
Sparse Approximate Inverse Preconditioning for

Highly Parallel Implicit Solvers in Computational

Fluid Dynamics

Damien Mancy

Department of Mechanical Engineering

McGill University

Montreal, Quebec

November 2020

A thesis submitted to McGill University in partial fulfillment of the requirements of the

degree of Master of Engineering

Copyright © Damien Mancy 2020



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abrégé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Review of Solution Methods in Flow Solvers . . . . . . . . . . . . . . . . . . 5

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Methods for Solving Systems of Linear and Nonlinear Equations 7

2.1 Solving Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Stationary Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Krylov Subspace Methods . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Splitting-Based Preconditioners . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Incomplete Factorization Preconditioners . . . . . . . . . . . . . . . . 20

2.2.3 Domain Decomposition Preconditioners . . . . . . . . . . . . . . . . 23

2.2.4 Sparse Approximate Inverse Preconditioners . . . . . . . . . . . . . . 29

2.3 Solving Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Newton-Krylov Methods . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Globalization of Newton’s Method . . . . . . . . . . . . . . . . . . . . 33

i



3 Governing Equations and Flow Solver 35

3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Turbulence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Pseudo-Transient Continuation . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Left-Hand Side Operator . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Properties of the Implicit Operator . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Structure of the Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Poor Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Flow Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Parallelism in the CFD Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Parallel Preconditioning with the Sparse Approximate Inverse 53

4.1 Sparse Approximate Inverse (SPAI) Preconditioning . . . . . . . . . . . . . . 54

4.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Adaptive Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 Block Generalization of the SPAI Algorithm . . . . . . . . . . . . . . 59

4.1.4 Implementation of the SPAI Algorithm . . . . . . . . . . . . . . . . . 61

4.1.5 Numerical Result of the Preconditioning Methods . . . . . . . . . . . 65

4.2 SPAI Preconditioning Strategy in the Newton-Krylov Framework . . . . . . 74

4.2.1 Reusing the SPAI Pattern . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2 SPAI Strategy in Newton’s Method . . . . . . . . . . . . . . . . . . . . 76

5 Results 80

5.1 Parallel Scaling of SPAI and Domain Decomposition Preconditioners . . . . 81

5.1.1 Comparison of SPAI Preconditioning Variants . . . . . . . . . . . . . 83

5.1.2 Study of the Adaptive SPAI Preconditioning . . . . . . . . . . . . . . 86

5.1.3 Comparison with Domain Decomposition Preconditioners . . . . . . 88

5.1.4 Strong and Weak Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Test Cases for the Euler and Navier-Stokes Equations . . . . . . . . . . . . . 99

5.2.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

ii



5.2.2 Methodology for Comparing Algorithms . . . . . . . . . . . . . . . . 101

5.3 Reynolds-Averaged Navier-Stokes Results and Discussion . . . . . . . . . . 101

5.3.1 Optimization of the SPAI Preconditioning Strategy . . . . . . . . . . 102

5.3.2 Comparison with Domain Decomposition Preconditioners . . . . . . 104

6 Conclusion and Future Work 120

6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 123

iii



List of Figures

1.1 Memory hierarchy in a shared memory architecture. . . . . . . . . . . . . . . 3

1.2 Distributed memory architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Hybrid memory architecture with four nodes. . . . . . . . . . . . . . . . . . 4

2.1 Data dependency and computational order of the entries in the ILU factors. 23

2.2 Discrete domain Ωh and subdomains with an overlap of width δ = 1 (left)

and application of the restriction operators Ri on a global vector z in Ωh

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Prolongation of the local vectors w1 and w2 and summation in Ωh. . . . . . 27

2.4 Restricted prolongation of the local vectors w1 and w2 and summation in Ωh. 28

3.1 2D structured mesh (on the left) and the resulting pattern of the associated

Jacobian matrix with a five-point stencil (on the right). Each blue square is

a nonzero entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Example of a computational domain split into four subblocks (left). The

subblocks are padded with a layer of halo cells (right). . . . . . . . . . . . . 52

4.1 Convergence for ORSIRR_2 with different preconditioners. . . . . . . . . . . 67

4.2 Sparsity pattern of ORSIRR_2 (left) and largest entries in the inverse of

ORSIRR_2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Adaptive SPAI with ε = 0.2 (left) and fixed SPAI from a sparsified P(A2)

(right) for ORSIRR_2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Eigenvalue distributions for MSPAIA, computed with a SPAI tolerance ε =

0.6 in the upper plot, and ε = 0.2 for the bottom distribution. . . . . . . . . . 71

4.5 Convergence histories of the error, preconditioned residual and unprecon-

ditioned residual norms for the ORSIRR_2 matrix. . . . . . . . . . . . . . . . 73

iv



4.6 Percentage of common entry positions with the first SPAI pattern of the

successive SPAI preconditioners in the NACA 0012 test case. . . . . . . . . . 75

4.7 Percentage of common entry positions with a given SPAI pattern for the

successive SPAI preconditioners in the ONERA M6 test case. . . . . . . . . . 76

4.8 SPAI computation strategy during the nonlinear steps of Newton’s method. 77

4.9 SPAI computation strategy in the nonlinear solver. . . . . . . . . . . . . . . . 79

5.1 Steady-state Mach number contours around the NACA 0012 airfoil. . . . . . 82

5.2 Jacobian matrix distribution across the cores (left), and corresponding do-

main decomposition (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Convergence histories with different SPAI settings for visc_1. . . . . . . . . . 85

5.4 Residual norm as a function of the CPU runtime for different SPAI settings

for visc_1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Study of the adaptive block SPAI preconditioners for visc_1. . . . . . . . . . 87

5.6 Convergence results for visc_1 on 8 cores. . . . . . . . . . . . . . . . . . . . . 90

5.7 Convergence results for visc_1 on 208 blocks. . . . . . . . . . . . . . . . . . . 90

5.8 Convergence results for visc_2 on 46 blocks. . . . . . . . . . . . . . . . . . . . 92

5.9 Convergence results for visc_2 on 208 blocks. . . . . . . . . . . . . . . . . . . 92

5.10 Convergence results for visc_3 on 208 blocks. . . . . . . . . . . . . . . . . . . 94

5.11 Convergence results for visc_3 on 506 blocks. . . . . . . . . . . . . . . . . . . 94

5.12 Speedup with an increasing number of cores (on the left) and strong scaling

efficiency (on the right) for visc_3. . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.13 Weak scalability efficiencies of the block adaptive SPAI and ASM-ILU(0)

preconditioners for the matrices visc. . . . . . . . . . . . . . . . . . . . . . . . 99

5.14 Surface pressure contours calculated with FANSC over the ONERA M6

wing and CRM wing/body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.15 CPU runtimes and number of nonlinear iterations for different SPAI pa-

rameters for the CRM test case. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.16 Convergence histories of the nonlinear residual rnl for different forcing

terms τlin with block Jacobi-ILU(0) preconditioning in the ONERA M6 test

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

v



5.17 Convergence in the ONERA M6 test case for different linear tolerances τlin

using domain decomposition and SPAI preconditioners. . . . . . . . . . . . 107

5.18 CPU runtime for block SOR, ASM-ILU(0) and SPAI preconditioning for the

CRM test case with τlin = 10−2. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.19 Study of the linear solvers along the simulation of the flow around the

CRM test case for a linear tolerance τlin = 10−2 . . . . . . . . . . . . . . . . . 110

5.20 Convergence histories with a matrix-free approach for the ONERA M6 case. 111

5.21 Results for the ONERA M6 case solved with a matrix-free approach. . . . . 112

5.22 Average time of a linear iteration using domain decomposition and SPAI

preconditioners along the convergence for the ONERA M6 test case. . . . . 113

5.23 Average time of a linear iteration along the convergence of the ONERA M6

case with a matrix-free approach. . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.24 CPU time for the nonlinear steps for the ONERA M6 case with a matrix-

free approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.25 Number of linear iterations along the convergence for different period lengths

in the SPAI framework for the ONERA M6 case. . . . . . . . . . . . . . . . . 116

5.26 Results for the ONERA M6 case solved with a matrix-free approach for

τlin = 10−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.27 Results for the CRM case solved with a matrix-free approach for τlin = 10−1. 118

5.28 Average cost of a linear iteration along the convergence for the CRM case

for different preconditioners. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.29 CPU timings to complete the nonlinear steps along the convergence for the

CRM test case with a matrix-free approach. . . . . . . . . . . . . . . . . . . . 119

vi



List of Tables

2.1 Classical splitting methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Test matrix characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Comparison of the number of GMRES iterations without preconditioning. . 66

4.3 Comparison of the CPU times and number of GMRES iterations for differ-

ent left preconditioners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Number of nonzero entries in the resulting adaptive SPAI matrix. . . . . . . 68

4.5 Condition numbers with adaptive SPAI preconditioning. . . . . . . . . . . . 69

4.6 Condition numbers with ILU(0) preconditioning. . . . . . . . . . . . . . . . . 69

5.1 Parameters of the test cases used in FVENS. . . . . . . . . . . . . . . . . . . . 81

5.2 Results for SPAI preconditioning for visc_1. . . . . . . . . . . . . . . . . . . . 84

5.3 Results using the block adaptive SPAI preconditioning for visc_1. . . . . . . 87

5.4 Results for the problem visc_1 with a relative tolerance τlin = 10−4. . . . . . 89

5.5 Results for the problem visc_2 for a relative tolerance τlin = 10−4. . . . . . . 91

5.6 Results for the problem visc_3 for a relative tolerance τlin = 10−4. . . . . . . 93

5.7 Properties of the block adaptive SPAI preconditioners for the matrices visc. . 99

5.8 Parameters for the test cases used in FANSC. . . . . . . . . . . . . . . . . . . 100

5.9 Results of the ONERA M6 case with domain decomposition precondition-

ing for different linear relative tolerances τlin. . . . . . . . . . . . . . . . . . . 105

5.10 Results of the ONERA M6 case for different linear relative tolerances τlin

with the adaptive block SPAI. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Results of the CRM test case with the domain decomposition precondition-

ers for different linear tolerances τlin. . . . . . . . . . . . . . . . . . . . . . . . 108

5.12 Results of the CRM test case with the adaptive block SPAI for different

linear tolerances τlin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vii



Abstract

Numerical simulations of fluid flow with the Navier-Stokes equations, discretized with

the finite volume method, ultimately lead to nonlinear equations. The solution of these

equations with an implicit time-stepping scheme is obtained with Newton’s method,

which requires the solution of a linearized problem at each step. Unfortunately, the inter-

mediate systems of linear equations are often severely ill-conditioned. Given the dimen-

sion of the systems, iterative solvers are preferred due to their low memory requirements.

The use of preconditioning is crucial to improve the conditioning of these linear systems.

The primary drawback of classical preconditioners, such as the incomplete LU fac-

torization (ILU) and successive over-relaxation (SOR), is their strong sequential nature

which makes them unsuitable for parallel machines. The use of a domain decomposition

method, a divide-and-conquer framework to parallelize these sequential preconditioners,

fits naturally into multiblock flow solvers. Regrettably, these strategies generally scale

poorly on the ever-expanding massive parallel architectures of current supercomputers.

In this work, we investigate the inherently parallel preconditioner known as Sparse

Approximate Inverse (SPAI) applied to highly parallel implicit solvers for computational

fluid dynamics (CFD). The SPAI method was the topic of several theoretical and compara-

tive studies on rather small elliptical problems, on which it proved to be robust. Nonethe-

less, SPAI was never extensively studied for high Reynolds number compressible viscous

flows over three-dimensional geometries. In this thesis, a framework is introduced to op-

timize the SPAI computations within the Newton-Krylov method. It is shown that the

convergence of the simulations can be reduced by a factor of almost three with appro-

priate SPAI recomputations compared to a naive application of SPAI. In addition, com-

parisons with the traditional domain decomposition methods are conducted. Whereas

SPAI is more robust for excessively split domains, domain decomposition precondition-

ing benefits from faster convergence within the partitioning limit imposed by the CFD

solver.

viii



Abrégé

Les simulations numériques d’écoulements de fluides par les équations de Navier-Stokes,

discrétisées à partir de la méthode des volumes finis, aboutissent à des systèmes d’équa-

tions non linéaires. La résolution de ces équations au moyen d’un schéma implicite est

réalisée avec la méthode de Newton, qui nécessite la solution d’un système d’équations

linéaires à chaque pas. Malheureusement, ces systèmes linéaires intermédiaires sont sou-

vent très mal conditionnés. Étant donné les dimensions des systèmes d’équations en jeu,

les méthodes itératives de résolution sont privilégiées du fait de leur faible consommation

de mémoire. L’utilisation d’un préconditionnement pour améliorer la convergence de ces

méthodes est fondamentale.

Le principal inconvénient des méthodes de préconditionnement classiques, telles que

la factorisation incomplète LU (ILU) et la méthode de surrelaxation successive (SOR), est

leur forte nature séquentielle, peu adaptée à une utilisation sur des machines parallèles.

Le recours à des méthodes de parallélisation par décomposition de domaines, se basant

sur la stratégie de « diviser pour mieux régner », s’intègre naturellement dans les solveurs

multiblocs. Cependant, ces stratégies sont peu robustes lorsqu’elles sont employées sur

des superordinateurs massivement parallèles.

Dans ce travail, nous étudions le préconditionnement intrinsèquement parallèle connu

sous le nom de Sparse Approximate Inverse (SPAI), pour une utilisation dans un solveur

implicite parallèle, appliqué à la mécanique des fluides numérique (CFD). La méthode

SPAI a fait l’objet de plusieurs études théoriques et comparatives sur des problèmes ellip-

tiques de taille réduite, pour lesquels elle s’est avérée robuste. Néanmoins, le précondi-

tionnement SPAI n’a jamais été étudié de manière approfondie pour les écoulements vis-

queux compressibles à nombre de Reynolds élevé, en géométrie tridimensionnelle. Dans

ce mémoire, une stratégie pour l’application du préconditionnement SPAI au sein d’une

méthode de Newton-Krylov est introduite à des fins d’optimisation de calcul. Du reste, il

est établi que la convergence des simulations peut être accélérée d’un facteur de presque

ix



trois avec des recalculs judicieux du préconditionneur SPAI par rapport à une application

naïve. Enfin, des comparaisons avec les préconditionnements traditionnels de décompo-

sition de domaines sont également menées. Si d’un côté la méthode SPAI est plus robuste

pour des maillages excessivement partitionnés, les préconditionnements par décomposi-

tion de domaines bénéficient souvent d’une convergence plus rapide dans la limite du

partitionnement imposée par le solveur.

x



Acknowledgements

First, I would like to express my deepest gratitude to my supervisor Prof. Siva Nadarajah

for all the help throughout the two years of my Master’s degree at McGill. The feedback,

devotion and the constant follow-up have been vital to the completion of this thesis.

I would like to extend my gratitude to all my friends and colleagues at the Com-

putational Aerodynamics Group at the Department of Mechanical Engineering for the

guidance, the research advice and more general discussions that have greatly helped me

move forward. I would like to thank especially Dr. Aditya Kashi for taking the time to

help me understand all the new programming tools and mathematical concepts I was not

acquainted with.

I am also thankful to Bombardier for allowing me to use their in-house finite volume

flow solver FANSC Lite in order to carry out my numerical experiments. Additionally, I

am grateful to Calcul Québec and Compute Canada for helping me install the software

and scientific libraries on the superclusters, as well as making it possible to run CFD tests

on the Béluga supercomputer. I especially thank Bart Oldeman of Calcul Québec for his

constant help with the computer clusters used for my numerical simulations.

Lastly, I would like to thank my parents, family and friends for their continued sup-

port throughout my studies who gave me strength and motivation.

xi



Contributions

This thesis focuses on the study of parallel preconditioning methods; specifically the SPAI

preconditioning method. The principal contributions of the author of this thesis, Damien

Mancy, are summarized in the following list:

• An implementation of the block SPAI preconditioner in the scientific library PETSc.

• A thorough study of the SPAI and domain decomposition preconditioners for highly

partitioned systems of linear equations arising from the discretization of the com-

pressible Navier-Stokes equations.

• The design of a framework to optimize the use of SPAI preconditioning within a

Newton-Krylov method.

• A study of SPAI preconditioning and domain decomposition preconditioners within

a flow solver with low-order Jacobians and high-order matrix-free Jacobians.

xii



Nomenclature

Abbreviations

ASM (Restricted) Additive Schwarz Method

Bi-CGSTAB Biconjugate Gradient Stabilized Method

CFD Computational Fluid Dynamics

CFL Courant–Friedrichs–Lewy condition

COO Coordinate format

CPU Central Processing Unit

CSC Compressed Sparse Column format

CSR Compressed Sparse Row format

GMRES Generalized Minimal Residual Method

GPU Graphics Processing Unit

ILU Incomplete LU

MPI Message Passing Interface

nnz Number of nonzeros

RANS Reynolds-Averaged Navier–Stokes

SA Spalart–Allmaras one-equation model

SOR Successive Over-Relaxation

SPAI Sparse Approximate Inverse

xiii



Chapter 1

Introduction

1.1 Motivation

Fluid dynamics simulations have become an increasingly important tool not only for the

estimation of aerodynamic performance but the design of complete aircraft geometries.

In this regard, the need for reliable and fast CFD solvers to solve the highly nonlinear

Navier-Stokes equations is essential. The simulation of turbulent and high Reynolds

number flows is usually very complex, and requires the solution of a system of nonlinear

equations.

The advent of parallel computing and the generalization of multi-core clusters have

progressively allowed the use of more demanding numerical methods, such as quasi-

Newton methods, for the solution of the discretized equations. The need for efficient

parallel methods that can take advantage of these architectures have become increasingly

important. In addition, the research focus on linear solvers has gradually shifted from the

design of linear solvers to the development of robust preconditioning methods to increase

their rate of convergence. Preconditioning techniques for the solution of linear systems

have been studied since the early 1970s. Nonetheless, the most common methods are

directly derived from basic iterative methods or matrix factorization algorithms, which

remain inherently sequential.

1.2 Parallel Computing

The design of algorithms has evolved in close connection with the development of com-

puter architectures, namely CPUs and recently GPUs. For most of the computer age, the

1



increased computational power of processors was mainly driven by the size reduction of

transistors according to Moore’s law: the number of transistors on a chip approximately

doubled every year [1]. The higher density of transistors on the chips explained most of

the speedup in computations throughout the 20th century. Increasing the clock frequency

is another way to improve the performance of a processor. Over the past decades, the

global trend has been an average increase of 25% of the clock frequency per year [2].

Nevertheless, a physical limit called the “power wall” is seriously hindering the fur-

ther improvement of the CPU clock frequency over a few gigahertz [3]. The simultaneous

switching on of the transistors on a single chip produces a significant amount of heat that

needs to be properly cooled down so as not to interfere with its operation. A further

increased clock frequency and reduction in the transistor size would not be compatible

with an appropriate energy consumption of the CPUs. Thus, the trend in the computer

industry has shifted towards multiprocessor architectures to keep improving computer

performances, while the enhancement of the single cores is slowing down [4]. This has

led to an important change of course in the computer industry and the programming phi-

losophy. Today, scientific computation is striving for harnessing the full potential of the

massively parallel computing resources.

Shared Memory Architecture

The two major parallel frameworks are the shared memory architecture and the dis-

tributed memory architecture [5]. In the first configuration, the different processors di-

rectly share the same central memory (cf. Figure 1.1). On request, data from the main

memory is copied to local caches associated with the processors. The data access is

straightforward for processors but conflicts may arise in return when different processors

request the same data in memory. In addition, the increase in the number of processors

ultimately lead to an increasingly complex hierarchy of memories with additional con-

nections and memory levels [6]. As a result, the system can become very complicated,

hindering the overall performance enhancement of the added cores. OpenMP is the most

generally used programming interface for this type of architecture [7]. It uses compiler

directives to highlight parallelism in the code.

2



Main memory

L2 cache L2 cache

Connection network

L1 cache L1 cache L1 cache L1 cache

Processor Processor Processor Processor

Figure 1.1: Memory hierarchy in a shared memory architecture.

Distributed Memory Architecture

A way to avoid the possible risks of memory concurrency that can occur with shared

memory architectures is to restrict the memory access of the processors to their own local

memory [3]. This kind of framework is referred to as the distributed memory architecture.

Communications between processors are achieved through a communication network

and messages between processors (cf. Figure 1.2).

Connection network

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Figure 1.2: Distributed memory architecture.

The distributed memory architectures are easily scalable as the addition of more pro-

cessors only requires their connection to the network, without remodeling the entire

memory hierarchy. Yet, the communication of data between processors must now di-

rectly be handled by the user with communication routines in the code. In distributed

3



memory architectures, the standard protocol for communications between processors is

the Message Passing Interface standard (MPI) [8]. It defines a set of generic routines for

the synchronizations and the communications between the different processors.

Hybrid Memory Architecture

In practice, both memory architectures are usually combined in a hybrid architecture in

large-scale supercomputers [6]. At the highest level, processors are gathered into different

nodes according to the distributed memory paradigm. The nodes are linked together by

a communication network and the memory is distributed across the different nodes (cf.

Figure 1.3). On the other hand, multicore CPUs are generally assembled in a socket within

an individual node and operate on the shared memory model. This two-level parallel

architecture, between and within the nodes, must be explicitly used in the code to exploit

the full potential of the supercomputers.

Connection network

Node 1 Node 2 Node 3 Node 4

Node 
memory

Processor

Processor

Processor

Processor

Node 
memory

Processor

Processor

Processor

Processor

Node 
memory

Processor

Processor

Processor

Processor

Node 
memory

Processor

Processor

Processor

Processor

Figure 1.3: Hybrid memory architecture with four nodes.

Since the early 2000s and the development of multiprocessor CPUs for the general

public, clusters made of tens, then hundreds and thousands of processors for scientific

computing have rapidly become widespread [9].

4



1.3 Review of Solution Methods in Flow Solvers

Historically, explicit time-marching methods have been the preferred choice to converge

towards a steady-state solution of the discretized Navier-Stokes equations. They offer

low memory requirements and are fairly simple to implement [10]. Nevertheless, these

methods rapidly become ineffective for the simulation of very complex flows on large

grids, requiring very short time steps to ensure convergence [11].

The restrictions on the time step can be overcome by using implicit methods. Thanks

to larger time steps, these methods are able to achieve convergence in fewer steps. Yet, the

computational cost of each step is considerably higher [12]. In this regard, a large system

of linear equations must be solved at each time step. One of the first implementation of

implicit methods is known to be the Alternating Direction Implicit scheme in the 1950s

[13]. This method employs an approximate factorization of the coefficient matrices to

solve the linear systems.

The emergence of new computational resources during the 1980s led researchers to

investigate Newton’s method. Its main advantages are its robustness and prospective

quadratic convergence. However, the required exact solutions of large systems of linear

equations are prohibitive. Consequently, the simulation results in a very slow conver-

gence in terms of computational time. The use of quasi-Newton methods, in which the

subsequent linear systems are approximately solved with iterative solvers [14], rapidly

yielded promising results. These methods are able to take advantage of the robustness of

Newton’s method for nonlinear equations and the reduced costs of iterative solvers for

the linear equations compared to exact linear solvers.

Classical iterative methods, such as Jacobi and Gauss-Seidel methods, for the solution

of linear equations are often inefficient for the stiff systems arising from CFD problems.

The popular Krylov subspace methods can overcome this lack of robustness provided

they are coupled with an effective preconditioner [15, 16]. In these methods, the approxi-

mate solution is searched within a Krylov subspace. The first implementation of a Krylov

method dates back to the 1950s with the Conjugate Gradient method for symmetric posi-

tive definite matrices [17]. In the following years, a wide variety of Krylov methods were

developed for symmetric and then more general matrices. Generalized Minimal Residual

5



(GMRES) [18] and Biconjugate Gradient Stabilized Method (Bi-CGSTAB) [19] are the most

popular solution methods for general large systems of linear equations. A precondition-

ing method to transform the linear equations into an easier form is generally mandatory,

if only to achieve convergence. In current implicit CFD solvers using Newton-Krylov

methods, the solution of the systems of linear equations can account for between 70% to

90% of the overall simulation time [20]. Therefore, the improvement of existing solution

methods has become an active research field over the last decades. To this end, the op-

timization of preconditioning methods has gained more and more importance compared

to the improvement of Krylov methods [21]. In this thesis, we focus on parallel precon-

ditioners that we believe will be of paramount importance in the coming years with the

improvement of fine-grained parallelism in computer architectures.

1.4 Organization of the Thesis

The chapters in this thesis are concisely summarized in this section. An overview of

the solution methods for systems of linear and nonlinear equations is given in Chap-

ter 2. Afterwards, the Navier-Stokes equations and discretization schemes used in CFD

are reviewed in Chapter 3. The parallel preconditioning method SPAI as well as its im-

plementation are discussed in Chapter 4. In addition, a comparative study between the

sequential preconditioners SOR, ILU and the parallel SPAI is conducted on benchmark

matrices of modest sizes. In the same chapter, a preconditioning framework is proposed

to use SPAI preconditioning within a Newton-Krylov method. Lastly, Chapter 5 gathers

the results of SPAI preconditioning and domain decomposition preconditioners for sys-

tems of linear equations on highly partitioned domains from an implicit CFD solver. In

the last section, SPAI and domain decomposition preconditioners are employed to pre-

condition the linear systems in the flow solver FANSC.

