
Dynamics Modeling, Simulation and Analysis

of a Floating Offshore Wind Turbine

Mohammed Khair Hamdan Al-Solihat

Supervisor: Prof. Meyer Nahon

Department of Mechanical Engineering

McGill University, Montreal

Canada

April 2017

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

c© Mohammed Khair Al-Solihat, 2017



Dedicated to:

my father and mother

my wife and kids

my brothers and sisters

the soul of my grandfather Mnizel



ABSTRACT

Floating Offshore Wind Turbines (FOWTs) are a promising technology to harness the

abundant offshore wind energy resources in open ocean areas. A FOWT consists of a floating

platform, the moorings, and the wind turbine structure (tower + Rotor-Nacelle Assembly

(RNA)). The main focus of this thesis is to develop multibody dynamic models that integrate

the structural dynamics, and hydrostatic, hydrodynamic, aerodynamic and mooring system

loads. Special efforts are also devoted to characterize the mooring and hydrostatic loads as

main sources of systems stiffness that shapes the dynamic behavior of the system.

Two approaches for modeling the platform/tower dynamics are developed, a rigid multi-

body model and a coupled rigid-flexible multibody model. Both models treat the platform,

nacelle and rotor as six-degrees-of-freedom (6-DOF) rigid bodies. However, modeling the

wind turbine tower dynamics differs between these approaches. The rigid model considers

the tower as a 6-DOF rigid body while the flexible model represents the tower as a three-

dimensional (3D) tapered damped Euler-Bernoulli beam undergoing coupled general rigid

body and elastic motions. In both approaches, the wind turbine drivetrain dynamics is also

considered to capture the rotor spin response. The equations of motions of both models are

derived symbolically using Lagrange’s equation.

The hydrostatic restoring loads are evaluated through development of a novel nonlin-

ear hydrostatic approach. This approach allows evaluating the exact hydrostatic force and

moment and position of the center of buoyancy as function of the platform displacement

and finite rotation. New exact expressions for the water plane area restoring moments are

developed. The hydrostatic stiffness matrix at an arbitrary position and orientation of the

platform is subsequently derived.

A quasi-static approach is then developed to determine the cable tensions of the single-

segment or multi-segment the mooring system configurations proposed to moor the platform
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to the seabed. The approach uses different governing equations, depending on whether the

mooring lines partially rest on the seabed; are suspended; or fully taut. The exact mooring

stiffness is subsequently derived and the influence of several mooring system parameters on

the mooring system stiffness is investigated.

As an alternative to the quasi-static cable model, a lumped mass cable model incorpo-

rating the cable-seabed contact effect is developed to integrate the cable dynamics into the

FOWT system dynamics. The equations of motion of the mooring line nodes are assem-

bled for the two mooring system configurations under consideration. A new methodology is

also presented to calculate the equilibrium profile of the mooring line lying on a seabed as

desirable initial conditions for solving the discretized cable equations of motion.

Finally, the theoretical models are implemented through a large simulation tool to analyze

the dynamic behavior of the spar FOWT system under study. A series of simulations under

defined external loads (load cases) are performed to validate the dynamic models. The

simulation results are compared with similar results obtained from well-known offshore wind

simulation tools. The simulation results are found to be in very good agreement with the

reported results. Numerical experiments are also performed to investigate the influence of the

tower flexibility, mooring system configuration, rotor gyroscopic moment and cable dynamics

on the system dynamic behavior. The results show that the system responses obtained from

the rigid body model under-predict the platform yaw response and exhibit less damping than

those obtained from the flexible model. It is also found that the mooring system configuration

choice does not influence the platform roll and pitch responses or tower elastic deflections.
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RÉSUMÉ

Les éoliennes offshores flottantes (EOFs) sont une technologie prometteuse pour exploiter

les ressources abondantes d’énergie éolienne dans les zones des eaux océaniques ouvertes.

Un EOF se compose d’une plateforme flottante, des amarres, et d’une structure de turbine

éolienne (tour + Assemblage Rotor-Nacelle(ARN)). L’objectif principal de cette thèse est de

développer des modèles dynamiques multicorps qui intègrent la dynamique structurelle, hy-

drostatique, hydrodynamique et aérodynamique ainsi que les charges de système d’amarrage.

Des efforts particuliers ont été également consacrés pour caractériser l’amarrage et les charges

hydrostatiques comme sources principales de la rigidité des systèmes qui façonne le comporte-

ment dynamique du système.

Deux approches de modélisation de la dynamique plateforme/tour ont développées, un

modèle multicorps rigide et un modèle multicorps couplé rigide et flexible. Les deux modèles

traitent la plateforme, la nacelle et le rotor en six degrés de liberté (6-DDL) de mouvement

de corps rigides. Cependant, la modélisation dynamique de la turbine éolienne de la tour se

distingue de ces approches. Le modèle rigide considère la tour comme un corps rigide 6-DDL

tandis que le modèle flexible considère la tour comme une poutre tridimensionnelle (3D) de

type Euler-Bernoulli conique amorti subissant un mouvement couplé de corps rigide général

et élastique. Dans les deux approches, la dynamique du groupe motopropulseur de l’éolienne

est également considérée pour déterminer la réponse de la rotation du rotor. Les équations

de mouvement des deux modèles sont dérivées symboliquement en utilisant les équations de

Lagrange.

Les charges hydrostatiques de rappel ont été évaluées à travers le développement d’une

nouvelle approche hydrostatique non linéaire. Cette approche permet d’évaluer la force

hydrostatique exacte, le moment et la position du centre de carène en fonction du déplacement

et de la rotation finie de la plateforme. Des nouvelles expressions exactes de la zone de plan
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d’eau des moments restaurés sont développées. La matrice de raideur hydrostatique a été

ensuite dérivée à une position et une orientation arbitraire de la plateforme.

Comme une alternative au modèle du câble quasi-statique, un modèle de masse ponctuelle

d’un câble incorporant l’effet de contact (câble-fond marin) a été conçu pour intégrer la

dynamique des câbles dans le système dynamique des EOF. Les équations de mouvement

des nœuds de ligne d’amarrage ont été assemblées pour les deux configurations de système

d’amarrage envisagées. Une nouvelle méthodologie a été également présentée pour calculer

le profil de la ligne de mouillage se trouvant sur un fond marin (comme conditions initiales

désirables) pour la résolution des équations discrètes du mouvement des câbles.

Enfin, les modèles théoriques ont été implémentés à travers un outil important de sim-

ulation pour analyser le comportement dynamique du longeron EOF à l’étude. Une série

de simulations soumises à des charges externes définies (cas de charge) ont été effectuées

pour valider les modèles dynamiques. Les résultats de la simulation ont été comparés aux

résultats similaires obtenus à partir des codes de conception éolienne offshore bien connus.

Les résultats de simulation ont été trouvés en très bon accord avec les résultats rapportés. Des

expériences numériques ont été également réalisées pour étudier l’influence de la flexibilité

de la tour, la configuration du système d’amarrage, la rotation du tour et la dynamique du

câble sur le comportement dynamique du système. Les résultats montrent que les réponses

du système obtenues à partir du modèle de corps rigide sous-prédisent la réponse de lacet de

la plate-forme et présentent moins d’amortissement que celles obtenues à partir du modèle

flexible. Il est également constaté que le choix de la configuration du système d’amarrage

n’a aucune influence sur la réponse de la plate-forme de roulis et de tangage, ni la tour

débattements élastique.
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CLAIM OF ORIGINALITY

Following are the main original contributions of this thesis:

• An analytical formulation to determine the exact nonlinear hydrostatic restoring loads and

stiffness of floating offshore platforms. Closed-form formulae are derived for calculating

the exact buoyancy force and the corresponding moments for general 3D displacements of

cylindrical platforms (of different cross sections such as circular, square, and rectangular).

• Development of an exact nonlinear analysis for the stiffness of a mooring system as a

function of the displacement and orientation of the floating structure. The analysis allows

a derivation of the mooring stiffness matrix while considering slack mooring line resting

on the seabed, as well as slack and taut suspended lines.

• An exact three-dimensional nonlinear quasi-static model for computing the tensions of

general mooring configurations, including delta lines and clump weights. These components

are important in many proposed designs for offshore wind turbine platforms, notably the

OC3-Hywind concept.

• Development of a closed-form rigid body dynamic model of a spar FOWT that considers

the generator torque control.

• A comprehensive 3D flexible multibody dynamic model to analyze the dynamics of a

spar FOWT. The model considers the coupled rigid and flexible motions arising from the

platform, nacelle, and rotor rigid bodies and the flexible tower structure. As well, the

generator torque control is integrated into the model to capture the rotor spin dynamics.

• Development of a lumped mass cable model incorporating the seabed contact for a single

line and bridle mooring systems.

• Development a novel static solver for single line and bridle mooring systems. The solver

determines the equilibrium profile of the cable whether suspended or resting on the seabed.
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Chapter 1

INTRODUCTION

1.1 Motivation and Background

Wind energy currently supplies around 3% of the world’s electricity. In particular, North-

ern European countries have made great strides in exploitation this source of clean energy,

including Denmark where wind power met 28% of its electricity needs in 2012. This source of

energy is growing at 25-30 % annually and is expected to fulfill 12% of the world’s electricity

demand by 2050 [8]. Most of this produced wind energy is obtained from land-based wind

farms.

Recently, renewable energy investments are being directed to exploit the open ocean

environment, which is rich in wind power, as an advantageous location for wind turbines

fields. The exploitation of offshore wind power began two decades ago, existing offshore wind

turbines are installed in shallow water and are fixed to the seabed by structures like monopoles

and lattice towers. The harvesting of ocean wind power could constitute an abundant source

of low cost energy. Installing wind turbines on floating platforms far offshore, in deeper

water, where the wind is stronger and steadier, maximizes the obtained wind power. This

can only be achieved using floating platforms to support the wind turbine due to the high

cost of the fixed-bottom structures. Offshore placement also avoids the problems associated

with noise and visual impacts. Several Floating Offshore Wind Turbine (FOWT) concepts

have been proposed.

FOWT systems are in an early stage of research and development, a few prototypes

are currently under construction and some are deployed in the ocean and equipped with

instrumentation for testing and design evaluation. There are few guidelines for system design

and the costs are high. At present, offshore wind energy research is focused on the design of
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a durable floating system which can be deployed in deep water and can withstand the harsh

ocean waves and wind environment at a reasonable cost.

1.2 FOWT Concepts

A FOWT system consists of a buoyant platform supporting the wind turbine and anchored

to the sea bottom by a series of cables (mooring system) to hold the system in position. The

platform and tethers are subjected to hydrodynamic disturbances, while the wind turbine

tower and rotor are subject to aerodynamic loads. FOWT preliminary designs and prototypes

utilize the same floating platforms concepts conventionally used in the offshore oil and gas

industry namely, spar-buoy, tension-leg platform (TLP), semi-submersible, and pontoon-type

(barge-type) [1], as shown in Figure 1.1.

Spar-buoy platforms consists of a cylindrical floater made of steel and concrete filled with

ballast of water and gravel. The draft of the spar is usually larger than the turbine hub

height. A solid metal permanent ballast is used at the bottom of the floater to further lower

the centre of gravity to be well below the center of buoyancy, thus stabilizing the floater and

attenuating the wave/current-induced translational and rotational motions [9]. The floater

is held in position by a catenary mooring system comprised of at least three lines. However,

a recent proposed design by the SWAY company suggested mooring a spar FOWT by a

single vertical taut tendon connected to the seabed anchor by a universal joint that allows

the tower to yaw according to wind direction, so that the turbine rotor always faces the

oncoming wind [10], a model of the SWAY concept was deployed in 2010, but it collapsed

due to extreme environmental conditions in 2011.

The TLP design is comprised of a floater connected to the seabed by taut vertical mooring

lines that stabilize the system. The high tension of the mooring lines is produced by the

floater excess buoyancy, which in turn yields high heave, roll and pitch stiffnesses. Mooring

stiffness in surge, sway and yaw directions are lower which allows the system to move a few

feet horizontally. However this large amplitude of motion is not dangerous since the turbine

tower stands vertical and there are no excessive nacelle and tower inertia forces [10, 11].

The Semi-submersible design consists of three pontoons connected together by steel tubu-
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Figure 1.1: FOWT design concepts: (a) Spar-buoy; (b) TLP; (c) semi-submersible; and (d)
barge [1]

lar beams to form an equilateral triangle structure moored to the seabed by catenary mooring

lines. This design can support 1-3 turbines placed on the pontoons centers, or can be mod-

ified to install a single turbine on the platform center as in the proposed Dutch tri-floater

concept [11]. The large waterplane area of platform yields high hydrostatic restoring moment

that stabilizes the system.

The barge concept is simply a catenary-moored wide pontoon (compared to its height)

that can support single or multiple FOWTs [11, 12]. In addition to the aforementioned

platform concepts, there are several proposed hybrid designs that combine two or more

concepts designs, for instance the tension-leg spar (TLS) concept that merges the spar-buoy

and TLP design concepts [11]. A further review for all the concepts of FOWT and existing

models can be found in literature survey papers [9, 10].

A few prototypes have been recently deployed in the ocean. The first full scale prototype

of a spar-buoy type in operation was launched close to the south-west coast of Norway in

2009 by STATOIL, with a power capacity of 2.3 MWT. In October 2011, Principle Power

Inc., launched the WINDFLOAT prototype, a 2-MWT submersible FOWT installed near the

north coast of Portugal. Beyond these, several renewable energy companies intend to launch

their full scale models in the coming years.
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1.3 Mooring System

The mooring system is a system of cables connecting the floating platform to the an-

chors installed on the seabed to maintain the platform in position and restrain the platform

displacement against the aerodynamic and hydrodynamic loads: this is referred to as station-

keeping [13–15]. Mooring systems can be constructed using either cables, chains, synthetic

ropes or a mix of them e.g. a metal chain at the bottom and light cable or rope close to

the structure attachment points [13–15]. A review of the mooring lines materials and anchor

types can be found in [15]. In some designs, buoys could be attached to the mooring lines

to reduce the mooring system weight carried by the floating structure. Also, clump weights

can be attached along the mooring lines to enhance the mooring system stiffness and reduce

the anchor tension fluctuations [14].

Mooring systems are classified as catenary, taut-leg and tension leg. The material and

design of these systems depend on the structure type and water depth [14, 15]. Catenary

moorings are the most common where the mooring line is slack and hangs under its own

weight. Part of the line may lie on the seabed. In both the taut and tension leg mooring,

the mooring line is pretensioned by the floating structure excess buoyancy force, the line is

highly taut and almost no sag exists. In the tension leg mooring system, most of the line

restoring force acts in the vertical direction and this requires a special anchor designs that

are expensive to construct and install [16].

1.4 Literature Review

Dynamic modeling of FOWT is a multidisciplinary problem combining different disci-

plines, including flexible and rigid body dynamics, hydrostatics, hydrodynamics, aerody-

namics, and cable mechanics. Following is an overview of the relevant literature on the main

topics related to the dynamics of FOWTs.

1.4.1 System stiffness

System stiffness characteristics have a large impact on the floating structure’s static sta-

bility and dynamic response to environmental loads. The system stiffness is mainly attributed
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to the platform buoyancy (including gravity) and mooring system stiffnesses. Hydrostatic

stiffness in conjunction with the mooring stiffness, determines the static offset of floating

structure when steady loads act on the platform. The hydrostatic stiffness is the main con-

tributor to the system stiffness for offshore platforms that use slack moorings such as spar,

barge and semi-submersible platforms. In barge platforms, for instance, the main contributor

to system stability is the large water plane area which produces a large hydrostatic restoring

moment in response to the platform rotations. By contrast, the taut mooring is the main

contributor to the system stiffness for TLPs. Hydrostatic (buoyancy) stiffness influences the

heave, pitch and roll dynamics of offshore floating platforms and has a large impact on the

natural frequency of the floating structure [17].

Mooring stiffness contributes to the load-excursion relationship and the natural frequency

of the floating structures particularly in surge, sway and yaw modes where the hydrostatic

stiffness is nonexistent [15,17]. The mooring stiffness is mainly influenced by the line tension

and length, footprint area (anchor radius), material properties, mooring configuration and

number of lines [18, 19]. Static analysis of the mooring lines determines the equilibrium line

shape and tension under the actions of self-weight and steady loads which offset the floating

structure from its equilibrium position [14, 19].

The changes in static forces and moments exerted by mooring lines and buoyancy with

respect to the floating structure displacements are represented using a stiffness matrix. The

following sections review the main approaches used to determine the hydrostatic and mooring

restoring loads and stiffness characteristics.

1.4.1.1 Hydrostatic loads and stiffness

Hydrostatic and gravity loading characteristic are the main determinant of a floating

structure’s static stability and have a large impact on the structure’s dynamic response to

environmental loads [17, 18, 20]. Typically, the hydrostatic restoring forces and moment are

computed using a linear hydrostatic approach. This assumes the submerged structure is a

rigid body and any structural deformations are ignored and the hydrostatic restoring force

and moment are due to the infinitesimal changes of translational and rotational displace-

ments [17]. The change in hydrostatic force and moments with respect to these displace-
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ments are represented using a stiffness matrix conventionally calculated at the initial static

equilibrium position or even keel [17, 18, 20, 21]. However, different initial positions can be

experienced due to steady loading (e.g. from water currents).

Hydrostatic restoring force and moments are nonlinear in translational and rotational

displacements particularly heave, roll and pitch displacements if measured relative to a fixed

space frame [21–26]. The nonlinear hydrostatics are a topic of importance in coupled dynam-

ics of ships [26–29]. The hydrostatic nonlinearity can magnify the motion response amplitude

and lead to ship capsizing [30]. The influence of nonlinearity is induced by large displace-

ment and coupling among heave, roll and pitch displacements. Thus the linear approach

cannot precisely estimate the hydrostatic loads required to determine equilibrium position

and orientation of the floating structure and simulate the motion response [22, 31].

A few models characterizing the nonlinear hydrostatic restoring forces and moments for

offshore platforms are available in literature. Most these models consider partial coupling

among the displacements i.e. either heave-roll or heave-pitch coupling. Yim et al. [25]

developed a coupled heave-roll regression-based hydrostatic model to capture the nonlinear

response of a tethered barge for large roll angle motion. The hydrostatic restoring force

and moments are represented by high degree polynomials as functions of position and roll

rotation of the barge. Dalane et al. [24] developed an exact analytical representation for

nonlinear heave-pitch restoring forces and moment for arctic canonical platforms and general

expressions for its metacentric height. Soylemez [23] presented a method for approximate

calculation of nonlinear restoring forces to simulate the motion response of a semi-submersible

platform. Ku et al. [21] developed an iterative approach to determine the equilibrium position

and hydrostatic stiffness considering large inclination angle for a barge supporting a floating

crane. Zeng et al. [22] compared the 6-DOF dynamic response of a tethered circular cylinder

using linear and nonlinear hydrostatic approaches. The difference between these approaches

was significant for rotation responses at higher wave heights. A similar dynamic analysis

considered the platform finite rotation and the associated nonlinearities in calculating the

hydrostatic loads for a TLP [31]. Similar observations were noted when comparing the

displacement responses of the TLP using the linear and nonlinear hydrostatic models.
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1.4.1.2 Mooring stiffness

Similar to hydrostatic loads, the restoring force and moments exerted by the mooring

system are nonlinear in translational and rotational displacements of the floating structure.

The nonlinearities become more pronounced for large displacements and due to coupling

among the displacements. The mooring system stiffness is mainly dependent on the elastic

and geometric stiffnesses of a cable which are the most significant, while the bending stiffness

is always ignored when the cable is sufficiently long [32]. When a cable is slack or has a low

tension, its geometric stiffness (resulting from the shape change) is the key contributor to

its stiffness behavior, because the cable deformation leads mostly to a change in its profile

shape i.e. sag rather than structural deformation of the cable itself [19, 32].

A few models characterizing the nonlinear mooring stiffness of catenary moorings are

available in literature. Most of these models ignore the line elasticity. The line elasticity can

be neglected for heavy slack mooring line such as a chain and particularly when a portion

of its length lies on seabed [18, 19]. However, when the line is lifted off the seabed, its

elasticity should be considered especially for large horizontal excursions of the attachment

point. Jain [33] derived the 2× 2 stiffness matrix (surge and heave) of an inextensible slack

mooring line neglecting seabed interactions. Lee and Cho [34] presented a similar stiffness

matrix form for an inextensible slack mooring line resting on the seabed. Sannasiraj et al. [35]

extended these works by deriving the mooring line stiffness matrix of a slack mooring line

in sway, heave and roll modes to predict the motion response of a pontoon-type floating

breakwater. Loukogeorgaki [36] presented a generic model to determine the mooring stiffness

matrix (6×6) of a floating breakwater to study its dynamic response. The stiffness coefficients

were represented in terms of the differential change of the line tension with respect to its chord

elevation angle.

The nonlinear mooring restoring forces due to large changes in displacement and ori-

entation of a platform is a topic of importance in the dynamics of tension leg platforms

(TLPs) [37]. Jain [38] presented a stiffness matrix considering the surge, sway and yaw

modes for a rectangular TLP. Chandrasekaran et al. [39] derived a nonlinear stiffness ma-

trix as functions of the platform displacements for a triangular TLP to simulate the 6-DOF
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response to regular wave loads. The derived form considered coupling among the displace-

ments based on some geometric approximations. Senjanovic et al. [37,40] derived a new 6×6

stiffness matrix formulation for a TLP considering large displacements in surge, sway and

yaw displacements. Low [41] derived the stiffness matrix of a TLP using an energy approach

to perform a dynamic analysis for a rectangular TLP in the frequency domain.

1.4.2 System dynamics

1.4.2.1 Structural analysis

A FOWT tower can be idealized as a beam with a tip mass attached to a rigid moving base

(platform). Similarly, the rotor blades can be modeled as rotating cantilever beams. Many

studies have investigated the dynamics of a beam attached to a moving base particularly

the so-called hub-beam system problem, usually in aerospace and robotics applications such

as helicopter rotor blades and robot arms [42–46]. Most of these models considered partial

coupling among the beam elastic deformations namely the two bending, axial and twist

deformations. Among these works, Cai et al. [4] analyzed the dynamics of a flexible hub

system with a tip point mass considering the coupled stretch and bending elastic motions

using a finite element method (FEM). Yang et al. [47] presented a FEM dynamic model for

a flexible hub-beam system with a tip point mass. The damping forces due to the beam’s

internal structure, hub friction and air drag were considered. Hamilton’s principle was used

to derive the equations of motion. Bhadbhade et al. [48] developed a coupled bending and

torsion dynamic model of a rotating cantilever with a rigid body at the tip. The extended

Hamilton’s principle was used to derive the equations of motion. Another study by Sakawa

and Luo [49] presented a coupled bending and torsion vibration analaysis of a rotating beam

carrying a tip rigid body.

Formulations for the flexible dynamics of beams undergoing general coupled bending-

bending-axial-twist elastic motion are rarely found in literature. This is attributed to the

modeling and computational complexities in treating the interaction between the elastic mo-

tions. Most recent, a work by Cooley and Parker [50] presented a linear flexible dynamic

model of a spinning cantilever beam undergoing coupled bending-bending-torsional-axial
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motions with an attached tip rigid body. The equations of motion were discretized using

Galerkin’s method to determine the natural frequencies, mode shapes and system stability.

All the previous reviewed works dealt with a prescribed base motion of the beam. Thus, the

equations of motion were derived in terms of the elastic coordinates since the rigid body mo-

tion was prescribed. However, this is not the case in the FOWT system where the platform

motion (base) is not prescribed, yielding coupled rigid body and elastic motions which is far

more complex.

The kinematic formulation of beam motion is a crucial aspect in modeling flexible body

dynamics. This includes defining the beam elastic displacements and the elastic rotation

matrix of the beam cross section along the deformed elastic axis [51]. Characterizing the

beam deformations using the conventional linear deformation field yields linear dynamic

equations free of the geometric stiffening [47,52–54]. The major disadvantage of this approach

is its failure in capturing the dynamic behavior of coupled rigid-flexible systems experiencing

large elastic deformations particularly due to high rotational speeds [50, 54]. Therefore,

more sophisticated nonlinear deformation formulations that include the geometric stiffening

effect were introduced. Kane [42] presented a dynamic analysis of a beam attached to a

moving base undergoing general translational and rotational motion. The longitudinal and

bending-bending, torsion motions of the beam were formulated. Yoo et al. [55] presented

a flexible dynamic model for an Euler-Bernoulli beam undergoing overall motion and small

strain elastic deformations. The model considered the bending in two planes together with

longitudinal stretching. A similar model was developed by Boutaghou et al. [56] for flexible

beams and thin plates using Hamilton’s principle assuming arbitrary deformation kinematics.

Liu and Hong [52] presented a geometric nonlinear formulation of a three-dimensional beam

undergoing large overall motion. The coupled bending-bending and stretch elastic motion

were considered and a criterion for validity of the linear kinematic approach was proposed.

The comprehensive work of Shi et al. [51] presented a nonlinear deformation field for Euler-

Bernoulli beams. Their main effort was devoted to develop a new second order elastic rotation

matrix based on the two-Euler angle approach [57].
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1.4.2.2 Dynamic modeling of flexible land-based wind turbine

Owing to the increasing interest in wind energy, several flexible dynamic models for wind

turbines have been proposed in the literature. Larsen and Nielsen [58] developed a nonlinear

dynamic model for a land-based wind turbine structure considering the tower and blade

flexibility. The model included geometric nonlinearities caused by the structure deflections.

Kessentini et al. [59] conducted a modal analysis using a linear dynamic model considering the

flapping deflections of the tower and blades. The effects of pitch angle and blade orientation

on the wind turbine natural frequencies and mode shapes were also investigated.

Lee et al. [60] presented a multibody dynamics model for the wind turbine considering

the coupled dynamics among the rigid body (nacelle and hub) and flexible (tower and blades)

subsystems assuming a prescribed rotor speed to determine system natural frequencies and

mode shapes. Another modal analysis for a tapered wind tower was performed by Makar-

ios [61]. In this model the rotor nacelle assembly mass and inertia were ignored. More

recently, Kang [62] conducted a stability analysis for the coupled flexible tower-blade system.

The theoretical results were validated experimentally using a small scale prototype. However,

all these models are restricted to land-based wind turbines and a flexible dynamic model of

a FOWT has not been addressed yet in the literature.

1.4.2.3 Dynamic modeling of FOWTs

Unlike land based wind turbines, FOWTs are subject to combined wind and hydrody-

namic, hydrostatic, and mooring loads that have significant impact on the system behavior.

This requires rigorous multi-physics dynamic analysis for an efficient design to avoid the

risk of structural failure. The complexity of this system makes the dynamic analysis quite

challenging.

Few theoretical rigid body dynamic models of FOWTs have been presented in literature.

Matsukuma and Utsunomiya [63] developed a multibody dynamic model of a 2 MW spar

FOWT assuming steady wind and still water. The influence of gyroscopic moment due to the

rotor spin was found to be considerable on the system dynamics. Wang and Sweetmn [64,65]

developed a rigid multibody dynamic model for a tension leg FOWT. The equations of motion
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were formulated using a Newton Euler approach. Sandner [66, 67] presented a spar FOWT

model based on the OC3 design concept. Simple aerodynamic, hydrodynamic models were

integrated to simulate the system response in combined wind and wave loads. Ramachandran

et al. [68] presented a coupled 3D rigid body dynamic model of a TLP FOWT. The aero-

dynamic loads were evaluted using unsteady blade-element-momentum (BEM) theory. The

dynamic response results were also validated against the Flex5 code. None of these works

considered the elastic motion of flexible components and the coupling between the flexi-

ble and rigid body motions although it can be considerable. However, these works [66–68]

approximated the tower fore-aft motion using a spring-mass system placed on the tower tip.

1.4.2.4 Simulation tools

Several FOWT simulation codes incorporating aerodynamic, structural dynamic, hydro-

dynamic, control and cable models have been developed to capture the coupled dynamic

response of FOWTs to the environmental loads [5, 69]. These codes vary in their capabili-

ties. Following is a list of the most widely used flexible multibody dynamics codes, ordered

accoding to their popularity:

• FAST: this code for dynamic analysis of land based and offshore wind turbines was devel-

oped by the National Renewable Energy Laboratory (NREL) and is publically available.

• HAWC2: a widely used code for simulating FOWTs developed by Riso National Labora-

tory.

• GH Bladed: developed by GL Garrad Hassan to perform dynamic analyses for bottom-fixed

wind turbines (land based and offshore). The code has recently promoted its capabilities

to analyze FOWTs [69].

• 3DFloat: developed by the Norwegian University of Life Sciences (UMB) to simulate

FOWTs [69]. Unlike the above-listed codes, this code ignores the rotor blade flexibilities

while considering the tower elasticity.

• ADAMS: developed by MSC Software Corporation as commercial software for general

multibody modeling i.e. it is not dedicated only for FOWT dynamic analyses as the
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previous codes. The software has been used by many researchers to build dynamic models

of FOWTs [69].

Additionally, other simulation tools adopting the rigid multibody modeling approach such

as SIMO and SEASAME/DEEPC were developed to analyze the FOWT system dynamics

with neglecting the flexible motions of the tower and rotor blades. A thorough review of

all these codes, their capabilities, and the techniques they adopted to model the system

structural dynamics and the fluid-structure-interactions can be found in [69]. However, the

detailed theoretical dynamic models on which these codes are based are not available in

literature. Moreover, most these codes use simplified linear structural models which could

introduce inaccurate response if the structure experiences large deflections [58]. Owing to the

rise in interest in FOWTs systems, new codes are being developed and other current codes

are being improved and extended.

These codes, particularly FAST, are used in many research studies to investigate the

dynamic aspects of different types of FOWTs. Jonkman [12] performed a fully coupled

aero-hydro-servo-elastic dynamic analysis of a 5 MW barge type FOWT with slack catenary

mooring using a quasi-static cable model. Many simulations were done to determine the

potential loads and associated instabilities. Wayman [70] developed a coupled dynamic anal-

ysis including the gyroscopic effects of the turbine rotor utilizing linear wave theory for the

MIT/NREL TLP FOWT concept in the frequency domain. The influence of water depth

and wind speed were investigated. Another work by Matha et al. [71] conducted a dynamic

analysis for a 5 MW TLP FOWT to identify the system instabilities and compare the loads

of the TLP FOWT with its land-based counterpart. Robertson et al. [1] carried out dynamic

response analyses for 6 designs of a 5 MW FOWT. The fatigue loads and stability analyses

were performed using the FAST code [72]. The results showed that the barge type platform

exhibits the worst performance and results in high loads namely bending moments of the

blade root, the low speed shaft, yaw bearing and the tower base. Sclavounos et al. [73]

compared the rms nacelle acceleration and rms mooring lines tensions for a TLP and taut

leg buoy (TLB) platforms. They investigated systems to support 3 MW and 5 MW wind

turbines in 30-50 and 50-150 m water depth, respectively, subjected to wave heights of 6-14
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m. Their results showed that the TLP exhibits both lower nacelle acceleration and anchor

tension in deeper water, while higher nacelle acceleration and anchor tension were observed

as the water depth increases for the TLB.

