit conditional on accepting is

MC,C2···Ck→CD (σABB2···Bk)

≡ TrC2···Ck

{
(UΠ)CC2···CkD (σCC2···Ck ⊗ |perm〉 〈perm|D)

(
U †Π
)
CC2···CkD

}
, (24)

where (UΠ)CC2···CkD is a controlled-permutation operation:

(UΠ)CC2···CkD ≡
∑
π∈Sk

W π
CC2···Ck ⊗ |π〉 〈π|D , (25)

and W π
CC2···Ck is a unitary operation corresponding to permutation π. Note that we

can write the verifiers maximum acceptance probability as the maximum fidelity of
the channel generated by the inverse of the verifier’s circuit with the initial output
state [KW00, RW05, Ros09], and thus the maximum acceptance probability is equal
to

max
σCC2···Ck

F (ρC ⊗ |perm〉 〈perm|D ,MCC2···Ck→CD (σCC2···Ck)) .

1 For a YES instance, the value of k does not matter because the lower bound on the maximum
acceptance probability is always as given above.
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Since the fidelity can only increase under the discarding of the control register D,2

the maximum acceptance probability is upper bounded by the following quantity:

max
σCC2···Ck∈S

F (ρC ,MCC2···Ck→C (σCC2···Ck)) , (26)

where

MCC2···Ck→C (σCC2···Ck)
= TrD {MCC2···Ck→CD (σCC2···Ck)}

= 1
l · k!

∑
π∈Sk

TrC2···Ck

{(
IA ⊗W π

CC2···Ck

)
σCC2···Ck

(
IA ⊗W π

CC2···Ck

)†}
,

which is just the channel that applies a random permutation over the l parts of the C
systems and discards the last k − 1 systems C2, . . . , Ck. Clearly, since the channel
MCC2···Ck→C symmetrizes the state of the systems CC2 · · ·Ck, the maximum in (26) is
achieved by a state σCC2···Ck for which systems CC2 · · ·Ck are permutation symmetric.
Thus, by recalling the definition of k-extendibility, we can rewrite (26) as the maximum
k-extendible fidelity of ρC :

max
σCC2···Ck

F (ρC ,MCC2···Ck→C (σCC2···Ck)) = max
σC∈Ek

F (ρC , σC) . (27)

This demonstrates that the maximum k-extendible fidelity is an upper bound on the
maximum acceptance probability and completes our proof of the first item above.

The second part of the analysis of a NO instance involves determining how large k
needs to be. Suppose that

min
σC∈S

‖ρC − σC‖1-LOCC ≥ δs.

2 We can interpret discarding the control register as actually giving it to the prover, so that the
resulting fidelity corresponds to the maximum acceptance probability in a modified protocol in which
the prover controls the inputs to D.
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According to Lemma 1, if we take k to be larger than⌈
l + 4l2 log |C|

(δs − δ′s)2

⌉
,

then we can guarantee that

min
σC∈Ek

‖ρC − σC‖1 ≥ δ′s,

for δ′s strictly less than δs. We can enforce this latter condition by setting δ′s = δs/
√

2.
Then, using the following manipulation of the Fuchs-van-de-Graaf inequalities in (4):

F (ρ, σ) ≤ 1− 1
4 ‖ρ− σ‖

2
1 ,

we have that

max
σC∈Ek

F (ρC , σC) ≤ 1− 1
4 min
σC∈Ek

‖ρC − σC‖2
1 (28)

≤ 1− 1
4 (δ′s)

2 (29)

= 1− δ2
s/8. (30)

In the above, we have separated the probability of accepting and the probability of
rejecting by an inverse polynomial in the number of qubits (namely, from the promise
that the difference δ2

s/8− 2
√
δc is at least an inverse polynomial in the circuit size),

and it is known that an inverse polynomial gap is sufficient to place this protocol in
QIP(2) (see Section 3.2 of Ref. [JUW09] for how to amplify an inverse polynomial gap).
Thus, we have given a two-message quantum interactive proof system that decides the
quantum separability problem.
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4.3.2 QSEP-STATE1,1-LOCC is QSZK-hard

Having placed an upper bound on the difficulty of solving QSEP-STATE1,1-LOCC, we
now move on to lower bounds, beginning in this section with a proof that it is QSZK-
hard. Our approach is to exhibit a Karp reduction from the QSZK-complete promise
problem QSD to QSEP-STATE1,1-LOCC. The essential idea behind the reduction is
similar to Rosgen and Watrous’s reduction of CLOSE-IMAGES to QCD [RW05, Ros09].

In order to demonstrate this reduction, we have to show that there is a polynomial-
time algorithm that encodes YES instances of QSD into YES instances of QSEP-
STATE1,1-LOCC and the same for the NO instances. Recall that for QSD, we are given
a description of circuits Uρ0 and Uρ1 that generate mixed states ρ0 and ρ1. The output
qubits of the circuit are divided into two sets: qubits in a reference system R that are
traced out and qubits in a system S which contains ρi. For i ∈ {0, 1}, let

|ψρi〉RS ≡ Uρi |0〉 ,

so that
ρi = TrR

{
|ψρi〉 〈ψρi |RS

}
.

Figure 6 depicts a circuit that accomplishes the reduction. From the description of
the circuits Uρ0 and Uρ1 , one can generate a description of the circuit in Figure 6 in
polynomial time, and furthermore, the resulting circuit runs efficiently on a quantum
computer [Ros09]. The circuit takes as input a Bell state

∣∣∣Φ+
〉
AB
≡ 1√

2
(|00〉AB + |11〉AB) ,

and performs the following controlled unitary from the qubit B to the ancilla qubits:

|0〉 〈0|B ⊗ Uρ0 + |1〉 〈1|B ⊗ Uρ1 .

The resulting state is as follows:

|ϕ〉ABRS ≡
1√
2
(
|0〉A |0〉B |ψρ0〉RS + |1〉A |1〉B |ψρ1〉RS

)
.
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Figure 6: Given respective circuit descriptions Uρ0 and Uρ1 for generating the states ρ0 and
ρ1 on the output system S, one can compute a description for the above circuit
in polynomial time, and furthermore, the above circuit can be run efficiently
on a quantum computer. This serves as a reduction from QUANTUM-STATE-
DISTINGUISHABILITY to QSEP-STATE1,1-LOCC, i.e., where one should decide if
the state on systems A and BR is separable with respect to this cut.

The output qubits are divided into three sets: environment qubits in the system S

that are traced out, a single qubit in system A, and qubits in systems BR. Thus, the
state resulting from applying the circuit in Figure 6 is as follows:

ωA:BR ≡ TrS {|ϕ〉 〈ϕ|ABRS} . (31)

The task is to decide whether the state on systems A and BR is separable across this
cut, subject to the promise in Problem 15. Our claim is that YES instances of QSD
map to YES instances of QSEP-STATE1,1-LOCC, with the same holding true for NO
instances.
The intuition for why this reduction works is as follows. In the case of a YES

instance of QSD, the states ρ0 and ρ1 are approximately orthogonal, so that tracing
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out the S system of the circuit in Figure 6 decoheres the Bell state, leaving a state on
A and BR close to the following state:

ωsep
A:BR ≡

1
2
(
|0〉 〈0|A ⊗ |0〉 〈0|B ⊗ (ψρ0)R + |1〉 〈1|A ⊗ |1〉 〈1|B ⊗ (ψρ1)R

)
. (32)

The above state is clearly separable with respect to the bipartite cut A : BR. In the
case of a NO instance of QSD, the states ρ0 and ρ1 are approximately indistinguishable,
and tracing over the S system of the circuit in Figure 6 does little to decohere the
entanglement shared between A and BR. Thus, Bob can perform a local unitary
operation on systems B and R to distill out a pure Bell state shared between A and
B. After this, Alice and Bob can perform a Bell experiment on the distilled Bell
state to determine if they indeed share a Bell state. Since these two operations can
be performed with local operations and one message of classical communication, the
resulting state is 1-LOCC distinguishable from the set of separable states.
We now give a formal proof to justify this reduction:

Theorem 17 QSEP-STATE1,1-LOCC with constant promise gap is QSZK-hard.