6



Chapter 2

Methods for Solving Systems of Linear and Non-

linear Equations

This chapter begins with the introduction of solvers for the solutions of systems of linear

equations in Section 2.1 with an emphasis on Krylov subspace methods via the GMRES

method. The concept of preconditioning in order to increase their rates of convergence

is presented in Section 2.2. Finally, the inexact Newton methods for solving nonlinear

equations based on the approximate solutions of successive systems of linear equations

are detailed in Section 2.3.

2.1 Solving Linear Systems

Many discretization methods such as the finite difference, the finite volume and the finite

element methods can be used to transform a set of partial differential equations into a

set of discretized algebraic equations. The core of their application generally consists of

solving large and sparse systems of linear equations. As a consequence, a broad variety

of algorithms to efficiently solve such systems of equations have been designed in the

second half of the 20th century, along with the development of computers. A historical

survey on the development of linear solvers is presented in [22]. Classical numerical

algorithms were initially developed at a time when computer architectures were highly

sequential, for which the concern for parallelism is not central.

Typically, a system of linear equations is denoted via the matrix notation

Ax = b. (2.1)

7



The n unknowns in the vector x ∈ Rn satisfy n linear equations defined by the coefficients

of the matrix A ∈ Rn×n and a right-hand side vector b ∈ Rn. Provided that matrix A is

nonsingular, the solution of (2.1) is guaranteed to exist and be unique. We denote x∗

the exact solution of the linear system. The choice of the appropriate method to solve

the linear system depends on the properties of the coefficient matrix A such as its size,

density, symmetrical properties and positive definiteness.

Historically, direct methods for the solution of such systems were first developed.

These methods solve exactly the linear systems, down to an inherent floating point er-

ror, in a finite number of operations [23]. In general, the coefficient matrix A is trans-

formed into a more suitable form, such as a factorization of triangular matrices based

on the Gaussian elimination, which can be more easily solved [24]. We can mention the

Cholesky factorization for positive definite matrices and the LU factorization in the gen-

eral case. Today, direct methods are mainly used for the solution of dense systems of

equations. They tend to be very robust and barely sensitive to perturbations. Nonethe-

less, they rarely take a real advantage of the sparsity of the coefficient matrix and their

computational cost and memory requirements increase dramatically with the number of

unknowns. Some paralellizations of the direct methods have proven to be efficient for

problems up to a few millions of unknowns in the accurate inversion of the same coeffi-

cient matrix for several different right-hand sides [25]. In these methods, a matrix factor-

ization is only computed once with a direct method and quickly applied to the numerous

right-hand sides. In practice, the most common parallel approaches involve either a mul-

tifrontal Gaussian elimination, such as in the parallel scientific library MUMPS [26], or

a supernodal technique [27]. These direct methods are still current in certain fields such

as electromagnetic geophysical simulations [28–30]. An in-depth review of the sequential

and parallel direct methods for sparse matrices is available in the recent survey [31].

Unlike direct methods, iterative methods compute successive approximations of the

solution of the linear systems converging to the sought solution. They can be classified

into two categories: the stationary and nonstationary iterative methods [32]. The station-

ary methods are easier to use, as the approximate solution is calculated from a simple

recurrence relation. Yet, they usually yield slow convergence towards the solution of the

problem and may even diverge for particularly complex problems. On the other hand,

8



the nonstationary methods are based on the approximation of the solution with projec-

tions on suitable subspaces. They gather the well-known Krylov subspace methods and

are usually the only tractable choice for industrial problems. A historical review of the

iterative methods is available in [33].

The most common iterative methods are now very matured methods with a sound

mathematical background. In many scientific applications, the discretization process pro-

duces very ill-conditioned coefficient matrices for which convergence might be slow or

not even ensured. Hence, the initial systems are often transformed into an equivalent sys-

tem with more suitable spectrum properties through a process more commonly referred

to as preconditioning. The additional construction and application cost of the precondi-

tioning in the iterative method is then overcome by the gain in the convergence rate.

In the following section, although being rarely used as linear solvers in practice, the

stationary methods are first presented, since they are employed later as preconditioning

methods. Thereafter, the Krylov subspace methods, the standard bearers of the nonsta-

tionary methods, are extensively explained with the GMRES method.

2.1.1 Stationary Methods

In stationary methods, the solution of the system (2.1) is approached via the construction

of a sequence of vectors x(p) ∈ Rn recursively calculated with the relation

x(p+1) = Mx(p) + c, (2.2)

with M ∈ Rn×n being the iteration matrix, and c a vector in Rn, both defined from the co-

efficient matrix A and b [34]. Iterative methods become competitive with direct methods

when the required number of steps to converge to the solution for a prescribed tolerance

is sufficiently low.

The simplest form of a stationary method is the Richardson iteration [35] that defines a

fixed-point iteration with M = I−ωA and c = ωb. The constant ω 6= 0 is an acceleration

parameter. In this way, the recurrence relation is

x(p+1) = (I−ωA)x(p) + ωb = x(p) + ω
(

b−Ax(p)
)
= x(p) + ωr(p), (2.3)

9



where r(p) = b − Ax(p) denotes the residual of the iterate x(p). The fixed point of the

recurrence relation in equation (2.3) is the solution of the linear system (2.1).

Convergence of Stationary Iterative Methods

Many general theorems have been found in regards to the convergence of such iterative

methods. In particular, the convergence rate of iterative methods is characterized by the

spectral radius of the iteration matrix ρ(M), given by

ρ(M) = inf{||M||, where || · || is a matrix norm}. (2.4)

Theorem 1 gives a very general rule on the convergence of iterative methods [34].

Theorem 1 The iteration process defined by (2.2) is convergent, for all starting vectors x0 ∈ Rn,

if and only if ρ(M) < 1.

Different iterative methods yield various iterative matrices M with different conver-

gence properties.

Splitting Methods

Classical iterative methods are based on the splitting of the coefficient matrix A = P−
N to determine the iterative matrix M, with P a nonsingular matrix [35]. The splitting

defines the fixed point iteration

x(p+1) = P−1Nx(p) + P−1b. (2.5)

Noting that P−1N = P−1(P−A) = I−P−1A, the iteration process in (2.5) can be rewritten

x(p+1) = x(p) + P−1r(p), (2.6)

with r(p) = b−Ax(p) denoting the residual of the iterate x(p).

We list in Table 2.1 the most common matrix splittings for stationary iterative meth-

ods. The matrix A is decomposed into the sum A = D− L−U, where D is the diagonal

part of A, and L and U are the strictly lower and upper triangular parts of A respectively.

10



The simple Jacobi and Gauss-Seidel methods often lead to slow convergence, if not diver-

gence. In order to increase the rate of convergence, a relaxation parameter ω can be used

to weight the correction obtained with the Gauss-Seidel method.

Table 2.1: Classical splitting methods.

Splitting Method Matrix P Matrix N

Richardson ω−1I ω−1I−A

Jacobi D L + U

Gauss-Seidel D− L U

Damped Jacobi ω−1D (ω−1 − 1)D + L + U

Successive Over-Relaxation (SOR) ω−1D− L (ω−1 − 1)D + U

Symmetric SOR
(D−ωL)D−1(D−ωU)

ω(2−ω)

[(1−ω)D + ωL]D−1 [(1−ω)D + ωU]

ω(2−ω)

2.1.2 Krylov Subspace Methods

The stationary iterative methods just presented compute a converging sequence of ap-

proximations towards the solution with a relatively simple recurrence relation. This sim-

plicity comes at the expense of slow convergences, making them unsuitable for tackling

poorly conditioned systems.

In contrast, the Krylov subspace methods designate a large class of iterative methods

for linear systems of equations. They involve the projection of the approximate solution

onto a relevant subspace which is extended at each step [36]. The different Krylov sub-

space methods differ in the range of matrices they are able to treat. For instance, some

Krylov methods can only solve positive definite systems of equations, while others as-

sume nothing about the coefficient matrix [37]. In addition, their computational cost and

storage requirements are also substantially different. These methods are extensively used

for the solution of large and sparse linear systems of equation arising from industrial

applications. The most popular Krylov subspace methods are reviewed from an algorith-

mic point of view by Barrett et al. in [32], including the GMRES method that we present

in detail in this section.

11



First, let us introduce some general notations to present the Krylov subspace meth-

ods. Along the algorithm, a sequence of spaces with an increasing dimension, called

the Krylov subspaces and denoted as Kk, is constructed. At the k-th step of the iterative

process, the Krylov subspace denotes the space

Kk(A, r0) = span{r0, Ar0, A2r0, ..., Ak−1r0}, (2.7)

with r0 = b−Ax0 being the residual corresponding to the initial guess x0. The k-th iterate

xk is calculated as a projection onto the Krylov subspace:

xk ∈ x0 +Kk(A, r0). (2.8)

A Krylov subspace method provides a framework to iteratively compute the basis vectors

{q1, q2, ..., qk} of the subspaceKk(A, r0) and find the projection of xk onKk(A, r0). The set

{r0, Ar0, A2r0, ..., Ak−1r0} forms a natural basis for the Krylov subspace Kk(A, r0) but its

vectors usually become almost linearly dependent as k increases. In effect, the sequence of

vectors
(
Akr0

)
k∈N

converges towards an eigenvector corresponding to the greatest eigen-

value of A in absolute norm according to the power iteration algorithm [38]. The Lanczos

and Arnoldi methods, based on the Gram-Schmidt orthogonalization, are two main it-

erative processes to build an orthogonal basis {q1, q2, ..., qk} for the subspace Kk(A, r0)

and are at the core of many Krylov methods [39]. In both methods, the extension of the

subspace is carried out by subsequent orthogonalizations of Akr0 against the subspace

Kk(A, r0) = span{q1, q2, ..., qk}.
In most of the Krylov methods, the matrix A is only required through its application in

sparse matrix-vector multiplications. It allows the use of matrix-free methods, for which

the matrix A is implicitly provided by a function f : Rn −→ Rn, x 7−→ Ax, without the

explicit storage of the coefficients in A.

Arnoldi Method

Let us consider that we already have k orthogonal basis vectors {q1, q2, ..., qk} spanning

the Krylov subspace Kk(A, r0) = span{q1, q2, ..., qk} = span{r0, Ar0, ..., Ak−1r0}. Hence,

12



the vector qk can be written as a linear combination of the vectors (Ajr0)j∈{0,...,k−1}:

qk =
k−1

∑
j=0

αjAjr0. (2.9)

It is straightforward to show that Aqk is in the Krylov subspace Kk+1(A, r0):

Aqk =
k−1

∑
j=0

αjAj+1r0 =
k−2

∑
j=0

αjAj+1r0 + αk−1Akr0 ∈ Kk+1(A, r0). (2.10)

The Arnoldi vector qk+1 is obtained with the orthogonalization of Aqk against Kk(A, r0),

whose component rk, orthogonal to Kk(A, r0), is given by

rk = Aqk −
k

∑
j=1

(qT
j Aqk)qj. (2.11)

If rk = 0, then the process is interrupted meaning that ∀l ≥ k, Kl(A, r0) = Kk(A, r0).

Consequently, the Krylov subspace is invariant by additional Arnoldi steps and the exact

solution x∗ is in Kk(A, r0). Otherwise, rk is normalized to fetch qk+1:

qk+1 =
rk
||rk||2

. (2.12)

Besides, since qk+1 is orthogonal to Kk(A, r0), we have

qT
k+1rk = ||rk||2 = qT

k+1Aqk. (2.13)

Then, the Arnoldi basis satisfies

Aqk =
k+1

∑
j=1

hj,kqj, (2.14)

where hj,k = qT
j Aqk. Therefore, Hk =

(
hi,j
)

i,j∈{1,...,k} defines a k × k upper Hessenberg

matrix, since ∀j, Aqj ∈ Kj+1(A, r0) ⊥ qj+2. Hence, denoting Qk, the n × k matrix

13



[
q1 · · · qk

]
, the matrix form of the step (2.14) is written as

AQk = QkHk +
[
0 · · · 0 hk+1,kqk+1

]
= Qk+1H̃k, (2.15)

with H̃k =

 Hk

0 · · · 0 hk+1,k

, a (k + 1) × k matrix. The pseudo-code for the Arnoldi

iteration is given in Algorithm 1.

Algorithm 1 Arnoldi Iteration.

Require: An initial guess x0 ∈ Rn, and the maximum number of iterations Niter.
1: r0 ← b−Ax0
2: q1 ← r0/||r0||2
3: k← 1
4: while k ≤ Niter do
5: q̃← Aqk
6: for j from 1 to k do
7: hj,k ← qT

j q̃
8: q̃← q̃− hj,kqj
9: end for

10: hk+1,k ← ||q̃||2
11: qk+1 ← q̃/hk+1,k
12: k← k + 1
13: end while

GMRES Method

The Generalized Minimal Residual (GMRES) method, first proposed by Saad and Schultz

[40] in 1985, is a widely used Krylov subspace method to solve general unsymmetric

systems of equations. After k steps, the iterate xk minimizes the residual in the Euclidean

norm over the Krylov subspace Kk(A, r0):

xk = arg min
x∈Kk(A,r0)

||b−Ax||22. (2.16)

In the absence of symmetry, GMRES employs the general Arnoldi method to construct

a sequence of orthogonal basis vectors for the Krylov subspace. As a consequence, the

14



basis vectors qk must be kept in memory and the basis is expanded with a complete or-

thogonalization of Aqk againstKk(A, r0). Hence, the memory and computational require-

ments grow linearly with the iteration count as all the orthogonal vectors accumulate in

the memory. This major drawback can prevent the use of the GMRES method when the

available storage is insufficient.

In GMRES, the k-th step starts with the orthogonalization of the vector Aqk against

the current Krylov subspace Kk(A, r0) following the Arnoldi process, yielding the new

computed Arnoldi vector qk+1. Consequently, any vector x on the subspace x0 +Kk(A, r0)

can be written as

x = x0 + Qky, (2.17)

with y, a vector of size k, defining the coefficients of x on the Krylov subspace. The

Euclidean norm of the residual defined by x can be written as

||b−Ax||2 = ||b−A(x0 + Qky)||2
= ||r0 −AQky||2
= ||βq1 −Qk+1H̃ky||2
= ||Qk+1(βe1 − H̃ky)||2

||b−Ax||2 = ||βe1 − H̃ky||2,

(2.18)

with β = ||r0||2. The last equality comes from the orthogonality of the basis vectors qi.

The minimization of the residual in (2.16) is equivalent to finding the vector y that

minimizes the norm (2.18). This is a simple linear least-squares problem of dimension

(k + 1) × k for y, which is generally far less than the dimension of the linear system.

Moreover, because of the peculiar structure of the matrix H̃k, which is almost triangular,

the least-squares problem is solved with successive inexpensive Givens rotations to tri-

angularize the system [41, 42]. The solution yk of the least-squares problem yields the

approximate solution of the system of linear equations: xk = x0 + Qkyk. Moreover, the

residual norm directly comes as a byproduct of the triangularisation of H̃k in solving the

least-squares problem [43]. As a result, the convergence check is directly performed and

the approximate solution xk is only explicitly built at the end of the GMRES process.

15



Computational Cost and Storage Requirements of GMRES

The number of operations to orthogonalize the new search directions and the storage

requirements for Krylov vectors increase linearly with the iteration count. In order to

overcome this main issue, the GMRES algorithm is almost always used in a restarted ver-

sion GMRES(m), where the iterations are periodically restarted every m iterations, until

the convergence is achieved [44]. After m iterations, the saved Krylov vectors are erased

from memory and the GMRES algorithm is restarted with the latest iterate as the initial

guess. Nevertheless, the convergence to the solution is in theory no longer ensured with

this modification. Besides, there is no general rule for the determination of an appropriate

restart value m [45]. As a matter of fact, a large value for m would require a prohibitive

amount of memory to store all the vectors qk, and the orthogonalization stage would be

unreasonably computationally expensive. On the contrary, the method can stall or even

diverge when m is taken too low.

In terms of operation count, each step i, counted since the last restart, requires i + 1

dot products, i + 1 AXPY 1 operations, one matrix-vector product and a preconditioner

application [32]. In addition, a new vector qi+1 is kept in memory.

One of the interesting features of the GMRES method is that the coefficient matrix

is only involved through a matrix-vector multiplication. The sparsity of A makes this

operation all the more inexpensive. The pseudo-code of the restarted GMRES(m) is given

in Algorithm 2.

Alternative Krylov Methods

The Biconjugate Gradient Stabilized (Bi-CGSTAB) algorithm is certainly the most popu-

lar Krylov method after the GMRES algorithm for general nonsymmetric matrices. This

method has been widely tested for the solutions of linear systems derived from the lin-

earization of the Navier-Stokes equations [46]. Unlike GMRES, Bi-CGSTAB does not need

to store the Krylov vectors but requires two sparse matrix-vector multiplications and two

preconditioner applications per step. In some cases, Bi-CGSTAB may perform better than

the GMRES solver [47]. In our preconditioning tests, we occasionally compared the pre-

1The AXPY operation denotes the basic vector addition y← αx + y, with α a scalar.

16



Algorithm 2 Restarted GMRES(m) iterative method.

Require: An initial guess x0 ∈ Rn, the tolerance τ ∈ R, and the maximum number of
iterations Niter.

1: j← 1
2: while j ≤ Niter do
3: r← b−Ax0
4: β← ||r||2
5: q1 ← r/β
6: for i from 1 to m do
7: j← j + 1
8: q̃← Aqi
9: for k from 1 to i do

10: hk,i ← qT
k q̃

11: q̃← q̃− hk,iqk
12: end for
13: hi+1,i ← ||q̃||2
14: qi+1 ← q̃/hi+1,i
15: ρ← minyi ||βe1 − H̃kyi||2 . Solve the least-squares problem
16: if ρ < τ or j > Niter then
17: xi ← x0 + Qiyi . Build the solution
18: Exit the loops
19: end if
20: end for
21: end while

conditioned GMRES and Bi-CGSTAB methods without noticing substantial differences in

the performances.

2.2 Preconditioning

The discretization of scientific problems into systems of linear equations often yields ill-

conditioned systems with a low rate of convergence when solved with iterative methods.

The rate of convergence of these methods is generally related to the spectral properties

of the coefficient matrix A such as its eigenvalue distribution and its condition number

[34, 48]. Well-conditioned matrices should have clustered eigenvalues around the unity

on the complex plane and a low condition number to attain fast convergence in iterative

methods.

17



To this end, a preconditioning step of transforming the original system into an equiva-

lent system with more appropriate properties is required before using an iterative method.

The preconditioner denotes the matrix M that applies the preconditioning transforma-

tion. The left-preconditioned system is written as

MAx = Mb. (2.19)

It is clear that the solution of the linear system (2.19) is the same as the original set of linear

equations (2.1) but the spectral properties of the preconditioned system MA can be more

favorable by clustering the eigenvalues of A within a sufficiently small neighborhood

around unity [35]. Thus, to be an effective preconditioner, the matrix M would have to

be a suitable approximation of the inverse A−1 in some sense. Using as a preconditioner

M = A−1 might seem to be an optimal preconditioner, solving the linear system in one

step as x = Mb, but the computation of the matrix inverse A−1 is far from evident and its

computational cost is equivalent to using a direct method.

In practice, the product MA in (2.19) is never explicitly computed, since only the action

of the coefficient matrix is required in Krylov subspace methods [21]. The preconditioning

of the system of linear equations entails an additional sparse-matrix product y = Mx in

GMRES. The pseudo-code of the preconditioned GMRES(m) Krylov method is presented

in Algorithm 3.

So far, only explicit preconditioners M, which are approximations of the inverse ma-

trix A−1, have been presented. Similarly, an implicit preconditioner P can directly ap-

proximate the matrix A. Consequently, the step q̃ = MAqi in the GMRES algorithm is

substituted by solving an inexpensive system of linear equations Pq̃ = Aqi, for q̃.

There are three different ways to precondition a linear system:

• The left preconditioned system is obtained by multiplying the equation Ax = b on

the left side by M, yielding MAx = Mb.

• For right preconditioning, the system becomes AMy = b, with x = My.

• Finally, the two-sided preconditioning employs a split preconditioner as follows:

MlAMry = Mlb, with x = Mry.

18



Algorithm 3 Preconditioned restarted GMRES(m) iterative method.

Require: An initial guess x0 ∈ Rn, the tolerance τ ∈ R, and the maximum number of
iterations Niter.

1: j← 1
2: while j ≤ Niter do
3: r←M (b−Ax0)
4: β← ||r||2
5: q1 ← r/β
6: for i from 1 to m do
7: j← j + 1
8: q̃←MAqi
9: for k from 1 to i do

10: hk,i ← qT
k q̃

11: q̃← q̃− hk,iqk
12: end for
13: hi+1,i ← ||q̃||2
14: qi+1 ← q̃/hi+1,i
15: ρ← minyi ||βe1 − H̃kyi||2 . Solve the least-squares problem
16: if ρ < τ or j > Niter then
17: xi ← x0 + Qiyi . Build the solution
18: Exit the loops
19: end if
20: end for
21: end while

Yet, the choice of M as a preconditioner cannot be motivated solely by its approxi-

mation of A−1. The construction, application and storage costs of the preconditioner M

come with a significant additional cost and memory requirements that need to be taken

into account to devise adequate preconditioners. In addition to its intrinsic performance,

the parallel efficiency of a preconditioner is also an important factor when considering

its use on parallel architectures, as many preconditioning techniques are highly sequen-

tial. In the following subsections, we present some of the well-known preconditioning

techniques.

2.2.1 Splitting-Based Preconditioners

The classical stationary iterative methods can be used as preconditioners in the Krylov

subspace methods to improve their convergence rates. These preconditioning methods

are directly based on the splitting of the matrix A. Their advantage is that they do not

19



require additional storage and have no construction cost, since the information is simply

extracted from the coefficients of A [49]. Their application is easily carried out with a

diagonal scaling for the Jacobi preconditioner and a forward or a backward substitution

for the triangular splittings. We recall the form of a stationary iterative method defined

with the splitting A = P−N:

x(p+1) = P−1Nx(p) + P−1b. (2.20)

This recursive relation converges if and only if ρ(I− P−1A) < 1. Each of the methods

in Table 2.1 defines an implicit preconditioner P. For instance, the Jacobi preconditioner

is easily computed as the diagonal P = D of the coefficient matrix A. Thanks to their

simplicity, splitting-based preconditioners such as Jacobi and Gauss-Seidel are often em-

ployed as smoothers in multigrid methods, due to their ability to efficiently remove the

high-frequency oscillations in the solution [50]. However, they usually cannot compete

with more robust preconditioners in solving large systems of linear equations.

2.2.2 Incomplete Factorization Preconditioners

A broad range of implicit preconditioners is based on the classical matrix factorization

algorithms, which consist in decomposing a given matrix into a product of matrix fac-

tors [21]. Well-known factorization techniques such as LU or Cholesky are generally

employed for the solution of dense linear systems as direct methods. The first one de-

composes a matrix A into the product of two matrices L and U, which are respectively

upper and lower triangular matrices [24].

Yet, the classical factorization algorithms for sparse matrices often come with an im-

portant fill-in of the factors, making them unsuitable for computational purposes. In

order to preserve sparsity for factored matrices, incomplete factorizations can be per-

formed by discarding some entries in the factorization process. The so-called incomplete

LU (ILU) factorization constructs implicit preconditioners of the form P = L̂Û where L̂,

a lower triangular matrix, and Û, an upper triangular matrix, are approximate sparse

20



factors. The factorization is written

A = L̂Û + E, (2.21)

with E being the error matrix introduced by the incomplete factorization.

The accuracy of the preconditioner is determined by the number of nonzero entries

allowed in the sparse factors. More entries in the factors L̂ and Û yield a better approxi-

mation of the matrix A with a lower error ||E||. Consequently, they are likely to drastically

reduce the number of iterations in the linear solver. On the other hand, the computational

cost of forming the factors and applying the ILU preconditioner rises. Different dropping

criteria to monitor the retained entries in L̂ and Û have been devised. They are either

based on the level of fill-in or a threshold on the magnitude of the entries.

Level of Fill-in

In the first category, the method is denoted ILU(l) for an integer l > 0, defining the

allowed entries in the factors of the ILU factorization [34, 51, 52]. Initially, an integer

leveli,j is assigned to all the entries in the matrix A, such as

leveli,j =

 0 if ai,j 6= 0,

+∞ otherwise.
(2.22)

These level values are updated along the LU factorization, in such a way that every time

a nonzero entry ai,j is to be modified, its assigned leveli,j is updated. If leveli,j > l, the

corresponding entry is dropped in the ILU factors.

Thus, a larger value for the fill-in parameter l means denser preconditioners. For l = 0,

or no fill-in, the sparsity patterns of the ILU factors are the same as the sparsity pattern

of A [21]. The choice of a proper value of fill-in is mostly problem dependent. The same

value of fill-in parameter l may yield very different preconditioner densities depending

on the matrix. We provide the pseudo-code for the ILU(l) factorization in Algorithm 4.

Note that the triangular matrices L̂ and Û are directly stored in the matrix A.

