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Abstract

Randomized clinical trials are of paramount importance in medical research and are particu-

larly valuable in understanding causal relationships, as confounding is removed through the

randomization process. With new designs being developed and the use of multicenter studies

increasingly common, trials are growing in complexity, and their associated cost has been

increasing year on year for the past two decades. Unfortunately, many trials fail, perhaps

through poor planning (underestimating sample size needs) or the inability to meet accrual

targets. This thesis considers aspects of these challenges in planning and monitoring, devel-

oping new Bayesian approaches to sample size calculations for a multi-stage randomization

design and accrual monitoring for multicenter studies. A novel trial design that has earned

the spotlight in the growing field of precision medicine is the sequential multiple assignment

randomized trial (SMART). Within this design, patients are randomized at two or more key

treatment stages accounting for a small set of characteristics or responses to previous inter-

ventions. This structure allows for the development and comparison of adaptive treatment

strategies. Most of the primary analyses performed on SMARTs are based on the compar-

ison of two means or strategies, and while the frequentist sample size formulae are similar

to traditional randomized controlled trials (RCTs), their estimation relies on additional as-

sumptions. In the first manuscript, I developed a more robust sample size methodology in

the Bayesian framework by adapting the ‘two priors’ approach to the SMART design while

incorporating estimates of the variance components and their uncertainty from pilot studies,

resulting in a methodology that relies on fewer assumptions, is more robust to model mis-

specification, and allows for the incorporation of pre-trial knowledge. The performance of

this approach is compared to the frequentist formulae in a simulation study. Its properties

are further displayed in a case study where I used data from a SMART pilot to estimate the

sample size of its full-scale version. In the second manuscript, I turn my attention from the

planning to the monitoring phase, developing a novel approach to forecasting enrollments in

multicenter studies applicable to both cohort and trial designs. The forecasting of recruit-
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ments is a topic of rapidly increasing interest, however, most models used in practice are

either deterministic or rely on often unrealistic assumptions, such as the constant recruit-

ment intensity over time. The most popular methodology that belongs to the second group

is the Poisson-Gamma (PG) model. I extended this methodology by allowing the enroll-

ment rates to vary with time after the opening of recruitment centers up to a stabilization

point. I illustrate the accuracy of this methodology compared to the standard PG model in

a simulation study and by forecasting the enrollments in the Canadian Co-infection Cohort

study. The third manuscript aims to further validate the proposed recruitment model on

data from randomized trials and offer a practical guide for its use. One of the main hurdles

to the adoption of statistical models to forecast enrollments in practice lies in the difficulty

of their implementation. In this manuscript, I outline how to implement the time-dependent

PG model to predict the recruitment process via the newly developed tPG R package. The

model is further validated on the recruitment data from two HIV trials.
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Abrégé

Les essais cliniques randomisés sont d’une importance capitale dans la recherche médicale et

sont notamment utiles à la compréhension des relations causales, car la randomisation élim-

ine les facteurs de confusion. Avec le développement de nouvelles planifications et l’utilisation

plus courante d’études multicentriques, les essais cliniques deviennent de plus en plus com-

plexes et leur coût augmente tous les ans, depuis une vingtaine d’années. Cependant, de

nombreux essais cliniques échouent, peut-être en raison d’une mauvaise planification (sous-

estimation de la taille d’échantillon nécessaire) ou de l’incapacité à atteindre leurs objectifs

de recrutement. Cette thèse examine certains aspects de ces défis de planification et de

suivi, en développant de nouvelles approches bayésiennes au calcul de taille d’échantillon

pour un plan à randomisation en plusieurs étapes et pour le suivi du recrutement dans le

cadre d’études multicentriques. L’essai randomisé séquentiel à assignations multiples

(« SMART ») est un nouveau type d’essai clinique qui s’est imposé dans le domaine en

plein essor qu’est la médecine de précision. Dans ce cas, les patients sont randomisés à

deux ou plusieurs étapes clés du traitement, selon un petit ensemble de caractéristiques

ou de réponses à des interventions passées. Cette structure permet le développement et la

comparaison de stratégies de traitement adaptatives. La plupart des analyses primaires ef-

fectuées sur les SMART sont basées sur la comparaison de deux moyennes ou deux stratégies;

et bien que les formules fréquentistes de tailles d’échantillon soient similaires aux habituels

essais contrôlés randomisés (ECR), leur estimation nécessite des hypothèses supplémentaires.

Dans le premier manuscrit, je développe une méthodologie bayésienne de calcul de tailles

d’échantillon plus robuste en adaptant l’approche des ‘deux distributions a priori’ au plan

SMART. L’inclusion de composantes de la variance, ainsi que leur incertitude, estimées à

partir d’études pilotes, résulte en une méthodologie basée sur moins d’hypothèses, qui est

plus robuste à une mauvaise spécification du modèle, et qui permet d’incorporer des con-

naissances préalables. L’efficacité de cette approche est comparée aux formules fréquentistes

dans une étude par simulations. Ses propriétés sont aussi démontrées dans une étude de cas
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où j’utilise les données d’un projet pilote SMART pour estimer la taille d’échantillon de sa

version à grande échelle. Dans le second manuscrit, mon intérêt passe de la phase de planifi-

cation à celle de suivi. Je développe une nouvelle approche de prévision des recrutements aux

études multicentriques, applicable aux études de cohorte et aux essais cliniques. La prévi-

sion des recrutements est un sujet en croissance, mais la plupart des modèles utilisés dans la

pratique sont déterministes ou reposent sur des hypothèses souvent irréalistes (par ex : une

intensité de recrutement constante au fil du temps). Dans ce dernier cas, la méthodologie

la plus commune est le modèle Poisson-Gamma (PG). Je développe cette méthode en per-

mettant aux taux de recrutement d’évoluer dans le temps après l’ouverture des centres de

recrutement, et jusqu’à un point de stabilisation. Je montre la précision de cette approche

par rapport au modèle PG standard dans une étude par simulations, ainsi qu’en prévoyant le

recrutement à l’étude Canadian Co-infection Cohort. Le troisième manuscrit vise à valider

davantage le modèle de recrutement proposé sur des données provenant d’essais randomisés

et à offrir un guide pratique pour son utilisation. En pratique, l’un des principaux obstacles

à l’adoption de modèles statistiques pour la prévision des recrutements réside dans la diffi-

culté de leur mise en œuvre. Dans ce manuscrit, j’explique comment utiliser le modèle PG

temporel pour prédire le processus de recrutement via la nouvelle librairie R tPG. Le modèle

est en outre validé sur les données de recrutement de deux essais cliniques sur le VIH.
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Chapter 1

Introduction

Randomized controlled trials (RCTs) are widely considered the gold standard for the evalu-

ation and comparison of the efficacy of treatments [Heindel et al., 2022]. The randomization

process and prospective data collection remove most sources of bias that affect observational

studies. The random allocation of treatments in a well-designed RCT eliminates confound-

ing bias by balancing the measured and unmeasured risk factors across treatment groups,

allowing researchers to draw causal conclusions from the outcomes of the study [Hariton and

Locascio, 2018]. RCTs can, however, be highly time-consuming and expensive. With new

complex designs being developed and the increasing propensity to conduct trials in multi-

ple centers across various countries, the cost of conducting a study from protocol approval

to trial report has been steadily growing over the last two decades [Gresham et al., 2020].

Nonetheless, many clinical trials fail to achieve their primary goal of finding a statistically

significant clinically meaningful difference between randomization arms. In part, this is a

natural consequence of the clinical equipoise that is necessary for the ethical conduct of clin-

ical trials [Freedman, 1987]. However, a significant number of trials are discontinued because

of poor recruitment, or they fail to show a significant result because of an inadequate sample

size based on flawed assumptions. These are intertwined, long-standing issues in clinical
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trial conduct that pose ethical concerns regarding the depletion of research resources and

patient involvement, as the study participants generally expect that the trial will lead to a

societal benefit via the information gained from the study [Fogel, 2018]. This thesis deals

with the development of novel statistical tools to aid the planning and monitoring phases of

clinical studies within the Bayesian framework, introducing approaches for the sample size

determination of an emerging multi-stage trial design and the forecasting of recruitments to

monitor accrual in multicenter studies.

One of the most promising trial designs that has emerged in the precision medicine field

is the sequential multiple assignment randomized trial (SMART) design [Murphy, 2005b].

Within the precision medicine clinical model, decisions regarding the treatment of indi-

vidual subjects are tailored to their characteristics, shifting the focus from the traditional

‘one size fits all’ approach to a more personalized model [Wallace and Moodie, 2014]. The

SMART design is based on multiple stages, each representing a clinical decision point: at

each stage, the study participants are randomized to the available treatments according to a

small set of characteristics, including their response to previous interventions. This adaptive

structure, combined with the sequential randomization, allows the trialist to develop and

compare treatment strategies, properly known as adaptive treatment strategies (ATSs) or

dynamic treatment regimes (DTRs) [Lavori et al., 2000, Murphy et al., 2001]. An adaptive

treatment strategy is a sequence of decision rules that inform the clinician regarding the

assignment of interventions for the patient concerned, mirroring what is observed in clinical

practice. In fact, clinicians often need to choose the next intervention to be assigned to a

patient based on their conditions and response to previous treatments, generating treatment

paths that are not pre-determined. The SMART design allows formal comparisons of these

covariate-adapted strategies in an experimental setting. While the number of SMARTs has

been growing in recent years, some operating characteristics are not yet well understood.

For instance, the sample size determination for the comparison of two strategies embedded

in a SMART has been mainly analyzed in the frequentist setting, often overlooking the plau-
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sibility and uncertainty around the additional assumptions and key parameters that need

to be posited with respect to a traditional RCT, potentially leading to underpowered stud-

ies. In the first manuscript, I extend the frequentist sample size methodology developed in

Oetting et al. [2011] for continuous outcomes to the Bayesian framework via the ‘two priors’

approach [Wang et al., 2002, Sahu and Smith, 2006]. With respect to the frequentist cal-

culations, the resulting methodology relies on fewer assumptions, accounts for uncertainty

around the design parameters, and allows for the incorporation of pre-trial knowledge. The

approach is validated in a thorough simulation study and is implemented to size a full-scale

SMART, namely the Internet-Based Adaptive Stress Management SMART, using data from

its completed pilot study.

In the second and third manuscripts, I focus on the monitoring phase of multicenter clinical

studies. Forecasting recruitments is a topic with significant practical and financial impli-

cations. However, notwithstanding a large body of literature stressing the inadequacy of

deterministic models based on the study investigators’ expectations to predict enrollments,

they are still widely used in practice [Anisimov, 2008, Gkioni et al., 2020]. This approach

ignores relevant sources of variability and underestimates the required time to achieve the

targeted sample size, as investigators are known to assume overly optimistic recruitment

rates. Several approaches to forecast recruitments in multicenter clinical trials have been

introduced throughout the years. Notably, Anisimov and Fedorov [2007a, 2007b] proposed

the doubly-stochastic Poisson-Gamma (PG) recruitment model. According to this method,

participants are enrolled by the various recruitment centers as a Poisson process whose rate

parameter originates from a common Gamma distribution. One relevant limitation of this

approach is the underlying assumption that recruitment rates remain constant over time,

which is often not met in real clinical studies. Additionally, while this model is one of the

most popular in the field, its implementation in practice by investigators and statisticians,

along with other methodologies, remains scarce [Gkioni et al., 2020].
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In the second manuscript, I developed a time-dependent extension of the Poisson-Gamma

model which allows the recruitment rates to vary with time following their opening until a

plateau or stabilization point. The non-constant section of the recruitment phase is modeled

via B-splines to ensure flexibility and capture a wide range of recruitment progressions. The

model is validated and compared to the standard Poisson-Gamma model in a simulation

study for different shapes of the recruitment curve, including the setting where the constant-

rate assumption of the standard PG model is met. The accuracy of the proposed recruitment

model is validated in a case study by forecasting the enrollments in the Canadian Co-infection

Cohort study, an ongoing prospective observational study that encompasses 19 recruitment

sites across Canada [Klein et al., 2010].

In the third manuscript, I further validated the time-dependent PG model on the recruit-

ment data from two HIV trials conducted in multiple Sub-Saharan countries to illustrate the

applicability of this approach in randomized controlled trials. Additionally, the manuscript

includes a step-by-step tutorial on the newly developed tPG R package that implements

the functions necessary to estimate, predict, and visualize the recruitment process via the

time-dependent PG model, hoping to facilitate the practical implementation of this method-

ology.

This thesis is manuscript-based and is structured as follows: in Chapter 2, I review the

literature of the methodological work that is at the basis of the manuscripts. Chapters 3, 4,

and 5 include the three stand-alone manuscripts that represent the core of this thesis, each

preceded by a preamble that details the original contributions of each chapter. Chapter 3

was published in Biometrics. Chapter 4 was recently published in Statistics in Medicine.

Chapter 5 will be submitted to a statistical journal soon after the submission of this thesis.

Finally, Chapter 6 offers a comprehensive summary of the work developed in this thesis, as

well as a discussion of the limitations and possible avenues for future work.
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Chapter 2

Literature review

This chapter examines the literature that serves as the foundation of the three manuscripts

presented in this thesis, and is divided into four main sections. Section 2.1 offers an introduc-

tion to adaptive treatment strategies and the SMART design. In Section 2.2, we discuss the

challenges in sizing a SMART study, and review the methodologies that have been proposed

for estimating the sample size and their limitations. In Section 2.3, we give a brief overview

of the sample size determination from a Bayesian perspective with a particular focus on the

‘two priors approach’. Finally, in Section 2.4, we review the existing methods developed to

forecast recruitments in clinical trials and their limitations. Please note that in order to use

the same notation as that used in the manuscripts, there are slight inconsistencies between

the notation used in Sections 2.1-2.3 and Section 2.4. Where these occur, they are explicitly

noted to avoid confusion.

2.1 Adaptive treatment strategies and SMARTs

While the majority of randomized controlled trials (RCTs) seek to compare individual treat-

ments or fixed sequences of interventions, in practice, clinicians often need to make decisions
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on treatment assignments based on the patients’ evolving conditions and their history. This

is particularly relevant in the treatment of conditions that require a series of interventions,

such as chronic diseases, where the clinician has to adapt their approach depending on the

patient’s time-varying covariates, including their response to previous treatments. This ap-

proach generates adaptive sequences of treatments or strategies which, in contrast to most

trial designs, are not pre-determined at study start. In observational studies, the estima-

tion of the optimal treatment strategy received some initial attention in Lavori et al. [1994]

and Robins [1997], and then its theory was further explored in following publications [La-

vori et al., 2000, Murphy et al., 2001, Murphy, 2003, Robins, 2004]. Formally, an adaptive

treatment strategy (ATS), also known as dynamic treatment regime (DTR), is a sequence

of decision rules regarding the treatment allocation over time. At each decision point, the

decision rule takes the subject’s time-varying covariates (including previous treatment allo-

cations) as inputs and outputs the next treatment to be assigned. The estimation of the

optimal adaptive treatment strategy is a topic that has been extensively studied in obser-

vational studies. Some of the methodologies that have been developed for this task include

G-estimation [Robins, 2004], Q-learning [Murphy, 2005a, Moodie et al., 2012, Chakraborty

and Murphy, 2014], dynamic weighted ordinary least squares [Wallace and Moodie, 2015],

and Bayesian machine learning [Murray et al., 2018]. However, the scope of this thesis lies

in the experimental context.

Lavori and Dawson [1998] highlighted the need for a statistical framework in the devel-

opment and comparison of treatment strategies in an experimental setting and reviewed

contemporary study designs deployed for these tasks. The authors later introduced a class

of randomized designs called ‘biased coin adaptive within-subject’ (BCAWS) designs [Lavori

and Dawson, 2000]. Within this design class, the patient’s current condition and response to

previous interventions influence the randomization probability to future treatments, so that

the treatment patterns are closer to those observed in observational data than in designs

that entail a randomization to fixed sequences of treatments. Building on this work, the
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sequential multiple assignment randomized trial (SMART) design was developed [Murphy,

2005b], and it is currently considered the gold standard trial design for the comparison of

ATSs. SMARTs are multi-stage trials where each stage represents a clinical decision point:

at each stage, patients are randomized accounting for a small set of characteristics which

typically includes their response to previous interventions. Because of their flexibility, vari-

ous SMARTs can be defined varying the number of stages and treatments available at each

stage [Lei et al., 2012]. Figure 2.1 displays two common two-stage SMART designs. Patients

are randomized to two first stage interventions and their status is assessed. In the design

on the left, subjects who respond to the first treatment continue with the same intervention

and non-responders are re-randomized to two second stage treatments, whereas in the design

on the right, both responders and non-responders are re-randomized. Note that the second

stage treatments for non-responders to different first stage interventions do not need to be

different. For example, in the design on the left panel of Figure 2.1, {c, d} can, but need

not, equal {e, f}. The same is true for responders to different first stage treatments in the

design on the right panel: {c, d} may or may not equal {g, h}.

Figure 2.1: Common two-stage SMART designs. The design on the left employs the ‘play
the winner’ approach, whereas the design on the right entails a second randomization for
responders to the first stage intervention as well.

Even in the more parsimonious design on the left of Figure 2.1, the SMART design embeds
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six sequences of treatments (numbered from 1 to 6) and four adaptive treatment strategies of

the form ‘assign treatment a and, if the subject responds, continue with a, otherwise switch

to treatment c’. If responders are re-randomized as well (design on the right), the number

of embedded treatment sequences and ATSs each increases to eight, and if a third stage is

added, the complexity of the trial increases exponentially. While this highlights the added

complexity of a SMART design compared to a standard RCT, the sequential randomization

feature of SMARTs and its adaptive structure make them more efficient and effective than

other experimental designs that might appear operationally similar, such as multi-arm RCTs

where subjects are randomized to fixed sequences of treatments, crossover trials, or factorial

trials with a delayed second randomization [Wallace et al., 2016, Heindel et al., 2022]. In

fact, while these designs entail the assignment of multiple treatments per patient, not all

of them allow for the detection of interactions between treatments (e.g., because of the

presence of a wash-out period), and none of them includes an adaptive component. An

alternative option consists in stringing together a series of standard RCTs. For example,

once an RCT is concluded, additional trials might be conducted for non-responders. Not

only is this course of action inefficient, but it might also lead to missing relevant synergistic

or delayed effects in a sequence of treatments and to deleterious cohort effects, as subjects

who remain in a standard RCT may differ from participants in a SMART study due to, for

example, the additional alternatives given to non-responders in a SMART [Murphy et al.,

2007]. However, an interesting new design that seeks to incorporate subjects from previous

RCTs into a SMART study has been introduced in Liu et al. [2017]. For a more in-depth

discussion on the advantages and differences of SMARTs compared to other experimental

designs, see Murphy et al. [2007], Lei et al. [2012], Wallace et al. [2016], and Heindel et al.

[2022].

Throughout this thesis, we will mainly focus on the design on the left depicted in Figure 2.1,

as the two-stage design with the ‘play the winner’ approach where responders to the first stage

interventions continue with the same treatment is the most common and of greater interest
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for researchers, especially in the field of mental health research [Oetting et al., 2011], where

ATSs are commonly sought. Bigirumurame et al. [2022] conducted a systematic review of

full-scale SMARTs to evaluate the quality of reporting. Twelve studies were included (along

with protocols and methodological papers that did not consider real trials). Of these 12

trials,

• eight studies followed a standard SMART design; among these

– five followed the same design as that depicted in Figure 2.1 (left);

– two had a slightly more complex design but still implemented the ‘play the winner’

strategy;

– one study did not make clear how the randomization of the second stage treat-

ments depended on the intermediate outcome;

• four studies were multi-stage trials that mostly preceded the popularization of SMARTs;

of these, two followed the ‘play the winner’ strategy.

Similar results were found in the systematic review by Lorenzoni et al. [2023] of SMARTs

conducted in oncology. The article included 19 multi-stage trials for which reports of trial’s

results or protocols were published. While some trials preceded the introduction of SMARTs

or were not defined as such in the study design, 17 trials entailed a second randomization only

for one subgroup of participants based on the outcomes of the first stage intervention. The

‘play the winner’ terminology might be misleading in this case, as some trials re-randomized

only the patients who showed progress. All trials had two stages.

SMARTs have been implemented in a wide range of fields. Because of their adaptive na-

ture, they are particularly useful in the management of chronic conditions [Chakraborty

and Moodie, 2013]. They have been deployed for the management of schizophrenia [Stroup

et al., 2003], autism [Kasari et al., 2014], ADHD [Pelham Jr et al., 2016], alcohol dependence

[Nahum-Shani et al., 2017], and depression [McCusker et al., 2021], among others. SMARTs
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have also been implemented in oncology [Kidwell, 2014, Lorenzoni et al., 2023], especially

in the treatment of prostate cancer [Wang et al., 2012] or to improve symptom management

[Auyeung et al., 2009, Kelleher et al., 2017, Sikorskii et al., 2017]. Additional examples are

substance abuse [Murphy et al., 2007], weight loss [Almirall et al., 2014], tobacco cessation

[Fu et al., 2017], cannabis use disorder [Stanger et al., 2020], and infectious diseases [Wang

and Chakraborty, 2023]. However, although the number of SMARTs is increasing, it remains

a novel trial design that, from a statistical perspective, entails unique challenges that are

still under investigation. Shortreed et al. [2014] identified five specific challenges in apply-

ing imputation methods to SMARTs. These are mainly due to the fact that the timing

and number of randomizations are heterogeneous across patients and can depend on their

evolving conditions. The authors proposed an ad-hoc time-ordered nested conditional impu-

tation model to tackle these difficulties, but they also highlighted that further work is needed

to assess and eventually alleviate some working assumptions. He et al. [2022] pointed out

how the missclassification of responders to the first stage intervention leads to inappropriate

treatment assignments and can have an impact on the power of the study. Other areas being

investigated include adaptive randomization [Cheung et al., 2015, Morciano and Moerbeek,

2021, Wang et al., 2022] and interim monitoring [Manschot et al., 2022, Wu et al., 2023]. In

the next section, we discuss some complexities that emerge in the sample size calculations

for SMARTs and the existing methodologies.

2.2 Sample size estimation for SMARTs

Since the SMART design embeds multiple treatment sequences and strategies, the sample

size determination depends on the definition of the primary research question. There are

multiple research questions that can be addressed in a SMART, either as the primary or

secondary analysis. The most common are

1. Which is the best initial treatment?
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2. Which is the best secondary treatment among non-responders to the first intervention?

3. Which is the best adaptive treatment strategy between two regimes that start with a

different initial treatment?

4. Which is the overall best adaptive treatment strategy?

Research questions 1-3 are the most common for sizing a SMART, whereas the estimation

of the overall embedded treatment strategy is mostly addressed as a secondary analysis in a

more hypothesis generating fashion [Almirall et al., 2014]. Oetting et al. [2011] laid out the

standard frequentist sample size formulae for continuous outcomes for each of these research

questions.

In the next section, we examine these sample size derivations with particular focus on the

third research question for continuous outcomes, as it is the topic of the first manuscript. If

the final outcome of a SMART is binary, the Normal approximation can be used. Kidwell

et al. [2018] derived ad-hoc sample size calculations for the third research question with

binary outcomes. Several methodologies have also been developed to accommodate different

types of outcome, such as longitudinal [Seewald et al., 2020, Dziak et al., 2021], cluster-level

[NeCamp et al., 2017], and survival outcomes [Li and Murphy, 2011].

2.2.1 Research questions 1-3

The first and second research questions do not entail the comparison of treatment strategies.

In particular, the sample size formula for the first research question is identical to that

of a standard two-arm RCT where patients are pooled according to the first intervention.

Taking the design on the left of Figure 2.1 as an example, the first research question entails

the contrast in final outcomes of the patients who received treatment sequences 1-3 against

those who received sequences 4-6. Let us indicate with Aj the treatment assigned at stage

j and with Y the final outcome. In a one-sided hypothesis test with power 1 − β, type I

error α, and 1:1 randomization to the available treatments, the sample size required to test
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whether treatment a is a superior initial intervention than b is

n1 =
2(z1−β − zα)

2

δ2
, δ =

E(Y |A1 = a)− E(Y |A1 = b)√︂
V ar(Y |A1=a)+V ar(Y |A1=b)

2

where zα indicates the quantile of the standard Normal distribution of level α. On the

other hand, the second research question is of greater interest if the available second stage

treatments for non-responders are the same, i.e., e = c and f = d in the left design depicted in

Figure 2.1. Indicating with R the response indicator to the first treatment (1 for responders

and 0 for non-responders), and assuming that the probability of response p to the first stage

interventions is the same, that is, p = Pr(R = 1|A1 = a) = Pr(R = 1|A1 = b), the sample

size requirement for a one-sided test is

n2 =
2(z1−β − zα)

2

(1− p)δ2
, δ =

E(Y |R = 0, A2 = c)− E(Y |R = 0, A2 = d)√︂
V ar(Y |R=0,A2=c)+V ar(Y |R=0,A2=d)

2

.

