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ABSTRACT

Floating Offshore Wind Turbines (FOWTSs) are a promising technology to harness the
abundant offshore wind energy resources in open ocean areas. A FOW'T consists of a floating
platform, the moorings, and the wind turbine structure (tower + Rotor-Nacelle Assembly
(RNA)). The main focus of this thesis is to develop multibody dynamic models that integrate
the structural dynamics, and hydrostatic, hydrodynamic, aerodynamic and mooring system
loads. Special efforts are also devoted to characterize the mooring and hydrostatic loads as
main sources of systems stiffness that shapes the dynamic behavior of the system.

Two approaches for modeling the platform/tower dynamics are developed, a rigid multi-
body model and a coupled rigid-flexible multibody model. Both models treat the platform,
nacelle and rotor as six-degrees-of-freedom (6-DOF) rigid bodies. However, modeling the
wind turbine tower dynamics differs between these approaches. The rigid model considers
the tower as a 6-DOF rigid body while the flexible model represents the tower as a three-
dimensional (3D) tapered damped Euler-Bernoulli beam undergoing coupled general rigid
body and elastic motions. In both approaches, the wind turbine drivetrain dynamics is also
considered to capture the rotor spin response. The equations of motions of both models are
derived symbolically using Lagrange’s equation.

The hydrostatic restoring loads are evaluated through development of a novel nonlin-
ear hydrostatic approach. This approach allows evaluating the exact hydrostatic force and
moment and position of the center of buoyancy as function of the platform displacement
and finite rotation. New exact expressions for the water plane area restoring moments are
developed. The hydrostatic stiffness matrix at an arbitrary position and orientation of the
platform is subsequently derived.

A quasi-static approach is then developed to determine the cable tensions of the single-

segment or multi-segment the mooring system configurations proposed to moor the platform



to the seabed. The approach uses different governing equations, depending on whether the
mooring lines partially rest on the seabed; are suspended; or fully taut. The exact mooring
stiffness is subsequently derived and the influence of several mooring system parameters on
the mooring system stiffness is investigated.

As an alternative to the quasi-static cable model, a lumped mass cable model incorpo-
rating the cable-seabed contact effect is developed to integrate the cable dynamics into the
FOWT system dynamics. The equations of motion of the mooring line nodes are assem-
bled for the two mooring system configurations under consideration. A new methodology is
also presented to calculate the equilibrium profile of the mooring line lying on a seabed as
desirable initial conditions for solving the discretized cable equations of motion.

Finally, the theoretical models are implemented through a large simulation tool to analyze
the dynamic behavior of the spar FOW'T system under study. A series of simulations under
defined external loads (load cases) are performed to validate the dynamic models. The
simulation results are compared with similar results obtained from well-known offshore wind
simulation tools. The simulation results are found to be in very good agreement with the
reported results. Numerical experiments are also performed to investigate the influence of the
tower flexibility, mooring system configuration, rotor gyroscopic moment and cable dynamics
on the system dynamic behavior. The results show that the system responses obtained from
the rigid body model under-predict the platform yaw response and exhibit less damping than
those obtained from the flexible model. It is also found that the mooring system configuration

choice does not influence the platform roll and pitch responses or tower elastic deflections.
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RESUME

Les éoliennes offshores flottantes (EOF's) sont une technologie prometteuse pour exploiter
les ressources abondantes d’énergie éolienne dans les zones des eaux océaniques ouvertes.
Un EOF se compose d'une plateforme flottante, des amarres, et d’'une structure de turbine
éolienne (tour + Assemblage Rotor-Nacelle(ARN)). L’objectif principal de cette these est de
développer des modeles dynamiques multicorps qui integrent la dynamique structurelle, hy-
drostatique, hydrodynamique et aérodynamique ainsi que les charges de systeme d’amarrage.
Des efforts particuliers ont été également consacrés pour caractériser 'amarrage et les charges
hydrostatiques comme sources principales de la rigidité des systemes qui fagonne le comporte-
ment dynamique du systeme.

Deux approches de modélisation de la dynamique plateforme/tour ont développées, un
modele multicorps rigide et un modele multicorps couplé rigide et flexible. Les deux modeles
traitent la plateforme, la nacelle et le rotor en six degrés de liberté (6-DDL) de mouvement
de corps rigides. Cependant, la modélisation dynamique de la turbine éolienne de la tour se
distingue de ces approches. Le modele rigide considere la tour comme un corps rigide 6-DDL
tandis que le modele flexible consideére la tour comme une poutre tridimensionnelle (3D) de
type Euler-Bernoulli conique amorti subissant un mouvement couplé de corps rigide général
et élastique. Dans les deux approches, la dynamique du groupe motopropulseur de 1’éolienne
est également considérée pour déterminer la réponse de la rotation du rotor. Les équations
de mouvement des deux modeles sont dérivées symboliquement en utilisant les équations de
Lagrange.

Les charges hydrostatiques de rappel ont été évaluées a travers le développement d’une
nouvelle approche hydrostatique non linéaire. Cette approche permet d’évaluer la force
hydrostatique exacte, le moment et la position du centre de caréene en fonction du déplacement

et de la rotation finie de la plateforme. Des nouvelles expressions exactes de la zone de plan
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d’eau des moments restaurés sont développées. La matrice de raideur hydrostatique a été
ensuite dérivée a une position et une orientation arbitraire de la plateforme.

Comme une alternative au modele du cable quasi-statique, un modele de masse ponctuelle
d’un cable incorporant l'effet de contact (cable-fond marin) a été congu pour intégrer la
dynamique des cables dans le systeme dynamique des EOF. Les équations de mouvement
des nceuds de ligne d’amarrage ont été assemblées pour les deux configurations de systeme
d’amarrage envisagées. Une nouvelle méthodologie a été également présentée pour calculer
le profil de la ligne de mouillage se trouvant sur un fond marin (comme conditions initiales
désirables) pour la résolution des équations discreétes du mouvement des cables.

Enfin, les modeles théoriques ont été implémentés a travers un outil important de sim-
ulation pour analyser le comportement dynamique du longeron EOF a I’étude. Une série
de simulations soumises a des charges externes définies (cas de charge) ont été effectuées
pour valider les modeles dynamiques. Les résultats de la simulation ont été comparés aux
résultats similaires obtenus a partir des codes de conception éolienne offshore bien connus.
Les résultats de simulation ont été trouvés en tres bon accord avec les résultats rapportés. Des
expériences numériques ont été également réalisées pour étudier 'influence de la flexibilité
de la tour, la configuration du systeme d’amarrage, la rotation du tour et la dynamique du
cable sur le comportement dynamique du systeme. Les résultats montrent que les réponses
du systeme obtenues a partir du modele de corps rigide sous-prédisent la réponse de lacet de
la plate-forme et présentent moins d’amortissement que celles obtenues a partir du modele
flexible. Il est également constaté que le choix de la configuration du systeme d’amarrage
n’a aucune influence sur la réponse de la plate-forme de roulis et de tangage, ni la tour

débattements élastique.
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CLAIM OF ORIGINALITY

Following are the main original contributions of this thesis:

e An analytical formulation to determine the exact nonlinear hydrostatic restoring loads and
stiffness of floating offshore platforms. Closed-form formulae are derived for calculating
the exact buoyancy force and the corresponding moments for general 3D displacements of

cylindrical platforms (of different cross sections such as circular, square, and rectangular).

e Development of an exact nonlinear analysis for the stiffness of a mooring system as a
function of the displacement and orientation of the floating structure. The analysis allows
a derivation of the mooring stiffness matrix while considering slack mooring line resting

on the seabed, as well as slack and taut suspended lines.

e An exact three-dimensional nonlinear quasi-static model for computing the tensions of
general mooring configurations, including delta lines and clump weights. These components
are important in many proposed designs for offshore wind turbine platforms, notably the

OC3-Hywind concept.

e Development of a closed-form rigid body dynamic model of a spar FOWT that considers

the generator torque control.

e A comprehensive 3D flexible multibody dynamic model to analyze the dynamics of a
spar FOW'T. The model considers the coupled rigid and flexible motions arising from the
platform, nacelle, and rotor rigid bodies and the flexible tower structure. As well, the

generator torque control is integrated into the model to capture the rotor spin dynamics.

e Development of a lumped mass cable model incorporating the seabed contact for a single

line and bridle mooring systems.

e Development a novel static solver for single line and bridle mooring systems. The solver

determines the equilibrium profile of the cable whether suspended or resting on the seabed.
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Chapter 1

INTRODUCTION

1.1 Motivation and Background

Wind energy currently supplies around 3% of the world’s electricity. In particular, North-
ern European countries have made great strides in exploitation this source of clean energy,
including Denmark where wind power met 28% of its electricity needs in 2012. This source of
energy is growing at 25-30 % annually and is expected to fulfill 12% of the world’s electricity
demand by 2050 [8]. Most of this produced wind energy is obtained from land-based wind

farms.

Recently, renewable energy investments are being directed to exploit the open ocean
environment, which is rich in wind power, as an advantageous location for wind turbines
fields. The exploitation of offshore wind power began two decades ago, existing offshore wind
turbines are installed in shallow water and are fixed to the seabed by structures like monopoles
and lattice towers. The harvesting of ocean wind power could constitute an abundant source
of low cost energy. Installing wind turbines on floating platforms far offshore, in deeper
water, where the wind is stronger and steadier, maximizes the obtained wind power. This
can only be achieved using floating platforms to support the wind turbine due to the high
cost of the fixed-bottom structures. Offshore placement also avoids the problems associated
with noise and visual impacts. Several Floating Offshore Wind Turbine (FOWT) concepts

have been proposed.

FOWT systems are in an early stage of research and development, a few prototypes
are currently under construction and some are deployed in the ocean and equipped with
instrumentation for testing and design evaluation. There are few guidelines for system design

and the costs are high. At present, offshore wind energy research is focused on the design of



a durable floating system which can be deployed in deep water and can withstand the harsh

ocean waves and wind environment at a reasonable cost.

1.2 FOWT Concepts

A FOWT system consists of a buoyant platform supporting the wind turbine and anchored
to the sea bottom by a series of cables (mooring system) to hold the system in position. The
platform and tethers are subjected to hydrodynamic disturbances, while the wind turbine
tower and rotor are subject to aerodynamic loads. FOWT preliminary designs and prototypes
utilize the same floating platforms concepts conventionally used in the offshore oil and gas
industry namely, spar-buoy, tension-leg platform (TLP), semi-submersible, and pontoon-type

(barge-type) [1], as shown in Figure 1.1.

Spar-buoy platforms consists of a cylindrical floater made of steel and concrete filled with
ballast of water and gravel. The draft of the spar is usually larger than the turbine hub
height. A solid metal permanent ballast is used at the bottom of the floater to further lower
the centre of gravity to be well below the center of buoyancy, thus stabilizing the floater and
attenuating the wave/current-induced translational and rotational motions [9]. The floater
is held in position by a catenary mooring system comprised of at least three lines. However,
a recent proposed design by the SWAY company suggested mooring a spar FOWT by a
single vertical taut tendon connected to the seabed anchor by a universal joint that allows
the tower to yaw according to wind direction, so that the turbine rotor always faces the
oncoming wind [10], a model of the SWAY concept was deployed in 2010, but it collapsed

due to extreme environmental conditions in 2011.

The TLP design is comprised of a floater connected to the seabed by taut vertical mooring
lines that stabilize the system. The high tension of the mooring lines is produced by the
floater excess buoyancy, which in turn yields high heave, roll and pitch stiffnesses. Mooring
stiffness in surge, sway and yaw directions are lower which allows the system to move a few
feet horizontally. However this large amplitude of motion is not dangerous since the turbine

tower stands vertical and there are no excessive nacelle and tower inertia forces [10, 11].

The Semi-submersible design consists of three pontoons connected together by steel tubu-



Figure 1.1: FOWT design concepts: (a) Spar-buoy; (b) TLP; (c) semi-submersible; and (d)
barge [1]

lar beams to form an equilateral triangle structure moored to the seabed by catenary mooring
lines. This design can support 1-3 turbines placed on the pontoons centers, or can be mod-
ified to install a single turbine on the platform center as in the proposed Dutch tri-floater
concept [11]. The large waterplane area of platform yields high hydrostatic restoring moment

that stabilizes the system.

The barge concept is simply a catenary-moored wide pontoon (compared to its height)
that can support single or multiple FOWTs [11, 12]. In addition to the aforementioned
platform concepts, there are several proposed hybrid designs that combine two or more
concepts designs, for instance the tension-leg spar (TLS) concept that merges the spar-buoy
and TLP design concepts [11]. A further review for all the concepts of FOWT and existing

models can be found in literature survey papers [9, 10].

A few prototypes have been recently deployed in the ocean. The first full scale prototype
of a spar-buoy type in operation was launched close to the south-west coast of Norway in
2009 by STATOIL, with a power capacity of 2.3 MWT. In October 2011, Principle Power
Inc., launched the WINDFLOAT prototype, a 2-MW'T submersible FOW'T installed near the
north coast of Portugal. Beyond these, several renewable energy companies intend to launch

their full scale models in the coming years.



1.3 Mooring System

The mooring system is a system of cables connecting the floating platform to the an-
chors installed on the seabed to maintain the platform in position and restrain the platform
displacement against the aerodynamic and hydrodynamic loads: this is referred to as station-
keeping [13-15]. Mooring systems can be constructed using either cables, chains, synthetic
ropes or a mix of them e.g. a metal chain at the bottom and light cable or rope close to
the structure attachment points [13-15]. A review of the mooring lines materials and anchor
types can be found in [15]. In some designs, buoys could be attached to the mooring lines
to reduce the mooring system weight carried by the floating structure. Also, clump weights
can be attached along the mooring lines to enhance the mooring system stiffness and reduce

the anchor tension fluctuations [14].

Mooring systems are classified as catenary, taut-leg and tension leg. The material and
design of these systems depend on the structure type and water depth [14,15]. Catenary
moorings are the most common where the mooring line is slack and hangs under its own
weight. Part of the line may lie on the seabed. In both the taut and tension leg mooring,
the mooring line is pretensioned by the floating structure excess buoyancy force, the line is
highly taut and almost no sag exists. In the tension leg mooring system, most of the line
restoring force acts in the vertical direction and this requires a special anchor designs that

are expensive to construct and install [16].

1.4 Literature Review

Dynamic modeling of FOWT is a multidisciplinary problem combining different disci-
plines, including flexible and rigid body dynamics, hydrostatics, hydrodynamics, aerody-
namics, and cable mechanics. Following is an overview of the relevant literature on the main

topics related to the dynamics of FOWTs.

1.4.1 System stiffness

System stiffness characteristics have a large impact on the floating structure’s static sta-

bility and dynamic response to environmental loads. The system stiffness is mainly attributed



to the platform buoyancy (including gravity) and mooring system stiffnesses. Hydrostatic
stiffness in conjunction with the mooring stiffness, determines the static offset of floating
structure when steady loads act on the platform. The hydrostatic stiffness is the main con-
tributor to the system stiffness for offshore platforms that use slack moorings such as spar,
barge and semi-submersible platforms. In barge platforms, for instance, the main contributor
to system stability is the large water plane area which produces a large hydrostatic restoring
moment in response to the platform rotations. By contrast, the taut mooring is the main
contributor to the system stiffness for TLPs. Hydrostatic (buoyancy) stiffness influences the
heave, pitch and roll dynamics of offshore floating platforms and has a large impact on the

natural frequency of the floating structure [17].

Mooring stiffness contributes to the load-excursion relationship and the natural frequency
of the floating structures particularly in surge, sway and yaw modes where the hydrostatic
stiffness is nonexistent [15,17]. The mooring stiffness is mainly influenced by the line tension
and length, footprint area (anchor radius), material properties, mooring configuration and
number of lines [18,19]. Static analysis of the mooring lines determines the equilibrium line
shape and tension under the actions of self-weight and steady loads which offset the floating

structure from its equilibrium position [14,19].

The changes in static forces and moments exerted by mooring lines and buoyancy with
respect to the floating structure displacements are represented using a stiffness matrix. The
following sections review the main approaches used to determine the hydrostatic and mooring

restoring loads and stiffness characteristics.

1.4.1.1 Hydrostatic loads and stiffness

Hydrostatic and gravity loading characteristic are the main determinant of a floating
structure’s static stability and have a large impact on the structure’s dynamic response to
environmental loads [17,18,20]. Typically, the hydrostatic restoring forces and moment are
computed using a linear hydrostatic approach. This assumes the submerged structure is a
rigid body and any structural deformations are ignored and the hydrostatic restoring force
and moment are due to the infinitesimal changes of translational and rotational displace-

ments [17]. The change in hydrostatic force and moments with respect to these displace-
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ments are represented using a stiffness matrix conventionally calculated at the initial static
equilibrium position or even keel [17,18,20,21]. However, different initial positions can be

experienced due to steady loading (e.g. from water currents).

Hydrostatic restoring force and moments are nonlinear in translational and rotational
displacements particularly heave, roll and pitch displacements if measured relative to a fixed
space frame [21-26]. The nonlinear hydrostatics are a topic of importance in coupled dynam-
ics of ships [26-29]. The hydrostatic nonlinearity can magnify the motion response amplitude
and lead to ship capsizing [30]. The influence of nonlinearity is induced by large displace-
ment and coupling among heave, roll and pitch displacements. Thus the linear approach
cannot precisely estimate the hydrostatic loads required to determine equilibrium position

and orientation of the floating structure and simulate the motion response [22,31].

A few models characterizing the nonlinear hydrostatic restoring forces and moments for
offshore platforms are available in literature. Most these models consider partial coupling
among the displacements i.e. either heave-roll or heave-pitch coupling. Yim et al. [25]
developed a coupled heave-roll regression-based hydrostatic model to capture the nonlinear
response of a tethered barge for large roll angle motion. The hydrostatic restoring force
and moments are represented by high degree polynomials as functions of position and roll
rotation of the barge. Dalane et al. [24] developed an exact analytical representation for
nonlinear heave-pitch restoring forces and moment for arctic canonical platforms and general
expressions for its metacentric height. Soylemez [23] presented a method for approximate
calculation of nonlinear restoring forces to simulate the motion response of a semi-submersible
platform. Ku et al. [21] developed an iterative approach to determine the equilibrium position
and hydrostatic stiffness considering large inclination angle for a barge supporting a floating
crane. Zeng et al. [22] compared the 6-DOF dynamic response of a tethered circular cylinder
using linear and nonlinear hydrostatic approaches. The difference between these approaches
was significant for rotation responses at higher wave heights. A similar dynamic analysis
considered the platform finite rotation and the associated nonlinearities in calculating the
hydrostatic loads for a TLP [31]. Similar observations were noted when comparing the

displacement responses of the TLP using the linear and nonlinear hydrostatic models.



1.4.1.2 Mooring stiffness

Similar to hydrostatic loads, the restoring force and moments exerted by the mooring
system are nonlinear in translational and rotational displacements of the floating structure.
The nonlinearities become more pronounced for large displacements and due to coupling
among the displacements. The mooring system stiffness is mainly dependent on the elastic
and geometric stiffnesses of a cable which are the most significant, while the bending stiffness
is always ignored when the cable is sufficiently long [32]. When a cable is slack or has a low
tension, its geometric stiffness (resulting from the shape change) is the key contributor to
its stiffness behavior, because the cable deformation leads mostly to a change in its profile

shape i.e. sag rather than structural deformation of the cable itself [19,32].

A few models characterizing the nonlinear mooring stiffness of catenary moorings are
available in literature. Most of these models ignore the line elasticity. The line elasticity can
be neglected for heavy slack mooring line such as a chain and particularly when a portion
of its length lies on seabed [18,19]. However, when the line is lifted off the seabed, its
elasticity should be considered especially for large horizontal excursions of the attachment
point. Jain [33] derived the 2 x 2 stiffness matrix (surge and heave) of an inextensible slack
mooring line neglecting seabed interactions. Lee and Cho [34] presented a similar stiffness
matrix form for an inextensible slack mooring line resting on the seabed. Sannasiraj et al. [35]
extended these works by deriving the mooring line stiffness matrix of a slack mooring line
in sway, heave and roll modes to predict the motion response of a pontoon-type floating
breakwater. Loukogeorgaki [36] presented a generic model to determine the mooring stiffness
matrix (6 x6) of a floating breakwater to study its dynamic response. The stiffness coefficients
were represented in terms of the differential change of the line tension with respect to its chord

elevation angle.

The nonlinear mooring restoring forces due to large changes in displacement and ori-
entation of a platform is a topic of importance in the dynamics of tension leg platforms
(TLPs) [37]. Jain [38] presented a stiffness matrix considering the surge, sway and yaw
modes for a rectangular TLP. Chandrasekaran et al. [39] derived a nonlinear stiffness ma-

trix as functions of the platform displacements for a triangular TLP to simulate the 6-DOF



response to regular wave loads. The derived form considered coupling among the displace-
ments based on some geometric approximations. Senjanovic et al. [37,40] derived a new 6 x 6
stiffness matrix formulation for a TLP considering large displacements in surge, sway and
yaw displacements. Low [41] derived the stiffness matrix of a TLP using an energy approach

to perform a dynamic analysis for a rectangular TLP in the frequency domain.

1.4.2 System dynamics

1.4.2.1 Structural analysis

A FOWT tower can be idealized as a beam with a tip mass attached to a rigid moving base
(platform). Similarly, the rotor blades can be modeled as rotating cantilever beams. Many
studies have investigated the dynamics of a beam attached to a moving base particularly
the so-called hub-beam system problem, usually in aerospace and robotics applications such
as helicopter rotor blades and robot arms [42-46]. Most of these models considered partial
coupling among the beam elastic deformations namely the two bending, axial and twist
deformations. Among these works, Cai et al. [4] analyzed the dynamics of a flexible hub
system with a tip point mass considering the coupled stretch and bending elastic motions
using a finite element method (FEM). Yang et al. [47] presented a FEM dynamic model for
a flexible hub-beam system with a tip point mass. The damping forces due to the beam’s
internal structure, hub friction and air drag were considered. Hamilton’s principle was used
to derive the equations of motion. Bhadbhade et al. [48] developed a coupled bending and
torsion dynamic model of a rotating cantilever with a rigid body at the tip. The extended
Hamilton’s principle was used to derive the equations of motion. Another study by Sakawa
and Luo [49] presented a coupled bending and torsion vibration analaysis of a rotating beam

carrying a tip rigid body.

Formulations for the flexible dynamics of beams undergoing general coupled bending-
bending-axial-twist elastic motion are rarely found in literature. This is attributed to the
modeling and computational complexities in treating the interaction between the elastic mo-
tions. Most recent, a work by Cooley and Parker [50] presented a linear flexible dynamic

model of a spinning cantilever beam undergoing coupled bending-bending-torsional-axial



motions with an attached tip rigid body. The equations of motion were discretized using
Galerkin’s method to determine the natural frequencies, mode shapes and system stability.
All the previous reviewed works dealt with a prescribed base motion of the beam. Thus, the
equations of motion were derived in terms of the elastic coordinates since the rigid body mo-
tion was prescribed. However, this is not the case in the FOW'T system where the platform
motion (base) is not prescribed, yielding coupled rigid body and elastic motions which is far

more complex.

The kinematic formulation of beam motion is a crucial aspect in modeling flexible body
dynamics. This includes defining the beam elastic displacements and the elastic rotation
matrix of the beam cross section along the deformed elastic axis [51]. Characterizing the
beam deformations using the conventional linear deformation field yields linear dynamic
equations free of the geometric stiffening [47,52-54]. The major disadvantage of this approach
is its failure in capturing the dynamic behavior of coupled rigid-flexible systems experiencing
large elastic deformations particularly due to high rotational speeds [50,54]. Therefore,
more sophisticated nonlinear deformation formulations that include the geometric stiffening
effect were introduced. Kane [42] presented a dynamic analysis of a beam attached to a
moving base undergoing general translational and rotational motion. The longitudinal and
bending-bending, torsion motions of the beam were formulated. Yoo et al. [55] presented
a flexible dynamic model for an Euler-Bernoulli beam undergoing overall motion and small
strain elastic deformations. The model considered the bending in two planes together with
longitudinal stretching. A similar model was developed by Boutaghou et al. [56] for flexible
beams and thin plates using Hamilton’s principle assuming arbitrary deformation kinematics.
Liu and Hong [52] presented a geometric nonlinear formulation of a three-dimensional beam
undergoing large overall motion. The coupled bending-bending and stretch elastic motion
were considered and a criterion for validity of the linear kinematic approach was proposed.
The comprehensive work of Shi et al. [51] presented a nonlinear deformation field for Euler-
Bernoulli beams. Their main effort was devoted to develop a new second order elastic rotation

matrix based on the two-Euler angle approach [57].



1.4.2.2 Dynamic modeling of flexible land-based wind turbine

Owing to the increasing interest in wind energy, several flexible dynamic models for wind
turbines have been proposed in the literature. Larsen and Nielsen [58] developed a nonlinear
dynamic model for a land-based wind turbine structure considering the tower and blade
flexibility. The model included geometric nonlinearities caused by the structure deflections.
Kessentini et al. [59] conducted a modal analysis using a linear dynamic model considering the
flapping deflections of the tower and blades. The effects of pitch angle and blade orientation

on the wind turbine natural frequencies and mode shapes were also investigated.

Lee et al. [60] presented a multibody dynamics model for the wind turbine considering
the coupled dynamics among the rigid body (nacelle and hub) and flexible (tower and blades)
subsystems assuming a prescribed rotor speed to determine system natural frequencies and
mode shapes. Another modal analysis for a tapered wind tower was performed by Makar-
ios [61]. In this model the rotor nacelle assembly mass and inertia were ignored. More
recently, Kang [62] conducted a stability analysis for the coupled flexible tower-blade system.
The theoretical results were validated experimentally using a small scale prototype. However,
all these models are restricted to land-based wind turbines and a flexible dynamic model of

a FOWT has not been addressed yet in the literature.

1.4.2.3 Dynamic modeling of FOWTs

Unlike land based wind turbines, FOWTs are subject to combined wind and hydrody-
namic, hydrostatic, and mooring loads that have significant impact on the system behavior.
This requires rigorous multi-physics dynamic analysis for an efficient design to avoid the
risk of structural failure. The complexity of this system makes the dynamic analysis quite

challenging.

Few theoretical rigid body dynamic models of FOW'Ts have been presented in literature.
Matsukuma and Utsunomiya [63] developed a multibody dynamic model of a 2 MW spar
FOWT assuming steady wind and still water. The influence of gyroscopic moment due to the
rotor spin was found to be considerable on the system dynamics. Wang and Sweetmn [64,65]

developed a rigid multibody dynamic model for a tension leg FOW'T. The equations of motion
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were formulated using a Newton Euler approach. Sandner [66,67] presented a spar FOWT
model based on the OC3 design concept. Simple aerodynamic, hydrodynamic models were
integrated to simulate the system response in combined wind and wave loads. Ramachandran
et al. [68] presented a coupled 3D rigid body dynamic model of a TLP FOWT. The aero-
dynamic loads were evaluted using unsteady blade-element-momentum (BEM) theory. The
dynamic response results were also validated against the Flex5 code. None of these works
considered the elastic motion of flexible components and the coupling between the flexi-
ble and rigid body motions although it can be considerable. However, these works [66-68]

approximated the tower fore-aft motion using a spring-mass system placed on the tower tip.

1.4.2.4 Simulation tools

Several FOWT simulation codes incorporating aerodynamic, structural dynamic, hydro-
dynamic, control and cable models have been developed to capture the coupled dynamic
response of FOWTSs to the environmental loads [5,69]. These codes vary in their capabili-
ties. Following is a list of the most widely used flexible multibody dynamics codes, ordered

accoding to their popularity:

e FAST: this code for dynamic analysis of land based and offshore wind turbines was devel-

oped by the National Renewable Energy Laboratory (NREL) and is publically available.

e HAWC2: a widely used code for simulating FOWTs developed by Riso National Labora-

tory.

e GH Bladed: developed by GL. Garrad Hassan to perform dynamic analyses for bottom-fixed
wind turbines (land based and offshore). The code has recently promoted its capabilities

to analyze FOWTs [69].

e 3DFloat: developed by the Norwegian University of Life Sciences (UMB) to simulate
FOWTs [69]. Unlike the above-listed codes, this code ignores the rotor blade flexibilities

while considering the tower elasticity.

e ADAMS: developed by MSC Software Corporation as commercial software for general
multibody modeling i.e. it is not dedicated only for FOWT dynamic analyses as the
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previous codes. The software has been used by many researchers to build dynamic models

of FOWTs [69].

