
Exploring Dynamic Hamiltonian Monte Carlo for

Bayesian Neural Networks

Yiu Sing Lau

Master of Science

Department of Mathematics and Statistics

McGill University

Montreal, Quebec

December 2018

A thesis submitted to McGill University in partial fulfilment of the requirements of the

degree of Master of Science

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr.Stephens for being patient and understanding with

me, and for providing much needed financial support. Also the financial support from the

Department of Mathematics and Statistics of McGill University is much appreciated.

ABSTRACT

Neural network models have seen tremendous success in predictive tasks in machine learning

and artificial intelligence, with some attributing their success to implicit use of Bayesian

inference [45]. Stan is a state-of-the-art software for Bayesian statistical computing used

mainly in the statistical community, however, it is not optimized for use with neural network

models. In this thesis, we replicated much of Stan’s No U-Turn sampler in PyTorch and

explored its use for sampling from Bayesian neural network models. We were able to explore

different samplers, model structures and their sampling and predictive performances on a

benchmark classification task. We found that Bayesian inference gives more robust predictive

performance compared to their frequentist counterparts in general, but care is needed with

the choice of prior and the MCMC sampler.

Contents

1 Introduction 3

1.1 Stan . 3

1.2 Bayesian Neural Networks . 4

2 Stan 7

2.1 Hamiltonian Monte Carlo . 7

2.2 No U-Turn Sampler . 20

2.3 NUTS Termination Criteria . 24

2.4 Adaptive Tuning of Step Size . 31

2.5 Adaptive Tuning of the HMC Metric . 33

2.6 HMC-Specific Sampling Diagnostics . 34

2.7 Other Sampling Diagnostics . 36

2.8 Numerical/Implementation Tricks . 38

3 Bayesian Neural Networks 45

3.1 Introduction to BNNs . 45

3.2 Sampling for the Hyperparameter . 48

3.3 Stochastic Gradient Hamiltonian Monte Carlo 49

3.4 Priors . 54

3.4.1 Horseshoe Priors . 54

3.4.2 ARD Priors . 56

1

3.5 Scaled Initialization . 57

3.6 Model Selection . 57

3.7 Relation to Stan and PyTorch . 60

4 Experiments 62

4.1 Model and Data . 62

4.2 Comparison with Early Stopping Committees 65

4.3 GNUTS v.s. XHMC . 66

4.4 Gibbs Sampling v.s. Joint Sampling for Hyperparameter 67

4.5 Priors . 68

4.6 SGHMC . 70

4.7 Scaled Priors . 71

4.8 Covariance Adaptation . 72

4.9 Number of Layers . 73

4.10 Float v.s. Double Precision . 74

4.11 Static v.s. Dynamic HMC . 75

4.12 WAIC for Model Selection . 76

4.13 Conclusions . 78

5 Conclusion 81

5.1 Conclusion . 81

2

Chapter 1

Introduction

In this thesis, we will examine the problem of Bayesian computation as it pertains to neural

network models. There are two main themes in this thesis. The first is the Stan software,

the HMC samplers implemented therein, the principles behind these samplers, as well as

the diagnostic tools that come with it. The second are the Bayesian neural network models,

which has been hugely popular in deep learning. Since we will use HMC samplers to sample

from the posterior of the Bayesian neural networks, we would have to first understand the

inner workings of these samplers. This motivates the order in which we chose to present

these two themes.

1.1 Stan

Stan has replaced most Bayesian statistical softwares like JAGS and WINBUGS as the

recommended tool for Bayesian inference requiring Markov Chain Monte Carlo (MCMC)

because of its effectiveness, relative ease to learn, clear and extensive documentation, as well

as its large community of users and expert support staff. Roughly based on the No-U-Turn

sampler (NUTS) [33], it has since evolved from the original NUTS sampler and has many

more features built in to facilitate sampling and diagnosing sampling issues.

In Chapter 2, after giving a short introduction to MCMC, we will give an extensive

3

overview of Hamiltonian Monte Carlo (HMC), which is the foundation on which NUTS

is built. This is important for understanding why HMC is used for sampling from the

Bayesian neural network models that we will introduce in Chapter 3. Then we will explain

the version of No U-TURN Sampler implemented in Stan, highlighting its difference from the

original implemnted in [33]. The exhasutive terminal criteiron for NUTS (XHMC), which

has not been exposed in the latest version of Stan yet, has been shown to improve sampling

efficiency in correlated distributions. [12]. Experiments comparing its performance against

the default termination criterion will be discussed in Chapter 4. Then we will review the

automatic tuning strategies for the step size parameter and covariance metric used by Stan,

followed by a discussion of the built-in convergence diagnostics, NUTS-specific and otherwise.

Finally, we discuss some of the numerical tricks used by Stan that are omitted in the official

documentation but can be critical for creating a robust implementation. Pseudocode for

most algorithms discussed in chapter 2 will be provided, and they have been implemented

in Python.

1.2 Bayesian Neural Networks

Neural network models have become hugely popular, having been rebranded as Deep Learn-

ing, and are attracting a lot of attention from researchers and practitioners alike [31]. Many

of its successful applications can be found in vision, text, speech, and many other sub-fields

of artificial intelligence. However, there is not yet a consensus that explains why these models

do so well, in many cases defying existing learning theory.

In Chapter 3 we give a brief overview of the Bayesian neural network literature and iden-

tify areas where we feel could benefit from new developments in NUTS and related sampling

techniques. In Neal’s and Cho’s work [49, 19], sampling from the posterior distribution was

done by alternating between the lower and higher level parameters in a block-Gibbs fashion.

With the models and data they used, they found joint sampling performed worse than Gibbs

4

sampling for sampling the hyperparameters. We found that NUTS is capable of sampling

the hyperparameters quite well (Section 4.4), is more robust to tuning parameters (Section

4.3), and requires much less manual tuning.

Then we talk about the choice of prior for neural network models. In the 1990s it was

standard to put a hierarchical prior on the model weights , but in the new wave of Bayesian

deep learning literature the standard normal prior is used most of the times. Recently shrink-

age priors like the horseshoe prior have been used to automatically regularize the weights

[28]. In their paper the authors used variational inference to approximate the predictive

distribution, which might miss important features of the distribution. In Section 4.5, we

used NUTS to perform full posterior inference on a range of shrinkage priors . In short, we

found that the standard normal prior performed best in terms of both effective sample size

and predictive accuracy. The results of these experiments in full details will be presented in

Chapter 4.

While the use of shrinkage priors should eliminate much of the need for model selection

— one would simply fit the largest model possible and let the shrinkage prior eliminate any

excess capacity — in practice sampling from such a model might prove too difficult. For

example, having too many hidden layers might result in vanishing or exploding gradients [4].

There are also tuning parameters, like the activation function, which cannot be chosen by

shrinkage priors. This necessitates the use of model selection techniques. Model selection by

information criteria like the AIC and BIC is not backed by theory because neural networks

violate one of their regularity conditions, namely that the model must have non-singular

Fisher matrix. The Watanabe Information Criterion (WAIC) is designed to overcome this

problem for all singular models. We experimented with the WAIC but found that it failed

to choose the model that minimizes the test error on the dataset we chose.

We also experimented with Stochastic Gradient Hamiltonian Monte Carlo (SGHMC), a

version of Hamiltonian Monte Carlo that only uses a fraction of the data to approximate

the gradient of the full posterior density function. In [10] the author showed that stochastic

5

gradients cause divergence in high-dimensional problems and recommended against their

use. Our experiments show that SGHMC can yield better predictive performance than full

HMC but it requires careful tuning and is not robust to the initial tuning parameters.

Initialization strategies where the weights are sampled from a normal distribution whose

variance is scaled by the number of incoming units have been widely adopted for improving

the final predictive accuracy. It motivates one to use such scaled normal distributions as the

prior distribution. Its impact on predictive accuracy and sampling quality in our experiments

will be discussed in Chapter 4.

6

Chapter 2

Stan

2.1 Hamiltonian Monte Carlo

Bayesian inference can be simply summarized by the specification of a likelihood and prior

function. Suppose q ∈ RD is the D-dimensional parameter of the likelihood function for

observed data X ∼ π(x|q). We can model our uncertainty about it with a prior function

π(q). Upon observing the data, we can perform Bayesian inference by using information

provided by the posterior distribution

π(q|x) ∝ π(x|q)π(q),

for example to carry out maximum a posteriori estimation (MAP), marginal posterior esti-

mation and to compute credible intervals. The exact calculation of the normalizing constant

Z =
∫
π(x|q)π(q)dq is possible for certain convenient functions only, and we must rely on

Markov Chain Monte Carlo (MCMC) to calculate posterior quantities.

The most basic form of MCMC is the Metropolis-Hastings (MH) sampler. Suppose we

have a an unnormalized density π(q), and h(q, p) is a proposal function such that conditional

on the current state q, the probability of moving from q to a measurable set A is denoted by

7

h(q, A), we can calculate the Hastings ratio

r(q, q′) =
π(q′)h(q′, q)

π(q)h(q, q′)
.

Then we accept the move to state q′ with probability min(1, r(q, q′)).

Algorithm 1: Metropolis Hastings Sampler

Input: q0 initial state, π(·) unnormalized target density, h(·, ·) proposal density
for i = 1 : n do

Draw qprop from h(qi−1, ·) ;
Accept qprop with probability min(1, r(qprop, qi−1)) ;

end

The use of MCMC in statistical applications began with [27, 7] in the field of image anal-

ysis. Because of the high-dimensional nature of image datasets, initially only the Gibbs sam-

pler was used, circumventing the well known slow-mixing/low-acceptance behaviour of the

random-walk Metropolis-Hastings sampler in high dimensions. The introduction of Hamil-

tonian Monte Carlo into the field of statistics by Neal [50, 49], who built on the work of

physicists using HMC to simulate from lattice field models [22], brings an exciting new tool

that allows statisicians to simulate much more efficiently from high-dimenisonal distribu-

tions. Unfortunately, because of the relative difficulty of implementing such samplers its use

in statistics has been limited. In the last few years there has been a rebirth of the HMC

sampler, with new developments that try to utilize information about the local curvature of

the density function during sampling [29, 9], as well as automate the selection of tuning pa-

rameters. [33, 12]. Arguably the most important development in this rebirth is the creation

of the No U-Turn Sampler and the Stan software, which uses NUTS as its main sampler. We

also have a better theoretical understanding of the HMC, with works [15, 43] that provide

a differential geometric interpretation of the sampler and conditions under which geometric

convergence can be obtained.

First we give a brief introduction to the HMC, explaining the algorithm and listing its

8

major features and advantages. Suppose we have a density π(q), q ∈ RD from which we would

like to sample. If π(q) is simply the marginal density of some distribution π(q, p), (q, p) ∈ R2D

in a larger space containing the original domain, then sampling from π(q, p) and keeping only

the q’s is equivalent to sampling from π(q) directly. These extra variables introduced are

called auxillary variables. Auxillary variable methods are known to speed up sampling by

introducing extra degrees of freedom in the state space and allows the chain to move more

easily across different parts of it. The Swendsen-Wang sampler [64], the slice sampler[64] are

well known examples of this class of methods. See [41, 42] for more details.

The Metropolis-Hastings sampler introduced above is a general algorithm that allows

us to sample from any distribution, discrete, continuous or neither, as long as we know its

density up to its normalizing constant. The Hamiltonian Monte Carlo (HMC) sampler is a

particular class of MH sampler that requires the unnormalized density to be continuous and

differentiable. It is also an auxiliary variable method.

We denote the unnormalized density of the target distribution by π(q), and the normal-

izing constant by Z =
∫
π(q)dq, and define the potential energy function V (q) as

V (q) = − log π(q).

If we now introduce a kinetic energy function T (p), and define the Hamiltonian as the total

energy, i.e., sum of the kinetic and potential energy functions,

H(q, p) = V (q) + T (p)

we get that

π(q, p) ∝ exp(−H(q, p))

has π(q) as the marginal density, and thus defines an auxiliary variable method. In keeping

with the physical analogy the auxiliary variable is usually labelled as the momentum. In

9

statistical applications, we usually have π(q) as the unnormalized posterior density,

V (q) = − log(prior(q) · likelihood(q|data)),

and

T (p) =
D∑
i=1

p2i
mi

,

which is equivalent to introducing an independent multivariate Gaussian random variable of

the same dimension as the original distribution as an auxiliary variable. Suppose the original

distribution is of dimension D, then the auxiliary variable is also of dimension D. and the

ith variable is a Gaussian random variable of mean 0 and variance mi.

Note that there is a physical interpretation of the system. The Hamiltonian uniquely

determines the motion of a particle, whose position in space at any time is described by the

q coordinates, and whose momentum is described by the p coordinates. Its motion can be

described by solving a system of ordinary differential equations in Hamiltonian dynamics,

known as Hamilton’s equations:

dq

dt
=
∂H

∂p

dp

dt
= −∂H

∂q
.

To simulate the trajectory of a particle, given its initial state (q0, p0), one would have

to solve Hamilton’s equations. Unfortunately, there are in general no explicit solutions for

Hamilton’s equations except for trivial models. One would then have to resort to numerical

methods that discretize the Hamiltonian dynamics [40]. The discretization should possess

some nice properties, including reversibility and volume-preservation, to ensure convergence

to the target distribution, as well as maintain stability and accuracy of the approximation

over long trajectories, the lack of which significantly reduces the efficiency of the sampler,

irrespective of model-related factors which might affect sampling efficiency, like parametriza-

10

tion or posterior correlation.

For the simple version of HMC where the momentum variable is independent from the

position variable, i.e. π(p|q) = π(p), an easy-to-implement integrator which is both volume-

preserving and reversible, with lower approximation error than conventional alternatives

for numerically solving differential equations, like Euler’s method, known as the leapfrog

integrator [40], exists and works as follows. At time t of the trajectory, given its current

position and momentum, q(t) and p(t),and step size ϵ, we would update the position and

momentum at time t+ ϵ by setting

p
(
t+

ϵ

2

)
= p(t)− ϵ

2
· ∂U
∂q

q(t)

q(t+ ϵ) = q(t) + ϵ
∂K

∂p

(
p
(
t+

ϵ

2

))
p(t+ ϵ) = p

(
t+

ϵ

2

)
− ϵ

2
· ∂U
∂q

(q(t+ ϵ)).

One leapfrog step consists of first a half-step update for the momentum, a full-step for

the position, then another half-step for the momentum. Since the update for the momentum

at time t + ϵ and time t + ϵ + ϵ
2
both involve q(t + ϵ), we can combine the updates in

the implementation, so that instead of performing two half steps for the momentum p(t +

ϵ
2
) → p(t + ϵ), then p(t + ϵ) → p

(
t+ ϵ+ ϵ

2

)
, we can perform a full step for the momentum

p(t+ ϵ
2
)→ p(t+ ϵ+ ϵ

2
) as

p
(
t+ ϵ+

ϵ

2

)
= p(t+ ϵ)− ϵ

2

∂U

∂q
(q(t+ ϵ)) (2.1)

= p
(
t+

ϵ

2

)
− ϵ

2

∂U

∂q
(q(t+ ϵ))− ϵ

2

∂U

∂q
(q(t+ ϵ)) (2.2)

= p
(
t+

ϵ

2

)
− ϵ∂U

∂q
(q(t+ ϵ)). (2.3)

Note, however, we still need p(t + ϵ
2
) to perform the full steps, so that at least one half

step has to be made for the momentum. Also, in this alternative implementation of the

leapfrog integrator, the momentum p is always one half step ahead of the position, hence

11

the last update for the momentum has to be a half step so we end up with p(t + ϵL) and

q(t + ϵL), both synchronized. The two implementations yield exactly the same updates,

bar loss of accuracy from calculating the sums and extra computer time for updating the

momentum variables twice in the naive implementation.

Starting at some initial time t0, with initial coordinates (q(t0), p(t0)), the position and

momentum at time t + s can be determined by repeating the steps above roughly s/ϵ = L

times, taking care to round up or down.

One advantage of the leapfrog integrator over other more well-known methods for nu-

merically solving ODEs, such as Euler’s method, is that it is symplectic, which means it

preserves volume in the phase space. This contributes to its relative stability along the

trajectory compared to Euler’s method and its modifications. An unstable trajectory as

simulated by Euler’s method would propose a state that has diverged from the energy level

set to which the initial state belong, which makes proposals much more likely to be rejected,

especially in high-dimensional distributions. However, the leapfrog method does not preserve

the Hamiltonian, so the energy of the particle would oscillate as it is being simulated. It

has important implications for the sampling algorithm. Intuitively, this breaks the law of

conservation of energy and suggests the position of the particle at the end of its trajectory

may deviate from the correct trajectory, on which the energy should be preserved. Reducing

the step size would mitigate the problem but it comes with increased computational costs.

