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Abstract 

The X-linked gene DDX3X encodes an RNA helicase and is mutated at high frequencies in several 

types of human B cell lymphoma. More precisely, DDX3X mutations are found in 30% of Burkitt 

lymphoma tumors affecting almost exclusively male patients. Females have two active DDX3X 

alleles and males carry a DDX3Y homolog on the Y chromosome. Although mutations have been 

detected in human B cell lymphoma, the role of DDX3X in B cell physiology and malignant B 

cells is unknown. 

The aim of this study is to characterize the impact of Ddx3x-depletion in murine hematopoietic 

cells, more particularly in murine B cells and lymphomagenesis. A conditional knockout murine 

model was generated to determine the impact of Ddx3x deletion in hematopoiesis, more precisely 

in B lymphopoiesis and in MYC-driven lymphomagenesis. 

Results shown here demonstrate that pan-hematopoietic, homozygous Ddx3x-deletion in female 

mice perturbs erythropoiesis causing early developmental arrest. However, both hemizygous male 

and heterozygous female embryos develop normally, suggesting that one allele is sufficient for 

fetal hematopoietic development in females and that the Ddx3y allele can compensate for Ddx3x 

loss in males. In adult mice, loss of DDX3X affects hematopoietic progenitors, early lymphoid 

development, marginal zone and germinal center B cells and lymphomagenesis driven by an Eµ-

Myc or l-Myc transgene in a sex-dependent manner. Loss of both Ddx3x allele abrogates MYC-

driven lymphomagenesis in females, while Ddx3x-deletion in males impairs differently the 

formation of B cell lymphoma in both mouse models. Moreover, tumors that appeared in male 

mice lacking DDX3X showed upregulated expression of DDX3Y indicating a critical requirement 

for DDX3 activity for lymphomagenesis.  



 

 

Our data reveal sex-specific roles of DDX3X in erythro- and lymphopoiesis as well as in MYC-

driven lymphomagenesis, which are important when considering inhibition of DDX3 as a 

treatment of B cell lymphoma. 



 

 

Résumé 

Le gène DDX3X code une ARN hélicase qui se trouve fréquemment mutée dans plusieurs types 

de lymphomes B chez l’humain, particulièrement dans 30% des lymphomes de Burkitt quasi 

exclusivement masculins. Les individus de sexe féminin ont deux allèles actifs de ce gène tandis 

que les individus de sexe masculin portent un homologue nommé DDX3Y sur leur chromosome 

Y. Malgré le nombre important de mutations détectées dans les lymphomes B humains, le rôle de 

DDX3X dans les lymphocytes B et les lymphomes est inconnu. 

Notre but est de caractériser l’effet de l’absence de DDX3X dans le système hématopoïétique et 

dans la lymphomagenèse. Nous avons généré un modèle murin permettant la délétion du gène 

Ddx3x, et nous déterminons l’impact de cette délétion dans le système hématopoïétique, plus 

particulièrement dans les lymphocytes B; ainsi que dans la lymphomagenèse initiée par une 

dérégulation de MYC. 

Nous démontrons ici qu’une délétion homozygote de ce gène dans les cellules hématopoïétiques 

de souris femelles perturbe l’érythropoïèse, causant ainsi un arrêt prématuré dans le 

développement embryonnaire. Cependant, les embryons hémizygotes males et hétérozygotes 

femelles se développent normalement, suggérant ainsi qu’un allèle du gène Ddx3x est suffisant 

pour le permettre un développement embryonnaire normal chez les femelles; et que le gène Ddx3y 

peut compenser la perte de Ddx3x chez les mâles. Chez les souris adultes, une déficience de 

DDX3X altère l’érythropoïèse, les progéniteurs hématopoïétiques ainsi que le développement des 

lymphocytes B et T notamment les cellules B de la zone marginale et les cellules des centres 

germinatifs; de façon sexe-dépendante. Chez les souris femelles, une perte des deux allèles de 

Ddx3x empêche le développement de lymphomes B murins initié par une dérégulation de MYC 

dans les modèles transgéniques Eµ-Myc et l-Myc, tandis que la délétion de Ddx3x chez les souris 



 

 

mâles impacte différemment la formation des lymphomes B. De plus, les tumeurs des souris mâles 

ayant une déficience de DDX3X présentent aussi une surexpression de DDX3Y, ce qui indique un 

rôle critique de DDX3 pour la lymphomagenèse.  

Ces données révèlent un rôle sexe-spécifique de DDX3X dans l’érythro- et la lymphopoïèse ainsi 

que dans le développement des lymphomes B murins initiés par une dérégulation de MYC. 
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1. CHAPTER I: Introduction 

1.1. Hematopoiesis 

Hematopoiesis originates from the Greek words haima- (blood) and -poiesis (generation) 

and is the biological process giving rise to hematopoietic cells composing the blood. 

Hematopoietic cells are divided into three main groups: first, erythrocytes or red blood cells 

(RBC); second, leucocytes or white blood cells (WBC); and third, thrombocytes or platelets. These 

differentiated cells ensure several vital functions: erythrocytes transport oxygen through the body, 

leucocytes compose the immune system essential for protecting the body, and thrombocytes are 

necessary for blood coagulation and wound repair. Hematopoietic cells are the major component 

of the immune system defined as the system defending the body against infectious agents and 

foreign antigens. Immunity, the state of protection by the immune system, is a combination of 

innate immunity and adaptive immunity. Innate immunity represents a first, rapid response to an 

infectious agent or substance and is supported by cells and mechanisms in place before any 

stimulation. In contrast, adaptive immunity represents a slower immune response but has the 

advantage of being specific, more complex, and efficient. Innate and adaptive immunity are 

connected and coordinated to ensure an appropriate and efficient overall immunity. 

WBCs, composed of lymphocytes and myelocytes, as well as RBCs and platelets represent 

the final stages of differentiation and result from many processes of cellular division and 
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differentiation that start with hematopoietic stem cells (HSC) (Pinho & Frenette, 2019) (Figure 1-

1). 

 

Figure 1-1: Schematic representation of hematopoiesis 
Pyramidal representation of the hematopoiesis process. On top of the pyramid are hematopoietic progenitors, and at 
the bottom are differentiated cells. Red cells represent the erythroid lineage, purple cells the myeloid lineage and green 
cells represent the lymphoid lineage. Grey cells represent hematopoietic progenitors. HSC: Hematopoietic Stem Cell;  
MPP: Multipotent Progenitor; CMP: Common Myeloid Progenitor; LMPP: Lymphoid-primed Multipotent 
Progenitor; CLP: Common Myeloid Progenitor; PreMegE: pre-megakaryocyte/erythroid progenitor, 
Megakaryocyte/Erythroid Progenitor = PreMegE; GMP: Granulocyte/Macrophage Progenitor; MKP: Megakaryocyte 
Progenitor; PreCFUe: Early Erythroid Progenitor; ProE: ProErythroblast; BasoE: Basophilic Erythroblast; PolyE: 
Polychromatophilic Erythroblast; OrthoE: Orthochromatic Erythroblast; MDP: macrophage/dendritic cell progenitor; 
PMN: PolyMorphoNuclear also named granulocyte; DN: Double Negative 1, 2, 3 and 4; DP: Double Positive; SP: 
Single Positive; ILC: Innate Lymphoid Cell; NK: Natural Killer. Created with BioRender.com 

HSCs are crucial for maintaining homeostasis and are niched in the bone marrow (BM). 

The BM is a semi-solid tissue localized at the center of bones constituting a particular 

microenvironment to maintain HSCs (Frobel et al., 2021). HSCs are a mostly quiescent cell 

population balancing between self-renewal or differentiation into hematopoietic progenitors 
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(Bryder et al., 2006). Even if they do not have a precise function in the body like differentiated 

cells do, they have a regenerative capacity and the potential to reconstitute an entire hematopoietic 

system. 

1.1.1. Embryonic hematopoiesis 

Hematopoiesis starts to take place early in embryonic development. Emerging from 

mesoderm and endoderm, the yolk sac is the first site where embryonic hematopoiesis is observed. 

The yolk sac generates a first wave of hematopoietic cells, mostly erythroblasts qualified as 

“primitive” erythroblasts, nucleated large RBCs (Palis, 2014; Yumine et al., 2017). Primitive 

hematopoiesis mostly generates those transient erythrocytes absent in the adult organism. 

Hematopoiesis is then supported by the fetal liver in mice, a process with numerous similarities 

compared to humans (Lewis et al., 2021; Yoder, 2002). Definitive hematopoiesis occurs mostly in 

the fetal liver generating adult erythrocytes, small and enucleated RBCs; as well as multilineage 

progenitor cells and HSCs (Moras et al., 2017; Sugiyama & Tsuji, 2006). Shortly before birth, 

definitive hematopoiesis occurs in the BM delivering hematopoietic cells continuously. 

1.1.2. Adult hematopoiesis 

Hematopoietic progenitors 

HSCs differentiate into several types of progenitors that become more and more committed 

to a specific lineage, which is a characteristic trait named “potency” (Hofer & Rodewald, 2018). 

HSCs, described as pluripotent, differentiate into multipotent progenitors (MPP) capable of 

generating erythroid, lymphoid, and myeloid lineages. Those MPPs differentiate either into 

common myeloid progenitors (CMP) that can generate pre-megakaryocyte/erythroid (PreMegE) 

progenitors, granulocyte/macrophage progenitors (GMP); or either into lymphoid-primed 
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multipotent progenitors (LMPP) having the potential to differentiate into GMPs or common 

lymphoid progenitors (CLP) (Figure 1-1). All these progenitors then differentiate into unipotent 

cells to generate fully differentiated cells. In mouse, hematopoietic progenitors are often grouped 

under the terms “Lin-c-kit+sca1+” (LSK) and “Lin-c-kit+” (LK) populations based on markers used 

to distinguish them by flow cytometry. The LSK subset contains HSC, MPP, LMPP and CLP 

populations and the LK subset contains LSK in addition to CMP, PreMegE and GMP populations. 

Erythropoiesis and thrombopoiesis 

In the BM, PreMegE progenitors differentiate into early erythroid (PreCFUe) progenitors, 

which differentiate into proerythroblasts (ProE), basophilic erythroblasts (BasoE), 

polychromatophilic erythroblasts (PolyE), and orthochromatic erythroblasts (OrthoE), the latter 

expelling their nuclei and organelles at the reticulocyte stage to finally terminating their 

differentiation into mature biconcave erythrocyte (Dzierzak & Philipsen, 2013) (Figure 1-1). 

PreMegE can also differentiate into megakaryocyte progenitors (MKP) and then megakaryocytes 

(MK) releasing thrombocytes into the blood flow, a process called megakaryocytopoiesis (Deutsch 

& Tomer, 2006, 2013). Thrombopoiesis is defined as the process of thrombocyte formation from 

MKs. 

Myelopoiesis 

 Myelopoiesis is the process that generates myeloid cells from CMPs in the BM. CMPs can 

differentiate into GMPs giving rise to granulocytes, monocytes, and mast cells (Figure 1-1). 

Granulocytes, also called polymorphonuclear (PMN) leucocytes, are composed of neutrophils, 

eosinophils, and basophils (Geering et al., 2013). CMPs can also differentiate into 

macrophage/dendritic cell progenitors (MDP) generating monocytes, macrophages, and dendritic 

cells (Geissmann et al., 2010). Mast cells emerge from mast cell progenitors in the BM and 
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peripheral tissues (Dahlin & Hallgren, 2015; Krystel-Whittemore et al., 2015). All those 

differentiated myeloid cells are found in a multitude of tissues and are ready to exert their immune 

functions. Myelopoiesis occurs in homeostasis but can also be induced when the immune system 

is stimulated (Mitroulis et al., 2018; Schultze et al., 2019). 

Lymphopoiesis 

 Lymphopoiesis is the process that generates lymphoid cells from CLPs in the BM. Several 

types of lymphoid cells are distinguished: T lymphocytes, B lymphocytes, and innate lymphoid 

cells (ILC), this last group including natural killer (NK) cells. ILCs have many similarities with T 

cells although there are considered part of innate immunity due to the absence of a specific antigen 

receptor (Lim & Di Santo, 2019). In contrast, T and B lymphocytes express a repertoire of specific 

antigen receptors and are part of the adaptive immune response. 

 T cell differentiation starts in the BM from CLPs but continues in the thymus where CLPs 

settle and generate early thymic progenitors that are called double negative (DN) cells since they 

lack the co-receptors CD4 and CD8, differentiating from DN1 to DN4 stages (Figure 1-1). Cells 

become entirely committed to the T cell lineage at the DN2 stage (Moore & Zlotnik, 1995), where 

they also start the process of variable diversity and joining recombination (V(D)J recombination), 

a process of T cell receptor (TCR) b (or d to a much lesser extent) chain gene rearrangement 

(developed in later sections). This process is associated with an elevated expression of 

recombination-activating genes 1 and 2 (RAG1/2) and Notch1 signaling, both essential for this 

V(D)J recombination process (Dutta et al., 2021; Wolfer et al., 2002). DN3 cells that successfully 

rearrange their TCR b chain (also called b-selection checkpoint) express a surface pre-TCR, 

composed of the TCR b chain in addition to a pre-T cell receptor a chain. This pre-TCR functions 

in a ligand-independent manner sending survival and proliferation signals, which leads to the 



30 

 

expansion of the DN3 cells and their differentiation into DN4 cells. Another V(D)J recombination 

step leads to a rearrangement of the TCR a locus (or g to a much lesser extent) and the upregulation 

of both CD4 and CD8 co-receptors driving the differentiation of DN4 cells into mature double 

positive (DP) CD4 and CD8 T cells in the thymus cortex. These DP cells undergo major 

histocompatibility complex (MHC) mediated positive and negative selection to finally give rise to 

single positive (SP) CD4 or CD8 T cells, which exit the thymus medulla to populate peripheral 

tissues (Irla, 2022; Rothenberg et al., 2008). 

B cell lymphopoiesis including the V(D)J recombination process is described in more detail 

in the following section. 

1.2. B lymphopoiesis 

B lymphopoiesis is the part of hematopoiesis giving rise to B lymphocytes also called B 

cells. The main function of this specific type of leucocyte is to produce a humoral immune response 

– in other words to secrete antibodies - as part of the adaptive immune response. Their 

differentiation starts in the BM, where HSCs generate CLPs having the potential to generate T and 

B lymphocytes. CLPs differentiate into pre-pro B cells and then further into pro B cells, pre-B 

cells, immature B cells and mature B cells (Figure 1-2). 
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Figure 1-2: B lymphopoiesis 
Process of B cell differentiation in the BM (top) and in secondary lymphoid organs (bottom). The B cell stages are 
also named according to the Hardy fractions. Blue antibodies represent IgM while red antibodies represent IgD. 
Yellow antibodies represent another isotype generated after class switch recombination. Fr.: Fraction; BCR: B cell 
Receptor; Ig: Immunoglobulin. Created with BioRender.com 

 The different stages of BM B cell maturation are also named Hardy fractions (from A to 

F) after Dr. Hardy who identified those populations (Hardy et al., 1982; Hardy et al., 1983). The 

various steps of B cell maturation allow the generation of cells that each carry a specific 

membrane-bound antibody, which acts as a surface antigen receptor and is therefore called B cell 

receptor (BCR), resulting from the recombination of the immunoglobulin (Ig) genes during the 

BM B cell lymphopoiesis. These “naïve” B cells reach the peripheral lymphoid organs where they 

become activated, i.e. when an antigen recognizes and binds the BCR; and differentiate into 

memory and plasma B cells (PC) able to secrete specific antibodies. To ensure the generation of 

B cells that can efficiently respond to any antigen, three primordial processes occur through B cell 

differentiation: V(D)J recombination to ensure the formation of a proper BCR; and class switch 

recombination (CSR) and somatic hypermutation (SHM) both occurring in peripheral lymphoid 



32 

 

organs to ensure the formation of antibodies capable of eliminating the detected antigen (Chi et 

al., 2020). 

1.2.1. V(D)J recombination 

V(D)J recombination is a process unique to B and T cell types involving random DNA 

recombination events to generate a large variety of antigen receptors (Clark et al., 2014; Johnson 

et al., 2009; Jung & Alt, 2004). In human, the B cell surface antigen receptor is built from three 

different genetic loci: chromosome 14 encoding the heavy chain (IgH), and two other loci encoding 

the light k chain (chromosome 2) or the light l chain (chromosome 22) (Hesslein & Schatz, 2001; 

Tonegawa, 1983) (Figure 1-3A). 

  

Figure 1-3: Lymphocytes antigen-binding receptors 
Representation of A, B cell receptor (BCR) and B, T cell receptor (TCR). Variable regions are generated through the 
V(D)J recombination process to diversify the possibilities of antigen receptors. V: variable; C: constant; H: heavy 
chain; L: light chain; Ig: Immunoglobulin. Created with BioRender.com 

Each of these loci contains many variable genes (V) followed by many joining genes (J) followed 

by many constant regions (C) forming the Ig germline sequences. Specific to the IgH locus, there 

are also many diversity genes (D) in between the V and J segments causing two steps of DNA 

recombination: the first joining a D and a J segment, the second one joining the V to the fused DJ 
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segment (Alt et al., 1984). The first step of recombination is bringing the two selected gene 

segments closer by forming a DNA loop at recombination signal sequences (RSS) of the selected 

segments. Then, the lymphoid-specific RAG1/RAG2 complex recognizes the RSS where it 

introduces blunt DNA double strand breaks (DSB) harboring hairpins (Oettinger et al., 1990; 

Schatz et al., 1989; Teng & Schatz, 2015). The DNA loop is discarded while Artemis endonuclease 

opens the hairpins localized at the selected V and J segments, and the terminal deoxynucleotidyl 

transferase (TdT) enzyme adds nucleotides further increasing diversity of the V(D)J recombination 

process (Ma et al., 2002). Finally, the nonhomologous end joining (NHEJ) repair machinery fuses 

both V and J segments together generating a recombined DNA sequence. This recombined DNA 

sequence becomes transcriptionally active and is transcribed into an RNA that is then spliced to 

generate a mRNA with a unique sequence and a unique protein. This complex process allows even 

with a limited amount of coding DNA, to obtain a very large number of possibilities of antigen 

receptors (called “repertoire”) to react to a variety of foreign antigens (Gauss & Lieber, 1996). The 

same mechanism occurs in T cells: b chain (or d) genes are recombined at the DN2 (D-J 

recombination) and DN3 stage (V-DJ recombination) where cells express a pre-TCR (complex of 

b chain in addition to pre-T cell receptor a chain, CD3 and z proteins). Then, the a chain (or g) 

genes are recombined before the DP stage (V-J recombination) generating together with the b 

chain a ab TCR (Figure 1-3B). Additional proteins having a role of signal transduction at the 

surface of B and T cells complete the antigen binding part and form together, respectively the BCR 

and TCR. 

B lymphopoiesis in the BM starts when the pre-pro B cells emerge from CLP progenitors 

(LeBien & Tedder, 2008). Pre-pro B cell is not yet B lineage committed but express the B220 

marker although carrying an unrearranged IgH locus (Hardy et al., 1991). Then, pre-pro B cells 
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differentiate into early pro-B cells recombining their D and J segments of the Ig heavy chain. 

During the late pro-B cell stage, the V segment is recombined to the fused DJ segment. After 

splicing, regions between the VDJ and the Cµ segment are removed and the mRNA containing the 

Cµ segment is translated into IgH protein expressed at the pre-B cell surface. This IgH protein in 

addition to the surrogate light chains and other surface proteins (Iga and Igb) form the pre-BCR 

complex (T. H. Winkler & Martensson, 2018). If this pre-BCR is successfully formed, it transduces 

signaling for cell survival and differentiation; if not, the survival signal cannot be transduced, 

causing cell death (Martensson et al., 2010). In the next step, small pre-B cells start to rearrange 

their light chain (either k or l) genes by joining one V and one J gene segment thus generating a 

light chain protein that replaces the surrogate light chains and associates to the Ig heavy chain to 

form an entire IgM molecule at the surface of immature B cells (Figure 1-3A). These cells 

suppress RAG expression and receive survival signals from the BCR if successfully formed. These 

cells are called circulating mature B cells and express, in addition to an IgM, an IgD surface 

receptor through a splicing event of the recombined V(D)J DNA with Cd sequence instead of the 

Cµ segment. Circulating mature B cells are released into the bloodstream and the cells carrying a 

functional and complete BCR terminate their maturation in secondary lymphoid organs such as 

the spleen, lymph nodes, Peyer patches, and tonsils. 

 

Circulating B cells leave the BM, differentiate into transitional B cell stages and start to 

express the IgD (Zhou et al., 2020). Transitional B cells differentiate into mature B cells residing 

in various localizations where they acquire different phenotypes. In the spleen for example, they 

compose the follicular (FO) B cell subset residing in the follicular zone; and the marginal zone 

(MZ) B cell subset expressing the CD21 surface marker and residing in the marginal zone. At this 
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stage, mature B cells are considered “naïve”: they have a complete BCR but have never met an 

antigen. The following steps of B lymphopoiesis are induced by an antigenic stimulus, at the 

opposite to BM B lymphopoiesis and V(D)J recombination processes that are antigenic-

independent. When an antigen binds to the BCR antigen receptor expressed at the surface of naïve 

mature B cells, these cells become activated resulting in further differentiation steps and antibody 

production against the antigen. The following differentiation steps depend on the nature of the 

antigen: some antigens induce a T cell-independent response while others induce a T cell-

dependent response (Roulland et al., 2008). 

B cells recognize a soluble or membrane associated antigen when it is presented by another 

immune cell (e.g. macrophage, dendritic cell) (Batista & Harwood, 2009). When an antigen is 

presented to naïve B cells, a T cell-independent response can be generated if the antigen requires 

a rapid but not complex answer (IgM producing response, short lived PCs). This type of response 

involves MZ B cells (Martin & Kearney, 2000a; Martin et al., 2001). If the detected antigen 

activates a T cell-dependent response, the B cell presents the antigen to CD4+ follicular helper T 

cell (Tfh) via the histocompatibility complex class II (MHCII) at the B cell surface and the TCR 

interaction at the T cell surface. Then, the Tfh transmits activation signals, one of them going 

through the T cell CD40L binding to the CD40 receptor expressed at the B cell surface (Garside 

et al., 1998). This initiates a T cell-dependent response where B cells harboring low affinity 

antibodies induce a first rapid response producing short-lived plasmablasts (PB) (De Silva & 

Klein, 2015; Jacob & Kelsoe, 1992). In addition, a longer but more complex response is induced 

when B cells undergo the germinal center (GC) reaction to produce high affinity antibodies against 

the detected pathogen or antigen (T. A. Shih et al., 2002). GCs are defined as specific environments 

formed in secondary lymphoid organs by the Tfh signals, where several mechanisms occur to 
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generate high affinity antibodies to respond to the antigenic stimulus (termed GC reaction). GC 

structures are divided into two compartments: the dark zone (DZ) where B cells are termed 

centroblasts, and the light zone (LZ) where B cells are termed centrocytes (Victora et al., 2012). 

When B cells are activated, they undergo CSR and somatic hypermutation (SHM) to further refine 

the affinity of their BCR and generate an appropriate immune response against the detected antigen 

(Figure 1-4). 

 

Figure 1-4: T cell-dependent B cell activation and GC reaction 
T cells present an antigen to B cells that become activated and initiate the CSR process while entering the splenic 
follicle (or follicles of any secondary lymphoid organ). A massive clonal expansion and SHM allow the generation of 
a variety of clonal B cells with different antigen receptors in the DZ. These B cells are then selected in the LZ and re-
enter the DZ, initiate apoptosis or undergo cell differentiation. White cells represent T cells; black cells represent 
follicular dendritic cells. CSR: Class Switch Recombination; SHM: Somatic Hypermutation; DZ: Dark zone 
(centroblasts); LZ: Light Zone (centrocytes). Created with BioRender.com 

1.2.2. Class Switch recombination 

When B cells interact with T cells at the extrafollicular area, it initiates the CSR process. 

CSR is defined as the process of DNA recombination generating a switch of the constant effector 

region of the antibody triggering different effector functions (Stavnezer et al., 2008) (Figure 1-3). 

In other words, CSR generates other antibody isotypes (other than IgM and IgD) which are defined 
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as antibodies with a similar variable region or antigenic binding region but a different constant 

region (i.e. IgE, IgA or IgG). CSR was commonly associated to the LZ of the GC stage (Klein & 

Dalla-Favera, 2008; Vinuesa et al., 2009), but it was recently demonstrated that it is initiated before 

the GC reaction outside the follicles at T cell/B cell border, so before the SHM process (Roco et 

al., 2019) confirming older reports (Jacob, Kassir, et al., 1991; Pape et al., 2003; Toellner et al., 

1996). CSR starts with signals from the T cell interaction that allow the selection of an appropriate 

switch (S) region localized between the J and C gene segments (for example, in case of an allergic 

response, B cell switches their IgM to IgE; their Cµ region to Ce). Transcription at the selected 

switch segment (example: Sµ associated to the Cµ region and Se associated to the Ce region) is 

activated generating a germline transcript and initiating an R-loop structure (RNA:DNA template 

duplex in addition to an open single strand DNA). These R-loop structures are critical to separate 

both DNA strands, a pre-requisite for the activity of activation induced cytidine deaminase (AID) 

enzyme, an essential enzyme for CSR (and SHM too, as discussed in the next section) (Muramatsu 

et al., 2000). AID, the expression of which is induced by CD40 signaling, catalyses the 

deamination of cytosines to uracil residues on both DNA single strands now that they are separated 

in the R-loop structure (Dedeoglu et al., 2004). Then, the uracil N glycosylase enzyme (UNG) 

removes uracil residues causing abasic sites; and the apurinic/apyrimidinic endonuclease 1 (APE1) 

nuclease cleaves those sites causing nicks in the DNA strands. At this stage, there are DNA breaks 

on both strands at both the Sµ and the selected switch region (Se in the example), which are then 

ligated by the NHEJ machinery. All of this results in the same initial VDJ sequence being 

recombined with a Ce segment instead of a Cµ segment. Then, this sequence is transcribed and 

translated into an IgE surface receptor with the same variable region as the previous IgM isotype. 

CSR recombination occurs very early after an antigenic stimulation (the peak of germline 
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transcripts is detected between 1,5 to 3,5 days post antigenic stimulation) and is followed by the 

GC formation from 3,5 to 8 days post-stimulation in mice (Roco et al., 2019). Activated and 

eventually switched B cells then undergo the SHM process to further improve their surface 

receptor’s antigen-binding region. 

1.2.3. Somatic Hypermutation 

Activated B cells follow their maturation and GC reaction in the DZ, where cells proliferate 

massively and undergo SHM (Victora et al., 2012; Victora et al., 2010). SHM is defined as the 

process inducing mutations in the Ig variable genes encoding both heavy and light chains (Berek 

et al., 1991; Jacob, Kelsoe, et al., 1991). Again, it begins with transcription of the VDJ locus 

generating a separation of both DNA strands to allow AID activity. AID catalyses the deamination 

of cytosines to uracil residues generating genetic alterations, particularly at the variable region of 

antibodies (Petersen-Mahrt et al., 2002). Then, uracil residues are either changed in thymine 

residues through the replication, or excised by UNG followed by repair mechanisms, or processed 

by the mismatch repair machinery (Di Noia & Neuberger, 2007). SHM allows increasing the 

number of possibilities of variable regions. SHM is thus essential to diversify the antibody 

repertoire and generate high affinity surface antibodies to respond to the presented antigen. 