The sample size above is equivalent to that of a standard RCT where the patients’ out-

comes are pooled according to the appropriate sequence of treatments received (2 and 5

against 3 and 6 in Figure 2.1) and scaled by the probability of non-response to the first

intervention.

Likewise, the sample size formula for the third research question can be reduced to a similar

expression. To compare the ATS ‘assign a and, if there is no response, switch to c’ against

‘assign b and, if there is no response, switch to e’, the required sample size is

n3 =
2(z1−β − zα)

2

δ2
4[2(1− p) + p], δ =

E(Y |A1 = a,A2 = c)− E(Y |A1 = b, A2 = e)√︂
V ar(Y |A1=a,A2=c)+V ar(Y |A1=b,A2=e)

2

.

However, in addition to assuming the balanced allocation to the available treatments at
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each stage and the equal response rate to the initial treatments, this estimation relies on

an assumption regarding the variance of the strategy outcomes that is difficult to test and

prone to misspecification. More specifically, this assumption states that “the variability of

the outcome around the strategy mean among either responders or non-responders is no

more than the variance of the strategy mean”. This assumption is expressed in mathemati-

cal terms in Equation 3.1. While the assumption of equal response rates can be avoided by

either specifying the most conservative rate or fixing it to 1 (albeit generating a potentially

overly conservative sample size), the variance assumption is necessary to achieve a formula

that can be expressed in terms of the standardized mean difference (SMD). That is, the

variance assumption allows the trialist to avoid specifying parameters that are likely poorly

understood, such as the variance of the estimated strategy means. In the first manuscript,

we build on this work to derive a methodology for sample size estimation to address the

third research question that does not rely on either assumption. Both Oetting et al. [2011]

and our approach rely on the estimation of the strategy mean via semiparametric marginal

mean (MM) models [Murphy et al., 2001, Murphy, 2005b]. Dawson and Lavori [2010, 2012]

argued that the MM variance estimator might be upwardly biased and lead to conservative

sample size estimates. The authors derived an alternative sample size approach for SMARTs

which relies on a different estimator based on maximum likelihood that they deemed more

efficient. With respect to the derivations in Oetting et al. [2011], this approach has the

advantages of not requiring the specification of the response rates to the initial treatments

and allowing the comparison of strategies that start with the same initial treatment, but a

similar assumption on the variance components is required, and this formulation also neces-

sitates the specification of a variance inflation factor which might be difficult to elicit at the

design stage of the trial. Another alternative approach was introduced in Ogbagaber et al.

[2016]. The authors derived two sample size methodologies that allow for multiple pairwise

comparisons between ATSs and the overall testing for the equality of all treatment strategies

embedded in the SMART study. Their approach relies on the specification of the outcome
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means and variances of the treatment sequences embedded in the treatment strategies un-

der investigation. The authors argue that while the number of unknown parameters to be

specified is higher with respect to the methodology proposed by Dawson and Lavori [2010,

2012], information on the sequence of treatments is easier to obtain from observational data

or non-SMART trials compared to the more complex variance inflation factor, and the elic-

itation of these quantities might be more reasonable than the assumption of equal response

rates to the first stage interventions necessary for the calculations by Oetting et al. [2011].

However, it remains uncertain whether estimates from non-SMART trials can be confidently

borrowed given the design differences that make SMARTs unique, and the authors also note

that their methodology is more focused on multiple pairwise comparisons.

2.2.2 Research question 4 and other methodologies

The detection of the overall best embedded treatment strategy in a SMART is generally

addressed as a secondary analysis. However, several methodologies have been introduced

to size a SMART study for this task. Oetting et al. [2011] proposed a simulation-based

algorithm that determines the sample size that allows the detection of the treatment strategy

that results in the highest mean outcome with a desired probability. Ertefaie et al. [2016]

adapted the ‘multiple comparisons with the best’ (MCB) methodology to determine the

sample size required to estimate a set of ATSs that contains the best adaptive treatment

strategy with a pre-specified probability. This work was further developed by Artman and

co-authors [2020, 2022]. Rose et al. [2019] proposed two sample size approaches for the

estimation of the optimal strategy with different degrees of modeling assumptions: one

method relies on strong assumptions regarding the underlying data generating mechanism,

whereas the second is based on bootstrap oversampling and relies on weaker assumptions

and the availability of data from a SMART pilot.

Finally, the sample size methodologies discussed thus far concern the full-scale trial, but

specific calculations are needed to size a pilot SMART. Typically, the primary aim of a pilot
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study is to evaluate the feasibility of conducting a full-scale trial. In a SMART study, given

the sequential randomization and its dependence on intermediate responses, the number

of subjects observed in each sequence of treatments is a random variable. To assess the

feasibility of the trial, it is crucial to observe enough subjects in each subgroup. Hence the

most common approach to sizing a pilot SMART is to estimate the minimum number of

participants which ensures that a sufficient number of subjects is observed in each treatment

sequence with a pre-specified probability [Almirall et al., 2012, Kim, 2016]. A precision-

based alternative approach has been proposed by Yan et al. [2021], where the sample size

is selected with the aim of estimating the marginal mean outcome of a treatment strategy

within a pre-specified margin of error.

2.3 Bayesian sample size determination

Given the pre-experimental nature of the problem of determining the sample size of a clinical

study, it is easy to see why a Bayesian approach can be attractive to statisticians. Even in a

frequentist setting, one must make sharp assumptions regarding the effect of treatment based

on current knowledge – i.e., a specific, single value must be posited, maybe derived from

previous studies, whilst being in a setting where prior knowledge may be limited allowing for

the equipoise that is essential for the ethical conduct of a trial. The Bayesian framework offers

the tools and a streamlined course of action to incorporate such knowledge as well as the

degree of confidence that we attribute to it through the elicitation of prior distributions.

2.3.1 A brief overview

The literature on Bayesian sample size determination in randomized controlled trials is vast,

but it can be classified according to two schools of thought depending on whether the ex-

periment is seen as a decision or an inference problem [Adcock, 1997, Spiegelhalter et al.,

2004]. The decision-theory approach requires the definition of a utility function that lever-
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ages several factors, e.g., the cost of conducting a study and the benefits of the treatment

under investigation, and the sample size that maximizes the expected utility is selected.

On the other hand, in inference-based methods, also called performance-based [Wang et al.,

2002, Brutti et al., 2014] or proper Bayesian [Spiegelhalter et al., 2004], the sample size is

determined based on the inferential performance of a functional of the posterior distribu-

tion of the parameter of interest. In practice, the decision-theory approach has received less

attention, as the definition of a utility function is complex and requires assumptions that

make the methodology unrealistic for some types of trials [Spiegelhalter et al., 2004]. While

it can be argued that the performance-based methods can be derived as special cases of

decision-theory methods, the debate between the two schools of thought is fiery and outside

of the scope of this thesis. For more information on the differences between approaches, see

Lindley [1997], Joseph and Wolfson [1997], Adcock [1997], Pezeshk [2003].

Several performance-based approaches have been developed which differ in regard to the

choice of the functional of the posterior distribution of the parameter of interest. For example,

the average coverage criterion [Adcock, 1988], average length criterion [Joseph and Belisle,

1997], and worst outcome criterion [Joseph and Belisle, 1997] seek to control the properties

of the credible interval of the parameter of interest in terms of coverage and/or length. The

average posterior variance criterion aims to select the sample size which limits the posterior

variance within an upper bound with a pre-specified probability Wang et al. [2002]. For

a more detailed review of these and other methods, see Pezeshk [2003], Cao et al. [2009],

Brutti et al. [2014]. Our interest is in the power criteria, which is the only method among

those mentioned thus far with a frequentist counterpart.

Let us indicate with θ the parameter of interest of the study, with π0(θ) its prior distribution

(analysis prior), and consider the system of hypotheses

⎧⎪⎨⎪⎩ H0 : θ ∈ Θ0,

H1 : θ ∈ Θ1.
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We utilize the definition of Bayesian significance and power given in Spiegelhalter et al.

[2004]. A result is considered significant if the posterior probability that θ belongs to the

alternative hypothesis space Θ1 is not inferior to a pre-specified threshold 1− ϵ, i.e.,

Prπ(·|Data)(θ ∈ Θ1) ≥ 1− ϵ, ϵ ∈ (0, 1).

The Bayesian power function is defined as the probability of obtaining a significant result

under the probability measure associated with the sampling distribution of the random result

of the experiment conditioning on a design value θd ∈ Θ1, that is,

η(n) = Prf(·|θd)
{︁
Prπ(·|Data)(θ ∈ Θ1) ≥ 1− ϵ

}︁
. (2.1)

2.3.2 The ‘two priors’ approach

In order to compute the Bayesian power function 2.1, one should make a sharp assumption

on the value of the design parameter θd under the alternative hypothesis, and the sample size

is selected as the minimum value of n which results in a power level greater than a specified

threshold. This is equivalent to selecting a treatment effect or standardized mean difference

under the alternative hypothesis in frequentist sample size determination. However, this

approach leads the power analysis to depend critically on a single value, an issue known in

Bayesian literature as local optimality [Brutti et al., 2008]. The Bayesian framework offers a

straightforward path to alleviate this dependence on the availability of unrealistically precise

information via the elicitation of a second prior distribution πd(θ) on the design parameter,

called the design prior. Note that the analysis prior π0 and the design prior πd have different

roles and do not need to coincide. The analysis prior is the ‘classical’ prior distribution used

in Bayesian inference for the analysis stage. It can incorporate pre-trial knowledge or it

can be non-informative. Conversely, the design prior formalizes the uncertainty around the
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design parameter that is used to power the study. It follows that πd must be informative and

most of its mass has to lie in the alternative hypothesis space. By averaging the conditional

sampling distribution of the random result Vn of the experiment over the design prior, the

Bayesian power function becomes

η(n) = Prmd(·)
{︁
Prπ(·|Data)(θ ∈ Θ1) ≥ 1− ϵ

}︁
,

md(vn) =

∫︂
Θ

f(vn|θ)πd(θ)dθ.

This methodology is known as the ‘two priors’ approach. According to a review by Brutti

et al. [2014], the idea of separate prior distributions for the design and analysis stages of an

experiment was first postulated by Tsutakawa [1972] and further discussed and popularized

by Wang et al. [2002]. This concept was then elaborated into the ‘two priors’ approach in

following publications [Sahu and Smith, 2006, De Santis, 2006, Brutti et al., 2014, Sambucini,

2017].

Note that if the analysis prior is non-informative and a point-mass distribution is chosen for

the design prior, the Bayesian and frequentist power functions coincide. For a more in-depth

discussion of the relationship between frequentist and Bayesian sample size determination,

see Inoue et al. [2005]. Additionally, even if a Bayesian approach is used to determine the

sample size of a study, the final analysis stage can still be entirely frequentist. The class of

approaches that employ this strategy is called ‘hybrid frequentist-Bayesian’. For a review of

these methods, see Kunzmann et al. [2021].

2.4 Recruitment forecasting in multicenter studies

Forecasting recruitments is a fundamental tool in the planning and monitoring stages of

multicenter clinical studies, as it drives decisions with significant practical and financial

consequences. Although the number of clinical studies and their associated costs have been
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rising year on year for at least the past two decades [Martin et al., 2017, Gresham et al.,

2020], the successful recruitment of the target number of participants within the planned

timeline has remained a long-standing issue [Bieganek et al., 2022]. A considerable number

of studies fails to reach the target sample size, which generally leads to the extension of the

recruitment period, revising the sample size, the opening of new recruitment centers, or the

discontinuation of the study. After interviewing investigators from 78 primary care research

studies conducted in the Netherlands between 1999 and 2003, van der Wouden et al. [2007]

noted that more than half (51%) failed to recruit the targeted sample size within the planned

timeline and had to extend the fieldwork period. Similar results were found by Walters et al.

[2017] and Jacques et al. [2022] in their respective reviews of publicly funded randomized

clinical trials conducted in the United Kingdom. The former analyzed 151 randomized

clinical trials conducted between 2004 and 2016, concluding that 66 (44%) did not achieve

the original sample size, while the latter reached a similar number (47%) after reviewing 388

RCTs conducted between 1997 and 2020.

While reducing the sample size results in a decrease of power and extending the recruitment

period may lead to a significant financial loss, discontinuing a clinical study also raises ethical

concerns over the waste of often scarce research resources, especially if the results remain

unreported. Kasenda et al. [2014] reviewed 1017 RCTs conducted in Switzerland, Germany,

and Canada focusing on trial discontinuation and its causes. The authors found that study

discontinuation due to reasons other than early apparent benefit is one of the main factors

for the non-publication of the results, with poor recruitment being cited as the leading cause

of trial discontinuation.

Yet, despite a growing body of literature on this topic, deterministic approaches based on

the study investigators’ expectations are still widely used in practice. In addition to ignoring

significant sources of variability that a slightly more rigorous statistical model would address,

the investigators’ forecastings on recruitment rates are known to be overly optimistic. On

one hand, investigators tend to overestimate the number of participants who meet the inclu-
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sion criteria and are willing to enroll in the study. This phenomenon takes the name of the

Lasagna Law [Lasagna, 1979] and, in the 40 years since its postulation, it has mostly been

shown to hold [van der Wouden et al., 2007, Bogin, 2022]. On the other hand, external pres-

sure from stakeholders can lead the investigator to knowingly suggest higher than realistic

recruitment rates in the planning phases in order to make the trial more appealing to the

funder. Gkioni et al. [2020] recently surveyed chief investigators and statisticians involved in

the planning and monitoring phase of the recruitment stage of studies conducted in Europe

and the UK. Of the 23 investigators who responded, nine admitted that the pressure of mak-

ing the study more attractive to the funder had an impact on the recruitment rates that were

used for predicting enrollments. Furthermore, a staggering 90% of the surveyed statisticians

(62/69) stated that they did not use any statistical model to forecast recruitment, and 41%

were not aware of any statistical approach to predicting enrollments. Among statisticians

who declared not using a statistical approach, the simplicity of a deterministic model, the

non-familiarity with either the available statistical methods or their implementation, and

doubts over the additional value of these methods were cited as the main reasons for not

using them.

2.4.1 The Poisson and Poisson-Gamma models

Lee [1983] was the first to introduce a formal statistical context for the forecasting of re-

cruitments. Indicating with λ the recruitment rate per time unit, the author proposed to

model the participant arrival as a Poisson random variable. Hence, indicating with N(tj, ti)

the number of participants enrolled between time tj and ti, it follows that

N(tj, ti) ∼ Poisson[λ(ti − tj)],

E[N(tj, ti)] = λ(ti − tj).

The author focused on the estimation of interim recruitment goals between the start and end
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of the enrollment period and the probability of achieving such goals at each planned interim

time. The average recruitment rate λ is assumed to be constant over time. In the planning

phase of the study, an expected rate has to be elicited, whereas at the interim times it is

estimated based on the observed enrollments, and the Normal approximation to the Poisson

distribution is used to make predictions. Soon after, Moussa [1984] laid out a computer

algorithm to implement this method. Senn [1998] and Carter [2004] further discussed the

use of a Poisson process to model recruitments, shifting the focus on the estimation of

the time required to reach the planned sample size and the probability of achieving this

target.

A significant limitation of these methods is the underlying assumption that the centers recruit

participants at the same fixed rate, which is typically not the case in practice. To solve this

issue, Anisimov and Fedorov [2007a, 2007b] proposed to add a second layer of variability

by viewing the recruitment rates as a sample from a Gamma distribution, introducing the

doubly-stochastic Poisson-Gamma (PG) recruitment model. Indicating with C the number

of centers and with ui the initiation date of center i, the participants’ arrival process to each

center at time t is assumed to follow a Poisson process with random rate λi(t) = I{t>ui}λi,

where I represents the indicator function and the rates λi’s are considered an independent

sample from a Gamma distribution with shape α and rate β. Therefore, the number of

participants recruited up to time t in center i, i.e., Ni(t), is a Poisson distributed with

cumulative rate Λi(t) = I{t>ui}(t− ui)λi. Given the independence between centers, the total

number of recruitments N(t) =
∑︁

C Ni(t) is still Poisson distributed. Hence, the PG model

can be represented as

N(t)|Λ(t) = Poisson[Λ(t)],

Λ(t) =
C∑︂
i=1

Λi(t) =
C∑︂
i=1

I{t>ui}(t− ui)λi,

λi ∼ Gamma(α, β).
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This is an empirical Bayes method. Once an interim time tint is reached, the accrued recruit-

ment data collected in [0, tint] is used to estimate the hyperparameters of the prior Gamma

distribution. This can be achieved by marginalizing the conditional distribution of Ni(t),

which leads to a Negative Binomial distribution, and the MLE estimates ˆ︁α and ˆ︁β of the hy-

perparameters are obtained from the resulting likelihood. These estimates are then plugged

into the posterior distribution of the cumulative rate, which can be represented as

˜︁Λ =
C∑︂
i=1

Gamma(ˆ︁α + ki, ˆ︁β + tint − ui),

where ki is the observed number of recruitments in center i up to the interim time. The au-

thors show that if the recruitment centers share the same initiation date, then the remaining

time to reach the targeted sample size is distributed as a Pearson type VI distribution. How-

ever, if the initiation dates are staggered, a closed form for this distribution is not achievable

and Monte Carlo simulations are needed. Alternatively, one could compute the marginal

expected value and variance of the additional number of participants recruited after the in-

terim time Na(t) and achieve a point estimate and its associated credible interval via the

Normal approximation for a grid of future time points. The credible intervals can then be

inverted to achieve prediction intervals for the remaining time to complete the enrollment

phase. This is quite straightforward, as the expected value and variance of future additional

enrollments at a later point in time T are easily calculated. Assuming, for simplicity, that

all the centers have started enrolling by the interim time, these quantities take the following

form:

E[Na(T )] = (T − tint)
C∑︂
i=1

α + ki
β + tint − ui

,

V ar[Na(T )] = (T − tint)
C∑︂
i=1

α + ki
β + tint − ui

+ (T − tint)
2

C∑︂
i=1

α + ki
(β + tint − ui)2

.

This method has been validated on data from several real clinical trials [Anisimov and
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Fedorov [2005], Anisimov and Fedorov [2007a], Anisimov [2009b], Zhang and Huang [2022]]

and expanded in numerous directions. Anisimov and co-authors augmented the model to

analyze the effects of the opening of new centers in an adaptive technique [Anisimov and

Fedorov, 2007a] and their closure [Anisimov, 2011a], or to account for recruitment pauses

in clinical trials with waiting time to response [Anisimov, 2011b]. In Anisimov [2011a], the

author also introduces metrics to evaluate the performance of specific centers or regions

and the effects of center-stratified randomization, which is further discussed in Anisimov

[2011c]. Mijoule et al. [2012] investigated the use of the Pareto distribution in place of

the Gamma distribution in a Pareto-Poisson model, concluding their study in favor of the

Poisson-Gamma model due to the small differences between models and the simplicity of

the PG method. The authors also conducted a sensitivity analysis to assess the impact of

errors in the estimation of hyperparameters and discussed the use of a Uniform distribution

to model unknown initiation times, which had already been briefly discussed in Anisimov

[2009a]. Minois et al. [2017b] modified the PG model to allow for breaks in the recruitment

process such as weekends or holidays using a piecewise constant rate, however the authors

concluded that the standard PG model still yielded better results. Anisimov et al. [2022]

augmented the PG approach to include several methods of increasing complexity to model

participants’ drop-out either upon arrival or during the screening period.

Finally, it is important to mention the work of Gajewski et al. [2008], where the authors

proposed a Bayesian method where the waiting times between the participants’ arrival are

modeled as an exponential random variable and an informative Inverse Gamma distribu-

tion is placed on its parameter. The authors focused on the planning phase rather than

the monitoring phase of the enrollment process, hence it is necessary to incorporate subjec-

tive knowledge from experts to elicit the parameters of the prior distribution. While this

methodology does not directly model the participants’ arrival as a Poisson process, assuming

an exponential distribution for the waiting times is equivalent. However, this model is only

applicable for trials with one center.
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Before moving on to the next section on time-dependent models, it is important to clarify

what is meant in this thesis by time dependence. Some of the authors referenced thus far

refer to their method as time-dependent, or to the Poisson process as non-homogeneous.

This is due to centers having staggered initiation times, as sites that have a delayed starting

date will have a recruitment rate of 0 until their openings. However, once they open, the

rates are assumed to be constant over time. In practice, this may be unlikely, particularly

when studies are recruiting from relatively small or fixed populations (e.g., eligibility criteria

include a diagnosis of a moderately rare disease) such that recruiting sites may exhaust the

pool of potential participants over time.

This assumption of a constant rate of recruitment once a center has opened is what the

methods that are presented in the next section seek to weaken. Throughout the rest of this

thesis, methodologies that do not rely on the constant-rate assumption are referred to as

time-dependent.

2.4.2 Time-dependent models

The constant-rate assumption is often unrealistic in practice, and several methods have been

introduced in recent years to alleviate this concern. Tang et al. [2012] proposed a discrete-

time Poisson process based approach whereby the overall recruitment rate varies with time

until an unknown time point estimated via a changepoint analysis, after which it stabilizes,

and then it increases towards the last phase of recruitment. This method mainly focuses on

the very last period of the recruitment phase, and further assumptions are needed on the

level of increased recruitments and the future point in time where such an increase will be

observed.

A more flexible model was introduced in Zhang and Long [2010]. The authors proposed a

Bayesian model where the overall trial accrual is captured via a non-homogeneous Poisson

process and the underlying time-dependent recruitment rate is modeled through cubic B-

splines. Once an interim time is reached, multiple models are fitted to the data varying the
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number of equally spaced knots of the cubic B-spline basis functions, and the best-fitting

model to be used for predictions is selected via the deviance information criterion. A poste-

rior distribution for the overall recruitment rate of the study at the interim time is estimated

and the prediction on future enrollments is carried out assuming that the rate will be con-

stant beyond that point. This methodology was also extended to allow for the prediction of

event times in Zhang and Long [2012]. Although this method is flexible in that it allows for

the non-parametric estimation of the overall recruitment rate, there is no guarantee that the

rate will be constant beyond the monitoring time. While the stabilization of the recruitment

intensity at some point is a common assumption, if predictions are carried out before such a

point is passed, they may be biased. The authors argue that since the recruitment intensity

generally increases with time at the early stages, a biased estimate would typically lead to un-

derestimating recruitments, which is a more acceptable risk compared to an overestimation.

Additionally, as the model proposed in Tang et al. [2012], this approach does not account for

heterogeneity between centers and does not directly take into account staggered initiation

times, both of which can have a substantial impact on the recruitment process, particularly

if the study is conducted in different regions/countries. Deng et al. [2017] alleviated this

concern by stratifying the estimation of the underlying recruitment rate by region.

A time-dependent model that relies on the Poisson-Gamma setting was introduced in Lan

et al. [2019]. The authors proposed a simulation-based approach where the recruitment

intensity is assumed to be constant in the initial stage following the center’s opening and

then it decays over time as a negative exponential. The authors augmented the model by

including a center initiation model to account for future unknown openings of new centers

and the optional inclusion of a final surge in enrollments similarly to Tang et al. [2012].

Urbas et al. [2022] further expanded this methodology by allowing for the fitting of different

parametric curves to capture the monotonic decay in the recruitment rates which are then

used for predictions via Bayesian model averaging. The authors also included a test for the

detection of time-inhomogeneity in the underlying recruitment intensity.
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2.4.3 Other methods

In Sections 2.4.1 and 2.4.2, we primarily focused on methods based on the Poisson process,

as they currently are the most popular and most frequently implemented by a large margin.

We did not discuss early deterministic models or methods based on Brownian motion, such

as those proposed in Lai et al. [2001] and Zhang and Lai [2011]. For a more schematic and

detailed comparison between some of the methods discussed so far and more, we refer the

reader to the systematic reviews by Barnard et al. [2010], Heitjan et al. [2015], and Gkioni

et al. [2019].

Furthermore, most of the methods presented in this section focus on the monitoring phase of

the recruitment stage, as they require data from the ongoing recruitment process to produce

forecastings. Although some of these methods can be adapted for use in the planning phase

of the study, they require further assumptions and/or modifications. For example, Zhang

and Long [2010] describe how their methodology can be adapted to be used before the start

of the enrollment period, however, doing so would require the assumption of a constant

recruitment rate and the elicitation of an informative prior distribution which captures the

confidence regarding the assumed rate, essentially making their time-dependent methodology

not too different from the use of a homogeneous Poisson process or the model from Gajewski

et al. [2008].

Anisimov [2008] suggested how the Poisson-Gamma model can be used in the planning

stage using the expected number of recruitments per region or historical data from similar

studies to tune the hyperparameters α and β. Bakhshi et al. [2013] and Minois et al.