Additionally, other simulation tools adopting the rigid multibody modeling approach such
as SIMO and SEASAME/DEEPC were developed to analyze the FOWT system dynamics
with neglecting the flexible motions of the tower and rotor blades. A thorough review of
all these codes, their capabilities, and the techniques they adopted to model the system
structural dynamics and the fluid-structure-interactions can be found in [69]. However, the
detailed theoretical dynamic models on which these codes are based are not available in
literature. Moreover, most these codes use simplified linear structural models which could
introduce inaccurate response if the structure experiences large deflections [58]. Owing to the
rise in interest in FOW'Ts systems, new codes are being developed and other current codes

are being improved and extended.

These codes, particularly FAST, are used in many research studies to investigate the
dynamic aspects of different types of FOWTs. Jonkman [12] performed a fully coupled
aero-hydro-servo-elastic dynamic analysis of a 5 MW barge type FOW'T with slack catenary
mooring using a quasi-static cable model. Many simulations were done to determine the
potential loads and associated instabilities. Wayman [70] developed a coupled dynamic anal-
ysis including the gyroscopic effects of the turbine rotor utilizing linear wave theory for the
MIT/NREL TLP FOWT concept in the frequency domain. The influence of water depth
and wind speed were investigated. Another work by Matha et al. [71] conducted a dynamic
analysis for a 5 MW TLP FOWT to identify the system instabilities and compare the loads
of the TLP FOWT with its land-based counterpart. Robertson et al. [1] carried out dynamic
response analyses for 6 designs of a 5 MW FOW'T. The fatigue loads and stability analyses
were performed using the FAST code [72]. The results showed that the barge type platform
exhibits the worst performance and results in high loads namely bending moments of the
blade root, the low speed shaft, yaw bearing and the tower base. Sclavounos et al. [73]
compared the rms nacelle acceleration and rms mooring lines tensions for a TLP and taut
leg buoy (TLB) platforms. They investigated systems to support 3 MW and 5 MW wind
turbines in 30-50 and 50-150 m water depth, respectively, subjected to wave heights of 6-14
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m. Their results showed that the TLP exhibits both lower nacelle acceleration and anchor
tension in deeper water, while higher nacelle acceleration and anchor tension were observed

as the water depth increases for the TLB.

FOWT dynamic studies were also performed using HAWC2, especially in the Nordic
countries. Nielsen et al. [74] developed an integrated dynamic analysis of the STATOIL
spar FOWT, and compared simulation results with model experiments. Their experiment
results showed that the blade pitch control at high wind speeds leads to a negative damping
instability for the tower motion. Karimard et al. [7,75] performed several dynamic analyses
particularly for a spar FOW'T with tension leg and catenary mooring system. These analyses
aimed to (i) discuss the hydrodynamic and aerodynamic effect on FOWT dynamics, and
(ii) present a simplified method to determine aerodynamic forces with reasonable accuracy.
Another stochastic dynamic response analysis of a spar FOWT [76] was conducted to evaluate
the fatigue limit under combined wave and wind loading and structural response in harsh

wave and wind conditions.

1.4.3 Cable models

Early cable models approximate the cables as massless springs with constant stiffness,
which might be valid for taut moorings. It can also be used for slack moorings in the
case of a small cable displacement i.e., the cable nonlinear stiffness is linearized around an
equilibrium condition [15]. However, this approach is inaccurate particularly if the structure
experiences large displacement. Alternatively, the mooring line tension can be determined
using the quasi-static and dynamic cable models. The first approach uses the equation of
an elastic catenary that can be solved numerically, this approach is illustrated in many
references e.g. [18,32,33,77]. Oscillatory forces such as wave and fluid-cable interactions
as well as inertia forces and internal cable damping can not be considered in this analysis,
and the tension determined using this approach is referred to as the quasi-static tension.
Most dynamic analyses of FOWTs [16] utilize this quasi-static approach which is considered
appropriate for shallow water and low frequency restoring force. However, the maximum
dynamic tension can be considerably higher than the quasi static counterpart, particularly

for high frequency motion and in deep water [14,78].
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It has been observed that the hydrodynamic damping at higher frequency mooring line
motion forces the cable to stretch instead of changing its sag yielding a higher dynamic
cable tension than that predicted by quasi-static approach [14,79]. This observation is also
justified by Kreuzer et al. [79] when investigating the dynamics of a single mooring line
while including the effect of fluid-structure interaction. The analysis was conducted using a
multibody system approach (MBS) for an 800-m steel wire anchored at 500 m water depth.
The free cable end is considered to translate harmonically at 10 m amplitude with frequency
varying from 0.025 to 0.25 rad/s. The results showed that the computed dynamic tension at
low frequency is similar to that of quasi-static approach, while at high frequency excitation
the maximum dynamic tension is more than twice the quasi-static tension. Moreover, a phase

shift between the dynamic and quasi-static tension responses was noted.

Cable dynamics can be evaluated numerically through discretization techniques such as
lumped mass and finite element methods [80,81]. The lumped mass approach models the
cable as system of discrete masses connected to each other by massless springs and dampers,
neglecting the cable bending and torsional stiffnesses. The influence of hydrodynamic forces
and fluid drag and cable-seabed interaction can be considered. The equations of motion of
the lumped masses can be solved in the time domain. Van Den Boom [78] used this method
by lumping all the inertial and external forces while ignoring the cable damping to analyze
the mooring system dynamics. The results agreed reasonably with experiments. Jeffery et
al. [82] presented a linear and nonlinear FEM dynamic models for a taut a mooring system
to study the spatial variation of tether tension. Another FEM cable model that includes the
bending torsion effect to study the cable dynamics of slack cables in three dimensions was
developed by Buckham et al. [83]. A thorough review of the main numerical techniques used

in cable dynamics can be found in [80,81].

1.4.4 Wind and wave loads

Realistic environmental loads modeling is an important aspect in the simulation of off-
shore structures. Wave loads are considered the most severe compared to current and wind
loads [14]. The wave hydrodynamics is generally characterized by linear Airy wave theory

when the wave height is small compared to water depth and wave length. Assuming the fluid
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is incompressible and inviscid and the flow is irrotational allows the use of the potential flow
theory [13,18]. Nonlinear wave theories are used to predict the steady and slowly varying
drift force components and also in the case of breaking waves and severe sea states [14]. The
hydrodynamic analysis in generally performed using Morison’s equation which is only valid
for slender structures accounting for the inertial and drag forces acting on the submerged
part of the structure and ignoring wave diffraction effect [18,84,85]. The effect of combined
wave and current is included in Morison’s equation through vectorial addition of the fluid
velocity. The total wave force on the structure can also be determined by integrating the

pressure distribution over the submerged part of the structure [18,84].

Wind loads can be determined using similar approaches used for land-based wind turbines.
The aerodynamic lift and drag forces acting on the wind turbine blades due to steady and
turbulent wind can be determined using blade element momentum theory (BEM) [72]. Wind
speed increases logarithmically with height due to wind shear in the planetary boundary
layer. Therefore, a higher tower increases the obtained wind energy [86]. The variation of
wind speed with height depends on the surface roughness. In smooth terrain such as open sea,
the wind speed reaches its free stream value at a lower height with lower levels of turbulence
intensity compared to land. Therefore, wind speed at the same height above water level is
higher than that above ground level for the same nominal storm conditions [85]. Sometimes,

fluctuating wind gusts can excite a resonant motion of the structure [18].

1.5 Thesis Objectives and Organization

The FOWT is an emerging technology. Design of this system requires deep understanding
of the system dynamics which implies developing reliable dynamic models capable of predict-
ing the system dynamic response. Thus, the primary objective of this thesis is to build a
high-fidelity structural dynamic model of a FOWT coupled with quasi-static and lumped
mass cable models for different mooring system configurations, including single and delta
(bridle) arrangements. Effort is focused on developing a validated coupled rigid and flexible
multibody dynamic models of a spar FOWT as well as building a reliable hydrostatic and

cable models to simulate the system dynamics.
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This thesis consists of seven chapters. Chapter 1 presents background and motivation
behind the research, a review for the works related to the research problem, and thesis
objectives and organization. The developments of rigid and flexible multibody dynamic
models of the FOWT are detailed in Chapter 2. The chapter begins by defining the platform
kinematics then deriving the equation of motion of the FOW'T in terms of the platform quasi-
coordinates and rotor spin speed for the rigid model. The development of the flexible dynamic
model then follows. The kinematics of the flexible and rigid body motions and discretization
of the elastic motion in space and time are established. Then, the coupled rigid-flexible
equations of motion are derived using Lagrange’s equation. Modeling the hydrodynamic and

aerodynamic loads is also presented at the end of this chapter.

Chapter 3 presents the development of the nonlinear hydrostatic model to compute the
exact buoyancy force and hydrostatic moments of cylindrical floaters undergoing general
displacements (translation and rotation). In addition, the hydrostatic stiffness matrix is

derived as a function of instantaneous position and orientation of the platform.

In Chapter 4, the mooring loads are formulated using the quasi-static approach. The
analysis begins with developing a quasi-static model for the single configuration. Further
extension is then undertaken to develop an exact 3D quasi-static cable model of the bridle
mooring line with a clump weight. As well, a theoretical approach is developed to derive
the exact mooring stiffness matrix. The influence of the mooring system configuration and

geometry on the stiffness of the mooring system is also investigated.

In Chapter 5, the lumped mass cable model is formulated for a single cable. A new
added mass matrix is developed together with seabed contact model. The model is also
extended for the bridle mooring configuration with a suspended clump weight. Static solvers
are developed to determine the equilibrium profile of the mooring line for the both mooring
configurations to provide appropriate initial conditions for the cable nodes displacements in

the coupled dynamic simulation.

In Chapter 6, the analytical models of the system dynamics and applied loads are im-
plemented to simulate the FOWT dynamics under combined wind and wave loads. Several

simulations are performed to validate the dynamic models against the reported simulation
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data from different simulation tools. Furthermore, series of simulations are performed us-
ing different dynamic models, cable models and mooring configurations to investigate the
influence of the tower flexibility, mooring configuration, rotor gyroscopic effect and cable
dynamics on the system dynamics. Finally, Chapter 7 summarizes the conclusions of the

research undertaken in this thesis and suggests directions for future works.
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Chapter 2

SYSTEM DYNAMICS

The spar FOWT system under consideration is based on the OC3-Hywind concept [6],
as shown in Figure 2.1. The FOW'T consists of a cylindrical floating platform supporting a
horizontal axis wind turbine structure. The turbine structure is comprised of a tower, nacelle
and three-bladed rotor. The platform is anchored to the seabed through a mooring system
composed of a series of cable or chains and in some designs the cable include clump weights

to increase the mooring system stiffness.

Figure 2.1: OC3-Hywind FOWT concept [2]

This chapter presents two approaches with different levels of complexity for modeling
the nonlinear dynamics of the FOWT: a simplified rigid multibody model and a coupled
rigid-flexible multibody model. In both models, the floating platform is modeled as a six-
degrees-of-freedom (6-DOF') rigid body subject to buoyancy, hydrodynamic and moorings
loads. The nacelle is modeled as a rigid body attached to the tower tip. The rotor is
modeled as a rigid disc spinning around its axis and subject to aerodynamic load. The main

difference between the two modeling approaches is in the modeling of the tower dynamics.
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The rigid model treats the tower as a rigid body while in the flexible model it is modeled as
a three-dimensional (3D) damped tapered Euler-Bernoulli beam undergoing coupled general
rigid body and elastic motions. The beam bending-bending and twist motions are considered

whereas extensibility is ignored.

The dynamic analysis of the rigid multibody system begins with formulations of the
kinematics of the platform. Then, equations of motion of the rigid multibody model are
derived using Lagrange’s equation in terms of the platform quasi-coordinates. The turbine
drivetrain equation of motion which governs the rotor spin dynamics is also derived. Likewise,
the development of the flexible model begins with kinematic description of the tower flexible
motion. The flexible displacements are then discretized in space using the assumed mode
method (AMM) utilizing new orthogonal polynomial comparison functions developed herein.
The applicability of these mode functions is tested by simulating the flexible dynamics of a
rotating cantilever with a tip mass, illustrated in Appendix B.2. Accordingly, the equations

of motion of the system are derived using Lagrange’s equation.

Lastly, the ocean environment is characterized by a wave spectrum to describe the wave
field kinematics required to formulate the hydrodynamic loads using Morison’s equation in
Section 2.3.2. As well, the aerodynamics loads are characterized based on the power and

thrust coefficient performance curves of the rotor.

2.1 Rigid Multibody Dynamic Model

A schematic diagram of the spar FOWT system to be analyzed is shown in Figure 2.2.
For simplicity, it is assumed the turbine rotor tilt angle is zero for this model and the flexible

model!. The FOWT is comprised of 4 rigid bodies, ordered as depicted in Figure 2.2:

e Body 1: the floating platform, with mass m,,, and inertia matrix I, = diag(Lys, Lpy, Lp.).

This platform has been proposed to support the NREL 5 MW baseline wind turbine [87].

e Body 2: the nacelle, arigid body, with mass m,,., and inertia matrix L,. = diag(Lcu, Lneys Inez)-

IThe tilt angle based on [87] is 5°.
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e Body 3: the rotor, a rigid disc spinning around its axis with angular velocity 2(¢). The

mass is m,, and inertia matrix I, = diag(I,,, I,

vys Irz), where I, = 1I,,.

e Body 4: the tower, with mass m,, and inertia matrix I, = diag(Iy;, Iy, I;.). The tower

supports the Rotor-Nacelle-Assembly (RNA).

1

H
: m,, 1,

i floatation
i .-area
+

Figure 2.2: FOWT rigid multibody dynamic model

The platform floats in sea water of density p and supported to the seabed by a catenary
mooring system comprised of three lines (detailed in Chapters 4). The platform, tower,
nacelle and rotor related dimensions and mass and inertial properties are available in [6,87],

and also listed in Appendix A.
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2.1.1 System kinematics

Two reference frames are defined to characterize the displacement and rotation of the
system components. The inertial frame, F is an earth-fixed frame, with the earth’s motion
assumed to have negligible impact on the platform’s dynamics. The body-fixed frame F,, is
attached to the platform center of gravity (G,). The properties of these frames are listed in
Table 2.1. A unified vector notation is used in this thesis to simplify the description of the
system kinematics. The left superscript denoted by the frame abbreviation (in Table 2.1) is
used exclusively to express a vector in the respective frame. If no superscript is used, this
indicates an arbitrary frame. The principal axes associated with the inertia matrices of the
rigid bodies are parallel to F,. The third frame (Fp) listed in Table 2.1 is not relevant to
the rigid body model and will be used later for the flexible model (Section 2.2).

Table 2.1: Reference frames definitions

Frame Abbreviation Frame axes Unit vectors Frame origin
Fi I XY, Z I, J K Fixed on earth, point O
Fp D T,Y, 2 i, j, k Platform c.g., point G,
Fi b 1, Y1, 21 151, 52, bs Tower tip, point By

Vector r = [rx ry rZ]T defines the translational displacements of the platform body-
fixed frame (JF,) origin relative to the inertial frame and represented in F;. The Z-axis of
JF 1 is opposite to the direction of gravity. The displacements rx, ry and ryz indicate the
platform, surge, sway and heave, respectively. The origin of F, coincides with that of F;
at zero translation and rotation. The rotation of the platform is represented by an Euler
angle triad @ = [¢ 6 ¥]T corresponding to roll, pitch and yaw angles, respectively. The 3-2-1
Euler angle sequence, commonly used for marine and flight /space vehicles [88], is selected to

describe the platform rotation kinematics. The corresponding rotation matrix R is [20]

Rin Rz Rz CyCo CypSoSp — Sy Ch  Cy SeCy + Sy S
R=1| Ry Ry Ros | = | SpCo SpSeSs+CypCs Sy SpCo— CySo (2.1)
R31 Rsy Rss — 59 Co S¢ Co Cyp
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where sy = sin(.) and ¢y = cos(.). The rotation matrix R transforms vectors in F, to F;.

The velocity of the platform center of gravity can be expressed in F, as

Vg
Py={ y, ¢ =R"p (2.2)

Vy

The platform angular velocity in terms of the Euler angle rates can be expressed in F, as [88]

Wy 1 0 —Sy gb

P = wy =JO = 0 ¢ Spco 0 (2.3)
W, 0 —s¢4 cycp @/}
. ~- -

It is worth mentioning that the matrices (R and J) become singular when the pitch angle,
0 = 7/2. However, such extreme excursions would lead to complete platform and mooring
failure, which are not relevant scenarios in the present work. The velocities of the center of

gravity of the tower (Gy), nacelle (Gy.), and the rotor (G,) can be then formulated as
Vi=V4wXrg , Vpe=V+wXrg, , V,=V+wXrg, (2.4)

where the centers of gravity coordinates are Prg, = [0 0 DT, Prg,. = [do. 0 D,]7, and

nc

Prg, = [—d, 0 D,|T, as illustrated in Figure 2.2.
2.1.2 Equations of motion
The total kinetic energy (KE) of the four bodies comprising the rigid multibody system
is
T=5m, vev+; we(l,’w)+sm vie vi+ 3 'we (] ’w) 25)
+ %mnc Ve ® Ve + % Pwe (I, "w)+ %mr v, e Vv, + % Pw, o (I, "w,) ‘

The platform, tower and the nacelle are rotating with an angular velocity, w. The angular

velocity of the rotor is w, = w + Q and the rotor spin rate is P = Q i
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The potential energy of the rigid multibody system is attributable to the gravity, can be

expressed as
V=m,grz+mg (I'to ° K) + Mpe g <rncO ° K) +m,g <I'ro ° K) (2.6)

where (o) denotes the dot product, g is the acceleration of gravity, and the vectors r;o, rnco
and r,o measure the positions of the center of gravity of the tower, nacelle and rotor relative

to the origin of JF7, respectively, formulated as

I I I I I I
ro=r+R?rq, , ‘rpno=r+RPrq,. , ‘r.o="r+RPrg (2.7)

The system dynamics is characterized by the platform translation and rotation degrees
of freedom and the rotor spin yielding a 7-DOF dynamic model. The equations of motion
are derived utilizing Lagrange’s equation in terms of the quasi-coordinates of the platform

(v and w) as [89-91]

d (0L , 0L 0L _,

%(a(pu)) 50 R 507 F (2.8)
d(ocN , 9L , 0L 0L

5 (50 )+ 7500+ o~ 55~ ™ (29)

where £ =T — V is the Lagrangian, P@ and P are the skew symmetric matrices of Pw and

Py, respectively. For an arbitrary vector B =[B; B, Bs]”, B is written as

0 —B; By
B=| B 0 -B (2.10)
By By 0

The total external forces acting on the system and corresponding moments around the plat-
form frame origin are denoted by F and M, respectively. The equation of motion of the wind

turbine drivetrain can be obtained as

d (0L
% (8_9) =Ta — Ty (211)

where 7, and 7, are the aerodynamic and generator torques, respectively. When the wind

speed is less than the rated value, the generator torque can be determined from the generator
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torque control law as will be discussed in Section 2.3.3. The resulting form of the equations
of motion can be then expressed as

w 0343 034 v RT% PEF
My | @ |+ & @ 0O |Myd | w | =[ITE|+| M (2.12)
Q O1x3 O1x3 0 Q 0 Ta — Ty
s
The mass matrix (M,,,) form is obtained as
(my 0 0 0  Ms 0 0|

mp 0 —M; 0 My 0
mr 0 —Mss O 0
Myy 0 My I (2.13)
sym. Mss 0 0
Megs 0O
L Irx m
the mass matrix entries are
myp =my, +my + My +m, , My = D, (m, +my.) +mD;
Mag =dneMne — dvmy Mag = Iy + D, (my + mae) + Di*my
(2.14)
Mys =D, d,m; — D,dpcm,

) Meg = I7. + mrdr2 + mncdnc2
M5 :]Ty + my (D’I‘2 + dr2) + Mipe (Dr2 + dnc2) + Dt2mt

where IT{L’ = Ipx + Ita: + Incz + Ir17 ITy = 1lpy + Ity + Incy + Irya and ITz = 1Ipz + Itz + Incz + Irz-

The terms RT‘Z—f and J *T‘g—g in Equation (2.12) yield the gravity force and moment around
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the origin of platform frame, respectively, obtained in the platform frame (F,), as

oc e
RTE =g —MT CgSy
—MmT CypCo
i (2.15)
aE 098¢ (‘DT (mTLC + m'r) + Dtmt)
J*T% =9 | 59 (Dy (M +my) + Dimy) + coco (dneiine + dom,)
—5¢Co ( dneMine + dym,)

The external forces and corresponding moments acting on the FOW'T arise from hydrostatic,
hydrodynamic, aerodynamics and mooring loads, denoted by the subscripts hs, hd, aer, and

mor, respectively, as

F=Fus +Frg+ Foer + Fror
(2.16)

M = My, + Mpg + Maer + Mo,
the hydrodynamic force (Fj4) and moment (My,;) around the platform body-fixed frame
origin are expressed as

where the subscript (iner) denotes the inertial terms which are functions of the platform
kinematics, as will be discussed in Section 2.3.2. The inertial terms in Equation (2.17) can
be reformulated in a matrix form as [20)]

Finer v v

= [A] + [C4] (2.18)

M'mer w w
where A is the added mass matrix and C4 is the hydrodynamic Coriolis and centripetal
matrix [20], both of size (6 x 6). The hydrodynamic loads will be investigated in detail in
Section 2.3.2

Substituting Equations (2.16) to (2.18) into Equation (2.12), the final form of the equa-
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tions of motion of the rigid multibody model can be expressed in the following form

v v RT%_f ths + pFaer + meor + thd*
[Msys + A } w| + |:S~Msys + CA] w| — J_T% + ths + pMaer + pMmor + thd*
@) Q 0 Ty — Ty
(2.19)
where
_ A 0 _ C 0
A — 6x1 : CA _ A 6x1
Oix¢ O 016 O

The equations of motion of the large multibody system have thus been reduced to the simple

form of Equation (2.19) which can be easily implemented.

2.2 Flexible Multibody Dynamic Model

The rigid dynamic model previously developed considers the tower as a rigid body. How-
ever, to predict the elastic structural deflections responses of the tower, a more sophisticated
flexible dynamic model is introduced. This will allow us to later evaluate the importance of
tower flexibility on the system performance. The schematic diagram of the flexible multibody
model to be analyzed is shown in Figure 2.3. The coupled rigid-flexible multibody dynamic
model is comprised of 3 rigid and 1 flexible bodies, ordered as depicted in Figure 2.3. The
properties of the rigid bodies 1, 2 and 3 are similar to their counterparts of the rigid model

(Section 2.1).

Body 4 representing the tower, is now considered as a flexible tapered 3D beam of annular
circular section. The beam is of length [, density p;, and variable cross sectional area per
length A;(z). The moments of inertia of the cross section as functions of the tower height
around the z; and y; axes are I;,,(2) and I, ,,(2), respectively. The corresponding polar
moment of inertial is J;(z). The material properties of the beam are characterized by Young’s
modulus £ and modulus of rigidity G. The tower properties are detailed in Appendix A.3.
In this model, the rotor blade flexibility is ignored.
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Figure 2.3: Spar FOW'T flexible dynamic model
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2.2.1 System kinematics

The displacement and rotation of the FOWT components are characterized using the
three reference frames illustrated previously in Table 2.1. The frames, F; and F, are already
defind for the rigid model (Section 2.1.1). A third frame, F 5 is introduced, which is a body-
fixed frame attached to the tower tip center, as shown in Figure 2.3. The principal axes
associated with the inertia matrix of the platform are parallel to J,, and for the nacelle and
the rotor are parallel to Fp. The platform kinematics description is similar to that of the

rigid body model already defined in Equations (2.1) to (2.3).

The tower is modeled as a cantilever beam undergoing general motion because of the beam
base attachment to a free-floating platform. The Euler-Bernoulli beam theory is adopted to
characterize the bending motion of the tower because the tower is a thin beam and the ratio
of the tower length to its average diameter ~ 15 which is considerably larger than 10 as
recommended [92,93]. Thus, the shear and rotary inertia effects can be ignored since the
beam is slender. The elastic deformations of a material point (B) located on a differential
element of the beam are characterized in the platform frame (F,) by u;(t, z) and us(t, 2)
representing the bending deformations, s(t, z) the beam stretch, and ¢(t, z) the beam twist
angle. These distributed deformations are illustrated at the beam tip for clarity in Figure 2.3.

The elastic displacement ug(t, z) is dependent on wuy, us and s, can be expressed as [55]

Uy = 5 — % /0 [(ugf +(wy)?] do, ()= % (2.20)

where o is a dummy variable. The beam stretch can be assumed negligible, therefore the
inextensibility constraint can be enforced as s = ' = 0. As a result, uz then represents the

beam shortening (i.e. ug < 0) due to beam bending deformations, can be then formulated as

s _% /U ()2 + (u5)?] do (2.21)

The displacement of material point B, located on the elastic axes of the beam, as measured

relative to the J, origin, is
Prg=[uy uy (a;+ 2+ us)]” (2.22)
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where a; denotes the distance between the tower base and origin of the platform frame, as
shown in Figure 2.3. The velocity of B can be obtained as
_ ; \_00)
vp=v+4+wxrg+u , () =5 (2.23)
where P = [y 1y u3]7 and x denotes the cross product. Differentiating Equation (2.21)

with respect to time, 3 can be obtained

: B0
g = — "ol Lol ) o= 2.24
us3 /0 [uy U 4 uy Uy) do () CIn ( )

The frame F p is attached to tower tip center and is parallel to F,, if the beam is undeformed.
The elastic rotation transformation of the Euler-Bernoulli beam cross section is characterised

by an elastic rotation matriz which can be defined at the beam tip (z =) as [51]

L—3(u)” = 5¢°  —p—ju ) )
R = ¢ — suf uh 1— 2(up)? — 1 2 ul (2.25)
—uh — Uy ¢ —up+uy e 1= 4 [(u)® + (uh)’]

z=l

This form is of second order in the elastic deflections which is sufficient to capture the
kinematics of the system since the strain deformation is small. The rotation matrix R
transforms the vectors in Fp to F,. Accordingly, the angular velocity of the frame Fp

relative to F, (Pwp;) and resolved in the latter frame can be determined from [51, 88|
Pop =Ry RY (2.26)
the angular velocity of the nacelle can be expressed as
Whe = W +wp (2.27)
and for the rotor
w, =w+wpg + N (2.28)

where the rotor spin rate expressed in the tower tip frame is °Q = Q b;. The velocity of the
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nacelle center of gravity (Gy.) can be formulated as
Vie = VBl + Whe X The (2.29)

where vp; is the velocity of the tower tip section center i.e. vg = vg| _,. The velocity of

the rotor center of gravity (G, )
V, =Vp + Wne X Lot (230)

The position of the nacelle and rotor center of gravity relative to the tower tip center are r,,.

and r,,, respectively. These vectors are constants in F g.
2.2.2 Spatial discretization
The Assumed Mode Method (AMM) is used to discretize the continuous variables uy(z, t),
us(z,t), and ¢(z,t) using the following form [94]
np
w(z0) =Y i) &(t) = @€
i=1

U/Q(Z,t) == i (I)Z(Z) ®z(t) == @TG‘) (231)

A0 =D m(00) =0T

where ®;(z) and 7;(z) are the assumed mode shape spatial functions: ®;(z) are shape func-
tions in bending in the two lateral directions, while 7;(z) are shape functions in twist. ®,n are
the corresponding modal vectors. The numbers of mode shapes used for bending and twist
discretization are n;, and ny, respectively. &;(t), ©;(f) and d;(t) are generalized coordinates to

be determined. &, ® and d are the corresponding generalized coordinates vectors.