 

After SHM, various B cell clones are generated, all containing diverse mutations (point 

mutations, indels) that can induce either a decline or an improvement in the antigen affinity. The 

number of combinations to obtain a high affinity antibody is very high, justifying the massive 

proliferation undergoing in the DZ, and the majority of genetic modifications generate low affinity 

surface antibodies. Therefore, high affinity B cells, i.e. the most competent or fittest B cells, need 

to be selected (Nakagawa & Calado, 2021). This positive clonal selection occurs in the LZ of the 
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GC, an area rich in follicular dendritic cells (FDC) presenting to the B cells the antigen at the origin 

of the GC reaction (Suzuki et al., 2009; X. Wang et al., 2011). B cells expressing a specific BCR 

at their surface compete to interact with the FDCs presenting the antigen. B cells interacting with 

FDCs internalize and process the antigen to present an antigenic peptide through their MHCII to 

the Tfh via the MHCII-TCR interaction. This selection is highly competitive for B cells due to the 

limited numbers of FDC and Tfh, forcing the selection of B cells with high affinity antigen 

receptors (Allen et al., 2007; Schwickert et al., 2011; Victora & Nussenzweig, 2012). The majority 

of B cells carrying inappropriate BCRs do not receive any survival signaling and undergo 

apoptosis by default, whereas clones that are positively selected receive survival signaling from 

their BCR and their interaction with the CD40L of Tfh (Y. J. Liu et al., 1989; Victora & 

Nussenzweig, 2022). The synergy of BCR and CD40 signaling induces the expression of the MYC 

transcription factor in B cells with high affinity (Luo et al., 2018; Nowosad et al., 2016), a key 

molecular event of positive selection (Calado et al., 2012; Dominguez-Sola et al., 2012; Nakagawa 

et al., 2021; Victora et al., 2010). 

Following this positive selection step, B cells can achieve distinct fates (Nakagawa & 

Calado, 2021; Victora & Nussenzweig, 2022) (Figure 1-4). First, a proportion of positively 

selected cells can re-enter into the DZ to proliferate, and be submitted to additional rounds of 

SHM, a process also known as cyclic re-entry (Dominguez-Sola et al., 2012; Kepler & Perelson, 

1993; Long et al., 2022; Meyer-Hermann et al., 2012; Victora et al., 2010). Second, high affinity 

B cells differentiate into antibody-secreting cell types – i.e. PBs and PCs (Krautler et al., 2017; T. 

G. Phan et al., 2006). Short-lived and dividing PBs leave the GC toward the BM where they mature 

into long-lived and non-dividing PCs (Nutt et al., 2015). In case of a T cell-independent response, 

PBs/PCs also emerge from MZ B cells (Cerutti et al., 2013). Antibody-secreting cells represent 
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the ultimate stage of B cell differentiation ensuring a humoral immune response against the 

immunizing antigen by the production and secretion of high affinity antibodies. Third, the low 

affinity B cells that received weak help from T cells (not positively selected cells) are favored to 

differentiate into memory B cells (MBC) (Shinnakasu et al., 2016; Suan et al., 2017; Y. Wang et 

al., 2017). MBCs have the capacity to rapidly differentiate into PC in case of an antigen re-

exposure. 

 

The many steps of B lymphopoiesis, particularly the V(D)J recombination and GC 

reactions, are indispensable for an efficient humoral response. A tight regulation of these processes 

is critical and any unsteadiness in those mechanisms can have dramatic consequences such as 

immunodeficiencies or tumorigenesis. 

1.3. B cell lymphomagenesis 

It is estimated that 43% of Canadians will develop cancer in their lifetime and 1 out of 4 

will die from this disease (Canadian Cancer Statistics 2021). Lymphoma is the third most common 

type of cancer diagnosed in children (0-14 years old) and the first one in adolescents and young 

adults (15-29 years) (Canadian Cancer Statistics 2021). Lymphoma is a specific type of cancer 

defined as an uncontrolled proliferation of mature cancerous lymphocytes originating from the 

lymphatic system. Lymphoma is included in the group of blood cancers also named “liquid 

tumors”, in addition to myeloma and leukemia. Leukemia tumors share many features with 

lymphoma since they are defined as an uncontrolled proliferation of mature cancerous 

lymphocytes or myelocytes although they originate from the BM (and thus, may also originate 

from progenitor cells) instead of the lymphatic system. It is estimated that every 3 minutes in the 
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US, one person is diagnosed with blood cancer (American Cancer Society, Cancer statistics 2023). 

Lymphomas are divided into two main groups: Hodgkin lymphoma (HL) and non-Hodgkin 

lymphoma (NHL), respectively representing 10% and 90% of all lymphomas. NHL accounts for 

4% of all cancers in the US and represents the sixth most common cancer worldwide (American 

Cancer Society, Cancer statistics 2023). 

 85-90% of NHL are derived from B cells, the rest being derived from T of NK cells 

(Armitage et al., 2017). Overall, over 95% of all lymphomas are estimated to originate from B 

cells undergoing pathological changes in favor of malignant transformation and lymphoma 

development, a process named B cell lymphomagenesis. Consequently, many efforts have been 

made to understand the causes of B cell lymphomagenesis. One of the suspected causes is thought 

to be linked to chromosomal translocation: a rearrangement of the chromosomes induced by 

nonhomologous chromosomal pairing, i.e. chromosome breaks followed by joining to a different 

pair of chromosomes. Chromosomal translocations constitute severe genetic modifications with a 

considerable pathological impact. These translocations result in the modification of genetic 

sequences or modification in the localization of genes essential for cellular homeostasis thus 

affecting their regulation. Indeed, translocations can result in the inactivation of a tumor 

suppressor, or the activation of an oncogene through juxtaposing a proto-oncogene with an 

activating DNA sequence, or through the generation of a fusion protein with a new or enhanced 

function (Nambiar et al., 2008). Chromosomal translocations are a common event in 

tumorigenesis: they are reported in many tumors and are detected at a particularly high frequency 

in hematopoietic malignancies (Lieber, 2016; D. Liu & Lieber, 2022; Nambiar et al., 2008). 

Historically, one of the first translocations was discovered in chronic myeloid leukemia (CML) 

patients in 1972 (Rowley, 1973). This translocation involves an interchange between 



42 

 

chromosomes 9 and 22: t(9:22), known as Philadelphia or Ph chromosome. It was later shown that 

the t(9:22) causes the production of a BCR-ABL fusion protein having an increased tyrosine kinase 

activity driving tumorigenesis (Rowley, 2001). The development of Imatinib (Gleevecâ), a 

tyrosine kinase inhibitor blocking the enzymatic activity of BCR-ABL fusion protein 

revolutionized CML treatment and is considered a landmark case in the area of targeted therapies 

and personalized medicine (Druker et al., 2001; N. Iqbal & Iqbal, 2014). Other well-known 

translocations involve the juxtaposition of the MYC proto-oncogene (a physiological form of a 

gene having the potential to become an oncogene when accidentally activated) with the Ig 

regulatory sequences resulting in MYC overexpression (developed in later sections) (Rowley, 

2001). 

Lymphomas originating from B cells often involve translocations of the Ig genes, 

recombined through various steps of B cell differentiation. Moreover, chromosomal translocations 

involve DSBs and DNA repair, two physiological mechanisms required for V(D)J recombination, 

CSR and SHM. Consequently, since B cells naturally encounter DSBs and DNA repair during the 

formation, diversification and expression of antigen receptors, chromosomal translocations found 

in lymphomas are associated with aberrations occurring during the V(D)J recombination, CSR or 

SHM processes (Jankovic et al., 2007; Kuppers, 2005; Kuppers & Dalla-Favera, 2001; 

Nussenzweig & Nussenzweig, 2010). Indeed, since DSBs and DNA repair are a requirement for 

antigen receptor formation and diversification, B cells have several mechanisms to shut down 

apoptotic pathways during those specific steps, making them escape cell death even in cases of 

mistakes in DSBs and DNA repair. Consequently, B cells are a cell type particularly sensitive to 

chromosomal translocations which can be caused by mistakes in those specific processes. The 

main actors of the V(D)J recombination, CSR and SHM, like RAG1/2, NHEJ or AID can thus 
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generate pathological genetic modifications. It is indeed thought that most of the translocations 

found in lymphomas result from the incorrect junction of an Ig locus to a proto-oncogene DNA 

sequence previously cut or modified by RAG1/2 and/or AID (Lieber, 2016; D. Liu & Lieber, 

2022). 

Errors linked to V(D)J defects can induce chromosomal translocation and cancers in both 

T and B lymphocytes (Christie et al., 2022; Lieber et al., 2006; Marculescu et al., 2006; Onozawa 

& Aplan, 2012). The RAG1/2 recombinase, the complex causing DSBs at recombination signal 

sequences (RSS) for antigen receptor formation at the immature B cell stage,  can cause 

translocations through its transposase activity or by targeting RSSs localized in sites other than the 

Ig loci (RAG1/2 off-target effect); in proto-oncogenes for example (Christie et al., 2022; 

Marculescu et al., 2006; Nussenzweig & Nussenzweig, 2010). Defects in the NHEJ pathway, in 

addition to the inactivation of the apoptotic signaling can also generate translocations, although in 

a RAG1/2 dependent way (Difilippantonio et al., 2002; Zhu et al., 2002). 

AID, through its cytidine deaminase activity (causing the replacement of cytosine into 

uracil nucleotides) provokes DNA mutations and allows the APE1 enzyme to introduce DNA 

breaks: mistakes in both mechanisms can induce lymphomagenesis. AID can indeed mutate non-

Ig genes causing point mutations in oncogenes, a process known as aberrant SHM (Nussenzweig 

& Nussenzweig, 2010; Pasqualucci et al., 2001). This type of mutation in oncogenes already has 

the potential to generate severe damage, but the uracil nucleotides introduced by AID can also be 

processed by the UNG enzyme opening the DNA and potentially provoking translocations 

(Ramiro et al., 2006; Ramiro et al., 2004). A combination of AID deregulation and apoptosis 

impairment, like a p53 deficiency also causes translocations and eventually a lymphoma (Robbiani 
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et al., 2009). Finally, the actions of RAG1/2 and AID can also be combined to generate genetic 

translocations (Nussenzweig & Nussenzweig, 2010). 

Since AID, which has the potential to cause translocation and lymphomagenesis, is 

expressed at its highest level in GC B cells (Muramatsu et al., 1999), the GC reaction is a 

particularly sensible step where pathological genetic rearrangements can be accidentally acquired 

(Pasqualucci et al., 2008). Moreover, many GC features correlate with the hallmark of malignant 

transformation (Basso, 2021; Mlynarczyk et al., 2019). Therefore, the majority of B lymphomas 

originate from the GC and are even named GC-derived B cell lymphoma (Kuppers et al., 1999; 

Stevenson et al., 1998). (Note: the cell of origin can be even more precise than “GC” thanks to 

recent single-cell analysis (Holmes et al., 2020)). More precisely, all B cell NHLs (95% of NHLs), 

except the rare lymphoblastic and mantle-cell lymphomas, are derived from GC or post-GC cells 

and contain chromosomal translocations and mutations resulting from aberrant CSR or SHM 

(Klein & Dalla-Favera, 2008; Kuppers & Dalla-Favera, 2001). In B-NHL, translocations involving 

two non-Ig genes are rare but still exist; and are also caused by AID producing DSBs in genes 

other than Ig (off-target effect) (D. Liu & Lieber, 2022; Robbiani et al., 2009; Tsai et al., 2008). 

On the opposite, the majority of these lymphomas harbor translocations juxtaposing the Ig genes 

with proto-oncogenes (Basso & Dalla-Favera, 2015). 

GC-derived B cell lymphomas represent the majority of NHL and are subdivided into four 

main subtypes: Burkitt lymphoma (BL), diffuse large B cell lymphoma (DLBCL), follicular 

lymphoma (FL), and other rarer tumors (Alaggio et al., 2022; Loeffler-Wirth et al., 2022). Each 

subtype is characterized by specific genetic abnormalities (Basso & Dalla-Favera, 2015). 
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1.3.1. Burkitt Lymphoma (BL) 

BL is a malignancy discovered in 1958 by Denis Burkitt giving his name to this disease 

(Burkitt, 1958). In the history of biology, BL investigations are important since they led to major 

discoveries in oncology (discovery of the MYC oncogene and chromosomal translocation), 

epidemiology (due to BL association with viruses like EBV or HIV), clinical oncology (one of the 

first cancer that became treatable and curable in some cases by chemotherapy, particularly in 

children) and immunology (Molyneux et al., 2012). BL tumors are conventionally classified into 

three subgroups: endemic, sporadic, and immunodeficiency associated. Endemic BLs are 

associated with EBV infection (>90% of cases) and malaria and account for 50% of childhood 

cancer in Africa (Magrath, 2012; Mawson & Majumdar, 2017), while sporadic BLs occur in 

worldwide populations (North America, Europe, Asia); in other words, in geographical areas not 

specifically associated with EBV or malaria. The immunodeficiency associated BL is observed in 

HIV infected patients. The latest 2022 WHO classification recommends now using two subtypes 

based on EBV status (positive or negative-BL) (Alaggio et al., 2022). All subtypes combined, BL 

mostly affects children, adolescents, and young adults: it is estimated that half of BL patients are 

younger than 40 years (Dozzo et al., 2017; Kalisz et al., 2019). A translocation of the MYC 

oncogene with an Ig locus deregulates its expression and is a common feature of >95% of BL 

tumors, whatever their subtype (Swerdlow et al., 2016). 

BL is an aggressive tumor and one of the fastest-growing malignancies with cell doubling 

occurring within 24h to 48h. The main treatment for BL is a combination of chemotherapies: 

cyclophosphamide, doxorubicin, vincristine, and prednisone known as the CHOP regimen, 

particularly used in pediatric patients (Graham & Lynch, 2023). Other chemotherapeutic agents 

like etoposide, methotrexate, ifosfamide, cytarabine, or alkylators can also be used in combination, 
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particularly in advanced cases and in adult patients (Dunleavy et al., 2013; Jacobson & LaCasce, 

2014; Rizzieri et al., 2014; D. A. Thomas et al., 1999; D. A. Thomas et al., 2006). At the beginning 

of the 2000’s the rituximab monoclonal antibody targeting the CD20 B cell surface marker was 

approved and is since used in addition to chemotherapies (R-CHOP). Compared to chemotherapies 

alone, it improves the survival for both pediatric (Minard-Colin et al., 2020) and adult patients 

(Ribrag et al., 2016). The overall survival is relatively high, around 85-90% survival for young 

patients but declines in older adults and the elderly (Dozzo et al., 2017). However, BL treatment 

causes significant toxicity and life-threatening complications (Casulo & Friedberg, 2018; Choi et 

al., 2009). Moreover, refractory and relapsing patients have a poor prognosis and very few 

treatment options. 

1.3.2. Diffuse Large B cell Lymphoma (DLBCL) 

DLBCL is the most common type of NHL, accounting for 40% of all lymphoma cases 

worldwide. It is traditionally divided into three main subtypes: activated B cell-like (ABC-

DLBCL), GC-like (GCB-DLBCL) and unclassified DLBCL (Alizadeh et al., 2000; Swerdlow et 

al., 2016). GCB-DLBCL originates from GC LZ cells while ABC-DLBCL originates from later 

stages of B cell maturation and is clinically more aggressive with an unfavorable outcome (Basso 

& Dalla-Favera, 2015). However, more recent studies have proposed more complex classifications 

based on genetic information highlighting some proximity between BL and DLCBL tumors (N. 

Thomas et al., 2023). Patient profiles are highly heterogenous although the median diagnosis age 

(66 years) is higher compared to BL. Moreover, older patients have a worse prognosis and are less 

likely to support chemotherapy regimens. 

DLBCL treatments are very similar to BL treatments (and other types of NHL): they are 

composed of rituximab in addition to various chemotherapies (Coiffier et al., 2002; Pfreundschuh 
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et al., 2006; Sehn et al., 2005; Tilly et al., 2003). Similar to BL, refractory and relapsing patients 

have a poor prognosis and very few treatment options and it is estimated that up to 40% of patients 

relapse (Sarkozy & Sehn, 2018). A particular subset of patients carrying MYC and B cell 

lymphoma 2 (BCL2) and/or B cell lymphoma 6 (BCL6) rearrangement is poorly responsive to 

chemotherapies (Landsburg et al., 2016; Petrich et al., 2014). Few other treatments have shown 

encouraging results such as Ibrutinib, inhibiting the Bruton’s tyrosine kinase (BTK) involved in 

BCR signaling; however, this option is most efficient in non-GCB subtype tumors and younger 

patients (Wilson et al., 2021; Wilson et al., 2015). A combination of R-CHOP with bortezomib, a 

proteasome inhibitor, has recently been shown to increase the progression-free survival of DLBCL 

patients (Davies et al., 2019). Glofitamab, a monoclonal bi-specific antibody binding to B and T 

cells through CD20 and CD3 receptors (Dickinson et al., 2022; Minson & Dickinson, 2021), or 

CAR-T cell therapies are now offering additional options even though there are still patients not 

sensitive to these treatments (Flowers & Odejide, 2022). Overall, DLBCL is still a life-threatening 

disease requiring the development of alternative therapies. 

1.3.3. Follicular Lymphoma (FL) 

FL is an indolent but incurable B lymphoma affecting the elderly (median age at diagnosis: 

65 years). FL is driven by the t(14:18) translocation provoking Bcl2 overexpression in 85-90% of 

cases (Nann et al., 2020). However, in 30-40% of cases, these tumors can transform into more 

aggressive lymphomas, very often into DLBCL (Fischer et al., 2018; Lossos & Levy, 2003). These 

transformations occur through the acquisition of additional genetic rearrangements, one of the 

most frequent being a MYC translocation causing an aggressive double-hit lymphoma (DHL) 

(Fischer et al., 2018; Kridel et al., 2015; Pasqualucci et al., 2014). 



48 

 

1.3.4. Oncogenes involved in GC-derived B cell lymphomas 

The majority of GC-derived B cell lymphomas harbor translocations juxtaposing the Ig 

genes with proto-oncogenes (Basso & Dalla-Favera, 2015). Several proto-oncogenes are 

accidentally hyperactivated through these translocations and/or other types of dysregulation: 

among them, BCL2, BCL6 and MYC (Willis & Dyer, 2000). These proto-oncogenes have relevant 

physiological roles in normal GC B cells, where CSR and SHM take place and their dysregulation 

represents major steps in the development of GC-derived malignancies. 

The BCL2 oncogene encodes an anti-apoptotic factor, differentially expressed through B 

cell maturation to either promote apoptosis when absent or inhibit apoptosis when expressed to 

tolerate DNA breaks during the GC reactions (Slomp & Peperzak, 2018). Therefore, the t(14:18) 

translocation, which is a juxtaposition of the IgH enhancer elements with BCL2 over activates this 

anti-apoptotic factor contributing to cell death resistance favoring B cell transformation (Sungalee 

et al., 2014; Tsujimoto et al., 1984; Vaux et al., 1988). The t(14:18) translocation is the hallmark 

of FL and is present in 85-90% of cases (Nann et al., 2020); but is also detected in 20-45% of 

GCB-DLBCL subtype (J. Iqbal et al., 2004; Lenz et al., 2008; Rosenwald et al., 2002; Vega & 

Medeiros, 2003), sometimes in addition to BCL2 mutations (Schuetz et al., 2012). BCL2 is also 

found overexpressed in ABC-DLBCL through other mechanisms than translocations: either 

through the gain or amplification of the 18q chromosome (Lenz et al., 2008), or through the 

overactivation of the NF-kB pathway positively regulating BCL2 expression (Davis et al., 2001); 

or through somatic mutations in the BCL2 promoter promoting its expression (M. Saito et al., 

2009). 

The BCL6 protein is a hallmark of GC B cells (Basso & Dalla-Favera, 2012, 2015; Dent 

et al., 1997; Ye et al., 1997). This transcription factor prevents the expression of the anti-apoptotic 
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BCL2 gene in the DZ (M. Saito et al., 2009) and the proliferation factor c-MYC driving B cell 

proliferation (Basso et al., 2010; Ci et al., 2009; Dominguez-Sola et al., 2012). BCL6 also allows 

tolerance to DSBs in GC B cells, thus permitting the physiological SHM process to take place by 

transcriptionally repressing essential regulators of apoptosis, among them TP53 (R. T. Phan & 

Dalla-Favera, 2004; Ranuncolo et al., 2007; Ranuncolo et al., 2008). Dysregulation of BCL6 

expression induces lymphomagenesis (Basso & Dalla-Favera, 2012; Cattoretti et al., 2005). The 

t(3:14) translocation positively regulates BCL6 expression due to a juxtaposition of the BCL6 gene 

with the regulatory sequences of the IgH locus (Ye et al., 1995). This translocation is detected in 

10-40% of DLBCL tumors (more frequent in the ABC subtype) and 15% of FL, and BCL6 

mutations are detected in all GC-derived B cell lymphoma subtypes (Aukema et al., 2011; J. Iqbal 

et al., 2007; Wlodarska et al., 2003). Other mechanisms can deregulate BCL6 expression, notably 

through impairment of BCL6 positive regulators or epigenetic modifications (Basso & Dalla-

Favera, 2015). 

Another oncogene involved in GC-derived B cell lymphoma is MYC often associated with 

an aggressive phenotype (Ott et al., 2013). MYC’s role in GC physiology and malignant 

transformation is described more precisely in the next section. 

1.4. The transcription factor c-MYC 

MYC (used to describe c-MYC in this thesis) is a member of the MYC transcription factor 

family and is involved in a variety of cellular processes like proliferation, differentiation, apoptosis 

and metabolism (Carroll et al., 2018; Dang et al., 1999; Hoffman & Liebermann, 2008; Stine et 

al., 2015). It binds to E-box DNA sequences via its helix-loop-helix domain and heterodimerizes 

with MAX modulating the transcription of target genes (Dang, 2012; N. Meyer & Penn, 2008). 
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MYC is particularly important and involved in B cell differentiation and their malignant 

transformation (Ahmadi et al., 2021; de Barrios et al., 2020; Delgado & Leon, 2010; Klapproth & 

Wirth, 2010; Nguyen et al., 2017). 

1.4.1. Role in physiological B cell differentiation 

MYC allows pro-B to pre-B cell differentiation in the BM (Habib et al., 2007; Huang et 

al., 2008) and is repressed by BCL6 in quiescent pre-B cells (Nahar et al., 2011), but its expression 

is activated when the pre-B cell BCR is stimulated (Klemsz et al., 1989; Larsson et al., 1991). 

In secondary lymphoid organs, MYC is essential for the maintenance of GCs (Calado et 

al., 2012; Dominguez-Sola et al., 2012) where expression is induced by both BCR and CD40 

signaling repressing BCL6 expression at the same time (Luo et al., 2018). MYC is thus required 

to initiate the GC reaction and the first rounds of cell division (Calado et al., 2012; Dominguez-

Sola et al., 2012) but is quickly repressed by BCL6 in the dividing DZ B cells (Calado et al., 2012; 

Dominguez-Sola et al., 2012; Klein et al., 2003; Victora et al., 2010). However, MYC expression 

is again induced in the LZ: the site where B cells are selected based on their antibody affinity 

(Calado et al., 2012; Dominguez-Sola et al., 2012). When B cells with high antibody affinity are 

selected, they exit the light zone, express BLIMP-1 suppressing MYC expression and differentiate 

into PB (Y. Lin et al., 1997) or in MBC by unknown mechanisms. However, when the BCR affinity 

is inappropriate, B cells re-express MYC and re-enter the DZ for additional rounds of SHM 

(Dominguez-Sola et al., 2012; Ersching et al., 2017). MYC is defined as the GC B cell division 

timer since the level of MYC protein expression in the LZ is proportional to the number of 

divisions in the DZ (Finkin et al., 2019). 
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1.4.2. Role in B cell lymphomagenesis 

MYC is one of the first oncogenes discovered and largely contributed to defining the term 

“oncogene”. The history of oncogenes starts in 1910 with a famous experiment realized by Dr. 

Peyton Rous. He made a cell-free extract of a chicken tumor and injected this extract into healthy 

animals which then developed cancer thus suggesting that a virus was at the origin of the tumor 

growth. This experiment later led to the discovery of the Rous sarcoma virus and the identification 

of the SRC proto-oncogene by Temin and Rubin (Temin & Rubin, 1958). Dr. Rous was awarded 

the 1966 Nobel Prize in Physiology or Medicine for “his discovery of tumor-inducing viruses”. 

This experiment ultimately led to the discovery of viral oncogenes and the idea that cancer 

mechanisms could be explained by the study of viruses. Later, it was discovered that the avian 

acute leukemia virus MC29 isolated by Ivanov and colleagues in 1964 contains a v-myc sequence 

that was identified as the sequence causing myelocytes expansion and leukemia in animal models 

(Sheiness et al., 1978). The mammalian c-myc sequence was then identified as a homolog of the 

MC29 v-myc sequence (Roussel et al., 1979; Sheiness & Bishop, 1979). These discoveries largely 

contributed to the understanding of oncogenes and basic concepts of oncology. 

Today MYC is one of the most studied proto-oncogene defined as a gene having the 

potential to initiate cellular growth and malignant transformation when activated (and then called 

oncogene once activated). In opposition to oncogenes, tumors suppressors are defined as genes 

negatively regulating cellular growth and their inactivation support an incontrollable cellular 

growth and malignant transformation. MYC is found dysregulated in more than 70% of human 

cancers (Beroukhim et al., 2010; Dang, 2012; N. Meyer & Penn, 2008; Spencer & Groudine, 

1991), particularly in blood malignancies (Ahmadi et al., 2021; Ott et al., 2013). MYC 

translocations are found in GC-derived B cell lymphoma, particularly with Ig genes. In BL 
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patients, MYC (chromosome 8) is translocated with chromosome 14 encoding the Ig heavy chain 

genes, or to a lesser extent, translocated with chromosome 2 or 22 harboring the Ig k and l light 

chain genes respectively (respectively translocations t(8:14), t(2;8), t(8;22)), causing a constitutive 

MYC expression and thus supporting the process of malignant proliferation (Dalla-Favera et al., 

1982; Neel et al., 1982; Taub et al., 1982). About 70 to 80% of BL patients harbor a t(8:14) 

translocation, whereas translocations t(2;8) and t(8;22) are found in 10 to 15% of BL patients 

(Bernheim et al., 1981; Bertrand et al., 1981; Kaiser-McCaw et al., 1977). MYC genetic 

rearrangement is also observed in approximately 10% of DLBCL cases as well as in other types 

of B cell lymphoma, but not in FL where it is considered rare (Karube & Campo, 2015; Niitsu et 

al., 2009; Xia & Zhang, 2020). In DLBCL, MYC duplication is also observed (Stasik et al., 2010; 

Valera et al., 2013), as well as MYC mutations that are enriched in MYC-rearranged cases and 

increase MYC protein stability (Pasqualucci et al., 2001). Even if DLBCL tumors most commonly 

present BCL6 or BCL2 translocations (respectively 30-40% and 20-30% of cases), MYC alterations 

can also be found in tumors harboring translocations in BCL2 or/and BCL6 genes commonly 

named DHL or triple hit lymphoma (THL) and associated with poor overall survival (Ott et al., 

2013; Valera et al., 2013). DHL tumors harbor translocations in MYC and BCL2, or MYC and 

BCL6 to a lesser extent, representing 10% of DLBCL cases (Dunleavy, 2014). The DHL and THL 

are now classified as high-grade B cell lymphoma (Alaggio et al., 2022; Cucco et al., 2020; Grimm 

& O'Malley, 2019; Kunstner et al., 2022; Sesques & Johnson, 2017). In addition, a considerable 

amount of DLBCL tumors harbor a MYC protein overexpression without any MYC genetic 

abnormalities (Karube & Campo, 2015; Ott et al., 2013). 



53 

 

1.4.3. Modelling MYC dysregulation in murine B lymphoma 

Due to the important amount of MYC abnormalities observed in lymphoma, several 

biological models were generated to better understand MYC’s role in B cell lymphoma. Notably, 

several transgenic mice mimicking the MYC genetic rearrangements found in patients have been 

created (Adams et al., 1985; Kovalchuk et al., 2000; S. N. Meyer et al., 2021; S. S. Park et al., 

2005; Pasqualucci & Klein, 2021; Sander et al., 2012). These transgenic mice with an elevated 

level of MYC protein develop various types of lymphoma and contributed significantly to a better 

understanding of MYC oncogenic roles (Ferrad et al., 2020; S. N. Meyer et al., 2021; Mossadegh-

Keller et al., 2021; Vecchio et al., 2020; R. Winkler et al., 2022), even in cancers other than 

lymphoma (Gabay et al., 2014; Morton & Sansom, 2013). 