Proof. We first prove that the circuit in Figure 6 maps YES instances of QSD to
YES instances of QSEP-STATE1,1-LOCC. So we begin by assuming that

‖ρ0 − ρ1‖1 ≥ 2− ε, (33)

and we will use this condition to show that the fidelity between ωsep
A:BR in (32) and the

reduced state ωA:BR in (31) is close to one. So, recall from Uhlmann’s theorem that
the fidelity between ωsep

A:BR and ωA:BR is the maximum squared overlap between any
purifications of these states. Thus, if we can show that the squared overlap between
two particular purifications of ωsep

A:BR and ωA:BR is large, then this implies a lower
bound on the fidelity between these two states. Consider the following particular
purification of ωsep

A:BR:

|ωsep
ABB′RS〉 ≡

1√
2
(
|0〉A |0〉B |0〉B′ |ψρ0〉RS + |1〉A |1〉B |1〉B′ |ψρ1〉RS

)
.
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Recall that the trace distance bound in (33) implies the existence of a two-outcome
projective measurement {Π0,Π1} (known as a Helstrom measurement [Hel69, Hol72,
Hel76]) that has the following success probability in discriminating ρ0 from ρ1 if they
are chosen uniformly at random:

1
2Tr {Π0ρ0}+ 1

2Tr {Π1ρ1} = 1
2

(
1 + 1

2 ‖ρ0 − ρ1‖1

)
≥ 1− ε

2 . (34)

Performing the following “Helstrom isometry”

UH
S→SB′ ≡ (Π0)S ⊗ |0〉B′ + (Π1)S ⊗ |1〉B′

on the S system of |ϕ〉ABRS produces a particular purification of the state ωA:BR:

UH
S→SB′ |ϕ〉ABRS = 1√

2
∑

i,j∈{0,1}
|i〉A |i〉B ⊗ |j〉B′ ⊗ (Πj)S |ψρi〉RS .

The overlap between these purifications is

〈ωsep
ABB′RS|UH

S→SB′ |ϕ〉ABRS

= 1
2

 ∑
k∈{0,1}

〈k|A 〈k|B 〈k|B′ 〈ψρk |RS

 ∑
i,j∈{0,1}

|i〉A |i〉B ⊗ |j〉B′ ⊗ (Πj)S |ψρi〉RS


= 1

2
∑

i,j,k∈{0,1}
〈k|i〉A 〈k|i〉B 〈k|j〉B′ 〈ψρk |RS IR ⊗ (Πj)S |ψρi〉RS

= 1
2
∑

i∈{0,1}
〈ψρi |RS IR ⊗ (Πi)S |ψρi〉RS

= 1
2Tr {Π0ρ0}+ 1

2Tr {Π1ρ1}

≥ 1− ε

2 ,

where the inequality follows from (34). Squaring the overlap gives the following lower
bound on the fidelity:

F (ωsep
A:BR, ωA:BR) ≥ 1− ε,
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which imply by the Fuchs-van-de-Graaf inequalities in (4) that

min
σA:BR∈S

‖ωA:BR − σA:BR‖1 ≤ 2
√
ε. (35)

Thus, the circuit in Figure 6 transforms a YES instance of QSD to a YES instance of
QSEP-STATE1,1-LOCC. We note that the above argument is reminiscent of similar ones
from quantum information theory [Dev05].

We now prove that the circuit in Figure 6 transforms NO instances of QSD into NO
instances of QSEP-STATE1,1-LOCC. In this case, we have the promise that the states
ρ0 and ρ1 are nearly indistinguishable:

‖ρ0 − ρ1‖1 ≤ ε.

Due to the Fuchs-van-de-Graaf inequalities, we have the following lower bound on the
fidelity:

F (ρ0, ρ1) ≥ 1− ε,

and Uhlmann’s theorem implies the existence of a unitary operation UR acting on the
reference system of |ψρ1〉RS such that

〈ψρ0|RS UR ⊗ IS |ψρ1〉RS ≥
√

1− ε.

(A global phase can be fixed for UR such that the overlap is a real number.) Thus,
Bob can apply the following controlled-unitary to the state |ϕ〉ABRS:

CU
BR ≡ |0〉 〈0|B ⊗ IR + |1〉 〈1|B ⊗ UR,

leading to

(|0〉 〈0|B ⊗ IR + |1〉 〈1|B ⊗ UR) |ϕ〉ABRS

= 1√
2
(
|0〉A |0〉B |ψρ0〉RS + |1〉A |1〉B UR ⊗ IS |ψρ1〉RS

)
.
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Then the overlap between |Φ+〉AB ⊗ |ψρ0〉RS and the resulting state is large:

1
2
(
(〈0|A 〈0|B + 〈1|A 〈1|B)⊗ 〈ψρ0|RS

)
(
|0〉A |0〉B |ψρ0〉RS + |1〉A |1〉B UR ⊗ IS |ψρ1〉RS

)
= 1

2 + 1
2 〈ψρ0|RS UR ⊗ IS |ψρ1〉RS

≥ 1
2 + 1

2
√

1− ε

≥
√

1− ε,

implying that the fidelity is larger than 1−ε. Thus, by a local operation, Bob can distill
a state which is 2

√
ε-close in trace distance to the product state |Φ+〉AB ⊗ |ψρ0〉RS:∥∥∥∥CU

BR |ϕ〉 〈ϕ|ABRS
(
CU
BR

)†
−
∣∣∣Φ+

〉 〈
Φ+
∣∣∣
AB
⊗ |ψρ0〉 〈ψρ0 |RS

∥∥∥∥
1
≤ 2
√
ε.

(We remark that the above argument is similar to a “decoupling” argument well known
in quantum information theory [Dev05, ADHW09].)
Now, we would like to argue that the one-way LOCC distance between ωA:BR and

the separable state σ∗A:BR ∈ S closest to ωA:BR is larger than an appropriate constant,
so that we can claim that the circuit in Figure 6 maps NO instances of QSD to NO
instances of QSEP-STATE1,1-LOCC. In order to do so, Bob first performs the local
unitary CU

BR. This transforms the state
(
CU
BR

)† (
Φ+
AB ⊗ (ψρ0)R

)
CU
BR to Φ+

AB ⊗ (ψρ0)R
and the separable state σ∗A:BR to some other separable state (σ∗A:BR)′. Alice and Bob
then perform a Bell experiment, guessing the state to be |Φ+〉AB if there is a violation of
a Bell inequality and guessing a separable state otherwise [Bel64]. Equivalently, Alice
and Bob could proceed as in the CHSH game (a reformulation of a Bell experiment as
a nonlocal game [CyTW04]). In such a protocol, Alice flips a coin x and chooses one of
two binary-outcome measurements to perform on her qubit. She sends both x and the
measurement outcome a to Bob. Bob then flips a coin with outcome y and performs
one of two binary-outcome measurements on his qubit, naming the measurement result
b. Bob declares the state to be the Bell state in the case that x ∧ y = a ⊕ b (when
they “win the CHSH game”) and otherwise declares that it is not the Bell state. It
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is well known that the winning probability of the CHSH game with a Bell state is
equal to cos2 (π/8) ≈ 0.85, while the maximum probability with which they can win
this game with a separable state is equal to 0.75 [CyTW04]. This gives the following
lower bound on the one-way LOCC distance between

(
CU
BR

)† (
Φ+
AB ⊗ (ψρ0)R

)
CU
BR

and σ∗A:BR:∥∥∥∥(CU
BR

)† (
Φ+
AB ⊗ (ψρ0)R

)
CU
BR − σ∗A:BR

∥∥∥∥
1−LOCC

=
∥∥∥Φ+

AB ⊗ (ψρ0)R − (σ∗A:BR)′
∥∥∥

1−LOCC

≥
∥∥∥(cos2 (π/8) , sin2 (π/8)

)
− (0.75, 0.25)

∥∥∥
1

≥ 0.2.