This necessitates the introduction of a Metropolis acceptance step in order to preserve the

invariant distribution. To explain this, we shall put HMC in the context of an auxiliary

variable method.

First, the joint distribution of the position (original) and momentum(auxiliary) variables

is factored into a product of a conditional distribution π(q, p|E) and an independent marginal

distribution π(E), where E is the Hamiltonian energy for the state (q, p),

π(q, p) = π(q, p|E)π(E).

12

Sampling from the joint distribution is done by first sampling from the auxiliary (energy)

distribution π(E). In this case randomness is introduced only during the re-sampling of the

momentum variable, that is, change in the kinetic energy, because the potential energy is

not dependent on the momentum. Then, conditional on the value of the current energy,

we sample from the joint conditional distribution of the position and momentum variables

π(q, p|E). Leapfrog steps are involved only when sampling from the conditional distribution

π(q, p|E). This ”sampling” is actually deterministic as it consists of simulating a trajectory

under Hamiltonian dynamics with given initial states. Because Hamiltonian flow is reversible

and volume-preserving independent of numerical discretization, convergence of the MCMC

samples to the target distribution is guaranteed without the need for Metropolis correction

if we can simulate Hamiltonian dynamics exactly. Indeed, there has been experiments with

HMC where the Metropolis acceptance step is dispensed with and samples drawn from

the resulting algorithm, when used for inference, still yield good predictive performance

on regression tasks [49], although it is offset by decreased robustness as the uncorrected

trajectory could become unstable when the step size becomes too large.

Now, we describe a simple version of the HMC sampler. The sampler starts by drawing

from the conditional (marginal because of independence) distribution of the momentum/aux-

iliary variables p, then it simulates the movement of a particle having initial position and

momentum (q, p) according to Hamiltonian dynamics. More precisely, we do L leapfrog steps

of step size ϵ, both of which are important tuning parameters to the algorithm. At the end

of the trajectory we get (q(t+Lϵ), p(t+Lϵ)) = (q̃, p̃), which becomes the proposed state for

the chain and is used in the calculation of the Hastings ratio. The proposed state is then

accepted with probability min(1, exp(H(t+ Lϵ)−H(t))).

Here we state some facts about Hamiltonian dynamics that would help us understand

why proposals generated from the simulation of Hamiltonian dynamics would form a Markov

Chain sampler that has the right invariant properties.

First, the Hamiltonian flow, i.e. the mapping induced by the Hamiltonian dynamics,

13

Algorithm 2: HMC update

Data: Input: potential energy function V (q), its gradient ∇V (q), initial position q0,
ϵ,L,Σ

q = q0 ;
p = N (0,Σ) ;
pc = p ;
for i = 1 : L do

p = p− ϵ
2
∗ ∇V (q) ;

q = q + ϵ ∗ Σ−1p ;
p = p− ϵ

2
∗ ∇V (q) ;

end
p = −p ;

Hc = V (q0) +
pTc Σ−1pc

2
;

Hn = U(x) + pTΣ−1p
2

;
u = Unif(0, 1) ;
if u < min(1, exp(Hc −Hn)) then

out = q ;
else

out = q0 ;
end

is reversible. That is, any mapping Ts(q(t), p(t)) = (q(t + s), p(t + s)) is bijective and has

an inverse T−s. Intuitively, it says that any particle whose trajectory follows Hamiltonian

dynamics can be returned to its initial state (q0, p0) from current state (qt, qt) by reversing the

sign of qt and having the particle follow its trajectory for time t. Reversibility is important as

one of the necessary conditions for Markov Chains to have the correct invariant distribution

and convergence properties [59].

Second, the Hamiltonian flow Ts is a volume-preserving mapping. That is,

Vol(Ts(A)) = Vol(A),

where A is a measurable set in the augmented parameter space (e.g. R2d) which contains

the support of the joint probability density π(q, p), and V ol(·) a volume measure. It makes

it possible to calculate the Hastings ratio without involving the determinant of the Jacobian

matrix of the mapping Ts, which might be tricky for most mappings. For Hamiltonian

14

flows the determinant is just one. Third, the Hamiltonian is constant with respect to time,

i.e., dH
dt

= 0. From the physics point of view, this is simply the conservation of energy

in a closed system. It keeps acceptance probability high if the discrete simulation of the

Hamiltonian dynamics is accurate enough, which is equivalent to staying close to the true

trajectory, usually achieved by using a small leapfrog step size. This has been mentioned

earlier and we will look at it from another angle here. The Metropolis acceptance step

accepts the proposed state (qt, pt) as the next state in the Markov chain with probability

min(1, exp(−H(qt, pt) + H(q0, p0))), where (q0, p0) is the previous state in the chain, also

the initial state in the Hamiltonian trajectory. In theory, because we are sampling from an

energy level set

S = {(q, p)|H(q, p) = E}

for some fixed energy value E, the entire trajectory (q0, p0), (qϵ, pϵ), . . . (qϵL, pϵL) where ϵL = t

has the same Hamiltonian value H(qs, ps). Then

−H(qt, pt) +H(q0, p0) = 0

and the proposed state is accepted with probability 1. When a numerical approximation to

the correct Hamiltonian dynamics is used to find the proposed state, it inevitably deviates

from the exact trajectory, and the order of that error determines how large the difference

−H(qt, pt) + H(q0, p0) will be. Although it is possible that (qt, pt) gives a smaller energy

that the initial state and hence resulting in an acceptance probability of 1 as well, empirical

evidence suggests that the Hamiltonian tends to oscillate along the trajectory traced out by

leapfrog, and hence it is equally likely for exp(∆H) to be larger or less than 1.

Having discussed the Hamiltonian function, we now look at one of its two components,

the kinetic energy function T (p). Because the Hamiltonian function remains constant along

its trajectory after the initial position and momentum is fixed, the only change in the value

of the joint probability density function π(q, p) comes from the initial re-sampling of the

15

momentum variables p from its marginal distribution.

From the theory of auxiliary variable sampling we see that there are infinitely many

marginal distributions for the momentum variable p that would give the same target marginal

distribution for the original parameter q. For example, if we restrict

p ∼ N (0,M),

where the mass matrix M is positive definite then any choice of M on the support gives a

different kinetic energy and, by extension, a different Hamiltonian function. In the HMC

literature, the focus has been on Gaussian kinetic energies, justified by empirical performance

and intuition appealing to the central limit theorem. In [29] the authors experimented with

the more heavy-tailed Student-T distribution and found it to perform not as well as Gaussian

momentum distributions. For the rest of the discussion of HMC we assume a Gaussian

distribution is used to model the auxiliary momentum variables.

A clever choice of mass matrix can significantly speed up the sampler. Its selection mainly

has to do with decorrelating the irregular geometry of the target distribution,which slows

down sampling. For example, if we would like to sample from a multivariate highly correlated

Gaussian distribution, one could adopt an appropriately adjusted mass matrix M for the

kinetic energy, and the induced sampling can be shown to be equivalent to sampling from a

standard Gaussian with identity covariance in a linearly transformed parameter space. Sam-

pling efficiently from a standard Gaussian distribution is easy for HMC and Random Walk

Metropolis, because all the variables are independent and on the same scale. Dimensionality

has no impact on sampling in this case because each dimension is sampled independently

and separately, and since the proposal distribution is Gaussian it is easy explore the support

of the target distribution as it overlaps with the target distribution exactly.

To see how to transform the problem of sampling from a skewed multivariate Gaussian

distribution to sampling from a standard Gaussian, let q′ = Aq, where A is an invertible

16

matrix. If we also transform the momentum variables p′ = (AT)−1p ,then the Hamilton’s

equations for the transformed variables (q′, p′) will be the same as the original variables

(q, p). As an aside, note this also implies that HMC is rotationally invariant, i.e. if A is

orthogonal, A−1 = AT , then reparametrizing the variables by multiplying (q, p) by A would

result in exactly the same simulated trajectories if we keep all tuning parameters the same.

Suppose we want to sample from q ∼ N (0,Σ). Let p ∼ N (0,Σ−1), then the updates

would be equivalent to using an identity covariance for p for drawing from a standard mul-

tivariate Gaussian distribution. This fact about HMC suggests it would improve sampling

efficiency if one has access to the covariance of the target distribution and its inverse, al-

though this is true for MCMC sampling in general as well. In general the momentum distri-

bution can be tuned by first exploring the density with a simple HMC sampler with standard

Gaussian momentum distribution, then use the samples to estimate the covariance matrix

of the target distribution, the inverse of which could be set as the covariance. For reasons

of memory and time constraints it might be beneficial to use only the diagonal covariance.

There are several reasons why HMC is better than random-walk Metropolis. First, it

avoids random walks in the parameter space. Random walks are inefficient because suc-

cessive proposals might double back to previous positions, thus limiting the range of the

exploration of the support, whereas Hamiltonian trajectories would be in the same direction

for many steps. Assuming independence, n steps of random walk would result in a random

displacement of n units. Its variance is a linear function of n. Its standard deviation is

O(
√
n), and can be interpreted as the typical distance a random walk moves. As an analogy,

if we have a 1-dimensional random walk ei ∼ N (0, σ2) starting from the origin, then, with

high probability, the particle will end up in the interval (−
√
σ,
√
σ). On the other hand,

since leapfrog steps are deterministic given initial position and momentum, the distance

moved will be proportional to n. Second, HMC is much more efficient in high-dimensional

settings. Because Random Walk Metropolis randomly proposes changes in the 2D possible

directions, it becomes exponentially more unlikely to move to an area of the support where

17

there is significant mass. The acceptance probability would be extremely low and the chain

becomes stuck. On the other hand, because HMC uses information of the gradient and an

auxiliary variable tuned to the curvature of the target distribution, the exploration stays

close to the mode and the high density neighbourhood around it. There is a delicate balance

between staying close to the mode and in the neighbourhood containing the mode. From

almost any standard introduction to statistical learning [23] we learn about the curse of

dimensionality, which says that the probability mass in the neighbourhood containing the

mode of the density function decreases exponentially as the dimension increases. This means

that simply sampling from around the mode will miss a lot of the support which contributes

to the integral, but it remains an important starting point because the interesting part of

the support lies just outside the immediate neighbourhood of the mode. The gradient draws

the trajectory to the mode while the momentum variable keeps it from getting stuck there

and moves it around with each resampling.

We have described some of the advantages of HMC, but unfortunately it has one great

disadvantage, which is its sensitivity to tuning parameters. In the description of the basic

HMC sampler above, we assume the step size ϵ, trajectory length L, and the momentum

covarianceM are known. These cannot be set arbitrarily as the performance of the algorithm

can change completely when they are not set appropriately [50]. HMC can perform no better

than random walk Metropolis — itself an highly inefficient sampler — for high-dimensional

distributions. The manual tuning of these parameters is the next part of our discussion.

The first parameter we will discuss is the step size ϵ. A small step size would cost

more computation time but gives better approximation to the correct trajectory. Worse

still, when a too large step size is used, there are no constraints on how far the simulated

trajectory would deviate from the correct one. The simulated trajectory could quickly move

to a region of the support where the Hamiltonian function blows up. There needs to be

a mechanism in the algorithm to detect divergence due to the step size and signals us

to possibly tune it down, otherwise the unstable trajectory would diverge to infinity in

18

terms of its Hamiltonian function value and causes the program to crash, not to mention

a chain with too many divergences would generally be biased. It is suggested by Neal that

introducing a random jitter around the step size at the start of each trajectory, for example,

use ϵ + ϵ ∗ Uniform(−0.1, 0.1) instead of ϵ, would help alleviate the problem, as sometimes

the trajectory would be simulated using a step size under the stability limit for ϵ, which can

differ between different parts of the support of π(q, p). This also deals with the problem

of accidentally having ϵL match the period of some variable or equivalently simulating a

trajectory which returns to the original position at the end of its trajectory. This destroys

ergodicity and makes the sampler biased.

The second parameter of interest is the trajectory length L. Once ϵ is fixed, it is essentially

a proxy for the integration time t = ϵL. It controls how much of the state space is explored

at each iteration of the Markov chain. The longer we let the trajectory run more of the state

space would be explored, but by letting it run for too long we would eventually come back

to the initial position and the exploration time is wasted. Similar to the discussion about

tuning ϵ, the tuning of L could depend on the part of the state space where the chain finds

itself. In the basic HMC sampler, we use the same ϵ and L throughout the entire sampling

process.

Neal [49] suggests doing several preliminary runs with a combination of ϵ and L values

and using the acceptance rate as guidance. There is no guarantee of optimality and in even

moderately complex distributions we never know whether we have sufficiently integrated

the trajectory long enough. The optimal acceptance rate for HMC has been derived as 0.65.

Optimality here is defined with respect to the cost of obtaining an independent point. See [50]

for an intuitive derivation and see [8] for a theoretical derivation. This sort of manual tuning

is similar in spirit to the manual tuning strategies from the MCMC literature, and shares

with them the disadvantage of requiring human intervention after each chain is sampled.

A heuristic for manual tuning was given by Gelman et al. [26]: first fix ϵL = t, then adjust

ϵ and L by setting ϵ = ϵ
10

and L = 10L and monitor the changes reflected in diagnostics

19

such as ESS and trace plots. Of course, one problem with this heuristic is that it fixes the

integration time at 1, which might be too long or too short, depending on the contour of the

target. The hand-tuning process can be made somewhat more efficient by listing all feasible

values for ϵ and L and select the best combination by performing a grid-search. This only

works if we accept the use of a one-dimensional diagnostic to quantify the quality of samples

generated from a pair of {ϵ, L} values. This can be done by Bayesian optimization as well.

Whether selected by hand-tuning or Bayesian optimization, the tuning process has no impact

on the ergodicity of the sampler as we only use the samples generated once we have decided

on a pair of tuning parameters (ϵ, L). This approach does not utilize information about the

target distribution, relying only on inappropriate choices of parameters to be weeded out

when the diagnostics indicate poor results.

So far we have already touched upon the integration time when discussing its connection

with step sizes and trajectory lengths. It is a tuning parameter that exists in both the

theoretical and numerical version of HMC. In the theoretical version, we assume Hamiltonian

dynamics can be simulated exactly, even then we would still have to decide the duration for

which the imaginary particle is integrated. This is the amount of time we decide to simulate

the trajectory in the augmented space (q, p) before projecting back to the sample space (q).

In any numerical implementation this is subsumed in the product of the step size and number

of leapfrog steps ϵL. It influences mainly the exploration of the augmented space, where a

trajectory is simulated along the level set {(q, p) : H(q, p) = E}.

2.2 No U-Turn Sampler

There exists an extension of the basic HMC sampler that seeks to increase the acceptance rate

by, conditioning on an initial state, proposing a state uniformly sampled over the leapfrog

trajectory instead of always proposing the state at the end of the trajectory. Two trajectories

are proposed, one containing the initial state; one of the two trajectories is chosen, then a

20

state is sampled from the chosen trajectory. The HMC update step is then much more likely

to propose and accept a state different from the initial state. This is Neal’s window method

[48].

First we select a window size W < L, then sample randomly s ∈ {0, 1, 2, . . . ,W −

1}. Take the current (q, p) as (qs, ps), we generate the sequence [(q0, p0), (q1, p1), . . . (qL, pL)]

stochastically by applying forward leapfrog steps (original leapfrog step with step size ϵ) for

(qi, pi), i > s, and backward leapfrog steps in random (step size equal to −ϵ). Then the

acceptance window is the sequence of W (qi, pi) pairs at the end of the trajectory, more

specifically,

{(qL−W+1, pL−W+1), . . . , (qL, pL)}.

And the rejection window is the W pairs

{(q0, p0), . . . , (qW−1, pW−1)}.

Then we set the probability of accepting the acceptance window as

min

(
1,

∑
i∈A π(qi, pi)∑
j∈R π(qj, pj)

)
= min

(
1,

∑L
i=L−W+1 π(qi, pi)∑W−1

i=0 π(qi, pi)

)
,

where A,R are the set of indices for pairs belonging to the acceptance window and rejection

windows respectively. We are essentially choosing the acceptance window with probability

equal to the ratio of the sum of probabilities of each pair in the acceptance window to the

sum of probability of pairs in the rejection window. This is reminiscent of the Hastings ratio

in standard Metropolis Hastings samplers. One can conceptualize this sampler as performing

MH sampling over an augmented space where each state is a window of W points in the

original phase space.