Among these models, the Eµ-Myc transgenic mice reproduce the t(8:14) translocation 

juxtaposing MYC with the enhancer sequence of the IgH carried by 70-80% of BL tumors (Adams 

et al., 1985). These mice develop spontaneously a B lymphoma considered immature and are a 

transgenic tool widely used since its generation in 1985 (R. Winkler et al., 2022). Another model 

named l-Myc (or IgL-Myc or Igl-Myc) mimics the t(8;22) translocation juxtaposing MYC with 

the regulatory sequences of the Igl locus found in a smaller proportion of BL patients compared 

to the t(8:14) translocation (Kovalchuk et al., 2000). These l-Myc mice also spontaneously 

develop B lymphomas of more mature phenotype in opposition to the immature B lymphomas that 

emerge in Eµ-Myc mice. 
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1.4.4. Synergy of MYC activation with other genetic events in 

lymphomagenesis 

Although MYC involvement in lymphomagenesis and its oncogenic role is better 

understood, several studies using murine models highlight that a MYC aberration alone is not 

sufficient for lymphomagenesis and a full malignant transformation relies on additional mutations 

and/or genetic dysregulations (Klapproth & Wirth, 2010; Schuster et al., 2011; Vecchio et al., 

2020; R. Winkler et al., 2022). One compelling argument for this view is that lymphomas that 

emerge in Myc transgenic mice are monoclonal, i.e. they develop from a single cell. If activation 

of MYC alone were sufficient for malignant transformation, the development of many different 

oligoclonal tumors would be expected in Myc transgenic mice. 

One of the best examples is the cooperation between MYC and PI3K signaling to 

contribute to mouse BL pathogenesis (Sander et al., 2012). This murine model clearly shows that 

over-expressing MYC or a constitutively activated PI3K mutant into GC B cells using lox-stop-

lox insertions into the Rosa26 locus and the Cg1-cre deleter does not induce lymphoma 

development in mice, while a combination of both MYC overexpression and expression of a 

constitutively activated PI3K mutant induces murine BL. 

Interestingly, MYC is known as a transcription factor inducing cell proliferation whereas 

on the opposite, high MYC expression also triggers apoptosis (N. Meyer et al., 2006; Vecchio et 

al., 2020; Wasylishen & Penn, 2010). At first sight, the duality between cellular proliferation and 

apoptotic functions of MYC appears contradictory although the apoptotic function can be inhibited 

by external factors and is then considered as a safety mechanism to prevent abnormal proliferation 

in case of MYC pathological activation. Therefore, the apoptotic function caused by a high level 

of MYC is thought to be a primordial event in tumorigenesis and could explain why a high level 



55 

 

of MYC can cooperate with the loss or impairment of many apoptotic factors. Indeed, MYC 

cooperates with 1) either mutations activating an anti-apoptotic factor for example BCL2 (Eischen 

et al., 2001; Strasser et al., 1990), - as observed in DHL and double expressor lymphoma patients 

(Cai et al., 2020; Dunleavy, 2014) – or MCL1 (Grabow et al., 2016); or 2) or inactivation of a pro-

apoptotic factor such as p53 (L. Yu et al., 2019), or its targets or regulators (e.g. PUMA (Garrison 

et al., 2008; Michalak et al., 2009), ARF-MDM2, BIM) (Vecchio et al., 2020); or 3) a combination 

of several impairments (e.g. the THL). 

Moreover, other essential cellular functions collaborate with MYC activation to the benefit 

of B lymphomagenesis (R. Winkler et al., 2022). In this regard, MYC-induced apoptosis can also 

be an indirect effect caused by the dysregulation of essential cellular functions, like cell cycle 

arrest, transcriptional or metabolic stress, DNA damage or others (R. Winkler et al., 2022). 

Several reasons have directed research toward discovering genes altered in MYC-driven 

lymphoma. First, since MYC activation synergizes with secondary hits to initiate 

lymphomagenesis, particular attention has been drawn to genes frequently altered in MYC-

activated tumors. Second, the increase of large-scale sequencing studies has allowed the unveiling 

of the genes altered in MYC-driven B lymphoma. Third, MYC is traditionally described as an 

interesting but “undruggable” target, thus leading the research to focus on co-mutated genes that 

could be relevant targets in view of future therapies. Consequently, recent studies reported that the 

DDX3X gene encoding the DEAD box helicase 3 X-linked is frequently mutated in MYC-driven 

B lymphoma and could possibly represent a relevant target for these cancers. 
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1.5. DEAD box RNA helicases 

Helicases are defined as enzymes remodeling DNA and/or RNA to separate or unwind 

double stranded molecules. Helicases constitute a specific group of ATPases since adenosine 

triphosphate (ATP) hydrolysis generates the source of energy allowing their motor action. They 

are highly conserved from bacteria, viruses to humans suggesting a fundamental role and vital 

function for biological organisms. Helicases are classified into six superfamilies based on their 

sequences (Singleton et al., 2007). The superfamily 2, the largest of the six, contains several 

clusters of helicases, among them the DEAD box cluster (Fairman-Williams et al., 2010; 

Gorbalenya & Koonin, 1993; Jankowsky, 2011). 

DEAD box RNA helicases are named after the Asp-Glu-Ala-Asp (DEAD) amino acid 

sequence common to all the members of this family. This motif was first found in the eukaryotic 

translation initiation factor 4 A (eIF4A; also named DDX2) helicase and its homologs and was 

suspected to be linked to the enzymatic activity (Linder et al., 1989). This DEAD motif, also named 

motif II, became the denominative motif of the family and was later proved to be essential for the 

ATPase activity (Iost et al., 1999; Pause & Sonenberg, 1992). Eleven additional motifs 

characterize the DEAD box family which is exclusively composed of RNA helicases (Linder & 

Fuller-Pace, 2013). Today, around 37 to 42 DEAD box (DDX) proteins have been identified in 

human (Linder, 2006; Umate et al., 2011). The molecular mechanisms and basic functions of 

DEAD box RNA helicases started to be understood in the 1990’s (Tanner & Linder, 2001). Their 

involvement in several cellular processes started to be highlighted in the 2000’s: DEAD-box 

helicases were mostly linked to the regulation of many steps of RNA metabolism due to their RNA 

binding capacity (Cordin et al., 2006; Linder, 2006; Linder & Jankowsky, 2011). 
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1.6. DDX3X and DDX3Y genes 

1.6.1. Sexual genetic disparity 

The DEAD box helicase 3 (DDX3) genes encode members of the DEAD box RNA 

helicases. DDX3 is the annotation used to qualify two genes named DEAD box helicase 3 X-linked 

(DDX3X) and DEAD box helicase 3 Y-linked (DDX3Y), respectively localized on the X- and Y-

chromosome in both mouse and human. These specific chromosomes determine biologically the 

sex of most mammals: the general rule is that females have two X-chromosomes (XX) while males 

carry one X- and one Y-chromosome (XY). In human, DDX3X is localized on Xp11.3-11.23 (S. 

H. Park et al., 1998) and DDX3Y in the AZFa region (Lahn & Page, 1997). Because of their genetic 

localization, DDX3 genes are subject to a sex-specific regulation detailed here.  

The DDX3X gene is the X-linked homolog, female mammals (XX) carry two alleles while 

males (XY) carry only one allele. In females, one of the two X-chromosomes is epigenetically 

silenced to equalize the dosage of X-linked gene products between XX females and XY males, a 

process known as X-chromosome inactivation (Avner & Heard, 2001; Lyon, 1961; Ohno & 

Hauschka, 1960). X-chromosome inactivation causes the majority of X-linked genes to have only 

one active allele. However, some genes escape X-chromosome inactivation and conserve two 

active alleles (Carrel & Willard, 2005; F. Yang et al., 2010). Those “escapees” represent 12-20% 

of human and 3-7% of mouse X-linked genes (Balaton & Brown, 2016). DDX3X is characterized 

as an escapee in both species and therefore, females carry two active alleles.  

The DDX3Y gene is the Y-linked homolog and thus, only carried by males. It is not rare 

that X-linked escapees have an active, closely related Y-linked homolog to supposedly maintain a 

balanced dosage between both sexes (Bellott et al., 2014; Pessia et al., 2014). 
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DDX3X has been much more studied compared to its Y paralog. One of the reasons is that 

the DDX3Y protein is thought not to be expressed in humans except in the testis (as detailed later). 

Consequently, the “DDX3” term is often used in the literature to define DDX3X, particularly when 

the model is a human cell line other than male germ cells. However here, DDX3 refers to both 

DDX3X and DDX3Y genes without any specification. 

1.6.2. Structural features 

DDX3X and DDX3Y nucleic acid and amino acid sequences respectively share 88% and 

91% of homology in human (84% and 90% in mouse). Their differences are not equally distributed 

among their sequences: approximately half of their differences are carried by their N-terminal 

domains (Figure 1-5). Human and mouse DDX3X nucleic acid and amino acid sequences 

respectively share 92% and 99% of homology, and human and mouse DDX3Y nucleic acid and 

amino acid sequences respectively share 89% and 89% of homology. 

 

Figure 1-5: Alignment of DDX3 amino acid sequences from human and mouse 
Alignment of amino acid sequences of human DDX3X, human DDX3Y, mouse DDX3X, mouse DDX3Y and mouse 
PL10. “h” and “m” letters indicate the species, respectively human and mouse; the numbers correspond to the amino 
acid positions. Sequences highlighted in red are common to all protein sequences; the yellow ones correspond to 
common sequences between the human DDX3X and DDX3Y paralogs; the green ones correspond to common 
sequences between the three murine DDX3 homologs. Black boxes indicate specific sequences such as the NES, 

hDDX3X MSHVAVENALGLDQQFAGLDLNSSDNQ-SGGSTASKGRYIPPHLRNREATKGFYDKDSSG 59 
hDDX3Y MSHVVVKNDPELDQQLANLDLNSEKQS-GGASTASKGRYIPPHLRNREASKGFHDKDSSG 59 
mDDX3X MSHVAVENALGLDQQFAGLDLNSSDNQ-SGGSTASKGRYIPPHLRNREATKGFYDKDSSG 59 
mDDX3Y MSQVAAESTAGLDQQFVGLDLKSSDNQNGGGNTESKGRYIPPHLRNRETSKGVCDKDSSG 60 
mPL10 MSHVAEEDELGLDQQLAGLDLTSRDSQ-SGGSTASKGRYIPPHLRNREAAKAFYDKDGSR 59 

hDDX3X FERGGNSRWCDKSDEDDWSKPLPPSERLEQELFSGGNTGINFEKYDDIPVEATGNNCPPH 178 
hDDX3Y FERSGHSRWCDKSVEDDWSKPLPPSERLEQELFSGGNTGINFEKYDDIPVEATGSNCPPH 176 
mDDX3X FERGGNSRWCDKSDEDDWSKPLPPSERLEQELFSGGNTGINFEKYDDIPVEATGNNCPPH 178 
mDDX3Y FERSGHSRWSDRSDEDDWSKPLPPSERLEQELFSGGNTGINFEKYDDIPVEATGNNCPPH 177 
mPL10 FERGGNSRWCDKADEDDWSKPLPPSERLEQELFSGGNTGINFEKYDDIPVEATGNNCPPH 177 

hDDX3X LSQIYSDGPGEALRAMKENGRYGRRKQYPISLVLAPTRELAVQIYEEARKFSYRSRVRPC 298 
hDDX3Y LSQIYTDGPGEALKAVKENGRYGRRKQYPISLVLAPTRELAVQIYEEARKFSYRSRVRPC 296 
mDDX3X LSQIYADGPGEALRAMKENGRYGRRKQYPISLVLAPTRELAVQIYEEARKFSYRSRVRPC 298 
mDDX3Y LSQIYTDGPGEALKAMKENGRYGRRKQYPISLVLAPTRELAVQIYEEARKFSYRSRVRPC 297 
mPL10 LSQIYTDGPGEALRAMKENGKYGRRKQYPISLVLAPTRELAVQIYEEARKFSYRSRVRPC 297 

hDDX3X PQIRRIVEQDTMPPKGVRHTMMFSATFPKEIQMLARDFLDEYIFLAVGRVGSTSENITQK 418 
hDDX3Y PQIRRIVEQDTMPPKGVRHTMMFSATFPKEIQMLARDFLDEYIFLAVGRVGSTSENITQK 416 
mDDX3X PQIRRIVEQDTMPPKGVRHTMMFSATFPKEIQMLARDFLDEYIFLAVGRVGSTSENITQK 418 
mDDX3Y PQIRRIVEQDTMPPKGVRHTMMFSATFPKEIQMLARDFLDEYIFLAVGRVGSTSENITQK 417 
mPL10 PQIRRIVEQDTMPPKGVRHTMMFSATFPKEIQMLARDFLDEYIFLAVGRVGSTSENITQK 417 

hDDX3X DREEALHQFRSGKSPILVATAVAARGLDISNVKHVINFDLPSDIEEYVHRIGRTGRVGNL 538 
hDDX3Y DREEALHQFRSGKSPILVATAVAARGLDISNVRHVINFDLPSDIEEYVHRIGRTGRVGNL 536 
mDDX3X DREEALHQFRSGKSPILVATAVAARGLDISNVKHVINFDLPSDIEEYVHRIGRTGRVGNL 538 
mDDX3Y DREEALHQFRSGRKPILVATAVAARGLDISNVKHVINFDLPSDIEEYVHRIGRTGRVGNL 537 
mPL10 DREEALHQFRSGKSPILVATAVAARGLDISNVKHVINFDLPSDIEEYVHRIGRTGRVGNL 537 

hDDX3X ARDYRQSSGASSSSFSSSRASSSRSGGGGHGSSRGFGGGGYGGFYNSDGYGGNYNSQGVD 658 
hDDX3Y ARDYRQSSGSSSSGFGASRGSSSRSGGGGYGNSRGFGGGGYGGFYNSDGYGGNYNSQGVD 656 
mDDX3X ARDYRQSSGASSSSFSSSRASSSRSGGGGHGGSRGFGGGGYGGFYNSDGYGGNYNSQGVD 658 
mDDX3Y ARDYRQSSGSANAGFNSNRANSSRSSGS--SHNRGFGGGGYGGFYNNDGYGGNYNSQAVD 654 
mPL10 ARDYRQSSGASSSSFSSGRASNSRSGGGSHGSSRGFGGGSYGGFYNSDGYGGNYSSQGVD 656 

hDDX3X WSSSKDKDAYSSFGSRSDSRGKSSFFSDRG-SGSRGRFDDRGRSDYDGIGSRGDRSGFGK 118 
hDDX3Y WSCSKDKDAYSSFGSRD-SRGKPGYFSERG-SGSRGRFDDRGRSDYDGIGNR-ERPGFGR 116 
mDDX3X WSSSKDKDAYSSFGSRGDSRGKSSFFGDRG-SGSRGRFDDRGRGDYDGIGGRGDRSGFGK 118 
mDDX3Y WSCSKDKDAYSSFGSRD-SRGKPNYFSDRG-SGSRGRFDDHGRNDYDGIGGR-DRTGFGK 117 
mPL10 WS--KDKDAYSSFGSRSDTRAKSSFFSDRGGSGSRGRFDERGRSDYESVGSRGGRSGFGK 117 

hDDX3X IESFSDVEMGEIIMGNIELTRYTRPTPVQKHAIPIIKEKRDLMACAQTGSGKTAAFLLPI 238 
hDDX3Y IENFSDIDMGEIIMGNIELTRYTRPTPVQKHAIPIIKGKRDLMACAQTGSGKTAAFLLPI 236 
mDDX3X IESFSDVEMGEIIMGNIELTRYTRPTPVQKHAIPIIKEKRDLMACAQTGSGKTAAFLLPI 238 
mDDX3Y IENFSDIEMGEIIMGNIELTRYTRPTPVQKHAIPIIKEKRDLMACAQTGSGKTAAFLLPI 237 
mPL10 IESFSDVEMGEIIMGNIELTRYTRPTPVQKHAIPIIKEKRDLMACAQTGSGKTAAFLLPI 237 

hDDX3X VVYGGADIGQQIRDLERGCHLLVATPGRLVDMMERGKIGLDFCKYLVLDEADRMLDMGFE 358 
hDDX3Y VVYGGADIGQQIRDLERGCHLLVATPGRLVDMMERGKIGLDFCKYLVLDEADRMLDMGFE 356 
mDDX3X VVYGGAEIGQQIRDLERGCHLLVATPGRLVDMMERGKIGLDFCKYLVLDEADRMLDMGFE 358 
mDDX3Y VVYGGADTVQQIRDLERGCHLLVATPGRLVDMMERGKIGLDFCKYLVLDEADRMLDMGFE 357 
mPL10 VVYGGADIGQQIRDLERGCHLLVATPGRLVDMMERGKIGLDFCKYLVLDEADRMLDMGFE 357 

hDDX3X VVWVEESDKRSFLLDLLNATGKDSLTLVFVETKKGADSLEDFLYHEGYACTSIHGDRSQR 478 
hDDX3Y VVWVEDLDKRSFLLDILGATGSDSLTLVFVETKKGADSLEDFLYHEGYACTSIHGDRSQR 476 
mDDX3X VVWVEEIDKRSFLLDLLNATGKDSLTLVFVETKKGADSLEDFLYHEGYACTSIHGDRSQR 478 
mDDX3Y VVWVEELDKRSFLLDLLNATGKDSLTLVFVETKKGADSLENFLFQERYACTSIHGDRSQK 477 
mPL10 VVWVEEADKRSFLLDLLNATGKDSLILVFVETKKGADSLEDFLYHEGYACTSIHGDRSQR 477 

hDDX3X GLATSFFNERNINITKDLLDLLVEAKQEVPSWLENMAYEHHYKGSSRGRSKSSRFSGGFG 598 
hDDX3Y GLATSFFNEKNMNITKDLLDLLVEAKQEVPSWLENMAYEHHYKGGSRGRSKSNRFSGGFG 596 
mDDX3X GLATSFFNERNINITKDLLDLLVEAKQEVPSWLENMAFEHHYKGSSRGRSKSSRFSGGFG 598 
mDDX3Y GLATSFFNERNLNITKDLLDLLVEAKQEVPSWLESMAYEHHYKGSSRGRSK-SRFSGGFG 596 
mPL10 GLATSFFNERNINITKDLLDLLVEAKQEVPSWLENMAFEHHYKGGSRGRSK-SRFSGGFG 596 

hDDX3X WWGN 662 
hDDX3Y WWGN 660 
mDDX3X WWGN 662 
mDDX3Y WWGN 658 
mPL10 WWGN 660 

DDX3 insertion 

NES eiF4E 

DEAD motif 
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eIF4E binding, DDX3 insertion and DEAD motifs. The red brackets correspond to the minimal functional core for 
enzymatic activity. NES: Nuclear Export Signal. The alignment was done with Cluster Omega (Goujon et al., 2010; 
Sievers et al., 2011). 

The structural features of DDX3 proteins were mostly studied for the human DDX3X. 

However, sequence homologies and similarities suggest that several of these features are also 

shared with DDX3Y and murine homologs (Figures 1-5 and 1-6). 

 

Figure 1-6: Structural organization of the human DDX3X protein 
Amino acid sequences of human DDX3X and localization of the main features. Numbers correspond to the amino 
acid positions. RecA like 1 and 2 domains in addition to the NTE and CTE represent the minimal core for DDX3X 
enzymatic activity. NES: Nuclear Export Signal; NSL: Nuclear Localization Sequence; NTE: N-terminal extension; 
CTE: C-terminal extension; IDR: Intrinsically Disordered Region. Created with BioRender.com 

Twelve conserved motifs defining the DEAD box family are found in DDX3X domains 

and are distributed among the helicase core composed of two RecA-like domains named after the 

RecA bacterial protein (Cordin et al., 2006; Fairman-Williams et al., 2010; Linder & Jankowsky, 

2011; Soto-Rifo & Ohlmann, 2013) (Figures 1-6). The two RecA-like domains are bound by a 

cleft also named “linker” (aa404-414). The first RecA-like domain contains the following motifs: 

Q motif, I (Walker A or P-loop), Ia, Ib, Ic, II (Walker B or DEAD) and III (SAT motif S382). The 

second RecA-like domain contains the motifs IV, IVa, V Va, and VI. Some of the motifs are 

presumably essential for the ATPase activity (Q, I, II, VI), others for RNA-binding capacity (Ia, 

Ib, Ic, VI), and others for the communication between ATP and RNA binding sites (III, Va). 

Initially, the minimal functional core of DDX3 was described as aa168-582 although it was later 

found not to have any ATPase activity (Epling et al., 2015; Floor et al., 2016; Hogbom et al., 

2007). Today, the minimal helicase core is defined as the region spanning from aa182 to aa544 in 

addition to the two N-terminal extension (NTE) and C-terminal extension (CTE) domains 
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respectively essential for the ATP binding and RNA binding capacity (Epling et al., 2015; Floor 

et al., 2016). 

Although the helicase core is highly conserved through DEAD box helicases, DDX3 

(confirmed in both X and Y) helicase core contains a unique ten amino acids insertion (aa250-

259), referred to as “DDX3 insertion”, between its motifs I and Ia (Hogbom et al., 2007). This 

motif is also found in murine DDX3X (Garbelli et al., 2011) (Figures 1-5 and 1-6) and was 

initially presumed important for RNA binding (Hogbom et al., 2007) although it was later shown 

that a deletion of this sequence in human DDX3X induces a reduction in ATPase and unwinding 

activity (Garbelli et al., 2011). Therefore, the exact function of this sequence remains unclear. 

However, this region seems highly relevant for drug design because 1) this sequence is specific to 

the human DDX3 and not to other DEAD box helicases, 2) it is important for its enzymatic activity, 

and 3) it is slightly different between the X- and Y- human paralogs. 

N-terminal and C-terminal domains contain several motifs associated with functions 

independent of the enzymatic activity of DDX3 proteins. First, there is a known nuclear export 

sequence (NES) (Brennan et al., 2018; Shen et al., 2022; Yedavalli et al., 2004) in the N-terminal 

domain (Figure 1-6). Mutation of L19 and L21 leucine residues causes an accumulation of 

DDX3X in the nucleus. Since these leucine residues are conserved in human DDX3Y and mouse 

DDX3, the NES is very likely present in those proteins too. Second, the region covering aa38-43 

contains a YxxxxL motif allowing DDX3X binding to eIF4E (J. W. Shih et al., 2008) (Figure 1-

6). This motif is also present in human DDX3Y as well as in mouse DDX3 (Figure 1-5). Third, 

an RS-like domain (aa582-631) was identified in the C-terminal region (Owsianka & Patel, 1999) 

and has been shown to be essential for Tip-associated protein (TAP), a nuclear export receptor 

(Lai et al., 2008) (Figure 1-6). In addition, three independent redundant nuclear localization 
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sequences (NLS) have also been identified along the sequence: one within the region covering 

aa1-139, another within aa259-264 and a predicted one within aa409-572 (Brennan et al., 2018). 

Also, two intrinsically disordered regions (IDR) have been identified: IDR1 in N-terminal and 

IDR2 in the C-terminal domain (Shen et al., 2022) (Figure 1-6). 

1.6.3. Localization and post-translational regulation 

DDX3 has a nucleocytoplasmic shuttling capacity (Brennan et al., 2018; Heerma van Voss 

et al., 2017; Owsianka & Patel, 1999; Yedavalli et al., 2004). DDX3 shuttles to the cytoplasm by 

binding to TAP through its RS-domain (Lai et al., 2008; C. S. Lee et al., 2008) and through the 

binding to the CRM1/Exportin 1 receptor (Heerma van Voss et al., 2017; Yedavalli et al., 2004). 

In the nucleus, DDX3 has been shown to be recruited to the E-cadherin promoter (Botlagunta et 

al., 2008) and the type-I IFN promoter in the context of an infection (Soulat et al., 2008). DDX3 

can also localize to the centrosome (W. J. Chen et al., 2017) and the mitochondria (Heerma van 

Voss et al., 2018). 

These studies did not account for potential differences between DDX3X and DDX3Y but 

by comparing both sequences, it is likely that both human proteins, if expressed, share similar 

intracellular localizations except maybe in cases where their localization depends on the N-

terminus since this is the most divergent region between DDX3X and DDX3Y (Figure 1-5). 

However, one group generated a DDX3Y-specific antibody and showed that DDX3Y also shuttles 

between the nucleus and cytoplasm in human male germ cells (Gueler et al., 2012). 

DDX3Y undergoes a specific translational regulation: it is widely accepted that human 

DDX3Y is transcribed in many cell types but not translated except in the testes (Ditton et al., 2004; 

Gueler et al., 2012). It was shown that a specific structure in the human DDX3Y 5’UTR allows its 

protein expression only in a specific type of spermatozoa progenitor (Gueler et al., 2012; 
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Jaroszynski et al., 2011; Rauschendorf et al., 2011). However, two reports suggest it could be 

expressed at the protein level in leukemic and lymphoma cells (Gong et al., 2021; Rosinski et al., 

2008). In mice, this regulatory process is presumed not to occur (Rauschendorf et al., 2011), and 

the DDX3Y protein was indeed detected in cardiomyocytes and fibroblasts (Deschepper, 2020). 

Moreover, it is known that mice carry an additional DDX3 homolog on chromosome 1 named 

D1Pas1 or PL10, with a high degree of sequence similarity with both murine DDX3 (Vong et al., 

2006) (Figure 1-5). 

1.6.4. Functions 

Transcription 

As detailed previously, DDX3X can regulate the transcription by directly binding the 

promoter of E-cadherin and IFN (Botlagunta et al., 2008; Soulat et al., 2008). Moreover, through 

the regulation of the SP1 transcription factor, DDX3 can indirectly regulate the transcription of 

KRAS (Wu et al., 2016), MDM2 (Wu et al., 2014), and P21 (Chao et al., 2006; Wu et al., 2011). 

By transactivating the expression of the YY1 transcription factor, DDX3 indirectly regulates the 

transcription of genes associated with b-catenin activation (WNT1, WNT3, AXIN2, FZD10, BMP4) 

(F. Yang et al., 2019). 

Translation initiation 

DDX3 binds to eiF3 and the 40S ribosomal subunit suggesting that it is a component of the 

43S pre-initiation complex (H. H. Chen et al., 2018; Geissler et al., 2012; C. S. Lee et al., 2008). 

In addition, DDX3 is also important for translation initiation supporting the formation of the 80S 

translation initiation complex independently of its enzymatic function (Geissler et al., 2012), which 

instead points to a chaperone function rather than a helicase role. DDX3 competes with eIF4G for 

eIF4E binding to repress translation (J. W. Shih et al., 2008) and also binds to PABP (Lai et al., 
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2008; J. W. Shih et al., 2012; Soto-Rifo et al., 2012) as well as it binds to eIF4G and to mRNA 

5’UTRs thus being part of the eIF4F complex (Adjibade et al., 2017; Soto-Rifo et al., 2012). 

Moreover, DDX3 can bind to the 5’ 7-methylguanosine mRNA cap and substitute for eIF4E to 

promote translation (Soto-Rifo et al., 2013). Although there is no doubt that DDX3 is involved in 

translation, it is still unclear whether DDX3 activates and/or represses translation. Indeed, many 

contradictory results can be found in the literature, probably because of the different biological 

contexts and model cell lines used for these studies (Ryan & Schroder, 2022). 

Indirect translation regulation 

DDX3 also indirectly regulates the translation at various other levels. First DDX3 was 

found to be associated with spliced RNA via the exon junction complex (Merz et al., 2007). DDX3 

is also involved in mRNA export (Lai et al., 2008; Yedavalli et al., 2004), the RNA interference 

pathway (Kasim et al., 2013; Pek & Kai, 2011), and microRNA biogenesis (Zhao et al., 2016). 