FOWT dynamic studies were also performed using HAWC2, especially in the Nordic

countries. Nielsen et al. [74] developed an integrated dynamic analysis of the STATOIL

spar FOWT, and compared simulation results with model experiments. Their experiment

results showed that the blade pitch control at high wind speeds leads to a negative damping

instability for the tower motion. Karimard et al. [7, 75] performed several dynamic analyses

particularly for a spar FOWT with tension leg and catenary mooring system. These analyses

aimed to (i) discuss the hydrodynamic and aerodynamic effect on FOWT dynamics, and

(ii) present a simplified method to determine aerodynamic forces with reasonable accuracy.

Another stochastic dynamic response analysis of a spar FOWT [76] was conducted to evaluate

the fatigue limit under combined wave and wind loading and structural response in harsh

wave and wind conditions.

1.4.3 Cable models

Early cable models approximate the cables as massless springs with constant stiffness,

which might be valid for taut moorings. It can also be used for slack moorings in the

case of a small cable displacement i.e., the cable nonlinear stiffness is linearized around an

equilibrium condition [15]. However, this approach is inaccurate particularly if the structure

experiences large displacement. Alternatively, the mooring line tension can be determined

using the quasi-static and dynamic cable models. The first approach uses the equation of

an elastic catenary that can be solved numerically, this approach is illustrated in many

references e.g. [18, 32, 33, 77]. Oscillatory forces such as wave and fluid-cable interactions

as well as inertia forces and internal cable damping can not be considered in this analysis,

and the tension determined using this approach is referred to as the quasi-static tension.

Most dynamic analyses of FOWTs [16] utilize this quasi-static approach which is considered

appropriate for shallow water and low frequency restoring force. However, the maximum

dynamic tension can be considerably higher than the quasi static counterpart, particularly

for high frequency motion and in deep water [14, 78].
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It has been observed that the hydrodynamic damping at higher frequency mooring line

motion forces the cable to stretch instead of changing its sag yielding a higher dynamic

cable tension than that predicted by quasi-static approach [14, 79]. This observation is also

justified by Kreuzer et al. [79] when investigating the dynamics of a single mooring line

while including the effect of fluid-structure interaction. The analysis was conducted using a

multibody system approach (MBS) for an 800-m steel wire anchored at 500 m water depth.

The free cable end is considered to translate harmonically at 10 m amplitude with frequency

varying from 0.025 to 0.25 rad/s. The results showed that the computed dynamic tension at

low frequency is similar to that of quasi-static approach, while at high frequency excitation

the maximum dynamic tension is more than twice the quasi-static tension. Moreover, a phase

shift between the dynamic and quasi-static tension responses was noted.

Cable dynamics can be evaluated numerically through discretization techniques such as

lumped mass and finite element methods [80, 81]. The lumped mass approach models the

cable as system of discrete masses connected to each other by massless springs and dampers,

neglecting the cable bending and torsional stiffnesses. The influence of hydrodynamic forces

and fluid drag and cable-seabed interaction can be considered. The equations of motion of

the lumped masses can be solved in the time domain. Van Den Boom [78] used this method

by lumping all the inertial and external forces while ignoring the cable damping to analyze

the mooring system dynamics. The results agreed reasonably with experiments. Jeffery et

al. [82] presented a linear and nonlinear FEM dynamic models for a taut a mooring system

to study the spatial variation of tether tension. Another FEM cable model that includes the

bending torsion effect to study the cable dynamics of slack cables in three dimensions was

developed by Buckham et al. [83]. A thorough review of the main numerical techniques used

in cable dynamics can be found in [80, 81].

1.4.4 Wind and wave loads

Realistic environmental loads modeling is an important aspect in the simulation of off-

shore structures. Wave loads are considered the most severe compared to current and wind

loads [14]. The wave hydrodynamics is generally characterized by linear Airy wave theory

when the wave height is small compared to water depth and wave length. Assuming the fluid
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is incompressible and inviscid and the flow is irrotational allows the use of the potential flow

theory [13, 18]. Nonlinear wave theories are used to predict the steady and slowly varying

drift force components and also in the case of breaking waves and severe sea states [14]. The

hydrodynamic analysis in generally performed using Morison’s equation which is only valid

for slender structures accounting for the inertial and drag forces acting on the submerged

part of the structure and ignoring wave diffraction effect [18, 84, 85]. The effect of combined

wave and current is included in Morison’s equation through vectorial addition of the fluid

velocity. The total wave force on the structure can also be determined by integrating the

pressure distribution over the submerged part of the structure [18, 84].

Wind loads can be determined using similar approaches used for land-based wind turbines.

The aerodynamic lift and drag forces acting on the wind turbine blades due to steady and

turbulent wind can be determined using blade element momentum theory (BEM) [72]. Wind

speed increases logarithmically with height due to wind shear in the planetary boundary

layer. Therefore, a higher tower increases the obtained wind energy [86]. The variation of

wind speed with height depends on the surface roughness. In smooth terrain such as open sea,

the wind speed reaches its free stream value at a lower height with lower levels of turbulence

intensity compared to land. Therefore, wind speed at the same height above water level is

higher than that above ground level for the same nominal storm conditions [85]. Sometimes,

fluctuating wind gusts can excite a resonant motion of the structure [18].

1.5 Thesis Objectives and Organization

The FOWT is an emerging technology. Design of this system requires deep understanding

of the system dynamics which implies developing reliable dynamic models capable of predict-

ing the system dynamic response. Thus, the primary objective of this thesis is to build a

high-fidelity structural dynamic model of a FOWT coupled with quasi-static and lumped

mass cable models for different mooring system configurations, including single and delta

(bridle) arrangements. Effort is focused on developing a validated coupled rigid and flexible

multibody dynamic models of a spar FOWT as well as building a reliable hydrostatic and

cable models to simulate the system dynamics.

15



This thesis consists of seven chapters. Chapter 1 presents background and motivation

behind the research, a review for the works related to the research problem, and thesis

objectives and organization. The developments of rigid and flexible multibody dynamic

models of the FOWT are detailed in Chapter 2. The chapter begins by defining the platform

kinematics then deriving the equation of motion of the FOWT in terms of the platform quasi-

coordinates and rotor spin speed for the rigid model. The development of the flexible dynamic

model then follows. The kinematics of the flexible and rigid body motions and discretization

of the elastic motion in space and time are established. Then, the coupled rigid-flexible

equations of motion are derived using Lagrange’s equation. Modeling the hydrodynamic and

aerodynamic loads is also presented at the end of this chapter.

Chapter 3 presents the development of the nonlinear hydrostatic model to compute the

exact buoyancy force and hydrostatic moments of cylindrical floaters undergoing general

displacements (translation and rotation). In addition, the hydrostatic stiffness matrix is

derived as a function of instantaneous position and orientation of the platform.

In Chapter 4, the mooring loads are formulated using the quasi-static approach. The

analysis begins with developing a quasi-static model for the single configuration. Further

extension is then undertaken to develop an exact 3D quasi-static cable model of the bridle

mooring line with a clump weight. As well, a theoretical approach is developed to derive

the exact mooring stiffness matrix. The influence of the mooring system configuration and

geometry on the stiffness of the mooring system is also investigated.

In Chapter 5, the lumped mass cable model is formulated for a single cable. A new

added mass matrix is developed together with seabed contact model. The model is also

extended for the bridle mooring configuration with a suspended clump weight. Static solvers

are developed to determine the equilibrium profile of the mooring line for the both mooring

configurations to provide appropriate initial conditions for the cable nodes displacements in

the coupled dynamic simulation.

In Chapter 6, the analytical models of the system dynamics and applied loads are im-

plemented to simulate the FOWT dynamics under combined wind and wave loads. Several

simulations are performed to validate the dynamic models against the reported simulation
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data from different simulation tools. Furthermore, series of simulations are performed us-

ing different dynamic models, cable models and mooring configurations to investigate the

influence of the tower flexibility, mooring configuration, rotor gyroscopic effect and cable

dynamics on the system dynamics. Finally, Chapter 7 summarizes the conclusions of the

research undertaken in this thesis and suggests directions for future works.
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Chapter 2

SYSTEM DYNAMICS

The spar FOWT system under consideration is based on the OC3-Hywind concept [6],

as shown in Figure 2.1. The FOWT consists of a cylindrical floating platform supporting a

horizontal axis wind turbine structure. The turbine structure is comprised of a tower, nacelle

and three-bladed rotor. The platform is anchored to the seabed through a mooring system

composed of a series of cable or chains and in some designs the cable include clump weights

to increase the mooring system stiffness.

Figure 2.1: OC3-Hywind FOWT concept [2]

This chapter presents two approaches with different levels of complexity for modeling

the nonlinear dynamics of the FOWT: a simplified rigid multibody model and a coupled

rigid-flexible multibody model. In both models, the floating platform is modeled as a six-

degrees-of-freedom (6-DOF) rigid body subject to buoyancy, hydrodynamic and moorings

loads. The nacelle is modeled as a rigid body attached to the tower tip. The rotor is

modeled as a rigid disc spinning around its axis and subject to aerodynamic load. The main

difference between the two modeling approaches is in the modeling of the tower dynamics.
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The rigid model treats the tower as a rigid body while in the flexible model it is modeled as

a three-dimensional (3D) damped tapered Euler-Bernoulli beam undergoing coupled general

rigid body and elastic motions. The beam bending-bending and twist motions are considered

whereas extensibility is ignored.

The dynamic analysis of the rigid multibody system begins with formulations of the

kinematics of the platform. Then, equations of motion of the rigid multibody model are

derived using Lagrange’s equation in terms of the platform quasi-coordinates. The turbine

drivetrain equation of motion which governs the rotor spin dynamics is also derived. Likewise,

the development of the flexible model begins with kinematic description of the tower flexible

motion. The flexible displacements are then discretized in space using the assumed mode

method (AMM) utilizing new orthogonal polynomial comparison functions developed herein.

The applicability of these mode functions is tested by simulating the flexible dynamics of a

rotating cantilever with a tip mass, illustrated in Appendix B.2. Accordingly, the equations

of motion of the system are derived using Lagrange’s equation.

Lastly, the ocean environment is characterized by a wave spectrum to describe the wave

field kinematics required to formulate the hydrodynamic loads using Morison’s equation in

Section 2.3.2. As well, the aerodynamics loads are characterized based on the power and

thrust coefficient performance curves of the rotor.

2.1 Rigid Multibody Dynamic Model

A schematic diagram of the spar FOWT system to be analyzed is shown in Figure 2.2.

For simplicity, it is assumed the turbine rotor tilt angle is zero for this model and the flexible

model1. The FOWT is comprised of 4 rigid bodies, ordered as depicted in Figure 2.2:

• Body 1: the floating platform, with mass mp, and inertia matrix Ip = diag(Ipx, Ipy, Ipz).

This platform has been proposed to support the NREL 5 MW baseline wind turbine [87].

• Body 2: the nacelle, a rigid body, with massmnc, and inertia matrix Inc = diag(Incx, Incy, Incz).

1The tilt angle based on [87] is 5o.
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• Body 3: the rotor, a rigid disc spinning around its axis with angular velocity Ω(t). The

mass is mr, and inertia matrix Ir = diag(Irx, Iry, Irz), where Iry = Irz.

• Body 4: the tower, with mass mt, and inertia matrix It = diag(Itx, Ity, Itz). The tower

supports the Rotor-Nacelle-Assembly (RNA).
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Figure 2.2: FOWT rigid multibody dynamic model

The platform floats in sea water of density ρ and supported to the seabed by a catenary

mooring system comprised of three lines (detailed in Chapters 4). The platform, tower,

nacelle and rotor related dimensions and mass and inertial properties are available in [6,87],

and also listed in Appendix A.
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2.1.1 System kinematics

Two reference frames are defined to characterize the displacement and rotation of the

system components. The inertial frame, F I is an earth-fixed frame, with the earth’s motion

assumed to have negligible impact on the platform’s dynamics. The body-fixed frame Fp is

attached to the platform center of gravity (Gp). The properties of these frames are listed in

Table 2.1. A unified vector notation is used in this thesis to simplify the description of the

system kinematics. The left superscript denoted by the frame abbreviation (in Table 2.1) is

used exclusively to express a vector in the respective frame. If no superscript is used, this

indicates an arbitrary frame. The principal axes associated with the inertia matrices of the

rigid bodies are parallel to Fp. The third frame (FB) listed in Table 2.1 is not relevant to

the rigid body model and will be used later for the flexible model (Section 2.2).

Table 2.1: Reference frames definitions

Frame Abbreviation Frame axes Unit vectors Frame origin

F I I X, Y, Z Î, Ĵ, K̂ Fixed on earth, point O

Fp p x, y, z î, ĵ, k̂ Platform c.g., point Gp

FB b x1, y1, z1 b̂1, b̂2, b̂3 Tower tip, point Bt

Vector Ir = [rX rY rZ ]
T defines the translational displacements of the platform body-

fixed frame (Fp) origin relative to the inertial frame and represented in F I . The Z-axis of

F I is opposite to the direction of gravity. The displacements rX , rY and rZ indicate the

platform, surge, sway and heave, respectively. The origin of Fp coincides with that of F I

at zero translation and rotation. The rotation of the platform is represented by an Euler

angle triad θ = [φ θ ψ]T corresponding to roll, pitch and yaw angles, respectively. The 3-2-1

Euler angle sequence, commonly used for marine and flight/space vehicles [88], is selected to

describe the platform rotation kinematics. The corresponding rotation matrix R is [20]

R =

⎡
⎢⎢⎢⎣

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cψ cθ cψ sθ sφ − sψ cφ cψ sθ cφ + sψ sφ

sψ cθ sψ sθ sφ + cψ cφ sψ sθ cφ − cψ sφ

−sθ cθ sφ cθ cφ

⎤
⎥⎥⎥⎦ (2.1)
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where s(.) = sin(.) and c(.) = cos(.). The rotation matrix R transforms vectors in Fp to F I .

The velocity of the platform center of gravity can be expressed in Fp as

pν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

νx

νy

νz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = RT I ṙ (2.2)

The platform angular velocity in terms of the Euler angle rates can be expressed in Fp as [88]

pω =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωx

ωy

ωz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = Jθ̇ =

⎡
⎢⎢⎢⎣

1 0 −sθ

0 cφ sφ cθ

0 −sφ cφ cθ

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
J

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ̇

θ̇

ψ̇

⎫⎪⎪⎪⎬
⎪⎪⎪⎭︸ ︷︷ ︸

θ̇

(2.3)

It is worth mentioning that the matrices (R and J) become singular when the pitch angle,

θ = π/2. However, such extreme excursions would lead to complete platform and mooring

failure, which are not relevant scenarios in the present work. The velocities of the center of

gravity of the tower (Gt), nacelle (Gnc), and the rotor (Gr) can be then formulated as

vt = ν + ω × rGt , vnc = ν + ω × rGnc , vr = ν + ω × rGr (2.4)

where the centers of gravity coordinates are prGt = [0 0 Dt]
T , prGnc = [dnc 0 Dr]

T , and

prGr = [−dr 0 Dr]
T , as illustrated in Figure 2.2.

2.1.2 Equations of motion

The total kinetic energy (KE) of the four bodies comprising the rigid multibody system

is

T =1
2
mp ν • ν + 1

2
pω • (Ip pω) + 1

2
mt vt • vt +

1
2

pω • (It pω)

+ 1
2
mnc vnc • vnc +

1
2

pω • (Inc pω) + 1
2
mr vr • vr +

1
2

pωr • (Ir pωr)
(2.5)

The platform, tower and the nacelle are rotating with an angular velocity, ω. The angular

velocity of the rotor is ωr = ω +Ω and the rotor spin rate is pΩ = Ω î
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The potential energy of the rigid multibody system is attributable to the gravity, can be

expressed as

V = mp g rZ +mt g
(
rtO • K̂

)
+mnc g

(
rncO • K̂

)
+mr g

(
rrO • K̂

)
(2.6)

where (•) denotes the dot product, g is the acceleration of gravity, and the vectors rtO, rncO

and rrO measure the positions of the center of gravity of the tower, nacelle and rotor relative

to the origin of F I , respectively, formulated as

IrtO = Ir+R prGt , IrncO = Ir+R prGnc , IrrO = Ir+R prGr (2.7)

The system dynamics is characterized by the platform translation and rotation degrees

of freedom and the rotor spin yielding a 7-DOF dynamic model. The equations of motion

are derived utilizing Lagrange’s equation in terms of the quasi-coordinates of the platform

(ν and ω) as [89–91]

d

dt

(
∂L

∂(pν)

)
+ pω̃

∂L
∂(pν)

−RT ∂L
∂(Ir)

= pF (2.8)

d

dt

(
∂L

∂(pω)

)
+ pν̃

∂L
∂(pν)

+ pω̃
∂L

∂(pω)
− J−T ∂L

∂θ
= pM (2.9)

where L = T − V is the Lagrangian, pω̃ and pν̃ are the skew symmetric matrices of pω and

pν, respectively. For an arbitrary vector B =[B1 B2 B3]
T , B̃ is written as

B̃ =

⎡
⎢⎢⎢⎣

0 −B3 B2

B3 0 −B1

−B2 B1 0

⎤
⎥⎥⎥⎦ (2.10)

The total external forces acting on the system and corresponding moments around the plat-

form frame origin are denoted by F and M, respectively. The equation of motion of the wind

turbine drivetrain can be obtained as

d

dt

(
∂L
∂Ω

)
= τa − τg (2.11)

where τa and τg are the aerodynamic and generator torques, respectively. When the wind

speed is less than the rated value, the generator torque can be determined from the generator
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torque control law as will be discussed in Section 2.3.3. The resulting form of the equations

of motion can be then expressed as

[Msys]

⎡
⎢⎢⎢⎣

ν̇

ω̇

Ω̇

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ω̃ 03×3 03×1

ν̃ ω̃ 03×1

01×3 01×3 0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
S̃

[Msys]

⎡
⎢⎢⎢⎣

ν

ω

Ω

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

RT ∂L
∂r

J−T ∂L
∂θ

0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

pF

pM

τa − τg

⎤
⎥⎥⎥⎦ (2.12)

The mass matrix (Msys) form is obtained as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mT 0 0 0 M15 0 0

mT 0 −M15 0 M26 0

mT 0 −M26 0 0

M44 0 M46 Irx

sym. M55 0 0

M66 0

Irx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.13)

the mass matrix entries are

mT =mp +mt +mnc +mr , M15 = Dr (mr +mnc) +mtDt

M26 =dncmnc − drmr , M44 = ITx +Dr
2 (mr +mnc) +Dt

2mt

M46 =Drdrmr −Drdncmnc , M66 = ITz +mrdr
2 +mncdnc

2

M55 =ITy +mr

(
Dr

2 + dr
2
)
+mnc

(
Dr

2 + dnc
2
)
+Dt

2mt

(2.14)

where ITx = Ipx + Itx + Incx + Irx, ITy = Ipy + Ity + Incy + Iry, and ITz = Ipz + Itz + Incz + Irz.

The terms RT ∂L
∂r

and J−T ∂L
∂θ

in Equation (2.12) yield the gravity force and moment around
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the origin of platform frame, respectively, obtained in the platform frame (Fp), as

RT ∂L
∂r

=g

⎡
⎢⎢⎢⎣

mT sθ

−mT cθsφ

−mT cφcθ

⎤
⎥⎥⎥⎦

J−T ∂L
∂θ

=g

⎡
⎢⎢⎢⎣

cθsφ (Dr (mnc +mr) +Dtmt)

sθ (Dr (mnc +mr) +Dtmt) + cφcθ ( dncmnc + drmr)

−sφcθ ( dncmnc + drmr)

⎤
⎥⎥⎥⎦

(2.15)

The external forces and corresponding moments acting on the FOWT arise from hydrostatic,

hydrodynamic, aerodynamics and mooring loads, denoted by the subscripts hs, hd, aer, and

mor, respectively, as

F = Fhs + Fhd + Faer + Fmor

M = Mhs +Mhd +Maer +Mmor

(2.16)

the hydrodynamic force (Fhd) and moment (Mhd) around the platform body-fixed frame

origin are expressed as

Fhd = Finer + Fhd∗ , Mhd = Miner + Fhd∗ (2.17)

where the subscript (iner) denotes the inertial terms which are functions of the platform

kinematics, as will be discussed in Section 2.3.2. The inertial terms in Equation (2.17) can

be reformulated in a matrix form as [20]⎡
⎣ Finer

Miner

⎤
⎦ = [A]

⎡
⎣ ν̇

ω̇

⎤
⎦+ [CA]

⎡
⎣ ν

ω

⎤
⎦ (2.18)

where A is the added mass matrix and CA is the hydrodynamic Coriolis and centripetal

matrix [20], both of size (6 × 6). The hydrodynamic loads will be investigated in detail in

Section 2.3.2

Substituting Equations (2.16) to (2.18) into Equation (2.12), the final form of the equa-
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tions of motion of the rigid multibody model can be expressed in the following form

[
Msys + Ā

]
⎡
⎢⎢⎢⎣
ν̇

ω̇

Ω̇

⎤
⎥⎥⎥⎦+

[
S̃Msys + C̄A

]
⎡
⎢⎢⎢⎣
ν

ω

Ω

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
RT ∂L

∂r

J−T ∂L
∂θ

0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

pFhs +
pFaer +

pFmor +
pFhd∗

pMhs +
pMaer +

pMmor +
pMhd∗

τa − τg

⎤
⎥⎥⎥⎦

(2.19)

where

Ā =

⎡
⎣ A 06×1

01×6 0

⎤
⎦ , C̄A =

⎡
⎣ CA 06×1

01×6 0

⎤
⎦

The equations of motion of the large multibody system have thus been reduced to the simple

form of Equation (2.19) which can be easily implemented.

2.2 Flexible Multibody Dynamic Model

The rigid dynamic model previously developed considers the tower as a rigid body. How-

ever, to predict the elastic structural deflections responses of the tower, a more sophisticated

flexible dynamic model is introduced. This will allow us to later evaluate the importance of

tower flexibility on the system performance. The schematic diagram of the flexible multibody

model to be analyzed is shown in Figure 2.3. The coupled rigid-flexible multibody dynamic

model is comprised of 3 rigid and 1 flexible bodies, ordered as depicted in Figure 2.3. The

properties of the rigid bodies 1, 2 and 3 are similar to their counterparts of the rigid model

(Section 2.1).

Body 4 representing the tower, is now considered as a flexible tapered 3D beam of annular

circular section. The beam is of length l, density ρt, and variable cross sectional area per

length At(z). The moments of inertia of the cross section as functions of the tower height

around the x1 and y1 axes are It,xx(z) and It,yy(z), respectively. The corresponding polar

moment of inertial is Jt(z). The material properties of the beam are characterized by Young’s

modulus E and modulus of rigidity G. The tower properties are detailed in Appendix A.3.

In this model, the rotor blade flexibility is ignored.
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Figure 2.3: Spar FOWT flexible dynamic model
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2.2.1 System kinematics

The displacement and rotation of the FOWT components are characterized using the

three reference frames illustrated previously in Table 2.1. The frames, F I and Fp are already

defind for the rigid model (Section 2.1.1). A third frame, FB is introduced, which is a body-

fixed frame attached to the tower tip center, as shown in Figure 2.3. The principal axes

associated with the inertia matrix of the platform are parallel to Fp, and for the nacelle and

the rotor are parallel to FB. The platform kinematics description is similar to that of the

rigid body model already defined in Equations (2.1) to (2.3).

The tower is modeled as a cantilever beam undergoing general motion because of the beam

base attachment to a free-floating platform. The Euler-Bernoulli beam theory is adopted to

characterize the bending motion of the tower because the tower is a thin beam and the ratio

of the tower length to its average diameter ≈ 15 which is considerably larger than 10 as

recommended [92, 93]. Thus, the shear and rotary inertia effects can be ignored since the

beam is slender. The elastic deformations of a material point (B) located on a differential

element of the beam are characterized in the platform frame (Fp) by u1(t, z) and u2(t, z)

representing the bending deformations, s(t, z) the beam stretch, and ϕ(t, z) the beam twist

angle. These distributed deformations are illustrated at the beam tip for clarity in Figure 2.3.

The elastic displacement u3(t, z) is dependent on u1, u2 and s, can be expressed as [55]

u3
∼= s− 1

2

∫ z

0

[
(u′

1)
2
+ (u′

2)
2
]
dσ , (.)′ =

∂(.)

∂z
(2.20)

where σ is a dummy variable. The beam stretch can be assumed negligible, therefore the

inextensibility constraint can be enforced as s = s′ = 0. As a result, u3 then represents the

beam shortening (i.e. u3 ≤ 0) due to beam bending deformations, can be then formulated as

u3
∼= −1

2

∫ z

0

[
(u′

1)
2
+ (u′

2)
2
]
dσ (2.21)

The displacement of material point B, located on the elastic axes of the beam, as measured

relative to the Fp origin, is

prB = [u1 u2 (at + z + u3)]
T (2.22)
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where at denotes the distance between the tower base and origin of the platform frame, as

shown in Figure 2.3. The velocity of B can be obtained as

vB = ν + ω × rB + u̇ , ˙(.) =
∂(.)

∂t
(2.23)

where pu̇ = [u̇1 u̇2 u̇3]
T and × denotes the cross product. Differentiating Equation (2.21)

with respect to time, u̇3 can be obtained

u̇3
∼= −

∫ z

0

[u′
1 u̇′

1 + u′
2 u̇′

2] dσ , ˙(.)
′
=

∂2(.)

∂t∂z
(2.24)

The frame FB is attached to tower tip center and is parallel to Fp if the beam is undeformed.

The elastic rotation transformation of the Euler-Bernoulli beam cross section is characterised

by an elastic rotation matrix which can be defined at the beam tip (z = l) as [51]

Rel =

⎡
⎢⎢⎢⎣

1− 1
2
(u′

1)
2 − 1

2
ϕ2 −ϕ− 1

2
u′
1 u′

2 u′
1

ϕ− 1
2
u′
1 u′

2 1− 1
2
(u′

2)
2 − 1

2
ϕ2 u′

2

−u′
1 − u′

2 ϕ −u′
2 + u′

1 ϕ 1− 1
2

[
(u′

1)
2 + (u′

2)
2]
⎤
⎥⎥⎥⎦
z=l

(2.25)

This form is of second order in the elastic deflections which is sufficient to capture the

kinematics of the system since the strain deformation is small. The rotation matrix Rel

transforms the vectors in FB to Fp. Accordingly, the angular velocity of the frame FB

relative to Fp (pωBl) and resolved in the latter frame can be determined from [51,88]

pω̃Bl = Ṙel R
T
el (2.26)

the angular velocity of the nacelle can be expressed as

ωnc = ω + ωBl (2.27)

and for the rotor

ωr = ω + ωBl +Ω (2.28)

where the rotor spin rate expressed in the tower tip frame is bΩ = Ω b̂1. The velocity of the
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nacelle center of gravity (Gnc) can be formulated as

vnc = vBl + ωnc × rnc (2.29)

where vBl is the velocity of the tower tip section center i.e. vBl = vB|z=l. The velocity of

the rotor center of gravity (Gr)

vr = vBl + ωnc × rrot (2.30)

The position of the nacelle and rotor center of gravity relative to the tower tip center are rnc

and rrot, respectively. These vectors are constants in FB.

2.2.2 Spatial discretization

The Assumed Mode Method (AMM) is used to discretize the continuous variables u1(z, t),

u2(z, t), and ϕ(z, t) using the following form [94]

u1(z, t) =

nb∑
i=1

Φi(z) ξi(t) = ΦTξ

u2(z, t) =

nb∑
i=1

Φi(z)Θi(t) = ΦTΘ

ϕ(z, t) =
nt∑
i=1

ηi(z) δi(t) = ηTδ

(2.31)

where Φi(z) and ηi(z) are the assumed mode shape spatial functions: Φi(z) are shape func-

tions in bending in the two lateral directions, while ηi(z) are shape functions in twist. Φ,η are

the corresponding modal vectors. The numbers of mode shapes used for bending and twist

discretization are nb and nt, respectively. ξi(t), Θi(t) and δi(t) are generalized coordinates to

be determined. ξ, Θ and δ are the corresponding generalized coordinates vectors.

2.2.2.1 Mode shapes

The direct choice of the Φi(z) and ηi(z) shape function are the system natural (eigen)

modes for a stationary2 cantilever bending and the twist vibrations of a clamped free shaft

2i.e. the mode shapes of free end beams undergoing pure elastic motions without any rigid body motion
(either translation or rotation)
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[37], respectively. The eigen mode function selected for ηi(z), is written as [92]

ηi(z) = sin

(
(2i− 1) π z

2l

)
, i = 1, 2, ....... , nt (2.32)

However, the bending eigen mode shapes are not the choice due to the high computation

cost of integrating mixed hyperbolic and trigonometric functions forming these modes. Al-

ternatively, a new family of polynomial comparison functions is developed. These func-

tions satisfy the geometrical and natural boundary conditions (BCs) of a cantilever beam,

Φi(0) = Φ′
i(0) = 0 , Φ′′

i (l) = Φ′′′
i (l) = 0, and the orthogonality condition

∫ l

0

ΦiΦj dz =

⎧⎨
⎩ 0 for i �= j

nonzero for i = j
(2.33)

The first polynomial can be directly produced by imposing the 4 BCs, can be expressed as

Φ1(ẑ) =
1

3
ẑ4 − 4

3
ẑ3 + 2 ẑ2 , ẑ = z/l (2.34)

The remaining list of polynomials is obtained sequentially such that the i-th polynomial is

generated based on the preceding set. The following polynomial is always a degree higher

than the preceding one. Starting from i=2 onwards, the polynomial coefficients can be

determined by enforcing the BCs, orthogonality condition (Equation (2.33)), and Φi(1) = 1

to normalize these modes, Φ2(ẑ) can be then expressed as

Φ2(ẑ) = b5ẑ
5 + b4ẑ

4 + b3ẑ
3 + b2 ẑ2 + b1 ẑ + b0

The 6 coefficients (b0 − b5) are determined by solving 6 linear algebraic equations corre-

sponding to the 4 BCs, Φ2(1) = 1, and
∫ 1

0
Φ2Φ1dẑ = 0, where Φ1 is already known from a

previous step. Following the same procedure, the required number (nb) of shape functions

can be generated. Appendix B.1 lists the first 10 shape functions being developed. These

polynomials are reasonably similar in shape to their corresponding eigen modes, as shown in

Figure 2.4. However, some deviations between these two families of mode shapes are still ob-

served particularly in higher modes and at z/l < 0.7, as illustrated in Figure 2.4. Moreover,

polynomial shape functions are computationally efficient particularly in symbolic integration.