Thus, by combining with the distillation argument above, we have the following
lower bound on the one-way LOCC distance between ωA:BR and σ∗A:BR:

‖ωA:BR − σ∗A:BR‖1−LOCC ≥
∥∥∥∥(CU

BR

)† (
Φ+
AB ⊗ (ψρ0)R

)
CU
BR − σ∗A:BR

∥∥∥∥
1−LOCC

−
∥∥∥∥(CU

BR

)† (
Φ+
AB ⊗ (ψρ0)R

)
CU
BR − ωA:BR

∥∥∥∥
1−LOCC

≥
∥∥∥Φ+

AB ⊗ (ψρ0)R − (σ∗A:BR)′
∥∥∥

1−LOCC

−
∥∥∥∥(CU

BR

)† (
Φ+
AB ⊗ (ψρ0)R

)
CU
BR − ωA:BR

∥∥∥∥
1

≥ 0.2− 2
√
ε, (36)

where the second inequality follows from (6) and the fact that
(
CU
BR

)
is a local unitary,

and the third from the argument at the end of the previous paragraph. Thus, as long as
ε is small enough (so that 0.2−4

√
ε > 0), there is a gap between (35) and (36). In fact,

Watrous showed that it is possible to make ε exponentially small with only polynomial
overhead for any instance of QSD [Wat02] by exploiting a “quantized” version of the
polarization lemma in [SV97]. Thus, any protocol for deciding QSEP-STATE1,1-LOCC

could also decide QSD, implying that QSEP-STATE1,1-LOCC is QSZK-hard.
Ideally, we would like to show that QSEP-STATE1,1-LOCC is a complete promise

problem for QIP(2), but it is not clear to us how to do so. The obvious way to attempt
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this would be to reduce CLOSE-IMAGE to QSEP-STATE1,1-LOCC, but the problem
is that CLOSE-IMAGE requires a general channel, whereas our protocol for QSEP-
STATE1,1-LOCC has a very specific channel (one that applies a random permutation to
the B systems and discards the last k − 1 of them). Alternatively, we could attempt
to find a QSZK proof system for QSEP-STATE1,1-LOCC, but the protocol that we have
given to show that QSEP-STATE1,1-LOCC ∈ QIP(2) does not satisfy the zero-knowledge
property because, in the case of a YES instance, the verifier ends up with a state
close to a k-extension of ρAB, which he could not have generated himself using a
polynomial-time quantum circuit.

4.3.3 QSEP-STATE1,1-LOCC is NP-hard

We now prove NP-hardness of QSEP-STATE1,1-LOCC, with respect to Cook reductions,
by finding a reduction to it from the NP-hard matrix version of the quantum separability
problem. The essence of the reduction is Knill’s efficient encoding of a density matrix
description of a state ρAB as a description of a quantum circuit to generate it [Kni95].
We begin by recalling the matrix version of the quantum separability problem:

Problem 18 (WMEMε (M,N)) Given a density matrix ρAB ∈ D (HM ⊗HN) with
rational entries subject to the promise that either

(i) ρAB ∈ S or

(ii) minσAB∈S ‖ρAB − σAB‖2 ≥ ε,

with ε no smaller than an inverse polynomial in MN , decide which is the case.

Gharibian showed that the above promise problem is NP-hard [Gha10], so our task is
just to find a Cook reduction fromWMEMε (M,N) to QSEP-STATE1,1-LOCC. First, con-
sider that we can diagonalize the matrix ρAB in time polynomial in MN log(MN/ε1),
where ε1 is an error parameter characterizing the precision of the diagonalization in the
trace distance. We then compute a purification |φρ〉RAB of ρAB to a reference system
with dimension no larger than MN . Knill’s algorithm gives a quantum circuit running
on O (log (MN)) qubits that generates the state |φρ〉RAB [Kni95], and this algorithm
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runs in time polynomial in MN . Knill’s algorithm outputs controlled single-qubit uni-
tary gate descriptions with arbitrary precision, so we need to invoke the Solovay-Kitaev
algorithm [DN06] to approximate each gate in Knill’s circuit with unitaries chosen from
a finite gate set, up to precision ε2/l where l is the number of gates in Knill’s circuit.
The Solovay-Kitaev algorithm runs in time polylogarithmic in l/ε2 and produces a
gate sequence with length polylogarithmic in l/ε2. This whole procedure leads to a
mixed state quantum circuit generating a state ρ′AB such that ‖ρAB − ρ′AB‖1 ≤ ε1 + ε2.
The state ρ′AB will be used as the input to QSEP-STATE1,1-LOCC(δc, δs).

Setting δc = ε1+ε2 implies that any instance of WMEMε for which ρAB ∈ S, meaning
case (i) of the promise, gets mapped to a YES instance of QSEP-STATE1,1-LOCC(δc, δs).
For case (ii), we know from Matthews
et al. [MWW09] that

min
σAB∈S

‖ρAB − σAB‖1−LOCC ≥
1√
153

min
σAB∈S

‖ρAB − σAB‖2 ≥
ε√
153

. (37)

This in turn implies that

min
σAB∈S

‖ρ′AB − σAB‖1−LOCC ≥
ε√
153
− ε1 − ε2,

so if we choose δs = ε/
√

153− ε1 − ε2 then case (ii) gets mapped to a NO instance
of QSEP-STATE1,1-LOCC(δc, δs). Moreover, because ε1 + ε2 can be made to shrink
exponentially with the circuit size, the gap δs − δc remains inverse polynomial in the
circuit size. In particular, the instance of QSEP-STATE1,1-LOCC(δc, δs) will be in QIP(2)
for sufficiently small ε, as determined by the promise in Theorem 16.

4.4 QSEP-CHANNEL1,1-LOCC is QIP-complete

There is a straightforward variation of QSEP-STATE1,1-LOCC which is a complete
promise problem for QIP(3) (and therefore complete for QIP [KW00]). In this variation,
the input is a description of a circuit that implements a quantum channel with input
system S and output systems A1, . . . , Al. (The channel is implemented by a unitary



48 results

R

A

B

U
|0⟩

Channel
Input

Figure 7: A quantum circuit to implement a channel. The circuit has input qubits and
ancillas in the state |0〉. The circuit outputs qubits in the environment system R
(which are traced out) and qubits in systems A and B.

circuit with qubits in an environment system R that are traced out.) Figure 7 depicts
a circuit that implements such a channel. The task is to decide whether there is an
input to the channel such that the output state on systems A1 . . . Al is separable.

Problem 19 (QSEP-CHANNEL1,1-LOCC (δc, δs)) Given is a mixed-state quantum
circuit to generate the channel NS→C , having an n-qubit input and an m-qubit output,
along with a labeling of the qubits in the environment system R and the output qubits
for each system A1, . . . , Al ∈ C. Decide whether

1. Yes: There is an input to the channel ρS such that the channel output NS→C (ρS)
is δc-close in trace distance to a separable state σC ∈ S:

min
ρS , σC∈S

‖NS→C (ρS)− σC‖1 ≤ δc. (38)

2. No: For all channel inputs ρS, the channel output NS→C (ρS) is at least δs-far
in 1-LOCC distance to a separable state:

min
ρS , σC∈S

‖NS→C (ρS)− σC‖1−LOCC ≥ δs.