Moreover, DDX3 has the potential to isolate RNA into stress granules to prevent their translation 

under stress conditions (Oh et al., 2016; Samir et al., 2019; Shen et al., 2022; J. W. Shih et al., 

2012; Valentin-Vega et al., 2016), but again, controversies exist in the literature about whether 

DDX3X is dispensable (Adjibade et al., 2017) or not (J. W. Shih et al., 2012) for stress granule 

induction. DDX3X is also a component of P-bodies, another type of cytoplasmic granules 

containing RNAs important for mRNA decay (Chahar et al., 2013). P-bodies and stress granules 

are both membraneless organelles but P-bodies regulate mRNA decay while stress granules store 

mRNA specifically during stress conditions (Stoecklin & Kedersha, 2013). 
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All of DDX3 functions in translation have been intensively reviewed (Ariumi, 2014; J. T. 

Park & Oh, 2022; Ryan & Schroder, 2022; Sharma & Jankowsky, 2014; Soto-Rifo & Ohlmann, 

2013). 

Other functions 

By regulating the translation of many other mRNAs and through other mechanisms, DDX3 

is linked to a variety of cellular processes such as cell cycle regulation, apoptosis, DNA damage 

(Cargill et al., 2021), hypoxia, stress response, Wnt signaling and embryogenesis (Ariumi, 2014; 

Bol et al., 2015; Mo et al., 2021; Sharma & Jankowsky, 2014). In addition, DDX3 is important for 

innate immunity through the regulation of NLRP3 inflammasome, its involvement in the NF-kB 

signaling pathway and modulation of viral infections (Hernandez-Diaz et al., 2021; Kwon et al., 

2022; Samir & Kanneganti, 2022; Schroder, 2011; Valiente-Echeverria et al., 2015; Winnard et 

al., 2021). 

Sex-specific functions 

All the described DDX3 functions have been attributed to DDX3X because the DDX3Y 

protein is presumably not expressed elsewhere other than in human testes which were rarely used 

as an experimental model in those studies. However, since two reports have now shown that 

DDX3Y could be expressed in malignant cells (Gong et al., 2021; Rosinski et al., 2008), it is not 

excluded that the DDX3Y protein is expressed in some of the transformed cell lines used to study 

DDX3X. Therefore, it is possible that DDX3Y may have clouded some effects by compensating 

DDX3X loss, downregulation or inactivation in some models. It is indeed known that DDX3Y 

expression rescues DDX3X loss of function in a hamster cell line (Sekiguchi et al., 2004). 

Moreover, it was recently demonstrated that both DDX3Y and DDX3X have redundant functions 

in protein synthesis for example (Gong et al., 2021; Venkataramanan et al., 2021), an expected 
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result based on their sequence homology. However, around half of the differences between 

DDX3X and DDX3Y amino acid sequences resides in their N-terminal domain containing an 

IDR1 domain (Shen et al., 2022) (Figure 1-5). Shen and colleagues recently demonstrated that the 

IDR1 domain is involved in stress granules formation in both DDX3X and DDX3Y, but DDX3Y 

has a weaker enzymatic activity and thus, promotes less dynamic stress granules, causing higher 

translational repression compared to DDX3X (Shen et al., 2022). Consequently, it is expected that 

functions attributed to DDX3X (or efficacy of these functions) may slightly differ from DDX3Y 

functions, particularly when it involves their N-terminal domains. 

In mice, the situation is different since DDX3Y is not post-translationally repressed 

(Deschepper, 2020; Rauschendorf et al., 2011). It is known that DDX3Y and D1Pas1 rescue 

DDX3X loss of function in hamster cells (Sekiguchi et al., 2004). Moreover, several studies 

recently suggested a compensatory effect by DDX3Y in Ddx3x-deleted male mice since these male 

KO showed different phenotypes compared to Ddx3x-deficient female mice in brain cells (Hoye 

et al., 2022; Patmore et al., 2020), hepatocytes (Chan et al., 2019) and bone marrow-derived 

macrophages (Szappanos et al., 2018). It was even shown that neurons without Ddx3x have a 

higher level of Ddx3y mRNA in favor of a male-specific compensatory effect, suggesting that both 

murine DDX3X and DDX3Y exert very similar functions (Hoye et al., 2022; Patmore et al., 2020). 

However, ubiquitous expression of DDX3Y protein in mice was never clearly demonstrated 

because of the lack of a DDX3Y-specific antibody. Consequently, it is not excluded that other 

male-specific factors also compensate for DDX3X loss in these mouse models. 

1.6.5. Pathological role of DDX3 

DDX3 is an essential gene in humans and is involved in major cellular functions 

indispensable for cell survival (H. Chen et al., 2020; T. Wang et al., 2015). DDX3 was also shown 
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to be indispensable to murine embryonic development (C. Y. Chen et al., 2016; Q. Li et al., 2014). 

Consequently, DDX3 dysregulation has been linked to many different diseases, again highlighting 

its importance for many cell types.  

Intellectual deficiencies 

Germline mutations in the human DDX3X gene are associated with 1-3% of 

neurodevelopmental and intellectual disabilities (ID) (Deciphering Developmental Disorders, 

2015, 2017; Johnson-Kerner et al., 2020; Lennox et al., 2020; Scala et al., 2019; Snijders Blok et 

al., 2015; Y. Sun et al., 2022; X. Wang et al., 2018), including autism spectrum disorders (Iossifov 

et al., 2014; Ng-Cordell et al., 2022; Ruzzo et al., 2019; Stefaniak et al., 2022; Takata et al., 2018; 

Tang et al., 2021; Yuen et al., 2017) and Toriello-Carey syndrome (Dikow et al., 2017). Most of 

the patients affected by germline DDX3X mutations are females suggesting that males carrying 

germline mutations are not viable. However, a few males have been reported (Kellaris et al., 2018; 

Nicola et al., 2019; Snijders Blok et al., 2015; Tang et al., 2021); the majority inherited the 

mutation from their unaffected mother. Since Ddx3x hemizygous male mice are embryonic lethal, 

but not the female heterozygous (Boitnott et al., 2021; C. Y. Chen et al., 2016), it is thought that 

DDX3X mutants found in males are hypomorphic and retain some function. 

Amyotrophic lateral sclerosis  

Changes in DDX3X expression were observed in amyotrophic lateral sclerosis patients 

(Cheng et al., 2019) and also in an amyotrophic lateral sclerosis transgenic mouse model (Y. Chen 

et al., 2017). Interestingly, DDX3Y more strongly promotes FUS and TDP-43 aggregation in stress 

granules compared to DDX3X (Shen et al., 2022), two major pathological proteins involved in 

amyotrophic lateral sclerosis and other types of neurodegenerative diseases like frontotemporal 

dementia (Portz et al., 2021). 
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Fertility 

In humans, it was shown that a deficiency of DDX3Y protein in patients leads to infertility 

(Foresta et al., 2000; Ramathal et al., 2015), whereas in mice, this function was not attributed to 

murine DDX3Y, dispensable for spermatogenesis (Matsumura et al., 2019; Mazeyrat et al., 2001). 

In mice, this function is rather attributed to the D1Pas1 homolog (Inoue et al., 2016; Mazeyrat et 

al., 2001) that is expressed in male germ cells (Session et al., 2001). 

Cancers 

DDX3X is known to be impaired in a variety of cancer types and was found somatically 

mutated, truncated, overexpressed, or even translocated or mislocalized, depending on the type of 

cancer (Ariumi, 2014; Bol et al., 2015; He et al., 2018; T. C. Lin, 2019; Mo et al., 2021; Secchi et 

al., 2022; Sharma & Jankowsky, 2014). The variability among the types of DDX3X alterations 

highlights that its functions may be highly context-dependent making it difficult to determine 

whether it acts as a tumor suppressor or an oncogene (He et al., 2018). In some cancer subtypes, 

DDX3X is even proposed as a relevant drug target and its enzymatic inhibition prevents cancer 

growth (Bol et al., 2015; Mo et al., 2021). 

One study reported DDX3Y overexpression and nuclear localization in in situ testicular 

carcinoma (Gueler et al., 2012). Another study analysis concluded that high levels of DDX3Y RNA 

correlate with a poor prognosis in several cancer types (T. C. Lin, 2019). It was also shown that 

low levels of DDX3Y RNA increase the probability for males to develop a malignancy (Caceres et 

al., 2020). However, two reports demonstrated that the DDX3Y protein could be expressed in 

human cells other than male germ cells and is indeed ectopically expressed in leukemic and 

lymphoma cells (Gong et al., 2021; Rosinski et al., 2008). Another study has shown the presence 

of DDX3Y protein in the enteric nervous system of male patients affected by Hirschsprung disease 
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(Cardinal et al., 2020). To date, a clear picture of where and under which circumstances the 

DDX3Y protein is expressed in human cells remains unclear and a matter of debate. 

DDX3X in hematopoietic malignancies 

Since other genetic alterations are essential in addition to MYC activation in order to initiate 

a B cell lymphoma, particular attention was drawn to genes co-mutated in MYC rearranged 

lymphoma. DDX3X is one of them and was found mutated in GC-derived B cell lymphoma at a 

significant frequency (Arthur et al., 2018; Burkhardt et al., 2022; Grande et al., 2019; M. Kim et 

al., 2022; Richter et al., 2012; Schmitz et al., 2012; N. Thomas et al., 2023; Zhang et al., 2020). 

Many studies agree that 30% of BL tumors harbor a DDX3X mutation in addition to the hallmark 

MYC translocation making it one of the most mutated genes in this particular disease. DDX3X 

mutations were even recently used to characterize new clusters of BL and DLBCL tumors (N. 

Thomas et al., 2023). DDX3X is mutated to a lesser extent in DLBCL tumors (2-8%), although 

recent analyses have shown that the DDX3X mutation rate is higher (around 14%) in MYC 

dysregulated DLBCLs (Cucco et al., 2020; Gong et al., 2021). An additional study estimates that 

28% of DLBCL associated with MYC dysregulation also harbor a DDX3X mutation, which is 

particularly enriched in tumors defined as single-hit lymphoma (MYC but no BCL2 or BCL6 

rearrangement) and MYC cluster amplified subtypes (Miyaoka et al., 2022). 

Independently of MYC, it was proposed that mutated DDX3X is associated with DLBCL 

patients having worse outcomes and chemoresistance (Kizhakeyil et al., 2021). It was also 

estimated that 14% of primary mediastinal B cell lymphoma, a specific subset of DLBCL, and 

10% of HLs – tumors that also originate from the GC (Weniger & Kuppers, 2021), carry a DDX3X 

mutation although the link with MYC dysregulation was unclear (Moffitt & Dave, 2017). 
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Single as well as double or triple mutations, truncations, frameshift mutations and 

alterations of splice sites were found in the DDX3X gene in B lymphoma tumors, but no specific 

hotspot could be defined. The majority of these mutations are missense mutations generating a 

change of one amino acid (Figure 1F from (Gong et al., 2021)). In addition, a significant frequency 

of nonsense mutations introducing a STOP codon early in the sequence; and rarer frameshift 

mutations have been detected in both BL and DLBCL (Burkhardt et al., 2022; Gong et al., 2021). 

Some of these mutations, for instance those affecting aa residues R475 and R534 have also been 

detected in medulloblastoma and are known to impair DDX3X’s enzymatic activity (Epling et al., 

2015; Floor et al., 2016; Lennox et al., 2020). Similar missense mutants from NK T cell lymphoma 

(NKTCL) tumors have been shown to have a decreased helicase activity in vitro (Jiang et al., 

2015). Therefore, missense mutations detected in B lymphoma presumably have an impaired 

helicase activity even if it has never been experimentally demonstrated. However, Gong and 

colleagues recently demonstrated that DDX3X regulates the translation of proteins involved in 

global protein synthesis in B cells and that the R475S mutation decreases global protein synthesis 

(Gong et al., 2021). Mutations detected in B cell lymphoma are therefore expected to be LOF 

mutations regarding the translational function of DDX3X. In addition, several groups recently 

pointed out that DDX3X mutations are almost exclusively found in male patients and rarely 

detected in female patients (Burkhardt et al., 2022; Gong et al., 2021; N. Thomas et al., 2023). 

DDX3X is also extensively mutated in hematopoietic malignancies other than GC-derived 

B cell lymphoma and independently of MYC translocations, for instance in many subtypes of NHL 

originating from B cells (Moffitt & Dave, 2017). In 1-10% of chronic lymphocytic leukemia 

(CLL), truncation or missense mutations were found (Kanagal-Shamanna et al., 2019; J. A. Kim 

et al., 2016; Landau et al., 2013; Meier-Abt et al., 2021; Ojha et al., 2015; Puente et al., 2015; 
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Quesada et al., 2011; Trimech et al., 2021; Vollbrecht et al., 2015; L. Wang et al., 2011). DDX3X 

mutations were even associated with worse overall response and progress-free survival in 

lenalidomide-refractory CLL patients (Takahashi et al., 2018), as well as monoclonal B cell 

lymphocytosis patients (Ojha et al., 2014). In hairy cell leukemia patients, 2-3% of cases present 

DDX3X mutations (Durham et al., 2017; Waterfall et al., 2014). Moreover, DDX3X mutations have 

also been observed in canine lymphoma, an emerging animal model for those cancers (Coyle et 

al., 2022; Elvers et al., 2015). 

Also, DDX3X mutations were discovered in NHL originating from T or NK cells. 20% of 

enteropathy-associated T-cell lymphoma samples harbor DDX3X mutations, a lymphoma 

associated with a severe complication of coeliac disease (Cording et al., 2022), as well as in 4% of 

hepatosplenic T cell lymphoma (McKinney et al., 2017; Moffitt & Dave, 2017) and other types of 

T cell lymphoma (Fan et al., 2022; Moffitt & Dave, 2017). In NKTCL, 12-20% of patients harbor 

truncations or missense mutations in the DDX3X gene (Dobashi et al., 2016; Jiang et al., 2015; 

Xiong et al., 2020). In NKTCL, DDX3X mutations are associated with poor outcome prediction 

(Jiang et al., 2015; J. J. Kim et al., 2023) and are found in approximately 29% of aggressive natural 

killer leukemia patients (ANKL) (Dufva et al., 2018). 

Further, DDX3X mutations were reported in acute lymphoblastic leukemia (ALL) 

originating from B or T cells (B. Li et al., 2020; Y. Liu et al., 2017; Manchev et al., 2017; Oshima 

et al., 2016; Zhang et al., 2016), and DDX3X:MLLT10 translocations were identified in ALL 

patients (Brandimarte et al., 2014; Brandimarte et al., 2013; Wong et al., 2020). These 

DDX3X:MLLT10 translocations were also recently identified in acute myeloid leukemia tumors 

(B. Kim et al., 2019; Nilius-Eliliwi et al., 2022; Ries et al., 2019). 
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The numerous reports of DDX3X alterations in so many types of human cancers have made 

it a gene of interest, particularly in hematopoietic malignancies associated with MYC activation. 

Moreover, the variety of DDX3X alterations in those diseases highlights the possibility of various 

mechanisms across hematopoietic cell types that need to be discovered.  

1.7. Hypothesis, rationale and objectives of the research 

This present project was initiated at a time when many DDX3X mutations were reported in 

B cell lymphoma, with a particularly high frequency in BL (around 30% of BL patients). In 

addition, the high frequency of DDX3X mutations in pediatric BL tumors, which usually carry a 

limited number of somatic mutations compared to adult tumors (Lawrence et al., 2013; Vogelstein 

et al., 2013) may indicate its strong impact on lymphomagenesis. While reported in many cohorts, 

the consequences of such genetic alterations for B lymphoma were entirely unknown. Therefore, 

it was of great interest to elucidate the impact of DDX3X alterations, presumed to be LOF, for 

future therapeutic options. 

However, elucidating the impact of DDX3X alterations in lymphoma require first 

understanding in which cells DDX3X is important and what its functions are in these specific cell 

types. When this project was initiated, DDX3X’s role in B lymphopoiesis was completely 

unknown and even if several various functions were attributed to DDX3X, they were often 

contradictory and not demonstrated in the B cell context since they were discovered in in vitro 

models of various cell types that were not lymphoid models. Since DDX3X is an RNA binding 

protein, its functions very likely differ according to the cell type which does not have the same 

RNA content; hence the necessity to design more appropriate lymphoid models. In addition, there 



72 

 

was a lack of in vivo models to study DDX3X in the hematopoietic context. Therefore, this project 

was set up with two main objectives: 

 

1) To define DDX3X’s role in hematopoiesis, more particularly in B lymphopoiesis. 

The lack of knowledge about DDX3X in B cells and in hematopoiesis in general, has led our 

laboratory to generate an in vivo conditional KO model. I hypothesized that DDX3X is 

important for hematopoiesis, more particularly for B lymphopoiesis. The strategy was to 

delete the Ddx3x gene in hematopoietic cells and assess which populations are sensitive to its 

deletion in order to gain information about the biological role of DDX3X in these cells. 

 

2) To assess the impact of DDX3X LOF in B lymphomagenesis. 

Numerous reports of DDX3X mutations in B lymphoma tumors have raised interest in 

understanding their role and effects on tumor development. One question was whether deleting the 

Ddx3x gene in vivo would accelerate or decelerate the lymphomagenesis. I hypothesized that 

DDX3X LOF is involved in lymphomagenesis. To test this hypothesis, the strategy was to use 

the conditional KO mice to delete the Ddx3x gene in mouse models that mimic B 

lymphomagenesis in vivo. 
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2. CHAPTER II: Methodology 

2.1. Animal models 

Ddx3x-conditional knockout mice were generated by Ingenious Targeting Laboratory. 

Vav-cre (Georgiades et al., 2002), Cd21-cre (Kraus et al., 2004), Cd19-cre (Rickert et al., 1997), 

R26-creER (Badea et al., 2003), Cg1-cre (Casola et al., 2006), CD45.1, R26mT/mG (Muzumdar et al., 

2007), Trp53 (Jacks et al., 1994), and Eµ-Myc mice were purchased from the Jackson Laboratory 

(Adams et al., 1985). l-Myc mice were a gift from Dr. Siegfried Janz (Medical College of 

Wisconsin, Milwaukee, Wisconsin) (Kovalchuk et al., 2000). Mice were held in a C57BL/6 

genetic background in a Specific-Pathogen-Free+ environment at the animal facility of the 

Montreal Clinical Research Institute (Institut de recherches cliniques de Montréal – IRCM). 

Experimental procedures and mouse maintenance were approved by the Animal Care Committee 

(ACC#2013-04) of the Montreal Clinical Research Institute in compliance with the Canadian 

Council on Animal Care guidelines (www.ccac.ca). 

2.2. Embryo analysis 

Embryos were prepared from euthanized pregnant females counted from the day of the plug 

(E0.5) and were fixed in formalin and stained with hematoxylin and eosin according to the 

manufacturer’s protocol. For blood analysis, embryos were washed with PBS and blood cells were 

collected from the umbilical cord and cytocentrifuged onto slides (Thermo Fisher Scientific 
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Cytospin), stained with May-Grünwald-Giemsa (Sigma-Aldrich) and imaged with a DM4000b 

microscope (Leica) and CellSens Entry software (Olympus). 

2.3. Flow cytometry 

 Spleens and thymi were extracted from euthanized mice and single-cell suspensions were 

obtained by mechanical dissociation and flushed from tibiae and femora to obtain BM single-cell 

suspension. Cell solutions were filtered and depleted of RBC by 10 minutes of incubation in RBC 

lysis buffer Hybri-Max (Sigma). Cells were incubated with indicated fluorochrome-labeled 

antibodies (Table 2-1). Intracellular staining was done with Cyto-Fast Fix/Perm kit (Biolegend) 

according to the manufacturer’s instructions with DDX3X (A300-474A, Bethyl) primary antibody 

and PE-donkey anti-rabbit IgG (406421 Cell Signaling) secondary antibody. Data were recorded 

on an SA3800 Spectral Cell Analyzer (Sony) or a BD LSRFortessa (BD Biosciences) and analyzed 

with the FlowJo software. 

Antibody Fluorochrome Company Cat Number Antibody Fluorochrome Company Cat Number 

NK1.1 biotin Biolegend 108704 CD43 PECy7 BD 562866 

Gr1 biotin BD 51-01212J NK1.1 PECy7 Biolegend 108714 

Ter119 biotin BD 51-09082J IL7R PE eBioscience 12-1271-83 

CD3e biotin BD 51-01082J BP-1 PE BD 553735 

CD4 biotin Biolegend 100508 CD62L PE BD 553151 

CD5 biotin eBioscience 13-0051-85 CD41 PE Biolegend 133906 

CD8 biotin Biolegend 100704 CD23 PE BD 553139 

IgM biotin BD 553406 CD71 PE Biolegend 113808 

B220 biotin Biolegend 103204 CD38 PE Biolegend 102708 

Mac-1 biotin BD 51-01712J CD24 PE BD 553262 

CD43 biotin BD 553269 CD43 PE BD 553271 

DX5 biotin Biolegend 108904 CD4 PE BD 553049 

CD19 biotin Biolegend 115504 Gr1 PE BD 553128 

Flt3 APC Biolegend 135310 AnnexinV FITC Biolegend 640945 

B220 APC Biolegend 103212 CD34 FITC eBioscience 11-0341-85 
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CD19 APC BD 550992 CD24 (HSA) FITC eBioscience 11-0241-85 

CD138 APC Biolegend 142506 Streptavidin FITC Biolegend 405202 

CD25 APC BD 557192 CD21/35 FITC BD 553818 

CD3 APC Biolegend 100312 sca-1 FITC Biolegend 108106 

CD16/32 APC.Cy7 Biolegend 101328 CD44 FITC Biolegend 103006 

CD8a APC.Cy7 Biolegend 100714 CD95 FITC BD 554257 

CD19 APC.Cy7 Biolegend 115530 CD71 FITC BD 553266 

CD45.2 APC Cy7 Biolegend 109824 CD45.1 FITC eBioscience 11-0453-85 

CD38 APC Cy7 Biolegend 102728 CD105 AF647 Biolegend 120420 

c-kit BV421 Biolegend 105828 ter119 AF647 Biolegend 116218 

IgM BV421 Biolegend 406532 CD25 AF647 Biolegend 102020 

CD19 BV421 Biolegend 115538 BP-1 AF647 Biolegend 108312 

IgD BV605 Biolegend 405727 CD9 AF700 Novus Bio NBP1-44876 

Streptavidin BV605 Biolegend 405229 B220 AF700 Biolegend 103232 

sca-1 PECy7 Biolegend 108114 IL7R AF700 Invitrogen 56-1271-82 

Streptavidin PECy7 Biolegend 405206 CD150 Pacific Blue Biolegend 115924 

CD93 PECy7 eBiosience 25-5892-82 GL7 Pacific Blue Biolegend 144614 

CD95 PECy7 BD 557653 CD4 Pacific Blue Biolegend 100531 

    Mac1 Pacific Blue Biolegend 101224 

Table 2-1: List of antibodies used for flow cytometry 

2.4. BM transplantation 

 CD45.1 mice were treated with trimethoprim and sulfamethoxazole (TNS, Chiron 

pharmaceuticals) 3 days pre-irradiation and 7 days post-irradiation. They received additional 

enrofloxacin (Baytril, CDMV) treatment on days 8 to 14 post-irradiation. Recipient mice (CD45.1 

or CD45.2) were irradiated at 9,5 Gray and intravenously transplanted with 1 X 106 RBC-depleted 

BM cells from CD45.2 or CD45.1 mice. BM reconstitution was validated by flow cytometry 

analysis of blood samples 8 weeks post-transplantation. The R26-creER was activated with two 

successive intraperitoneal injections of tamoxifen (Sigma) at 100mg/kg on day 0 and 50mg/kg on 

day 1. 
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2.5. BCR activation 

Resting B cells were isolated from the spleen of Cd19-cre/Ddx3x-floxed mice with the 

Mojosort magnetic cell separation (Biolegend) and stimulated with soluble IgM (F(ab’)2 fragment 

goat anti-mouse IgM, Jackson Immuno Research) for 10min at 37°C. Total cell lysates were 

obtained with RIPA buffer following by a Western blot analysis with ERK and phospho-ERK 

primary antibodies. 

2.6. Western blot 

For total extracts, cells were lysed in RIPA buffer with complete protease inhibitor (Roche) 

for 15 minutes at 4°C followed by two rounds of sonication. For the nuclear extraction, cells were 

lysed in buffer I (10mM Hepes, 10mM KCl, 2mM EDTA, 0,5% NP-40, 10% Glycerol, complete 

protease inhibitor (Roche), pH 7.5) incubated at 4°C for 15 minutes and centrifuged at 13’000 rpm 

for 10 minutes. The supernatant was discarded and pellets were lysed in buffer II (50mM sodium 

phosphate, 300mM NaCl, 1mM b-mercaptoethanol, 10% glycerol, 0,5% NP-40, 0,5% Triton X-

100, complete protease inhibitor (Roche), pH7.5) incubated at 4°C for 15 minutes after two rounds 

of sonication. Laemmli loading buffer was added to the lysates followed by 10min incubation at 

95°C and separation by SDS-PAGE electrophoresis. Gels were transferred on PVDF membranes 

and immunoblotted with the following primary antibodies: b-Actin (Ac-15 A5441, Sigma), MYC 

(9402, Cell Signaling), DDX3X (A300-474A, Bethyl), TBP (D5C9H 44059, Cell Signaling), ERK 

(9107S, Cell Signaling), Phospho-ERK (9101S, Cell Signaling). DDX3Y antibody was generated 

in collaboration with Biomatik as indicated in the results section from chapter III. 
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2.7. Immunization 

Sheep RBCs (Innovative Research) were washed with PBS and counted with trypan blue. 

1 X 108 sheep RBCs were intravenously injected into mice with the indicated genotype at day 0. 

Splenic GCs were analyzed on days 3, 5, 7 or 10 post sheep RBC immunization. A solution of 4-

hydroxy-3-nitrophenyl-acetyl (NP)(42) conjugated to chicken gamma globulin (CGG; Biosearch 

Technologies) was prepared at 1mg/mL in PBS. Mice with indicated genotype were immunized 

intraperitoneally with 200uL of the NP-CGG solution precipitated in alum (1:1). Control mice 

were immunized with 1:1 PBS in alum solution. NP+ gate was assessed using mice that received 

alum without NP-CGG and an anti-NP-PE antibody (Biosearch Technologies). 

2.8. Tumor analysis 

Eµ-Myc and l-Myc mice were crossed with Vav-cre/Ddx3x-floxed or Cd19-cre/Ddx3x-

floxed animals and offspring was checked regularly until any endpoint was detected as defined by 

palpable tumor, respiratory discomfort, weight loss, impaired activity, hunched posture, or any 

other sign of suffering. Blood was collected by cardiac puncture and analyzed on an Advia 120 

cell analyzer (Bayer) using the mouse archetype of multi-species software vv.2.2.06. Tumor 

masses were harvested for genotyping and analyzed by flow cytometry. l-Myc tumors have been 

classified into three groups according to the intensity of the GL7 marker assessed by flow 

cytometry of tumor samples. Pre-tumor stage is defined as 6-week-old mice not presenting any 

sign of disease. 
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2.9. Induced GC B cells 

 40LB cells were obtained from Dr. Di Noia’s laboratory in December 2021. 40LB cells 

tested negative for Mycoplasma by PCR and were not maintained in culture for more than a month. 

Confluent 40LB feeder cells were irradiated at 120 Gray and plated at 0.13 X 106 cells in 24 well-

plates. One day post-plating (day 0), primary naïve B cells were isolated from the spleens of 

R26mT/mG/Cg1-cre/Ddx3x-floxed mice with the Mojosort magnetic cell separation (Biolegend) and 

cultured with 1ng/mL of murine IL-4 (Peprotech) on a 40LB feeder layer. 
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3. CHAPTER III: DDX3X’s role in hematopoiesis 

1. Loss of DDX3X impacts erythroid differentiation 

To understand the potential DDX3X’s role in hematopoiesis, a conditional knockout (KO) 

mouse model allowing a tissue-dependent Ddx3x-deletion was generated. Using gene targeting, 

two loxP sites flanking the exon 2 containing the translation initiation codon were inserted at the 

Ddx3x locus on the X chromosome (Figure 3-1A). 