2.2.2.1 Mode shapes

The direct choice of the ®;(z) and 7;(z) shape function are the system natural (eigen)

modes for a stationary? cantilever bending and the twist vibrations of a clamped free shaft

%i.e. the mode shapes of free end beams undergoing pure elastic motions without any rigid body motion

(either translation or rotation)
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[37], respectively. The eigen mode function selected for 7;(z), is written as [92]

2% — 1
ni(2) = sin (%) =12,y (2.32)

However, the bending eigen mode shapes are not the choice due to the high computation
cost of integrating mixed hyperbolic and trigonometric functions forming these modes. Al-
ternatively, a new family of polynomial comparison functions is developed. These func-
tions satisfy the geometrical and natural boundary conditions (BCs) of a cantilever beam,

®,(0) = P.(0) =0, ®/(I) =D (I) =0, and the orthogonality condition

¢ 0 for 1 # 4
/ 0,0, dz = 7 (2.33)
0

nonzero for i =7

The first polynomial can be directly produced by imposing the 4 BCs, can be expressed as

1 4
d,(2) = 524 - §23 +22% , 2=2z/I (2.34)

The remaining list of polynomials is obtained sequentially such that the ¢-th polynomial is
generated based on the preceding set. The following polynomial is always a degree higher
than the preceding one. Starting from =2 onwards, the polynomial coefficients can be
determined by enforcing the BCs, orthogonality condition (Equation (2.33)), and ®;(1) =1

to normalize these modes, ®5(2) can be then expressed as
@2(2) - b525 + b424 + 632’3 + b2 22 + bl 2 + bo

The 6 coefficients (by — bs) are determined by solving 6 linear algebraic equations corre-
sponding to the 4 BCs, ®5(1) = 1, and fol PyP1dz = 0, where @, is already known from a
previous step. Following the same procedure, the required number (n;) of shape functions
can be generated. Appendix B.1 lists the first 10 shape functions being developed. These
polynomials are reasonably similar in shape to their corresponding eigen modes, as shown in
Figure 2.4. However, some deviations between these two families of mode shapes are still ob-
served particularly in higher modes and at z/l < 0.7, as illustrated in Figure 2.4. Moreover,
polynomial shape functions are computationally efficient particularly in symbolic integration.

We found that computing the tower kinetic energy (as will be formulated in Section 2.2.3.1)
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when the bending motion is discretized using polynomial shape functions is in the order of
seconds using the Matlab Symbolic Math Toolbox while the same operation requires hours

when using the eigen functions. The convergence of the AMM using these polynomial shape

1 ; ; ; ; 1
051 ——Eigen .
— = Polynomial
& 0.5 ¢ 1 e 0
D
N\
-0.5+ M
0 . . . : -1 : : :
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Figure 2.4: Comparisons of the cantilever bending eigen and orthogonal polynomial mode shapes

functions has been verified using a benchmark problem illustrated in Appendix B.2.

2.2.3 Equations of motion

The coupled rigid body and elastic equations of motion are derived using Lagrange’s
equation. This requires formulation of the kinetic and potential energies of the system, as
shown below.

2.2.3.1 Kinetic energy

The total kinetic energy of the FOW'T system includes the kinetic energies of the four
bodies comprising the multibody system. The KE of the platform is

Tp=3m, vev+itwe (I, w) (2.35)
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The KE of the tower can be written as

I 1/
= —/ my (vpe vg)dz + —/ o Jy Pdz (2.36)
2 Jo 2 Jo

where m; = p; A; is the mass per unit length of the tower, the tower properties are detailed

in Appendix A.3. The KE of the nacelle is
Tne = 3Mne Vie ® Ve + 3 (Pwpe)e (L bwm) (2.37)
where w,,. = R}, (Pw + Pwp;). The KE of the rotor is
T =im, v, 0 v, + 1w, )e (I, 'w,) (2.38)
The total kinetic energy of the system is

T=T, +Ti+Te+T, (2.39)

2.2.3.2 Potential energy

The potential energy of the elastic tower is attributed to the strain energy due the elastic
deformations of the tower and gravitational energy. The tower strain energy due to bending-

bending and twist deformations can be written as

1 [ 1
Vte = 5/0 E[t,yy (Ulll )2dz + 5/ E[t T dZ + = / Ge]t (240)

where I, ., = I, since the tower cross section is circular. The tower gravitational potential

energy

l
Vi =/ mi g (rBo -K) dz (2.41)
0

where rpo is the displacement of material point B relative to the origin of frame F;, as

shown in Figure 2.3, and can be expressed as

rpo ="r+RPrp (2.42)
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The gravitational potential energy of the rigid bodies (the platform, nacelle and rotor) is

expressed as

VirE =My Tz + Mpe g <I‘nco ° K) +m,g (I'ro ° K) (2.43)

where the vectors r,.o and r,o measure the positions of the center of gravity of the nacelle

and the rotor relative to the origin of F, respectively, formulated as

I I b
Irpeo = T+ R prBl + RRel I'pe

(2.44)
IrrO = Ir +R prBl + RRel brrot
The system total potential energy can be then expressed as
V=V, +V/+Vas (2.45)

2.2.3.3 Rayleigh dissipation

Rayleigh’s dissipation function is often used to account for linear damping forces in La-
grangian mechanics. The beam internal structural damping can be accordingly formulated

as [89]
2 2

1 /! 1 /! 1 /[
T — _/0 culEJt,yy(u’l’)deJri/o cquJt,m(ug)ZdH—/o ¢, G J, (¢ )dz (2.46)

where ¢,1 , cu2 and ¢, are the damping coefficients associated with the two bending defor-

mations and twist, respectively, and can be calculated as [89]
Cut = 26/ A1 5, Cuz =26/ A2 Co =26/ Ay (2.47)

where ¢ is the structural damping ratio equals 0.01 based on [6] . Au1, Ay, and A, are the
fundamental natural frequencies (in rad/s) for the corresponding elastic deformations. The

system natural frequencies will be obtained in Chapter 6.
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2.2.3.4 Lagrange’s equation

The nonlinear coupled rigid-flexible equations of motion are derived utilizing Lagrange’s
equation in terms of quasi-coordinates of the platform using Equations (2.8) and (2.9). The
equation of motion of the wind turbine drivetrain is similar to Equation (2.11). As well, the
conventional form of Language’s equations is used to derive the coupled equations of motion

correspond to the generalized flexible coordinates, such that [89]

d<8£) oL 0T _ (248

i\9a) " 9q " 9a
where g = [§ © §]7 is the vector of the flexible generalized coordinates. The principle of

virtual work is utilized to compute the generalized forces (Q) associated with (q) as [88]

ov ow ~
=" eF,  +——o (Tab > 2.49
Q a4 34 1 (2.49)

The complex system kinematics particularly due to nonlinear terms of the beam shorten-
ing, elastic rotation of the tower tip and coupling among the rigid body and flexible coordinate
leads to a very lengthy form of the system kinetic energy. Therefore, a MATLAB® symbolic
code is developed to produce the equations of motion. The general form of the equation of

motions, can be then written

v Fhs + Faer + Fmor + th*
—- w M5+Maer+Mmor+M * .
Mo +A] | =" 0 v w0,9.q,9) (250
Q Ta — 7-g

the size of My, is (7 + n.) where n, = 2n, + n;, A is written as

_ A 0 n
A— 6% (1+ne) (251)

O0(14n0)x6  O(14n)x(14n0)

and f is a vector with nonlinear elements in r, 0, v, w, (), q,q. Unfortunately, due to the
complex system kinematics a closed form for the mass matrix, M,, and f could not be

achieved as was previously done for the rigid model.
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2.3 External Forces

The external loads includes hydrostatic, hydrodynamic, aerodynamics and mooring loads
as previously described in Equation (2.16). The computation of hydrostatic loads will be
investigated in Chapter 3 where a new exact nonlinear hydrostatic analytical formulation is
developed and subsequently used to calculate these loads. The mooring loads are computed
using a simplified quasi-static cable or lumped mass cable models. The latter approach will
be thoroughly investigated in Chapter 5 while the former will be discussed in Chapter 4.
The approaches used to evaluate hydrodynamic and aerodynamic loads will be presented in
the following subsections. The characterization of the wave field kinematics is presented first
to allow for formulation of the hydrodynamic loads exerted on the submerged part of the

platform. The aerodynamic loads are then discussed.

2.3.1 Wave kinematics

Based on the Airy linear wave theory, the water surface elevation of a regular water wave
is described by a traveling harmonic sinusoidal signal propagating along the horizontal axis

X, expressed as
H(X,t) = H, cos(wt — cX) (2.52)

Where H is the wave surface elevation from the Mean Water Level (MWL), H, is the wave
amplitude, w is the wave frequency, and ¢ is the wave number. The wave number and wave

frequency are related by a dispersion relation as [18,95]
w? = g ctanh(d,c) (2.53)

where d,, is the water depth. Real random sea environment is described by an irregular
wave which is characterized as a sum of N, regular wave components of different amplitudes,
frequencies, and phases as [18]

Ny
H(X,t) = Z Ha, X cos(wit — ;X + ¢€;) (2.54)

i=1
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where w;, ¢;, and ‘H,, are the i-th wave frequency, wave number, and amplitude , respectively,

and ¢; is a uniformly distributed random phase angle in the range [0 27].

The relationship between the wave amplitude (H,,) and frequency (w;) in Equation (2.54)
can be constructed utilizing a wave spectrum that represents the wave energy content dis-
tribution over the wave frequency band. The wave spectrum is characterized based on mea-
surements recording the wave elevation time series in a certain location. Although there are
several wave spectra describing the ocean environments in different places, the Jonswap spec-
trum is chosen here since it is widely used for evaluating and validating the FOW'T stochastic

dynamics, expressed as [96]

5/ w

Sy(w)=(1-0.2871n(y)) 1—2 Zwy wexp <_Z_l <w_p)_ ) fye"p<_%[%]) (2.55)

where H is the significant wave height which represents the mean of 1/3 of the highest waves,
w, = 2m/T, is the peak frequency and T, is the corresponding period, and o, is a spectral

width parameter defined as [96]

0.07 for w < (27/T),)
Ow = (2.56)
0.09 for w > (27/T),)

and the peak shape parameter () is defined as [97]

5 for f}? < 3.6
y=1{ exp (5.75 - 1.15%3) for 3.6< f= <5 (2.57)
1 for \/7;% > 5

The i-th wave amplitude H,, corresponds to the i-th wave component (of frequency w;) can

be obtained as [98]

w; +0.5Aw;
Hy, = |2 / Sjw)dw , Aw; =w; — w4 (2.58)

w; —0.5Aw;

Generating the wave elevation time histories using Equation (2.58) should be done with

care to avoid self-repetition [98]. The time series of the wave elevation repeats every (27/Aw)
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seconds for a uniform discretization of the wave spectrum i.e if Aw is constant. A simple
way to avoid this problem is to reduce Aw to generate wave elevation time history for a
sufficient time period to perform the dynamic simulation before the wave time history repeats.
However, this implies using a small Aw resulting in a large number of wave component (N,,)
which is computationally expensive. The most efficient approach to solve this problem is
to use a variable frequency step by increasing the frequency step with a fixed increment,
for example Aw; = 1.1 Aw;_; as recommended in [98]. Figure 2.5 shows the wave spectrum
for H; = 5 m and 7, = 10 s and Figure 2.6 illustrates the corresponding generated wave

elevation time history using the latter approach.

Having the wave spectrum discretization realized, the wave kinematic relations can be
then established. The horizontal fluid velocity at depth Z (measured negative from MWL

downwards) can be expressed as [18,95]

cosh(c;(Z + dy))
(X, Z,t) Zwl a [ Sinh(cr ) } cos(wit — ;X + €) (2.59)

The vertical fluid velocity is [18,95]

N, )
y - sinh(¢;(Z +dy))] .
X Zt - —W; g, ; 1t_ ZX i 260
(CEUEDY ot [P vt - X va) (200

If the wave propagates with a heading angle 3, relative to the X-axis, as shown in Figure 2.7,
the fluid velocity v; can be expressed as

VAXY,Z,t) = | dcosB, iisinB, ! (2.61)
and X in Equations (2.54), (2.59) and (2.60) should be replaced with (X = X cos(8,) +
Y sin(B,)). The fluid acceleration is simply determined by differentiating Equations (2.59)
and (2.60) with respect to time.
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Figure 2.5: Jonswap wave spectrum with variable frequency step discretization, H; = 6 m, T,, = 10
s and N, = 100
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Figure 2.6: Wave elevation time history generated from the wave spectrum in Figure 2.5

Figure 2.7: Wave heading angle
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2.3.2 Hydrodynamic loads

Because of the platform structure slenderness, Morison’s equation can be applied to com-
pute the hydrodynamic loads acting on the floating platform [99]. Accordingly, the hydrody-
namic force (Fpq) and moment (M}4) around the platform body-fixed frame origin exerted
on the submerged part of the platform acts normal to the platform centerline (z). Fpy is
already expressed as a sum of the inertial (F,..) and combined drag and Froude-Krylov

terms hydrodynamic loads (Fjg) in Equation (2.17) and likewise Mp,.

The inertial terms which are functions of the platform kinamatics are often shifted to the
left hand side of the equations of motion as in Equation (2.19). While Fj . term remains on
the right hand side of the equations of motion together with the hydrostatic, aerodynamic,

and mooring loads terms. Fjg4, and M4, can be obtained as

Ley—aps
Fuae= [ (004 C)Auli), + 3O D) v, | )
(2.62)

Mu. = [ 1 (904G Al + 50Co D) [0, ])

—apf

where C, and C'p are the added mass and drag coefficients, respectively. The distance between
the origin of F, and platform base center is denoted by a,s, and Ly is the submerged length,
as shown in Figure 2.8. The procedure of computing L.; will be investigated in Chapter 3.
The position of a generic point on the platform centerline isr, = [0 0 2|7 and z changes
according to the integration limits in Equation (2.62). The velocity and acceleration of this
point is v, and v,, respectively, as shown in Figure 2.8. The corresponding fluid velocity
and acceleration are vy and vy, respectively, which can be determined from the wave field
kinematics (Section 2.3.1). If there are no waves, then v; and vy vanish. The relative fluid

velocity required to determine the drag force in Equation (2.62) is given as
Viel = Vi — V, (2.63)

The component of (.) perpendicular to the platform centerline is denoted by (.),. The local

cross section diameter and area are D., and A.,, respectively, which they vary along the plat-
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Figure 2.8: Hydrostatic and hydrodynamic loads

form span as the platform is composed of multiple sections. The integrals in Equation (2.62)
are calculated numerically by discretizing the platform submerged length into a number of
disks and summing the resulting force and moment contributed by all sections along the
submerged length. The hydrodynamic inertial force and moment around the origin of F,

based on Morison’s equation are obtained as

Lep—apy Lep—apy
Finer = / —pCoAes (Vp)  dz , Mipe, = / 1. X (pCyAcs (V) ) dz (2.64)
—apf —apf
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Equation (2.64) can be reformulated in a matrix form as previously done in Equation (2.18)
that introduced C4 and A. The added mass matrix is mainly dependent on the submerged

body shape, can be expressed for a cylindrical platform as [100]

Ay 0 0 0 Aj; O
Ay, 0 Ay 0 O
A= Ass 000 (2.65)
sym. Ay 0 0
Ass 0
0

The off-diagonal elements exist because the origin of F, does not coincide with the platform
center of volume which is varying during dynamic simulation. The elements of the added

mass matrix are

1
Ay =Aw=C,pVy Ass = C, (Epﬁdl?’)
(2.66)

Ay =— Ay = Ay (acy — apf) , o Ay = Ass = Cy Luaa
where acy is the distance between the platform base and the center of the submerged volume
of length L., assuming the platform is on an even keel (vertical). The added mass coefficient,
C, is approximately 1.0 for a slender circular cylinder [20,96]. The added mass of a slender
circular cylinder in a direction parallel to its centerline (As3) is approximately equivalent to
the fluid mass of a hemisphere of a similar diameter [101]. I,4q denotes the inertia of the
displaced volume in roll and pitch modes around origin of F,. The methods used to calculate
Vi, acy and [,4q are illustrated in Appendix C.2. To formulate C4, A can be defined as a

4-block matrix, with 3 x 3 blocks, as

Ay A
A= | TR (2.67)
A21 A22
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C 4 is skew-symmetric, can be then expressed as [20]

—_——

0 — (A v+ Ajpw
c,— | O AT Ane) (2.68)
—(Apv+Apw) —(Anv + Apw)

When the platform is subject to steady current, the vortex shedding past the platform
yields vortex-induced vibration (VIV). The VIV is found to be prominent particularly in
surge/sway directions when the vortex shedding frequency matches the platform surge/sway
natural frequency [102,103], which referred to as lock-in [103]. The magnitude of amplitude of
the VIV could reach the order of the platform diameter [102]. The prediction of hydrodynamic
loads associated with the vortex shedding and the resulting VIV is complex and not clearly
addressed by analytical models [16]. Thus, the VIV behavior of the structure is usually
characterized by experiment as in [104-106]. Therefore, this hydrodynamic effect is neglected
in this thesis although it can be considerable (in case current exists) not only for the platform

but also for the mooring lines.

2.3.3 Aerodynamic loads

The main wind loads are aerodynamic torque about the turbine shaft (7,) and the thrust
force (T,) acting along the shaft axis (normal to the rotor swept area and parallel to by).
These loads, can be characterized as [107,108]

2

1
Ta - §pair 7TRTotZ CT()Hﬁ) H (Urel>||
1

1 2
%=5wm&£;@“ﬁ>wm”m

(2.69)

where R, is the rotor radius and pg;, is the air density. The relative wind velocity parallel

to the wind turbine axis (by) can be calculated as

(Uya)) = <(U —vVv,)e bA1> b, (2.70)
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The thrust and power coefficients C'r and C'p respectively, are both functions of the tip speed

ratio and blade pitch angle (5). The tip speed ratio, A is defined [3]
A= QR H(Ure,)H H (2.71)

The characteristics of Cr and Cp are often plotted versus A at specific values of 3, as shown
in Figure 2.9 for the NREL 5 MW baseline wind turbine. These characteristics are obtained

from an aerodynamic analysis using bade element momentum theory (BEM).

@) (b)

0 6 A8 10

2 4 6 8 10 12 14 ) )
Tip speed ratio (1) Tip speed ratio (1)

Figure 2.9: NREL 5 MW baseline wind turbine: (a) thrust coefficient; and (b) power coefficient [3]

The tip speed ratio and blade pitch angle should be specified to determine C'p and Cr
required to calculate the wind loads using Figure 2.9. The rotor speed increases as wind
speed increases at low to moderate wind speeds which results in different A during operation,
as well the blade pitch control changes the pitch angle at higher wind speed. Therefore,
the wind turbine operates in different schemes (regions of operation) according to the wind
speed. Thus, it is necessary to identify the wind turbine region of operation to determine
Cp and C7p properly. The wind turbine regions of operation are illustrated in Figure 2.10.
In region I, the wind speed is very low such that U < Uy _in, there is insufficient wind
power to run the turbine. In region II, the wind speed is less than the rated speed i.e.
U < U,gied, as a result a fraction of the rated power can be captured. The blade pitch is
maintained fixed (8 ~ 0). The rotor speed increases as wind speed increases, to maintain A

at the optimal designed value (A.) which is coincident with the maximum power coefficient
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(Cp,...), as illustrated in Figure 2.9 (b). This can be achieved through generator torque
control by controlling generator load to modify the rotor speed to approach the desired value

As, such that [108,109]

1
Tg = _pai’l" ™ R5 (Cpmax/Ai) QQ (272>

2 rot

I, o, I v

Power

\4

U rated U
Wind speed (U)

Figure 2.10: Wind turbine regions of operation

cut =in cut —out

In region III, the wind speed is above the rated, U,ated < U < Ueut—out, i-€. the available
wind power is larger than the rated wind power. Therefore, the blade pitch control increase
the blade pitch angle as the wind speed increases to reduce Cp (Figure 2.9) to dissipate the
excess wind power and regulate the extracted wind power to be within the turbine rated
power and maintain the rotor speed at its rated value (€,44q ) to protect the wind turbine
from damage. When U > U.yi—out (region IV), the turbine is shut down for protection. It
is worth mentioning that Figure 2.10 represents generic operation modes of a variable-speed
variable-pitch wind turbine. However, these regions of operation could involve transition
regions or subregions based on the control system strategies used to optimize the wind turbine
operation [107]. The reader can refer to [107-109] for further details about the wind turbine

operation and control.

The design variables of the NREL wind turbine, U.yi—in, Urateds Ucut—out, rated, and A,
are 3 m/s, 11.4 m/s, 25 m/s, 12.1 rpm, and 7.55 respectively [87].

The aerodynamic force and corresponding moment (Equation (2.16)) around the origin

of the platform frame can be obtained for the equations of motion of the flexible model
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(Equation (2.50)) as

pFae'r :Rel <Ta61>
. (2.73)
pMaerO =Ry <7—a bl) + (rBl + Ry rrot) X pFaer

The aerodynamic loads required for the equations of motion of the rigid model (Equa-
tion (2.19)) can be computed by replacing b, in Equation (2.70) by i, and Equation (2.73)
should be accordingly modified to apply for the rigid model as

PFoer = [Ta 0 O]T ) PMuer =Ta i +rg, X PFoer = [Ta T. D, O]T (274)
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Chapter 3

HYDROSTATICS

FOWT platforms can exhibit large deflections when acted upon by a combination of large
steady wind and hydrodynamic loads. Large deflections particularly in heave, roll and pitch
can also yield large hydrostatic loads and lead to nonlinear behavior. Most FOWT dynamic
analyses model the hydrostatic loads using a linear approach. This chapter presents a new ex-
act nonlinear coupled hydrostatic approach to calculate the magnitude of the buoyancy forces
and the coupled hydrostatic restoring moments as functions of the instantaneous displaced

position and orientation of offshore platforms.

The analysis begins by deriving the hydrostatic loads for a single-degree-of-freedom (SDOF)
finite rotation of a floating cylinder which is later used to verify the results of the general
model. The analysis is then extended to derive the instantaneous center of buoyancy for a
floating cylinder undergoing a general displacement. Evaluating the position of the center
of buoyancy is essential to the derivation of the buoyancy forces and moments which are
subsequently used to obtain the hydrostatic stiffness matrix at an arbitrary position and
orientation of the floating cylinder. As well, the developed approach is efficiently applied to
determine the exact equilibrium positions and orientation of free floating cylindrical bodies.
Finally, the hydrostatic loads are accordingly computed as a part of the external forces in

the system dynamic equations of motion.

3.1 Single Degree-of-Freedom (SDOF) Rotation of
Floating Cylinders

The hydrostatic restoring moment of water plane area of a floating circular/rectangular
cylinder undergoing pure roll/pitch rotation arises from the lateral shift of the buoyancy

center due to change of the submerged volume shape, as shown in Figure 3.1. Mathematically,
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Figure 3.1: (a) Rotated floating cylinder in roll motion; (b) cylinder cross sections. B and B’ are
the centers of buoyancy before and after the rotation, respectively, SWL: Still Water Level.

this moment is a couple generated by the buoyancy forces of the submerged wedge (with
positive buoyancy) and emerged wedge (with negative buoyancy), as shown in Figure 3.1.
This moment is equivalent to the moment of buoyancy force of the rotated cylinder (acting at
B') around the center of buoyancy of the unrotated cylinder (acting at B) assuming that the
buoyancy force does not change during rotation i.e. the submerged volume does not change

during rotation [17,20,22]. This moment can be formulated as

My, = —pg / (2 (3y" tan(9)) cos(¢) Fy +2 (55" tan(¢)) sin(¢) zytan(¢)| dz  (3.1)

The integration limits in Equation (3.1) vary from z = —r to r for a circular cylinder and
from x = —e to e for a rectangular cylinder, as shown in Figure 3.1. Equation (3.1) can be

reduced to

Mz, = (snfe) + gsin(opan(e)) [ Sdo (32)

where, again, the integration limits vary from x = —r to r for a circular cylinder and from

x = —e to e for a rectangular cylinder. The integral in Equation (3.2), [(2/3)y*dz =
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[ dl,, = I, where I, is second moment of area of the floating cylinder section area, thus

the water plane restoring moment can be expressed as:

My, = —pg L. (sin(gb) + %sin(qb)tanz(@) (3.3)

The relation in Equation (3.3) represents the exact restoring moment and it can be used to
determine the restoring moments at any rotation angle as long as the cylinder top face is
not in contact with the water surface. However, if the rotation is small, most texts authors
simplify the analysis by dropping the higher order term (second term in the square brackets)
and assume cos(¢) =~ 1 in Equation (3.1) as [110]:

T 1 2 2
M, = —pg /2 (gy tan(¢>)) Fyde (3.4)
and in final form [110]:
My, = —pg L, tan (¢) (3.5)
Equation (3.5) can be further simplified for small rotations as

Figure 3.2 (a) shows the normalized water plane moment (M, divided by pgl,,) as com-
puted using the exact form of Equation (3.3) and the analogous relations in Equations (3.5)
and (3.6). The results of the three forms match up to 10° and the forms of Equations (3.3)
and (3.5) yield a larger moment for further rotation. The latter forms match up to 30° and
the exact form yields a larger moment for further rotation. The roll stiffness of water plane
is formulated as K, = —dM,, /d. Tt is approximately equal to pgl,, (normalized value=1)
if the roll angle is very small while it is larger than 1 for larger angles, as shown in Figure 3.2
(b). Kj, computed using the exact form and using Equation (3.5) match up to 15° and
the exact form yields a larger stiffness for further rotation, as seen in Figure 3.2 (b). The

horizontal shift in the buoyancy center can be simply determined as

BB = MZ,/Fg ,  Fg=pgVy (3.7)
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where V; is the submerged volume.
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Figure 3.2: Normalized water plane area: (a) moment; (b) stiffness

3.2 Three-Dimensional Rotation Hydrostatics

The preceding analysis can be used to determine the restoring moments of a floating
cylinder for a single-degree-of freedom rotation, i.e. pure roll or pitch displacements. It is
also valid for small coupled roll, pitch and yaw displacements, in which case the nonlinear
coupling between these rotational displacements can be neglected [17]. Large magnitude
platform rotations due to harsh environmental loads give rise to a considerable nonlinear
coupling effect. Therefore, it is important to consider nonlinear coupling in evaluating the

restoring moments. In this section, a general analysis is developed for this purpose.

During the cylinder motion, the submerged volume changes, and the magnitude of the

buoyancy force is expressed as
FB:pgvd:pgAchf (38)

where A, is the cylinder cross sectional area. L. is the submerged length that represents the
distance along the cylinder centerline measured from the cylinder base center to the center
of the flotation area. The flotation area (grey colored), as shown in Figure 3.3, is prescribed
by the intersection of the cylinder and water line. L. must be obtained at any position and
orientation of the floating cylinder to determine the exact magnitude of the buoyancy force.

The Z component of the displacement of the base center relative to its analogous position at
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Figure 3.3: General coupled analysis for computing the hydrostatic loads

equilibrium determines the change of the cylinder depth, L, as illustrated in Figure 3.3.
Z:J: —((Rprb— prb)Z+Tz) (39)

where the subscript Z denote the respective component, and r, measures the position of the

cylinder bottom base center relative to the origin of the body frame (zyz) which is fixed in

o1



the body frame. The change in the submerged length can be expressed as:
h = L/ cos(n) (3.10)

7 is the angle between the cylinder centerline and the Z axis i.e. the angle between K and

~

k , 1 can be expressed as

A ~

cos(n) =K ek =cy ¢y, = Rs3 (3.11)

Where Rss is last element of the rotation matrix R (Equation (2.1)). The general expression

of the submerged length is:

- L.+ L
Les = h=
'~ FRe "' Ry

(3.12)

The buoyancy force can then be determined using (Equation (3.8).

3.2.1 Coupled restoring moments

The hydrostatic restoring moments are generated due to the cylinder’s heave and ro-
tations that alter the displaced volume, and hence the position of the center of buoyancy.
Computing the position of the buoyancy center during general coupled displacement is the
key to determining the coupled restoring moments. The center of buoyancy is the centroid
of the submerged volume as shown in Figure 3.4. Without loss of generality, we can change
the origin of the body fixed frame zyz to the center of the base of the submerged cylinder to

simplify the calculations which are performed in the body frame.