We found that computing the tower kinetic energy (as will be formulated in Section 2.2.3.1)
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when the bending motion is discretized using polynomial shape functions is in the order of

seconds using the Matlab Symbolic Math Toolbox while the same operation requires hours

when using the eigen functions. The convergence of the AMM using these polynomial shape
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Figure 2.4: Comparisons of the cantilever bending eigen and orthogonal polynomial mode shapes

functions has been verified using a benchmark problem illustrated in Appendix B.2.

2.2.3 Equations of motion

The coupled rigid body and elastic equations of motion are derived using Lagrange’s

equation. This requires formulation of the kinetic and potential energies of the system, as

shown below.

2.2.3.1 Kinetic energy

The total kinetic energy of the FOWT system includes the kinetic energies of the four

bodies comprising the multibody system. The KE of the platform is

Tp =
1
2
mp ν • ν + 1

2
pω • (Ip pω) (2.35)

32



The KE of the tower can be written as

Tt =
1

2

∫ l

0

m̄t (vB • vB) dz +
1

2

∫ l

0

ρt Jt ϕ̇
2dz (2.36)

where m̄t = ρt At is the mass per unit length of the tower, the tower properties are detailed

in Appendix A.3. The KE of the nacelle is

Tnc =
1
2
mnc vnc • vnc +

1
2
(bωnc)•

(
Inc

bωnc

)
(2.37)

where bωnc = RT
el (

pω + pωBl). The KE of the rotor is

Tr =
1
2
mr vr • vr +

1
2
(bωr)•

(
Ir

bωr

)
(2.38)

The total kinetic energy of the system is

T = Tp + Tt + Tnc + Tr (2.39)

2.2.3.2 Potential energy

The potential energy of the elastic tower is attributed to the strain energy due the elastic

deformations of the tower and gravitational energy. The tower strain energy due to bending-

bending and twist deformations can be written as

Ve
t =

1

2

∫ l

0

EIt,yy (u
′′
1 )

2dz +
1

2

∫ l

0

EIt,xx (u
′′
2 )

2dz +
1

2

∫ l

0

GJt (ϕ
′ )2dz (2.40)

where It,xx = It,yy since the tower cross section is circular. The tower gravitational potential

energy

Vg
t =

∫ l

0

m̄t g
(
rBO • K̂

)
dz (2.41)

where rBO is the displacement of material point B relative to the origin of frame F I , as

shown in Figure 2.3, and can be expressed as

IrBO = Ir+R prB (2.42)
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The gravitational potential energy of the rigid bodies (the platform, nacelle and rotor) is

expressed as

VRB = mp g rZ +mnc g
(
rncO • K̂

)
+mr g

(
rrO • K̂

)
(2.43)

where the vectors rncO and rrO measure the positions of the center of gravity of the nacelle

and the rotor relative to the origin of F I , respectively, formulated as

IrncO = Ir+R prBl +RRel
brnc

IrrO = Ir+R prBl +RRel
brrot

(2.44)

The system total potential energy can be then expressed as

V = Ve
t + Vg

t + VRB (2.45)

2.2.3.3 Rayleigh dissipation

Rayleigh’s dissipation function is often used to account for linear damping forces in La-

grangian mechanics. The beam internal structural damping can be accordingly formulated

as [89]

Υ =
1

2

∫ l

0

cu1 E It,yy(u̇
′′
1 )

2
dz +

1

2

∫ l

0

cu2 E It,xx(u̇
′′
2 )

2
dz +

1

2

∫ l

0

cϕ GJt (ϕ̇
′ )2dz (2.46)

where cu1 , cu2 and cϕ are the damping coefficients associated with the two bending defor-

mations and twist, respectively, and can be calculated as [89]

cu1 = 2ς/λu1 , cu2 = 2ς/λu2 , cϕ = 2ς/λϕ (2.47)

where ς is the structural damping ratio equals 0.01 based on [6] . λu1, λu2, and λϕ are the

fundamental natural frequencies (in rad/s) for the corresponding elastic deformations. The

system natural frequencies will be obtained in Chapter 6.
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2.2.3.4 Lagrange’s equation

The nonlinear coupled rigid-flexible equations of motion are derived utilizing Lagrange’s

equation in terms of quasi-coordinates of the platform using Equations (2.8) and (2.9). The

equation of motion of the wind turbine drivetrain is similar to Equation (2.11). As well, the

conventional form of Language’s equations is used to derive the coupled equations of motion

correspond to the generalized flexible coordinates, such that [89]

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
+

∂Υ

∂q̇
= Q (2.48)

where q = [ξ Θ δ]T is the vector of the flexible generalized coordinates. The principle of

virtual work is utilized to compute the generalized forces (Q) associated with (q) as [88]

Q =
∂vr

∂q̇
• Faer +

∂ωr

∂q̇
•
(
τa b̂1

)
(2.49)

The complex system kinematics particularly due to nonlinear terms of the beam shorten-

ing, elastic rotation of the tower tip and coupling among the rigid body and flexible coordinate

leads to a very lengthy form of the system kinetic energy. Therefore, a MATLAB R© symbolic

code is developed to produce the equations of motion. The general form of the equation of

motions, can be then written

[
Msys + Ā

]
⎡
⎢⎢⎢⎢⎢⎢⎣

ν̇

ω̇

Ω̇

q̈

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Fhs + Faer + Fmor + Fhd∗

Mhs +Maer +Mmor +Mhd∗

τa − τg

Q

⎤
⎥⎥⎥⎥⎥⎥⎦+ [f(r,θ,ν,ω,Ω,q, q̇)] (2.50)

the size of Msys is (7 + ne) where ne = 2nb + nt, Ā is written as

Ā =

⎡
⎣ A 06×(1+ne)

0(1+ne)×6 0(1+ne)×(1+ne)

⎤
⎦ (2.51)

and f is a vector with nonlinear elements in r,θ,ν,ω,Ω,q, q̇. Unfortunately, due to the

complex system kinematics a closed form for the mass matrix, Msys and f could not be

achieved as was previously done for the rigid model.
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2.3 External Forces

The external loads includes hydrostatic, hydrodynamic, aerodynamics and mooring loads

as previously described in Equation (2.16). The computation of hydrostatic loads will be

investigated in Chapter 3 where a new exact nonlinear hydrostatic analytical formulation is

developed and subsequently used to calculate these loads. The mooring loads are computed

using a simplified quasi-static cable or lumped mass cable models. The latter approach will

be thoroughly investigated in Chapter 5 while the former will be discussed in Chapter 4.

The approaches used to evaluate hydrodynamic and aerodynamic loads will be presented in

the following subsections. The characterization of the wave field kinematics is presented first

to allow for formulation of the hydrodynamic loads exerted on the submerged part of the

platform. The aerodynamic loads are then discussed.

2.3.1 Wave kinematics

Based on the Airy linear wave theory, the water surface elevation of a regular water wave

is described by a traveling harmonic sinusoidal signal propagating along the horizontal axis

X, expressed as

H(X, t) = Ha cos(ωt− cX) (2.52)

Where H is the wave surface elevation from the Mean Water Level (MWL), Ha is the wave

amplitude, ω is the wave frequency, and c is the wave number. The wave number and wave

frequency are related by a dispersion relation as [18, 95]

ω2 = g c tanh(dwc) (2.53)

where dw is the water depth. Real random sea environment is described by an irregular

wave which is characterized as a sum of Nω regular wave components of different amplitudes,

frequencies, and phases as [18]

H(X, t) =
Nω∑
i=1

HaiX cos(ωit− ciX + εi) (2.54)
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where ωi, ci, and Hai are the i-th wave frequency, wave number, and amplitude , respectively,

and εi is a uniformly distributed random phase angle in the range [0 2π].

The relationship between the wave amplitude (Hai) and frequency (ωi) in Equation (2.54)

can be constructed utilizing a wave spectrum that represents the wave energy content dis-

tribution over the wave frequency band. The wave spectrum is characterized based on mea-

surements recording the wave elevation time series in a certain location. Although there are

several wave spectra describing the ocean environments in different places, the Jonswap spec-

trum is chosen here since it is widely used for evaluating and validating the FOWT stochastic

dynamics, expressed as [96]

SJ (ω) = (1− 0.287 ln (γ))
5

16
H2

s ω
4
p ω−5 exp

(
−5

4

(
ω

ωp

)−4
)

γ
exp

(
− 1

2

[
ω−ωp
σwωp

])
(2.55)

where Hs is the significant wave height which represents the mean of 1/3 of the highest waves,

ωp = 2π/Tp is the peak frequency and Tp is the corresponding period, and σw is a spectral

width parameter defined as [96]

σw =

⎧⎨
⎩ 0.07 for ω ≤ (2π/Tp)

0.09 for ω > (2π/Tp)
(2.56)

and the peak shape parameter (γ) is defined as [97]

γ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5 for Tp√
Hs

≤ 3.6

exp
(
5.75− 1.15 Tp√

Hs

)
for 3.6 < Tp√

Hs
≤ 5

1 for Tp√
Hs

> 5

(2.57)

The i-th wave amplitude Hai corresponds to the i-th wave component (of frequency ωi) can

be obtained as [98]

Hai =

√√√√√2

ωi+0.5Δωi∫
ωi−0.5Δωi

SJ(ω) dω , Δωi = ωi − ωi−1 (2.58)

Generating the wave elevation time histories using Equation (2.58) should be done with

care to avoid self-repetition [98]. The time series of the wave elevation repeats every (2π/Δω)
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seconds for a uniform discretization of the wave spectrum i.e if Δω is constant. A simple

way to avoid this problem is to reduce Δω to generate wave elevation time history for a

sufficient time period to perform the dynamic simulation before the wave time history repeats.

However, this implies using a small Δω resulting in a large number of wave component (Nω)

which is computationally expensive. The most efficient approach to solve this problem is

to use a variable frequency step by increasing the frequency step with a fixed increment,

for example Δωi = 1.1Δωi−1 as recommended in [98]. Figure 2.5 shows the wave spectrum

for Hs = 5 m and Tp = 10 s and Figure 2.6 illustrates the corresponding generated wave

elevation time history using the latter approach.

Having the wave spectrum discretization realized, the wave kinematic relations can be

then established. The horizontal fluid velocity at depth Z (measured negative from MWL

downwards) can be expressed as [18, 95]

ŭ(X,Z, t) =
Nω∑
i=1

ωiHai

[
cosh(ci(Z + dw))

sinh(ci dw)

]
cos(ωit− ciX + εi) (2.59)

The vertical fluid velocity is [18, 95]

w̆(X,Z, t) =
Nω∑
i=1

−ωiHai

[
sinh(ci(Z + dw))

sinh(ci dw)

]
sin(ωit− ciX + εi) (2.60)

If the wave propagates with a heading angle βw relative to the X-axis, as shown in Figure 2.7,

the fluid velocity vf can be expressed as

Ivf (X, Y, Z, t) =
[
ŭ cos βw ŭ sin βw w̆

]T
(2.61)

and X in Equations (2.54), (2.59) and (2.60) should be replaced with (X̆ = X cos(βw) +

Y sin(βw)). The fluid acceleration is simply determined by differentiating Equations (2.59)

and (2.60) with respect to time.
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2.3.2 Hydrodynamic loads

Because of the platform structure slenderness, Morison’s equation can be applied to com-

pute the hydrodynamic loads acting on the floating platform [99]. Accordingly, the hydrody-

namic force (Fhd) and moment (Mhd) around the platform body-fixed frame origin exerted

on the submerged part of the platform acts normal to the platform centerline (z). Fhd is

already expressed as a sum of the inertial (Finer) and combined drag and Froude-Krylov

terms hydrodynamic loads (Fhd∗) in Equation (2.17) and likewise Mhd.

The inertial terms which are functions of the platform kinamatics are often shifted to the

left hand side of the equations of motion as in Equation (2.19). While Fhd∗ term remains on

the right hand side of the equations of motion together with the hydrostatic, aerodynamic,

and mooring loads terms. Fhd∗ and Mhd∗ can be obtained as

Fhd∗ =

Lcf−apf∫
−apf

(
ρ (1 + Ca)Acs(v̇f )⊥ +

1

2
ρCDDcs(vrel)⊥ ‖(vrel)⊥‖

)
dz

Mhd∗ =

Lcf−apf∫
−apf

rz ×
(
ρ (1 + Ca)Acs(v̇f )⊥ +

1

2
ρCDDcs(vrel)⊥ ‖(vrel)⊥‖

)
dz

(2.62)

where Ca and CD are the added mass and drag coefficients, respectively. The distance between

the origin of Fp and platform base center is denoted by apf , and Lcf is the submerged length,

as shown in Figure 2.8. The procedure of computing Lcf will be investigated in Chapter 3.

The position of a generic point on the platform centerline is rz = [0 0 z]T and z changes

according to the integration limits in Equation (2.62). The velocity and acceleration of this

point is vp and v̇p, respectively, as shown in Figure 2.8. The corresponding fluid velocity

and acceleration are vf and v̇f , respectively, which can be determined from the wave field

kinematics (Section 2.3.1). If there are no waves, then vf and v̇f vanish. The relative fluid

velocity required to determine the drag force in Equation (2.62) is given as

vrel = vf − vp (2.63)

The component of (.) perpendicular to the platform centerline is denoted by (.)⊥ . The local

cross section diameter and area are Dcs and Acs, respectively, which they vary along the plat-
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Figure 2.8: Hydrostatic and hydrodynamic loads

form span as the platform is composed of multiple sections. The integrals in Equation (2.62)

are calculated numerically by discretizing the platform submerged length into a number of

disks and summing the resulting force and moment contributed by all sections along the

submerged length. The hydrodynamic inertial force and moment around the origin of Fp

based on Morison’s equation are obtained as

Finer =

Lcf−apf∫
−apf

−ρ Ca Acs (v̇p)⊥ dz , Miner =

Lcf−apf∫
−apf

−rz ×
(
ρ Ca Acs (v̇p)⊥

)
dz (2.64)
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Equation (2.64) can be reformulated in a matrix form as previously done in Equation (2.18)

that introduced CA and A. The added mass matrix is mainly dependent on the submerged

body shape, can be expressed for a cylindrical platform as [100]

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 A15 0

A22 0 A24 0 0

A33 0 0 0

sym. A44 0 0

A55 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.65)

The off-diagonal elements exist because the origin of Fp does not coincide with the platform

center of volume which is varying during dynamic simulation. The elements of the added

mass matrix are

A11 =A22 = Ca ρ Vd , A33 = Ca

(
1

12
ρπd1

3

)
A15 =− A24 = A11 (aCV − apf ) , A44 = A55 = Ca Iadd

(2.66)

where aCV is the distance between the platform base and the center of the submerged volume

of length Lcf assuming the platform is on an even keel (vertical). The added mass coefficient,

Ca is approximately 1.0 for a slender circular cylinder [20, 96]. The added mass of a slender

circular cylinder in a direction parallel to its centerline (A33) is approximately equivalent to

the fluid mass of a hemisphere of a similar diameter [101]. Iadd denotes the inertia of the

displaced volume in roll and pitch modes around origin of Fp. The methods used to calculate

Vd, aCV and Iadd are illustrated in Appendix C.2. To formulate CA, A can be defined as a

4-block matrix, with 3× 3 blocks, as

A =

⎡
⎣ A11 A12

A21 A22

⎤
⎦ (2.67)
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CA is skew-symmetric, can be then expressed as [20]

CA =

⎡
⎣ 03×3 −˜(A11ν + ˜A12ω)

−˜(A11ν + ˜A12ω) −˜(A21ν + ˜A22ω)

⎤
⎦ (2.68)

When the platform is subject to steady current, the vortex shedding past the platform

yields vortex-induced vibration (VIV). The VIV is found to be prominent particularly in

surge/sway directions when the vortex shedding frequency matches the platform surge/sway

natural frequency [102,103], which referred to as lock-in [103]. The magnitude of amplitude of

the VIV could reach the order of the platform diameter [102]. The prediction of hydrodynamic

loads associated with the vortex shedding and the resulting VIV is complex and not clearly

addressed by analytical models [16]. Thus, the VIV behavior of the structure is usually

characterized by experiment as in [104–106]. Therefore, this hydrodynamic effect is neglected

in this thesis although it can be considerable (in case current exists) not only for the platform

but also for the mooring lines.

2.3.3 Aerodynamic loads

The main wind loads are aerodynamic torque about the turbine shaft (τa) and the thrust

force (Ta) acting along the shaft axis (normal to the rotor swept area and parallel to b̂1).

These loads, can be characterized as [107,108]

Ta =
1

2
ρair πRrot

2 CT (λ, β)
∥∥∥ (Urel)‖

∥∥∥2
τa =

1

2
ρair πRrot

3 1

λ
CP (λ, β)

∥∥∥ (Urel)‖
∥∥∥2 (2.69)

where Rrot is the rotor radius and ρair is the air density. The relative wind velocity parallel

to the wind turbine axis (b̂1) can be calculated as

(Urel)‖ =
(
(U− vr) • b̂1

)
b̂1 (2.70)
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The thrust and power coefficients CT and CP respectively, are both functions of the tip speed

ratio and blade pitch angle (β). The tip speed ratio, λ is defined [3]

λ = ΩRrot/
∥∥∥(Urel)||

∥∥∥ (2.71)

The characteristics of CT and CP are often plotted versus λ at specific values of β, as shown

in Figure 2.9 for the NREL 5 MW baseline wind turbine. These characteristics are obtained

from an aerodynamic analysis using bade element momentum theory (BEM).
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Figure 2.9: NREL 5 MW baseline wind turbine: (a) thrust coefficient; and (b) power coefficient [3]

The tip speed ratio and blade pitch angle should be specified to determine CP and CT

required to calculate the wind loads using Figure 2.9. The rotor speed increases as wind

speed increases at low to moderate wind speeds which results in different λ during operation,

as well the blade pitch control changes the pitch angle at higher wind speed. Therefore,

the wind turbine operates in different schemes (regions of operation) according to the wind

speed. Thus, it is necessary to identify the wind turbine region of operation to determine

CP and CT properly. The wind turbine regions of operation are illustrated in Figure 2.10.

In region I, the wind speed is very low such that U < Ucut−in, there is insufficient wind

power to run the turbine. In region II, the wind speed is less than the rated speed i.e.

U < Urated, as a result a fraction of the rated power can be captured. The blade pitch is

maintained fixed (β ≈ 0). The rotor speed increases as wind speed increases, to maintain λ

at the optimal designed value (λ∗) which is coincident with the maximum power coefficient
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(CPmax), as illustrated in Figure 2.9 (b). This can be achieved through generator torque

control by controlling generator load to modify the rotor speed to approach the desired value

λ∗, such that [108,109]

τg =
1

2
ρair π R5

rot (CPmax/λ
3
∗) Ω

2 (2.72)

cut inU cut outU
Wind speed ( )U

Po
w

er

ratedU

II IIII IV

Figure 2.10: Wind turbine regions of operation

In region III, the wind speed is above the rated, Urated < U < Ucut−out, i.e. the available

wind power is larger than the rated wind power. Therefore, the blade pitch control increase

the blade pitch angle as the wind speed increases to reduce CP (Figure 2.9) to dissipate the

excess wind power and regulate the extracted wind power to be within the turbine rated

power and maintain the rotor speed at its rated value (Ωrated ) to protect the wind turbine

from damage. When U > Ucut−out (region IV), the turbine is shut down for protection. It

is worth mentioning that Figure 2.10 represents generic operation modes of a variable-speed

variable-pitch wind turbine. However, these regions of operation could involve transition

regions or subregions based on the control system strategies used to optimize the wind turbine

operation [107]. The reader can refer to [107–109] for further details about the wind turbine

operation and control.

The design variables of the NREL wind turbine, Ucut−in, Urated, Ucut−out, Ωrated, and λ∗

are 3 m/s, 11.4 m/s, 25 m/s, 12.1 rpm, and 7.55 respectively [87].

The aerodynamic force and corresponding moment (Equation (2.16)) around the origin

of the platform frame can be obtained for the equations of motion of the flexible model
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(Equation (2.50)) as

pFaer =Rel

(
Tab̂1

)
pMaero =Rel

(
τa b̂1

)
+ (rBl +Rel rrot)× pFaer

(2.73)

The aerodynamic loads required for the equations of motion of the rigid model (Equa-

tion (2.19)) can be computed by replacing b̂1 in Equation (2.70) by î, and Equation (2.73)

should be accordingly modified to apply for the rigid model as

pFaer = [Ta 0 0]T , pMaer = τa î+ rGr × pFaer = [τa Ta Dr 0]T (2.74)
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Chapter 3

HYDROSTATICS

FOWT platforms can exhibit large deflections when acted upon by a combination of large

steady wind and hydrodynamic loads. Large deflections particularly in heave, roll and pitch

can also yield large hydrostatic loads and lead to nonlinear behavior. Most FOWT dynamic

analyses model the hydrostatic loads using a linear approach. This chapter presents a new ex-

act nonlinear coupled hydrostatic approach to calculate the magnitude of the buoyancy forces

and the coupled hydrostatic restoring moments as functions of the instantaneous displaced

position and orientation of offshore platforms.

The analysis begins by deriving the hydrostatic loads for a single-degree-of-freedom (SDOF)

finite rotation of a floating cylinder which is later used to verify the results of the general

model. The analysis is then extended to derive the instantaneous center of buoyancy for a

floating cylinder undergoing a general displacement. Evaluating the position of the center

of buoyancy is essential to the derivation of the buoyancy forces and moments which are

subsequently used to obtain the hydrostatic stiffness matrix at an arbitrary position and

orientation of the floating cylinder. As well, the developed approach is efficiently applied to

determine the exact equilibrium positions and orientation of free floating cylindrical bodies.

Finally, the hydrostatic loads are accordingly computed as a part of the external forces in

the system dynamic equations of motion.

3.1 Single Degree-of-Freedom (SDOF) Rotation of

Floating Cylinders

The hydrostatic restoring moment of water plane area of a floating circular/rectangular

cylinder undergoing pure roll/pitch rotation arises from the lateral shift of the buoyancy

center due to change of the submerged volume shape, as shown in Figure 3.1. Mathematically,
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Figure 3.1: (a) Rotated floating cylinder in roll motion; (b) cylinder cross sections. B and B′ are
the centers of buoyancy before and after the rotation, respectively, SWL: Still Water Level.

this moment is a couple generated by the buoyancy forces of the submerged wedge (with

positive buoyancy) and emerged wedge (with negative buoyancy), as shown in Figure 3.1.

This moment is equivalent to the moment of buoyancy force of the rotated cylinder (acting at

B′) around the center of buoyancy of the unrotated cylinder (acting at B) assuming that the

buoyancy force does not change during rotation i.e. the submerged volume does not change

during rotation [17, 20,22]. This moment can be formulated as

Mx
wp = −ρg

∫ [
2
(
1
2
y2 tan(φ)

)
cos(φ) 2

3
y + 2

(
1
2
y2 tan(φ)

)
sin(φ) 1

3
y tan(φ)

]
dx (3.1)

The integration limits in Equation (3.1) vary from x = −r to r for a circular cylinder and

from x = −e to e for a rectangular cylinder, as shown in Figure 3.1. Equation (3.1) can be

reduced to

Mx
wp = −ρg

(
sin(φ) +

1

2
sin(φ)tan2(φ)

) ∫
2

3
y3dx (3.2)

where, again, the integration limits vary from x = −r to r for a circular cylinder and from

x = −e to e for a rectangular cylinder. The integral in Equation (3.2),
∫
(2/3) y3dx =
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∫
dIxx = Ixx, where Ixx is second moment of area of the floating cylinder section area, thus

the water plane restoring moment can be expressed as:

Mx
wp = −ρg Ixx

(
sin(φ) +

1

2
sin(φ)tan2(φ)

)
(3.3)

The relation in Equation (3.3) represents the exact restoring moment and it can be used to

determine the restoring moments at any rotation angle as long as the cylinder top face is

not in contact with the water surface. However, if the rotation is small, most texts authors

simplify the analysis by dropping the higher order term (second term in the square brackets)

and assume cos(φ) ≈ 1 in Equation (3.1) as [110]:

Mx
wp = −ρg

∫
2

(
1

2
y2 tan(φ)

)
2

3
y dx (3.4)

and in final form [110]:

Mx
wp = −ρg Ixx tan (φ) (3.5)

Equation (3.5) can be further simplified for small rotations as

Mx
wp ≈ −ρg Ixx φ (3.6)

Figure 3.2 (a) shows the normalized water plane moment (Mwp divided by ρgIxx) as com-

puted using the exact form of Equation (3.3) and the analogous relations in Equations (3.5)

and (3.6). The results of the three forms match up to 10o and the forms of Equations (3.3)

and (3.5) yield a larger moment for further rotation. The latter forms match up to 30o and

the exact form yields a larger moment for further rotation. The roll stiffness of water plane

is formulated as Kx
wp = −dMx

wp/dφ. It is approximately equal to ρgIxx (normalized value=1)

if the roll angle is very small while it is larger than 1 for larger angles, as shown in Figure 3.2

(b). Kx
wp computed using the exact form and using Equation (3.5) match up to 15o and

the exact form yields a larger stiffness for further rotation, as seen in Figure 3.2 (b). The

horizontal shift in the buoyancy center can be simply determined as

BB′ = Mx
wp/FB , FB = ρgVd (3.7)
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where Vd is the submerged volume.
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Figure 3.2: Normalized water plane area: (a) moment; (b) stiffness

3.2 Three-Dimensional Rotation Hydrostatics

The preceding analysis can be used to determine the restoring moments of a floating

cylinder for a single-degree-of freedom rotation, i.e. pure roll or pitch displacements. It is

also valid for small coupled roll, pitch and yaw displacements, in which case the nonlinear

coupling between these rotational displacements can be neglected [17]. Large magnitude

platform rotations due to harsh environmental loads give rise to a considerable nonlinear

coupling effect. Therefore, it is important to consider nonlinear coupling in evaluating the

restoring moments. In this section, a general analysis is developed for this purpose.

During the cylinder motion, the submerged volume changes, and the magnitude of the

buoyancy force is expressed as

FB = ρ g Vd = ρ g Ac Lcf (3.8)

where Ac is the cylinder cross sectional area. Lcf is the submerged length that represents the

distance along the cylinder centerline measured from the cylinder base center to the center

of the flotation area. The flotation area (grey colored), as shown in Figure 3.3, is prescribed

by the intersection of the cylinder and water line. Lcf must be obtained at any position and

orientation of the floating cylinder to determine the exact magnitude of the buoyancy force.

The Z component of the displacement of the base center relative to its analogous position at
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Figure 3.3: General coupled analysis for computing the hydrostatic loads

equilibrium determines the change of the cylinder depth, L̃, as illustrated in Figure 3.3.

L̃ = − ((R prb − prb)Z + rZ) (3.9)

where the subscript Z denote the respective component, and rb measures the position of the

cylinder bottom base center relative to the origin of the body frame (xyz) which is fixed in
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the body frame. The change in the submerged length can be expressed as:

h̃ = L̃/ cos(η) (3.10)

η is the angle between the cylinder centerline and the Z axis i.e. the angle between K̂ and

k̂ , η can be expressed as

cos(η) = K̂ • k̂ = cθ cφ = R33 (3.11)

Where R33 is last element of the rotation matrix R (Equation (2.1)). The general expression

of the submerged length is:

Lcf =
Lc

R33

+ h̃ =
Lc + L̃

R33

(3.12)

The buoyancy force can then be determined using (Equation (3.8).

3.2.1 Coupled restoring moments

The hydrostatic restoring moments are generated due to the cylinder’s heave and ro-

tations that alter the displaced volume, and hence the position of the center of buoyancy.

Computing the position of the buoyancy center during general coupled displacement is the

key to determining the coupled restoring moments. The center of buoyancy is the centroid

of the submerged volume as shown in Figure 3.4. Without loss of generality, we can change

the origin of the body fixed frame xyz to the center of the base of the submerged cylinder to

simplify the calculations which are performed in the body frame.

The submerged volume of the cylinder and its center of volume (center of buoyancy) can

be determined using a triple integral to compute the volume under the water plane over the

base region. The equation of instantaneous water plane in xyz can be determined using the

normal vector of the water plane which is simply K̂ in the inertial frame, and in the xyz

frame can be represented as

pn = RT [0 0 1]T = R31 î+R32 ĵ+R33 k̂ (3.13)

The point (0, 0, Lcf ) is the center of the floatation area (grey-colored in Figure 3.4). Thus,
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the equation of the water plane area can be formulated in the body frame

z = Lcf −
R31

R33

x− R32

R33

y = Lcf + a x+ b y (3.14)

where a = −R31/R33 = tθ/ cφ , b = −R32/R33 = −tφ, and t(.) = tan(.). The submerged

x

yz
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(0,0, )cfL
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sr

bcr

n

SWL

Figure 3.4: Submerged volume in the body fixed frame

volume of the cylinder can be determined to verify Equation (3.8) as

circular cylinder : Vd =

∫∫∫
A

dVd =

r∫
−r

√
r2−x2∫

−√
r2−x2

Lcf+a x+by∫
0

dz dy dx = πr2Lcf

rectangular cylinder : Vd =

∫∫∫
A

dVd =

e∫
−e

f∫
−f

Lcf+a x+by∫
0

dz dy dx = 4 e f Lcf

(3.15)

where A is the cylinder base region, as shown in Figure 3.5 . The x-coordinate of the center
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of submerged volume is:

circular cylinder : x̄ =
1

Vd

∫∫∫
A

xdVd =
1

Vd

r∫
−r

√
r2−x2∫

−√
r2−x2

Lcf+a x+by∫
0

x dz dy dx = a r2/4Lcf

rectangular cylinder : x̄ =
1

Vd

∫∫∫
A

xdVd =
1

Vd

e∫
−e

f∫
−f

Lcf+a x+by∫
0

x dz dy dx = a e2/3Lcf

(3.16)

the y-coordinate is:

circular cylinder : ȳ =
1

Vd

∫∫∫
A

ydVd =
1

Vd

r∫
−r

√
r2−x2∫

−√
r2−x2

Lcf+a x+by∫
0

y dz dy dx = b r2/4Lcf

rectangular cylinder : ȳ =
1

Vd

∫∫∫
A

ydVd =
1

Vd

e∫
−e

f∫
−f

Lcf+a x+by∫
0

y dz dy dx = b f 2/3Lcf

(3.17)

the z-coordinate is:

circular cylinder : z̄ =
1

Vd

r∫
−r

√
r2−x2∫

−√
r2−x2

Lcf+a x+by∫
0

z dz dy dx =
Lcf

2
+

(a2 + b2 )r2

8Lcf

rectangular cylinder : z̄ =
1

Vd

e∫
−e

f∫
−f

Lcf+a x+by∫
0

z dz dy dx =
Lcf

2
+

(a2 e2 + b2f 2 )

6Lcf

(3.18)

The expressions of the submerged volume and coordinates of its center in Equations (3.15)

to (3.18) can also be represented in a generalized form in terms of the cross sections area and
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its second moments of area as:

Vd = ρAcLcf , x̄ =
a Iyy
AcLcf

, ȳ =
b Ixx
AcLcf

, z̄ =
Lcf

2
+

(a2 Iyy + b2Ixx )

2AcLcf

(3.19)

where Ac, Ixx and Iyy expressions for the circular and rectangular cylinders are listed in

Table 3.1. It is worth noting that the results in Equation (3.19) are also valid for an elliptic

Table 3.1: Expressions for Ac, Ixx and Iyy of the circular and rectangular cylinders

Expression Circular cylinder Rectangular cylinder (Barge)

Ac πr2 4 e f

Ixx πr4/4 4 e f 3/3

Iyy πr4/4 4 f e3/3

cross section.