[2017a] formalized this idea and developed two methods to incorporate prior information from

concluded trials. The first proposed the addition of a third level of hierarchy in the Poisson-

Gamma model to capture the between-trial variation. The authors outlined a random-

effects meta-analysis based approach whereby the orthogonally reparametrized parameters

of the Gamma distribution are estimated using data from a number of concluded trials.
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However, the authors concluded that while this method could be feasible, they were not able

to implement it in practice due to the excessive variability between centers, which raises

concerns over the unrealistic underlying exchangeability assumption between trials. For this

reason, Minois et al. [2017a] focused on the selection of only one historical trial that is as

close as possible to the new trial in terms of therapeutic area, inclusion/exclusion criteria,

regions, and participants’ characteristics. If enrollment data on such a trial are available,

then the hyperparameters of the Gamma distributions can be estimated from the centers

that are shared between the two studies and used to predict enrollments for these sites, while

additional assumptions are needed to forecast recruitments in the unshared centers.

For a more in-depth description of models that can be used in the planning phase of a study,

see the systematic review by Gkioni et al. [2019].

2.5 Summary

In this chapter, we have reviewed the literature that contextualizes the three manuscripts of

this thesis. We have discussed the advantages of the SMART design compared to other ex-

perimental designs and its challenges, especially in regard to sample size determination. We

have discussed the existing methodologies for sizing SMARTs and their assumptions, with

particular focus on the comparison between strategies that start with a different intervention.

We have given a brief overview of the Bayesian literature on sample size determination and

highlighted how the Bayesian framework allows for the incorporation of uncertainty around

unknown parameters at the pre-experimental stage. Finally, we have discussed the impor-

tance of developing and implementing statistical methodologies for forecasting recruitments

in clinical studies and reviewed the existing approaches.
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Chapter 3

Bayesian sample size calculations for

comparing two strategies in SMART

studies

Preamble to Manuscript 1. The sample size determination for comparing two adaptive

treatment strategies in a SMART study has mainly been analyzed in the frequentist setting.

Oetting et al. [2011] outlined the standard frequentist calculations for continuous outcomes

based on the semiparametric marginal mean model estimator of the strategy mean [Murphy,

2005b]. However, although the resulting formulae are similar to those of traditional RCTs,

they rely on additional assumptions and specifications.

This chapter aims to extend these calculations to the Bayesian framework in order to achieve

a more robust and flexible approach that relies on fewer assumptions. This chapter’s con-

tribution to original methodology consists of adapting the Bayesian ‘two priors’ approach

[Wang et al., 2002, Sahu and Smith, 2006] to the SMART design. To obtain a methodology

that does not depend on the assumptions on the variance components and response rates

to the first intervention posited in the frequentist approach, the Bayesian power function is
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marginalized over the posterior distribution of the variance components estimated on pilot

data. This manuscript provides a simulation study where the proposed methodology is com-

pared to the standard frequentist formula in different scenarios for varying levels of model

misspecification. The applicability of the Bayesian approach developed in this chapter is

demonstrated by sizing a SMART study that seeks to evaluate the efficacy of internet-based

strategies for stress management using data from its pilot.

The manuscript presented in this chapter was published in Biometrics [Turchetta et al.,

2022]. In addition to the supplementary material published with this manuscript presented

in Appendix A, an online tutorial on the bayesSMARTsize R package developed to implement

the proposed methodology is presented in Appendix B.
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Abstract

In the management of most chronic conditions characterized by the lack of universally effec-

tive treatments, adaptive treatment strategies (ATSs) have grown in popularity as they offer

a more individualized approach. As a result, sequential multiple assignment randomized

trials (SMARTs) have gained attention as the most suitable clinical trial design to formalize

the study of these strategies. While the number of SMARTs has increased in recent years,

sample size and design considerations have generally been carried out in frequentist settings.

However, standard frequentist formulae require assumptions on interim response rates and

variance components. Misspecifying these can lead to incorrect sample size calculations and

correspondingly inadequate levels of power. The Bayesian framework offers a straightfor-

ward path to alleviate some of these concerns. In this paper, we provide calculations in a

Bayesian setting to allow more realistic and robust estimates that account for uncertainty in

inputs through the ‘two priors’ approach. Additionally, compared to the standard frequen-

tist formulae, this methodology allows us to rely on fewer assumptions, integrate pre-trial

knowledge, and switch the focus from the standardized effect size to the minimal detectable

difference. The proposed methodology is evaluated in a thorough simulation study and is

implemented to estimate the sample size for a full-scale SMART of an Internet-Based Adap-

tive Stress Management intervention on cardiovascular disease patients using data from its

pilot study conducted in two Canadian provinces.
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3.1 Introduction

Precision medicine has become a popular topic in the field of healthcare [Kosorok and Moodie,

2015]. Within this medical model, treatments and decision rules are personalized and tailored

to patient characteristics, shifting the focus from the traditional treatment of the diagnosis to

the treatment of the patient [Wallace and Moodie, 2014]. In settings where there is a lack of

a universally effective treatment, several interventions are often needed to prevent onset and

alleviate symptoms improving the patient quality of life, requiring a sequential, individualized

approach whereby interventions are adapted and re-adapted over time in response to the

specific needs and evolving condition of the individual [Kosorok and Laber, 2019].

In order to estimate the optimal individualized sequence of treatments for each patient, adap-

tive treatment strategies (ATSs), also known as dynamic treatment regimes (DTRs), have

been introduced [Lavori et al., 2000, Murphy et al., 2001]. To formalize the study of these

regimes, the sequential multiple assignment randomized trial (SMART) has been developed

[Lavori and Dawson, 2000, Murphy, 2005b]. SMARTs are based on multiple stages, each

representing a clinical decision point: at each step, the patients are randomized accounting

for a small set of characteristics or responses to previous interventions. SMARTs are con-

sidered the gold standard for developing adaptive treatment strategies, however, because of

the cost necessary to fund an adequately powered SMART, observational studies are still

largely employed to develop ATSs, even though the use of such data entails an additional

layer of complexity to mitigate confounding [Chakraborty and Moodie, 2013]. Because of

their nature, different types of SMARTs can be defined by varying the number of stages

and available treatments at each stage [Lei et al., 2012]. We focus on the two-stage design

outlined in Figure 3.1 where responders to the first stage intervention continue with the

same treatment whereas non-responders are re-randomized. Note that the term ‘adaptive’

pertains to the treatment allocation of the strategies being analyzed and not the trial design,

which is fixed and does not entail mid-trial adjustments of the randomization probabilities
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or other design parameters, nor does it involve interim analyses of the data.

When compared to standard randomized controlled trials (RCTs), SMARTs have some rel-

evant advantages: most importantly, they allow for the direct comparison of multiple ATSs

and to discover interactions between treatments. In this type of design, it is crucial to

identify carry-over effects of previous treatments on the future ones, so as to avoid the de-

tection of interventions that only appear to be optimal in the short term but are not in fact

optimal in the long term, e.g. because they may preclude later, more effective therapies.

SMARTs are designed to identify interactions that regular RCTs are likely to miss, as the

latter are typically powered to make comparisons between average effects in each treatment

arm. From an operational point of view, SMARTs share some features with crossover trials,

as in both designs subjects are assigned to a sequence of treatments. However, they are con-

ceptually different, in that the latter design is characterized by a washout period between

treatments to allow for any carry-over effect to wear off, removing the possibility to detect

interactions. Additionally, in crossover designs, treatments are not allocated according to

intermediate responses to previous interventions. This tailoring feature of SMARTs is also

what distinguishes them from other simpler designs that are operationally similar, such as

multi-arm trials where patients are randomized to fixed sequences of treatments or facto-

rial trials with a delayed second randomization. Furthermore, due to their randomization

process and the variety of treatments, SMARTs are ethically advantageous and appealing

to the study participants [Wallace et al., 2016]. So far, SMARTs have been deployed to

estimate optimal strategies in a wide range of fields, such as weight loss [Almirall et al.,

2014], substance abuse [Murphy et al., 2007], and cancer [Kidwell, 2014, Sikorskii et al.,

2017], with particular emphasis on prostate cancer [Wang et al., 2012]. Notably, because of

the adaptive nature of the treatments under consideration, SMARTs have assumed an im-

portant role in the management of chronic diseases [Chakraborty and Moodie, 2013], namely

ADHD [Pelham Jr et al., 2016], schizophrenia [Stroup et al., 2003], and alcohol dependence

[Nahum-Shani et al., 2017], among others. In this paper, for example, we will apply our
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proposed methodology to estimate the sample size of a web-based stress management pro-

gram study, named Internet-Based Adaptive Stress Management SMART [Lambert et al.,

2021], which employs the SMART design to overcome the necessity for interventions that

are tailored to the patients’ needs, which often lead to better outcomes in internet-based

programs. While the number of SMARTs has increased in recent years, and it is clear they

have the potential for playing an important role in the management of chronic conditions,

their theoretical features are yet to be fully discovered. One of the key elements to be es-

tablished in the design phase of a SMART is the definition of the research question. In

fact, due to its structure, there are several research questions that can be addressed, the

most common of which are (1) Which is the best initial treatment? (2) Which is the best

secondary treatment among non-responders to the first intervention? (3) Which is the best

ATS between two strategies that start with a different initial treatment? (4) Which is the

overall best ATS? Several sample size estimation methods for determining the overall optimal

ATS have recently been introduced [Oetting et al. [2011], Rose et al. [2019], Artman et al.

[2020], Artman et al. [2022]], however, given the additional complexity induced by the mul-

tiple comparisons between all the embedded regimes in a SMART, the comparison of more

than two strategies is currently mainly performed as a secondary analysis or in exploratory

analyses aimed at generating hypotheses to be assessed in subsequent confirmatory trials.

Most of the primary analyses performed on SMARTs are focused on the comparison between

two means or two strategies, and given that the mean outcome of a strategy is a weighted

mean across outcomes of individuals whose paths are consistent with the strategy, frequentist

calculations for SMARTs sample sizes with continuous outcomes are similar to traditional

randomized clinical trials [Oetting et al., 2011, Kosorok and Moodie, 2015, Kidwell et al.,

2018]. In this paper, we focus on the third research question, as it is the most common type

of analysis addressed in a SMART that entails the comparison of two strategies. Despite

their similarity with more classical RCTs, SMART sample size calculations generally rely on

additional assumptions and specifications of key design parameters. Yet, little attention has
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been paid to the robustness of these calculations to model misspecification or uncertainty. In

particular, response rates to initial treatments and a standardized effect size must be fixed,

leading to a decrease in power if responses are misspecified or if there is variability around

them. In Bayesian literature, this shortcoming is commonly known as local optimality, and

a series of hybrid frequentist–Bayesian and fully Bayesian approaches have been introduced

to overcome this drawback [Spiegelhalter et al., 2004, Kunzmann et al., 2021]. One of the

methods that belongs to the latter category is the ‘two priors’ approach, which can be seen

as a flexible and useful extension of standard frequentist methods [Wang et al., 2002, Sahu

and Smith, 2006, De Santis, 2006, Brutti et al., 2014, Sambucini, 2017]. In this paper, we

adapt the ‘two priors’ approach to the SMART design, and we analyze the performance of

this Bayesian method to sizing a SMART in a detailed simulation study. With respect to

the standard frequentist formulae, the proposed method relies on fewer assumptions, allows

for greater flexibility in the design stage, and leads to more robust sample size calculations.

The major drawback of this approach lies in the Bayesian power function’s dependence on

the variance of the strategy means’ estimator, which, contrary to frequentist calculations,

needs to be specified. Since full-scale SMARTs are often preceded by a pilot study, the

easiest course of action is to plug-in the estimates obtained from pilot data. However, the

use of crude estimates from pilot studies of the variance components needed for sample size

computations is controversial, as these studies are generally not sized to guarantee precise

estimations of such parameters and might lead to underpowered full-scale trials [Browne,

1995, Vickers, 2003, Bell et al., 2018]. Specifically, SMART pilot studies are commonly sized

to ensure that a sufficient number of subjects for each treatment sequence is observed with

high probability [Kim, 2016] rather than through precision-based approaches (although an

alternative has recently been introduced in Yan et al. [2021]). To overcome this pitfall, we

propose to marginalize the Bayesian power function over the posterior distribution of the

variance components estimated on pilot data in order to account for their variability. The

paper is structured as follows. In Section 2, we give an overview of the frequentist sample
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size formula and we outline its Bayesian generalization. In Section 3, we analyze the per-

formance of the proposed method in terms of power and type I error through an extensive

simulation study. In Section 4, we apply our method using data from the Internet-Based

Adaptive Stress Management Pilot SMART in order to estimate the sample size of its full-

scale version. Section 5 concludes.

3.2 Methodology

Let us consider a SMART with k stages. We focus on the comparison of two adaptive treat-

ment strategies that begin with different initial treatments. Let Aj be the treatment assigned

at stage j = 1, . . . , k, S1 the pre-treatment information, and {Sj, j ≥ 2} the intermediate

response indicator after treatment Aj−1 (1 for responders and 0 for non-responders), so that

the ordered data trajectory is {S1, A1, S2, A2, . . . , Sk, Ak}. The overbar indicates the accrual

of information up to the index, e.g. Sj = {S1, . . . , Sj}. We denote with dj the decision

rule on treatment allocation at stage j. For each stage j, the decision rule takes as inputs

the information collected up to that point, i.e. Sj and, if j ≥ 2, the previous treatment

allocations Aj−1, and outputs the new treatment to be assigned Aj. An adaptive treatment

strategy is a sequence of fixed decision rules that personalize the treatment sequence, and it

is represented by dk = {d1, . . . , dk}. The final continuous outcome recorded at the end of the

trial is denoted by Y and n is the total sample size of the trial. If Y is binary, the Normal

approximation can be used. Type I and type II errors are respectively indicated with α and

β and zα represents the quantile of the standard Normal distribution of level α.

In this paper, we consider the two-stage SMART design depicted in Figure 3.1. In this

scheme, patients are first randomized to either treatment a or b. Afterward, responders to

the first intervention will continue with the same treatment, whereas non-responders are

re-randomized to their second stage treatment. Note that this design embeds six treatment

sequences – {aa, ac, ad, bb, be, bf} – and four different strategies of the form ‘assign treat-
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ment A1 and, if the subject does not respond, switch to treatment A2’, where the candidate

treatments are {a, b} for the first stage and {c, d} or {e, f} for stage 2.

Figure 3.1: SMART scheme. This design embeds six treatment sequences and four ATSs of
the form ‘assign A1 and, if there is no response, switch to A2’.

3.2.1 Frequentist sample size estimate

Using results from Murphy et al. [2001] and Murphy [2005b], under the assumption that at

any stage, and for any given history, the probability of any treatment included in an adaptive

treatment strategy being assigned is positive, a consistent estimator of the mean outcome Y

under strategy dk, which we denote µdk
, is

ˆ︁µdk
=

Pn

[︃∏︁k
j=1

I{Aj=dj(Sj ,Aj−1)}
Pr(dj |Sj ,Aj−1)

Y

]︃
Pn

[︃∏︁k
j=1

I{Aj=dj(Sj ,Aj−1)}
Pr(dj |Sj ,Aj−1)

]︃
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where Pn represents the sample average and I the indicator function. Furthermore, defin-

ing

U(Sk, Ak, dk, µdk
) =

k∏︂
j=1

I
{︁
Aj = dj(Sj, Aj−1)

}︁
Pr(dj|Sj, Aj−1)

(Y − µdk
),

a consistent estimator of the variance of
√
n(ˆ︁µdk

−ˆ︁µd′k
) is Pn(U

2(Sk, Ak, dk, µdk
)+U2(Sk, Ak, d′k, µd′k

))

and the test statistic

Z =

√
n(ˆ︁µdk

− ˆ︁µd′k
)

Pn(U2(Sk, Ak, dk, µdk
) + U2(Sk, Ak, d′k, µd′k

))

is normally distributed for large samples. By writing the variance of
√
nˆ︁µdk

as

τ 2
dk

= Edk

[︄
k∏︂

j=1

(Y − µdk
)2

Pr(dj|Sj, dj−1)

]︄
,

if there is no pre-treatment information S1 and we consider a two-stage SMART (k = 2),

indicating the intermediate response S2 with R, it follows that

τ 2
dk

= Edk

[︃
(Y − µdk

)2

Pr(A1 = a1) Pr(A2 = a2|A1 = a1, R = 1)

]︃
Pr(R = 1)+

Edk

[︃
(Y − µdk

)2

Pr(A1 = a1) Pr(A2 = a2|A1 = a1, R = 0)

]︃
Pr(R = 0).

If the variable used to define the response status is continuous, a threshold or condition is

needed to dichotomize it so as to identify responders to the first intervention. Assuming

that

1. the variability of the outcome Y around the strategy mean for both responders (R = 1)

and non-responders (R = 0) is not greater than the variance of the strategy mean, i.e.

Edk

[︁
(Y − µdk

)2|R
]︁
≤ Edk

[︁
(Y − µdk

)2
]︁
; (3.1)
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2. the response rates to the initial treatments are equal; and

3. at each stage, patients are allocated equally to the available treatments,

and considering the SMART design outlined in Figure 3.1 where responders to the initial

treatments have only one subsequent treatment option, an upper bound of τ 2
dk

is 2σ2
dk
(2− p),

where p is the common response rate to the initial treatments and σ2
dk

is the marginal variance

of the strategy. Considering the system of hypotheses

⎧⎪⎨⎪⎩ H0 : µd1k
− µd2k

= 0

H1 : µd1k
− µd2k

> 0
(3.2)

where d1k and d2k are two strategies with a different initial treatment, and using the upper

bound of τ 2
dk

, for a standardized effect size δ =
µ
d1
k
−µ

d2
k

σ
where σ =

√︃(︂
σ2
d1k

+ σ2
d2k

)︂
/2, the

sample size formula is given by the value of n which satisfies Pr(Z > z1−α|µd1k
−µd2k

= δσ) =

1− β, which is

n =
(zβ + zα)

2

δ2
4[2(1− p) + p]. (3.3)

If the response rates to the initial treatments are known to be different, the lowest response

rate should be used. In case they are unknown, the common response rate can be set to

0. Both options can lead to overly conservative estimates. In the next sections, we will

first apply the ‘two priors’ approach to the SMART design, showing how prior beliefs on

the uncertainty of design parameters can be included into the calculations, and then outline

how to incorporate estimates of the variance components from pilot studies while accounting

for their variability, resulting in a methodology that does not rely on Assumptions 1 and

2.
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3.2.2 Applying the ‘two priors’ approach to the SMART design

In accordance with the definition of Bayesian significance given by Spiegelhalter et al. [2004],

a result is considered significant if the posterior probability that the parameter of interest

θ belongs to the alternative hypothesis space Θ1 is not less than a specified threshold 1− ϵ

where ϵ ∈ (0, 1), i.e. Prπ(·|Data)(θ ∈ Θ1) ≥ 1− ϵ. Setting Vn = ˆ︁µd1k
− ˆ︁µd2k

, θ = µd1k
− µd2k

, and

τ 2 = τ 2
d1k

+ τ 2
d2k

to ease the notation, for large samples, Vn|θ ∼ N
(︂
θ, τ

2

n

)︂
. If we consider the

conjugate prior distribution for θ, π0(θ) = N (θ; θ0, σ
2
0), called analysis prior, the posterior

distribution of the parameter of interest is

π(θ|Vn) = N
(︃
θ;

τ 2θ0 + nσ2
0Vn

τ 2 + nσ2
0

,

(︃
1

σ2
0

+
n

τ 2

)︃−1
)︄
,

and it follows that the outcome of the clinical trial is significant in the Bayesian sense if

Prπ(·|Vn)(θ > 0) ≥ 1− ϵ, i.e. when

Vn ≥ −zϵτ
√
τ 2 + nσ0

nσ0

− θ0τ

nσ2
0

. (3.4)

The steps necessary to reach this inequality are laid out in Web Appendix A. Since in the pre-

experimental phase Vn has not been observed yet, the Bayesian power function is defined as

the probability of obtaining a Bayesian significant result. To compute this probability, simi-

larly to frequentist calculations, the standard approach consists of using the distribution of Vn

conditional on a value θd under Θ1. In order to overcome the local optimality issue – i.e. op-

timal performance only under specific values of the design parameters, with performance

losses under alternative specifications – the ‘two priors’ approach entails the elicitation of a

second prior distribution πd(θ), called design prior, which formalizes the uncertainty around

θd. Since our parameter of interest is θ = µd1k
−µd2k

, πd encapsulates the variability around the

minimal detectable difference (MDD) of the two strategies being compared, i.e. the average

difference between strategy means. Setting the conjugate design prior πd(θ) = N (θ; θd, σ
2
d)

40



and indicating with Φ the cumulative distribution function of the standard Normal random

variable, the marginal distribution of Vn is md(Vn) = N
(︂
Vn; θd,

τ2

n
+ σ2

d

)︂
, hence the Bayesian

power function η(n; τ 2) is Prmd(·){Prπ(·|Vn)(θ > 0) ≥ 1− ϵ} and it can be expressed as

η(n; τ 2) = Φ

⎡⎣ 1√︂
τ2

n
+ σ2

d

(︃
θ0τ

2

nσ2
0

+ θd +
zϵτ
√︁

τ 2 + nσ2
0

nσ0

)︄]︄
. (3.5)

It is important to emphasize that the two priors π0 and πd serve different purposes. The

former is the density commonly used in Bayesian inference for the analysis stage. It can

formalize pre-trial knowledge or be non-informative. On the other hand, the design prior is

employed in a what-if spirit to describe the scenario in which the sample size is determined.

As such, this distribution has to be proper and most of its mass must lie in the alternative

hypothesis space. Note that by pre-trial knowledge we mean the information that can be

borrowed from previous studies to influence the analysis stage of the clinical trial. In a

broader sense, the term could also be applied to the frequentist setting where such knowl-

edge is useful in the postulation of the effect size and the response rate to the first stage

interventions. However, this is a different use of pre-trial information that pertains to the

design phase rather than the analysis stage of a trial, and its Bayesian counterpart in the

‘two priors’ approach is the conjecture of the design prior πd. Note that, if σ2
d → 0 and

σ2
0 → ∞, Equation (3.5) reduces to the frequentist power function which leads to the sample

size Formula (3.3) when the upper bounds of the variance of the strategy means’ estimator

are used.

3.2.3 Accounting for variability around the variance components

estimates

A drawback of the Bayesian power function consists in the specification of τ 2
d1k

and τ 2
d2k

. In

fact, contrary to the frequentist counterpart, replacing τ 2
d1k

and τ 2
d2k

with their upper bounds

does not lead to a simplified formula which allows us to avoid the direct specification of the
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variance components by specifying a standardized effect size. To overcome this pitfall and

properly size a full-scale SMART, we propose the integration of prior knowledge from its

pilot study. However, the direct use of a plug-in estimate of the variance components from

pilot studies has been generally criticized, as it often leads to underpowered trials [Vickers,

2003, Browne, 1995, Bell et al., 2018]. In order to account for the uncertainty around the

estimates of τ 2
d1k

and τ 2
d2k

, instead of using their crude estimates, we propose the use of their

posterior distribution based on pilot data to marginalize the Bayesian power function given in

Equation (3.5). We assume that the pilot SMART is conducted on a population with similar

characteristics to its full-scale version. Indicating with the superscript p the quantities that

are pertinent to the pilot study, from the previous section we have that V p
n |θ, τ 2 ∼ N

(︂
θ, τ

2

n

)︂
.

A possible choice of prior conjugate distribution for (θ, τ 2) is the Normal-inverse-chi-squared

(NIX) density with parameters θp, κp, σ
2
p and νp, where θp and σ2

p represent the prior values

of θ and τ 2, while κp and νp set the strength of the prior specifications [Murphy, 2007].

This density has the form of the product between a Normal distribution and the PDF of a

Noncentral chi-squared random variable, i.e. π(θ, τ 2) = N (θ|θp, σ2
p)χ

−2(τ 2|νp, σ2
p). It follows

that the marginal posterior distribution π(τ 2|V p
n ) is a Noncentral chi-squared density with

parameters

νn = νp + n, σ2
n =

1

νn

[︃
σ2
pνp + n ˆ︁τ p2 + nκp

κp + n

(︂
θp − ˆ︁θp)︂2]︃ ,

where ˆ︁θp = ˆ︁µp

d1k
− ˆ︁µp

d2k
and ˆ︁τ p2 = ˆ︁τ p2d1k + ˆ︁τ p2d2k are estimated form the pilot study. Finally, the

marginal power function is

ηm(n) =

∫︂ ∞

0

η(n; τ 2)π(τ 2|V p
n )dτ

2.