21



Algorithm 4 ILU(l) factorization algorithm.

Require: The coefficient matrix A =
(
ai,j
)
∈ Rn×n, and the level of fill-in l.

1: leveli,j ← 0 for all ai,j 6= 0, and leveli,j ← +∞ for all ai,j = 0
2: for i from 2 to n do
3: for k from 1 to i− 1 do
4: if ak,k 6= 0 and leveli,k ≤ l then
5: ai,k ← ai,k/ak,k
6: for j from k + 1 to n do
7: ai,j ← ai,j − ai,kak,j
8: leveli,j ← min

(
leveli,j, leveli,k + levelk,j + 1

)
9: end for

10: end if
11: end for
12: for k from 1 to n do
13: if leveli,k > l then
14: ai,k ← 0
15: end if
16: end for
17: end for

Threshold Parameter

The variant ILU(p,τ) controls the amount of nonzero entries with two dropping param-

eters p and τ. The criterion to decide whether a new entry is dropped in the LU factors

is no longer based on the level of fill-in but on the magnitude of the computed entries

[53]. Only the p largest entries satisfying the condition |ai,j| ≤ τ||ai||2 are kept for the

incomplete factorization [54]. The parameter p ensures that the factors are sufficiently

sparse. On the other hand, τ is expected to be stringent enough to discard all the small

entries introduced by the LU factorization that are unlikely to make a difference in the

preconditioner application. As well as the level of fill-in parameter, there is no general

method to find optimal values of p and τ, and their determination is mostly based on

user experience.

Data Dependency in ILU

The main shortcoming of the ILU preconditioner is its strong sequential nature. For a

compressed sparse row (CSR) matrix, the coefficient matrix is traversed in a row-wise

fashion to compute the ILU entries and update the level of fill-in, based exclusively on

22



the calculations from the previous rows [49]. The Figure 2.1 illustrates the computational

order of the entries in the ILU factors for a CSR matrix as well as the data dependency.

It highlights the sequential nature of the ILU computation. Other variants, such as a

computation by column more adapted for CSC matrices, can easily be derived.

Used data for the row 𝑖Row-wise traversal

Current row 𝑖

L

U
‸

‸

Figure 2.1: Data dependency and computational order of the entries in the ILU factors.

The basic ILU algorithm can be prone to roundoff errors or even fail in the case of a

zero pivot in the computations. This problem can be avoided with the use of a pivoting

strategy [55, 56]. In addition, the stability of the ILU preconditioner is only ensured for

the class of M-matrices which is often not the case of matrices resulting from the finite

volume discretization [43]. When the matrix A is far from being diagonal dominant, the

ILU factorization can produce very poor preconditioners which lead to instabilities in the

forward and backward substitutions within the linear solvers [57].

2.2.3 Domain Decomposition Preconditioners

Domain decomposition techniques consist in decomposing the solution of partial differ-

ential equations over overlapping or non-overlapping subdomains [58]. In accordance

with the divide-and-conquer paradigm, the problems can be solved in parallel on each

subdomain in order to share the computational cost across processors.

23



Additive Schwarz

Consider a decomposition of the continuous domain Ω, in which the partial differential

equations are solved, into m overlapping subdomains Ωk:

Ω =
m⋃

k=1

Ωk. (2.23)

Following mesh generation, the discrete domain Ωh = {xi | 1 ≤ i ≤ n} ⊂ Ω is obtained,

with n the number of grid points. The discrete partitioning corresponding to (2.23) reads

Ωh =
m⋃

k=1

Ωh
k , (2.24)

with Ωh
k = Ωh ∩Ωk. We suppose that none of the discrete subdomains Ωh

k are empty. A

given function u : Ω 7→ R is represented by a vector v = (v1, ..., vn)
T in Ωh, such that

vi = u (xi). In multiblock CFD solvers, the mesh Ωh is first divided according to the

layout of the non-overlapping subblocks spanning the entire domain. The subblocks are

then extended by adding the neighboring grid points within a distance δ from the local

subdomains. The parameter δ defines the number of overlapping layers of grid points

between the different subdomains.

The decomposition (2.24) naturally defines the restriction operators Rk : Rn 7→ R|Ω
h
k |

from Ωh to Ωh
k , by retaining only the entries of a vector in Ωh that correspond to grid

points in Ωh
k . Similarly, RT

k : R|Ω
h
k | 7→ Rn is called the prolongation operation. A local

vector in Ωh
k is extended to the global domain Ωh by appending zero entries for grid

points outside of Ωh
k [59]. These operators are used to restrict the action of the global

matrix A on the local subdomains:

Ak = RkART
k , (2.25)

Ak being a |Ωh
k | × |Ωh

k | square matrix.

24



An explicit preconditioner based on the overlapping domain decomposition is given

by the additive Schwarz method (ASM) [60] as

MAS =
m

∑
k=1

RT
k (Ak)

−1Rk. (2.26)

When MAS is applied to a vector in Ωh, each term k of the sum in (2.26) can be carried

out independently with information from the local and neighboring subdomains. Let

us examine in more detail how the additive Schwarz preconditioner is applied within

the GMRES algorithm. In the preconditioned GMRES method, from Algorithm 3, the

preconditioner is involved in a matrix-vector multiplication of the form:

v = MASz, with v and z in Ωh. (2.27)

The development of the sum yields

v =
m

∑
k=1

RT
k (Ak)

−1Rkz. (2.28)

The vector v is calculated by applying the matrices to the vector z from right to left. The

first matrix-vector product Rkz is simply the restriction of the vector z into Ωh
k , denoted

zk, such that

v =
m

∑
k=1

RT
k (Ak)

−1zk. (2.29)

In Figure 2.2, we illustrate the ASM application on a very simple 1D grid Ωh consisting of

6 grid points, and divided into two overlapping subdomains: Ωh
1 and Ωh

2. The red entries

in the restrictions Riz correspond to the entries communicated between the subdomains.

Thereafter, the matrix-vector products (Ak)
−1zk in equation (2.29) lead to several small

linear systems of equations to be solved, namely

Akwk = zk, with wk the unknown vector of size |Ωh
k |. (2.30)

When the sizes of the subdomains are sufficiently small, a direct method can be used to

exactly solve the subproblems. Otherwise, a local preconditioner Pk ≈ Ak or an iterative

25



g1 2 3 4 5 6

Ω1

Ω2

1 2 3 4 5 6

Ω1
ℎ

Ω2
ℎ

𝑧1

𝑧2

𝑧3

𝑧4

𝑧5

𝑧6

𝑧1

𝑧2

𝑧3

𝑧4

𝑧3

𝑧4

𝑧5

𝑧6

R1z =

R2z =

z =

Figure 2.2: Domain Ωh and subdomains with an overlap of width δ = 1 (left) and appli-

cation of the restriction operators Ri on a global vector z in Ωh (right). The dashed arrows

denote the required communications between the subdomains.

method, such as a preconditioned GMRES algorithm, can be employed to approximate

the solution of the local linear systems (2.30). Therefore, the ASM preconditioner can

be seen as a parallel generalization of preconditioning methods. For instance, local ILU

preconditioners Pk combined with the ASM preconditioner yields an ILU preconditioning

method compatible with coarse-grained parallelism [61]. In our numerical simulations,

we employ an ASM-ILU preconditioner, in which the GMRES method, preconditioned

with an ILU(0) factorization, approximately solves the local systems of linear equations.

Once the linear systems (2.30) are solved, the local solutions wk are scattered across

the neighboring overlapping subdomains with the prolongation operator RT
k :

v =
m

∑
k=1

RT
k wk. (2.31)

In Figure 2.3, the construction of the vector v from the summations of the local contribu-

tions is depicted. The two processors send to each other the red entries, which correspond

to the overlapping regions.

The domain decomposition preconditioner MAS is called the additive Schwarz pre-

conditioner, since all linear systems are solved simultaneously. When defined properly,

domain decomposition methods can provide suitable parallel preconditioning methods.

As presented, the ASM preconditioner requires two communication steps between the

26



𝑤1,1

𝑤1,2

𝑤1,3

𝑤1,4

𝑤2,3

𝑤2,4

𝑤2,5

𝑤2,6

w1 =

w2 =

R1
𝑇w1 + R2

𝑇w2 =

𝑤1,1

𝑤1,2

𝑤1,3

𝑤1,4

0

0

0

0

𝑤2,3

𝑤2,4

𝑤2,5

𝑤2,6

+ =

𝑤1,1

𝑤1,2

𝑤1,3 + 𝑤2,3

𝑤1,4 + 𝑤2,4

𝑤2,5

𝑤2,6

Figure 2.3: Prolongation of the local vectors w1 and w2 and summation in Ωh.

different processors through the application of the restriction and the prolongation op-

erators Rk and RT
k [62]. The entries of the vector z in Ωh are originally scattered across

the processors, according to the non-overlapping block layout of the discrete domain.

Thus, the operation Rkz involves the communication of the entries corresponding to the

overlapping regions between the processors. In the same vein, the prolongation applica-

tion RT
k wk in equation (2.31) requires the communication of entries of wk in overlapping

layers.

Surprisingly, the additive Schwarz preconditioner in (2.26) often turns out to be a poor

preconditioner and its variant called the restricted additive Schwarz method is usually

preferred. This method uses a non-overlapping prolongation operator R̃T
k . Therefore, re-

stricted additive Schwarz method is more suitable to parallel machines with the removal

of one of the communication steps, while counterintuitively giving faster convergence

[63, 64]. The preconditioner is given as

MRAS =
m

∑
k=1

R̃T
k (Ak)

−1Rk. (2.32)

The application of R̃T
k is illustrated for the 1D basic problem in Figure 2.4, in which no

communication is performed.

27



𝑤1,1

𝑤1,2

𝑤1,3

𝑤1,4

𝑤2,3

𝑤2,4

𝑤2,5

𝑤2,6

w1 =

w2 =

R1
𝑇w1 + R2

𝑇w2 =

𝑤1,1

𝑤1,2

𝑤1,3

0

0

0

0

0

0

𝑤2,4

𝑤2,5

𝑤2,6

+ =

𝑤1,1

𝑤1,2

𝑤1,3

𝑤2,4

𝑤2,5

𝑤2,6

~ ~

Figure 2.4: Restricted prolongation of the local vectors w1 and w2 and summation in Ωh.

The usage of the ASM preconditioner for the full potential equation and the Euler

equations in conjunction with a quasi-Newton method has been the topic of several stud-

ies [16, 65–67]. Its suitable parallel feature makes it a privileged choice for parallel solvers.

Block Jacobi

The block Jacobi preconditioner may be seen as a special case of the additive Schwarz

preconditioner with no overlap [68]. Consider this time a partitioning of the domain Ω

into m subdomains, and the corresponding restrictions Rk:

Ω =
m⋃

k=1

Ωk, and ∀i, j ∈ {1, ..., m} , i 6= j, Ωi ∩Ωj = ∅. (2.33)

The block Jacobi preconditioner reads

MBJ =
m

∑
k=1

RT
k (Bk)

−1Rk, (2.34)

with Bk being square matrices of size |Ωh
k | × |Ωh

k |. The partitioning of the matrix A can be

written in a block form as

A =


A1,1 . . . A1,m

... . . . ...

Am,1 . . . Am,m

 . (2.35)

28



The block Jacobi preconditioning matrix corresponding to the associated partition is a

block diagonal matrix:

MBJ =


B−1

1 0
. . .

0 B−1
m

 . (2.36)

The application of the block Jacobi preconditioner is highly parallel, since there is no

longer overlapping subdomains. However, the block Jacobi method tends to yield less

effective preconditioners than the ASM method with an overlap. Indeed, the extra com-

munications usually increase the stability and robustness of the preconditioning.

In Krylov subspace methods, the block Jacobi application is a matrix-vector multipli-

cation:

v = MBJ z, with v and z in Ωh. (2.37)

The computation of v is carried out with the independent solution of m small linear sys-

tems of equations, whose dimensions are defined by the sizes of the subdomains.

v =


B−1

1 (R1z)

B−1
2 (R2z)

...

B−1
m (Rmz)


. (2.38)

The main pitfall of the domain decomposition preconditioners with parallel solvers is

their sensitivity to the number of blocks and so the number of cores. The preconditioning

of the matrix A becomes less efficient with domain decomposition preconditioners for an

increasing number of blocks in the partition [69].

2.2.4 Sparse Approximate Inverse Preconditioners

The class of sparse approximate inverse preconditioners aims to approximate the action of

A−1 itself. As a consequence, their application within Krylov subspace methods consists

of a sparse matrix-vector multiplication y = Mv.

29



The wide range of polynomial preconditioners belong to this class. For example, a

polynomial preconditioner is derived from the truncation of the Neumann series of A in

[70], written in a splitting form A = N1 −N2 as

M =

(
p−1

∑
i=0

(
I−N−1

1 A
)i
)

N−1
1 , (2.39)

where p > 0 and the inverse of N1 is only approximated. The preconditioner is truncated

to obtain a low-degree polynomial of the matrix A. Besides, the preconditioner M is never

assembled explicitly but its application on a vector results in the product with each term

in the series (2.39). Nevertheless, polynomial preconditioning methods usually require

reliable bound estimates of the eigenvalues of A to yield sufficiently sound precondition-

ers [32]. Now rarely used, polynomial preconditioners were mainly investigated due to

their suitability for vector processors.

In the next chapter, we present the Sparse Approximate Inverse (SPAI) preconditioner,

a highly parallel preconditioner.

2.3 Solving Nonlinear Equations

Many of the early CFD solvers used pressure-based methods, solving sequentially the

momentum equations for the velocity and a Poisson pressure equation based on the con-

tinuity equation [71]. These methods, albeit not being too demanding in terms of memory

storage and computational complexity, are very dependent on the pressure-velocity cou-

pling due to the segregated solution procedure. They could fail on many occasions due

to instabilities and a weak coupling between the pressure and velocity.

The rapid development of computers over the last decades has been accompanied by

a constant increase in the memory capacity as well as in the computational power. These

new computational resources, in conjunction with the development of new linear solver

methods for general non-symmetric positive definite matrices, such as GMRES, made it

possible to solve the coupled equations [72]. The use of an implicit time-marching scheme

for the coupled velocity and pressure equations raised the solver robustness, but also

required innovative methods to solve the larger systems of nonlinear equations. In the

30



same period, the Newton-Krylov method became an algorithm of choice for solving the

nonlinear equations from the coupled Navier-Stokes equations. Pueyo gives an extensive

description of the development of Newton’s method within CFD solvers in [12]. In this

respect, a nonlinear GMRES solver was first employed by Wigton et al. in 1985 [73], which

is equivalent to solving Newton’s linearized systems with a linear GMRES solver.

2.3.1 Newton’s Method

Newton’s method is an iterative algorithm for solving nonlinear equations. Starting from

an initial guess x0, the method builds a sequence of iterates. The solution of a linear

system of equations is necessary at each step to advance the iterate towards the solution.

First, let us consider the general case of a multivariable function F : Rn 7−→ Rn defin-

ing n nonlinear equations F(x) = 0. The Taylor series of F at a given point x states that

F(x + δx) = F(x) + JF(x)δx + O(||δx||2), (2.40)

where JF denotes the Jacobian matrix of F defined by JF(x)i,j =
∂Fi

∂xj
(x), for i, j ∈ {1, ..., n}.

The idea of Newton’s method is to find an appropriate step δx to march in the direction

of the root from x. Neglecting the high-order terms in the Taylor series and considering

that x + δx is the sought-after solution, the iterate is updated as

x← x− JF(x)−1F(x). (2.41)

The main difficulty of Newton’s method lies in the fact that the iterative process is only

locally convergent, when the starting vector x0 is sufficiently close to the solution x∗ [74].

Even worse, there is no means to know beforehand if the method will converge from a

given starting iterate. An attractive property of the method is its quadratic convergence

towards the solution. It means that there exists a positive constant c such that

||x(p+1) − x∗|| ≤ c||x(p) − x∗||2. (2.42)

31



In practice, the inverse of the Jacobian JF is never explicitly computed. Instead, the itera-

tion process is carried out with the solutions of successive systems of linear equations:

 JF(x(p))δx = −F(x(p)),

x(p+1) = x(p) + δx.
(2.43)

Hence, Newton’s method requires the solution of a linear system at every step. As we al-

ready saw in the previous section, the choice of an optimal linear solver is mainly problem

dependent. For linear systems for which a direct solver is unsuitable, the choice of an iter-

ative algorithm is preferred. In the case of iterative solvers, the exact solution of the linear

system in (2.43) is clearly inaccessible. This could seem to be a major weakness of iterative

methods. Nonetheless, the linear systems being merely intermediate steps in Newton’s

method, their exact solution is unnecessary. In reality, the in-depth convergence of the lin-

ear systems is a problem known as oversolving, which must be avoided [75]. Therefore,

the intermediate linear systems are approximately solved until the following condition is

satisfied:

||F(x(p)) + JF(x(p))δx|| ≤ τlin||F(x(p))||, (2.44)

where τlin ∈ [0, 1[ is called the forcing term. This parameter prevents the risk of oversolv-

ing that can occur during the first iterations of Newton’s method [76] and tightens the

tolerance as the iterate approaches the root of F.

Hence, two levels of iterations interplay to converge towards the solution of the non-

linear equations. For the sake of clarity, a step p in (2.43) is referred to as a Newton step

or a nonlinear iteration in the rest of this thesis. On the other hand, the iterations under-

taken within the linear solver are called inner or linear iterations [74]. This Newton-like

method is called an inexact or a quasi-Newton method.

2.3.2 Newton-Krylov Methods

A wide variety of Krylov subspace solvers has been devised, depending on the properties

of the coefficient matrix A. Here, we only consider Krylov subspace methods for nonsym-

metric matrices, such as GMRES and Bi-CGSTAB. The efficiency of Krylov methods lies

32



in the fact that no other information than the product of the Jacobian matrix JF(x(p)) with

a given vector is required. This property allows the use of matrix-free Krylov methods for

which the action of the Jacobian is only approximated from evaluations of the function F

[77].

2.3.3 Globalization of Newton’s Method

One gap that remains to be filled is the lack of robustness of the convergence in Newton’s

method. The convergence is only ensured locally, with a starting guess in the close neigh-

borhood of the sought-after solution. In order to alleviate this problem, Newton’s method

can be enhanced with globalization techniques to achieve convergence from virtually any

starting point [75].

Line Search

In Newton’s method, it may happen that the search direction δx
||δx|| is well estimated by

the solution of the linear system but the magnitude of the step ||δx|| overshoots the root

location. Line search methods, such as the Armijo rule [78], aim to minimize ||F|| along

the search direction with successive adjustments of the step length ||δx||. The determi-

nation of an efficient stepsize has been the topic of many papers [79, 80]. The line search

methods are rather easy to implement contrary to other globalization techniques but may

fail to converge when applied to very stiff cases.

Trust Regions

Other general globalization techniques are the trust-region methods. Instead of searching

for a minimizer along a direction, trust-region methods are based on the minimization of

a simple modeling of the function F in a restricted region, generally a ball [81].

Pseudo-Transient

In solving physical differential equations, the previous globalization methods may fail to

converge, converge to an unphysical solution or even converge to a point where the Jaco-

bian is nonsingular. In this respect, the pseudo-transient continuation method transforms

33



the initial nonlinear equations F(x) = 0 into a transient problem
dx
dτ

+ F(x) = 0, converg-

ing to the root of F [82]. The initial guess of Newton’s method becomes equivalent to the

initial state of a transient problem, and the path of convergence reproduces the temporal

evolution of the solution x to the steady state.

Unlike line search and trust-region methods, the pseudo-transient continuation strat-

egy is not to guarantee a reduction in the norm ||F(x)|| at each step, but rather to en-

sure the global convergence by following a quasi-physical path. In this endeavor, the

pseudo-transient continuation method is able to “climb hills”, taking paths along which

F temporarily increases in norm to shorten the overall path length to the solution [83].

34



Chapter 3

Governing Equations and Flow Solver

The general governing equations used to model the flow are reviewed in Section 3.1.

Afterwards, the corresponding spatial discretization and time integration employed with

the finite volume method are detailed in Sections 3.3 and 3.4. Finally, we briefly review

the flow solver FANSC used for the numerical simulations in Sections 3.6 and 3.7.

3.1 Governing Equations

The compressible Navier-Stokes equations state the governing equations for a viscous

compressible flow from the conservation laws of mass, momentum and energy. The inte-

gral form of the Navier-Stokes equations on a domain Ω, enclosed by the boundary ∂Ω,

reads

∂

∂t

∫
Ω

u dΩ +
∮

∂Ω

(
Fc (u)− Fv (u,∇u)

)
dS = 0, (3.1)

where u is the vector of conservative variables, and Fc and Fv are the convective and

viscous fluxes respectively. Using the Einstein summation convention, they are defined

in three dimensions as

u =



ρ

ρvx

ρvy

ρvz

ρE


, Fc(u) =



ρV

ρvxV + nx p

ρvyV + ny p

ρvzV + nz p

ρHV


and Fv(u,∇u) =



0

njτx,j

njτy,j

njτz,j

ni
(
vjτi,j − qi

)


, (3.2)

35



with vx, vy and vz being the three Cartesian components of the velocity vector v. Besides,

nx, ny and nz denote the Cartesian components of the unit vector n normal to the surface

element dS. As for the remaining variables, ρ, E, H, p, τi,j and qi are respectively the flow

density, the total energy per unit mass, the total enthalpy per unit mass, the pressure,

the components of the viscous stress tensor τ and the components of the heat flux vector

q. Finally, the contravariant velocity V, given by V = nTv = nxvx + nyvy + nzvz, is the

velocity component normal to the surface element dS.

The solution of equation (3.1) for a turbulent flow entails solving the Navier-Stokes

equations down to the smallest scale involved in the energy cascade. This requires a very

low spatial resolution of the mesh with an unreasonable number of grid points [11]. A

common approach to overcome this issue is to solve the Navier-Stokes equations for the

mean variables via the so-called Reynolds averaging [84], giving the Reynolds-Averaged

Navier-Stokes (RANS) equations. These equations are identical to the Navier-Stokes

equations (3.1) for the averaged variables aside from the introduction of an additional

fictitious viscosity term µt in the constitutive equations.

The Navier-Stokes equations in (3.1) contain more unknowns than available equa-

tions. Correspondingly, additional equations related to the fluid in question need to be

provided to close the equations. For media such as air or water, the general assumption

of a Newtonian fluid is employed to relate the viscous stress tensor τ and the strain rate

in the flow:

τ = −2
3
(µ + µt)∇ · vI + (µ + µt)(∇v +∇vT), (3.3)

where µ denotes the laminar viscosity which is a characteristic feature of the fluid. On the

other hand, the turbulent viscosity µt has no physical meaning, but is used to incorporate

the effects of turbulence in the equations. Its computation requires a turbulence model.

Many of them have been designed with different computational complexities and benefits

[85]. The one-equation Spalart-Allmaras model is introduced in Section 3.2.

Under the assumption of an ideal gas, the pressure p is related to the density ρ and

the total energy per unit mass E according to

p = (γ− 1) ρ

[
E− ||v||

2
2

2

]
, (3.4)

36



where γ denotes the heat capacity ratio. In addition, the Sutherland’s law is used to

calculate the laminar viscosity µ from the flow temperature T, in SI units for air, with the

formula:

µ =
1.45 T3/2

T + 110
× 10−6. (3.5)

In closing, the Fourier’s law for the heat conduction q is applied as

q = −k∇T, (3.6)

with k being the thermal conductivity coefficient.

Depending on the phenomena involved and the desired accuracy of the final solution,

the governing equations can be simplified to neglect to some extent the complexities of the

flow. In some cases such as high Reynolds number flows, the convective component of the

flow is typically predominant compared to the viscous term. A common approximation

is to consider a purely convective flow and ignore the viscous flux Fv in the governing

equations (3.1) [11]. This simplification gives us the Euler equations:

∂

∂t

∫
Ω

u dΩ +
∮

∂Ω
Fc (u) dS = 0. (3.7)

The Euler equations can accurately describe the presence of shocks and expansion waves

in the flow.

3.2 Turbulence Model

In FANSC, the effects of turbulence in the flow are reflected with the one-equation Spalart-

Allmaras (SA) turbulence model [86]. It requires the solution of a transport equation for

an eddy viscosity variable ν̃ from which is calculated the turbulent viscosity µt. The

transport equation reads

37



∂ν̃

∂t
+ vT∇(ν̃) = cb1 (1− ft2) S̃ν̃

+
1
σ

[
∇ · [(ν + ν̃)∇ν̃] + cb2||∇ν̃||22

]
−
(

cw1 fw −
cb1

κ2 ft2

)( ν̃

dw

)2

+ ft1||∆v||22.

(3.8)

In equation (3.8), dw denotes the distance to the closest wall and ν = µ/ρ refers to the

laminar kinematic viscosity. The distance to the wall must be accurately evaluated to

ensure an appropriate prediction of the flow features close to the walls [87]. Once the

equation has been solved for ν̃, the turbulent viscosity µt is given by

µt = fv1ρν̃, (3.9)

with

fv1 =
χ3

χ3 + c3
v1

and χ =
ν̃

ν
. (3.10)

The functions f , S̃ and the constant parameters c, σ and κ can be obtained from [11]. This

model is often used within CFD software where it yields robust estimations of the turbu-

lent effects for a broad range of flows, without adding a substantial overhead. Other pop-

ular turbulent models can sometimes provide more accurate predictions. For instance,

the two equation model k− ε is often used, but is more difficult to process and requires

finer meshes near the walls [11]. In FANSC, the SA model is only solved on the finest

grid, once before every Newton-Krylov step, in a segregated manner.