The restoring moments of the water plane area can be formulated in the body frame, as

shown in Figure 3.4

pMwp =
prs × (RT FB) , rs = rBf − rbc , prbc =

Lcf

2
k̂ , prBf = x̄ î, + ȳ ĵ + z̄ k̂

(3.20)

where rBf is the vector from the center of the base to the center of buoyancy, rbc is the

vector from the center of the base to the half of the submerged length. rs is the vector from

the middle of the submerged length to the center of buoyancy and FB is the buoyancy force

vector resolved in the inertial frame as:

IFB = [0 0 FB]
T (3.21)

The restoring moments of the water plane area in Equation (3.20) can be expressed as:

pMwp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mx
wp

My
wp

M z
wp

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = ρg

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− Ixx

[
R32 + R32

3

2R33
2

]
− Iyy

[
R32R31

2

2R33
2

]
Iyy

[
R31 + R31

3

2R33
2

]
+ Ixx

[
R31R32

2

2R33
2

]
(Ixx − Iyy)

[
R31R32

R33

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.22)

It is evident from the result in Equation (3.22) that the restoring moment components are
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affected by the rotation sequence since the elements of the rotation matrix have different

forms for different sequences [88]. However, the magnitude ‖Mwp‖ is invariant for a given

orientation in space. For the 3-2-1 rotation sequence [88] considered in this study, the water

plane area restoring moment components are

pMwp = ρg

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Ixxcθ
[
sφ + 1

2
sφ t

2
φ

]
− 1

2
Iyycθ

[
sφ

t2θ
c2φ

]
−Iyy

[
sθ + 1

2
sθ

t2θ
c2φ

]
− 1

2
Ixx
[
sθ t2φ

]
− sθ tφ [ Ixx − Iyy]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.23)

If Ixx = Iyy = I such as in circular and square cylinders, the restoring moments of water

plane area reduce to

pMwp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mx
wp

My
wp

M z
wp

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = −ρg I

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cθ

[
sφ + 1

2
sφ

(
t2θ
c2φ

+ t2φ

)]
[
sθ + 1

2
sθ

(
t2θ
c2φ

+ t2φ

)]
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.24)

It is interesting to verify Equation (3.23) by substituting θ = 0 (pure roll) to confirm that

My
wp = M z

wp = 0, while Mx
wp reduces to the same expression as Equation (3.3). In the same

manner, substituting φ = 0 (pure pitch) in Equation (3.23) yieldsMx
wp = M z

wp = 0, whileMy
wp

reduces to the same result as Equation (3.3). The results in Equations (3.22) to (3.24) show

that the yaw displacement (around the cylinder axis) has no effect on the water plane area

restoring moment components since these components are functions of the 3rd row elements

of R which are free of the angle ψ. However, with other rotation conventions, Mwp may be

a function of φ, θ and ψ. The water plane area restoring moment resolved in the inertial

frame can be expressed as IMwp = RMwp = [MX
wp MY

wp 0 ]T . For the considered rotation

sequence, the magnitude of the water plane area moment is a function of φ and θ only but

the yaw displacement still affects the MX
wp and MY

wp components while the magnitude ‖Mwp‖

is fixed for given φ and θ, irrespective of the value of ψ. For circular and square cylinders,
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the water plane restoring moment resolved in the inertial frame can be expressed as:

IMwp = −ρg I

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(c2φ c2θ+1) (cψ sφ −sψ cφ sθ )

2 c2φ c2θ
(c2φ c2θ+1) (sψ sφ +cψ cφ sθ )

2 c2φ c2θ

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.25)

There is no yaw restoring moment of the water plane around the Z-axis which is a basic

principle in hydrostatics. The body frame yaw water plane restoring moment (around the z-

axis) still exists and only vanishes for symmetric cross sections areas that possess identical Ixx

and Iyy around their centroidal coordinates such as square, circular, pentagonal, hexagonal,

octagonal shapes etc. Figure 3.6 (a) shows the normalized water plane area restoring moment

components in the body frame (Equation (3.23)), Mx
wp/ρgI and My

wp/ρgI, over a range of

roll and pitch angles for those cross section shapes. Figure 3.6 (b) depicts the normalized

magnitudes of water plane area moment ‖Mwp‖ /ρgI. The results show that the restoring

moments increase as the rotation angles increases and the large coupling yields higher water

plane moment magnitudes. The differential changes in pMwp can be expressed as
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wp; and (b): moment magnitude
for cylinders of identical Ixx and Iyy

[dMx
wp dMy

wp dM z
wp]

T = −Kwp [dφ dθ dψ]T

where Kwp is the water plane area stiffness matrix, formulated in the body frame as

Kwp =

⎡
⎢⎢⎢⎣

K44
wp K45

wp 0

K54
wp K55

wp 0

K64
wp K65

wp 0

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

∂Mx
wp

∂φ

∂Mx
wp

∂θ

∂Mx
wp

∂ψ

∂My
wp

∂φ

∂My
wp

∂θ

∂My
wp

∂ψ

∂Mz
wp

∂φ

∂Mz
wp

∂θ

∂Mz
wp

∂ψ

⎤
⎥⎥⎥⎦ (3.26)
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The third column of Kwp is simply zero since Mwp = Mwp(φ, θ). While this is not the

case for some other rotation conventions in which Mwp = Mwp(φ, θ, ψ). As demonstrated

earlier, the linear model (Equation (3.5)) is only valid for small coupled rotational displace-

ments. It is essential to capture the influence of nonlinear coupling between the roll and

pitch displacements on the water plane area restoring stiffness. To clarify this effect, it

is more convenient to consider a cylinder with identical Ixx and Iyy, such as a circular or

square cylinders (M z
wp = K64

wp = K65
wp = 0, Ixx = Iyy), making interpretation of the results

easier. Accordingly, the third row and column of Kwp are zero, and can be ignored, leaving

[dMx
wp dMy

wp]
T = −Kwp[dφ dθ]T , and Kwp reduces to

Kwp =

⎡
⎣ K44

wp K45
wp

K54
wp K55

wp

⎤
⎦ = −

⎡
⎣ ∂Mx

wp

∂φ

∂Mx
wp

∂θ

∂My
wp

∂φ

∂My
wp

∂θ

⎤
⎦ (3.27)

It is well known that the diagonal elements of Kwp/ρgI in Equation (3.27) ≈ 1 while the

off-diagonal counterparts ≈ 0 at small roll and pitch angles where the coupling is negligible,

as illustrated in Figures 3.7 and 3.8. However, the coupling increases the magnitude of the

off-diagonal elements K45
wp and K54

wp , as seen in Figures 3.7 (b) and 3.8 (b), respectively. It

(a) (b)
-20

0

20

-20

0

20
1

1.05

1.1

1.15

 [
o
]

 [
o
]

N
o

rm
a
li

z
e
d

 K
w

p

4
4

-20

0

20

-20

0

20
-0.02

-0.01

0

0.01

0.02

[
o
]

 [
o
]

N
o

rm
a
li

z
e
d

 K
w

p

4
5

N
o

rm
al

iz
ed

  
K

4
4
w

p

N
o

rm
al

iz
ed

  
K

4
5
w

p

Figure 3.7: Normalized K44
wp and K45

wp for circular/square cylinder

is interesting to note that K54
wp is more influenced by coupling and is almost 10 times larger

than K45
wp. K

44
wp and K55

wp increase as the magnitude of roll angle and pitch angles, respectively

increase, as shown in 3.7 (a) and 3.8 (a). This is attributed to the nonlinear behavior of the

water plane stiffness, as previously presented in Figure 3.2 (b) noting that the normalized

SDOF roll/pitch water plane stiffness (Kwp/ρgI) ≈ sec2(φ or θ). Surprisingly, K44
wp is almost
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Figure 3.8: Normalized K55
wp and K54

wp for circular/square cylinder

unaffected by coupling i.e. K44
wp ≈ f(φ) in the considered range of displacements, as seen in

Figure 3.7 (a). By contrast, K55
wp is considerably influenced by displacement coupling such

that larger coupling yields higher pitch stiffness. In general, the water plane pitch stiffness

coefficients (K55
wp and K54

wp ) are more influenced by coupled pitch and roll displacements

which is attributable to the rotation sequence used to describe the platform kinematics. It

would be expected to obtain an opposite trend if the roll rotation precedes the pitch rotation

in the rotation sequences used such as 3-1-2, 1-2-3, and 1-3-2 rotation sequences.

3.2.2 Displacement of center of buoyancy and buoyancy moment

In accordance with the analysis developed Section 3.2, the displacement of the center of

buoyancy for general displacements can be easily determined, as illustrated in Figure 3.3.

The instantaneous center of buoyancy position relative to the origin of the body frame can

be represented as

rCB∗ = rb + rBf (3.28)

The hydrostatic moment exerted by the buoyancy force around the origin of the body frame

and resolved in the body frame can be expressed as

pMB = prCB∗ × (RT IFB) =
prCB × (RT IFB) +

pMwp =
pMZB + pMwp (3.29)
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This form will ease the derivation of the hydrostatic stiffness matrix as will be discussed in

the next section. Referring to Figure 3.3, rCB can be represented as:

rCB = rCB∗ − rs = rb + rbc (3.30)

where rbc is the position of the midpoint of the submerged length relative to the base center

of the cylinder.

3.3 Hydrostatic Restoring Stiffness

The hydrostatic stiffness is attributed to both buoyancy and gravity restoring loads (Kh =

KB + KG). Since the submerged structure is a rigid body, the hydrostatic restoring forces

and moments are only functions of the platform submerged shape, position and orientation.

The derivations of KB and KG matrices that form the hydrostatic stiffness matrix (Kh) are

detailed in the following subsections.

3.3.1 Buoyancy stiffness (KB)

The position of the cylinder base center shown in Figure 3.3 can be expressed as prb =

xf î + yf ĵ + zf k̂. The buoyancy moment previously derived in Section 3.2.2 can be resolved

in the inertial frame as IMB = IMZB + IMwp,
IMZB can be evaluated as:

IMZB = R pMZB = (R prCB)× IFB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

YFFB

−XFFB

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.31)

where

R prCB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

XF

YF

ZF

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , prCB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xf

yf

zf + 0.5Lcf

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and IMB can be then expressed as

IMB =
[
MX

B MY
B MZ

B

]T
=
[
MX

wp + YFFB MY
wp −XFFB 0

]T
(3.32)
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If one defines the translational and finite rotational displacements of the cylinder by a matrix

X and the corresponding buoyancy force and moment components by a matrix χB as

X =
[
rX rY rZ φ θ ψ

]
χB =

[
0 0 FB MX

B MY
B 0

] (3.33)

the buoyancy stiffness matrix coefficients in the inertial frame can be derived as

KB = −∂χB

∂X
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 K33
B K34

B K35
B K36

B

0 0 K43
B K44

B K45
B K46

B

0 0 K53
B K54

B K55
B K56

B

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.34)

It is worth noting that the there are no hydrostatic forces in surge and sway and no yaw

moment therefore the first 2 rows and columns are zero together with the last row. For

the considered rotation sequence adopted in this study, the detailed derivation and symbolic

expressions for these coefficients can be found in Appendix C.

3.3.2 Weight restoring stiffness (KG)

The moment of the cylinder weight, Wc around the origin of the body frame and resolved

in the inertial frame is IMG = [MX
G MY

G 0]T = (R prg)×IW, where IW = [0 0 −Wc]
T ,

Wc = mg, m is the cylinder mass and rg = [xg yg zg]
T , as illustrated in Figure 3.3. The

weight and IMG components can be defined using matrix χG as

χG =
[
0 0 −Wc MX

G MY
G 0

]
(3.35)
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The weight restoring stiffness coefficients can be can be derived in the same manner as

Equation (3.34)

KG = −∂χG

∂X
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 K44
G K45

G K46
G

0 0 0 K54
G K55

G K56
G

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.36)

since the platform weight is constant, the third row of KG is zero. The weight restoring

stiffness coefficients in Equation (3.36) can be found in Appendix C.

3.3.3 Zero displacement hydrostatic matrix

A special case can be considered if the rotational displacements are very small (φ ≈

θ ≈ ψ ≈ 0) and weight and buoyancy are located along the platform centerline such that

xf = xg and yf = yg, and the body frame axes are located on the SWL plane, as shown

in Figure 3.9. The heave restoring stiffness can be modeled as a translational spring while

the water plane restoring moments in roll and pitch are represented as torsional springs, as

shown in Figure 3.9. The hydrostatic stiffness matrix can then be expressed as

Kh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 Kh
wp Kh

wp yf −Kh
wp xf 0

0 0 Kh
wp yf K44

h −Kh
wp xf yf (Wc − FB) xf

0 0 −Kh
wp xf −Kh

wp xfyf K55
h (Wc − FB) yf

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.37)

where the hydrostatic stiffness matrix entries are

K44
h =−Wc zg + FB zB + Kr

wp + Kh
wp yf

2

K55
h =−Wc zg + FB zB + Kp

wp + Kh
wp xf

2

Kh
wp =ρg Ac , Kr

wp = ρg Ixx , Kp
wp = ρg Iyy

62



x

y
z

x

z
y

water plane area

xf

yf

Bod
y fr
ame

SWL

zg

zB
SWL

r
wpK

p
wpK

h
wpK

BF

G

B

cW

Figure 3.9: Buoyancy restoring forces and moments at zero rotation angles

This stiffness matrix is only symmetric if K46
h = K64

h , which happens only when xf = yf = 0

i.e. the body frame z-axis coincides with the cylinder centerline or if the Wc = FB. zB and

zg are measured negative downwards. The hydrostatic stiffness matrix in Equation (3.37) is

often used in dynamics analyses of offshore platform [17,20].

3.4 Three-Dimensional Equilibrium of a Free Floating

Cylinder

The hydrostatic equilibrium of floating structures is generally analyzed numerically uti-

lizing iterative approaches and searching techniques [17, 21] since the buoyancy force and

moments are functions of the equilibrium position. Fortunately, the theoretical analyses de-

veloped here can be directly applied to find the exact 3D equilibrium position and orientation

of cylinders that float freely or subject to external loadings. Moreover, it can be efficiently

used to find the equilibrium position and orientation for an arbitrary position of the cylin-

der’s center of gravity. The analysis is implemented for a rectangular cylinder in the following

example.
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Example : A rectangular cylinder of weight Wc floats freely in water (ρ = 1000 kg/m3).

The cylinders dimensions are 2 × 1 × 6 m, as shown in Figure 3.10. The cylinder initially

was at even keel (μ = 0), the draft Lc = 3 m. The center of gravity is located 0.5 m above

the bottom base center along the cylinder vertical centerline (z). An external vertical force

Fe = Wc/4 is applied at the cylinder corner, the new equilibrium position and orientation (Eu-

ler angles) and the coordinates of the cylinders corners intercepts with the SWL are required.

Solution : Initially before applying the load Fe, all the cylinder corner intercepts with SWL

are located at z = −3 m i.e. half of the cylinder volume was submerged and Wc = FB = 6ρg.

After applying the external force Fe, the new buoyancy force is

FB = Wc + Fe = 1.25Wc = 1.25(2 · 1 · 3) ρg = 7.5 ρg (3.38)

The submerged length Lcf can be determined using Equation (3.8)

Lcf = FB/ρg Ac = 3.75m (3.39)

The body frame location is arbitrarily chosen at the center of the upper face. The static

equilibrium pose can be determined by invoking the moment balance around the body frame

origin, as shown in Figure 3.10.

∑
Mo =

prCB × (RT IFB) +
prg × (RT IW) + prF × (RT IFe) +

pMwp = 0 (3.40)

where prg = [0, 0, −5.5]T , prF = [1, 0.5, 0]T , prCB = [0, 0, −4.125]T , IFB = [0, 0, 7.5ρg]T ,

IW = [0, 0, −6ρg]T , and IFe = [0, 0, −1.5ρg]T . Equation (3.40) yields a system of 3 nonlin-

ear equations in 2 unknowns, φ and θ. One can solve any two equations simultaneously, for

instance the equilibrium equations in pitch and yaw are

14715 cφ cθ − (214185/8) sθ − 817.5 t2φ sθ − 1635 sθ t2θ/c
2
φ = 0

4905 tφ sθ − 14715 cθ sφ − 7357.5 sθ = 0
(3.41)

Equation (3.41) can be solved to find φ = −17.83o and θ = 26.76o and the corresponding

cylinder’s corners intercepts with the SWL are shown in Figure 3.10. The coordinates of

the intercepts can be evaluated in the body frame using the water plane equation that was
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Figure 3.10: 3D equilibrium of a floating rectangular cylinder subject to a vertical load

previously discussed in Section 3.2. As expected, the corner where the load is applied is

the closest to the water level at equilibrium, as seen in Figure 3.10. The angle between the

cylinder centerline (z) and vertical direction (Z), η = cos−1(cos θ cosφ) =31.79o.

3.5 Hydrostatic Loads (Fhs and Mhs) for the Equations

of Motion

The hydrostatic force Fhs and moment Mhs terms in the equations of motion (Equa-

tions (2.19) and (2.50)) of both the dynamic models developed in Chapter 2 can be deter-

mined using the nonlinear hydrostatic approach already developed. Although this approach is

derived for cylindrical floaters of uniform cross sections, it can be easily adapted for cylinders

of multiple cross sections as the platform of the FOWT under consideration.

The floating platform structure is composed of a large lower cylinder of diameter d1

and length a1 and a smaller upper one with corresponding diameter and length d2 and a2,

respectively. The two cylinders are connected through a conical frustum of length a3. The

small cylinder top face is the foundation of the tower base, as shown in Figure 2.8. The
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hydrostatic force and moment are mainly dependent on submerged shape of the structure

and its cross section area piercing the water. The diameter of the platform cross section

piercing the water (dwp) is dependent on the submerged length (Lcf ), as shown in Figure 2.8.

The submerged length (Lcf ) can be calculated using Equation (3.12) as

Lcf = (Lc − rZ − apf +Hw + apf cφ cθ) /(cφ cθ) (3.42)

where the platform draft Lc = Lcf at rZ = 0 and θ = 0. The draft is Lc = 120 m, as specified

in the OC3-Hywind design data [6]. The distance between the Fp origin and platform base

center is denoted by apf . The wave height crossing the platform is Hw can be calculated

using the analysis in Section 2.3.1. Since the platform is of slender shape and the the wave

length is very large compared to the platform diameter, Hw can be assumed constant across

the platform. The buoyancy (hydrostatic) force is the fluid weight of the submerged volume,

written as

IFhs = (ρ Vd g) K̂ (3.43)

where the displaced volume (Vd) can be calculated based on the submerged shape geometry

in Appendix C. The hydrostatic moment can be expressed as

Mhs = rC × Fhs +Mwp (3.44)

where rC = (aCV − apf ) k̂, aCV is the distance between the platform base and the center the

submerged volume of length Lcf assuming the platform is on an even keel (vertical), and rC

is the corresponding position vector of that center relative to the Fp origin. The water plane

area restoring moment (Mwp) can be caculated from Equation (3.24) as

pMwp = −ρg Iwp

[
cθsφ + 1

2
sφcθ

(
t2θ
c2φ

+ t2φ

)
sθ + 1

2
sθ

(
t2θ
c2φ

+ t2φ

)
0
]T

(3.45)

where the moment of inertia of the platform cross section piercing the water level is Iwp =

πd4wp/64.
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Chapter 4

QUASI-STATICMOORING LOADS AND STIFFNESS

The main purpose of this chapter is to determine the mooring loads (Fmor and Mmor) in

the equations of motion developed earlier in Chapter 2. The mooring loads exerted on the

platform will depend on the mooring system geometry, configuration, and cable properties.

In this work, two mooring system configurations are studied. The mooring loads for each

configuration are formulated utilizing quasi-static cable models.

The analysis is then extended to derive the exact stiffness matrix (6× 6) of the mooring

system for a structure undergoing a general displacement. Closed forms of the stiffness

matrix are evaluated for symmetric slack catenary, taut-leg and tension leg mooring systems

at equilibrium. Finally, the influence of the key mooring system design parameters such as

anchor radius, number of tethers and mooring system configuration, on the mooring system

stiffness is investigated for a taut-leg mooring system. It is worth noting that our analysis

assumes that cables are only subject to gravity loads (weight) and no external steady loads

(such as current) are considered.

4.1 Mooring System Loads

The mooring force (Fmor) and moment around the origin of the platform frame (Mmor)

are evaluated for two different mooring system configurations (designs) for the OC3-Hywind

FOWT under consideration. The original mooring system design was developed by Statoil

and used to build a FOWT prototype deployed close to the south-west coast of Norway in

2011. The design involves multiple cable segments and suspended clump weights, as will be

illustrated in Section 4.1.2. However, the original data of this design has not been published.

A simplified design, in which each mooring line is composed of a single cable augmented by

additional yaw stiffness coefficient (Kadd) has been released to the public by the NREL [6].
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Later on, the original multi-segments (bridle) design data was published [7]. Based on the

geometry and cable properties data of the both deigns, it is noticed that the mooring system

total mass (of the cables and clump weights (if any)), cable extensional stiffness (EA), and

the anchor radius are identical for both designs. However, the cable mass per unit length of

the simplified design is larger.

Most the published dynamic studies of this FOWT system considered the simplified moor-

ing design. Therefore, the mooring load of both designs (configurations) will be formulated to

perform the dynamic simulations. The dynamic simulations that use the simplified mooring

system design will be used to validate the dynamic models developed herein. On the other

hand, the dynamic simulation of the FOWT system using the more complex original mooring

system design will be performed to investigate the dynamic behavior of the real system.

4.1.1 Single-segment configuration

In the simplified configuration, the catenary mooring system is comprised of 3 lines rest-

ing on the seabed when the system at equilibrium. The anchors are uniformly distributed in

a circle with radius Rc and 2π/3 radians apart. The upper attachment point (fairlead) radius

is Rf and the attachment points circumferential distribution is similar to their correspond-

ing anchors, as shown in Figure 4.1 (a). The tethers are identical in length and material

properties.

The mooring loads are determined using the equation of an elastic catenary. The tension

determined using this approach is referred to as the quasi-static tension [14]. In this approach,

the cable-seabed interaction forces such as friction and damping are ignored. The absolute

position of the upper attachment point (fairlead) of the i-th mooring line during a general

displacement of the platform can be expressed in the inertial frame as

Irm = [Xp Yp Zp]
T = Ir+R prPOp (4.1)

where prPOp = [xpo ypo zpo]
T is the position of the i-th fairlead relative to the origin of Fp

which is a fixed dimension in the platform frame, as shown in Figure 4.1 (b). The inertial

coordinate system X̄ Ȳ Z̄ is defined for a mooring line and parallel to the inertial frameXY Z,
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Figure 4.1: Single-segment Mooring system configuration and geometry

with origin at the corresponding anchor point. The position of the i-th anchor point in the

inertial frame is IUA = [XA YA ZA]
T . The i-th cable horizontal and vertical projections (l

and h, respectively) are scalar quantities, can be expressed as

l =

√(
Xp −XA

)2
+
(
Yp − YA

)2
, h =

(
Zp − ZA

)
(4.2)

The angle β is the angle between the X-axis and l, calculated as

β = atan2
(
Yp − YA , Xp −XA

)
(4.3)

where atan2 is the four-quadrant inverse tangent function. The tension exerted by a mooring

line on the platform, as illustrated in Figure 4.1 (b), is

IT = [TX TY TZ ]
T = −[H cos β H sin β V ]T (4.4)

The total mooring force is the sum of the mooring forces exerted by all mooring lines, can

be written as

pFmor =
3∑

i=1

pT(i) (4.5)

The total moment exerted by the tensions of the mooring lines on the platform about the
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origin of the body frame,

pMmor =
3∑

i=1

pr
(i)
POp × pT(i) (4.6)

where the superscript (i) in Equations (4.5) and (4.6) denotes the respective quantities of

the i-th mooring line.

Calculating the cable tension components (H and V ) depends on the cable profile shape

whether suspended or partially resting on the seabed. When part of the mooring line rests on

the seabed, the corresponding anchor point experiences only horizontal tension, as shown in

Figure 4.2 (a). The cable horizontal and vertical tension components (H and V ) acting at the

top attachment point, in the plane of the cable profile, can be determined using a catenary

equation. This equation can be solved numerically for given unstretched cable length (Lo),

cable equivalent weight (in fluid) per unit length (w), extensional stiffness (EA) and cable

horizontal and vertical projections (l and h), as [17]

l = Lo −
V

w
+

LoH

EA
+

H

w
sinh−1

(
V

H

)

h =
1

w

(√
H2 + V 2 −H +

V 2

2EA

) (4.7)

When the line is suspended, as shown in Figure 4.2 (b), V computed from Equation (4.7)

exceeds the line weight (V > wLo), the line profile is then no longer tangent to the seabed

and thus the result is no longer valid. Therefore, the line tension should instead be computed

using the conventional form of the suspended catenary equation [32]

l = (HL0/EA) + (HL0/W )
[
sinh−1 (V/H)− sinh−1 ((V −W )/H)

]
h = (WL0/EA) [(V/W )− 0.5] + (HL0/W )

[√
1 + (V/H)2 −

√
1 + ((V −W )/H)2

] (4.8)

where W = wLo is the line weight. During the dynamic simulation, the nonlinear algebraic

equation of the catenary (Equation (4.7) or (4.8)), according to the line profile shape is solved

to compute H and V using a Newton–Raphson technique at each time step.
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Figure 4.2: (a) Slack mooring line resting on the seabed; and (b) suspended line

4.1.2 Multi-segment (bridle) configuration

This catenary mooring system is comprised of 3 identical mooring lines that each includes

a bridle component, as shown in Figure 4.3. Segments 1 and 2 form the bridle and are attached

to the platform circumference (radius Rf ), at nodes 1 and 2. The upper end of Segment 3 is

connected to the bridle at node 3, and the other end is anchored to the seabed. The clump

weight (WCL) is a heavy cylindrical mass suspended on segment 3 at unstretched length

s1 measured from the bridle connection (node 3). The anchors are uniformly distributed

in a circle with radius Rc and 2π/3 rad apart. The segments are identical in material

properties and diameter. The unstretched length of each bridle line and segment 3 are L0Δ

and L03, respectively. The mooring system properties of the two configurations are listed in

Appendix A.4. The fixed position of the anchor point (A) relative to the origin of the inertial

frame is UA. The corresponding positions of nodes 1 and 2 can be expressed as

Ir1 =
Ir+R pU1 , Ir2 =

Ir+R pU2 (4.9)

where pU1 and pU2 are the fixed position of nodes 1 and 2 relative to origin of the platform

frame, respectively.

The tensions of the cables comprising the mooring system can be determined using a

catenary equation of a suspended cable with point vertical load (Pc) acting at unstretched
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Figure 4.3: Mooring system configuration and geometry

length s1 measured from the upper end (Figure 4.4), presented by Irvine [32]

lc =
HL0

EA
+

H

w

⎡
⎣ sinh−1

(
V
H

)
− sinh−1

(
V−Pc−wL0

H

)
+sinh−1

(
V−Pc−ws1

H

)
− sinh−1

(
V−ws1

H

)
⎤
⎦

hc =
1

EA

(
V L0 −

wL0
2

2

)
+

H

w

⎡
⎣
√

1 +
(
V
H

)2 −√1 +
(
V−Pc−wL0

H

)2
+
√
1 +

(
V−Pc−ws1

H

)2
−
√

1 +
(
V−w s1

H

)2
+ Pc w

H EA
(s1 − L0)

⎤
⎦

(4.10)
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Figure 4.4: Suspended catenary cable with a point load

As discussed earlier, one or more lines could partially rest on the seabed due to platform
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displacement. Once the cable rests on the seabed i.e. if V ≤ Pc + wL0, the form of Equa-

tion (4.10) is no longer valid for computing the cable tension. Therefore, this form should be

altered to account for the decrease in the weight of the suspended portion of the cable.

Consider the cable shown in Figure 4.5, the unstretched length of its suspended portion

(P ′P ) is Ls0 and that of the portion resting on the seabed is Lsb0. The unstretched length

of the whole cable profile is L0 = Lsb0 + Ls0. The cable profile horizontal projection can be

expressed as

lc = le + ls (4.11)

where le is the stretched length of the resting portion, can be simply expressed as

le = Lsb0

(
1 +

H

EA

)
(4.12)

Since the point P ′ is tangent to the seabed, the cable static equilibrium yields

Lsb0 = L0 −
V − Pc

w
(4.13)

One can now apply the catenary equation (Equation (4.10)) for the suspended portion (P ′P )

by substituting L0 = Ls0, and lc = ls and substitute the resulting from together with Equa-

tions (4.12) and (4.13) back into Equation (4.11), which can be finally expressed as

lc =L0 +
HL0

EA
− (V − Pc)

w
+

H

w

⎡
⎣ sinh−1

(
V
H

)
+ sinh−1

(
V−Pc−ws1

H

)
−sinh−1

(
V−ws1

H

)
⎤
⎦

hc =
V 2 − Pc

2

2EAw
+

H

w

⎡
⎣ −1 +

√
1 +

(
V
H

)2
+
√
1 +

(
V−Pc−ws1

H

)2
−
√

1 +
(
V−w s1

H

)2
+ Pc

H EA
(ws1 − V + Pc)

⎤
⎦

(4.14)

This new form represents the catenary equation for a cable partially resting on the seabed

with a point vertical load (Figure 4.5).