Theorem 20 QSEP-CHANNEL1,1-LOCC (δc, δs) is QIP-complete if there are polynomial-
time computable functions δc, δs : N→ [0, 1], such that the difference δ2

s/8− 2
√
δc is

larger than an inverse polynomial in the circuit size.
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Proof. The proof of this theorem is almost identical to the proofs of Theorems 16
and 17.
We first show that there is a three-message quantum interactive proof system

for QSEP-CHANNEL1,1-LOCC. This is just the obvious modification of the circuit in
Figure 5 so that it becomes a three-message proof system. In particular, the prover
first prepares a state and sends it to the verifier. The verifier inputs this state to the
circuit that implements the channel NS→C , and the rest of the proof system proceeds
as in Figure 5. In the case of a positive instance, the prover can compute the states
ρS and σC in (38) from the description of the channel NS→C . He generates ρS with
his first unitary operation and then proceeds by choosing his second unitary operation
as if the state NS→C (ρS) were σC . Following the same analysis as in the proof of
Theorem 16, the maximum probability with which the verifier accepts in this case
is no smaller than 1 − 2

√
δc. In the case of a negative instance, by Lemma 1, for

every state NS→C (ρS), there is some k polynomial in the circuit size such that the
maximum probability with which the prover can make the verifier accept is no larger
than 1− δ2

s/8. An upper bound on the maximum acceptance probability is

max
ωS , σC∈Ek

F (NS→C (ωS) , σC) ,

a formula which follows from our previous analysis in the proof of Theorem 16. This
leaves a gap of δ2

s/8− 2
√
δc between completeness and soundness error (promised to

be larger than an inverse polynomial) and it is known that this gap can be amplified
[KW00]. Thus, QSEP-CHANNEL1,1-LOCC(δc, δs) ∈ QIP.

To show that QSEP-CHANNEL1,1-LOCC is QIP-hard, it suffices to exhibit a reduction
from the QIP-complete promise problem QCD (Problem 7) to QSEP-CHANNEL1,1-LOCC.
This reduction is essentially the same as that in the proof of Theorem 17, except
that the circuit in Figure 6 is modified so that the unitaries being controlled are the
unitaries that generate the channels (rather than the ones that generate the states). In
the case of a positive instance of QCD, there exists an input to the channels such that
their outputs are nearly distinguishable, so that the output of the modified circuit is
nearly separable. Also, in the case of a negative instance, the outputs of the channels
for all inputs are nearly indistinguishable, so that it is possible to distill a Bell state



50 results

from the output state of the modified circuit. The CHSH game argument then applies
as well. Thus, QSEP-CHANNEL1,1-LOCC is QIP-hard.

4.5 QPROD-ISOMETRY and QSEP-ISOMETRY are QMA(2)-complete

In this section we show that QPROD-ISOMETRY, the problem of determining if an
isometry can produce a state close to a product state (in the trace distance), is QMA(2)-
complete. We also demonstrate that it is equivalent to the problem QSEP-ISOMETRY,
which is the trace distance version of the QSEP-ISOMETRY1,1-LOCC problem analyzed
in Section 4.2. It is clear that being able to detect productness in the trace distance
is of considerable use; for one, it allows a verifier to force two unentangled provers
to simulate k unentangled provers as shown in the proof that QMA(2) = QMA(k)
[HM10]. It seems intuitive then that these problems in the trace distance can neatly
capture the power of “unentanglement,” an intuition that we make precise in what
follows.

Problem 21 (QPROD-ISOMETRY(δc, δs)) Given is a description of a quantum
circuit to implement a unitary U acting on an n-qubit input and m ancilla qubits, as
well as a labeling of the systems A1, . . . , Al. Decide whether

1. Yes: There is an input ρ such that the output of U is δc-close in trace distance
to a product state:

min
ρ,σA1···Al∈P

∥∥∥U(ρS ⊗ |0〉 〈0|⊗m)U † − σA1···Al

∥∥∥
1
≤ δc. (39)

2. No: For all inputs ρ, the output of U is at least δs-far in trace distance from a
product state:

min
ρ,σA1···Al∈P

∥∥∥U(ρS ⊗ |0〉 〈0|⊗m)U † − σA1···Al

∥∥∥
1
≥ δs. (40)

Theorem 22 QPROD-ISOMETRY(δc, δs) is QMA(2)-complete if there are polynomial-
time computable functions δc, δs : N→ [0, 1] such that the difference 11δ2

s

4096 − 8δc is larger
than an inverse polynomial in the circuit size.



4.5 qprod-isometry and qsep-isometry are qma(2)-complete 51

Proof. We first show that QPROD-ISOMETRY is in QMA(l + 1), from which it
follows by [HM10] that it is in QMA(2). Our proof system has l + 1 provers send
the minimizing input and each part of the minimizing product state, followed by the
verifier performing the unitary U on the input, then the product test on the provided
product state.
Let ωA1···Al denote the state that results after the verifier performs the unitary U

on the input ρS received from the first prover, and let σA1···Al denote the product
state received from the other l provers. Lemma 2 of [HM10] establishes the following
formula for the success probability of the product test:

Ptest(ωA1···Al , σA1···Al) = 1
2l

∑
S⊆{A1,...,Al}

Tr {ωSσS} .

In particular, it is clear by a convexity argument that it is optimal for the last l
provers to send pure quantum states to the verifier. That is, for every set of mixed
states that they could send, there exists a set of pure states that gives the same or
higher probability of passing the product test. As such, we can assume without loss
of generality that the last l provers send pure states.
We now analyze the YES instance. By Lemma 27, the condition in (39) implies

that there exist pure states ψ, φ1, . . . , φl such that
∥∥∥U (|ψ〉 〈ψ|S ⊗ |0〉 〈0|⊗m)U † − |φ1〉 〈φ1|A1

⊗ · · · ⊗ |φl〉 〈φl|Al
∥∥∥

1
≤ 4

√
δc.

Thus, in a YES instance, the l + 1 provers can provide the states ψ, φ1, . . . , φl respec-
tively, so that running the product test between U(ψ ⊗ |0〉 〈0|⊗m)U † and φ1 ⊗ · · · ⊗ φl
will succeed with probability no smaller than 1− 8δc.
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We now analyze the NO instance. The promise in (40) gives the following upper
bound on δs:

δs ≤ min
ρ,σA1···Al∈P

∥∥∥U(ρS ⊗ |0〉 〈0|⊗m)U † − σA1···Al

∥∥∥
1

≤ 2
√

1− max
ρ,σA1···Al∈P

F (U(ρS ⊗ |0〉 〈0|⊗m)U †, σA1···Al)

≤ 2
√

1− max
ρ,σA1···Al∈P

(Tr{U(ρS ⊗ |0〉 〈0|⊗m)U †σA1···Al})2

= 2
√

1− max
ψ,φ1,...,φl

|(〈ψS| ⊗ 〈0|⊗m)U †|φ1〉 ⊗ · · · ⊗ |φl〉|4.

The second inequality is an application of the Fuchs-van-de-Graaf inequalities. The
third inequality follows from F (ρ, σ) = (Tr{|√ρ

√
σ|})2 ≥ (Tr{√ρ

√
σ})2 ≥ (Tr{ρσ})2.

The final inequality follows from a convexity argument (for every set of mixed states,
there is a set of pure states that can achieve the same or higher value, so that it
suffices to maximize over pure states). We can rewrite the above bound as follows:

max
ψ,φ1,...,φl

|(〈ψS| ⊗ 〈0|⊗m)U †|φ1〉 ⊗ · · · ⊗ |φl〉|2 ≤
√

1− δ2
s/4 ≤ 1− δ2

s/8.

By Theorem 1 of [HM10], we can then conclude that the probability of the product test
succeeding is no greater than 1− 11δ2

s

4096 . Thus, the promise in Theorem 22 is sufficient
for the verifier to decide this instance, placing QPROD-ISOMETRY in QMA(l+ 1) and
further in QMA(2) by applying the exponential amplification result of [HM10].