The submerged volume of the cylinder and its center of volume (center of buoyancy) can
be determined using a triple integral to compute the volume under the water plane over the
base region. The equation of instantaneous water plane in zyz can be determined using the
normal vector of the water plane which is simply K in the inertial frame, and in the xyz

frame can be represented as
m=R7[0 0 1)" = Ry1i+ Rypj+ Rysk (3.13)

The point (0,0, L) is the center of the floatation area (grey-colored in Figure 3.4). Thus,
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the equation of the water plane area can be formulated in the body frame

R R
L= 2y = Ly4ax+by (3.14)

2= L — ——
7" Rys” Ry

where a = —Rs1/R33 = tg/cy, b = —Rsy/R33 = —t,, and t(y = tan(.). The submerged

Figure 3.4: Submerged volume in the body fixed frame

volume of the cylinder can be determined to verify Equation (3.8) as

ViZ—z2 Lejtaztby

circular cylinder : Vy = /// dVy = / / / dzdydr = 7rr2ch
A —r 0

B
e f  Leptaxtby

rectangular cylinder : V; = /// dVy = / / / dz dy dx =4def Ly
A —e

—f 0
(3.15)

where A is the cylinder base region, as shown in Figure 3.5 . The z-coordinate of the center
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Figure 3.5: Integration region A for

of submerged volume is:

circular and rectangular cylinders

Vr2—z2 Leptax+by

1
circular cylinder : & = 7/// xdV,; = —/ / / rdzdydr =ar /4ch
d
A

1
rectangular cylinder : & = 7/// xdVy =
d
A

the y-coordinate is:

1
carcular cylinder : § = — /// ydVy =
Va
A
rectangular cylinder : y = —/// ydVy =

the z-coordinate 1is:

circular cylinder : z =

rectangular cylinder : z =

e f Ley+azxz+by
1
—/ / / rdzdydr = ae®/3L.;
Va
—e —f 0

(3.16)

Vr2—z2 Lept+azx+by

T

1
/ / / ydzdydr =br?/AL.;

=T _\/r2—z2
f  Leptaxtby
1
—/ / / ydzdydx =b f?/3L.;
—e —f 0
(3.17)
Leg+az+by ) o\ o
L b
/ zdzdydr = of (@ +07)r"
2 8Les
0
Lcy+az+by ( 5 5 ) 2)
. ch a” e +b f
/ zdzdydr = 5 6L,
0
(3.18)

The expressions of the submerged volume and coordinates of its center in Equations (3.15)

to (3.18) can also be represented in a generalized form in terms of the cross sections area and
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its second moments of area as:

al,, b, oLy (@ V)

Vy= ACLC s r = —— s - s
A= peber o T 0 YT AL, > T 2AL,

(3.19)

where A., I, and I, expressions for the circular and rectangular cylinders are listed in

Table 3.1. It is worth noting that the results in Equation (3.19) are also valid for an elliptic

Table 3.1: Expressions for A., I, and I, of the circular and rectangular cylinders

Expression Circular cylinder Rectangular cylinder (Barge)

A, r? def
L, mrt /4 4e f3/3
L, mrt /4 4fe/3

cross section.

The restoring moments of the water plane area can be formulated in the body frame, as

shown in Figure 3.4

Ly C
prP = prs X (RT FB) s s =Tpf —Ipe prbc - ka 5 prBf = jla +y.] + zk

(3.20)

where rpy is the vector from the center of the base to the center of buoyancy, ry. is the
vector from the center of the base to the half of the submerged length. r; is the vector from
the middle of the submerged length to the center of buoyancy and F g is the buoyancy force

vector resolved in the inertial frame as:
Fp=10 0 Fg" (3.21)

The restoring moments of the water plane area in Equation (3.20) can be expressed as:

Mz, — Ly [Re + 23] - 1, [ Bl
"Mup =4 MY, ¢ =09 I, [Rgl + 21;;;332] + s [%} (3.22)
My (Taw = Iy) | 02

It is evident from the result in Equation (3.22) that the restoring moment components are

25



affected by the rotation sequence since the elements of the rotation matrix have different
forms for different sequences [88]. However, the magnitude ||[M,,| is invariant for a given
orientation in space. For the 3-2-1 rotation sequence [88] considered in this study, the water

plane area restoring moment components are

~
=N

]

2
Mup=pg § Ly 50+ 50 | = L [s0 23] (3.23)

—ILuCo [Sp + 154 ti} — 2I0ce [s¢

C

PN

— 59 tg [ Low — ]yy]

If I,, = I,, = I such as in circular and square cylinders, the restoring moments of water

plane area reduce to

M* co |55 + Lss (1 +¢2
wp 0 |°¢ 270 ci @
"Muyp =9 MY, ¢ =—pgl [39 + 350 (% + ti)} (3.24)
M, 0

It is interesting to verify Equation (3.23) by substituting # = 0 (pure roll) to confirm that
MY, = M;, =0, while M7 reduces to the same expression as Equation (3.3). In the same
manner, substituting ¢ = 0 (pure pitch) in Equation (3.23) yields M, = M7 = 0, while M}
reduces to the same result as Equation (3.3). The results in Equations (3.22) to (3.24) show
that the yaw displacement (around the cylinder axis) has no effect on the water plane area
restoring moment components since these components are functions of the 3rd row elements
of R which are free of the angle 1. However, with other rotation conventions, M, may be
a function of ¢, 6§ and 1. The water plane area restoring moment resolved in the inertial
frame can be expressed as ! My, =RM,, = [M fp M;fp 0 7. For the considered rotation
sequence, the magnitude of the water plane area moment is a function of ¢ and 6 only but
the yaw displacement still affects the M) and M, components while the magnitude ||M,,||

is fixed for given ¢ and @, irrespective of the value of ¢. For circular and square cylinders,
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the water plane restoring moment resolved in the inertial frame can be expressed as:

(c?5 c2+1) (cy $¢ —sy o 59 )

203) cg

Moy = —py1 | EED o) 52

0

There is no yaw restoring moment of the water plane around the Z-axis which is a basic
principle in hydrostatics. The body frame yaw water plane restoring moment (around the z-
axis) still exists and only vanishes for symmetric cross sections areas that possess identical 1,
and [,, around their centroidal coordinates such as square, circular, pentagonal, hexagonal,
octagonal shapes etc. Figure 3.6 (a) shows the normalized water plane area restoring moment
components in the body frame (Equation (3.23)), My /pgl and MY, /pgl, over a range of
roll and pitch angles for those cross section shapes. Figure 3.6 (b) depicts the normalized
magnitudes of water plane area moment ||[M,,|| /pgl. The results show that the restoring
moments increase as the rotation angles increases and the large coupling yields higher water

plane moment magnitudes. The differential changes in ?M,,, can be expressed as
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Figure 3.6: Normalized water plane: (a) moments M, and M,; and (b): moment magnitude
for cylinders of identical I, and Iy,

Mz, dMy, dMZ)T = Ky, [de o dy)”

where K, is the water plane area stiffness matrix, formulated in the body frame as

44 45 oMy, OMy, OMg,
Kyp Ky 0 Er) 20 o9
— 54 po55 - OMiy  OMy,  OMi,
Koy Ko, Ko, 0 59 50 T (3.26)
64 65 OM5, OMG, OMg,
Kyp Ky 0 Er) 20 Gl
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The third column of K,, is simply zero since M,, = My,(¢,d). While this is not the
case for some other rotation conventions in which M, = M,,(¢,0,1). As demonstrated
earlier, the linear model (Equation (3.5)) is only valid for small coupled rotational displace-
ments. [t is essential to capture the influence of nonlinear coupling between the roll and
pitch displacements on the water plane area restoring stiffness. To clarify this effect, it
is more convenient to consider a cylinder with identical I, and I,,, such as a circular or
square cylinders (M = KSJ‘; = Kg‘; = 0,1,, = I,,), making interpretation of the results
easier. Accordingly, the third row and column of K, are zero, and can be ignored, leaving

[dM, dMY )" = —Kyyld db]", and K, reduces to

44 45 oMy,  OMy,
_ Kwp Kwp _ ) 90
Kwp - - y y (327)
54 55 OMypy  OMayp
Kwp Kwp 1o20} 00

It is well known that the diagonal elements of K,,,/pgl in Equation (3.27) ~ 1 while the
off-diagonal counterparts ~ 0 at small roll and pitch angles where the coupling is negligible,
as illustrated in Figures 3.7 and 3.8. However, the coupling increases the magnitude of the

off-diagonal elements K> and K , as seen in Figures 3.7 (b) and 3.8 (b), respectively. It

wp I

Normalized K*,,
Normalized K*,,

20 20

(@ (b)

Figure 3.7: Normalized Kf;; and Kf,g for circular/square cylinder

is interesting to note that Kfu‘;, is more influenced by coupling and is almost 10 times larger
than K. K and K. increase as the magnitude of roll angle and pitch angles, respectively
increase, as shown in 3.7 (a) and 3.8 (a). This is attributed to the nonlinear behavior of the
water plane stiffness, as previously presented in Figure 3.2 (b) noting that the normalized

SDOF roll/pitch water plane stiffness (Ky,/pgl) = sec*(¢ or 0). Surprisingly, K} is almost
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Figure 3.8: Normalized Kffp and KSJ%, for circular/square cylinder

unaffected by coupling i.e. K{‘U‘; ~ f(¢) in the considered range of displacements, as seen in
Figure 3.7 (a). By contrast, Kf;?o is considerably influenced by displacement coupling such
that larger coupling yields higher pitch stiffness. In general, the water plane pitch stiffness
coefficients (Kfp and KSJ‘; ) are more influenced by coupled pitch and roll displacements
which is attributable to the rotation sequence used to describe the platform kinematics. It
would be expected to obtain an opposite trend if the roll rotation precedes the pitch rotation

in the rotation sequences used such as 3-1-2, 1-2-3, and 1-3-2 rotation sequences.

3.2.2 Displacement of center of buoyancy and buoyancy moment

In accordance with the analysis developed Section 3.2, the displacement of the center of
buoyancy for general displacements can be easily determined, as illustrated in Figure 3.3.
The instantaneous center of buoyancy position relative to the origin of the body frame can

be represented as
repx =Ty +I'pf (3.28)

The hydrostatic moment exerted by the buoyancy force around the origin of the body frame

and resolved in the body frame can be expressed as

PMp =" rep. x (R 'Fp) =Prep x (R" 'Fp) + M, ="My + "M, (3.29)
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This form will ease the derivation of the hydrostatic stiffness matrix as will be discussed in

the next section. Referring to Figure 3.3, rop can be represented as:
rep =Tops —Ts =Tp+ Tpe (3.30)

where 1y, is the position of the midpoint of the submerged length relative to the base center

of the cylinder.

3.3 Hydrostatic Restoring Stiffness

The hydrostatic stiffness is attributed to both buoyancy and gravity restoring loads (K =
Kp + K¢). Since the submerged structure is a rigid body, the hydrostatic restoring forces
and moments are only functions of the platform submerged shape, position and orientation.
The derivations of Kp and K¢ matrices that form the hydrostatic stiffness matrix (Kj) are

detailed in the following subsections.

3.3.1 Buoyancy stiffness (Kp)

The position of the cylinder base center shown in Figure 3.3 can be expressed as Pr, =
x fi + yfj + zfl;. The buoyancy moment previously derived in Section 3.2.2 can be resolved

in the inertial frame as "Mp = 'Myp + 'M,,, "M zp can be evaluated as:

YrFp
IMZB =R pMZB = (RpI‘CB) X IFB = _XFFB (331)
0
where
XF Xy
RPrep =14 Yr , Prep = Yy
ZF Zf + 0.5ch
and "M p can be then expressed as
, T T
Mp = [ MY MY MZ ] = [ MX 4 YpFy MY, — XpFp 0 ] (3.32)
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If one defines the translational and finite rotational displacements of the cylinder by a matrix

X and the corresponding buoyancy force and moment components by a matrix x5 as

X:[TX ry rz ¢ 0 7/’]

(3.33)
Xs=|0 0 Fp M§ MY 0]
the buoyancy stiffness matrix coefficients in the inertial frame can be derived as
0 0 0 0
0 0 0 0
o K33 K34 K35 K36
Kp = ——(%f - pomE e b (3.34)

K$ K§ K§ K¥
K¥ K¥ K§ K¥
0 0 0 0

o O o o o O
o O o o o O

It is worth noting that the there are no hydrostatic forces in surge and sway and no yaw
moment therefore the first 2 rows and columns are zero together with the last row. For
the considered rotation sequence adopted in this study, the detailed derivation and symbolic

expressions for these coefficients can be found in Appendix C.

3.3.2 Weight restoring stiffness (Kg)

The moment of the cylinder weight, W, around the origin of the body frame and resolved
in the inertial frame is ‘Mg = [M& MY 0] = (R?r,) x'W, where ' W=1[0 0 —-W.],
W, = mg, m is the cylinder mass and r, = [z, vy, 2,7, as illustrated in Figure 3.3. The

weight and Mg components can be defined using matrix x as

Xec=|0 0 —W, M¥ MY 0 (3.35)
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The weight restoring stiffness coefficients can be can be derived in the same manner as

Equation (3.34)

(000 0 0 0]
000 0 0 0
K, X _|000 0 0 0 3.36)
0X 00 0 KM K& K
000 K¥ K¥ K
(000 0 0 0 |

since the platform weight is constant, the third row of K is zero. The weight restoring

stiffness coefficients in Equation (3.36) can be found in Appendix C.

3.3.3 Zero displacement hydrostatic matrix

A special case can be considered if the rotational displacements are very small (¢ ~

6

Q

1 ~ 0) and weight and buoyancy are located along the platform centerline such that
x5 = x4 and yy = y,, and the body frame axes are located on the SWL plane, as shown
in Figure 3.9. The heave restoring stiffness can be modeled as a translational spring while
the water plane restoring moments in roll and pitch are represented as torsional springs, as

shown in Figure 3.9. The hydrostatic stiffness matrix can then be expressed as

| 0 0 0 0 0 0 ]
0 0 0 0 0 0
K, — 00 K K,y —K} g 0 (3.37)
00 Kj,us Kyt —Ky,apyy (We—Fp) 2y
00 —Kj, oy —Kj, x5y, KG? (W. — Fg) ys
I 0 0 0 0 0 0 |

where the hydrostatic stiffness matrix entries are

Kyt =—Wezg+ Fp 25 + K, + K}, ys°
K =—We.zy+ Fp 25 + Kb, + K xf°

Kl =pgA. K, =pgl,, . Kb, =pgl,,
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Figure 3.9: Buoyancy restoring forces and moments at zero rotation angles

v

This stiffness matrix is only symmetric if K;® = KP* | which happens only when z; = y; = 0
i.e. the body frame z-axis coincides with the cylinder centerline or if the W. = Fp. zp and
z, are measured negative downwards. The hydrostatic stiffness matrix in Equation (3.37) is

often used in dynamics analyses of offshore platform [17,20].

3.4 Three-Dimensional Equilibrium of a Free Floating
Cylinder

The hydrostatic equilibrium of floating structures is generally analyzed numerically uti-
lizing iterative approaches and searching techniques [17,21] since the buoyancy force and
moments are functions of the equilibrium position. Fortunately, the theoretical analyses de-
veloped here can be directly applied to find the exact 3D equilibrium position and orientation
of cylinders that float freely or subject to external loadings. Moreover, it can be efficiently
used to find the equilibrium position and orientation for an arbitrary position of the cylin-
der’s center of gravity. The analysis is implemented for a rectangular cylinder in the following

example.
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Ezample : A rectangular cylinder of weight W, floats freely in water (p = 1000 kg/m?).
The cylinders dimensions are 2 x 1 x 6 m, as shown in Figure 3.10. The cylinder initially
was at even keel (u = 0), the draft L. = 3 m. The center of gravity is located 0.5 m above
the bottom base center along the cylinder vertical centerline (2). An external vertical force
F. = W./4is applied at the cylinder corner, the new equilibrium position and orientation (Eu-

ler angles) and the coordinates of the cylinders corners intercepts with the SWL are required.

Solution : Initially before applying the load F,, all the cylinder corner intercepts with SWL
are located at z = —3 m i.e. half of the cylinder volume was submerged and W, = Fz = 6pg.

After applying the external force F,, the new buoyancy force is
Fp=W.+F, =125W.=125(2-1-3) pg =75 pg (3.38)
The submerged length L.; can be determined using Equation (3.8)
L. =Fg/pgA,=3.75m (3.39)

The body frame location is arbitrarily chosen at the center of the upper face. The static
equilibrium pose can be determined by invoking the moment balance around the body frame

origin, as shown in Figure 3.10.
> M, ="rep x (RT 'Fp)+7r, x (RT 'W) +7rp x (RT 'Fo) + "M, =0 (3.40)

where Pr, = [0, 0, —=5.5]7, Prr = [1, 0.5, 0|7, Prop = [0, 0, —4.125]7, TFp = [0, 0, 7.5pg]",
W = [0, 0, —6pg]”, and 'F, = [0, 0, —1.5pg]”. Equation (3.40) yields a system of 3 nonlin-
ear equations in 2 unknowns, ¢ and 6. One can solve any two equations simultaneously, for
instance the equilibrium equations in pitch and yaw are

14715 ¢4 cg — (214185/8) s — 817.5 7 sg — 1635 s¢ t3/c; = 0

(3.41)
4905 ty 59— 14715 ¢ 55— T357.5 59 = 0

Equation (3.41) can be solved to find ¢ = —17.83° and 0 = 26.76° and the corresponding
cylinder’s corners intercepts with the SWL are shown in Figure 3.10. The coordinates of

the intercepts can be evaluated in the body frame using the water plane equation that was
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Figure 3.10: 3D equilibrium of a floating rectangular cylinder subject to a vertical load

previously discussed in Section 3.2. As expected, the corner where the load is applied is
the closest to the water level at equilibrium, as seen in Figure 3.10. The angle between the

cylinder centerline (2) and vertical direction (Z), n = cos™!(cosf cos ¢) =31.79°.

3.5 Hydrostatic Loads (F;s and M) for the Equations
of Motion

The hydrostatic force Fj; and moment My terms in the equations of motion (Equa-
tions (2.19) and (2.50)) of both the dynamic models developed in Chapter 2 can be deter-
mined using the nonlinear hydrostatic approach already developed. Although this approach is
derived for cylindrical floaters of uniform cross sections, it can be easily adapted for cylinders

of multiple cross sections as the platform of the FOWT under consideration.

The floating platform structure is composed of a large lower cylinder of diameter d;
and length a; and a smaller upper one with corresponding diameter and length ds and as,,
respectively. The two cylinders are connected through a conical frustum of length as. The

small cylinder top face is the foundation of the tower base, as shown in Figure 2.8. The
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hydrostatic force and moment are mainly dependent on submerged shape of the structure
and its cross section area piercing the water. The diameter of the platform cross section
piercing the water (d,,) is dependent on the submerged length (L.s), as shown in Figure 2.8.
The submerged length (L.f) can be calculated using Equation (3.12) as

L= (Le—1z—ap+ Hy+ aprcyco) /(coco) (3.42)

where the platform draft L. = L.f at rz = 0 and 8 = 0. The draft is L. = 120 m, as specified
in the OC3-Hywind design data [6]. The distance between the JF,, origin and platform base
center is denoted by a,r. The wave height crossing the platform is H, can be calculated
using the analysis in Section 2.3.1. Since the platform is of slender shape and the the wave
length is very large compared to the platform diameter, H,, can be assumed constant across
the platform. The buoyancy (hydrostatic) force is the fluid weight of the submerged volume,

written as

A

"Frs = (pVag) K (3.43)

where the displaced volume (Vj) can be calculated based on the submerged shape geometry

in Appendix C. The hydrostatic moment can be expressed as
Mhs =Trcg X Fhs -+ wa (344)

where ro = (acy — apy) K, acy is the distance between the platform base and the center the
submerged volume of length L.; assuming the platform is on an even keel (vertical), and r¢
is the corresponding position vector of that center relative to the , origin. The water plane

area restoring moment (M,,) can be caculated from Equation (3.24) as
P 1 th | 42 1 ty 42 g
M.y = —pg pr[ CoSy + 35¢Ch <é + t¢> So + 350 (é + t¢) 0 } <3'45)

where the moment of inertia of the platform cross section piercing the water level is I, =

mdy,,/64.
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Chapter 4

QUASI-STATIC MOORING LOADS AND STIFFNESS

The main purpose of this chapter is to determine the mooring loads (F,,,. and M) in
the equations of motion developed earlier in Chapter 2. The mooring loads exerted on the
platform will depend on the mooring system geometry, configuration, and cable properties.
In this work, two mooring system configurations are studied. The mooring loads for each

configuration are formulated utilizing quasi-static cable models.

The analysis is then extended to derive the exact stiffness matrix (6 x 6) of the mooring
system for a structure undergoing a general displacement. Closed forms of the stiffness
matrix are evaluated for symmetric slack catenary, taut-leg and tension leg mooring systems
at equilibrium. Finally, the influence of the key mooring system design parameters such as
anchor radius, number of tethers and mooring system configuration, on the mooring system
stiffness is investigated for a taut-leg mooring system. It is worth noting that our analysis
assumes that cables are only subject to gravity loads (weight) and no external steady loads

(such as current) are considered.

4.1 Mooring System Loads

The mooring force (F,,,.) and moment around the origin of the platform frame (M,,,)
are evaluated for two different mooring system configurations (designs) for the OC3-Hywind
FOWT under consideration. The original mooring system design was developed by Statoil
and used to build a FOWT prototype deployed close to the south-west coast of Norway in
2011. The design involves multiple cable segments and suspended clump weights, as will be
illustrated in Section 4.1.2. However, the original data of this design has not been published.
A simplified design, in which each mooring line is composed of a single cable augmented by

additional yaw stiffness coefficient (K,44) has been released to the public by the NREL [6].
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Later on, the original multi-segments (bridle) design data was published [7]. Based on the
geometry and cable properties data of the both deigns, it is noticed that the mooring system
total mass (of the cables and clump weights (if any)), cable extensional stiffness (F'A), and
the anchor radius are identical for both designs. However, the cable mass per unit length of

the simplified design is larger.

Most the published dynamic studies of this FOW'T system considered the simplified moor-
ing design. Therefore, the mooring load of both designs (configurations) will be formulated to
perform the dynamic simulations. The dynamic simulations that use the simplified mooring
system design will be used to validate the dynamic models developed herein. On the other
hand, the dynamic simulation of the FOWT system using the more complex original mooring

system design will be performed to investigate the dynamic behavior of the real system.

4.1.1 Single-segment configuration

In the simplified configuration, the catenary mooring system is comprised of 3 lines rest-
ing on the seabed when the system at equilibrium. The anchors are uniformly distributed in
a circle with radius R, and 27/3 radians apart. The upper attachment point (fairlead) radius
is Ry and the attachment points circumferential distribution is similar to their correspond-
ing anchors, as shown in Figure 4.1 (a). The tethers are identical in length and material

properties.

The mooring loads are determined using the equation of an elastic catenary. The tension
determined using this approach is referred to as the quasi-static tension [14]. In this approach,
the cable-seabed interaction forces such as friction and damping are ignored. The absolute
position of the upper attachment point (fairlead) of the i-th mooring line during a general

displacement of the platform can be expressed in the inertial frame as
Ie, =X, Y, Z,)" ='r + RPrpp, (4.1)

where Prpo, = [Tpo Ypo Zpo|’ is the position of the i-th fairlead relative to the origin of F,
which is a fixed dimension in the platform frame, as shown in Figure 4.1 (b). The inertial

coordinate system X Y Z is defined for a mooring line and parallel to the inertial frame XY Z,
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Figure 4.1: Single-segment Mooring system configuration and geometry
with origin at the corresponding anchor point. The position of the i-th anchor point in the

inertial frame is 7U, = [X4 Y4 Za|'. The i-th cable horizontal and vertical projections (1

and h, respectively) are scalar quantities, can be expressed as

2 2
= (X, = X,)"+(V,=Y))” . h=(2,—2,) (4.2)
The angle [ is the angle between the X-axis and [, calculated as
B =atan2(Y, —Y,, X, — X ) (4.3)

where atan2 is the four-quadrant inverse tangent function. The tension exerted by a mooring

line on the platform, as illustrated in Figure 4.1 (b), is
'T=[Tx Ty Tz"=—[HcosB Hsinpg VI]* (4.4)

The total mooring force is the sum of the mooring forces exerted by all mooring lines, can

be written as

The total moment exerted by the tensions of the mooring lines on the platform about the
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origin of the body frame,

3
pMmor = ZPI'J(P) pT(Z) (46)

i=1
where the superscript (i) in Equations (4.5) and (4.6) denotes the respective quantities of

the i-th mooring line.

Calculating the cable tension components (H and V') depends on the cable profile shape
whether suspended or partially resting on the seabed. When part of the mooring line rests on
the seabed, the corresponding anchor point experiences only horizontal tension, as shown in
Figure 4.2 (a). The cable horizontal and vertical tension components (H and V') acting at the
top attachment point, in the plane of the cable profile, can be determined using a catenary
equation. This equation can be solved numerically for given unstretched cable length (L,),
cable equivalent weight (in fluid) per unit length (w), extensional stiffness (E'A) and cable

horizontal and vertical projections (I and h), as [17]

V L.H H 1%
=1L, — o —s1nh (ﬁ)
. e (4.7)
_ - 2 2 _
” (\/H +V2—-H+ 2EA)

When the line is suspended, as shown in Figure 4.2 (b), V' computed from Equation (4.7)
exceeds the line weight (V' > wL,), the line profile is then no longer tangent to the seabed
and thus the result is no longer valid. Therefore, the line tension should instead be computed

using the conventional form of the suspended catenary equation [32]

l = (HLo/EA)+ (HLy/W) [sinh" (V/H) —sinh™' (V — W)/H)]

(4.8)
h = (WLo/EA) [(V/W) = 0.5] + (HLo /W) {\/1 (V/HY = /14 (V = W)/H)?

where W = wL, is the line weight. During the dynamic simulation, the nonlinear algebraic
equation of the catenary (Equation (4.7) or (4.8)), according to the line profile shape is solved

to compute H and V using a Newton—Raphson technique at each time step.
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Figure 4.2: (a) Slack mooring line resting on the seabed; and (b) suspended line

4.1.2 Multi-segment (bridle) configuration

This catenary mooring system is comprised of 3 identical mooring lines that each includes
a bridle component, as shown in Figure 4.3. Segments 1 and 2 form the bridle and are attached
to the platform circumference (radius Ry), at nodes 1 and 2. The upper end of Segment 3 is
connected to the bridle at node 3, and the other end is anchored to the seabed. The clump
weight (Wey) is a heavy cylindrical mass suspended on segment 3 at unstretched length
s1 measured from the bridle connection (node 3). The anchors are uniformly distributed
in a circle with radius R. and 27/3 rad apart. The segments are identical in material
properties and diameter. The unstretched length of each bridle line and segment 3 are Lga
and Lgs, respectively. The mooring system properties of the two configurations are listed in
Appendix A.4. The fixed position of the anchor point (A) relative to the origin of the inertial

frame is U,4. The corresponding positions of nodes 1 and 2 can be expressed as
Iy =Ir+R?U;, , ry="r+R"U, (4.9)

where PU; and PU, are the fixed position of nodes 1 and 2 relative to origin of the platform

frame, respectively.

The tensions of the cables comprising the mooring system can be determined using a

catenary equation of a suspended cable with point vertical load (P.) acting at unstretched
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Anchor

Figure 4.3: Mooring system configuration and geometry

length s; measured from the upper end (Figure 4.4), presented by Irvine [32]

HLy N H sinh ™' (V) — sinh ! (Y=ezwla)

A H H

EA W 4ginh! (V—P;{—wsl) — ginh! (V—stl)

oL (VL wL02> L H \/1 + (%) - \/1 + (V=Rmulo)? 4 \/1+ (V-Losr)?
Cc 0 — _
v —y/1+ (Y5ee)® 4 Fe (s) — Lo)

le

(4.10)

Figure 4.4: Suspended catenary cable with a point load

As discussed earlier, one or more lines could partially rest on the seabed due to platform
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displacement. Once the cable rests on the seabed i.e. if V < P. 4 wlLg, the form of Equa-
tion (4.10) is no longer valid for computing the cable tension. Therefore, this form should be

altered to account for the decrease in the weight of the suspended portion of the cable.

Consider the cable shown in Figure 4.5, the unstretched length of its suspended portion
(P'P) is Ly and that of the portion resting on the seabed is Lgo. The unstretched length
of the whole cable profile is Ly = Lo + L. The cable profile horizontal projection can be

expressed as
le =1+ 1 (4.11)
where [, is the stretched length of the resting portion, can be simply expressed as

H
lo = Ly (1 + ﬂ> (4.12)

Since the point P’ is tangent to the seabed, the cable static equilibrium yields

V-P,
stO - LO -

(4.13)

One can now apply the catenary equation (Equation (4.10)) for the suspended portion (P’P)
by substituting Ly = Ly, and [. = l; and substitute the resulting from together with Equa-
tions (4.12) and (4.13) back into Equation (4.11), which can be finally expressed as

HLy (V—P)  H|sinh™ () +sinh™ (=)

le =Lo + EA w + w _ginh™! (V—}}ﬂa)

(4.14)
VQ—PC2+H -1 + \/1—}(%)2_}_\/1_’_(‘/713;{711231)2

he =
2E Aw w | _ /1+(V7w51)2+ E(ws; —V + P.)

