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ABSTRACT

The problem of synchronization error, or slip, for binary cyclic codes
is examined for both noiseless and noisy channels. The vector-matrix and polynomial
representations of cyclic codes are both utilized.. To enable‘cyclic codes to recover
synchronism, two differeﬁf techniques are considerea. The ﬁr;st is to form a suitable coset
code, and the second is to generate a : subset code " by restraining some of the informa-

tion symbols. Neither technique alters the length of the code words.

Several new theorems are presented on the ability of coset codes to detect
and correct slip. In particular, a class of coset codes is described which can correct both
slip and additive error, even when they. occur simultaneously. Further, the performance
of coset codes of Fire codes in the presence of slip and burst errors is examined. Results

are also presented on the synchronization recovery capability of the subset codes.
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CHAPTER |

INTRODUCTION:

1.1 Introduction To Coding

Since the publicdtion of Shannon's fundamenf.clvl results .in Information
Theory49 in 1948, an extensive literature on the design of codes has developed (see
Bibliography by Peferson39; 49 and Peterson and Massey4]) . Shannon demonstrated the
existence of codes which transmit (in the limit as the length of the code Qoes to infinity)
information at rates arbitrarily close to channel capacity with arbitrarily small error rates.
However, his proof was an existence proof and no synthesis procedure to construct his
"random codes" was given. These random codes are impra'ci'ical and much effort has
been devoted to finding codes that are easy to encode and decode and have reasonably

good information transmission rates as well.

" Codes may be classified into two broad classes :
(a) codes which have fixed word length (block codes) and

b) codes which have variable word length.

The study of block codes has led to codes which have considerable mathematical structure

and hence are ‘attractive for practical applications.

A significant development in the study of block codes was the introduction
of group codes (also called parity check codes) by Slepian59’5] . These codes were a
generalization of the error correcting codes of H¢:1mming29 and all "systematic codes".

Slepian pointed out that group codes possess the following features of practical interest :



i. all code words are'v'freated alike in transmission ;

2. the encoding is simple to instrument ;

3. maximum likelihood detection is relatively simple to instrument ; and
4. in certain practical cases there exist no better alphabets.

The code words of group codes were shown to correspond to the elements of a suitably

, 4,9,39 . 14 : .
defined group . Further, Elias’ ~ has shown that for the binary symmetric channel,
there exist. group codes which transmit at a rate arbitrarily close to channel capacity with
an arbitrarily small probabilffy of error. However, like Shannon, Elias only gives an

existence proof.

A smaller class of codes than the group codes are the linear codes *. The

code words of a linear code define a subspace of a suitably defined vector space. Linear

- codes are a subset of the group codes, and a group code is a linear code if the number of

symbols (or states) in the code is.a prime number .2' 39

Even more structure was introduced by the discovery of a subset of the linear
codes called cyclic codes4.3 /39 Cyclic codes are characterized by the additional property
that any cyclic permutation of the digits of a code word is also a code word. Cyclic codes
arg‘reas__ona.bly 'pracﬁcal as they can"be encoded and decoded by relatively simple 'de:\;ices

called feedback shift regi;te'l"s::”a. ‘Additional propertiés of cyclic codes are .given-in Section

1.4 and at other appropriate places in the text.

* Linear codes can be encoded and decoded by means of linear finite—state

switching circuifs?



1.2 _Oufline(of‘ Problem

Consider the transmission of digital information over a discrete noisy chan_ne. ’
and assume that the informafion.digifs are encoded in a block code. The chﬁnnel noise
causes substitution errors and hence the received symbols may differ from the transmitted
symbols. Usually, the reason for the encoding is to protect the information digits from the
gubsfifufion errors (or additive errors). To achieve this, the encoder adds redundant symbols
(or parity check symbols) to the information symbols to form code words of fixed length. The

above procedure describes the approach of conventional error-detecting and error-correcting

code539.

However, the success of these codes depends on the prior determination of
the correct timing or synchronization. As Golomb25 points out, there is a hierarchy of

synchronization problems. Roughly, one may consider three ranges :

(i) symbol sync,
_(ii) word sync and

(iti)  frame sync.

In this study it will be assumed that symbol sync, or bit syhc, has been achieved. In addition,
a frame will be one word length and hence, in this case, word sync and frame sync coincide.
Even after symbol sync is attained, the decoder must frame the received symbols into correct
blocks or words. If it incorrectly frames the received symbols, serious errors may result, even

in the absence of additive errors.

The receiver may fail to obtain word sync if it does not know when transmission
commenced. In another situation, the transmitter and receiver may be initially synchronized

and then loose sync due to either the insertion or deletion of symbols from the correct se-



quence

48,59,60

In this study, the effect of additive error and loss of word sync on cyclic
codes will be examined. It will b_e assumed thai" no insertions or deletions of symbols
occur in the transmitted sequence, and that sync loss means the m.isfr‘amling of the sequenc}e
by the transmitter.  However, it should be acknowledged that after the passage of more than .

a word length, a single occurrence of either type of sync error is indistinguishable.

For a convenient notation, the word "slip " will be defined to mean loss of

synchronization, in the sense used in this study. Also, the word "sync " is a widely accepted

.abbreviation for synchronization.

The motivation for choosing cyclic codes is that their additive-error-detecting
and correcting properties have been studied extensively 9, especially the important Bose-

6,7,30

Chaudhuri - Hocquenghem or BCH codes . In addition, as mentioned earlier, cyclic

codes are relatively easy to encode and decode39. As they stand, however, cyclic codes

38,52

are very susceptible to sync errors, or slip . For example, if any cyclic code word
from a cyclic code of word length n is transmitted twice consecutively, then any n-sequence
from this 2n-sequence will be a code word from this cyclic code. The object of this study

is to modify the cyclic codes so that they can detect and correct slip without destroying

their other desirable properties.

Two possible physical causes of sync error, or slip are

(i) receiver uncel;fainfy as to the exact time that transmission
commences and

(ii)  the receiver losing count of the received bits, due to a
malfunction.

A more detailed examination of the possible causes of sync error, and in general a good
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introduction to the problem of loss of sync, is given in the panel discussion on " Synchro-

nization " by Golomb et a|25.

1.3 A Brief Review of Methods of Synchronization

A conceptually straightforward method of maintaining synchronism is to
introduce a special synchronizing symbol which would be used for this purpose only.
22,25 . .
Examples are the lefter space in Morse code and the start and stop pulses in teletype.
A major disadvantage of this method is that it makes inefficient use of the channel, since
one (or more) of the symbols is used for synchronization only. A practical consideration
is that the system has to generate and recognize an exira symbol. In addition, false sync

might occur if additive noise changes one of the other code symbols into the sync symbol.

Another method of maintaining sync is to attach a synchronizing sequence””’
22,44 which uses only ordinary code symbols at the beginning or end of each code word.
For instance, in a binary system, the sync sequence would be a known sequence of binary
digits. Some sequences are better for this purpose than ofherss’ 22 and a desirable feature
is that the correlation of the sequence with a shifted version of itself should be small.
Sequences which have this property are the Barker Sequence53 and the Pseudo-Random
Sequence524' 26. In general, a longer sequence gives greater protection against slip but

it increases the redundancy of the code.

In some codes which use a sync sequence, the remaining bits in the code
word are unrestraineds. In this case, unless the length of the sync sequence is greater than
half a word length, the sync sequence itself may occur elsewhere in the code word. However,

the code is able to detect slip of magnitude less than the length of the sync sequence. On



the other hand, some codes restrain the remaining bits so that the sync sequence can not

occur elsewhere (assuming no additive noise). These codes have been called prefixed
44 . . . 22 , '
comma-free codes ', or prefix synchronized encodings™ " since they form a subset of the
2
general class of comma-free codes 4. ‘In a comma-free code, loss of sync always results
in a sequence that is not a valid code word. However, if additive noise is present, it is
desirable that the sync sequence differ from neighbouring sequences in the code word by

more than one bit°’ . This gives some protection against the noise and still allows the

number of code words to be large.

At present, methods are known for finding or estimating the number of code

words in comma-free codeslo’ 1, 24, 32 or prefixed comma-free code522' 44, but little is

known about their additive-error-detecting or correcting properties, nor are general synthesis
procedures available for constructing these codes. . Moreover, during periods when no slip
occurs, the bits in the sync sequence cannot be used for additive detection or correction.

In passing, it should be mentioned that the sync bits may be distributed throughout the code

word47 (interlaced) rather than grouped into a sequence.

The above discussion has implicitly assumed that no bits are lost or gained
in the transmitted sequence, i.e., the number of bits which arrive at the receiver is equal
to the number of bits transmitted. The loss or éain of one or more bits in the sequence can
result in a loss of sync. For example, assume that an n-bit word loses b bits, and that the
first bit of the shortened word arrives in synchronfsm. The receiver will then count n bits
and try to decode the received n-tuple . However, this n-tuple will contain b bits from
the following n-tuple . The next n-tuple framed will then be b bits out of sync. Ifno

corrective action is taken, from here on the receiver and transmitter would be b bits out

of sync, (if no more bits are lost or gained). Hence, after the initial word with b bits



missing, the problem is the same as if the receiver was turned on and started to decode b
bits out of sync .(in the same direction).. If instead of a loss.of b bits, there was a-gain of

d bits, the receiver and transmitter would be out of sync by d bits in the other direction.

In.studying the problem of slip for group codes, it is necessar)" to specify if
59, 60

, . 4 :
one or both of these sources of sync error are present. Sellers™~ and Ullman have

studied the case where bits are lost or gained in the sequence.

Sellers® describes a block ¢ode that will correct an error consisting of a
gain or loss of a bit within the block. His code cdn be generalized to correct the loss or
gain of a burst of bits. In addition, the code can correct additive errors in the vicinity of
the bit loss or gain48. The code is constructed by inserting a synchronizing sequence* into
a bursf—error-eorrecﬁng code at periodic intervals. The synchronizing sequence locates the
approximate position of the bit loss or gain. At the location a bit is inserted or removed
from the block, depending on whether a loss or a gain has occurred. "The code then corrects
the erroneous bits between where the error occurred and where the correction took place.

59,6

Ullman™"’ 0 has also studied sync error which results from the loss or gain
of a burst of bits. Ullman describes a block code which corrects a single sync error per
block (i.e. insertion or deletion of a'single bit per block). He shows that this code has, at
most, three bits more redundancy than that of an optimal code for this class of errors. The
codes. have specified positions for information, and no table look-up is necessary to encode
or decode. The codes are not group codes. |

Ullman has also shown that the minimum redundancy necessary for a code of

block length p to correct the loss or gain of a single bit approaches 1 + Iog2 p, as p approaches

infinity. His codes have a redundancy less than 4 + 1092 p and hence have three or less bits

* Sellers calls this synchronizing sequence a " character ".



more than the optimum. By comparison, the codes of Sellers have redundancy at least

( ]2p)]/2 - 3. Levinstein (1965')37 has also described a code similar to that of Ullman’s.

In this dissertation it is assumed that there are no bit losses or gains
(deletions or insertions) and that "sync error " or "slip " means that the receiver frames

the wrong n-tuple in the sequence from a block code of length n.

The concept of a comma-free code was mentioned earlier in this section.
It will be recalled that a code, of word length n, is said to be comma-free if for all non-

zero values of slip, the framed n-tuple is not a code word (assuming a noiseless channel).

Golomb, Gordon and Welch24 determined the greatest number of words
that a comma-free code (or dictionary) can possess. They proved that for a comma-free
code having word length n and q symbols (or states), the maximum number of words, Wn(q)

is upper bounded by

W@ I oue) e
bfn

where the sum is over all divisors b of n, and p(b) is the Mobius function :

1 ifb=1,
pb) = q 0 if b has any square factor
1) ifb=p]p2 cee Pps where Pyr-«-P,

are distinct primes.

Easfmcm” has shown that this upper bound can be achieved for all odd values of n. Ji99532

has listed the known (1963) comma-free dictionary sizes for even n. For binary channels

(@ = 2), asimpler, but looser bound is given by2

w@ < 2'/n,

which implies fhaf52 k<n- Iogzn, where k is the number of information bits. In a later



paper, Golomb32 introduces the concept of " comma-free codes of index r ", which applies
to a code where for every slip, the frarﬁed n-tuple differs from a code word in at least r
positions. Ordinary comma-free codes are of index 1. The usefulness of the extension to
codes of index r for noisy channels is clear. Further work on comma-free codes and various

extensions are also listed in the bibliography]o’ 1,12,13, 23, 77, 45.

It appears that at present not much is known about the error detecting and
correcting properties of comma-free codes in. general. Observe that a comma free code
cannot be a group code, since the zero word is excluded from comma-free codes. However,
Sfiffler52 has shown that, given any (n, k) binary cyclic code? there will exist an (n, k)
coset code which is comma-free if and only if k < (n=1)/2 (see also Corollary 2.1 in this
thesis). Stiffler appears to be the first to recognize the advantages of using coset codes for
situations where both additve errors and slip occur. Some of the advantages of coset codes
are (1) no additional redundancy is necessary, (2). they are simple to encode and decode and
(3) the minimum distance between code words is not l;educed. Stiffler showed that a group

code has at least one coset which can detect s bits of slip if three vectors in its null space

_satisfy a set of condiﬁonssz. This result seems to be awkward to apply to arbitrary group

codes, but fortunately it simplifies considerably for cyclic codes. The results obtained by

Stiffler on cyclic codes are examined in detail in Chapter Il and will not be repeated here.

* An (n,k) cyclic code has k information bits and n-k parity check bits. This is also true

for an (n,k) coset code.
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However, his results are of limited value for a noisy channel (additive noise) since the
dec;oder’ cannot distinguish between slip and additive error. Recall that for a comma-free
code, the misframed n-tuple is only guaranteed to be distance one from a valid code word.
Hence, some con‘binaﬁon of slip plus asingle additive error could generate a valid code
word. An interesting feature of Stiffler's work>2 is that he uses vector-matrix methods
rather than polynomial algebra. See Chapter IV of this thesis for a development and exten-

sion of the vector - matrix approach for coset codes of cyclic codes. (See also the publication

by the author55) .

A later paper by Frey]8 also uses coset codes of cyclic codes to detect slip

and additive error, but he does not seem to be aware of Stiffler’s earlier work. Frey's

results are also restricted to detection. He uses the polynomial representation of code words.

A certain amount of slip correction is achieved by having the decoder detect slip error and
adjust the framing until a valid n-tuple is framed. If both slip and additive error can occu‘r,'

the search may be long. To avoid a long search, Frey introduces a short synchronizing

sequence.

A broader concept than comma=-free codes, and in fact broader than comma-
free codes of index r, was introduced by Levy38. He defined a pair of numbers [S,8] for a
block of code length n, where a slip of § bits or Iess; would produce an n=tuple which differed
from a legitimate code word in at least & places. If § = [n/ZJt then a block code with
slip detecting characteristic [S, 8] becomes a comma-free code with index of comma
freedom 6. By intuition and trial and error, Levy discovered a set of coset codes (which he
called altered cyclic codes) of cyclic codes which displayed the [S, 8] characteristic. He
admits that the coset codes found by him may not be optimum (T On958 improved on Levy's

results) and he gave no general method for extending the list for larger 6. Observe that for

* [x] means the integral part of x.
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a block code with characteristic [S, SJ , if there is a slip of S bits or less, the framed
n-tuple will not be a code word even in the presence of §- 1 or less additive errors. Hence,
such a code can detect the simultaneous occurrence of S or less bits of slip and 8- 1 or less
additive errors. Howgver, the decoder will not be able to determine if the error is due to
slip only, or additive error only, or_both-simultaneously.. It is seen that Levy's results are
essentially for error detection, although by searching, the deéoder may be able to recover
sync when relatively few additive errors are present. When correct sync is attained, the

number of errors will be observed to fall sharply, with high prbbabilifysz.

Tpngs8 extends the previous work on the synchronization of coset codes of
cyclic codes and shows that they can:not only détect.slip but.also correct.it. [He shows that
the abiiify of an (n,k) coset codes to correct slip cannot exceed (n-k-])/2.* He also
presents a class of coset codes ’Which can distinguish between slip errors and additive errors
and which can correct both types if th.ey do not occur simultaneously in the same n-tuple.
In this thesis, a class of coset codes is presented which can correct fhe_simultaneous occur-
rence of slip errors and additive errors. For cyclic codes with some special properties, Tong

constructs coset codes of the given code so that one bit of slip can always be corrected.

Tong also considers shortened cyclic codes. He shows that, given a binary
cyclic code which corrects e > 2p+1 eirors, p> 0, this code can be shortened by 2p+1
bits or more to give a code which can correct p bits of slip and also has expected noise

tolerance :

2 .
ep) = 228 % (e-:)(2‘3]>, 0<B<p .,

i=1 i-

* However, in Theorem 2.5 in Chapter Il, a condition is imposed on this result.
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where a code is said to have expected noise tolerance of E(B) bits; if with probability of

at least 1/2, the code can correct p bits of slip with E(B) or fewer additional additive errors

in the received word. He develops a similar technique for codes which can correct more -
than one error. It is shown that by shortening the code by 2p+1 bits or more and then adding
p zeros to each end of the shortened word that the code can be made to correct p or less bits

of slip. Tong's work will be discussed further in the text.

Cc:aldwell8 and Bose and Caldwel|5 also examine the problem of slip in a
noisy channel. Their method is not based on coset codes but on a new technique. In words,
the technique consists of adding specified bits to either end of a cyc!ic code word and
restraining some of the information bits in the code word. These "extended " codes have the
ability to correct the simultaneous occurrence of slip and additive error without sacrificing
any additive error correcting ability. However, the redundancy of the code is increased.
Caldwell's féchnique is examined further in Chapter VIl where some new results are also
presented. Weldonbl has shown that Caldwell's technique can be used with any additive~

error-correcting cyclic code.

The following authors among others, have also examined the problem of
33,34

synchronization of codes : Hackeﬂ'28, Kasahara and Kasahara ’ Schui'zenberger"'6

and Sfiffler54.

.4 Notation and Definitions

39, 40, 41

Cyclic codes are adequately described in the literature and their

description here will be brief. An (n,k) cyclic code will mean a cyclic code with word .

1
1
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length n having k information bits and n-k parity check bits. -A cyclic-code is a linear

code with the added property that any cyclic permutation of the digits in a code word is

also a cyclic code word. -To illustrate, if the n-tuple (a],az, oo an) represents a cyclic
code word, then any cyclic shift of the digits, such as (°i+]' Qipor =ee 1 G y Gy Oy oo q-i)
is also a cyclic code word for all i. If the ai's belong to a finite field F of q elements, an |

(n, k) cyclic code has qI< code words*.

The sum of two cyclic code words (a], Apr oo .y an) and (b], b2, ceo bn)
is also a cyclic code word (group property) and is given by (d] rdor oons dn) where d. =a, +bi’
i =1 to n, and the rules of the addition are determined by the field F. For example, for
binary codes, addition and multiplication are performed in modulo 2 arithmetic, where

0+0=]+1=0qnd0+1=]+0=]foraddiﬁon,and0xl=]x0=0cmd]x]=]

for multiplication.

The n-tuple (a], Qor eoes an) may be regarded 052' 39
(i) an n-vector and
(i) as a polynomial over F, whose coefficients are the ai's. .

If the code words are viewed as n-vectors, the cyclic code becomes a subspace of the linear
vector space of all n-vectors whose elements belong to the finite field F. In addition, the
vectors will possesss the cyclic property described above. If, instead, the cyclic code words
are represented by polynomials, or more precisely, as elements of the algebra of polynomials
modulo x" - 1, corresponding to each n-tuple (co, Qs Gor oeey an_]) there is a polynomial**

a *ta;x+ 02x2 tooota g xn-] , where the a, e F. It can be shown that the subspace is

* This statement is also true of any (n,k) linear code whose elements come from a finite field
of q elements.

** The n-tuple begins with a, instead of a; to fit accepted polynomial notation.
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a cyclic subspace (or cyclic code) if and only if it is an ideal in the algebra of polynomials

2 39. The gen.erafor of the ideal, G(x), is called the generator polynomial

modulo x" = 1
of the cylic code; For an (n,k) cyclic code, G(x) has degree (n-k) ahd divides x"-1.

Any cyclic code word may be written as Y(x) G(x) , where the polynomial Y(x) has degree
less than k. The quotient H(x) = (xn- 1)/G(x) is called the recursion polynomial of the

code.

Given any polynomial P(x), let its syndrome58, written {P(x)} , be
defined as the remainder after division by G(x). From the previous definition of a cyclic

code, it follows that the syndrome of a polynomial is zero if and only if it is a cyclic code

word.

An (n ,|<) coset code39 can be obtained from an (n, k) cyclic code (group -
codes in general) by adding a. fixed n-tuple to each cyclic code word. If this n-tuple is
itself a cyclic code word, then the original cyclic code is regenerated. There are qn-
distinct coset codes of an (n, k) cyclic code with q symEoIs, and each coset code has q
code words. One of the cosets is the original cyclic code, obtained by adding the zero
n-tuple. Any coset code word can be written (algebraically) as W(x) + C(x) where W(x)
is a cyclic code word and C(x) is the added polynomial. For any non trivial coset code,v
C(x) is not divisible by the generator polynémial of the cyclic code, G(x). In fact, since

the syndrome of a cyclic code word is zero, it follows that
{W(x) + C(x)} = {C(x)} .

The vector-matrix description and the polynomial description are essentially

equivalent although the language may be quite different. Many engineers are not familiar
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with modern algebra but they usually have some knowledge of matrix theory. However,
since much of the work on coding uses the polynomial representation, the matrix descrip-
tion is also presented in this thesis (see Chapter 1V). Both descriptions are useful and there
is-some advantage in having two points of view. Hence, loss of synchronization, or slip,

will be examined using both representations.