Once a window has been chosen, we select a pair among the W pairs in the window with

probability weighted by π(qi, pi). That is, suppose the rejection window is chosen, we choose

21

the new state to be (qi, pi), i ∈ 0, . . . ,W − 1 with probability

π(qi, pi)∑W−1
j=0 π(qj, pj)

.

It shows that even when we do not accept the proposal window near the end of the trajectory

(acceptance window), there is still a probability of moving the chain away from its current

state. This method generates a Markov Chain that leaves the target distribution invariant,

and has been applied by Neal in neural network models to increase acceptance probability of

the HMC sampler[48]. The two reasons for discussing the Window method are , first, that

it has been shown to significantly improve sampling from BNN models, and, second, that a

special case of the method is incorporated in the No U-Turn sampler implemented in Stan.

The important idea to retain is the conceptualization of proposing a new sample given the

current sample as a two stage process, the first being to sample a trajectory containing the

initial state, then sample the next state given the sampled trajectory.

Algorithm 3: Windowed HMC update step

Input: number of leapfrog steps L, initial position q0
Sample initial momentum p0 ;
q−, q+, qprop ← q0;
p−, p+, pprop ← p0 ;
logwprop = H(qprop, pprop) ;
for i = 1 : L do

logwold = logwprop;
Sample v ∼ Uniform({−1, 1}) ;
if v = −1 then

q−, p− ← Leapfrog(q−, p−,−ϵ);
logwprop = H(q−, p−);

else
q+, p+ ← Leapfrog(q+, p+, ϵ);
logwprop = H(q+, p+);

end
With probability min(1, wprop

wold
) accept (q, p) as (qprop, pprop);

qi, pi ← qprop, pprop;

end

22

The No-U-Turn Sampler [33] builds on the windowed HMC sampler, which is extended

to automatically adjust the trajectory length during sampling. Given an initial state (q0, p0)

in the phase space, similar to the windowed HMC sampler, the NUTS starts by randomly

integrating forward or backward for ℓ number of leapfrog steps. For each subsequent in-

tegration step, the NUTS doubles the integration length. After each integration step, a

termination criterion is computed to determine if the trajectory expansion should continue.

Expansion stops when either end of the trajectory starts doubling back on itself. Compared

to static HMC, where the number of leapfrog steps L is fixed across the chain, NUTS can be

considered a dynamic version of HMC, where the number of leapfrog steps can vary across

iterations and is generally dependent on the geometry of the Hamiltonian flow trajectory in

the phase space.

The reason for doubling the integration lengths is that the algorithm needs to compute a

termination criterion at the end of each trajectory, which is necessary for the correctness of

the sampler because it maintains reversibility. Suppose T (t|z) is the transition probability

of a trajectory given initial state z = (q, p), and LL
z,z′ is the set of all trajectories of length L

containing the points z and z′. Computing the termination criterion after each integration

step ensures

T (t|z) = T (t|z′), ∀t ∈ LL
z,z′ .

It is important to remember that conceptually what we are doing when moving from an

initial state z to a final state z′ while exploring the energy level set is a two-stage procedure:

first sample a trajectory containing the initial state, then sample the final state given the

trajectory. Thus, the transition probability is

T (z′|z) =
∑
t

T (z′|t)T (t|z).

This step acts as a checking mechanism to make sure that, starting from any state of the

trajectory, the expansion could reach any other state in the trajectory. To ensure this care

23

must be taken when doubling the trajectory. The algorithm for expanding the trajectory

works by recursively doubling binary trees, where states in the trajectory are leaves in the

binary tree. Each doubling of the trajectory is equivalent to appending a binary tree of

the same size to the current tree. Only the two ends of the new tree need to be checked

for the termination criterion all the subtrees have been checked by recursion. It means

that, although in theory one can randomly integrate back and worth, adding one state to

the trajectory at a time like the windowed HMC, to do this would necessitate computing

the termination criterion O(L2) times, whereas with the doubling only O(logL) times are

required.

Algorithm 4: No U-Turn Sampler Update with Unity Covariance Metric

Input: initial position q0, step size ϵ, joint density π
Re-sample p0 ∼ N (0, I) ;
Initialize q− = q0, q+ = q0, p− = p0, p+ = p0, j = 0, qnext = q0, s = 1, w = π(q0, p0) ;
while s = 1 do

Choose a direction vj ∼ Uniform({−1, 1}) ;
if vj = −1 then

q−, p−,−,−, q′, s′, w′ ← BuildTree(q−, p−, vj, j, ϵ);
else
−,−, q+, p+, q′, s′, w′ ← BuildTree(q+, p+, vj, j, ϵ);

end
if s′ = 1 then

With probability min(1, w
′

w
), set qnext ← q−;

end
w = w + w′;
s = sI[(q+ − q−)Tp− ≥ 0]I[(q+ − q−)Tp+ ≥ 0];
j = j + 1 ;

end
return qnext

2.3 NUTS Termination Criteria

Even though the No-U-Turn sampler is named after its termination criterion, which can

be described broadly as terminating whenever the trajectory starts to make a u-turn, the

criterion itself is a rather crude heuristic that is not justified by any theory. The main

24

Algorithm 5: BuildTree 1

Input: initial position q, initial momentum p,integration direction v,tree depth j,step
size ϵ

if j = 0 then
Base case: take one step in direction v ;
q′, p′ ← Leapfrog(q, p, vϵ) ;
w′ ← π(q′, p′) ;
return q−, p−, q+, p+, q

′, s′, w′ ;

else
q−, p−, q+, p+, q

′, s′, w ← BuildTree(q, p, v, j − 1, ϵ) ;
if s′ = 1 then

if v = −1 then
q−, p−,−,−, q′′, s′′, w′′ ← BuildTree(q−, p−, v, j − 1, ϵ) ;

else
−,−, q+, p+, q′′, s′′, w′′ ← BuildTree(q+, p+, v, j − 1, ϵ) ;

end

With probability min(1, w′′

w′+w′′) , set q
′ = p′′. ;

s′ ← s′′I[(q+ − q−)Tp− ≥ 0]I[(q+ − q−)Tp+ ≥ 0] ;
w′ ← w′ + w′′ ;

end
return q−, p−, q+, p+, q

′, s′, w′;

end

25

Figure 2.1: Visualizing the No-U-Turn sampler. (a) shows a trajectory that is still expanding.
(b) shows a trajectory that has started to turn back on itself and expansion stops. Figures
come from [13].

advance made by the original NUTS paper [33] is the derivation of a correct and efficient

way to construct dynamic leapfrog trajectories by recursively building binary trees. The

termination criterion can be further improved, and Stan indeed has adopted NUTS criteria

more general than the original and even others where the u-turn aspect is done away with.

First we look deeper into the No-U-Turn termination criterion. From linear algebra, we

know that xTy > 0 can be interpreted to say that those two vectors form an acute angle.

Then the No-U-Turn criterion

pT+(q+ − q−) < 0⇔ pT+(q− − q+) > 0

pT−(q+ − q−) < 0⇔ −pT−(q+ − q−) > 0

can be explained visually by figures (a) and (b) in 2.1. Figure (a) shows when the trajectory

does not satisfy the terminating criterion and expansion continues. Figure (b) shows when

the criterion is satisfied and expansion stops. This idea is generalized in [14], where the dot

26

product

pT+(q+ − q−) = pT+

∫ T

t=0

M−1p(t)dt

= pT+M
−1

∫ T

t=0

p(t)dt

= (M−1p+)
T

∫ T

t=0

p(t)dt

= p#+

∫ T

t=0

p(t)dt

≈ p#+

n∑
i=0

p(tki)

= p#+
∑
z∼t

p(z)

is rewritten to accommodate variations of the HMC sampler where non-identity matrices are

set as the mass matrix. It is in fact the version of the terminating criterion currently imple-

mented in Stan. Note that in this implementation the criterion is no longer dependent on the

position variables q. The algorithm for this version of NUTS needs to be adjusted slightly

to include a term accumulating the sum of p variables across the subtrees. Pseudocode is

provided below.

The Exhaustive Hamiltonian Monte Carlo (XHMC) termination criterion relies on a

significant amount of differential geometry for its justification[12]. Understanding fully the

mathematics behind it is beyond the scope of this thesis. From my understanding it is a proxy

to monitor the return of a leapfrog trajectory to a neighbourhood around its initial point

after having explored the energy level set. With a smaller threshold it is meant to shrink the

neighbourhood, hence forcing the exploration to continue for longer. Luckily the numerical

quantities that need to be computed are quite easy to understand. In the original paper

[12], the author demonstrated improved sampling performance over the NUTS criterion as

indicated by increased effective sample size on correlated distributions.

The exhaustive termination criterion is defined as follows: given a threshold δ > 0,

27

Algorithm 6: Generalized No U-Turn Sampler Update
Input: initial position q0, step size ϵ, joint density π
Re-sample p0 ∼ N (0, I)
Initialize q− = q0, q+ = q0, p− = p0, p+ = p0, p

#
+ = M−1p+, p

#
− = M−1p−, ps = p0, j = 0, qnext =

q0, s = 1, w = π(q0, p0)
while s = 1 do

Choose a direction vj ∼ Uniform({−1, 1})
if vj = −1 then

q−, p−,−,−, q′, s′, w′, ps′ ← G-BuildTree(q−, p−, vj , j, ϵ)
else
−,−, q+, p+, q′, s′, w′, ps′ ← G-BuildTree(q+, p+, vj , j, ϵ)

end
if s′ = True then

With probability min(1, w′

w), set qnext ← q−
ps = ps + ps′

p#+ ←M−1p+

p#− ←M−1p−
end
w = w + w′

s = s′I[(q+ − q−)
T p#− ≥ 0]I[(q+ − q−)

T p#+ ≥ 0]
j = j + 1

end
return qnext
G-BuildTree(q, p, v, j, ϵ)
if j = 0 then

Base case: take one step in direction v
q′, p′ ← Leapfrog(q, p, vϵ)
w′ ← π(q′, p′)
s′ = True
return q′, p′, q′, p′, q′, s′, w′, ps′

else
ps = 0
q−, p−, q+, p+, q

′, s′, w′, ps′ ← G-BuildTree(q, p, v, j − 1, ϵ)
if s′ = True then

ps = ps + ps′

if v = −1 then
q−, p−,−,−, q′′, s′′, w′′, ps′′ ← G-BuildTree(q−, p−, v, j − 1, ϵ)

else
−,−, q+, p+, q′′, s′′, w′′, ps′′ ← G-BuildTree(q+, p+, v, j − 1, ϵ)

end
if s′′ = True then

With probability min(1, w′′

w′+w′′) , set q
′ = q′′.

p#+ ←M−1p+

p#− ←M−1p−

s′ ← s′′I[(q+ − q−)
T p#− ≥ 0]I[(q+ − q−)

T p#+ ≥ 0]
w′ ← w′ + w′′

ps = ps + ps′′

end

end
return q−, p−, q+, p+, q

′, s′, w′, ps′

end

28

terminate trajectory expansion when

∣∣∣ 1|t|∑
z∈t

P[z|t]dG
dt

(z)
∣∣∣ < δ,

where

P[z|t] = exp−H(z)∑
z′∈t exp

−H(z′)
.

The sum can be interpreted as a numerical approximation of an integration over the Hamil-

tonian flow ϕH
t (z)

lim
|t|→∞

1

|t|
∑
z∈t

P[z|t]dG
dt

(z) = lim
T →∞

1

T

∫ T

0

dt
dG

dt
◦ ϕH

t (z) = 0.

The function being integrated dG
dt
, named the virial, is defined as

dG

dt
=

d

dt

D∑
i=1

qipi.

It is a differential-geometric quantity designed to measure the return of the trajectory to a

neighbourhood containing its initial state. For HMC samplers the virial can be simplified as

follows:

dG

dt
=

d

dt

D∑
i=1

qipi

=
D∑
i=1

pi
dqi
dt

+ qi
dpi
dt

=
D∑
i=1

[M−1p]ipi − qi
∂V

∂qi

= 2T (p)− qT ∂V
∂q

.

29

Algorithm 7: Exhaustive Hamiltonian Monte Carlo Sampler Update

Input: initial position q0, step size ϵ, joint density π
Re-sample p0 ∼ N (0, I)
Initialize
q− = q0, q+ = q0, p− = p0, p+ = p0, j = 0, qnext = q0, s = 1, w = π(q0, p0), ave =

dG
dt (q0, p0)

while s = 1 do
Choose a direction vj ∼ Uniform(−1, 1)
if vj = −1 then

q−, p−,−,−, q′, s′, w′, ave′ ← XHMC-BuildTree(q−, p−, vj , j, ϵ)
else
−,−, q+, p+, q′, s′, w′, ave′ ← XHMC-BuildTree(q+, p+, vj , j, ϵ)

end
if s′ = 1 then

With probability min(1, w
′

w), set qnext ← q−
end
Update ave by incorporating ave′

w = w + w′

s = sI[1
2j
|ave| ≥ δ]

j = j + 1

end
return qnext
XHMC-BuildTree(q, p, v, j, ϵ)
if j = 0 then

Base case: take one step in direction v
q′, p′ ← Leapfrog(q, p, vϵ)
w′ ← π(q′, p′)

ave′ ← dG
dt (q

′, p′)
return q−, p−, q+, p+, q

′, s′, w′, ave′

else
q−, p−, q+, p+, q

′, s′, w′, ave′ ← XHMC-BuildTree(q, p, v, j − 1, ϵ)
if s′ = 1 then

if v = −1 then
q−, p−,−,−, q′′, s′′, w′′, ave′′ ← XHMC-BuildTree(q−, p−, v, j − 1, ϵ)

else
−,−, q+, p+, q′′, s′′, w′′, ave′′ ← XHMC-BuildTree(q+, p+, v, j − 1, ϵ)

end

With probability min(1, w′′

w′+w′′) , set q′ = q′′.

Update ave by incorporating w′ and ave′

s′ ← s′′I[1
2j
|ave| ≥ δ]

w′ ← w′ + w′′

end
return q−, p−, q+, p+, q

′, s′, w′, ave′

end

30

2.4 Adaptive Tuning of Step Size

The step size ϵ is arguably the most important tuning parameter for the HMC. Too large of a

step size would cause the leapfrog trajectories to diverge, although the divergence threshold is

generally model dependent. For the 1-dimensional potential energy function V (q) = q2

2σ2 , that

is, normal distributed with variance σ2, the threshold can be explicitly computed. Writing

out the matrix that encodes the linear mapping from (q(t), p(t)) to (q(t + ϵ), p(t + ϵ)) gives

that the mapping is stable if ϵ < 2σ, and diverges otherwise.

For a general multivariate q with arbitrary potential energy function, equivalent to a

general density function, we can approximate the potential energy function with a second

order Taylor expansion, so that the q2 term in the Taylor expansion of V (q) has coefficient

1
2
∂2V
∂q2

By matching the two expressions we get

σ ≈
(
∂2V

∂q2

)−1/2

Setting ϵ to that value, we are exactly in the middle of the domain of allowable step sizes,

equivalent to half of the boundary limit. While this is a useful heuristic to help one thinks

about setting the step size, care has to be taken to evaluate the second derivative using

values of the current parameters, because then the leapfrog steps are no longer reversible;

that is, since the step size is position dependent, we would get different step sizes at different

ends of a trajectory, so when we reverse direction at the other end the trajectory might not

be able return to the starting point. This heuristic has been used to guide step size selection

in Neal’s work on Bayesian neural networks with hierarchical priors [49].

Now, we describe how the step size is automatically tuned in Stan. First, keep in mind

that the step size is adapted only during the warm-up phase and stays fixed during the

sampling phase. This ensures the correctness of the algorithm as the induced Markov chain

resulted from an adaptive step size may not be reversible. As a motivation, one way of

manual tuning is try to find the step size ϵ′ that would result in an acceptance probability of

31

0.65. The acceptance probability is an average quantity, calculated as an expectation over a

chain. That is, we try to optimize ϵ ∈ R with respect to the function

h(ϵ) = Eπ[f(X)|ϵ] = lim
T→∞

1

T

T∑
t=1

E[f(Xt)|ϵ]

where f(Xt) denotes the acceptance probability for iteration t. The second equality comes

from the convergence of the MCMC sampler. This is a stochastic optimization problem,

and Stan uses the dual averaging scheme of Nesterov to adapt the step size. The dual

averaging scheme works in general as follows. Suppose we are trying to find x ∈ R such that

h(x) = E[Ht|x] = 0, then we perform the updates

xt+1 = µ−
√
t

γ

1

t+ t0

t∑
i=1

Hi; x̄t+1 = ηtxt+1 + (1− ηt)x̄t

where µ is the target that the xt’s are shrunk towards, γ > 0 a parameter that controls the

amount of shrinkage, t0 ≥ 0 a parameter that stabilizes the early iterations, and ηt = t−κ, κ >

0 a step size schedule ensuring convergence. Since ϵ > 0, this is technically a constrained

optimization problem, but it can be easily converted into an unconstrained problem by

optimizing for log(ϵ) instead.