The sample size is selected as min{n ∈ N : ηm(n) > 1−β} for a given threshold 1−β.
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3.3 Simulation study

In this section, we analyze through simulated data the sensitivity in terms of power and type

I error of the proposed methodology and the existing frequentist sample size formulae for

SMARTs to the misspecification of response rates, over-estimation of the standardized effect

size or minimal detectable difference, and a breach of Assumption 3.1.

3.3.1 Framework

In this simulation study, we consider both continuous and binary outcomes, assuming the

appropriateness of the Normal approximation in the latter case. Let pa1 be the probability

of response to the initial treatment a1. If the final outcome is binary, pa1a2 is the probability

of response to the second treatment a2 when the first treatment a1 fails, while subjects

who have a positive reaction to the first stage intervention are considered as responders

also at the second stage. If Y is continuous, the final outcome is sampled from a Normal

distribution with mean E[Y |A1, R,A2] and variance Var[Y |A1, R,A2]. Let us consider the

SMART design illustrated in Figure 3.1. Following the same structure of Scott et al. [2007],

we set Var[Y |A1 = a1, R = r, A2 = a2] = ζ2a1,r,a2 , and we express the conditional mean

as

E[Y |A1, R,A2] = ϕ1 + ϕ2I{A1=a} + ϕ3(1−R) + ϕ4I{A1=a}(1−R)

+ ϕ5I{A2=c∪A2=e}(1−R) + ϕ6I{A1=a∪A2=c}(1−R).

It follows that the sets of parameters that need to be specified in the continuous outcome

case are {ϕl, l = 1, . . . , 6} and {ζa,1,a, ζa,0,c, ζa,0,d, ζb,1,b, ζb,0,e, ζe,0,f}.

Scenarios

Following the SMART design outlined in Figure 3.1, we compare the strategies ‘administer a

and, if there is no response, switch to c’ and ‘administer b and, if there is no response, switch
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to e’. Note that these two treatment strategies are but two of the four possible strategies that

are embedded within the trial. Varying the parameters of the data generating mechanism

and the type of outcome, we simulate four scenarios:

• Scenario 1: the final outcome is continuous. The response rate to the first stage

treatments is pa = pb = 0.5 and the sets of parameters used to generate the final

outcome are

{ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6} = {10, 5,−15,−3, 10,−3},

{ζa,1,a, ζa,0,c, ζb,1,b, ζb,0,e} = {2, 2, 2, 3}.

The resulting standardized effect size is 0.41 and the average difference between strat-

egy means is 2.

• Scenario 2: continuous outcome. We set pa = pb = 0.7 and the simulation parameters

of the outcome are

{ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6} = {22, 5,−15,−7, 8,−3},

{ζa,1,a, ζa,0,c, ζb,1,b, ζb,0,e} = {6, 6, 2, 3},

resulting in a standardized effect size of 0.27 and a difference between strategy means

of 2. Note that, in this scenario, Assumption 3.1 upon which the standard frequentist

sample size formula relies does not hold.

• Scenario 3: binary outcome. The probabilities of response to the various treatments

are {pa, pac, pb, pbe} = {0.3, 0.4, 0.3, 0.2}. The resulting standardized effect size and

difference between strategy means are 0.28 and 0.14 respectively.

• Scenario 4: binary outcome. The probabilities of response are {pa, pac, pb, pbe} =

{0.5, 0.65, 0.5, 0.5}, leading to the standardized effect size δ = 0.18 and a difference

between strategy means of 0.075. As in the second scenario, Assumption 3.1 does not
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hold.

Note that to calculate the effect size/minimal detectable difference from the simulation pa-

rameters in the continuous outcome case, we need to estimate E[Y |A1, A2] and Var[Y |A1, A2].

The derivation of these quantities is carried out in Scott et al. [2007]. In the binary outcome

case, this task is much simpler, as E[Y |A1 = a1, A2 = a2] = pa1 + (1− pa1)pa1a2 .

Model misspecification

To assess the robustness of the sample size estimates to the issue of local optimality, we con-

sider two sources of misspecification: overestimation of the effect size or MDD and variability

in the trial’s parameters. Specifically, in the latter case, response rates to the first stage in-

tervention are sampled from a Normal distribution truncated between 0 and 1 with mean

pa1 and standard deviation values from 0 to σm. If the outcome is binary, this variability is

also added to the probabilities of success of the second treatment by sampling them from a

truncated Normal distribution with mean pa1a2 . Moreover, we considered overestimations of

the standardized effect size or minimal detectable difference by values up to 25%. In sum-

mary, for every scenario outlined in Section 3.3.1, the properties of the proposed Bayesian

methodology are assessed for different choices of θ0, σ2
0 and σ2

d and under four combinations

of the aforementioned sources of model misspecification:

• Setting 1: no misspecification.

• Setting 2: response rates present a standard deviation equal to σm.

• Setting 3: the minimal detectable difference is overestimated by 25%.

• Setting 4: combination of Settings 2 and 3.

The detailed data generating mechanism is outlined in Web Appendix B.
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Additional specifications

Throughout this simulation study, we set the type I error α to 0.05 and the type II error

β to 0.1. The standard deviation σm was set to 0.05 in Scenario 1, 0.04 in Scenarios 2 and

3, and 0.02 in Scenario 4. Using the calculations developed in Kim [2016], we determined

the sample size of the simulated pilot studies (not to be confused with the full-scale trials)

in order to guarantee that at least 6 individuals are observed in each treatment sequence

with a 90% probability, which resulted in a sample size of 66 in Scenarios 1 and 4, 114 in

Scenario 2, and 64 in Scenario 3. Finally, the type I error was assessed by sizing the full-scale

trial to identify a minimal detectable difference between strategy means of 2 points in the

continuous outcome case and 0.14 points in the binary outcome case when there is indeed

no difference. The results are based on 3000 data replications.

3.3.2 Results

Partial results of the simulation study are presented below. Specifically, Table 3.1 shows the

simulated power of the existing frequentist sample size formula in the continuous outcome

case (Scenarios 1 and 2), whereas Tables 3.2-3.3 display the results relative to Scenario 1

under the proposed methodology. The full results of the simulation study and more details

on the rationale behind the choice of these Scenarios are presented in Web Appendix C.

Web Table S1 depicts the performance of the frequentist formula in terms of power in the

binary outcome case and Web Table S2 summarizes the sample size estimates under this

approach. Web Tables S3-S4, S5-S6, and S7-S8 show the results under the proposed Bayesian

methodology in Scenarios 2, 3, and 4 respectively. Finally, Figure 3.2 presents a comparison

in terms of power between the frequentist and the Bayesian formula, whereas Web Tables

S9 and S10 show the simulated type I error in the continuous and binary outcome case

respectively. The simulated power and type I error are estimated as the proportion of trials

that identified a significant effect in the frequentist or Bayesian sense.
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Power

As we can see from Table 3.1, the frequentist sample size formula performed well under

the best-case scenario where there is no model misspecification and Assumption 3.1 is not

violated (Scenario 1, top-left corner), nearing the desired 0.9 power level. However, its

performance quickly deteriorates when the degree of model misspecification increases, causing

power to fall to 0.82 when the standard deviation of the response rates reaches 0.05, 0.77

when the δ is overestimated by 25%, and 0.72 when both sources of model misspecification

are present. In the second scenario we notice a similar trend, however, the decrease in power

is more evident because of the violation of Assumption 3.1, which causes power to fall to

0.83 even in the absence of misspecification.

Table 3.1: Simulated power under the frequentist calculations in the continuous outcome
scenarios, i.e. Scenarios 1 (left) and 2 (right), for different degrees of model misspecification.

Scenario 1 Scenario 2

Response SD
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04

% bias
of δ

0 0.89 0.89 0.88 0.88 0.84 0.82 0.83 0.83 0.81 0.78 0.76
5 0.88 0.87 0.86 0.84 0.82 0.81 0.81 0.80 0.78 0.77 0.74
10 0.84 0.84 0.83 0.82 0.82 0.79 0.78 0.78 0.76 0.75 0.71
15 0.82 0.83 0.81 0.80 0.79 0.76 0.74 0.75 0.73 0.72 0.70
20 0.78 0.78 0.79 0.77 0.76 0.74 0.71 0.71 0.71 0.69 0.69
25 0.77 0.76 0.76 0.75 0.72 0.72 0.68 0.69 0.66 0.65 0.64

On the other hand, the proposed Bayesian methodology provides us with the tools to offset

the decrease in power caused by variability around response rates or overestimation of the

standardized effect size/minimal detectable difference. Tables 3.2 and 3.3 provide the results

of the simulation study under Scenario 1 when the mean of the analysis prior θ0 is set to 0

and ˆ︁θp respectively. It is easily noticeable that the power level is independent of the choice

of the analysis prior parameters θ0 and σ0, which, as expected, only affect the sample size.

Specifically, as σ0 decreases, n increases under the neutral analysis prior centered at 0, and
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decreases if π0 is centered at the difference between strategy means estimated via pilot data.

When no variability around the minimal detectable difference is considered, i.e. σd = 0, the

Bayesian formula generally leads to the same level of power of its frequentist counterpart

in the four settings considered (which correspond to the ‘corners’ of Table 3.1), and simi-

lar average sample size values. However, the simulation results show how the addition of

variability around the minimal detectable difference via the design prior πd effectively miti-

gates the loss of power which affects the frequentist formula when the model is misspecified,

generating sample size estimates that are more robust. Similarly, Web Tables S3 and S4

provide the results of the simulation study under the second scenario. As in Scenario 1, the

increase of σd generates estimates that are more robust to the overestimation of the minimal

detectable difference or variability around response rates. Additionally, since the Bayesian

formula does not depend on Assumption 3.1, even if no variability around the minimal de-

tectable difference is considered (σd = 0), it leads to a higher level of power with respect to

the frequentist methodology, nearing the 0.9 level under no misspecification. Furthermore,

in this specific setting, under a non-informative analysis prior the estimated average sample

size is 741, which is 18% higher than the frequentist estimate, suggesting that the frequentist

formula can potentially lead to underpowered studies when Assumption 3.1 is violated.

Analogous considerations can be made in the binary final outcome case, as the performances

of both the frequentist and Bayesian methods under Scenarios 3 and 4 respectively mirror

the ones under Scenarios 1 and 2. Web Table S1 displays the performance of the frequentist

formula in Scenarios 3 and 4, whereas the results related to the Bayesian methodology are

presented in Web Tables S5-S6 and S7-S8. A partial representation of the power comparison

between the two methods is depicted in the heatmaps of Figure 3.2, where the Bayesian

methodology is assessed for a non-informative analysis prior and σd is set to 0.03.
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Figure 3.2: Heatmaps representing the simulated power under the frequentist and Bayesian
methodology in Scenario 4 (binary outcome) for several degrees of model misspecification.
For the Bayesian formula, the prior mean θ0 is set to 0, σ0 = 100 and σd = 0.03.

Finally, it is important to notice that the variability of the sample size estimates generated

under the proposed methodology is higher in the scenarios where Assumption 3.1 does not

hold. In fact, for example, considering the empirical distribution of the sample size estimates

under each combination of prior parameters, under Scenario 4 the third quartile is on average

43% higher than the first quartile, whereas in Scenario 1 this difference amounts to 21%.

Type I error

Web Table S9 shows the sensitivity of type I error of the Bayesian formula under several

prior specifications in the continuous outcome case. As expected, the simulated type I

error generally attains the desired 0.05 level when θ0 is set to ˆ︁θp, and it decreases below

that threshold as σ0 decreases when the analysis prior π0 is centered at 0. Web Table S10

provides the same information in the binary outcome case, and the results lead to the same

conclusions.
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3.4 Application to the Internet-Based Adaptive Stress

Management SMART

The Internet-Based Adaptive Stress Management Pilot is a pilot SMART whose goal is to

inform the planning of the subsequent larger full-scale study [Lambert et al., 2021]. The

objective of this clinical trial is the evaluation of adaptive internet-based stress management

interventions among adults with a cardiovascular disease and mild to severe levels of stress

as measured by the Depression, Anxiety, and Stress Scale (DASS) [Lovibond and Lovibond,

1996]. The DASS is a set of self-reported scales aimed at the assessment of the level of

depression, anxiety, and stress. Fourteen items are dedicated to each of the three conditions,

resulting in three separate scores that range from 0 to 42. The stress scale evaluates difficulty

to relax, nervous arousal, irritability, impatience, and agitation. Subjects with a score of 16

or higher were deemed eligible for this trial and, after 6 weeks of the first stage intervention,

participants whose score fell below this threshold or improved by at least 50% with respect

to their baseline assessment were considered as responders. Fifty-nine patients were enrolled

and randomized to either a self-directed web-based stress management program or the same

intervention with the addition of the assistance of a lay coach. In accordance with the

SMART scheme outlined in Figure 3.1, after 6 weeks responders to the first stage intervention

continued with the same program, whereas non-responders were randomized to their second

stage interventions, which for both arms consisted of the continuation of the first treatment

or the switch to a motivational interviewing based program. For the illustrative purposes of

this section, we consider the two adaptive treatment strategies d1k = {assign the ‘website only’

intervention and, if the patient does not respond, switch to the motivational interviewing

based program} and d2k = {assign the ‘website + coach’ intervention and, if the patient does

not respond, switch to the motivational interviewing based program}.

We size the full-scale version of the trial to test the hypothesis µd1k
−µd2k

< 0. More specifically,

we compute the sample size to allow for the detection of a difference of 2 points in the DASS
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stress scale in favor of d1k with 90% power. Figure 3.3 shows the resulting power curves

under different specifications of the prior parameters of π0 and πd and assuming the set of

hyperparameters (θp, κp, σ
2
p, νp) = (0, 1, 0.1, 5). Using a non-informative prior π0 and setting

σd = 0, the estimated sample size power is 490. If uncertainty around the minimal detectable

difference is added through the standard deviation σd, the required sample size increases to

509 and 625 for σd = 0.2 and σd = 0.5 respectively. On the other hand, if we are willing to

borrow further information from pilot data without accounting for uncertainty around the

MDD (that is σd = 0), centering π0 at the difference between strategy means estimated in the

pilot study reduces the sample size to 455 if σ0 = 2, 428 if σ0 = 1.5, and 345 if σ0 = 1.
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Figure 3.3: Power curves of the full-scale version of the Internet-Based Adaptive Stress
Management SMART under different choices of prior parameters: non-informative analysis
prior and varying standard deviation of the design prior (left), neutral informative analysis
prior and varying standard deviation of the design prior (center), informative analysis prior
centered at ˆ︁θp under different standard deviation values (right).

Since the frequentist approach requires additional assumptions on the initial treatments’

response rates and is based on the specification of the standardized effect size rather than the

MDD, a natural counterpart to the Bayesian sample size estimations is not achievable in real

data applications. If Assumption 3.1 is not violated and setting a 40% probability of response

to the first stage interventions, the sample size estimates under the frequentist approach for

a standardized effect size of 0.20, 0.30, and 0.50 are 1372, 610, and 220 respectively.
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3.5 Discussion

In this paper, we outlined a Bayesian extension to frequentist sample size formulae for

SMARTs which relies on fewer assumptions and ensures more flexibility in the specification

of key design parameters. The application of the ‘two priors’ approach to the framework of

SMARTs allows us to (1) account for variability around the minimal detectable difference via

the design prior πd generating more reliable estimates and (2) integrate pre-trial knowledge

via the analysis prior π0. Furthermore, the marginalization of the Bayesian power function

over the posterior distribution of the variance components estimated from pilot data ensures

that the proposed methodology does not depend on the frequentist assumptions regarding

the conditional variance of the outcome and the specification of intermediate response rates

to initial treatments, which can be easily misspecified. Although pilot SMARTs are generally

not sized to ensure precise estimates of the variance components, since the variability around

them is encapsulated in their posterior distribution, this methodology is not compromised

by the risk of underpowered full-scale trials that arises from the crude estimation of variance

components from pilot data. Through a simulation study we demonstrated that, with respect

to its frequentist counterpart, this methodology generally leads to sample size estimates that

are more robust to model misspecification in terms of power. However, this procedure

makes the sample size estimates subject to variability, and the simulation study showed

that in certain scenarios the level of variability across data replications can be considerable.

Moreover, the sample size estimates were on average higher than the frequentist estimations

under a non-informative (or neutral) analysis prior. However, this increment is generally due

to the greater assurance of the full-scale trial reaching the desired level of power that this

methodology offers and, as we showed in the simulation study, it can be a consequence of the

violation of the frequentist assumption on the conditional variance of the outcome, which

can lead to underpowered full-scale trials under the frequentist estimates. Additionally, this

method relies on the availability of pilot data for the estimation of the posterior distribution

of τ 2. Although full-scale SMARTs are often preceded by a pilot study, postulating realistic
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values for τ 2 or the parameters of its distribution used to marginalize the Bayesian power

function is a difficult task when such data are not available. In this case, our recommendation

is the adoption of a simulation-based algorithm to estimate a plausible distribution for τ 2.

One possible way to proceed is the following: using the same framework described in Section

3.3.1, hypothesize a set of realistic simulation parameters for the SMART study in question,

iteratively generate data for its pilot study and collect the estimates of τ 2. Evaluate the

empirical distribution of τ 2 obtained through this process and choose a set of parameters of

the Noncentral chi-squared posterior distribution of τ 2 so that the resulting density is roughly

consistent with the empirical density. It is advised to perform a sensitivity analysis employing

different parameters for the simulation of the pilot study. Such parameters could also be

treated as random variables and be sampled from an adequate distribution at each iteration

to add more uncertainty to the process. Data from other studies with different designs might

also be helpful to inform their plausible values. All the necessary R functions to carry out

this procedure and implement the methodology outlined in this paper are available in the R

package bayesSMARTsize accessible on Github.

Some limitations in connection with the choice of prior parameters need to be highlighted.

First and foremost, it is crucial to recognize the different roles of the two priors. The

analysis prior is the usual distribution used in Bayesian inference for the analysis stage.

Borrowing pre-trial knowledge from pilot data through its elicitation can be a useful tool

to decrease the sample size without compromising the power of the full-scale study, but

its variance should be high enough to not overly influence the analysis stage of the full-

scale trial. On other hand, the design prior formalizes uncertainty around the minimal

detectable difference, hence, unlike the analysis prior, it must be a proper density with

most of its mass lying in the alternative hypothesis space. The proposed methodology

entails a certain level of subjectivity in the choice of hyperparameters. Although the shift

of focus from the standardized effect size to the MDD might give a more straightforward

course of action to elicit the prior distributions, we showed through the simulation study
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and the sizing of the Internet-Based Adaptive Stress Management SMART that sample size

estimates and their properties vary substantially across different choices of hyperparameters.

Therefore, a significant level of consideration and, eventually, a sensitivity analysis aimed at

the selection of prior parameters are advised. Note that since the Bayesian and frequentist

methodologies rely on different assumptions, it is not possible to achieve the frequentist

estimates as a limiting case of the Bayesian approach. However, if Assumption 3.1 holds and

the response rates to the initial treatments are correctly specified, for σ2
d = 0 and σ2

0 → ∞

the Bayesian methodology generates, on average, sample size values that are close to the

frequentist estimates. Finally, in this paper, we chose a one-sided alternative hypothesis

for illustrative purposes, but preliminary simulations under a two-sided alternative yielded

comparable results (results not shown). The R package we have created allows the choice of

the hypotheses type. Moreover, we focused on the simple SMART design with a continuous

outcome where responders to the initial treatment are not re-randomized. A generalization

of this methodology to other designs would require adjustments to the estimator of the

strategy mean and its variance, but the Bayesian framework would remain generally similar.

Furthermore, although we showed how the Normal approximation leads to satisfactory results

when the final outcome is binary, the ad hoc extension of this approach to binary outcomes

is an interesting avenue for further developments.
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Chapter 4

A time-dependent Poisson-Gamma

model for recruitment forecasting in

multicenter studies

Preamble to Manuscript 2. This chapter presents the second manuscript of the thesis,

which deals with the monitoring phase of multicenter clinical studies. One of the most

popular methods developed to forecast recruitments in a multicenter clinical trial is the

Poisson-Gamma model introduced by Anisimov and Fedorov [2007a, 2007b]. However, this

model assumes that the underlying recruitment intensity remains constant over time, which

is a scenario that is often not met in real clinical studies. The methodological contribution

of this chapter consists of the development of a novel, flexible, time-dependent extension of

this approach. The performance of the proposed methodology is assessed and compared to

the standard Poisson-Gamma model in a simulation study and in a case study of a large

multicenter cohort study.

Initially, the concept for this manuscript was to address the forecasting of recruitments

in SMART studies. This idea stemmed from the (limited) evidence suggesting that, due
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to the appeal of SMARTs to study participants, the overall enrollment process might be

more favorable than in standard RCTs. However, while the recruitment behaviors that were

observed in SMART studies were included in the simulation study of this manuscript to

validate the model, the developed approach is applicable to most types of multicenter study

designs.

Note that this manuscript focuses on recruitment modeling, whereas the first manuscript

presented in Chapter 3 focused on sample size determination. To ensure consistency with

the well-established notation employed in these distinct research areas, the notation in this

chapter is unrelated to that used in Chapter 3. For example, in the first manuscript α and

β represented type I and II errors, whereas in this chapter they represent the shape and rate

parameters of a Gamma distribution.

This manuscript was published in Statistics in Medicine [Turchetta et al., 2023].
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Abstract

Forecasting recruitments is a key component of the monitoring phase of multicenter studies.

One of the most popular techniques in this field is the Poisson-Gamma recruitment model, a

Bayesian technique built on a doubly stochastic Poisson process. This approach is based on

the modeling of enrollments as a Poisson process where the recruitment rates are assumed

to be constant over time and to follow a common Gamma prior distribution. However, the

constant-rate assumption is a restrictive limitation that is rarely appropriate for applications

in real studies. In this paper, we illustrate a flexible generalization of this methodology which

allows the enrollment rates to vary over time by modeling them through B-splines. We show

the suitability of this approach for a wide range of recruitment behaviors in a simulation study

and by estimating the recruitment progression of the Canadian Co-infection Cohort.
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4.1 Introduction

The recruitment time estimation is an important topic of interest in the planning and mon-

itoring phase of multicenter studies with several practical implications. Yet, deterministic

models mainly based on the study investigators’ recruitment estimates are still used [Anisi-

mov, 2008, Minois et al., 2017a]. This can lead to (1) ignoring important sources of variability

and (2) overestimation of recruitment rates. The latter consequence is due to a phenomenon

commonly known as the ‘Lasagna Law’ [Lasagna, 1979, van der Wouden et al., 2007], ac-

cording to which medical investigators tend to be overly optimistic regarding the number of

participants who meet the inclusion criteria and are willing to enroll in the study. These

factors often lead to an underestimation of recruitment times and thus to difficulties in

achieving the targeted sample size. For example, Walters et al. [2017] reviewed 151 RCTs

conducted in the United Kingdom, concluding that 44% of the trials did not achieve the final

recruitment target. A similar estimate was found by van der Wouden et al. [2007] analyzing

78 primary care research studies conducted in the Netherlands, who also noted that 51% of

the studies had to extend the fieldwork period, and of these, 79% needed an extension longer

than 50% of the originally planned study length.

A Bayesian approach built on a doubly stochastic Poisson process, known as the Poisson-

Gamma model, was introduced to address the lack of a strong and consistent statistical

methodology in this field in a series of papers by Anisimov & al. [Anisimov and Fedorov

[2007a], Anisimov et al. [2007], Anisimov [2008], Anisimov [2009a], Anisimov [2011a]] This

approach is based on modeling participants’ arrival to recruitment centers as a Poisson pro-

cess where the recruitment rates are assumed to be constant over time and to originate from

a common Gamma distribution whose parameters are estimated from the ongoing trial in

an empirical Bayes fashion. The model has been validated using several real trials’ recruit-

ment data and found to have good performances when the number of centers involved in the

study is sufficiently high ( >20). The Poisson-Gamma recruitment model has been further

extended in numerous directions: Mijoule et al. [2012] considered the use of the Pareto dis-
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tribution in place of the Gamma distribution, Bakhshi et al. [2013] and Minois et al. [2017a]

suggested methods to exploit historical data from previous trials to estimate recruitment

predictions before the start of the trial, Minois et al. [2017b] accounted for breaks in the

recruitment process, and Anisimov et al. [2022] augmented the model to account for drop-

outs. The use of the Poisson process to capture the recruitment progression in clinical trials

has been largely accepted in the literature and has deep roots. To the best of our knowl-

edge, this framework was first introduced in Lee [1983], however, for a systematic review of

early recruitment models for multicenter clinical trials we refer the reader to Gkioni et al.

[2019]. More recently, Gajewski et al. [2008] modeled the waiting times between participants

as exponential random variables (which is equivalent to a Poisson process) incorporating

subjective knowledge on the recruitment process through an informative prior distribution,

and Jiang et al. [2015] further elaborated this model by mitigating overly-optimistic investi-

gators’ assessments via adaptive priors.