In this study, some of the results apply only to binary codes and some genera-
lize to any finite field F. Whenever a result is valid only for binary codes, this fact will

be stated explicitly.

Consider any three consecutive transmitied code words from a block code of

length n
(a],az, ...,an) ( b], b2... ’ bn) (d], d2, ”"dn) . (1.1)

If the receiver is correctly synchronized with the transmitter, it will frame the n-tuples
correctly as shown in (1.1). However, if slip has occurred, and the n-tuple under consi-

deration is (b] ,b2, ceo bn)’ the decoder may frame either

b by didy, e d) s & /2 (1.2a)

“f)s-i-l’ s+2’ ° 17 72

or

(@ 417 Ogrp? o+ Gpr Dprbos oo b ), s < n/2 (1.2b)

Case (1.2a) will be called a slip to the right of s bits (right slip) and case (1.2b) a slip to
the left of s bits (left slip). In Figure 1.1, it is assumed that s bits of left slip have occurred,
where A is the vector representation of (al, Aoy oo an), etc. If there were no slip, the

receiver would frame the word B. As explained in more detail in Section 1.6, if A, Band D
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are cyclic code words, C is the fixed n-tuple added to each code word before transmission.

In the figure -AT2 represents the s bits from A which enters the receiver frame.

— | J— — - —
A] A2 B] 82 D
‘4—5—'
= 1< = 1= =
C] C2 C] ] C2 C
[ /'Y
< n >

“RECEIVER FRAME

FIGURE 1.1 Receiver Frame for s Bits of Left Slip.

The amount of slip is usually considered to be less than half of a word length. If n is even
and slip is n/2 bits, right slip is arbitrarily assumed. [f the n-tuples in (1.2a) and (1.2b)
are not code words for all right and left slip less than or equal to S bits (S < n/2), the code

will be said o have comma-freedom* S. If the framed n-tuple is not a code word for all

* Ton957 calls this " comma = free freedom S ".
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non-zero values of slip, the code is said to be comma-freezz. Alsé, if (1.2a) and (1.2b)
are not code words for right and left slip equal to s, for any three adjacent code words
(not necessarily different), the code.is said fo be invulnerable to slips. Note that invul-
nerability to slip s does not necessarily imply that the code is invulnerable to lesser values
of slip.

An important concept in. the study of block codes is the distance (Hamming
distcmce29) between two code words. This may be defined as the number of positions in which
corresponciing elements are different. A related concept is the weight of a code word which
is defined as the number of non-zero elements in the code word. For example, the distance
between the 5-tuples (10011) and (01101) is 4 and both have weight 3. For any group code,
it is easily shown that the minimum distance, d, is equal to the minimum weight of the code.
This property does not necessarily hold for non-group codes. There is also another metric

called the Lee disfancesé, but it will not be considered in this study.

1.5 Mathematical Description of Slip

Using the polynomial representation, associate with each n-tuple

(ao, Ay eens an) the polynomial a tapx teoota g xn-] . Let A(x) represent a code
word from an (n, k) cyclic code, and write
Alx) = o°+a]x+... +ar;_]xn_] (1.3)

where the coefficients a. are elements of the finite field F. Consider the product *

* Given a polynnomial of degree greater than or equal to n, the desired polynomial is obtained
bK division by x"-1, and selecting the remainder. This is equivalent to applying the relation
x' =1 to the given polynomial.
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x Alx) -1y

x(a +a,x+...qa
o 1 n

' 2 n-1 .
=1 +a°x+a]x +... +an_2x . (1.4)

Hence, it is seen that multiplication by x is equivalent to a cyclic shift of one bit.
Similarly, multiplication by x—] is equivaleﬁf to a cyclic shift of one bit in the opposite
sense. Now, consider the n~tuple in (1.2b) and assume s bits of left slip. The polynomial

representation of this n~tuple may be written as
x S B(x) + U_(x) (1.5)

where B(x) represents the n-tuple (b] ’ b2, cee bn), and Us(x) is a polynomial of degree
less than s whose coefficients are unknown elements of the. field F. At this point it is
worthwhile to mention an awkward situation due to the polynomial representation. From
the n-tuple in (1.2b), it is seen that the s elements (bn-s+1’ cee bn) are lost at the
decoder. However the operation x° B(x) cyclically shifts them around to occuply the. first
s positions in the framed n-tuple. Hence the polynomial Us(x) represents the sum of the

s-tuples (bn_ cey bn) and (an__$ RYETEPRY un). Since the latter s-tuple comes from

sH’ °°

an unknown left-adjacent word, the coefficients of Us(x) may be regarded as random.

Recalling the n-tuple in (1.2a) the polynomial representation of s bits of

right slip may be written as

X" Bl + U_(x) (1.6)

where U_s(x) is @ random polynomial whose lowest term has degree greater than or equal

to n=s. It can be verified that (1.6) may be written as
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x" s B(x) + x"® Us(x) | (1.7)

or
x" % (B(x) + U () ) - (1.8)

To keep:the discussion at this stage simple, a noiseless channel has been implicitly assumed,
i.e., no additive errors can occur. In later chapters, noisy channels will be considered
and the effects of additive errors will be examined. The description of slip in this section is

algebraic and the vector-matrix description of slip will be given in Chapter 1V.

1.6 Description of The Transmitted Code Word

As was mentioned earlier, cyclic codes as such are vulnerable to synchroni-
zation error, hence it is desirable to alter the cyclic code words before transmission. One
procedure is to add a constant polynomial C(x) to each cyclic code word, W(x), before

transmission. The transmitted word is then

B(x) W(x) + C(x)

Y(x) G(x) + C(x) .(1.9)

The new code is called a coset code39’ 57 and has the same number of words as the original

cyclic code. Depending on the choice of C(x), the coset code may or may not have good

slip detecting or correcting properties.

Another procedure5’ 8, 6l is to restrain m of the k information bits, m <k,

of the cyclic code words to give the new code words

D(x) = (J(x) F(x) + 1) Gfx) .. | (1.10)
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where F(x) is a primitive polynomial of degree m and J(x) is an arbitrary polynomial of
degree less than k = - m. The new code is no longer cyclic (in fact it is not even a group
code) and has qk-'-m words. It is a subset of the original cyclic code since each word, D(x),
is ﬁctually a cyclic code word. These codes are also able to detect and correct slip. There
is another class of codes which is obtained by combining the coset code technique and the
above technique. These codes will be studied in Chapter VII.

None of the above techniques alter the length of the code word, n, but

5, 58 61

there are others which do. In this study, attention will be restricted almost exclu-

sively to techniques that do not alter the length of the cyclic code. However some of the

other techniques, briefly reviewed in Section 1.3, will be examined again in Chapter VII.

1.7 Consideration of Additive Noise

Interesting results have been obtained by assuming that slip is the only source

23, 24, 32

of err . Such a channel is noiseless, in the additive error sense. These results,

however, are of limited value for practical channels. For noisy channels it is desirable to

know the combined effect of slip and additive error. Two widely used models for additive

error are
() the noise affects the digits of the code words independently
and,
(i) the errors are dependent and tend to occur in bursts or
clusters.

For some channels, such as telephone Iines] ! ]7, burst errors may give a better model for
the experimental data, although a combination of the two types would given an even more

accurate description. In later chapters, both independent and burst errors will be examined
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in the discussion of slip for a noisy channel. Although most of the results presented in this
study are valid for the general class of cyclic codes, in Chapter VI, the effect of slip in

a channel with burst errors is studied for the Fire codeslé, which are a subset of the class

.

of cyclic codes.
It might be added here that one of the main results of this sfudy55’ 36, _57
is the demonstration of the existence of a cldss. of coset :codes of cyclic codes which can ..

correct both islip and .gdditive. error;, .even :when they occur simultaneously in a'received

word.
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CHAPTER Il

LOSS OF SYNCHRONIZATION IN A NOISELESS CHANNEL

FOR COSET CODES

2.1 Introduction

In this chapter, slip is assumed to be the only source of error.. Although
the results obtained do not apply to noisy channels, they are useful for theoretical pur-
poses and give considerable insight into the more general situation where additive errors
are also present. In-addition, the methods of the analysis can be extended to the noisy
channel. All the results of this chapter are valid for cyclic codes whose elements belong
to any finite field F. Both detection and correction of slip are examined and the mean-
ing of "correction” is discussed in some detail. Some of the results presented in this

chapter are new and will be indicated as such where applicable.

As stated in Chapter [, the transmitted words are coset code words which
are obtained by adding a fixed polynomial C (x) to each cyclic code word W (x),
before transmission. From each received word V (x), the decoder subtracts the poly~-
nomial C (x). If there is no slip, the received word minus C x) ,i.e., V x) - C (x),
is the original cyclic code word. If slip did occur, V (x) = C (x) may not be a cyclic
code word, depending on C (x) and the amount of slip. Since the decoder can detect
slip only when the received word minus C (x) is not a cyclic code word, C (x) should
be chosen so that V (x) = C (x) is not a cyclic code word for the maximum amount of
slip. To detect slip, the decoder divides V (x) = C (x). by the generator polynomial

G (x) of the cyclic code. Since a polynomial is a cyclic code word if and only if it is
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divisible by G (x), the decoder decides that slip is present if a non-zero remainder is
obtained. If the remainder is zero , either there is no slip present or the decoder has
failed fvo detect it. Equivalently, recalling that the remainder after division by G (x)
is called the syndrome, the decoder can detect slip if and only if the syndrome is not
zero. Note that this discussion assumes that the decoder is analyzing a single word

length. Results on the detection of slip are presented in the next section.

2.2  Detection Of Slip

This section presents some results on the detection of slip in a noiseless
channel. The transmitted words are from a coset code which is derived from a cyclic
code, and, as explained in the previous section, the decoder detects slip by computing
the syndrome. The result which follows was first proved by Sfiffler52, and is also stated

by Levy38 and Ton95§

Theorem 2.1

Givenany (n, k) cyclic code, there exists an (n, k) coset code which

can detect all slip less than or equal to n -~k -1 biis.

Proof : First, note that the coset code satisfying the theorem is not unique for a

given cyclic code. To prove the theorem, we make a simple choice and at the end of the
proof some other possible choices are mentioned. In order to construct the coset code, add

the polynomial C (x) =1 to each cyclic code word W (x) before fransmission. Assume
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that s bits of left slip occur at the receiver. The decoder subtracts C (x) from the

received n - tuple to obtain
x° W x) +C (x)) + Us (x) = C (x) l. | 2.1)

where Us (x) is a polynomial of degree s -1 or less whose coefficients are random.
Us (x) accounts for the unknown s bits which come from the Ie‘ff - adjacent word to
W (x). In order to determine if the polynomial in (2.1) is a cyclic code word, the
decoder divides by the generator polynomial G (x) and examines the remainder, or syn-
drome. Denoting the syndrome of a polynomial P (x) by {P (x)z , the decoder can

detect slip if and only if
{(Fwwrcwrum-cw]} o 2.2

since if (2.1) is a cyclic code word its syndrome is zero and the decoder concludes that
no slip has occurred. Since W (x) is a cyclic code word, {xs w (x)} = 0 forany s
and 2.2 becomes *

fcoet-n+u @} #o. 2.3)

Written-as an n - tuple, the polynomial in (2.3) becomes

% In general, {p «) +Q (x)} - ip (x)} + {Q (x)'} and {P ) Q (x)}= {{P 6} {Q(x)}}

where P (x) and Q (x) are arbitrary polynomials.

.
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('u’; T L IV P I 0) 2.4)
where U' = u =1 'since C(x) = 1 and
(o] (o]
U () = Uty X b U Ll 2.5)

It is clear that the n - tuple in (2.4) is a burst of length s + 1 or less™. But, for an

(h , k) cyclic code, it is known that a burst of length n - k or less cannot be a cyclic
code word unless it is the zero word .39 However, (2.4) cannot be the zero word since

U, (x) cannot cancel the term x°, although =C (x) = -1 itself may be cancelled by

U =1. Itcannow be concluded that (2.4) is not a cyclic code word if s+1<n -k,

i.e.,if s€n-k-1.

If right slip of s bits is assumed, (2.3) would have the form

fce™-1n+u W}#o 2.6)
for all U (x) , where
: -s
_ n-s . n=s+1 . n-1
U-s x) = U X U X ool tU g% 2.7)

and writing the poiynomial in (2.6) asan n - tuple we have

(1,0,...,0,u¢' _,0 2.8)

n-s’ n=s+1’°° "' U'n-I)

where u'n—s = u__+1. Byperforming a cyclic shift of one bit on (2.8) it is seen that

* A burst of length b may be defined as an n - tuple which is zero everywhere except

in an interval of length b .
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(2.8) isa burst of length s+ 1 or less, and hence can not be a cyclic.cdde word if

s+lgn=-k,i.e.,if sgn-k=-1. Itfollows that the.decoder can detect all slip less

than or equal fo n -k =1 bits.

Q.E.D.

In the above proof, the coset was obtained by choosing C (x) = 1. In fact, the choice

Cx) =aor Cx) =8 xn-] where o and B are arbitrary elements of the coefficient
field F, would give the same result. The proof given here differs somewhcﬁ' from existing
proofs in that explicit use has been made of the fact that a burst of length n =k or less
cannot: be an (1 , k) cyclic code word.

The proof of Theorem 2.1 may seem rather long, but this is partly because
new terms and operations wefe introduced during the proof. In later proofs, it will be

assumed that the reader is familiar with the proof of Theorem 2.1. To gain further insight,

Theorem 2.1 will now be proved in a slightly different manner5§ Starting at (2.3) and

substituting C (x) = 1, we have

¢+ u, (x)-l} 4 0. 2.9)

Since Us (x) has a degree less than s , it can not eliminate the term x° in 2.9) if
s€n=-k=-1, because in this case, {xs} = x° . Therefore, when s€n -k =1 the
inequality in (2.9) holds and the decoder can detect left slip. A similar proof holds for
right slip.

Another way of stating Theorem 2.1 is to say that there exists an (n , k)

coset code which has comma = freedom n -k - 1. The next result shows that the per-
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2,58

formance of Theorem 2.1 cannot be eXceeded? ’

Theorem 2.2

Givenany (n, k) cyclic code, none of its coset codes has comma-

freedom exceeding n -k - 1.

Proof : Allowing C (x) to be arbitrary, the decoder can detect s bits of left

slip if and only if (see 2.3))

fcwe-n+u ) #o 2.10)

for all Us (x) . The above relation can be written as

iC () (xs-l)}% {US (x)}. @.11)
Since the degree of the generator polynomial G (x) is n -k, the syﬁdrome (i.e., the
remainder) of any polyﬁomial can have, at most, degree n -k - 1. Hence, regardless
of the choice of C (x), if s> n -k =1, there exists an Us (x) (since Us (x) is random) -
which is equal to {C (x) (xs - 'I)}. In other words, the inequality in (2.12) cannot

be guaranteed for all U, (<) if s>n-k=1. The proof is similar for right slip.

Q.E.D.

A corollary to Theorems 2.1 and 2.2 can be stated 52,38,58

Corollary 2.1

Givenany (nh, k) cyclic code, there exists a coset code which is comma-

free ifandonly if k £ -1) /2.



28

Proof : Theorem 2.1 states that all slip less than or equal n -k -1 can be

detected. Observe that k €(n - 1) /2 implies that k<n -k -1. Aslipof n-k
or more in one direction can be considered as aslip of n = (n =k) = k or less in the

other direction. Since k €n -k -1 here, the decoder can detect all slips. This

proves that the coset code is comma=free if k <(n - 1) /2.

To prove the converse, assume that k> (n = 1) /2 which is equivalent to
k>n =k =1. This implies that there exists slip of s bits such that k2s>n -k - 1.
But for such s, both s and n -s are greater than n -k = 1. Hence, by Theorem 2.2
the corollary is proved.
Q.E.D.
Theorems 2.1 and 2.2 and Corollary 2.1 summarize the more important

results relating to detection of slip by coset codes of cyclic codes in a noiseless channel.

The ability of coset codes to correct slip in a noiseless channel will be investigated next.

2.3  Correction Of Slip

One definition of correction of slip is that the decoder can distinguish
between right slip and left slip. In order for the decoder to.do this, the syndromes for
right slips must be different from the syndromes for left slips. However, this fact alone
will not inform the decoder as to the number of bits of slip that has occurred. To compute
the amount of slip, in addition to the direction, the syndromes for 51 bits of right (left)

slip must also be different from the syndromes for 5 bits of right (left) slip if 5 # Sg -
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If the decoder can only distinguish between right slip and left slip, it can
not recover sync on the next received code word without searching. A simple strategy
for the decoder in this case is to.reduce the slip by one bit for each new word that arrives
until the correct sync is obtained. It is seen that if the slip is large, several words will
be lost before the decoder resynchronizes. If, instead, the decoder corrects the slip by’
several bits at a time, it may cause slip in the opposite direction. However, on receiv-
ing the next code word it can adjust the sync in the other direction by a lesser number of
bits. In this way it can gradually converge on the correct sync. On the other hand, if
the .decoder knows the amount and the direction of the slip, it can.regain sync on the next
word to arrive, without a search. Recovering:sync without searching is certainly preferable
to searching, but it results in a slightly reduced number of bits that can be corrected. In
his work, Tong58 generally uses correction of slip to mean the ability of the decoder to
distinguish between right and left slip. On the other hand, Caldwell8 and Bose and
Caldwe||5 use correction fo mean the ability of the decoder fo compute both the magnitude
and the direction of the slip. The distinction in the two meanings is worth pointing out
since the first definition implies that the decoder must search to recover sync, whereas the

second implies no searching.

The above discussion implicitly assumes that the decoder stores one word
length at a time. However, theré is another possibility, in that the decoder may store a
longer sequence of bits. For example, it may store the preceding word while decoding the
current word.  In this case, if the decoder knows only the direction of the slip, it could

search either "backward" in time, or "forward” as each succeeding bit arrives. This pro-
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cedure will reduce the number of words lost before regaining sync. However, there are at
least two penalties in this procedure. The first is that the decoder must store more data -
and hence will be more complicated and costly. The second is that it must search rapidly

since data is arriving in a constant stream and large buffers may be necessary or overflow

problems will arise.

It is even possible that the decoder may-recover sync using slip detecting
powers only, by performing an undirected search. Such a search may consist of merely
allowing the framed n-- tuple fo slide along, bit at a time, as each succeeding bit arrives.
The syndrome is computed for each n - tuple and sync is assumed when the syndrome is zero.
In other words, if the current n = tuple is (@_,a; ;a,, . . ., @ ) where a_ was the

o’ 1 2 n-1 o
last bit to arrive, then if its syndrome is not zero, the decoder fraimes next
(;'a_] yA sy an—2) , where a_; arriyes after a - In this way the decoder
shifts bit by bit until the syndrome is zero. This method will always obtain the correct

sync for a comma - free code but it may result in a false sync for codes which are not.

In the following theorem the decoder can only distinguish between right
slip and left slip.  Although the choice of C (x) in this case is simple, it does not appear

to have been stated elsewhere. It is readily derived from Tong's work.

Theorem 2.3

Givenany (n, k) cyclic code, there exists an (n , k) coset code which

can distinguish between right slip and left slip if slip does not exceed n-k=1)/2..

Proof : It is sufficient fo show that the syndromes for right slip are different from

°

the syndromes for left slip. As in Theorem 2.1, choose C(x) = 1 (or C(x) = xn-])
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The requirement may be written as
{¥wwrcary @-col T mwrcaru, 0-cn} e

forall s, r<(n - k-1) /2 and for all U, (x) and U-r (x) where W, (x) and W, (x)
are any two cyclic code words. Putting all terms on the left and recalling that

W o) {=1x"W x)¢ = 0, 2.12) reduces to
1 2

{XSC(x)wS (6 -xTC6)-U_ (x)} 4 0 2.13)

forall s, r<@M=-k=-1)/2. The polynomial in (2.13) is not a cyclic code word if
and only if all of its cyclic shifts are not cyclic code words. Hence (2.13) is satisfied

if and only if

{xs**c (6 +x' U 6 =C 6 -x" U_ (x)} 4 0 2.14)

where we have performed a- cyclic shift of r bits by multiplying through by x . Recall
from (1.7) that U-r x) = T Ur (x) and hence x U-r x) = Ur (x) .  Further,

x Us (x). - Ur (x) may be written as Us+r (x) . Applying these results to :(2.14) gives

{c (x) (><‘°"”-l)+us+,r (x)} #0. : 2.15)

Comparing (2.15) with (2.3), it can be concluded that (2.15) is satisfied for all |
Us+r (x) if s+r<n -k -1 Letting the maximum amount of slip in either direction be the
same, the decoder can distinguish between left and right.slip if slip does not exceed

'(n -k-1)/2.
Q.E.D.
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It is instructive to point out that fHe-decoder‘ has more information at ifs diéposal than
was claimed by’Theorem 2.3. In fact, it will be-‘proved that if C (x) = 1, the decoder
can disti'ngu'ish between any two left slips but it can not doso for two distinct right slips.
On the other hand, if C (x) = x“" , the decoder ccu"\ disfin'guish. between two right
slips but not between two |eft. slips. The case for C (x) = 1 will now be proved. - Let
left slips of s and r bits, where s >r, occur for any two codes words W] (x) and

W, (x) , respectively. It is required to-show that -
(¢ wm+Con+y 0 -cw] /i MercEry @-co} @9
which reduces to |

{c 0 6 =x) + U &) - U, (x)} £0. @)

Since s>r, let U; x) = Us x) - Ur (x), where U; (x) is another random polynomial
of degree less than s. Substituting C x) = 1, (2.17) becomes
s ro, .
f - x +U;(x)2 £0 . | 2.18)
Observe that U; (x) cannot cancel the term x> in the above expression if s <n -k -1
(but it can cancel x') , hence the decoder can distinguish between any two left slips not
exceeding n -k -1.
Now, let right slips of p and q bits occur, where p > q , for any two

cyclic code words W] (x) and W2 (x) , respectively. To prove that the decoder cannot

distinguish two right slips, by contradiction assume that

£ W60+ C W) +U_ ) ~C 6} 7 {900, (9 +C 60+ U_- C} e
2.19)
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which can be reduced to
P - . 2.2
fc 0 &P -x )+U_ 6 -U_ @]} #0,p>q (2.20)
Performing a cyclic shift by multiplying through by <P, (2.20) is equivalent to
fcoa -y - U €0} #0, p>q @.21)

where the relationship U-p x) = x P Up (x) was employed. The expression in 2.21)
can be simplified further by setting U") x) = Up x) -~ xP™d Uq (x) where Ul; (x) has

degree less than p. Substituting C (x) = 1, (2.21) becomes
{]-xp-q+U;'(x)} #0, p>q. . | 2.22)

It is clear that U'p (x) can cancel 1 -xP 9 for all p<n-k=~1, and hence the
inequality (3.22) cannot be guaranteed for any such p . This proves that the decoder

cannot distinguish between two right slips when C (x) = 1.