Algorithm 8: dual averaging tuning of ϵ

Input: Target Metropolis acceptance rate δ, initial step size ϵ0, duration of tuning Madapt

Initialize H0 = 0, γ = 0.05, t0 = 10, κ = 0.8, µ = log(10ϵ0) ;
Calculate acceptance rate α using ϵ0. ;

for m = 1 : Madapt do

Hm = (1− 1
m+t0

)Hm−1 +
1

m+t0
(δ − α) ;

log ϵm = µ−
√
m
γ Hm ;

log ϵm = m−κ log ϵm + (1−m−κ) log ϵm−1 ;
Update acceptance rate α using ϵm ;

end

Even though there is the dual averaging algorithm for adaptive tuning of the step size,

it is still an optimization problem that requires an initialization. Ideally we would like an

32

initial ϵ that is reasonable so as not to waste computational resources. In Stan the original

doubling-halving heuristic for initializing the dual averaging optimizer is used. It works by

repeatedly doubling or halving the step size, integrating the system for one leapfrog step and

evaluating the acceptance rate, until the rate crosses the 50 % threshold. Hence it avoids

starting off with a too large or small step size.

Algorithm 9: find initial ϵ

Initialize ϵ = 1, momentum p ∼ N (0, I) ;
(q′, p′)← Leapfrog(q, p, ϵ) ;

a← 2I[π(q
′,p′)

π(q,p) > 0.5]− 1;

while (π(q
′,p′)

π(q,p))
a > 2−a do

ϵ← 2aϵ ;
(q′, p′)← Leapfrog(q, p, ϵ) ;

end
return ϵ

2.5 Adaptive Tuning of the HMC Metric

Stan divides the tuning period into a number of windows of different lengths. The follow-

ing quantities, followed by their current default values in brackets, are of relevance in this

discussion:

1. Initial buffer (n = 75): the first window of the sampling stage, where only the step size

parameter is updated by dual averaging .

2. End buffer (n = 50): the last window of the sampling stage, where the covariance

metric is fixed and only the step size is updated and allows it to stabilize.

3. Window size (n = 25): the base length of interval for updating the covariance metric.

Both the step size and covariance metric are updated during the tuning stage. And

it proceeds as follows: the covariance metric is initialized by the identity matrix and an

initial step size is found by the doubling-halving heuristic. Parameter tuning then happens

33

in three stages. The first is the initial buffer, where only ϵ is updated. In the second

stage, both the step size and covariance metric are updated. While ϵ is updated after every

MCMC transition,because the dual averaging procedure only requires an acceptance rate,

the covariance metric is updated only after the number of MCMC samples collected equals

the current window size. Then we compute the empirical covariance and set the metric to

its inverse. Then we double the window size or increase it to cover the rest of the remaining

second stage if doubling is impossible. The third and last stage, which is the end buffer,

updates the step size only.

The algorithm is designed so that the covariance metric is not updated immediately at

the start of the tuning stage, because the model might be initialized particularly poorly and

hence the initial examples could be misleading. The doubling of window sizes is to allow

progressive improvement of the covariance metric. For larger window sizes, the memory

requirement for storing all the MCMC samples to estimate the covariance matrix could be

prohibitive. Therefore, Stan actually uses an online algorithm for calculating the covariance,

whose memory complexity is independent of the window size, which we will discuss in a later

section.

2.6 HMC-Specific Sampling Diagnostics

First we describe how Stan uses divergence to diagnose ϵ’s that are too large. A large

constant is selected, say Th = 1000, then after each proposal (qi, pi), we compare the energy

value H(qi, pi) with that of the previous state H(qi−1, pi−1), if |H(qi, pi)−H(qi−1, pi−1)| > Th

then a divergence is flagged and the proposal rejected. This necessarily slows down the the

sampler and increases the overall correlation between successive samples. But a divergence

should not be interpreted as simply a rejected proposal. The presence of a divergence should

call into question the correctness of the samples; the sample drawn may be biased and

hence invalid. At the end of the sampling stage, the total number of divergent transitions

34

indicates potential problem with the chosen step size. Typically the only response available

is to reduce the step size and slow down sampling. If the problem persists, it may call for

reparametrization of the model as the parameter space may have many sharp edges and steep

wells that no step sizes are small enough to navigate the space. This is not a diagnostic to

be ignored. The recommended practice is zero tolerance for divergent transitions. Even a

low number (say ≤ 5) can cause biased samples.

In a static sampler we only need to check for divergence at the end of the leapfrog

trajectory. For a NUTS sampler, however, since each state in the trajectory is considered for

acceptance when it is first generated, that means we need to check for divergence for each

of them.

The second diagnostic tool that comes with Stan is the Bayesian fraction of missing

information (BFMI) [11]. It detects a mismatched conditional Hamiltonian energy function

distribution when compared to the marginal Hamiltonian distribution.

In a HMC sampler, the leapfrog step is a deterministic process restricted to exploring a

level set determined by the initial positions (qi, pi) at the start of the trajectory. Given the

previous state qi, the only randomness introduced in the sampling process comes from the

re-sampling of the auxiliary momentum distribution. The BFMI is defined as

BFMI =
Eπ[V arπH|q [H|q]]

V arπH
[H]

where π is the marginal distribution of q and πH|q and πH are the conditional and marginal

distributions of the Hamiltonian energy function H respectively.Since the goal is to explore

the energy parameter space, we want the two energy distributions to closely match each

other, and the BFMI allows us to measure that match.

In practice the expectations must be estimated, but it is easily done by evaluating the

energy function at the values from the generated Markov chain. Suppose N +1 samples are

drawn, the estimated BFMI

35

E-BFMI =

∑N
n=1(Hn −Hn−1)

2∑
n=0(Hn − H̄)2

where Hn = H(qn, pn) and H = 1
N+1

∑N
n=0Hn. A low value of E-BFMI suggests that the

auxiliary momentum distribution is inefficient for sampling. In Stan, the default threshold

for low E-BFMI is set to 0.7.

2.7 Other Sampling Diagnostics

Other than divergence and the BFMI, Stan also includes MCMC convergence diagnostics that

are not specific to HMC samplers. They are the potential scale reduction factor and effective

sample size. In the discussion that follows we assume the parameter under investigation is

a one dimensional real variable ψ. It can be the log-posterior, the variance parameter for a

regression model with normal prior, or the posterior mean of a covariate of interest.

The Potential scale reduction factor, also commonly referred to as R hat R̂ , can be

thought of as the factor by which the scale of the current distribution for ψ might be reduced

if the simulations were continued in the limit n → ∞. This quantity should converge to 1

as n→∞. If R̂ is high, > 1.1, for example, we might want to continue simulation.

It is defined as follows. Suppose we have m chains each of length n, where ψij is the i
th

term in chain j. Then we have

36

B =
n

m− 1

m∑
j=1

(ψ·j − ψ··)
2, where ψ·j =

1

n

n∑
i=1

ψij, ψ·· =
1

m

m∑
j=1

ψ·j

W =
1

m

m∑
j=1

s2j , where s
2
j =

1

n− 1

n∑
i=1

(ψij − ψ·j)
2.

v̂ar+(ψ|y) = n− 1

n
W +

1

n
B

R̂ =

√
v̂ar+(ψ|y)

W
.

The Effective Sample Size (ESS) takes into account the autocorrelation inherent in MCMC

samples and can be interpreted to represent the equivalent number of independent draws

that a set of MCMC draws can replace, for example in calculating expectations and various

posterior quantities. The ESS has been computed differently in the literature. The Stan

implementation requires multiple chains and has the advantage that it mitigates the danger

of overestimating the ESS when the chain has not converged. It is defined as

neff =
mn

1 + 2
∑∞

t=1 ρt
,

where ρt is the lag at time t. The variogram at t

Vt =
1

m(n− t)

m∑
j=1

n∑
i=t+1

(ψi,j − ψi−t,j)
2

and the fact E[(ψi − ψi−t)
2] = 2(1− ρt)var(ψ) helps to define an estimate for lag at time t

ρ̂t = 1− Vt
2v̂ar+

37

Finally, the ESS is estimated as

n̂eff =
mn

1 + 2
∑T

t=1 ρ̂t
,

where T is the first odd positive integer for which ρ̂T+1 + ρ̂T+2 is negative. It is defined this

way because it was observed that for large T the estimates for the lags become too noisy.

2.8 Numerical/Implementation Tricks

Below we list a number of numerical ”tricks” that are essential for a successful implementa-

tion of a HMC sampler, but usually omitted in the literature.

First, there is the logsumexp function, which enables numerical stable addition of prob-

ability functions on the log scale. It computes

logsumexp(a, b) = log(exp(a) + exp(b)).

While users of traditional MCMC samplers like the Random Walk Metropolis Hastings

should be familiar with the idea of computing the Hastings ratio on the log scale to avoid

division of probabilities, the NUTS expansion requires updating the probability of the current

state by adding the probability from the new subtree. So, instead of doing

w = w + w′

we would have

logw = logsumexp(logw, logw′).

Similarly, for the Exhaustive Hamiltonian Monte Carlo termination criterion (XHMC) a

sum of dG
dt

weighted by the probability at the state need to calculated. A numerical stable

method calculating both quantities is described below.

38

Algorithm 10: logsumexp

Input: a, b
Output: c = log(exp(a) + exp(b))
s = max(a, b)
c = s+ log(exp(a− s) + exp(b− s))
return c

Algorithm 11: Stable Sum

Input: a1, logw1, a2, logw2

Output: a = a1w1+a2w2
w1+w2

, logw = log(w1 + w2)

if logw1 > logw2 then
e = exp(logw1 − logw2)
a = e·a1+a2

1+e

logw = logw2 + log(1 + e)

else
e = exp(logw2 − logw1)
a = e·a2+a1

1+e

logw = logw1 + log(1 + e)

end
return a, logw

The pseudocode for numerically stable versions of the generalized NUTS sampler (GNUTS)

and XHMC are given below. Note that it also monitors divergence and rejects automatically

any divergent transition.

Next we describe the online algorithm used by Stan to calculate the empirical covariance

matrix of the target distribution during the tuning stage. It uses the Welford’s algorithm

[67], which only requires storing one vector of the same size as the mean and one matrix of

the same dimension as the covariance.

Since HMC only works on unconstrained parameter spaces, any constrained parame-

ters, for example the variance in a normal prior, need to be transformed into unconstrained

variables, and transformed back into the original form after the leapfrog steps to calculate ac-

ceptance rate. The following identities are useful for coding up the distributions for sampling

by HMC.

Suppose y ≥ 0 is the original parameter. Then it is first transformed as X = exp(y) and

39

Algorithm 12: Numerically stable No U-Turn Sampler Update with Unity Covariance
Metric
Input: initial position q0, step size ϵ, joint density π
Re-sample p0 ∼ N (0, I)
Initialize q− = q0, q+ = q0, p− = p0, p+ = p0, j = 0, qnext = q0, s = 1, logw = H(q0, p0)
while s = 1 do

Choose a direction vj ∼ Uniform({−1, 1})
if vj = −1 then

q−, p−,−,−, q′, s′, logw′ ← BuildTree(q−, p−, vj , j, ϵ, logw)
else
−,−, q+, p+, q′, s′, logw′ ← BuildTree(q+, p+, vj , j, ϵ, logw)

end
if s′ = 1 then

With probability exp(min(0, logw′ − logw)), set qnext ← q−
end
w = logsumexp(w,w′)
s = sI[(q+ − q−)

T p− ≥ 0]I[(q+ − q−)
T p+ ≥ 0]

j = j + 1

end
return qnext
BuildTree(initial position q, initial momentum p,integration direction v,tree depth j,step
size ϵ,initial Hamiltonian H0)

if j = 0 then
Base case: take one step in direction v
q′, p′ ← Leapfrog(q, p, vϵ,H0)
logw′ ← H(q′, p′)
s′ = True and I[logw′ −H0 > 1000]
return q−, p−, q+, p+, q

′, s′, logw′

else
q−, p−, q+, p+, q

′, s′, logw′ ← BuildTree(q, p, v, j − 1, ϵ,H0)
if s′ = 1 then

if v = −1 then
q−, p−,−,−, q′′, s′′, w′′ ← BuildTree(q−, p−, v, j − 1, ϵ,H0)

else
−,−, q+, p+, q′′, s′′, w′′ ← BuildTree(q+, p+, v, j − 1, ϵ,H0)

end
With probability exp(min(0, logw′′ − logsumexp(w′, w′′))) , set q′ = p′′.
s′ ← s′′I[(q+ − q−)

T p− ≥ 0]I[(q+ − q−)
T p+ ≥ 0]

logw′ ← logsumexp(w′, w′′)

end
return q−, p−, q+, p+, q

′, s′, logw′

end

40

Algorithm 13: Numerically stable Exhaustive Hamiltonian Monte Carlo Sampler Up-
date
Input: initial position q0, step size ϵ, energy function H
Re-sample p0 ∼ N (0, I)
Initialize q− = q0, q+ = q0, p− = p0, p+ = p0, j = 0, qnext = q0, s = 1, logw = H(q0, p0), ave =
dG
dt (q0, p0)

while s = 1 do
Choose a direction vj ∼ Uniform(−1, 1)
if vj = −1 then

q−, p−,−,−, q′, s′, logw′, ave′ ← XHMC-BuildTree(q−, p−, vj , j, ϵ, logw)
else
−,−, q+, p+, q′, s′, logw′, ave′ ← XHMC-BuildTree(q+, p+, vj , j, ϵ, logw)

end
if s′ = 1 then

With probability exp(min(0, logw′ − logw), set qnext ← q−
end
Update ave by incorporating ave′

ave, logw = stablesum(ave, logw, ave′, logw′)
s = sI[1

2j
|ave| ≥ δ]

j = j + 1

end
return qnext
XHMC-BuildTree(q, p, v, j, ϵ,H0)

if j = 0 then
Base case: take one step in direction v
q′, p′ ← Leapfrog(q, p, vϵ)
logw′ ← H(q′, p′)

ave′ ← dG
dt (q

′, p′)
s′ = True and I[logw′ −H0 > 1000]
return q−, p−, q+, p+, q

′, s′, logw′, ave′

else
q−, p−, q+, p+, q

′, s′, logw′, ave′ ← XHMC-BuildTree(q, p, v, j − 1, ϵ,H0)
if s′ = 1 then

if v = −1 then
q−, p−,−,−, q′′, s′′, logw′′, ave′′ ← XHMC-BuildTree(q−, p−, v, j − 1, ϵ,H0)

else
−,−, q+, p+, q′′, s′′, logw′′, ave′′ ← XHMC-BuildTree(q+, p+, v, j − 1, ϵ,H0)

end
With probability exp(min(0, logw′′ − logsumexp(w′, w′′)) , set q′ = q′′.
ave, logw ← stablesum(ave, logw, ave′, logw′)
s′ ← s′′I[1

2j
|ave| ≥ δ]

end
return q−, p−, q+, p+, q

′, s′, logw′, ave′

end

41

Algorithm 14: Welford algorithm

Input: current sample counter t,accumulator for the mean m, accumulator for covariance
m2, current sample x

δ = x−m

m = m+ δ
t

m2 = (x−m)δT

µ = m
Σ = m2

t−1
return m,m2, µ,Σ

the log posterior is adjusted by a Jacobian term.

pY (y) = pX(f
−1(y)) | d

dY
f−1(y)|

pY (y) = pX(exp(y)) · exp(y)

log pY (y) = log pX(exp(y)) + y

When calculating the ESS, the variogram Vt involves a summation term of the form
∑N

n=t+1(θn−

θn−t)
2, which can be time-consuming when carried by brute force. From discrete mathemat-

ics we know that the Fast Fourier Transform (FFT) can be used to speed up calculation for

sums of the form

N∑
n=t+1

θnθn−t.

We can rewrite the sum into a linear combination of the desired form:

42

N∑
n=t+1

(θn − θn−t)
2 =

N∑
n=t+1

θ2n − 2θnθn−t + θ2n−t

=
N∑

n=t+1

θ2n − 2
N∑

n=t+1

θnθn−t +
N∑

n=t+1

θ2n−t

=
N∑

n=t+1

θ2n · 1− 2
N∑

n=t+1

θnθn−t +
N∑

n=t+1

1 · θ2n−t

Finally we discuss a useful heuristic for debugging MCMC samplers. Suppose we have coded

a sampler and it seems to run smoothly without a hitch, one might want to use it to sample

from a distribution with known mean and covariance, and see if the MCMC samples converge

to them in the first and second moments. However, since the empirical mean and covariance

will never match exactly the true values, how should we decide if the estimates are close

enough?