H HEA

This new form represents the catenary equation for a cable partially resting on the seabed

with a point vertical load (Figure 4.5).

The two-dimensional form of a suspended catenary (Equation (4.10)) can be slightly

modified to the three-dimensional domain (Figure 4.6) to analyze the 3D static equilibrium
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Figure 4.5: Cable partially resting on seabed with a point load

of the mooring, as

] _ HxLy Hy | sinh™ LY — sinh™ (%)
TUOBA T w | bt (VB ) gyt (Vowsr)
HyL, Hy | sinh™'(37) —sinh™! (¥F=Feete)

yy =Hrlo  Hy

EA w L sinh ™! (V—P;I—wsl) _ginh! (V—I}usl)

P —wLa) 2 P —wsy )2
o (v ) [ VOB o G i
EA 2 1+(V ws1)2+15CEuIJ4 (Sl_LO)

(4.15)

Similarly, the catenary equation of a cable partially resting on the seabed (Equation (4.14))
can be extended to 3D as
Hx  HxL, (V- P)Hy
H EA wH

H \%4 V—-P, V-
+== {sinhl (ﬁ) +sinh ™! <—H wsl) — sinh™! <—stl>]

Hy HL, (V-P.)Hy

ly =LY
v =t T e wi (4.16)

Hy | . . [V o (V= P.—ws 4 [V —ws
+ " [smh ( H) -+ sinh ( I ) sinh 7

VAo PEH | SL L () i ()
7 T 2R Aw w

lX :Lo

where H = \/Hx? + Hy?, and (Ix,ly,lz) are the coordinates (in the inertial frame) of the
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cable upper end (P) relative to the lower end (anchor point).

VA 4

A

Figure 4.6: Catenary cable in 3D.

The obtained Equations (4.15) and (4.16) now can be used to analyze the general 3D
static problem of the bridle mooring arrangement (Figure 4.3) in which segment 3 can be
either suspended or partially resting on the seabed. The tension components at nodes 1, 2
and 3 can be determined by solving the 3D static equilibrium of the bridle which implies that
the sum of the tension forces at node 3 is zero. It is assumed that the absolute coordinates
of the nodes 1 and 2 (‘r; and ry) are known from the system kinematics. The procedure for

computing the mooring loads of the bridle mooring line is illustrated as follows:

1. Since the coordinates of A and nodes 1 and 2 are known, the following kinematics con-
straints will hold

T
[l +lxy bntly Uiz | ='1i—"Us o

T
[ lXQ —+ ng ly2 + ly3 lZ2 + lZ3 :| = II‘Q — ]UA
which represents a system of 6 algebraic equations in 12 unknowns ( lx;, ly,, and lz;) for
J=1, 2 and 3, where lx;, ly;, lz;, are the projections of the j-th segment on the X, Y, and

Z axes , respectively.

2. Write the catenary equation of a suspended line (Equation (4.15)) for segments 1 and 2,
Substituting Pc = 0, Lo = LOA; lX = lXj, ly = lyj y lZ = le, HX = HXj, Hy = Hyj, and

V =V, for j =1 and 2, and substitute the resulting equations into Equation (4.17).
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3. Write the catenary equation of a suspended line (Equation (4.15)) for segment 3, substi-
tUting Pc = WCL7 LO - L037 lX = lX37 lY = lY37 lZ = lZg? HX = HX37 HY = HY37 and
V' = V5 and substitute the resulting equations into Equation (4.17). Now Equation (4.17)

represents a system of 6 equations in 9 unknowns (Hx;,, Hy,, and V}, for j=1, 2, and 3).

4. Solving for the equilibrium of node 3 yields
Hx,=Hx, +Hx, , Hy,=Hy,+Hy, , Va=Vi+Vo—2wloa (4.18)

substituting these relations into the updated form of Equation (4.17) (step 3) makes
the number of unknowns equal to its number of equations (6) which can be then solved

numerically using a Newton-Raphson method to determine the tension components of

nodes 1 and 2 (Hx;, Hy,, and V}, for j=1 and 2) .

5. Substitute the solution into Equation (4.18) to determine V3 and check if V3 > W 4w Los.
This condition ensures that segment 3 is suspended as presumed in Step 3. However, if
this condition is violated i.e. if V3 < W +wLgs, this implies that segment 3 is resting on
the seabed and thus the obtained solution is not valid. Therefore, Equation (4.15) should
be replaced by Equation (4.16) in Step 3. The system of equations should be re-solved to

determine the nodes tensions.

The previous steps are repeated for each mooring line to calculate their tensions. The tension

exerted by the i-th mooring line on the platform can be expressed in the platform frame, as

) ) ) A ) ) LT
PRO — _RT ([ HY HY v +[HY HY vﬁ]) (4.19)

1 2

The moment exerted by i-th mooring line on the platform about the origin of the body frame,

can be expressed in the platform frame as
PMO) ) g g o 1) eyl T g0 @ 6 ]
M, ="Ur x| =R [ my HyY V7] |+"Uy' x| -R'[ HY Hy V"] (4.20)

The total mooring force can computed as

=3

PFoor = Y "F), (4.21)

i=1
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In the same manner, the total moment is
3
pMmor - ZpM(l) (422)

mor
i=1

4.2 Stiffness Analysis

Despite the analytical efforts to derive the mooring stiffness matrix for several types of
floating structures undertaken in these studies [33-40], each is restricted to either slack
or taut cables and may yield a considerable error for large displacements of the platform.
Therefore, the mooring stiffness matrix is usually determined numerically using finite differ-
ence techniques. There is no exact analytical approach to derive the stiffness matrix at an
arbitrary position and orientation of the floating structure. Here, we present a new compre-
hensive analysis to obtain the exact 6 x 6 stiffness matrix for slack and taut mooring system

will be presented next.

4.2.1 Two-dimensional stiffness matrix of a single mooring line

We start our analysis by considering the stiffness characteristics of a single mooring line,
which will later be used as a component in the stiffness of a mooring system. Consider a
single mooring line suspended at P, already shown in Figure 4.2 (b). The stiffness matrix of

the cable in the plane of the cable profile is expressed as [111,112]

OH OH
oo | B0 EL | S (4.23)
K3 K o o

The procedure for calculating H, V and KP varies according to the mooring line tension
and profile shape. Three distinct cases can be considered: (a) suspended line, as shown in
Figure 4.2 (b); (b) a slack line partially resting on the seabed, as shown in Figure 4.2 (a);
and (c) taut line, as shown in Figure 4.7. It is worth noting that case (c) is a special case of
case (a). The analysis assumes the line material and cross section are uniform and the line
structural elongation is governed by Hooke’s law. We now consider methods to determine

KP? for each of these three cases in succession.
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Figure 4.7: Taut line (case (c))

4.2.1.1 Suspended line (case a)

The line attains a non-zero angle with the seabed when the tension is sufficient to lift
it up i.e. V. > W. The catenary equation governs this case was previously presented in
Equation (4.8). It is clear from Equation (4.8) that [ and h are both functions of the
horizontal and vertical tension components H and V', i.e. | = I(H,V), and h = h(H,V).

Their differential changes can be expressed in matrix form as [112]

dl oL oL dH dH

- -IFi )
dh oo | gy v

where F., is the flexibility matrix that represents the partial derivatives of the cable profile
projections [ and h with respect to horizontal and vertical tensions, H and V', respectively.
It was demonstrated by [111] that Fj., is symmetric such that % = g—f]. The elements of

F.. can be expressed as [19,111]

ol _Lo Lo | . . . ,(V (V=W
9 " BA + i [Slnh (H) sinh 7

@ - Vv . V-W

W \/H2+V2 \/H2+(V—W)2

_|_

o oh Ly| H H (4.25)

oV OH WAVHEEVE iy (v - wy

oh Ly Ly V V-w

_:_+_
oV EA W |V V? \/H2+(V_W)2
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Differential changes in H and V' can be expressed as [dH dV]|" = [K?] [dl dh]". Thus, K?

can be expressed as [112]

K’ = F;!

lex

(4.26)

KP? is also symmetric because Fy., is symmetric.

4.2.1.2 Line resting on seabed (case b)

A zero angle with seabed (assuming flat seabed) occurs in slack mooring systems i.e.
when V < W. The catenary equation governs the cable statics is already expressed in
Equation (4.7). Accordingly, the elements of the flexibility matrix (F.,) can be determined
by differentiating Equation (4.7) as

ﬁ — & + l _—V + inh*1 K
0H EA  wl|VEEive o H
o (4.27)

o _on L[ H ] oh_V[ 1 1
oV 0H w | HZ+V?2 OV w |VH2Z+VZ EA

Similarly, K? can be determined using Equation (4.26). It is worth noting that in the

case of an inextensible cable, such as slack heavy chains, one can substitute FA = oo in

Equations (4.7) and (4.27) and accordingly all the corresponding terms can be dropped.

4.2.1.3 Taut line (case c)

Although the catenary equation yields an exact solution for the cable statics problems,
it must be solved numerically which requires some computational effort. When the line is
taut and no sag exists i.e. H/V & [/h, it can be modeled accurately as a massless linear
spring to simplify the computations. The stiffness of the tether along its chord (L) can be
assumed equal to Ky = FA/L,, as shown in Figure 4.7. The results of the exact analysis
in Section 4.2.1.1 were verified to approach those of the massless linear spring assumption
as the platform excess buoyancy force is increased; or as the mooring line weight is reduced.
The massless spring assumption dramatically simplifies the analysis and obviates the need
to use the catenary equation. This simplified analytical approach can provide an accurate

approximation of the stiffness for taut mooring system such as on TLPs.
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Consider the cable shown in Figure 4.7 of unstretched length L,, stretched length (chord
length), L = v/I> 4+ h2. Its configuration is defined by angles 3 and a. When the cable is
stretched by AL, the associated variation of tension is AT = K;AL. The cable tension is
T = K;(L— L,). The expressions for H,V,[, and h can be then written as

H=Tcosa , V=Tsina , l=Lcosa , h=Lsina (4.28)

In contrast to the previous two cases, the elements of K” can be directly derived as

OH  0(Tcosa) oT OL . Oa

5 o :COSQG_LWjLT(_SmaW)

OH  0(T cosa) JT OL . O«

A e :cosaa—L%+T(—sma%) (£.29)
oV 0(Tsina) . 0TOL Oa .

r T T :SIHQG_LW+TCOSQE

oV 0(Tsina) . 0TOL O

T T :Slnaa—L%—FTCOS&%

It is obvious that, when the cable is taut, 7' = f(L) such that 07/0L = dT/dL = K.

From kinematics we can evaluate the partial derivatives of L, with respect to [, and h as

oL oL ) Jda —sina OJa  cosa
— =cosa , — =sina , = =

o L " oh L

(4.30)

Substituting Equation (4.30) into Equation (4.29), we obtain the final form of the elements

of the cable plane stiffness matrix K?

H T H T
88—1 = 0082aK1+Zsin2oz , g—‘}j = sin2aK1+zcos2oz , %—h = aa_‘l/ = cos o sin « <K1 — Z)

(4.31)

4.2.2 Derivation of the 6 x 6 stiffness matrix of the mooring line

The previous analysis (Section 4.2.1) can only be used to determine the 2D mooring
line stiffness matrix in the cable profile plane. However, when a mooring line is attached
to a floating platform undergoing general displacement, the platform kinematics should be

considered to derive the 6 x 6 stiffness matrix of the mooring line.

The derivation of the mooring stiffness matrix which will be detailed in the next section
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requires evaluation of the differential changes of [, h (in Equation (4.2)), and /5 due to changes

in the translational and rotational displacements of the platform. These can be represented

for [ as
ﬁ:cosﬁ, ﬁ:sinﬁ, ﬁ:O,
87"X a’l"y 8rZ <4 32)
g—cosﬁaXp—i—sinﬁ% (=09,0,v¢ |
6( - aé- aC I - A
and for § as
o —sinp 0B  cosf ap _0
orx 1 ary 1 ary
% ! coS 5% — sinﬁ% -
oc 1 ¢ ¢

In the above equations we must evaluate the change of position of the upper attachment

point, with respect to changes of orientation of the platform, formulated as

or,, OR
a—g = a—grpo (434)

The closed form expressions of Equation (4.34) can be found in Appendix D (Equation (D.7)).

Since 1U 4 is constant, the differential change in the attachment point vertical displacement

Z, is equal to that of h such that 07, = Oh

Oh 0z, oh_0Z, _, Oh_0Z, | oh _0g

= = = = = — = —= 4.35
8rX 87"X ’ (97’)/ (%"y ’ 87"2 (97’2 ’ 6C 8C ( )

4.2.3 Mooring stiffness formulation of a single line

As mentioned earlier, the stiffness matrix of a mooring line represents the change of
the mooring line forces and moment exerted on the platform with respect to the platform

displacements. The moment exerted by the line tension force on the platform about the
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origin of the body frame, as illustrated in Figure 4.1 (b), expressed in the inertial frame as

MX Xp_TX TX (}/p_rY)TZ_(Zp_TZ)TY
]Mmor = MY - va — Ty X TY - (Zp - 7GZ) TX - (Xp o rX) TZ
My, Z,—rz Ty (X, —rx) Ty = (Y, —ry) Tk

(4.36)

We can define the generalized displacement (translation and orientation) of the platform by
X (as in Equation (3.33)), and the corresponding generalized force (tension/moment) for a

mooring line by F,, as

T
Fm: TX Ty TZ MX My Mz] (437)

The mooring stiffness matrix for a mooring line can be derived as
K,, = —0F,,/0X = [K;] = —[0(F}n),;/0X]] (4.38)

Where ¢ and j are indices of the components of F,, and X, respectively. The general exact
6 x 6 stiffness matrix for a single mooring line at an arbitrary position and orientation of
the platform derived using Equation (4.38) is detailed in Appendix D. The mooring stiffness
coefficients can be evaluated by choosing the elements of K? according to the cable profile case
considered (Section 4.2.1). As well, the partial derivatives of [, h, , X, Y,, and Z, with respect
to the platform displacements can be determined using Equations (4.32) to (4.35). It is well
known that the mooring stiffness matrix is not symmetric i.e. K;; # K;;. However, partial
symmetry exists in the surge, sway, heave and yaw modes i.e. K;; = Kj; fori,5 =1,2,3,6,

resulting in 6 symmetric pairs of stiffness matrix coefficients.

The above generic analysis can be now applied to determine the exact (6 x 6) mooring
stiffness matrix of a single taut mooring line at an arbitrary position and orientation of the
platform, while assuming the lines remain taut as in the TLP, shown in Figure 4.8. The
mooring stiffness coefficients can be determined directly by substituting the K? elements
(given by Equation (4.31)) together with expressions in Equation (4.28) into the general

mooring stiffness matrix coefficients listed in Appendix D. It is worth noting that when
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a = 90°, ( is undefined. However, if we retain 3 in its symbolic form, all terms containing
will cancel out and hence all the corresponding terms will be free of 8. Therefore, § can be

arbitrarily chosen as zero in the calculations at a = 90° for a taut line.

“4) “ @)
(X35 Y 1022 40)

“N\=(0,~b,~D )

X

Figure 4.8: Rectangular TLP undergoes large displacement

The mooring system stiffness at equilibrium for the rectangular TLP (Figure 4.8 ) can
be obtained by substituting X = 0 and the attachment point coordinates in the body frame,
ry, = [a 0-DJ],[0 b-DJ],[-a 0-D], and [0 -b-D] for the lines 1, 2, 3, 4, respectively into

the Equations of Appendix D. The angles o = 90°, and § = 0 for all the lines. The resulting

mooring system stiffness matrix form of this TLP will be presented in Section 4.2.4.3.

4.2.4 Mooring system stiffness

The stiffness matrix of a mooring system composed of multiple lines is evaluated by
summing the stiffness matrices of the individual lines. If K denotes the stiffness matrix of

the i-th mooring line, the stiffness matrix of a mooring system comprised of n lines can be
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evaluated as

n

K, => K (4.39)

=1
The general analysis developed here can be used to determine a closed form of the mooring

system stiffness matrix for the following types of mooring systems at equilibrium.

e Slack catenary mooring system: the line is hanging freely and the whole cable profile is

suspended (Figure 4.2 (b)) or part of its length rests on the seabed (Figure 4.2 (a)).

o Taut-leg mooring system: where the line does not contact the seabed and are taut due to
the pretension caused by the platform excess buoyancy. The lines are inclined (with angle
«) and the anchor experience horizontal and vertical loads. Most the restoring loads are
generated by line elasticity. The mooring radius (R.) of the taut-leg mooring system is
smaller than that of the catenary mooring system if designed to support the same platform

size and weight.

e Tension leg mooring system: the lines are vertical (o« = 90°) and the anchor experiences
mainly a vertical load. This type can be considered as a special case of the taut-leg

mooring.

The mooring stiffness matrix at equilibrium is mainly required in the preliminary design and
dynamic analyses of the floating structures. The detailed formulation of the mooring system

matrix for these mooring system types are presented in the following subsections.

4.2.4.1 Catenary mooring system stiffness matrix

A catenary mooring system is comprised of n lines (n > 3) in its equilibrium configura-
tion similar to that shown in Figure 4.1 (a). It is assumed that the anchors are uniformly
distributed in a circle with radius R, and 27 /n radians apart. The tethers are identical
in length and material properties. The projected horizontal and vertical lengths, [ and A,

respectively are also identical for all tethers.

The stiffness matrix of the individual lines based on the line order in Figure 4.1 (a), can

be determined by substituting X = 0, and 8; = 7+ 27 (i — 1) /n for linei = 1,2,3, ...., n into
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the stiffness coefficient expressions in Appendix D. In the same manner, substitute the i-th

fairlead body frame coordinates, a:’l(fo) = Ry cos(p; — ), yz(of)) = Rysin(f; — ), and zl(,io) =-D

for all tethers. The mooring stiffness matrix of the entire mooring system at equilibrium is

symmetric, can be then expressed as

Ky 0 0 0 K5 0
0 Ky 0 Ky O 0
0 0 Ks3 O 0 0
K, = (4.40)
0 Ky 0 Ky 0 0
Kx; 0 0 0 Ks5 0
0 0 0 0 0 K
where
H R D DH
Ky = 5" (K{?1+T) , Kis=-n <—7fo2 5Kf1+T)
Kypy=Kn , Ku=-Ki5 , K= anz , Ko = Koy
D? R HR, DH (4.41)
K44:TL(—DRfoZ—i-?Kfl"—?ngQ‘i‘Dv‘i‘Tf"’ 921 ) ) K51:K15

HER?

Kss = Ky K66:n( +HRf>

Here, H, VI, h, and the elements of K? are identical for all the lines due to symmetry.

4.2.4.2 Taut-leg mooring system stiffness matrix

If the lines are taut, the stiffness matrix of a symmetric taut-leg mooring system (Fig-

ure 4.1 (a) but with taut lines) can be obtained by substituting the elements of K? from

Equation (4.31) into Equation (4.41). As well, the expressions of H,V,[, and h can be taken
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from Equation (4.28) and substituted into Equation (4.41) to get

T
Ky, =0.5n (E (1 + sin20z) + K]COSQQ)

T ) . K[ 2 .
Kis=—n o (D + Dsin“o + Ry sin a cosa) + o> (Dcos a — Rysina Cosa)

T
KQQ :Kll , K24 = —K15 s K33 =n (-COSQCY + Klsinza) s K42 - K24
L (4.42)

1 T
Ky =n [T (D sina + §Rf cos a) + 0.5z ((Rycosa + Dsina)® + Dz)l
+0.5n K7(D cos e — Rysina)?

TR
K51 :K15 s K55 = K44 s K66 == an (Rf + L cos OZ)

4.2.4.3 Tension leg system stiffness matrix

If the lines are taut and vertical, the mooring configuration becomes a tension leg struc-

ture. Substituting o = 90° into Equation (4.42), the stiffness matrix for triangular (Equilat-

eral), square, pentagonal, hexagonal, ...., etc, TLPs can be expressed as
nt 0 0 0 —ntE 0
0 nt 0 22 0 0
0 0 nK; O 0 0
K, = (4.43)

0o n»nf2Z 0o KY 0 0

-n2 0 0 0 K 0
0 0 0 0 0 K6

2
where K} = K% =n <TTD2 +0.5K; R} + TD>, K% = nTTRf and n represents the number
of legs. For a rectangular TLP with dimension 2a x 2b, as shown in Figure 4.8, the mooring

stiffness matrix form is similar to that of Equation (4.43) (with n = 4), but with different
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expression for

K¥ = ( V+T D)

K = ( ) (4.44)
2T

K% = = (a® +b)

The results in Equation (4.44) can also be found in [37,40]. However, to our best knowl-
edge, the term 47 D?/L in K4 and Kj; is missing in other works. If the platform undergoes
general displacement where X # 0, the stiffness matrix of each line should be determined

based on its geometry and the platform displacements.

4.2.5 Influence of the mooring system design parameters

The mooring system configuration and geometry affect the mooring stiffness in a complex
manner. For example, the TLP mooring system stiffness matrix given by Equation (4.43)
shows that the roll, pitch and yaw stiffnesses increase as the anchor (or fairlead) radius (Ry)
increases (R; does not affect L or K;), while the surge, sway and heave stiffnesses do not
change. However, for a taut-leg mooring system where the taut lines are inclined, the change
in the anchor radius implies a change in the line length which alters K;. The effect of this

concurrent change on the mooring stiffness of the system is now investigated.

The influence of mooring system design parameter is investigated for the taut leg floating
wind turbine platform concept proposed by Sclavounos et al. [73] and Lee [113]. The mooring
system forms 2 concentric quadrapods sharing the same anchors while the attachment points
(fairleads) of each are located at different depths, as shown in Figure 4.9. The anchors are
uniformly distributed in a circle with a radius R, and 90° apart. The cable diameter d = 15
mm, linear stiffness FA = 1.50 x 10° N, and equivalent weight in water per unit length
w = 722.31 N/m. The fairlead depths dy and dj, are 0 and 20 m, respectively, and their
radius, Ry = 6 m as proposed in [113]. The mooring system stiffness is computed using the

exact analysis discussed in Section 4.2.4.1 where the cable weight is considered.
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Figure 4.9: Taut leg floating wind turbine concept (4-anchor)

4.2.5.1 Influence of the anchor radius

The diagonal stiffness coefficients of the mooring system in all DOFs are computed for a
range of R. while water depth (d,, = 100 m as used in [113] is kept constant). The analysis
is conducted at two different excess buoyancy forces F,; = 3.2 x 10° N (as calculated from
[113]) and F.p = 4.0 x 10° N, where the excess buoyancy is the difference between the total

weight of the platform and mooring system and buoyancy force.

Since this is a statically indeterminate system, the unstretched lengths of the upper and
lower lines can be adjusted to support the same fairlead vertical tension such that each line

supports one eighth of the excess buoyancy load (V' = F,/8).

Figure 4.10 (a)-(d) illustrate the effect of anchor radius, R, on the diagonal coefficients
of the mooring system stiffness matrix. The results show that the horizontal stiffnesses (K71,
and Ks9) initially increase with increasing anchor radius, reaching a peak, and then decrease.
This occurs because when the anchors are moved outward, the tethers also lengthen and hence
soften and this then eventually ends up overriding the benefits of orientation. It is interesting
to note that the location of the maximum stiffness change significantly with the cable sag.
When the line is more saggy i.e. at lower F,, the peak occurs at lower anchor radius. The
heave stiffness K33 decreases monotonically as R, increases because the line becomes longer
and hence softer (K decreases), and also becomes more inclined. Figure 4.10 (e) and (f)

shows the tensions acting at the fairleads of the upper and lower lines. These plots simply
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Figure 4.10: Influence of anchor radius on the system stiffness and tension

show that tension gets larger as the anchor radius increases. This leads to higher yaw stiffness
(Kgg) since it is proportional to the line tension. The roll/pitch mooring stiffnesses (K44 and
K55) decrease as R, increase up to R, = 40 m then increases. This is because Ky4 and K
are proportional to T'D? and K, as R, increases K; decreases and T increases. At larger
R., T becomes more dominant yielding an increase in K,y and Ks5. If all the fairleads and
the local coordinate system are located at the same depth i.e. D = 0, the trends of K44 and

K55 will be similar to K33 since they are then only proportional to K; which decreases as R,

mecreases.

4.2.5.2 Influence of number of lines

The proposed taut-leg mooring system under consideration has 4 anchors that support
4 pairs of lines (Figure 4.9). However, a system with fewer anchors consisting of 3 pairs of
lines attached to 3 anchors also can be used. Ideally, as the number of tethers increases, the
mooring system stiffness increases assuming all tethers are fully taut (sag free). However,
the mooring lines are inclined and maintaining zero sag would require very large tensions. If
the excess buoyancy is not increased, the addition of lines could increase sag, and possibly

reduce the mooring stiffness.
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The mooring system stiffness of the original 4-anchor mooring system (Figure 4.9) is
compared with a similar 3-anchor system where the 3 anchors holding 6 mooring lines are
distributed evenly on a circle 120° apart, as seen in Figure 4.9 (but with 3 anchors). The cable
properties, system geometry and platform characteristics are not changed. The comparisons
of these 2 designs, assuming the same excess buoyancy force F, = 3.2 x 10 N, are detailed in
Figure 4.11 (a)-(d). The results show that the increase in the number of tethers reduces the
system stiffnesses in all directions at large R. (> 30 m). This occurs because the lines of the
system with fewer anchors are less saggy due to a higher tension per line and hence they are
stiffer, as illustrated in Figure 4.11 (e)-(f). At R. < 30 m, the horizontal stiffnesses (K;; and
K») do not change with the change of the number of lines since the mooring configuration
is close to a TLP and these stiffnesses are more influenced by the total line tension (=~ F)
which does not change since the excess buoyancy is the same for both systems. At R. <
30 m, K33, K4y and Ks; are higher for the 4-anchor system since the sag is small and the

cable stiffness becomes proportional to K.
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Figure 4.11: Influence of number of lines on the system stiffness and tension

It is clear that adding tethers will soften the system when the excess buoyancy force
is not sufficient. It is thus recommended to replace the proposed design with a 3-anchor

system to reduce the mooring system construction cost by avoiding the high cost of an extra
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anchor. If it is still required to have the stiffness properties of the 4-anchor system, this can
still be achieved with a 3-anchor system utilizing softer cables which would lead to a further
reduction in the mooring system cost. A possible advantage of the 4-anchor system is its

better survivability in the case of rupture of one or more lines.

4.2.5.3 Influence of the mooring system configuration

The bridle mooring system described in Section 4.1.2 is altered such that Segment 3
is eliminated and the bridle segments are directly attached to the anchor point, as shown
in Figure 4.12. The lines are circumferentially distributed around the cylindrical floating
platform. The adjacent fairleads that hold lines sharing the same anchor create an angle 2~
with the radial line passing through the floaters cross section center, as shown in Figure 4.12.
The fairleads are located at the same depth ie. d, = dy = df = 10 m. When v = 0,
the number of fairleads reduces to 3 and each fairlead holds 2 lines as in the conventional

single-segment configuration (Figure 4.1 (a)).

The influence of the angle v on the mooring system stiffness is investigated at a range
of R., as shown in Figure 4.13. The results show that the Ki;, Koy and Kjz3 stiffnesses are
insensitive to the change in +, as shown in Figure 4.13 (a) and (b). The roll and pitch
stiffnesses (K44 and Kjs) increase slightly as v increases, as illustrated in Figure 4.13 (c).
However, the yaw stiffness (Kgg) is strongly influenced by «y, and it increases sharply as -y
increases. For example, at R.=100, v = 10° and 20° yield almost 2 and 4 + the yaw stiffness
of that at v = 0°, respectively, as illustrated in Figure 4.13 (d). The benefit from this
configuration is stiffening the yaw mode without affecting the stiffness of other directions.