It can similarly be proved that when C (x) = xn_l the decoder can
compute the magnitude of the slip for right slip but cannot do so for left slip.  Finally,
to distinguish between right slip and left slip, Theorem 2.3 requires that the slip

<h.-k-1) /2 bits. These results are summarized below.

Corollary 2.2

Givenan (n, k) cyclic code, the coset code obtained by adding the
polynomial C (x) = 1 can compute the magnitude and direction of all leff slips

S -k -1) /2 bits, but can:only determine the direction .of .the slip'when right slip
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o S(n =k =1)./2 bits occur . On the other hand, if C (x) = xn-'I , the decoder can
| ff’de‘fer'mine the magnitude and direction of all right slips £ -k = 1) /2 bits, but can

- only determine the direction of the slip when left slip <(n =k = 1) /2 occurs.

The implication of Corollary 2.2 is that for C (x) =1, .the decoder can

;'ecover sync on the ng.xf code word to arrive if left slip occurs, and for C (x) = xn-]‘
- it can recover sync on the next word if right slip occurs. It is believed that Corollary

2.2 has not been stated explicitly before; . The next theorem, which is also believed to

be new, covers the case where the decoder can recover sync on the next code word for both.. -

right and left slips .

'Theorem 2.4
Given any (0, k) cyclic code, there exists an (n , k) coset code which .
can compute the magnitude-and the direction (left or right) of the slip for all slips not

exceeding (0 =k -2) /2,

n=-1

Proof : The coset is obtained by letting C (0 = x ~ + 1. Many of the steps in

the proof can be borrowed from the proof of Theorem 2.3 and Corollary 2.2 since C (x)

was usually not specified until near the end.
First, it will be shown that the syndromes for right and left slips are distinct.
- This requirement is stated in (2.12), which reduces to (2.15). Substituting C (x) = xn-] +1

in (2.15) gives

% . {(x"'] +1) (x$+r -1) + .Us+r (x)} Z 0 . (2.23)
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or

- - . | ‘
{7 N U, (x)‘} 7 0. | (2.24)
Performing a-cyclic shift of one bit by multiplying (2.24) by x gives

T L XU, 0} # 0, ‘ C @.25)

since x" = 1. A convenient convention is now adopted for the random polynomial
Up» (x) , where p € n . If another polynomial Q (x) of degree q , where q < p

is added to Up' (x) , the sum is written as Up x),i.e.,

Uy 6 + QW = U &, p>q
since the sum is still a random polynomial of degree less than p . Adopting this conven-

tion, (2.25) can be written as
" str+1
{x -1+ XU, (x)} £ 0 . 2.26)

It follows that (2.26) is satisfied if s+r+1<n -k -1 (recall proof of Theorem 2.3)
or str&n-k=-2. Lletting S be the maximum amount of slip in either direction,
(2.26) is satisfied if S<(h -k =-2) /2.

The requirement that the syndromes for left slips s and r, where s>r > o
are. to be distinct is given by (2.16) which reduces to (2.17). Substituting

C x) = ]+xn-] in (2.17) gives

{xs-] + X -xr-] - X+ Us(x)} # 0, s>r>o0



which simplifies to
s .
{x+us(r)} A0, s>2. 2.27)

It is seen that (2.27) is satisfied if s<S<n-k=1. Similarly, for right slips p and
q, where p>q, it suffices to show that (2.21) with C (x) = 1+ xn-l is satisfied,

i.e., that

(T +u 0} #0, p>q 2.28)

and (2.28) is satisfied if p<S<n-k-=1. However, asshown earlier in the proof,

it isrequiredthat S<(h-k-2)/2.
Q'E.D.

The next question is whether the performance of Theorems 2.3 and 2.4 can be

exceeded ? A partial answer to this question is given by the next theorem .

Theorem 2.5

No-coﬁef of any (n, k) cyclic code, for which 2 k >n , can.distinguish

between right slip and left slip whenever slip exceeds (h -k - 1) /2 .

Proof : The-sfurﬁngpoinf‘will again be (2.12) in the proof of Theorem 2.3, and

as before (2.12) reduces to (2.15) except that here C (x) can Se-arbitrarily chosen.
Now, assuming that s+r >n -k =1 and recalling that Us+r x) = x' Us (%) -‘Ur x) ,

(2.15) can be written as
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fcwe™-n} #{u,w}. - (2.15)

The -syndrorﬁe of a polynomial whose degree is less than n -k is the-polynomial itself,
hence every such distinct polynomial has a distinct syndrome. Further, there are q“‘
distinct polynomials (g is the number of ele'me.nfs in the coefficient field F) of degree
less than n-k and hence such polynomials can generdfe all possiBle'syndrom'es. If

s+tr>n-k -1, thedegree of Us+r (x) can be-as high as n-k=1, and if Us.+r (x)

is perfectly arbitrary (random) then it can, as explained, generate all syndromes. How-

-ever, there are restraints on the arbitrariness of Us o (x), since Us (x) and Ur (x) are

parts of coset words and so-are not entirely arbitrary. In fact, for an (0, k) coset code
(or cyclic code) there are k arbitrary information bits, and n - k check bits which are
determined once the information bits are chosen. It can now be seen that if 2 k >n,

U, (x) will be-completely arbitrary because .s.<k and r < k. Hence, if 2k>n

and s+r>n-k-1, Us+r (x) can generate all syndromes and so the inequality (2.15')

cannot be guaranteed, regardless of the choice of C (x) .

A.E.D.

Note also that Us+r (x) is completely arbitrary when n -k =1<s+r €2k and both
s and r donot exceed k . Hence, letting S represent the maximum slip in either

direction, this condition becomes (h -k -1) /2 <S<k . The following can now be

stated 5 5

Corollary 2.3

No coset of any (h , k) cyclic code, for which 3k>n, can distinguish

_between right and left slip whenever slip .S lies in therange h -k =-1) /2<S< k.
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Tong58 states a theorem (his Theorem 3) which is the same as Theorem 2.5
except that the-condition 2k>n is omitted. The:absence of any condition implies
that the .adjacent words are-arbitrary, but this is not the case for the noiseless channel

which is assumed. In fact, the -adjacent words are coset words.

This completes the discussion of slip for coset codes in-a noiseless

channel.
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~ CHAPTER 1l

LOSS OF SYNCHRONIZATION FOR COSET CODES

IN A NOISY CHANNEL

3.1 Introduction

In this chapter, it will be-assumed that additive errors (due to additive
noise) affect transmitted bits independently. As mentioned earlier, there is another

imporiant class of errors called burst errors, but these will be discussed in Chapters V and
VI .

Additive errors will be represented by the polynomial

E(x) = e,teyx+ ... te x . Inareceived n - tuple, if there is an

additive error at position e s then e, # o, but if not, e, = o, In this way, the
number of additive errors is equal o the number of terms in E (x) , which is called the
weight of E (x) , written as W [Eh(x)] . For exdmple, if there are e additive errors,
then W[E(x)] =e.

Throughout the discussion, the minimum weight of the cyclic code unde'r
consideration will be designated by d , which .is assumed to be a known quantity. THe
zero word is always a cyclic code word but is, of course, ignored when computing d .

For cyclic codes (group codes in general), the minimum weight is equal to the minimum

distance and d will represent both.

A code with minimum distance d can either detect (d = 1) or less

additive errors or correct (d - 1) /2 or less additive errors (ignoring slip for the moment).
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if fhe-'decodgr is designed to.correct e -or fewer additive errors, where e <d -1) /2,
then it can-also.detécf'all additive errors e' in therange e<e'<d -(e+1). Given
an (n, k) cyclic code, it canv easily be shown that the minimum distance for all -its
coset codes is also d . Since-a coset code is not a group code, its minimum distance

and minimum weight need not be the same.

The discussion of slip in a noisy channel will be divided into two cases :

Case | : In this case, it is assumed that the two types of error do not occur simul-

taneously. In other words, if a given n - tuple is transmitted, it is assumed that it will
arrive -at the receiver with either additive errors or slip errors, but not both.  Of course,

some n - fuples may darrive with no errors at all.  Physically, this implies that the prob-

ability of both types of error occurring in the same n - tuple is negligibly small. If the

probability of occurrence of both types of error is small and they are independent, then
the probability of their joint occurrence (i.e., the product of their individual probabilities)
will be much smaller. Hence, although Case | is restricted, it can serve as a reasonable

model for some low noise channels.

Case |l : Here, additive error and slip are allowed to be present simultaneously in
any n - tuple at the receiver. Case Il is obviously more general than Case | and covers
a wider class of channels. Case | is treated separately, however, because it is examined

L] 58 - L] L . L] -
in the literature , and also because it provides insight in solving the more general Case Il.

Both Case | and Case Il will further be broken down into two problems,

namely, detection (A) and correction (B) .
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8.2 Case |: .Slip.And Additive Error Do-Not Occur Simultaneously’

A. Detection

By.Theorem 2.1, any (n, k) _c_ycl'ic-code has a coset code which:can
detect n =k - 1 or less bits of slip-when no additive errors are present. However,
since the :coset code has the same minimum distance, d , as the -original cyclic code, it
can also detect ‘d =1 or less additive errors if no slip is pfesent. Note that the decoder
can detect that some kind of error is present, but c;::rinof determine whether it is slip or .

additive error. The-above discussion can be summarized in the following theorem.

Theorem 3.1

Any (n, k) cyclic code has a coset code which can detect n =k =1
or less bits of slip-and d - 1 or less additive errors if sl.ip and additive error cannot occur

simultaneously inany received n - tuple . However, the decoder cannot determine the
nature of the error.
This theorem was quite easy to establish, but it does have some value. It

demonstrates that by using coset codes it is possible to obtain maximum slip detection (for

coset codes) without losing any additive - error = detecting ability. In addition the sim-

plicity of using cyclic codes is retained.

B. Correction

In" order to correct either (or both) type of error, the syndromes for slip must

be different from the syndromes for additive error. In the next theorem, namely, Theorem
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3.2A , both types of additive error are corrected. Theorem 3.2A is an-improvement on
Tong'558 ' Theorem 4 intwo senses.  First, it will be shown here that the decoder can

determine the magnitude-as well as the-direction of theslip. The second is that a redun-

dant condition stated by Tong has been removed.

Let d be the minimum distance of all fhe-éyclic.codes (and hence- their
coset codes) considered in this chapter. Note:also that for all the theorems in this chapter

the phrase "correction of slip” will imply that the decoder can determine both- the ‘magni -

tude-and the direction of the slip.

Theorem 3.2A

Givenany (n, k) cyclic code, there exists an (0 , k) coset code which
can correct-both e -or less additive errors and S or less bits of slip, if additive error and
slip do not occur simultaneously in any received n - tuple, where *

n -k-e+[e/2] -]] } .
[C/2] + 2 ]

S = Min. {d “2@+1),

Proof : The proof consists of two parts.  The first part will show that the syndromes

for all slip- < -are different from the: syndromes for e -or less additive errors.- - The second

part will show that the syndromes for right slip.and left slip.are distinct for all slip < S.

* [ X] denotes the integer part of X .
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It will also be pointed out that the decoder can determine the magnitude and the direction

of the slip, for all slip < S . A procedure is also given for constructing a suitable C (x)

'Assume that the transmitted code word 4W] (x) + C (x) suffers s bits of
left slip and that the word W2 (x) + C (x) has additive errors E (x) . Then, it is suf-

ficient to show that
{xs (Wl )+ C (x)) - C (x)+ Us (x)} # {Wz x) +E (x)} | 3.1
for all Us ®), s<S.and W [E (x)] < e . The above relation can be simplified as |
{C ) 6 - I.) + Us (x) + E' (x)} #0 . | (3.2)

where E' (x) = - .E (x) and E' (x) has the same weight as E (x) . However, the:prime

will be dropped in the next expression-and E (x) will always be written with a:positive

sign in the future. Since the minimum weight of a non-zero code word is d , (3.2) is

satisfied if
0<WwW [C (%) (xs -1) + Us x) + E (x)] <d 3.3)

for all Us ®), s <S and W [E x)] <e. Let Ds (x) be:a polynomial derived from
C (x) (xs - 1) by setting all the terms of degree (s - 1) or less to zero. Then, (3.3) can

be written as
o<W [Ds 6 + U () + E (x)] <d | (3.4)

since Us (<) is a polynomial with random coefficients. N.otice that Us (x) cannot affect
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the terms in Ds (x) since Us (x) has no:terms of degree s or greater. The leff-inequalify

in 3.4) is satisfied if and only if
w [ D$ (x)] >e for all s £ S 8.5)
and the right-inequality is satisfied if and only if

w [b, (x)] +S+e<d for all s < S. 3.6)

For a given e, it is desirable to maximize the correctable slip S. This requires that
' [ Ds '(x)] in (3.6) be:a minimum, hence, to satisfy (3.5), assume that Ds (x) can

be chosen so that

w [Ds(x)] = e+1 foral s €5 . 3.7)

Substituting (3.7) in (3.6) , gives

S<d-2e-1
or

S <d=2(@+1) . (3.8)
Thus if a suitable C (x) can be found, the-decoder can distinguish between left slip-and
additive error. A similar result can be obtained for right slip.

In the second part of the proof it will be shown that the decoder can distinguish

between left and right slip.  This can be-achieved if and only if (2.12) is satisfied, which
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reduces to

fcwe™-n+u, w} #0. e

A choice-of C (x) that satisfies (3.8) and (2.15) is now described * . Let
’ . |

e

/2 .

r x' G+ for e even 3.9a)

Ckx =

i=o0

-.and

[ /2]
;i

C (x) xi G+0) + x‘“" for e odd . (3.9b)

i=o
Written out as n =tuples, (3.9a) and (3.9b) have the form (3.10a) and (3.10b) ,’

respectively, as shown

S+1 S+1 : S+1
(]0..'-0,]0...0,--.,...,]O.-.0,0...O) (3.]00)

4
) ]

(8/2 + 1) (S+1)

(lo...0,10...0,...,...,110...0,0,..01 (3.10b)

(/2] + Hs+)

The motive for the choices of C (x) in the above can easily be explained. First, it can

be verified that C (x) satisfies (3.7) for both even.and odd e. Second, C (x) is chosen

*  These polynomials are very similar to the ones described in Tong ©



to .obtain the .largest value -of slip:-which satisfies (2.15) * .

Substituting (3'.9a) into (2.15) , the highest term, for e even, has

degree % S+1) + (s+7r) . Recall thata bursf'of length n =k or less cannot be:an

(m , k) cyclic code'word.  Hence, if
-g-(S+l) + s+1) €n-k-1 3.11)

(2.15) will be satisfied. The maximum value:of both s and r is S and hence (3.11)

becomes
S(®/2 + 2)$n-k-§- -1
or
n-k- ‘e/2 -1
s < for e even . ’ (3.12q)
e/2 + 2

When e isodd, (3.9b) is substituted into (2.15) . The highest term will then be xn_],
but by multiplying through by x , x‘"’] becomes x" =1 and the new highest term has
degree [e/ZJ (S+1) + +r) + 1. Hence, the polynomial in (2.15) is nota

cyclié code word if

_[~e/2] S+1) + +r) + 1 Sn-k=1.

*  However, it is not being claimed that there do not exist other choices of C (x) which

can improve -the performance of Theorem 3.2A .
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Replacing s -and -r by their maximum value S, and solving for - S, the-above
becomes :

.e
sgnok=[5/2] -2 for e odd . . (3.12b)
[¢/2] + 2

The expressions for even-and odd :cases of e -can be combined to give

n-k-e+ (%2 -i] | 3.12)
[e/z] + 2

Using arguments similar to the ones above, it can further be shown that the syndromes
for two left slips 51 and o1 5y # §2 , are:distinct for all 517 Sp <S, and
- similarly for two-right'slips. The-above implies that the -decoder can compute both the

:magnitude-and the direction of the slip, forall slip < S .

To complete'fhefproof, it is necessary to-consider if there is a-minimum
value of n that guarantees the existence of C (x) and at the same time ensures fhaf
w [Ds (x)] =e+1, forall s <S. The [affer condition requires that there-are at
least S zeros beyond the highest term in C (x) , excluding the term xn-] , as illusirated

in (3.10a) and (3.10b). .Hence, a satisfactory C (x) exists if

n>G+1)(e/2+1) for e even (3.13q)

~and

n> @ +1)([e/2] + 1) +1 for e odd . (3.13b)

It is not difficult to-show that (3.12a) implies (3.13a) and (3.12b) implies (3.13b) .
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Finally, since S must satisfy (3.8) and (3.12), it is chosen as the minimum of the two
upper bounds.

Q.E.D.

The next theorem is similar to Theorem 3.2A, and for which it is also-assumed that slip
and additive error do not occur simultaneously. One important difference, however, is

that Theorem 3.2B is valid only for binary cyclic codes.

Theorem :3.2B

Any (n, k) binary cyclic code has a coset code which can correct both
e or less additive errors and S or less bits of slip, if additive error and slip do not occur

simultaneously in any received n - tuple, where
S='Min.{3d-5 _3e-2[%2]], [ock e+[°2] 1]
L 2 ' [3/2] + 2

Proof : Choose C (x) to be the same as in Theorem 3.2A , Then, the decoder

can distinguish between left slip and- additive error if and only if (3.1) in the proof of

Theorem 3.2A is satisfied, and (3.1) can be reduced to
{Ds () + U_6) + E (x)} 40, all s <5 @314

where D$ (x) was defind in the proof of Theorem 3.2A. Since W [Ds (x)] = e+ 1

for all s<S,and W [ E (x)]s e , the maximum weight of the polynomial in (3.14) is

e+ 1 +8S +e .
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However, suppose that
WU 6 +E@] = s+e-m (3.15)
then (3.14) is satisfied if
S+2e+1) - m<gd. (3.16)

Now, let

np

Q (x) Ds (x) + Us x) + E (x)

and compute x Q (x) + Q (x) . If there are m terms missing from Us (x)+E (),

i.e., if (3.15) istrue, it can be shown in a straightforward manner that the maximum

weight of Q (X) (x + 1) is

2m + 2 +2e + 2e , € even,

where the above statement is valid only for binary codes. Note that the maximum is

achieved when all of the m missing terms come from Us x) .

If Q (x) (x+ 1) is nota cyclic code word, neither is Q (x) , hence the

polynomial in (3.14) is not a cyclic code word if

2m + 4e + 2<d , € even, 8.17)

If either (3.16) or (3.17) istrve, (3.14) is satisfied, and eliminaﬁngl m from (3.16)

and (3.17) gives

S<y- - @de+2 for e even (3.18)
2



.and for e odd,

s<39d _ e+ 1) fore odd. (3.19)
2

Combining the even and odd cases give

s<39 _ e +2) +e -2 [%2] | (3.20)
2
or
s<39-3 3. -2 [¢2] . 3.21)
2

A similar proof holds for right slip.

It remains to be shown that the decoder can determine the magnitude-and
the direction of the slip for all slip <.S . This part of the proof is essentially identical

to'the second part of the:proof of Theorem 3.2A and will not be repeated here.. The

-result is that

Ss[n-—k-e+ [e/2] -l] ) . (3.22)
[3/2] + 2

S is then chosen to be the minimum of (3.21) and (3.22) .
Q.E.D.

If Theorems 3.2A and 3.2B are compared, their relative merits are fairly obvious. In

general, Theorem 3.2B will give a iarger value of S when d is large and e is small.
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However, in any particular situation, it is fairly simple-to calculate S by both theorems

and choose the one which gives the larger S.

Actually, Theorem 3.2B can be improved upon by calculating the maxi-
mum weightof Q (x) (xi +1) , where i = S=-s+1, 'rafher than Q (x) (x+1) . As-

suming that
WU 6+E®|] =s+te-m | (3.23)
where o £m gp + e, then Q (x) isnota cyclicA code ‘word if

2e+1 +s-m << d, 3.24)

Now, if Q (x) (xl + 1) is not a cyclic code word, then neither is Q (x) . It is shown

in Appendix | that if (3.23) is satisfied, then

w [Q(x)(xi+l)] £2+3e+25-2(-m) . (3.25)
It follows that Q (x) can not be a cyclic code word if

2 +3e+2S=26-m <d for e even . : (3.26)

If either (3.24) or (3.26) is satisfied, then (3.14) is satisfied, and eliminating (s = m)

from (3.24) and (3.26) gives
S £ Bd -7e -5/2 for e even . 3.27;

It can also be shown that
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SLBd-7e -4)/2 for e odd (3.28) -

and (3.27) and (3.28) can be replaced by

s £ 3"2"5 -3e - [%/2] . (3.29)

The above discussion is summarized in the next theorem.