As an example, suppose we want to sample from a bivariate normal distribution with

known mean and covariance matrix. N (µ,Σ), where

Σ =

σ2
1 σ2

12

σ2
21 σ2

2

 .
Given a chain of n MCMC samples {xi}i=1:n generated by the sampler to be tested, we

could estimate the target mean by 1
n−1

∑n
i=1 xi. Since E[X − µ] = 0, and we would expect

the generated quantity η = 1
n−1

∑n
i=1 xi − µ to decrease with increasing number of samples.

Then we could monitor η by comparing it with its Monte Carlo standard error (MCSE)

MCSE =
σ̂
√
neff

where σ̂ is the estimated standard deviation. By the Central Limit Theorem one would

43

expect η ∈ (−MCSE,MCSE) with high probability. Similarly we can monitor quantities

like 1
n−1

∑n
i=1(xi1 − µ1)

2 − σ2
1,

1
n−1

n∑n
i=1(xi1 − µ1)(xi2 − µ2)

2 to assess convergence to the

marginal variances and covariance.

One can then construct example models where the mean and covariance are known ex-

plicitly, simulate multiple chains and monitor quantities for approximate convergence, in the

sense that the empirical estimated quantities differ from their exact quantities by a margin

no larger than its MCSE (or its constant multiple.) While this test does not guarantee con-

vergence of the sampler under all circumstances, it is sophisticated enough to detect faulty

implementations that leads to non-convergence to the target distribution.

The samplers implemented in this study have been tested on a two dimensional correlated

normal distribution with known covariance and a Bayesian logistic regression problem whose

posterior covariance is estimated by a long chain generated by Stan.

44

Chapter 3

Bayesian Neural Networks

3.1 Introduction to BNNs

Deep Learning, a field in machine learning which studies multilayered neural network models,

has become quite successful in artificial intelligence tasks and a lot of research has been, and

is being done to improve our understanding of these models and to apply them better and

to more fields. See [31, 38] for a general introduction into the methodology and application

of deep learning, and [60] for an in-depth literature review.

Before there was deep learning, a term which only became popular in the mid 2000s, there

were neural networks [16, 57], which were also hugely popular in the 90s, but eventually the

enthusiasim for neural networks cooled off because they were perceived to be too compu-

tationally intensive and difficult to scale up. The main reason for this was the difficulty of

training neural networks of more than one or two hidden layers. Traditional optimization

techniques like stochastic gradient descent with backpropagation did not improve empirical

test error for networks with more layers, not until ideas like pre-training to initialize opti-

mization were experimented could we fit ”deep” neural networks with more than two hidden

layers. This rebooted the field, now rebranded as deep learning, and it was followed by inno-

vations such as using the rectified linear units as activation functions [47] to allow training

45

deep networks without pre-training, and using GPUs to speed up the training process [36],

as well as the creation of software libraries like Theano [5], Caffe [35], Tensorflow[1], and

PyTorch [54], just to name a few, that make building and training neural network models

much easier by automating the backpropogation step with symbolic differentiation [3] and

handles the transition between CPU and GPU computation modes.

First we describe one of the most popular neural network models, the feedforward net-

works. Suppose we have n observed data points {yi, xi}ni=1 where xi ∈ Rp is a p-dimensional

vector, then a feedforward neural network models the data as follows:

h1 = g1(V1f1(W1xi)))

h2 = g2(V2f1(W2h1)))

...

yi = gL(VLfL(WLhL−1)))

where L is the number of layers of the network,Wj a nj×mj−1 weight matrix, Vj amj×mj−1

weight matrix, and each gj, fj a pair of activation functions that are usually non-linear

functions. There are usually no restrictions on what these activation functions must be

other than on gL which must match the data type of the yi’s. For example, if yi are binary

observations then we would like the last output activation function to be a logistic function

so that it maps output strictly to [0, 1], just like with the logistic regression. For a concrete

example of a neural network used in practice, see Section 4.1.

Popular activation functions in the classical neural network literature include the logistic

function f(x) = 1
1+exp(−x)

and the hyperbolic tangent function h(x) = 2f(2x) − 1, but in

modern deep learning the rectified linear unit (RELU) has come to dominate the field. It

has a simple form of g(x) = max(0, x), which is straightforward to do backpropagation with

despite a single point of nondifferentiability, and it was found to facilitate optimization. It

46

is particularly helpful for neural network models with many more layers than 2, and it only

requires random weight initialization, making it unnecessary to perform pre-training.

While neural networks can have different numbers of layers and number of hidden units

within each layer, theoretically only one layer is sufficient to approximate any function as

we increase the number of hidden units [34].

For Bayesian neural networks where one puts a Gaussian prior distribution on the weights

of the model, it has been shown that for a one-hidden-layer model, the prior converges to a

Gaussian process as the number of hidden units converge to infinity [49]. This gives a neat

interpretation of Bayesian neural networks.

Further work by [24] shows that heuristic training techniques such as dropout [62] are

actually doing variational inference with Deep Gaussian Process [20] as its prior, a process

where several GPs are stacked one on top of another.

The most asymptotically correct way to perform Bayesian inference for BNNs is still

MCMC sampling as pioneered in [49], in the sense that when the number of MCMC samples

goes to infinity they converge to the target posterior distribution, and marginal posterior

estimation becomes exact. This is better than alternatives that give biased approximations,

such as variational inference [32]. In [49] Neal put a conjugate hiearchical prior on the weights

of the network and sampled the weights with HMC and the hyperparameter with block-Gibbs

updates. One of his graduate students attempted to sample the weights and hyperparameters

jointly with HMC but did not get better performance. Cho [19] experimented with a block-

Gibbs-HMC hybrid method where each conditional distribution is sampled alternatively by

HMC. We experimented with a much simpler alternative for joint sampling and found good

results in terms of sample quality.

Neal found that the windowed HMC sampler improves sampling in general, and also that

evaluating the gradient using only a subset of the data would not deteriorate performance

significantly. We would seek to corroborate those observations in our own experiments.

When assessing convergence of the MCMC samples to the posterior distribution of a

47

Bayesian neural network model, one needs to keep in mind that in general these models

have a high number of local modes, usually as an exponential function of the number hidden

units [16]. This means we cannot interpret the samples as being drawn from the full posterior

distribution, but only from the neighbourhoods containing the local modes that the chains

happen to settle around. That means looking at the potential scale reduction (Rhat) for

individual weights is probably not that useful because it’s not designed to handle multimodal

distributions.

It is still useful to monitor the convergence of the log posterior and of the E-BFMI

statistics. Also it can still be useful to monitor the Rhat statistics (see Section 2.7) for the

hyperparameter if we can reasonably expect it not to be multimodal, as we can in the case

for the variance parameter of a Bayesian neural network.

3.2 Sampling for the Hyperparameter

In Neal’s work [49] he separated the model parameters into groups, and put independent

Gaussian-Inverse-Gamma priors on each of them. For example, let Wij be an entry in the

weight matrix connecting the input covariates to the hidden units in the first layer. Then,

the prior is

Wij ∼ N (0, σ2), σ−2 ∼ Gamma(a0, b0).

Assuming the size of weight matrix |W | = n, the posterior distribution for the hyperparam-

eter is once again inverse-Gamma

σ−2|W,X, y ∼ Gamma(a1, b1)

a1 = a0 +
1

2
n

b1 = b0 +
1

2

∑
ij

W 2
ij

48

He then proposed alternating between sampling the lower-level weights with HMC and draw-

ing from the conjugate posterior for the hyperparameter exactly. The pseudocode is given

below.

Algorithm 15: Blocks-Gibbs Sampler for NN weights and variance

Input: Initial variance σ2
0, number of MCMC samples M

for i = 1 : M do
Sample Wi ∼ p(W |σ2

i−1, data) ;
a1 = a0 +

1
2n ;

b1 = b0 +
1
2

∑
ij W

2
ij ;

Update σ2 ∼ Inv-Gamma(a1, b1) ;

end
return Wi=1:M

In Cho’s work [19], he experimented with joint sampling of the lower-level weights and

hyperparameters. However, since the dual averaging scheme for automatic tuning the step

size was not available at the time, he had to rely on the heuristics invented by Neal, which

asks for alternate sampling of the conditional distributions in which the step size is dependent

on the variables being held constant. He devised a scheme where the leapfrog steps in the

joint parameter space have to be done separately for the two groups of parameters.

A quick note on the parametrization used for the hierarchical prior. The non-centered

parametrization (see Section 4.5) is expected to mitigate the posterior correlation between

the hyperparameter and the lower-level weights. Reducing posterior correlation is known

to help improve sampling efficiency significantly. We experimented with joint sampling

under both parametrizations and found that non-centered parametrization is necessary for

meaningful inference. The Hamiltonian sampler also performs better than the block-Gibbs

sampler.

3.3 Stochastic Gradient Hamiltonian Monte Carlo

The idea of simulating Hamiltonian dynamics without the Metropolis acceptance step was

first experimented in the statistics/machine learning literature by Neal [49] in a batch HMC

49

sampler for the posterior distribution of a BNN. He found that, with careful selection of

the leapfrog step size, the biased samples achieve similar predictive performance as the full

MCMC samples. Therefore, it stands to reason that for predictive tasks e.g. regression or

classification where observations are abundant, we could use a validation set to select tuning

parameters, hoping to trade off a bit of bias for better predictive performance.

Another trick that helps to speed up the HMC sampler is data subsampling, also denoted

partial gradient in Neal’s thesis [49]. Assuming there are n data points, the potential energy

function V (q) can be written as

V (q) = − log(π(q)π(q|data) = − log(π(q))− log π(q|data) = − log(π(q))−
n∑

i=1

log π(q|datai)

where π(q) is the prior density function and π(q|data) is the likelihood function. Note that

the finite series in the last expression above can be approximated as

n∑
i=1

log π(q|datai) ≈
n

k

∑
i∈I

log π(q|datai)

where I is a subset of {1, . . . , n} of size k
n
. More practically, if we divide the data points into

M equally sized subsets. Then for any such subset S, the potential energy function can be

approximated by

V (q) ≈ − log(π(q)) +M
∑
i∈S

log(π(q|datai)) = Ṽ (q)

Data subsampling and omission of the Metropolis acceptance step are two key features of

the stochastic gradient MCMC literature. In an overview of the stochastic gradient MCMC

literature [44] the authors summarized it as follows: ”If the stationary distribution is not

the target distribution, a Metropolis-Hastings (MH) correction can often be applied. Unfor-

tunately, such correction steps require a costly computation on the entire dataset. Even if

one can compute the MH correction, if the dynamics do not nearly lead to the correct sta-

50

tionary distribution, then the rejection rate can be high even for short simulation periods.

Furthermore, for many stochastic gradient MCMC samplers, computing the probability of

the reverse path is infeasible, obviating the use of MH. As such, a focus in the literature

is on defining dynamics with the right target distribution, especially in large-data scenarios

where MH corrections are computationally burdensome or infeasible. ”

In deep learning, neural networks are usually fitted by stochastic gradient descent (SGD)

[52]. This is a first order method like regular gradient descent, except at each weight update

a random subset (batch) of data points are sampled from the observations, and the sequence

of step sizes over the optimization process must decay while satisfying the property

∞∑
t=1

ϵt =∞,
∞∑
t=1

ϵ2t <∞.

Theory from the stochastic optimization literature [58] guarantees convergence to a local

minimum. However, as per the norm in the optimization literature, the convergence property

is usually only provable for easier classes of problems (e.g. convex, quadratic functions) to

which the likelihood of neural network models does not belong. Nonetheless, SGD has the

advantage of easy implementation and low memory requirement (O(D)), and hence remains

the predominant optimization method in deep learning.

The success of SGD lies in being able to avoid evaluating the full likelihood, which has

contribution from each data point and at each update. The problems that neural network

models tend to be fitted for are usually in the high-sample-size, high-dimensional regime,

hence a full evaluation would slow down the algorithm significantly. A stochastic gradient

extension to MCMC was first experimented by [68], where the author proposed to use the

following updates :

qt+1 = qt +
ϵt
2
(∇ log p(qt) +

N

n

∑
i∈D

∇ log π(xi|qt)) + ηt, η ∼ N (0, ϵt)

where D is a random subset of {1, 2, . . . , N} of size n sampled at each update of q. We

51

assume there are N observations in total. The step sizes are assumed to decay following the

constraint stated above for SGD. The authors recommended setting ϵt = a(b + t)−γ with

γ ∈ (0.5, 1].

The author proved that as the step size ϵt goes to 0 the samples {qt} converge to the

Langevin dynamics targeting the posterior distribution. Of course, in practice we set lower

bound on ϵt and stop decreasing the step size once it is small enough. Also, the fact the

we are not doing the acceptance-rejection step means there will be a bias in our posterior

samples, which, unlike the samples drawn from a Metropolis-Hastings sampler, does not

decrease to 0 as we continue sampling from the chain.

Simulating from the discrete approximation to a Langevin dynamics is the basis for

Langevin Monte Carlo (LMC) or Metropolis adjusted Langevin Algorithm (MALA), which

includes an acceptance-rejection step at each update. This can also be seen as a special case

of HMC where only one leapfrog step is used (L = 1). It has been demonstrated that HMC is

much more efficient than LMC because it avoids random walks. This inspires the stochastic

gradient Hamiltonian Monte Carlo (SGHMC), which extends HMC the way SGLD extends

LMC.

Applying MCMC methods to large datasets often involve two problems. First, evaluating

the unnormalized posterior density

π(D|q) =
n∏

i=1

π(xi|q)

is equivalent to passing through all datapoints, which alone can make the sampling algorithm

unacceptably slow since all versions of the Metropolis-Hastings sampler requires such evalu-

ations for proposing new samples. Second, many models that require MCMC samples when

a large number of datapoints are available are singular models. Using the terminology of

[65], regular models are models for which the Fisher information matrix is positive definite.

They have the property that the Bayesian central limit theorem [37] holds, that is, when the

52

number of observations goes to infinity the posterior distribution of q converges to a Normal

distribution. A singular model is defined as a model whose Fisher information matrix is not

positive deinfite. A lot of methods designed to scale MCMC [51, 61] ultimately rely on this

asymptotic normality for validity. Bayesian logistic regression is a classical model for which

the CLT holds and is used in many papers to demonstrate the effectiveness of newly proposed

large-scale MCMC methods. However, the very fact that asymptotic normality holds means

there is little added utility to drawing MCMC samples from the posterior distribution, since

a normal approximation would suffice. On the other hand, for singular models there is no

guarantee that the estimates converge to the target posterior distribution.

Asympotic normality is also assumed for the application of stochastic gradient MCMC

methods to neural network models [68, 18, 2, 21, 44]. Even though neural networks are

singular models where the conditions for the central limit theorem do not hold, these methods

have shown good predictive performance on a variety of datasets. This is opposite of what

one would expect and merits further investigation.

Now we introduce the Stochastic gradient Hamiltonian Monte Carlo (SGHMC). [18]

Algorithm 16: Stochastic Gradient HMC

Data: Input: η, β̂, ϵ, α, n,M,L, q0
Initialize θ0, v0 ;
for t = 1 : M do

q0 = qt−1;
v0 ∼ N (0, 1)× ϵ ;
for i = 1 : L do

qi = qi−1 + vi−1 ;

Sample z ∼ N (0, 2(α− β̂η)) ;

Sample minibatch of size n and calculate ∇Ṽ (q) ;

vi = −η∇Ṽ (q)− αvi−1 + z ;

end
qt = qL ;
vt = vL ;

end

Notice that there are two normal distributions being sampled in the algorithm. The first

one is the momentum distribution which is the same as the original HMC. The second is a

53

quantity designed to account for the uncertainty introduced by replacing the full observed

data points by a minibatch. Under simplifying conditions on the tuning parameters and

the subsampling noise model, the SGHMC samples from the target distribution as ϵ goes to

zero. However, those conditions do not usually hold and practice and ϵ is always fixed at

a non-zero value. Nonetheless, these biased samples can be useful if the sampler is tuned

carefully.