All the aforementioned methods assume that the recruitment intensity remains constant over

time. However, this assumption is seldom met in practice. A number of authors have pro-

posed methods to mitigate this pitfall. Tang et al. [2012] proposed a discrete-time Poisson

process-based method using a piece-wise linear function to model the accrual rate, where

changepoints can be either fixed or estimated. However, this model was mostly tailored to

their specific clinical trial example. A more general approach was introduced in Zhang and

Long [2010], where the authors proposed a Bayesian method that relaxes the assumption of

constant accrual rate via a non-homogeneous Poisson process where the overall underlying

time-dependent accrual rate is modeled through cubic B-splines. This approach was fur-

ther extended by Deng et al. [2017] in order to accommodate staggered initiation times and

differences in accrual rates across regions. More recently, building on the standard Poisson-

Gamma model, Lan et al. [2019] proposed a model where recruitment rates are assumed to

be constant up to a certain point and then decay over time as a negative exponential. Urbas

et al. [2022] further expanded this idea allowing for the detection of time-inhomogeneity via
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a testing procedure and considering a wider range of parametric curves to model the decay-

ing recruitment evolution over time. All these methods performed well in the recruitment

scenarios they were built to target.

In this paper, we present a novel extension of the Poisson-Gamma model which relaxes the

constant-rate assumption. We model the recruitment process as a non-homogeneous Pois-

son process where the rates originate from a Gamma distribution whose mean parameter

depends on time. Specifically, we assume that, at some unknown point in time, the recruit-

ment progression will reach a plateau, and the non-constant section is modeled via B-splines;

note that this approach is applicable to any multicenter study, whether a randomized trial

or a cohort study. We outline the details of this methodology in Section 2. In Section 3,

we assess in a simulation study the performance of the proposed approach in relation to the

standard Poisson-Gamma model for a variety of recruitment behaviors. In Section 4, we

apply our method to predict enrollments in the Canadian Co-infection Cohort. Section 5

concludes.

4.2 Methodology

Let Ni(t) be the number of participants enrolled up to time t in center i, C the number

of centers, N(t) =
∑︁C

i=1Ni(t) the total enrollments at time t, and ui the center-specific

initiation time.

4.2.1 The Poisson-Gamma model

The Poisson-Gamma (PG) model [Anisimov and Fedorov [2007a], Anisimov et al. [2007],

Anisimov [2008], Anisimov [2009a], Anisimov [2011a]] assumes that participants arrive at

each center according to a Poisson process with rate λi(t) = I{t>ui}λi. According to this

model, the λi’s are viewed as a sample from a Gamma distribution with parameters (α, β)
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and probability density function

p(x|α, β) = βα

Γ(α)
e−βxxα−1.

Hence, Ni(t) is a Poisson process with cumulative rate

Λi(t) = I{t>ui}(t− ui)λi

and, due to the superposition theorem of independent Poisson point processes, N(t) is a

Poisson process with cumulative rate

Λ(t) =
C∑︂
i=1

Λi(t) =
C∑︂
i=1

I{t>ui}(t− ui)λi.

Consequently, assuming that we have reached a point in time tint where all the C centers have

started the enrollment phase, the posterior density of each rate λi is a Gamma distribution

with parameters α +Ni(tint) and β + (tint − ui).

The hyperparameters α and β can be estimated in an empirical Bayes fashion using the

enrollment data collected up to tint. Since the conditional distribution of Ni(tint) is Poisson

with rate parameter (tint − ui)λi, its marginal distribution is

Ni(tint) ∼ NB
(︃
α,

tint − ui

β

)︃

where NB indicates a negative binomial random variable. Setting m = α/β and assuming

that participants are recruited independently in the C centers, α and m can be estimated

by maximizing the following likelihood:

L(α, β) =
C∏︂
i=1

(︃
α +Ni(tint)− 1

α− 1

)︃(︃
m(tint − ui)

α +m(tint − ui)

)︃Ni(tint)(︃ α

α +m(tint − ui)

)︃α

.

65



It follows that cumulative rate Λ is distributed as a sum of Gamma random variables,

i.e., ˜︁Λ =
C∑︂
i=1

Gamma
(︂ˆ︁α +Ni(tint), ˆ︁β + tint − ui

)︂
.

Hence, the (additional) total number of enrollments Na(T ) at time T is Na(T ) = Poisson
[︂˜︁Λ(T − tint)

]︂
.

However, the constant-rate assumption is a restrictive limitation that is rarely appropriate

for real applications in clinical studies. In the next section, we generalize the Poisson-Gamma

model to the time dependence of the recruitment rates.

4.2.2 The time-dependent Poisson-Gamma model

Overview

We assume that participants arrive at each center according to a non-homogeneous Poisson

process with rate λi(t), where the rates are viewed as originating from a Gamma distribution

whose mean parameter depends on time. Discretizing time in a pre-specified time unit,

say days, let ni(t) be the number of enrollments on day t in center i, Ni(t) =
∑︁t

s=1 ni(s)

the number of participants recruited up to day t in center i, N(t) =
∑︁C

i=1Ni(t) the total

enrollments at time t across all centers, tint the interim time when the predictions on future

enrollments are estimated, and T the final point in time for which we estimate predictions.

We assume that the center’s recruitment intensity will plateau at an unknown point in

time tp. The main idea behind this methodology is to still employ the Poisson-Gamma

recruitment model, but only using the recruitment data collected after the rates plateau.

Each center initiates its recruitment process at time ui. The initiation of the first center is

set to day 1 (u1 = 1), which is considered the start of the overall enrollment process. It

follows that by time t, each initiated center has been recruiting participants for t − ui + 1

days. In other words, the vector which represents the active recruiting days for center i is

{1, 2, . . . , t− ui + 1}.

It is important to distinguish between the timeline of the overall recruitment process – which
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coincides with the timeline of the first initiated center – and the center-specific timeline. For

example, assume that we have reached the interim time at day 200 of the recruitment process

and the second center has been initiated on day 51, that is, t = tint = 200, u1=1, and u2 = 51.

We indicate with tiint the number of days each center has been recruiting until the interim

time, i.e., tiint = tint − ui + 1. In this example, t1int = 200, t2int = 150, and the vector

representing the recruiting days for the two centers are {1, 2, . . . , 200} and {1, 2, . . . , 150}.

Furthermore, suppose the plateau point is achieved at day 100 of the center’s recruitment

phase (tp = 100). This means that we have observed 100 days of constant recruitment

intensity for the first center and 50 days for the second center. Figure 4.1 summarizes the

notation of the timelines.

Figure 4.1: Timelines for the first (top) and i-th (bottom) center. Center 1: 1 is the
start of recruitment for the entire study and corresponds to u1, tp represents the day the
plateau begins, tint the interim time, and T the final point in time for which predictions are
estimated. Center i: ui is its initiation time, the plateau for each center begins on day tp
of their recruitment process, which corresponds to day ui + tp − 1 of the overall recruitment
phase, tiint is the number of days that center i enrolls participants from initiation to the
interim time, and T − ui + 1 is the total number of days during which center i can recruit,
from initiation to the final time of prediction, T .
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The time-dependent Poisson-Gamma model can be expressed as follows:

N(t) ∼ Poisson[Λ(t)],

Λ(t) =
C∑︂
i=1

Λi(t) =
C∑︂
i=1

∫︂ t−ui+1

1

λi(s)ds =
C∑︂
i=1

t−ui+1∑︂
s=1

λi(s),

λi(s)

⎧⎪⎪⎨⎪⎪⎩
∼ Gamma

(︂
α, α

m(ϕϕϕ,s)

)︂
s ≤ tp

= λi(tp) s > tp

where ϕϕϕ is a set of parameters that needs to be estimated. Note that for tp = 1 this model

corresponds to the standard Poisson-Gamma model. We model the non-constant section

of the rates’ evolution over time through B-splines [De Boor, 1978]. Specifically, m(ϕϕϕ, t) is

modelled as follows:

log(m(ϕϕϕ, t)) =

⎧⎪⎪⎨⎪⎪⎩
∑︁d

k=1 ηkγk(t) t < tp

ηd t ≥ tp,

where γ1(t), . . . , γd(t) represent the basis functions.

Estimation

We separate the C centers into two groups, the first group containing the centers that have

already passed the plateau point and the second group containing the ones that have not.

Sorting the centers by initiation time, we indicate with C∗ the number of centers that belong

to the first group, that is, C∗ = card{i : tiint ≥ tp}. Assuming that at time tint all the centers

have started the enrollment process, that is, ui < tint ∀i, the conditional distribution of

the number of recruited participants in each center Ni(tint) is Poisson with rate parameter
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Λi(tint) =
∑︁tiint

s=1 λi(s), hence the conditional joint distribution of daily enrollments is

Pr
[︁
ni(1), ..., ni(t

i
int)|λi(1), ..., λi(t

i
int)
]︁
∝ e−

∑︁tiint
s=1 λi(s)

tiint∏︂
s=1

λi(s)
ni(s)

=

[︃
e−(tiint−tp+1)λi(tp)λi(tp)

∑︁tiint
s=tp

ni(s)

]︃1{i≤C∗}

e−
∑︁(tp−1)∧(tiint)

s=1 λi(s)

(tp−1)∧tiint∏︂
s=1

λi(s)
ni(s),

where 1{i≤C∗} is the indicator function which denotes the centers whose recruitment process

has already passed the plateau point and (tp−1)∧ tiint = min{(tp−1), tiint}. Setting N∗
i (t) =∑︁t

s=tp
ni(s), the marginal predictive distribution is

Pr
[︁
ni(1), ..., ni(t

i
int)
]︁
=

∫︂ ∞

0

...

∫︂ ∞

0

Pr
[︁
ni(1), ..., ni(t

i
int)|λi(1), ..., λi(t

i
int)
]︁
π(λi(1), ..., λi(t

i
int))

tiint∏︂
s=1

dλi(s)

∝

[︄
Γ(α +N∗

i (t
i
int))

Γ(α)

(︃
m(ϕϕϕ, tp)

α +m(ϕϕϕ, tp)

)︃N∗
i (t

i
int)
(︃

α

α +m(ϕϕϕ, tp)

)︃(tiint−tp+1)α
]︄1{i≤C∗}

(tp−1)∧tiint∏︂
s=1

Γ(α + ni(tj))

Γ(α)

(︃
m(ϕϕϕ, s)

α +m(ϕϕϕ, s)

)︃ni(s)(︃ α

α +m(ϕϕϕ, s)

)︃α

.

Finally, assuming independence between the number of participants recruited in different

centers, the likelihood function is

L(α,ϕϕϕ) ∝
C∏︂
i=1

[︄
Γ(α +N∗

i (t
i
int))

Γ(α)

(︃
m(ϕϕϕ, tp)

α +m(ϕϕϕ, tp)

)︃N∗
i (t

i
int)
(︃

α

α +m(ϕϕϕ, tp)

)︃(tiint−tp+1)α
]︄1{i≤C∗}

(tp−1)∧tiint∏︂
s=1

Γ(α + ni(tj))

Γ(α)

(︃
m(ϕϕϕ, s)

α +m(ϕϕϕ, s)

)︃ni(s)(︃ α

α +m(ϕϕϕ, s)

)︃α

.

Using this likelihood, α and ϕϕϕ = {tp, η1, . . . ηd} can be estimated and plugged into the

posterior distribution of λi(t).
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Spline model choice

To guarantee enough flexibility in the recruitment curves that this model is able to estimate,

we proposed to model the time-dependent enrollment intensity through B-splines. However,

this choice implies that decisions have to be made regarding the degree of the polynomials,

the number of knots, and their placement. Since these factors affect the dimension of the

parameter space, we propose to fit different models and select the one which is best-fitting

using the Bayesian Information Criterion (BIC) [Schwarz, 1978].

Forecasting future enrollments

For the centers that have already passed the plateau point, we can project the posterior

distribution of λi(tint) to predict future enrollments, so that the distribution of the additional

recruited participants for center i ∈ {1, ..., C∗} at time T > tint is Poisson with rate Λa
i (T ) =

(T − tint)λi(tint), where

λi(tint) ∼ Gamma

⎛⎝ˆ︁α +

tiint∑︂
s=ˆ︁tp

ni(s), β(t, ˆ︁ϕϕϕ) + tiint − ˆ︁tp + 1

⎞⎠ , i = 1, ..., C∗,

and β(t,ϕϕϕ) = α/m(ϕϕϕ, t). On the other hand, for the remaining centers i ∈ {C∗+1, ..., C},

Λa
i (T ) =

ˆ︁tp∧(T−ui+1)∑︂
s=tiint+1

λi(s) + (T − ui − ˆ︁tp + 1)+λi(ˆ︁tp),
λi(t) ∼ Gamma

(︂ˆ︁α, β(t, ˆ︁ϕϕϕ))︂ ,
where (T − ui − ˆ︁tp + 1)+ = max(0, T − ui − ˆ︁tp + 1). Therefore, the distribution of future

additional enrollments at time T , Na(T ), is Poisson with overall recruitment rate

Λa(T ) =
C∗∑︂
i=1

(T − tint)λi(tint) +
C∑︂

i=C∗+1

ˆ︁tp∧(T−ui+1)∑︂
s=tiint+1

λi(s) +
C∑︂

i=C∗+1

(T − ui − ˆ︁tp + 1)+λi(ˆ︁tp).
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It follows that the expectation and variance of the distribution of future enrollments are

E[Na(T )] = E{E[Na(T )|Λa(T )]} = E[Λa(T )],

Var[Na(T )] = Var{E[Na(T )|Λa(T )]}+ E{Var[Na(T )|Λa(T )]} = Var[Λa(T )] + E[Λa(T )].

The full expressions of the expected value and variance of Λa(T ) are displayed in the Ap-

pendix. Using these quantities, we can construct credible intervals (CrIs) for future enroll-

ments using the Normal approximation. If the quantity of interest is the remaining time

to reach the target number of recruitments, one can compute the expectations and credible

intervals for future enrollments for a grid of values of T and then invert them to obtain a

point estimate and credible interval of the remaining time to recruit the target number of

participants.

4.3 Simulation study

In this section, we analyze the performance of the proposed time-dependent Poisson-Gamma

model in a simulation study considering different types of curves for the underlying recruit-

ment intensity and we compare it to the standard PG model. The model is assessed in terms

of percentage bias and coverage rate by the 95% credible intervals of the observed future

recruitments.

4.3.1 The generative model

The recruited number of participants at each time point t and for each center i is drawn

from a Poisson distribution with rate ˜︁λi(t), where ˜︁λi(t) represents a draw from

λi(t) ∼ Gamma
(︃
α,

α

f q(t)

)︃
, i = 1, . . . , C, t = 1, . . . , tp
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and ˜︁λi(t) = ˜︁λi(tp) for t > tp. The mean function f q(t) is the shifted scaled probability

density function (q = 1) or the CDF (q = 2) of a Gamma random variable with various

parameter choices, that is,

f 1(x) = c1 + c2
pp12

Γ(p1)
e−p2xxp1−1,

f 2(x) = c1 + c2
pp12

Γ(p1)

∫︂ x

0

e−p2uup1−1du.

Varying the parameters of this generative model, we define five recruitment scenarios. The

full list of parameters is provided in Table 4.1 and the resulting average recruitment curves are

depicted in Figure 4.2. The parameters were selected in order to capture different common

Table 4.1: Simulation parameters.

Scenario c1 c2 p1 p2 tp q α

1 0.2 0.50 0.55 0.09 60 1 1
2 0.2 0.50 10 0.15 150 1 1
3 0.2 8 1 0.05 130 2 1
4 0.2 13 2.40 0.11 100 2 1
5 0.2 0 NA NA 1 NA 1

recruitment behaviors. The first two scenarios describe a slow start, and the use of the

Gamma CDF to capture this evolution over time has been adopted in Deng et al. [2017]

and Zhang and Long [2010]. In contrast, Scenarios 3 and 4 describe a fast start. We

have included these enrollment scenarios after private discussions with project coordinators

of studies where the recruitment process was aided by modern instruments such as social

media. These studies experienced a fast start or an early bump in recruitment that was

followed by the attainment of a plateau. Two of the studies where these behaviors were

observed, for example, are the CanDirect study [McCusker et al., 2021] and the Canadian

Co-infection Cohort study analyzed in Section 4. Finally, Scenario 5 describes the constant

accrual setting that constitutes the framework of several recruitment models including the

standard PG methodology. We evaluate the model for 20 and 60 centers in Setting 1 and
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Figure 4.2: Average recruitment curves over time.

30 and 60 centers in Setting 2. We select two values of tint, i.e., tint1 and tint2 , whose values

depend on the scenario to assess the performance of the model when more information is

collected.

Additionally, for each scenario, we consider two settings:

• Setting 1: all the centers start at the same time, i.e., ui = 1 for all i.

• Setting 2: initiation times are staggered.

In Setting 2, we assume that the center-specific initiation times are distributed between t = 1

and the first interim time tint1 , so that there are some centers whose recruitment intensity

over time has not reached the plateau point. Two cases are considered: in Case 1, half of

the centers have passed the plateau point (C∗ = 1
2
C) by the first interim time tint1 , whereas

in Case 2 this proportion increases to two-thirds (C∗ = 2
3
C). To ensure the consistency of

these proportions across data replications, the initiation times of the first C∗ centers are

sampled from a Uniform distribution on [1, tint1 − tp], and the remaining C − C∗ starting

times from a Uniform density on (tint1 − tp, tint1). Therefore, by the time point tint2 , some

centers switch from the second group to the first one, i.e., C∗ increases as tint1 → tint2 . Given

the structure of Setting 2, Scenario 5 is not considered as its plateau point is set at the start
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of the recruitment phase. In summary, we generated five scenarios in Setting 1 and four in

Setting 2. For each combination of scenarios and settings, we consider two interim times,

two values of C, and two cases for Setting 2.

As for the choice of spline models for m(ϕϕϕ, t), we fitted four B-splines models varying the

degree of the polynomials and the number of knots. To limit the dimension of the vector

of parameters, we considered quadratic and cubic splines and one and zero internal knots,

where the placement of the knot was set to ˆ︁tp/2. The best-fitting model among the four

candidates was selected using the BIC. The results are based on 1000 data replications.

4.3.2 Results

Table 4.2 illustrates the performance of the proposed time-dependent Poisson-Gamma (tPG)

model and the standard PG technique in Setting 1 in terms of coverage rate of the observed

recruitments by the 95% credible interval (CrI), percentage bias, and standard error (SE).

Table 4.3 provides the same information for the setting with staggered initiation times.
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Table 4.2: Coverage rate (CR) of the 95% CrI, percentage bias, and standard error (SE) over
1000 data replications under the proposed method (tPG) and the standard Poisson-Gamma
(PG) model in Setting 1 (same initiation time across centers).

tPG PG
Scenario T tint C C

20 60 20 60

CR

1 300 80 0.93 0.95 0.27 0.24
160 0.94 0.96 0.48 0.47

2 500 200 0.94 0.95 0.07 0.01
300 0.95 0.95 0.12 0.01

3 500 160 0.90 0.92 0.16 0.04
250 0.94 0.95 0.28 0.08

4 400 120 0.88 0.90 0.02 0
200 0.96 0.94 0.06 0

5 300 80 0.96 0.94 0.95 0.95
160 0.95 0.96 0.94 0.93

Bias

1 300 80 4.98 2.93 14.05 8.53
160 2.98 1.57 7.30 4.40

2 500 200 3.31 1.89 22.65 22.78
300 2.31 1.33 15.16 15.28

3 500 160 7.92 4.53 30.72 26.41
250 4.45 2.53 19.89 16.89

4 400 120 9.96 5.43 62.64 55.76
200 4.77 2.96 37.72 33.52

5 300 80 5.25 3.08 5.33 2.99
160 4.71 2.72 4.88 2.76

SE

1 300 80 660 1187 211 375
160 431 758 280 493

2 500 200 907 1591 247 441
300 610 1064 315 558

3 500 160 276 507 92 156
250 220 388 115 201

4 400 120 230 417 86 146
200 179 306 97 164

5 300 80 204 356 203 353
160 128 224 126 222

In general, the tPG model led to a significant improvement with respect to the PG method

in Scenarios 1-4 in terms of CrIs coverage rates and percentage bias. As expected, the

75



standard Poisson-Gamma model failed to deliver acceptable results, as it generated biased

estimates in the four scenarios where the recruitment intensity is time-dependent, with the

percentage bias nearing or exceeding 50% and the CrIs coverage rate reaching 0 in several

instances. On the other hand, the time-dependent Poisson-Gamma model was able to capture

the non-constant evolution of the recruitment intensity over time providing more accurate

predictions.

Additionally, in Scenario 5, the tPG and PG methods led to similar performances, indicating

the suitability of the proposed methodology even in the scenario where the assumptions of

the PG model are satisfied.

Overall, Table 4.2 shows that the tPG model performed well in every scenario being consid-

ered in Setting 1, as it led to adequate levels of percentage bias and coverage rates which

improved as the number of centers increments or more information on the recruitment pro-

cess is accrued by moving forward the interim time tint. However, when the initiation times

are staggered, the proposed model’s performance decreased. Specifically, the model leads

to lower levels of coverage rates of the observed recruitments by the credible intervals, and

the percentage bias can reach values over 10%. This decline in forecasting accuracy is more

evident in Scenarios 3 and 4 when the proportion of centers whose recruitment intensity has

not reached the plateau is the highest, i.e. in Case 1 for the first interim time. The model’s

performance greatly improves as the proportion of centers that belong to C∗ increases either

by switching from Case 1 to Case 2 or by delaying the interim time.
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Table 4.3: Coverage rate (CR) of the 95% CrI, percentage bias, and standard error (SE) over
1000 data replications under the proposed method (tPG) and the standard Poisson-Gamma
(PG) model in Setting 2 (staggered initiation times).

tPG PG
Scenario T tint Case 1 Case 2 Case 1 Case 2

C=30 C=60 C=30 C=60 C=30 C=60 C=30 C=60

CR

1 300 80 0.88 0.91 0.91 0.92 0.05 0.02 0.09 0.03
110 0.93 0.94 0.94 0.93 0.05 0.01 0.07 0.03

2 500 200 0.87 0.85 0.89 0.86 0 0 0 0
260 0.90 0.90 0.92 0.92 0 0 0 0

3 500 160 0.73 0.71 0.84 0.83 0.20 0.17 0.18 0.14
220 0.89 0.89 0.92 0.92 0.31 0.32 0.30 0.31

4 400 120 0.77 0.74 0.80 0.75 0.03 0 0.06 0.01
170 0.87 0.86 0.89 0.86 0.10 0.03 0.13 0.06

Bias

1 300 80 12.12 8.43 10.53 7.15 26.84 27.79 22.44 22.85
110 8.35 5.75 6.92 4.82 25.04 25.67 20.58 20.88

2 500 200 13.44 9.51 10.57 7.74 53.88 54.86 46.41 47.49
260 10.29 7.53 8.28 5.79 43.97 44.82 37.99 38.82

3 500 160 15.97 11.93 12.05 8.98 22.22 16.75 23.80 19.44
220 9.39 7.02 7.58 7.60 13.59 9.54 13.96 9.98

4 400 120 16.14 12.37 14.54 10.91 52.13 48.12 47.23 41.80
170 9.80 7.48 8.50 6.27 32.00 28.79 29.78 25.78

SE

1 300 80 708 967 731 1003 270 358 217 298
110 679 949 677 958 220 300 242 340

2 500 200 946 1498 1011 1484 198 276 196 270
260 802 1212 855 1212 244 367 273 392

3 500 160 311 453 299 429 210 282 149 220
220 291 399 288 417 98 132 99 141

4 400 120 312 514 308 462 159 216 193 258
170 245 385 258 364 96 132 93 128

Finally, it is of interest to look at which models were selected by the BIC. By and large,

the BIC showed an overwhelming preference for smaller models with no internal knots in

Scenarios 1, 2, and 5, whereas in Scenarios 3 and 4 models that include an internal knot

were chosen more frequently.
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4.4 Forecasting recruitments in the Canadian Co-infection

Cohort study

In this section, we utilize the time-dependent Poisson-Gamma model to estimate enrollments

in the Canadian Co-infection Cohort (CCC) study. The CCC is a prospective observational

study whereby participants living with both HIV and Hepatitis C (HCV) are recruited and

monitored through follow-up visits scheduled every 6 months [Klein et al., 2010]. The pri-

mary goal of the study is to achieve a better understanding of the risk factors associated

with liver disease and its progression in the growing population of HCV–HIV co-infected peo-

ple, with particular emphasis on the effect of highly active antiretroviral therapy (HAART)

and HCV treatment. The CCC study encompasses 191 recruitment centers across Canada

opened between March 2003 and June 2014 and, as of April 8th, 2022, it comprises a total

of 2077 recruited participants in 995 weeks.