The two-dimensional form of a suspended catenary (Equation (4.10)) can be slightly

modified to the three-dimensional domain (Figure 4.6) to analyze the 3D static equilibrium
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of the mooring, as

lX =
HXL0

EA
+

HX

w

⎡
⎣ sinh−1

(
V
H

)
− sinh−1

(
V−Pc−wL0

H

)
+sinh−1

(
V−Pc−ws1

H

)
− sinh−1

(
V−ws1

H

)
⎤
⎦

lY =
HYL0

EA
+

HY

w

⎡
⎣ sinh−1

(
V
H

)
− sinh−1

(
V−Pc−wL0

H

)
+sinh−1

(
V−Pc−ws1

H

)
− sinh−1

(
V−ws1

H

)
⎤
⎦

lZ =
1

EA

(
V L0 −

wL0
2

2

)
+

H

w

⎡
⎣
√

1 +
(
V
H

)2 −√1 +
(
V−Pc−wL0

H

)2
+
√

1 +
(
V−Pc−ws1

H

)2
−
√

1 +
(
V−w s1

H

)2
+ Pc w

H EA
(s1 − L0)

⎤
⎦

(4.15)

Similarly, the catenary equation of a cable partially resting on the seabed (Equation (4.14))

can be extended to 3D as

lX =L0
HX

H
+

HXL0

EA
− (V − Pc)HX

wH

+
HX

w

[
sinh−1

(
V

H

)
+ sinh−1

(
V − Pc − ws1

H

)
− sinh−1

(
V − ws1

H

)]

lY =L0
HY

H
+

HL0

EA
− (V − Pc)HY

wH

+
HY

w

[
sinh−1

(
V

H

)
+ sinh−1

(
V − Pc − ws1

H

)
− sinh−1

(
V − ws1

H

)]

lZ =
V 2 − Pc

2

2EAw
+

H

w

⎡
⎣ −1 +

√
1 +

(
V
H

)2
+
√
1 +

(
V−Pc−ws1

H

)2
−
√

1 +
(
V−w s1

H

)2
+ Pc

H EA
(ws1 − V + Pc)

⎤
⎦

(4.16)

where H =
√
HX

2 +HY
2, and (lX , lY , lZ) are the coordinates (in the inertial frame) of the
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Figure 4.6: Catenary cable in 3D.

The obtained Equations (4.15) and (4.16) now can be used to analyze the general 3D

static problem of the bridle mooring arrangement (Figure 4.3) in which segment 3 can be

either suspended or partially resting on the seabed. The tension components at nodes 1, 2

and 3 can be determined by solving the 3D static equilibrium of the bridle which implies that

the sum of the tension forces at node 3 is zero. It is assumed that the absolute coordinates

of the nodes 1 and 2 (Ir1 and
Ir2) are known from the system kinematics. The procedure for

computing the mooring loads of the bridle mooring line is illustrated as follows:

1. Since the coordinates of A and nodes 1 and 2 are known, the following kinematics con-

straints will hold [
lX1 + lX3 lY1 + lY3 lZ1 + lZ3

]T
= Ir1 − IUA[

lX2 + lX3 lY2 + lY3 lZ2 + lZ3

]T
= Ir2 − IUA

(4.17)

which represents a system of 6 algebraic equations in 12 unknowns ( lXj
, lYj

, and lZj
) for

j=1, 2 and 3, where lXj
, lYj

, lZj
, are the projections of the j-th segment on the X, Y , and

Z axes , respectively.

2. Write the catenary equation of a suspended line (Equation (4.15)) for segments 1 and 2,

substituting Pc = 0, L0 = L0Δ, lX = lXj
, lY = lYj

, lZ = lZj
, HX = HXj

, HY = HYj
, and

V = Vj for j = 1 and 2, and substitute the resulting equations into Equation (4.17).
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3. Write the catenary equation of a suspended line (Equation (4.15)) for segment 3, substi-

tuting Pc = WCL, L0 = L03, lX = lX3 , lY = lY3 , lZ = lZ3 , HX = HX3 , HY = HY3 , and

V = V3 and substitute the resulting equations into Equation (4.17). Now Equation (4.17)

represents a system of 6 equations in 9 unknowns (HXj
, HYj

, and Vj, for j=1, 2, and 3).

4. Solving for the equilibrium of node 3 yields

HX3 = HX1 +HX2 , HY3 = HY1 +HY2 , V3 = V1 + V2 − 2wL0Δ (4.18)

substituting these relations into the updated form of Equation (4.17) (step 3) makes

the number of unknowns equal to its number of equations (6) which can be then solved

numerically using a Newton-Raphson method to determine the tension components of

nodes 1 and 2 (HXj
, HYj

, and Vj, for j=1 and 2) .

5. Substitute the solution into Equation (4.18) to determine V3 and check if V3 > WCL+wL03.

This condition ensures that segment 3 is suspended as presumed in Step 3. However, if

this condition is violated i.e. if V3 < WCL+wL03, this implies that segment 3 is resting on

the seabed and thus the obtained solution is not valid. Therefore, Equation (4.15) should

be replaced by Equation (4.16) in Step 3. The system of equations should be re-solved to

determine the nodes tensions.

The previous steps are repeated for each mooring line to calculate their tensions. The tension

exerted by the i-th mooring line on the platform can be expressed in the platform frame, as

pF(i)
mor = −RT

(
[ H

(i)
X1

H
(i)
Y1

V
(i)
1

]
T

+ [ H
(i)
X2

H
(i)
Y2

V
(i)
2

]
T
)

(4.19)

The moment exerted by i-th mooring line on the platform about the origin of the body frame,

can be expressed in the platform frame as

pM(i)
mor =

pU
(i)
1 ×

(
−RT [ H

(i)
X1

H
(i)
Y1

V
(i)
1

]
T
)
+pU

(i)
2 ×

(
−RT [ H

(i)
X2

H
(i)
Y2

V
(i)
2

]
T
)

(4.20)

The total mooring force can computed as

pFmor =
i=3∑
i=1

pF(i)
mor (4.21)
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In the same manner, the total moment is

pMmor =
3∑

i=1

pM(i)
mor (4.22)

4.2 Stiffness Analysis

Despite the analytical efforts to derive the mooring stiffness matrix for several types of

floating structures undertaken in these studies [33–40], each is restricted to either slack

or taut cables and may yield a considerable error for large displacements of the platform.

Therefore, the mooring stiffness matrix is usually determined numerically using finite differ-

ence techniques. There is no exact analytical approach to derive the stiffness matrix at an

arbitrary position and orientation of the floating structure. Here, we present a new compre-

hensive analysis to obtain the exact 6× 6 stiffness matrix for slack and taut mooring system

will be presented next.

4.2.1 Two-dimensional stiffness matrix of a single mooring line

We start our analysis by considering the stiffness characteristics of a single mooring line,

which will later be used as a component in the stiffness of a mooring system. Consider a

single mooring line suspended at P , already shown in Figure 4.2 (b). The stiffness matrix of

the cable in the plane of the cable profile is expressed as [111,112]

Kp =

⎡
⎣ Kp

11 Kp
12

Kp
21 Kp

22

⎤
⎦ =

⎡
⎣ ∂H

∂l
∂H
∂h

∂V
∂l

∂V
∂h

⎤
⎦ (4.23)

The procedure for calculating H, V and Kp varies according to the mooring line tension

and profile shape. Three distinct cases can be considered: (a) suspended line, as shown in

Figure 4.2 (b); (b) a slack line partially resting on the seabed, as shown in Figure 4.2 (a);

and (c) taut line, as shown in Figure 4.7. It is worth noting that case (c) is a special case of

case (a). The analysis assumes the line material and cross section are uniform and the line

structural elongation is governed by Hooke’s law. We now consider methods to determine

Kp for each of these three cases in succession.
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4.2.1.1 Suspended line (case a)

The line attains a non-zero angle with the seabed when the tension is sufficient to lift

it up i.e. V > W . The catenary equation governs this case was previously presented in

Equation (4.8). It is clear from Equation (4.8) that l and h are both functions of the

horizontal and vertical tension components H and V , i.e. l = l(H, V ), and h = h(H, V ).

Their differential changes can be expressed in matrix form as [112]⎧⎨
⎩ dl

dh

⎫⎬
⎭ =

⎡
⎣ ∂l

∂H
∂l
∂V

∂h
∂H

∂h
∂V

⎤
⎦
⎧⎨
⎩ dH

dV

⎫⎬
⎭ = [Flex]

⎧⎨
⎩ dH

dV

⎫⎬
⎭ (4.24)

where Flex is the flexibility matrix that represents the partial derivatives of the cable profile

projections l and h with respect to horizontal and vertical tensions, H and V , respectively.

It was demonstrated by [111] that Flex is symmetric such that ∂l
∂V

= ∂h
∂H

. The elements of

Flex can be expressed as [19, 111]

∂l

∂H
=

L0

EA
+

L0

W

[
sinh−1

(
V

H

)
− sinh−1

(
V −W

H

)]

+
L0

W

⎡
⎣− V√

H2 + V 2
+

V −W√
H2 + (V −W )2

⎤
⎦

∂l

∂V
=

∂h

∂H
=

L0

W

⎡
⎣ H√

H2 + V 2
− H√

H2 + (V −W )2

⎤
⎦

∂h

∂V
=

L0

EA
+

L0

W

⎡
⎣ V√

H2 + V 2
− V −W√

H2 + (V −W )2

⎤
⎦

(4.25)
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Differential changes in H and V can be expressed as [dH dV ]T = [Kp] [dl dh]T . Thus, Kp

can be expressed as [112]

Kp = F−1
lex (4.26)

Kp is also symmetric because Flex is symmetric.

4.2.1.2 Line resting on seabed (case b)

A zero angle with seabed (assuming flat seabed) occurs in slack mooring systems i.e.

when V < W . The catenary equation governs the cable statics is already expressed in

Equation (4.7). Accordingly, the elements of the flexibility matrix (Flex) can be determined

by differentiating Equation (4.7) as

∂l

∂H
=

L0

EA
+

1

w

[
−V√

H2 + V 2
+ sinh−1

(
V

H

)]
∂l

∂V
=

∂h

∂H
=

1

w

[
H√

H2 + V 2
− 1

]
,

∂h

∂V
=

V

w

[
1√

H2 + V 2
+

1

EA

] (4.27)

Similarly, Kp can be determined using Equation (4.26). It is worth noting that in the

case of an inextensible cable, such as slack heavy chains, one can substitute EA = ∞ in

Equations (4.7) and (4.27) and accordingly all the corresponding terms can be dropped.

4.2.1.3 Taut line (case c)

Although the catenary equation yields an exact solution for the cable statics problems,

it must be solved numerically which requires some computational effort. When the line is

taut and no sag exists i.e. H/V ≈ l/h, it can be modeled accurately as a massless linear

spring to simplify the computations. The stiffness of the tether along its chord (L) can be

assumed equal to KI = EA/Lo, as shown in Figure 4.7. The results of the exact analysis

in Section 4.2.1.1 were verified to approach those of the massless linear spring assumption

as the platform excess buoyancy force is increased; or as the mooring line weight is reduced.

The massless spring assumption dramatically simplifies the analysis and obviates the need

to use the catenary equation. This simplified analytical approach can provide an accurate

approximation of the stiffness for taut mooring system such as on TLPs.
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Consider the cable shown in Figure 4.7 of unstretched length Lo, stretched length (chord

length), L =
√
l2 + h2. Its configuration is defined by angles β and α. When the cable is

stretched by ΔL, the associated variation of tension is ΔT = KIΔL. The cable tension is

T = KI (L− Lo). The expressions for H, V, l, and h can be then written as

H = T cosα , V = T sinα , l = L cosα , h = L sinα (4.28)

In contrast to the previous two cases, the elements of Kp can be directly derived as

∂H

∂l
=

∂ (T cosα)

∂l
= cosα

∂T

∂L

∂L

∂l
+ T

(
− sinα

∂α

∂l

)
∂H

∂h
=

∂ (T cosα)

∂h
= cosα

∂T

∂L

∂L

∂h
+ T

(
− sinα

∂α

∂h

)
∂V

∂l
=

∂ (T sinα)

∂l
= sinα

∂T

∂L

∂L

∂l
+ T cosα

∂α

∂l
∂V

∂h
=

∂ (T sinα)

∂h
= sinα

∂T

∂L

∂L

∂h
+ T cosα

∂α

∂h

(4.29)

It is obvious that, when the cable is taut, T = f(L) such that ∂T/∂L = dT/dL = KI .

From kinematics we can evaluate the partial derivatives of L, with respect to l, and h as

∂L

∂l
= cosα ,

∂L

∂h
= sinα ,

∂α

∂l
=

− sinα

L
,

∂α

∂h
=

cosα

L
(4.30)

Substituting Equation (4.30) into Equation (4.29), we obtain the final form of the elements

of the cable plane stiffness matrix Kp

∂H

∂l
= cos2αKI +

T

L
sin2α ,

∂V

∂h
= sin2αKI +

T

L
cos2α ,

∂H

∂h
=

∂V

∂l
= cosα sinα

(
KI −

T

L

)
(4.31)

4.2.2 Derivation of the 6× 6 stiffness matrix of the mooring line

The previous analysis (Section 4.2.1) can only be used to determine the 2D mooring

line stiffness matrix in the cable profile plane. However, when a mooring line is attached

to a floating platform undergoing general displacement, the platform kinematics should be

considered to derive the 6× 6 stiffness matrix of the mooring line.

The derivation of the mooring stiffness matrix which will be detailed in the next section
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requires evaluation of the differential changes of l, h (in Equation (4.2)), and β due to changes

in the translational and rotational displacements of the platform. These can be represented

for l as

∂l

∂rX
= cos β,

∂l

∂rY
= sin β,

∂l

∂rZ
= 0,

∂l

∂ζ
= cos β

∂Xp

∂ζ
+ sin β

∂Yp

∂ζ
, ζ = φ, θ, ψ

(4.32)

and for β as

∂β

∂rX
=

− sin β

l
,

∂β

∂rY
=

cos β

l
,

∂β

∂rZ
= 0,

∂β

∂ζ
=

1

l

[
cos β

∂Yp

∂ζ
− sin β

∂Xp

∂ζ

] (4.33)

In the above equations we must evaluate the change of position of the upper attachment

point, with respect to changes of orientation of the platform, formulated as

∂rm
∂ζ

=
∂R

∂ζ
rpo (4.34)

The closed form expressions of Equation (4.34) can be found in Appendix D (Equation (D.7)).

Since IUA is constant, the differential change in the attachment point vertical displacement

Zp is equal to that of h such that ∂Zp = ∂h

∂h

∂rX
=

∂Zp

∂rX
= 0,

∂h

∂rY
=

∂Zp

∂rY
= 0,

∂h

∂rZ
=

∂Zp

∂rZ
= 1 ,

∂h

∂ζ
=

∂Zp

∂ζ
(4.35)

4.2.3 Mooring stiffness formulation of a single line

As mentioned earlier, the stiffness matrix of a mooring line represents the change of

the mooring line forces and moment exerted on the platform with respect to the platform

displacements. The moment exerted by the line tension force on the platform about the
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origin of the body frame, as illustrated in Figure 4.1 (b), expressed in the inertial frame as

IMmor =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

MX

MY

MZ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xp − rX

Yp − rY

Zp − rZ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TX

TY

TZ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Yp − rY )TZ − (Zp − rZ)TY

(Zp − rZ)TX − (Xp − rX)TZ

(Xp − rX)TY − (Yp − rY )TX

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.36)

We can define the generalized displacement (translation and orientation) of the platform by

X (as in Equation (3.33)), and the corresponding generalized force (tension/moment) for a

mooring line by Fm as

Fm =
[
TX TY TZ MX MY MZ

]T
(4.37)

The mooring stiffness matrix for a mooring line can be derived as

Km = −∂Fm/∂X = [Kij] = −[∂(Fm)i/∂Xj] (4.38)

Where i and j are indices of the components of Fm and X, respectively. The general exact

6 × 6 stiffness matrix for a single mooring line at an arbitrary position and orientation of

the platform derived using Equation (4.38) is detailed in Appendix D. The mooring stiffness

coefficients can be evaluated by choosing the elements ofKp according to the cable profile case

considered (Section 4.2.1). As well, the partial derivatives of l, h, ,Xp, Yp, and Zp with respect

to the platform displacements can be determined using Equations (4.32) to (4.35). It is well

known that the mooring stiffness matrix is not symmetric i.e. Kij �= Kji. However, partial

symmetry exists in the surge, sway, heave and yaw modes i.e. Kij = Kji for i, j = 1, 2, 3, 6,

resulting in 6 symmetric pairs of stiffness matrix coefficients.

The above generic analysis can be now applied to determine the exact (6 × 6) mooring

stiffness matrix of a single taut mooring line at an arbitrary position and orientation of the

platform, while assuming the lines remain taut as in the TLP, shown in Figure 4.8. The

mooring stiffness coefficients can be determined directly by substituting the Kp elements

(given by Equation (4.31)) together with expressions in Equation (4.28) into the general

mooring stiffness matrix coefficients listed in Appendix D. It is worth noting that when
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α = 90o, β is undefined. However, if we retain β in its symbolic form, all terms containing β

will cancel out and hence all the corresponding terms will be free of β. Therefore, β can be

arbitrarily chosen as zero in the calculations at α = 90o for a taut line.
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Figure 4.8: Rectangular TLP undergoes large displacement

The mooring system stiffness at equilibrium for the rectangular TLP (Figure 4.8 ) can

be obtained by substituting X = 0 and the attachment point coordinates in the body frame,

rpo = [a 0 -D], [0 b -D], [-a 0 -D], and [0 -b -D] for the lines 1, 2, 3, 4, respectively into

the Equations of Appendix D. The angles α = 90o, and β = 0 for all the lines. The resulting

mooring system stiffness matrix form of this TLP will be presented in Section 4.2.4.3.

4.2.4 Mooring system stiffness

The stiffness matrix of a mooring system composed of multiple lines is evaluated by

summing the stiffness matrices of the individual lines. If K
(i)
m denotes the stiffness matrix of

the i-th mooring line, the stiffness matrix of a mooring system comprised of n lines can be
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evaluated as

Km =
n∑

i=1

K(i)
m (4.39)

The general analysis developed here can be used to determine a closed form of the mooring

system stiffness matrix for the following types of mooring systems at equilibrium.

• Slack catenary mooring system: the line is hanging freely and the whole cable profile is

suspended (Figure 4.2 (b)) or part of its length rests on the seabed (Figure 4.2 (a)).

• Taut-leg mooring system: where the line does not contact the seabed and are taut due to

the pretension caused by the platform excess buoyancy. The lines are inclined (with angle

α) and the anchor experience horizontal and vertical loads. Most the restoring loads are

generated by line elasticity. The mooring radius (Rc) of the taut-leg mooring system is

smaller than that of the catenary mooring system if designed to support the same platform

size and weight.

• Tension leg mooring system: the lines are vertical (α = 90o) and the anchor experiences

mainly a vertical load. This type can be considered as a special case of the taut-leg

mooring.

The mooring stiffness matrix at equilibrium is mainly required in the preliminary design and

dynamic analyses of the floating structures. The detailed formulation of the mooring system

matrix for these mooring system types are presented in the following subsections.

4.2.4.1 Catenary mooring system stiffness matrix

A catenary mooring system is comprised of n lines (n ≥ 3) in its equilibrium configura-

tion similar to that shown in Figure 4.1 (a). It is assumed that the anchors are uniformly

distributed in a circle with radius Rc and 2π/n radians apart. The tethers are identical

in length and material properties. The projected horizontal and vertical lengths, l and h,

respectively are also identical for all tethers.

The stiffness matrix of the individual lines based on the line order in Figure 4.1 (a), can

be determined by substituting X = 0, and βi = π+2π(i− 1)/n for line i = 1, 2, 3, ...., n into
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the stiffness coefficient expressions in Appendix D. In the same manner, substitute the i-th

fairlead body frame coordinates, x
(i)
po = Rf cos(βi − π), y

(i)
po = Rf sin(βi − π), and z

(i)
po = −D

for all tethers. The mooring stiffness matrix of the entire mooring system at equilibrium is

symmetric, can be then expressed as

Km =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 0 0 0 K15 0

0 K22 0 K24 0 0

0 0 K33 0 0 0

0 K42 0 K44 0 0

K51 0 0 0 K55 0

0 0 0 0 0 K66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.40)

where

K11 =
1

2
n

(
Kp

11 +
H

l

)
, K15 = −n

(
−Rf

2
Kp

12 +
D

2
Kp

11 +
DH

l

)
K22 = K11 , K24 = −K15 , K33 = nKp

22 , K42 = K24

K44 = n

(
−DRf K

p
12 +

D2

2
Kp

11 +
R2

f

2
Kp

22 +DV +
H Rf

2
+

D2H

2l

)
, K51 = K15

K55 = K44 , K66 = n

(
H R2

f

l
+H Rf

)
(4.41)

Here, H, V , l, h, and the elements of Kp are identical for all the lines due to symmetry.

4.2.4.2 Taut-leg mooring system stiffness matrix

If the lines are taut, the stiffness matrix of a symmetric taut-leg mooring system (Fig-

ure 4.1 (a) but with taut lines) can be obtained by substituting the elements of Kp from

Equation (4.31) into Equation (4.41). As well, the expressions of H, V, l, and h can be taken
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from Equation (4.28) and substituted into Equation (4.41) to get

K11 =0.5n

(
T

L

(
1 + sin2α

)
+KIcos

2α

)

K15 =− n

[
T

2L

(
D +Dsin2α +Rf sinα cosα

)
+

KI

2

(
Dcos2α−Rf sinα cosα

)]

K22 =K11 , K24 = −K15 , K33 = n

(
T

L
cos2α +KIsin

2α

)
, K42 = K24

K44 =n

[
T

(
D sinα +

1

2
Rf cosα

)
+ 0.5

T

L

(
(Rf cosα +D sinα)2 +D2

)]
+ 0.5nKI(D cosα−Rf sinα)

2

K51 =K15 , K55 = K44 , K66 = n
TRf

L
(Rf + L cosα)

(4.42)

4.2.4.3 Tension leg system stiffness matrix

If the lines are taut and vertical, the mooring configuration becomes a tension leg struc-

ture. Substituting α = 90o into Equation (4.42), the stiffness matrix for triangular (Equilat-

eral), square, pentagonal, hexagonal, ...., etc, TLPs can be expressed as

Km =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nT
L

0 0 0 −nT D
L

0

0 nT
L

0 nT D
L

0 0

0 0 nKI 0 0 0

0 nT D
L

0 K44
m 0 0

−n T D
L

0 0 0 K55
m 0

0 0 0 0 0 K66
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.43)

where K44
m = K55

m = n
(

T D2

L
+ 0.5KI R

2
f + T D

)
, K66

m = n
T R2

f

L
and n represents the number

of legs. For a rectangular TLP with dimension 2a× 2b, as shown in Figure 4.8, the mooring

stiffness matrix form is similar to that of Equation (4.43) (with n = 4), but with different
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expression for

K44
m =4

(
T D2

L
+ 0.5KI b

2 + T D

)

K55
m =4

(
T D2

L
+ 0.5KI a

2 + T D

)
K66

m =
2T

L

(
a2 + b2

)
(4.44)

The results in Equation (4.44) can also be found in [37,40]. However, to our best knowl-

edge, the term 4TD2/L in K44 and K55 is missing in other works. If the platform undergoes

general displacement where X �= 0, the stiffness matrix of each line should be determined

based on its geometry and the platform displacements.

4.2.5 Influence of the mooring system design parameters

The mooring system configuration and geometry affect the mooring stiffness in a complex

manner. For example, the TLP mooring system stiffness matrix given by Equation (4.43)

shows that the roll, pitch and yaw stiffnesses increase as the anchor (or fairlead) radius (Rf )

increases (Rf does not affect L or KI), while the surge, sway and heave stiffnesses do not

change. However, for a taut-leg mooring system where the taut lines are inclined, the change

in the anchor radius implies a change in the line length which alters KI . The effect of this

concurrent change on the mooring stiffness of the system is now investigated.

The influence of mooring system design parameter is investigated for the taut leg floating

wind turbine platform concept proposed by Sclavounos et al. [73] and Lee [113]. The mooring

system forms 2 concentric quadrapods sharing the same anchors while the attachment points

(fairleads) of each are located at different depths, as shown in Figure 4.9. The anchors are

uniformly distributed in a circle with a radius Rc and 90o apart. The cable diameter d = 15

mm, linear stiffness EA = 1.50 × 109 N, and equivalent weight in water per unit length

w = 722.31 N/m. The fairlead depths dU and dL are 0 and 20 m, respectively, and their

radius, Rf = 6 m as proposed in [113]. The mooring system stiffness is computed using the

exact analysis discussed in Section 4.2.4.1 where the cable weight is considered.
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Figure 4.9: Taut leg floating wind turbine concept (4-anchor)

4.2.5.1 Influence of the anchor radius

The diagonal stiffness coefficients of the mooring system in all DOFs are computed for a

range of Rc while water depth (dw = 100 m as used in [113] is kept constant). The analysis

is conducted at two different excess buoyancy forces Fe1 = 3.2 × 106 N (as calculated from

[113]) and Fe2 = 4.0× 106 N, where the excess buoyancy is the difference between the total

weight of the platform and mooring system and buoyancy force.

Since this is a statically indeterminate system, the unstretched lengths of the upper and

lower lines can be adjusted to support the same fairlead vertical tension such that each line

supports one eighth of the excess buoyancy load (V = Fe/8).

Figure 4.10 (a)-(d) illustrate the effect of anchor radius, Rc on the diagonal coefficients

of the mooring system stiffness matrix. The results show that the horizontal stiffnesses (K11

and K22) initially increase with increasing anchor radius, reaching a peak, and then decrease.

This occurs because when the anchors are moved outward, the tethers also lengthen and hence

soften and this then eventually ends up overriding the benefits of orientation. It is interesting

to note that the location of the maximum stiffness change significantly with the cable sag.

When the line is more saggy i.e. at lower Fe, the peak occurs at lower anchor radius. The

heave stiffness K33 decreases monotonically as Rc increases because the line becomes longer

and hence softer (KI decreases), and also becomes more inclined. Figure 4.10 (e) and (f)

shows the tensions acting at the fairleads of the upper and lower lines. These plots simply
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Figure 4.10: Influence of anchor radius on the system stiffness and tension

show that tension gets larger as the anchor radius increases. This leads to higher yaw stiffness

(K66) since it is proportional to the line tension. The roll/pitch mooring stiffnesses (K44 and

K55) decrease as Rc increase up to Rc = 40 m then increases. This is because K44 and K55

are proportional to TD2 and KI , as Rc increases KI decreases and T increases. At larger

Rc, T becomes more dominant yielding an increase in K44 and K55. If all the fairleads and

the local coordinate system are located at the same depth i.e. D = 0, the trends of K44 and

K55 will be similar to K33 since they are then only proportional to KI which decreases as Rc

increases.

4.2.5.2 Influence of number of lines

The proposed taut-leg mooring system under consideration has 4 anchors that support

4 pairs of lines (Figure 4.9). However, a system with fewer anchors consisting of 3 pairs of

lines attached to 3 anchors also can be used. Ideally, as the number of tethers increases, the

mooring system stiffness increases assuming all tethers are fully taut (sag free). However,

the mooring lines are inclined and maintaining zero sag would require very large tensions. If

the excess buoyancy is not increased, the addition of lines could increase sag, and possibly

reduce the mooring stiffness.
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The mooring system stiffness of the original 4-anchor mooring system (Figure 4.9) is

compared with a similar 3-anchor system where the 3 anchors holding 6 mooring lines are

distributed evenly on a circle 120o apart, as seen in Figure 4.9 (but with 3 anchors). The cable

properties, system geometry and platform characteristics are not changed. The comparisons

of these 2 designs, assuming the same excess buoyancy force Fe = 3.2×106 N, are detailed in

Figure 4.11 (a)-(d). The results show that the increase in the number of tethers reduces the

system stiffnesses in all directions at large Rc (> 30 m). This occurs because the lines of the

system with fewer anchors are less saggy due to a higher tension per line and hence they are

stiffer, as illustrated in Figure 4.11 (e)-(f). At Rc < 30 m, the horizontal stiffnesses (K11 and

K22) do not change with the change of the number of lines since the mooring configuration

is close to a TLP and these stiffnesses are more influenced by the total line tension (≈ Fe)

which does not change since the excess buoyancy is the same for both systems. At Rc <

30 m, K33, K44 and K55 are higher for the 4-anchor system since the sag is small and the

cable stiffness becomes proportional to KI .
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Figure 4.11: Influence of number of lines on the system stiffness and tension

It is clear that adding tethers will soften the system when the excess buoyancy force

is not sufficient. It is thus recommended to replace the proposed design with a 3-anchor

system to reduce the mooring system construction cost by avoiding the high cost of an extra
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anchor. If it is still required to have the stiffness properties of the 4-anchor system, this can

still be achieved with a 3-anchor system utilizing softer cables which would lead to a further

reduction in the mooring system cost. A possible advantage of the 4-anchor system is its

better survivability in the case of rupture of one or more lines.

4.2.5.3 Influence of the mooring system configuration

The bridle mooring system described in Section 4.1.2 is altered such that Segment 3

is eliminated and the bridle segments are directly attached to the anchor point, as shown

in Figure 4.12. The lines are circumferentially distributed around the cylindrical floating

platform. The adjacent fairleads that hold lines sharing the same anchor create an angle 2γ

with the radial line passing through the floaters cross section center, as shown in Figure 4.12.

The fairleads are located at the same depth i.e. du = dL = df = 10 m. When γ = 0,

the number of fairleads reduces to 3 and each fairlead holds 2 lines as in the conventional

single-segment configuration (Figure 4.1 (a)).

The influence of the angle γ on the mooring system stiffness is investigated at a range

of Rc, as shown in Figure 4.13. The results show that the K11, K22 and K33 stiffnesses are

insensitive to the change in γ, as shown in Figure 4.13 (a) and (b). The roll and pitch

stiffnesses (K44 and K55) increase slightly as γ increases, as illustrated in Figure 4.13 (c).

However, the yaw stiffness (K66) is strongly influenced by γ, and it increases sharply as γ

increases. For example, at Rc=100, γ = 10o and 20o yield almost 2 and 4 + the yaw stiffness

of that at γ = 0o, respectively, as illustrated in Figure 4.13 (d). The benefit from this

configuration is stiffening the yaw mode without affecting the stiffness of other directions.