To show that QPROD-ISOMETRY is QMA(2)-hard, consider an arbitrary QMA(2)
circuit acting on p(n) qubits with completeness and soundness error at most ε. On an
input x, we describe the verifier’s corresponding unitary as Vx : ABW → DG, which
takes two product inputs from the provers on the A and B systems respectively along
with ancilla qubits in the |0〉 state on the W system, and outputs a decision qubit
(labeled as D) along with a reference system G. Note that any QMA(2) verifier can
be expressed in this way. The circuit Vx is depicted in Figure 8(a).
We reduce any QMA(2) proof system to QPROD-ISOMETRY by constructing a

circuit U : DGCC ′ → A1A2 shown in Figure 8(b) as follows:



4.5 qprod-isometry and qsep-isometry are qma(2)-complete 53

(a)

D

G

Vx

|0⟩

Prover 1
Input

Prover 2
Input

A

B

W

(b)

D

G

|1⟩

|Φ+⟩

A

B

W

C'

C

Vx
†

Figure 8: (a) The unitary circuit Vx for an arbitrary QMA(2) verifier on input x. Such a
verifier has two quantum witness registers, A and B, inputs to which are provided
by the two unentangled provers. The verifier initializes an ancilla register W to
the all-zero state |0〉 and performs the unitary Vx. This procedure produces a
single-qubit decision register D, the measurement of which indicates acceptance
or rejection, and a register G which is ignored. (b) The circuit U produced by
our reduction. The verifier’s circuit Vx is inverted and the decision register is
initialized to |1〉. After V †x is applied, the register W controls whether the Bell
states are swapped in to cause the output to be entangled.

1. Prepare a Bell state across the ancilla registers C,C ′.

2. Prepare the D register in the state |1〉 and perform V †x on the registers DG to
obtain the registers ABW .

3. Perform the following “controlled swap” gate:

(|0〉 〈0|⊗m)W ⊗ IAC′ +
(
I⊗m − |0〉 〈0|⊗m

)
W
⊗ SWAPAC′ .

4. Label the A register as A1 and the CC ′BW registers as A2.

We begin by showing that such a circuit can produce a state close to product if
there is an accepting input to Vx, and then that the circuit can only produce states
that are far from separable if no such accepting input exists. (Note that the state is
far from being product if it is far from being separable because P ∈ S.)
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In the case of a YES instance of the QMA(2) problem, by a convexity argument, we
know that there are pure states |φ〉A and |ψ〉B such that

〈1|D TrG{Vx(|φ〉 〈φ|A ⊗ |ψ〉 〈ψ|B ⊗ (|0〉 〈0|⊗m)W )V †x } |1〉D ≥ 1− ε.

By Uhlmann’s theorem, this means that there also exists a pure state |ζ〉G such that

| 〈1|D 〈ζ|G Vx(|φ〉A ⊗ |ψ〉B ⊗ (|0〉⊗m)W )|2 ≥ 1− ε.

Thus, there exists an input |ζ〉G to the circuit U such that the output will have a large
overlap with the state |φ〉A ⊗ |ψ〉B ⊗ |Φ+〉CC′ ⊗ (|0〉⊗m)W (so that 1− ε of the weight
of the state, after V †x acts, is on (|0〉⊗m)W and the controlled-SWAP acts almost as
the identity). The state |φ〉A ⊗ |ψ〉B ⊗ |Φ+〉CC′ ⊗ (|0〉⊗m)W is product across the cut
A : BCC ′W , so that we map a YES instance of a general QMA(2) proof system to a
YES instance of QPROD-ISOMETRY.

Now, let x be a NO instance. In such a case, we have a promise that there is no
product input to Vx such that the probability of measuring |1〉 on the decision qubit
is larger than ε:

max
|φ〉A,|ψ〉B

〈1|D TrG{Vx(|φ〉 〈φ|A ⊗ |ψ〉 〈ψ|B ⊗ (|0〉 〈0|⊗m)W )V †x } |1〉D ≤ ε. (41)

By Uhlmann’s theorem, the above is equivalent to

max
|φ〉A,|ψ〉B ,|ζ〉G

| 〈1|D 〈ζ|G Vx(|φ〉A ⊗ |ψ〉B ⊗ (|0〉⊗m)W )|2 ≤ ε. (42)

To show that the output of the circuit U is far from a product state for any input
on the system G, we will bound the following quantity:

max
|ζ〉,|σ〉A:CC′BW∈P

∣∣∣〈σ|ACC′BW U
∣∣∣Φ+

〉
CC′
|1〉D |ζ〉G

∣∣∣ , (43)
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where |σ〉 is product across the A : CC ′BW cut. To do so, note that the state |σ〉
can be written as the following superposition:

|σ〉ACC′BW = α0 |0〉W |σ0〉ACC′B + α1 |1〉W |σ1〉ACC′B , (44)

where |α0|2 + |α1|2 = 1. (In the above, we are now modelling the system W as a
qubit in which |0〉 represents the projection onto the all-zeros state of m qubits and
|1〉 represents the projection onto the complementary space. It suffices for us to do
since we are only interested in these two subspaces.) Also, note that both |σ0〉ACC′B
and |σ1〉ACC′B are product across the bipartite cut A : CC ′B since |σ〉ACC′BW is.
Substituting (44) into (43), we find that

max
|ζ〉,|σ〉A:CC′BW∈P

∣∣∣〈σ|ACC′BW U
∣∣∣Φ+

〉
CC′
|1〉D |ζ〉G

∣∣∣
= max
|ζ〉,|σ〉A:CC′BW∈P

∣∣∣∣∣α0 〈0|W 〈σ0|ACC′B
∣∣∣Φ+

〉
CC′

V †x (|1〉D |ζ〉G)

+ α1 〈1|W 〈σ1|ACC′B SWAPAC′
∣∣∣Φ+

〉
CC′

V †x (|1〉D |ζ〉G)
∣∣∣∣∣

≤ max
|ζ〉,|σ〉A:CC′BW∈P

∣∣∣〈0|W 〈σ0|ACC′B
∣∣∣Φ+

〉
CC′

V †x (|1〉D |ζ〉G)
∣∣∣

+ max
|ζ〉,|σ〉A:CC′BW∈P

∣∣∣〈1|W 〈σ1|ACC′B SWAPAC′
∣∣∣Φ+

〉
CC′

V †x (|1〉D |ζ〉G)
∣∣∣

≤ max
|φ〉A,|ψ〉B ,|ζ〉G

| 〈0|W ⊗ 〈φ|A ⊗ 〈ψ|B V
†
x |1〉D |ζ〉G |+ max

σAC∈S

√
F
(
σAC ,Φ+

AC

)
≤
√
ε+ 1√

2
.

The first inequality follows from the triangle inequality and the fact that |αi| ≤ 1
since |αi|2 ≤ 1. The second inequality follows from the monotonicity of fidelity under
the tracing out of registers (C and C ′ for the first term and C ′, B, and W for the
second term). Restricting the optimization in the first term to be over pure product
states follows by another simple convexity argument. Performing the optimization in
the second term over all separable states can achieve only the same or a higher value
for the fidelity since P ∈ S. The final inequality follows from (42) and from the fact
that the maximum fidelity of a separable state with |Φ+〉 is 1

2 [Wat04]. The analysis
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above easily generalizes to mixed states by observing that the maximization in (41)
can be performed over mixed states and the rest of the analysis can proceed with the
purification.

Using the Fuchs-van-de-Graaf inequality in (5), we can bound the trace distance as

min
ω,σA:CC′BW∈P

∥∥∥U(ω ⊗ |0〉 〈0|⊗m)U † − σ
∥∥∥

1
≥
√

2− 1√
2
−
√
ε,

and so for a sufficiently small ε there is an appropriate gap between the completeness
and soundness errors. Thus, we have shown that under the stated promise QPROD-
ISOMETRY is both contained in QMA(2) as well as QMA(2)-hard, and thus QMA(2)-
complete.

Corollary 23 QSEP-ISOMETRY(δc, δs) is QMA(2)-complete if there are polynomial-
time computable functions δc, δs : N→ [0, 1] such that the difference 11δ2

s

2048 − 8δc is larger
than an inverse polynomial in the circuit size.