3.3 Spatial Discretization

The most widespread discretization method for CFD applications is the finite volume

method, which directly discretizes the integral form of the conservative equations over

the physical domain. This integral formulation naturally ensures the conservation of

mass, momentum and energy across the domain throughout the simulation, making it

an attractive tool for solving conservative partial differential equations. The accuracy of

38



the solution depends on the order of accuracy of the spatial discretization scheme. The

discretization process yields a set of 5 equations in 3D, for the discretized conservative

variables wT
i =

[
ρi, (ρvx)i ,

(
ρvy
)

i , (ρvz)i , (ρE)i

]
for each cell i:

Mi
dwi

dt
+ r(wi) = 0. (3.11)

In these equations, Mi is the mass matrix and is determined by the position of the un-

knowns. In the case of a cell-centered scheme, Mi becomes a diagonal matrix with the

volume of the cell i as the entries. For its part, r(wi) is the numerical flux of the cell i

given by the contributions of the convective, dissipation and viscous fluxes. It is a non-

linear function of the state wi.

The cell discretized equations in (3.11) are gathered into a global nonlinear system of

equations, for all the conservative variables, which is written as

M
dw
dt

+ R(w) = 0, (3.12)

with w, R(w) ∈ RN, where N is the number of cells n times the number of conservative

variables. The residual or discretized flux R(w) contains the successive discretized fluxes

of the cells R(w)T =
[
r(w1)

T r(w2)
T ... r(wn)T

]
and wT =

[
wT

1 wT
2 ... wT

n

]
.

FANSC uses a central scheme with an artificial dissipation for the discretization of the

convective flux. Compared to other more sophisticated spatial discretization schemes,

the central scheme is relatively easy to implement in cell-centered schemes. It uses the

average of the conservative variables in the adjacent cells to compute the convective flux

at the interface. The resulting numerical flux usually yields a very unstable convergence,

as it does not take into account the direction of propagation of the waves [88]. In addition,

only the two neighboring cells are involved in the flux computation, which may unfor-

tunately lead to some odd-even oscillations and ultimately increase instabilities. Finally,

the discretized convective flux favors the appearance of oscillations in the region of high

pressure gradient. As a consequence, an artificial dissipation flux is required for stability.

39



JST Scheme

The different central schemes differ in the formulation of the artificial dissipation scheme.

The first implementation was introduced by Jameson, Schmidt and Turkel for the Euler

equations with a scalar artificial flux [89]. The scheme is referred to as JST after the au-

thors’ name. At the interface
(

i + 1
2 , j
)

between two cells, the JST flux reads

Fc,i+ 1
2 ,j = Fc

(
wi,j + wi+1,j

2

)
−Di+ 1

2 ,j, (3.13)

where Di+ 1
2 ,j is the artificial dissipation flux. It is given as

Di+ 1
2 ,j = D(2)

i+ 1
2 ,j
−D(4)

i+ 1
2 ,j

, (3.14)

Di+ 1
2 ,j = Λi+ 1

2 ,j

[
ν(2)

(
wi+1,j −wi,j

)
− ν(4)

(
wi+2,j − 3wi+1,j + 3wi,j −wi−1,j

)]
. (3.15)

The parameters ν(2) and ν(4) are pressure-based sensors to turn on and off the first-order

and third-order dissipative fluxes respectively. The third-order component of the dissi-

pation flux tends to introduce deleterious spurious oscillations of the solution around the

high gradients and the shocks. As a consequence, the sensor ν(4) is dominant in smooth

regions of the flow but decreases substantially around shocks and discontinuities to favor

the more stable first-order flux D(2)
i+ 1

2 ,j
. On the contrary, the first-order flux is switched off

in smooth regions of the flow to reduce the artificial dissipation as far as possible. The

dissipation flux in (3.15) is scaled with the scalar factor Λi+ 1
2 ,j given by

Λi+ 1
2 ,j =

1
2

(
λ̂i

i,j + λ̂i
i+ 1

2 ,j

)
, (3.16)

where λ̂i
i,j denotes the scaled spectral radius of the flux Jacobian matrices in the i-direc-

tion. The ν(2) and ν(4) sensors are defined as

ν
(2)
i,j = ε(2) max(σi,j, σi+1,j) with σi,j =

|pi+1,j − 2pi,j + pi−1,j|
pi+1,j + 2pi,j + pi−1,j

, (3.17)

40



and

ν
(4)
i,j = max

(
0, (ε(4) − ν(2))

)
. (3.18)

Finally, ε(2) and ε(4) are both constants generally around the unity and 1/32 respectively.

Matrix Dissipation Scheme

The accuracy of the JST scheme can be improved with the use of a matrix to scale the

dissipation flux. This discretization is called the matrix dissipation (MATD) scheme. In

MATD, each equation is scaled with the corresponding eigenvalue of the flux Jacobian

instead of the spectral radius [90]. The artificial dissipation flux Di+ 1
2 ,j becomes

Di+ 1
2 ,j =

∣∣∣Jc,i+ 1
2 ,j

∣∣∣ [ν(2) (wi+1,j −wi,j
)
− ν(4)

(
wi+2,j − 3wi+1,j + 3wi,j −wi−1,j

)]
, (3.19)

with Jc,i+ 1
2 ,j =

∂Fc,i+ 1
2 ,j

∂w
, the convective flux Jacobian [11]. Nevertheless, the substitution

of the spectral radii by the flux Jacobian results in a more expensive central difference

scheme.

Viscous Flux Discretization

In FANSC, the gradients in the viscous flux are calculated from the interpolated variables

at the vertices of the mesh thanks to the Gauss-Green formula [88].

3.4 Time Integration

Acceleration techniques that allow rapid convergence to the steady-state solution without

accurately solving the transient solutions have been a focus in a considerable number

of research projects [11]. In these strategies, only the final solution is meaningful and

these simplifications result in substantial computational savings. As a result, many CFD

simulations concentrate only on solving the stationary nonlinear equations

R(w) = 0, (3.20)

41



where the residual R is a vector of size N, with N being the overall number of discretized

variables in the mesh.

3.4.1 Pseudo-Transient Continuation

Several different globalization methods to ensure the convergence of Newton’s method

for nonlinear equations were briefly presented in Subsection 2.3.3. It has been noted that

line search and trust-region methods may face numerous issues for the convergence to-

wards the physical solution of nonlinear equations.

A common globalization method to overcome the convergence issue is to employ a

pseudo-transient formulation of the problem [82, 91, 92]:

M
dw
dτ

+ R(w) = 0. (3.21)

The pseudo-time formulation (3.21) is fundamentally different from the physical time-

dependent partial differential equations (3.12). The transformation must be understood

merely as an acceleration technique towards the steady-state solution, rather than an ac-

curate time-marching method. Its main idea is to first mimic a transient path before

approaching Newton’s method as the pseudo-time τ tends towards infinity [93]. The

pseudo-time integration is performed using a first-order forward Euler method:

(
dw
dτ

)n
=

wn+1 −wn

∆τ
+O(∆τ). (3.22)

In equation (3.22), the superscript n stands for the time level. Thus, wn denotes the state

vector at the current time τ and wn+1 its value at the time τ + ∆τ, with ∆τ being the time

step.

The distinct spatial and temporal discretizations of the governing equations with the

method of lines allow explicit or implicit integration of the discretized equations (3.21)

[11]. In explicit time-stepping schemes, the residual R is evaluated at the current state

wn:
M
(
wn+1 −wn)

∆τ
+ R(wn) = 0. (3.23)

42



Hence, as its name implies, the residual can explicitly be calculated. Therefore, the update

state wn+1 is easily derived with a mere algebraic calculation. From a practical standpoint,

more sophisticated but still straightforward methods, such as the so-called Runge-Kutta

multistage schemes, are used to favor stability [94].

On the other hand, in implicit integration schemes, the residual is evaluated at the

next time step R(wn+1). A direct consequence is that the residual R is now dependent on

the unknown state wn+1:

M
(
wn+1 −wn)

∆τ
+ R(wn+1) = 0. (3.24)

In a fluid, the information is propagated through the medium at the wave speeds corre-

sponding to the flow speed and the speed of sound relative to the flow. The so-called CFL

condition for stability ensures that no cell misses the information by restricting the maxi-

mum allowed time step [11]. The Courant number σ is expressed as the ratio between the

computational time step ∆τ and the minimum time taken by the waves to travel in a cell.

In 1D, the Courant number reads

σ = max
i

(|vi|+ c)∆τ

∆xi
. (3.25)

For time-explicit methods, the CFL condition assesses that σ should be bounded, ensur-

ing that the computational domain of dependence embeds the physical domain of depen-

dence [95]. The computational time step ∆τ is guaranteed to be smaller than the relevant

time scales. However, the CFL condition puts a severe limitation on the use of explicit

methods, requiring too short a time step for typical engineering problems. On the other

hand, implicit methods avoid the CFL restrictions using the entire computational domain,

which allows the use of larger time steps [96]. The stringent upper bound on the time step

with the explicit time-marching method gives an advantage in the choice of implicit time

integration.

In equation (3.24), the residual R(wn+1) is linearized with a first-order truncation:

R(wn+1) ≈ R(wn) +

(
∂R
∂w

)n
∆wn, (3.26)

43



where
(

∂R
∂w

)n
=

∂R
∂w

(wn) is the flux Jacobian evaluated at the current time step. Con-

sequently, the original nonlinear problem (3.20) is substituted for a series of systems of

linear equations of the form:[
M
∆τ

+

(
∂R̃
∂w

)n]
∆wn = −R (wn) , (3.27)

wn+1 = wn + α∆wn. (3.28)

The update of the solution is weighted with an under-relaxation parameter α, between

0 and 1, to increase stability at the expense of a slower rate of convergence. In addition,

R̃ denotes an approximation of the high-order numerical flux R, used to compute the

Jacobian matrix J =
∂R̃
∂w

. At each step, J is evaluated at the latest approximation wn.

At the outset, the equations are accurately integrated in time with modest time steps

to follow the transient physical path. As the approximate solution becomes closer to the

steady-state solution, the time step is increased to accelerate convergence at the detriment

of temporal accuracy. We note that if the linearization of R is exact, the implicit time-

stepping scheme (3.27) turns into a Newton step when the time step ∆τ tends to +∞:

∂R
∂w

(wn)∆wn = −R (wn) . (3.29)

In the case of an inexact Jacobian matrix
∂R̃
∂w

or approximately solved linear systems, a

linear convergence is generally attained.

3.4.2 Left-Hand Side Operator

It must be noted that only the spatial discretization of the right-hand side residual R (wn)

determines the accuracy of the final solution, since it must ultimately satisfy the nonlinear

equations (3.20). On the contrary, the left-hand side operator in equation (3.27) controls

the convergence towards this solution. Its purpose is to genuinely drive the approxi-

mate solution to the root of the residual. A consistent flux Jacobian J with the numerical

flux R approaches Newton’s method, and favors the rate of convergence but might re-

44



quire a greater computational cost per step. Different left-hand side operators will differ

in terms of consistency with the right-hand side, robustness, computational cost and re-

quired number of nonlinear steps to converge.

A compromise is often needed between the accuracy of the left-hand side operator

J ≈ ∂R
∂w

and the computational cost of a linear step. When the right-hand side R is com-

puted with high-order schemes, as it is often the case in modern simulations, the exact

Jacobian matrix becomes relatively dense and is likely to be heavy to both compute and

store [97]. Besides, the analytical Jacobian matrix is generally easily calculated by hand

for relatively basic spatial discretizations, such as the Steger-Warming flux discretiza-

tion. Unfortunately, for more accurate discretizations requiring more involved numerical

fluxes, the analytical linearization of the residual including the boundary conditions and

nonlinear limiters becomes an intractable problem.

Defect Correction Approach

A way to make the left-hand side easier to calculate at the expense of consistency is to

use a defect correction approach in which a lower-accurate residual Rlow is employed to

form the left-hand side Jacobian matrix [98]. In aerodynamic applications, a lower order

discretization scheme or an exact flux Jacobian derived from simplified governing equa-

tions are often used. Consequently, the approximate Jacobian matrix J does not include

all the effects of the high-order discretization used to compute the numerical flux R. On

the other hand, this approximation yields a sparser Jacobian matrix which is therefore

computationally easier to handle. The linearized equations (3.27) become

[
M
∆τ

+

(
∂Rlow

∂w

)n]
∆wn = −R(wn). (3.30)

The two sides of the equations are inconsistent since
∂Rlow

∂w
6= ∂R

∂w
, which ultimately re-

stricts the length of the time steps ∆τ and the convergence rate. Therefore, the number of

steps to converge to the same tolerance is likely to increase, but the reduction in time per

step can offset it in return. Nonetheless, low-order Jacobian matrices tend to be better con-

45



ditioned, with a better diagonal dominance. Consequently, the resulting linear systems

are easier to precondition and solve.

In the flow solver FANSC, the low-order Jacobian matrix is computed using first-order

discretization schemes. If the convective flux is discretized with a JST central scheme, the

convective low-order flux Jacobian employs a first-order scalar dissipation flux. Similarly,

in the case of a MATD discretization, the first-order upwind Roe scheme is used for the

Jacobian matrix [99]. As for the viscous flux, the viscous Jacobian matrix is computed

with the thin-shear layer approximation of the governing equations [100].

Nearly Consistent Left-Hand Side

The most widely used iterative solvers for solving large and sparse linear systems such as

in equation (3.27) are the Krylov methods in which the Jacobian matrix is only involved

through matrix-vector multiplications. This property gives the possibility to use the so-

called matrix-free implementations [77], where the action of the Jacobian matrix on a

vector is approximated by a forward finite difference:

(
∂R
∂w

)n
∆wn ≈ R(wn + h∆wn)−R(wn)

h
. (3.31)

In equation (3.31), the Jacobian-vector multiplication approximation requires the evalua-

tion of the residual R for two different states. They are computed using the same residual

accuracy as the right-hand side, ensuring a better consistency between both sides in (3.27).

The matrix-free approach has some important advantages over the defect correction

approach. First, a matrix-free Jacobian matrix clearly exempts the storage of the Jacobian

matrix. In addition, this approach provides a high-order linearization of the residual [11].

All the phenomena taken into account in the numerical fluxes in R are also integrated in

the flux Jacobian. Even though the matrix-free flux Jacobian remains an approximation

of the exact Jacobian matrix with the influence of extraneous factors such as the step size

h and the rounding errors, past studies [77, 101, 102] have shown that the quadratic con-

vergence of Newton’s method is still achievable. In addition, the convergence is often

indistinguishable with analytical Jacobian matrices. Orkwis et al. concluded in [103] that

numerical Jacobian approaches should be preferred over analytical computations due to

46



their coding simplicity and superior robustness. The forward finite difference is the most

commonly used method. Different schemes which differ in computational cost and accu-

racy could be employed, such as a central finite difference [104].

The step size h must be carefully chosen to mitigate numerical errors. If h is too large,

the finite difference is poorly approximated due to the truncation error in the Taylor ap-

proximation. On the contrary, too small a value for h soars the floating-point roundoff

error in the denominator. Knoll and Keyes reviewed a wide variety of formulas in [77] to

determine the step h related to the machine epsilon ε and the vectors wn and ∆wn. The

simplest form for the step is

h =

√
ε

||∆wn||2
, (3.32)

and the slightly more elaborated formula from [101] reads

h =

√
ε

||∆wn||22
max

[
|wn · ∆wn|, typ

(
wn · |∆wn|

)]
sign (wn · ∆wn) , (3.33)

with ε being the machine epsilon and typ(·) a typical size of the term in brackets. Both

forms are implemented within FANSC but they only lead to minor differences in the

reported convergences.

However, the preconditioning of matrix-free Krylov methods remains unclear. Most

of the commonly used preconditioners, such as SOR and ILU, are directly based on the

coefficients of the Jacobian matrix. This obviously poses a problem when the Jacobian

matrix is never explicitly calculated. As a consequence, a simplification of the flux Jaco-

bian, which can be easily computed and stored, is used to compute the preconditioner

for the Krylov method. In our case, we employ the same first-order approximation of

the Jacobian matrix as presented in the defect correction approach. This ensures a suit-

able sparsity for the Jacobian matrix, and therefore a decent computational cost for the

preconditioner application. We should note that some matrix-free preconditioners have

been devised to obtain a real matrix-free Newton-Krylov approach, without any matrix

storage [77, 105].

47



3.5 Properties of the Implicit Operator

3.5.1 Structure of the Jacobian Matrix

The discretization process transforms the governing equations into a set of algebraic equa-

tions, one for each unknown of each cell in the mesh. These algebraic equations define

the dependencies between elements. The discretization stencils are much smaller than the

computational domain. Hence the coupling between unknowns is rather weak, meaning

that only a few elements, which are usually the immediate neighbors, strongly influence

each other. As a result, the Jacobian matrix is a large and sparse matrix.

An adequate ordering strategy of the unknowns is paramount in CFD solvers to en-

sure stability of the approximate factorization methods and optimize data dependency

on highly parallel implementations. The determination of an appropriate ordering is par-

ticularly a significant issue for unstructured grids, for which a natural ordering does not

exist. In a block structured solver, the conservative unknowns of one cell are usually con-

secutively stored. The natural row-wise ordering of the mesh cells is employed to assem-

ble the global unknown vector w. For instance, this ordering in 2D yields the following

state vector:

wT =
[
ρ1, (ρvx)1, (ρvy)1, (ρE)1, ρ2, (ρvx)2, (ρvy)2, (ρE)2, ...

]
. (3.34)

The discretized algebraic equations follow the same ordering by “grid points” which

leads to a block Jacobian matrix, whose block size is the number of conservative vari-

ables in a cell. Donato showed in [106] that an ordering based on the equations yields

less robust convergence for iterative methods by mitigating the coupling between the

unknowns in the same cell.

The flux Jacobian entries are defined as the derivatives of the numerical flux with

respect to the discretized conservative variables. The numerical flux in a cell only depends

on a small subset of cells within the discretization stencil. As a consequence, the number

of nonzero blocks in a row of the Jacobian matrix corresponds to the number of cells in the

48



stencil of the discretization method. Thus, a high-order discretization method, resulting

in more dependencies between cells, entails denser Jacobian matrices.

For instance, let us consider a very small 2D grid containing only six cells depicted

in Figure 3.1. In a five-point stencil, involving only the immediate neighboring cells, the

“grid point” ordering leads to a sparse block Jacobian matrix with a symmetric pattern.

No matter the size of the grid, the interior cells lead to rows with no more than five dense

blocks. Moreover, a higher dimension results in a denser Jacobian matrix: the central

scheme in 3D with a seven-point stencil entails a block-septadiagonal Jacobian matrix.

4 5 6

1 2 3

1 5 9 13 17 21
1

5

9

13

17

21

Figure 3.1: 2D structured mesh (on the left) and the resulting pattern of the associated

Jacobian matrix with a five-point stencil (on the right). Each blue square is a nonzero

entry.

3.5.2 Poor Conditioning

The compressible Navier-Stokes equations model complex flows involving multi-scale

phenomena. The strongly coupled variables as well as the propagation of acoustic and

shock waves are among the factors that give rise to deeply stiff equations to solve. First,

direct methods, known for their robustness, are simply intractable due to the size of the

involved matrices in typical simulations. On the other hand, the lack of decent properties

of the linearized equations prevents the use of classical iterative methods, which often

diverge.

49



The diagonal dominance of the coefficient matrix tends to increase the stability of the

linear solver. A matrix with large magnitudes of diagonal entries compared to the magni-

tudes of off-diagonal entries leads to more stable factorizations and a faster convergence

in the linear solver. In contrast, low diagonal matrices may yield poor subdomain ILU

factorizations, introducing instabilities that can hamper the efficiency of the domain de-

composition preconditioners [107]. In implicit solvers, the spatial discretization schemes

for the convective part of the flux, such as JST and MATD, add a strong skew-symmetric

contribution to the Jacobian matrix and greatly mitigate its diagonal dominance. Even

though the artificial dissipation flux helps to balance the lack of robustness introduced by

the convective flux, the Jacobian matrices generally remain significantly ill-conditioned.

3.6 Flow Solver

The numerical experiments were conducted with Bombardier’s in-house flow solver Full-

Aircraft Navier-Stokes Code or FANSC for block structured meshes [108]. FANSC can solve

either the compressible 3D Euler or RANS equations using a cell-centered finite-volume

discretization. The solution of the linearized equations (3.27) is the most time-consuming

part of the flow solver.

Dozens of scientific libraries are devoted to the parallelization of linear algebra rou-

tines. In this research work, we used the Portable, Extensible Toolkit for Scientific Com-

putation (PETSc) developed and maintained by Argonne National Laboratory at the Uni-

versity of Chicago [109]. The library provides a large set of data structures and routines

suited for sparse matrix computations and the solving of partial differential equations.

These routines can easily be implemented and appended to pre-existing scientific soft-

wares such as CFD solvers. PETSc offers a complete scalable linear equation solver object

to use a wide range of Krylov subspace methods in conjunction with several in-built pre-

conditioning techniques, such as SOR, ILU, block Jacobi and ASM. Each Krylov method

can be tuned with different parameters, such as the maximum number of iterations and

the desired relative tolerance. Besides, some routines are available to let the user define

his own matrix and preconditioner classes.

50



3.7 Parallelism in the CFD Code

The coarse-grained parallelism of the CFD code is achieved by a domain decomposition

strategy with the partitioning of the original grid into smaller non-overlapping blocks

[110]. In structured block solvers, the mesh blocks and associated data are initially scat-

tered across the processors. Some additional layers of cells, called halo cells, are added to

perform the inter-block communications. Along the convergence, the cores process their

locally owned data corresponding to their assigned mesh blocks. The necessary commu-

nications between neighboring blocks for data exchanges are performed with the MPI

standard.

The decomposition of the mesh across the workstation is not straightforward and the

partitioning process must take into account the load balancing to ensure that all cores

will approximately have the same computational work. With unsuitable decompositions,

some cores might possess too many blocks compared to others. In the worst-case scenario,

some cores remain idle waiting for the overloaded cores to complete their calculations.

Usually, these concerns are addressed by dividing the original mesh into a larger number

of smaller blocks than the number of available cores. To this extent, several blocks are

assigned to the same core. Nevertheless, an excessive domain splitting comes with a

larger number of halo cells that can dramatically increase the overall computational cost

and communication count. The block-splitting strategy used in FANSC along with the

data communication framework is explained in [111].

In Figure 3.2, we depict the decomposition of a simple 2D mesh into four non-over-

lapping subblocks on the left. The corresponding stored data with one layer of halo cells

surrounding the block boundaries is shown on the right side. The white circles are the

halo cells that are used to store the values of the neighboring cells, whereas the filled

circles are the inner cells. For instance, the cells pointed by the arrows correspond to

only one physical cell, whose flux computations are carried out in the upper left block.

Thereafter, its values are shared with the other three subblocks with point-to-point com-

munications.

51



• •

• •

• • •

• • •

• •

• •

• • •

• • •

• •

• •
○ ○ ○

○

○

• •

• •
○ ○ ○

○

○

• • •

• • •

○ ○ ○

○

○

○

• • •

• • •

○ ○ ○

○

○

○

Figure 3.2: Example of a computational domain split into four subblocks (left). The sub-

blocks are padded with a layer of halo cells (right).

The number of layers of halo cells is mainly dependent on the size of the stencil used

for the numerical discretization. The example in Figure 3.2 is compatible with a first-

order 5-point stencil, in which only the neighboring cell data is needed. In FANSC, the

second-order flux discretization requires the storage of two layers of halo cells.

52



Chapter 4

Parallel Preconditioning with the Sparse Approx-

imate Inverse

Solution methods for the linear and nonlinear equations were reviewed in Chapter 2 with

a focus on Krylov subspace methods, and primarily the GMRES approach. The well-

established splitting-based and ILU preconditioners were introduced, as well as paral-

lelization frameworks through the block Jacobi and additive Schwarz methods. In partic-

ular, their lack of robustness as a function of parallel partitioning was highlighted [112].

As a remedy, we present in this section the parallel Sparse Approximate Inverse (SPAI)

preconditioning method, an explicit preconditioner independent of the computational

domain partitioning and ordering. This preconditioning method was extensively studied

for relatively simple problems of low-dimension linear systems on sequential or weakly

parallel architectures. In these settings, SPAI can hardly compete with the sound sequen-

tial preconditioning techniques such as ILU. To our knowledge, SPAI preconditioning

has been exclusively studied for given linear systems of equations arising from scien-

tific applications such as in electromagnetism [113, 114] or for convective-diffusion equa-

tions [115, 116]. Quite surprisingly, SPAI has not been investigated for solving complex

nonlinear equations on high-end parallel machines. Nonetheless, in the survey [117],

Benzi and Tůma stated, “We think that the highest potential for approximate inverse

techniques lies in their use as part of sophisticated solving environments for nonlinear

and time-dependent problems”. With the advent of large parallel computing resources,

we investigated the SPAI preconditioner for parallel CFD solvers, requiring the solution

of numerous linear systems of equations. The first step is to devise a sufficiently flexible

SPAI algorithm, which can be used within the solver.