 

Figure 3-1: Female Ddx3x-KO mice have an impaired embryonic erythropoiesis 
A, Schematic representation of the targeted Ddx3x allele and the genotyping strategy; primer1 = 
GGCTAGCACTCTACTAACTGAACTAAG; primer2 = CCGTGATCATGTCCTTGAATGGC; primer3 = 
TGAAGCTAGCTTTGTCAGCCAG. B, Schematic representation of the breeding strategy. C, Agarose gel of PCR 
results obtained with primers indicated in (A) and published strategy for Vav-cre genotyping. PCR products for Ddx3x 
are the following: flox = 407bp; WT = 277bp and KO = 207bp. D, Comparison of a control embryo and Vav-
cre/Ddx3fl/fl at stage E14.5. E, H&E staining of an embryo at E14.4; black arrows show RBC and white arrows show 
abnormal cellular debris; HRT: heart; LVP: liver parenchyma; S: stomach. F, May-Grünwald-Giemsa staining of fetal 
blood from the embryo of the indicated genotypes and stages of development. G, Quantification of enucleated cells 
in fetal blood samples from embryos with the indicated ages and genotypes; t-test is used to determine significance. 
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These conditional KO mice were bred to the Vav-cre deleter specific to hematopoietic cells since 

the early stages of differentiation (Georgiades et al., 2002) (Figure 3-1B). The cre-mediated 

deletion of the floxed exon 2 leads to an excision of Ddx3x as detected by PCR analysis (Figure 

3-1C). First, full KO mice which are, according to the X chromosome localization of Ddx3x, 

homozygous female Vav-cre/Ddx3fl/fl mice were analyzed. Female Vav-cre/Ddx3fl/fl pups 

harboring a full Ddx3x-KO were never obtained indicating that a developmental arrest must have 

occurred. However, Vav-cre/Ddx3fl/fl embryos could be analyzed at E14.5 (Figure 3-1D). 

Compared to control genotypes (referring here to all genotypes generating viable mice - i.e. all 

possible genotypes other than Vav-cre/Ddx3fl/fl), Vav-cre/Ddx3fl/fl embryos were smaller and 

showed an abnormal fetal liver with a decreased cellularity (Figure 3-1D, E). Blood smears of 

Vav-cre/Ddx3fl/fl embryos demonstrated a severe decrease of enucleated erythrocytes suggesting a 

block of the definitive erythropoiesis (Figure 3-1F, G). 

To investigate this phenotype further, Vav-cre/Ddx3x-floxed mice were bred to the 

R26mT/mG (membrane-tdTomato/membrane-Green) reporter strain (Muzumdar et al., 2007) 

(Figure 3-2A). 

 

Figure 3-2: Ddx3x deletion impairs definitive erythropoiesis 
A, Schematic representation of the breeding strategy. B, Representation of the transgenic R26mT/mG mouse model. 
Briefly, this transgene allows GFP expression in cells harboring a cre system while it allows the tdTomato expression 
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in the absence of cre activity. C, Blood was collected from embryos of R26mT/mG/Vav-cre/Ddx3x-floxed mice and 
submitted to FACS analyses where GFP and tdTomato fluorescence was detected in nucleated (Hoechst+) and 
enucleated (Hoechst-) cells. 

R26mT/mG mice were designed to express the tdTomato red fluorescent protein in all cell types. In 

cells harboring a cre (here, all hematopoietic cells when bred to the Vav-cre), homologous 

recombination led to an excision of the tdTomato sequence and activated GFP expression, 

allowing for tracking the cells with an active cre (Figure 3-2B). Blood was collected from the 

R26mT/mG/Vav-cre/Ddx3fl/fl embryos and stained with Hoechst to discriminate nucleated cells 

(Hoechst+) from enucleated cells (Hoechst-). Hoechst staining confirmed the decrease of 

enucleated cells in R26mT/mG/Vav-cre/Ddx3fl/fl embryos (Figure 3-2C). Moreover, both green and 

red fluorescence could be detected in nucleated and enucleated erythrocytes, albeit with a 

significant reduction of GFP+ cells in the enucleated cells from R26mT/mG/Vav-cre/Ddx3fl/fl embryos 

compared to controls. These results suggest that enucleated cells with a Ddx3x-deletion died and 

are likely to be the cause of the developmental arrest. A Ddx3x-deletion in hematopoietic cells 

impaired fetal erythropoiesis by blocking the transition from primitive to definitive erythropoiesis. 

Interestingly, levels of GFP were higher in enucleated erythrocytes compared to nucleated 

erythrocytes from control mice suggesting that the Vav-cre is mostly deleting at the beginning of 

definitive erythropoiesis and the phenotype observed in KO mice probably correlates with Vav-

cre activation. 

Accordingly, it was impossible to analyze adult Vav-cre/Ddx3fl/fl mice representing the full 

Ddx3x-KO. However, the Vav-cre/Ddx3-floxed breeding strategy generated other genotypes: 

heterozygous female Vav-cre/Ddx3X/fl mice and hemizygous male Vav-cre/Ddx3fl/Y mice carrying 

a Ddx3x-floxed allele along with an intact Ddx3y allele. Vav-cre/Ddx3X/fl mice were obtained at a 

mendelian ratio indicating that one Ddx3x allele is sufficient to prevent the developmental arrest 

caused by a defect in fetal erythropoiesis. Similarly, male Vav-cre/Ddx3fl/Y mice also overcame 
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the erythroid developmental block and developed into adulthood, indicating some compensatory 

effects, very likely from the Y chromosome; and very likely from the highly similar Ddx3y gene. 

However, the presence of the murine male specific-DDX3Y protein was suspected (Deschepper, 

2020; Rauschendorf et al., 2011), but was never clearly demonstrated due to the absence of a 

DDX3Y-specific antibody. Therefore, three peptides were designed (collaboration with Dr. Riyan 

Chen) based on the few differences observed between murine DDX3X and DDX3Y amino acid 

sequences (Figure 1-5). In collaboration with Biomatik, those three peptides were injected into 

rabbits to generate antibodies targeting specifically DDX3Y and not DDX3X (Figure 3-3A). 

 

Figure 3-3: Analyses of DDX3X and DDX3Y protein expression in several murine tissues 
A, Elisa experiment to determine antigen affinity of DDX3Y antibodies purified from 6 immunized rabbits. The three 
indicated peptides were injected each in 2 animals from which the sera were extracted and purified. Riyan Chen 
designed the peptides, and this experiment was realized by Biomatik. B, Western blot with samples extracted from 
WT male and female mice. Membranes were blotted with anti-DDX3Y purified from antiserum 1A. C, DDX3X 
Western Blot of splenocytes and thymocytes extracted from animals with indicated genotypes. D, DDX3Y Western 
Blot of splenocytes and thymocytes extracted from animals with indicated genotypes. E, Western Blot of B220+ 
splenic cells isolated from animals with indicated genotypes. 

A newly generated antibody was purified and demonstrated male specificity by Western blot 

analysis (Figure 3-3B). It was then confirmed that Vav-cre/Ddx3fl/Y adult mice lacked DDX3X 

but expressed DDX3Y in the spleen and thymus compared to Vav-cre/Ddx3X/Y control male mice 

with two DDX3X- and DDX3Y-specific antibodies (Figure 3-3C, D). Vav-cre/Ddx3X/fl 
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heterozygous mice have a similar level of DDX3X protein in the spleen and thymus as well as in 

splenic B220+ cells compared to Vav-cre/Ddx3X/X control female mice (Figure 3-3C-E). 

Since the full Ddx3x-KO mice provoked erythroid defects, erythroid differentiation of Vav-

cre/Ddx3fl/Y and Vav-cre/Ddx3X/fl adult mice was analyzed by flow cytometry. PreMegE 

progenitors were reduced in Vav-cre/Ddx3fl/Y male mice although in the next stage of 

differentiation, the PreCFUe were unaffected (Figure 3-4A, B). 

 

Figure 3-4: Erythroid differentiation is impaired in Vav-cre/Ddx3fl/Y adult males 
A, Representative flow cytometry analyses and B, quantification of early erythroid (PreCFUe) and pre-
megakaryocyte/erythroid (PreMegE) progenitors in adult BM. C, Representative flow cytometry analyses and (D) 
quantification of erythroid developmental stages from proerythroblasts (ProE) to basophilic (BasoE), polychromatic 
(PolyE) and orthochromatic (OrthoE) erythroblast stages in adult BM from animals with the indicated genotypes. 
Populations were defined as follows: ProE (CD71+Ter119low), BasoE (CD71+Ter119+), PolyE (CD71lowTer119+), 
OrthoE (CD71+Ter119+). E, Percentages of RBC in the blood of mice (i.e. hematocrit) with indicated genotypes. t-
test with Welsh correction was used to compare female heterozygous with female controls and male KO with male 
controls. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. F, BM cells 
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from WT male animals were extracted and stained with CD71 and Ter119 extracellular markers to define the RBC 
differentiation steps. The cells were fixed and stained with DDX3X antibody or IgG control followed by incubation 
with a PE-secondary antibody. Fluorescence in different RBC populations was detected by flow cytometry. A positive 
control using BM-B220+ cells demonstrated the antibody’s suitability to detect intracellular DDX3X by flow 
cytometry. 

Vav-cre/Ddx3fl/Y males exhibited increased ProE along intact BasoE and PolyE stages and 

decreased OrthoE (Figure 3-4C, D). Moreover, Vav-cre/Ddx3fl/Y presented a decreased hematocrit 

-i.e. a decreased percentage of RBC in their peripheral blood even if this reduction was not life-

threatening (Figure 3-4E). The lack of DDX3X protein expression in different subsets of the RBC 

differentiation suggested that defects observed in Vav-cre/Ddx3fl/Y were likely a consequence of 

defects occurring in earlier erythroid populations (Figure 3-4F). While the Ddx3y gene was 

supposedly compensating for erythroid defects seen in Ddx3x-KO embryo, this compensation was 

imperfect as several erythroid populations are affected by Ddx3x-KO in adult male mice. All of 

these mild erythropoietic defects observed in adult Vav-cre/Ddx3fl/Y were not seen in Vav-

cre/Ddx3X/fl females (Figure 3-4A-E). 

2. DDX3X’s role in hematopoietic progenitors 

The effect of Ddx3x-deletion on hematopoietic progenitors from adult mice was then 

assessed. The BM was extracted from adult Vav-cre/Ddx3fl/Y and Vav-cre/Ddx3X/fl mice as well as 

sex-matched controls and submitted to flow cytometry analyses. A decrease of LK and LSK groups 

of hematopoietic progenitors was detected specifically in male Vav-cre/Ddx3fl/Y mice (Figure 3-

5A). More precisely, flow cytometry analyses revealed that MPPs, LMPPs and CLPs are 

diminished in male KO animals compared to sex-matched controls (Figure 3-5B, C). 
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Figure 3-5: LK and LSK groups of hematopoietic progenitors are decreased in male Ddx3x-depleted 
A, B, C, Flow cytometry analysis of BM from animals with the indicated genotype and quantification of the absolute 
number of cells. Populations were defined as follows: LK (Lin-c-kit+sca-1-), LSK (Lin-c-kit+sca-1+), MPP (Lin-c-
kit+sca-1-Flt3low), LMPP (Lin-c-kit+sca-1-Flt3+), CLP (Lin-c-kit+sca-1-Flt3+IL7R+). t-test with Welsh correction was 
used to compare female heterozygous with female controls and male KO mice with male controls. The p value is 
indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. D, DDX3X protein expression was 
assessed by intracellular staining followed by flow cytometry in LK and LSK populations. E, Quantification of 
DDX3X protein expression in LK and LSK cells. Two-way ANOVA was used to compare IgG and DDX3X 
fluorescent signals. LK: Lin-c-kit+; LSK: Lin-Sca+c-kit+; MPP: Multiple Pluripotent Progenitor; LMPP: Lymphoid-
primed Multipotent Progenitor; CLP: Common Lymphoid Progenitor. 

DDX3X protein expression was detected in LK and LSK cells of WT animals demonstrating that 

the absence of DDX3X protein provokes a diminution of hematopoietic progenitors and lymphoid 

progenitors in male mice (Figure 3-5D, E). 

Since LK and LSK were affected in Vav-cre/Ddx3fl/Y mice, additional populations of 

hematopoietic progenitors were analyzed. The long-term HSCs (LT-HSC) were not impacted by 

DDX3X loss regardless of sex (Figure 3-6A). 
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Figure 3-6: Hematopoietic stem cells, megakaryocytes and myeloid progenitors are not impacted by 
Ddx3x-deletion 
Flow cytometry analysis of BM LT-HSC in (A), MKP in (B) and GMP in (C) from Ddx3x-KO mice and quantification 
in absolute number. Populations were defined as follows: LT-HSC (Lin-c-kit+sca-1+CD105+CD150+), MKP (c-kit+sca-
1+CD41+CD9+), GMP (c-kit+sca-1+CD9-CD41-CD16/32+). D, Flow cytometry analysis of myeloid cells in Vav-
cre/Ddx3x-floxed mice. Populations were defined as: PMN (Mac1+Gr-1+), Mo+Mph (Mac1+Gr-1-). t-test with Welsh 
correction was used to compare female heterozygous mice with female controls and male KO mice with male controls. 
The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. E, DDX3X protein 
expression was assessed by intracellular staining followed by flow cytometry Mac1+Gr1+ population representing 
myeloid cells. LT-HSC: Long-term Hematopoietic Stem cell; GMP: Granulocyte/Monocyte Progenitor; MKP: 
Megakaryocyte Progenitor; PMN: Polymorphonuclear leukocyte; Mo+Mph: Monocyte and macrophage. 

MKPs were not affected by DDX3X loss in both male and female Ddx3x-deleted mice (Figure 3-

6B), whereas PreMegE progenitors were diminished in adult Vav-cre/Ddx3fl/Y mice (Figure 3-4A, 

B). GMPs were not impaired by Ddx3x-deletion (Figure 3-6C); neither were the differentiated 

myeloid cells gated as monocytes/macrophages (Mo+Mph) and PMN cells also named 

granulocytes (Figure 3-6D). These data indicated that myelopoiesis does not rely on DDX3X most 
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likely because this protein is not expressed at readily detectable levels in this population (Figure 

3-6E). 

 The differentiation and self-renewal capacities of DDX3X deficient hematopoietic 

progenitors were then investigated. LSK progenitors were sorted from the BM of Vav-cre/Ddx3fl/Y 

and Vav-cre/Ddx3X/Y control mice and analyzed in vitro. First, the differentiation capacity was 

tested by co-cultivating Ddx3x-deleted LSKs on OP9 or OP9-DL1 cells with cytokines to test 

respectively the capacity of B and T lymphoid differentiation. Ddx3x-deleted LSKs were unable 

to differentiate in vitro into B220+CD19+ cells (Figure 3-7A, B), nor did they reach the T cell 

double negative (DN) stages of differentiation (Figure 3-7C, D). 

 

Figure 3-7: Loss of DDX3X impairs the lymphoid differentiation 
A, LSKs were sorted from the BM of male KO and control mice and co-cultured on the OP9 layer with IL-7 and Flt3 
cytokines for B cell differentiation. B, B220+CD19+ cells are quantified relatively to live cells by flow cytometry 
through the differentiation. C, LSKs were sorted from the BM of male KO and control mice and co-cultured on the 
OP9-DL1 layer with SCF, Flt3 and IL-7 cytokines for T cell differentiation. D, DN2 cells (CD44+CD25+) were 
quantified relatively to live cells by flow cytometry through the differentiation. Two experiments were performed in 
triplicate for both B and T cell differentiation. E, Sorted LSK cells were grown in Methocult GF-M3434 media at 
37°C and colonies were counted and identified 7 days later. This experiment was performed three times and paired t-
test was used to assess statical significance. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. CFU: Colony Forming Unit; CFU-GM: CFU-Granulocyte, Monocyte; CFU-GEMM: 
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CFU-Granulocyte, Erythrocyte, Monocyte, Megakaryocyte; BFU-E: Burst Forming Unit, Erythrocyte; DN2: Double 
Negative stage 2. 

Second, the self-renewal capacity was tested by culturing sorted progenitors in a methylcellulose-

based media. Ddx3x-depleted LSKs produced fewer colonies in vitro compared to controls, 

without any lineage bias (Figure 3-7E). These data indicated that DDX3X is required to maintain 

the cellularity and lymphoid lineage potential of adult hematopoietic progenitor cells. 

3. Ddx3x-deletion affects lymphoid differentiation 

Due to the defects observed in the lymphoid differentiation capacity of Ddx3x-deficient 

LSKs as well as the decrease of CLP progenitors in Vav-cre/Ddx3fl/Y mice, the following steps of 

lymphoid differentiation were investigated. Ddx3x-deletion in Vav-cre/Ddx3fl/Y mice correlated 

with a significantly reduced number of cells at DN2 and DN3 stages of pre-T cell differentiation 

(Figure 3-8A, B). Interestingly, these same DN2 and DN3 stages were those impaired in in vitro 

T cell differentiation assay (Figure 3-7C, D). However, this defect did not impact the following 

differentiation steps since DP, CD4 and CD8 cells were intact in the thymus of DDX3X-KO mice 

(Figure 3-8C, D). 
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Figure 3-8: DN2 and DN3 stages of T-cell differentiation are impaired by Ddx3x-deletion 
A, Thymi were extracted from Vav-cre/Ddx3x-floxed mice and analyzed by flow cytometry with extracellular markers 
for T cell progenitors (DN stages from 1 to 4). Populations were defined as followed: DN1 (Lin-CD44+CD25-), DN2 
(Lin-CD44+CD25+), DN3 (Lin-CD44-CD25+), DN4 (Lin-CD44-CD25-). B, Quantification of T cell populations in 
absolute numbers. t-test with Welsh correction was used to compare female heterozygous mice with female controls 
and male KO mice with male controls. C, Flow cytometry analysis of thymic CD4 and CD8 T-cells extracted from 
Vav-cre/Ddx3x-floxed and absolute quantification in (D). E, DDX3X protein expression was assessed by intracellular 
staining followed by flow cytometry in thymic T cell populations. Two-way ANOVA was used to compare IgG and 
DDX3X fluorescent signals. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. DN: Double Negatif; DP: Double Positif; NK: Natural Killer. 

DDX3X protein expression was evident in all stages of T cell differentiation and NK cells and was 

particularly elevated in DN2 and DN3 cells (Figure 3-8E). Analysis of mature T cell 

differentiation in Vav-cre/Ddx3x-floxed mice lymph nodes revealed a CD4/CD8 ratio imbalance 

(Figure 3-9A, B). 
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Figure 3-9: Mature T cell subsets are impaired by DDX3X depletion in lymph nodes of male KO mice 
A, Flow cytometry analysis of SP CD4 and CD8 T cells extracted from the lymph nodes of Vav-cre/Ddx3x-floxed 
mice and quantification in (B). C, Flow cytometry analysis of mature T cell subsets extracted from the lymph nodes 
of Vav-cre/Ddx3x-floxed mice and quantification in (D). t-test with Welsh correction was used to compare female 
heterozygous mice with female controls and male KO mice with male controls. The p value is indicated as follows: 
ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. LN: lymph node. 

An elevated quantity of central and effector memory T cells was detected in the lymph nodes of 

male KO mice (Figure 3-9C, D). Similar phenotypes were detected in splenic T cells from male 

KO mice (Figure 3-10A-D). However, these phenotypes were less striking in the spleen compared 
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to lymph nodes, an effect which very likely resulted from a decrease of live splenocytes (Figure 

3-10B). 

 

Figure 3-10: Splenic mature T cell subsets are impaired by DDX3X depletion in male KO mice 
A, Flow cytometry analysis of SP CD4 and CD8 T cells extracted from spleens of Vav-cre/Ddx3x-floxed mice and 
quantification in (B). C, Flow cytometry analysis of mature T cell subsets extracted from spleens of Vav-cre/Ddx3x-
floxed mice and quantification in (D). t-test with Welsh correction was used to compare female heterozygous mice 
with female controls and male KO mice with male controls. The p value is indicated as follows: ns, p>0.05, *p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001. SP: spleen 
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Ddx3x-deletion in Vav-cre/Ddx3fl/Y mice also impaired several stages of B cell 

differentiation. Pro-B cells (Fraction B) were reduced in male KO mice (Figure 3-11A, B). 

 

Figure 3-11: DDX3X is required for several steps of early B cell differentiation 
A, Flow cytometry analysis of BM B cell progenitors (Hardy fractions) from A to C’ and absolute quantification in 
(B). C, Flow cytometry analysis of BM B cell progenitors (Hardy fractions) from D to F and absolute quantification 
in (D). t-test with Welsh correction was used to compare female heterozygous mice with female controls and male 
KO mice with male controls. E, DDX3X protein expression was assessed by intracellular staining followed by flow 
cytometry in BM B cell progenitors. Two-way ANOVA was used to compare IgG and DDX3X fluorescent signals. 
The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

In addition, pre-B cells (Fraction D), immature (Fraction E) and recirculating mature B cells 

(Fraction F) were decreased in male KO mice (Figure 3-11C, D). DDX3X protein was found 

broadly expressed among all subsets of B cell progenitors (Figure 3-11E). The total B cell 

population was diminished in the spleen of Vav-cre/Ddx3fl/Y mice, as well as total splenic 

cellularity (Figure 3-12A, B). 
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Figure 3-12: Mature B cells and splenic structure are impacted by Ddx3x-deletion 
A, Flow cytometry analysis of splenic B220+ cells extracted from Vav-cre/Ddx3x-floxed mice. B, Quantification of 
the total number of splenic cells and absolute quantification of B220+ cells. C, Flow cytometry analysis of splenic 
transitional B cells extracted from Vav-cre/Ddx3x-floxed mice and absolute quantification in (D). Populations were 
defined as follows: transitional B cells (B220+CD93+) divided in T1 (B220+CD93+IgM+CD23-), T2 
(B220+CD93+IgM+CD23+) and T3 (B220+CD93+IgM-CD23+). ) E, Flow cytometry analysis of spleens extracted from 
Vav-cre/Ddx3x-floxed mice and absolute quantification in (F). Populations were defined as followed: NF 
(B220+CD21-CD23-), FO (B220+CD21-CD23+), MZ (B220+CD21+CD23-). t-test with Welsh correction was used to 
compare female heterozygous mice with female controls and male KO mice with male controls. The p value is 
indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. G, Splenic histological analysis of 
male mice with H&E staining. Dotted lines indicate MZ layer. MZ: NF: Newly formed; FO: Follicular; MZ: Marginal 
Zone; T1, T2, T3: Transitional B cell stage 1, 2 and 3, respectively. 

More precisely, the cellularity of their transitional populations (Figure 3-12C, D) and FO B cell 

compartments were decreased, whereas their MZ B cell subset was increased (Figure 3-12E, F). 

Histological sections of spleens from Vav-cre/Ddx3fl/Y male mice demonstrated altered structures 

of follicles and MZs compared to control sections (Figure 3-12G). GC B cells were significantly 
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decreased in Vav-cre/Ddx3fl/Y male KO mice (Figure 3-13A), while B220+IgD-CD38+ B cells and 

PCs were unaffected (Figure 3-13B, C). DDX3X was found to be expressed in all subtypes of 

splenic B cells, and its protein expression was higher in GC B cells (Figure 3-13D). 

 

Figure 3-13: Non-immunized GC B cells are decreased in DDX3X KO male mice 
A, Flow cytometry analysis of GC (B220+IgD-CD95+GL7+) in the spleen of Vav-cre/Ddx3x-floxed mice and absolute 
quantification. B, Flow cytometry analysis of B220+IgD-CD38+ B cells and PCs (C) from spleens of Vav-cre/Ddx3x-
floxed mice and quantification of absolute cell numbers. t-test with Welsh correction was used to compare female 
heterozygous mice with female controls and male KO mice with male controls. D, DDX3X protein expression was 
assessed by intracellular staining followed by flow cytometry in splenic B cells. Two-way ANOVA was used to 
compare IgG and DDX3X fluorescent signals. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
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To summarize, several lymphoid populations were decreased in Vav-cre/Ddx3fl/Y mice: the 

DN2-DN3 thymic T cell stages; CD4/CD8 ratio and memory T cells in the spleen and lymph 

nodes, as well as pro-B cell, pre-B cell, immature and recirculating mature B cell BM populations; 

and transitional, FO and GC B cells. Surprisingly, MZ B cells were increased in the Vav-

cre/Ddx3fl/Y mice. In addition, Vav-cre/Ddx3fl/Y mice harbored several defects in erythroid 

populations and hematopoietic progenitors. Therefore, I concluded that DDX3X is essential for 

murine hematopoiesis, more precisely for the maintenance and function of hematopoiesis 

progenitors, erythropoiesis and lymphopoiesis. All these phenotypes were detected in Ddx3x-

deleted male mice while no phenotype was detected in Vav-cre/Ddx3X/fl heterozygous females, 

suggesting that one Ddx3x allele is sufficient to maintain proper hematopoiesis in mice. 

4. Inducible Ddx3x-deletion in adult female mice causes 

BM failure 

Even though analyses of hemizygous Vav-cre/Ddx3fl/Y and heterozygous Vav-cre/Ddx3X/fl 

mice have permitted the discovery of several hematopoietic phenotypes, both models did not 

constitute a perfect KO because either the Ddx3y allele or one intact Ddx3x allele was always 

present and most likely exert compensatory effects as also seen during embryonic erythropoiesis 

(Figure 3-1). Since this compensation may hide some effect(s) caused by Ddx3x-deletion, the 

generation of female full-KO mice was necessary. Therefore, Ddx3x-floxed mice were crossed 

with R26-creER animals allowing cre-mediated deletion of floxed alleles upon tamoxifen 

administration (Badea et al., 2003). The fatal defect of embryonic erythropoiesis observed in full-

KO mice was overcome in this model by activating Ddx3x-deletion in adult animals. However, the 
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R26-creER deleter allele is not specific to the hematopoietic cells and is ubiquitously active; but 

this cre had the advantage of being inducible. 

The first strategy was to inject tamoxifen in R26-creER/Ddx3x-floxed adult mice and 

analyze the impact on hematopoietic cells (Figure 3-14A). 

 

Figure 3-14: Ddx3x-acute deletion in adult female mice induces a sudden death within days 
A, Schematic representation of the acute deletion in adult female mice. B, Pictures of the intestine 5 days post 
tamoxifen injection of mice with indicated genotypes. C, Concentration of TNF-a and IL-6 cytokines measured by 
ELISA from the sera of mice with the indicated genotype. t-test with Welsh correction was used to compare female 
heterozygous mice with female controls and male KO mice with male controls and the p value is indicated as follows: 
ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. D, Table representation of results from bacteriology tests; 
collaboration with Dr. Ovidiu Jumanca, IRCM veterinarian and director of animal facilities and animal 
experimentation at the IRCM. Samples were collected with a swab from the intestines and lymph nodes of mice with 
indicated genotypes 5 days post-tamoxifen injection. Collected samples were sent to the « Faculté de médecine 
vétérinaire de l’Université de Montréal » (Service de diagnostic, Saint-Hyacinthe) who realized the testing. E, 
Schematic representation of the model leading to the Ddx3x-deletion in all cell types except hematopoietic cells. F, 
Schematic representation of the model leading to the Ddx3x-deletion specifically in hematopoietic cells. 