As a result, such configuration could reduce the yaw response of the platform.
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Figure 4.12: (a) Taut-leg mooring system configurations; and (b) top view
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Figure 4.13: Influence of mooring system geometry on the stiffness
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Chapter 5

LUMPED MASS CABLE MODEL

In the previous chapter, quasi-static cable models were developed to determine the moor-

ing lines tensions using different forms of the catenary equations. These models ignore the

cable inertia forces, external fluid loads such as drag and added mass forces, and cable–

seabed interaction forces. Quasi–static cable models are often used in dynamic simulations

of offshore structures due to the ease of implementation. When the floating structure is de-

ployed in deep water, long mooring lines would lead to large cable mass such that the cable

dynamics could influence the system dynamics. As well, the mooring line tensions computed

using the quasi-static approach are usually less than those calculated considering cable dy-

namics. This necessitates having a realistic mooring system dynamic model to ensure an

accurate system simulation, particularly for mooring system design.

This chapter presents the development of a lumped mass cable model to be incorporated

into the FOWT dynamic model developed earlier in Chapter 2. In general, the model follows

the formulations in [80, 114]. However, theses works dealt with suspended cable i.e. there

is no contact between the cable and seabed. This is not the case in the present work where

the lines can be partially in contact with the seabed. Therefore, the model is augmented

by a cable seabed interaction model, developed to determine the contact forces for the cable

portion in contact with seabed. As well, a new added mass matrix form is developed and

replaces the one of [80, 114].

The lumped mass cable modeling methodology begins by describing the discretized cable

kinematics followed by formulating the internal tension and damping forces along the cable

elements. The external hydrodynamic forces are evaluated using Morison’s equation. The

added mass force term is reformulated in a matrix form. A cable-seabed interaction model

is introduced to compute the reaction, friction and damping forces at cable-seabed interface.
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The lumped mass discretized model is first assembled for a single cable mooring line config-

urations, then the assembly process is extended to the multi-segment bridle configuration to

derive the equations of motion of the mooring lines.

New static solvers are developed to determine the equilibrium profile of the mooring

system configurations under consideration. Finally, the mooring loads exerted on the platform

are formulated to evaluate the mooring force and moment terms in the FOWT equations of

motion developed earlier in Chapter 2.

5.1 Kinematics

The lumped mass approach models the cable as a series of N viscoelastic straight elements

which form N + 1 nodes, the displacement of the i-th node is Iri = [rX,i rY,i rZ,i]
T , as

shown in Figure 5.1. The cable unstretched length is L0 and the corresponding length of

each element is lu = L0/N . The i-th cable element is bounded by the nodes i and i + 1.

The first and last nodes (cable ends) are attached to the platform and the anchor point,

respectively. Their corresponding displacements (in the inertial frame) are r1 and rN+1,

respectively. These displacements are prescribed1 where the anchor point (rN+1) is fixed in

space and r1 can be determined from the platform kinematics as

Ir1 =
Ir+R prpo (5.1)

To specify the kinematics of the cable elements, an element-fixed frame attached to each

element such that the i-th element frame is defined by the e1,i, e2,i and e3,i axes where the

latter axis direction is aligned along the element and directed towards the platform, the other

axes are normal to the element, as shown in Figure 5.1. The orientation of the element frame

is defined using two Euler angles describing the 2-1 rotation sequence since the cable torsion

is neglected [80], i.e. no 3rd rotation angle is required. Therefore, the rotation matrix that

1The anchor point is fixed while the attachment point displacement is function of the platform displacement
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Figure 5.1: Lumped mass cable model

transforms the i-th cable element frame into the inertial frame can be expressed as [80]

Re,i =

⎡
⎢⎢⎢⎣

cθi sθi sφi
sθi cφi

0 cφi
− sφi

−sθ cθi sφi
cθi cφi

⎤
⎥⎥⎥⎦ (5.2)

where φi and θi are the Euler angles characterizing the i-th element rotations, θi, can be

computed as

θi = atan2 ((rX,i − rX,i+1), (rZ,i − rZ,i+1) ) (5.3)

and φi as

φi =

⎧⎨
⎩ atan2 (−(rY,i − rY,i+1), (rX,i − rX,i+1)/sθi ) for cθi < sθi

atan2 (−(rY,i − rY,i+1), (rZ,i − rZ,i+1)/cθi ) for cθi ≥ sθi

(5.4)

where the subscripts X, Y , and Z denote the respective component. Either inequality in

Equation (5.4) is sufficient to compute the angle. However, this form enhances the numerical

stability to insure that the denominator of the second argument of the atan2 function is as
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large as possible to reduce numerical error.

5.2 Internal Forces

The tension arises from the element stretch due to the cable elasticity and internal damp-

ing force, such that

Ti = Ts,i + Td,i (5.5)

The element tension due to stretch can be computed as a function of the cable extensional

stiffness EA using Hooke’s law as

Ts,i = EA (Li − lu,i) /lu,i (5.6)

The stretched length of the i-th element is Li, can be determined from the displacements of

their nodes as

Li = ‖ri − ri+1‖ (5.7)

The damping force can be represented as [114]

Td,i = Ci(ṙi − ṙi+1)e3,i (5.8)

where Ci is the internal damping coefficient and (ṙi − ṙi+1)e3,i indicates the relative velocity

component between the element ends (nodes) along the element direction (e3, i). Since the

cable cannot hold a compressive load, the following constraint is imposed

Ti =
1
2
(Ti + ‖Ti‖) (5.9)

This relation modifies the tension computed from Equation (5.5) to keep the positive values

unchanged and switch the negative values to zero. The tension force acting along the i-th

element, can be expressed in a vector form as

ITi = Re,i[0 0 Ti]
T (5.10)
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5.3 External Forces

The hydrodynamic loads exerted on the cable elements are determined using Morison’s

Equation in a manner similar to the platform (Section 2.3.2). The hydrodynamic force

exerted on the i-th element can be then calculated assuming the velocity and acceleration

of the element and fluid along the element span are uniform and equivalent to that at the

element midpoint.

He,i =
1
2
ρ CDc lu,i dc

∥∥(vrel,i)⊥
∥∥ (vrel,i)⊥ + ρ lu,i Ae(1 + Ca)(v̇f,i)⊥︸ ︷︷ ︸

He∗,i

− ρ lu,i Ae Ca(ae,i)⊥︸ ︷︷ ︸
Ae,i

(5.11)

where Ae,i is the added mass force of the i-th element and He∗,i represent the sum of drag

(1st term) and Froude-Krylov forces terms (2nd term) i.e. the hydrodynamic force excluding

the added mass. The cable diameter is dc, cable cross section area is Ae = πd2c/4 and CDc is

drag coefficient of the cable, and (.)⊥ denotes the component of (.) normal to the element (i.e.

normal to e3,i axis). The velocity and acceleration of the element midpoint can be calculated

assuming the element as a rigid body and neglecting the element elongation rate because it

is very small [115]. Accordingly, the element midpoint velocity and acceleration can be then

expressed as

ve,i =
1
2
(ṙi + ṙi+1) , ae,i =

1
2
(r̈i + r̈i+1) (5.12)

The relative fluid velocity at the midpoint of the i-th element can be expressed as

vrel,i = (vf,i − ve,i) (5.13)

where vf,i and v̇f,i are the fluid velocity and acceleration at the i-th element midpoint,

respectively. Only the normal drag force is considered in Equation (5.11) while the skin

friction drag is neglected.

Since the equation of motions of the cable point masses will be represented in the inertial

frame (F I) as will be discussed later, the external forces exerted on the cable elements should
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be represented in the inertial frame, I(ae,i)⊥, can be computed as

I(ae,i)⊥ = Re,i R110 RT
e,i︸ ︷︷ ︸

B̄i

Iae,i (5.14)

where

R110 =

⎡
⎢⎢⎢⎣
1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎥⎦ (5.15)

R110 pre-multiplies (ae,i) expressed in the element frame to insure that its 3rd component

(in the element frame) reduces to zero. The vectors (vrel,i)⊥ and (v̇f,i)⊥ can be evaluated in

the same manner.

5.4 Cable-Seabed Interaction Forces

A three-dimensional contact model is now developed to evaluate the forces generated at

the cable-seabed interface, as shown in Figure 5.2. This model characterizes the cable-seabed

interactions with the following forces

1i
i

, 1sb iz

seabed

,Vsb iF

Anchor

element i

1i

,Dsb iF

,sb iz ,C iF
, 1Dsb iF

, 1C iF

, 1Vsb iF

, 1Dsb iF , 1C iF

, 1Vsb iF

, 1sb iz

Figure 5.2: Cable-seabed interaction model

(1) Vertical seabed stiffness force

The cable portion rest on the seabed experiences a normal force from the seabed propor-

tional to the node penetration (zsb,i) into the soil, which can be expressed as [116]

FV sb,i = â lu (0.1/dc)
b̂
√

10zsb,i/dc dc (Suo + ρsbzsb,i) (5.16)
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where Suo shear strength of soil at seabed, ρsb is the shear strength gradient. These properties

are dependent on the soil type (clay, sand,...etc.). If we choose clay, Suo=5000 Pa and ρsb=

1500 Pa/m. The constants â and b̂ vary according to line surface (rough or smooth), for a

smooth line/pipe â=6, and b̂=0.25 [116,117].

(2) Vertical seabed damping force

The vertical damping due to seabed contact exists when the cable node penetrates the

seabed and vanishes when the node moves upwards, this force can be formulated as [118]

FDsb,i = −

⎧⎨
⎩ Csbz(ṙi)Z for (ṙi)Z < 0

0 for (ṙi)Z ≥ 0
(5.17)

where the seabed damping coefficient Csbz = 2ζsb
√

mnod,iksb, ζsb is the seabed damping ratio,

mnod,i = m̄c lu,i is the nodal mass in vacuum, m̄c is the mass per unit length of the cable

in vacuum and ksb is the seabed vertical stiffness coefficient, which can be determined from

force-penetration relationship (Equation (5.16)) by calculating the slope at zero penetration.

(3) Friction forces

The friction force developed between the moving cable portion lying on the seabed and

the seabed can be modeled using a Coulomb friction model. This model considers the friction

force along the element (tangential) direction and in the lateral direction. These effects can

be formulated as [118,119]

IFc,i = −Re,i

⎡
⎢⎢⎢⎣
μl FV sb,i sign[(ṙi)e1,i]

μl FV sb,i sign((ṙi)e2,i)

μt FV sb,i sign((ṙi)e3,i)

⎤
⎥⎥⎥⎦ (5.18)

where μt and μl are the tangential and lateral friction coefficients, respectively. Their values

depend on the seabed type (sand, clay,. . . , etc.) and mooring line type (chain or wire

rope) [119]. The latter study recommended using μl =1.5–2 times μt, and μt=0.18 for a wire

cable sliding on a clay surface. The total force exerted on the i-th node due to contact with

the seabed can be then written as

Fsb,i = FV sb,i + FDsb,i + Fc,i (5.19)
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5.5 Model Assembly

The equations of motion represinting the translation of the lumped masses attached to

the cable nodes, can be formulated in the inertial frame as

Me,i
I r̈i =

IFe,i , i = 2, 3, . . . , N (5.20)

where Fe,i is the sum of the applied force at i-th node (lumped mass) and Me,i is the

corresponding mass matrix (3× 3), written as

Me,i = mnod,i I3×3 (5.21)

where I3×3 is the identity matrix. The equations of motion (Equation (5.20)) are formulated

for the interior nodes since the displacements of the boundary nodes (1 and N + 1) are

prescribed.

The lumped mass cable model assumes that external force and the element weight in fluid

acting at each element midpoint are lumped at the element nodes such that each node bears

half of the element load. Thus, each node supports half the external forces of the adjacent

elements. The applied internal and external forces at the i-th node is expressed as

Fe,i = Ti−1 −Ti +
1
2
(We,i +We,i−1) +

1
2
(He∗,i +He∗,i−1) + Fsb,i︸ ︷︷ ︸

Fe∗,i

+ 1
2
(Ai +Ai−1)︸ ︷︷ ︸

Fadd,i

(5.22)

where IWe,i = −[0 0 w lu,i]
T is nodal weight (in fluid), and the added mass term (Fadd,i)

in Equation (5.22) is a function of the accelerations and can be shifted to the left hand side

of Equation (5.20). This term can be obtained as

Fadd,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[B1 +B2 B2] [̈r2 r̈3]
T for i = 2

[Bi−1 Bi−1 +Bi Bi] [̈ri−1 r̈i r̈i+1]
T for 2 < i < N

[BN−1 BN−1 +BN ] [̈rN−1 r̈N ]
T for i = N

(5.23)

where Bi = ρ lu,i Ae Ca B̄i. This form (Equation (5.23)) can be expanded for the whole point
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masses of the cable yielding the cable added mass matrix as

Acable =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 +B2 B2 0 0 0 · · · 0

B2 B2 +B3 B3 0 0 · · · ...

0 B3 B3 +B4 B4 0 · · · ...

0 0 B4 B4 +B5 B5 · · · ...
...

...
...

...
...

...
...

0 0 · · · 0 BN−2 BN−2 +BN−1 BN−1

0 0 · · · 0 0 BN−1 BN−1 +BN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.24)

the equations of motion (Equation (5.20)) of the system of lumped masses of the discretized

cable can be reformulated as

[Acable +Mcable] [̈r2 r̈3 . . . r̈N ]
T = [Fe∗,2 Fe∗,3 . . . Fe∗,N ]T (5.25)

where the discretized cable mass matrix in vacuum Mcable = diag(Me,2 ,Me,3 , . . . . . . Me,N).

Repeating the same procedure, the equations of motion of the whole mooring system com-

prised of all the mooring lines can be obtained.

5.6 Lumped Mass Model of the Bridle Configuration

The bridle mooring system description, properties, and quasi-static modeling were inves-

tigated earlier in Chapter 4. The lumped mass approach already developed for a single cable

can be extended to model the dynamics of this configuration. The mooring line is modeled by

5 segments, as shown in Figure 5.3. Segments 1 and 2 represent the bridle, each of which is

divided into Nbr elements. Segment 3 represents the cable portion from the bridle connection

to the suspension point of the clump mass and segment 4 is the remaining portion to the

anchor point. The number of elements in segments 3 and 4 are Nu and Nl, respectively. The

unstretched lengths of segments 1–4 are L0Δ, L0Δ, L0u and L0l, respectively, can be found

in Table A.4 (n.b. L0u = s1 and L0l = L03 − s1). Segment 5 representing the clump weight

and its suspension cable is comprised of 2 elements: the suspension cable is modeled as a

single element with unstretched length Lscu, and the clump weight is also treated as a single
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element of unstretched length L0CL.
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Figure 5.3: Lumped mass model of a bridle mooring system

The element indexing is ordered according to the order of segments, for example the

index of the first element of segment 4 is 2Nbr + Nu + 1. The node indexing is illustrated

in Figure 5.3. Node 1 represents the attachment point of segment 1 with the platform. The

first node index of segment 2 is Nbr +1, and the nodes following (of segments 2, 3 and 4) are

continuous and indexed sequentially to the anchor point (last node of segment 4). Segment

5 begins with the common node between segments 3 and 4, the following node continues the

indexing of segment 4 such that the last two nodes represent the the clump weight element,
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as shown in Figure 5.3. The total number of elements and nodes are N = 2Nbr +Nu+Nl+2

and N + 1, respectively. It is then obvious that the equations of motion of the mooring line

will be assembled for N − 2 nodes because the number of boundary nodes is 3.

The lumped internal and external forces acting on the line nodes are similar to Equa-

tion (5.22). However, calculating the forces acting on nodes 2Nbr + 1 and 2Nbr + Nu + 1,

representing the bridle connection and common node among segments 3, 4 and 5, respectively,

and as well as the last node are different.

F2Nbr+1 =(TNbr
+T2Nbr

−T2Nbr+1) +
1
2
(WNbr

+W2Nbr
+W2Nbr+1)

+ 1
2
(He∗,Nbr

+He∗,2Nbr
+He∗,2Nbr+1) +

1
2
(ANbr

+A2Nbr
+A2Nbr+1)

F2Nbr+Nu+1 =(T2Nbr+Nu)− (T2Nbr+Nu+1 +TN−1) +
1
2
(W2Nbr+Nu +W2Nbr+Nu+1 +WN−1)

+ 1
2
(He∗,2Nbr+Nu +He∗,2Nbr+Nu+1 +He∗,N−1)

+ 1
2
(A2Nbr+Nu +A2Nbr+Nu+1 +AN−1)

FN+1 =TN + 1
2
WCL + 1

2
He∗,N + 1

2
AN

(5.26)

5.7 Static Solvers

Integrating the equations of motion of the lumped mass cable models requires proper

initial conditions (ICs). An unrealistic choice of the ICs can lead to large startup transients

in the simulation. It is usually considered best to use the cable equilibrium profile as the

IC [120,121].

Many techniques have been developed in the literature to solve this problem. Incremen-

tal methods [122] leads to a large system of nonlinear algebraic equations representing the

equilibrium of the cable nodes, with a system size proportional to the cable discretization

resolution. The dynamic relaxation approach [120, 122] uses the system dynamics to deter-

mine the static equilibrium allowing the system to settle to the equilibrium after the transient

response decays. However, those techniques exhibit many deficiencies particularly in rela-

tion to their convergence capabilities. A review of these methods can be found in [120–122].

More recently, starting from the basic static principle of a two-force member, Masciola et
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al. [121] developed an efficient methodology to solve the problem. Their analysis reduces

the size of system of equations to only 3, irrespective of the cable discretization resolution.

However, this technique was developed for suspended cables. Adding the effect of the cable

seabed reaction forces is challenging and adds more nonlinearity to the problem. A new

approach is developed to solve the equilibrium of a cable while considering the cable-seabed

reactions. This approach is also extended to similar problems of the bridle mooring system

configuration.

5.7.1 Single cable

We will first consider the equilibrium of a suspended cable and then include the effect of

the seabed. Consider the discretized cable depicted in Figure 5.4, the lumped mass weight in

water of the interior nodes are w̆ = wlu while the exterior (boundary) node weight is 0.5w̆.

The external load applied at the i-th node is IEi = [EX,i EY,i EZ,i]
T . The stretched length

of the i-th element is

Li = lu,i

(
1 +

Ti

EA

)
=
√
l2X,i + l2Y,i + l2Z,i (5.27)

where Ti =
√

H2
X,i +H2

Y,i + V 2
i ,

Iri − Iri+1 = [lX,i lY,i lZ,i]
T = Li ûi, [HX,i HY,i Vi]

T =

Ti ûi and ûi can be obtained from Equation (5.2) as

[sθi cφi
− sφi

cθi cφi
]T (5.28)

From the cable geometry shown in Figure 5.4, the cable profile projected lengths, r1−rN+1 =

[lX lY lZ ]
T can be obtained as

lX =
N∑
i=1

lX,i =
N∑
i=1

Li sin θi cosφi =
N∑
i=1

lu,iHX,i

⎡
⎣ 1√

H2
X,i +

iH2
Y,i + Vi

2
+

1

EA

⎤
⎦

lY =
N∑
i=1

lY,i =
N∑
i=1

−Li sinφi =
N∑
i=1

lu,iHY,i

⎡
⎣ 1√

H2
X,i +

iH2
Y,i + Vi

2
+

1

EA

⎤
⎦

lZ =
N∑
i=1

lZ,i =
N∑
i=1

Li cos θi cosφi =
N∑
i=1

lu,iVi

⎡
⎣ 1√

H2
X,i +

iH2
Y,i + Vi

2
+

1

EA

⎤
⎦

(5.29)
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The i-th element tension components can be obtained from the equilibrium of the cable

portion (bounded by nodes 1 and part of the respected element), as shown in Figure 5.4 (a).

HX,i = HX +
i∑

k=1

EX,k , HY,i = HY +
i∑

k=1

EY,k , Vi = V − (i− 0.5)
�
w+

i∑
k=1

EZ,k (5.30)

One can notice that the horizontal tension component of the elements (HX,i and HY,i) are

constant along cable if EX,i = EY,i = 0. It is assumed that r1 and rN+1 are known and then

substituting Equation (5.30) into Equation (5.29) yields a system of 3 nonlinear algebraic

equations with unknownsHX , HY and V . This system can be solved using a Newton-Raphson

method.
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Figure 5.4: Lumped mass cable equilibrium

Once the system solved, substituting the solution back into Equation (5.30) yields the

i-th tension components (Ti). Then, substituting the resulting tensions of each element into

Equation (5.27) yields the stretched length (Li). The Euler angles corresponding to the i-th
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element can be then obtained as

θi = atan2(HX,i, Vi)

φi =

⎧⎨
⎩ atan2(−HY,i, HX,i/ sin(θi)) for cos(θi) < sin (θi)

atan2(−HY,i, Vi/ cos(θi)) for cos(θi) ≥ sin (θi)

(5.31)

Now, the displacement of th i-th node can be determined as [121]

Iri+1 =
Iri − Liûi , i = 2, 3, . . . , N + 1 (5.32)

The solution can be verified by calculating rN+1 and checking whether it matches the already

known value (anchor point position).

The analysis developed above can be directly applied to solve for equilibrium positions

of the cable nodes of a suspended cable by its own weight or if the external loads (Ei) are

well known. However, in many cases the external loads are unknown since they are function

of the node position such as fluid– and soil–structure interaction forces. In this case, the

solution for the cable equilibrium profile can be determined utilizing an iterative approach.

For instance, if we consider the equilibrium of a cable subject to a steady current load, the

equilibrium solution can be found iteratively as follows:

1. Solve for the equilibrium of nodes in the absence of the external loads (i.e. Ei = 0).

2. Use the equilibrium positions of the cable nodes obtained from previous step to evaluate

the drag forces and solve for the cable equilibrium, while including the external loads, to

obtain another solution.

3. Repeat step 2 several times until the difference between the last successive solutions are

within a certain satisfactory tolerance.

This iterative approach was also implemented in [121]. In fact, the iterative approach exhibits

a quick convergence to an accurate solution for steady fluid drag problems. However, it was

found to be numerically unstable for solving the equilibrium of a cable resting on the seabed.

A new solution of this problem is therefore developed based on the analysis formulated

above (Equations (5.29) and (5.30)) to determine the equilibrium profile of the mooring line
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partially lying on the seabed as follows:

1. Substitute EX,i = 0, EY,i = 0, and keep EZ,i as unknown into Equation (5.30) and substi-

tute the resulting forms into Equation (5.29).

2. The seabed normal reaction force EZ,i can be formulated as

EZ,i = Us(zsb,i)FV sb,i (5.33)

where Us is a unit step function to constraint the seabed normal force to zero for nodes

not in contact with the seabed, and zsb,i = (−rZ,i + dw − dI), where rZ,i = rZ,i−1 − lZ,i−1

as shown in Figure 5.4, and FV sb,i can be obtained from Equation (5.16)

3. The previous steps yield a system of N + 3 nonlinear algebraic equations which can be

solved for HX , HY , V and EZ,i using a Newton-Raphson method.

Solving the resulting system of algebraic equations above is quite complicated since the

convergence to the solution is very sensitive to the choice of the initial guess which is at-

tributed to the high seabed stiffness. This difficulty is circumvented by relaxing the soil shear

strength at the seabed (Suo) such that the system of equations is initially solved neglecting

the seabed and the cable is suspended between the line ends. This solution is then used as

an initial guess for the next iteration considering a very soft seabed (e.g. Suo = 10). Suo is

then gradually increased for the next iterations and uses the last solution as an initial guess

for the current iteration until reaching the actual Suo value that yields the required solution.

Figure 5.5 shows the cable equilibrium profile of the first and last iterations obtained using

this approach. The minimum number of iterations required for a stable convergence to the

solution using this approach is approximately Suo/20.
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Figure 5.5: Equilibrium of a lumped mass cable, N = 30 elements, the fairlead and anchor point
coordinates are (5.2,0,20) and (853.87,0,-230), respectively. L0 = 920.2 m, EA = 384243000 N, and
w = 698.094 N/m.

5.7.2 Bridle configuration

In general, the equilibrium positions of the bridle mooring line nodes (Figure 5.3) can

be determined following a similar approach to that already developed for a single cable.

However, the analysis becomes more complicated when dealing with multiple segments and

clump weights. Another complexity also arises from different discretization resolutions of the

segments

Prior to presenting the method of solution for the equilibrium configuration, the weight

of cable nodes in fluid should be defined, which can be obtained based on the discretization

scheme presented in Section 5.6 as

w̆i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
w̆br for i = 1

w̆br for 1 < i ≤ Nbr

1
2
w̆br for i = Nbr + 1

w̆br for Nbr + 1 < i ≤ 2Nbr

w̆br +
1
2
w̆u for i = 2Nbr + 1

w̆u for 2Nbr + 1 < i ≤ 2Nbr +Nu

1
2
(w̆u + w̆l) +WCL for i = 2Nbr +Nu + 1

w̆l for 2Nbr +Nu + 1 < i ≤ 2Nbr +Nu +Nl

(5.34)
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where w̆br = wL0Δ/Nbr, w̆u = wL0u/Nu, w̆l = wL0l/Nl. Solving for the equilibrium of this

mooring line is then accomplished using the following steps

1. Substitute lX = lXa, lY = lY a, lZ = lZa, HX,i = HXa, HY,i = HY a, and Vi = Va −
i∑

k=1

w̆k

into Equation (5.29) (summation limits are 1 and Nbr) for the elements of segment 1.

2. Substitute lX = lXb, lY = lY b, lZ = lZb, HX,i = HXb, HY,i = HY b, and Vi = Vb −
i∑

k=Nbr+1

w̆k

into Equation (5.29) for the elements of segment 2, i.e. for i = Nbr + 1, Nbr + 2, . . . , 2Nbr.

3. For segment 3 and 4, substitute lX = lXc, HX,i = HXa + HXb, HY,i = HY a + HY b into

Equation (5.29) (summation limits are 2Nbr + 1 and 2Nbr + Nu + Nl). These relations

are obtained from the equilibrium condition of the connection node. Likewise, substitute

Vi = Va + Vb −
i∑

k=1

w̆k +
i∑

k=1

EZ,k into Equation (5.29)

4. The seabed normal reaction force EZ,i can be obtained as illustrated in step 2 (Equa-

tion (5.33)) in Section 5.7.1 for i = 1, 2, . . . , 2Nbr +Nu +Nl.

5. Substitute the right hand sides of the resulting equations generated from steps 1, 2, and

3 into the left hand sides of the following equations

lXa + lXc =(Ir1 − IrA)X , lXb + lXc = (IrNbr+1 − IrA)X

lY a + lY c =(Ir1 − IrA)Y , lY b + lY c = (IrNbr+1 − IrA)Y

lZa + lZc =(Ir1 − IrA)Z , lZb + lZc = (IrNbr+1 − IrA)Z

(5.35)

the right hand sides of Equation (5.35) are known from the boundary nodes (1, Nbr + 1

and 2Nbr +Nu +Nl + 1) positions.

6. The last two steps yield a system of 2Nbr+Nu+Nl+6 nonlinear algebraic equations which

can be solved for HXa, HXb, HY a, HY b, Va, Vb, and EZ,i using a Newton-Raphson method.

Having solved the system of equations, we can substitute back into steps 1–3 to find Vi of

each element of the mooring line segments and hence the tension and stretched length of each

element. This allows evaluation of the Euler angles of each element using Equation (5.31) and

eventually the nodes equilibrium positions utilizing Equation (5.32). Due to the discontinuity

between the node Nbr and Nbr + 1, Equation (5.31) should be applied for the continuous
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nodes i.e for i = 1, 2, . . . , Nbr of segment 1, then apply it for the remaining nodes i =

Nbr + 2, . . . , 2Nbr + Nu + Nl + 1. Figure 5.6 illustrates the the equilibrium of the mooring

line using the methodology discussed.

-100
-200

-300

X [m]

-400
-500

-600
-200

-70050

-150

Y [m]

-100

0

Z
[m

]

-800

-50

-50

0

clump

weight

Figure 5.6: Equilibrium of a bridle mooring line, Nbr = 3, Nu = 8, Nl = 20. The fairleads
and anchor point coordinates are (-2.6000,4.5033, 20),(-2.6000,-4.5033, 20), and (-853.87,0, -230),
respectively. L0Δ = 50 m, L03 = 901.9772 m, EA = 384243000 N, and w = 353.2 N/m

5.8 Mooring Loads for the Equations of Motion

The mooring force (Fmor) and moment around the origin of the platform frame (Mmor)

are evaluated for the two the different mooring system configurations based on the lumped

mass cable model. These loads are part of the right hand side of the equations of motion

of the FOWT structure developed earlier in Chapter 2. For the single line mooring system
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configuration, these loads can be formulated as

pFmor = −
3∑

j=1

pT
(j)
1 , pMmor = −

3∑
j=1

pr
(j)
POp × pT

(j)
1 (5.36)

where the T
(j)
1 denotes the tension force of the first element of the j-th mooring line (j=1,2,

and 3), respectively. Similarly, these loads can be formulated for the bridle mooring system

as

pFmor = −
3∑

j=1

(pT
(j)
1 + pT

(j)
Nbr+1)

pMmor = −
3∑

j=1

(pU
(j)
1 × pT

(j)
1 + pU

(j)
2 × pT

(j)
Nbr+1)

(5.37)

One can compare Equation (5.36) with Equations (4.5) and (4.6) in which the mooring

loads were computed using the quasi-static approach. As well, further comparison can be

made between Equation (5.37) and Equations (4.19) and (4.20) for the multi-segmented

configuration.
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Chapter 6

VALIDATION AND CASE STUDIES

The previous chapters presented comprehensive high-fidelity multibody dynamic model-

ing methodologies for the FOWT system structural components. In addition, the external

loads exerted on the system including hydrostatic, hydrodynamic, aerodynamic and mooring

loads were also characterized. The present chapter combines the methodologies of the pre-

vious chapters to build a coupled simulation of the FOWT system under consideration. A

series of simulations using different combinations of the component dynamic models, mooring

configurations and cable models are presented for the following purposes:

1. Validating the developed FOWT dynamic models against the most popular FOWT sim-

ulation tools. The validation is performed by simulating the system response to defined

environmental disturbances referred to as load cases.

2. Understanding the system dynamic behavior using the following case studies:

(a) Investigating the influence of the tower flexibility on the system dynamics by com-

paring the dynamics responses of the FOWT obtained using the rigid and flexible

dynamic models.

(b) Discussing the influence of the mooring system configuration on dynamic response of

the system by comparing responses of the single and bridle mooring system configu-

rations.

(c) Investigating the influence of the rotor gyroscopic effect on the system dynamics.

(d) Exploring the influence of cable dynamics on the rigid and elastic motions of the

structure as well as the mooring lines tensions by comparing the system responses

obtained utilizing the quasi-static and lumped mass cable models.
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6.1 Numerical Implementation

A large high-fidelity simulation code has been developed and implemented, structured

as shown in Figure 6.1, to predict the dynamic performance of the FOWT system. The

code is developed using MATLABR©, and allows easy selection of component models and

environmental conditions.