53



In Section 4.1, the SPAI algorithm is first introduced in its historical formulation as

presented by Grote and Huckle in [118]. Thereupon, its block version adapted to block

structured coefficient matrices is detailed. Finally, we present a preconditioning frame-

work for the SPAI preconditioning suitable for use in an implicit solver in Section 4.2.

4.1 Sparse Approximate Inverse (SPAI) Preconditioning

The convergence of a Krylov subspace method for linear systems of very poorly con-

ditioned equations is mainly determined by the efficiency of the preconditioning tech-

niques.

The first studies conducted on the computation of a sparse approximation of the in-

verse of a matrix by norm minimization date back to the second half of the 20th century

[119, 120]. Thereafter, the sparse approximate inverse preconditioning has been consid-

ered throughout the 1990s with the development of massively parallel machines. Early

research focused on the computation of the approximate inverse M from a given sparsity

pattern P provided by the user. The choice of P was mostly based on empirical obser-

vations [113]. The difficulty in finding a satisfying a priori sparsity pattern to compute an

efficient sparse approximate inverse drove researchers to devise adaptive algorithms to

automatically capture the pattern of the inverse of A. In these algorithms, a simple pat-

tern such as a diagonal matrix is iteratively augmented to find the largest entries in A−1.

The first adaptive strategy is known to be the one developed by Cosgrove et al. [121]. The

most commonly used adaptive algorithm has been proposed by Grote and Huckle [118]

and is the one presented here. This variant is often referred to as the Sparse Approximate

Inverse (SPAI) preconditioner. A comprehensive comparative study of different sparse

approximate preconditioners for Krylov subspace methods on a vector computer, includ-

ing factorized approximate inverses, was conducted by Benzi and Tůma in their survey

[117].

The main benefit of SPAI preconditioning is not only its high degree of parallelism,

but also its invariance with respect to the number of cores, unlike domain decomposition

preconditioners. The parallelism in the SPAI preconditioning emerges both in its com-

putation and its application. First, each column of the preconditioning matrix M can be

54



computed independently of one another. Secondly, the application of the SPAI precondi-

tioner in the Krylov subspace method consists of a sparse matrix-vector multiplication,

which can be adequately implemented in parallel architectures [122].

4.1.1 Algorithm

The main idea of the SPAI preconditioning algorithm is to construct a sparse approxima-

tion M of A−1 through the minimization of the following Frobenius norm:

min
P(M)∈P

||AM− I||F, (4.1)

with A, M ∈ Rn×n and a prescribed sparsity pattern P for the matrix M. The parallelism

comes from the splitting of the Frobenius norm (4.1) into the sum of n Euclidean norms

as

||AM− I||2F =
n

∑
k=1
||Amk − ek||22, (4.2)

with mk and ek being respectively the k-th column of M and I. Thereafter, it follows that

the minimization of the sum in (4.2) is equivalent to the simultaneous minimization of

each term of the sum, namely

min
P(mk)∈Pk

||Amk − ek||22, for k ∈ {1, ..., n}. (4.3)

In this way, the original Frobenius minimization problem (4.1) is decomposed into n in-

dependent linear least-squares problems. The solutions of the least-squares problems are

only determined by the chosen sparsity pattern P for M. Therefore, the pattern P should

be the subject of close attention, as it is the cornerstone of an effective preconditioner.

Nonetheless, the use of an adaptive algorithm to automatically expand the pattern miti-

gates the importance of the a priori pattern.

From the prescribed sparsity pattern P , the index set Jk gathers the nonzero entry

indices in the column mk as

Jk = {j ∈ {1, ..., n} | mk(j) 6= 0}. (4.4)

55



Both sparsities of the coefficient matrix A and the column mk are taken into consideration

to reduce the size of the minimization problems as much as possible. First, only nonzero

entries of mk and the corresponding columns of A are retained. The residuals rk of the

reduced least-squares problems (4.3) become

rk = Amk − ek = A( · ,Jk)m(Jk)− ek, for k ∈ {1, ..., n}. (4.5)

In the same vein, if a row in A( · ,Jk) is identically zero, its corresponding contribution

in the matrix-vector product Amk is zero and the row is of no interest in the least-squares

problem. The index set of nonzero rows of the matrix A( · ,Jk) is denoted Ik, namely

Ik = {i ∈ {1, ..., n} | A(i,Jk) 6= 0}, (4.6)

and the final reduced problems are

min
P(mk)∈Pk

||A(Ik,Jk)mk(Jk)− ek(Ik)||22, for k ∈ {1, ..., n}. (4.7)

The resulting least-squares problems are of size |Ik| × |Jk| and much smaller than the

original problems due to the high sparsity of A and M. For readability, we use the follow-

ing notations for the reduced coefficient matrix and vectors: Âk = A(Ik,Jk), m̂k = m(Jk)

and êk = e(Ik). The nonsingularity of A ensures that the reduced matrix Âk has full rank

and that its QR decomposition can be computed. In this way, the problems in (4.7) are

solved using the QR factorization Âk = Q̂R̂, where Q̂ ∈ R|Ik|×|Jk| and R̂ ∈ R|Jk|×|Jk|,

computed with Householder reflections:

 ĉk = Q̂Têk,

m̂k = R̂−1ĉk.
(4.8)

The vector ĉk is retrieved by multiplication of the successive Householder reflections,

while m̂k is obtained by means of a backward substitution.

56



Patterns for the SPAI Matrix

Early implementations of the SPAI preconditioning considered using the pattern of A

to compute M [21, 123]. Although giving decent results for a good number of linear

problems, they can also lead to poor convergence, or even fail [124]. As noted in [52], the

pattern P(A) may yield zero columns in the preconditioner M, when A contains zeros in

its diagonal entries. These conclusions led to the improvement of fixed sparsity patterns

for an inverse matrix. For instance, based on the Cayley-Hamilton theorem, the inverse

matrix A−1 can be formulated as a linear combination of the powers of A:

A−1 = − 1
p0

n−1

∑
i=0

pi+1Ai. (4.9)

The theorem motivated the use of sparsified powers of A by Chow in [123]. In practice,

the pattern P can be taken as the sparsified pattern of a low power of A. A common way

to sparsify the pattern of a matrix is to use a threshold condition in which only the largest

entries are retained in the matrix pattern [113].

4.1.2 Adaptive Strategy

The main advantage of the adaptive SPAI method is its ability to easily augment the spar-

sity of the preconditioner M. Following the adaptive algorithm from Grote and Huckle

[118], the SPAI computation for mk is repeated with a larger patternPk until the Euclidean

norm of the least-squares problem (4.3) is lower than a user-defined tolerance ε, such as

||Amk − ek||2 < ε. (4.10)

The parameter ε controls the level of fill-in in the SPAI column mk. A low ε entails a

dense SPAI matrix, which more accurately approximates the inverse of A, reducing the

number of linear iterations. In return, the SPAI matrix is also more expensive to compute

and apply within a Krylov method. The new indices are chosen based on the calculation

of a cheap estimate of their contribution to the reduction of the column residual norm

||Amk − ek||2.

57



As well as the tolerance ε, a maximum number of adaptive steps and new entries per

step are provided to offset the sparsity of the approximate inverse and its accuracy as an

approximation of A−1. The purpose of the adaptive algorithm is to capture the sparsity

pattern of the absolute value of the largest entries of A−1 to expand the sparsity pattern

P . However, there is no clear evidence that a pattern based on the largest entries of the

inverse yields a sound preconditioner. For instance, it was shown that the adaptive SPAI

algorithm may eventually fail to recover the pattern of A−1 while providing a satisfying

preconditioner in [125].

At the end of the SPAI computation for a given pattern P , unless the exact inverse

column mk has been found, the residual rk is nonzero. We form the set

Lk = {l | rk(l) 6= 0}, (4.11)

which gathers the nonzero entries of rk. The objective of the adaptive strategy is to find

additional nonzero entries in mk that can efficiently lower the residual norm ||rk||2. For

each index l ∈ Lk, the index set

Nl = {j | A(l, j) 6= 0 and j 6∈ Jk} (4.12)

is constructed. The setNl contains the potential new indices that could be added to Jk in

order to further reduce the magnitude of the l-th entry of rk. Finally, the new entries are

chosen among the union J̃k =
⋃

l∈Lk

Nl.

An inexpensive upper bound of the reduction in the residual induced by each poten-

tial candidate j ∈ J̃k is estimated with the solution of a one-dimensional minimization

problem:

min
µj∈R
||A(mk + µjej)− ek||2 = min

µj
||rk + µjAej||2, (4.13)

where the minimum is attained for µ∗j = − rT
k Aej

||Aej||22
. Therefore, the new residual norm ρj,

obtained with adding the index j ∈ J̃k, is

ρ2
j = ||A(mk + µ∗j ej)− ek||22 = ||rk||22 −

(rT
k Aej)

2

||Aej||22
. (4.14)

58



It follows that the index j entails a reduction of
(rT

k Aej)
2

||Aej||22
in the column residual square

norm ||rk||22. The most profitable indices with the lowest residuals ρj, and thus the highest

µ∗j , are added to Jk.

Certain columns may require numerous adaptive steps to satisfy the condition (4.10).

Therefore, a maximum number of adaptive steps is set to prevent inadequate dense SPAI

columns. The optimal value for ε is highly problem and machine dependent. Ideally, ε

should lead to a sufficiently sparse SPAI matrix M to ensure low application costs within

the linear solver while providing efficient preconditioners to reduce the number of lin-

ear iterations. The presented adaptive strategy is not unique, and other authors have

proposed different methods to improve the sparsity pattern of M, such as in [121, 126].

Nonetheless, the adaptive SPAI from Grote and Huckle is the most widely used in SPAI

implementations and provides sufficient freedom to adjust the density of M.

4.1.3 Block Generalization of the SPAI Algorithm

The SPAI algorithm can be easily extended to a block version. In Section 3.5, we saw that

matrices arising from the discretization of partial differential equations naturally lead to

block structured matrices, whose block size is the number of unknowns per cell. When

applied to block matrices, the original SPAI algorithm may lose a considerable amount of

time reproducing the same computations for SPAI columns belonging to the same block.

The following section presents the block version of the SPAI algorithm as first introduced

by Barnard and Grote [127].

Let us denote b the constant block size of the block matrix A ∈ Rn×n. The block

SPAI algorithm divides the original minimization problem into n/b independent prob-

lems whose unknowns are the block columns Mk of dimension n× b as

||AM− I||2F =
n/b

∑
k=1
||AMk − Ek||2F. (4.15)

Thus, the individual problems become

min
P(Mk)∈Pk

||AMk − Ek||2F. (4.16)

59



In the same way as for the scalar SPAI, a starting block sparsity pattern P is provided to

define a unique solution. The common sparsity structure for all the scalar columns in Mk

entails reduced problems with the exact same coefficient matrix Âk = A(Ik,Jk) but dif-

ferent sparse vectors ei. Hence, the benefit from the block SPAI formulation comes from

the fact that a unique QR decomposition is required to determine the b scalar columns in

Mk. As in (4.8), the block column Mk is retrieved in two successive steps:

 Ĉk = Q̂TÊk,

M̂k = R̂−1Ĉk.
(4.17)

The QR factorization being the most time-consuming routine in the SPAI algorithm, this

block alternative helps to drastically decrease the computational cost of the construction

of M.

The main difference with the scalar algorithm concerns the dynamic criterion to aug-

ment the sparsity pattern of the block column Mk. The set of potential new indices

J̃k is constructed in the same way but considering block instead of scalar indices. For

a given block index j ∈ J̃k, the determination of its contribution in the reduction in

‖AMk − Ek‖F would require the expensive solution of the SPAI minimization problem

minP(Mk)∪{j} ‖AMk − Ek‖F. Instead, a cheap estimation ρj of the reduction induced by

the extra block AjMjk is calculated while maintaining all the entries in Mk. The norm ρj

is given by

ρ2
j = ||Rk −AjMjk||2F = ||Rk||2F + trace

(
RT

k AjMjk

)
. (4.18)

The minimum reduced residual norm ρj is attained for

Mjk = −(AT
j Aj)

−1AT
j Rk. (4.19)

Therefore, the estimates ρj can be explicitly computed as

ρ2
j = ||Rk||2F − trace

(
RT

k Aj(AT
j Aj)

−1AT
j Rk

)
. (4.20)

60



As in the scalar SPAI version, only the most profitable block indices j are added to the

sparsity pattern P(Mk) from which a new SPAI matrix is calculated.

4.1.4 Implementation of the SPAI Algorithm

An early MPI implementation of the SPAI algorithm in C, called spai-3.0, was realized

by Barnard et al. whose parallel implementation is extensively discussed in [125, 128].

spai-3.0 reads a general sparse matrix stored in the coordinate format (COO), converts

it into a compressed sparse column (CSC) matrix, and computes a right preconditioner in

the CSC format. The common sparse matrix storage frameworks are reviewed in [3, 129].

The SPAI preconditioning matrix is computed with the adaptive algorithm of Grote

and Huckle [118] from a diagonal sparsity pattern. Besides, the density of M is monitored

using the following three parameters:

• The SPAI tolerance ε controls the density of the SPAI columns along the adaptive

algorithm with the condition ||Amk − ek||2 < ε.

• The maximum number of adaptive steps per column.

• The maximum number of added nonzero entries in the sparsity patternPk per adap-

tive step.

The spai-3.0 software is available as an external package in PETSc to enable SPAI

as a preconditioner for Krylov subspace methods. Its implementation is quite unsuitable

for use in a complex solver, given that the structures are allocated at each new precon-

ditioning computation and the implementation does not offer a lot of flexibility. For in-

stance, the preconditioner is recomputed from scratch at every nonlinear iteration, from a

diagonal pattern without reusing any information from the previous computations. Nev-

ertheless, the essence of its parallel programming paradigm is the same as that of our

implementation of SPAI used in the numerical experiments.

In the classical formulation of Grote and Huckle [118], the SPAI algorithm is pre-

sented for the computation of a right preconditioner, namely with the minimization of

||AM − I||F. This algorithm is adapted to matrices stored by columns. In distributed

61



memory architectures, matrices are usually stored in a compressed sparse row (CSR) for-

mat in which continuous rows are assigned to different cores. For instance, Goharian et

al. showed in [130] the benefits of using the CSR format to optimize matrix operations

such as sparse matrix-vector multiplication. This is the case of the matrices stored in the

CFD solver used. Therefore, it becomes more natural to compute a left preconditioner

through the minimization of ||MA− I||F. The main difference with a right SPAI precon-

ditioning lies in the way in which entries in M are computed. In ||AM− I||F, the columns

of M are separately computed, whereas the parallelism takes place per row for the left

preconditioning. Thus, the right preconditioning lends itself more to a matrix M stored

in the CSC format, while the CSR format is more suitable for a left preconditioned Krylov

method.

The same SPAI algorithm can be used for computing both a right CSC and left CSR

SPAI preconditioner. This can be seen by understanding that the CSR storage of a matrix

A is actually the CSC storage of its transpose AT [131]. Consequently, computing a right

SPAI preconditioner with spai-3.0 from a CSR PETSc matrix A, read as a matrix in

CSC format, is actually the same as computing a left SPAI preconditioner M in the CSR

format in PETSc. Thus, spai-3.0 computes a left SPAI preconditioner for CSR matrices

in PETSc. We note that the two minimization problems ||MA− I||F and ||AM− I||F lead

to different sparse approximate inverses, even for the same prescribed sparsity pattern P ,

which can be of different quality.

Primarily based on the Barnard’s version of the SPAI algorithm, a C++ standalone

mspai-1.2 has been developed by Sedlacek at the Technical University of Munich [132].

The code mspai-1.2 originally includes most of Barnard’s spai-3.0 implementation

strategies except the block SPAI version. The software computes the SPAI preconditioner

of a matrix stored in the COO format. Like most of the implementations of the SPAI

preconditioner, this code lets the user specify the fill-in parameters such as the tolerance

ε, the number of adaptive steps, and the number of added entries in the set Jk in each

of these steps. Among the innovations, the user can choose the initial sparsity pattern of

the SPAI matrix from an external file in the COO format in addition to starting from a

diagonal pattern or using the pattern of the matrix A itself.

62



In our work, we enhanced mspai-1.2 with a PETSc interface to use SPAI as a user-

defined preconditioner in a Krylov method. The SPAI preconditioning framework, pre-

sented in the following section, has been incorporated in a PETSc implementation, to

allow the user to control when the preconditioner should be recomputed during the New-

ton steps. In addition, a complete block version of the SPAI algorithm has been integrated

in mspai-1.2, following Barnard’s method in [127]. Possibilities to use sparsified pow-

ers of the matrix A or a pattern saved in memory as the starting pattern P were added.

Allocation routines have been redesigned to avoid inappropriate reallocations that could

occur with the PETSc SPAI external package. The benefit of using an object-oriented SPAI

implementation is its reusability. New functionalities can easily be appended to the pre-

existing software while keeping all the previously optimized routines.

In the rest of this section, we highlight the common parallelization strategies used in

the SPAI implementations spai-3.0 and mspai-1.2.

Load Balancing

In compliance with the distributed memory architecture, the cores process their locally

owned columns, or rows, of the preconditioner M. This partitioning is related to the

decomposition of the domain into blocks. In order to mitigate the load imbalance, the

blocks are scattered across the cores in such a way that the inter-core communications

are minimized and the workload is shared equitably. Generally, the cores have more or

less the same number of cells, which corresponds to an equivalent number of columns, or

rows, in the Jacobian matrix.

Nevertheless, it may happen that some SPAI columns require more adaptive steps,

and are therefore more computationally expensive, than the average case. In this situa-

tion, a few cores might achieve their computations in advance and remain idle waiting for

the other cores. In the spai-3.0 program, a dynamic strategy is implemented to let the

idle cores fetch unprocessed columns from other cores and carry out their computation.

This procedure yielded quite poor results for large size matrices on highly partitioned

meshes and was thus disabled in our tests.

63



Communications Between Cores

The SPAI computation of a column in M requires access to potentially any entry in the

coefficient matrix A. Hence, a sophisticated communication framework is sought to ef-

ficiently allow communications along the computations in a non-invasive manner. One-

sided communications in MPI are a convenient way to fetch data on another core without

requiring any action from the other core. On the contrary, within a two-sided communi-

cation, both concerned cores, namely the sender and receiver, must call separate routines

such as MPI_Send and MPI_Recv at the same time, introducing implicit synchronization

along the computation [133].

At the time when Barnard et al. developed their version of the SPAI implementation,

one-sided communications were not yet available in the MPI standard [134]. In order to

cope with this issue, they developed an artificial one-sided communication strategy with

the use of a communication server that handles the data requests of the different cores. In

practice, the SPAI computations on the cores are conducted without any synchronization.

Whenever a core requires remote data from another core, a message specifying the desired

data is submitted with the nonblocking routine MPI_Isend, letting the core proceed its

computations while the request is sent to the target core. All the cores intermittently check

if a request has been sent from another core for its local data.

Latency Hiding

The inter-core communications are usually very slow compared to the inner-core oper-

ations in a distributed memory architecture [3]. Consequently, the code execution is

substantially slowed down whenever a core submits a data request to another core. A

common way to overcome this issue is to overlap the communications and operations

within a core. This strategy is commonly known as “latency hiding”. In spai-3.0, the

latency hiding is ensured with two different strategies. First, once a core submits an asyn-

chronous request to retrieve remote data, it repeatedly checks for messages from other

cores concerning its local data. In this way, the cores are able to handle incoming requests

meanwhile their own requests are processed. In addition to this asynchronous commu-

nication strategy, a hash table was implemented to cache any received data and avoid

64



repeated requests to the same remote data. As a matter of fact, consecutive SPAI columns

mk, processed by the same core, often need access to the same remote data [125].

4.1.5 Numerical Result of the Preconditioning Methods

In this subsection, we study the convergence of a few small linear systems, listed in Ta-

ble 4.1 with the splitting-based SOR preconditioner, the ILU factorization preconditioner

and different versions of the SPAI preconditioner. The sparse coefficient matrices belong

to the SuiteSparse matrix collection [135], formerly named the Florida Sparse Matrix Col-

lection, which contains a wide range of matrices from scientific applications. Some of the

coefficient matrices are provided with a right-hand side vector. When this is not the case,

the right-hand side is taken as a vector full of ones, and a “ ∗ ” is written next to the matrix

name in Table 4.1.

Table 4.1: Test matrix characteristics.

Matrix name Problem n nnz Condition
Number

Diag.
Dom.

ORSIRR_1 ∗ Oil reservoir simulation 1030 6858 7.71× 104 Yes
ORSIRR_2 ∗ Oil reservoir simulation 886 5976 6.33× 104 Yes
SHERMAN1 Black Oil simulator, Shale

Barriers
1000 3750 1.56× 104 No

SHERMAN3 Black Oil IMPES simulator 5005 20,033 5.01× 1017 Yes
SHERMAN5 Fully implicit Black Oil

simulator
3312 20,793 1.88× 105 No

PORES_2 ∗ Reservoir modeling 1224 9613 1.09× 108 no
ORSREG_1 ∗ Oil reservoir simulation 2205 14,133 6.75× 103 Yes

Nearly all the past SPAI experimental studies have focused on the convergence of lin-

ear systems from the SuiteSparse collection such as the matrices in Table 4.1 [117, 118,

136]. These systems are generally far from both the size and the complexity of the prob-

lems arising from industrial CFD simulations. On the other hand, they provide an ac-

curate picture of the inherent preconditioning efficiency, as the problem sizes allow the

study of metrics such as the condition number of the preconditioned systems and their

eigenvalue distributions.

65



The tests are conducted using the restarted GMRES(30) linear solver from the library

PETSc. The convergence is terminated when the relative residual norm ||b−Ax(p)||2
||b−Ax(0)||2

has

been reduced by at least four orders of magnitude or when the number of linear iterations

reaches 10,000 iterations. In the latter case, the convergence is deemed to have failed. The

initial guess for the linear solver is a zero vector.

The linear solvers were carried out on a single core of an Intel Xeon E5-2638 v4 Broad-

well processor, with a clock frequency of 2.1 GHz. The SPAI preconditioner is not ex-

pected to compete with classical preconditioning methods, as the SPAI algorithm is com-

putationally expensive and its inherent parallelism is not exploited with a single core.

First, the linear systems are solved without preconditioning methods. These results

are reported in Table 4.2. Unsurprisingly, most of the convergences fail to converge in

fewer than 10,000 iterations. In fact, the residual norm often stalls and the GMRES al-

gorithm cannot reach the prescribed relative tolerance reduction. Convergence is only

achieved for diagonally dominant matrices with relatively low condition numbers.

Table 4.2: Comparison of the number of GMRES iterations without preconditioning.

Matrix name Iteration number CPU time (s)

ORSIRR_1 2083 0.35
ORSIRR_2 940 0.103

SHERMAN1 Stalls -
SHERMAN3 Stalls -
SHERMAN5 Stalls -

PORES_2 Stalls -
ORSREG_1 74 0.017

Table 4.3 summarizes the results from the numerical experiments solved with a left

preconditioned GMRES(30) method. In addition, the convergence of the residuals for

ORSIRR_2 is shown in Figure 4.1 in terms of both the number of GMRES iterations and

the CPU time. Note that the convergences begin once the preconditioners are computed,

which explains the offsets in Subfigure 4.1b.

66



Ta
bl

e
4.

3:
C

om
pa

ri
so

n
of

th
e

C
PU

ti
m

es
an

d
nu

m
be

r
of

G
M

R
ES

it
er

at
io

ns
fo

r
di

ff
er

en
tl

ef
tp

re
co

nd
it

io
ne

rs
.

IL
U

(0
)

SO
R

A
da

pt
iv

e
SP

A
I

Fi
xe

d
SP

A
I
P
(A

)
SP

A
IS

pa
rs

ifi
ed
P
(A

2 )

M
at

ri
x

It
er

.c
ou

nt
O

ve
ra

ll
ti

m
e

It
er

.c
ou

nt
O

ve
ra

ll
ti

m
e

It
er

.c
ou

nt
Pr

ec
.t

im
e

O
ve

ra
ll

ti
m

e
It

er
.c

ou
nt

Pr
ec

.t
im

e
O

ve
ra

ll
ti

m
e

It
er

.c
ou

nt
Pr

ec
.t

im
e

O
ve

ra
ll

ti
m

e

O
R

SI
R

R
_1

31
0.

01
7

12
1

0.
02

5
38

0.
05

3
0.

06
2

17
2

0.
03

4
0.

05
1

90
0.

04
7

0.
05

8
O

R
SI

R
R

_2
31

0.
01

6
13

6
0.

02
5

46
0.

06
5

0.
06

9
20

6
0.

03
2

0.
05

0
94

0.
04

4
0.

05
4

SH
ER

M
A

N
1

28
0.

01
1

11
0

0.
01

4
11

8
0.

02
8

0.
03

6
65

0.
02

0
0.