Theorem 3.2C

Any (n, k) binary cyclic code. has a coset code which can correct both
e or less additive errors and S or less bits of slip, if additive error and slip do not occur

simultaneously in any received n - tuple, where

S = Min. {[32-5 36 - [22]], [n-k-e+[e/2] -1]}_ _.

[&2] + 2

3.3. Case Il : Slip And Additive Error Can Occur Simultaneously

As in Case |, Case Il may be divided info two paris : A , detection and
B, correction.

A. Detection

Here, the decoder will not attempt to distinguish between the two types of

error or fo correct either of them but will merely detect that some kind of error is present.
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The next theorem, Theorem 3.3A , is valid for cyclic codes over any finite field F. Let

d be the minimum distance for all the cyclic:codes considered.

Theorem 3.3A

Any (n, k) cyclic code has a coset code -which can detect the simultan-

eous occurrence of e or less additive errors and S or less bits of slip, where

S = Min. {d - ~2_(e+]), [n[;;z-a [+e]/2] -l]} )

but the decoder cannot determine the nature -of the error.

Proof : Let W (x) be:a cyclic.code word, and.assume that additive error E (x)

and s bits of left slip-have occurred. It is sufficient to show that _
{XWew+Co -Co+u@+ER}AO 3.30)

forall s €S and W [E (x)] <e. Since {xs w (x)} = 0, (3.30) simplifies to

{c 6 6 =1) + U6 + E (x)} 40 . (3.31)

If ‘ (3.31) is compared with (3.2) , it is seen that they are identical. Choose C (x) to
be the same as in Theorem 3.2A. Hence (3.31) issatisfied if S€Ld =2 +1) as
found in (3.8) . Also, (3.13a) is a necessary condition when e is even and (3.13b)
is necessary when e isodd . Combining the even and odd cases and solving for S gives

Sé[n-e + [e/2] -l]
[¢/2] + 1




54

Since S must satisfy both of the bounds given-above, it is chosen as the minimum of the

two. The theorem was proved for left slip, but-a similar proof applied for righfélip.

Q.E.D.

Observe that if s = 0, (3.30) becomes

fWe +Cod -CO +E@} # 0

which simplifies to give

{E(x)} # 0

This implies that if no slip-has occurred, the-decoder. can detect d -~i or less additive
errors. However, asmentioned in Theorem 3.3A , the decoder cannot determine whether
the error was due to slip, addif'ive error or both. Just as Theorem 3.2B improves on
Theorem 3.2A for the special case of binary codes, the next theorem also-improves on
Theorem 3.3A. but is valid only for binary codes. Theorem 3.3B is preferable when d

is large and e -is small.

Theorem 3.3B

Any (n, k) binary cyélic .code has a coset code which can detect the

simultaneous occurrence of e or less additive errors and S or less bits of slip, where

s = Min.{[3d2-5 -3¢ -2 [e/Z]} . {n[-:/;][eiz? -]]} ,

but the decoder cannot determine the nature of the error .
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Proof : Choose C (x) to be the same-as in Theorem 3.2A . Let W (x) be:any

(n , k) binary cyclic.code word, and.assume that: additive error E (x) and s bits of left

slip have occurred. The decoder will detect the presence -of error if and only if

{xs W x) + C (x)) + Us x) + E) - C (x)} # 0 | 3.32) -
which reduces to |

{coe-n+u@rew}#o. .33

Recalling the definition of -Ds (x) in-the proof of Theorem 3.2A , (3.33) can be ‘written

as

{Ds (x) + ,Us x) + E (x)} #0. : ‘ (3.34)

Now, (3.34) isidentical to (3.14) in the proof of Theorem 3.2B, and the same procedure

can be followed to show that when

s < 3d =5 _3e-2 [¢/2] (3.35)
, 2
then (3.34) is satisfied. Also, since C (x) is the same-as in Theorems 3.2A and 3.3A,
(3.13a) is a necessary condition - when e iseven, and (3.13b) is necessary when e is

odd. Combining the even and odd cases and solving for S gives

S n-e + [e/2] -1 . (3.36)
[¢/2] +1

S is now chosen as the minimum of (3.v35) and (3.36).

Q.E.D.
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There is also a theorem which improves slightly on Theorem 3.3 and
which is given below as Theorem 3.3C . The proof is omitted since it isreadily obtained

from the proofs of Theorem 3.2C and Theorem 3.3A.

Theorem 3.3C

Any (n, k) binary cyclic code has a coset code which can detect the

simultaneous occurrence of e or less additive errors and S or less bits of slip, where

S = Min. {[3:—5 3e- [e/z]]’ [n -[:;23[?21] -1]}’

but the decoder cannot determine the nature of the error.

B. Correction

We will first consider a decoder which can correct additive errors when

no slip is present and can detect slip even when additive -errors occur simultaneously.

Theorem 3.4

Any (n, k) cyclic code has a coset code which can correct e or less
additive -errors when no slip is present, and can also detect the simultaneous occurrence

of S or less bits of slip and e or less additive errors, where

S = Min. {d-2 @e+1) , [—"'—e—'—'-]}
e + 1
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It is sufficient to show that the syndromes for slip:plus additive error are
R v

- Proof :

different from fheAsyhdromes for additive error alone. Hence, assuming left slip of s

bits, it is sufficient to show that

{xs (W] x) + C(x)) - C(x) + Us ) + E] (x)} #{Wz (x) + E2 (x)} (3.37)

for all séS,W[Ei (x)] L e, i=1, 2, aoand W'I (x) and W2 (x) are:any

two cyclic code-words. Recalling that the syndrome of a cyclic.code‘word is zero and

putting all terms of (3.37) on the left, we have

{c (’_‘) 6 =1) + U 6+ E &)+ E, (x)} # 0 (3.38)

where, by convention,the sign of the.additive error terms is always positive. Comparing .

(3.38) with (3.2) it is seen that the difference is that E] (x) + E2 (x) replaces E (x)
in (3.2) . Making this substitution, a sufficient condition to satisfy (3.38) is again

provided by (3.3). Hence from (3.5) it is required that

w [Ds (x)] > 2e fordll s< 8§
and S will be:a maximum if the choice of C (x) gives

2e+1 for all s <£5S.

w [ Ds (x)]

Let

CKx = xi S+1)

Mo

o

Then it is easy to see-that W [C_ (x)] = e+ 1, and that W [C o) 6 - 1)] =2e+2
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for all s < S. It follows that W [Ds (x)] = 2e+1 asdesired. Now, from

(3.6) , replacing e in (3.6) by 2e, we have

Re+1) + S + 2e <d

or

S<d -2Re+1) . (3.39)

To -ensure-that W [Ds (x)] = 2e+1 forall s £S, itisnecessary that there exists

at least S zeros beyond the highest term in C (x) . In-other words, it is necessary that

n=21+e(S+1) + S

or

sg n-e-1 (3.40)
e+1 -

S is then chosen as the minimum of (3.39) and (3.40). A similar proof applies for

right slip.
Q.E.D.

Note that it is the total weight W [ EI x) + E2 (x)] that is significant and not their
individual weights.” Hence, the total weight can be distributed between E] (x) and

E, (x) asdesired . This fact is stated explicitly in the following corollary.

Corollary 3.1

Any (n, k) cyclic code has a coset code which can correct e, or less

additive errors when no slip is present and which can also detect the simultaneous occur-
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rence - of e, or less additive errors and S or less bits of slip, where

S = Min. {d-vZ €+1), [""Ee;z][ef/z]] "]} ,
‘ +

A
and e = e]+e2 .

Proof : In Theorem 3.4 , the:maximum weight of E] (x) + E2 (x) was 2 e which

is always even. However, in Corollary 3.1, e = e + e, can be even or odd and a
different C (x) is required for each case.  When e -is even, the choice of C (x) and
the proof is identical to the proof of Theorem 3.4 . When e is odd » C (x) is chosen
as in (3.9b) , where in this case, e = e; e, and (3.13b) is the required inequality, .

namely,
n> @6+ (/2] + 41, e odd

Combining the even and odd cases give

S < |N-e+ [e/2] -1

- [ [®/2] +1

Corollary 3.1 then follows .

Q.E.D.

The ability of a coset code to correct the simultaneous occurrence of slip and additive error

is now considered. In the next theorem, the decoder determines only the direction of the

slip.
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Theorem 3.5
Any (n, k) cyclic code has a-coset code which can-correct e or less /'
additive errors and also determine the direction of the slip for S or less bits of slip, even

when both errors occur simultaneously, where _
-2 2@+1)

xi @2Ss+1)

e
Proof : Choose C (x) =

o
It is sufficient to show that the syndromes for left slip plus additive error are different from

the syndromes for right slip plus additive error, i.e.,

{fmwecan-corumre e

# { xT (W, &)+ C () = C 6) + U_ () +E, (x)} (3.41)

forall r,s<S ond W [Ei (x)] e, i=1, 2, where W] (x) and W2 (x) are.any

two cyclic code words. Putting all terms on the left, (3.41) can be simplified as
{cwot-xMvu ea+u_ 6+ E, 60+ Ey () } 70 . (3.42)
Now, (3.42) is satisfied if and only if

{6 o™=y ex U, 60+ U 60+ E; 6 +E, &) } 40, (3.43)

where (3.43) is obtained from (3.42) by performing a cyclic shift of r bits (by multiply-
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ing through by Xr) . Making the substitution Us+r ) = x Us (x) + Ur (x) and re-

placing x' El (x) + E2 (x) by E (x), (3.43) becomes

{ce-n+u, @+E@]} 70 | (3.44)

where W [E (x)]é 2e. Let Ds+r (x) be-equal to C (x) (x5+r = 1) minus the terms

of degree s+ =1 or less, then (3.44) can be written as
{Dw 6 + U, () +E (x)} £0 . | (3.45)

Since the minimum weight of a non-zero.code ward is d , (3.45) is satisfied if

o<w [D, ® UL 0+ E (x)] <d. (3.46)

The lefthand inequality in (3.46) is satisfied forall s ,r < S and W ['E (x)]é 2e

if and only if

w o, ®] > 2e ,

and the righthand inequality is satisfied if and only if
w(o, W] + 25+ 2e <d. (3.47)
The maximum value for S is obtained by letting
= <
w o, (x)] 2e+1 , als,r<5S. (3.48)

It can be verified that the choice of C (x) given for this proof satisfies (3.48).  Substi-
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tuting (3.48) into (3.47) gives

2.e'+l+25+'2,e < d

which implies, since S is an integer,

s < [" —_— ”] : (3.49)

To satisfy (3.48) it is necessary that there exists 2 S zeros beyond the highest term in

C (x). This is true if

n=1+e 2S+1) + 25

and solving for S gives

s<|nze=11 | (3.50)
L2E€+1) .

S is then:chosen to be-the minimum of (3.49) and (8.50) .

Q.E.D.

in Theorem 3.5, it was proved that the -decoder can distinguish between

left slip plus additive error and right slip plus additive error. However, in order to.re-

‘cover sync on the next code word, it is also necessary to prove that the syndromes for any

two left slips 5 # Sy 1 S <S,i=1, 2 ,plus additive errors are distinct, and
similarly for any two right slips 2 # fo s plus additive error.

It will now be shown that the coset code defined in Theorem 3.5 can distin-

guish between two left slips plus additive error, but not between two-right slips plus additive
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error. Let -Wl (x) and W2 (x) ‘be-any two cyclic code words, ‘and assume that q and
p bits of left slip-and- E] (x) and E2 (x) additive errors occur to each, respectively.

It is sufficient to show that, assuming p >q,

[Ty e0rcen +u 00+E 6] {F W0 CETU 0E 0] @5
which reduces to

{c 6 6 =xH+ U 6+ U, 6+ E (9 +E (x)} £ 0 (3.52)

where q<p<S and W [Ei (x)] <L e . Lletting E(x) = E] (x) + E2 (x) and

U;’ x) = Up x) + Uq ) , (3.52) becomes
{c ) 6@ -x%) + UL () + E (x)} 40 . (3.53)

Now, W [C (x)] = e+ 1 andsince q<p <S5, noneof the terms in C (x) (x'p -xq)
will cancel each other and hence W [C (x) (xp --xq)] = 2e+2. U;) (x) may cancel

one term and E (x) may cancel 2 e terms and hence there is at least one term left in the

polynomial in (3.53) . This proves that the polynomial in (3.53) cannot be the zero word

and because of (3.46) it cannot be:any other cyclic.code word, hence (3.53) is satisfied.
If right slip was assumed instead, it would be found that the polynomial corresponding to the

one in (3.53) could become zero and the inequality would be violated. This means that

e .
the coset code givenby C (x) = I x' @s+1) .cannot distinguish between two right
i=o n-1.2  i@s+1)
slips plus additive error. This can be-remedied by choosing C (x) =x +I x ’

i=o
which reduces the value of S in Theorem 3.5 by at most one. For this C (x) , (3.49)



N

@

now becomes

s < [———-—" “4e -3 ] | “ | (3.54)

and (3.27) becomes

ss[ﬁiﬁ] . o (3.55)
2@+1)

The:above -discussion may be:summarized in:the next theorem, where the-phrase "correction
of slip" means that the.decoder can determine the magnitude.as well as the-direction of

Theorem 3.6

Given-an (n, k)b cyclic .code, there-exists an (n., k) coset code which

can simultaneously correct e -or less additive errors and S or less bits of slip, where

S = Min. {[ﬁ’_'“_e_is] , [";e:i]} .
2 2@+1) '

An upper bound on the-ability of cyclic.codes to.correct the simultaneous
occurrence of slip.and additive error is readily obtained by rewriting (3.44) as shown

below
{c " (*s+r-])} #{u,0+ee} (3.56)

for all Us+r ®), s, r=<S andall E (x) such that W [E (x)] < 2e . However, when -
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s+r+2e 2n-k and s+r<2k+2e., the random polynomial Us+r (x) + E (x)
can generate.all possible syndromes, and hence the inequality (3.56) cannot be guaranteed.
The-condition s+ r <2k + 2¢. is -imposed to ensure that the coefficients of Us +r (x) are

completfely arbitrary.  The:above discussion establishes the following theorem :

Theorem 3.7

No coset of any (n , k) cyclic.code can simultaneously correct e .additive

errors and s bits of slip, when the slip lies in the-range

h-k-2e)/2<s<k +e .

In Table 1l - 1, the performance of the coset codes of a few binary cyclic
codes in detecting and correcting slip in a noisy channel is listed.  Observe that for small
values of e, Theorems 3.2B and 3.2 C correct larger values of slip, S, than Theorem
3.2A. Theorem 3.2A is essentially Tong's fheorémsf whereas 3.2B and 3.2C are
believed to be new. Similarly, Theorems 3.3B and 3.3C are improvements on Theorem
3.3A when the number of additive errors, e, issmall. Theorem 3.3A is implied in
Tong's work54 but he-.does not state it explicitly. Note that Theorem 3.6 does not apply
to the (127,22) code since in this case, 3 k< n.. To the best of the author's knowledge,
Theorems 3.3B, 3.3C, 3.4, 3.5, 3.6, 3.7 and Corollary 3.1 are original. Theorem
3.1 is a statement of a somewhat obvious result. Note that, whenever valid, the theorems

have been proved for cyclic codes over arbitrary finite fields.
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A Few Examples To |llustrate The -.ABiIify OFf Coset Codes Of Cyclic Codes To Detect Or
Correct Slip In A Noisy Chann'e_'r. S Is The Maximum Allowable Slip And e Is The
.Number Of Additive Errors, Which Are Assumed To Be Independently Distributed.

~

nh, k ~ MAXIMUM SLIP" S FOR THEOREMS LISTED
CYCLIC CODE["d e[ 3.2A" 3.2B 3.2C 3.3A 3.3B 3.9C 3.4 3.5 3.6 3.7 %
23, 12) 7 1] 3 4 4 3 5 5 1 0 0 4
- | 2+ 0o 1 1 0 1 o0 o0 o0 :3T
31 0 ] o 0 0o 0 0 0 o0 -2t
(127,85 (13 1] 9. 14 14 9 14 14 7 3 3 19
’ .2 7 9 10 7 9 10 3 1 ] 18
3| 5 6 7 5 . 6 7 0 0 0 17
413 1 3 3 1 3 0 0 0 "6
(255, 191) 17 - 1] 13 20 20 13 20 20 11 5 5 30
: 21 11 15 16 1. 15 16 7 3 3 29
3| 9 12 13 9 12 13 3 1T 1 28
4| 7 7 9 7 7 9 o o0 o0 77
51 5 4 6 5 4 6 0 o0 0 26
613 o 2 3 o 2 0 0 0 25
(255, 163) |25 1|21 32 32 21 32 32 19 9 9 4 -
- : 2|19 27 28 19 27 28 15 7 7 43
3|17 24 25 17 24 25 11 5 5 42
4115 19 2] 15 19 21 7 3 3 4
5113 16 .18 13 16 18 3 1 1 40
61| 1 11 14 11 11 4 0 O 0 39
71 ¢ - 8 1N 9 '8 11 0 O 0 38
(127, 22) 47 1 | 43 51 51 43 65 65 41 200 20
: 2 | 34 M4 34 4 60 61 37 18 18
3 |34 M 34 39 57 58 31 15 15
4 |25 - 25 25 37 4 41 24 12 12
5 |25 25 25 35 41 41 20 10 10
6 | 20 20 20 30 30 30 17 8 8
7 {20 20 20 30 30 3 -15 7 7
8 | 16 16 16 24 24 24 13 6 6
? |16 16 16 24 24 24 9 4 4
* Obtained by setting S = [(n ~k-2e-1) /2] .
+ By making use of the fact that this is a perfect code, it can be shown that these

values can be replaced by zero. .
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 CHAPTER IV

MATRIX APPROACH TO SYNCHRONIZATION RECOVERY

FOR BINARY CYCLIC CODES

4.1  Vector - Matrix Description Of Cyclic Code Words

In this chapter, the code words of an (n , k) cyclic code will be con-

sidered as n - vectors with elements from a finite field F . These vectors will sometimes

be written horizontally (i.e., as row vectars), e.g.,
A=ral,02,.....,ﬂn], OiGF-

The context should make the meaning clear. It seems more natural to write the first
element of the vector A as a rather than a , as in the case of a polynomial. This

slight difference will cause no misunderstanding, however.

An (n, k) cyclic code can be.vdefined as a k - dimensional subspace of
the n - dimensional space of all n - tuples whose elements belong to F , plus the property
that a cyclic shift of the components of any code word is also a code word. A cyclic code
can be specified by its generator matrix. Usumlly,3 ? this is @ k x n matrix in which the

rows are any k linearly independent code words, hence the matrix has rank k. Here,

~ the generator matrix G will be defined as the transpose of the above matrix ?2 Thus G

will be an n x k matrix whose columns are code words. Another important matrix
associated with cyclic codes (linear codes in general) is the parity check matrix H . It

isan (n -k) xn matrix of rank (n - k) and G defines the null space of H , which

implies



HG = 0. | @.1)
Now, any cyclic code word, w , may be written as
W=-=0% e
where W isan n - vectorand X “isa k - vector. There are qI< possible X vectors |
and hence, as is well known:,” q'< cyclic code words.
If F—VV is a cyclic code word, then
HW=0.

This follows from (4.2) and (4.1). In fact, it can be shown that an n - vector W s

a cyclic code word if and only if H W =0. The syndrome39 of an n - vector Z may

be defined as the (n - k) - vector obtained by computing HZ . Of course, a cyclic

code word has syndrome zero.

The correspondence between the generator matrix G and the generator

polynomial G (x) should be noted. The matrix H also corresponds to ‘H (x) .

Before transmission, an n = vector C is added to W , which gives
B=GX+7C ' . 4.3)

where B is the vector actually transmitted. The words B define a coset code.

4.2  Vector - Matrix Description Of Slip

Partition the n - vector W into two parts W] and WZ , Where W]

has s elements and \-/-5/-2 has n -s elements. Similarly, partition G into| "1],

G,
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G isan sx k matrix and Gz- isan (n =s) x k matrix. Then, W can be written as
w=1_"1=1"X. ' @4.4)

Since W is a cyclic code word, any cyclic shift of the components of W isalsoa
cyclic code word, hence |

2 = 2

W, G

(4.5)

Xl

is a cyclic code word for all cyclic shifts s and for all code words W . It is also true

.that any cyclic rotation of the rows of G will produce another matrix {GZ] which will
: G
1

also be a generator matrix for the same code. Thus , any cyclic code word may be written

as shown in (4.5) .

Now, assume that the n - vector B = G X + C is transmitted and there
-is a loss of synchronization at the receiver. In particular, suppose that s bits of left

slip occurs, then the receiver frames the n - vector shown in Figure 4.1 , where A

and D are the left - adjacent and right - adjacent transmitted words, respectively. Mathe-

matically, the framed n - vector may be written as

A, B G, O X C
B 0 G X C
LY 1 Uy

where A. has s elements and comes from A , the adjacent word on the left, and E]

2
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_ A e B .
— : _. — — .l.)_
A] i A2 B] B2
a
S —#
C. | C. <. | T. T
| i 2 1 2
& I Y
n

—- RECEIVER FRAME -

FIGURE 4.1 Receiver Frame for s Bits of Left Slip.

was originally the left = most n =s elements of the transmitted word B . In addition,
the k --vectors 22 and X are defined by the relations
A = GX,+C @4.7q)

and

B=GX+C @.7b)

The submatrix G] in 4.6) has n -s rows and (32 has s rows. From Figure 4.1,

it is seen that \.CZ‘X 'is obtdined from C by cyclically shifting it s units to the leff
Cl L
(or n -s units to the right). Observe that (4.6) can be written as two vector equations,

i.e.,
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A, = G, X, +C, . (4.80)

and

X +7C, . (4 .8b)

Similarly to (4.6) , aright slip of r bits gives

By = (G0 | X + % @.9)
[ G X C |
1 1} L% e

where _15] and E] have r elements and the k - vector 5-(] is defined by

D = G?] + C,

The subscripts L and R refer to left and right slip, respectively.