As a result, such configuration could reduce the yaw response of the platform.
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Figure 4.12: (a) Taut-leg mooring system configurations; and (b) top view
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Figure 4.13: Influence of mooring system geometry on the stiffness
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Chapter 5

LUMPED MASS CABLE MODEL

In the previous chapter, quasi-static cable models were developed to determine the moor-
ing lines tensions using different forms of the catenary equations. These models ignore the
cable inertia forces, external fluid loads such as drag and added mass forces, and cable—
seabed interaction forces. Quasi-static cable models are often used in dynamic simulations
of offshore structures due to the ease of implementation. When the floating structure is de-
ployed in deep water, long mooring lines would lead to large cable mass such that the cable
dynamics could influence the system dynamics. As well, the mooring line tensions computed
using the quasi-static approach are usually less than those calculated considering cable dy-
namics. This necessitates having a realistic mooring system dynamic model to ensure an

accurate system simulation, particularly for mooring system design.

This chapter presents the development of a lumped mass cable model to be incorporated
into the FOW'T dynamic model developed earlier in Chapter 2. In general, the model follows
the formulations in [80,114]. However, theses works dealt with suspended cable i.e. there
is no contact between the cable and seabed. This is not the case in the present work where
the lines can be partially in contact with the seabed. Therefore, the model is augmented
by a cable seabed interaction model, developed to determine the contact forces for the cable
portion in contact with seabed. As well, a new added mass matrix form is developed and

replaces the one of [80,114].

The lumped mass cable modeling methodology begins by describing the discretized cable
kinematics followed by formulating the internal tension and damping forces along the cable
elements. The external hydrodynamic forces are evaluated using Morison’s equation. The
added mass force term is reformulated in a matrix form. A cable-seabed interaction model

is introduced to compute the reaction, friction and damping forces at cable-seabed interface.
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The lumped mass discretized model is first assembled for a single cable mooring line config-
urations, then the assembly process is extended to the multi-segment bridle configuration to

derive the equations of motion of the mooring lines.

New static solvers are developed to determine the equilibrium profile of the mooring
system configurations under consideration. Finally, the mooring loads exerted on the platform
are formulated to evaluate the mooring force and moment terms in the FOW'T equations of

motion developed earlier in Chapter 2.

5.1 Kinematics

The lumped mass approach models the cable as a series of N viscoelastic straight elements
which form N 4+ 1 nodes, the displacement of the i-th node is ‘r; = rx: Tvi TZJ‘]T, as
shown in Figure 5.1. The cable unstretched length is Ly and the corresponding length of
each element is [, = Lo/N. The i-th cable element is bounded by the nodes i and i + 1.
The first and last nodes (cable ends) are attached to the platform and the anchor point,
respectively. Their corresponding displacements (in the inertial frame) are r; and ry.q,

respectively. These displacements are prescribed! where the anchor point (ry,;) is fixed in

space and r; can be determined from the platform kinematics as
vy ='r + RPrp, (5.1)

To specify the kinematics of the cable elements, an element-fixed frame attached to each
element such that the i-th element frame is defined by the ey, es; and e3; axes where the
latter axis direction is aligned along the element and directed towards the platform, the other
axes are normal to the element, as shown in Figure 5.1. The orientation of the element frame
is defined using two Euler angles describing the 2-1 rotation sequence since the cable torsion

is neglected [80], i.e. no 3rd rotation angle is required. Therefore, the rotation matrix that

IThe anchor point is fixed while the attachment point displacement is function of the platform displacement
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Fya =Ty,

node i +1

Anchor

Figure 5.1: Lumped mass cable model

transforms the i-th cable element frame into the inertial frame can be expressed as [80]
Co; So; S¢;  S0; Co,
Re,i - 0 Co, — S¢, (52)
=50 Co; S¢;  Co; Co

where ¢; and 6; are the Fuler angles characterizing the i-th element rotations, 6;, can be

computed as

GZ- = atan2 ((TXJ‘ — 7“X7Z'+1), (TZ,i — TZ,iJrl) ) (53)
and ¢; as

atan2 (—(ry,; — rvit1), (rx: — rxit1)/se; ) for co, < s,
5 — (5.4)

atan2 (—(ry,; — rvit1), (rzi —rzit1)/co,) for co, > sy,

where the subscripts X, Y, and Z denote the respective component. Either inequality in
Equation (5.4) is sufficient to compute the angle. However, this form enhances the numerical

stability to insure that the denominator of the second argument of the atan2 function is as
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large as possible to reduce numerical error.

5.2 Internal Forces

The tension arises from the element stretch due to the cable elasticity and internal damp-

ing force, such that
Ti=Ts; +Tuy (5.5)

The element tension due to stretch can be computed as a function of the cable extensional

stiffness F'A using Hooke’s law as

The stretched length of the i-th element is L;, can be determined from the displacements of

their nodes as
Li = [[r; = vy (5.7)
The damping force can be represented as [114]

Ty = Ci(T; — Tigq) (5.8)

e3,i

where C; is the internal damping coefficient and (f; — ¥;41) 5, indicates the relative velocity
component between the element ends (nodes) along the element direction (e3,4). Since the

cable cannot hold a compressive load, the following constraint is imposed
T, = L (T + T (5.9)

This relation modifies the tension computed from Equation (5.5) to keep the positive values
unchanged and switch the negative values to zero. The tension force acting along the -th

element, can be expressed in a vector form as

T, =R.;[0 0 T))F (5.10)

96



5.3 External Forces

The hydrodynamic loads exerted on the cable elements are determined using Morison’s
Equation in a manner similar to the platform (Section 2.3.2). The hydrodynamic force
exerted on the ¢-th element can be then calculated assuming the velocity and acceleration
of the element and fluid along the element span are uniform and equivalent to that at the

element midpoint.

He,i = %P C’Dc lu,i dc H (Vrel,i>J_ H (Vrel,i)J_ + Y lu,i Ae(l + Ca)<vf,z>% —p lu,i Ae Ca<ae,i>J; (511)

Hes i Ac,i
where A.; is the added mass force of the i-th element and H,, ; represent the sum of drag
(1st term) and Froude-Krylov forces terms (2nd term) i.e. the hydrodynamic force excluding
the added mass. The cable diameter is d., cable cross section area is A, = wd?/4 and Cp, is
drag coefficient of the cable, and (.), denotes the component of (.) normal to the element (i.e.
normal to es; axis). The velocity and acceleration of the element midpoint can be calculated
assuming the element as a rigid body and neglecting the element elongation rate because it
is very small [115]. Accordingly, the element midpoint velocity and acceleration can be then

expressed as
Vei = %(rz + 1), A = %(I'z + i) (5.12)
The relative fluid velocity at the midpoint of the i-th element can be expressed as
Viyeli = (Vf,i - Ve,i) (513>

where vy; and vy, are the fluid velocity and acceleration at the i-th element midpoint,
respectively. Only the normal drag force is considered in Equation (5.11) while the skin

friction drag is neglected.

Since the equation of motions of the cable point masses will be represented in the inertial

frame (F) as will be discussed later, the external forces exerted on the cable elements should
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be represented in the inertial frame, (a.;),, can be computed as

"(aci)L = Re; Runo RZ,- "a,, (5.14)
T
where
100
Rio=1(0 1 0 (5.15)
0 00

Ri1p pre-multiplies (a.;) expressed in the element frame to insure that its 3rd component
(in the element frame) reduces to zero. The vectors (v,e;)1 and (Vy;), can be evaluated in

the same manner.

5.4 Cable-Seabed Interaction Forces

A three-dimensional contact model is now developed to evaluate the forces generated at
the cable-seabed interface, as shown in Figure 5.2. This model characterizes the cable-seabed

interactions with the following forces

Anchor
.. seabed

F

Dsb i +1 F

E

Vsb i

Figure 5.2: Cable-seabed interaction model

(1) Vertical seabed stiffness force
The cable portion rest on the seabed experiences a normal force from the seabed propor-

tional to the node penetration (zg,;) into the soil, which can be expressed as [116]

FVsb,z' =a lu (Ol/dc)é \/ 1ozsb,i/dc dc (Suo + psbzsb,i) (516)
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where S, shear strength of soil at seabed, pg, is the shear strength gradient. These properties
are dependent on the soil type (clay, sand,...etc.). If we choose clay, S,,=5000 Pa and pg =
1500 Pa/m. The constants a and b vary according to line surface (rough or smooth), for a

smooth line/pipe a=6, and b=0.25 [116,117].

(2) Vertical seabed damping force
The vertical damping due to seabed contact exists when the cable node penetrates the
seabed and vanishes when the node moves upwards, this force can be formulated as [118]
Csbz I'Z for I.'Z <0
Fpspi = — (F:)z i)z (5.17)
0 for (I.‘z)Z > 0
where the seabed damping coefficient Cip, = 2551/ Mnod,iksp, Csp 1 the seabed damping ratio,
Mnodi = Mely; is the nodal mass in vacuum, m, is the mass per unit length of the cable
in vacuum and kg, is the seabed vertical stiffness coefficient, which can be determined from

force-penetration relationship (Equation (5.16)) by calculating the slope at zero penetration.

(3) Friction forces
The friction force developed between the moving cable portion lying on the seabed and
the seabed can be modeled using a Coulomb friction model. This model considers the friction

force along the element (tangential) direction and in the lateral direction. These effects can

be formulated as [118,119]

i Fysyi sign[(f)e1.]
"Fei = —Rei | i Fyon sign((E:)ez) (5.18)

fe Fyspi sign((ti)es i)
where p; and y; are the tangential and lateral friction coefficients, respectively. Their values
depend on the seabed type (sand, clay,..., etc.) and mooring line type (chain or wire
rope) [119]. The latter study recommended using p; =1.5-2 times pu;, and p;=0.18 for a wire
cable sliding on a clay surface. The total force exerted on the i-th node due to contact with

the seabed can be then written as

Fai:=Fvsa:+ Fpwi+Fe; (5.19)
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5.5 Model Assembly

The equations of motion represinting the translation of the lumped masses attached to

the cable nodes, can be formulated in the inertial frame as
M., ¥ ="F.; , i=23,...,N (5.20)

where F.; is the sum of the applied force at i-th node (lumped mass) and M,; is the

corresponding mass matrix (3 x 3), written as
Me,i = Mnpod,i I3><3 (521)

where I35 is the identity matrix. The equations of motion (Equation (5.20)) are formulated
for the interior nodes since the displacements of the boundary nodes (1 and N + 1) are

prescribed.

The lumped mass cable model assumes that external force and the element weight in fluid
acting at each element midpoint are lumped at the element nodes such that each node bears
half of the element load. Thus, each node supports half the external forces of the adjacent

elements. The applied internal and external forces at the i-th node is expressed as

5.22)

v~

Feui Foda,i

F.,=T,,-T,+ %(Wez + W, 1)+ %(He*z +Heio1) +Fapi+ %(Az + A1) (

where "W ; = —[0 0 wl,;]" is nodal weight (in fluid), and the added mass term (Fy4q.)
in Equation (5.22) is a function of the accelerations and can be shifted to the left hand side

of Equation (5.20). This term can be obtained as

[Bl + B2 BQ] [I‘Q 'I"3]T for 1 =2
Fadd,z’ - [Bifl Bifl + Bz Bz] [.I:ifl .I'l if:i+1]T for 2<i< N (523>
[BN—I BN_1 + BN] [i:N—l i:N]T for i=N

where B; = pl,; A. C, B;. This form (Equation (5.23)) can be expanded for the whole point
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masses of the cable yielding the cable added mass matrix as

[ B,+B, B, 0 0 0 . 0o |
B, B, + B3 B3 0 0
0 B; B; + B, B, 0
A capte = 0 0 B, B,+B; B;
0 0 E 0 By By_2+ By By
0 0 . 0 0 By_1 By_1+ By

(5.24)
the equations of motion (Equation (5.20)) of the system of lumped masses of the discretized

cable can be reformulated as
[Acable + Mcable] [r2 .1:3 cee .I:N]T - [Fe*,Q Fe*,3 cee Fe*,N]T (525>

where the discretized cable mass matrix in vacuum M. = diag(Meo, Mcs, ... ... M. n).
Repeating the same procedure, the equations of motion of the whole mooring system com-

prised of all the mooring lines can be obtained.

5.6 Lumped Mass Model of the Bridle Configuration

The bridle mooring system description, properties, and quasi-static modeling were inves-
tigated earlier in Chapter 4. The lumped mass approach already developed for a single cable
can be extended to model the dynamics of this configuration. The mooring line is modeled by
5 segments, as shown in Figure 5.3. Segments 1 and 2 represent the bridle, each of which is
divided into NV, elements. Segment 3 represents the cable portion from the bridle connection
to the suspension point of the clump mass and segment 4 is the remaining portion to the
anchor point. The number of elements in segments 3 and 4 are N, and N, respectively. The
unstretched lengths of segments 1-4 are Lga, Loa, Lo, and Lg;, respectively, can be found
in Table A4 (n.b. Lo, = s; and Lo = Loz — $1). Segment 5 representing the clump weight
and its suspension cable is comprised of 2 elements: the suspension cable is modeled as a

single element with unstretched length L., and the clump weight is also treated as a single
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element of unstretched length Locr..

element N, +1e«..

segment 1 &2
#of elements= N,
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1 T element N
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clement 2N, +N, +N, H 0 § el®

Figure 5.3: Lumped mass model of a bridle mooring system

The element indexing is ordered according to the order of segments, for example the
index of the first element of segment 4 is 2N, + N, + 1. The node indexing is illustrated
in Figure 5.3. Node 1 represents the attachment point of segment 1 with the platform. The
first node index of segment 2 is Ny, + 1, and the nodes following (of segments 2, 3 and 4) are
continuous and indexed sequentially to the anchor point (last node of segment 4). Segment
5 begins with the common node between segments 3 and 4, the following node continues the

indexing of segment 4 such that the last two nodes represent the the clump weight element,
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as shown in Figure 5.3. The total number of elements and nodes are N = 2N, + N, + N; + 2
and N + 1, respectively. It is then obvious that the equations of motion of the mooring line

will be assembled for N — 2 nodes because the number of boundary nodes is 3.

The lumped internal and external forces acting on the line nodes are similar to Equa-
tion (5.22). However, calculating the forces acting on nodes 2N, + 1 and 2N, + N, + 1,
representing the bridle connection and common node among segments 3, 4 and 5, respectively,

and as well as the last node are different.

Fon,+1 =(Tn,, + Ton,, — Ton,, 1) + 3(Wha,, + Wan,, + Wap, 1)
+ 3(Heun,, + Hewon,, + Heon,i1) + 5 (An,, + Aoy, + Aoy, 41)
Fon, +n,+1 =(Ton, +n,) — (Tan,, +n5u+1 + Tvo1) + %(WQNM—&—N,L + Won,, +Nut+1 + Wha_1)
+ s(Heony 48, + Hewon,, +n+1 + Hea vo1)
+ 5 (Aon, 4N, + Aon, 4N+l + An-1)

Fynii =Tn+ iWep + tHeon + 3AN
(5.26)

5.7 Static Solvers

Integrating the equations of motion of the lumped mass cable models requires proper
initial conditions (ICs). An unrealistic choice of the ICs can lead to large startup transients
in the simulation. It is usually considered best to use the cable equilibrium profile as the

IC [120,121].

Many techniques have been developed in the literature to solve this problem. Incremen-
tal methods [122] leads to a large system of nonlinear algebraic equations representing the
equilibrium of the cable nodes, with a system size proportional to the cable discretization
resolution. The dynamic relaxation approach [120,122] uses the system dynamics to deter-
mine the static equilibrium allowing the system to settle to the equilibrium after the transient
response decays. However, those techniques exhibit many deficiencies particularly in rela-
tion to their convergence capabilities. A review of these methods can be found in [120-122].

More recently, starting from the basic static principle of a two-force member, Masciola et
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al. [121] developed an efficient methodology to solve the problem. Their analysis reduces
the size of system of equations to only 3, irrespective of the cable discretization resolution.
However, this technique was developed for suspended cables. Adding the effect of the cable
seabed reaction forces is challenging and adds more nonlinearity to the problem. A new
approach is developed to solve the equilibrium of a cable while considering the cable-seabed
reactions. This approach is also extended to similar problems of the bridle mooring system

configuration.

5.7.1 Single cable

We will first consider the equilibrium of a suspended cable and then include the effect of
the seabed. Consider the discretized cable depicted in Figure 5.4, the lumped mass weight in
water of the interior nodes are w = wl, while the exterior (boundary) node weight is 0.5w.
The external load applied at the i-th node is 'E; = [E xi Py, E Z,i]T. The stretched length

of the i-th element is

T;
Li=ly; (1 + > = \/l§( +13, + 12, (5.27)

where T; = \/H)Q(Z + H%i + V2, Tr; —1riyy = Uxi lyi lZ,i]T = L; 0, [Hx, Hy, Vi)' =

T;@; and 1; can be obtained from Equation (5.2) as
[891' Coi  — 5S¢ Co; C¢i]T (528>

From the cable geometry shown in Figure 5.4, the cable profile projected lengths, ry —ryy 1 =

Ix ly Iz]" can be obtained as

N N N 1 1
lX = Z lX,i = Z Ll sin Qz COS gﬁz = Z lu,iHX,i +
i=1 i=1 i=1 \/H)Qﬁ +iHE, + Vi? EA

N N N 1 1
ly = Z ly’i = Z _Li SiIl ¢z = Z lu’iHyﬂ' + (529)
i—1 i—1 i—1 _\/H;Z- +Hy, + V2 EA |

N N 1 1
lZ:ZlZﬂ- = ZLZ'COS(% CoS ¢; :Zlu,iVi
i=1 i=1

_|_
P g g v B
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The i-th element tension components can be obtained from the equilibrium of the cable

portion (bounded by nodes 1 and part of the respected element), as shown in Figure 5.4 (a).

Hx;=Hx+Y Exy , Hy;=Hy+Y Eyi , Vi=V—(i—05)0+» Ez; (5.30)
k=1 k=1 k=1

One can notice that the horizontal tension component of the elements (Hx,; and Hy;) are
constant along cable if Fx; = Ey,; = 0. It is assumed that ry and ry;; are known and then
substituting Equation (5.30) into Equation (5.29) yields a system of 3 nonlinear algebraic

equations with unknowns Hx, Hy and V. This system can be solved using a Newton-Raphson

method.
(a) (b)
Y i v MWL
"\ H,
Sy
1. - H X . E7!i
E\ nodei\\\ EY i
™ clement 1 I >
v X
w

™ element 2

lZ

nodei +1

—

wl ¥
; l,

element N

i+

Figure 5.4: Lumped mass cable equilibrium
Once the system solved, substituting the solution back into Equation (5.30) yields the

i-th tension components (7;). Then, substituting the resulting tensions of each element into

Equation (5.27) yields the stretched length (L;). The Euler angles corresponding to the i-th
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element can be then obtained as
01' = atan2(HX,i, W)

atan2(—Hy,;, Hx;/sin(6;)) for cos(§;) < sin(6;) (5.31)
atan2(—Hy,;, Vi/cos(0;))  for cos(6;) > sin (6;)

b =

Now, the displacement of th i-th node can be determined as [121]
iy =Tr;—Lity, , i=23,...,.N+1 (5.32)

The solution can be verified by calculating rxy,; and checking whether it matches the already

known value (anchor point position).

The analysis developed above can be directly applied to solve for equilibrium positions
of the cable nodes of a suspended cable by its own weight or if the external loads (E;) are
well known. However, in many cases the external loads are unknown since they are function
of the node position such as fluid— and soil-structure interaction forces. In this case, the
solution for the cable equilibrium profile can be determined utilizing an iterative approach.
For instance, if we consider the equilibrium of a cable subject to a steady current load, the

equilibrium solution can be found iteratively as follows:

1. Solve for the equilibrium of nodes in the absence of the external loads (i.e. E; = 0).

2. Use the equilibrium positions of the cable nodes obtained from previous step to evaluate
the drag forces and solve for the cable equilibrium, while including the external loads, to

obtain another solution.

3. Repeat step 2 several times until the difference between the last successive solutions are

within a certain satisfactory tolerance.

This iterative approach was also implemented in [121]. In fact, the iterative approach exhibits
a quick convergence to an accurate solution for steady fluid drag problems. However, it was

found to be numerically unstable for solving the equilibrium of a cable resting on the seabed.

A new solution of this problem is therefore developed based on the analysis formulated

above (Equations (5.29) and (5.30)) to determine the equilibrium profile of the mooring line
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partially lying on the seabed as follows:

1. Substitute Ex; =0, Ey,; = 0, and keep Ey; as unknown into Equation (5.30) and substi-
tute the resulting forms into Equation (5.29).

2. The seabed normal reaction force Ez; can be formulated as
Ezi = Us(2ai) Fvap,i (5.33)

where Uy is a unit step function to constraint the seabed normal force to zero for nodes
not in contact with the seabed, and zy,; = (—rz; + dy — d;), where rz; =7r7,.1 —lz;1

as shown in Figure 5.4, and Fy,; can be obtained from Equation (5.16)

3. The previous steps yield a system of N + 3 nonlinear algebraic equations which can be

solved for Hx, Hy, V and E; using a Newton-Raphson method.

Solving the resulting system of algebraic equations above is quite complicated since the
convergence to the solution is very sensitive to the choice of the initial guess which is at-
tributed to the high seabed stiffness. This difficulty is circumvented by relaxing the soil shear
strength at the seabed (S,,) such that the system of equations is initially solved neglecting
the seabed and the cable is suspended between the line ends. This solution is then used as
an initial guess for the next iteration considering a very soft seabed (e.g. S,, = 10). Sy, is
then gradually increased for the next iterations and uses the last solution as an initial guess
for the current iteration until reaching the actual S, value that yields the required solution.
Figure 5.5 shows the cable equilibrium profile of the first and last iterations obtained using
this approach. The minimum number of iterations required for a stable convergence to the

solution using this approach is approximately S,,/20.
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Figure 5.5: Equilibrium of a lumped mass cable, N = 30 elements, the fairlead and anchor point
coordinates are (5.2,0,20) and (853.87,0,-230), respectively. Ly = 920.2 m, EA = 384243000 N, and
w = 698.094 N/m.

5.7.2 Bridle configuration

In general, the equilibrium positions of the bridle mooring line nodes (Figure 5.3) can
be determined following a similar approach to that already developed for a single cable.
However, the analysis becomes more complicated when dealing with multiple segments and
clump weights. Another complexity also arises from different discretization resolutions of the

segments

Prior to presenting the method of solution for the equilibrium configuration, the weight
of cable nodes in fluid should be defined, which can be obtained based on the discretization

scheme presented in Section 5.6 as

;

% Opyr for 1=1
Qf)br for 1< < Nbr
Wy for i =Ny +1
Wiy for Ny +1<i < 2N,
=4 ’ ’ (5.34)
qubr + %wu for 7= 2Nb,« +1
Qf)u for 2Ny, +1 <1 < 2Ny + N,
(W, + W)+ Wer for i=2Ny 4+ N, +1
\’lf)l for 2Ny, + N, +1 <1 < 2Ny, + N, + N,
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where Wy, = w Loa /Ny, W, = w Loy /Ny, W, = w Lo /N;. Solving for the equilibrium of this

mooring line is then accomplished using the following steps

1. Substitute lX = lXa,ly = lya,lz = lZa; HX,i = HXa; Hyyi = Hya, and V; = ‘/a — Z Uv)k
k=1

into Equation (5.29) (summation limits are 1 and Ny,.) for the elements of segment 1.

2. Substitute Ix = Ixp, ly = lyp,lz = lzo, Hxi = Hxp, Hy; = Hyp, and V; =V}, — i W,
into Equation (5.29) for the elements of segment 2, i.e. for i = Ny, + 1, N, + 2?.:.]\.717:5]1\71,7".
3. For segment 3 and 4, substitute Ix = Ix., Hx; = Hxq, + Hxy, Hy; = Hy, + Hy into
Equation (5.29) (summation limits are 2N, + 1 and 2Ny, + N, + N;). These relations
are obtained from the eqqilibrium condition of the connection node. Likewise, substitute
Vi=V,+V, — ki: Wy, + ki: Ez into Equation (5.29)
—1 —1

4. The seabed normal reaction force Ez; can be obtained as illustrated in step 2 (Equa-

tion (5.33)) in Section 5.7.1 for i = 1,2,...,2N,,. + N, + N,.

5. Substitute the right hand sides of the resulting equations generated from steps 1, 2, and
3 into the left hand sides of the following equations

Ixa+lxe=("r1 ="ra)x , Ixp+lxe= ("ra,1—'ra)x
lya +lye=Cr1="ra)y , lyp+lye= (v, —"ra)y (5.35)
za +lze=("r1="va)z |, lzy+lze= ("tn,41—"1a)z

the right hand sides of Equation (5.35) are known from the boundary nodes (1, Ny, + 1
and 2Ny, + N, + N; + 1) positions.

6. The last two steps yield a system of 2Ny, + N, + N;+6 nonlinear algebraic equations which
can be solved for Hx,, Hxp, Hya, Hyp, Va, Vi, and Ez; using a Newton-Raphson method.

Having solved the system of equations, we can substitute back into steps 1-3 to find V; of
each element of the mooring line segments and hence the tension and stretched length of each
element. This allows evaluation of the Euler angles of each element using Equation (5.31) and
eventually the nodes equilibrium positions utilizing Equation (5.32). Due to the discontinuity

between the node N, and N, + 1, Equation (5.31) should be applied for the continuous
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nodes i.e for i = 1,2,..., Ny of segment 1, then apply it for the remaining nodes i =
Ny +2,...,2Ny. + N, + N; + 1. Figure 5.6 illustrates the the equilibrium of the mooring

line using the methodology discussed.

e

Figure 5.6: Equilibrium of a bridle mooring line, Ny, = 3, N, = 8, N; = 20. The fairleads
and anchor point coordinates are (-2.6000,4.5033, 20),(-2.6000,-4.5033, 20), and (-853.87,0, -230),
respectively. Loa = 50 m, Log = 901.9772 m, FA = 384243000 N, and w = 353.2 N/m

5.8 Mooring Loads for the Equations of Motion

The mooring force (F,,,) and moment around the origin of the platform frame (M,,,)
are evaluated for the two the different mooring system configurations based on the lumped
mass cable model. These loads are part of the right hand side of the equations of motion

of the FOW'T structure developed earlier in Chapter 2. For the single line mooring system
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configuration, these loads can be formulated as

mor - ZPT ) pMmor - I‘POp pT(] (536)

IIMw

where the ng ) denotes the tension force of the first element of the j-th mooring line (j=1,2,
and 3), respectively. Similarly, these loads can be formulated for the bridle mooring system

as

3
PFoor = — Z (png) + pTg\Jer-H)
=1

5 (5.37)
"M, = — Z(pUgj) % png) + pUgJ) % pT%Zr+1>

One can compare Equation (5.36) with Equations (4.5) and (4.6) in which the mooring
loads were computed using the quasi-static approach. As well, further comparison can be
made between Equation (5.37) and Equations (4.19) and (4.20) for the multi-segmented

configuration.
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Chapter 6

VALIDATION AND CASE STUDIES

The previous chapters presented comprehensive high-fidelity multibody dynamic model-
ing methodologies for the FOW'T system structural components. In addition, the external
loads exerted on the system including hydrostatic, hydrodynamic, aerodynamic and mooring
loads were also characterized. The present chapter combines the methodologies of the pre-
vious chapters to build a coupled simulation of the FOWT system under consideration. A
series of simulations using different combinations of the component dynamic models, mooring

configurations and cable models are presented for the following purposes:

1. Validating the developed FOWT dynamic models against the most popular FOW'T sim-
ulation tools. The validation is performed by simulating the system response to defined

environmental disturbances referred to as load cases.

2. Understanding the system dynamic behavior using the following case studies:

(a) Investigating the influence of the tower flexibility on the system dynamics by com-
paring the dynamics responses of the FOW'T obtained using the rigid and flexible

dynamic models.

(b) Discussing the influence of the mooring system configuration on dynamic response of
the system by comparing responses of the single and bridle mooring system configu-

rations.
(c) Investigating the influence of the rotor gyroscopic effect on the system dynamics.

(d) Exploring the influence of cable dynamics on the rigid and elastic motions of the
structure as well as the mooring lines tensions by comparing the system responses

obtained utilizing the quasi-static and lumped mass cable models.

112



6.1 Numerical Implementation

A large high-fidelity simulation code has been developed and implemented, structured
as shown in Figure 6.1, to predict the dynamic performance of the FOWT system. The
code is developed using MATLAB®, and allows easy selection of component models and

environmental conditions.