To assess the applicability and accuracy of the proposed methodology in forecasting the en-

rollments in this study, we considered three interim times tint. At each of these time points,

the accrued data are used to estimate the recruitment progression up to April 8th, 2022, i.e.

week 995, and the resulting forecasts are compared to the observed enrollments. Since 13 of

the 19 centers were opened between week 192 (November 2006) and 285 (September 2008),

we set the interim times to tint = 400, 500, and 600 weeks. The results under the proposed

methodology and the standard Poisson-Gamma model are illustrated in Figure 4.3. As we

can see from the observed recruitment progression, the constant-rate assumption is not met.

Specifically, the centers generally showed a higher recruitment intensity in the initial stages

of their enrollment period, followed by a deceleration until the attainment of a plateau,

which our model consistently estimated at 110 weeks after the centers’ opening for every

interim time. The violation of the constant-rate assumption is especially visible after the

opening of the cluster of centers between weeks 192 and 285, as the recruitment progression
1Two centers were merged but are still treated separately in this analysis.

78



visibly decelerates around week 330. Regardless of the interim time, the tPG model led to

an estimated recruitment progression that closely tracks the observed enrollments and, apart

from brief time periods immediately following the interim times, the resulting 95% credible

intervals covered the observed enrollments. Note that the last two years of recruitment were

affected by the COVID-19 pandemic, whose start is identified in Figure 4.3 as March 11th,

2020, i.e. the day the WHO declared the COVID-19 outbreak a global pandemic. The

pandemic caused a deceleration in enrollments, and its beginning coincides with the period

where the point estimates produced by the tPG model start to deviate the most from the

observed recruitments, especially for tint = 500.

On the other hand, the forecasts under the standard Poisson-Gamma model are heavily bi-

ased. More specifically, since the centers showed an initial fast recruitment intensity followed

by a slowdown, the standard PG model led to an overestimation of the recruitment rates

and hence to overly-optimistic forecasts.
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Figure 4.3: Observed and estimated recruitments under the time-dependent Poisson-Gamma
(tPG) and Poisson-Gamma (PG) models in the CCC study at three interim times (tint =
400, 500, and 600 weeks). The shaded regions represent the 95% credible intervals, the ‘+’
signs the opening date for each center, and the dotted vertical line the start of the COVID-19
pandemic.
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4.5 Discussion

In this paper, we have introduced an extension to the Poisson-Gamma recruitment model

where the recruitment intensity is allowed to vary over time. Specifically, with respect to

the standard methodology where recruitment rates are assumed to be constant, we intro-

duced the presence of a time window that spans from the centers’ initiation to an unknown

time point where the recruitment intensity is time-dependent. In order to guarantee the

applicability of this methodology for a wide range of recruitment scenarios, we modeled the

mean parameter of the common Gamma distribution which generates the recruitment rates

through B-splines. We analyzed the performance of the proposed methodology in a simu-

lation study for various behaviors of the recruitment curves. The model performed well in

every scenario being considered when the centers share the same initiation time. On the

other hand, the setting where the centers’ initiation times are staggered showed a decline in

performance for some scenarios. Specifically, the proposed model struggled to deliver overall

satisfactory results when a sizable number of centers has not reached the plateau point in

their enrollment process, especially for the more elaborate recruitment behaviors assumed in

Scenarios 3 and 4. The model’s performance greatly improved when the proportion of these

centers was reduced or the interim time was delayed (hence still decreasing this proportion),

which suggests that while the model correctly estimates the constant section of the recruit-

ment curves, it may not adequately catch the non-constant section in some scenarios. Note

that due to the computational time and the variety of settings considered, we limited the

number of spline models to four. Adding more models to the list of candidates by varying

the number of internal knots or/and their location might improve the model’s accuracy. This

is partially confirmed by the BIC model choice. In fact, the BIC selected mostly smaller

models to estimate the simpler recruitment curves, whereas larger models with an internal

knot were preferred more frequently in the scenarios characterized by more intricate recruit-

ment progressions. However, even in the scenarios where the model’s performance could be

improved, the proposed recruitment model still led to significantly better results than the
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standard Poisson-Gamma model. Additionally, in the scenario where the constant-intensity

assumption is met, the time-dependent Poisson-Gamma model led to comparable results,

suggesting that the proposed methodology can be seen as a time-dependent generalization

of the standard PG model without any evident loss in performance.

The application of the tPG model to the recruitment data of the Canadian Co-infection Co-

hort study showcased its suitability and accuracy in forecasting enrollments in a real study

even for a low number of recruitment centers (16 for the first interim time), while also high-

lighting the limitations of the standard PG model when the constant-rate assumption is not

met.

Finally, some other limitations of the methodology we have presented in this paper need to

be highlighted. In particular, this model relies on the availability of recruitment data past

the plateau point for an adequate number of centers, which makes it impractical to employ in

the planning phases of a clinical study or during its early monitoring stage. The integration

of prior information from similar studies or the centers’ history is an interesting topic for

further research. Moreover, we assumed that the plateau point is the same for all centers.

The addition of a layer of variability to reflect the variations across centers’ could represent

a relevant improvement in the flexibility of this methodology.

The tPG R package developed to implement the proposed recruitment model is available on

GitHub.
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APPENDIX

Expected value and variance of Na(T )

The expected value and variance of the additional number of future recruited participants

Na(T ) can be expressed as

E[Na(T )] = E{E[Na(T )|Λa(T )]} = E[Λa(T )],

Var[Na(T )] = Var{E[Na(T )|Λa(T )]}+ E{Var[Na(T )|Λa(T )]} = Var[Λa(T )] + E[Λa(T )],
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where

E[Λa(T )] =
C∗∑︂
i=1

(T − tint)E[λi(tint)] +
C∑︂

i=C∗+1

ˆ︁tp∧(T−ui+1)∑︂
s=tiint+1

E[λi(s)] +
C∑︂

i=C∗+1

(T − ui − ˆ︁tp + 1)+E[λi(ˆ︁tp)]
= (T − tint)

C∗∑︂
i=1

ˆ︁α +
∑︁

s∈{ˆ︁tp,...,tiint}
ni(s)

β(t, ˆ︁ϕϕϕ) + tiint − ˆ︁tp +
C∑︂

i=C∗+1

ˆ︁tp∧(T−ui+1)∑︂
s=tiint+1

ˆ︁α
β(s, ˆ︁ϕϕϕ)

+
C∑︂

i=C∗+1

(T − ui − ˆ︁tp + 1)+
ˆ︁α

β(ˆ︁tp, ˆ︁ϕϕϕ) ,

Var[Λa(T )] =
C∗∑︂
i=1

(T − tint)
2Var[λi(tint)] +

C∑︂
i=C∗+1

ˆ︁tp∧(T−ui+1)∑︂
s=tiint+1

Var[λi(s)]

+
C∑︂

i=C∗+1

(T − ui − ˆ︁tp + 1)2+Var[λi(ˆ︁tp)]
= (T − tint)

2

C∗∑︂
i=1

ˆ︁α +
∑︁

s∈{ˆ︁tp,...,tiint}
ni(s)

(β(t, ˆ︁ϕϕϕ) + tiint − ˆ︁tp)2 +
C∑︂

i=C∗+1

ˆ︁tp∧(T−ui+1)∑︂
s=tiint+1

ˆ︁α
β(s, ˆ︁ϕϕϕ)2

+
C∑︂

i=C∗+1

(T − ui − ˆ︁tp + 1)2+
ˆ︁α

β(ˆ︁tp, ˆ︁ϕϕϕ)2 .
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Chapter 5

The time-dependent Poisson-Gamma

model in practice: recruitment

forecasting in HIV trials and a tutorial

Preamble to Manuscript 3. The previous chapter introduced the time-dependent Poisson-

Gamma model for forecasting enrollments in multicenter studies, and the approach was val-

idated on the recruitment data from a cohort study. However, the use of statistical models

to forecast recruitments is possibly of more practical relevance in randomized clinical trials

where there is a target sample size to be achieved within a given time frame.

The manuscript presented in this chapter has two aims: (1) to assess the proposed model’s

accuracy on recruitment data from randomized clinical trials, and (2) to illustrate an easy

to follow tutorial on its implementation via the tPG R package. The second aim stemmed

from a recent paper by Gkioni et al. [2020]. The authors surveyed chief investigators and

statisticians involved in the planning and monitoring phase of the recruitment stage of clin-

ical studies, concluding that statistical models to forecast recruitments were rarely used.

The main reasons cited for the avoidance of statistical models to predict recruitments were
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the non-familiarity with either the models or their implementation and the simplicity of a

deterministic model. This chapter takes a more practical route compared to the other two

manuscripts, hoping to facilitate the implementation of the proposed recruitment model in

practice. The notation in this manuscript is consistent with that of the previous manuscript

(Chapter 4).

The manuscript presented in this chapter will be submitted to a statistical journal soon after

the submission of this thesis.
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Abstract

Despite a growing body of literature in the area of recruitment modeling for multicenter

studies, in practice, statistical models to predict enrollments are rarely used and when they

are, they often rely on unrealistic assumptions. The time-dependent Poisson-Gamma model

(tPG) is a recently developed flexible methodology which allows analysts to predict recruit-

ments in an ongoing multicenter trial, and its performance has been validated on data from

a cohort study. In this article, we illustrate and further validate the tPG model on recruit-

ment data from randomized controlled trials and provide a practical and easy to follow guide

to its implementation via the tPG R package. To validate the model, we show the predic-

tive performance of the proposed methodology in forecasting the recruitment process of two

HIV vaccine trials conducted by the HIV Vaccine Trials Network in multiple Sub-Saharan

countries.
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5.1 Introduction

Recruitment forecasting for multicenter clinical studies has become a popular topic in recent

years. The successful recruitment of the desired number of participants in a clinical trial is a

long-standing issue [Bieganek et al., 2022], and several methods have been introduced to ad-

dress this problem. Given the nature of the enrollment phase of a clinical study, the Poisson

process is the most straightforward statistical tool to model the participants’ arrival process.

To the best of our knowledge, Lee [1983] was the first author to formalize a statistical frame-

work for the forecasting of recruitments in clinical trials using the Poisson distribution. The

underlying assumption needed to use a Poisson process to model recruitments in multicenter

studies is that the sites enroll participants at the same rate, however, in practice, there can

be substantial heterogeneity across centers. To address this shortcoming, Anisimov and co-

authors [2007a, 2007, 2008, 2009a, 2011a] developed the doubly-stochastic Poisson-Gamma

(PG) recruitment model, which adds to the Poisson process a second layer of variability by

introducing a Gamma prior distribution for the center-specific recruitment rates. This ap-

proach has been validated on several data from clinical trials [Anisimov and Fedorov, 2005,

Anisimov, 2009b, Zhang and Huang, 2022] and augmented to allow for the use of the Pareto

distribution in place of the Gamma density [Mijoule et al., 2012], unknown initiation times

[Anisimov, 2009a], breaks in the recruitment process [Minois et al., 2017b], and participants’

drop-out either upon arrival or during the screening period [Anisimov et al., 2022]. Further-

more, Turchetta et al. [2023] introduced a time-dependent extension of the Poisson-Gamma

model whereby the recruitment rates are allowed to vary with time from their initiation up

to the attainment of a plateau point, and the model was validated on recruitment data from

a large cohort study. In fact, the assumption that recruitment rates are constant over time

can be restrictive and is often not met in practice, which motivated the development of a

growing number of time-dependent recruitment models. Zhang and Long [2010] developed a

non-homogenous Poisson process whereby the overall recruitment intensity is modeled via a

cubic B-spline function up to the monitoring time when predictions are estimated, and is as-
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sumed to be constant thereafter. Deng et al. [2017] extended this approach to accommodate

staggered centers’ initiation times and region-specific differences in recruitment rates. Lan

et al. [2019] introduced a simulation-based time-dependent extension to the Poisson-Gamma

model where the recruitment rates are considered constant up to an assumed point in time

and then decay as a negative exponential. This approach was augmented in Urbas et al.

[2022] by including a test for the detection of time-inhomogeneity and different candidate

parametric curves to capture the decay in recruitment intensity.

In practice, statistical approaches to forecast enrollments are rarely used, and deterministic

approaches based on the study investigators’ assumption on the centers’ recruitment rates

are significantly more common [Gkioni et al., 2020]. This raises a series of concerns, such as

the omission of important sources of variability and the well-known propensity of investiga-

tors to elicit overly optimistic recruitment rates, which is a phenomenon known as Lasagna

Law [Lasagna, 1979, Bogin, 2022]. This disconnect between the scientific literature and its

implementation is particularly worrisome in light of the overwhelming evidence which states

that (1) a significant proportion of studies fails to achieve their original sample size target

within the planned time frame or at all [Walters et al., 2017, Jacques et al., 2022], and (2)

poor recruitment is one of the leading causes of trial discontinuation [Kasenda et al., 2014].

While the consequences of the first point may range from the extension of the recruitment

period (and hence a greater financial burden) to the conduct of an underpowered study,

discontinuing a clinical trial raises ethical concerns over the depletion of scientific resources,

since the results of such studies are rarely reported. When Gkioni et al. [2020] surveyed 69

statisticians involved in planning and monitoring the recruitment phase of clinical trials, 90%

stated that they did not use any statistical model, citing the simplicity of a deterministic

model, the non-familiarity with either the available statistical methods or their implemen-

tation, and doubts over the additional value of these methods as the main reasons.

This paper has two main goals:
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1. to illustrate and validate the time-dependent Poisson-Gamma model recently intro-

duced in Turchetta et al. [2023] on recruitment data from randomized controlled clinical

trials, and

2. to provide a practical guide to its implementation via the newly developed tPG R

package.

To validate the model, we obtained recruitment data from two HIV vaccine trials conducted

in Sub-Saharan Africa by the HIV Vaccine Trials Network. Recruitment is particularly

challenging in HIV vaccine studies, as participants face several barriers to entry such as

stigma or discrimination due to participation in an HIV trial and fear of vaccine-induced

HIV infection [Allen et al., 2001, Andrasik et al., 2020].

The paper is structured as follows: Section 2 presents an overview of the time-dependent

Poisson-Gamma model. In Section 3, we validate the model on the recruitment data from the

HIV vaccine trials and compare its predictive performance to the standard Poisson-Gamma

model. In Section 4, we offer an easy to follow tutorial on the functions embedded in the tPG

R package to estimate the model parameters and forecast the recruitment process. Section

5 concludes.

5.2 The time-dependent Poisson-Gamma model

Let C be the number of sites involved in a multicenter clinical trial, Ni(t) the number of

participants enrolled up to time t in center i, N(t) =
∑︁C

i=1Ni(t) the total enrollments at

time t, and ui the center-specific initiation time.

Model overview

According to the time-dependent Poisson-Gamma (tPG) model, the study participants arrive

at each recruitment center independently and according to a non-homogeneous Poisson pro-
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cess with time-dependent rates λi(t). The recruitment rates are assumed to originate from

a Gamma distribution with rate parameter α and shape α/m(ϕϕϕ, t), so that the resulting

mean parameter m(ϕϕϕ, t) depends on time. The main assumption regarding the recruitment

intensity is that at an unknown time point tp, or plateau point, the enrollment rates will

stabilize and be constant until the end of the recruitment period, but up until that point

they are allowed to vary with time. The non-constant portion of log(m(ϕϕϕ, t)) is modelled via

B-splines in order to ensure sufficient flexibility in terms of the number of recruitment scenar-

ios the model is able to capture. Essentially, this creates a ‘buffer zone’ between the center’s

initiation date and tp where the recruitment intensity can have a wide range of behaviors.

Indicating with Λi(t) and Λ(t) the cumulative center-specific and overall recruitment rates, if

we discretize time in a pre-specified time unit, e.g., days, the tPG model can be summarized

as follows:

N(t) ∼ Poisson[Λ(t)],

Λ(t) =
C∑︂
i=1

Λi(t) =
C∑︂
i=1

t−ui+1∑︂
s=1

λi(s),

λi(s)

⎧⎪⎪⎨⎪⎪⎩
∼ Gamma

(︂
α, α

m(ϕϕϕ,s)

)︂
s ≤ tp

= λi(tp) s > tp

where

log(m(ϕϕϕ, t)) =

⎧⎪⎪⎨⎪⎪⎩
∑︁d

k=1 ηkγk(t) t < tp

ηd t ≥ tp,

and ϕϕϕ is a set of parameters that needs to be estimated which includes the B-spline param-

eters η1, . . . , ηd and the plateau point tp, while γ1(t), . . . , γd(t) represent the basis functions,

and d remains to be chosen. Like the standard Poisson-Gamma model, the tPG model is

92



an empirical Bayes approach. As such, once an interim or monitoring time tint is reached,

the parameters α and ϕϕϕ can be estimated from the ongoing trial after computing the like-

lihood function for the number of enrollments. For more details on the computation, see

Turchetta et al. [2023]. Throughout the rest of this paper, we use days as the time unit, but

weeks or months could be valid alternatives depending on the characteristics of the study in

question.

As for the choice of B-spline model, we suggest fitting several candidate models varying the

number and placement of internal knots between the center’s initiation and its stabilization

point. Since that is unknown, the placement can be defined as a function of the estimated

plateau point. The best-fitting model is then selected via the Bayesian information criterion

(BIC) [Schwarz, 1978]. In the case studies analyzed in the Section 5.3, eight candidate mod-

els were fitted at every interim time varying the polynomial degree (quadratic and cubic)

and the placement of one internal knot (none, ˆ︁tp/2, ˆ︁tp/3, ˆ︁tp/4).

Predictions

Once the parameters of the tPG model are estimated and the BIC-preferred model selected,

the parameters are plugged in the distribution of the recruitment rates. The idea is to

include only the enrollment data accrued during the constant recruitment phase into the

distribution of the rates. Hence, the distribution of the individual rates varies depending

on whether the centers have passed the plateau point by the interim time. Let us sort the

centers by initiation date and indicate with C∗ the number of centers that have already

passed this point by the interim time. For these centers, indicating with tiint the number of

days each center has been recruiting until the interim time and with ni(t) the number of

enrollments for center i on day t, the posterior distribution of the recruitment rates at time

tint is
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λi(tint) ∼ Gamma

⎛⎝ˆ︁α +

tiint∑︂
s=ˆ︁tp

ni(s), β(t, ˆ︁ϕϕϕ) + tiint − ˆ︁tp + 1

⎞⎠ , i = 1, ..., C∗,

where β(t,ϕϕϕ) = α/m(ϕϕϕ, t). This distribution is then projected until the end of the trial to

predict the number of additional future enrollments at time T , which will have a Poisson

distribution with cumulative rate Λa
i (T ) = (T − tint)λi(tint), where the superscript a over the

cumulative rate or the number of recruited patients indicates that these quantities refer to the

additional recruitments from the interim time until T rather than the total enrollments of the

trial. For the remaining centers i ∈ {C∗ +1, ..., C}, the distribution of the recruitment rates

at time t is λi(t) ∼ Gamma
(︂ˆ︁α, β(t, ˆ︁ϕϕϕ))︂, and the number of future additional recruitments

at time T is Poisson distributed with cumulative rate

Λa
i (T ) =

ˆ︁tp∧(T−ui+1)∑︂
s=tiint+1

λi(s) + (T − ui − ˆ︁tp + 1)+λi(ˆ︁tp),
where (T − ui − ˆ︁tp + 1)+ = max(0, T − ui − ˆ︁tp + 1).

Finally, summing up these components, it follows that the distribution of total future addi-

tional enrollments at time T , i.e., Na(T ), is Poisson with overall recruitment rate

Λa(T ) =
C∗∑︂
i=1

(T − tint)λi(tint) +
C∑︂

i=C∗+1

ˆ︁tp∧(T−ui+1)∑︂
s=tiint+1

λi(s) +
C∑︂

i=C∗+1

(T − ui − ˆ︁tp + 1)+λi(ˆ︁tp).
In order to make predictions using this model, one could either use Monte Carlo simulations

or rely on the Normal approximation to compute point estimates and credible intervals

(CrIs). Given the efficacy and simplicity of the second route, we prefer the second option. In
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fact, using the basic properties of conditional expectation and variance, it follows that

E[Na(T )] = E{E[Na(T )|Λa(T )]} = E[Λa(T )],

Var[Na(T )] = Var{E[Na(T )|Λa(T )]}+ E{Var[Na(T )|Λa(T )]} = Var[Λa(T )] + E[Λa(T )].

If the target quantity of interest is the remaining time to recruit a desired number of partic-

ipants, the expectation and credible interval for the future enrollments are computed for a

grid of values T > tint and then inverted. Figure 5.4 displays a visual representation of this

process.

Inclusion of covariates

If there are systematic differences in the recruitment intensity across centers which can

be explained by center-specific characteristics such as, for example, the size or region of

the recruitment sites, it might be worth incorporating such differences into the recruitment

model. A straightforward course of action would be to add covariates to the mean parameter

of the Gamma distribution, which would then depend on the center i and take the form

log(mi(ϕϕϕ, t)) =

⎧⎪⎪⎨⎪⎪⎩
∑︁d

k=1 ηkγk(t) +
∑︁r

j=1 xi,jζj t < tp

ηd +
∑︁r

j=1 xi,jζj t ≥ tp,

where ζj represents the coefficient of covariate xj. As more data are accrued, the weight of

the data in the posterior distribution of the rates overshadows the prior parameters, hence

this inclusion of covariates can have an impact on predictions only when a center has not

passed the plateau point or the site has not yet been initiated (i.e., the center has not yet

begun recruiting). However, in our simulations (results not shown), including covariates did

not lead to a predictive improvement if the distribution of covariates is independent of the

initiation times, despite simulating differences in recruitment intensity due to center-specific
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characteristics. The only scenario where such inclusion did lead to a visible improvement is

when the correlation is present, the center-effect is large, and enough centers have not passed

the plateau point or been initiated by the interim time. For example, this situation may

occur if centers in urban areas recruit participants at a higher rate than rural sites and are

also more likely to be initiated later in time. Figure 5.1 depicts an illustrative example of this

scenario. Data were simulated assuming that urban centers enroll participants three times

faster than rural sites. In the first plot, urban and rural centers’ initiation times are random,

whereas in the second one urban sites are more likely to be initiated later in time.

Figure 5.1: Recruitment forecastings in simulated data sets under the time-dependent PG
model. The model with covariates is indicated with tPGc. The + marks represent the
initiation dates for rural (black) and urban (red) centers.

5.3 Forecasting enrollments in two clinical trials from the

HIV Vaccine Trials Network

In this section, we forecast the enrollments in two clinical trials conducted in Sub-Saharan

Africa by the HIV Vaccine Trials Network (HVTN) which seek to evaluate the safety and

efficacy of two HIV vaccine candidates. A counterexample where both the time-dependent
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and standard Poisson-Gamma models fail to capture the observed recruitment progression

is presented in the appendix via the analysis of the Promotion of Breastfeeding Intervention

Trial (PROBIT) data [Kramer et al., 2001].

5.3.1 HVTN 702

The HVTN 702 study (ClinicalTrials.gov identifier: NCT02968849), also known as Uhambo,

was a randomized, double-blind, placebo-controlled, phase 2b–3 trial which sought to evalu-

ate the safety and efficacy of an experimental preventive HIV vaccine regimen consisting of

the ALVAC-HIV vaccine + Bivalent Subtype C gp120 protein adjuvanted with MF59 [Gray

et al., 2021]. The trial was sponsored by the National Institute of Allergy and Infectious Dis-

eases (NIAID) and it was conducted in South Africa across 14 recruitment centers. Between

October 2016 and June 2019, 5407 healthy adults were randomized in a 1:1 ratio to the

vaccine regimen or placebo. The participants were monitored over time, with the primary

outcome being the occurrence of HIV-1 infection (the most common type of HIV) within

24 months from randomization. Unfortunately, although the planned sample size of 5400

participants had been met, vaccinations in the trial were halted in January 2020 when an

interim analysis met the pre-specified criteria for non-efficacy. After inspecting the overall

and center-specific recruitment progression, we noticed that there were three yearly breaks

during the December holiday period. To adjust for this, we removed 10 days between the

end of December and start of January each year from the recruitment data, hence the num-

ber of days in either the observed process or predictions has to be interpreted as ‘effective

recruitment days’. After this adjustment, the total number of days of the recruitment period

amounts to 944.

To validate the time-dependent Poisson-Gamma model on the recruitment data from this

clinical trial, we set four interim times at 250, 400, 550, and 700 days after the initiation

of the first center. At each monitoring time, the data collected up to that point are used

to estimate the model parameters, and the resulting predictions on future enrollments and
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the time needed to achieve the target sample size are compared to the observed recruitment

process and the results obtained under the standard PG model. The results are shown in

Table 5.1 and Figure 5.2.