3.4 Priors

3.4.1 Horseshoe Priors

The horseshoe prior was first proposed by [17] as a Bayesian counterpart to the frequentist

Lasso estimator in high-dimensional statistics. Like the lasso, it shrinks estimates for ir-

relevant covariates to zero. Compared to alternatives like the Bayesian Lasso [53], and the

spike-and-slab prior [46], it has the advantage of admitting full HMC sampling because it

contains no discrete parameters.

Suppose we have a D-dimensional parameter.

β = (β1, · · · , βD)

Then the horseshoe prior for this parameter is defined as

βj ∼ N (0, τ 2λ2)

λj ∼ C+(0, 1), j = 1, . . . , D,

where C+(0, 1) is a half-Cauchy distribution with mean zero and variance one. The horseshoe

prior is usually applied to regression problems where the number of samples were significantly

fewer than the number of covariates, which makes it a suitable candidate prior for models

54

that require regularization, like neural networks [28].

However, the horseshoe prior sometimes causes divergent behaviour during sampling.

The regularized horseshoe prior [56] fixes this problem and is described below:

βj|λj, τ, c ∼ N (0, τ 2λ̃2j), λ̃
2
j =

c2λ2j
c2 + τ 2λ2j

λj ∼ C+(0, 1), j = 1, . . . , D

c2 ∼ Inv-Gamma(2, 8).

We note that a Cauchy distribution is equivalent to a Student-t distribution of degree 1. A

thick-tailed prior like the Student-t is known to cause divergent problems. Therefore, it is

often written as a Normal-Inverse Gamma mixture to reduce posterior correlation. That is,

x ∼ tν(0, 1) is equivalent to

x ∼ N (0, σ2)

σ2 ∼ Inv-Gamma(0.5, 0.5).

We can further reduce correlation by using a non-centered parametrization [56]:

x = z ∗ σ

z ∼ N+(0, 1)

σ2 ∼ Inv-Gamma(0.5, 0.5).

where N+(0, 1) is a truncated standard normal distribution. The joint parameter space then

55

becomes (z, rl1, r
l
2, r

g
1, r

g
2), where

z ∼ N (0, 1)

{rl1}j ∼ N+(0, 1)∀j

{rl2}j ∼ Inv-Gamma(0.5, 0.5)∀j

rg1 ∼ N+(0, 1)

rg2 ∼ Inv-Gamma(0.5, 0.5)

λ = rl1r
l
2

τ = rg1r
g
2

β = zλτ.

Because the local and global r1 parameters are constrained to be positive, the final uncon-

strained parameter space is (z, log rl1, r
l
2, log r

g
1, r

g
2).

3.4.2 ARD Priors

Here we would briefly introduce the Automatic Relevance Determination (ARD) priors. It

is a general way of assigning priors to the neural network weights that, along with a proper

choice of prior, should allow the NNs to self-regulate excess hidden units, and hence obviating

the need for choosing the number of hidden units.

An ARD prior puts independent priors of a common distribution on the group of weights

entering each hidden unit. Suppose Wiℓ are the weights connecting into the ith hidden unit

in the ℓth layer of a NN. For example, if there are n incoming units connecting to m hidden

56

units and if the prior in question is Normal-Inverse-Gamma, then we have

Wiℓ ∈ Rn,∀i ∈ {1, . . . ,m}

Wiℓ ∼ N (0, σ2)

σ2
i ∼ Inv-Gamma(a0, b0),∀i ∈ {1, . . . ,m}.

3.5 Scaled Initialization

In the neural network literature, the initialization of weights has been observed to influence

the final predictive performance of the optimized model. Conventional initializations like the

normal distribution with mean 0 and variance 1, and the uniform distribution from 0 to 1

were replaced by scaled distributions whose scale is dependent on the model structure. For

example,

W ∼ Uniform(
−1√
Nin

,
1√
Nin

)

where Nin is the number of incoming units from the previous layer. Scaled initializations

like this were found to facilitate the propagation the gradients, and improve training speed

and predictive accuracy [30]. This motivates us to consider priors of this form. Experiment

results will be discussed in Chapter 4.

3.6 Model Selection

In a neural network model there are multiple hyperparameters that has to be selected by the

user. These include the number of hidden layers, the number of hidden units in each layer,

the choice of activation function, the use of convolutional layers in the case of convolutional

neural networks, and the prior distribution on the weights of the network, just to name a

few. Each different combination of these hyperparameters constitute a model choice. In the

57

neural network literature usually a holdout test set is used to estimate the test error. The

full dataset with observations {y,x} is split randomly into a training set {ytrain,xtrain} and a

test set {ytest,xtest}. Each model is fitted on the training set and its predictive performance

evaluated on the test set.

The model selection procedure above is a special case of cross-validation. Suppose there

are n data points. In k-fold cross validation, k ≤ n, the dataset is split into k disjoint subsets,

then repeatedly one subset is used as test set and the remaining sets used as training set.

The extreme case is leave-one-out cross-validation (LOO-CV), where k = n. To calculate

the log pointwise predictive density, lppdloo-cv, we do as follows. For each split of the n split

{di, d−i}, where di is the ith data point {yi, xi}, and d−i are the n− 1 remaining data points.

Then

lppdloo-cv =
n∑

i=1

log ppost(−i)(di),

where

ppost(−i)(di) =

∫
p(yi|xi, θ)p(θ|d−i)dθ,

which is the marginal predictive density of the ith data point, with θ integrated out with

respect to the posterior density of θ having observed the remaining n − 1 data points. In

practice, the integration is performed approximately by drawing S samples from p(θ|d−i),

denoted {θ1−i, . . . , θ
S
−i}, and they form the estimate 1

S

∑S
s=1 p(yi|xi, θs−i). Then

lppdloo-cv ≈
n∑

i=1

log

(
1

S

S∑
s=1

p(yi|xi, θs−i)

)

The main obstacle to applying this to model selection for neural networks is the simulation

from n different posterior distribution required, each of these require tuning and monitoring

to ensure low variance of the integral estimate. For high-dimensional distributions such as

the posterior distribution of a neural network, simulation becomes more difficult because of

increased computation time as well as a lack of tools for evaluating convergence of the joint

58

distribution. Most convergence diagnostics require storing the entire Markov chain, or even

simulating multiple chains, thus further multiplying the the computational burden. Further,

it is time-consuming and often unproductive to repeat 10 or 5 times the sampling process

(in the case of k-fold cross-validation for k = 10, or k = 5) when a single sampling session

could use up all available memory and computational resources. It might not be worth it to

obtain a better estimate of the test error if it means shrinking the model to allow repeated

sampling sessions.

Holdout cross-validation as currently used in the neural network literature has higher

variance than the k-fold and leave-one-out alternatives and might be problematic if the sam-

ple size is small. It might be preferable to use an information criterion which requires only

simulation from one posterior distribution, hence reducing the difficulty of assessing conver-

gence and the memory requirement for storing all samples. Traditional information criteria

like the AIC, BIC or DIC rely on the asymptotic normality of the mle for its justification,

which does not hold for non-identifiable (singular) models such as mixture models, hidden

Markov models, and more relevantly here neural network models. The Watanabe Informa-

tion Criterion (WAIC) is a recently introduced information criterion that works for singular

models as well. Its justification uses advanced mathematics beyond the scope of this thesis,

notably tools from algebraic geometry and empirical processes. Hence, we do not attempt

to give an intuitive explanation of the theory and instead take on faith its validity and its

asymptotic equivalence to leave-one-out cross-validation [66].

The WAIC can be calculated as follows. Let {θ1, . . . , θS} be S samples drawn from the

posterior distribution p(θ|D) given all observed data points. Then

WAIC = lppd− pWAIC,

where

lppd =
n∑

i=1

log

(
1

S

S∑
s=1

p(yi|xi, θs)

)

59

is the computed log pointwise predictive density.And

pWAIC =
n∑

i=1

V S
s=1 (log p(yi|xi, θs))

is the effective number of parameters, where V S
s=1 log(p(yi|xi, θs)) is the empirical variance

of the S log(p(yi|xi, θs)) for fixed i. Note that only nS points need to be stored to calculate

the WAIC. pWAIC can be calculated differently, but here we follow the recommendation in

[26] and use the formula above. The WAIC can also be calculated by importance sampling,

using the variational distribution as the proposal distribution [69].

Once we have selected a model, we can make predictions about new data using its

marginal posterior predictive distribution. That is, given a new data point {xnew}, we can

find its marginal posterior predictive density p(ynew|D) as

p(ynew|D) =

∫
p(ynew|xnew, θ)p(θ|D)dθ.

This integral is usually approximated in practice by drawing from the posterior distribution

by MCMC. If this is a classification problem of C classes we would evaluate p(ynew|D) for

all ynew = 1, . . . , C, and if a regression problem a number of points on the domain of the

output can be evaluated and a prediction made by drawing from the empirical distribution.

3.7 Relation to Stan and PyTorch

PyTorch [54] is a deep learning computational framework which contains an automatic dif-

ferentiation module optimized for neural network models. It also offers the option of GPU

computing, which Stan does not provide. What makes it stand out amongst other popular

deep learning framework as a prime candidate for implementing the NUTS sampler is that it

has a dynamic computational graph framework, which allows easy implementation of recur-

sion and allows backpropogation through it, unlike the static computational graph approach

60

adopted by TensorFlow.

There is concern that single precision might not be enough to maintain accuracy of

the Hamiltonian during leapfrog integration, therefore we carried out some experiments

comparing the performance of single and double precision numbers on a neural network test

problem. Results will be discussed in Chapter 4.

61

Chapter 4

Experiments

4.1 Model and Data

Having introduced the tools for exploring BNNs and the type of BNNs of interest, in this

chapter we will identity the research questions about BNNs and describe the numerical

experiments which have been carried out to study them. In the experiments that follow we

would focus entirely on classification problems, because that is where neural networks model

are employed most and have achieved the most success. Similarly, we would focus on a

dataset which is similar in nature to the types of problems usually encountered in the neural

network literature, but sufficiently simplified that it does not overtax our computational

resources.

MNIST [39] is a benchmark dataset that is arguably the most popular in the machine

learning literature. It consists of 60000 images of digits ranging from zero to nine. Each

image is of dimension 28 × 28 = 784, which already is high enough that it exceeds the

memory and time constraint for HMC sampling for a moderate number of hidden units,

even in the simplest neural networks with one hidden layer. Therefore, we chose a simplified

version of MNIST [55] where both the dimension and number of samples are reduced. We

compare below the original MNIST and the simplified digits images. The simplified digits

62

Figure 4.1: Examples of the digits datasets. The first row contains some examples of the
original MNIST digits. The second row contains some simplified digits

have dimension 8× 8 = 64 and the number of samples is reduced to 1797. Unless specified,

for the following experiments we use the first 500 observations as the training set and the

last 500 observations as the test set. While the shapes of the digits could still be made out

in the simplified images, the reduced definition blurs classes together so that a 4 might look

like a 9 and so on so forth. This should make prediction harder than with the original.

Unless stated otherwise, all of the experiments that follow use a neural network with one

hidden layer, 35 hidden units, and the hyperbolic tangent function as activation function.

We omit separate biases weights to simplify the presentation. It does not reduce the rep-

resentational capacity of the model by too much because one of the hidden units can act

as the bias by learning to represent a constant [16]. The simplified model has two groups

of weights, namely the input-to-hidden weights of dimension Nin ×Nhidden, and the hidden-

to-output weights of dimension Nhidden × Nout, where Nin, Nhidden, Nout, are the number of

input covariates, hidden units and output units respectively. For example, for the simplified

MNIST digits dataset described above, we have Nin = 64 and Nout = 10. Suppose X, y are

the training data input and target respectively. A single-hidden-layer neural network with a

63

standard normal prior on its weights would have this unnormalized posterior

N∏
i=1

p(y,X|W)p(W in)p(W out)

where

p(W in) =

Nin∏
k=1

Nhidden∏
j=1

exp

(
−
W in

kj ·W in
kj

2

)
,

p(W out) =

Nhidden∏
k=1

Nout∏
j=1

exp

(
−
W out

kj ·W out
kj

2

)
are the unnormalized normal prior density functions for the input-to-hidden weights and

hidden-to-output weights respectively, and

p(yi, Xi) =
9∏

t=0

π̂
I[yi=t]
t ,

where π̂t is the estimated probability for Xi belonging to class t under the model, computed

by

π̂t = h′(W outh(W inX))

where h is the tanh function and h′ the softmax function.

For high-dimensional models like neural networks with standard normal prior, where

no particular one-dimensional quantities could be singled out a priori for monitoring, the

usual strategy of monitoring trace plots for diagnosing convergence is infeasible because it

would require the user to skim through the trace plots for the thousands of parameters for

even a moderately sized network. Therefore, instead we use multiple chains to compute

Gelman’s effective sample size (ESS) [26] and monitor the minimum and median ESS over

all parameters. The minimum ESS would indicate to us if any marginal quantities have slow

convergence whereas the median would be indicative of the general speed of convergence

of the chains as a whole. High ESS is desired as they imply low autocorrelation between

64

samples, which means the Markov chain is moving rapidly across the parameter space and

is generating more independent samples.

4.2 Comparison with Early Stopping Committees

In the first experiment we compare a Bayesian neural network to an early stopping committee

of neural networks, a frequentist framework which is commonly used as a baseline method.

Early stopping is an optimization technique in which training is stopped when the predictive

accuracy on a holdout validation set ceases to improve. A group of neural networks initialized

with different random seeds, after training by early stopping, would then combine their

predictions by simple averaging.

The target neural network is a single-hidden-layer network with 35 hidden units, where

a standard normal prior has been placed on all weights. An XHMC sampler with a diagonal

metric and δ = 0.1 is used to sample from the posterior distribution of the model. The step

size and covariance metric are adapted for the first 1000 iterations with the target acceptance

rate set to 0.9. Four parallel chains each of length 2000 are sampled, resulting in 4000 final

samples.

We can find the results of the simulation in table 4.1. We see that for smaller sized

committees the predictive performance is significantly worse than Bayesian networks. It

also reveals the main disadvantage of plain optimization for fitting neural networks, that

it is heavily dependent on initialization for good performance. In some experiments we

actually found that a single neural network trained by early stopping is enough to match

the predictive performance of BNNs, but it requires trying multiple combinations of tuning

parameters and initializations. It also requires an extra holdout validation set if we do not

want to overfit to the test set. With increasing sizes the bias induced by bad initialization

is eventually smoothed out and early stopping committees’ predictive accuracies eventually

match those of BNNs.

65

Test Error%

Method\Number of ensemble points 2 5 10 100 1000

Early Stopping Committee of NNs 91.2 88.6 47.0 51.6 19.2

BNN 23.4

Table 4.1: Compare the predictive accuracy of a Bayesian neural network with early stopping
committees of neural networks of different sizes.

Test Error% Min ESS Median ESS

XHMC δ = 0.01 25.6 681 1330

XHMC δ = 0.05 25.8 738 1346

XHMC δ = 0.1 28.6 396 1351

XHMC δ = 0.2 23.4 822 1324

GNUTS 26.0 682 1369

Table 4.2: XHMC vs GNUTS

4.3 GNUTS v.s. XHMC

Since we have established the utility of dynamic HMC for sampling from BNNs, we are now

interested in choosing the most suitable termination criterion for the expansion of leapfrog

trajectories. In the following experiment we compare the generalized NUTS termination

criterion and the exhaustive termination criterion (XHMC). For both samplers we adapt the

step sizes and the diagonal metric and use multiple chains like in the previous experiment.

We tested different values of the threshold δ and found that XHMC is capable of generating

samples about as efficiently as GNUTS. Since XHMC is less computationally intensive than

the GNUTS, we would recommend the XHMC, however the the threshold δ still needs to be

tuned. For the moment the default δ = 0.1 seems to work fine and sampling performance

does not seem to be too sensitive to the threshold value.

66

4.4 Gibbs Sampling v.s. Joint Sampling for Hyperpa-

rameter

Our next research question concerns sampling for the hyperparameter in hierarchical priors.

In Neal’s work [49] the BNNs are always endowed with a hierarchical prior, usually normal-

inverse-Gamma and sampled by a block-Gibbs sampler. Subsequent attempts to replace

the block-Gibbs sampler [19] was not successful, and his joint samplers usually generated

samples with a high number of divergences. Here we want to find out whether the new

automatic tuning techniques for the step size and integration time together with dynamic

HMC can overcome these sampling difficulties.