Besides the rigid and flexible tower models, four cable models are developed: quasi-static
single, quasi-static bridle, lumped mass single, and lumped mass bridle cable models. In terms
of execution time, the fastest simulation is attained by a rigid body tower model coupled to
a quasi—static cable model. By contrast, simulating the system response via flexible dynamic
and lumped mass cable models is computationally the most expensive solution. The bridle
configuration also requires higher computational effort than the single configuration. As well,
computing the wave kinematics and wave loads exerted on the platform and cable (in the
case of the lumped mass model) for regular waves requires considerably less computational
effort compared to the irregular wave case. Consequently, the simulation setup should be

chosen on the basis of the required simulation outcomes and execution time.

The equation of motions of the rigid and flexible multibody dynamic models are obtained
via a MATLAB® symbolic manipulation code. This code is constructed based on the for-
mulations discussed in Chapter 2. The implementation of the dynamic model follows the
flowchart shown in Figure 6.1. The main code (in grey) allows the selection of the equations
of motion of the rigid or flexible dynamic model. The hydrostatic, hydrodynamic, aero-
dynamic, quasi-static mooring model codes are called by the main code to determine their
respective external forces and moments. The differential equations representing the equations
of motion are subsequently integrated numerically using the ode15s solver which is the most
accurate MATLAB® stiff ODE solver [123]. The resulting solution is also fed back to the

external loads codes since these loads are functions of the system motion.

If cable dynamics is to be considered, the quasi-static cable model is disabled and the
equations of motion of the lumped mass cable model are then incorporated into the system
equations of motion. These of equations of motions of the structure and cables are coupled

through the tension loads of the first elements of the cable segments attached to the platform,
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Figure 6.1: Structure of the simulation code of the FOWT dynamics

as discussed in Section 5.8. The wave load code then computes the hydrodynamic loads on
the cable elements and on the platform. In the ODE solver, the initial conditions of the cable

lumped masses are initialized using the lumped mass static solver (developed in Chapter 5).

6.1.1 Limitations

As demonstrated earlier in Chapter 2, the present simulation utilizes Morison’s equation to
characterize the hydrodynamic loads. This approach ignores the effects of radiation damping,
wave diffraction and second order hydrodynamic loads which could excite the lower resonant
frequencies of the system [16]. As well, it neglects the influence of the VIV which can be
considerable when the substructure is subject to steady current or combined current and
wave loads. All these aspect could reduce the accuracy of the predicted hydrodynamic loads
exerted on the platform and mooring lines particularly in low and moderate fluid speeds

which may affect the resulting system response.

The present simulation also ignores the blade flexibility which could influence the system
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dynamics, particularly the tower elastic motion response when the rotor experiences severe
aerodynamic loads at which interaction between the blade and tower elastic motions can be

evident.

6.2 Validation

The design of reliable FOWT systems demands trustworthy simulation tools capable of
predicting the dynamic response of the structure [5,69]. A well-known code-to-code compar-
ison study was performed as a part of the Offshore Code Comparison Collaboration (OC3)
project also under the Wind Task 23 of the International Energy Agency (IEA) [5]. Ex-
tensive comparisons of the simulation results obtained from different simulation tools were
performed. These results were generated by many participants in the project from differ-
ent institutions and countries utilizing different simulation tools. The dynamic response of
these codes were examined under particular wind and wave load conditions, referred to as
load cases, to allow for consistent comparisons among the codes results. The results of this
large code-to-code comparison project were thoroughly investigated in [5,124]. The present
simulation results are therefore compared with those obtained from these codes for the four
load cases in Table 6.1 to assess the validity of the current model. It is worth noting that
the relevant simulation results of these simulation tools are only available for the listed load
cases in Table 6.1. As well, some codes were not able to simulate all these load cases or to

predict certain dynamic outputs such as the tower elastic motion because of their modeling

limitations.
Table 6.1: Specifications of the load cases [5]
Load case Wind condition = Wave condition Analysis type
1.2 None None (still water) Eigen frequencies
14 None None (still water) Free decay test
4.2 None Jonswap Hy; = 6 m, Power spectra
T,=10s
5.1 Steady wind speed Regular wave, Time series
U=8m/s Hye=6m, T=10s
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It is also worth to noting that all the validation load cases are based on the single
mooring configuration augmented with additional yaw mooring stiffness K,4q = 98.34 x 10°
N.m/rad [6]. To consider this effect, the moment exerted by the mooring line tension about
the origin of the body frame for the single configuration, previously presented in Equa-

tion (4.6), is modified as

3
PMpor = Y Prlp, x PTO — Kogg0 0 3" (6.1)
=1

6.2.1 Load case 1.2

Table 6.2 compares the system eigen frequencies obtained from present model with those
reported from other simulation tools. In general, the results of all codes agree reasonably
well. However, the eigen frequencies of the platform roll and pitch obtained from HAWC2
are higher than their counterparts from the other codes. The present code results agree well
with most codes particularly FAST, Bladed, 3DFloat and SIMO. The 1st tower twist eigen
frequency predicted by the present code could not be compared with any of the other codes
because they were not reported in [5] although the twist DOF is considered in HAWC2 and
Bladed codes. It is worth noting that FAST, Bladed and HAWC2 codes include additional
eigenmodes associated with rotor blade flexibility, that are not presented here since the

present code assumes the rotor to be a rigid body.
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Table 6.2: System eigen-frequencies (Hz)

]friliedr(le- Present IE?{?E;II‘J Bladed HAWC2 3DFloat Simo ?gii}\g
Surge 0.00800 0.00805 0.0080  0.00768 0.00803  0.00802 0.00869
Sway 0.00800 0.00805 0.0120  0.00773 0.00803  0.00817 0.00800
Heave 0.03294 0.03243 0.0330  0.03237 0.03300  0.03246 0.03180
Roll 0.03329 0.03424 0.0317  0.04530 0.03210  0.03338 0.03050
Pitch 0.03332 0.03426  0.0317  0.04518 0.03210  0.03338 0.03050
Yaw 0.12111 0.12103 0.1220  0.10757 0.14000  0.12180 0.13300
1st (uy) 0.48845 0.47320 0.4600  0.47961 0.47300 - -
1st (u2) 0.48141 0.45748 0.4500  0.48180 - - -

1st twist (¢) 1.84150 - - - - - .

6.2.2 Load case 1.4 (free decay test)

This load case represents a free decay test whereby the platform is released from a specified
non-equilibrium initial pose in still water and without wind. The decay tests separately excite
the platform surge, heave, pitch and yaw displacements. These tests are quite important to
examine the hydrodynamics, hydrostatic and mooring models functionality which are the
main sources of stiffness and damping in the system. In the results presented in [5,124], the
structure is assumed to be a rigid multibody system i.e. the tower and blades flexibilities
are ignored. In the present work, both the rigid and flexible models are used to perform this
test. In the case of the flexible model, this is achieved by imposing an extremely large Young
modulus (£) and modulus of rigidity (G) of the tower, hence the tower can behave nearly as
a rigid body, with negligible flexible deflections. The simulation results from both dynamic

models are found to be identical.

The decay test results are illustrated in Figure 6.2. Only the response of the perturbed
platform DOF is presented here for brevity. Figure 6.2 (a) shows the surge decay responses
due an initial perturbation of 21 m in surge. Our code is in excellent agreement with all the

simulation tools particularly FAST and HAWC2. The present code also exhibits an excellent
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Figure 6.2: Free decay test of load case 1.4 due to: (a) initial perturbation of 21 m in surge; (b)
initial perturbation of 5 m in heave; (c) initial perturbation of 10° m in pitch; (d) initial perturbation
of 6 in yaw.

agreement with the reported results in the heave decay response (excited by a 5 m heave
initial condition). The HAWC2 code predicts larger damping than the other codes, as seen
in Figure 6.2 (b). As well, the present code shows good agreement with all the codes in
the pitch decay (excited by a 10° pitch) response with identical peak locations but with less
damping than the other codes, as seen in Figure 6.2 (¢). This is attributed to the fact that
the present code ignores the hydrodynamic radiation damping while this effect is considered
in the other codes. The yaw decay response is almost identical for all codes, as illustrated in

Figure 6.2 (d).

6.2.3 Load case 4.2

In this simulation scenario, the FOWT dynamic response is evaluated under excitations
arising from an irregular wave, but without wind. This implies that the wind turbine rotor
is parked (not spinning i.e. 2 = 0). The wave kinematics are characterized by the Jonswap

spectrum [96,97] with H; = 6 m, peak period 7}, = 10 s, and a heading angle 3, = 0 (i.e.
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the waves are propagating along the X-axis of the inertial frame). The power spectra of
the platform displacements and tower tip fore-aft deflection (u; at z = [) are compared with
the corresponding results of the simulation tools, as illustrated in Figure 6.3. In general,
the present code results are in very good agreement with those obtained from the simulation

tools. The results of all the codes conform well at the wave peak frequency (0.1 Hz).

The surge PSD exhibits two peaks corresponding to the surge and pitch natural frequen-
cies at 0.008 Hz and 0.034 Hz, respectively, as seen in Figure 6.3 (a). The first peak is
evident at the surge natural frequency for the present, SIMO and DeepC codes while the
peak is offset slightly for the FAST code at 0.01 Hz. The heave PSDs of all codes agree well
with minimal deviations in the vicinity of the heave natural frequency (0.032 Hz), as depicted
in Figure 6.3 (b). All the codes are in excellent agreement in their pitch PSD predictions
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Figure 6.3: Power spectra of: (a) platform surge, (b) platform heave, (c) platform pitch, and (d)
fore-aft deflection (u; at the tower tip) for load case 4.2.

except Bladed, as illustrated in Figure 6.3 (c). The fore-aft (u;) PSD results are presented
in Figure 6.3 (d) for the present code, FAST, and Bladed codes since the remaining codes
(DeepC and Simo) do not consider the tower elasticity. The results of the present and FAST

codes are in excellent agreement while Bladed shows a reasonable agreement with the other
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codes. Dominant peaks are visible close to the pitch natural frequency and the first fore-aft

tower bending natural frequency (0.48 Hz).

6.2.4 Load case 5.1

In this simulation scenario, the FOW'T dynamic response is evaluated under excitations
arising from a regular wave and steady uniform wind. The wave height is H, = 6 m and the
period is T' = 10 s, while the wind speed is U = 8 m/s. The characteristics of the steady-
state harmonic time response of the system are relevant for this load case. The time response
of the platform displacements, and fore-aft tower tip deflection responses are displayed in
Figure 6.4, while the rotor speed response is presented in Figure 6.5. The surge response
of the present code agrees well with other codes, particularly FAST, as shown in Figure 6.4
(a). The HAWC?2 surge response is inconsistent with the other codes which likely implies
an incorrect result, as discussed in [5]. Some discrepancies in the mean value and phase can
be observed in the responses, while the amplitudes and periods of oscillations agree well.
Figure 6.6 summarizes the peak-to-peak response amplitudes shown in Figures 6.4 and 6.5.
Generally, all the codes relatively agree well in the amplitudes of oscillations. However, the
Bladed code yields relatively larger amplitudes in surge and heave DOFs while it under-

estimates the amplitudes of fore-aft bending deflection.
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Figure 6.4: Steady-state response of: (a) platform surge, (b) platform heave, (c) platform pitch,

and (d) fore-aft deflection (u; at the tower tip) for load case 5.1
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Figure 6.5: Steady-state response rotor spin speed for load case 5.1
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Figure 6.6: Peak-to-peak amplitudes for load case 5.1

6.3 Case Studies

We now proceed to use the simulation under different scenarios, such as varying model
types and different system designs. The dynamics behavior of the system is closely related to
the system stiffness, and material and inertial properties of the structure components (plat-
form, tower, rotor blades, mooring system,.., etc). On the other hand, different modeling
approaches used to characterize the system dynamics, environmental, and mooring loads may
vary in their predictions of the system dynamic response. The exploration of the influence
these factors on the system dynamics is quite important to allow efficient system analysis and
design. Although there are many parameters and design aspects that can be studied, the dis-
cussion will be focused on the following main topics: tower flexibility; mooring configuration;

rotor gyroscopic effect; and cable dynamics.

6.3.1 Tower flexibility (rigid vs. flexible)

The influence of the tower flexibility on the system dynamics is investigated by comparing
the dynamic response of the rigid and flexible dynamic models developed in Chapter 2 under
identical environmental loads, mooring system configuration and cable modeling approach.

The quasi-static cable model of the single mooring system configuration (with K,44) is chosen
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to determine the mooring system loads. The simulations are performed assuming the system
is subject to a steady wind speed (U = 10 m/s) and irregular water wave with heading angle

Bw = 30°. The wave kinematics are characterized by a Jonswap spectrum with H, = 11 m,

and T, = 14 s.

The comparisons of the platform displacements time responses and rotor spin speed re-
sponse obtained from the rigid and flexible models are displayed in Figures 6.7 and 6.8,
respectively. The simulation results of the rigid model are in good agreement with the those
obtained from the flexible model particularly in the surge, sway, heave, roll and pitch re-

sponses as well as the rotor spin rate response.

— Rigid
- —-Flexible

2 C L L | L L 4
2850 2900 2950 3000 2850 2900 2950 3000
Time [s] Time [s]

Figure 6.7: Platform displacements responses of the rigid and flexible models

In general, the results show that the tower flexibility does not significantly affect the
platform displacements responses except the yaw. One important reason for this is that the

mass of the Rotor Nacelle Assembly (RNA) is approximately 2.5% of the equivalent platform
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mass which is relatively very small. As well, large flexural and torsional stiffnesses of the

tower yield small elastic deflections compared to the rigid body displacements.

The flexible model yields larger yaw response, as illustrated in Figure 6.7. This could be
attributed to gyroscopic moments induced by the tower elastic rotations. This effect is more
prominent in yaw since the the damping and mass moment of inertia of the platform in the
yaw mode are the least among the platform DOFs. Moreover, due to platform slenderness,
the added inertia of the platform in yaw is zero. This makes the platform yaw DOF is more

responsive to small disturbances compared to the remaining platform DOFs.
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Figure 6.8: Rotor spin response as obtained from the rigid and flexible dynamic models

The tower tip bending deflection of the fore-aft (u;) and side-side (uy) and tower twist

responses are illustrated in Figure 6.9. The fore-aft bending deflection is larger than that
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Figure 6.9: Tower tip elastic deflections

the side-side counterpart due to the RNA center of gravity offset from the tower tip center
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which yields a large bending moment leading to a higher fore-aft deflection. As well, the wave
load is mainly acting along the X —axis exciting the fore-aft elastic motion more than the
side-side motion. The tower twist response is extremely small, with amplitudes of oscillations

less than 0.03°.

The platform displacements PSDs obtained from the rigid and flexible models are com-

pared in Figure 6.10. The results of the two models agree well particularly at frequencies
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Figure 6.10: Platform DOFs PSDs

below 0.3 Hz while the flexible model shows a higher energy contents above that frequency.
This is attributable to the flexible motions that are excited at their resonance frequencies
which are much higher than those of the rigid body motion. All the PSD plots show a dom-
inant peak at the wave spectral peak frequency (/0.07 Hz). The PSD plots obtained using

the flexible model exhibit peaks corresponding to the first mode of bending elastic motion at
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0.49 Hz. As well, another dominant peak at 1.84 Hz is also visible which corresponds to the
1st mode of the tower twist elastic motion. The peaks associated with resonant frequencies

of the elastic motions are also evident in the PSD plots of the elastic motions, shown in

Figure 6.11.
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Figure 6.11: Tower tip elastic deflections PSDs

6.3.1.1 Tower twist

The high tower twist natural frequency (1.84 Hz) is far outside the water wave band
frequency (0.04-0.22 Hz). Therefore, the tower twist is not significantly excited by the wave
loads. As well, this mode is not directly excited by aerodynamic and hydrodynamic external
moments since they are acting in directions normal to the tower twist axis. This results in
minimal response as seen in Figure 6.9. Likely for these reasons, tower twist is not considered

in most the simulation tools used for the FOWT dynamic simulation.

Moreover, we found that the dynamic simulation without tower twist is approximately
3 times faster than when it is considered, so that ignoring the twist DOF result in a much

faster simulation. We also verified that neglecting the tower twist DOF does not affect the
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platform displacements nor the tower bending responses. Based on this, we chose to ignore

the tower twist DOF for the remaining simulations of this chapter.

6.3.2 Mooring system configuration

Two mooring system configurations have been previously discussed, single and bridle.
Moreover, the lines tensions of each of these configurations can be found using the quasi-
static and lumped mass cable models developed earlier. Due to the differences between these

configuration, the resulting restoring loads obtained from these configurations are different.

In reality, the Hywind prototype and the Hywind pilot project to be constructed [125]
include a bridle mooring configuration. However, most dynamic analyses of the OC3-Hywind
FOWT available in literature used a simplified single configuration augmented with an ad-
ditional yaw stiffness to avoid the complexity of modeling the bridle configuration with sus-
pended clump weights. This thesis has presented a new cable model that considers the bridle
configuration, and the objective of this case study is to compare the dynamic behavior of the

system when using the simplified single and the bridle configurations.

The system stiffness of a FOWT is due to a combination of the mooring system and the
hydrostatics. Thus, the impact of the mooring configuration on the system stiffness should
consider both effects. Table 6.3 illustrates the contribution of the hydrostatic and mooring
stiffnesses to the system stiffness by comparing the diagonal stiffness coefficients from both
sources. The hydrostatic stiffness coefficients are computed using the approach developed in
Chapter 3. The mooring stiffness coefficients of the single configuration is determined using
the expressions derived in Appendix D, while those of the bridle configuration are determined
using the finite difference approach. The results in Table 6.3 show that the hydrostatic
stiffness in the surge, sway, and yaw modes is nonexistent (which is a basic principle in
hydrostatics), while the mooring stiffness exists in all DOFs. Moreover, the hydrostatic
stiffnesses in heave, roll and pitch modes are much larger than their mooring counterparts.
The comparison between the mooring stiffness of the single and bridle configurations reveals
that the bridle configuration is stiffer in all modes except the heave mode which exhibits

slightly less stiffness. However, because the hydrostatic stiffness is dominant in this DOF,
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this has little consequence.

The FOWT system natural frequencies are then computed for the two mooring configu-
rations and listed in Table 6.4. The results show that the natural frequencies of the system
with the bridle mooring is somewhat higher in surge and sway modes which is attributable
to the larger mooring stiffness in these modes. The heave, roll, and pitch natural frequencies
are insensitive to the choice of the mooring configuration because the hydrostatic heave, roll,
and pitch stiffnesses are the main contributors to the system stiffness in these modes. Like-
wise, the tower bending natural frequencies are insensitive to the mooring stiffness since the
structural stiffness is very large compared to those arising from the mooring stiffnesses. The

results in Tables 6.3 and 6.4 will serve as the basis for understanding the system dynamics

behavior due to these mooring configurations.

Table 6.3: Hydrostatic and mooring stiffnesses

Mooring
Coefficient Hydrostatic
Single Bridle
KH, K22 (N/HI) 0 4.12 % 104 5.13 x 104
K33 (N/m) 3.34 x 10°  1.31 x 10* 1.12 x 10*
K44, K55 (Nm/rad) 1.31 x 10? —7.07 x 106 6.38 x 108
Kes (N.m/rad) 0 1.16 X 107 + Kaqg 122 x 108

Table 6.4: Influence of the mooring configuration on the system natural frequencies

Eigenmode (Hz) Single Bridle
Surge 0.00800 0.00893
Sway 0.00800 0.00893
Heave 0.03294 0.03291
Roll 0.03329 0.03348
Pitch 0.03332 0.03345
Yaw 0.12111 0.12776
1st (uy) 0.48845 0.48846
1st (ug) 0.48141 0.48142
1st tower twist 1.84150 1.84154
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The FOWT system responses obtained using single (with K,44) and the bridle config-
urations are now compared for identical wave and wind loads. The system is subject to
irregular waves load characterized by a Jonswap spectrum with Hy, = 11 m, 7, = 14 s, and
B = 30°, and a steady wind with U = 10 m/s. Figure 6.12 compares the platform displace-
ment responses obtained using the two mooring configurations. The results show that the
roll and pitch responses are almost insensitive to the choice of mooring configuration. This is
because the roll and pitch system stiffnesses are mainly due to hydrostatics so that varying
the mooring stiffness in these modes will not considerably influence the system stiffness. The
mean values of the surge and heave responses of the bridle configuration are lower than those
of the single configuration. This is because the mean line tensions of the bridle configuration
are larger than those of the single, hence larger mean tension yields lower mean surge/sway
and heave. On the other hand, the fluctuations of the surge, sway and heave are in good
agreement between the two configurations. The biggest difference between the two models
is the discrepancy in the yaw response, where the response of the single configuration ex-
hibits larger oscillations. This attributable to the larger mooring yaw stiffness of the bridle
compared to the single configuration even with additional mooring yaw stiffness (11% larger
than the single configuration as illustrated in Table 6.3). Thus, a better choice of K4q will
result in a yaw response similar to that of the bridle configuration. The rotor spin, and the
tower tip bending deflection responses in the fore-aft (u;) and side-side (uq) directions are
not significantly affected by the choice of mooring configuration, and so are not shown here,

for the sake of brevity.
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Figure 6.12: Comparison of platform displacements between the single-segmented (with additional
yaw stiffness) and bridle mooring system with addition

6.3.3 Rotor gyroscopic effect

It is well known that the rotor spin induces gyroscopic moments proportional to the
rotor spin speed and tower angular velocity. On the other hand, varying the rotor speed
will alter the aerodynamic thrust and torque. To examine the impact of the rotor spin on
the system dynamics separately from any concurrent effect of the aerodynamic loads, we set
the aerodynamic loads to zero (i.e. there is no wind). This implies that the rotor is idling
(without a generator load) at a constant speed. To reflect this, the equations of motion
derived in Chapter 2 must be modified to analyze the system dynamics for constant rotor

speed (2 = 0), and that the generator torque control is no longer active. Accordingly, the
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equations of motion of the rigid model (Equation (2.19) ) can be reformulated as

v - v
[Msy3+A] _'_ SMsy3+CA =
w w

(6.2)
RT%—f I ths + pFaer + meor + thd* + 03X1
J_T% ths + pMaer + pMmor + thd* ngyro
where
~ w 0
S _ 3x3 (63)
v w

The mass matrix (M) form is similar to that of Equation (2.13) but without the last row

and column. The gyroscopic moment (PMyg,,, ) in Equation (6.2) is expressed as
ngyro = [0 - [’I’SC 0 Wy Irx Q wy]T (64)

Based on Equations (6.2) and (6.4), the rotor gyroscopic moments can be viewed as external
moments that excite the pitch and yaw motions. The equations of motion of the flexible

model can be similarly modified for constant rotor speed.

Two dynamic simulations are performed with the platform excited by an irregular wave
characterized by a Jonswap spectrum with H, = 11 m and 7, = 14 s and 3,, = 30?, while the
wind loads are ignored (F,., = Mg, = 0). Two cases are considered: one in which the wind
turbine is parked (€2 = 0), and the second simulation with the rotor idling at a constant spin
rate of 2 =4 rpm. The system response obtained from these simulations are then compared

to examine the influence of the rotor gyroscopic effect on the system dynamics.

The results show that the gyroscopic moment resulting from 4 rpm rotor spin yields a
larger yaw response compared to that of the parked rotor, as shown in Figure 6.13. However,
the remaining platform translational and rotational responses and tower elastic motions are

not affected and thus are not presented here.

Although the gyroscopic moment has components in the y- and z-axes, as shown in
Figure 6.14, only the platform yaw appears sensitive to this effect, while the pitch response is

unaffected. This is because the pitch DOF is primary excited by a very large hydrodynamic
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moment compared to the pitch gyroscopic moment, as shown by comparing Figures 6.14
and 6.15. By contrast, the yaw DOF is not excited by hydrodynamic loads. Thus, the yaw
gyroscopic moment is the main disturbing external moment. Moreover, the platform yaw
mass moment of inertia is small compared to the corresponding roll and pitch, and the yaw

motion can be more easily excited.
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Figure 6.13: Yaw response for parked and spinning rotor
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Figure 6.14: Gyroscopic moment components responses for {2 = 4 rpm
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Figure 6.15: The y-component of the hydrodynamic moment time history for {2 = 4 rpm
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6.3.4 Cable dynamics

In the previous simulations, the cable loads were computed using quasi static cable models.
By contrast, cable dynamic models consider the hydrodynamic loads exerted on the cable
and the cable inertia. In general, incorporating the cable dynamics into the system dynamics
leads to a better prediction of the systems dynamic response. However, the coupled dynamic
model (structural 4+ cable dynamics) involves a large number of DOFs which requires a much

more computational effort.

To investigate the impact of cable dynamics on the dynamic behavior of the system, the
lumped mass approach developed in Chapter 5 is now integrated into the system dynamics.
Thus, the coupled equations of motion of the structure (developed in Chapter 2) together with
equations of motion of the cable nodes (developed in Chapter 5) are solved simultaneously
to obtain the system response. In addition, a separate simulation using the quasi static
cable model with similar environmental conditions is used to calculate the cable tensions.
The system responses obtained using the two cable models are then compared to assess any

differences in their predictions of the system response and cable tensions.

The dynamic simulations are performed utilizing the flexible tower model and the bridle
mooring configuration. The ocean environment is characterized by a Jonswap spectrum with
Hgy =11 m, and 7, = 14 s, and 3,, = 30°. The wind turbine rotor is subject a steady wind of
speed U=10 m/s. Each mooring line is discretized into a total of 26 elements, distributed as:
Ny =2, N, = 6, and N; = 16 elements. The drag coefficients of the mooring lines Cp,. = 1.2
based on [126] and the added mass coefficient C, = 1.0 similar to the platform since they are
both of slender cylindrical shape [96].

Figure 6.16 compares the platform translations obtained using the quasi-static and lumped
mass models. The results show that the surge and and sway responses of the two cable models
correlate well, while minor deviations in the mean of the oscillations still exist. The use of
the lumped mass model yields around 10% reduction in the heave fluctuations amplitudes,
which is likely attributable to the added damping introduced by cable hydrodynamic forces

considered in the lumped cable model.

Figure 6.17 presents the Euler angle responses. The roll and pitch responses are nearly
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identical, indicating that these responses are insensitive to the choice of the cable model. The
same observation can be made for the tower tip bending responses (u; and us), illustrated in
Figure 6.18. This similarity between roll/pitch and wu; /uy behaviors is attributed to the fact

that the pitch and roll motions are the main contributors to excitations of the tower bending

deflections.
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Figure 6.16: Platform translation responses as obtained using the quasi static and lumpud mass
cable models

The rotor spin responses obtained using the two cable models are also in excellent agree-
ment, as shown in Figure 6.19. The key difference between the cable models is in their
predictions of the platform yaw response, with the quasi static cable model exhibiting about

40% higher peaks compared to the lumped mass model, as illustrated in Figure 6.17.

The insensitivity of the surge, sway, roll and pitch response to the cable dynamics is
attributed to the small mooring hydrodynamic damping and inertia forces as compared to
their counterparts on the platform. The effect of mooring hydrodynamic damping in the heave

direction is more prominent yielding a relatively lower heave response. In addition, the large
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Figure 6.17: Platform rotation responses as obtained using the quasi static and lumpud mass
cable models

discrepancy between the quasi static and lumped mass cable models in their predictions of the
yaw response is attributed to the considerable mooring lines yaw inertia and hydrodynamics

damping loads, particularly compared to the low platform yaw hydrodynamic damping.

Figures 6.20 and 6.21 present the power spectra of the platform displacements and tower
tip bending deflections. In general, the lumped mass model exhibits lower energy contents
particularly at higher frequencies beyond the first tower bending mode (0.49 Hz). There is
also slightly less energy contents at some of the resonant peaks. All these differences can be

attributed to the added damping of the mooring lines, present in the lumped mass model.

The time histories of the fairlead tensions are shown in Figure 6.22. The lumped mass
model significantly predicts larger tension fluctuations than the quasi static model. This is
attributable to the fluctuations of the hydrodynamic loads exerted on the mooring line. These

observations are also reflected in the power spectra of the fairlead tensions in Figure 6.23
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Figure 6.19: Rotor spin rate as obtained using quasi static and lumped mass models

where the lumped mass model exhibits considerably higher energy content across most the
spectrum compared to the quasi static model. It is obvious that the lumped mass cable
model predicts lower tension troughs and larger peaks as compared with those obtained by
the quasi-static cable model (Figure 6.22). This enhances the observation reported in many
recent studies [115, 127, 128] that the lumped mass cable model better predicts the snap

loads of the mooring lines. A dominant peak in the vicinity of 0.35 Hz is also observed in the
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PSD plots of the cable tensions (Figure 6.23) which may correspond to a resonant frequency

associated with the cable transverse motion.