Proof. The main reason that this result follows easily is that allowing classical
communication between the provers does not change QMA(2). QSEP-ISOMETRY is
defined identically to QPROD-ISOMETRY except that the minimizations in conditions
(39) and (40) are over the set of separable states rather than the set of product states.
To see that this problem is also in QMA(2), note that the analysis for the inclusion
of QPROD-ISOMETRY in a YES instance applies to QSEP-ISOMETRY as well, since
Lemma 27 holds for separable states. The analysis of the NO instance proceeds
identically.

Indeed, QSEP-ISOMETRY is QMA(2)-hard by means of a very similar reduction as
we used for QPROD-ISOMETRY. We proved that in a YES instance there is an input
so that the output state close to product (and thus close to separable), while in a NO
instance, a very similar analysis demonstrates that all inputs will lead to an output
state that is far from separable.
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4.6 QPROD-STATE is QSZK-complete

In this section, we examine QPROD-STATE, which extends QPROD-PURE-STATE to
allow for quantum circuits that output mixed states (that is, the circuit outputs a
reference system and another one but traces over the reference system). This addition
of a reference system thwarts our ability to use the product test since (as noted in
Section 4.1) the product test fails very quickly on mixed state inputs. In contrast
to the BQP-complete pure-state version and the QMA(2)-complete isometry version,
we show that this problem is QSZK-complete. This new result also leads to the
rather surprising conclusion that QSEP-STATE1,1-LOCC—even though it is stated with
respect to the 1-LOCC distance—is at least as hard as QPROD-STATE despite the
fact that QPROD-ISOMETRY is harder than QSEP-ISOMETRY1,1-LOCC (if there is a
strict separation between QMA and QMA(2)).

Problem 24 (QPROD-STATE(δc, δs)) Given is a quantum circuit U to generate
the state |ψ〉RC, along with a labeling of the qubits in the reference system R and
the output qubits for each system A1, A2, . . . , Al ∈ C. We define the n-qubit state
ρC = TrR{|ψ〉 〈ψ|RC}. Decide whether

1. Yes: There exists a product state such that ρC is δc-close in trace distance to it:

min
σC∈P

‖ρC − σC‖1 ≤ δc. (45)

2. No: Every product state is at least δs-far in trace distance to ρC:

min
σC∈P

‖ρC − σC‖1 ≥ δs. (46)

Theorem 25 QPROD-STATE(δc, δs) is QSZK-complete if there are polynomial-time
computable functions δc, δs : N → [0, 1] such that the difference δ2

s/4 − δc is greater
than an inverse polynomial in the circuit size.

Proof. We begin by giving a quantum statistical zero-knowledge proof system to
decide QPROD-STATE. Recall that a product state is of the form ρC = ρ1

A1 ⊗ · · ·⊗ ρ
l
Al
.
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Figure 9: Our QSZK proof system for deciding QPROD-STATE. The figure depicts the case
in which the task is to decide if a general bipartite mixed state is product or not,
but this easily extends to l-partite states (see the main text). The proof system
begins with the verifier sending the reference system R to the prover, who should
be able to transform it into two separate purifications of each system of the original
state. The verifier then performs the inverse of the original circuit on each pair
R1A1 and R2A2 and measures to verify that the purifications sent by the prover
are of the proper form. If the measurement outcomes are all zeros, then the verifier
accepts that the original state is close to a product state and otherwise rejects.

In the case that a state on C is exactly product, by Uhlmann’s theorem there exists
an isometry that the prover can perform on the purifying system R to separate the
purifications of each of the subsystems. Indeed, there exists some unitary PRR′→R1...Rl

acting on R and the prover’s system R′ such that

(PRR′→R1...Rl ⊗ IC) |ψ〉RC |0〉R′ = |ψ〉R1A1
⊗ |ψ〉R2A2

⊗ · · · ⊗ |ψ〉RlAl ,

where R1 purifies A1 and so on. Since these purifications are arbitrary, we can take
them such that R1 ∼= RA2A3 . . . Al, R2 ∼= RA1A3 . . . Al and so on.
For the proof system, the verifier need only send the reference system R to the

prover, and if the state is close to product, the prover should be able to provide
the purification systems R1, . . . , Rl as above. The verifier then performs U † on each
system pair R1A1, . . . , RlAl and measures the output, accepting if every measurement
outcome is |0〉. This proof system is depicted in Figure 9. Note also that it is statistical



4.6 qprod-state is qszk-complete 59

zero-knowledge because, in the case of a YES instance, the verifier could have simply
performed U exactly l times to create l copies of the state |ψ〉RC .
For the following analysis, we first note a useful fact about product states:

max
ρ1...ρl

F (ρ, ρ1
A1 ⊗ · · · ⊗ ρ

l
Al

)

= max
PRR′→R1...Rl

∣∣∣〈ψ|R1C1
⊗ · · · ⊗ 〈ψ|RlCl PRR′→R1...Rl |ψ〉RC |0〉R′

∣∣∣2 . (47)

In the case of a YES instance, the fidelity is guaranteed to be at least (1−δc/2)2 ≥ 1−δc
by the condition in (45) and the Fuchs-van-de-Graaf equality in (5). Thus, the prover
can perform the PRR′→R1...Rl that achieves this maximum. This gives probability at
least 1− δc of accepting (the verifier should perform the l inverse unitaries and accept
if he measures the all zero state on the output qubits).
In the case of a NO instance, the fidelity in (47) is no larger than 1 − δ2

s/4 by
(46). Thus, it is impossible for the prover to perform any unitary PRR′→R1...Rl that
convinces the verifier to accept with probability greater than 1 − δ2

s/4. So, for an
inverse polynomial gap δ2

s/4 − δc, there exists a QSZK proof system that decides
QPROD-STATE(δc, δs).

To show QSZK-hardness, we can adapt the reduction used for QSEP-STATE1,1-LOCC

in [HMW13] by modifying it slightly to reduce co-QSD to QPROD-STATE. Recall
that for co-QSD [Wat02], we are given a description of circuits Uρ0 and Uρ1 that
generate mixed states ρ0 and ρ1 on the system S as well as a reference system R that
is traced out, and we are promised that either ‖ρ0 − ρ1‖1 ≤ ε in a YES instance or
that ‖ρ0 − ρ1‖1 ≥ 2− ε in a NO instance. As in the QSEP-STATE1,1-LOCC reduction,
let

|ψρi〉RS ≡ Uρi |0〉 ,

for i ∈ {0, 1} so that
ρi = TrR {|ψρi〉 〈ψρi|} .
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R

S

Uρi
|0⟩

|Φ+⟩
A

B

Figure 10: Given respective circuit descriptions Uρ0 and Uρ1 for generating the states ρ0
and ρ1 on the output system S, one can compute a description for the above
circuit in polynomial time. This serves both as a reduction from QUANTUM-
STATE-DISTINGUISHABILITY to QSEP-STATE1,1-LOCC and from co-QUANTUM-
STATE-DISTINGUISHABILITY to QPROD-STATE by tracing out different systems
in each case.

From the description of the circuits Uρ0 and Uρ1 , one can efficiently generate a
description of the circuit in Figure 10 which takes as input a Bell state across the AB
systems and performs the controlled unitary

|0〉 〈0|B ⊗ Uρ0 + |1〉 〈1|B ⊗ Uρ1 ,

to generate the state

|ϕ〉ABRS ≡
1√
2

(|00〉AB |ψρ0〉RS + |11〉AB |ψρ1〉RS).
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The output qubits are divided into three sets: the qubits in the systems BR that are
traced out, the half of a Bell state on system A, and one of the states ρ0 or ρ1 on
system S. The resulting state after tracing out BR is

ωA:S ≡ TrBR {|ϕ〉 〈ϕ|ABRS}

= 1
2 (|0〉 〈0| ⊗ ρ0 + |1〉 〈1| ⊗ ρ1) .