Table 5.1: Estimated time (in effective days) to achieve the final sample size (5407) and
predicted enrollments at the end of the observed recruitment period (day 944) in the HVTN
702 trial under the time-dependent and standard Poisson-Gamma models for different interim
times. The number of activated centers Cact and percentage of participants already recruited
by the time predictions are computed are also shown.

tint % recruited Cact Time (95% CrI) Recruitments (95% CrI)

tPG 250 18% 13 945 (725, 1781) 5405 (3133, 7677)
400 40% 13 763 (649, 1238) 7094 (4378, 9809)
550 59% 13 911 (803, 1317) 5612 (4478, 6746)
700 79% 14 865 (825, 974) 5952 (5309, 6594)

PG 250 18% 13 1018 (969, 1074) 4968 (4686, 5249)
400 40% 13 857 (837, 880) 6036 (5858, 6214)
550 59% 13 863 (847, 880) 5989 (5850, 6128)
700 79% 14 863 (852, 874) 5975 (5879, 6071)
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Figure 5.2: Enrollment predictions in the HVTN 702 study under the time-dependent and
standard PG models compared to the observed recruitments at four interim times (tint =
250, 400, 550, and 700 days). The shaded areas indicate the respective 95% credible intervals
and the + marks represent the centers’ initiation dates.
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As we can see, for any interim time considered, the most notable difference between the

standard and time-dependent Poisson-Gamma model is in the width of the credible intervals

(CrIs). The standard PG model delivers CrIs that are overly narrow and fail to include

the observed recruitments. On the other hand, the time-dependent PG model leads to

much larger and realistic credible intervals that do include the observed recruitment process,

whether in terms of the total enrollments at the end of the trial or the estimated time to

achieve the desired sample size. Interestingly, under the tPG model, while the width of

the credible intervals of the remaining time to complete the enrollment phase decreases as

the monitoring time moves forward, the CrI of the total enrollments at the end of the trial

increases from the first to the second interim time. Albeit counterintuitive, this is possible

when the estimated plateau point moves forward in time as more data are accrued. This

was the case for this study, as the tPG model estimated stabilization points very close to

the interim time, indicating that the recruitment intensity was indeed non-constant for the

majority of the enrollment phase. Additionally, since several candidate models were fitted at

each interim time, the model selected by the BIC varied at the different time points. More

details on the estimated parameters are laid out in the appendix.

In terms of point estimates, the differences between the two models are less evident. Com-

pared to the PG model, the tPG approach leads to point estimates that are closer to the

observed recruitments for the first and second interim times, further away when tint = 400,

and almost identical for tint = 750.

5.3.2 HVTN 705

The HVTN 705 trial (ClinicalTrials.gov identifier: NCT03060629), also known as Imbokodo,

was a randomized, double-blind, placebo-controlled, phase 2b trial sponsored by Janssen

Vaccines & Prevention B.V. and conducted in five Sub-Saharan African countries [Clinical-

Trials.gov]. The goal of the trial was to evaluate the safety and efficacy of a novel vaccine

regimen (Ad26.Mos4.HIV and aluminum-phosphate adjuvanted Clade C gp140) in prevent-
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ing HIV-1 infections in women. In the course of 575 days from October 2017 to May 2019,

2637 HIV-seronegative women between the age of 18 and 35 were enrolled in 23 sites spread

across South Africa, Mozambique, Malawi, Zimbabwe, and Zambia. The primary endpoint

of the study was the number of HIV-1 infections diagnosed between 7 and 24 months after

the administration of the first vaccination dose. Unfortunately, this study failed to show a

significant protective effect of the candidate vaccine regimen [Kenny et al., 2022]. Similarly

to HVTN 702, this study was characterized by a visible slowdown in recruitment around the

December holiday period. However, in this case some centers continued enrolling during this

period, hence we did not remove those days. Given the shorter duration of the recruitment

process, we set the monitoring times at 150, 300, and 450 days after the initiation of the first

center. The results are shown in Table 5.2 and Figure 5.3.

Table 5.2: Estimated time (in days) to achieve the final sample size (2637) and predicted
enrollments at the end of the observed recruitment period (day 575) in the HVTN 705 trial
under the time-dependent and standard Poisson-Gamma models for different interim times.
The number of activated centers Cact and percentage of participants already recruited by the
time predictions are computed are also shown.

tint % recruited Cact Time (95% CrI) Recruitments (95% CrI)

tPG 150 5% 7 603 (511, 824) 2415 (1489, 3340)
300 22% 13 573 (536, 635) 2664 (2224, 3103)
450 57% 20 595 (572, 632) 2475 (2277, 2673)

PG 150 5% 7 770 (698, 872) 1649 (1387, 1911)
300 22% 13 659 (630, 695) 2090 (1934, 2247)
450 57% 20 622 (607, 641) 2318 (2233, 2402)

101



Figure 5.3: Enrollment predictions in the HVTN 705 study under the time-dependent and
standard PG models compared to the observed recruitments at three interim times (tint =
150, 300, and 450 days). The shaded areas indicate the respective 95% credible intervals and
the + marks represent the centers’ initiation dates.
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Similarly to the previous case study, the width of the credible intervals is vastly different

under the two models. The CrIs estimated by the tPG model cover the observed recruitments

over time and the time needed to achieve the target sample size. However, here the point

estimates present significant differences as well. While in the forecastings of enrollments in

the HVTN 702 trial the credible intervals under the tPG model entirely contain the CrIs

estimated by the standard PG model (see Figure 5.2), in this case there is more separation,

especially for the second interim time. More specifically, the forecasted recruitment process

under the tPG model is remarkably close to the observed enrollments when tint is equal to

150 and 300 days. This is quite an impressive result since by those interim times only 5%

and 22% of the total study participants had already been recruited, and only 7 centers had

been initiated after 150 days. Point estimates at the last interim time are slightly more off

target, but the credible intervals still include the observed recruitment process.

Compared to HVTN 702, the model estimates are more stable as well. For both the first two

interim times, the plateau point is estimated between 101 and 111 days following the center’s

initiation date. However, for tint = 450, this point is estimated closer to the monitoring time

(day 350).

5.4 Practical guide to the tPG R package

The analysis of the recruitment data from the HIV trials in the previous section was carried

out via the R package tPG, which is available on GitHub. In this section, we show through

simulated data the main functions embedded in the package which are needed to forecast

enrollments and, consequently, estimate the remaining time to achieve a target sample size.

The first step is the loading of the package:

,
1 library(devtools)
2 install_github("aturchetta/tPG")
3 library(tPG)
4 set.seed(1)
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Simulate data

Let us generate a synthetic data set. The function sim_rec allows the user to simulate

recruitment data according to the generative process used in Turchetta et al. [2023] to validate

the tPG model in a simulation study. For each center, the daily enrollments are sampled

from a Poisson distribution with rate ˜︁λi(t), where ˜︁λi(t) is a draw from

λi(t) ∼ Gamma
(︃
α,

α

f q(t)

)︃
, i = 1, . . . , C, t = 1, . . . , tp

and ˜︁λi(t) = ˜︁λi(tp) for t > tp. The mean parameter f q(t) representing the average recruitment

rate over time can take the form of a scaled and shifted CDF or PDF of a Gamma random

variable with shape parameter p1 and rate p2, i.e.,

f 1(x) = c1 + c2
pp12

Γ(p1)
e−p2xxp1−1,

f 2(x) = c1 + c2
pp12

Γ(p1)

∫︂ x

0

e−p2uup1−1du.

Note that the choice of the Gamma distribution was made in light of its flexibility in gen-

erating different recruitment curves, and the use of its CDF function to simulate common

recruitment behaviors has already been adopted in the literature for the validation of time-

dependent recruitment models (e.g., Zhang and Long [2010] and Deng et al. [2017]). However,

the mean parameter f q(t) is estimated via the B-spline model, hence this distribution is not

to be confused with the Gamma distribution embedded into the tPG model.

The sim_rec function allows for the choice of all of the aforementioned simulation param-

eters. For the illustrative purposes of this example, we generate a data set similarly to the

second recruitment scenario analyzed in Turchetta et al. [2023]: this entails a slow start in

the recruitment intensity following the center’s initiation date which then accelerates until

the attainment of a plateau after 150 days. This recruitment progression is described by

the CDF of the Gamma random variable (selected as type = "cdf" in the R function) with
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shape and rate parameters equal to 10 and 0.15 respectively, and the remaining parameters

are c1 = 0.1, c2 = 0.3, α = 1, and tp = 150. We simulate data for 30 centers up to day

200 (Tmax = 200), which we can consider as the interim time of the analysis. The initiation

dates can be either random or fixed. In the first case, the parameter s_time requires a vector

of initiation times from which to sample the dates. The initiation time of the first center

is fixed to 1. Otherwise, one can specify a vector of C − 1 fixed initiation times and select

random_init = F. The following line of code simulates data according to the aforementioned

parameters and random initiation times between day 1 and 100:

,
1 > sim_data <- sim_rec(alpha = 1, p1 = 10, p2 = 0.15, c2 = 0.3, c1 = 0.1,
2 type = "cdf", t_p = 150, Tmax = 200, s_time = 1:100, C_act = 30, random_init = T)

This function returns a list with two elements: the vector of initiation times and a list where

each element contains the recruitment data of one center formatted as a data frame with two

columns; the first column is the grid of recruitment days for the concerned center, and the

second column indicates the respective number of enrollments on that day. Note that every

recruitment day must be included even if no enrollments were registered on that day:

,
1 > sim_data$data[[1]][19:24,]
2 t count
3 19 19 0
4 20 20 1
5 21 21 0
6 22 22 0
7 23 23 1
8 24 24 0

In our experience with the analysis of recruitment data from clinical studies, the data are

often provided in two data sets: one containing the enrollment date for each participant

along with the respective center and one containing the information on the recruitment sites

which includes their activation date. Since the process of transitioning from one format to
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the other can be tedious, the supporting information includes an R code example where this

process is laid out.

Model fitting

Once the data are formatted correctly, they can be fed to the tPG_est function. This

function fits several B-spline models varying the polynomial degree and number of internal

knots as well as their placement, and automatically selects the best-fitting model via the

BIC. Currently, the function can accommodate only one internal knot between the center’s

initiation and the plateau point. Future versions of this package will allow for multiple knots.

The user can choose a vector of candidate degree values through the parameter degree and

knot placements via the parameter den as a function of the estimated plateau point, that

is ˆ︁tp/den. The likelihood function is optimized via the Bound Optimization BY Quadratic

Approximation (BOBYQA) algorithm available in the nloptr package [Powell, 2009, Ypma

et al., 2018]. Given the computational complexity, it is recommended to optimize the same

likelihood multiple times using different initial values for the plateau point parameter tp via

the argument tp_start. For each combination of polynomial degree and knot placement, the

tPG_est function will optimize the likelihood for each starting point and save the parameter

estimates which result in the highest likelihood value. Setting the interim time at t_int=200,

the following code estimates six models varying the polynomial degree (quadratic and cubic)

and the internal knot placement (none, ˆ︁tp/2, and ˆ︁tp/3). The candidate initial values for tp

are 20, 60, 100, and 140 days.

,
1 > est <- tPG_est(data = sim_data$data, t_int = 200 , tp_start = c(20, 60, 100,

140), degree = c(2, 3), den = c(NA, 2, 3) )

This function returns multiple objects, including the estimates of the parameters under each

model and the best-fitting model selected via BIC:

,
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1 > est$best_model
2 $`Chosen model`
3 [1] "degree: 2 , no internal knots"
4

5 $Parameters
6 alpha t_p spline 1 spline 2 spline 3
7 [1,] 1.185418 139.3013 -2.233401 -3.988013 -0.6559678
8

9 $`Degree and knot`
10 [1] 2 NA

The above output indicates that the simplest model with second degree polynomial and no

internal knot was selected. Additionally, the respective model estimates are returned, which

indicate that the plateau point is estimated at 139 days.

Predictions

The tPG_pred function computes point estimates and credible intervals for future enroll-

ments and the required time to achieve the targeted sample size. The function requires the

output from the tPG_est function, the initiation dates of the centers through the argument

start_init, and the future point in time or grid of time points for which predictions are

computed through the tpred argument. The level of the credible interval can be set via the

level argument. For example, if we are interested in the forecasted recruitments at day

500, the following line of code will deliver the estimate of the additional enrollments from

the interim time (day 200) to day 500:

,
1 > pred_1 <- tPG_pred(est = est, start_init = sim_data$start, tpred = 500, level =

0.95)
2 > pred$n_pred
3 m ci_l ci_u t
4 1 4575.471 3557.218 5593.723 500

If we are interested in the estimated time to achieve the desired sample size, we need to

specify that through the argument N and input a grid of time points for tpred. For example,
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the estimated remaining time to recruit a total of 4000 participants is 253 days, with a 95%

credible interval of [208, 325] days:

,
1 > pred_2 <- tPG_pred(est = est, start_init = sim_data$start,
2 + N=5000, tpred = 201:600, level = 0.95)
3 > pred_2$T_pred
4 [1] 253 208 325

In addition, the user can incorporate the opening of new centers by specifying their initiation

date through the argument start_add. Say we want to evaluate the effect of the opening

of 10 centers which will be initiated between day 255 and 300 every five days. Then the

estimated remaining time decreases to 227 days (95% CrI: [195, 272]):

,
1 > pred_3 <- tPG_pred(est= est, start_init= sim_data$start, N=5000, tpred = 201:500,
2 + start_add = seq(255,300, length.out = 10) , level = 0.95)
3 > pred_3$T_pred
4 [1] 227 195 272

Finally, the results can be plotted via the tPG_plot function. The main arguments are

pred, which requires the output from tPG_pred, and print_T, which controls whether the

point estimate and CrIs for the time to achieve the sample size are printed. The remaining

parameters are derivative of the standard plot function. Figure 5.4 displays the plots of

the recruitment predictions with and without the opening of new centers generated via the

following code:

,
1 par(mfrow=c(2,1))
2 tPG_plot(pred = pred_2, xlim=c(0,550), ylim=c(0,5500), print_T = T, xlab = "Days",

ylab = "Enrollments",
3 main = "Forecasted recruitments")
4 tPG_plot(pred = pred_3, xlim=c(0,550), ylim=c(0,5500), print_T = T, xlab = "Days",

ylab = "Enrollments",
5 main = "Forecasted recruitments with additional centers")
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Figure 5.4: Plots generated by tPG_plot. The black solid line represents the observed
recruitment up to the interim time and the red lines represent the point estimate (solid line)
and credible intervals (dotted lines) of the predicted enrollments. The vertical lines indicate
the point estimates and CrI limits of the time to achieve the target sample size (horizontal
line). The + signs represent the centers’ initiation date.

Inclusion of covariates

If the user wishes to include center-specific covariates, the functions tPG_est_cov and

tPG_pred_cov can be used to estimate parameters and compute predictions. They require

the same arguments as the regular estimating and prediction functions plus the X argument,

which is a matrix where each column is a covariate.
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5.5 Discussion

In this paper, we have validated the time-dependent Poisson-Gamma model on two re-

cruitment data sets from randomized controlled trials and laid out a guide to its practical

implementation in R. After outlining the model and its assumptions, we have forecasted the

recruitment progression of two HIV vaccine trials conducted in Sub-Saharan Africa by the

HIV Vaccine Trials Network and compared its performance to the standard Poisson-Gamma

model.

The proposed model generally led to less biased point estimates and, crucially, to wider and

more realistic credible intervals that contain the observed recruitment process, both in terms

of predicted future enrollments and remaining time to achieve the target sample size. An

analogous difference in CrIs’ width was already observed in Zhang and Huang [2022] in the

prediction of the recruitment process in two oncology trials, where the Poisson-Gamma model

was compared to the Nonhomogenous Poisson Process (NHPP) model introduced in Zhang

and Long [2010], another time-dependent recruitment model. In those trials, the PG model

did achieve a good performance, and even outperformed the more complex NHPP model.

The authors argued that this is a reasonable outcome in oncology trials, where patients arrive

to the recruitment centers at a generally stable rate. We observed a similar pattern in The

Promotion of Breastfeeding Intervention Trial (PROBIT), a randomized clinical trial where

the participants were mother-infant pairs [Kramer et al., 2001]. Since the effective date of

enrollment was the birth of the newborn, the recruitments were stable over time. The tPG

model estimated the plateau point close to the initiation of the center, hence its predictions

were very close to the ones of the standard PG model, although both methodologies failed

to accurately capture the recruitment process. The results are presented in the appendix.

However, this constant-intensity assumption was not met in the two HIV vaccine trials

analyzed in this paper, where the PG model led to biased and overly narrow credible intervals

that did not contain the observed recruitment process, giving a false sense of precision. On
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the other hand, while the tPG model led to a positive performance in terms of forecastings

in both trials, some limitations need to be discussed. The assumption that by the interim

time enough centers have passed the stabilization point to allow for its estimation might

not be met. A warning sign that this might be the case is when the plateau point is

estimated close to the monitoring time. Additionally, it is possible that perturbations in the

recruitment progression following the interim time lead to a different estimated stabilization

point when more data are accrued, or the selection of a different B-spline model. This

aspect may be exacerbated by the presence of breaks in recruitment. While it has been

proven in Minois et al. [2017b] that systematic breaks are not an issue in the standard PG

model, they represent a hurdle in the time-dependent model, as they it make more difficult

for the model to accurately estimate the stabilization point. This might partially explain

why the estimated plateau point moved forward in time along with the monitoring time of

the analysis in HVTN 702 and in the last monitoring time of HVTN 705, which came soon

after the December holiday period. We made an adjustment in HVTN 702 by removing

some days in the December break from the data set, however this is a simple solution that

does not account for possible upticks in recruitment before and after the break, and it was

not applicable to HVTN 705 since some centers did not stop recruiting. A formal inclusion

of systematic breaks or slowdowns in recruitment into the time-dependent PG model is

an interesting avenue for future research. However, it should be noted that this drawback

in the current model formulation does not necessarily lead to more biased estimates, but

rather to larger credible intervals since fewer data points are incorporated into the posterior

distribution of the recruitment rates.

Finally, we provided a tutorial on the newly developed tPG R package, which implements the

necessary functions for the estimation, prediction, and basic visualization of the recruitment

process via the time-dependent Poisson-Gamma model. There are some improvements that

need to be implemented in the package, such as allowing for more than one internal knot

in the B-spline model and including new functions to ease the initial data manipulation
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step. Hopefully, this paper will serve as a step forward in facilitating the adoption and

implementation of recruitment modeling in practice.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, I have illustrated the development of Bayesian approaches that can aid the

trialist in challenging aspects of the planning and monitoring phases of clinical studies.

In the first manuscript presented in Chapter 3, I have highlighted some difficulties in de-

termining the appropriate sample size for a SMART study which guarantees an adequate

level of power, especially in relation to the uncertainty and plausibility around the assump-

tions and specification of key design parameters at the pre-experimental stage. Building on

the work of Oetting et al. [2011], by leveraging data from pilot trials, I developed a flexi-

ble and robust sample size methodology within the Bayesian framework for sizing SMART

studies in order to compare two adaptive treatment strategies that start with a different

intervention. With respect to the standard frequentist calculations introduced in Oetting

et al. [2011], the proposed methodology has numerous advantages. The implementation of

the ‘two priors’ approach in the sample size determination allows researchers to incorporate

pre-trial knowledge via the analysis prior and, most importantly, uncertainty around the

minimal detectable difference via the design prior. This formulation leads to a methodology
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that is not affected by the local optimality issue, which is a common problem in frequentist

sample size determination where a single value for the effect of treatment (or, in this case,

of the treatment strategy) under the alternative hypothesis must be posited to power the

study. Even slight deviations from this quantity may lead to a substantial decrease in the

power of the study. This issue is particularly problematic when the information on the ef-

fects of the treatments being compared is limited. In the case of SMARTs, this problem is

exacerbated, as the information regarding treatment strategies from previous studies is even

more challenging to obtain. Additionally, with respect to standard RCTs, the sample size

determination for SMARTs necessitates the elicitation of an additional parameter, which is

the probability of response to the initial treatments. It has been argued that the elicitation

of these design parameters can be informed by a pilot SMART [Almirall et al., 2012]. How-

ever, pilot SMARTs are generally not sized with the purpose of delivering precise estimates

of these quantities, which, given the numerous treatment paths a participant can take in a

SMART, might be based on a very small number of subjects. A precision-based approach

for sizing pilot SMARTs in order to confine the estimated marginal mean outcome of a treat-

ment strategy within a pre-specified margin of error has been proposed [Yan et al., 2021].

However, while this approach can lead to a more informed decision regarding the difference

between the effects of two treatment strategies, the local optimality issue remains, and the

approach does not address the precision of the estimates of the strategies’ standard devia-

tion needed to calculate the standardized effect size required to size a full-scale SMART. By

eliciting a prior distribution on the minimal detectable difference, the approach that I put

forward in Chapter 3 directly takes into account the uncertainty around the effects of the

treatment strategies being compared, leading to a more robust methodology. Additionally,

the information gained from the pilot study or external sources can be incorporated into the

analysis stage via the analysis prior.

Another important advantage of the proposed methodology is that it does not rely on the as-

sumptions regarding the conditional variance of the outcome and the intermediate response
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rates to initial treatments. In fact, in the frequentist sample size calculations, it is assumed

that the variability of the outcome around the strategy mean for both responders and non-

responders to the first intervention is not greater than the variance of the strategy mean.

This assumption is quite abstract, but it is needed to avoid the specification of the variance

of the estimated strategy means, as it leads to a sample size formula that only depends on

the standardized effect size and response rates to the initial treatments, which are assumed

to be equal. In practice, I found that this assumption was rarely exactly met for both re-

sponders and non-responders, and the greater the difference in variability between the two

groups, the more the departure from the assumption weighed on the performance of the fre-

quentist sample size estimates. In the proposed Bayesian approach, we take a different route

by leveraging data from the pilot study. The use of crude estimates from pilot studies of the

variance components for the purpose of sizing a full-scale trial has been widely criticized, as

the estimates can be unreliable and lead to underpowered studies. To avoid this drawback

and take into account the uncertainty around these estimates, the approach put forward in

the first manuscript entails the estimation of a posterior distribution of the variance com-

ponents based on the pilot data. This distribution is then used to marginalize the Bayesian

power function, achieving a marginal power function that does not depend on either the

variance of the strategy means or the probability of response to initial treatments. I have ex-

amined the performance of this approach compared to the standard frequentist methodology

in a simulation study that included different scenarios and a wide range of degrees of model

misspecification. At the expense of a generally higher sample size, the results demonstrate

that the proposed approach was more robust to deviations from the posited standardized

mean difference/minimal detectable difference, and it was not affected by the violation of

the frequentist assumption on the conditional variance of the outcome. Moreover, while the

approach is designed for continuous outcomes, the simulation study showed that the Normal

approximation for binary outcomes led to the same level of performance in the scenarios

we considered. We implemented our approach to estimate the sample size of a full-scale
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SMART, namely the Internet-Based Adaptive Stress Management SMART, using data from

its pilot study conducted in two Canadian provinces. Finally, the supplementary material

illustrates how to implement the proposed sample size approach via the bayesSMARTsize R

package accessible on GitHub.

In the second and third manuscripts, I focused on the monitoring phase of multicenter clinical

studies, developing a Bayesian approach to forecast the recruitments of an ongoing study. In

Section 2.4, I reviewed the approaches introduced for this task and their limitations. In the

second manuscript presented in Chapter 4, I introduced a novel methodology for forecast-

ing recruitments as a time-dependent extension of the Poisson-Gamma model developed by

Anisimov and Fedorov [2007a, 2007b]. In fact, although the PG method has been validated

on several data sets from real clinical trials, its assumption that the centers’ enrollment rates

remain constant throughout the recruitment process is often not met in practice. The pro-

posed time-dependent Poisson-Gamma model alleviates this restriction by allowing the rates

to vary with time until the attainment of a plateau at an unknown time point. More specif-

ically, the centers’ recruitment rates are assumed to originate from a Gamma distribution

whose log-scaled mean parameter is modelled via B-splines. Since the proposed model is an

empirical Bayes method, the model’s parameters are estimated via the likelihood function

using the recruitment data collected from the ongoing study and plugged into the distri-

bution of the recruitment rates. The model was first assessed in a simulation study for a

wide range of recruitment scenarios comparing its predictive performance to the standard

PG model. In settings where the recruitment intensity was assumed to be time-dependent,

it is unsurprising that the proposed approach outperformed the PG model. However, in

the setting where recruitment rates were constant over time, the two approaches led to a

comparable performance, suggesting that the proposed recruitment model can be framed

as a time-dependent generalization of the standard PG model. Finally, both models were

implemented in a case study to forecast recruitments in the Canadian Co-infection Cohort

study, an ongoing prospective observational study that encompasses 19 recruitment sites
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across Canada. In this study, the centers generally experienced a fast start in recruitments,

which slowed down with time. Since the standard Poisson-Gamma model does not take into

account this inhomogeneity, the resulting recruitment predictions were upwardly biased. On

the other hand, the proposed time-dependent model was able to adjust for this drawback

by estimating the rates to be constant only after 110 weeks following the centers’ opening,

delivering significantly more accurate forecastings.