The-above notation is explicit but somewhat cumbersome and. an abbreviated

notation will now be introduced. For (4.6) , write

BL = GL X + CL “4.10)
and for (4.9) write
BR = GR X + CR . @.11)

The-amount of slip does not appear explicitly in the above expressions, but this omission .

should cause no misunderstanding.
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In polynomial form, (4.10) and (4.11) could be written as

B &) = x W)+ CE) + U )

and

B 6) = xT WG+ C)+ U W

respectively.

4,3  Detection Of Slip For A Noiseless Channel

If slip-is to be detected, the framed n - vector at the receiver must not
be-a transmitted word (coset code word). In.decoding, the-decoder first subtracts the
vector C from the-received word. If the: difference is a cyclic code word, it is decided

that no slip is present.  Recall that an ‘n - vector is a cyclic code word if and only if
HW = o0. 4.12)
Hence, from the above-argument, the decoder concludes that slip is present if
H[B -T]#o0 (4.13q)
for left slip (see (4.10) and

H{g -c]#o , @)

for right slip (see (4.11)) . In other words, the decoder decides that slip is present if the
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syndrome -of the received n - vector minus C isnon zero. It should be noted that if the
syndrome is zero, it does not necessarily imply that slip is absent. It could also.mean

that the method has failed to.detect it. The problem then, essentially, is to find a- vector

C - which will enable the decoder to detect (or correct) the widest range of slip possible.

Some of the theorems proved earlier will now be proved again, using the
vector - matrix representation. - For cross - reference, the theorems will be given corres-

ponding numbers. Before proving the first theorem, a useful IemmC|39 is stated and proved.

Lemma 4.1
A non-zero (n, k) cyclic.code word cannot be a burst of length n -k

or less.

Proof : By contradiction, assume that W is a cyclic code word which is a burst

of length p, where p<n -k . Since the code is cyclic, W can be cyclically shifted

until it has the form

W=(ml,wz,...up_],up,O,...O), W, € F

and Wy s o # 0, since W is a burst of length p-. Now, form the matrix
Wy, Wn g e e e W ,t.),O,...O1
i p-1" p

0, w],mz,...,wp_],mp,... 0

G = n-p+1
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where the first row is W and the j'th -row is obtained by cy¢lically shifting W by (j-1) bits

as-shown, until .@. occupies thé .n'th column. " This procedure: generates an (n =p +1).xn

)

matrix whose-rows are linearly independent cyclic.code words. Hence they can be- used

+ - L] . L . -
to generate qn-p 1 distinct cyclic code words, and since 'p <n -k, it follows that
n-p+12k+ 1 . But this leads to.a contradiction since there.are qI< cyclic code
words. Hence the assumption that a (non-zero) cyclic code word can be-a burst of length

n -k or less in false.

Q.E.D.

Lemma 4.1 is stated as Theorem 8.2 in Peterson's book§9 However, his proof is algebraic.

The proof given here was developed by the .author, who has not seen a similar one elsewhere.

Theorem 4.2.1

Any (n, k) cyclic code has at least one coset code-which can detect

all slip<n -k -1 bits.

Proof : To generate-a suitable coset code, add the ‘n - vecter C =[l 0... 0]

to.each cyclic:code - word before: transmission. * Assume that s bits of left slip occur at

the-recéiver, which will detect the presence of slip if and only if

* The vector C = [0. . . O 1] will also give the same result. In fact, in

both choices of C , unity can be-replaced by any element of ihe finite field F .
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H[B -CTl#o

and substituting for -BL from (4.10) gives

+C -C] #o0

H[G X .14
Any cyclic.code-word W may be written.as
W = G2 ? _ G2 0 Y| , I=Lor R, | :
G 0 G v 4.15)
1 | 1 1

where ¥ isa k - vector and is determined by:the-particular word under consideration.

Observe that (4.15) is an identity. It is true that

o G, 0] X
g X% | °? 2 p
G X
l-
L .
o) (%8
Lo 1 LX 0
L
o ~ !
) G, 01 X G, 0 X5
Lo G, X G,
L L
0| o _ @4.16)
= X + X'y
G, . :
L L
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.where, by definition, 5'(2 =X + Y:,)_ . Recalling the fact that HW = 0, computing

the syndrome of (4.16) gives

then (4.14) may be written-as -
H[QL+cL-.c];!o. @.17)

U. is the-vector equivalent of the-random polynomial Us (x) , where UL isan n -

L
vector whose first s ferms are:random and whose last n -s terms are zero. Henée itis
a burst of length s or less. The vector UL + EL - C may be-written as

4 y ’ i { S R
[‘-"1;"‘"2""!9""'0'--~-'°]' yoeFroy =uy-d
4.18)

which is a burst of length s+ 1 or less. But-a burst of length n -k or less can not be

an (n, k) cyclic code:word, therefore @4.17) issatisfied ifs+1<n -k, i.e.,

s<sn-k-1. If r bits of right slip was assumed, (4.17) would become

H[g+¢ -¢c] #o

and (4.18) would become
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I_-']r o, .. .,0, o oo O)U-n_]l'-.’;nJ r 'e"i eF 4.19)

]
v :
“n=r+l ’

where ' =

nert] = Yert] +1, and (4.19) is also.a burst of length r +1 or less. .Hence,

@4.19) isnot a code-word if r<n=-k=-1. Itfollows that the.decoder can detect all

slip less than or equal to n -k =1,

Q.E.D.

By comparing this proof with the proof of Theorem 2.1, several similarities

will be-apparent, some of which have.already been pointed out. In both cases the de~

.coder subtracts a known n =tuple (C vs. C (x)) from the received n - fuple.and decides

that slip-is present if the syndrome of the- difference is non-zero. Also, a key point in
both :pt"oofs is thatan (n, k) cyclic.code word cannot be-a burst of length n =k or less.
However, the theorem can Be-proved without using this fact explicitly in either case S P
as was shown for Theorem 2.1 . It is difficult to. compare-the lengths of the proofs, as
this depends largely on the amount of background material assumed. The:author believes
that many communication engineers are not familiar with modern-algebra although nearly

all have some knowledge of mairix theory. As a-result, the matrix approach may seem

simpler, largely because it is more familiar.

Before giving the next theorem, the following lemma is proved.

Lemma 4.2

Any -(n , k) cyclic code with q symbols (or levels) has qn-'k distinct
syndromes and they can-all be generated by the random n - vector V which is arbitrary

in.a fixed interval of length n = k and is zero elsewhere.
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Proof First, it is clear that V cannot be a non-zero (n , k) cyclic code word,

since it is a burst of length n =k or less. Hence, H O = 0 ifandonlyif V = 0 .
Also, since V has n - k arbitrary components, there are q“'k distinct choices of V .
Now suppose, by contradiction, that two.distinct choices of U, Ui and Uj , have
identical syndromes, i. e.,

HU = H Uj

which implies

H[u, --uj] =0

which in turn implies that 'Ui = U, isa cyclic code-word. But Ui - U, isalsoa
burst of length n -k or less. Hence H [Ui - UJ] = 0 if and only if Ui --Uj =0.
But Ui and U, are distinct and their differences cannot be zero. This proves that every
distinct choice of U generates a distinct syndrome. The syndrome is an n - k vector and
so there are at most q“-I< distinct syndromes. It follows that there are qn"k syndromes

and that U can generate all of them.

Q.E.D.

It should be-added that it is well known thatan (n, k) cyclic code with q symbols

has qn-k distinct syndromes.

Theorem 4.2.2

No (n., k) cyclic code has a coset code which has comma - freedom ex~

5
@

ceeding n -k -1.
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Proof : Allowing C to be arbitrary, the decoder can detect s bits of left slip

if and only if (4.17) is satisfied, i.e.,

H'[UL +T - c] #0, forall u, @4.17)

and (4.17) can be written as
H{C -T] #HT : 4.20)

and since UL has random coefficients, its sign will always be taken to be positive for
convenience. When s>n -k, UL will be a random bursf of length n -k or greater
and this contains all random bursts of length n - k or less. Hence by Lemma 4.2, when
s>n=-k, H UL can be set equal to any desired ‘syndrome. This means that regardless
of the choice of C , the inequality in (4.20) cannot be guaranteed for all UL when
s2n-k,i.e., when s> n-k-1. Similarly, for r bits of right slip, GRv can

generate all syndromes when r>n -k -1 . |t follows that the comma - freedom cannot

exceed n-k-1.

Q.E.D.

4.4 Correction Of Slip For A Noiseless Channel

In the next theorem, which is the same as Theorem 2.3, the decoder can

distinguish between right slip and left slip.



Theorem 4.2.3
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Any (nh, k) cyclic code has at least one coset code which can distinguish

between right slip and left slip if the slip does not exceed (h -k -1) /2.

Proof : Let C

[10.

. 0] andlet-A and B be any two transmitted

code words where, A = G if +Cand B =G is +C . Also, assume that - A slips

to the left by s bits. Then, in the explicit matrix notation, it is sufficient to show that

@4.21)

forall r,s<(-k-1)/2 and forall k -.vectors 7(] and )72 , where Y]' defines

the word fo the right of A and )_('2 defines the word to the left of B . For left slip it

has been shown that (see (4.15) and (4.16))

I
+
U
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where il = )—(r + Yi . Note also that
G, B <)
] | 525 and G] Xr
L

-are cyclic coder words and hence their syndromes are-zero. Applying the above results

to (4.21) gives

C . 4.22)

In the simplified matrix notation, (4.22) becomes
n{o +c ] # (Ve + Tl @4.23)

where UL is a random burst which occupies the first s coordinates of the n - vector,
and VR is another random burst which lies in the last ‘r coordinates. Putting all the terms

of (4.23) on the left gives

H [UL + VR + CL - CR] # 0. 4.24)

Recalling that C = [l o. .. 0] , the vector [UL+\—/R+EL'~ CR] in '(4.24)

has the form

[ rvgrecere s 1,0, 00,0,V 00V yov] (4.25)
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= v
-r+1 n-r+l

where -v;‘ -1 and (4;25) can be regarded as a bursf‘of length at most
s+i+1 and hence (4.25) is nofl'a.cyclic.code'word if str+l1s<sn-k,i.e.,
str€n-k-1. Letting S be the maximum of both r and s, it can be concluded

that the decoder can distinguish between left slip.and right slip if S€<(h -k -1) /2.
Q.E.D.

As a reminder that the choice of coset is not unique, it is pointed out that

choosing C = [0 .. .0 'I] gives the same result in the above theorem.

4.5  Correction Of Slip For A Noisy Channel

Recall that Theorem 3.2A assumes that slip.and qdditive error do not occur
simultaneously.  This theorem will be proved in this chapter because it introduces the

factor of additive error. As before, let ‘d be the minimum distance of the cyclic code.

Theorem 4.3.2A

Any (n, k) cyclic code, has a coset code which can correct e or less
additive errors and S or less bits of slip, if additive error and slip do not occur simultan-
eously in -any received n - tuple , where

S = Min. {d-z(e+l), [“'["'_e]*[e/ﬂ "]}.
/2] + 2
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Proof : When e is even, let
_ $+1 S+1 S+1
c=fo...0,10....0,...,...,10...0,0...0]

(4.26a)

where there -are (;— + 1) blocks of length S+ 1 on the left of C as shown, and C

is zero elsewhere .

When e is odd, let |
S+1 S+1 S+1
c=[1o...0,10...0,. ... ;e..,10...0,0...01]"
(4.26b)

whefé there are ([%]+ 1) blocks of length S+ 1 on the left as shown-and in addition

there is a one at the extreme right, C 'is zero elsewhere. Now, ‘(4.26a) will exist

if

——

n> (;. + 1S+ | (4.27a)

and (4.26b) will exist if

n> ([F]+DE+D) +1 . (4.27b)

The proof will consist essentially of two.parts : the first part will show that
the syndromes for slip are different from the syndromes for additive error, and the second

part will show that the syndromes for right and left slip are distinct, for all slip<S§ .
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Let G )—('] and G )—(2 be any two cyclic code words, and also let

G ?i be any cyclic code word to the left of G 7] . Assuming left slip of s bits,
the decoder can distinguish between slip and additive error, if and only if

“(fe, o] [®] =[] =y _ o oo o ol

H 2 el -ty # u[eR,+E] @.28)
% G

L

where E isthe n - vector representing additive error. It is assumed the W [ EJ <e
where W [ EJ means the weight of E , and is defined as the number of non—zero terms

in E. By already developed methods, (4.28) can be simplified to

G| _ Ez - =
H Sl Ko+ NS STHE A0 L 4.29)
0.' . C-
L 1 L .

Writing (4.29) in the shorter notation gives
H[UL+cL-C+E];!o : . @4.30)
Now, (4.30) is satisfied if

o<w[UL+EL-E+'€]<d 4.31)

forall U s<S, W [ f] <e. Let Bs be the n - vector obtained by setting the

LI

first s elements of EL - C equal to zero. Then, (4.31) can be written as

o<w [ B + 0T + El<d, @4.32)

From here on, the proof of the first part is essentially the same as before,



85

In the second part of the proof, it is shown that the syndromes for left and
right slip ~are distinct. : This is true if and only if (4.21) is satisfied for C defined here,

and (4.21) reduces to !
H{G +V, +T -C] #o. . @.24)

If e iseven, substitute C from (4.26a) into (4.24). Regarding the resulting n - tuple

as a burst, as shown below * ,

--------

s+ T s

[u], Upr oo v ,10..0, REUALE 0,0..0,v VoqrV]s.rSs

it is seen that (4.24) is satisfied if

1+ 5(S+1) + 6+r) gn-k-
which gives

< n-k-%/2 -
€/2 + 2

, e even . 4.33)

The remainder of the proof can now be obtained by comparing with the original proof.

Q.E.D.

* For clarity, ER is not shown, since it is overlapped by the other three components .

@ UL'VR and CL .



86

In this chapter, a selected number of theorems on the detection and correc-
Hon‘ of sllp hiave i)een fe;éiédiﬁiﬁéci usmg the vector - matrix representation. For a more
extensive treatment, the reader is referred to the paper by Tavares and Fukada.™ There,
the theorems are proved without relying explicitly on the fact that an (h , k) cyclic code

word can not be .a burst of length (n=k) or less. However, this umission tends to result

‘in longer proofs and requires the introduction of a couple lemmas.

Sfiffler52 also proves Theorems 2.1, 2.2 and Corollary 2.1 using the
vector - matrix representation. However, the proofs given here -are somewhat different
from Stiffler's. His first result is on the detection of slip for group codes in general, and
he then considers cyclic codes as special cases of group codes. The result for group  codes
in general‘ is somewhat awkward to.apply, and worthwhile simplifications result by taking

advantage of the properties of cyclic codes from the outset, as is done here.
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CHAPTER V

LOSS OF SYNCHRONIZATION IN THE PRESENCE

OF BURST ERRORS FOR COSET CODES

5.1 Introduction

In the previous chapters, the.additive errors were assumed to occur inde -
pendently,  This assumption is often made in ‘the literature on error correcting codes:.3
An important glass-of :cyclic:codes, the B C H codesé,’7 are known to be quite effective

in combatting this type of error?9

Another important class of errors are burst errors !6'39 The concept of a
burst has been used in earlier chapters but for reference, a definition of a burst is now

given :

Definition : A burst of length T is an n - tuple which is zero
everywhere except in an interval of length T, the

first and last positions of which are non-zero.

Experimentally, it has been found that the type of errors occurring on
telephone lines may be reasonably represented by burst errors or even better, by a combi-
nation of burst er.rors and independent errors ] 17 In general, a channel which suffers from
impulse noise or fading (of signal strength) will tend to have burst errors. furfher justification
for the study of burst errors will not be given, as their study is now well established in the

1,16,17,39

literature .’ In fact, special codes have been developed with the explicit purpose

of detecting and correcting burst errors. A well known class of such codes are the Fire

Codes ].6
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In this chapter, the ability of cyclic codes to combat slip. in.fheA
presence of burst errors will be studied. In addition, their ability to handle slip and
multiple - adjacent - additive - errors will also be. considered. Such errors are a subset
of the class oi;' burst efrors. In the next chapter,. defeci:ion and correction of slip in the

presence of burst errors will be considered for Fire Codes. Their performance can then be

compared with cyclic codes in general.

5.2  Slip In The Presence Of Multiple - Adjacent - Additive - Errors

For reference, a multiple - adjacent - additive - error of length T will be
defined as an n - tuple which has T ‘consecutive non-zero terms and is zero.elsewhere .

It is seen from the definifion that it is a burst of length T.which has weight T .

Foran (n, k) cyclic code, k or more consecutive zeros can only occur
in the zero word. This follows from the fact that a. non-zero word cannot be a burst of
length n -k or less. It can also be shown that k + 1 or more consecutive ones can only

occurinan (n, k) cyclic code if the code contains the word of weight n .

A burst of T adjacent - additive ~ errors which begins at the (p + 1)'th
position of the n - tuple may be described by the polynomial xP (1 +x+ . . . + xT_]) .
Let d be the minimum distance of the (n , k) .cyclic codes considered in this chapter.

The next theorem is valid only for binary cyclic codes.

Theorem 5.1

Any (n, k) binary cyclic code has a coset code which can detect the simultaneous

occurrence of T or less adjacent - additive - errors and S or less bits of slip, where
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M S = Min. {d.—é,'n-'r-a}"‘

. or

@ s+T= [3@-3/2]

but the decoder cannot defermme the nature of the error.

~ Proof : Let C(x) = 1+ xn-'. Part (1) . Assume that s bits of left slip,

s <S5, occurs to the coset code word W (x) +C (x) . Also, let xP (T+x+... xf-])

- represent a single burst of t-adjacent - additive - errors, t<T ¢ Where the burst begins

at the (p + 1)'th coordinate. Then, the decoder can detect the presence of error if and

_only if *

{xs W (x) + C (x))-+C (x) +xP M+x+... +xf',l) + Us (x)} # 0 (5.1)

forall s<S,t<T, ps<n. :Since {sz(x)}= 0, (5.1) becomes

{C 6) 6+ 1) +xP (1 +x+‘. . .,+xf"])+us (x)} # 0. (5.2)

Let Q (x) be the polynomial in (5.2), then Q- (x) isa cyclic code word @nly if-.-

.x Q ) and x Q (x) +- Q (x) are also-cyclic code words. Now,

Q&) = x CO) 6+ +oP xaxZe .. N +xu 6 (5.3)

and therefore

* Note that for binary codes, addition and subtraction are identical.
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QK k+1) = CEEFDr++XP @ +x*)+us ) x+1) 5.4)
and substituting C (x) = l+xn'-] in (5.4) gives
-1 s+1 |

Qe +1) = x" T P ) +U W  (5.5)

where Us+l (x) "absorbs" all terms of degree s or less. Now, (5.2) is satisfied if

fQu&+n} #0, ie.,

{xn-] + xp (a+ xf) +xs+] +U 4 (x)} #0. (5.6)

The maximum weight of (5.6) is 4 +(S+ 1) . Therefore, if

d> 4+S+1
or

S<d-6
(5.6) will be satisfied. In addition, the polynomial in (5.6) cannot be the zero word

if n>S+T+2, whichimplies S+T<n-3.

Part (2). - The maximum weight of (5.2) is T+ S+2, since
C (x) (xs +1) = xn_] +x +xs-] +1 , and Us (x) "absorbs" xs-l + 1. With this

absorption in mind, (5.2) becomes
{xn—l+xp (]+x+..+xf-])+xs+Us(x)} £ 0 . ' (5.7)

Now, suppose m terms are missing in Us (x), then the maximum weight of the polynomial

in (5.7) is 2+t+ (s =m). Therefore if

2 +t+ -m«d
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2+t+s<d+ m ' (5.8)

(5.7) is satisfied. Also, if m terms of Us (x) are missing, the maximum weight of (5.6)

is 4+2m, therefore (5.6) is satisfied if

2m + 4 <d. . (.9)

If either (5.8) or (5.9) is satisfied, the decoder can detect an error. Eliminating m

from (5.8) and (5.9) gives

s+rr<3d -4, (5.10)

When s and t assume their maximum values, (5.10) becomes
s+T=[3@-3/2].
By the lemma in Appendix II, the condition S+ T<n -3 is redundant for condition (2)

since
3d-3)/2<n-3.

A similar proof applies for right slip.
Q.E.D.

Theorem 5.2

Any (n, k) binary cyclic code has a coset code which can correct T or
less adjacent - additive - errors and S or less bits of slip, if both errors do not occur

simultaneously, where either
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1) S = Min. {['(3 @-3/2-1], [ -k—2)/2]} ,
or : |
@ s=Mn {d-6 n-T-3, [p-k-2)/2]}.
Proof : let C(x) = 1+ xn-] First, it will be shown that the syndromes for

slip are different from the syndromes for a burst of t adjacent - additive - errors, (t<T) .

Assuming s bits of left slip, it is sufficient to show that

{xs W, 6 +C () +C 6 +U_ (x)} AW, 60+ (1 4xr .. C+xTh 16.11)

where W.l (x) and W2 (x) are.any two.cyclic code words, and s<S, t<£T . Putting

all terms on the left, (5.11) simplifies to

{c () 6+ +x (1 +x+. . .+xt_])+U; (x)} £ 0. (5.12)

A comparison of (5.12) and- (5.2) will 'show that they are identical and hence (5.12) is

satisfied if

M 5= Min. {d-§, n-T-3}

or

@ s+T =[3@-93/2]
Next, it is shown that the syndromes for left and right slip are distinct, i.e.,

{0 0w+ ] #{xT Wy +CoNHCw+U W] 619

forall s, r<S, where W] (x) and W2 (x) are arbitrary cyclic code words. Now,

@
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(5.13) simplifies as

{C (x) (xs+x-r) + Us (x) + U_r (x)}» # 0 (5.14)

and (5.14) is satisfied if and only if

{c o) 6T 1) + u, (x)} £ 0 (5.15)

which is obtained by cyclically shifting (5.14) by r bits (multiply through by x),
and setting Us+r x) = x Us x) + Ur (x) . Substituting C (x) = l+xn-] in (5.15)

reveals that it is identical to (2.23), and hence (5.15) istrue if S < -k=-2) /2.