Lastly, it is worth mentioning that the main conclusions drawn from the comparison of
the quasi-static and lumped mass models with bridle mooring were also observed for the

single mooring system configuration. Those results are not presented here for brevity.
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Figure 6.22: Cable tension as obtained using quasi static and lumped mass models
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Chapter 7

CONCLUSIONS AND FUTURE WORK

This thesis focused on developing multibody dynamic models of a spar FOWT, with an
emphasis on theoretical modeling of the hydrostatic and mooring system loads as primary
sources of the system stiffness. These models were then used to build a validated large

simulation tool to analyze the system dynamic response to environmental disturbances.

In Chapter 2, rigid and flexible multibody dynamic models of the FOWT system were
developed. The modified form of Lagrange’s equation was found to be an efficient way to
derive the equations of motion of the platform in terms of its quasi coordinates. The orthog-
onal polynomial shape functions developed for the spacial discretization of the tower bending
motion are very similar to the eigen functions of a cantilever beam but more computationally
efficient in symbolic manipulation. The convergence of the AMM using these polynomials
was tested by analyzing the dynamics of a spinning cantilever beam with a tip mass. The
resulting beam bending response was found to be in excellent agreement with reported re-
sults obtained using FEM. Generating the equations of motion of the flexible FOWT model
using symbolic programming was quick and produced error free results, particularly for com-
plex equations of motion, as in our case. We found that modeling the internal damping
of the tower improved the numerical stability and computational efficiency by reducing the
transient period and accelerating the simulation. Incorporating the generator torque control
allowed the model to capture the fluctuation of rotor spin speed which allowed simulations
of different scenarios and load cases. The rotor spin response obtained using this model was

in very good agreement with that reported from different simulation tools.

In general, the heave motion is mainly excited by the fluctuations of hydrostatic force
induced by waves surface elevation variation crossing the platform, where submerged length

is directly influenced by the wave height. A theoretical framework which included this effect
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was developed to calculate the exact buoyancy force and hydrostatic moments in Chapter 3.
New exact water plane restoring moments expressions were derived and found to be directly
related to the rotation matrix entries. As well, the 6 x 6 hydrostatic stiffness matrix was
derived as function of the instantaneous position and orientation of the platform. The exact
hydrostatic waterplane stiffnesses computed using the developed nonlinear approach, were
found to be larger than those computed using the conventional linear approach particularly
at large platform rotation. The exact hydrostatic analysis presented herein can offer an
analytical solution to determine the 3D equilibrium of floating cylindrical platforms, thus

replacing potentially slower numerical methods.

A novel 3D exact quasi-static cable model was developed to compute the mooring tensions
of the bridle configuration, while considering the effect of suspended clump weights. The
clump weight changes the cable profile and yields a higher tension and mooring line stiffness.
A new analytical formulation was also presented to calculate the mooring system stiffness of
suspended, partially resting on the seabed and taut cables. The influence of several mooring
design parameters were investigated for a taut-leg mooring system. The parametric study
revealed that increasing the anchor radius leads to an increase in the surge/sway mooring
stiffness until certain threshold, and further increase results in a decrease in these stiffnesses.
The mooring heave stiffness decreases with increasing the anchor radius while the yaw stiffness
is affected in an adverse manner. The mooring system with fewer number of lines is stiffer if
the lines are not taut. However, larger number of lines yields larger stiffness if the line are sag
free. Including a bridle component yields larger yaw mooring stiffness, while the remaining

stiffness coefficients are not affected.

A lumped mass cable model was formulated to capture the mooring lines dynamics.
The model was extended to account for the cable-seabed contact and added mass. A new
methodology was developed to compute the 3D equilibrium profile of the lumped mass cable
model. This method is more comprehensive than existing approaches because it can consider

cables in contact with the seabed with less computational effort.

A large simulation code was developed using MATLAB to implement the analytical mod-

els of the system dynamics and the applied loads. A validation process was then undertaken
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using four loads cases to determine the natural frequencies, platform free decay response,
system frequency response due to stochastic wave loading, and system time response due
to regular wave and steady wind loads. The current model results were in excellent agree-
ment with those obtained from well known simulation tools such as FAST and HAWC2.
Some deviations among the codes results were observed which were attributable to different
techniques used, particularly for modeling the hydrodynamic and mooring loads. Following
this, several case studies were designed to investigate the influences of the tower flexibility,
mooring system configurations, rotor gyroscopic moment, and cable dynamics on the FOW'T

dynamic behavior. The main findings drawn from the results of these case studies are:

e The comparison between the simulation results of the rigid and flexible dynamic models
showed that the tower flexibility yields 25% larger yaw response while the surge, sway,
heave, roll and pitch motions of the platform are only slightly affected. As well, the
flexible model responses exhibit more damping compared to those of the rigid body model

due to the tower internal structural damping considered in the flexible model.

e The roll and pitch system stiffness are mainly due to the hydrostatic restoring loads. Thus
varying the mooring system stiffness by using different mooring configurations does not
affect the roll, pitch and tower elastic deformations responses. By contrast, the surge, sway
and yaw responses are solely due to the mooring system stiffness characteristics and thus
are much more affected by changes to the mooring configuration. For the same reason,
the system natural frequencies in heave, roll/pitch and fore-aft /side-side tower bending are
insensitive to the mooring stiffness while the remaining natural frequencies are affected by

the mooring system stiffness.

e The influence of the tower twist on the platform displacements and tower bending defor-
mations is negligible and results in a much slower simulation. It is therefore recommended

to ignore this deformation.

e The rotor spin induces gyroscopic moments around the pitch and yaw axes. The gyroscopic
effect in yaw is more prominent because of the small yaw mass moment inertia and the

absence of yaw added inertia, rendering the yaw DOF more responsive to relatively small
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disturbances.

e (Cable dynamics yields considerably lower yaw response due to the larger yaw cable inertia
and hydrodynamic damping. As well, the hydrodynamic damping induced by cable dy-
namics yields lower heave response compared to that obtained using the quasi static model.
The surge, sway, roll, pitch and tower bending deformations responses are not affected by

the cable dynamics.

e The cable tension fluctuations predicted by the lumped mass cable model are larger than
those of the quasi static cable model. This is attributable to the fluctuations of the hydro-

dynamic loads exerted on the cable due to the cable motion.

7.1 Suggested Future Research

Based on the work accomplished in this thesis, several directions to extend the current

research work in future are proposed as follows:

e Modeling the rotor blades flexible motion and incorporating this into the system dynamics
to capture the contribution of the rotor flexibility to the system dynamic behavior. This
will improve the current model capabilities and better predict the system response and the

rotor aeroelastic behavior.

e Development of a more elaborate hydrodynamic model that considers the wave diffrac-
tion effect, radiation damping, and the second order hydrodynamic load will improve the

predictions of the hydrodynamic loads and hence the resulting system response.

e Including the effect of the vortex induced vibration on the platform and lumped mass cable

model particularly when the system is subject to steady water current loads.

e The effect of wind turbulence and gusts may have significant influence on the system re-
sponse. The wind field kinematics can be characterized in space and time using a wind
turbulence model. Further validations of the current dynamic model for load cases associ-

ated with turbulent wind loading could be then performed.
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e The drag and added mass coefficients of the platform and mooring lines were assumed to be
constant. However, these coefficients are dependent on Reynolds and Keulegan-Carpenter
numbers. Incorporating the relationships between these coefficients and dimensionless
numbers into the hydrodynamic model will improve the predictions of inertial and drag

terms in the Morison’s equation.

e If experimental data becomes available from the Hywind pilot systems presently being

deployed, it would be important to use this data to validate the present model.

e Develop a simple extension to improve the rigid body model to predict the tower tip elastic
bending deformations in the fore-aft and side-side direction. The model can be altered by
adding spring and damper at the tower tip and attached to the RNA in an appropriate
manner to account for the tip deflections and equivalent internal tower damping. This
would extend the rigid model to approximately predict the flexible tower motion with

much less computational effort than the flexible model.

e Extending the present simulation code to analyze different types of platforms such as
semi—submersible and hybrid platforms. This will allow to assess the dynamic behavior of

FOWTs with different platform types.

e Examine the system dynamic behavior for different mooring arrangements such as taut-leg

and tension leg mooring systems.
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Appendix A

SYSTEM PROPERTIES

A.1 Mass and Inertial Properties of the Platform

Table A.1: Platform dimensions, mass, and inertial properties [6]

Parameter Value Unit
my 7,466,330 kg]

J. 4,229,230,000 [kg.m?]
I, 4,229,230,000  [kg.m?]
I,. 164,230,000 [kg.m?]
a 99.9155 [m]

apf 30.0845 [m]

a 108 [m)]

as 8 [m]

as 14 [m]

dy 9.4 [m)]

ds 6.5 [m]

L. 120 [m]

A.2 Rigid Body Model Properties
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Table A.2: Rigid body model dimensions, mass, and inertial properties [6]

Parameter Value Unit
my 249646 [ke]

Iy, 120213488  [kg.m?|
Iy, 120213488  [kg.m?]
Iy, 1817977 [kg.m?]
My 240,000 [ke]
Lex 4,901,094  [kg.m?|
Ley 22,785 [kg.m?]
I, 2,607,890  [kg.m?|
m, 110,000 [kg]

I, 38,759,228  [kg.m?|
I, 19379614  [kg.m?]
I, 19379614  [kg.m?|
d, 5.462 [m]

e 1.90 [m]

Dy 133.3463 [m]

D, 179.5670 [m]

A.3 Flexible Tower Properties

The tower is modeled as a cylindrical hollow tapered beam of height [ = 77.6 m, as shown
in Figure A.1. Based on that data in [6,87], the tower base external diameter is D,(0) = 6.5
m and the tip diameter D,(l) = 3.87 m. The tower structure thickness is linearly varying
with tower height (z). The base thickness, t:,(0) = 0.027 m, and at the tip #;,(I) = 0.019

m. Therefore, the tower thickness and external and internal diameter can be expressed as

157



functions of z
tw(z) = 0.027 — (0.008/77.6) =

D,(z) = 6.5 — (2.63/77.6) z (A.1)

Di(2) = Dy — 2t,(2)

Y

Y

.
tower tip

tower base
NL

Figure A.1: Tower structure

The effective tower structure density is p; = 8500 kg/m3. The mass per unit length of

the tower is

mi(2) = prAr = pt(ﬂ/él)(Dg - D?) = pimtiw(Do — thw) (A.2)

my(z) is quadratic in z which can be obtained by substituting Equation (A.1) into Equa-
tion (A.2). The tower cross section second moment of area and polar moment of inertia area

as functions of z are

[t,:(;a: = It, = (7T/64>(D§ - D?)
v (A.3)
Jp =Tt gy + It yy = (7T/32)(D§ - Dgl)

Similarly, substituting Equation (A.1) into Equation (A.3) to find the final form as function
of z. The tower Young’s modulus is £=210 GPa and the shear modulus is G=80.8 GPa.

The tower mass can be calculated as
l
0
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and the center of gravity of the undeformed tower is

l

1
Ziw = —/zmtdz = 33.3463 m (A.5)
my
0

The mass moment of inertia of the tower structure around the tower base center about the

x and y axes can be calculated as

l
Lizp = ]tyb - / (pt]t,:m: + thQ)dz (A6)
0

The mass moment of inertia of the tower structure around its center of gravity (0,0, Z;,) can

be calculated using the parallel axis theorem as
Liy = Ly = Ly — my 27, = 120213488 kg.m? (A.7)

The mass moment of inertia of the tower structure around z axis can be calculated as

l
I, = / pr Jp dz = 1817977 kg.m? (A.8)
0

A.4 Mooring System Properties

A.4.1 Single configuration

The single mooring system properties listed in Table A.3 ass
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Table A.3: Platform dimensions, mass, and inertial properties [6]

Parameter Symbol Value Unit
Water Depth dy 320 [m]
fairlead Depth Below MWL D 70 [m)]
Anchors radius dy 853.87 [m]
fairlead radius Ry 5.2 [m]
Unstretched line length Ly 902.2 [m)]
Cable diameter d. 0.09 [m)]
Mass per unit length Me 77.7066 [kg/m]
Equivalent weight in water — w 698.094 [N/m]
[

Extensional stiffness EA 384,243,000 [N]

A.4.2 Bridle configuration

The properties of the bridle configuration are similar except for m,. and w which are
illustrated for the bridle configuration in Table A.4. The clump weight length and diameter

are 2 and 1.67 m, respectively.

Table A.4: Bridle mooring system properties [7]

Unstretched  Weight/length  Mass/length

Component length [m] in water [N/m)] [kg/m]

( segireirclltl: iirzlxend 2) Loa=50 353.2 42.525
(sl\(fgaxfeztn g) (5[103;:28558"22 ) 353.2 42.525
Clump weight 2 147.15 x 103 17952.7
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Appendix B

ASSUMED MODE METHOD: SHAPE FUNCTIONS
AND CONVERGENCE

B.1 Orthogonal Polynomial Shape Functions of a Can-
tilever Beam

1 4
Py ==31 — 523 + 242

3

182 . 661, 824 . 326
B, —0bs5 _ O01aa B2 52
259" " 19 T9°F T 197

57376 4 21896625 . 61163 , 3622423 N 7498 52
_ 2006 4

P. —
37505 595 119 119 119

2124096 ., 44146336 4 70839756 ., 10829283 , n 3879604 ., 509634 ,
2 — z 2% — z 27—
3467 17335 17335 3467 3467 3467

4 =

93617550, 426344880 ; 3806636744 , 3625862604 ; 358055847 ,
57708631 28631 143155 - 143155 - 28631

B 8755715623 . 8102442 52
28631 28631

132109516 ., 658061874 ¢ n 1354376928 ., 296469656 . 923419434
=2 — z z2' — z z
6 8285 8285 8285 1657 8285

323567649 _, n 58114976 ., 4034766 ,
8285 8285 8285
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o 270583104 ,, 1468232524 , 3365779806 .4 4232857152 , 53909627240
7= - -

3673 3673 © T 3613 - 3673 © 1 Goddl
| 24410087874 ;| G4607TI527 , 892809928 ;48516498 ,
62441 62441 - 62441 62441
o _TT2T8TAS568 ) 4546300328768 ,, 2209804002888 , 3266942071374
8 T e —_— —

2352305 9352305~ 470461 - 470461

2854994608848 57 790028740810426 N 274286130126425 B 11379()293047734
470461 2352305 2352305 470461

12582969436 ., 551849882 ,
Z J—
470461 470461

1399974687111 ,,  44435634369828 L 123016536600518 ,,  38955270772748
— A — z z -
’ 979273 4896365 4896365 979273

388TLIS0318609 25386245006088 ,  54520480623084 ¢  15063499195064 ;
979273~ 979273 1896365 1896365

506189488807734 45868003196 58 1661824946 _,
979273 979273 979273

131486440250 ;5 896628649475 _,, n 4496527093448 ;; 7852396284898
—_— %" — z 20— z
21513 21513 35855 35855

10 —

1761079340218 , 1324679063589 ¢ . 677758634528 . 1170155714244
z27 — z z' —
7171 7171 7171 35855

5027239676826 55 _ 41986071856924 L 31815241672 53 _ 323318738 52
681245 408747 408747 136249

B.2 AMM Convergence

The AMM convergence is mainly dependent on the choice of mode shapes [94,129, 130].

According to the problem type, different families of mode shapes may may change the con-

vergence performance. Thus, it is important to examine the convergence of the selected

mode shape used to discretize the elastic motion of FOWT system prior to performing the

dynamic simulation. The applicability of the developed orthogonal polynomial comparison
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functions is examined here by analyzing the dynamics of a spinning cantilever beam with
a tip point mass, as shown in Figure B.1. This is a well-known problem typically used in
flexible dynamics research for analysis and validation [51]. As well, it resembles the FOWT
flexible structure under consideration. The beam spins with angular velocity €,(¢) around

the z-axis, expressed as [51,55]

Q.7 —(1/27)sin (277)] for 0< 7 <1
o _ |l (/2m)sin 27) -
Q, for 7>1

where the zyz frame is attached to the beam, 7 = /T, T, = 15 s, and Q, = 6 rad/s. The
coupled bending (ug) and longitudinal motions (u;) (resulting from the shortening due to
bending and expansion due to stretch (s)) of the cantilever beam are considered. The stretch
(s) is discretized in space using two eigen mode shapes corresponding to the longitudinal
vibration of a fixed free bar which are similar to the form in Equation (2.32), while the

bending us is discretized in space using three orthogonal polynomial comparison functions

developed herein.

The bending deflection response of the tip mass, us, is compared with the results of Cai et
al. [4] where they analyzed the problem using a FEM, as shown in Figure B.2. The result of
the present approach utilizing the AMM with the polynomial mode shapes developed herein
shows excellent agreement with the results of [4]. This gives a strong indication that these
polynomials can be efficiently used to discretize the bending elastic motions of the FOW'T

flexible model in space.
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Figure B.1: Spinning cantilever beam with a tip mass (beam deflections are in the xy plane).
Length (=8 m, density =2.7667 x 10° kg/m?, Young’s modulus E = 6.8952 x 10'° Pa, cross sectional
area A = 7.2968 x 107° m?, moment of inertia of the cross section I,y = 1I,,= 8.2189 x 1079 m?,
and my;, = 0.085 kg [4]

0.2

— Present

- —Cai et al.

u, [m]

_0-8 1 1 1
0 5 10 15 20

Time [s]

Figure B.2: Bending response of a rotating cantilever beam with a point tip mass
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Appendix C

HYDROSTATIC CALCULATIONS

C.1 Hydrostatic Stiffness Matrix

The submerged length and its partial derivatives with respect to the heave displacement

and Euler angles are

Lep = (Le—1z+ 25 +Tps9 — 21 CyCo — Y5 8¢ o) [/ (Cy Cp)

(9ch:_ 1 8ch:(Lc—Tz+Zf)S¢+t98¢x _ﬂ c
ory cgcop 09 cé o ci ! c; (C.1)
8ch o (Lc—Tz+Zf)89 1 Xy ach .
o0 ke, e

The partial derivatives of X and Yr with respect to the heave and Euler angles are

0X 0L,
(9—¢F = (8¢ Sy + CsSp Cy) <O.5 3¢f + yf) + (27 4+ 0.5L¢y) (cp Sy — S S Cyp)
0X 0L,

69F =0.5 89f (8¢ Sy + Co 80 Cp) + Cpcocy (25 +0.5Lcf) + yp Sy CoCy — Ty SpCy
0X 0L,

89F =05 88f (8¢ 8¢+ CySpCyp) +cycocy (27 +0.5Lcp) +yp Sy cocy — Ty Spcy
0Xrp

gy (cpcy 4 sp505y) — 2y Cosy + (27 + 0.5Lcs) (54 cp — €y 59 5p)

8Yp (9ch

TE_ 05 -

ar, (S¢ cy — € S0 Sy) ar,

Y] 0L,

(9(; = 0.5 8¢f (C¢59 Sy — S¢ C¢) + Yr (C¢ S0 Sy — S¢ Cw) — (C¢ Cy + S¢ S6 Sw) (Zf + 0.5ch)
Y, 0L,

6’9F =0.5 89f (8¢ Cp — €80 Sy) + Yf SpCo Sy — Ty So Sy + Cp Co Sy (27 + 0.5L)
OYr

5 (8¢ 55+ cpspcy) (27 + 0.5Lcs) + (sp 50 cp — CoSy) Yy + cocpxy

(C.2)
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The buoyancy stiffness matrix coefficients (third row) are

OL.s
09

0L,
K%‘l = —pPg Ac !

= e RS = g A,

, K¥ =0 (C.3)

The buoyancy stiffness matrix coefficients (4th row) are

Y IFp IYr
KB = _Fp—" YVp—" = Fp—" + Y K
B 5 or, Fory Pory T
oOM; e
K= — [Mfép + aqswp} (s6 55+ cg 50 ¢y) + YK} — FpE
) OME,
_W%?—M@M%%%—%%V‘J%“w
oMY,

oMz,
Kp = ——52 (s¢sp +cpsacy) + YrKE —

aY;
59 (8¢ 80 Cp — Cp Syp) — FpZf + My, socy

wp _ z — Y
50 Co Cp — My, cococy — MY sgcocy

w

0Yr

Ké6 = —Mi)p <S¢ Cyp — C¢ Sp Sw) + Mff)p (C¢ Cy + S¢ S0 8¢) — FBW + qu)p Co Sy
(C4)
The buoyancy stiffness matrix coefficients (5th row) are
0Xp
K» =F — Xp K3
B B arz Ffp
0Xp oM?
Ky = FBa—¢ — XpK3¥ — [Mf{)p + 90 Pl (cp 805y — S Cy)
oMy, ME ] ¢ N ) oMy,
a(b wp Cep Cy S¢S0 Sy a¢ CoSy
0X oMY oM}
K% = FB(?—QF — XpK¥ — 50 P (cy ey + 8450 5y) — 50 P (cy 805y — SpCy) + My, 805y
oMy, ;
g C0Sv~ Mg, cocosy — MY, 54 o5y
56 aXF Y z T
Ky = FBW — MY, (8¢ 80Cyp — Cp5y) — My, (5454 + cy Sa.cy) — My, cocy

(C.5)
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The weight restoring stiffness matrix Kg enteries are

K¢t = —We [y (spc — Co 50 59) + 24 (Co Cyp + 56 50 53)]

K& =Wesy (244 o — Ty80 + Yy S Co)

K& = We [2g (59 59+ Co 50 Cy) — Yy (Co 55 — 5 50 Cp) + T4 Co Cy]
Kot = =We [yg (59 5+ co 50 ¢y) + 24 (Co 5y — 5450 Cp)]

Ky =-W. cy (zgCyco— g9+ Yy Se Co)

KX =W, [y, (cocy+ 5550 54) — 24 (86 — Cp 59 8p) + T4 CoSy)

C.2 Method of Calculating V;, acy and 1,4

The variation of the diameter of the submerged volume as shown in Figure 2.8 can be

expressed as

d, for z<a
dy + 2= (5 — gy) for ay <z<a+ay

d(z) = o (C.7)
dy for ay+ay <z<ar+ax+as
dg—i-M(Z—al—@_ai%) for z>a; +ax+as

where dy;), is the tower tip diameter. The last inequality considers the case when the tower
sinks in water. The submerged length L.; can be calculated from Equation (3.42). The

submerged volume V,; can be expressed as

w:/&@ (C.8)
0
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where the platform cross section area is A. = (w/4)d*(z). The center of the submerged

volume position relative to the platform base is

1
acv = 37 / 2 A.dz (C.9)

The moment of inertia of the platform cross section area is I.(z) = (7/64)d*(z). Thus, the
mass moment of inertia of the displaced volume around the platform base center about axes

parallel to x and y can be calculated as

f

Iy, = p (IC + Z2AC) dz (C.10)

O\.mh

The added inertia I,, around the origin of the platform frame (xyz) can be obtained using

the parallel axis theorem

Toga = Iy — pVaaps (apy — acvy) (C.11)

The integrands in the integrals of Equations (C.8) to (C.10) are piecewise functions based

on Equation (C.7).
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Appendix D

MOORING STIFFNESS MATRIX

The mooring stiffness matrix (K,,) coefficients (1st row)

oT OH 0l . 0 H .
iy == G5 = con BT g~ i = Kot + psins
oT . H
Ky =— ﬁ = sin f cos 3 (Kfl — 7)
K3 = — Ty = cosﬁa—H = cos 3 K7,
87“2 6rz (D 1)
oT 0H . 0p ol oh . 0p ’
Ku=—-—">%= — —H = = K’ —+KV,— ) —H -
14 0 COSB@(ﬁ smﬁa(b Cosﬂ( 118¢+ 128¢> smﬁa¢
oTy » Ol » Oh . 0p
K5 == =5 = cos (K”ae +K12&e) Hsin 55
oT ol oh . OB
Kig = — 8_1;( = cos 8 (K%% + KfQ%) — Hsmﬁ%
The coefficients of the 2nd row
oT;
Ky = — 8—Y = Ko
X
oT; ) H
K22 = — 67: = Slnzﬁ K;fl + COSQBT
Ky — — 0Ty _ O(Hsinf) — sin B KY,
aTZ 87'2 (D 2)
0T, . ol oh op :
Koy = — a_g;/ = sin 3 (Kﬁ% + Kf28_¢) + Hcosﬁa—¢
oT; ) ol oh ap
Kos = — 8_0Y = sin 3 (Kﬁ% + Kf?%) + HCOSB%
oT; ) ol oh op
Kog = — (9_1;/ =sin 3 (Kﬂ% + K{’Q%) + Hcosﬁ%
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The coefficients of the 3rd row

oT
K3 = — —Z = K3
87’X
oT
K3y = — —Z = K3
aT’y
K33 =K35,
oT. ol oh (D.3)
fou == 55 = (b 5+ Kb )
orT ol oh
K35 = — a—QZ = (K%@ + ng@)
oT ol oh
Ky =— —2 =Ky — + Kb, —
ST ( oy 22a¢)
The coefficients of the 4th row
oM T T,
Kn=— 813? = (Yp—TY)ﬁ - (Zp—TZ)ﬁ = (Y, —ry) Ka1 — (Z, —12) Kn
oM
Ky = — 87”;( = (YL—TY)Kzz - (Zp—TZ)Km
oM
Ky = — X:(Y;J_TY)KQ)Z’)_(Zp_TZ)K%
oM oY, 0z ’
K44__8—¢X = (}/;J—Ty)K34—(Zp—Tz)K24+Va—¢p—HSinﬁa—(;
oM oY, .0z
K45 ——a—ex = (Y;,—?"y)K35—(Zp—’I“2)K25—|—V8—0p—HSIHﬁa—ep
oM oY, .0z
K46— 8—¢X:(Y;)_TY)K36_(ZP_TZ)K26+V8_’(;_HSIHBG_J
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The coefficients of the 5th row

oM
Ky = — B Y = (Zp —rz) K — (X, —rx) K
rx
oM
Ksy = — 5 * = (Zy —rz) Kia — (X, —rx) K3
Ty
oM
Ks3 = — Y:(Zp_TZ>K13_(Xp_TX)K33
881\7 o7 0X (D-5)
K5y = — (%Y =(Zp —1z) Ky — (X, —7x) Kz +HC0558—; - V_&bp
OM. 07 0X
Ky = — =5 = (Zy = 12) Kis — (X = rx) Kigs + Hcos B2 = V=8
OM oz 0X
KSG:_(?—J:(Zp_TZ>K16_(Xp_TX)K36+HC0858_J_V81;
The coefficients of the 6th row
oM
KGIZ_ B z :(Xp—rx>K21—(Y;;_TY)K11:K16
rx
oM
K62:_ B Z :(Xp—rx)KQQ—(Y;;_TY)KH:K%
Ty
oM
K¢z =— Z:(Xp—rx)Kgg—(ng_rY)Kl?):Ki%
5{5 0X oy, (D-6)
Koy = — 8¢Z = (Xp —rx) Kog — (Y, —1y) Kiy +H81H5—a¢p - HCOSﬁa—(;
oM . 0X Y,
Kes = — 8HZ = (Xp —rx) Kos — (Y, —ry) K15 + Hsin 3 80p B Hcosﬁa—;
OM . 0X oY,
Kegs = — GwZ = (Xp —rx) Kog — (Y, —7v) K16 +H81nﬁ—a¢p - HCOSBa—wp
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The mooring line attachment point P displacement (r,,) partial derivatives with respect to

rotational displacements ( Equation (4.34)), can be expressed as

0 Xyp
X —Cy Sp CypCoSgp Cy CopCy Tpo

BYP =
W Sy S Sy CoSy Sy CoCy UYpo

0Zy o - .
Era Cy S0 S¢ S Cyp Zpo

% 0 cypSecy+ SySy —CypSesSy + Sy Cop Lpo
Y, —
a—ég 0 Sy S§Cp — Cyp S¢g —Syp S§ S¢p — Cyp Cop Ypo (D7)

07,
90 0

Co Cy —Co S¢

X
o0 —S8yCo —SySeSp — CyCy —Sy SoCy+ Cy Sy Tpo

dY, —
8—£ = Cy Co Cp SoSp — Sy Cp Cyp Se Cp 1 Sy Sg Ypo

87,
Ea 0 0 0 Zpo
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