In a YES instance, we wish to show that this state is close to product by giving a
product state close to ωA:S. To do this, we consider the state

σ = 1
2 (|0〉 〈0|+ |1〉 〈1|)⊗ ρ0,

for which the distance to ωA:S is given by:

‖ωA:S − σ‖1 = 1
2 ‖|0〉 〈0| ⊗ ρ0 + |1〉 〈1| ⊗ ρ1 − |0〉 〈0| ⊗ ρ0 − |1〉 〈1| ⊗ ρ0‖1

= 1
2 ‖|1〉 〈1| ⊗ ρ1 − |1〉 〈1| ⊗ ρ0‖1

= 1
2 ‖ρ0 − ρ1‖1

≤ ε

2 .

Thus, in a YES instance of co-QSD, our reduction results in a YES instance of
QPROD-STATE with δc = ε

2 .
In a NO instance, we must show that ωA:S is far from any product state. Recall

that trace distance is equal to the maximum probability of distinguishing states over
all possible measurements [Fuc96], so we can lower bound the distance to the nearest
product state by considering a particular protocol to distinguish ωA:S from any product
state. In this protocol, we begin by measuring the first qubit in the computational
basis and by performing the Helstrom measurement {Π0,Π1} on the second qubit,
storing the two measurement outcomes in classical registers.
It is straightforward to calculate the state ω′A:S that results after applying the

protocol above to the state ωA:S:
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ω′A:S = 1
2Tr{Π0ρ0} |00〉 〈00|+ 1

2Tr{Π1ρ1} |11〉 〈11|

+ 1
2Tr{Π0ρ1} |10〉 〈10|+ 1

2Tr{Π1ρ0} |01〉 〈01| . (48)

Recall that the Helstrom measurement distinguishes two states ρ0 and ρ1 with the
following success probability:

1
2Tr{Π0ρ0}+ 1

2Tr{Π1ρ1} = 1
2

(
1 + 1

2 ‖ρ0 − ρ1‖1

)
,

and the following error probability:

1
2Tr{Π0ρ1}+ 1

2Tr{Π1ρ0} = 1
2

(
1− 1

2 ‖ρ0 − ρ1‖1

)
.

Using this fact, it is straightforward to establish that the trace distance between ω′A:S

and the perfectly correlated state ΦA:S, defined as

ΦA:S ≡
1
2(|00〉 〈00|+ |11〉 〈11|),

is no larger than
1− 1

2 ‖ρ0 − ρ1‖1 ≤
ε

2 .

In the case of a product state, the two measurement outcomes must be uncorrelated,
and so we can write the result of applying the above protocol to any product state
using the probability p of measuring |0〉 〈0| and the probability q of measuring Π0:

σp,q = pq |00〉 〈00|+ p(1− q) |01〉 〈01|
+ q(1− p) |10〉 〈10|+ (1− p)(1− q) |11〉 〈11| .

From the monotonocity of trace distance under quantum operations, it follows that

min
σ0,σ1
‖σ0 ⊗ σ1 − ωA:S‖1 ≥ min

p,q
‖σp,q − ω′A:S‖1
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Due to symmetry, we can take p ≤ 1
2 without loss of generality. We can then bound

the minimum distance of σp,q to ω′A:S:

min
p,q
‖σp,q − ω′A:S‖1 ≥ min

p,q

∥∥∥σp,q − ΦA:S

∥∥∥
1
−
∥∥∥ΦA:S − ω′A:S

∥∥∥
1

≥
∥∥∥σp,q − ΦA:S

∥∥∥
1
− ε

2
=
∣∣∣∣12 − pq

∣∣∣∣+ ∣∣∣∣12 − (1− p)(1− q)
∣∣∣∣+ |p(1− q)|+ |q(1− p)| − ε

2
= 1

2 − pq +
∣∣∣∣12 − (1− p)(1− q)

∣∣∣∣+ p(1− q) + q(1− p)− ε

2
≥ 1

2 − pq + p(1− q) + q(1− p)− ε

2
≥ 1

2 + p(1− q)− ε

2
≥ 1− ε

2 ,

where the first line follows from the triangle inequality, and the fourth through last
lines follow from the fact that 0 ≤ p ≤ 1

2 and 0 ≤ q ≤ 1. Thus in a NO instance of
co-QSD, our reduction results in a NO instance of QPROD-STATE with δs ≥ (1− ε)/2.

We have given a QSZK proof system to decide QPROD-STATE, as well as a reduction
from the QSZK-hard problem co-QSD. This completes the proof.

4.7 Geometric measures of entanglement

Our work has a close connection to several entanglement measures known collectively
as the geometric measure of entanglement (see [WG03, CAH13] and references therein).
This is also the case with the work in [HM10], and we comment on this connection
briefly.
The original definition of the geometric measure of entanglement was for a pure

bipartite state |ψ〉AB and defined in terms of the following quantity:

max
|φ〉A,|ϕ〉B

|〈φ⊗ ϕ|ψ〉AB|2. (49)
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Clearly, this quantity has an operational interpretation as the maximum probability
with which the state |ψ〉AB would pass a test for being a pure product state. By
taking the negative logarithm of this quantity, one recovers an entropic-like quantity
that is equal to the geometric measure of entanglement and satisfies a list of desirable
requirements that should hold for an entanglement measure. It is straightforward to
extend the above definition and any of the ones below to the multipartite case.
If one has a promise that the quantity in (49) is larger or smaller than 1 − ε or

ε, respectively, (as in our specification of QPROD-PURE-STATE) then the product
test and analysis of Harrow and Montanaro [HM10] demonstrate that it is easy to
decide which is the case if one has access to a quantum computer. However, this
does not directly give an operational intepretation to the quantity in (49). Rather,
it is our QSZK proof system for QPROD-STATE that has its maximum acceptance
probability equal to the quantity in (49). More generally, this QSZK proof system has
its maximum acceptance probability equal to a generalization of the quantity in (49)
defined as follows for mixed states:

max
σA, ωB

F (ρAB, σA ⊗ ωB). (50)

As such, it gives a direct operational interpretation to the above quantity.
In Section 4.3.1 demonstrated a QIP(2) proof system which had the following tight

upper bound on its maximum acceptance probability:

max
σAB∈S

F (ρAB, σAB), (51)

which holds in the limit of large k, where k is the number of systems sent by the prover
in a purported k-extension of the state ρAB. The above quantity is again related to a
geometric measure of entanglement defined in prior work (see [CAH13] and references
therein). Thus, the QIP(2)-proof system for QSEP-STATE1,1-LOCC gives an operational
interpretation to the quantity in (51) as the maximum probability with which a prover
could convince a verifier that a state ρAB is separable if the verifier sends a purification
of ρAB to the prover and then performs a check on what the prover sends back.



4.7 geometric measures of entanglement 65

Finally, our work has unveiled and provided operational interpretations for other
quantifiers of entanglement that fall within the geometric class. Indeed, the maximum
acceptance probability for our proof system for QSEP-ISOMETRY1,1-LOCC is upper
bounded by

max
ρ, σAB∈S

F (U(ρS ⊗ |0〉 〈0|)U †, σAB),

again a bound that holds in the large k limit. Clearly, this quantity is related to the
so-called “entangling power” of the unitary U [ZZF00], that is, its ability to take a
product state input to an entangled output no matter what the input is. Furthermore,
the proof system for QSEP-CHANNEL1,1-LOCC given in Section 4.4 has the following
upper bound on its maximum acceptance probability:

max
ρ, σAB∈S

F (NS→AB(ρS), σAB),

where NS→AB is a quantum channel with input system S and output systems AB.
Again, this bound holds in the limit of large k. The above measure is related to the
entangling capabilities of a quantum channel no matter what the input is, and our
proof system for QSEP-CHANNEL1,1-LOCC provides an operational interpretation for
the above quantity as well.