Here, we compare Gibbs sampling with joint sampling for a neural network with a Normal-

Inverse-Gamma prior put on the input-hidden weights. A standard normal prior is put on

the hidden-output weights. More specifically, we assume

Wij ∼ N (0, σ2), σ−2 ∼ Gamma(0.5, 0.5),

which is equivalent to a student-t prior of degree 1 on Wij. Both centered (CP) and non-

centered (NCP) parametrizations are tried for joint sampling. For the Gibbs sampler, a

GNUTS sampler with an identity covariance metric and a conservative step size ϵ = 0.01

is chosen to sample the lower level weights. For joint sampling with both parametrizations,

the step sizes and covariance metrics are tuned similarly as in previous experiments.

Focusing only on the variance parameter σ2, we see that the CP encounters difficulty

during sampling and results in a too low ESS for meaningful inference. In comparison the

NCP encounters much less difficulty and has a reasonable ESS relative to the total number of

samples. Compared to the estimates generated by Gibbs sampling, joint sampling gives much

higher ESS both for the hyperparameter and the lower-level weights. We tried different step

sizes for the lower-level weights in the Gibbs sampler but failed to find one that gives decent

67

Test Error% σ2 ESS Min ESS Median ESS

Gibbs sampler 88.4 4.38 1.29 45.3

Joint sampler- CP 25.8 4.86 4.69 1037

Joint sampler - NCP 28.4 504 434 1333

Table 4.3: Compare Gibbs Sampling with Joint sampling for the hyperparameter. Note how
the centered parametrization has low ESS for σ2 but high ESS in general, translating to
good predictive accuracy.

predictive accuracy and sample efficiency. This simulation shows that joint sampling and

automatic step size tuning is an even bigger necessity than previously expected for sampling

from BNNs with hierarchical priors.

4.5 Priors

In the following experiments we shall compare the effects of choice of prior on predictive

accuracy and sampling efficiency. To keep the presentation simple we chose to use a single-

hidden-layer with 35 hidden units. Then we fix the prior on the input-to-hidden weights

as the standard normal and vary only the prior on the hidden-to-output weights. For the

normal, normal-inv-gamma and horseshoe priors, the application to the weight matrix is

simple; we simply consider the matrix as a flattened vector and evaluate the priors as if in

regression. This causes no problem even for the hierarchical priors because the hierarchical

structure does not involve correlation among the lower level weights.

The second way to assign such priors to weights is an Automatic Relevance Determination

(ARD) type approach, where a local variance is assigned for each hidden unit and one global

variance for the entire layer. As an example, suppose the layer in question has n input units

68

and m hidden units. Then, the horseshoe ARD prior can be defined as follows

Wi,· ∼ N (0, λ2i τ
2),∀i ∼ {1, . . . ,m}

λi ∼ C+(0, 1)

τ ∼ C+(0, 1),

where Wi,· are the weights entering the i’th hidden unit. This is how the horseshoe prior

was used for model selection in [28]. Similarly we can define the regularized horseshoe ARD

prior as

Wi,· ∼ N (0, λ̃2i τ
2), λ̃2i =

c2λ2i
c2 + τ 2λ2i

, ∀i ∼ {1, . . . ,m}

λi ∼ C+(0, 1)

τ ∼ C+(0, 1)

c2 ∼ Inv-Gamma(2, 8).

In the experiments we compared the standard normal prior against a number of hierar-

chical priors and their ARD variants. We found that while the regularized horseshoe prior

performs better than the original horseshoe prior in terms of having zero divergent tran-

sitions, neither of the horseshoe priors can be said to induce great sampling efficiency, as

both result in models whose posterior distribution are difficult to sample, resulting in low

ESS. What’s more is that even the Normal-Inverse-Gamma prior does not give better pre-

dictive performance than the standard normal prior, which we have already seen in earlier

experiments comparing Gibbs sampling to joint sampling for the hyperparameter.

We observe that the ARD priors in general have better predictive accuracy and much

better sampling efficiency. For the horseshoe prior in particular, the naive horseshoe ap-

plication has extremely low minimum ESS it can be considered to be not even converging

marginally in some dimensions. We suspect the lower efficiency for the naive horseshoe priors

69

Normal Normal-Inv-Gamma Normal ARD RHS RHS ARD HS HS ARD

Test Error% 23.4 26.8 24.0 37.8 30.8 41.0 33.6

Min ESS 358 440 574 151 334 4 349

Median ESS 1348 1298 1220 911 1356 80 1354

Table 4.4: Compare different priors: more complicated hierarchical priors do not necessarily
give better predictive accuracy.

is caused by the higher parameter-to-hyperparameter ratio compared to the ARD versions.

4.6 SGHMC

Next we would like to explore stochastic gradient Hamiltonian Monte Carlo. Since it is

doubtful that even the full HMC can explore completely the full posterior distribution of a

BNN because of its exponential multimodality, we would not try to compare the empirical

distributions of the HMC samples and those of the SGHMC samples directly. Instead we

compare the two samplers by their test errors.

The SGHMC has several extra tuning parameters other than the step size ϵ and number

of leapfrogs L that it inherits from the original HMC sampler. To reduce the number of

parameters to tune, we fix these parameters (α = 0.01, β̂ = 0) at the default values used

in the experiments even though they are not sufficiently motivated. These are the default

values set in the original paper [18]. The parameters remain to be tuned are ϵ, L and η. We

generated samples by SGHMC by trying every combination of tuning parameters on a grid

of values.

We found that the SGHMC can perform similarly to the HMC although it requires having

the right tuning parameter. Because the Metropolis acceptance step is omitted, there is no

mechanism to avoid the chain from diverging into a low probability zone in the parameter

space. Note that L = 50 seems to give the best predictive accuracy regardless of the step

size, this is puzzling because the ϵ’s span 4 orders of magnitude and thus gives a wide range

70

Test Error%

η = 0.1 η = 0.01 η = 0.001 η = 0.0001

L = 10 NA NA 72.2 84.4

L = 50 14.8 96.6 97.6 93.4

L = 100 34.2 20.4 47.7 89.2

L = 200 46.8 37.2 92.4 87

Table 4.5: SGHMC ϵ = 0.1

Test error%

η = 0.1 η = 0.01 η = 0.001 η = 0.0001

L = 10 NA NA 68.8 84.2

L = 50 14.8 93.8 97.2 91.4

L = 100 37.2 20 44.4 89.2

L = 200 45.6 35.6 94 85.6

Table 4.6: SGHMC ϵ = 0.01

Test Error%

η = 0.1 η = 0.01 η = 0.001 η = 0.0001

L = 10 NA NA 68.8 89.8

L = 50 15.4 95.4 97.8 95

L = 100 34.2 25.0 46.8 91

L = 200 54.6 46.2 97.0 88.0

Table 4.7: SGHMC ϵ = 0.001

Test Error%

η = 0.1 η = 0.01 η = 0.001 η = 0.0001

L = 10 NA NA 71.6 88.0

L = 50 15.4 93.4 96.8 88.2

L = 100 32 21.8 45.0 88.8

L = 200 53 39.4 95.4 78.4

Table 4.8: SGHMC ϵ = 0.0001

of integration time t = ϵL. The role of the learning rate η is unclear other than that too

large a η seems to cause divergence (denoted by NA in the tables) more often. We see that

SGHMC can generate samples that have good predictive performance, but there is no clear

way to tune all the different hyperparameters other than by a grid search.

4.7 Scaled Priors

The following experiment investigates whether initializations known to improve predictive

accuracy can be used to guide the design of prior for BNN. In this experiment, we compared

two normal priors with fixed variances. One is fixed at 1, the other at 1
Nhidden

, the number of

hidden units. While we found little difference in their ESS’s, the predictive accuracy from

the standard normal prior is clearly better. It suggests that the worse predictive accuracy

for the scaled priors are not caused by sampling difficulties, but possibly by the prior. It

also suggests that the improvement in prediction from using scaled initializations [4] are

not the result of having a better prior distribution. More research is needed to provide an

71

Test Error% Min ESS Median ESS

Hidden units = 35 23.4 (64.2) 358 (683) 1348 (1337)

Hidden units = 50 22.8 (65.0) 952 (66) 1358 (1348)

Hidden units = 65 22.0 (69.6) 610 (660) 1352 (1324)

Table 4.9: Scaled v.s. Unscaled Priors. The figures in brackets show the results for the
scaled priors.

explanation.

4.8 Covariance Adaptation

Here we explore whether it is necessary or indeed useful to condition the HMC by the full

covariance matrix of the target distribution. We experimented with a number of different

priors, where we fixed a neural network model of 35 hidden units in a single hidden layer. We

sampled from each posterior distribution and found that not only is adapting the full matrix

more time consuming because of the need to multiply by a full mass matrix at every leapfrog

step, the samples generated have much higher autocorrelation (equivalent to low ESS) to

the point it slows sampling to a halt and destroys any hope of meaningful inference. We

attribute this result to the singular nature of neural network models. For each of the prior,

we sample from the posterior using the full covariance (dense metric), only the diagonal

variances (diagonal metric) and no conditioning (unity metric) respectively. We see that the

unity and diagonal metric performs similarly with the diagonal metric giving higher ESSs

for the hierarchical priors, and they both take about the same time to compute. Therefore,

it suggests that the diagonal metric is most suitable for conditioning the mass matrix, where

we get some conditioning by the marginal distributions of the posterior, without incurring

the computational cost of a matrix-vector multiplication at each leapfrog step.

72

Test Error% Min ESS median ESS Compute Time

Normal 67.0 (24.4) [20.6] 5 (563) [708] 17 (1331) [1324] 36596 (10165) [11569]

Normal-Inv-Gamma 86.2 (22.4) [26.0] 4 (453) [378] 1271 (1348) [1271] 38095 (9234) [9158]

Normal-Inv-Gamma ARD 91.2 (23.2) [27.2] 4 (370) [140] 8 (1295) [1332] 74326 (34940) [33212]

Table 4.10: Covariance Adaptation. The figures in round brackets are generated by diagonal
metrics, those in square brackets by unity metrics, and those not in brackets by dense metrics.

Test Error% Min ESS Median ESS Dimension

Num Layers = 2 16.4 284 1596 3815

Num Layers = 3 16.8 246 1418 5040

Num Layers = 4 49.8 402 1310 6265

Table 4.11: Results on the effects of the number of hidden layers. Each layer has 35 hidden
units.

4.9 Number of Layers

Now we are interested in the impact of the number of layers on sampling efficiency. We know

from the neural network literature that deep structures tend to reduce test error. However,

there is no empirical studies on the impact of deep hierarchical structures in BNNs, since

traditionally only single-hidden-layer networks were studied. Here we fix the prior to be a

standard normal distribution and vary the number of hidden layers.

Initially we found that increasing the number of layers does reduce the test error, in

line with the folk wisdom of the literature. However, for the the models with 4 hidden

layers the test errors went up significantly even though the ESSs stay about the same. Since

the ESS does not seem to drop precipitously with increasing number layers, the drop in

predictive accuracy cannot be attributed to sampling difficulties. In this case it is more likely

due to overfitting. It shows that even Bayesian neural networks can overfit, corroborating

observations in [25].

73

4.10 Float v.s. Double Precision

It is important to investigate whether HMC can remain accurate enough for long trajectories

that might occur when sampling from BNNs. Since most computations with neural networks

are done by graphics processing units (GPU), which only allows single precision, which is

32 bits. Traditionally MCMC computing has always used double precision, which is 64 bits.

The loss of precision going from double to single precision is a concern because the stability

of the Hamiltonian is critical to the correctness of the algorithm, and we even use divergent

transitions to diagnose biased samples.

The first experiment looks at the stability of the leapfrog trajectory. The model we used

is a single-hidden-layer neural network with 35 hidden units and the normal prior on its

weights. First, a number of points qi from the posterior distribution are generated by a

sampler in double precision, which are then each augmented by an independent momentum

(pi) drawn from a standard normal distribution. Then the list of (qi, pi) points are cast into

single precision. The two sets of points are then integrated forward for a fixed number of

iterations with a reasonably conservative step size to ensure high acceptance rate, and we

compare the difference in Hamiltonian between the start and end point of the trajectory.

Denote the Hamiltonian at the end of the double trajectory as Hd and that at the end of the

float trajectory as Hf . Ideally we would want Hd −Hf to be small if we want the sampler

to behave similarly on single and double precision. The initial Hamiltonian does not matter

because both trajectories have the same initial state.

We found that for the normal prior the final states in trajectory differ in energy on average

by less than 10−5 and for the normal-inverse-Gamma prior the difference on the order 10−2,

which translates to at most a difference of 1 % in the final acceptance rate.

The second experiment investigates whether the loss of precision when adopting single

precision would affect the predictive performance. We tested two neural network models

with identical structures; both are single-hidden-layer networks with 35 hidden units and the

hyperbolic tangent as the activation function. One model has the normal prior on its weights,

74

Float Double

Normal 27.6 25.8

Normal-Inv-Gamma 23.2 28.8

Table 4.12: Difference in test error (%) between single and double precision.

which is typical of most BNNs used in the literature. The other has a normal-inverse-Gamma

prior on the hidden-to-output weights and normal prior on the input-to-hidden-weights. This

should be a more difficult model to sample from because of the presence of a hyperparameter

which is correlated with most of the lower-level weights. We found that while double precision

seems to perform better for the normal prior and single precision better for the hierarchical

prior, the difference is not significant enough to be outside of the variance of the estimated

test error.

In both experiments we did not find a significant difference between the two, suggesting

that the transition to single precision should not harm predictive accuracy and correctness.

4.11 Static v.s. Dynamic HMC

First we want to find out whether dynamic HMC is an effective way of sampling from the

posterior distribution of a BNN. In Neal’s work [49] he used only static HMC as sampler

and relied on using a hierarchical prior in order to use the hyperparameter to set the step

size. Therefore, in order to make a fair comparison between static and dynamic HMC for

sampling from a BNN with a single-level prior like the standard normal, we decided to use

the dual averaging technique introduced in Chapter 2 to tune the step size automatically.

Secondly, since all dynamic HMC implementations in the literature implicitly embodies a

windowed sampler, we would like to separate the effects of dynamic leapfrog trajectories

from those of windowed sampling.

In the following experiment we ran two HMC samplers, regular HMC and windowed

HMC, over a range of L values, and compare the samples generated by the best L with those

75

Test Error% Min ESS Median ESS

L = 10 22.8 (22.2) 704 (283) 1061(765)

L = 50 27.0 (24.2) 36 (196) 379 (1533)

L = 100 28.6 (23.8) 126 (254) 823 (1256)

L = 200 22.2 (24.0) 713 (340) 1196 (1204)

L = 500 23.8 (23.4) 345 (693) 1245 (1252)

Dynamic 23.4 358 1348

Table 4.13: Static v.s. Dynamics HMC. The figures in brackets are generated by windowed
HMC

generated by dynamic HMC (NUTS). Since the step size is automatically tuned to achieve

high acceptance rate, we can assume that most proposals result in acceptance and do not

have to worry about the extra bias introduced by an Metropolis acceptance step. Since all

samplers have the same target for ϵ, different L values translate to different integration times

t by ϵL = t .

The model is a single-hidden-layer network with 35 hidden units, with the hyperbolic tan-

gent chosen as the activation function. A standard normal prior is placed on all weights.The

step sizes and covariance metrics are tuned automatically as in previous experiments.

The results show that the static samplers has similar performance as the dynamic sampler,

both in terms of predictive accuracy and ESS. Although this may be more indicative of

the success of the dual averaging tuning of the step size ϵ in generating stable leapfrog

trajectories. The sampling performance and predictive accuracy seems to be independent of

the number of leapfrog steps, and also of the use of the windowed sampler.

4.12 WAIC for Model Selection

In general, model selection for neural networks is guided by the principle of choosing the

model that has the lowest predictive error. In practice this is usually estimated by a holdout

test set. However, there are scenarios where we do not have enough data to have a separate

76

WAIC Test Error% Min ESS Median ESS

Number of Hidden Units = 35 3.05× 104 23.4 358 1348

Number of Hidden Units = 50 4.35× 104 20.4 714 1342

Number of Hidden Units = 75 6.36× 104 21.2 883 1351

Number of Hidden Units = 90 7.57× 104 21.2 562 1359

Table 4.14: WAIC for model selection

holdout test set. In that case we might want to use the WAIC, which does not demand a

separate test set but is capable of estimating the true test error asymptotically, at least in

theory. In the following experiment we test the WAIC to do just that.

We fix the model to have one hidden layer and vary the number of hidden units. MCMC

samples for each model are generated and we compute the estimated WAIC according to

the formulae introduced in Chapter 3. The true test error is estimated by a holdout test

set. According to theory, the model with the lowest WAIC should be chosen to minimize

predictive error.