The decoder can correct any burst of t adjacent - additive - errors (t )]

if and only if

{E, (x)} 7 {, 00} (5.16)

forall W [Ei (x)] <T, i=1,2, where E] (x) and E2 (x) are two such bursts.

Putting all terms on the left, (5.16) becomes

o {Re R} Ao (5.17)

and it is not hard to show that (5.17) istrue if d > 4. But d>4 is implied for non-

trivial valuesof S (i.e. S#0) in the theorem.

Q.E.D.
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R - 5.3  Detection Of Slip In The Presence Of Burst Errors

In this section, it is assumed that additive errors occur in bursts, where the -

 term "bursi" is used in the géneral sense-as defined at the beginning of this chapter. In

the next fheoremy, slip and additive error are allowed to occur simultaneously.

Theorem 5.3

~Any (n, k) binary cyclic code . has a coset code which can detect the

simultaneous occurrence of a single burst of length T or less and S or less bits of slip,

where T+S = [3@-3)/2] .

Proof : Let C(x) = 1+ xn“I ., and Ef(x) = xp(l-_*é]x +oeent ef_2xf-2+xf-] ):¢i=0,1,

be a burst of length t which begihs in the ( + 1) th ‘position, p <n . Assuming left slip

of s bits, it is sufficient to show that
{FWW+CH+Cr+U W+E X} #0 (5.18)
where s<'S, and W (x) 'is any cyclic code word.. Now, (5.18) simplifies.to

{c W 6°+1) + U )+ E, (x)} # 0 © (5.19)

and substifuting for C (x) in (5.19) gives

(MU 0 E Y £ 0 o (5.20)

. -1
where Us (x) absorbs terms of degree less than s . The polynomial X + Us (x) may
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be regarded as a burst of length s + 2., Letting Ps +2 x) = x_n-] +x° +.Us x) ,

(5.20) becomes

{Ps+2(x) +E (x)} £ 0 5.21)

and so the problem redyces to showing that the sum of two bursts is not a cyclic.code-word.

Let there be a total of m terms missing in the two bursts Ps +9 (x) and Et (x) and define

QX)) = Ps+2 x) + Ef (x) . Then,
W[Q(x)] Ls+2+t-m

and (5.21) is satisfied if
stt+2-m<d . (5.22)
Also, if
{(xaw+am} 7o (5.23)
then (5.21) istrue. But the maximum weight of Q (x) (x + 1) is 2m +4 (this fact can
be established by checking the various possibilities), hence ‘(5.23) is satisfied if
2m + 4 <d (5.24)

If either (5.22) or (5.24) is true, the decoder will detect an error. Eliminating m from

(5.22) and (5.24) gives

t+s <34 _y (5.25)

2

and taking maximum values of t and s gives
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T+5= [3@-3/2].

A similar proof applies for right slip-.
Q.E.D.

During the: proof of Theorem 5.3, a useful intermediate result was also.proved. It con-

.cerns the-ability of a binary cyclic code to.detect a pair of burst errors, or equivalently to

correct a single burst error.  Changing (5.21) slightly, it is required to-prove that
{'E] 0 + E, (x)} # 0 | (5.26)

where E] (x) and E2 (x) are bursts of length h and ty s respextively. The solution of

(5.21) was given in (5.25) and the corresponding solution for (5.26) is

ot <3S -2, (5.27)

Note that h replaces s +2 ., Letting T] and T2 be the maximums of t and ty |

respectively, (5.27) becomes

T, +T, = [(3d-5)/2]. | (5.28)

To correct a single burst, it is necessary that T] = T2 = T and (5.28) becomes

T = [Bd -5/4].

The above results are summarized in two lemmas.

Lemma 5.1

Any (n, k) binary cyclic code, with minimum distance d, can detect any

two bursts of length +. and t, if b+t <[(3d - 5) /2] .

1
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Lemma 5.2

Any (n, k) binary cyclic.code, with minimum distance .d, .can-correct all

single bursts of length T or less, where T = [(3-d - 5) /4] "

5.4  Correction OFf Slip In The Presence Of Burst Errors

g ] [ LX)
In the next two theorems™ it will be assumed that slip-and additive error
(burst error) do not occur simultaneously. For these theorems, the decoder can distinguish
between slip.and additive error. In the first result, the decoder corrects the slip but only

detects the additive error, but in the second result it corrects both types of error.

Theorem 5.4

Any (n, k) binary cyclic code has a coset code which can.correct S or
less bits of slip and detect a burst of length T or less, if slip and additive error do not occur

simultaneously, where

S = Min. {[3 d@-3/2]-1 , [(n-k-2)/2]}.

Proof : Let C(x) = 1+ xn-] . To-correct slip, it is necessary to show that the

syndromes for left and right slip.are distinct. In.addition, the decoder must distinguish be-

tween slip.and additive error. The latter statement is proved first.

Assuming s bits of left slip , it is sufficient to prove that

{ x* W, 60 +C () +C () + u, (x)} # {w2 () +E, (x)} (5.29)



98

forall s<S,t+<T, where W] (x) and W2 (x) are any two-cyclic.code words and

Ef' (x) is a burst of length -+ .  Putting all terms on the left, (5.29) simplifies to

fc@et+n + U 6+ E @ }#0. .4 (5.30)

Comparing (5.30) with (5.19) reveals that they are idenﬁcal and hence (5.30) is

satisfied if (5.25) is true, which gives
s<[3@-3/2] -1 . (5.31)

The above result is also true for right slip. It remains to show that the syndromes for left

and right slip are distinct, or equivalently, that
{(Xw wrcw +u el AT W0 0w} 6.9

forall r, s <S5, where r and s are.the magnitudes of the right and left slip, respectively.
It is easy to show that (5.32) reduces to (2.23) after putting C (x) = l+xn-] . It

follows that (2.23) , and hence (5.32) is: satisfied if

s<[( -k 42) /2] -. (5.33)

Also, as shown for Theorem 2.4, the decoder can determine the magnitude as well as the

direction of theslip. S is now chosen as the minimum of (5.31) and (5.33).

Theorem 5.5

Any (n, k) binary cyclic code has a coset code which can correct S or

less bits of slip and a single burst of length T or less, if slip.and additive error do not
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- occur simultaneously, where,

M T<B-5/4]

@ s = Min.{[3 d -3)/2]-%. , [(n-k_'-‘Z)/,2]}-.

" Proof : Let C ) =1 +xn-], and recall fhe»proof of Theorem 5.4. All that

‘remains to be. proved is the condition under which single burst errors (no shp present) have

dlstmcf syndromes. However, an-answer to-this is given by Lemma 5.2, i. e. to correct

+all smgle burst errors of length T, it:is necessary fhot T [(3 d-5)/ 4]

Q.E.D.

In the next theorem57, slip.and burst errors are allowed to occur simultaneously.,

Theorem 5.6

Any (0, k) binary cyclic code has a coset code which can correct the
smulfaneous occurrence of S or Iess bits of slip.and a single burst of length T or Iess,

where
s+T=[3@-7/4] ..

Proof ¢ let C@x) =1 + x"-T'-3 n-2+xn-l‘ ¥ Itis sufficient to show that the

syndromes for left sllp plus a burst error are dlfferenf from the syndromes for right sllp plus

a burst error i.e., that

R AR

[
‘e

* By symmetry, it is easily seen. that anofher sulfable chquce is

C(x)—l+x+x'r+2 n-l.
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{X W 0+ce +ue+E 0}
7 {x" W, 0 +Cenru_ 0 +E, (x)} (5.34)

forall s, r<S; f] 'ty < T, where the cyclic.code word Wl (x) suffers s bits of
left slip-and a burst of length t and W2 (x) suffers r bits of right slip.and a burst of

length ty. Putting all terms of (5.34) on the left and simplifying, gives
fcw 6 +xT)+U_ () +U_ 6 + Eq &)+ E (x)} £0. (5.35)
" Performing a cyclic shift of r bits, (5.35) is true if and only if

fcwe™ sy, wrg0iew0] o (53¢

where Us +r x) = x Us (x) + Ur (x) and the cyclic shift has only a frivial effect on
E” (x) and Ef2 (x) and so-is ignored. It must be verified that the C (x) chosen will
satisfy the requirements of the theorem. It is sufficient o show that the polynomial in
(5.36) is not a cyclic code word, including the zero word. Written asan n - tuple,

C (x) has the form

[Lo....... ,0,1,0..... ,0,1,1] (5.37)

In this proof the algebra looks complicated, but the argument is sometimes clearer if the

n = tuples or "pictures” are kept in mind. Now ,
C I+ 1) =1 45T B 02 T S 00 T8 02 el g g

Since Us o (x) is a-random polynomial of degree less than s + r, it can-absorb all terms

of degree less than s +r, and in an expression involving Us+r (<) , such terms will simply
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be omitted. Hence, write

B 1y . 1 - i, R - o+
€ (xs+r+ 1)+ Us+r ) = X" I_i_xn 2‘+xn T 3+xs+r (T+3) 25 +'Us+r )

(5.39)

and (5.39) has the form (omitting x° -(T+3))

- T_+.3 >

-—

[y r8yreeenrtys1,0,.....01,0,....0,1,1]. (5.40

str = (T+3)

The term x is omitted because .it may occupy one:of several places. For in-

stance, if s+r =T+ 3, it will be:absorbed by 'Us+r ), and if s+r-(T+3)= -1,
it cancels x"". and so-on. Substituting (5.39) into (5.36),.it can be shown that for
- all Eﬂ (x) and EiL2 (x) , where s  1' < T, thepolynomial in (5.36), cannot:become.
the zero word.  Calling the:polynomial in .(5.36) Q (x), it remains to be-shown that

Q (x) cannot be -a non-zero word.
The -maximum weight of Q (x) is
s+r+5 + T +T.

Let
s+r+5+2T7T=d+m (5.41)

hence when more than ‘m terms are missing from Us b (x) + Eﬂ (x) + Ef2‘(x) r Q ()

has weight less than -d .and cannot be a code-word. Assuming m terms are missing, the

maximum weight of x Q {x) + Q (x) isfound to.be 2m + 10, and if
2m + 0 < d . (5.42)

then (5.46) is satisfied Gince if Q (x) (x +1) is not a cyclic code word, then Q (x) is

@
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not a cyclic:code word). If there.are less than m terms missing in Q (x), then from

(5.42), (5.36) is satisfied. However, if more than m terms are missing, (5.36) is

again satisfied, based on (5.41). Eliminating m from (5.41) and (5.42) gives

s+r+2T+5<d+ (5— - 5)

or

s+T7<[3@d-7) /4] (5.43)

where S is the maximum value of both s and r . Finally, a necessary condition such
that the polynomial in (5.36) cannot become the zero word is that E” (x) + Ef2 (x) can-

not cancel all the non=-zero terms in (5.40). The. condition is

n=22S + 2T + 3

or

25+2T7T<n-3 . (5.44)

It is not hard to show that (5.43) implies (5.44) .
Q.E.D.

The next theorem describes a range of slip in which no.coset code can

correct the simultaneous occurrence of slip-and a single burst error.  This result is not

restricted to binary codes.
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Theorem 5.7

No.coset of any (n., k) cyclic code can simultaneously correct a single

burst of length T and s bits of slip, when

h-k=-2T)/2 £s<k+T .

Proof : It is sufficient to show that the inequality (5.36) cannot be guaranteed

for all Us+r () , E” () and E'_2 (x) when slip s, lies in-the range given in the theorem.

Rewrite (5.36) as*

{cwe™-n} #{u, 0+ ¢ w) (5.45)

where Ef x) = EH (x) + E.i-2 ®) , .+ £27T, and the negative sign-on the left allows for
the fact that the-code may be non-binary. Comparing (5.45) with (3.57) it is seen that
they are the same -except that here the.additive errors are burst errors. However, in spite

of this difference, the same.arguments are-valid.and the results are identical. Hence the

result is obtained by replacing e by T in Theorem 3.7.
QoE-Do

in Table V-1, some numerical results are-presented for the theorems of this

chapter, using as examples the same .cyclic codes as was used in-Table 1] - 1.

To the best of the-author's knowledge, all the theorems presented in this

chapter are new.



TABLE V -1

A Short List Of Cyclic Codes To llustrate Their Ability To Detect Or Correct Slip,

In The Presénce-Of A Bufst Of Additive Errors Of Leﬂgﬁfh T Or Less. '

CYCLIC CODE 1__MAXIMUM SLIP (S) FOR THEOREMS LISTED
(, k) d T (5.1 - 52 53 54 55 56 57+
3,12 7 1|5 4 5 4 4 0 4
2. | 4 4 4 4 4 0. 3
3 | 3 3 3 3 3 0 2
(127 , 85) 13 1T 114 - 14 14 14 14 3 19
| 2 113 - 13 13 13 13 2 18
3112 12 12 g2 12 1. 17
L1 4 7 4 4 0 0 "9
12 | 7. 7 3 3- 0 0 8
55 , 191) 17 1120 . 20 20 20 20 6 30
. 2 |19 19 19 19 19 5 29
-3 [18 18 18 18 18 4 28
4 |17 17 7 7 17 3 27
16111 11 - 5 5 0. -0 15
18111 1N 3 3 0" 0 13
55 , 163) 25 1132 .32 32 '3 32 12 44
. 2 <] I | 31 3 31 11 43
313 ", 3. 3 30 30 10 42
. 4129 29 29 29 29 9 4
21 119 19 .12 12 0/ 0 24
22 | 19 19 11 0 0 23
23 |19 19 10 10 0. 0 22
(127 , 22) 47 1165 51 65 51 51 « 29
Y2164 . 5] 64 51 5] 28
363 51 63 51 51 27 -
4| 62 51 62 51 5] 26 -
15 | 51 51 51 51 "5 15 -
16 |50 50 50. 50 50 4 -
32 | 41 41 34 34 34 0o -
33 | 41 41 33 33 33 0o -
40|41 . 4 26 26 0 0o -

* ' Obtained by setting § = [h-k-2T-1) /2] . This S serves as an upper
' . bound on the performance of Theorem 5. 6. :
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CHAPTER VI

LOSS OF SYNCHRONIZATION FOR COSET CODES OF FIRE CODES

6.1 Introduction

. 1 . . . ..
Fire codes 6,39 are a class of cyclic codes which are quite effective in
detecting and correcting burst errors. However, they have small minimum distance and

are not suitable for handling independent additive errors.

In this chapter, it will be assumed that the additive errors are burst errors
and advanfage will be taken of the special abilities of the Fire Codes. Recall that one
consequence of a slip of s bits is the introduction into the receiver frame of a random poly-
nomial of length s which can be considered as a burst of length s or less. It may thus be

suspected that Fire Codes have an advantage in handling slip errors.

6.2 A Brief Review of Fire Codes

An (n,k) Fire code may be defined as a cyclic code with generator poly-

nomial G(x) given by39
G(x) = PH)(x" - 1) 6.1)

where P(x) is an irreducible polynomial of degree b which has exponent* B, and a is not
divisible by 8. The length n, of the code, is the least common multiplz of a and . From

the above definitions, it follows that the number of check bits is a+b, i.e., n-k = a+b.

* An irreducible polynomial has exponent B if it divides (xB— 1) but not (xP=1) for all p<B-
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The expression " A Fire code with parameters (a,b) " will be used, where a and b are

defined above. In the results to follow, the properties of Fire codes stated in Chapter 10
of Peterson39 will be assumed. In particular, Theorem 10.1 in Peferson39 is quoted, without

proof, for easy reference.

Theorem 6.1

A vector that is the sum of a burst of length T] or less and a burst of length
T2 or less, where T2 = T] » cannot be a code word in a Fire code having parameters (a,b)
if

T, +T

1+ Ty £a+1 and T, < b. 6.2)

- Two corollaries follow fr&i:ti;Theorem 6. 139,

Corollary 6.1

A Fire code can correct a single burst error of length T] or less and in addi~-

tion detect any burst of length Ty > T], if

T, +Ty<a+]l and T, <b.

1 1

Corollary 6.2

A Fire code can detect any two bursts having lengths T] or less and T2 or

less, where T2 > T], if

v T] + T2é0+1 and T] < b.
. i .. . In addition, since any (n,k):cyclicicodei can detect asingle burst of length

n.~ kior less; a: Fire cdde with parameters-(a +b) ‘can.detect any single burst error of length
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a+borless, sincen-k=a+b,

6.3 Detection of Slip for Coset Codes of Fire Codes

The first result of this section concerns the ability of coset codes of Fire

codes to detect the simultaneous occurrence of slip and a single burst error.

Theorem 6.2

Any Fire code, with parameters (a,b) has a coset code which can detect
the simultaneous occurrence of Sor less bits of slip and a single burst of length T or less

ifS+T £ a-1andeither S< b-2or T<b, but the decoder cannot determine the nature

of the error.

Proof

Let C(x) = 1+ xn-] . Also, let W(x) be any code word of the Fire code and
assume the simultaneous occurrence of s bits of left slip and a burst error Ef(x) of length t.

It is sufficient to show that
{xs (W6 +C6)) + U () + E ) - C(x)} A0 (6.3)

foralls £ S, t+ £T. Noting that sz(x)} = 0, (6.3) becomes

{C(x) (6C-1) + UG + Ef(x)} £ 0. (6.4)

Putting C(x) = 1 + xn-] in (6.4) and recalling that Us(x) absorbs all terms of degree less

_ than's, gives
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{Us(x) +x° +xP (1 teyx + ...+ef_2xt-2-i,‘-xf-])'- xn-]}/;é o, e € F. °
6.5)
Written as an n-tuple, the polynomial in (6.5) has the form

({fuo, 'u], ,US_], 1,0,...,0,1, €1y cair € o 1,0, ..., =1), (6.6)

We can regard (6.6) as the sum of two bursts, Ef(x) of length t and (Us(x) +x° - xn-]) of
length s + 2. Hence by Corollary 6.2, if (s+2)+t < a+1andeithers+2 < bort <b,
then (6.3) will be satisfied. It is also necessary that n > s+t+2, but this is true if

s+tt+2 <a+1. Asimilar proof applies to right slip.
Q.E.D.

To obtain an upper bound on the ability of coset codes of Fire codes to

detect the simultaneous occurrence of slip and a single burst, write (6.4) as
fewe-n} £ fueos £ 6} ©.7)

For a Fire code, n-k =a+b, thus when s+t > a+b, Us(x) + Ei_(x) can generate all possible
syndromes. Hence, regardless of the choice of C(x), (6.7) cannot be guaranteed when

s+t 2 a+b. This result is stated in the next theorem.

Theorem 6.3

No coset of any Fire code with parameters (a,b) can detect (with certainty)

the simultaneous occurrence of S bits of slip and a burst of length T, if S + T > a+b.

Theorem 6.3 is true for all choices of C(x). It is interesting to consider the
upper bound for the particular choice of C(x) = 1 + xn-] in Theorem 6.2. Such a bound

can be found by considering the n-tuple (6.6). A cyclic shift of one bit on (6.6) gives
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(':]r uol ‘U]r .

ceer U 11,0, 0000, 0,1, e, egr +eerr e 1,0, ..,0)
6.8)
which can be regarded as the sum of a burst of length s+2 and a burst of length . Now,
the inequality (6.5) fails when (6.6) is a Fire code word. The generator polynomial
- G(x) = P(x) (xa = 1) is itself a Fire code word and can be regarded as the sum of two
bursts, each of length b+1, i.e., x° P(x) and P(x) which may or may not overlap. It is
clear from (6.8) that when S+2 2b+1land T 2 b+1, (6.6) can become G(x). Hence,
t.he coset given by C(x) = 1+ xn-'| will be vulnerable to the simultaneous occurrence of |
'S bits of.slip and a burst of length T, when S 22 b-1 and T 2 b+1. Now. these two

inequalities imply that § + T = 2b (but not vice versa). Compare this result with Theorems
6.2and 6.3.

In some situations, it may be desirable to correct a single burst error and
merely detect the presence of slip, assuming that they do not occur simultaneously. The

next result applies to this case.

Theorem 6.4
Any Fire code, with parameters (a,b), has a coset code which can correct
a burst of length T or less and also detect S or less bits of slip, if burst errors and slip do

not occur simultaneously, where

2<T<Lb and S=<a-2T + 1,

Proof

. . |
Let C(x) = 'I+xT-2 + xn-"] . It is necessary to distinguish between a burst

* When T=1,2, choose Clx) =1+ Nl .
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error of length T or less and a slip of S or less bits. This can be achived if a slip of s bits

always generates a burst of length T + 1 or greater, for all s< S. It is sufficient to show

that

fXmem ) + U -} # Wy + B} ©-9)

~ where the word W] (x) suffers s bits of left slip ahd W2(x) has a burst error Et(x) wheret T.

Making the usual simplifications, (6.9) can be written as

Aewed-1) + U6} # { e} (6.10)

Substituting C(x) = 1 + xT-:2 + xn-] in the expressiovn on the left of (6.10) gives

'Us(x) 4 - xT—2 + xs+T-2 _ xn-]

The above polynomial can be viewed as a burst of length s + T and thus a left slip of s

bits generates a burst of length T+1 or greater. Putting Ef(x) on the left in (6.10) gives
fce6¢-1) +U6) + Ef(x)} £ 0 . 6.11)

The polynomial in (6.11) is the sum of two bursts of total length (s +T) +t. Hence, by
Corollary 6.1, if T€b and S+ 2T < a+1, the decoder can correct any burst of length

T or less and detect S or less bits of slip, where S+2T << a+1.