Besides the rigid and flexible tower models, four cable models are developed: quasi-static

single, quasi-static bridle, lumped mass single, and lumped mass bridle cable models. In terms

of execution time, the fastest simulation is attained by a rigid body tower model coupled to

a quasi–static cable model. By contrast, simulating the system response via flexible dynamic

and lumped mass cable models is computationally the most expensive solution. The bridle

configuration also requires higher computational effort than the single configuration. As well,

computing the wave kinematics and wave loads exerted on the platform and cable (in the

case of the lumped mass model) for regular waves requires considerably less computational

effort compared to the irregular wave case. Consequently, the simulation setup should be

chosen on the basis of the required simulation outcomes and execution time.

The equation of motions of the rigid and flexible multibody dynamic models are obtained

via a MATLAB R© symbolic manipulation code. This code is constructed based on the for-

mulations discussed in Chapter 2. The implementation of the dynamic model follows the

flowchart shown in Figure 6.1. The main code (in grey) allows the selection of the equations

of motion of the rigid or flexible dynamic model. The hydrostatic, hydrodynamic, aero-

dynamic, quasi-static mooring model codes are called by the main code to determine their

respective external forces and moments. The differential equations representing the equations

of motion are subsequently integrated numerically using the ode15s solver which is the most

accurate MATLAB R© stiff ODE solver [123]. The resulting solution is also fed back to the

external loads codes since these loads are functions of the system motion.

If cable dynamics is to be considered, the quasi-static cable model is disabled and the

equations of motion of the lumped mass cable model are then incorporated into the system

equations of motion. These of equations of motions of the structure and cables are coupled

through the tension loads of the first elements of the cable segments attached to the platform,
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Figure 6.1: Structure of the simulation code of the FOWT dynamics

as discussed in Section 5.8. The wave load code then computes the hydrodynamic loads on

the cable elements and on the platform. In the ODE solver, the initial conditions of the cable

lumped masses are initialized using the lumped mass static solver (developed in Chapter 5).

6.1.1 Limitations

As demonstrated earlier in Chapter 2, the present simulation utilizes Morison’s equation to

characterize the hydrodynamic loads. This approach ignores the effects of radiation damping,

wave diffraction and second order hydrodynamic loads which could excite the lower resonant

frequencies of the system [16]. As well, it neglects the influence of the VIV which can be

considerable when the substructure is subject to steady current or combined current and

wave loads. All these aspect could reduce the accuracy of the predicted hydrodynamic loads

exerted on the platform and mooring lines particularly in low and moderate fluid speeds

which may affect the resulting system response.

The present simulation also ignores the blade flexibility which could influence the system
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dynamics, particularly the tower elastic motion response when the rotor experiences severe

aerodynamic loads at which interaction between the blade and tower elastic motions can be

evident.

6.2 Validation

The design of reliable FOWT systems demands trustworthy simulation tools capable of

predicting the dynamic response of the structure [5,69]. A well-known code-to-code compar-

ison study was performed as a part of the Offshore Code Comparison Collaboration (OC3)

project also under the Wind Task 23 of the International Energy Agency (IEA) [5]. Ex-

tensive comparisons of the simulation results obtained from different simulation tools were

performed. These results were generated by many participants in the project from differ-

ent institutions and countries utilizing different simulation tools. The dynamic response of

these codes were examined under particular wind and wave load conditions, referred to as

load cases, to allow for consistent comparisons among the codes results. The results of this

large code-to-code comparison project were thoroughly investigated in [5, 124]. The present

simulation results are therefore compared with those obtained from these codes for the four

load cases in Table 6.1 to assess the validity of the current model. It is worth noting that

the relevant simulation results of these simulation tools are only available for the listed load

cases in Table 6.1. As well, some codes were not able to simulate all these load cases or to

predict certain dynamic outputs such as the tower elastic motion because of their modeling

limitations.

Table 6.1: Specifications of the load cases [5]

Load case Wind condition Wave condition Analysis type

1.2 None None (still water) Eigen frequencies

1.4 None None (still water) Free decay test

4.2 None Jonswap Hs = 6 m,
Tp = 10 s

Power spectra

5.1 Steady wind speed
U = 8 m/s

Regular wave,
Ha = 6 m, T = 10 s

Time series
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It is also worth to noting that all the validation load cases are based on the single

mooring configuration augmented with additional yaw mooring stiffness Kadd = 98.34× 106

N.m/rad [6]. To consider this effect, the moment exerted by the mooring line tension about

the origin of the body frame for the single configuration, previously presented in Equa-

tion (4.6), is modified as

pMmor =
3∑

i=1

pr
(i)
POp × pT(i) −Kadd [0 0 ψ]T (6.1)

6.2.1 Load case 1.2

Table 6.2 compares the system eigen frequencies obtained from present model with those

reported from other simulation tools. In general, the results of all codes agree reasonably

well. However, the eigen frequencies of the platform roll and pitch obtained from HAWC2

are higher than their counterparts from the other codes. The present code results agree well

with most codes particularly FAST, Bladed, 3DFloat and SIMO. The 1st tower twist eigen

frequency predicted by the present code could not be compared with any of the other codes

because they were not reported in [5] although the twist DOF is considered in HAWC2 and

Bladed codes. It is worth noting that FAST, Bladed and HAWC2 codes include additional

eigenmodes associated with rotor blade flexibility, that are not presented here since the

present code assumes the rotor to be a rigid body.
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Table 6.2: System eigen-frequencies (Hz)

Eigen-
mode

Present
FAST
NREL

Bladed HAWC2 3DFloat Simo
SESAM
/DeepC

Surge 0.00800 0.00805 0.0080 0.00768 0.00803 0.00802 0.00869

Sway 0.00800 0.00805 0.0120 0.00773 0.00803 0.00817 0.00800

Heave 0.03294 0.03243 0.0330 0.03237 0.03300 0.03246 0.03180

Roll 0.03329 0.03424 0.0317 0.04530 0.03210 0.03338 0.03050

Pitch 0.03332 0.03426 0.0317 0.04518 0.03210 0.03338 0.03050

Yaw 0.12111 0.12103 0.1220 0.10757 0.14000 0.12180 0.13300

1st (u1) 0.48845 0.47320 0.4600 0.47961 0.47300 - -

1st (u2) 0.48141 0.45748 0.4500 0.48180 - - -

1st twist (ϕ) 1.84150 - - - - - -

6.2.2 Load case 1.4 (free decay test)

This load case represents a free decay test whereby the platform is released from a specified

non-equilibrium initial pose in still water and without wind. The decay tests separately excite

the platform surge, heave, pitch and yaw displacements. These tests are quite important to

examine the hydrodynamics, hydrostatic and mooring models functionality which are the

main sources of stiffness and damping in the system. In the results presented in [5,124], the

structure is assumed to be a rigid multibody system i.e. the tower and blades flexibilities

are ignored. In the present work, both the rigid and flexible models are used to perform this

test. In the case of the flexible model, this is achieved by imposing an extremely large Young

modulus (E) and modulus of rigidity (G) of the tower, hence the tower can behave nearly as

a rigid body, with negligible flexible deflections. The simulation results from both dynamic

models are found to be identical.

The decay test results are illustrated in Figure 6.2. Only the response of the perturbed

platform DOF is presented here for brevity. Figure 6.2 (a) shows the surge decay responses

due an initial perturbation of 21 m in surge. Our code is in excellent agreement with all the

simulation tools particularly FAST and HAWC2. The present code also exhibits an excellent
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Figure 6.2: Free decay test of load case 1.4 due to: (a) initial perturbation of 21 m in surge; (b)
initial perturbation of 5 m in heave; (c) initial perturbation of 10o m in pitch; (d) initial perturbation
of 6o in yaw.

agreement with the reported results in the heave decay response (excited by a 5 m heave

initial condition). The HAWC2 code predicts larger damping than the other codes, as seen

in Figure 6.2 (b). As well, the present code shows good agreement with all the codes in

the pitch decay (excited by a 10o pitch) response with identical peak locations but with less

damping than the other codes, as seen in Figure 6.2 (c). This is attributed to the fact that

the present code ignores the hydrodynamic radiation damping while this effect is considered

in the other codes. The yaw decay response is almost identical for all codes, as illustrated in

Figure 6.2 (d).

6.2.3 Load case 4.2

In this simulation scenario, the FOWT dynamic response is evaluated under excitations

arising from an irregular wave, but without wind. This implies that the wind turbine rotor

is parked (not spinning i.e. Ω = 0). The wave kinematics are characterized by the Jonswap

spectrum [96, 97] with Hs = 6 m, peak period Tp = 10 s, and a heading angle βw = 0 (i.e.
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the waves are propagating along the X-axis of the inertial frame). The power spectra of

the platform displacements and tower tip fore-aft deflection (u1 at z = l) are compared with

the corresponding results of the simulation tools, as illustrated in Figure 6.3. In general,

the present code results are in very good agreement with those obtained from the simulation

tools. The results of all the codes conform well at the wave peak frequency (0.1 Hz).

The surge PSD exhibits two peaks corresponding to the surge and pitch natural frequen-

cies at 0.008 Hz and 0.034 Hz, respectively, as seen in Figure 6.3 (a). The first peak is

evident at the surge natural frequency for the present, SIMO and DeepC codes while the

peak is offset slightly for the FAST code at 0.01 Hz. The heave PSDs of all codes agree well

with minimal deviations in the vicinity of the heave natural frequency (0.032 Hz), as depicted

in Figure 6.3 (b). All the codes are in excellent agreement in their pitch PSD predictions
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Figure 6.3: Power spectra of: (a) platform surge, (b) platform heave, (c) platform pitch, and (d)
fore-aft deflection (u1 at the tower tip) for load case 4.2.

except Bladed, as illustrated in Figure 6.3 (c). The fore-aft (u1) PSD results are presented

in Figure 6.3 (d) for the present code, FAST, and Bladed codes since the remaining codes

(DeepC and Simo) do not consider the tower elasticity. The results of the present and FAST

codes are in excellent agreement while Bladed shows a reasonable agreement with the other
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codes. Dominant peaks are visible close to the pitch natural frequency and the first fore-aft

tower bending natural frequency (0.48 Hz).

6.2.4 Load case 5.1

In this simulation scenario, the FOWT dynamic response is evaluated under excitations

arising from a regular wave and steady uniform wind. The wave height is Ha = 6 m and the

period is T = 10 s, while the wind speed is U = 8 m/s. The characteristics of the steady-

state harmonic time response of the system are relevant for this load case. The time response

of the platform displacements, and fore-aft tower tip deflection responses are displayed in

Figure 6.4, while the rotor speed response is presented in Figure 6.5. The surge response

of the present code agrees well with other codes, particularly FAST, as shown in Figure 6.4

(a). The HAWC2 surge response is inconsistent with the other codes which likely implies

an incorrect result, as discussed in [5]. Some discrepancies in the mean value and phase can

be observed in the responses, while the amplitudes and periods of oscillations agree well.

Figure 6.6 summarizes the peak-to-peak response amplitudes shown in Figures 6.4 and 6.5.

Generally, all the codes relatively agree well in the amplitudes of oscillations. However, the

Bladed code yields relatively larger amplitudes in surge and heave DOFs while it under-

estimates the amplitudes of fore-aft bending deflection.
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Figure 6.4: Steady-state response of: (a) platform surge, (b) platform heave, (c) platform pitch,
and (d) fore-aft deflection (u1 at the tower tip) for load case 5.1
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Figure 6.5: Steady-state response rotor spin speed for load case 5.1
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Figure 6.6: Peak-to-peak amplitudes for load case 5.1

6.3 Case Studies

We now proceed to use the simulation under different scenarios, such as varying model

types and different system designs. The dynamics behavior of the system is closely related to

the system stiffness, and material and inertial properties of the structure components (plat-

form, tower, rotor blades, mooring system,.., etc). On the other hand, different modeling

approaches used to characterize the system dynamics, environmental, and mooring loads may

vary in their predictions of the system dynamic response. The exploration of the influence

these factors on the system dynamics is quite important to allow efficient system analysis and

design. Although there are many parameters and design aspects that can be studied, the dis-

cussion will be focused on the following main topics: tower flexibility; mooring configuration;

rotor gyroscopic effect; and cable dynamics.

6.3.1 Tower flexibility (rigid vs. flexible)

The influence of the tower flexibility on the system dynamics is investigated by comparing

the dynamic response of the rigid and flexible dynamic models developed in Chapter 2 under

identical environmental loads, mooring system configuration and cable modeling approach.

The quasi-static cable model of the single mooring system configuration (with Kadd) is chosen
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to determine the mooring system loads. The simulations are performed assuming the system

is subject to a steady wind speed (U = 10 m/s) and irregular water wave with heading angle

βw = 30o. The wave kinematics are characterized by a Jonswap spectrum with Hs = 11 m,

and Tp = 14 s.

The comparisons of the platform displacements time responses and rotor spin speed re-

sponse obtained from the rigid and flexible models are displayed in Figures 6.7 and 6.8,

respectively. The simulation results of the rigid model are in good agreement with the those

obtained from the flexible model particularly in the surge, sway, heave, roll and pitch re-

sponses as well as the rotor spin rate response.
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Figure 6.7: Platform displacements responses of the rigid and flexible models

In general, the results show that the tower flexibility does not significantly affect the

platform displacements responses except the yaw. One important reason for this is that the

mass of the Rotor Nacelle Assembly (RNA) is approximately 2.5% of the equivalent platform
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mass which is relatively very small. As well, large flexural and torsional stiffnesses of the

tower yield small elastic deflections compared to the rigid body displacements.

The flexible model yields larger yaw response, as illustrated in Figure 6.7. This could be

attributed to gyroscopic moments induced by the tower elastic rotations. This effect is more

prominent in yaw since the the damping and mass moment of inertia of the platform in the

yaw mode are the least among the platform DOFs. Moreover, due to platform slenderness,

the added inertia of the platform in yaw is zero. This makes the platform yaw DOF is more

responsive to small disturbances compared to the remaining platform DOFs.

2850 2900 2950 3000

Time [s]

10

10.5

11

11.5

12

12.5

13

13.5

14

Ω
[r
p
m
]

Rigid

Flexible

Figure 6.8: Rotor spin response as obtained from the rigid and flexible dynamic models

The tower tip bending deflection of the fore-aft (u1) and side-side (u2) and tower twist

responses are illustrated in Figure 6.9. The fore-aft bending deflection is larger than that
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Figure 6.9: Tower tip elastic deflections

the side-side counterpart due to the RNA center of gravity offset from the tower tip center
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which yields a large bending moment leading to a higher fore-aft deflection. As well, the wave

load is mainly acting along the X−axis exciting the fore-aft elastic motion more than the

side-side motion. The tower twist response is extremely small, with amplitudes of oscillations

less than 0.03o.

The platform displacements PSDs obtained from the rigid and flexible models are com-

pared in Figure 6.10. The results of the two models agree well particularly at frequencies
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Figure 6.10: Platform DOFs PSDs

below 0.3 Hz while the flexible model shows a higher energy contents above that frequency.

This is attributable to the flexible motions that are excited at their resonance frequencies

which are much higher than those of the rigid body motion. All the PSD plots show a dom-

inant peak at the wave spectral peak frequency (≈0.07 Hz). The PSD plots obtained using

the flexible model exhibit peaks corresponding to the first mode of bending elastic motion at
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0.49 Hz. As well, another dominant peak at 1.84 Hz is also visible which corresponds to the

1st mode of the tower twist elastic motion. The peaks associated with resonant frequencies

of the elastic motions are also evident in the PSD plots of the elastic motions, shown in

Figure 6.11.
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Figure 6.11: Tower tip elastic deflections PSDs

6.3.1.1 Tower twist

The high tower twist natural frequency (1.84 Hz) is far outside the water wave band

frequency (0.04–0.22 Hz). Therefore, the tower twist is not significantly excited by the wave

loads. As well, this mode is not directly excited by aerodynamic and hydrodynamic external

moments since they are acting in directions normal to the tower twist axis. This results in

minimal response as seen in Figure 6.9. Likely for these reasons, tower twist is not considered

in most the simulation tools used for the FOWT dynamic simulation.

Moreover, we found that the dynamic simulation without tower twist is approximately

3 times faster than when it is considered, so that ignoring the twist DOF result in a much

faster simulation. We also verified that neglecting the tower twist DOF does not affect the
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platform displacements nor the tower bending responses. Based on this, we chose to ignore

the tower twist DOF for the remaining simulations of this chapter.

6.3.2 Mooring system configuration

Two mooring system configurations have been previously discussed, single and bridle.

Moreover, the lines tensions of each of these configurations can be found using the quasi-

static and lumped mass cable models developed earlier. Due to the differences between these

configuration, the resulting restoring loads obtained from these configurations are different.

In reality, the Hywind prototype and the Hywind pilot project to be constructed [125]

include a bridle mooring configuration. However, most dynamic analyses of the OC3-Hywind

FOWT available in literature used a simplified single configuration augmented with an ad-

ditional yaw stiffness to avoid the complexity of modeling the bridle configuration with sus-

pended clump weights. This thesis has presented a new cable model that considers the bridle

configuration, and the objective of this case study is to compare the dynamic behavior of the

system when using the simplified single and the bridle configurations.

The system stiffness of a FOWT is due to a combination of the mooring system and the

hydrostatics. Thus, the impact of the mooring configuration on the system stiffness should

consider both effects. Table 6.3 illustrates the contribution of the hydrostatic and mooring

stiffnesses to the system stiffness by comparing the diagonal stiffness coefficients from both

sources. The hydrostatic stiffness coefficients are computed using the approach developed in

Chapter 3. The mooring stiffness coefficients of the single configuration is determined using

the expressions derived in Appendix D, while those of the bridle configuration are determined

using the finite difference approach. The results in Table 6.3 show that the hydrostatic

stiffness in the surge, sway, and yaw modes is nonexistent (which is a basic principle in

hydrostatics), while the mooring stiffness exists in all DOFs. Moreover, the hydrostatic

stiffnesses in heave, roll and pitch modes are much larger than their mooring counterparts.

The comparison between the mooring stiffness of the single and bridle configurations reveals

that the bridle configuration is stiffer in all modes except the heave mode which exhibits

slightly less stiffness. However, because the hydrostatic stiffness is dominant in this DOF,
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this has little consequence.

The FOWT system natural frequencies are then computed for the two mooring configu-

rations and listed in Table 6.4. The results show that the natural frequencies of the system

with the bridle mooring is somewhat higher in surge and sway modes which is attributable

to the larger mooring stiffness in these modes. The heave, roll, and pitch natural frequencies

are insensitive to the choice of the mooring configuration because the hydrostatic heave, roll,

and pitch stiffnesses are the main contributors to the system stiffness in these modes. Like-

wise, the tower bending natural frequencies are insensitive to the mooring stiffness since the

structural stiffness is very large compared to those arising from the mooring stiffnesses. The

results in Tables 6.3 and 6.4 will serve as the basis for understanding the system dynamics

behavior due to these mooring configurations.

Table 6.3: Hydrostatic and mooring stiffnesses

Coefficient Hydrostatic
Mooring

Single Bridle

K11, K22 (N/m) 0 4.12× 104 5.13× 104

K33 (N/m) 3.34× 105 1.31× 104 1.12× 104

K44, K55 (N.m/rad) 1.31× 109 −7.07× 106 6.38× 106

K66 (N.m/rad) 0 1.16× 107 +Kadd 1.22× 108

Table 6.4: Influence of the mooring configuration on the system natural frequencies

Eigenmode (Hz) Single Bridle

Surge 0.00800 0.00893

Sway 0.00800 0.00893

Heave 0.03294 0.03291

Roll 0.03329 0.03348

Pitch 0.03332 0.03345

Yaw 0.12111 0.12776

1st (u1) 0.48845 0.48846

1st (u2) 0.48141 0.48142

1st tower twist 1.84150 1.84154
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The FOWT system responses obtained using single (with Kadd) and the bridle config-

urations are now compared for identical wave and wind loads. The system is subject to

irregular waves load characterized by a Jonswap spectrum with Hs = 11 m, Tp = 14 s, and

βw = 30o, and a steady wind with U = 10 m/s. Figure 6.12 compares the platform displace-

ment responses obtained using the two mooring configurations. The results show that the

roll and pitch responses are almost insensitive to the choice of mooring configuration. This is

because the roll and pitch system stiffnesses are mainly due to hydrostatics so that varying

the mooring stiffness in these modes will not considerably influence the system stiffness. The

mean values of the surge and heave responses of the bridle configuration are lower than those

of the single configuration. This is because the mean line tensions of the bridle configuration

are larger than those of the single, hence larger mean tension yields lower mean surge/sway

and heave. On the other hand, the fluctuations of the surge, sway and heave are in good

agreement between the two configurations. The biggest difference between the two models

is the discrepancy in the yaw response, where the response of the single configuration ex-

hibits larger oscillations. This attributable to the larger mooring yaw stiffness of the bridle

compared to the single configuration even with additional mooring yaw stiffness (11% larger

than the single configuration as illustrated in Table 6.3). Thus, a better choice of Kadd will

result in a yaw response similar to that of the bridle configuration. The rotor spin, and the

tower tip bending deflection responses in the fore-aft (u1) and side-side (u2) directions are

not significantly affected by the choice of mooring configuration, and so are not shown here,

for the sake of brevity.
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Figure 6.12: Comparison of platform displacements between the single-segmented (with additional
yaw stiffness) and bridle mooring system with addition

6.3.3 Rotor gyroscopic effect

It is well known that the rotor spin induces gyroscopic moments proportional to the

rotor spin speed and tower angular velocity. On the other hand, varying the rotor speed

will alter the aerodynamic thrust and torque. To examine the impact of the rotor spin on

the system dynamics separately from any concurrent effect of the aerodynamic loads, we set

the aerodynamic loads to zero (i.e. there is no wind). This implies that the rotor is idling

(without a generator load) at a constant speed. To reflect this, the equations of motion

derived in Chapter 2 must be modified to analyze the system dynamics for constant rotor

speed (Ω̇ = 0), and that the generator torque control is no longer active. Accordingly, the
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equations of motion of the rigid model (Equation (2.19) ) can be reformulated as

[Msys +A ]

⎡
⎣ ν̇

ω̇

⎤
⎦+

[
S̃Msys +CA

]⎡⎣ ν

ω

⎤
⎦ =

⎡
⎣ RT ∂L

∂r

J−T ∂L
∂θ

⎤
⎦+

⎡
⎣ pFhs +

pFaer +
pFmor +

pFhd∗
pMhs +

pMaer +
pMmor +

pMhd∗

⎤
⎦+

⎡
⎣ 03×1

pMgyro

⎤
⎦

(6.2)

where

S̃ =

⎡
⎣ ω̃ 03×3

ν̃ ω̃

⎤
⎦ (6.3)

The mass matrix (Msys) form is similar to that of Equation (2.13) but without the last row

and column. The gyroscopic moment (pMgyro ) in Equation (6.2) is expressed as

pMgyro = [0 − IrxΩωz IrxΩωy]
T (6.4)

Based on Equations (6.2) and (6.4), the rotor gyroscopic moments can be viewed as external

moments that excite the pitch and yaw motions. The equations of motion of the flexible

model can be similarly modified for constant rotor speed.

Two dynamic simulations are performed with the platform excited by an irregular wave

characterized by a Jonswap spectrum with Hs = 11 m and Tp = 14 s and βw = 30o, while the

wind loads are ignored (Faer = Maer = 0). Two cases are considered: one in which the wind

turbine is parked (Ω = 0), and the second simulation with the rotor idling at a constant spin

rate of Ω = 4 rpm. The system response obtained from these simulations are then compared

to examine the influence of the rotor gyroscopic effect on the system dynamics.

The results show that the gyroscopic moment resulting from 4 rpm rotor spin yields a

larger yaw response compared to that of the parked rotor, as shown in Figure 6.13. However,

the remaining platform translational and rotational responses and tower elastic motions are

not affected and thus are not presented here.

Although the gyroscopic moment has components in the y- and z-axes, as shown in

Figure 6.14, only the platform yaw appears sensitive to this effect, while the pitch response is

unaffected. This is because the pitch DOF is primary excited by a very large hydrodynamic
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moment compared to the pitch gyroscopic moment, as shown by comparing Figures 6.14

and 6.15. By contrast, the yaw DOF is not excited by hydrodynamic loads. Thus, the yaw

gyroscopic moment is the main disturbing external moment. Moreover, the platform yaw

mass moment of inertia is small compared to the corresponding roll and pitch, and the yaw

motion can be more easily excited.
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Figure 6.13: Yaw response for parked and spinning rotor
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Figure 6.14: Gyroscopic moment components responses for Ω = 4 rpm
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Figure 6.15: The y-component of the hydrodynamic moment time history for Ω = 4 rpm
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6.3.4 Cable dynamics

In the previous simulations, the cable loads were computed using quasi static cable models.

By contrast, cable dynamic models consider the hydrodynamic loads exerted on the cable

and the cable inertia. In general, incorporating the cable dynamics into the system dynamics

leads to a better prediction of the systems dynamic response. However, the coupled dynamic

model (structural + cable dynamics) involves a large number of DOFs which requires a much

more computational effort.

To investigate the impact of cable dynamics on the dynamic behavior of the system, the

lumped mass approach developed in Chapter 5 is now integrated into the system dynamics.

Thus, the coupled equations of motion of the structure (developed in Chapter 2) together with

equations of motion of the cable nodes (developed in Chapter 5) are solved simultaneously

to obtain the system response. In addition, a separate simulation using the quasi static

cable model with similar environmental conditions is used to calculate the cable tensions.

The system responses obtained using the two cable models are then compared to assess any

differences in their predictions of the system response and cable tensions.

The dynamic simulations are performed utilizing the flexible tower model and the bridle

mooring configuration. The ocean environment is characterized by a Jonswap spectrum with

Hs = 11 m, and Tp = 14 s, and βw = 30o. The wind turbine rotor is subject a steady wind of

speed U=10 m/s. Each mooring line is discretized into a total of 26 elements, distributed as:

Nbr = 2, Nu = 6, and Nl = 16 elements. The drag coefficients of the mooring lines CDc = 1.2

based on [126] and the added mass coefficient Ca = 1.0 similar to the platform since they are

both of slender cylindrical shape [96].

Figure 6.16 compares the platform translations obtained using the quasi-static and lumped

mass models. The results show that the surge and and sway responses of the two cable models

correlate well, while minor deviations in the mean of the oscillations still exist. The use of

the lumped mass model yields around 10% reduction in the heave fluctuations amplitudes,

which is likely attributable to the added damping introduced by cable hydrodynamic forces

considered in the lumped cable model.

Figure 6.17 presents the Euler angle responses. The roll and pitch responses are nearly
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identical, indicating that these responses are insensitive to the choice of the cable model. The

same observation can be made for the tower tip bending responses (u1 and u2), illustrated in

Figure 6.18. This similarity between roll/pitch and u1/u2 behaviors is attributed to the fact

that the pitch and roll motions are the main contributors to excitations of the tower bending

deflections.
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Figure 6.16: Platform translation responses as obtained using the quasi static and lumpud mass
cable models

The rotor spin responses obtained using the two cable models are also in excellent agree-

ment, as shown in Figure 6.19. The key difference between the cable models is in their

predictions of the platform yaw response, with the quasi static cable model exhibiting about

40% higher peaks compared to the lumped mass model, as illustrated in Figure 6.17.

The insensitivity of the surge, sway, roll and pitch response to the cable dynamics is

attributed to the small mooring hydrodynamic damping and inertia forces as compared to

their counterparts on the platform. The effect of mooring hydrodynamic damping in the heave

direction is more prominent yielding a relatively lower heave response. In addition, the large
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Figure 6.17: Platform rotation responses as obtained using the quasi static and lumpud mass
cable models

discrepancy between the quasi static and lumped mass cable models in their predictions of the

yaw response is attributed to the considerable mooring lines yaw inertia and hydrodynamics

damping loads, particularly compared to the low platform yaw hydrodynamic damping.

Figures 6.20 and 6.21 present the power spectra of the platform displacements and tower

tip bending deflections. In general, the lumped mass model exhibits lower energy contents

particularly at higher frequencies beyond the first tower bending mode (0.49 Hz). There is

also slightly less energy contents at some of the resonant peaks. All these differences can be

attributed to the added damping of the mooring lines, present in the lumped mass model.

The time histories of the fairlead tensions are shown in Figure 6.22. The lumped mass

model significantly predicts larger tension fluctuations than the quasi static model. This is

attributable to the fluctuations of the hydrodynamic loads exerted on the mooring line. These

observations are also reflected in the power spectra of the fairlead tensions in Figure 6.23
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Figure 6.18: Tower tip bending deflections time histories as obtained using quasi static and lumped
mass models
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Figure 6.19: Rotor spin rate as obtained using quasi static and lumped mass models

where the lumped mass model exhibits considerably higher energy content across most the

spectrum compared to the quasi static model. It is obvious that the lumped mass cable

model predicts lower tension troughs and larger peaks as compared with those obtained by

the quasi-static cable model (Figure 6.22). This enhances the observation reported in many

recent studies [115, 127, 128] that the lumped mass cable model better predicts the snap

loads of the mooring lines. A dominant peak in the vicinity of 0.35 Hz is also observed in the
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Figure 6.20: Power spectra of the platform translation and rotation responses as obtained using
quasi static and lumped mass models
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Figure 6.21: Power spectra of the tower tip bending responses as obtained using quasi static and
lumped mass models
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PSD plots of the cable tensions (Figure 6.23) which may correspond to a resonant frequency

associated with the cable transverse motion.

Lastly, it is worth mentioning that the main conclusions drawn from the comparison of

the quasi-static and lumped mass models with bridle mooring were also observed for the

single mooring system configuration. Those results are not presented here for brevity.
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Figure 6.22: Cable tension as obtained using quasi static and lumped mass models
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Chapter 7

CONCLUSIONS AND FUTURE WORK

This thesis focused on developing multibody dynamic models of a spar FOWT, with an

emphasis on theoretical modeling of the hydrostatic and mooring system loads as primary

sources of the system stiffness. These models were then used to build a validated large

simulation tool to analyze the system dynamic response to environmental disturbances.