In the third manuscript presented in Chapter 5, the time-dependent Poisson-Gamma model

was further validated on the recruitment data from two HIV clinical trials to show the ap-

plicability of the proposed approach in the context of randomized controlled trials. The two

trials were conducted in multiple Sub-Saharan African countries, and they both sought to

evaluate the safety and efficacy of two vaccine candidates in preventing HIV infections. I

demonstrated that the time-dependent approach delivered accurate predictions outperform-

ing the standard Poisson-Gamma model. In addition to the difference in point estimates,

these two case studies highlighted an important difference between the two approaches in

terms of the width of the resulting credible intervals. By assuming constant recruitment

rates over time, the standard Poisson-Gamma model includes the entirety of the accrued

enrollment data in the posterior distribution of the rates. However, if this assumption is not

met, not only the point estimates are biased, but the credible intervals are overly narrow.

On the other hand, the time-dependent Poisson-Gamma model incorporates into the distri-

bution of the rates only the recruitment data collected after the stabilization point, whereas

the previous enrollments are solely used to estimate the model’s parameters. This approach

generates credible intervals that are generally wider and more realistic. This difference be-

tween approaches is evident in both of the case studies analyzed in this manuscript.

A secondary aim of the manuscript was to illustrate a step-by-step guide on how to im-

plement the proposed model to facilitate its adoption by statisticians and investigators. In

fact, while the body of literature on statistical methods for forecasting enrollments in clin-

ical studies has been growing in recent years, these approaches are rarely implemented in
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practice. Therefore, Chapter 5 includes a tutorial on the R package tPG, which includes the

necessary functions for the estimation, prediction, and basic visualization of the recruitment

process via the time-dependent Poisson-Gamma model.

6.2 Limitations and future work

Some limitations of the methodologies developed in this thesis need to be discussed.

The sample size approach for SMART studies introduced in the first manuscript relies on

the availability of pilot data to estimate the posterior distribution of the relevant variance

components. While full-scale SMARTs are often preceded by a pilot study to assess the fea-

sibility of the study, this might not always be the case. In the discussion section of Chapter

3, I proposed a simulation-based algorithm to overcome the lack of pilot data, but further

work is needed to assess its plausibility, as it requires the specification of several parameters

to generate the simulated data. Furthermore, the use of pilot data to estimate the posterior

distribution of the variance components in order to marginalize the power function for the

full-scale trial implies that the sample size is a random variable. The simulation study of

this manuscript showed that the variability in sample size estimates across data replications

can be significant. The main driver of this variability is the small size of the pilot studies.

A precision-based approach for sizing pilot SMARTs was introduced in Yan et al. [2021].

Although this approach targets the precision of the estimated mean outcome of a treatment

strategy, it would be an interesting avenue for future research to develop an approach that

targets the accuracy of the variance of the estimated strategy mean, which would ensure a

higher degree of consistency in the sample size determination of the full-scale trial.

Furthermore, the simulation and case studies illustrated in the first manuscript showed the

importance of the choice of hyperparameters for the design and analysis prior distributions,

as the estimated sample size varied significantly across the different choices. While this level

of flexibility is an advantage with respect to the frequentist methodology, a certain degree of
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subjectivity is often needed to select these hyperparameters. In the manuscript, I presented

the sensitivity of the sample size estimate across several combinations of hyperparameters,

however their selection was indeed subjective. The Bayesian literature offers several ap-

proaches to select appropriate parameters, especially in regard to the analysis prior since it

can formally incorporate knowledge from pilot data or external studies. It can be attractive

to attribute a large weight to this pre-trial information by setting a low value for the variance

of the analysis prior, as this could potentially result in a significant reduction in sample size.

However, one must ensure that this choice is not overly influential on the final results of

the study. A more rigorous approach to incorporate pre-trial knowledge in the context of

SMART studies could be further explored.

The proposed sample size methodology relies on the postulation of a minimal detectable dif-

ference between treatment strategies instead of the standardized effect size. Although this

can be an advantage in terms of interpretability, it is also a limitation, as there are instances

where the standardized effect size might be preferable.

Finally, our approach targeted the comparison of two strategies that start with a different

intervention in a two-stage SMART design where responders to the first treatment are not

re-randomized. As discussed in the literature review in Chapter 2, this is the most common

SMART design. However, in future work, the methodology could be extended in various

directions varying the number of stages and treatments available to responders and allowing

for the comparison of strategies which start with the same intervention, which would require

an adjustment for the correlation between strategies. Furthermore, this approach was de-

veloped for SMARTs with a continuous final outcome. The simulation study showed that

the Normal approximation for binary outcomes is satisfactory, however, the ad-hoc exten-

sion of this approach to binary and other types of outcomes is a possible avenue for further

development.

I now turn to some limitations regarding the time-dependent Poisson-Gamma model intro-

duced in the second manuscript. This approach targets the specific case where recruitment
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rates vary with time until a stabilization point, and the recruitment intensity is constant

thereafter. This assumption held true in the three case studies presented in Chapters 4

and 5, and it has also been proposed in other publications. However, it might be unreal-

istic for other studies. In the supplementary material of the third manuscript (Appendix

C), I presented a counterexample, the PROBIT study, where the proposed method did not

deliver adequate predictions. More specifically, the recruitment rates appeared to be con-

stant, which led the time-dependent approach to estimate the plateau point close to the

center’s opening, yielding nearly the same predictions as those produced under the standard

PG model. However, both approaches failed to accurately capture the recruitment process.

In Chapter 2, I reviewed several time-dependent models that entail different assumptions

regarding the recruitment progression over time. Since the forecasting of recruitments is

essentially an extrapolation problem, the method to be implemented should depend on the

recruitment expectations or historical data. In addition, it would be useful to implement

multiple approaches and assess the sensitivity in forecastings under the different underlying

assumptions.

Moreover, the proposed method relies on the availability of recruitment data past the sta-

bilization point for an adequate number of centers. The simulation study in the second

manuscript highlighted that the model struggled to achieve good predictive properties for

the more elaborate recruitment curves when a sizable number of centers has not passed this

point. The propensity of the approach to select more complex B-spline models via the BIC

in these scenarios suggests that increasing the number of candidate models by varying the

number and placement of internal knots might lead to a better performance. However, this

should be assessed in further simulation studies. The assumption itself that by the interim

time when the predictions are computed at least one center has passed the plateau point

might not be met. In this case, the plateau point is likely to be estimated close to the interim

time, and the resulting forecastings are produced under the assumption that the recruitment

rates will be constant from that point onward. Additionally, the plateau point is assumed to
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be the same across centers, which is an assumption that could be relaxed in future work by

assuming its dependence on center-specific covariates. It is also important to note that the

reliance on the recruitment data from the ongoing study makes the approach unusable for

predicting enrollments in the planning stage of the study. It would be an interesting project

to extend this approach to the pre-trial phase by leveraging historical data similarly to the

approach developed by Minois et al. [2017a] for the standard Poisson-Gamma model.

Finally, the two case studies analyzed in Chapter 5 highlighted the issue of breaks during the

recruitment period. Minois et al. [2017b] analyzed this problem in the context of constant

recruitment rates, concluding that systematic breaks in recruitment did not affect the accu-

racy of the standard PG model. However, in time-dependent models, this is a more relevant

problem, as the breaks influence the estimation of the stabilization point. In the manuscript,

I have adjusted the model for the case study where the recruitment process was completely

halted during the December holiday period by removing these days from the data set. This

is a simplistic solution, and the inclusion of systematic recruitment breaks or slowdowns into

the proposed approach could be addressed in future research.

6.3 Concluding remarks

This thesis focused on the development of Bayesian tools which address challenges in the

design and monitoring phases of clinical trials. I have introduced a Bayesian approach that

relies on minimal assumptions to determine the sample size of SMART studies and developed

a flexible approach to monitor recruitments in multicenter trials. Both methodologies were

assessed in extensive simulation studies and validated in multiple case studies, which showed

their practical applicability. Additionally, to facilitate their adoption, this thesis includes

step-by-step tutorials on the R packages developed to implement these approaches.

121



APPENDIX

122



APPENDIX A

Appendix to Manuscript 1

Web Appendix A: steps for inequlity 3.4

Since

θ|Vn ∼ N
(︃
τ 2θ0 + nσ2

0Vn

τ 2 + nσ2
0

,

(︃
1

σ2
0

+
n

τ 2

)︃−1
)︄
,

it follows that

Z =

(︃
θ − τ 2θ0 + nσ2

0Vn

τ 2 + nσ2
0

)︃√︄
1

σ2
0

+
n

τ 2

⃓⃓⃓
Vn ∼ N (0, 1).
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Therefore,

Prπ(·|Vn)(θ > 0) ≥ 1− ϵ

⇐⇒ Prπ(·|Vn)

(︄
Z > −τ 2θ0 + nσ2

0Vn

τ 2 + nσ2
0

√︄
1

σ2
0

+
n

τ 2

)︄
≥ 1− ϵ

⇐⇒ 1− Φ

(︄
−τ 2θ0 + nσ2

0Vn

τ 2 + nσ2
0

√︄
1

σ2
0

+
n

τ 2

)︄
≥ 1− ϵ

⇐⇒ Φ

(︄
−τ 2θ0 + nσ2

0Vn

τ 2 + nσ2
0

√︄
1

σ2
0

+
n

τ 2

)︄
≤ ϵ

⇐⇒ − τ 2θ0 + nσ2
0Vn

τ 2 + nσ2
0

√︄
1

σ2
0

+
n

τ 2
≤ zϵ

⇐⇒ Vn ≥ −zϵτ
√
τ 2 + nσ0

nσ0

− θ0τ

nσ2
0

.

Web Appendix B: data generating mechanism

In this section, we outline the data generating mechanism that was employed for the sim-

ulation study analyzed in the paper. To mimic the common practice in SMART studies

of dichotomizing continuous outcomes to identify responders and non-responders, binary

outcomes are generated by dichotomizing a draw from a Normal distribution using the ap-

propriate quantile z so as to achieve the expected response rates. These continuous latent

outcomes are indicated with R∗ and Y ∗, where the former denotes the sample from the

Normal distribution employed to generate the intermediate outcome R, whereas the latter is

used to generate the final outcome Y in the binary outcome scenarios. Finally, p∗a1 and p∗a1,a2

indicate the misspecified response rates to the first and second stage intervention respectively

– the latter of which is only relevant in the binary outcome scenarios – and TN indicates

the truncated Normal random variable where the four parameters are mean, variance, and

lower and upper truncation limits. The data generating algorithm is outlined below.

124



Algorithm 1: Data generating mechanism

p∗a1 ∼ TN(pa1 , σ
2, 0, 1)

if Y is binary then
p∗a1,a2 ∼ TN(pa1,a2 , σ

2, 0, 1)

for i = 1, . . . , n do

1) A1 = a1 ∼ Bern(0.5)

2) R∗ ∼ N (0, 1)

3) if R∗ < zp∗a1 then
R = 1

Pr(A2 = a1|R = 1)=1
else

R = 0

A2 = a2|R = 0 ∼ Bern(0.5)

4) if Y is continuous then
Y |A1, R,A2 ∼ N (E[Y |A1, R,A2],Var[Y |A1, R,A2])

else if Y is binary then
if R=0 then

Y ∗ ∼ N (0, 1)

if Y ∗ < zp∗a1,a2 then
Y = 1

else
Y = 0

else
Y = 1

Web Appendix C: simulation study results

In this supplementary section we showcase the full results of the simulation study. Table A.1

depicts the performance of the frequentist formula in terms of power in the binary outcome

case (Scenarios 3 and 4) and Table A.2 shows the sample size estimates under the frequentist

approach. Tables A.3 and A.4 outline the properties of the proposed Bayesian sample size

methodology in Scenario 2 when the analysis prior mean θ0 is set to 0 and to the difference
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between strategy means estimated via pilot data ˆ︁θp respectively. Tables A.5-A.6 and A.7-A.8

provide the same information for Scenarios 3 and 4. Finally, Tables A.9 and A.10 illustrate

the simulated type I error under the Bayesian methodology in the continuous and binary

case respectively. The parameters chosen for this simulation study were informed by real

data and previous works. Specifically, we considered effect sizes and probabilities of response

to initial treatments similar to those used in Scott et al. (2007), while the parameters for the

sizing of pilot studies were informed by two pilot SMARTs, one of which is the Internet-Based

Adaptive Stress Management Pilot SMART outlined in Section 3.4. During the simulation

study phase of the drafting of this paper, we tested a variety of scenarios that included lower

levels of the effect size and the response rate to the initial treatment in both the binary

and continuous outcome cases. In general, we found that the conclusions were similar,

and the four scenarios that were further investigated and presented in this paper are those

that clearly exemplify the differences in performance between the Bayesian and frequentist

methodologies.

Table A.1: Simulated power under the frequentist calculations in the binary outcome sce-
narios, i.e. Scenarios 3 (left) and 4 (right), for different degrees of model misspecification.

Scenario 3 Scenario 4

Response SD
0 0.01 0.02 0.03 0.04 0 0.01 0.02

% bias
of δ

0 0.89 0.88 0.85 0.84 0.80 0.83 0.82 0.79
5 0.87 0.85 0.84 0.80 0.77 0.81 0.80 0.77
10 0.85 0.83 0.81 0.79 0.74 0.78 0.75 0.74
15 0.82 0.80 0.80 0.76 0.74 0.74 0.71 0.72
20 0.78 0.77 0.75 0.75 0.72 0.70 0.71 0.69
25 0.74 0.74 0.74 0.72 0.70 0.67 0.68 0.66

126



Table A.2: Frequentist sample size estimates for each scenario and different degrees of over-
estimation of the standardized effect size.

Scenario
1 2 3 4

% bias
of δ

0 302 628 728 1516
5 274 570 660 1376
10 250 520 602 1254
15 228 476 550 1148
20 210 436 506 1054
25 194 402 466 972
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Table A.9: Simulated type I error under the proposed methodology for different choices of
prior parameters in the continuous final outcome setting.

σd

0 0.2 0.5 0.8

θ0 = 0 σ0

100 0.042 0.038 0.043 0.040
3 0.036 0.035 0.039 0.040
2 0.037 0.035 0.040 0.037
1 0.017 0.022 0.021 0.030

θ0 = ˆ︁θp σ0

100 0.046 0.040 0.043 0.041
5 0.042 0.040 0.038 0.043
4 0.045 0.034 0.040 0.038
3 0.040 0.040 0.035 0.040

Table A.10: Simulated type I error under the proposed methodology for different choices of
prior parameters in the binary final outcome setting.

σd

0 0.01 0.02 0.03 0.04 0.05

θ0 = 0 σ0

5 0.052 0.050 0.055 0.057 0.055 0.050
0.5 0.060 0.048 0.045 0.053 0.052 0.058
0.3 0.045 0.044 0.048 0.052 0.048 0.039
0.1 0.035 0.034 0.040 0.040 0.038 0.042

θ0 = ˆ︁θp σ0

5 0.053 0.054 0.047 0.046 0.051 0.049
0.5 0.061 0.051 0.042 0.059 0.049 0.053
0.3 0.054 0.051 0.052 0.054 0.049 0.042
0.2 0.049 0.056 0.055 0.053 0.054 0.060
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APPENDIX B

bayesSMARTsize online tutorial for

Manuscript 1

bayesSMARTsize is a package which implements the functions for the Bayesian ‘two priors’

approach sample size estimation of a 2-stages sequential multiple assignment randomized

trial (SMART) with continuous outcomes for the comparison of two strategies with different

initial treatments. For a full description of this methodology, please refer to Turchetta et al.

[2022]. In particular, the SMART design for which sample size formulae are provided is the

standard scheme represented below, where responders to the stage-1 intervention are not

re-randomized.
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Figure B.1: SMART scheme.

Despite this methodology is built on the continuous outcome setting, it can still be used for

binary outcomes, as the Normal approximation performs well.

,
1 library(devtools)
2 install_github("aturchetta/bayesSMARTsize")
3 library(bayesSMARTsize)
4 set.seed(123)

B.1 Data generating functions

SMART.continuous and SMART.binary can be used to simulate data from a SMART with

continuous and binary final outcomes respectively. Considering the labels depicted in the

figure above, the response rates to the initial treatments pA and pB need to be specified in

both cases, however, generating data in the binary final outcome setting is easier, as it only

requires the specification of the response rates to the various treatment sequences. See the

example below for a SMART with a sample size of 80 individuals.
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,
1 sim_bin <- SMART.binary(n = 80, p_A = 0.3, p_AC = 0.4, p_AD = 0.3, p_AA = 1,
2 p_B = 0.3, p_BE = 0.2, p_BF = 0.2, p_BB = 1 )

In the continuous setting, the outcome is drawn from a Normal distribution with mean

E[Y |A1, R,A2] and variance Var[Y |A1, R,A2], where Aj represent the treatment assigned

at stage j and R the response to the stage-1 intervention (1 for responders and 0 for non-

responders). Expressing the conditional mean of the outcome as

E[Y |A1, R,A2] = ϕ1 + ϕ21{A1=a} + ϕ3(1−R) + ϕ41{A1=a}(1−R)

+ ϕ51{A2=c∪A2=e}(1−R) + ϕ61{A1=a∪A2=c}(1−R),

the algorithm to simulate requires the specification of 12 parameters: 6 parameters for the

conditional mean (phi1,...,phi6) and 6 standard deviation values (sdaa,sdac,sdad,sdbb,sdbe,sdbf).

See the example below.

,
1 sim_cont <- SMART.continuous(n = 80, p_A = 0.5, p_B = 0.5, phi_1 = 10, phi_2 = 5,

phi_3 = -15,
2 phi_4 = -3, phi_5 = 10, phi_6 = -3, sd_aa = 2, sd_ac =

2, sd_ad = 2,
3 sd_bb = 2, sd_be = 3, sd_bf = 2)

Both functions return a data frame with 4 columns: the stage-1 intervention label, the

sequence of treatments label, the final outcome, and the response indicator to the first

treatment are returned:
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,
1 head(sim_bin)
2 #> tr1 tr2 outcome R
3 #> 1 A AD 0 0
4 #> 2 B BE 0 0
5 #> 3 B BE 0 0
6 #> 4 A AD 0 0
7 #> 5 A AD 1 0
8 #> 6 A AD 1 0
9

10 head(sim_cont)
11 #> tr1 tr2 outcome R
12 #> 1 B BF -1.089412 0
13 #> 2 B BB 8.779077 1
14 #> 3 A AA 12.365968 1
15 #> 4 B BE 5.972913 0
16 #> 5 B BF -6.004397 0
17 #> 6 A AA 15.925476 1

B.2 Estimator function

SMART.est can be used to estimate the mean ˆ︁µdk
and its estimator’s variance τ 2

dk
of a strategy

dk. Let us take as an example the data set generated in the previous section in the binary

outcome setting and let us consider the strategy ’administer A and, if there is no response,

administer C’. Since responders are not randomized again, only the label of the stage-2

intervention is required, and in this case the label is ’AC’:

,
1 SMART.est(tr1 = sim_bin$tr1, tr2 = sim_bin$tr2, outcome = sim_bin$outcome,
2 R = sim_bin$R, id1 = "A", id2 = "AC")
3 #> $mu
4 #> [1] 0.8461538
5 #>
6 #> $tau
7 #> [1] 0.4946746
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B.3 Sample size estimation

SMART.ss computes the required sample size to achieve the desired level of power. Let us

consider the system of hypotheses

⎧⎪⎨⎪⎩ H0 : µd
1
k
− µ

d
2
k
= 0

H1 : µd
1
k
− µ

d
2
k
> 0.

The Bayesian methodology implemented in this function is based on the use of the posterior

distribution of the variance components estimated from pilot data to marginalize the power

function. Therefore, this function requires data from the pilot study through the set of

parameters {tr1, tr2, outcome, R, id1_study, id2_study, id1_ref, id2_ref}. Al-

ternatively, one can directly specify the posterior parameters of the inverse chi-squared dis-

tribution of τ 2
d
1
k

+ τ 2
d
2
k

through the parameters vn and sigma_n. Note that only one of the two

choices must be specified in the function. Let us consider the data simulated in the binary

outcome setting as the result of a pilot study and let us size the full-scale SMART for the

comparison of d1k: ‘administer A and, if there is no response, switch to C’ and d
2

k: ‘admin-

ister B and, if there is no response, switch to E’. We size the SMART in order to achieve

a 90% power under the design prior distribution of the mean difference between strategies

πd(θ) = N (θ; 0.1, 0.022) and we set the Bayesian significance level to 0.95 (‘epsilon=0.05‘).

To complete the Bayesian framework, we set the analysis prior π0(θ) = N (θ; 0, 0.152). For

further details on this methodology, please consult Turchetta et al. [2022]. Finally, a grid

of sample size values which is used to search for the optimal sample size needs to be spec-

ified through n_grid. By default, the function outputs the estimated sample size and the

corresponding power:
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,
1 SMART.ss(n_grid = seq(100,1200), theta_0=0, sigma_0 = 0.15,
2 theta_d=0.1, sigma_d = 0.01, power = 0.9, epsilon = 0.05,
3 tr1 = sim_bin$tr1, tr2 = sim_bin$tr2, outcome = sim_bin$outcome, R

= sim_bin$R,
4 id1_study = "A", id2_study = "AB", id1_ref = "B", id2_ref = "BE")
5 #> Sample_size Power
6 #> 1 964 0.9002337

Selecting the option save_grid=TRUE, an additional data frame which includes the power

level estimated for each value of n_grid is returned:

,
1 grid <- SMART.ss(n_grid = seq(400,1000), theta_0=0, sigma_0 = 0.15,
2 theta_d=0.1, sigma_d = 0.01, power = 0.9, epsilon = 0.05,
3 tr1 = sim_bin$tr1, tr2 = sim_bin$tr2, outcome = sim_bin$outcome, R

= sim_bin$R,
4 id1_study = "A", id2_study = "AB", id1_ref = "B", id2_ref = "BE",

save_grid=TRUE)
5

6 head(grid[[2]])
7 #> n Power
8 #> 1 400 0.5896011
9 #> 2 401 0.5906061

10 #> 3 402 0.5916087
11 #> 4 403 0.5926091
12 #> 5 404 0.5936072
13 #> 6 405 0.5946029

Additionally, it is possible to center the analysis prior π0 at the mean difference between

strategies estimated via pilot data through the option theta_0="pilot". In this case, in-

crementing the variance of the analysis prior to 0.52, the sample size is reduced to

,
1 SMART.ss(n_grid = seq(100,1200), theta_0="pilot", sigma_0 = 0.5,
2 theta_d=0.1, sigma_d = 0.01, power = 0.9, epsilon = 0.05,
3 tr1 = sim_bin$tr1, tr2 = sim_bin$tr2, outcome = sim_bin$outcome, R

= sim_bin$R,
4 id1_study = "A", id2_study = "AB", id1_ref = "B", id2_ref = "BE")
5 #> Sample_size Power
6 #> 1 885 0.9000118
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APPENDIX C

Appendix to Manuscript 3

C.1 Estimated parameters in the HIV vaccine trials

Table C.1: Estimates of α and plateau point tp, polynomial degree and internal knot position
(if any) of the best-fitting model for each interim time in the HIV vaccine trials.

Study tint ˆ︁α ˆ︁tp Pol. deg. Int. knot

HVTN 702 250 0.42 203 2 ˆ︁tp/4
400 0.58 394 2 None
550 0.59 543 2 ˆ︁tp/2
700 0.61 675 2 ˆ︁tp/4

HVTN 705 150 0.68 101 3 None
300 1.00 110 2 None
450 0.83 350 3 ˆ︁tp/4
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C.2 Forecastings in HVTN 702 without breaks removal

Figure C.1: Recruitment forecastings in the HVTN 702 study without the removal of the
December holiday breaks under the tPG and standard PG models.
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C.3 The PROBIT case study

The Promotion of Breastfeeding Intervention Trial (PROBIT) is a multicenter randomized

cluster trial whose goal is to assess the effects of a breastfeeding promotion intervention

designed to increase the duration and exclusivity of breastfeeding on maternal and child

health outcomes. The trial was conducted in Belarus, where 17,046 mothers were recruited

in 31 centers between June 1996 and December 1997. Figure C.2 displays the recruitment

predictions under the tPG and standard PG models. Since the estimated plateau point is

close to the initiation date of the centers (day 11 for both interim times), the tPG and PG

models led to comparable point estimates and credible intervals.
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Figure C.2: Enrollment predictions in the PROBIT study under the time-dependent and
standard PG models compared to the observed recruitments. The shaded areas indicate the
respective 95% credible intervals and the + marks represent the centers’ initiation dates.
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