02
4

49
0.

02
1

0.
02

5
SH

ER
M

A
N

3
93

0.
02

6
47

6
0.

10
0

30
3

0.
04

7
0.

10
3

49
9

0.
03

3
0.

12
1

32
6

0.
09

7
0.

15
6

SH
ER

M
A

N
5

28
0.

01
3

42
0.

01
5

15
6

0.
06

7
0.

09
0

13
1

0.
06

1
0.

08
6

63
0.

08
4

0.
09

5
PO

R
ES

_2
41

0.
02

1
60

24
0.

46
3

46
2

0.
07

7
0.

11
1

16
77

0.
03

7
0.

16
55

59
0

0.
05

1
0.

10
3

O
R

SR
EG

_1
29

0.
02

0
57

0.
02

2
31

0.
05

2
0.

05
7

10
2

0.
04

3
0.

06
1

76
0.

07
0

0.
08

3

0
25

50
75

10
0

12
5

15
0

17
5

20
0

It
er

at
io

n

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

RelativeResidual||rn||2/||r0||2

IL
U

(0
)

SO
R

A
da

pt
iv

e
SP

A
I

Fi
xe

d
SP

A
IP

(A
)

SP
A

IS
pa

rs
ifi

ed
P

(A
2 )

(a
)C

on
ve

rg
en

ce
hi

st
or

y
in

te
rm

s
of

it
er

at
io

ns
.

0.
02

0.
04

0.
06

0.
08

0.
10

C
PU

Ti
m

e
(s

)

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

RelativeResidual||rn||2/||r0||2

IL
U

(0
)

SO
R

A
da

pt
iv

e
SP

A
I

Fi
xe

d
SP

A
IP

(A
)

SP
A

IS
pa

rs
ifi

ed
P

(A
2 )

(b
)C

on
ve

rg
en

ce
hi

st
or

y
in

te
rm

s
of

C
PU

ti
m

e.

Fi
gu

re
4.

1:
C

on
ve

rg
en

ce
fo

r
O

R
SI

R
R

_2
w

it
h

di
ff

er
en

tp
re

co
nd

it
io

ne
rs

.

67



We provide the number of nonzero entries (nnz) in the adaptive SPAI matrices in Ta-

ble 4.4.

Table 4.4: Number of nonzero entries in the resulting adaptive SPAI matrix.

Matrix name nnz

ORSIRR_1 5150
ORSIRR_2 4328

SHERMAN1 4606
SHERMAN3 17,177
SHERMAN5 24,314

PORES_2 10,454
ORSREG_1 11,025

We note that the adaptive SPAI generally achieves convergence in fewer linear itera-

tions than a fixed SPAI preconditioner, computed from the sparsity pattern of A or the

sparsified pattern of A2. Yet, some examples, such as the SHERMANN5 matrix, show

the opposite. On the other hand, the adaptive SPAI preconditioner is usually more ex-

pensive to calculate, so that the overall static SPAI time, including SPAI calculation and

convergence, is often faster. The adaptive SPAI algorithm is driven by many different

parameters to control the amount of fill-in in the SPAI preconditioner. The lack of a clear

relationship between the largest entries of the inverse of A and their importance in the

matrix-vector product may explain why the quality of the SPAI is very case dependent.

Besides, thanks to the low dimension of the baseline matrices, it is computationally

possible to explicitly calculate their condition number. Table 4.5 gathers some of the con-

dition numbers of MA and AM for the adaptive SPAI matrices resulting from the mini-

mization of ||MA− I||2. We note that the left SPAI matrix effectively lowers the condition

number κ(MA) for left preconditioned systems. On the other hand, the quality of the

dynamic SPAI as a right preconditioner is more erratic and M sometimes fails to reduce

the condition number. In contrast, the ILU(0) preconditioner proves to be a more robust

preconditioner with a more efficient reduction of the condition number (cf. Table 4.6).

By using a SPAI preconditioner, it is implicitly anticipated that the inverse of a sparse

matrix A can be adequately approximated by a sparse matrix. This is essential to obtain

a sufficient approximation of the multiplication A−1x with a sparse matrix-vector prod-

68



Table 4.5: Condition numbers with adaptive SPAI preconditioning.

Matrix name Condition number κ(MSPAIA) Condition number κ(AMSPAI)

ORSIRR_1 69.62 88.36
ORSIRR_2 67.97 7.53× 104

SHERMAN1 4115 1.09× 107

SHERMAN5 2318 4.61× 105

Table 4.6: Condition numbers with ILU(0) preconditioning.

Matrix name Condition number κ(MILUA) Condition number κ(AMILU)

ORSIRR_1 49.49 59.41
ORSIRR_2 49.49 59.40

SHERMAN1 129.31 129.31
SHERMAN5 248.67 4.61× 104

uct in the Krylov methods. Yet, nothing really seems to justify this a priori assumption

since the inverse of a sparse matrix is usually dense. Nonetheless, it is noted in [137]

that for particular sparse diagonally dominant matrices, the entries of the inverse decay

exponentially away from the diagonal. As a result, some inverses of sparse matrices may

have only a handful of large entries. Therefore, the action of the inverse could be well

approximated with a sparse matrix.

Let us consider ORSIRR_2 from the SuiteSparse collection. This matrix was generated

from an oil reservoir simulation resulting from a finite element discretization. ORSIRR_2

is sparse and diagonally dominant. Its pattern is displayed in Figure 4.2. Due to its rather

small dimension, its inverse matrix can be exactly computed. Although being dense, the

inverse has only a handful of large magnitude entries. Coefficients larger than the thresh-

old τ = 10−3 in A−1 are plotted on the right of Figure 4.2. The sparsity pattern of the

adaptive SPAI preconditioner with a tolerance ε = 0.2 is displayed on the left of Fig-

ure 4.3. The large entries of A−1 are efficiently captured by the adaptive SPAI algorithm.

As a consequence, the convergence associated with the adaptive SPAI preconditioner is

effectively accelerated with a number of steps slightly larger than for the ILU precondi-

tioner, but much less than with the fixed sparsity pattern of A (cf Table 4.3). The pattern

69



obtained from the matrix A2 is also presented in Figure 4.3. The sparse inverse pattern

is less accurately recovered but most of the entries corresponds to large entries of the

inverse.

0 200 400 600 800

nz = 5970

0

100

200

300

400

500

600

700

800

Sparsity pattern of ORSIRR_2

0 200 400 600 800

nz = 19985

0

100

200

300

400

500

600

700

800

Sparsified inverse of ORSIRR_2

Figure 4.2: Sparsity pattern of ORSIRR_2 (left) and largest entries in the inverse of OR-

SIRR_2 (right).

0 200 400 600 800

nz = 14990

0

100

200

300

400

500

600

700

800

SPAI,  = 0.2

0 200 400 600 800

nz = 6495

0

100

200

300

400

500

600

700

800

SPAI

Figure 4.3: Adaptive SPAI with ε = 0.2 (left) and fixed SPAI from a sparsified P(A2)

(right) for ORSIRR_2.

In addition, an eigenvalue study of the resulting preconditioned systems is conducted.

Figure 4.4 shows the impact of the tolerance ε on the eigenvalue distribution. A tighter

70



SPAI tolerance ε tends to gather the eigenvalues of the preconditioned system around

unity and away from zero, providing better conditioned matrices.

-0.5 0 0.5 1 1.5 2
Real

-0.2

-0.1

0

0.1

0.2

Im
ag

in
ar

y

-0.5 0 0.5 1 1.5 2
Real

-0.2

-0.1

0

0.1

0.2

Im
ag

in
ar

y

Figure 4.4: Eigenvalue distributions for MSPAIA, computed with a SPAI tolerance ε = 0.6

in the upper plot, and ε = 0.2 for the bottom distribution.

In most of the numerical experiments, the factorization-based preconditioners show

more robust and faster convergences than the sparse approximate preconditioners, at

least in terms of iteration count and spectral properties. However, factorization-based

preconditioners do not scale efficiently on massively parallel architectures.

Left and Right Preconditioning

As described in Section 2.2, the preconditioner can be applied to the right or left side of the

system of linear equations. We noted in Subsection 4.1.4 that the implementation of SPAI

is compatible with a left preconditioned Krylov method only. In this regard, the use of the

left computed SPAI as a right preconditioner yielded poor conditioning (cf. Table 4.5). In

this subsection, the preconditioning side and its influence on the GMRES algorithm are

discussed. A measure of the quality of the current approximate solution x to the solution

x∗ is required within the linear solver to decide whether the convergence should proceed.

Since we look for the solution of the linear system, the interesting metric is the norm of

71



the error e, given by ||e|| = ||x∗ − x||. Unfortunately, the error calculation requires the

unknown solution x∗ and is thus inaccessible. On the other hand, the residual r gives an

estimate of the extent to which the approximate solution satisfies the linear system with

r = b−Ax. (4.21)

The condition r = 0 is equivalent to e = 0. Nonetheless, a small norm of the residual does

not always guarantee that the error is small in norm as well. The inequalities (4.22) from

[138] provide relationships between the error, the residual and the condition number of

the coefficient matrix κ(A) = ||A||2||A−1||2:

1
κ(A)

||r||2
||b||2

≤ ||e||2||x∗||2
≤ κ(A)

||r||2
||b||2

. (4.22)

From these inequalities, it follows that a small relative residual ||r||2||b||2 implies a small rela-

tive error ||e||2||x∗||2 provided that the coefficient matrix A is well-conditioned.

In Krylov subspace methods such as GMRES, the residual (4.21) is never explicitly

computed. In practice, the residual norm comes as a by-product with the solution of the

least-squares problem (2.18). When the linear system is solved with a right precondition-

ing method, the equivalent system to be solved is AMy = b and x = My, for x. In GM-

RES, the termination criterion employs the norm of the residual r = b−AM(M−1x) =

b− Ax, which is independent of the chosen right preconditioner. Hence, right precon-

ditioning is usually preferred when different preconditioners are compared as explained

in [42]. In this way, the stopping criterion is based on the minimization of the same inde-

pendent quantity ||b−Ax||2. This quantity is now referred to as the unpreconditioned

norm.

On the contrary, left preconditioning alters the residual of the linear system MAx =

Mb. In lieu of the residual b−Ax, the GMRES termination criterion is naturally calcu-

lated with the norm of the preconditioned residual rprec = M(b−Ax), readily available

in memory. The computation of the unpreconditioned residual norm ||b−Ax||2 is practi-

cable but requires an additional explicit computation, which is thus avoided. As a conse-

quence, the quality of the preconditioning matrix influences the termination criterion. In

72



the case where M is a sound approximation of A−1, the preconditioned residual becomes

a suitable estimation of the error e, as ||M(b−Ax)||2 ≈ ||A−1b− x||2 = ||e||2. Newton-

Krylov methods often employ a left preconditioner to use an error estimate of the update

vector ∆w in the termination criterion [139].

In Figure 4.5, the convergence of the error, the preconditioned norm and the unpre-

conditioned norm along the convergence of the linear system defined by ORSIRR_2 are

plotted. The system is solved with the left preconditioned GMRES(30) using the precon-

ditioners ILU(0) and SPAI respectively for a relative tolerance of τ = 10−4. Therefore the

natural norm used in the stopping criterion is the preconditioned residual norm. This

output is specific to this case. Yet, we notice that both the preconditioned and unprecon-

ditioned norms are generally related in such a way that a decrease in one of them leads

to a decrease of about the same order of magnitude in the other.

0 5 10 15 20 25

Iteration

10 4

10 3

10 2

10 1

100

101

102

Eu
cl

id
ea

n 
N

or
m

ILU preconditioning

Error
Preconditioned Residual
Unpreconditioned Residual

(a) ILU(0) left preconditioning.

0 5 10 15 20 25 30

Iteration

104

103

102

101

100

10 1

10 2

10 3

10 4

10 5

Eu
cl

id
ea

n 
N

or
m

SPAI preconditioning

Error
Preconditioned Residual
Unpreconditioned Residual

(b) Adaptive SPAI left preconditioning.

Figure 4.5: Convergence histories of the error, preconditioned residual and unprecondi-

tioned residual norms for the ORSIRR_2 matrix.

73



4.2 SPAI Preconditioning Strategy in the Newton-Krylov

Framework

The solution of nonlinear equations with Newton’s method requires successive solutions

of several slightly different linear systems of equations at each time step. At the k-th

Newton step, the linear system to solve reads

A(k)x = −R(k), (4.23)

with x being the unknown vector, R(k) the nonlinear residual, and A(k) the Jacobian ma-

trix. The linear system solver, including the preconditioner computation, is generally the

most time-consuming part of a flow solver. To this extent, the need for fast and scalable

linear solvers is paramount for efficient implicit CFD solvers. Although the SPAI precon-

ditioner shows a high degree of coarse-grained parallelism, its computation is expensive.

Therefore, we seek to damp the cost of the SPAI algorithm for successive systems of lin-

ear equations, even if it might come at the expense of the quality of the preconditioner. In

this section, we examine ways to optimize the SPAI preconditioner in the Newton-Krylov

method.

4.2.1 Reusing the SPAI Pattern

In implicit coupled solvers, the fixed discretization stencil ensures that all flux Jacobians

A(k) possess a fixed block sparsity pattern. Only their entry values vary from one step

to another as the approximate solution converges to the steady-state solution. Hence, we

can expect moderate changes in the sparsity pattern obtained from the SPAI adaptive al-

gorithm for subsequent Jacobian matrices. Following a remark in [118], we consider the

idea of reusing a former SPAI pattern to compute a static SPAI. In this way, the precondi-

tioner is alternatively computed with the more expensive adaptive SPAI algorithm from

the diagonal start pattern and the fixed SPAI preconditioner from the last computed SPAI

pattern.

74



To illustrate the relevance of reusing a SPAI pattern for consecutive Newton steps

in equation (4.23), let us consider the simulation in FANSC of a transonic flow around

a NACA 0012 airfoil with a Mach number of M = 0.8. The solution of the Reynolds-

Averaged Navier-Stokes equations is carried out with a Newton-GMRES(30) method,

preconditioned with a block adaptive SPAI preconditioner. The SPAI matrix is computed

with a SPAI tolerance ε = 0.2 and a maximum number of 7 adaptive steps, each adding

a maximum of 5 new entries. The evolution of the sparsity pattern of the resulting SPAI

preconditioners along Newton’s method is studied. In Figure 4.6a, we report the percent-

ages of common entry positions of the newly computed SPAI with respect to the SPAI

sparsity pattern calculated at the first nonlinear step k = 1.

0 5 10

Nonlinear step

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f c
om

m
on

 e
nt

ry
 p

os
iti

on
s 

(%
)

(a) With respect to the first Newton step.

20 25 30 35 40 45 50

Nonlinear step

80

90

100
Pe

rc
en

ta
ge

 o
f c

om
m

on
 e

nt
ry

 p
os

iti
on

s 
(%

)

(b) With respect to the 20th Newton step.

Figure 4.6: Percentage of common entry positions with the first SPAI pattern of the suc-

cessive SPAI preconditioners in the NACA 0012 test case.

It is common to witness two different stages of convergence in a steady-state CFD sim-

ulation. In the first nonlinear iterations, the approximate solution is likely to be far from

the steady-state solution. Therefore, a highly unsteady first stage is characterized by sub-

stantial variations in the coefficient matrix entries and large updates are applied to the

approximation w. Thus, the SPAI patterns computed with the adaptive algorithm are di-

vergent after a couple of iterations. Once the convergence is established, the instationary

iterations give way to a steady linear convergence towards the solution. In this second

phase, the Jacobian matrices evolve more slowly. Therefore, if we compare the SPAI pat-

75



terns of subsequent iterations later in the convergence, the variation is less stringent. As

an example, around 75% of the entry positions in the 50th SPAI matrix are already present

in the 21st SPAI matrix (cf. Figure 4.6b). The shapes of the curves tend to suggest that the

SPAI sparsity patterns of successive Jacobian matrices have a common base to which are

added entries sensitive to small variations in the values of the Jacobian coefficients.

The same study was conducted with the ONERA M6 viscous test case, the results of

which are reported in Figure 4.7. The SPAI sparsity patterns are even more consistent in

this case where only 3% of the entry coordinates are different between the 21st and the

50th SPAI matrices.

5 10

Nonlinear step

92

93

94

95

96

97

98

99

100

Pe
rc

en
ta

ge
 o

f c
om

m
on

 e
nt

ry
 p

os
iti

on
s 

(%
)

(a) With respect to the first nonlinear step.

20 25 30 35 40 45 50

Nonlinear step

97

98

99

100

Pe
rc

en
ta

ge
 o

f c
om

m
on

 e
nt

ry
 p

os
iti

on
s 

(%
)

(b) With respect to the 20th nonlinear step.

Figure 4.7: Percentage of common entry positions with a given SPAI pattern for the suc-

cessive SPAI preconditioners in the ONERA M6 test case.

4.2.2 SPAI Strategy in Newton’s Method

When the Jacobian matrix does not change significantly from one iteration to another,

it might be advantageous to freeze the preconditioner and use the same SPAI precon-

ditioning matrix as stored for several subsequent Newton steps. As explained in [20],

Birken et al. failed to design sophisticated criteria to automatically decide whether to re-

calculate the preconditioner based on the convergence of the linear problems along the

Newton steps. They noted that different phases of the solving process lead to different

convergence properties for the linear solvers. Therefore, it is not evident whether a higher

76



number of linear iterations is primarily the consequence of a low-quality frozen precon-

ditioner that needs to be updated. As a matter of fact, the number of linear iterations also

depends on the evolution of the CFL number and the forcing term in Newton’s method.

The strategy adopted in this work follows a periodic recalculation of the adaptive

SPAI preconditioner, determined by a period of nonlinear iterations, as well as a combi-

nation with fixed SPAI preconditioners computed from a saved pattern and frozen SPAI

preconditioners. Frozen means that the SPAI preconditioner M is directly reused as it is

stored in memory, without any calculation. The main objective is to study the efficiency

of SPAI preconditioning in comparison with other parallel preconditioners such as the

domain decomposition block Jacobi and ASM. An example of SPAI computations during

Newton’s method with this strategy is described in Figure 4.8. The nonlinear iterations

are decomposed into a succession of periods, gathering a fixed number of consecutive

Newton steps.

Newton steps

1 2 3 4 5 7 8 9 …6

Recomputation
interval

1st Freezing period 2nd Freezing period 3rd Freezing period

Adaptive SPAI from 
a diagonal pattern 

Fixed SPAI from the 
last computed SPAI 
pattern in

Frozen SPAI

…

Figure 4.8: SPAI computation strategy during the nonlinear steps of Newton’s method.

At the beginning of each of these periods, the SPAI preconditioner is recomputed from

scratch with the adaptive SPAI algorithm or from the last known SPAI pattern, perform-

ing a static SPAI computation. The fixed SPAI steps are represented with an orange box

in Figure 4.8, whereas the adaptive SPAI computations correspond to a blue box. In the

remaining iterations within the periods, the SPAI preconditioning matrix is frozen and

directly reused in the GMRES process. These steps are represented with a green box. The

77



ensuing increase in the number of linear iterations should be offset by the time saved from

freezing the preconditioner. Since the Jacobian matrix is expected to change rapidly at the

beginning of the convergence, we decided to include a first interval in which the SPAI

preconditioner is recomputed at every iteration. The first SPAI computation of the first

nonlinear iteration is computed from scratch, using the adaptive SPAI algorithm from the

diagonal pattern. This step is by far the most time-consuming SPAI computation since all

the memory allocations are performed throughout the first SPAI computation. Finally, the

SPAI pattern is recomputed from the diagonal pattern after a number of freezing periods,

referred to as the update pattern rate. In the example in Figure 4.8, the SPAI freezing period

is set to 7. In addition, the recomputation interval length is 5 and the update pattern rate

is 2.

The SPAI preconditioning strategy within the flow solver is depicted in the flowchart

in Figure 4.9. As it is shown in Chapter 5, the optimization of the freezing period, the

update pattern rate and the SPAI density parameters is accompanied by a substantial

improvement in the SPAI application timings within a Newton-Krylov method.

78



Freeze the last 
computed SPAI

Start
Initialize the 

nonlinear 
equations

R w
2
≥ 𝑡𝑜𝑙 End

No

Yes

Is the 
Jacobian 
matrix 

updated?

Yes

Is the SPAI 
preconditioner 

updated?

Is the SPAI 
pattern 

updated?

Yes

Full adaptive 
SPAI 

recomputation

Solution of the 
linear system

N
ex

t 
n

o
n

li
n

ea
r 

it
er

at
io

n

No

No

No

Yes

Fixed SPAI from 
the last computed 

pattern

Figure 4.9: SPAI computation strategy in the nonlinear solver.

79



Chapter 5

Results

This chapter is divided into two parts. First, in Section 5.1, a scalability and performance

study of the parallel preconditioning methods is carried out using a highly partitioned

system of linear equations from a CFD problem. Different versions of the SPAI precon-

ditioner are tested and convergence rates are compared to the block Jacobi and restricted

additive Schwarz preconditioners. Secondly, in Section 5.3, we present the results for the

Navier-Stokes equations with FANSC, an in-house flow solver at Bombardier. In the re-

mainder of the thesis, ASM refers exclusively to the restricted additive Schwarz method,

and ILU to ILU(0).

We conducted the numerical experiments on general-purpose clusters maintained by

Compute Canada. In the first part, the tests were performed on the supercomputer Cedar

located at Simon Fraser University [140]. The 768 available nodes contain respectively

two Intel Platinum 8160F Skylake CPUs with a total of 48 cores, each with 4 GB of RAM

and running at a frequency of 2.4 GHz. Secondly, the numerical simulations on FANSC

were carried out on the supercluster Béluga located at the École de technologie supérieure

in Montreal, managed by Calcul Québec and Compute Canada [141]. The cluster consists

of 872 nodes with two Intel Gold 6148 Skylake processors, each with 20 cores and a clock

frequency of 2.4 GHz. The overall memory of the nodes ranges from 92 GB to 186 GB

depending on the node. The operation of this supercomputer is funded by the Canada

Foundation for Innovation (CFI), Ministère de l’Économie, des Sciences et de l’Innovation

du Québec (MESI) and le Fonds de recherche du Québec – Nature et technologies (FRQ-

NT).

80



5.1 Parallel Scaling of SPAI and Domain Decomposition

Preconditioners

Before testing the SPAI preconditioner to solve a system of nonlinear equations such as

the discretized Navier-Stokes equations, we seek to study the efficiency of precondition-

ing methods on a highly partitioned system of linear equations from an implicit solver.

Unfortunately, test matrices available in the SuiteSparse collection are generally fairly

small and rarely representative of the complex matrices arising from large-scale indus-

trial simulations. In addition, they rarely exhibit the typical block structure of Jacobian

matrices from the implicit discretization of the flow equations. Besides, they are hardly

ever provided with a right-hand side vector.

For this purpose, some matrices were collected during the convergence from the flow

solver Finite Volume Euler and Navier-Stokes (FVENS) [142]. FVENS is an open-source 2D

cell-centered finite volume solver for the compressible Euler and Navier-Stokes equations

written in C++. The baseline test case is a NACA 0012 airfoil in a subsonic Mach number

regime of M = 0.5 [143]. The convective part of the flux is discretized with the Roe

upwind scheme, whereas the diffusive flux uses the least-squares approach to compute

the gradients. More details on the convective and viscous flux discretization schemes are

available in [144] and [88] respectively. A series of three unstructured meshes consisting

of triangles have been used to discretize the governing equations. Table 5.1 summarizes

the test conditions, the properties of the mesh and the number of nonzero entries in the

studied Jacobian matrices, with Re being the Reynolds number and α the angle of attack.

The steady-state Mach number contour plot around the airfoil is shown in Figure 5.1.

Table 5.1: Parameters of the test cases used in FVENS.

Case
name

Airfoil M α Re Grid
cells

nnz in the
Jacobian matrix

visc_1 NACA 0012 0.5 0.0° 5000 52,624 3.62× 106

visc_2 NACA 0012 0.5 0.0° 5000 210,496 14.50× 106

visc_3 NACA 0012 0.5 0.0° 5000 841,984 58.03× 106

81



Figure 5.1: Steady-state Mach number contours around the NACA 0012 airfoil.

Since the 2D equations are solved, each cell contains the four discretized variables[
ρi, (ρvx)i, (ρvy)i, (ρE)i

]
and the Jacobian matrix A has a natural block size of 4. The same

problem is solved on three meshes of different sizes. This allows us to study the impact

of the grid size and the number of subdomains on the preconditioning performances.

The Jacobian matrices are stored in the CSR format in the computer code. Conse-

quently, the matrices are partitioned into as many chunks of rows as there are cores.

In compliance with the distributed memory approach, each core has a direct access to

its own chunk of rows. This partitioning of the matrices into rows is closely related to

the mesh partitioning, since each core is assigned a block. Hence, the number of cores

uniquely determines the domain partition as illustrated in Figure 5.2.

According to the number of required cores or blocks, the least possible number of

nodes was used to reduce the latency of communications between cores from one node to

another, and favor communications within the nodes. This especially benefits ASM and

SPAI preconditioners which require inter-core communications within the Krylov appli-

cation, contrary to the parallel block Jacobi approach. The solutions of the linear systems

were carried out with the scientific library PETSc via the left preconditioned GMRES(30)

method. As a result, convergence is based on the use of the preconditioned residual.