For right slip of r bits, (6.9) becomes
feee-n +u 0} £ {Ee].

This is equivalent to

{C(x) (1-x) + U () + Ef(x)} £ 0 6.12)
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which has the same form as (6.11). Hence the same result applies to right slip.

The choice of C(x) in this theorem implies that T > 2. This is not a real

restriction since a burst of length two (i.e. a double - adjacent - error) or one is trivial.

- Also, multiple - adjacent - errors were examined in Chapter V.

Q.E.D.

In Theorem 6.4, an acceptable alternative choice for C(x) is
Clx) =1+x"" T+ xn-'| . These choices of C(x) are optimum in the sense that a slip of

one bit generates a burst of length T + 1, which is the minimum required.

6.4  Correction of Slip for Coset Codes of Fire Codes

In the next theorem, both slip and a burst error are corrected, but it is still

assumed that they cannot occur simultaneously.

Theorem 6.5

~ Any Fire code, with parameters (a,b), has a coset code which can correct
a burst of length T or less and S or less bits of slip, if burst errors and slip do not occur

simultaneously, where

2< T<£b and S = Min. §0-2T+1, [(a+b-T)/2J} .

Proof
T-2 n-1 .
Let C(x) = 1+x +x ' as in Theorem 6.4, and hence assume the

results proved there. All that remains to be done is to determine the conditions under

which the decoder can distinguish between right and left slip, i.e.,
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{xs~(w,(x)+c(x))+ UG} # {x"(wz(x) + C(x))+U_r(x)} -(@13) |

~ where the terms are defined as usual. The above reduces to

{Cea6t-x + Up) + U_ (0 | S 6.14)
Performing a cyclic shift of r bits on (6. 14) gives the equivalent relation
+ ‘ .
feee™ -1y + U, 0} #o . (6.15)

T-2 ., n-1

~ Substituting C(x) = 1+x “+x'  in (6.15) and noting that Us_'-r(k).absorbs all terms of

degree less than s +r gives

{Ud + T (T2 201 g g

The polynomial in (6.16) is a burst of length s++T, hence (6.16) is satisfied if 25 + T <n-k =atb

In all, the conditions to be satisfied are*

) T<h,
@ S + 2T <a+land

(3) 2'5 + T < a+b. : : L

They may be rearranged to give
(1 T<b
@ s = Min.{a-2T+1, [(a+b-2T)/2]}.

and

Q.E.D.

*WhenT=1o0r2, choose Cx) =1 +xn-] .
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An upper bound on S for Theorem 6.5 can be obtained by rewriting (6. 15)

as

feae™-n} # {u, w} 6.17)

and defermining for what values of s+r the above inequality cannot be guaranteed. If 6.17)
is-compared with (2.15"' ) it is seen that they are identical. It follows that there is no coset

which can correct slip when s lies in the range

(h-k)/2<s <k. (6.18)

But, for Fire codes, n-k = a+b, where a and b were defined earlier. Hence, (6.18) can

be written as

@+b)/2<s <k. 6.19)

There is also an upper bound on T. Since, in order to correct a burst error of length T or less,

it is necessary that

{Ef](x)} 4 {Et?_(")}

{Ef](x) + Etz(x)} £ 0 (6.20)

or

where Ef (x) and Ef (x) are two bursts of length H and i respectively, and oty <T. Now,
2
the generator polynomial G(x) may be written as

P(x) (x* - 1)

G(x)

x? P(x) - P(x)

where P(x) has degree b. Hence G(x), which is itself a Fire code word may be generated by

the sum of two bursts, each of length b+1. Therefore, from (6.20) it follows that a Fire code
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cannot correct a burst of length b+1 or greater.

Another bound can be obtained from (6.9) which can be written as
feenet-1} # (U +E]  1eT, s 62

The above inequality is the same as (6.7) except for a trivial difference in a sign on the

left-hand side. Hence, Theorem 6.3 applies.

The above discussion can be summarized in the following theorem.

Theorem 6.6

No coset of any (n, k) Fire .code can correct a burst of length T and S bits
of slip, where slip and additive error cannot occur simultaneously, if any of _fhe following
conditions are true :

(i) T=b+1,
(ii) (@+b)/2 £S5 <k,

(iii) S+T = a+b.

No special theorem will be given on the ability of Fire codes to correct the
simultaneous occurrence of slip and a single burst error. The proof of such a theorem reduces
essentially to showing that the sum of three bursts is not a cyclic code word. Fire codes
appear to have limited ability for detecting three bursts. Recall that Theorem 5.6 states the
performance of cyclic codes in general to correct the simultarieous occurrence of slip and a
burst error, in terms of the minimum distance d. This result is of little value for Fire codes

> as they have small minimum distance. The following lemma serves as a useful reminder of this

factlé. Recalling the definitions of the parameters in a Fire code given in Section 6.2, we have
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Lemma 6.1

Given a Fire code for which a + B < n, the minimum distance of the code is

4 or less.

Proof

Consider the polynomial

(P = 1) - 1 | 6.22)

where the generator polynomial G(x) of the Fire code is given by

G(x) = | Px)(x° - 1). (6.23)

P(x) is an irrec;'iucible polynomial of degree b and has exponent B. It is desired to show
that (6.22) is a Fire code word if a + B <n, where n is the word length. It is clear that
G(x) divides (6.22), since, by definition, P(x) divides (x‘3 - 1). It immediately follows
that (6.22) is a Fire code word if a + B < n. By removing the brackets it is seen that.

-(6.22) has. a weight :of. four, .hence the Fire. code has.atrleast.one ‘word -of weight four.

Q.E.D.

For binary Fire codes for which a + B < n, it can in addition be shown that

there are no words of weight three. Hence, the minimum weight there is is four.

In Table VI.1, some numerical results for maximum slip S are listed for a
few Fire codes, based on the theorems of Chapter VI. In the column for Theorem 6.6, the
values listed are for the largest slip S which does not violate any of the three conditions

listed in the theorem. Observe that in this chapter, the performance of some of the coset
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codes. in a noisy channel equals their upper bound. It is believed by the author that

Theorems 6.2, 6.3, 6.4, 6.5 and 6.6 are new.

>
Egé
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FIRE CODE MAXIMUM SLIP(S) FOR THEOREMS LISTED
k) | b B a T 6.2 6.3* 6.4 6.5 6.6
42, 22) 16 21 14| 1 12 18 12 9 9

| | 2 N 17 1 9 9

3 10 16 ? 8 9
4 9 15 7 7 9
5 8 14 5 5 9
6 7 13 3 3 9
7 4 12 0 o 0
, 8 4 1 00 0 0
(49,3) 13 7 7{1 5. 8 5 4 4
: 2 4 7 4 4 4
3 3 6 2 2 4
4 1 5 0 o 0
5 1 4 0 o 0
(105,94) {4 15 7 {1 5 9 5 4 5
2 4 8 . 4 4 5
3 3 7 2 2 5
4 2 6 0 o 5
5 1 5 0 0 0
(105,84) |6 21 151 13 19 13 <92 10
- _— 2 12 18 12 9 10
3 1 17 10 9 10
4 10 16 8 8 10
5 9 15 6 6 10
6 8 14 4 4 10
7 4 13 0O o0 0
8 4 12 0O 0 0
9 4 11 -0 0 0
- 10 . 4 10 0O o0 0
(341,325) {5 31 11 | 1 9 14 92 7 7
2 8 13 8 7 7
3 7 12 6 6 7
5 5 10 2 2 7
6 3 9 0O 0 0
7 3 8 0 o 0
A Short List of Fire Codes to lllustrate Their Ability to Detect or Correct Slip In The

Presence of a. Burst Error of Length T or Less.

* Obtained by setting S + T = a+b - |
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CHAPTER VII

ANOTHER TECHNIQUE FOR CORRECTING SYNCHRONIZATION

ERRORS FOR CYCLIC CODES

7.1 Introduction

Recently, a new technique for correcting the simultaneous occurrence of
slip and additive error was introduced by qudwells, and Bose and Caldwells. This technique

was later generalized by Weldoﬁél .

The method essentially involves extending the word length of the cyclic
code and restraining some of the information bits, both in a prescribed manner. To illustrate

how the word is lengthened, let the n-tuple below be a cyclic code word

(ao, Ayr Ggr veny qn_]) s a. ¢ F. (7.1)

The above word is now extended as shown in (7. 2)

‘a ) (7.2)

cesy @ a a ,0;, «0u, @ a_, 0., e,
n-L’ " “n=2" "n=1" "o’ "V’ " Tn=17 o’ 71’ " "R

(a

where R and L bits have been added on the right and left respectively, in the manner shown.
It is clear that any consecutive n bits selected from (7.2) is a cyclic code word. For the
interesting symmetrical case, the number of bits added on either side is equal, i.e., R = L.
More relevant to the discussion to follow, is the manner in which the information bits of

the cyclic code words are restrained. Recall that any (n, k) cyclic code word can be written

in the form

W) = PG) G() 7.9
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where G(x) is the generator polynomial and has degree n-k, and P(x) is an arbitrary

polynomial of degree less than k.

Following Caldwells, restrain P(x) in (7.3) as shown below
P(x) = J(x) F(x) + 1 ) 7.4)

where F(x) is a polynomial of degree m, and which has exponent p >R + L. Als~, J(x)
is an arbitrary polynomial of degree less than k-m. The new code has k-m information bits
and hence qk-m code words, where q is the number of symbols in the code. Each restrained

code word can now be written as

W(x) = ( Jx) Fx)+1) G(x) . (7.5)

To_illustrate the error correcting ability of the method, a theorem given

| by Weldonél is stated and proved below. As elsewhere in this thesis, d is the minimum

distance of the cyclic code.

Theorem 7.1

Any (n,k) cyclic code can be extended to form an (n + 2S, k-m) code
which can correct the simultaneous occurrence of e or less additive errors and S or less bits .

of slip, where

s = [Q"-2/2] and e = [d-1)/2] .

Proof

In (7.2), let R=L =S and let F(x) be a primitive polynomial of degree m.

Now, assume an extended word derived from (7.5) is transmitted and that s £ S bits of left
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slip and additive error E(x) occur. The receiver then frames the n-tuple

X W) + E(x) ,  s<S. (7.6)

The decoder first corrects the additive error by computing the syndrorhe of (7.6). It

decides that additive error is present if

{x* we + ’E(x)} £ 0 (7.7)

and since {xs W(x)} = 0, (7.7) reduces to

{eca} # o, 7.8)

If W[-E(x)] Le = [(d - 1)/2] , the decoder can correct the additive error E(x). After

correcting E(x), the framed polynomial is
W) = X*(JK) Fx) + 1) Gk (7.9)

which is then divided by F(x) G(x). The remaiﬁder after this division is called the synchro-
nization syndrOmeél (or slip syndrome) and in (7.9) this is seen to be the remainder of

x* . The notation {P(x)}F will be used to indicate the remainder obtained by dividing
F(x) ‘
P(x) by F(x). As before, {P(x)} with no subscript will mean the remainder after division

by the generator polynomial G(x). Applying this notation to (7.9) gives

S
"—G‘%gi = X &) Fx) + 1) (7.10)
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and

{XUR+D} . = ) . (7.11)

The decoder can distinguish between right slip of r bits and left slip of s bits if
{xS}F_ # {x_r}F | ‘ (7.12)

or

(- £ 0 7.13)

and the above is equivalent to
el Ao (7.14)

Since F(x) is primitive, it does not divide (xs-+r- 1) ifs+rg qm - 1, hence the decoder
can distinguish between right and left slip if 2 S <<:|m -1, or at most, S = [(qm - 2)/2];

In addition, the decoder can disﬁnguish between two left slips of p and j bits if
{*-+d} #0, i<pss. (7.15)

The above is equivalent to

{xp'i -1} £ o (7.16)

and since p - | < S, (7.16) is satisfied. A similar proof applies to two right slips, both less
than S. Recall that the code words were lengthened by an amount S in each direction, and
hence the new word length is n + 2S. Also, since F(x) has degree m, the remaining number

of information bits is k - m.

Q.E.D.
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Observe that the slip syndrome of an extended code word is unity, whereas

the syndrome of a cyclic code word is zero.

There are two obvious penalties in using the new technique. The first is
that the length of the code word is increased by adding redundant bits. Also, when no slip
occurs, these extra bits are not used to increase the additive-error-correcting ability of the
code. TB_e second penalty is that m of the k information bits are lost. Specifically, for an

(n,k) cyclic code, if F(x) has degree m, then from Theorem 7.1, the rate* is reduced from

k/n to (k-m)/(n + 25).

In addition, the decoding process is more complex than for coset codes.
To decode a coset code, the decoder computes one syndrome and bases all its decisions on

that syndrome. On the other hand, for the codes discussed in this Chapter, there are two

syndromes to be computed. They are

(M the syndrome with respect to G(x) and

(2) the syndrome with respect to F(x).
This tends to lead to a'more complex, and hence more expensive decoder..

In the next section, the information bits of the cyclic code will be restrained

as described earlier, but the length of the cyclic code word will be unaltered.

* The rate may be defined as the number of information bits divided by the length of the code
word.
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7. 2 An Extension of-Bose and Caldwell's Technique

Given an (n, k) cyclic code, consider a new code whose code words can

be written as

W(x) = (Jx)Fx)+1) G(x). (7.17)

~where G(x) is the generator polynomial of the given cyclic code and F(x) is a primitive

polynomial of degree m. The essential difference between the code described by. (7.17)
and the one described by Bose and Caldwell5 is that no extra bits are added on at the ends
of the word in (7.17). The rate for the code given by (7.17) decreases from k/n to

(k.= m)/n, and there are qk-mcode words in this code. Note that (7.17) is still a cyclic

- code word of the original (n,k) cyclic code, but the new code is not cyclic. In fact it is

not even a group code, since the sum of two words in the code does not have the form of
(7.17). A number of results will now be derived using the code 'descriBed in this section.
When the primitive polynomial F(x) has degree m, the code in (7.17) will be called an

(n, k-m) s'ubset code. Also, inall thé resulf;c, to follow, the minimum distance of the cyclic

code will be assumed to be d.

7.3 _ Detection of Slip by Subset Codes of Cyclic Codes

The theorem which follows concerns the ability of (n, k=-m) subset codes

to detect slip and additive error.

Theorem 7.2

Given any (n,k) cyclic code, there exists an (n,k=m) subset code having

qm>.h - k + 1, which can
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(M Detect n - k or less bits of slip if no additive errors are present, and
(2) . Detect the simultaneous occurrence of S or less bits of slip and e or

less additive errors if S +e £d - 1.

Proof

Let

Wx) = (Jx) Fx) +1) G(x) (7.18)

be any code word of the subset code, where F(x) is a primitive polynomial of degree m and

q" > n-k+1. J(x) is an arbitrary polynomial of degree less than k-m.

Part 1

Assume that s bits of left slip occur and that there are no additive errors.
As for coset codes, the decoder first computes the syndrome (with respect to G(x) ) and will

detect an error if
{xs W(x) + Us(x) } £ 0 | (7.19)

which reduces to

{us(x)} £ 0. (7.20)

If Us(x) # 0,ands €£n-k, Us(x)_ cannot be a cyclic code word and (7.20) will be satisfied.

If Us(x) = 0, and s € n-k, the decoder computes the slip syndrome -

{xs(J(x) F(x)+1)} £ = {xs}F | (7.21)

and the decoder will detect an error if

| (CYp #1 7.22)
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since 1 is the slip syndrome when there is no slip. The previous inequality can be written
as
{xs - 1} #0 (7.23)
F
and since F(x) is primitive and hds'degl;ee m, it does not divide (xs- 1) ffS‘<qm- 1. Since
the maximum value of s considered is n-k, choose m such that qm -1 >n-k, i.e.,

qm >n-k+1. A similar proof applies for right slip. This proves the first part of the theorm.

.ParfA2

Let additive error E(x) and s bits of left slip occur simultaneously. The

decoder will detect an error if
{x W6 + E() + U (x) 1 £ o (7.24)
The above reduces to
{E(x) + U} # 0 (7.25)
which is satisfied if S +e < d - 1, where s <S, and W[E(x)] < e, unless E(x) + Us(x) =0,

If this is the case, the decoder computes

{ (I F(x)+1)}F = {XS}F £ 1 (7.26)

ifs <n-k. A similar proof applies for right slip.
Q.E.D.
As stated in Theorem 7.2, an (n, k-m) subset code can detect n~k or less

bits of slip, whereas an (n,k) coset code can detect only n-k-1or less. However, the

(n, k) coset code word has m more information bits.
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7.4  Correction of Slip by Subset Codes of Cyclic Codes

In the next theorem, the ability of subset codes to correct slip in a noise~

less channel will be examined. Let q be the number of _symbols (or states) in the code.

- Theorem 7.3

Given any (n, k) cyclic code, there exists an (n, k-m) subset code having

qm > 2 [(n- k)/2] + 2 which can correct all slip £ [(n- |<)/2] .

Proof -

Assuming #aa p bits of slip occur, the received word has the form

xP W(x) + Up(x) (7.27)

where W(x) is-a subset code word, and p is positive for left slip and negative for right slip.
As shown in Figure 7.1, the decoder first computes the syndrome of (7.27) to obtain

{U_p(x)} . Up(x) can b.e determined from {Up(x)} if*

{up(x)} ;é{ur(x)} LRl . (rls. (7.28)

The above is satisfied for all distinct Up(x) and Ur(x) if S< (n-k)/2. The decoder now

subtracts Up(x) from (7.27) to obtain xP W(x). The slip syndrome

{xP Wed = {x} e (7.29)

is now computed. The decoder can determine the magnitude and the direction of the slip

p, if
TR T PR UEE

" .
|X| means the absolute value of X
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which can be written as
{xp - x’} # 0. . (7.30)
F .
Recalling that F(x) is a primitive polynomial of degree m, (7.30) is satisfied if
lp-r|<25 < qm-'l

The desired result follows if

S<[(h-ky2] £ @"-2y2
which implies qr > 2[n-k)/2] + 2.
The flow chart in Figure 7.1 outlines the decoding procedure for correcting the slip.

Q.E.D.

Observe that the (n, k-m) subset code corrects [(n- k)/2] or less bits
of slip, whereas an (n, k) coset code can correct only [(n- k- ])/2] or less. Furthermore, '
the subset code can compute the magnitude and the direction of the slip, but for coset codes
it was found that slip < [(n -k- 2)/2] . However, as mentioned earlier, the (n, k-m)

subset code has m less information bits.

For the channel in the next theorem, assume that slip and additve error do

not occur simultaneously in the same n-tuple. The following result can be proved.

Theorem 7. 4

Given any (n, k) cyclic code which corrects e additive errors, there exists

*an (n,k=m) subset code with ™ > 2 e + 1 which can correct e or less bits of slip and e or

less additive errors, if slip and additive error do not occur simultaneously.
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Proof

The strategy of the decoder in this theorem is fo. initially regard all errors
as due to additive errors, and correct them as such. It then computes the slip syndrome to
see if this assumption was valid. - From the slip syndrome the decoder can determine the

amount and the direction of the slip, if slip did occur.

Assume first that p bits of slip have occurred. The received n-tuple is

then

xP W(x) +,Up(><) |l £ S (7.31)

where W(x) is any subset code word. Since W [.Up(x)] < e when- [p| <€ e, the decoder can
correct U _(x) as if it were due to additive error (if U (x) = 0, the decoder moves immedi-

P ' p
ately to the next step). The remaining-n-tuple is now xPW(x). The next step is o compute
the slip syndrome of xP W(x), which is { xp} E The decoder can determine the magnitude

and the sign of p if qm ~1>2, i.e.ifq"> 2 +1.

If additive error E(x_) occurred instead of slip, the received n-tuple would
be .

W(x) + E(x) (7.32)
and since W [ E(x)] < e, the decoder can (and does) correct E(x). The decoder nbw_compufe,s
the slip syndrome of W(x), which is unity. A slip syndrome of unity tells the decoder that
the error is due to additive error, which has already been correcféd. If the slip syndroﬁe is
not unity, the decoder concludes that slip is present and corrects: it as described in the first

part of the proof. See Figure 7.2 for the decoding algorithm.

" Q.E.D.
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In Theorem 7.4, note that if d = 2e +°1, then the lower bound on m ..
becomes qm> d. - In this case, the subset code can correct as many additive errors as the
original cyclic code, namely ~['(d- l)/2] . In addii‘ién, the subset code can correct

[(d-- l)/2]or léss bits of slip. if no additive errors occur simultaneously. The penalty is

the loss of [l + loqu] information bits.

7.5  Slip and Additive Error May Occur Simulfaneously

In the next theorem, the decoder will correct errors and also detect the

presence of slip, when both errors occur simultaneously.

Theorem 7.5

Given an (n,k) cyclic code which corrects e, additive errors, there exists __
an (n, k=-m) subset code with ™ > e, t 1 which can simultaneously correct e or less

additive errors and detect s or less bits of slipife+s £ e,

Proof

The decoder is instructed to initially regard all errors as additive errors and

to correct them as such. Suppose that additive error E(x) and p bits of slip occur. The

received polynomial is then
xP W(x) + U 6) + EGo) (7.33)

and if [p] +e £ e.r where W [E(x)] = e, the decoder will correct Up(x) + _E(x) as if it
were a pure additive error. The remaining polynomial is xPW(x) and the decoder now com-

putes the slip syndrome which is {xp} F - The decoder can detect the presence of slip if
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qr-1> e, = p. Observe that the decoder has corrected the additive error E(x)

(and also Up(x)), however, it can only detect that slip is also present. In addition, the

~ decoder knows when slip does not occur, and in this case it corrects e, or less additive

errors. e_ can be chosen as large as [(d-}])/2J .