We observe that the model with the lowest WAIC does not match those selected by

holdout test error, despite the ESSs indicating decent sample quality.The failure of the

WAIC to select the best model might be explained by the poor mixing of the importance

sampler when estimating the WAIC, which was noted in a review of predictive checks for

Bayesian inference [63]. It could also be due to the fact that all models being compared

actually have comparable test error, when taking into account the natural variance of such

an estimate and the Monte Carlo error. Further studies with a larger range of models are

required. However, such studies are upper-limited by the capacity of the dynamic sampler

to sample from larger models, as well as the burden on the computational resources that

such expanded studies would require.

77

4.13 Conclusions

Experimenting on a simplified MNIST dataset, we found that Bayesian neural networks

can achieve about the same and sometimes better predictive accuracy than early stopping

committees. The main difference between the two is that early stopping committees need

to be manually tuned to achieve decent accuracy, whereas BNNs can achieve the same with

dynamic HMC and automatic tuning of step sizes and covariance metrics. This corroborates

previous observations in the literature [49].

Once we can start using BNNs, the challenge becomes finding the best sampler to sample

from the posterior distributions. In our experiments we compared static and dynamic HMC

samplers. We found that for the static samplers varying the integration time does not seem

to influence the predictive accuracy or sample quality, once the step size is chosen so that

acceptance rate is kept high. And dynamic HMC is more robust to the choice of tuning

parameters than static HMC in terms of sampling efficiency.

The improvement in sampling efficiency observed by Neal using the windowed HMC

sampler [49] could not be confirmed in our experiment. For our task the windowed HMC

sampler does not improve over the regular HMC sampler in terms of ESS as long as the

acceptance rate is kept reasonably high. However, it does not generate worse samples either.

Perhaps it could still be useful in scenarios where we could not tune for the acceptance rate

and the sampler has low acceptance rate.

We then experimented with different termination criteria and found that XHMC can

perform as well as GNUTS, and δ = 0.1 seems like a good default threshold value. Although

this is purely a convenient choice, we note the robustness of the XHMC sampler to the

choice of this hyperparamter. We recommend XHMC since it requires fewer computations

than GNUTS, which might even scale by a third order factor of the model’s dimension if a

full covariance metric is used.

We further found that, for dynamic HMC, automatic tuning of the step size and covari-

ance metric is essential for a robust sampling workflow. Automatic tuning of the step size

78

avoids divergent transitions and tuning the covariance metric improves sampling efficiency

by adjusting the scales by their target distribution variances. We found that, however, for

BNNs the target distribution is far too complex and cannot be modelled well by a multi-

variate normal distribution, which the conditioning of the covariance metric implicitly relies

on. The dense metric is also more computationally intensive during both the tuning and

sampling stage.Hence the diagonal metric should be chosen over the dense metric.

Further comparsion of the Gibbs sampler and joint HMC samplers for the BNNs with

hierarchical priors was carried out, and we found that joint sampling by dynamic HMC can

be much more efficient for sampling the hyperparmeter. The Gibbs sampler in this instance

could not even sample the hyperparameter to any meaningful degree in terms of the ESS.

Also, we found that the non-centered parametrizations allowed effective sampling of the

hyperparameter, which the centered parameterization was unable to do. This matches the

general observations from the Bayesian hierarchical models literature [6].

Stochastic gradient HMC was investigated and compared with standard HMC for sam-

pling from BNNs, and we found that SGHMC can can give similar performance to HMC but

the result is not robust to the choice of tuning parameters. Therefore, it might be worthwhile

to try SGHMC if there is enough data for a separate validation set for choosing the tuning

parameters. The reduced computational cost of SGHMC means if we choose the right tuning

parameter and can accept the unpleasant implications of using a biased sampler, we could

achieve better test error than using the full HMC sampler.

On the question of model selection we looked at the WAIC as an alternative to holdout

test set for choosing the model which minimizes the predictive error. We were not able to

clearly establish the WAIC as a better option for model selection for BNNs than the holdout

test set. When faced with insufficient data for creating a new partition into a test set, we

do not recommend at the moment using the WAIC for model selection, instead we should

collect more data from the data generating distribution.

Now that we have some answers on questions about how to sample from BNNs, we

79

need to choose the right prior to regulate the weights in typically overparametrized neural

network models. We already have experiments showing that setting the scale of the prior

as a multiple of the number of incoming units actually gives worse predictive performance.

We further found that automatic relevance determination priors can improve significantly

both the predictive accuracy and sampling efficiency, that the regularized horseshoe priors

is better than the ordinary horseshoe prior, and that the normal prior is better any of the

hierarchical priors test, ARD or otherwise.

While all the experiments above where conducted in double precision, it is more a choice

of convenience than of necessity. We have conducted experiments showing that switching to

single precision does not result in a loss of accuracy in the leapfrog trajectories or in the test

error computed from the final MCMC samples. This means that we should be able to carry

out HMC sampling on GPUs to take advantage of the speed-up without any significant loss

of correctness.

Finally, results in this chapter raise more questions about Bayesian neural networks,

since some of the results are not what one would expect based some traditional wisdoms

about statistics. For example, for overparametrized models where the dimension is much

larger than the number of observations, one should use hierarchical priors like the horse-

shoe to perform regularization. However, our experiments show that such regularization

often harms predictive accuracy, even when there is high ESS overall. Also, we found that

frequentist predictions could achieve similar predictive accuracy as Bayesian alternatives,

although BNNs do seem to be more robust to tuning parameters. These bizarre outcomes

need to be explained when we want to investigate claims made about Bayesian neural net-

works, for example, that they are approximated by stochastic gradient descent [45] or other

ad-hoc optimization techniques [24, 25]

80

Chapter 5

Conclusion

5.1 Conclusion

Bayesian neural networks have seen a resurgence with many optimization techniques being

interpreted as approximate Bayesian inference. However, these claims were usually made

without simulation studies using MCMC for full posterior inference. In this thesis we seek

to understand Bayesian inference for BNNs by using the most suitable MCMC methods

available to sample from these models.

In Chapter 2 we looked into the dynamic HMC samplers implemented in Stan and reim-

plemented them in PyTorch, along with methods for automatically tuning parameters and

computing convergence diagnostics. We also provided pseudocode which should help future

researchers understand the No-U-Turn sampler as implemented in Stan, since it differs sig-

nificantly from the original implementation. Special attention needs to be paid to avoid

computing probabilities on the original scale to maintain numerical stability.

Then in Chapter 3 we delved into Bayesian neural networks. First we gave a review

of the literature, which was mostly the contributions by Neal [49]. New developments like

stochastic gradient Hamiltonian Monte Carlo and scaled initialization in the deep learning

literature [18, 4] were introduced and discussed. Finally, we discussed shrinkage priors, their

81

origins in the statistics literature and adaptation for model selection with neural networks.

The discussions in chapter 2 and 3 provide the motivation for the simulation experiments

in Chapter 4. Numerical experiments were conducted to sample from BNNs and compare

different strategies. We found that dynamic HMC samplers can sample quite efficiently even

from models with complicated hierarchical priors, although these priors do not necessarily

improve predictive accuracy. Our main contention is that many of the claims made about

BNNs in the deep learning should be scrutinized by further investigation because we found

that even with relatively simple models and full MCMC sampling for Bayesian inference

the effects of particular new priors do not seem clear, and it seems that sometimes better

initialized frequentist models would even beat BNNs sampled by robust, automatically tuned,

state-of-the-art HMC samplers.

82

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Joze-

fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit

Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-

van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on hetero-

geneous systems, 2015. Software available from tensorflow.org.

[2] Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sampling via

stochastic gradient Fisher scoring. arXiv preprint arXiv:1206.6380, 2012.

[3] Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, and Mohak Shah. Compar-

ative study of deep learning software frameworks. arXiv preprint arXiv:1511.06435,

2015.

[4] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies

with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,

1994.

[5] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano:

83

A CPU and GPU math compiler in Python.

[6] JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, and

M West. Non-centered parameterisations for hierarchical models and data augmen-

tation. In Bayesian Statistics 7: Proceedings of the Seventh Valencia International

Meeting, volume 307. Oxford University Press, USA, 2003.

[7] Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical

Society. Series B (Methodological), pages 259–302, 1986.

[8] Alexandros Beskos, Natesh Pillai, Gareth Roberts, Jesus-Maria Sanz-Serna, Andrew

Stuart, et al. Optimal tuning of the hybrid Monte Carlo algorithm. Bernoulli,

19(5A):1501–1534, 2013.

[9] Michael Betancourt. A general metric for Riemannian manifold Hamiltonian Monte

Carlo. In Geometric science of information, pages 327–334. Springer, 2013.

[10] Michael Betancourt. The fundamental incompatibility of scalable Hamiltonian Monte

Carlo and naive data subsampling. In International Conference on Machine Learning,

pages 533–540, 2015.

[11] Michael Betancourt. Diagnosing suboptimal cotangent disintegrations in Hamiltonian

Monte Carlo. arXiv preprint arXiv:1604.00695, 2016.

[12] Michael Betancourt. Identifying the optimal integration time in Hamiltonian Monte

Carlo. arXiv preprint arXiv:1601.00225, 2016.

[13] Michael Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv

preprint arXiv:1701.02434, 2017.

[14] MJ Betancourt. Generalizing the No-U-Turn sampler to riemannian manifolds. arXiv

preprint arXiv:1304.1920, 2013.

84

[15] MJ Betancourt, Simon Byrne, Samuel Livingstone, and Mark Girolami. The geometric

foundations of Hamiltonian Monte Carlo. arXiv preprint arXiv:1410.5110, 2014.

[16] Christopher M Bishop. Neural networks for pattern recognition. Oxford university press,

1995.

[17] Carlos M Carvalho, Nicholas G Polson, and James G Scott. Handling sparsity via the

horseshoe. In Artificial Intelligence and Statistics, pages 73–80, 2009.

[18] Tianqi Chen, Emily B Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte

Carlo. In ICML, pages 1683–1691, 2014.

[19] Kiam Choo. Learning hyperparameters for neural network models using Hamiltonian

dynamics. PhD thesis, Citeseer, 2000.

[20] Andreas C Damianou and Neil D Lawrence. Deep Gaussian processes.

[21] Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hartmut

Neven. Bayesian sampling using stochastic gradient thermostats. In Advances in neural

information processing systems, pages 3203–3211, 2014.

[22] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid

Monte Carlo. Physics letters B, 195(2):216–222, 1987.

[23] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[24] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Represent-

ing model uncertainty in deep learning.

[25] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with

bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158, 2015.

85

[26] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data

analysis, volume 2. Chapman & Hall/CRC Boca Raton, FL, USA, 2014.

[27] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on pattern analysis and machine

intelligence, (6):721–741, 1984.

[28] Soumya Ghosh and Finale Doshi-Velez. Model selection in Bayesian neural networks

via horseshoe priors. arXiv preprint arXiv:1705.10388, 2017.

[29] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 73(2):123–214, 2011.

[30] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-

ward neural networks. Proceedings of the thirteenth international conference on artificial

intelligence and statistics, pages 249–256, 2010.

[31] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,

volume 1. MIT press Cambridge, 2016.

[32] Alex Graves. Practical variational inference for neural networks. In Advances in Neural

Information Processing Systems, pages 2348–2356, 2011.

[33] Matthew D Hoffman and Andrew Gelman. The No-U-Turn sampler: adaptively setting

path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research,

15(1):1593–1623, 2014.

[34] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural

networks, 4(2):251–257, 1991.

[35] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for

86

fast feature embedding. In Proceedings of the 22nd ACM international conference on

Multimedia, pages 675–678. ACM, 2014.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[37] Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer Science &

Business Media, 2012.

[38] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[39] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[40] Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian dynamics, vol-

ume 14. Cambridge University Press, 2004.

[41] Faming Liang, Chuanhai Liu, and Raymond Carroll. Advanced Markov chain Monte

Carlo methods: learning from past samples, volume 714. John Wiley & Sons, 2011.

[42] Jun S Liu. Monte Carlo strategies in scientific computing. Springer Science & Business

Media, 2008.

[43] Samuel Livingstone, Michael Betancourt, Simon Byrne, and Mark Girolami. On the

geometric ergodicity of Hamiltonian Monte Carlo. arXiv preprint arXiv:1601.08057,

2016.

[44] Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient

MCMC. In Advances in Neural Information Processing Systems, pages 2917–2925,

2015.

87

[45] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient de-

scent as approximate Bayesian inference. The Journal of Machine Learning Research,

18(1):4873–4907, 2017.

[46] Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regression.

Journal of the American Statistical Association, 83(404):1023–1032, 1988.

[47] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted Boltzmann

machines. In Proceedings of the 27th international conference on machine learning

(ICML-10), pages 807–814, 2010.

[48] Radford M Neal. An improved acceptance procedure for the hybrid Monte Carlo algo-

rithm. arXiv preprint hep-lat/9208011, 1992.

[49] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science

& Business Media, 2012.

[50] Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov Chain

Monte Carlo, 2:113–162, 2011.

[51] Willie Neiswanger, Chong Wang, and Eric Xing. Asymptotically exact, embarrassingly

parallel mcmc. arXiv preprint arXiv:1311.4780, 2013.

[52] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and An-

drew Y Ng. On optimization methods for deep learning. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11), pages 265–272, 2011.

[53] Trevor Park and George Casella. The Bayesian lasso. Journal of the American Statistical

Association, 103(482):681–686, 2008.

[54] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. 2017.

88

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine learning in Python .

Journal of Machine Learning Research, 12:2825–2830, 2011.

[56] Juho Piironen, Aki Vehtari, et al. Sparsity information and regularization in the horse-

shoe and other shrinkage priors. Electronic Journal of Statistics, 11(2):5018–5051, 2017.

[57] Brian D Ripley. Pattern recognition and neural networks. Cambridge university press,

2007.

[58] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals

of mathematical statistics, pages 400–407, 1951.

[59] Christian Robert and George Casella. Monte Carlo statistical methods. Springer Science

& Business Media, 2013.

[60] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,

61:85–117, 2015.

[61] Steven L Scott, Alexander W Blocker, Fernando V Bonassi, Hugh A Chipman, Edward I

George, and Robert E McCulloch. Bayes and big data: The consensus Monte Carlo

algorithm. International Journal of Management Science and Engineering Management,

11(2):78–88, 2016.

[62] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[63] Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical Bayesian model evaluation

using leave-one-out cross-validation and waic. Statistics and Computing, 27(5):1413–

1432, 2017.

89

[64] Jian-Sheng Wang and Robert H Swendsen. Cluster Monte Carlo algorithms. Physica

A: Statistical Mechanics and its Applications, 167(3):565–579, 1990.

[65] Sumio Watanabe. Algebraic geometry and statistical learning theory, volume 25. Cam-

bridge University Press, 2009.

[66] Sumio Watanabe. Asymptotic equivalence of Bayes cross validation and widely appli-

cable information criterion in singular learning theory. Journal of Machine Learning

Research, 11(Dec):3571–3594, 2010.

[67] BP Welford. Note on a method for calculating corrected sums of squares and products.

Technometrics, 4(3):419–420, 1962.

[68] MaxWelling and YeeW Teh. Bayesian learning via stochastic gradient Langevin dynam-

ics. In Proceedings of the 28th International Conference on Machine Learning (ICML-

11), pages 681–688, 2011.

[69] Koshi Yamada and Sumio Watanabe. Information criterion for variational Bayes learn-

ing in regular and singular cases. In Soft Computing and Intelligent Systems (SCIS)

and 13th International Symposium on Advanced Intelligent Systems (ISIS), 2012 Joint

6th International Conference on, pages 1551–1555. IEEE, 2012.

90

	Introduction
	Stan
	Bayesian Neural Networks

	Stan
	Hamiltonian Monte Carlo
	No U-Turn Sampler
	NUTS Termination Criteria
	Adaptive Tuning of Step Size
	Adaptive Tuning of the HMC Metric
	HMC-Specific Sampling Diagnostics
	Other Sampling Diagnostics
	Numerical/Implementation Tricks

	Bayesian Neural Networks
	Introduction to BNNs
	Sampling for the Hyperparameter
	Stochastic Gradient Hamiltonian Monte Carlo
	Priors
	Horseshoe Priors
	ARD Priors

	Scaled Initialization
	Model Selection
	Relation to Stan and PyTorch

	Experiments
	Model and Data
	Comparison with Early Stopping Committees
	GNUTS v.s. XHMC
	Gibbs Sampling v.s. Joint Sampling for Hyperparameter
	Priors
	SGHMC
	Scaled Priors
	Covariance Adaptation
	Number of Layers
	Float v.s. Double Precision
	Static v.s. Dynamic HMC
	WAIC for Model Selection
	Conclusions

	Conclusion
	Conclusion