However, the effects of Ddx3x-acute deletion on hematopoietic cells could not be assessed in this 

model. An unexpected phenotype was detected a few days after the tamoxifen injection causing 

sudden death of R26-creER/Ddx3fl/fl mice five days post-injection (Figure 3-14A, B). This sudden 

death did not occur in R26-creER/Ddx3X/fl and R26-creER/Ddx3X/X mice revealing a phenotype 

dependent on Ddx3x-deletion and not the cre system nor the tamoxifen injections. R26-
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creER/Ddx3fl/fl mice presented perturbations of the stomach and the intestines associated with a 

yellow coloration (Figure 3-14B). R26-creER/Ddx3fl/fl mice exhibited a strong inflammatory 

reaction as seen by an elevated level of TNF-a and IL-6 cytokines (Figure 3-14C). A bacterial 

contamination of the intestine was confirmed by an analysis of the intestinal liquid collected from 

R26-creER/Ddx3x-floxed mice 5 days after tamoxifen injections (Figure 3-14D). An abnormally 

high level of Staphylococcus aureus, Lactobacillus spp and Parabacteroides goldsteinii bacteria 

were present in KO mice intestines compared to R26-creER/Ddx3X/X mice. Some KO mice even 

had strong levels of Staphylococcus aureus, Lactobacillus johnsoni and Parabacteroides 

goldsteinii in their lymph nodes, highlighting general bacterial contamination and dissemination 

possibly stemming from the intestinal flora (Figure 3-14D). Tamoxifen-induced Ddx3x-KO mice 

showed features reminiscent of septic shock: a strong inflammatory reaction and a high quantity 

of intestinal bacteria. I hypothesized that acute deletion of Ddx3x in adult females perturbs 

intestinal homeostasis and facilitates a bacterial infection and a strong inflammatory reaction lethal 

for mice. However, whether this phenotype was related to any defect caused by Ddx3x-deletion in 

hematopoietic cells remained unclear. Due to the large spectrum of deletions with the R26-creER 

allele, further experiments were necessary to evaluate the potential involvement of hematopoietic 

cells in this phenotype. 

A second strategy was therefore used to determine whether hematopoietic cells were 

involved in the life-threatening bacterial infection. BM from donor mice was transplanted into 

recipient mice in order to either delete Ddx3x in all cells except hematopoietic cells – CD45.1 BM 

cells transplanted into R26-creER/Ddx3x-floxed recipients (CD45.2) (Figure 3-14E); or to either 

delete Ddx3x only in hematopoietic cells – R26-creER/Ddx3x-floxed CD45.2 BM cells transplanted 

into CD45.1 recipients (Figure 3-14F). Transplantation of CD45.1 BM cells into R26-
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creER/Ddx3x-floxed recipients followed by tamoxifen injections caused the same phenotype in 

KO-mice as the one observed in R26-creER/ Ddx3fl/fl mice. Mice with a Ddx3x-deletion in all cells 

except hematopoietic cells suddenly died five days after tamoxifen injection with similarly 

abnormal stomach and intestines as previously described (Figure 3-14B). This demonstrated that 

the lethality caused by Ddx3x acute deletion was independent of hematopoietic cells. I then 

hypothesized that acute deletion of Ddx3x in adult females perturbs intestinal homeostasis 

provoking perforations of the intestinal barrier at the origin of a bacterial infection and an 

inflammatory reaction causing death. Since CD45.1 recipient mice transplanted with R26-

creER/Ddx3fl/fl CD45.2 BM cells did not suddenly die nor did they develop a bacterial infection 

after tamoxifen injection, these mice were then used as a KO model for assessing DDX3X’s role 

in hematopoietic cells. 

Recipient animals that received R26-creER/Ddx3-floxed BM cells were left for eight weeks 

to fully reconstitute the hematopoietic system and were then injected with tamoxifen activating the 

R26-creER (Figure 3-15A). Animals that received R26-creER/Ddx3fl/fl BM cells died very rapidly 

within 9 to 10 days after tamoxifen induction unlike recipients transplanted with BM cells from 

R26-creER/Ddx3X/X or R26-creER/Ddx3X/fl mice (Figure 3-15B). Transplanted mice that received 

R26-creER/Ddx3fl/fl cells developed symptoms of anemia such as white paws, gray coats, as well 

as low body temperature and low hematocrit (Figure 3-15C). 
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Figure 3-15: Ddx3x-acute deletion in hematopoietic cells of adult female mice induces death-related 
anemia and severe loss of hematopoietic progenitors 
A, Schematic representation of the BM transplant experiment to delete Ddx3x specifically in hematopoietic cells. The 
BM transplantation efficiency was validated 8 weeks post-transplantation, the tamoxifen was injected at Day 0, (and 
the second dose at Day 1) and the survival was measured from the first injection. B, Survival curve of recipient CD45.1 
mice transplanted with BM from CD45.2 mice: R26-creER; R26-creER/Ddx3X/fl; or R26-creER/Ddx3fl/fl. C, Hematocrit 
was measured either on day 9 (grey dots) or day 10 (white dots) from the blood of moribund mice. D, Flow cytometry 
analysis of hematopoietic progenitors from the BM of transplanted mice at day 6 and relative quantification in (E). F, 
Flow cytometry analysis of T cell populations extracted from the thymus of transplanted mice at day 6 and relative 
quantification in (G). Statistical significance was measured by one-way ANOVA. The p value is indicated as follows: 
ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

In these mice, LK and LSK progenitors were almost completely lost, and the amount of live BM 

cells was significantly lower compared to control mice (Figure 3-15D, E). CD45.1 mice that had 

received R26-creER/Ddx3fl/fl BM cells lost the DN2 and DN3 pre-T cells from the thymus, a 
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phenotype similar to the one observed in Vav-cre/Ddx3fl/Y mice (Figures 3-7C, D and 3-8A, B); 

whereas CD4+ cells were slightly increased and CD8+ remained unchanged (Figure 3-15F, G). 

The analysis of B cells revealed that B cell progenitors from the BM, transitional B cells as well 

as B220+IgD-CD38+ and PCs were unaffected by Ddx3x-deletion (Figure 3-16A-F). However, the 

MZ B cell population was increased while GC B cell numbers were decreased in mice with Ddx3x 

acute deletion compared to controls (Figure 3-16G, H). 

 

Figure 3-16: Ddx3x-acute deletion in hematopoietic cells provokes a loss of GC and an increase of 
MZ B cells 
A, Flow cytometry analysis of BM B cell progenitors (Hardy fractions) from transplanted mice at day 6 after tamoxifen 
injection and relative quantification in (B). C, Flow cytometry analysis of transitional splenic B cell population from 
transplanted mice at day 6 after tamoxifen injection and (D) relative quantification. E, Flow cytometry analysis of 
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B220+IgD-CD38+ and PCs from spleens of transplanted mice at day 6 after tamoxifen injection and (F) relative 
quantification. G, Flow cytometry analysis of the indicated B cell populations from spleens of transplanted mice at 
day 6 after tamoxifen injection and (H) relative quantification. Statistical significance was measured by a one-way 
ANOVA. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

Analyses of mice that did not receive any tamoxifen 8 weeks after receiving a BM 

transplant validated the BM transplantation efficacy and excluded the presence of any phenotypes 

before tamoxifen injections. Indeed, the blood of these mice contained CD45.2 differentiated 

lymphocytes and myelocytes, while CD45.1 cells were almost absent (Figure 3-17A). 

 

Figure 3-17: Validation of the BM reconstitution of CD45.1 transplanted mice 
A, Percentage of CD45.2 cells measured by flow cytometry analysis of blood samples from CD45.1 recipient mice 8 
weeks after BM transplantation (no tamoxifen injection). B, Percentage of CD45.2 cells measured from FACS analysis 
of spleen extracted from sacrificed CD45.1 recipient mice 8 weeks after BM transplant (no tamoxifen injection). C, 
Percentage of CD45.2 cells measured from FACS analysis of BM extracted from sacrificed CD45.1 recipient mice 8 
weeks after BM transplant (no tamoxifen injection). 

Percentages of CD45.2+ hematopoietic cells were very high and similar when recipients received 

R26-creER/Ddx3fl/fl, R26-creER/Ddx3X/fl or R26-creER/Ddx3X/X BM cells. Moreover, LK and GC 

cells, two populations lost in mice with the BM-R26-creER/Ddx3fl/fl after tamoxifen injections, 

were for the majority CD45.2+ and were clearly reconstituted before tamoxifen injections, even in 

KO mice (Figure 3-17B, C). This demonstrated that the phenotypes observed in these populations 
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after tamoxifen injections were independent of the reconstitution of the hematopoietic system and 

instead caused by the loss of DDX3X. To summarize, Ddx3x acute deletion in adult female mice 

induced a loss of hematopoietic progenitors, DN2-DN3 T cells, and GC B cells as well as an 

increase of MZ B cells. Moreover, it caused a loss of RBCs provoking a severe and fatal anemia. 

 In this model, the deletion of one Ddx3x allele did not impact any hematopoietic cell 

population, as already observed in Vav-cre/Ddx3X/fl mice, again highlighting a compensation from 

one intact Ddx3x allele. Moreover, comparing the phenotypes caused by Ddx3x-deletion in CD45.1 

mice that received R26-creER/Ddx3fl/fl cells plus tamoxifen and Vav-cre/Ddx3fl/Y male mice 

informed us about the potential of Ddx3y compensation. Both models had a decrease of LKs, 

LSKs, DN2-DN3 T cells, GCs, RBCs and an increase of MZ B cells indicating an imperfect 

compensation from the Ddx3y gene. However, Ddx3y still had a strong compensatory effect in the 

context of a Ddx3x-deletion since the decrease of RBCs, LK and LSKs progenitors of Vav-

cre/Ddx3fl/Y male did not affect their viability and life expectancy; by contrast to the effect seen in 

CD45.1 mice that received R26-creER/Ddx3fl/fl BM cells. In addition, several other phenotypes 

found in Vav-cre/Ddx3fl/Y mice were not observed in CD45.1 mice that received R26-

creER/Ddx3fl/fl cells; for example, the decrease of several B cell progenitors from the BM (Figures 

3-11A-D and 3-16A, B). This absence of a B cell phenotype in mice that received R26-

creER/Ddx3fl/fl BM cells may be because flow cytometry analysis was done quickly after tamoxifen 

injections, a consequence of the short viability of these mice. Moreover, the toxic effects of 

tamoxifen, which have been described previously (X. Tian & Zhou, 2021), were also clearly 

evident here most likely causing the variability of the results and the strong reduction of the DP 

pre-T cell population in the thymus for example (Figure 3-15F, G). 
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4. CHAPTER IV: DDX3X’s role in 

lymphomagenesis 

1. Generation of a B cell-specific KO mouse model 

 The main strategy to investigate the role of DDX3X in B cell lymphomagenesis was to use 

the conditional KO mouse model that deletes Ddx3x specifically in mature B cells and to cross 

these mice with models mimicking B cell lymphoma development. Not only is a specific B cell 

deletion better suited for these experiments compared to the Vav-cre deletion but it also allows 

circumventing the erythroid defect blocking embryogenesis in female full-KO mice. The effect of 

Ddx3x-deletion could then be assessed in models mimicking B lymphomagenesis in all KO mice: 

female full-KO as well as male hemizygous and female heterozygous. 

The CD21-cre deleter which is active in transitional and peripheral B cells was first 

introduced into Ddx3x-floxed mice (Kraus et al., 2004). CD21-cre/Ddx3X/fl and CD21-cre/Ddx3fl/Y 

were viable, but CD21-cre/Ddx3fl/fl mice were never obtained which was probably the result of a 

“leaky” activity of this cre in early developmental stages causing a developmental arrest, as was 

observed by others (M. Tian et al., 2020). Ddx3x-floxed mice were then crossed with mice carrying 

the Cd19-cre deleter allele (Rickert et al., 1997). Although this cre deletes floxed allele starting at 

the pre-B cell step of differentiation, i.e. earlier compared to the CD21-cre; this cre allowed 
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obtaining all KO mice with Cd19-cre/Ddx3X/fl, Cd19-cre/Ddx3fl/Y and Cd19-cre/Ddx3fl/fl 

genotypes. 

The first step was to validate that a B cell deletion by the Cd19-cre allele caused similar 

phenotypes compared to what was observed with Vav-cre and R26-creER KO models. In the 

following experiments, Cd19-cre/Ddx3fl/Y male KO mice were compared to Cd19-cre/Ddx3X/Y 

male controls while Cd19-cre/Ddx3fl/fl female KO mice were compared to Cd19-cre/Ddx3X/X 

female controls and Cd19-cre/Ddx3X/fl heterozygous mice. Early B cell populations from the BM 

of Cd19-cre/Ddx3x-floxed mice were analyzed by flow cytometry. B220+CD19+ cells were 

decreased in male KO and almost absent in female KO, while other BM hematopoietic cells (B220-

CD19-) remained unchanged (Figure 4-1A, B). 

 

Figure 4-1: Ddx3x-deletion impairs several BM B cell populations in a sex-dependent way 
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A, Flow cytometry analysis of the B220/CD19 cells extracted from the BM of Cd19-cre/Ddx3x-floxed mice and 
quantification of absolute cell numbers in (B). C, Flow cytometry analysis of the B cell Hardy fractions from A to F. 
Populations were defined as follows: Fr.A or Pre-Pro-B cell (B220+CD43+HSA-BP1-), Fr.B or Pro-B cell 
(B220+CD43+HSA+BP1-), Fr.C-C’ or large Pre-B cell (B220+CD43+HSA+BP1+), Fr.D or Pre-B cell (B220+CD43-

IgM-IgD-), Fr.E or Immature B cell (B220+CD43-IgM+IgD-), Fr.F or mature or recirculating B cell (B220+CD43-

IgM+IgD+). D, Quantification of Hardy fractions in absolute numbers. E, Total number of cells in the BM of Cd19-
cre/Ddx3x-floxed mice. Kruskal-Wallis test was used to compare female KO with female controls and heterozygous 
and Mann-Whitney test was used to compare male KO with male controls. The p value is indicated as follows: ns, 
p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

Hardy fractions B, C, E and F were significantly decreased in female KO and diminished in male 

KO mice (Figure 4-1C, D). In addition, all of these quantitative changes in the Hardy fractions of 

KO mice were independent of the total number of cells in the BM similar whatever the genotype 

and sex of the mice (Figure 4-1E). By contrast, the total number of splenocytes was dramatically 

decreased in female KO mice (Figure 4-2A). Moreover, the splenic index was significantly 

decreased in female KO mice, indicating smaller spleens in those mice. B220+ splenocytes were 

drastically reduced in female KO and slightly decreased in male KO mice (Figure 4-2B, C). 

Cellularity of the transitional, mature B220+IgD+ and FO B cell compartments was decreased in 

both male and female KO, whereas their MZ B cell subset was increased in percentage. In addition, 

female KO had a reduced absolute number of newly formed (NF), MZ as well as B220+Ig- and 

B220+IgM+ B cells (Figure 4-2B, C). 
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Figure 4-2: Mature B cells are significantly decreased in Ddx3x-KO mice 
A, Quantification of the total number of splenic cells extracted from Cd19-cre/Ddx3x-KO mice and calculation of the 
splenic index defined as the weight of the spleen divided by the weight of the animal multiplied by 100. B, Flow 
cytometry analysis and (C) quantification in absolute number of splenic B cells in Cd19-cre/Ddx3x-KO mice 
compared to controls. The last panel represents the relative quantification of MZ B cells. Populations were defined as 
follows: transitional B cells (B220+CD93+), NF (B220+CD21-CD23-), FO (B220+CD23+), MZ (B220+CD21+CD23-). 
Kruskal-Wallis test was used to compare female KO with female controls and heterozygous and Mann-Whitney test 
was used to compare male KO with male controls. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. D, Western blot of isolated resting B cells from the spleen of Cd19-cre/Ddx3x-KO mice 
stimulated with secreted IgM. This experiment was done in triplicate. sIgM: secreted IgM. 
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Although significant changes were observed in many B cell subsets, splenic naïve B cells extracted 

from Cd19-cre/Ddx3fl/Y, Cd19-cre/Ddx3fl/fl and sex-matched control mice were equally responsive 

to an anti-IgM stimulation in vitro suggesting the functionality of the BCR (Figure 4-2D). When 

put into the context of the B cell phenotypes discovered in Cd19-cre/Ddx3fl/fl, this last result 

probably indicates that MZ B cells, constituting a vast proportion of the naïve B cells left in the 

spleens of Cd19-cre/Ddx3fl/fl animals are able to respond to an IgM stimulation. In addition, female 

KO exhibited a decrease of B220+IgD-CD38+ very likely linked to the decrease of B220+IgD+ 

cells, whereas the PC subset was not affected by Cd19-cre deletion (Figure 4-3A, B). 

 

Figure 4-3: Last stages of B cell differentiation are poorly affected by Ddx3x-deletion 
A, Flow cytometry analysis of splenic B220+IgD- B cells, B220+IgD-CD38+ B cells and PCs in (B) from the spleen of 
Cd19-cre/Ddx3x-floxed mice and quantification of absolute cell numbers. The population was defined as follows: 
Plasma B cells (B220-CD138+). Kruskal-Wallis test was used to compare female KO with female controls and 
heterozygous and Mann-Whitney test was used to compare male KO with male controls. The p-value is indicated as 
follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

The majority of the phenotypes observed in the B cell differentiation were similar between male 

and female KO mice but were significantly more severe in females lacking both Ddx3x alleles, 

revealing again in this system a compensatory effect of the male-specific Ddx3y gene. 
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2. GC B cells are severely impaired in a sex-dependent 

way in Ddx3x-deleted mice 

 Given the critical role of GC B cells in initiating B cell malignancies, this specific B cell 

population was investigated in Cd19-cre/Ddx3x-floxed mice. GC B cells were significantly 

decreased in splenocytes from Cd19-cre/Ddx3fl/Y and Cd19-cre/Ddx3fl/fl mice (Figure 4-4A), a 

phenotype already observed in Vav-cre/Ddx3fl/Y and CD45.1 mice transplanted with R26-

creER/Ddx3fl/fl BM cells (Figures 3-13A and 3-16G, H). 

 

Figure 4-4: GC B cells are decreased in both physiological and sheep RBC immunization in Ddx3x-
KO mice 
A, Flow cytometry analysis of GC (B220+IgD-CD38-CD95+GL7+) in the spleen of Cd19-cre/Ddx3x-floxed mice 
compared to controls and quantification in absolute number of cells. B, Flow cytometry analysis of GC (B220+IgD-

CD95+GL7+) from spleens of Cg1-cre/Ddx3x-floxed mice 10 days after immunization with sheep RBCs. For females, 
medians were compared using a Kruskal-Wallis test whereas for males, medians were compared using the Mann-
Whitney U test. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

To determine whether this decrease of GC B cells resulted from defects observed in previous steps 

of B cell differentiation or an intrinsic effect caused by Ddx3x-deletion, mice with a GC-specific 
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deletion were generated using a Cg1-cre allele which is inducible upon B cell activation, for 

instance by immunization with sheep RBCs (Casola et al., 2006). Under these conditions, GCs 

failed to expand in Cg1-cre/Ddx3fl/Y males and Cg1-cre/Ddx3fl/fl homozygous females 10 days after 

immunization compared to controls or heterozygous females (Figure 4-4B), demonstrating that 

the GC defect was intrinsic and not a consequence of an impaired earlier B cell differentiation in 

Ddx3x-KO mice. It was also noticed that GCs were more severely decreased in Cg1-cre/Ddx3fl/fl 

animals compared to Cg1-cre/Ddx3fl/Y mice. 

Cg1-cre/Ddx3x-floxed mice were bred to animals with a R26mT/mG reporter allele and GFP+ 

GCs were analyzed 10 days after sheep RBC immunization (Figure 4-5A). 

 

Figure 4-5: GC B cells are decreased in a sex-dependent way after immunization in Ddx3x-KO mice 
A, Schematic representation of the sheep RBC immunization and the time points post-injection when GC GFP+ were 
analyzed. B, Absolute number of GFP+ GC (B220+IgD- CD95+GL7+) from spleens of Cg1-cre/Ddx3x-floxed mice 
crossed with the R26mT/mG reporter mice 10 days after immunization. In females, GFP+ GCs were compared using a 
Dunnett’s T3 test while in males, a Mann-Whitney U test was used to compare GFP+ GCs. C, Absolute number of 
GFP+ GCs (B220+IgD-CD95+GL7+) from spleens of Cg1-cre/Ddx3x-floxed female mice crossed with the R26mT/mG 
reporter mice analyzed at day 3, day 5 and day 7 post-injection. Data from the same time point were compared with 
an unpaired t-test. D, Experimental design of the GC analysis of the Cd19-cre/Ddx3x-floxed mice 39 days post-NP-
CGG immunization. E, Quantification of GC and Memory B cells after NP-CGG immunization. Populations were 
defined as follows: switched Memory B cells (B220+IgD-CD38+IgG1+NP+), GC (B220+IgD-CD95+GL7+NP+). Mann-
Whitney U test to compared male KO with male controls and female KO with female controls. This experiment was 
done in collaboration with Dr. Julie Ross. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
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GFP+ GC B cells were significantly decreased in Cg1-cre/Ddx3fl/Y males and extremely low in 

Cg1-cre/Ddx3fl/fl females 10 days after sheep RBC immunization suggesting that GC B cells were 

eliminated in the absence of DDX3X (Figure 4-5B). Although GC cells were significantly 

decreased in KO males, GFP+ GC B cells were clearly detectable suggesting that DDX3Y can 

partially compensate for Ddx3x loss in these cells. Similar to other cell populations, the GC 

compartment was intact in heterozygous Cg1-cre/Ddx3fl/X females, excluding haploinsufficiency 

from Ddx3x locus in mice. To determine when the GC formation was impaired in Cg1-cre/Ddx3fl/fl 

mice, earlier time points post sheep RBC injection were analyzed (Figure 4-5C). The number of 

GFP+ GC B cells was still extremely low in spleens of Cg1-cre/Ddx3fl/fl mice at earlier time points 

suggesting that GCs were never fully formed in female KO mice. Immunization of Cd19-

cre/Ddx3x-floxed mice with NP-CGG was realized and the spleens were analyzed 39 days later to 

assess the quantity of GC cells and any impact of Ddx3x-deletion on switched MBC formation 

(Figure 4-5D). NP-CGG immunization demonstrated a similar phenotype: an impairment of 

female Cg1-cre/Ddx3fl/fl and male Cg1-cre/Ddx3fl/Y mice to generate antigen-specific, NP+ GC 

cells, in addition to a lower quantity of switched memory B cells gated as B220+IgD-

CD38+IgG1+NP+ (Figure 4-5E). While GCs were already decreased in non-immunized male KO 

(Vav-cre/Ddx3fl/Y and Cd19-cre/Ddx3fl/Y) and female KO mice (CD45.1 mice transplanted with 

R26-creER/Ddx3fl/fl cells and Cd19-cre/Ddx3fl/fl); the decrease of B220+IgD-CD38+ B cells was not 

observed in non-immunized male KO animals (Figure 4-3A); highlighting that the decrease of 

NP+ switched memory B cells in this experiment may be due to a decrease of NP+ GCs in male 

mice. In addition, no obvious difference was observed in the quantity of NP+ GCs between male 

and female KO mice (Figure 4-5E), compared to what was observed in previous models (Figures 

4-4B and 4-5B). This may be caused by the fact that only GCs that have responded to the NP-
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CGG immunization were analyzed here while the total GC population was analyzed in previous 

experiments. Overall, these experiments demonstrated that GC maintenance and expansion 

critically require DDX3X or DDX3Y. 

Several reports linked DDX3X to p53 and reported a role of this helicase in DNA damage 

response (Cargill et al., 2021; Chan et al., 2019; C. Y. Chen et al., 2016; W. J. Chen et al., 2017; 

M. Sun et al., 2013). To test whether the loss of DDX3X-deficient GC B cells is p53 dependent, 

Trp53 KO mice (gene coding for murine p53) were used to generate apoptotic-resistant mice 

(Jacks et al., 1994). Trp53+/- and Trp53-/- mice were crossed with Cg1-cre/Ddx3x-floxed animals 

and the GC population was analyzed 10 days after sheep RBC immunization to assess if GC loss 

could be rescued. However, the Trp53 gene deletion did not rescue GC expansion neither in female 

Cg1-cre/Ddx3fl/fl KO mice (Figure 4-6A) nor in male Cg1-cre/Ddx3fl/Y KO mice (Figure 4-6B). 

 

Figure 4-6: Preventing p53 apoptosis does not rescue the loss of GC in Ddx3x-deleted animals 
Relative percentages of GC (B220+IgD-CD95+GL7+) from spleens of Cg1-cre/Ddx3x-floxed mice females in (A) and 
males in (B) crossed with the Trp53-KO mice 10 days after sheep RBC immunization. A Kruskal-Wallis test was used 
to assess the statistical significance of this experiment. The p value is indicated as follows: ns, p>0.05, *p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001. 

This result excluded a p53-dependent cell death as the underlying cause of the GC loss detected in 

Ddx3x-deleted mice. 

In an attempt to better understand why GCs were lost when DDX3X is absent, an in vitro 

system allowing the expansion of “induced GC B cells”, or iGB cells, was used (Haniuda & 

Kitamura, 2019). Naïve primary B cells were extracted from spleens of R26mT/mG/Cg1-cre/Ddx3x-
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floxed mice and cultured with IL-4 on a 40LB feeder layer expressing B cell activating factor 

(BAFF) as a survival signaling; and CD40L required for B cell activation (Figure 4-7A). 

 

Figure 4-7: GC B cells survive in vitro but do not expand in the absence of DDX3X 
A, Schematic representation of the in vitro co-culture system allowing iGB expansion. B, Trypan blue was used to 
count the iGBs and follow their proliferation. Day 0 marks when primary B cells isolated from R26mT/mG/Cg1-
cre/Ddx3x-floxed mice were plated with 40LB feeder cells. Indicated statistics were calculated using a two-way 
ANOVA test on day 5: the peak of the iGB expansion. C, Microscopy pictures of iGBs expansion 5 days after co-
culture on the 40LB feeder cells. D, iGBs isolated from were collected at day 5 and submitted to flow cytometry 
analysis to evaluate GFP and dTomato emissions. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 

In vitro culture of murine primary B cells from R26mT/mG/Cg1-cre/Ddx3x-floxed mice 

demonstrated that a full Ddx3x-deletion almost entirely prevents GC expansion in vitro (Figure 4-

7B). However, Ddx3x-deleted male B cells had a partial GC expansion, almost comparable to 

controls, which demonstrated again, the critical requirement of DDX3X or DDX3Y for GC 

expansion but also illustrated the potency of DDX3Y to compensate for the loss of DDX3X. The 

absence of an expansion of iGBs with a full Ddx3x-deletion was also observed by microscopy and 

flow cytometry (Figure 4-7C, D). GFP+ R26mT/mG/Cg1-cre/Ddx3fl/fl cells were still detectable by 

microscopy and flow cytometry (Figure 4-7C, D), suggesting that even if they were unable to 

expand, live female iGBs could be maintained and endure a Ddx3x full deletion when co-cultured 
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in vitro with this system. In contrast, male R26mT/mG/Cg1-cre/Ddx3fl/Y B cells were able to 

proliferate and expand almost to control levels suggesting that under these conditions, DDX3Y 

compensates and partially rescues DDX3X loss. 

3. Ddx3x deletion delays MYC-driven lymphomagenesis 

Since a high frequency of DDX3X LOF mutations was reported in B cell lymphoma where 

activation of the MYC oncogene plays a significant role, it was essential to test whether Ddx3x-

deletion could influence MYC-driven lymphomagenesis. For this, Eµ-Myc murine model was first 

used. These mice express a Myc transgene driven by the IgH (Eµ) enhancer and are prone to 

develop a spectrum of B-lymphoid tumors ranging from pre-B cells lymphoma to IgM+ B cell 

lymphoma (Adams et al., 1985; Harris et al., 1988; Langdon et al., 1986). These Eµ-Myc mice 

were bred to Vav-cre/Ddx3x-floxed mice to assess the impact of Ddx3x-deletion on Eµ-Myc-driven 

tumorigenesis. A first observation was that the majority of Eµ-Myc/Vav-cre/Ddx3fl/Y males did not 

develop B lymphoma and had a significantly longer survival compared to Eµ-Myc/Vav-

cre/Ddx3X/Y control mice (Figure 4-8A). 