However, the unpreconditioned residual is the most significant metric for comparing the

82



Jacobian matrix distribution

1 ⋅⋅⋅ n⋅⋅⋅
n

2
+1

Core 1
Discretized equations 
of the cells in Block 1

Block 2Block 1

Core 2
Discretized equations 
of the cells in Block 2

Domain partition

⇔
n

2

Figure 5.2: Jacobian matrix distribution across the cores (left), and corresponding domain

decomposition (right).

efficiency of different preconditioners as noted in Subsection 4.1.5. In this respect, the

residual norm ||b−Ax||2 is explicitly computed at each step. This additional computa-

tional time is deducted from the timings, since the unpreconditioned residual is normally

not constructed as part of the GMRES process. Thus, all the following residual norms

refer to the same metric and can legitimately be compared. Longer restart periods have

been considered without leading to real improvements in the convergence.

5.1.1 Comparison of SPAI Preconditioning Variants

We investigate the sensitivity of various parameters on the density of the precondition-

ing matrix for both scalar and block versions of the SPAI preconditioners. We perform

this study for the smaller Jacobian matrix visc_1. The block SPAI takes advantage of the

block structure of the Jacobian matrix, with a reduced setup cost. The adaptive versions

of the preconditioning method use the adaptive algorithm from a diagonal sparsity pat-

tern, or a block diagonal for the block SPAI. The maximum number of improvement steps

is set to 5, with a maximum of 5 new indices per step. These parameters are sufficient to

act as a safeguard, preventing unreasonable fillings in the SPAI columns, while allowing

the SPAI tolerance ε to efficiently monitor the density of the preconditioner. As a matter

of fact, most of the SPAI column computations are stopped before reaching this upper

limit due to the residual condition enforced by the SPAI tolerance ε (cf. equation (4.10)).

83



The fixed version of the SPAI preconditioners calculates the SPAI matrix only from a pre-

scribed sparsity pattern. In our cases, it is realized either withP(A) or a sparsified version

of P(A2), with the same number of nonzero entries as in A. Finally, two hybrid ver-

sions combining the fixed and adaptive SPAI algorithms are tested. The starting patterns

P(A) or P(A2) are extended with a few improvement steps according to the processes

described in the following list.

• Scalar hybrid 1: The starting SPAI pattern is the sparsified pattern of A2, which

is then improved with three steps of the adaptive algorithm, where each adds a

maximum of 5 new entries with a SPAI tolerance ε = 0.2.

• Block hybrid 2: The pattern of A is extended with one additional adaptive step

adding a maximum of 5 new blocks. The SPAI tolerance ε is set to 0.4.

Table 5.2 summarizes the densities and computational times of the resulting SPAI pre-

conditioners. It is important to note that we only measure the total time taken by the

SPAI computation and the linear solver convergence. The CPU runtimes are reported for

a tolerance drop of four orders of magnitude τlin = 10−4 in the unpreconditioned resid-

ual. For clarity, Figure 5.3 shows the convergence history of the different preconditioned

GMRES solves from Table 5.2.

Table 5.2: Results for SPAI preconditioning for visc_1. The runtimes are recorded for 8

cores and a linear tolerance τlin = 10−4.

SPAI Parameters nnz SPAI Computational Time (s) Convergence Time (s) Total Time (s)

Block Adaptive SPAI ε = 0.4 7.30× 106 0.79 16.63 18.34

Block Fixed SPAI from P(A) 3.62× 106 0.14 Stalls Stalls

Scalar Adaptive SPAI ε = 0.4 3.55× 106 11.52 Stalls Stalls

Scalar Fixed SPAI from P(A) 3.62× 106 0.44 Stalls Stalls

Scalar Fixed SPAI from sparsified P(A2) 3.62× 106 0.79 Stalls Stalls

Scalar Adaptive SPAI ε = 0.2 8.03× 106 34.44 11.74 46.37

Scalar Adaptive SPAI ε = 0.1 11.19× 106 77.56 8.19 85.99

Scalar Hybrid 1 SPAI 6.69× 106 20.28 7.92 28.70

Block Hybrid 2 SPAI 7.45× 106 20.28 16.51 18.12

84



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration

10−12

10−10

10−8

10−6

Li
ne

ar
R

es
id

ua
lN

or
m

Block Adaptive SPAI ε = 0.4

Block Fixed SPAI from P(A)

Scalar Adaptive SPAI ε = 0.4

Scalar Fixed SPAI from P(A)

Scalar Fixed SPAI from P(A2)

Scalar Adaptive SPAI ε = 0.2
Scalar Adaptive SPAI ε = 0.1
Scalar Hybrid 1 SPAI
Block Hybrid 2 SPAI

Figure 5.3: Convergence histories with different SPAI settings for visc_1.

From the different tests, we can see that the GMRES processes stall below a certain

number of entries in the SPAI preconditioner. The block SPAI entails a denser precon-

ditioner than the scalar algorithm in the same number of steps. Every time an index is

added in the adaptive block algorithm, a 4×4 nonzero block is added to the pattern of the

SPAI matrix. Hence, the block SPAI quickly fills in the sparsity pattern of the precondi-

tioning matrix. In contrast, the patterns of A and A2 are too sparse to yield precondition-

ers of high quality without improving them with adaptive steps. As a consequence, the

convergence rapidly stalls for M resulting from the fixed SPAI based on P(A) and P(A2),

whereas they ensured convergence for the benchmark matrices from the SuiteSparse col-

lection in Subsection 4.1.5.

The block adaptive SPAI with a tolerance ε = 0.4 produces a preconditioner with

7.30× 106 nonzero entries which is sufficient to guarantee a decrease of 6 orders of mag-

nitude in the residual norm. To attain about the same number of nonzero entries, the

85



scalar version requires a very low tolerance of ε = 0.2. However, the computation of the

SPAI is prohibitively expensive in this case, taking more than half a minute to perform.

The GMRES method preconditioned with the block hybrid 2 SPAI has a faster conver-

gence rate than the adaptive preconditioners, while producing a less dense SPAI matrix

M. The convergence histories in terms of CPU execution time are shown in Figure 5.4.

The plots are offset to start once the SPAI computations are achieved. As a consequence,

none of the curves actually start at the origin. The adaptive scalar computations are con-

siderably more expensive compared to the block SPAI computations for the same number

of nonzero entries in the SPAI matrix.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

CPU Time (s)

10−12

10−10

10−8

10−6

R
es

id
ua

l

Block Adaptive SPAI ε = 0.4

Block Fixed SPAI from P(A)

Scalar Adaptive SPAI ε = 0.4

Scalar Fixed SPAI from P(A)

Scalar Fixed SPAI from P(A2)

Scalar Adaptive SPAI ε = 0.2
Scalar Adaptive SPAI ε = 0.1
Scalar Hybrid 1 SPAI
Block Hybrid 2 SPAI

Figure 5.4: Residual norm as a function of the CPU runtime for different SPAI settings for

visc_1 with 8 cores. The beginnings of the convergences were shifted to account for the

SPAI computational time.

5.1.2 Study of the Adaptive SPAI Preconditioning

It is important to ensure the convergence of the linear systems at each step of Newton’s

method. The adaptive SPAI is the most flexible SPAI preconditioner. Indeed, the precon-

ditioner density can easily be increased by tightening the tolerance ε if the preconditioner

is not effective in converging the linear systems. On the other hand, the performance of

the fixed preconditioners seems to be more problem dependent, with mixed results for

different problems. The performance of the block adaptive SPAI is studied with differ-

86



ent density settings, for a tolerance ε ranging from 0.1 to 0.8. The results are reported in

Table 5.3 for 8 cores.

Table 5.3: Results for the block adaptive SPAI preconditioning with a forcing term τlin =

10−3 for visc_1 with 8 cores.

Tolerance ε nnz SPAI Computational Time (s) Convergence Time (s) Total Time (s)

0.8 0.84× 106 0.05 Stalls Stalls
0.6 3.61× 106 0.26 Stalls Stalls
0.5 4.64× 106 0.41 Stalls Stalls
0.4 7.30× 106 0.76 10.61 12.51
0.2 19.64× 106 7.44 6.68 15.36
0.1 19.77× 106 7.53 6.17 14.95

0 1000 2000 3000 4000 5000

Iteration

10−9

10−8

10−7

10−6

10−5

R
es

id
ua

lN
or

m

SPAI, ε = 0.8
SPAI, ε = 0.6
SPAI, ε = 0.5
SPAI, ε = 0.4
SPAI, ε = 0.2
SPAI, ε = 0.1

(a) Convergence history in terms of iterations.

2 4 6 8 10 12 14 16 18

CPU Time (s)

10−9

10−8

10−7

10−6

10−5
R

es
id

ua
lN

or
m

SPAI, ε = 0.8
SPAI, ε = 0.6
SPAI, ε = 0.5
SPAI, ε = 0.4
SPAI, ε = 0.2
SPAI, ε = 0.1

(b) Convergence history in terms of CPU time.

Figure 5.5: Study of the adaptive block SPAI preconditioners with different tolerances ε

for visc_1.

The results in Table 5.3 tend to show that the lower the tolerance ε, the closer the SPAI

preconditioner M is to A−1. A more accurate preconditioner is expected to reduce the

number of iterations in the linear solver, also referred to as linear iterations. Yet, each

iteration becomes increasingly more expensive due to the increased density of the SPAI

preconditioner, since the application cost in the matrix-vector multiplication grows with

the number of nonzeros in the preconditioner M. Regardless of the tolerance value, all

87



the preconditioners efficiently reduce the residual norm by at least one order of magni-

tude after a few dozen iterations. However, the linear solver convergence quickly stalls

for SPAI preconditioning with a tolerance of ε ≥ 0.5. Hence, the preconditioning method

is very sensitive to the tolerance parameter. Even if small tolerances lead to convergence

with a reduced number of linear iterations, their increased computational and applica-

tion costs often outweigh the gain due to the reduction in the number of iterations. For

example, the reduction of four orders of magnitude in the preconditioned residual is at-

tained in around 1500 iterations with a tolerance ε = 0.1, whereas about 5000 iterations

are required with a tolerance ε = 0.4. However, their CPU timing is approximately the

same to meet this tolerance (cf. Figure 5.5b).

5.1.3 Comparison with Domain Decomposition Preconditioners

In this subsection, we compare the SPAI preconditioner to domain decomposition precon-

ditioners, namely the block Jacobi and restricted additive Schwarz (ASM) precondition-

ers. The block SOR and block ILU(0) respectively denote the block Jacobi preconditioner

where the local submatrices Bi are simply the SOR and ILU factorizations of the restric-

tions of A on the local subdomains. Their application consists of a single application of

the local SOR and ILU matrices. The block Jacobi-SOR and block Jacobi-ILU(0) methods

refer to a block Jacobi preconditioner with local GMRES(30) solvers preconditioned with

SOR and ILU respectively. In every iteration, the local subsystems are solved down to a

relative tolerance of τloc = 10−2. These preconditioners are expected to be more robust

than the mere applications of the local SOR and ILU matrices. Finally, ASM-ILU(0) de-

notes the restricted ASM preconditioning approach combined with local preconditioned

GMRES(30)-ILU(0) subsolvers. The width of overlap between local subdomains is set to

a single layer δ = 1. As with the block Jacobi preconditioner, the relative tolerance of the

local systems is τloc = 10−2. The overlap increases the stability of the preconditioning

methods but additional expensive inter-core communications are then required.

88



Convergence of the Domain Decomposition and SPAI Preconditioners

The results of the domain decomposition preconditioners as well as those of the adaptive

block SPAI are reported in Table 5.4 for 8 cores, 46 cores and 208 cores respectively. The

number of iterations and CPU timings are reported for a drop of four orders of magnitude

in the unpreconditioned residual norm. The corresponding convergences for 8 cores and

208 cores are shown in Figure 5.6 and Figure 5.7. As explained in Subsection 2.2.3, larger

subdomains provide for more robust block Jacobi and ASM preconditioners with denser

preconditioners. Unlike domain decomposition preconditioning, the rate of convergence

of linear solvers preconditioned with SPAI does not depend on the distribution of the

matrix across processors.

Table 5.4: Results for the problem visc_1 with a relative tolerance τlin = 10−4.

Partitioning Preconditioning Number of iterations CPU Runtime (s)

8 cores
6578 cells per core

Block SOR Stalls Stalls
Block ILU(0) 1041 3.00

Block Jacobi-SOR 653 109.41
Block Jacobi-ILU(0) 383 43.12

Restricted ASM-ILU(0) 242 28.27
Block Adaptive SPAI, ε = 0.4 4660 18.05

46 cores
1144 cells per core

Block SOR Stalls Stalls
Block ILU(0) Stalls Stalls

Block Jacobi-SOR 2816 29.43
Block Jacobi-ILU(0) Stalls Stalls

Restricted ASM-ILU(0) 1442 20.00
Block Adaptive SPAI, ε = 0.4 4617 6.22

208 cores
253 cells per core

Block SOR Stalls Stalls
Block ILU(0) Stalls Stalls

Block Jacobi-SOR Stalls Stalls
Block Jacobi-ILU(0) Stalls Stalls

Restricted ASM-ILU(0) Stalls Stalls
Block Adaptive SPAI, ε = 0.4 4596 1.85

The block SOR preconditioning is not robust enough to guarantee the convergence

of the GMRES algorithm with a partitioning into 8 subdomains. The convergence stalls

after a reduction of three orders of magnitude. On the contrary, other domain decompo-

89



0 2000 4000 6000 8000 10000

Iteration

10−11

10−9

10−7

10−5

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.4

(a) Convergence history in terms of iterations.

0 50 100 150 200

CPU Time (s)

10−11

10−9

10−7

10−5

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.4

(b) Convergence history in terms of CPU time.

Figure 5.6: Convergence results for visc_1 on 8 cores.

0 2000 4000 6000 8000 10000

Iteration

10−12

10−10

10−8

10−6

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.4

(a) Convergence history in terms of iterations.

0 1 2 3 4 5 6 7 8

CPU Time (s)

10−11

10−9

10−7

10−5

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.4

(b) Convergence history in terms of time.

Figure 5.7: Convergence results for visc_1 on 208 blocks.

90



sition preconditioners reach the prescribed relative tolerance within the allowed number

of linear iterations. The efficiency of parallel domain decomposition preconditioners de-

clines rapidly as the partitioning is increased to 46 and then 208 cores. In the latter case,

the only preconditioner ensuring the convergence of the GMRES method is the adap-

tive SPAI preconditioner. The scalability of the ASM-ILU(0) preconditioner reaches its

limit, as subdomains contain too few cells to entail sufficiently robust preconditioners.

In contrast, SPAI preconditioning generally requires more linear iterations than domain

decomposition preconditioners to converge. The same SPAI preconditioning matrix M is

computed in each partitioning and SPAI yields the same convergence in all the cases. The

minor differences in the number of linear iterations for the SPAI preconditioner with the

different number of cores are attributed to the roundoff errors.

We next compare the preconditioners for the larger matrix visc_2, which is obtained

from a mesh containing four times as many cells as with visc_1. The results of the different

preconditioning methods are gathered in Table 5.5 for 46 and 208 cores respectively. In

addition, the convergences are shown in Figure 5.8 and Figure 5.9.

Table 5.5: Results for the problem visc_2 for a relative tolerance τlin = 10−4.

Partitioning Preconditioning Number of iterations CPU Runtime (s)

46 cores
4576 cells per core

Block SOR 2228 8.54
Block ILU(0) 1094 3.53

Block Jacobi-SOR 938 85.14
Block Jacobi-ILU(0) 628 29.93

Restricted ASM-ILU(0) 426 56.47
Block Adaptive SPAI, ε = 0.4 12,985 55.74
Block Adaptive SPAI, ε = 0.2 3110 29.51

208 cores
1012 cells per core

Block SOR Stalls Stalls
Block ILU(0) Stalls Stalls

Block Jacobi-SOR Stalls Stalls
Block Jacobi-ILU(0) Stalls Stalls

Restricted ASM-ILU(0) 2491 16.09
Block Adaptive SPAI, ε = 0.4 13,050 18.21
Block Adaptive SPAI, ε = 0.2 3108 10.41

As the matrix size is larger, each individual core contains sufficient cells to yield ro-

bust convergences even with 46 subdomains, whereas most of them were stalling for the

91



0 5000 10000 15000

Iteration

10−10

10−8

10−6

10−4

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.4
SPAI, ε = 0.2

(a) Convergence history in terms of iterations.

0 50 100 150 200 250

CPU Time (s)

10−10

10−8

10−6

10−4

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.4
SPAI, ε = 0.2

(b) Convergence history in terms of time.

Figure 5.8: Convergence results for visc_2 on 46 blocks.

0 2000 4000 6000 8000 10000

Iteration

10−11

10−9

10−7

10−5

10−3

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.2

(a) Convergence history in terms of iterations.

0 10 20 30 40 50 60 70

CPU Time (s)

10−11

10−9

10−7

10−5

10−3

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.2

(b) Convergence history in terms of time.

Figure 5.9: Convergence results for visc_2 on 208 blocks.

92



same number of cores with visc_1. The SPAI tolerance ε of 0.4 is no longer enough to

sufficiently reduce the residual. A tolerance of ε = 0.3 seems more appropriate. For 46

subdomains, the GMRES method preconditioned with the adaptive SPAI requires more

iterations than the other domain decomposition preconditioners. Yet, in terms of CPU

runtime, the SPAI outshines all block Jacobi and ASM preconditioners. The block SOR

and block ILU with their low application costs are competitive against SPAI. Both block

SOR and ILU are known to be very sensitive to the increase in the number of nodes.

Hence, for a relatively low block partitioning, they can hardly be outperformed by more

complex domain decomposition preconditioning, such as restricted ASM-ILU(0), or the

parallel SPAI preconditioner. With a partitioning into 208 subdomains, the SPAI precon-

ditioner shows to be an efficient alternative for highly divided meshes. In contrast, the

domain decomposition approaches can hardly reduce the residual for more than a few

orders of magnitude (cf. Figure 5.9).

Finally, let us consider the larger mesh with 841,984 cells and the Jacobian matrix

visc_3. The convergence timings for 208 and 506 cores respectively are listed in Table 5.6

for a relative tolerance τlin = 10−4. The unpreconditioned residual norms as a function of

the iteration count and CPU time are plotted in Figure 5.10 and Figure 5.11.

Table 5.6: Results for the problem visc_3 for a relative tolerance τlin = 10−4.

Partitioning Preconditioning Number of iterations CPU Runtime (s)

208 cores
4048 cells per core

Block SOR 5603 23.36
Block ILU(0) Stalls Stalls

Block Jacobi-SOR 3726 294.34
Block Jacobi-ILU(0) 3633 178.04

Restricted SM-ILU(0) 1412 150.44
Block Adaptive SPAI, ε = 0.2 7328 83.81

506 cores
1664 cells per core

Block SOR Stalls Stalls
Block ILU(0) Stalls Stalls

Block Jacobi-SOR Stalls Stalls
Block Jacobi-ILU(0) Stalls Stalls

Restricted ASM-ILU(0) 5071 185.70
Block Adaptive SPAI, ε = 0.2 7310 35.14

93



0 4000 8000 12000 16000

Iteration

10−11

10−9

10−7

10−5

10−3

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.2

(a) Convergence history in terms of iterations.

0 100 200 300 400 500 600 700 800

CPU Time (s)

10−11

10−9

10−7

10−5

10−3

R
es

id
ua

lN
or

m

Block SOR
Block ILU
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.2

(b) Convergence history in terms of time.

Figure 5.10: Convergence results for visc_3 on 208 blocks.

0 2500 5000 7500 10000 12500 15000

Iteration

10−10

10−8

10−6

10−4

R
es

id
ua

lN
or

m

Block SOR
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.2

(a) Convergence history in terms of iterations.

0 50 100 150 200 250 300 350

CPU Time (s)

10−10

10−8

10−6

10−4

R
es

id
ua

lN
or

m

Block SOR
Block Jacobi-SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.2

(b) Convergence history in terms of time.

Figure 5.11: Convergence results for visc_3 on 506 blocks.

94



At first, the domain is decomposed into 208 equivalent subdomains. For such a large

matrix, a partitioning of the computational domain into 208 blocks is not problematic,

since there are more cells to feed the cores. The block SOR preconditioner works well

in this configuration and again cannot be outperformed by any other preconditioner in

terms of CPU runtime, even though more linear iterations are needed. Lastly, this system

of linear equations is tested with a high partitioning of 506 subdomains. The number of

cells per block is now only 1664. Restricted ASM-ILU(0) is the only domain decomposi-

tion preconditioner allowing the GMRES solver to achieve convergence. Yet, in this case,

the convergence is hardly stable with spurious oscillations, while the SPAI preconditioned

method converges rapidly.

Conclusion

We can draw a few conclusions from the test cases presented. As the matrix dimension

increases, domain decomposition preconditioners become more robust for a given num-

ber of cores and subdomains. These preconditioners are more sensitive to the number

of cells per block than the actual size of the Jacobian matrix, and tend to perform better

with larger subdomains. On the other hand, when a given problem is solved with an in-

creasing number of cores, domain decomposition preconditioning methods quickly reach

their scalability limit. Robustness could be increased with additional overlapping layers

for the restricted ASM preconditioner, but the communication overhead would increase

significantly.

As for the sparse approximate inverse, a larger Jacobian matrix requires denser SPAI

matrices to provide effective preconditioning. The density parameters suitable for small

matrices work poorly for larger grids. The most salient examples are the fixed versions of

SPAI, which worked successfully for the small matrices in the SuiteSparse collection but

are inoperable for the matrices presented in this subsection. The major drawback of the

SPAI preconditioner is the difficulty of finding proper parameters for a given coefficient

matrix. Yet, unlike domain decomposition preconditioners, SPAI is not dependent on the

number of subdomains in the matrix, and can succeed with dense preconditioners when

block Jacobi and ASM preconditioning methods fail because of their lack of scalability.

95



Finally, it is important to note that the linear systems arising from the quasi-Newton

method in the CFD solvers are rarely solved for more than a few orders of magnitude.

Thus, even if the preconditioning method results in a stalling convergence, the reduction

in the residual norm may still be sufficient to satisfy the prescribed relative tolerance,

ensuring an overall convergence of the nonlinear problem.

5.1.4 Strong and Weak Scaling

In this section, we present both the strong and weak scaling performances of the SPAI

preconditioner. These two studies provide a measure of the parallel performance of an

algorithm. As a rule, a given algorithm is said to be scalable if its efficiency does not

degrade with the number of cores [145]. For completeness, we compare the adaptive

SPAI preconditioning with the restricted ASM-ILU(0) method, which has proven to be

the most robust domain decomposition preconditioner in the preceding tests.

Strong Scaling

In strong scaling studies, the same problem is run for an increasing number of cores.

Consequently, the workload per core gradually decreases. Ideally, the scaling is studied

in comparison with a serial case run. However, it was not possible to test the SPAI pre-

conditioning on a single core for the larger case due to memory restrictions. Therefore,

we use 64 cores as the baseline run to measure the strong scalability. The parallel speedup

is defined as

Sp(np) =
tn0(dofs)
tnp(dofs)

, (5.1)

with tnp the time taken to execute the algorithm on np cores for a fixed size problem,

namely a fixed number of degrees of freedom (dofs) [146]. Besides, the reference number

of cores is taken as n0. Similarly, the strong scalability efficiency is given by

EStrong Scalability = Sp(np)×
n0

np
. (5.2)

96



The optimal speedup is Sp(np) = np/n0, which denotes that the execution on np cores is

exactly np/n0 times faster than on n0 cores, whereas the ideal efficiency is 1. The strong

scalability plots for the Jacobian matrix visc_3 are given in Figure 5.12.

75 100 125 150 175 200

Number of cores

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

Ideal
Restricted ASM-ILU
Adaptive SPAI, ε = 0.2

75 100 125 150 175 200 225

Number of cores

0.6

0.7

0.8

0.9

1.0

St
ro

ng
sc

al
ab

ili
ty

ef
fic

ie
nc

y

Restricted ASM-ILU
Adaptive SPAI computation, ε = 0.2
Adaptive SPAI application, ε = 0.2
Overall adaptive SPAI, ε = 0.2

Figure 5.12: Speedup with an increasing number of cores (on the left) and strong scaling

efficiency (on the right) for visc_3.

In Figure 5.12, “Adaptive SPAI computation” refers to the computational time of the

SPAI preconditioner only, while “Adaptive SPAI application” refers to the time spent

within the GMRES process, including the application of the preconditioner. SPAI pre-

conditioning features a better overall strong scaling than the ASM-ILU(0) preconditioner.

This is due to the independence of SPAI preconditioning from the number of cores. Thus,

the decrease in efficiency is essentially due to the increase in the number of inter-core com-

munications. The SPAI applications in the Krylov method require the communication of

the vector entries, whereas in the SPAI computation, block columns of A are exchanged.

On the contrary, the ASM-ILU(0) applications are less expensive for each iteration as the

subdomains become increasingly smaller. Nonetheless, their overall efficiency decreases

considerably due to the growing number of linear iterations required.