5
Conclusion

We have proved that several entanglement or correlation detection problems are
complete for BQP, QMA, QIP, QMA(2), and QSZK, as well as giving an entanglement
detection promise problem in QIP(2) which is both NP- and QSZK-hard, the first
nontrivial example of such. The completeness of these promise problems for a wide
range of complexity classes illustrates an important connection between entanglement
and quantum computational complexity theory. In hindsight, it is perhaps natural
that these problems related to entanglement can capture the expressive power of these
classes since entanglement seems to be the most prominent feature which distinguishes
classical from quantum computational complexity theory.

It is interesting to note the connection between these problems, and the differences
that give rise to problems complete for different quantum interactive proof classes. The
differences are sometimes intuitive: a single-prover proof system for QSEP-ISOMETRY
would allow unentangled provers to be simulated with a single one, so, under the
assumption that QMA is strictly contained in QMA(2), it seems natural that it should
not be possible to place QSEP-ISOMETRY in QMA. Some patterns between classes
also emerge: it seems as though mixed state separability requires two messages to be
added onto a proof system for pure state separability (from BQP to QSZK, and QMA
to QIP), to work with the purification of the mixed state (as is the case for both the
“state” and “channel” versions of these problems).

Two-message quantum interactive proof systems continue to be somewhat mysterious.
Intuitively, QSEP-STATE1,1-LOCC has the qualities that one would expect for a QIP(2)-
complete problem by extrapolating from these results. Despite this, we do not know
whether it is QIP(2)-complete or even QMA-hard. However, our work here gives
evidence for why QSEP-STATE1,1-LOCC should not be either QSZK- or QMA-complete—
there are other problems very different from it that are complete for these classes
(QPROD-STATE and QPROD-ISOMETRY, respectively).

67
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This work can be expanded in a number of directions. A trace-distance version
of QSEP-CHANNEL1,1-LOCC may help to understand the relation between QMIP and
QMIPne, and similarly a trace-distance version of QSEP-STATE1,1-LOCC may provide
further insights. Additionally, it would be worthwhile to characterize the channel
version of QPROD-STATE in order to map out more of the space of entanglement detec-
tion problems. Such an extension may also help to provide a tighter characterization
of classes that rely on “unentanglement,” such as QMA(2).

It is satisfying that each of the entanglement detection problems, with the exception
of QSEP-STATE1,1-LOCC, is complete for a different complexity class. Perhaps by
visiting the remaining related problems in terms of the trace distance and mixed
product state cases, one may find two different types of entanglement detection
problems that are reducible to each other.



A
Approximate k-extendibility

The following proposition applies to l-partite states ρC = ρA1···Al that are approximately
k-extendible:

Proposition 26 Let ρC be δ-close to a k-extendible state, in the sense that

min
σC∈Ek

‖ρC − σC‖1 ≤ δ, (52)

for some δ > 0, where Ek is the set of k-extendible l-partite states. Then, the following
bound holds

‖ρC − S‖1-LOCC ≤
√

4l2 log |C|
k − l

+ δ,

where the quantity on the left is multipartite 1-LOCC distance (defined in (7)) to the
set of fully separable states.

Proof. Let σ′C be the state that achieves the minimum in (52). Since this state is
k-extendible, we have from Theorem 2 of [BaH13] that

min
σC∈S

‖σ′C − σC‖1−LOCC ≤
√

4l2 log |C|
k − l

. (53)

Let σ∗C be the state achieving the minimum on the left in (53). From the premise of
the theorem, it follows that

‖σ′C − σ∗C‖1−LOCC + δ > ‖σ′C − σ∗C‖1−LOCC + ‖σ′C − ρC‖1

≥ ‖σ′C − σ∗C‖1−LOCC + ‖σ′C − ρC‖1−LOCC

≥ ‖σ∗C − ρC‖1−LOCC

≥ min
σC∈S

‖σC − ρC‖1−LOCC .
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Thus,

min
σC∈S

‖σC − ρC‖1−LOCC < ‖σ
′
C − σ∗C‖1−LOCC + δ

≤
√

4l2 log |C|
k − l

+ δ,

which concludes the proof.



B
Bounding pure state distance

Lemma 27 Given that

min
ρ,σA1···Al∈S

∥∥∥U (ρS ⊗ |0〉 〈0|)U † − σA1···Al

∥∥∥
1
≤ δc,

there exists a pure state |ψ〉s and a product state |φ1〉 ⊗ · · · ⊗ |φl〉 such that

∥∥∥U (|ψ〉 〈ψ|S ⊗ |0〉 〈0|⊗m)U † − |φ1〉 〈φ1|A1
⊗ · · · ⊗ |φl〉 〈φl|Al

∥∥∥
1
≤ 4

√
δc. (54)

Proof. Since σA1···Al is a separable state, it can be written in the following form:

σA1···Al =
∑
x

pX (x) |φx1〉 〈φx1 |A1
⊗ · · · ⊗ |φxl 〉 〈φxl |Al .

Thus, a particular purification of σA1···Al is the following state:

|ζ〉RA1···Al ≡
∑
x

√
pX (x) |x〉R ⊗ |φ

x
1〉A1
⊗ · · · ⊗ |φxl 〉Al .

By Uhlmann’s theorem, we then know that there is a purification |ψ〉RS of ρS such
that the following condition holds

∥∥∥U (|ψ〉 〈ψ|RS ⊗ |0〉 〈0|⊗m)U † − |ζ〉 〈ζ|RA1···Al

∥∥∥
1
≤ 2

√
δc. (55)

We can then write |ψ〉RS as follows:

∑
x

√
q (x) |x〉R |ψ

x〉S ,
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for some distribution q (x) and states {|ψx〉} (which are not necessarily orthonormal).
Applying a dephasing in the basis {|x〉} to the R system of both states leading to the
following inequality:

∥∥∥∥∥∑
x

q (x) |x〉 〈x|R ⊗ U
(
|ψx〉 〈ψx|S ⊗ |0〉 〈0|

⊗m
)
U †

−
∑
x

pX (x) |x〉 〈x|R ⊗ |φ
x
1〉 〈φx1 |A1

⊗ · · · ⊗ |φxl 〉 〈φxl |Al

∥∥∥∥∥
1
≤ 2

√
δc,

which follows by applying monotonicity of trace distance under noisy operations to
(55). Tracing over the A1, . . . , Al systems then leads to

‖q − pX‖1 ≤ 2
√
δc.

We then find that∥∥∥∥∥∑
x

pX (x) |x〉 〈x|R ⊗
[
U
(
|ψx〉 〈ψx|S ⊗ |0〉 〈0|

⊗m
)
U †

− |φx1〉 〈φx1 |A1
⊗ · · · ⊗ |φxl 〉 〈φxl |Al

] ∥∥∥∥∥
1

≤
∥∥∥∥∥∑
x

q (x) |x〉 〈x|R ⊗ U
(
|ψx〉 〈ψx|S ⊗ |0〉 〈0|

⊗m
)
U †

−
∑
x

pX (x) |x〉 〈x|R ⊗ U
(
|ψx〉 〈ψx|S ⊗ |0〉 〈0|

⊗m
)
U †
∥∥∥∥∥

1

+
∥∥∥∥∥∑
x

q (x) |x〉 〈x|R ⊗ U
(
|ψx〉 〈ψx|S ⊗ |0〉 〈0|

⊗m
)
U †

−
∑
x

pX (x) |x〉 〈x|R ⊗ |φ
x
1〉 〈φx1 |A1

⊗ · · · ⊗ |φxl 〉 〈φxl |Al

∥∥∥∥∥
1

≤ ‖q − pX‖1 + 2
√
δc

≤ 4
√
δc.

This implies that
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∑
x

pX (x)
∥∥∥U (|ψx〉 〈ψx|S ⊗ |0〉 〈0|⊗m)U † − |φx1〉 〈φx1 |A1

⊗ · · · ⊗ |φxl 〉 〈φxl |Al
∥∥∥

1

≤ 4
√
δc.

from which we can conclude that the inequality is satisfied for at least one choice of
|ψx〉, |φx1〉 . . . |φxl 〉, implying (54).
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