 

Figure 4-8: Ddx3x-deletion by Vav-cre almost exclusively prevents Eµ-Myc tumorigenesis in male 
mice 
A, Kaplan-Meyer curves representing the survival of Eµ-Myc/Vav-cre/Ddx3-floxed male mice. B, Kaplan-Meyer 
curves representing the survival of Eµ-Myc/Vav-cre/Ddx3-floxed female mice. Statistics on survival curves were 
assessed with the Mantel-Cox test. Median survival is indicated in brackets and is followed by the number of animals 
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in the cohort. The repartition of tumor subtypes was assessed by flow cytometry analysis of tumor samples. The p 
value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

The tumor subtypes varied between Eµ-Myc/Vav-cre/Ddx3fl/Y and Eµ-Myc/Vav-cre/Ddx3X/Y 

tumors although no clear difference could be determined since the vast majority of Eµ-Myc/Vav-

cre/Ddx3fl/Y did not develop any tumors (85% of tumor-free Eµ-Myc/Vav-cre/Ddx3fl/Y mice) and 

Ddx3x-KO tumor subtypes were only defined in three samples. In contrast, incidences and latency 

periods of B cell lymphoma were unchanged in female Eµ-Myc/Vav-cre/Ddx3X/fl mice compared 

to Eµ-Myc/Vav-cre/Ddx3X/X control mice (Figure 4-8B), correlating with the absence of B cell 

phenotype previously observed in Vav-cre/Ddx3X/fl mice. 

These mice were then analyzed at the pre-tumor stage defined as 6-week-old mice not 

presenting any sign of disease. Although healthy, 6-week-old Eµ-Myc mice already show a pre-B 

cell expansion and splenic enlargement, two main features of the pre-tumor stage (Vecchio et al., 

2019). Pre-lymphomatous Eµ-Myc/Vav-cre/Ddx3fl/Y mice lacked the pre-B cell expansion and 

splenic enlargement usually observed in young, lymphoma-free Eµ-Myc mice (Figure 4-9A, B).
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Figure 4-9: Ddx3x-deletion in Eµ-Myc mice prevents pre-B cell expansion and splenic enlargement 
A, Flow cytometry analysis of BM and spleens from 6-weeks-old Eµ-Myc/Vav-cre/Ddx3 male mice (pre-tumor phase) 
and quantification in absolute number of cells in (B). C, Flow cytometry analysis of BM and spleens from 6-weeks-
old Eµ-Myc/Vav-cre/Ddx3 female mice (pre-tumor phase) and quantification in absolute number of cells in (D). The 
splenic index corresponds to the weight of the spleen divided by the weight of the animal multiplied by 100. Pre-B 
cell population (Fraction D) is defined as B220+CD43-IgM-IgD-. Statistical significance was assessed with a Kruskal-
Wallis test. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

Pre-lymphomatous Eµ-Myc/Vav-cre/Ddx3fl/Y mice rather had a pre-B cell population and splenic 

index similar to those of Vav-cre mice not carrying an Eµ-Myc transgene. The loss of pre-B 

expansion in pre-lymphomatous Eµ-Myc/Vav-cre/Ddx3fl/Y mice was associated with a decrease of 

B220+CD43- cells and an unchanged total number of BM cells. This suggested that Ddx3x-deletion 

in B cells with a high level of MYC was deleterious for these cells and may have caused their loss. 

By contrast, female Eµ-Myc/Vav-cre/Ddx3X/fl, Eµ-Myc/Vav-cre/Ddx3X/X and Eµ-Myc/Vav-

cre/Ddx3X/Y controls have the characteristic features of Eµ-Myc mice: a pre-B cell expansion and 

splenomegaly (Figure 4-9C, D). Further analysis of pre-malignant B cells from Eµ-Myc/Vav-

cre/Ddx3fl/Y mice revealed similar phenotypes to those found in Vav-cre/Ddx3fl/Y(Figures 3-11A-

D and 3-12A-F). They had a decreased number of lymphocytes in their BM, more particularly a 

decreased number of mature Hardy fractions E and F and showed an increase of fraction A and 

B220+CD43+ cells compared to Eµ-Myc/Vav-cre/Ddx3fl/Y and Vav-cre/Ddx3X/Y mice (Figure 4-

10A). 
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Figure 4-10: Pre-tumor analysis of Eµ-Myc with and without Ddx3x-deletion 
A, Quantification of BM B cell populations (Hardy fractions) from flow cytometric analysis from both male and 
female animals with indicated genotypes during the pre-lymphomatous phase. B, Quantification of splenic B cell 
populations from flow cytometric analysis from both male and female animals with indicated genotypes during the 
pre-tumor phase. Statistical significance was assessed with the Kruskal-Wallis test between mice of the same sex. The 
p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

Eµ-Myc/Vav-cre/Ddx3fl/Y mice showed decreased numbers of splenocytes including B cells, 

CD19+IgM+, CD19+IgD+, NF and FO subsets, but a higher frequency of MZ B cells was detected 

in Eµ-Myc/Vav-cre/Ddx3fl/Y mice (Figure 4-10B). This severe lymphopenia was not observed in 

control mice, and deletion of one Ddx3x allele in Eµ-Myc mice did not impact B lymphocytes at 

the pre-tumor stage compared to Eµ-Myc/Vav-cre/Ddx3X/X mice, again confirming that one intact 

Ddx3x allele compensates for the loss of the other (Figure 4-10A, B). 

 Since the pre-B cell expansion and splenomegaly typically observed in Eµ-Myc mice were 

undetectable in young Eµ-Myc/Vav-cre/Ddx3fl/Y males (Figure 4-9A, B), I suspected that the 

concomitant activation of MYC and Ddx3x deletion led to the elimination of those B cells that 

could potentially undergo malignant transformation and generate a lymphoma, which would 

explain why the majority of Eµ-Myc/Vav-cre/Ddx3fl/Y mice were tumor-free although carrying the 
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Eµ-Myc transgene (Figure 4-8A). This notion was supported by the high level of Annexin V+ 

detected in splenic B cells from Eµ-Myc/Vav-cre/Ddx3fl/Y mice, even higher compared to Eµ-

Myc/Ddx3fl/Y and Vav-cre/Ddx3fl/Y mice (Figure 4-11A). 

 

Figure 4-11: Concomitant activation of c-Myc and Ddx3x-deletion eliminates B cells 
A, Flow cytometry analysis of splenocytes collected from adult tumor-free animals stained for Annexin V in addition 
to indicated surface markers. Significance was assessed by an ordinary one-way ANOVA test. B, Western blot analysis 
of nuclear extracts from splenic B220+ cells extracted from male animals with indicated genotypes during the pre-
tumor phase. C, Western blot analysis of whole cell lysates from tumors developed in Eµ-Myc/Vav-cre/Ddx3fl/Y or 
Eµ-Myc/Vav-cre/Ddx3X/Y as controls. D, Western blot analysis of splenocytes and thymocytes extracted from animals 
with indicated genotypes and age; old Eµ-Myc/Vav-cre/Ddx3fl/Y mice (<52 weeks) are lymphoma-free animals. 

In addition, MYC expression was lower in Eµ-Myc/Vav-cre/Ddx3fl/Y males than normally seen in 

Eµ-Myc transgenic mice and was comparable to the endogenous MYC levels of animals not 

carrying the Eµ-Myc transgene, which would be in agreement with the hypothesis that cells with 

high MYC expression and lacking DDX3X had been eliminated (Figure 4-11B). However, this 

did not explain why in rare cases (<15% of cases), tumors could arise from Eµ-Myc/Vav-

cre/Ddx3fl/Y animals. Three out of the four Ddx3x-KO tumors obtained could be collected and were 

analyzed by Western blot. The absence of DDX3X protein was confirmed then excluding that 

these tumors were formed by a lack of cre efficiency or by escaping Ddx3x-deletion (Figure 4-

11C). In addition, an upregulation of DDX3Y protein was detected in all three collected Ddx3x-

KO tumors compared to Ddx3x-WT tumors expressing a low or undetectable level of DDX3Y 
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(Figure 4-11C). All tumors with a loss of DDX3X protein had a high level of DDX3Y protein, 

suggesting that DDX3X loss could be rescued in B cells by DDX3Y upregulation ensuring cell 

survival in the absence of DDX3X and allowing a B cell lymphoma development. Ddx3y 

compensation in the context of Ddx3x-KO Eµ-Myc tumors correlated with the compensatory effect 

previously observed while comparing B cell phenotypes in Cd19-cre/Ddx3fl/Y and Cd19-

cre/Ddx3fl/fl mice (and other KO models previously described). Moreover, Western blot analysis 

of splenocytes from lymphoma-free Eµ-Myc/Vav-cre/Ddx3fl/Y animals (<52 weeks) revealed the 

absence of DDX3X as expected, but also the absence of DDX3Y whereas DDX3Y was clearly 

present in splenocytes from WT mice of similar age or Vav-cre/Ddx3fl/Y mice (Figure 4-11D). 

Hence the absence of lymphoma in Eµ-Myc/Vav-cre/Ddx3fl/Y animals correlated with the absence 

of DDX3Y, normally present in splenocytes, and suggested that B cells normally expressing 

DDX3Y had been lost in presence of an Eµ-Myc transgene. This was confirmed by DDX3Y 

detection in thymocytes, where the Eµ-Myc transgene is not expressed, regardless of age or 

whether Ddx3x was deleted or not (Figure 4-11D). This strongly suggested that a simultaneous 

transgenic expression of c-Myc and a deletion of Ddx3x is incompatible with cell survival and that 

high DDX3Y protein expression in the absence of DDX3X allows B cells to sustain c-Myc 

activation and lymphoma development. 

 To further investigate the role of DDX3X in B cell lymphomagenesis, Eµ-Myc/Cd19-

cre/Ddx3x-floxed animals were generated. Not only was this model more accurate since the Cd19-

cre deletes specifically in B cells compared to the Vav-cre deleter, but also it avoided the pan-

hematopoietic effects of the Vav-cre deleter in full-KO female mice. This model allowed therefore 

to assess how Eµ-Myc lymphomagenesis is impacted by the deletion of both Ddx3x alleles 

specifically in B cells of female mice (Figure 4-12A). 
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Figure 4-12: Ddx3x-deletion by Cd19-cre delays Eµ-Myc tumorigenesis 
A, Representation of the breeding strategy. B, Kaplan-Meyer curves representing the survival of females Eµ-
Myc/Cd19-cre/Ddx3x-floxed mice; male mice are represented in panel (C). Isolation and PCR genotyping of CD19+ 
tumor cells from KO-mice allowed determining if a tumor achieved a complete deletion or not. At the bottom left of 
each survival curve, a deletion efficiency percentage was calculated based on PCR results. Statistics for survival curves 
were assessed with the Mantel-Cox test. The median survival is indicated in brackets and is followed by the number 
of animals in the cohort. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. 

Ddx3x-deletion significantly delayed lymphomagenesis in Eµ-Myc/Cd19-cre/Ddx3fl/fl animals 

compared to female mice carrying Eµ-Myc/Cd19-cre transgenes and two intact Ddx3x alleles 

(Figure 4-12B). Similarly, Ddx3x-deletion in male mice significantly delayed lymphomagenesis 

in Eµ-Myc/Cd19-cre/Ddx3fl/Y animals compared to Eµ-Myc/Cd19-cre/Ddx3X/Y controls (Figure 

4-12C). However, this delay was less significant in Eµ-Myc/Cd19-cre/Ddx3fl/Y animals having a 

median survival of 105 days compared to Eµ-Myc/Cd19-cre/Ddx3fl/fl mice having a median 

survival of 212 days. In addition, genotyping of CD19+ tumor cells collected from Eµ-Myc/Cd19-

cre/Ddx3fl/fl mice revealed a 0% of deletion efficiency; i.e. all tumors that developed in female Eµ-

Myc/Cd19-cre/Ddx3fl/fl mice - without exception - were generated from cells that had escaped 

Ddx3x-deletion demonstrated by the presence of a “flox” band (Figure 4-12B). This indicated that 

cells lacking Ddx3x are counter-selected for this process and that DDX3X was critically required 
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for lymphomagenesis. Genotyping of CD19+ tumor cells collected from Eµ-Myc/Cd19-

cre/Ddx3fl/Y mice revealed 37,5% of deletion efficiency (Figure 4-12C), indicating that most 

tumors (62.5%) escaped Ddx3x-deletion, which was not the case for tumors appearing in Eµ-

Myc/Vav-cre/Ddx3fl/Y mice (Figure 4-8A). It is therefore likely that cells more frequently escape 

a deletion induced by the Cd19-cre allele, which is less frequent or even impossible with the Vav-

cre deleter, explaining the difference in survival curves between Eµ-Myc/Cd19-cre/Ddx3fl/Y and 

Eµ-Myc/Vav-cre/Ddx3fl/Y animals. However, 37,5% of tumors from Eµ-Myc/Cd19-cre/Ddx3fl/Y 

mice achieved a complete Ddx3x-deletion, indicating that some tumors can emerge in the absence 

of DDX3X, suggesting that the loss of DDX3X can be compensated by DDX3Y in male mice to 

enable MYC-driven lymphomagenesis. 

These findings and their conclusions were confirmed by using another murine model: l-

Myc transgenic mice that mimic B lymphomagenesis similarly to the Eµ-Myc mice. l-Myc mice 

develop spontaneously monoclonal mature B cell lymphoma with BL characteristics owing to 

deregulation of the MYC transgene by the l light chain enhancer (Kovalchuk et al., 2000). l-Myc 

tumors harbor some BL characteristics and are more mature compared to Eµ-Myc tumors, and in 

this regard, represent a more suitable model for BL. l-Myc were crossed to Cd19-cre/Ddx3x-

floxed mice to assess the impact of Ddx3x-deletion in this model (Figure 4-13A). 
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Figure 4-13: Ddx3x-deletion by Cd19-cre delays l-Myc tumorigenesis 
A, Representation of the breeding strategy. B, Kaplan-Meyer curves representing the survival of females l-Myc/Cd19-
cre/Ddx3x-floxed mice; male mice are represented in panel (C). Isolation and PCR genotyping of CD19+ tumor cells 
from KO-mice allowed determining if a tumor achieved a complete deletion or not. At the bottom left of each survival 
curve, a deletion efficiency percentage was calculated based on PCR results. Statistics for survival curves were 
assessed with the Mantel-Cox test. The median survival is indicated in brackets and is followed by the number of 
animals in the cohort. The p value is indicated as follows: ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
D, Western blot analysis of whole cell lysates from CD19+ tumor cells from l-Myc/Cd19-cre/Ddx3x-floxed mice. 

l-Myc/Cd19-cre/Ddx3fl/fl female mice had a significant delay in lymphoma initiation compared to 

l-Myc/Cd19-cre/Ddx3X/X mice (Figure 4-13B). Genotyping of CD19+ tumor cells revealed that 

all female tumors without exception, emerged from cells that had escaped Ddx3x-deletion, exactly 

as the female Ddx3x-deficient Eµ-Myc mice, again confirming an absolute requirement of Ddx3x 

for B cell lymphomagenesis. In male mice, tumors developed in both l-Myc/Cd19-cre/Ddx3fl/Y 

and l-Myc/Cd19-cre/Ddx3X/Y mice (Figure 4-13C). Nevertheless, the deletion efficiency for l-

Myc/Cd19-cre/Ddx3fl/Y was 100%, meaning that all tested tumors had achieved a complete Ddx3x-

deletion and none of them escaped it in this model. Western blot analysis confirmed the absence 

of DDX3X, but also showed upregulation of DDX3Y protein expression in Ddx3x-KO-tumors 

(Figure 4-13D), demonstrating the ability of DDX3Y to compensate for the loss of DDX3X also 

in mature MYC-driven B cell lymphoma. None of the l-Myc tumors escaped the Cd19-cre deletion 



122 

 

(Figure 4-13C), suggesting that DDX3Y compensation was more efficient in these more mature, 

BL-like tumors compared to the malignancies emerging from earlier, less mature B cell stages in 

Eµ-Myc/Cd19-cre/Ddx3fl/Y mice (Figure 4-12C). Moreover, l-Myc/Cd19-cre/Ddx3fl/Y tumors 

may appear more mature compared to control tumors (Figure 4-13C), again in favor of a more 

efficient compensatory effect of DDX3Y in mature B cell tumors. Finally, B cell lymphomagenesis 

appeared to be even accelerated in l-Myc/Cd19-cre/Ddx3fl/Y animals compared to l-Myc/Cd19-

cre/Ddx3X/Y controls (Figure 4-13C). This could be due to a more efficient compensatory effect 

of DDX3Y in more mature B cell tumors compared to the less mature B cell lymphomas that 

emerge in Eµ-Myc/Cd19-cre/Ddx3fl/Y mice (Figure 4-12C). Alternatively, this acceleration may 

also indicate that in mature lymphomas, the loss of DDX3X and concomitant gain of DDX3Y 

represents an event that is favorable for MYC-induced malignant transformation and may reflect 

the situation found in male BL patients with DDX3X LOF mutations.   
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5. CHAPTER V: Conclusion 

5.1. Discussion 

5.1.1. Chapter III: DDX3X’s role in hematopoiesis 

At the time this project was initiated, one of the main questions was whether DDX3X is 

involved in B cell differentiation and hematopoiesis in general. Indeed, this project was started to 

better understand the role of DDX3X in lymphomagenesis, but basic knowledge about DDX3X’s 

role in lymphocytes was lacking and an absolute pre-requisite for this study. Therefore, this was 

investigated by generating a conditional KO mouse model, as described in chapter III. New 

evidence from several mouse models is presented here and supports a sex-dependent, critical role 

of DDX3X for specific steps in erythropoiesis and lymphoid differentiation. Most significantly, it 

is shown that male and female mice lacking DDX3X have different phenotypes and compensation 

occurs in the absence of DDX3X by the male-specific Ddx3y gene. 

During this investigation, two independent groups published reports about hematopoietic 

phenotypes in Ddx3x-KO mice, one being a non-peer reviewed report (K. Liu et al., 2018; 

Szappanos et al., 2018). In both studies, a conditional KO mouse model targeting Ddx3x exon 2 

was generated and bred to the Vav-cre deleter, similar to the model used here. Both studies 

confirmed the majority of the results obtained in the work that forms the basis of the thesis: Ddx3x-

deletion in male mice causes a decrease of B lymphocytes, more precisely of Hardy fractions B, 

D, E and F (K. Liu et al., 2018; Szappanos et al., 2018). Interestingly, fractions B and D (pro-B 

and small pre-B cells), where the V(D)J recombination of the Ig heavy and light chain genes 

occurs; as well as the DN2/DN3 stages of pre-T cell differentiation where the TCR b chain genes 
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are recombined, are affected in male mice in the absence of DDX3X. Since V(D)J recombination 

takes place at all these stages and is critical to produce mature lymphocytes, it supports the 

hypothesis of DDX3X’s involvement in V(D)J recombination. Whether and how the DDX3X 

helicase affects these pathways requires further investigation. Whether this occurs through a direct 

regulation (for example, that DDX3X is directly involved in BCR or TCR signaling) or an indirect 

regulation (for example, translational or transcriptional regulation of factors involved in V(D)J 

recombination) remains to be shown too. A role for DDX3X in these critical steps of lymphoid 

development was previously suggested by a report indicating that Ddx3x-deleted small pre-B cells 

express lower levels of the bromodomain and WD repeat containing protein 1 BRWD1 (K. Liu et 

al., 2018). This BRWD1 protein restricts V(D)J recombination at the Igk locus and Brwd1 mutant 

mice harbor similar defects to Ddx3x-deficient animals: a decrease of Hardy fractions D, E and F 

and peripheral B cells (Mandal et al., 2015). 

In agreement with the data presented in this thesis, Liu and colleagues also demonstrated a 

decrease in transitional B cells, FO, and GC in addition to the MZ expansion (K. Liu et al., 2018). 

In this same report, the MZ expansion is absent from CD45.1 transplanted mice, although the 

percentages of MZ cells seemed to increase, and the authors suggested that this may be the 

consequence of an indirect effect of Ddx3x-deletion caused by extrinsic factors (K. Liu et al., 

2018). In contrast, the transplantation of R26-creER/Ddx3fl/fl BM cells into CD45.1 recipients 

described here resulted in a MZ cell expansion, rather suggesting an intrinsic effect of Ddx3x-

deletion (Figure 3-16G, H). While I analyzed the percentages of living cells, Liu and colleagues 

analyzed the total number of MZ cells that is likely affected by the low amount of live splenocytes 

(Figure 4 from (K. Liu et al., 2018)), which would support the notion that the observed MZ 

expansion is an intrinsic defect of Ddx3x-deletion. However, this expansion never led to any tumor 
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formation in Vav-cre/Ddx3fl/Y animals even when they were maintained until one year of age. It is 

therefore unlikely that the MZ B cell expansion is associated with malignant transformation. The 

observation of a concomitant decrease of FO and increase of MZ B cells could indicate a defect at 

this specific step of differentiation where transitional B cells mature into MZ or FO B cells (Figure 

1-2). This cell fate decision depends on Notch2 and BAFF/NF-kB signals (Cariappa et al., 2000; 

Hwang et al., 2018; T. Saito et al., 2003), that are known to direct the differentiation towards MZ 

B cells when over-activated and towards FO when inactivated (Gibb et al., 2010; Lechner et al., 

2021; Mackay et al., 1999; Moran et al., 2007; J. J. Wang et al., 2013). In addition, the strength of 

BCR signaling also influences this cell fate decision (Carey et al., 2008; Cariappa et al., 2001; 

Hampel et al., 2011; Martin & Kearney, 2000b; Pillai et al., 2005; Wen et al., 2005), and several 

studies demonstrated for instance, that a weak BCR signal strength directs differentiation to MZ 

over FO. Whether a MZ/FO unbalance in Ddx3x-KO mice results from a poor quality of the BCR 

signal in the absence of DDX3X or is the result of  FO cells trans-differentiating into MZ B cells 

remains to be shown (Lechner et al., 2021; Srivastava et al., 2005; Vinuesa et al., 2003). Also, 

whether MZ/FO unbalanced phenotype could also be a consequence of the defective V(D)J 

recombination process(es) remains to be investigated. 

While DDX3X has been shown to be crucial for the early stages of embryonic development 

(C. Y. Chen et al., 2016; Q. Li et al., 2014), I demonstrated a specific requirement of DDX3X for 

fetal erythropoiesis that was never described before. While Chen and colleagues demonstrated a 

severe impact of Ddx3x hemi- and heterozygous deletion in early embryogenesis (C. Y. Chen et 

al., 2016), a phenotype in fetal hematopoiesis was only observed when both Ddx3x alleles were 

deleted, pointing to a cell-type specific compensation. Interestingly, the Vav transcripts are first 

detected around developmental stage E11,5 suggesting that the Vav-cre deleter is active from this 
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stage of development (Bustelo et al., 1993). However, data obtained with the R26mT/mG reporter 

allele demonstrated that the Vav-cre deleter is more active in definitive erythrocytes compared to 

primitive erythrocytes in control embryos (Figure 3-2C, top panels), correlating with the block of 

definitive erythropoiesis observed in Ddx3x-deleted embryos. 

 Not only did this first part of the study reveal the importance of DDX3X in hematopoietic 

progenitors, lymphocytes, and erythrocytes, but it also provided first clues about a sexual 

dimorphism caused by the localization of the Ddx3x gene at the X chromosome. While most 

studies focused on male Vav-cre/Ddx3fl/Y mice (K. Liu et al., 2018; Szappanos et al., 2018), the 

analysis of female KO and heterozygous animals in various cre systems presented here provided 

a more complete picture of sex-dependent hematopoietic phenotypes. A common observation in 

all models was that one Ddx3x allele is sufficient to compensate well for all the hematopoietic 

phenotypes detected in full KO female mice. Even if both Ddx3x alleles are active, B220+ cells 

with one allele deleted express a similar level of DDX3X protein compared to B220+ cells with 

two intact alleles (Figure 3-3E), excluding a haploinsufficiency or a dosage effect from the Ddx3x 

gene, at least in B cells. It is possible that this is due to the so far unknown mechanisms adjusting 

DDX3X protein levels after the loss of one allele, at least in murine B lymphocytes. These findings 

are in agreement with observations made in hepatocytes where a full Ddx3x deletion sensitizes 

mice to liver tumorigenesis, while deletion of one allele does not confer any phenotype, revealing 

a similar compensation by one intact Ddx3x allele in hepatocytes (Chan et al., 2019). However, 

this compensation may not occur in all cell types and may not be perfect, as observed in the murine 

brain. A Ddx3x-KO in neural progenitors induced a limited phenotype in heterozygous mice, much 

less severe compared to the full DDX3X-KO which caused microcephaly (Hoye et al., 2022). This 

indicates that in contrast to B cells, protein and RNA levels are regulated differently in neural 
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progenitors where haploinsufficiency exists (Boitnott et al., 2021; Hoye et al., 2022). Another 

example is provided by a study on the role of DDX3X in medulloblastoma where deletion of one 

Ddx3x allele does not confer any phenotype in a model of Wnt-activated medulloblastoma; in 

contrast to a model of Sonic-hedgehog-activated medulloblastoma (Patmore et al., 2020). Since 

those tumor types emerge from different cells of origin (Gibson et al., 2010), this demonstrates 

again that the Ddx3x haploinsufficiency model can exist, but varies even within the same organ 

and is therefore cell-type and context-dependent. In humans, an example of DDX3X 

haploinsufficiency may be illustrated in ID patients. These patients are almost exclusively females 

with a heterozygous germline Ddx3x mutation whereas male ID patients with such a germline 

DDX3X mutation are very rare. This indicates that one DDX3X intact allele in female patients is 

beneficial and allows embryonic development by contrast to males, but there is still an imperfect 

compensation from this intact DDX3X allele causing severe phenotypes during development. 

However, a skewed or incomplete X-chromosome inactivation may further complicate the 

situation in these patients (Snijders Blok et al., 2015). 

 The data presented here study also provide the first answers to the question of whether the 

male homolog of DDX3, DDX3Y, is expressed during blood cell formation and whether it can 

exert the same role as DDX3X. In the context of this project, the first DDX3Y-specific murine 

antibody was generated and allowed to demonstrate the expression of this Y-linked DDX3 paralog 

in murine thymocytes and splenocytes (Figure 3-3A-D). The observation that Vav-cre/Ddx3fl/Y 

pups were produced at a mendelian ratio but live-born Vav-cre/Ddx3fl/fl female mice were never 

obtained would be consistent with the view that DDX3Y can indeed compensate for DDX3X loss, 

at least in fetal erythropoiesis. Moreover, in vitro expansion of induced GC B cells and in vivo 

stimulation of GC B cells are other examples where DDX3Y compensates for DDX3X loss. A 
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DDX3Y compensatory effect was also evident in adult erythropoiesis since Vav-cre/Ddx3fl/Y mice, 

although having a decreased hematocrit (Figure 3-4E), do not show the severe anemia that affects 

the survival of female DDX3X-KO mice that received R26-creER/ Ddx3fl/fl BM cells (Figure 3-

15B, C). In addition to the fact that the DDX3Y protein was presumably expressed in several 

tissues in mice, several groups recently claimed a DDX3Y compensation in the case of DDX3X 

depletion even though DDX3Y protein expression had never been properly demonstrated in these 

models because of the lack of suitable specific antibodies. These claims were based on the 

observation that male Ddx3x-KO mice had a mild phenotype compared to female full-KO mice 

that were more severely impacted by DDX3X homozygous loss in hematopoietic cells (K. Liu et 

al., 2018; Szappanos et al., 2018), hepatocytes (Chan et al., 2019), as well as in murine brain cells 

(Hoye et al., 2022; Patmore et al., 2020). Furthermore, one study even raised the question of 

whether DDX3Y ectopic expression may explain why in rare cases, male ID patients with a 

DDX3X germline mutation are viable (Hoye et al., 2022). However, the data presented here and 

published findings clearly indicate that any compensatory effect of DDX3Y is imperfect and very 

likely context- and cell type-dependent, and in this regard, comparable to the compensation of one 

Ddx3x allele in females discussed above. The context dependency and the degree of compensation 

that can be provided by DDX3Y are most likely due to its variable expression level among different 

cell types, differences in its subcellular localization (compared to DDX3X), differences in its 

enzymatic activity (also compared to DDX3X), a combination of these reasons, and/or any other 

unknown function that may differ from DDX3X and remain to be clarified. A recent report showed 

that human DDX3X and DDX3Y enzymes are functionally redundant in mRNA translation 

catalyzing protein synthesis (Hoye et al., 2022; Venkataramanan et al., 2021), but their functions 

may differ in other contexts such as stress response for instance (Shen et al., 2022). In this thesis 
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work, I could assess the expression of the DDX3Y protein in bulk populations (splenocytes and 

thymocytes), but the many attempts to assess its expression in smaller, more specific populations 

were ineffective. A Western blot of 293T cells (a female human cell line) transfected with a murine 

Flag-tagged DDX3Y revealed that the anti-DDX3Y antibody has a good capacity of detection 

compared to the anti-Flag antibody (Figure 5-1). 