Q.E.D.

In the next theorem, the decoder can correct slip and additive error,

even when they occur simultaneously.

Theorem 7.6

Given any (n, k) cylic code, there exists an (n,k=~m) subset code with

qm> 2 f(d-_ l)/2] + 1, which can correct any combination of e additive errors and s.

'bits of slip ife +s £ [(d-])/Z].

Proof

As in the previous theorem, the decoder is instructed to initially correct
all errors as if they were additive errors. If p bits of slip and e additive errors occur, the

received n-tuple is

xPW(x)+Up(x) + E(x) ' (7.34)

where p is positive for left slip and negative for right slip. Ife + |p| < [(d- l)/2] , the
decoder computes Up(x) + E(x) and subtracts it from (7.34). [t now determines the slip

syndrome of xpW(x) which is {xp} F However, to determine p, it is necessary that

P A e A (7.35)
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forall [pf,|r] £ [(d- 1)/2] . The above inequality can be written as
P 0 | 7.36
{ - x | - (.39
which is equivalent to
(P77 -} Ao (p-ri€ 2[@-12] (7.37)

Since F(x) is a primitive polynomial of degree m, it does not divide (xp-r - 1) if
qT-1> 2 [(d- 1)/2] 2|p-r| . When m satisfies the previous inequality, it follows from

(7.37) that the decoder can determine the magnitude and the direction of the slip.

Q . E L] D.
Note that Theorem 7.6 corrects slip, whereas Theorem 7.5 merely detects

the presence of slip. However, in Theorem 7.6, more information bits are lost.

7.6 A Variation of the Technique of Subset Codes

The technique discussed in this section involved adding a fixed polynomial
C(x) to each code word of the (n, k-m) subset code. Loosely speaking, it combines the

techniques of coset codes and subset codes. Each transmitted word of this code will have the

form
(JX)Fx) +1) G(x)+C(x) . (7.38)

The following theorem will deal with the problem of detection.
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Theorem 7.7

Given an (n, k) cyclic code, there exists a code having the form of

(7.38) with qm = d-1, which can :

4} Detect (n-k=-1) or less bits of slip in the absence of additive

error.

(2) Detect the. simultaneous occurrence of e or less additive errors

and S or less bits of slip, where e +5S £d ~ 2,

Proof

Let Cx) = 1.

Part 1

Assume that slip occurs but that no additive errors are present. The code
words defined by (7.38) form a subset of the coset code of the given cyclic code. Hence,

by Theorem 2.1, the decoder can detect all slip of n - k = 1 bits or less.

Part 2

Assume that p bits of slip and additive error E(x) occur simultaneously.

The receiver frames

xP (J(x) F(x) + 1) G(x) + xP + Up(x) + E(x) (7.39)

where p is positive for left slip and negative for right slip. The decoder will detect an error

if (7.39) is not a cyclic code word. If

e + (p| + 1 <d (7. 40)
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where W [E(x)] = e, then (7.39) will be a cyclic code word if and only if
xP + U 6) + EG) = 0.

When the above is true, (7.39) becomes

LI FR) +1) G) . 7.41)

The receiver now compitles {XP}F » and will detect the presence of slip ifq" - 1 > |el »
where || <d- (e + 1) from (7.40). The largest non-trivial value of p occurs when

e =1, which gives [p| = d-3. This implieis thatq" = 1> d- 3orqM>d- 1.

Q.E.D.

Theorem 7.7 should be compared with Theorems 2.1 and 7.2, Observe
that m is smaller in Theorem 7.7 than in Theorem 7.2, and hence the codes in Theorem 7.7
have more code words. The author believes that all the theorems based on the "(n, k- m)

subset codes " of this chapter and Theorem 7.7 are new.
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CHAPTER VIII

“SUMMARY OF RESULTS

In this Chapter, the resulfs presented in this study will be summarized and
an attempt will be made to indicate which of them are original contributions. In some
instances, the contribution may conﬁisf of a new proof or a stronger theorem*®. It will
be observed that the thesis has been organized around a set of theorems, which, it is
believed, allow easy reference to the results. Although the style is somewhat formal, it

should be easy for the reader to find specific results without going through the proofs.

Two techniques were considered for altering cyclic codes to enable them to
recover synchronism. In the first, a suitable coset code was formed from the given (n ,k)
cylic code. Since the coset code has the same distance properties as the parent cyclic
code, it also has the same additive-error~detecting and correcting properties. The second
method forms an (n, k=m) subset code from the (n,k) cyclic code by resfraini‘ng m of the k
information bits of the cyclic code in a prescribed manner. These subset codes are a varia-
tion of the extended cyclic codes developed by Bose and Caldwell. Observe that neither

of the techniques employed alters the length of the cyclic code words.

Chapters 11 to VI, inclusive, are based on the technique of forming coset codes.
In Chapter I, slip is assumed to occur in a noiseless channel. The absence of additive

errors allows the technique to be introduced without other complicating factors. Hence,

* However, to avoid repetition, the policy adopted is that results that are not referenced
are believed to be new.
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although the noiseless model does not represent real channels, it gives insight into the later

study of channels with additive error.

-Theorem 2.1, on the ability of coset codes fo_défécf slip,was found indepen-
dently by Sfiffler52 and Levy38'. Sfiffler.uses the vector-matrix representation whereas
Levy uses polynomial algebra. The proof given here is similar to Tong'558. One difference
is that a useful property of cyclic codes is applied which gives an alternative point of view.

The property is that no (non-zero) burst of length n=-k or less can be an (n, k) cyclic code

~word. This is a very useful result and is used many times in the thesis. Tong's proof is

equivalent, but the above idea is disguised by the albegra. For completeness, his method

is also outlined. Later, in Chapter IV, several results on slip are derived in the vector-

matrix representation.

Theorem 2.252’ 8 proves that all (n, k) coset codes are vulnerable to slip
exceeding n-k-1 bits, which also proves that Theorem 2.1 is opfimum'. Since the code
words are assumed to form a continuous sequence, by symmetry, a slip of s bits in one
direction is equivalent fo a slip of n-s in the other direction. Hence, if a coset code can
detect slip up to one-half a word length i.e. [n/2] , then it can detect all slip. Such

38, 52, 58

a code is called comma-free24 and Corollary 2.1 points out that a coset code

is comma-free if and only if k £(n-1)/2.

The next topic studied is correction of slip in a noiseless channel. The phrase
“correction of slip " can have at least two meanings and needs clarification. This matter
is taken up in Section 2.3. For instance, Ton958 uses the phrase "sync-correction capa-
bility " to mean the ability of the decoder to distinguish between right slip and left slip.

However, this ability does not enable the decoder to determine immediately (i.e. without
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searching) the magnitude of the slip. In Theorem 2.3, the decoder can determine the
direction of the slip if it does not exceed (n - k - 1) /2. Ton958 comes close to proving
this theorem, but omits stating it explicitly. He is content to give his result as an upper

bound, and this will be discussed shortly.

Corollary 2.2 states the interesting fact that, depending on the choice of coset
in Theorem 2.3, the decoder can determine the magnitude of the slip for one direction only.
For instance, if C(x) = 1, the decoder can determine the magnitude of the slip for left slip,

but cannot do this for right slip. It is the other way around if C(x) = xn-] .

Theorem 2.4 gives a coset (C(x) =1 + xn_]) which can compute the magnitude
and the direction of the slip if slip does not exceed (n-k-2)/2. Comparing Theorems 2.3

and 2.4, it is seen that by sacrificing at most one bit, the decoder can recover sync without

having to search.

An upper bound on the ability of coset codes to distinguish between right and
left slip in a noiseless channel is given by Theorem 2.5. Ton958 gives a similar fheorem‘ _
except that the condition 2k >n is ab,se_nf from his result. The need for this condition is
due to the fact that the random polynomial Us'_+r_(x) is not always completely random. It is
recalled that these "random " bits come from an adjacent (n, k) coset code word, which has
k information bits (which are arbitrary) and n-k check bits which are determined by the k
information bits. This fact imposes résfrainfs on the coefficients of the random polynomial
Us+r(x)' Theorem 2.5 and Corollary 2.3 were proved with ‘this fact in mind. However, it
can be verified that this condition is redundant for all the results on the detection of slip.
When 2k > n, Theorem 2.5 proves that Theorem 2.3 is optimum and that Theorem 2.4 is at

most one bit short of optimum.
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In Chapter Ill, slip in noisy channels is studied. As might be expected, the
analysis becomes appreciably more complicated. In that chapter, the additive noise affects
individual transmitted bits independently, In Section 3.2, slip and additive error are

assumed not to occur simultaneously, but in Section 3.3 this restriction is removed.

Theorem 3.1, on detection, may be considered to be somewhat obvious, but
it is worth stating nevertheless. Theorem 3.2A is very similar to Theorem 4 of Ton958, but
differs in two aspects. First, one redundant condition stated by Tong has been removed.
Second, it is shown that the decoder can compute not only the direction, but also the magni-
tude of the slip. The proof given here is otherwise essentially the same as Tong’s, except
that the choice of coset is different when the number of additive errors e is even (see (3.9qd)).
This fact serves as a reminder that the choice of coset is often not unique. Theorems 3. 2B
and 3.2C are new theorems which correct larger values of slip than Theorem 3.2A when d

is large and e is small. Unlike 3.2A, they are valid only for binary codes.

Theorem 3.3A is on the detection of the simultaneous occurrence of slip and
additive errors by coset codes. This theorem is suggested by Tong's work58 but he does not
state it explicitly. Theorems 3.3B and 3.3C, valid only for binary codes, are new and give

larger values of correctable slip when d is large and e is small.

It may sometimes be preferred to correct additive errors when they occur without
slip, and merely detect the simultaneous occurrence of slip and additive error. This situation
is covered in Theorem 3.4. Note that in Theorem 3.4 the decoder must distinguish between
pure additive error and the simultaneous occurrence of slip and additive error. Corollary

3.1 adds some more flexibility to Theorem 3. 4.



139

Theorem 3.5 examines the quite general case of the correction of both slip
and additive error, when they occur simultaneously. Observe that this is ach ieved, as
for all coset codes discussed in}fhis study, without int:;reasing the length of the code word
or sacrificing.ony of the information bits. However, the available redu.n'dancly in the code
word has been divided between additive efror correction and slip error correction. Con-

sequently the maximum number of additive errors that can be corrected has been reduced.

The decoder in Theorem 3.5 can compute the magnitude of the slip for left
slip, but not for right slip (additive errors are present-in both cases). Fo;- the reduction of
at most one bit in S, the decoder in Theorem 3.6 can compute the ﬁagnifude and direction
of the slip, when slip and additive error occur éir;ulfaneously. A bound on the performance
of Theorems 3.5 and 3.6 is provided by the upp'el:' bound on S given in Theorem 3.7. However,
since this bound may not be tight, it should not b‘é used to draw unf‘avc’:’u.rable conclusions

about Theorems 3.5 and 3. 6.

In Chapter IV the vector-matrix description of cyclic codes is taken up, in
contrast to the polynomial description which had been used earlier. As far as the author is
aware, Stifﬂer52 was the first to use coset codes and the vector-matrix approach in studying
the problem of synchronization of cyclic codes. ‘However, his theorems only considered the
detection of slip when additive errors cannot occur simultaneously. In Chapter IV, the
vector-matrix approach has been extended to handle various combinations of slip and addi-
tive error. To avoid undue repetition only a representative selection of the previous
theorems are re~examined. A fairly complete de\}eIOPmenf has been given elsewhere
In particular, the method has been extended to handle correction of slip in the noiseless

channel, and further, correction of the simultaneous occurrence of slip and additive error
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for the noisy channel. It is then a fairly straightforward matter to apply the vector-

matrix method to other results not explicitly covered here.

One motive for using the vector-matrix representation is that fnany commu-
nication engineers may be familiar with the essentials of matrix theory but not with the
concepts and terminology of modern algebra. However, even for readers familiar with

both subjects, the two approaches may result in a better understanding.

Lemma 4.1 is given as Theorem 8.2 by Peferson39 who gives an algebraic
proof. The proof given here, using mafri* theory was developed by the author, who has not -
seen a similar one elsewhere. Lemma 4.2 may ke known, but the author has not seen it in
the literature. .Howevel;. the fact that there are qn-k distinct syndromes for an (n, k) cyclic

code with q symbols is well known.

In the previous chapters, the additive errors were assumed to affect the
frqnsmiffed bits independently. However in Chapfer V, the addifive errors are assumed to
occur in bursts. The class of codes used is the coset codes of binary cyclic codes. A special
kind of burst error is the multiple-adjacent-additive error, which is simply a sequence of
consecutive errors. Theorem 5.1 covers the detection of the simultaneous occurrence of
slip and a single burst of adjacent-additive-errors; Theorem 5.2 deals with fﬁe correction
of both such errors, assuming that they cannot occur simultaneously. Theorem 5.3 -
examines the detection of the simultaneous occurrence of slip and a single burst (in the
general meaning of "burst "), Two useful lemmas, 5.1 and 5.2, are then given, as they

assist in the proof of later theorems.

In Section 5.4, Theorem 5.4 deals with the correction of slip and the

. detection of a single burst, assuming that the two_types of error do not occur simultaneously.
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In Theorem 5.5, both types of error are corrected under the same assumptions. For the
more general channel where slip and burst-errors occur simultaneously, the decoder in
Theorem 5.6 corrects both slip and a single burst." Finally, Theorem 5.7 sets an upper
bound on the ability of a coset code to correct both slip and a single burst when they
occur simultaneously. It will be noticed that there is a significant gap between the
performance of Theorem 5.6 and the bound of Theorem 5.7. However, it should be kept
in mind that the only parameter used in proving this theorem and nearly all the others,

is the minimum distance d of the (n, k) cyclic code. To bring the performance achieved
closer to the bound, it may be necessary to restrict the discussion to.a subset of the cyclic

codes, for example the BCH codes. This would be equivalent to specifying more parameters.

Another important subset of the class of cyclic codes are the Fire codes &7 39.

They are studied in Chapter VI and the cosets of these codes usually give results closer to .
the upper bounds. Theorems 6.2 to 6.6 examine the ability of coset codes of Fire codes fo
handle a variety of combinations of slip and burst errors. Lemma 6.1 serves as a reminder

of the fact that Fire codes have small minimum distance and are not suitable for channels

with independent additive errorslé.

Chapter Vii im“roducés the other technique for altering cyclic codes to
enable them to detect and correct slip. This technique is adapted from the the one developed
by Bose and Caldwells. In Chapter VII, the main ideas of Bose and Caldwell's method are
briefly outlined and Theorem 7. 16] is proved to make the ideas concrete and to give some
quantitative results. From Theorem 7.1 it is seen that the extended code can correct the

simultaneous occurrence of slip and additive error without loss of any additive-error-correc-

ting ability. The penalty is that
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1) the length of the code wo"r?d“is increased by the
addition of redundant bits and
2 the number of information bi_ts in the original

cyclic code is reduced.

The extension of Caldwell's method stludied here is to restrain some of the
information bits in the same manner but not to add any bits to the ends of the code word.
Starting with an (n, k) cyclic code, the ﬁew codes, called (n, k-m) subset codes, have
k=m information bits and word length n. The various .lower bounds on m are given in

Chapter VII.

Theorem 7.2 describes the ability of the (n, k-m) subset codes to detect slip
and additive errors. Theorem 7.2 can be compared with Theorem 3.3A. Observe that
in order to detect the simultaneous occuﬁence of slip S and additive error e, Theorem
7.2 requires that S+te <d~'1 (necessc;l;y qﬁd sﬁfficient)-whereas Theorem 3.3A requires
that S + 2e < d - 2 (necessary but not ‘sdfficient), for the coset code. However, in

Theorem 7.2, m information bits are lost, where qm> n-k+1.

In Theorem 7.3, the gubs;ef code corrects slip in a noiseless channel and in
Theorem 7.4 the subset code corrects slip and additive error, in a channel where slip
and additive error do not occur simultaneously. Slip and additive error can occur simul-
taneously in Theorems 7.5 and 7.6. In Theoreml7.5. the decoder corrects additive errors
but only detects slip. However, in Theorem 7.6 the decoder corrects both types of error.
It is interesting to compare Theorem 7.6 with Theorem 7.1 which uses Bose and Caldwell's
technique. In both theorems the decoder can correct slip and additive error even when

they occur simultaneously. However, 7.1 can correct the maximum number of additive
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errors, i.e. [’(d- l)/2] » when slip is present, whereas in 7.6 the number of additive
errors that can be corrected is reduced by t.l;:amounf of slip present. This is offset by
the fact that the code words are longer in Theorem 7 1. - The last result is given in
Theorem 7.7, and is a combination of the two prevfous techniques. The code words of
this code can be obtained by forming the (n, k-m) subset code and then generating a
"coset " of this code by adding C(x). This combined technique appears to have some
advantages for detection schemes. It is instructive to corﬁpare the slip detecting capa-
bilities of Théorem 7.7 with Theorems 2.1 and 7.2. Note that although Theorem 7.2

detects one more bit of slip than Theorem 7.7, the code in Theorem 7.2 sacrifices more

information bits.

In general, it is not easy to choose simple criteria on which to compare the
performance of codes in an environment of ;slip and additive error. One problem is assign-
ing the relative importance of slip errors and additive errors. In fact, slip errors may raise
important theoretical problems in information i'heory25 , since Shannon's development does

not take synchronization errors into account.
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CONCLUSIONS

The problem of detecting and correcting loss of synchronization, or slip, for
cyclic codes has been examined for both noiseless and noisy channels. Two different tech-
niques which reduce the vulnerability of cyclic codes to slip errors were considered. One
technique was to select a suitable coset code of the given (n, k) cyclic code by adding a
fixed n-tuple to each cyclic code word before Transmission. The other was to generate an
" (n, k-m) subset code " by restraining m of the k information symbols of the cyclic code,
in a prescribed manner. The techniques did not alter the length of the cyclic code words or
reduce their additive~error-detecting capability. To give two points of view, both the

vector-matrix and the polynomial algebra representation of cyclic codes were utilized.

Several new theorems were presented onthe ability of coset codes of cyclic
codes to recover synchronism. |t was shown that by the proper choice of coset, the decoder
could determine both the magr;ifude and the direction of the slip, which eliminated the
necessity of searching for synchronism. For the noisy channel, both independent additive
errors and burst errors were considered. In particular, a class of coset codes was described
which could correct both slip and additive error, even when they occurred simultaneously.
In addition, it was shown that there exist coset codes of Fire codes which could detect |

and correct slip in a channel with burst errors.

A class of codes called " (n, k-m) subset codes " was described, which were
adapted from the extended cyclic codes of Bose and Caldwell. However, unlike the
extended codes, the subset codes have the same word length as the original cyclic code.

It was demonstrated that these subset codes have the ability to recover synchronism, even
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in the simultaneous presence of additive error,

In this study, attention has been concentrated on situations where the decoder
can detect or correct slip with certainty. A suitable area for future invesfigﬁﬁon could
be the probability of undetected error when slip and additive error lie outside the guaran-
teed range. It may also be possible to improve on the performance of the theorems presented
or, if this is not possible, to tighten the upper bounds. However, this may require the

specification of more parameters of the cyclic codes than was required in this study.
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It is desired to prove that

WfQ(x)(xi.+1)] < 2+3e+2S5-2(s-m)

where i = S=-s+1 and

Qx) = Ds(x) + Us(x) +E(x), 0cs €5

and

W[Us(x) + E(x)] = s+e-m
and w [E(x)] Le .
Proof

The worst case occurs when W [ E(x)] = e which gives
WEK (x +1)] & 2e.

Subtracting (5A) from (1A), it is sufficient to prove that
WRG) (x'+1)] £ 2+e+25-2(6-m)

where
Rx) = Ds(x) + Us(x)

When W[ E(x)] = e, it follows from (3A) that
w [Us(x)J = s=-m
which means that m of the possible s terms of Us(x) are missing.

When e is even, recall that

/2 i(s+1)
i=0

Cx) =

146

(1A)

(2A)

(3A)

(4A)

(5A)

(6A)

(7A)

(8A)

(9A)
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and hence _ | v
D(x) = CH) (X" +1) -1
e/2 . e/2
s Sy x|(S+l) 4y xk(S.+1)
=0 , k=1
) ‘
= 5 42 KD o+ 1), (10A)

Substituting (10A) into (7A), it can be shown that, after making the necessary cancellation

of terms, the inequality (6A) is satisfied.
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APPENDIX I

A SIMPLE INEQUALITY RELATING MINIMUM DISTANCE AND THE

NUMBER OF PARITY CHECK BITS FOR BINARY CYCLIC CODES i

" Theorem

For any (n, k) binary cyclic code, with minimum distance d, the following

inequality is true :

d< 2/3 -k +2].

Proof

Without loss of generality we assume that the k information bits occupy

the k left positions of the code word as shown below :
(a.l,clz, cee s Gs b], b2, bn-k)

where the ai's are information bits and the bil s are check bits.

Considér the code word whose information bits are all zero except the one..
in the k'th position, i.e. Q) #0. Let this word'have p zeros among its parity check bits.
Then its weight is 1 + (n-k) = p and hence

d€n-k+1-p, p>O. (1B)

Now cyclically shift this word one bit and add the shifted version to the original word to

obtain a code word whose weight is at. most 2 p + 2. This implies

d£2p+2 ‘ (2B)

* See also the more general inquality in : Solomon, G. and J.J. Stiffler, "Algebraically
Punctured Cyclic Codes ", Information and Control, Vol. 8, No. 2, pp. 170-179, 1965.
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and from (i1B) we have

p£&n-k+1-d. (3B)

* Substitute (3B) into (2B) to obtain

d< 2h-k+1-d)+2
or

d< 2/3(n-k+2)

Q.E. D.
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