In Chapter 2, rigid and flexible multibody dynamic models of the FOWT system were

developed. The modified form of Lagrange’s equation was found to be an efficient way to

derive the equations of motion of the platform in terms of its quasi coordinates. The orthog-

onal polynomial shape functions developed for the spacial discretization of the tower bending

motion are very similar to the eigen functions of a cantilever beam but more computationally

efficient in symbolic manipulation. The convergence of the AMM using these polynomials

was tested by analyzing the dynamics of a spinning cantilever beam with a tip mass. The

resulting beam bending response was found to be in excellent agreement with reported re-

sults obtained using FEM. Generating the equations of motion of the flexible FOWT model

using symbolic programming was quick and produced error free results, particularly for com-

plex equations of motion, as in our case. We found that modeling the internal damping

of the tower improved the numerical stability and computational efficiency by reducing the

transient period and accelerating the simulation. Incorporating the generator torque control

allowed the model to capture the fluctuation of rotor spin speed which allowed simulations

of different scenarios and load cases. The rotor spin response obtained using this model was

in very good agreement with that reported from different simulation tools.

In general, the heave motion is mainly excited by the fluctuations of hydrostatic force

induced by waves surface elevation variation crossing the platform, where submerged length

is directly influenced by the wave height. A theoretical framework which included this effect
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was developed to calculate the exact buoyancy force and hydrostatic moments in Chapter 3.

New exact water plane restoring moments expressions were derived and found to be directly

related to the rotation matrix entries. As well, the 6 × 6 hydrostatic stiffness matrix was

derived as function of the instantaneous position and orientation of the platform. The exact

hydrostatic waterplane stiffnesses computed using the developed nonlinear approach, were

found to be larger than those computed using the conventional linear approach particularly

at large platform rotation. The exact hydrostatic analysis presented herein can offer an

analytical solution to determine the 3D equilibrium of floating cylindrical platforms, thus

replacing potentially slower numerical methods.

A novel 3D exact quasi-static cable model was developed to compute the mooring tensions

of the bridle configuration, while considering the effect of suspended clump weights. The

clump weight changes the cable profile and yields a higher tension and mooring line stiffness.

A new analytical formulation was also presented to calculate the mooring system stiffness of

suspended, partially resting on the seabed and taut cables. The influence of several mooring

design parameters were investigated for a taut-leg mooring system. The parametric study

revealed that increasing the anchor radius leads to an increase in the surge/sway mooring

stiffness until certain threshold, and further increase results in a decrease in these stiffnesses.

The mooring heave stiffness decreases with increasing the anchor radius while the yaw stiffness

is affected in an adverse manner. The mooring system with fewer number of lines is stiffer if

the lines are not taut. However, larger number of lines yields larger stiffness if the line are sag

free. Including a bridle component yields larger yaw mooring stiffness, while the remaining

stiffness coefficients are not affected.

A lumped mass cable model was formulated to capture the mooring lines dynamics.

The model was extended to account for the cable-seabed contact and added mass. A new

methodology was developed to compute the 3D equilibrium profile of the lumped mass cable

model. This method is more comprehensive than existing approaches because it can consider

cables in contact with the seabed with less computational effort.

A large simulation code was developed using MATLAB to implement the analytical mod-

els of the system dynamics and the applied loads. A validation process was then undertaken
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using four loads cases to determine the natural frequencies, platform free decay response,

system frequency response due to stochastic wave loading, and system time response due

to regular wave and steady wind loads. The current model results were in excellent agree-

ment with those obtained from well known simulation tools such as FAST and HAWC2.

Some deviations among the codes results were observed which were attributable to different

techniques used, particularly for modeling the hydrodynamic and mooring loads. Following

this, several case studies were designed to investigate the influences of the tower flexibility,

mooring system configurations, rotor gyroscopic moment, and cable dynamics on the FOWT

dynamic behavior. The main findings drawn from the results of these case studies are:

• The comparison between the simulation results of the rigid and flexible dynamic models

showed that the tower flexibility yields 25% larger yaw response while the surge, sway,

heave, roll and pitch motions of the platform are only slightly affected. As well, the

flexible model responses exhibit more damping compared to those of the rigid body model

due to the tower internal structural damping considered in the flexible model.

• The roll and pitch system stiffness are mainly due to the hydrostatic restoring loads. Thus

varying the mooring system stiffness by using different mooring configurations does not

affect the roll, pitch and tower elastic deformations responses. By contrast, the surge, sway

and yaw responses are solely due to the mooring system stiffness characteristics and thus

are much more affected by changes to the mooring configuration. For the same reason,

the system natural frequencies in heave, roll/pitch and fore-aft/side-side tower bending are

insensitive to the mooring stiffness while the remaining natural frequencies are affected by

the mooring system stiffness.

• The influence of the tower twist on the platform displacements and tower bending defor-

mations is negligible and results in a much slower simulation. It is therefore recommended

to ignore this deformation.

• The rotor spin induces gyroscopic moments around the pitch and yaw axes. The gyroscopic

effect in yaw is more prominent because of the small yaw mass moment inertia and the

absence of yaw added inertia, rendering the yaw DOF more responsive to relatively small
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disturbances.

• Cable dynamics yields considerably lower yaw response due to the larger yaw cable inertia

and hydrodynamic damping. As well, the hydrodynamic damping induced by cable dy-

namics yields lower heave response compared to that obtained using the quasi static model.

The surge, sway, roll, pitch and tower bending deformations responses are not affected by

the cable dynamics.

• The cable tension fluctuations predicted by the lumped mass cable model are larger than

those of the quasi static cable model. This is attributable to the fluctuations of the hydro-

dynamic loads exerted on the cable due to the cable motion.

7.1 Suggested Future Research

Based on the work accomplished in this thesis, several directions to extend the current

research work in future are proposed as follows:

• Modeling the rotor blades flexible motion and incorporating this into the system dynamics

to capture the contribution of the rotor flexibility to the system dynamic behavior. This

will improve the current model capabilities and better predict the system response and the

rotor aeroelastic behavior.

• Development of a more elaborate hydrodynamic model that considers the wave diffrac-

tion effect, radiation damping, and the second order hydrodynamic load will improve the

predictions of the hydrodynamic loads and hence the resulting system response.

• Including the effect of the vortex induced vibration on the platform and lumped mass cable

model particularly when the system is subject to steady water current loads.

• The effect of wind turbulence and gusts may have significant influence on the system re-

sponse. The wind field kinematics can be characterized in space and time using a wind

turbulence model. Further validations of the current dynamic model for load cases associ-

ated with turbulent wind loading could be then performed.
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• The drag and added mass coefficients of the platform and mooring lines were assumed to be

constant. However, these coefficients are dependent on Reynolds and Keulegan-Carpenter

numbers. Incorporating the relationships between these coefficients and dimensionless

numbers into the hydrodynamic model will improve the predictions of inertial and drag

terms in the Morison’s equation.

• If experimental data becomes available from the Hywind pilot systems presently being

deployed, it would be important to use this data to validate the present model.

• Develop a simple extension to improve the rigid body model to predict the tower tip elastic

bending deformations in the fore-aft and side-side direction. The model can be altered by

adding spring and damper at the tower tip and attached to the RNA in an appropriate

manner to account for the tip deflections and equivalent internal tower damping. This

would extend the rigid model to approximately predict the flexible tower motion with

much less computational effort than the flexible model.

• Extending the present simulation code to analyze different types of platforms such as

semi–submersible and hybrid platforms. This will allow to assess the dynamic behavior of

FOWTs with different platform types.

• Examine the system dynamic behavior for different mooring arrangements such as taut–leg

and tension leg mooring systems.
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Appendix A

SYSTEM PROPERTIES

A.1 Mass and Inertial Properties of the Platform

Table A.1: Platform dimensions, mass, and inertial properties [6]

Parameter Value Unit

mp 7,466,330 [kg]

Ipx 4,229,230,000 [kg.m2]

Ipy 4,229,230,000 [kg.m2]

Ipz 164,230,000 [kg.m2]

a 99.9155 [m]

apf 30.0845 [m]

a1 108 [m]

a2 8 [m]

a3 14 [m]

d1 9.4 [m]

d2 6.5 [m]

Lc 120 [m]

A.2 Rigid Body Model Properties
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Table A.2: Rigid body model dimensions, mass, and inertial properties [6]

Parameter Value Unit

mt 249646 [kg]

Itx 120213488 [kg.m2]

Ity 120213488 [kg.m2]

Itz 1817977 [kg.m2]

mnc 240,000 [kg]

Incx 4,901,094 [kg.m2]

Incy 22,785 [kg.m2]

Incz 2,607,890 [kg.m2]

mr 110,000 [kg]

Irx 38,759,228 [kg.m2]

Iry 19379614 [kg.m2]

Irz 19379614 [kg.m2]

dr 5.462 [m]

dnc 1.90 [m]

Dt 133.3463 [m]

Dr 179.5670 [m]

A.3 Flexible Tower Properties

The tower is modeled as a cylindrical hollow tapered beam of height l = 77.6 m, as shown

in Figure A.1. Based on that data in [6,87], the tower base external diameter is Do(0) = 6.5

m and the tip diameter Do(l) = 3.87 m. The tower structure thickness is linearly varying

with tower height (z). The base thickness, ttw(0) = 0.027 m, and at the tip ttw(l) = 0.019

m. Therefore, the tower thickness and external and internal diameter can be expressed as
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functions of z

ttw(z) = 0.027− (0.008/77.6) z

Do(z) = 6.5− (2.63/77.6) z

Di(z) = Do − 2 ttw(z)

(A.1)
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Figure A.1: Tower structure

The effective tower structure density is ρt = 8500 kg/m3. The mass per unit length of

the tower is

m̄t(z) = ρtAt = ρt(π/4)(D
2
o −D2

i ) = ρtπttw(Do − ttw) (A.2)

m̄t(z) is quadratic in z which can be obtained by substituting Equation (A.1) into Equa-

tion (A.2). The tower cross section second moment of area and polar moment of inertia area

as functions of z are

It,xx = It,yy = (π/64)(D4
o −D4

i )

Jt = It,xx + It,yy = (π/32)(D4
o −D4

i )

(A.3)

Similarly, substituting Equation (A.1) into Equation (A.3) to find the final form as function

of z. The tower Young’s modulus is E=210 GPa and the shear modulus is G=80.8 GPa.

The tower mass can be calculated as

mt =

l∫
0

m̄tdz = 249646 kg (A.4)
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and the center of gravity of the undeformed tower is

z̄tw =
1

mt

l∫
0

z m̄tdz = 33.3463 m (A.5)

The mass moment of inertia of the tower structure around the tower base center about the

x and y axes can be calculated as

Itxb = Ityb =

l∫
0

(
ρtIt,xx + m̄tz

2
)
dz (A.6)

The mass moment of inertia of the tower structure around its center of gravity (0, 0, z̄tw) can

be calculated using the parallel axis theorem as

Itx = Ity = Itxb −mt z̄
2
tw = 120213488 kg.m2 (A.7)

The mass moment of inertia of the tower structure around z axis can be calculated as

Itz =

l∫
0

ρt Jt dz = 1817977 kg.m2 (A.8)

A.4 Mooring System Properties

A.4.1 Single configuration

The single mooring system properties listed in Table A.3 ass
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Table A.3: Platform dimensions, mass, and inertial properties [6]

Parameter Symbol Value Unit

Water Depth dw 320 [m]

fairlead Depth Below MWL D 70 [m]

Anchors radius dw 853.87 [m]

fairlead radius Rf 5.2 [m]

Unstretched line length L0 902.2 [m]

Cable diameter dc 0.09 [m]

Mass per unit length m̄c 77.7066 [kg/m]

Equivalent weight in water w 698.094 [N/m]

Extensional stiffness EA 384,243,000 [N]

A.4.2 Bridle configuration

The properties of the bridle configuration are similar except for m̄c and w which are

illustrated for the bridle configuration in Table A.4. The clump weight length and diameter

are 2 and 1.67 m, respectively.

Table A.4: Bridle mooring system properties [7]

Component
Unstretched
length [m]

Weight/length
in water [N/m]

Mass/length
[kg/m]

Bridle line
( segments 1 and 2)

L0Δ=50 353.2 42.525

Main line
(segment 3)

L03=850.2
(s1 = 250.2 )

353.2 42.525

Clump weight 2 147.15× 103 17252.7
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Appendix B

ASSUMED MODE METHOD: SHAPE FUNCTIONS

AND CONVERGENCE

B.1 Orthogonal Polynomial Shape Functions of a Can-

tilever Beam

Φ1 =
1

3
ẑ4 − 4

3
ẑ3 + 2 ẑ2

Φ2 =
182

19
ẑ5 − 661

19
ẑ4 +

824

19
ẑ3 − 326

19
ẑ2

Φ3 =
57376

595
ẑ6 − 218966

595
ẑ5 +

61163

119
ẑ4 − 36224

119
ẑ3 +

7498

119
ẑ2

Φ4 =
2124096

3467
ẑ7 − 44146336

17335
ẑ6 +

70839756

17335
ẑ5 − 10829283

3467
ẑ4 +

3879604

3467
ẑ3 − 509634

3467
ẑ2

Φ5 =
93617550

28631
ẑ8 − 426344880

28631
ẑ7 +

3896636744

143155
ẑ6 − 3625862604

143155
ẑ5 +

358055847

28631
ẑ4

− 87557156

28631
ẑ3 +

8102442

28631
ẑ2

Φ6 =
132109516

8285
ẑ9 − 658061874

8285
ẑ8 +

1354376928

8285
ẑ7 − 296469656

1657
ẑ6 +

923419434

8285
ẑ5

− 323567649

8285
ẑ4 +

58114976

8285
ẑ3 − 4034766

8285
ẑ2
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Φ7 =
270583104

3673
ẑ10 − 1468232524

3673
ẑ9 +

3365779806

3673
ẑ8 − 4232857152

3673
ẑ7 +

53909627240

62441
ẑ6

− 24410987874

62441
ẑ5 +

6446071527

62441
ẑ4 − 892809928

62441
ẑ3 +

48516498

62441
ẑ2

Φ8 =
772787453568

2352305
ẑ11 − 4546300328768

2352305
ẑ10 +

2299894902888

470461
ẑ9 − 3266942071374

470461
ẑ8

+
2854994608848

470461
ẑ7 − 7900287408104

2352305
ẑ6 +

2742861301264

2352305
ẑ5 − 113790293047

470461
ẑ4

+
12582969436

470461
ẑ3 − 551849882

470461
ẑ2

Φ9 =
1399974687111

979273
ẑ12 − 44435634369828

4896365
ẑ11 +

123016536600518

4896365
ẑ10 − 38955270772748

979273
ẑ9

+
38871180318699

979273
ẑ8 − 25386245096088

979273
ẑ7 +

54529489623084

4896365
ẑ6 − 15068499195064

4896365
ẑ5

+
506189488807

979273
ẑ4 − 45868003196

979273
ẑ3 +

1661824946

979273
ẑ2

Φ10 =
131486440250

21513
ẑ13 − 896628649475

21513
ẑ12 +

4496527093448

35855
ẑ11 − 7852396284898

35855
ẑ10

+
1761079340218

7171
ẑ9 − 1324679063589

7171
ẑ8 +

677758634528

7171
ẑ7 − 1170155714244

35855
ẑ6

+
5027239676826

681245
ẑ5 − 419860718569

408747
ẑ4 +

31815241672

408747
ẑ3 − 323318738

136249
ẑ2

B.2 AMM Convergence

The AMM convergence is mainly dependent on the choice of mode shapes [94, 129, 130].

According to the problem type, different families of mode shapes may may change the con-

vergence performance. Thus, it is important to examine the convergence of the selected

mode shape used to discretize the elastic motion of FOWT system prior to performing the

dynamic simulation. The applicability of the developed orthogonal polynomial comparison
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functions is examined here by analyzing the dynamics of a spinning cantilever beam with

a tip point mass, as shown in Figure B.1. This is a well-known problem typically used in

flexible dynamics research for analysis and validation [51]. As well, it resembles the FOWT

flexible structure under consideration. The beam spins with angular velocity Ωb(t) around

the z-axis, expressed as [51, 55]

Ωb =

⎧⎪⎨
⎪⎩

Ωs [τ − (1/2π) sin (2πτ)] for 0 ≤ τ ≤ 1

Ωs for τ ≥ 1
(B.1)

where the xyz frame is attached to the beam, τ = t/Ts, Ts = 15 s, and Ωs = 6 rad/s. The

coupled bending (u2) and longitudinal motions (u1) (resulting from the shortening due to

bending and expansion due to stretch (s)) of the cantilever beam are considered. The stretch

(s) is discretized in space using two eigen mode shapes corresponding to the longitudinal

vibration of a fixed free bar which are similar to the form in Equation (2.32), while the

bending u2 is discretized in space using three orthogonal polynomial comparison functions

developed herein.

The bending deflection response of the tip mass, u2, is compared with the results of Cai et

al. [4] where they analyzed the problem using a FEM, as shown in Figure B.2. The result of

the present approach utilizing the AMM with the polynomial mode shapes developed herein

shows excellent agreement with the results of [4]. This gives a strong indication that these

polynomials can be efficiently used to discretize the bending elastic motions of the FOWT

flexible model in space.
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Figure B.1: Spinning cantilever beam with a tip mass (beam deflections are in the xy plane).
Length l=8 m, density =2.7667×103 kg/m3, Young’s modulus E = 6.8952×1010 Pa, cross sectional
area A = 7.2968 × 10−5 m2, moment of inertia of the cross section Iyy = Izz= 8.2189 × 10−9 m4,
and mtip = 0.085 kg [4]
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Figure B.2: Bending response of a rotating cantilever beam with a point tip mass
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Appendix C

HYDROSTATIC CALCULATIONS

C.1 Hydrostatic Stiffness Matrix

The submerged length and its partial derivatives with respect to the heave displacement

and Euler angles are

Lcf = (Lc − rZ + zf + xf sθ − zf cφ cθ − yf sφ cθ) /(cφ cθ)

∂Lcf

∂rZ
= − 1

cφ cθ
,

∂Lcf

∂φ
=

(Lc − rZ + zf ) sφ
c2φ cθ

+
tθ sφ
c2φ

xf −
yf
c2φ

∂Lcf

∂θ
=

(Lc − rZ + zf ) sθ
c2θ cφ

+
xf

c2θ cφ
,

∂Lcf

∂ψ
= 0

(C.1)

The partial derivatives of XF and YF with respect to the heave and Euler angles are

∂XF

∂φ
= (sφ sψ + cφsθ cψ)

(
0.5

∂Lcf

∂φ
+ yf

)
+ (zf + 0.5Lcf ) (cφ sψ − sφ sθ cψ)

∂XF

∂θ
= 0.5

∂Lcf

∂θ
(sφ sψ + cφ sθ cψ) + cφ cθ cψ (zf + 0.5Lcf ) + yf sφ cθ cψ − xf sθ cψ

∂XF

∂θ
= 0.5

∂Lcf

∂θ
(sφ sψ + cφ sθ cψ) + cφ cθ cψ (zf + 0.5Lcf ) + yf sφ cθ cψ − xf sθ cψ

∂XF

∂ψ
= −yf (cφ cψ + sφ sθ sψ)− xf cθ sψ + (zf + 0.5Lcf ) (sφ cψ − cφ sθ sψ)

∂YF

∂rZ
= −0.5 (sφ cψ − cφ sθ sψ)

∂Lcf

∂rZ
∂YF

∂φ
= 0.5

∂Lcf

∂φ
(cφsθ sψ − sφ cψ) + yf (cφ sθ sψ − sφ cψ)− (cφ cψ + sφ sθ sψ) (zf + 0.5Lcf )

∂YF

∂θ
= 0.5

∂Lcf

∂θ
(sφ cψ − cφ sθ sψ) + yf sφ cθ sψ − xf sθ sψ + cφ cθ sψ (zf + 0.5Lcf )

∂YF

∂ψ
= (sφ sψ + cφ sθ cψ) (zf + 0.5Lcf ) + (sφ sθ cψ − cφsψ) yf + cθ cψxf

(C.2)
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The buoyancy stiffness matrix coefficients (third row) are

K33
B =

ρg Ac

cφcθ
, K34

B = −ρg Ac
∂Lcf

∂φ
, K35

B = −ρg Ac
∂Lcf

∂θ
, K36

B = 0 (C.3)

The buoyancy stiffness matrix coefficients (4th row) are

K43
B = −FB

∂YF

∂rZ
− YF

∂FB

∂rZ
= −FB

∂YF

∂rZ
+ YFK

33
B

K44
B = −

[
My

wp +
∂Mz

wp

∂φ

]
(sφ sψ + cφ sθ cψ) + YFK

34
B − FB

∂YF

∂φ

−
[
∂My

wp

∂φ
−M z

wp

]
(sφ sθ cψ − cφ sψ)−

∂Mx
wp

∂φ
cθ cψ

K45
B = −∂Mz

wp

∂θ
(sφ sψ + cφ sθ cψ) + YFK

35
B − ∂My

wp

∂θ
(sφ sθ cψ − cφ sψ)− FB

∂YF

∂θ
+Mx

wp sθ cψ

−∂Mx
wp

∂θ
cθ cψ −M z

wp cφ cθ cψ −My
wp sφ cθ cψ

K46
B = −M z

wp (sφ cψ − cφ sθ sψ) +My
wp (cφ cψ + sφ sθ sψ)− FB

∂YF

∂ψ
+Mx

wp cθ sψ

(C.4)

The buoyancy stiffness matrix coefficients (5th row) are

K53
B = FB

∂XF

∂rZ
−XFK

33
B

K54
B = FB

∂XF

∂φ
−XFK

34
B −

[
My

wp +
∂M z

wp

∂φ

]
(cφ sθ sψ − sφ cψ)

−
[
∂M y

wp

∂φ
−M z

wp

]
(cφ cψ + sφ sθ sψ)−

∂Mx
wp

∂φ
cθsψ

K55
B = FB

∂XF

∂θ
−XFK

35
B −

∂M y
wp

∂θ
(cφ cψ + sφ sθ sψ)−

∂M z
wp

∂θ
(cφ sθ sψ − sφcψ) +Mx

wp sθ sψ

−
∂Mx

wp

∂θ
cθ sψ −M z

wp cφ cθ sψ −My
wp sφ cθ sψ

K56
B = FB

∂XF

∂ψ
−My

wp (sφ sθ cψ − cφ sψ)−M z
wp (sφ sψ + cφ sθ cψ)−Mx

wp cθ cψ

(C.5)
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The weight restoring stiffness matrix KG enteries are

K44
G = −Wc [yg (sφ cψ − cφ sθ sψ) + zg (cφ cψ + sφ sθ sψ)]

K45
G = Wc sψ ( zgcφ cθ − xgsθ + yg sφ cθ)

K46
G = Wc [zg (sφ sψ + cφ sθ cψ)− yg (cφ sψ − sφ sθ cψ) + xg cθ cψ]

K54
G = −Wc [yg (sφ sψ + cφ sθ cψ) + zg (cφ sψ − sφ sθ cψ)]

K55
G = −Wc cψ ( zg cφ cθ − xg sθ + yg sφ cθ)

K56
G = Wc [yg (cφ cψ + sφ sθ sψ)− zg (sφ cψ − cφ sθ sψ) + xg cθ sψ]

(C.6)

C.2 Method of Calculating Vd, aCV and Iadd

The variation of the diameter of the submerged volume as shown in Figure 2.8 can be

expressed as

d(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d1 for z ≤ a1

d1 +
d2−d1
a2

(z − a1) for a1 < z ≤ a1 + a2

d2 for a1 + a2 < z ≤ a1 + a2 + a3

d2 +
dtip−d2

l
(z − a1 − a2 − a3) for z > a1 + a2 + a3

(C.7)

where dtip is the tower tip diameter. The last inequality considers the case when the tower

sinks in water. The submerged length Lcf can be calculated from Equation (3.42). The

submerged volume Vd can be expressed as

Vd =

Lcf∫
0

Ac dz (C.8)
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where the platform cross section area is Ac = (π/4)d2(z). The center of the submerged

volume position relative to the platform base is

aCV =
1

Vd

Lcf∫
0

z Ac dz (C.9)

The moment of inertia of the platform cross section area is Ic(z) = (π/64)d4(z). Thus, the

mass moment of inertia of the displaced volume around the platform base center about axes

parallel to x and y can be calculated as

Ibb = ρ

Lcf∫
0

(
Ic + z2Ac

)
dz (C.10)

The added inertia Iaa around the origin of the platform frame (xyz) can be obtained using

the parallel axis theorem

Iadd = Ibb − ρVd apf (apf − aCV ) (C.11)

The integrands in the integrals of Equations (C.8) to (C.10) are piecewise functions based

on Equation (C.7).
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Appendix D

MOORING STIFFNESS MATRIX

The mooring stiffness matrix (Km) coefficients (1st row)

K11 =− ∂TX

∂rX
= cos β

∂H

∂l

∂l

∂rX
−H sin β

∂β

∂rX
= Kp

11cos
2β +

H

l
sin2β

K12 =− ∂TX

∂rY
= sin β cos β

(
Kp

11 −
H

l

)
K13 =− ∂TX

∂rZ
= cos β

∂H

∂rZ
= cos β Kp

12

K14 =− ∂TX

∂φ
= cos β

∂H

∂φ
−H sin β

∂β

∂φ
= cos β

(
Kp

11

∂l

∂φ
+Kp

12

∂h

∂φ

)
−H sin β

∂β

∂φ

K15 =− ∂TX

∂θ
= cos β

(
Kp

11

∂l

∂θ
+Kp

12

∂h

∂θ

)
−H sin β

∂β

∂θ

K16 =− ∂TX

∂ψ
= cos β

(
Kp

11

∂l

∂ψ
+Kp

12

∂h

∂ψ

)
−H sin β

∂β

∂ψ

(D.1)

The coefficients of the 2nd row

K21 =− ∂TY

∂rX
= K12

K22 =− ∂TY

∂rY
= sin2β Kp

11 + cos2β
H

l

K23 =− ∂TY

∂rZ
=

∂(H sin β )

∂rZ
= sin β Kp

12

K24 =− ∂TY

∂φ
= sin β

(
Kp

11

∂l

∂φ
+Kp

12

∂h

∂φ

)
+H cos β

∂β

∂φ

K25 =− ∂TY

∂θ
= sin β

(
Kp

11

∂l

∂θ
+Kp

12

∂h

∂θ

)
+H cos β

∂β

∂θ

K26 =− ∂TY

∂ψ
= sin β

(
Kp

11

∂l

∂ψ
+Kp

12

∂h

∂ψ

)
+H cos β

∂β

∂ψ

(D.2)
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The coefficients of the 3rd row

K31 =− ∂TZ

∂rX
= K13

K32 =− ∂TZ

∂rY
= K23

K33 =Kp
22

K34 =− ∂TZ

∂φ
=

(
Kp

21

∂l

∂φ
+Kp

22

∂h

∂φ

)

K35 =− ∂TZ

∂θ
=

(
Kp

21

∂l

∂θ
+Kp

22

∂h

∂θ

)

K36 =− ∂TZ

∂ψ
=

(
Kp

21

∂l

∂ψ
+Kp

22

∂h

∂ψ

)

(D.3)

The coefficients of the 4th row

K41 =− ∂MX

∂rX
= (Yp − rY )

∂TZ

∂rX
− (Zp − rZ)

∂TY

∂rX
= (Yp − rY )K31 − (Zp − rZ)K21

K42 =− ∂MX

∂rY
= (Yp − rY )K32 − (Zp − rZ)K22

K43 =− ∂MX

∂rZ
= (Yp − rY )K33 − (Zp − rZ)K23

K44 =− ∂MX

∂φ
= (Yp − rY )K34 − (Zp − rZ)K24 + V

∂Yp

∂φ
−H sin β

∂Zp

∂φ

K45 =− ∂MX

∂θ
= (Yp − rY )K35 − (Zp − rZ)K25 + V

∂Yp

∂θ
−H sin β

∂Zp

∂θ

K46 =− ∂MX

∂ψ
= (Yp − rY )K36 − (Zp − rZ)K26 + V

∂Yp

∂ψ
−H sin β

∂Zp

∂ψ

(D.4)
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The coefficients of the 5th row

K51 =− ∂MY

∂rX
= (Zp − rZ)K11 − (Xp − rX)K31

K52 =− ∂MY

∂rY
= (Zp − rZ)K12 − (Xp − rX)K32

K53 =− ∂MY

∂rZ
= (Zp − rZ)K13 − (Xp − rX)K33

K54 =− ∂MY

∂φ
= (Zp − rZ)K14 − (Xp − rX)K34 +H cos β

∂Zp

∂φ
− V

∂Xp

∂φ

K55 =− ∂MY

∂θ
= (Zp − rZ)K15 − (Xp − rX)K35 +H cos β

∂Zp

∂θ
− V

∂Xp

∂θ

K56 =− ∂MY

∂ψ
= (Zp − rZ)K16 − (Xp − rX)K36 +H cos β

∂Zp

∂ψ
− V

∂Xp

∂ψ

(D.5)

The coefficients of the 6th row

K61 =− ∂MZ

∂rX
= (Xp − rX)K21 − (Yp − rY )K11 = K16

K62 =− ∂MZ

∂rY
= (Xp − rX)K22 − (Yp − rY )K12 = K26

K63 =− ∂MZ

∂rZ
= (Xp − rX)K23 − (Yp − rY )K13 = K36

K64 =− ∂MZ

∂φ
= (Xp − rX)K24 − (Yp − rY )K14 +H sin β

∂Xp

∂φ
−H cos β

∂Yp

∂φ

K65 =− ∂MZ

∂θ
= (Xp − rX)K25 − (Yp − rY )K15 +H sin β

∂Xp

∂θ
−H cos β

∂Yp

∂θ

K66 =− ∂MZ

∂ψ
= (Xp − rX)K26 − (Yp − rY )K16 +H sin β

∂Xp

∂ψ
−H cos β

∂Yp

∂ψ

(D.6)
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The mooring line attachment point P displacement (rm) partial derivatives with respect to

rotational displacements ( Equation (4.34)), can be expressed as

⎡
⎢⎢⎢⎢⎣

∂ Xp

∂φ

∂Yp

∂φ

∂ Zp

∂φ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−cψ sθ cψ cθ sφ cψ cθ cφ

−sψ sθ sψ cθ sφ sψ cθ cφ

−cθ −sθ sφ −sθ cφ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xpo

ypo

zpo

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂ Xp

∂θ

∂Yp

∂θ

∂ Zp

∂θ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 cψ sθ cφ + sψ sφ −cψ sθ sφ + sψ cφ

0 sψ sθ cφ − cψ sφ −sψ sθ sφ − cψ cφ

0 cθ cφ −cθ sφ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
xpo

ypo

zpo

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂ Xp

∂ψ

∂Yp

∂ψ

∂ Zp

∂ψ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−sψ cθ −sψ sθ sφ − cψ cφ −sψ sθ cφ + cψ sφ

cψ cθ cψ sθ sφ − sψ cφ cψ sθ cφ + sψ sφ

0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xpo

ypo

zpo

⎤
⎥⎥⎥⎥⎦
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