 

Figure 5-1: Validation of the anti-DDX3Y antibody sensitivity 
HEK293T cells were transiently transfected with a Flag-tagged DDX3Y vector expressing the murine DDX3Y protein 
or empty vector as control. This experiment was done by Dr. Hugues Beauchemin. 

This suggests that the difficulties encountered with the detection of DDX3Y protein detection are 

most likely linked to its low level of expression and not to a low sensitivity of the anti-DDX3Y 

antibody. However, it cannot be excluded that cell type-specific post-translational modifications 

of DDX3Y interfere with the recognition of the protein by this antibody. Based on the available 

data, I hypothesize that a low level of DDX3Y in splenocytes and thymocytes is at least one of the 

reasons why DDX3Y imperfectly compensates for Ddx3x-deletion. 

5.1.2. Chapter IV: DDX3X’s role in lymphomagenesis 

Chapter IV of this thesis describes experiments that were performed to better understand 

the role of DDX3X in B lymphomagenesis using the conditional KO mice described in chapter III. 

DDX3X LOF mutations have frequently been reported in GC-derived B cell lymphoma: estimates 
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indicate that approximately 30% of BL and 14-28% of MYC dysregulated DLBCL harbor DDX3X 

mutation, and their consequence for tumorigenesis was unknown (Burkhardt et al., 2022; Cucco 

et al., 2020; Gong et al., 2021; Miyaoka et al., 2022; N. Thomas et al., 2023). This was investigated 

by breeding a Ddx3x-conditional KO mouse model with models that mimic MYC hyper-activation 

and spontaneously develop B cell lymphoma. These experiments provided new evidence for a 

requirement of DDX3X for GC physiology and MYC-driven lymphomagenesis and support the 

incompatibility of Ddx3x-deletion in B cells highly expressing MYC and the ability of DDX3Y to 

compensate for the loss of DDX3X and initiate lymphomagenesis. My results present a sexual 

dimorphism of murine DDX3X and DDX3Y RNA helicases in B cell physiological and malignant 

development. 

Using the Cd19-cre deleter allele allowed a clear comparison between female KO, 

heterozygous and male KO mice within the same experimental system. This confirmed the 

compensatory effects by one Ddx3x allele and Ddx3y allele in B cells described in chapter III. I 

noticed that Ddx3x-deletion negatively affects the maintenance of GC B cells in physiological 

conditions but also their expansion in an immunization context. CSR and SHM occurring in GC 

B cells require DNA strand breaks that must be repaired without generating an abortive DNA 

damage response for instance through TP53 activation (Bahjat & Guikema, 2017). Experimental 

results obtained with Trp53/Ddx3x double KO mice demonstrated however that TP53 activation 

is still intact in Ddx3x-deficient GC B cells, and excluded p53-dependent apoptosis as the cause 

of a loss of GC B cells in these mice. This suggests that DDX3X probably regulates the 

proliferative expansion of GC B cells, but this still needs to be clarified in detail. Interestingly, in 

vitro studies with the iGB co-culture system resulted in the survival of DDX3X-depleted female 

GCs, but not in their expansion. It is therefore likely that DDX3X exerts an intrinsic role in GC 
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expansion, but the absence of DDX3X-deficient GC B cells in vivo may be caused by extrinsic 

factors. Robinson and colleagues have found a similar phenotype using the iGB in vitro system 

when B cells are co-cultured with the BAFF and CD40L but in the absence of IL-4 (Robinson et 

al., 2019). BAFF and CD40L signals are indeed sufficient for B cell survival and to induce a GC-

like phenotype, but are insufficient for their expansion. This could point to the possibility that 

Ddx3x-KO cells harbor defects in their IL-4 receptor and/or IL-4 signaling cascade which block 

their proliferation expansion even if they survive the Cg1-cre deletion in vitro. 

The high frequency of somatic LOF mutations in DDX3X in human BL has raised interest 

in the role of DDX3X in B cell lymphomagenesis (Arthur et al., 2018; Burkhardt et al., 2022; 

Cucco et al., 2020; Grande et al., 2019; M. Kim et al., 2022; Miyaoka et al., 2022; Richter et al., 

2012; Schmitz et al., 2012; N. Thomas et al., 2023; Zhang et al., 2020). In chapter IV, the 

observation that male Eµ-Myc/Vav-cre mice lacking DDX3X are almost free of lymphoma 

indicated a strict requirement of DDX3X for MYC-driven lymphomagenesis. Although this was 

recently suggested for human B lymphoma (Gong et al., 2021), it was not yet shown in a murine 

lymphoma model. The experiments described in chapter IV provide new evidence for a 

requirement of DDX3X for effective B cell lymphomagenesis from two mouse models, the Eµ-

Myc and l-Myc transgenic mice, the latter being a model for human BL (Kovalchuk et al., 2000). 

While both models showed that the loss of DDX3X impedes MYC-driven tumorigenesis, another 

study showed that human GC B cells co-transduced with MYC in addition to a DDX3X LOF 

mutant acquire a competitive growth advantage (Gong et al., 2021). Although these are very 

different experimental systems and cellular contexts, the differences between these experiments 

and the data presented here were intriguing and could also reveal a dominant negative effect of 

DDX3X mutants used in the human system that cannot be observed when DDX3X is entirely 
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depleted, as it is the case in the conditional KO mice. The combination of the Eµ-Myc transgene 

and the pan-hematopoietic Vav-cre deleter showed that the pre-B cell expansion that usually takes 

place during the pre-lymphomatous phase in Eµ-Myc mice is not detected in male mice when 

DDX3X is absent, suggesting that the combination of Ddx3x-deletion and MYC activation 

eliminates these cells, possibly through cell death triggered by increased cell stress as previously 

suggested (Gong et al., 2021). It is thus conceivable that a simultaneous Ddx3x-deletion and MYC 

activation eliminates the cells available for MYC-driven tumorigenesis thereby protecting mice 

against lymphoma. This is also supported by my finding that only B cells that upregulate DDX3Y 

expression can tolerate Ddx3x-deletion and MYC activation and therefore can develop a 

lymphoma, whereas DDX3Y is undetectable in the spleen of Eµ-Myc/Vav-cre/Ddx3fl/Y lymphoma-

free mice. Lymphomagenesis in male mice lacking DDX3X occurs therefore only when DDX3Y 

is upregulated, a conclusion supported by two studies which demonstrated that DDX3Y, although 

not present in normal human B lymphocytes, is expressed in a malignant context, especially in BL 

(Gong et al., 2021; Rosinski et al., 2008). 

The use of a B cell-specific Cd19-cre deleter in the Eµ-Myc and l-Myc models showed a 

clearer picture since it avoided the effects of a pan-hematopoietic deletion caused by the Vav-cre 

deletion in females. Data from these two models provided strong support for the notion that B cells 

do not tolerate Ddx3x loss in the context of an activated Myc since lymphomas with full deletion 

of both Ddx3x alleles were never observed in Eµ-Myc or l-Myc female mice. Moreover, the critical 

requirement of DDX3 activity in general for B cell lymphomagenesis was also evident in male 

mice. Indeed, 37,5% of Eµ-Myc/Cd19-cre/Ddx3fl/Y and all l-Myc/Cd19-cre/Ddx3fl/Y mice 

developed tumors that had a full Ddx3x-deletion indicating that DDX3Y can compensate for 

DDX3X loss, sustain c-Myc activation and enable the development of a B cell lymphoma. This 
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result is in agreement with the report indicating that DDX3X loss in male BL patients is 

compensated by an ectopic expression of DDX3Y (Gong et al., 2021). These data provide at least 

one explanation as to why BL patients with a DDX3X mutation are almost exclusively male 

patients (Burkhardt et al., 2022; Gong et al., 2021; N. Thomas et al., 2023). 

Another recent study demonstrated that DDX3X and DDX3Y have redundant functions in 

translational regulation confirming that one can compensate for the loss of the other 

(Venkataramanan et al., 2021). It is therefore plausible that DDX3Y compensates for the 

deleterious effects caused by DDX3X LOF mutations in BL cells allowing MYC-driven 

lymphomagenesis to occur in BL patients. While the results presented in this thesis suggest that 

DDX3Y is expressed in normal murine lymphocytes, which is a fundamental difference compared 

to humans, as shown by Gong and colleagues (Gong et al., 2021), the murine lymphoma models 

still led to a very similar conclusion compared to the Gong study: DDX3Y enables lymphoma 

development in case of DDX3X absence. It is thus well possible that the co-occurrence of DDX3X 

loss and a gain of MYC represents a synthetic lethal combination that could be exploited for the 

development of new therapeutical options for human MYC-driven B cell lymphoma, but it is also 

conceivable that DDX3Y represents the target of interest in male patients harboring DDX3X 

mutations. 

5.2. Limitations 

The immuno-phenotyping analysis of hematopoietic populations in Ddx3x-KO mice was 

realized in a physiological context, i.e. without any hematopoietic stimulation. Therefore, it is not 

excluded that DDX3X plays a role in populations that were found unaffected in percentage and/or 

in number under these conditions and that this role only reveals itself under specific conditions, 
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for example in the presence of specific cytokines or other immune modulators. One example of 

this is myeloid cells that were not affected in numbers in Ddx3x-KO mice (Figure 3-6D), as 

confirmed by Samir and colleagues that used Ddx3x-KO mice bred with a myeloid-specific cre 

deleter (Samir et al., 2019). However, the authors also demonstrated that when the NLRP3 

inflammasome is activated, Ddx3x-deletion protects against inflammation and cell death (Samir et 

al., 2019). Another example is found in the Szappanos study: even if the percentages and total 

numbers of myeloid cells are normal in Ddx3x-KO mice, Ddx3x-KO BM-derived macrophages 

respond less efficiently in vitro to Listeria monocytogenes infection or Toll-like receptor activation 

(Szappanos et al., 2018). Such phenotypes could not have been found in my model since the 

immuno-phenotyping analysis was done in a physiological context without any NLRP3 activation 

or bacterial stimulation for example. Consequently, it is not excluded that other hematopoietic 

populations found unchanged in my models may be affected by Ddx3x-KO when stimulated; for 

example, the granulocytes although unaffected in quantity (Figure 3-6D) may still be affected by 

Ddx3x-KO when stimulated with an allergen. 

Since deletion of both Ddx3x alleles in females is incompatible with life past mid-gestation, 

it was necessary to model a full Ddx3x-KO by transplantation of cells in which the Ddx3x gene 

could be acutely inactivated in adult animals. However, even if the R26-creER murine model has 

allowed generating an inducible Ddx3x-KO in adult female mice and has demonstrated DDX3X’s 

role for the maintenance of hematopoietic cells, more particularly BM progenitors and 

erythrocytes, the flow cytometry results are clearly affected by tamoxifen. This drug is known to 

be toxic (X. Tian & Zhou, 2021), and its injection into R26-creER mice results in a considerable 

variation in cell population percentages as well as some reduced populations, the DP T cells for 

example (Figure 3-15F, G compared to Figure 3-8C). Consequently, this model has severe 
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limitations which can at least be reduced or avoided by using more sensitive cre systems that can 

be activated with lower tamoxifen doses to decrease these undesirable side effects (Indra et al., 

1999; X. Tian & Zhou, 2021). 

One of the main limitations of the study described here resides in the murine models 

themselves. First, I clearly demonstrated that the DDX3Y protein is expressed in murine B cells 

under physiological conditions, while this is not the case for human B lymphocytes according to 

the study of Gong and colleagues (Gong et al., 2021). Consequently, the absence of DDX3X in 

murine malignant B cells is compensated by an upregulation of the murine DDX3Y protein instead 

of the ectopic induction of DDX3Y protein expression observed in human tumors (Gong et al., 

2021). Furthermore, it has been suggested that the differences in phenotypes between male and 

female Ddx3x-KO mice result from compensation by the male-specific Ddx3y gene, although this 

has never been formally demonstrated. Even if Ddx3y is very likely the factor compensating for 

the loss of DDX3X, it cannot be ruled out that compensation from other male-specific factors may 

occur. Such a demonstration would require the generation of a double Ddx3x/Ddx3y KO mice 

allowing testing whether the absence of both DDX3 genes causes the same defects as those 

detected in female KO mice. 

Second, mice carry another DDX3 homolog on their chromosome 1 named D1Pas1 (or 

Pl10) which is believed to not exist in humans. This gene is highly similar to murine and human 

DDX3 proteins (Figure 1-5), and is known to be important for male fertility in the mouse (Inoue 

et al., 2016; Matsumura et al., 2019; Session et al., 2001; Vong et al., 2006). D1Pas1 has been 

poorly characterized outside of murine male germ cells and its pattern of expression or function 

remains totally unknown. Therefore, this could potentially contribute to the biological 

difference(s) observed between humans and mice although the analysis of single cell RNA-seq 
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data from splenocytes after immunization shows that transcripts of D1Pas1 are not readily detected 

in murine B cells (T. Möröy, personal communication). 

Third, the Eµ-Myc or l-Myc mice do not represent the best models per se to recapitulate 

GC-derived B cell lymphomagenesis. Indeed, Eµ-Myc tumors emerge from pre-B to naïve B cells 

and lack surface Ig, hence their “immature” phenotype (Adams et al., 1985; Harris et al., 1988; S. 

N. Meyer et al., 2021; Pasqualucci & Klein, 2021). In this regard, they resemble more human 

lymphoblastic leukemia instead of GC-derived B cell lymphoma. l-Myc tumors are more mature 

compared to Eµ-Myc tumors (IgM+) and mimic much better a mature human B cell lymphoma. 

However, l-Myc tumors still express some immature markers (e.g. CD43) and lack evidence of 

SHM suggesting these tumors emerge from transitional or pre-GC B cells (Kovalchuk et al., 2000; 

S. N. Meyer et al., 2021; Pasqualucci & Klein, 2021). Accordingly, none of these models faithfully 

recapitulate the GC-derived B cell lymphomagenesis and alternative BL models have to be used 

in the future (Caeser et al., 2019; S. N. Meyer et al., 2021; Mossadegh-Keller et al., 2021; 

Pasqualucci & Klein, 2021; Sander et al., 2012). One of them, which is the best mouse model so 

far to mimic BL, is the model developed by Sander and colleagues (Sander et al., 2012). In this 

model, transgenic mice express high levels of MYC and a constitutively active form of PI3K 

(Srinivasan et al., 2009) specifically in B cells undergoing a GC reaction using the Cg1-cre deleter. 

These mice generate tumors very closely resembling human BL since they express GC markers 

(CD95+ GL7+ BCL6+), carry evidence of AID-dependent SHM validating their GC origin and are 

histologically similar to BL (Sander et al., 2012). 

Fourth, DDX3X mutations reported in patients are mostly missense, nonsense mutations or 

truncations. Accordingly, the conditional KO mice may, to some extent, imitate the consequence 

of some mutations found in patients, for example truncations or nonsense mutations occurring 
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early in the DDX3X amino acid sequence. However, deleting the entire gene very likely does not 

provoke the same effect as a missense mutation, a nonsense mutation, or a truncation, occurring 

in the middle or the end of the amino acid sequence. Therefore, a potential dominant negative 

effect exerted by some mutants is impossible to assess in this system. An attempt to generate two 

humanized murine models was done (collaboration with Ingenious Targeting Laboratory and Dr. 

Peiman Shooshtarizadeh). These two additional murine models both contained a lox-stop-lox in 

the Rosa26 locus upstream of the human Flag-DDX3X sequence, either WT or carrying a mutation 

encoding the DDX3X-E348K LOF protein (Jiang et al., 2015). However, these transgenes were 

insufficiently transcribed, and the human DDX3X-WT failed to rescue, even partially, the 

phenotypes observed in DDX3X KO mice (data not shown). Alternative strategies should be used 

to generate such models and ensure to include transcriptional regulator elements that allow a proper 

expression from the ROSA locus. 

5.3. Futures directions 

Even if this work brought a considerable amount of information about the DDX3 helicases, 

many questions are still open and remain to be investigated. Results from chapter III revealed that 

many, but not all hematopoietic cell types require DDX3X. It would then be important to 

understand the underlying causes of these population defects and to assess whether the 

mechanisms impaired in the absence of DDX3X are cell type-specific or not. Since the Vav-cre 

allele deletes in a wide spectrum of cells, defects in erythropoiesis or T lymphopoiesis for example 

should be assessed with a more specific cre system (e.g. Lck-cre (Hennet et al., 1995); CD4-cre 

(P. P. Lee et al., 2001)); similarly, to the strategies used to analyze the B cell lineage. This would 
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also be informative to determine whether phenotypes associated with loss of DDX3X are intrinsic 

or the results of earlier defects of differentiation or altered cellular environments. 

The intestinal phenotype discovered when the acute deletion of Ddx3x in adult female mice 

was assessed, is of interest (Figure 3-14). Transplantation experiments indicated that this 

phenotype is independent of immune cells; it is therefore likely that an acute deletion of Ddx3x in 

adult female mice disrupts intestinal epithelial cell homeostasis provoking perforations of the 

intestine, bacterial infections and subsequent fatal inflammatory reactions. It would be relevant to 

assess which cell type/s is/are affected by Ddx3x-deletion causing such a fatal and rapid outcome. 

A similar premature death was found after deleting the SREBP cleavage-activating protein (Scap) 

gene in intestinal epithelial cells of adult mice (McFarlane et al., 2015). The Scap gene encodes an 

endoplasmic reticulum membrane protein and its deletion in the intestinal mucosa was associated 

with a defect in the proliferation of intestinal crypts (McFarlane et al., 2015). Given the similarities 

between the phenotype of Scap null mice and the consequences of Ddx3x deletion, it is possible 

that DDX3X is involved in maintaining the intestinal epithelium structure. Understanding DDX3X 

in the intestine would be informative for fundamental knowledge, as well as for translational 

research, given that several intestinal dysregulations in humans have been linked to DDX3X 

(Cording et al., 2022; Okano et al., 2020; Tang et al., 2021; Tantravedi et al., 2017). In addition, 

knowing whether this phenotype is associated with DDX3X enzymatic activity or not would be of 

great interest regarding the potential toxicities of drugs inhibiting DDX3X helicase activity as anti-

cancer or anti-viral therapeutics. 

Although the critical importance of DDX3X in B lymphopoiesis has been demonstrated in 

this thesis, it is still unknown why and how B cells are eliminated in the absence of DDX3X. A 

DDX3X knockdown in human B cells has recently been shown to reduce the translation efficiency 



139 

 

of mRNAs encoding proteins of the translational and protein synthesis machinery (Gong et al., 

2021). Whether this is also the case in murine B cells needs to be investigated using technics such 

as CLIP-seq, RNAseq or Riboseq. Moreover, specific experiments to reveal how DDX3X is 

mechanistically involved in B cells regarding its RNA binding ability or RNA helicase activity or 

independently of these characteristics have to be done and may point to the translational regulation 

of proteins necessary for V(D)J recombination, BCR signaling or CSR recombination for example. 

It was initially demonstrated that RNA helicases unwind dsRNA but it is now known they can also 

unwind structures such as G-quadruplexes or R-loops known to be important for B cell physiology, 

particularly for CSR (Deze et al., 2023; Pavri, 2017). Recent findings that identified DDX3X as 

an interactor of RNA G-quadruplex support this view (Herdy et al., 2018; Varshney et al., 2021). 

Many DEAD box RNA helicases have recently emerged as essential factors in unwinding R-loops 

such as DDX19 (Hodroj et al., 2017), DDX39B (Perez-Calero et al., 2020), DDX21 (Song et al., 

2017), DDX23 (Sridhara et al., 2017), DDX41 (Mosler et al., 2021), DDX5 (Mersaoui et al., 2019; 

Z. Yu et al., 2020) or the DEAH-RNA helicase DHX9 (Yuan et al., 2021). More specific to the B 

cell context, it was shown that the DDX1 helicase, another member of the DEAD box family, 

converts G-quadruplex structures of the Sµ switch region into R-loops, thus promoting CSR in B 

cells (Ribeiro de Almeida et al., 2018). Future investigations could aim to determine whether 

DDX3X is involved in R-loop, G-quadruplex regulation and CSR. 

Not only the mechanistic role of DDX3X in B cells is yet to be discovered but the impact 

of DDX3X mutations detected in GC-derived B cell lymphoma needs to be determined more 

clearly. So far, only one study demonstrated that a DDX3X mutation is an advantageous acquisition 

for human GC B cells with high MYC levels since its counterbalances the proteotoxic stress 

associated with high MYC levels (Gong et al., 2021). Another open question is whether these 
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mutations only affect the enzymatic activity of DDX3X or other functions independent of its 

helicase activity, for instance its role as a general regulator of mRNA translation and/or other yet 

unknown function(s). Since unresolved R-loops cause genomic instability and increase the 

probability of translocations, particularly at the IgH and c-Myc loci (Y. Yang et al., 2014), it will 

be of great interest to investigate the possibility that DDX3X mutation impairing its helicase 

activity impacts R-loop resolution at the IgH Sµ region and provokes Myc translocations. 

Although focused on the role of DDX3X in hematopoiesis, the present thesis work revealed 

an unexpected primordial role for the less studied DDX3 Y-linked paralog. This protein is less 

known, likely due to its restrained expression pattern in humans. However, it is clear that data 

presented in this thesis highlight its relevance in the pathological context demonstrating the need 

for future research to describe more precisely DDX3Y properties and functions. Understanding 

DDX3Y’s mechanistic role, particularly alongside its X-linked paralog DDX3X, would be 

fundamental in order to determine at which degree these proteins play redundant functions, as 

already been suggested for the translational regulation (Venkataramanan et al., 2021). It would be 

important to assess whether and how they can replace each other in a pathological context. In this 

regard and as stipulated in the limitation section, assessing experimentally whether Ddx3y is the 

male-specific factor compensating for Ddx3x deletion could be a priority, particularly considering 

the lymphoma context. Also, because both paralogs are highly similar but not entirely identical, 

understanding their differences, like in the report from Shen and colleagues (Shen et al., 2022); 

could be of great interest too. This could provide explanations regarding the sexual dimorphism 

observed in the physiological as well as in the pathological context. It could lead to a better 

understanding of the sex bias observed in many diseases; for instance in BL (Burkhardt et al., 

2022; Gong et al., 2021; N. Thomas et al., 2023), but also in melanoma (Alkallas et al., 2020; 
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Phung et al., 2019), hepatocellular carcinoma (Chan et al., 2019), ID (Johnson-Kerner et al., 2020), 

or Hirschsprung disease (Cardinal et al., 2020). 

 

Finally, future work may focus on the therapeutic opportunities suggested by the results 

presented here. Several concepts need to be validated, particularly in human cells; one of them 

being the demonstration that DDX3X depletion in B cells with high MYC levels causes their death. 

In this thesis, the incompatibility of high MYC levels and DDX3X deficiency was clearly observed 

in murine B cells; and is a concept that could be exploited for therapeutic strategies. Whether this 

effect depends on the elimination of the DDX3X protein or its helicase activity only needs to be 

elucidated as well. Whether and to what extent targeting DDX3X affects normal B cells compared 

to B cells with high MYC levels also needs to be assessed since it could support a synthetic lethality 

concept and provide evidence for a specific therapeutic window of DDX3X inhibition in MYC-

deregulated lymphoma. 

Other potential therapeutic opportunities reside in the concept of interdependency of both 

DDX3X and DDX3Y paralogs. It has been proposed that the paralogs encoded by the sex 

chromosomes play redundant functions and the concept of paralog dependency in tumor cells was 

experimentally validated (Koferle et al., 2022). It means that cancer cells (but not healthy cells) 

with an impairment in one paralog; for example, a DDX3X mutation or a loss of Y chromosome, 

rely on the other paralog; respectively, DDX3Y or DDX3X. Accordingly, targeting the intact 

paralog represents an attractive therapeutic strategy based on synthetic lethality (Koferle et al., 

2022). Targeting DDX3Y may be highly efficient to eliminate human malignant B cells carrying 

a DDX3X mutation. In addition, targeting DDX3Y may be highly specific to malignant B cells 

since the DDX3Y protein is not expressed in humans, except in male germ cells in addition to the 
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malignant B cells harboring a DDX3X mutation (Gong et al., 2021). This interdependency concept 

of DDX3X/Y was partially demonstrated for B lymphoma in vitro in one study (T. Wang et al., 

2015). The authors used the Raji cell line, a B lymphoma cell line with a DDX3X LOF mutation 

generating a splicing variant, and demonstrated that the additional loss of DDX3Y results in cell 

death of this line (Figure 4F from (T. Wang et al., 2015)). Consequently, results from the Gong 

study in addition to the data presented in this thesis are relevant in this context since we both 

demonstrated in humans and mice that DDX3Y compensates for a DDX3X LOF. Future work 

should aim to confirm experimentally that the DDX3Y protein indeed has such a compensatory 

role in the case of DDX3X LOF and that both have redundant functions in B cells. It would also 

be important to demonstrate experimentally that the targeting of DDX3Y represents a synthetic 

lethal strategy in B cells MYC-activated harboring a DDX3X alteration similar to the LOF found 

in BL and DLBCL patients. This could even be extrapolated to demonstrate that targeting DDX3X 

represents a synthetic lethal strategy in malignant B cells which have lost their Y chromosome, a 

common feature in many cancers. Validation of the interdependency theory of DDX3X/Y for B 

lymphoma could lead to a stratification of patients based on their sex and DDX3 status (Lacroix 

et al., 2022). Patients with a DDX3X mutation (regardless of the sex but BL patients with a DDX3X 

mutation are almost exclusively males), or male patients with malignant B cells that have lost their 

Y chromosome would represent suitable candidates for whom targeting the intact paralog may be 

beneficial. This could ultimately result in personalized therapeutic options for B lymphoma 

patients. 
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6. Final conclusion and summary 

The high frequency of mutations in the X-linked gene DDX3X in GC-derived B cell 

lymphoma has raised interest in understanding its role in hematopoietic cells and their malignant 

transformation. Since a large proportion of DDX3X mutations found in malignancies generate LOF 

variants, a conditionally deficient mouse model was generated to investigate the role of DDX3X 

in hematopoiesis and lymphomagenesis. I present new evidence from these mouse models 

supporting a sex-dependent, critical role of DDX3X for specific steps of erythropoiesis as well as 

lymphoid differentiation. Most significantly, it is shown that male and female mice lacking Ddx3x 

behave differently, notably in MYC-driven lymphomagenesis. I also demonstrate that a DDX3X 

depletion is compensated by the male-specific DDX3Y to permit B cell lymphomagenesis. These 

discoveries present insight toward new and personalized therapeutic strategies for B cell 

lymphoma. 
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