We note that the application portion of the SPAI preconditioner has a better strong

scaling. This is probably due to the fact that a larger number of long communications

is required throughout the SPAI computations. In contrast, the matrix-vector multipli-

cations and dot products in the GMRES process respectively require easily parallelized

97



operations such as the scattering of vector entries and some reduction operations [147–

149].

Weak Scaling

In practice, the increase in computing power is usually used to increase the amount of

data to be processed, for example with more accurate simulations and larger grids in CFD

applications. To this extent, the weak scalability efficiency measures the performance of

an algorithm when both the number of cores and the size of the problem increase at the

same rate. In this way, the problem size per parallel core is kept fixed for an increasingly

larger problem [150]. The weak scalability efficiency is defined as

EWeak Scalability =
tn0(dofs)

tnp(np/n0 · dofs)
. (5.3)

The study of the weak scaling for the parallel preconditioning methods is conducted solv-

ing the discretized equations on the three meshes of increasing size presented in Table 5.1,

for 8, 32 and 128 cores respectively. In this manner 6578 cells are assigned to each core in

the three different runs.

The SPAI preconditioner is used in its adaptive version with a fixed tolerance of ε =

0.2. Even though the SPAI preconditioner is computed with the same density parameters,

the resulting preconditioning matrices exhibit different densities (cf. Table 5.7). Conse-

quently, the number of linear iterations to achieve the same decrease in the residual norm

deteriorates as the size of the overall problem increases. Thus, the efficiency of both the

ASM-ILU(0) and SPAI application for the weak scalability is shown per iteration in Fig-

ure 5.13. In contrast, the workload per core is approximately the same along the SPAI

computations as the same number of columns is assigned to each core in all test cases.

98



Table 5.7: Properties of the block adaptive SPAI preconditioners for the matrices visc.

Case SPAI Tolerance ε nnz Density Iteration count

visc_1 0.2 19.64× 106 4.4× 10−4 1571
visc_2 0.2 79.51× 106 1.1× 10−4 3108
visc_3 0.2 319.73× 106 2.8× 10−5 7311

0.0 0.5 1.0 1.5 2.0 2.5

Logarithm of the problem size (number of cells)

0.5

0.6

0.7

0.8

0.9

1.0

W
ea

k
sc

al
in

g
ef

fic
ie

nc
y

Restricted ASM-ILU
Adaptive SPAI computation, ε = 0.2
Adaptive SPAI application, ε = 0.2

Figure 5.13: Weak scalability efficiencies of the block adaptive SPAI and ASM-ILU(0)

preconditioners for the matrices visc.

5.2 Test Cases for the Euler and Navier-Stokes Equations

Different test cases were used to simulate different flow types and optimize the parame-

ters of the preconditioners.

5.2.1 Test Cases

In Table 5.8, we present the different test cases solved with FANSC in Section 5.3. They

depict transonic cases of different geometry and size. Each of them is characterized by

the free-stream Mach number M, the angle of attack α and the Reynolds number Re.

99



Table 5.8: Parameters for the test cases used in FANSC.

Name M α Re Dimension Grid cells Number of Blocks

NACA 0012 [143] 0.80 1.25° inviscid 2D 3.17× 104 4
ONERA M6 [151] 0.84 3.06° 11.72× 106 3D 1.85× 106 288

CRM-L3 [152] 0.84 2.11° 5.0× 106 3D 7.74× 106 256

The test cases include an inviscid 2D case for the NACA 0012 airfoil with a transonic

flow at a Mach number 0.8. The ONERA M6 wing as well as the CRM wing/body are

both turbulent and 3D cases. The NACA 0012 airfoil and ONERA M6 wing cases were

used in Subsection 4.2.1 to study the similarities in subsequent adaptive SPAI patterns.

The initialization of the flow on the mesh is achieved with a nested iteration strategy in

which the initial guess is improved with inexpensive solves on successive nested grids of

small size [138]. The solution is then interpolated to be used as an initial guess for the next

finer grid. In this way, it is possible to start the simulation on the fine grid with a more

accurate initial solution. The original grids were split to obtain the maximum degree of

parallelism. The splitting strategy used in FANSC to ensure an adequate load balancing

is described in [111]. The pressure contours of the steady-state solution over the ONERA

M6 and CRM geometries are shown in Figure 5.14.

(a) ONERA M6 Wing. (b) CRM Wing/Body.

Figure 5.14: Surface pressure contours calculated with FANSC over the ONERA M6 wing

and CRM wing/body.

100



5.2.2 Methodology for Comparing Algorithms

The convergence of the flow solver is monitored with the nonlinear residual rnl based on

the normalized mass flux norm over the cells, given at the n-th nonlinear iteration by

rn
nl =

|| (ρv)n ||2
|| (ρv)0 ||2

. (5.4)

The main unit of interest for comparing the efficiency of different algorithms is the CPU

execution time. However, its measurement is far from perfect as it is dependent on the

architecture of the computer and the compiler. The memory bandwidth and the cache

size can have a significant impact on the efficiency of an algorithm. On the contrary, units

specific to the solving method, such as the number of nonlinear and linear iterations in

a Newton-Krylov method, are indicators of the inherent performance of the algorithm.

Nevertheless, they cannot provide the overall picture of the algorithm efficiency. For in-

stance, a convergence in fewer Newton steps usually comes with a higher computational

cost per step. For the tests, we report the CPU execution times as well as the number

of linear iterations, nonlinear steps and eventually the number of preconditioning eval-

uations. All the following tests were performed on the supercluster Béluga managed by

Calcul Québec, and were therefore executed on the same CPU architecture.

5.3 Reynolds-Averaged Navier-Stokes Results and Discus-

sion

In this section, the preconditioning methods are tested to solve the compressible RANS

equations with a Newton-GMRES algorithm within the flow solver FANSC. The effects of

SPAI preconditioning on the convergence of the nonlinear problems and its performance

in comparison with domain decomposition preconditioners are studied.

101



5.3.1 Optimization of the SPAI Preconditioning Strategy

Before comparing SPAI with domain decomposition preconditioning methods, we first

investigate in depth the optimization of the SPAI preconditioning strategy introduced

in Section 4.2. The optimization of the recomputation and SPAI density parameters are

paramount for the efficiency of SPAI. The following tests were carried out with the CRM-

L3 grid on 160 cores for load balancing purposes. The same type of optimization was

conducted with the ONERA M6 wing. The CRM case is solved by means of a Newton-

GMRES(30) method with a defect correction approach where the relative inner tolerance

τlin for the linear systems is set to 10−2. Besides, the CFL number is linearly increased at

every nonlinear update. The convergence stops once the nonlinear residual rnl has been

reduced by five orders of magnitude. Four parameters were investigated to optimize the

SPAI preconditioning:

• The SPAI tolerance ε, which defines the stopping criterion within the SPAI adaptive

strategy (cf. equation (4.10)).

• The update pattern rate, which sets the rate at which the SPAI pattern is recomputed

from scratch with the adaptive SPAI algorithm, i.e. the number of reused patterns

with a fixed SPAI (orange cell in Figure 4.8) before performing a fresh adaptive

computation from a diagonal pattern (blue cell in Figure 4.8).

• The SPAI freezing period, which specifies the length of the freezing periods in Fig-

ure 4.8.

• The number of Newton steps before the onset of the freezing periods, i.e. the stride

of orange cells in Figure 4.8 before the first freezing period.

The final CPU timings as well as the total number of linear iterations are reported. We

note that in a given parameter study, all other parameters are maintained constant, but

not necessarily at their optimal value. The objective is to examine the possible speedup

obtained with appropriate SPAI parameters. The results are presented in Figure 5.15.

In Figure 5.15a, the performance of the preconditioning is reported with a SPAI toler-

ance ε ranging from 0.2 to 0.7. The fixed version of the SPAI preconditioner is recalculated

102



0.2 0.3 0.4 0.5 0.6 0.7

SPAI tolerance ε

4000

6000

8000

C
PU

R
un

ti
m

e
(s

)

40000

60000

80000

O
ve

ra
ll

nu
m

be
r

of
lin

ea
r

it
er

at
io

ns

(a) Influence of the SPAI tolerance ε.

5 10 15 20 25

SPAI pattern update rate

3000

3200

3400

C
PU

 R
un

tim
e 

(s
)

53100

53200

53300

O
ve

ra
ll 

nu
m

be
r 

of
 li

ne
ar

 it
er

at
io

ns

(b) Influence of the update pattern rate.

5 10 15 20

SPAI freezing period

3200

3250

3300

3350

C
PU

 R
un

tim
e 

(s
)

53000

54000

55000

56000

57000

O
ve

ra
ll 

nu
m

be
r 

of
 li

ne
ar

 it
er

at
io

ns

(c) Influence of the SPAI period length.

5 10 15 20

Nonlinear iterations before starting the SPAI freezing periods

2820

2840

2860

2880

C
PU

 R
un

tim
e 

(s
)

53600

54000

54400

54800

O
ve

ra
ll 

nu
m

be
r 

of
 li

ne
ar

 it
er

at
io

ns
(d) Influence of the interval length before the

freezing periods.

Figure 5.15: CPU runtimes and number of nonlinear iterations for different SPAI param-

eters for the CRM test case.

103



every iteration and the SPAI pattern is updated every five iterations. A steady reduction

in the number of linear iterations is achieved with a lower tolerance ε as the precondi-

tioner becomes a better approximation of the inverse of the Jacobian matrix. As a result,

the decrease in the number of linear iterations is first accompanied by a reduction in the

CPU runtime until the application of the preconditioner becomes too computationally ex-

pensive. The optimal tolerance ε would be between 0.4 and 0.5. In Figure 5.15b, the SPAI

tolerance ε is set to 0.5 while the update pattern rate is adjusted.

In the freezing period study in Figure 5.15c, the SPAI preconditioner is frozen for suc-

cessive nonlinear iterations. In this case, frequent recomputations of the SPAI entries

result in a substantial acceleration. Finally, the impact of the length of the initial succes-

sive recomputations of the SPAI preconditioner is studied in Figure 5.15d. The different

studies show that many parameters have to be taken into account to ensure an efficient

SPAI preconditioner, and prevent unreasonable expensive computations. In summary,

the most optimal SPAI preconditioner produced a threefold increase in the convergence

of the nonlinear solver.

5.3.2 Comparison with Domain Decomposition Preconditioners

Low-Order Jacobian

In the first numerical experiments, the Newton-Krylov steps are carried out with a low-

order Jacobian matrix as the left operator, according to the defect correction approach

presented in Subsection 3.4.2. The low-order Jacobian matrices are sparser due to their

reduced discretization stencil. On the other hand, the convergence requires a large num-

ber of nonlinear iterations to reach the desired reduction in the nonlinear residual rnl.

The flow around the ONERA M6 wing is solved with FANSC for a decomposition of

the mesh into 288 blocks. This is the maximum we were able to obtain from the origi-

nal mesh to guarantee a sufficient number of cells on the coarsest mesh. Even though

the mesh is made of 288 blocks, the simulations are carried out on 252 cores to ensure a

satisfying load balance between the cores. We study the convergence for different inner

linear tolerances τlin, ranging from 10−1 to 10−4 and compare the following precondition-

ers: block SOR, block Jacobi-ILU(0), restricted additive Schwarz-ILU(0) and SPAI. In line

104



Table 5.9: Results of the ONERA M6 case with domain decomposition preconditioning

for different linear relative tolerances τlin.

288 blocks - ONERA M6 Wing

Preconditioner τlin Nonlinear iterations Lin. Iters. Krylov time (s) Total CPU time (s)

Block SOR

10−1 497 7052 50.01 87.96
10−2 495 17,246 121.31 157.55
10−3 495 52,197 375.07 419.9
10−4 495 125,197 983.95 1021.03

Block Jacobi
-

ILU(0)

10−1 496 3119 82.12 118.38
10−2 497 7636 185.28 224.76
10−3 496 28,389 692.38 737.51
10−4 496 67,658 1833.08 1876.82

Restricted
Additive

Schwarz-ILU(0)

10−1 495 2303 89.5 125.54
10−2 498 7245 262.19 302.42
10−3 496 2454 950.33 996.12
10−4 Diverges

with the SPAI strategy study carried out for the CRM case in the preceding subsection,

the following SPAI results are obtained with the optimal parameters, namely with a SPAI

tolerance ε = 0.5, a freezing period of length 6 and a first update interval of length 6. The

corresponding results are reported in Table 5.9 and Table 5.10.

In Figure 5.16, an instance of the convergence histories is plotted for four different

linear tolerances τlin with the block Jacobi-ILU(0) preconditioner. It turns out that the

number of nonlinear iterations is barely sensitive to the reduction of the linear tolerance

τlin. This is due to the use of an inaccurate Jacobian matrix, which is detrimental to the

consistency of the linear systems. Therefore, deep convergence of linear systems is not

only unnecessary in this case, but also leads to oversolving of the linear systems. In

addition, a large number of nonlinear iterations are required to achieve convergence.

Figure 5.17 illustrates the convergence of the nonlinear residual rnl with the block

Jacobi-ILU(0), ASM-ILU(0) and SPAI for different inner tolerances. We can observe that

the SPAI preconditioner becomes more advantageous when the linear systems need to be

solved more precisely. This is due to the fact that the application of the SPAI precondi-

tioner is rather inexpensive compared to sophisticated block Jacobi-ILU(0) or ASM-ILU(0)

preconditioners. As a result, the SPAI computational cost before the Krylov method is bet-

105



Table 5.10: Results of the ONERA M6 case for different linear relative tolerances τlin with

the adaptive block SPAI.

Adaptive Block SPAI - 288 blocks - ONERA M6 wing

τlin Nb. of SPAI comp. Nonlin. Iters. Lin. Iters. Krylov time (s) SPAI time (s) Total CPU time (s)

10−1 52 626 24,967 161.68 12.57 205.45
10−2 49 492 32,447 203.07 11.32 241.48
10−3 49 496 88,549 547.94 11.33 588.37
10−4 49 497 169,587 1163.09 11.23 1202.82

0 100 200 300 400 500

Nonlinear Step

10−5

10−4

10−3

10−2

10−1

100

N
on

lin
ea

r
R

es
id

ua
l

τlin = 10−1

τlin = 10−2

τlin = 10−3

τlin = 10−4

Figure 5.16: Convergence histories of the nonlinear residual rnl for different forcing terms

τlin with block Jacobi-ILU(0) preconditioning in the ONERA M6 test case.

ter amortized over the different linear iterations. Besides, as we can see in Table 5.12, the

overall SPAI computational time is bounded, since the number of nonlinear iterations re-

mains approximately the same in all cases. On the contrary, the Krylov application time

increases due to the growing number of linear iterations. In contrast, the efficiency of

block Jacobi and ASM decreases as τlin is lowered. SPAI preconditioning becomes more

efficient than the domain decomposition preconditioners for inner tolerances lower than

τlin = 10−3. For the last relative tolerance τlin = 10−4, the ASM preconditioned method

does not converge probably because the local GMRES processes are only carried out down

to a relative tolerance of 10−2, which is too loose.

106



0 50 100 150 200

CPU Runtime (s)

10−5

10−4

10−3

10−2

10−1

100

N
on

lin
ea

r
R

es
id

ua
l

Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.5

(a) τlin = 10−1.

0 50 100 150 200 250 300

CPU Runtime (s)

10−5

10−4

10−3

10−2

10−1

100

N
on

lin
ea

r
R

es
id

ua
l

Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.5

(b) τlin = 10−2.

0 200 400 600 800 1000

CPU Runtime (s)

10−5

10−4

10−3

10−2

10−1

100

N
on

lin
ea

r
R

es
id

ua
l

Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.5

(c) τlin = 10−3.

0 500 1000 1500

CPU Runtime (s)

10−5

10−4

10−3

10−2

10−1

100

N
on

lin
ea

r
R

es
id

ua
l

Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.5

(d) τlin = 10−4.

Figure 5.17: Convergence histories for the ONERA M6 test case with different forcing terms τlin

using block Jacobi-ILU(0), ASM-ILU(0) and SPAI preconditioners.

107



The same study is carried out with the CRM-L3 test case for two different inner tol-

erances τlin = 10−2 and τlin = 10−3. The latter implies a deeper convergence for the

linearized systems arising from Newton’s method. Once again, we consider block SOR,

ASM and SPAI preconditioning techniques. The SOR preconditioner is directly based on

the coefficients of the Jacobian matrix and therefore does not require any calculation be-

fore its application, unlike the ILU(0) and SPAI preconditioners. SPAI preconditioning is

employed with the tolerance ε = 0.5 and a freezing period of length 2. Table 5.11 shows

the results of these tests with the block SOR and ASM-ILU(0) methods. The results for

the SPAI preconditioner are gathered in Table 5.12. The CRM simulations are executed on

160 cores with a mesh decomposed into 256 blocks.

Table 5.11: Results of the CRM test case with the domain decomposition preconditioners

for different linear tolerances τlin.

Preconditioning τlin Nonlinear iterations Lin. Iters. Krylov time (s) Total CPU time (s)

Block SOR
10−2 464 20,359 932.88 1100.11
10−3 461 51,570 2423.65 2596.46

Restricted
ASM-ILU(0)

10−2 461 4377 3335.14 3506.38
10−3 450 12,166 4741.47 4917.47

Table 5.12: Results of the CRM test case with the adaptive block SPAI for different linear

tolerances τlin.

Adaptive Block SPAI - CRM L3 grid

τlin Nb. of SPAI comp. Nonlin. Iters. Lin. Iters. Total CPU time (s) Krylov time (s) SPAI time (s)

10−2 83 457 53,221 2305.73 2120.67 152.84
10−3 84 460 252,892 10,190.86 9999.99 158.82

The CPU timings for the three different preconditioning methods are shown in Fig-

ure 5.18. The SOR preconditioner yields the best results, converging in about 1000 sec-

onds, less than half of what is required for the SPAI to converge and one third of the

runtime for the ASM preconditioner. The computational domain is not sufficiently parti-

tioned to negatively affect the convergence with block SOR preconditioning.

Let us have a better insight into the convergence of the linear systems provided by

Newton’s method. In Figure 5.19a, the numbers of linear iterations to satisfy the termi-

108



0 500 1000 1500 2000 2500 3000 3500

CPU Runtime (s)

10−5

10−4

10−3

10−2

10−1

100

N
on

lin
ea

r
R

es
id

ua
l

Block SOR
Restricted ASM-ILU
SPAI, ε = 0.5

Figure 5.18: CPU runtime for block SOR, ASM-ILU(0) and SPAI preconditioning for the

CRM test case with τlin = 10−2.

nation criterion for the successive linear solvers are shown. The SPAI preconditioned

method requires more linear iterations to converge than with other preconditioners. SPAI

is an explicit preconditioning method approximating the inverse of the Jacobian matrix.

On the contrary, SOR and ILU(0) belong to the class of implicit preconditioners and di-

rectly approximate the Jacobian matrix. As a consequence, the inverses of SOR and ILU

are dense approximations of the inverse of the flux Jacobian. As a result, they gener-

ally achieve convergence in fewer linear iterations. On the other hand, their application

requires backward and forward substitutions when the application of the SPAI precondi-

tioner is simply a sparse matrix-vector product. The advantage of the SPAI comes from

the low cost of its application which is offset by a higher number of linear iterations.

In Figure 5.19b, we plot the time required to solve the linear system involved in each

nonlinear step for different preconditioning methods. Besides, the computational time

to form the SPAI and ILU(0) preconditioners have been added. We note that SPAI pre-

conditioning often results in faster convergence for the linear solvers compared to ASM

preconditioning, except for some very time-consuming linear solvers giving regularly

spaced spikes in Figure 5.19b. The complete recomputations of the SPAI preconditioner,

namely using the adaptive algorithm from a diagonal matrix yield the highest peaks.

109



0 100 200 300 400

Nonlinear Step

0

50

100

150

200

250

300
N

um
be

r
of

Li
ne

ar
It

er
at

io
ns

Block SOR
Restricted ASM-ILU
SPAI, ε = 0.5

(a) Number of linear steps for the successive lin-

ear solvers.

0 100 200 300 400

Nonlinear Step

0

5

10

15

20

C
PU

R
un

ti
m

e
of

th
e

St
ep

(s
)

Block SOR
Restricted ASM-ILU
SPAI, ε = 0.5

(b) Time spent in the successive linear solvers

Figure 5.19: Study of the linear solvers along the simulation of the flow around the CRM

test case for a linear tolerance τlin = 10−2

These nonlinear steps are the most expensive to carry out. In contrast, updating the SPAI

preconditioner from the last computed pattern yields the intermediate spikes, which are

approximately as expensive as ASM-ILU(0) preconditioning. Finally, the lower parts of

the SPAI plot correspond to frozen SPAI applications. Therefore, the SPAI computations

must be performed with care in order to avoid certain unnecessarily costly calculations.

Matrix-Free Jacobian

The left hand-side operator within the Krylov method is now computed with a matrix-

free approach as presented in Subsection 3.4.2. A forward finite difference in the same

way as in equation (3.31) is utilized. Consequently, an application of the Jacobian matrix

within the GMRES process requires an additional residual evaluation for a perturbed

state R(wn + hδw). The low-order Jacobian matrix used in the defect correction approach

is still explicitly computed to construct the preconditioners.

As we shall see, this improvement in consistency between the left hand side Jaco-

bian and the right-hand side residual R(wn) is accompanied by a sharp reduction in the

number of nonlinear steps to reach the prescribed nonlinear tolerance for rnl. In return,

110



the linear convergences become more demanding with a greater number of linear itera-

tions required. As in the defect correction approach, a nested iteration strategy with three

meshes is performed to compute a satisfying initial guess on the fine mesh of interest.

The CFL number is increased exponentially to accelerate the convergence. A pre-study

was conducted to determine the appropriate parameters for the SPAI preconditioning

strategy. The linear solvers employ left preconditioners, and the linear tolerance τlin of

the GMRES processes is set to 0.1. The corresponding convergence histories are shown

in Figure 5.20. We observe that the solver termination criterion is achieved in far fewer

Newton steps than with a low-order Jacobian matrix. Approximately 100 Newton steps

are necessary to attain a decrease of five orders of magnitude, whereas around 500 steps

were required with the defect correction approach (cf. Figure 5.16). In Figure 5.20, we

can easily observe the convergence on the three meshes which start respectively at the

1st, 21st, and 51st nonlinear iteration. The simulations are conducted for a drop of seven

orders of magnitude in the nonlinear residual rnl.

0 20 40 60 80 100 120 140 160 180

Nonlinear Step

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

N
on

lin
ea

r
R

es
id

ua
l

Block SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.2

Figure 5.20: Convergence histories with a matrix-free approach for the ONERA M6 case.

A dense SPAI matrix is essential to obtain satisfactory results with the matrix-free

method since the linear systems are more demanding to solve. Therefore, the optimal con-

111



0 20 40 60 80 100 120 140 160 180

Nonlinear Step

0

200

400

600

800

1000
N

um
be

r
of

Li
ne

ar
It

er
at

io
ns

Block SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.2

(a) Number of linear iterations per nonlinear

step.

0 100 200 300 400 500 600

CPU Runtime (s)

10−6

10−4

10−2

100

N
on

lin
ea

r
R

es
id

ua
l

Block SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.2

(b) CPU runtimes for the different precondition-

ers.

Figure 5.21: Results for the ONERA M6 case solved with a matrix-free approach.

vergence is obtained with a tolerance ε = 0.2, whereas 0.5 was sufficient for a low-order

Jacobian matrix. We emphasize that the SPAI matrix used is the approximate inverse of

the low-order Jacobian matrix, employed to precondition the high-order matrix-free Jaco-

bian. Thus, even though the linearized system solved is closer to an exact Newton step,

there is still a lack of consistency between the preconditioner and the coefficient matrix,

which may impede convergence of the GMRES solver. With these settings, the linear sys-

tems converge with a relatively low number of linear steps (cf. Figure 5.21a). The number

of linear iterations progressively increases as the CFL number is rapidly raised.

Nevertheless, the SPAI preconditioned implicit solver lags behind in terms of CPU

time compared to the block Jacobi and ASM with ILU(0) preconditioning for local subsys-

tems (Figure 5.21b). To explain this discrepancy between SPAI and domain decomposi-

tion methods, we study in more detail the cost of applying the preconditioning methods.

In Figure 5.22, the y-axis displays the CPU runtime of a single linear iteration within a

given nonlinear step. Since the GMRES computational cost grows linearly with the num-

ber of linear iterations without restart, the average CPU times of the nonlinear steps are

reported. On the one hand, the block Jacobi preconditioning applications are purely par-

allel, but involve fairly expensive backward and forward local substitutions. The SOR

splitting and ILU(0) factorization are performed locally on subdomains owned by the

112



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Nonlinear Step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
A

ve
ra

ge
 T

im
e 

of
 a

 L
in

ea
r 

It
er

at
io

n 
(s

)
Block SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI application only

Figure 5.22: Average time of a linear iteration using domain decomposition and SPAI

preconditioners along the convergence for the ONERA M6 test case.

cores, without any communications. Contrary to the ILU preconditioner, the SOR pre-

conditioner does not require any construction step, but directly uses the entries of the co-

efficient matrix. On the other hand, the SPAI applications are mere sparse matrix-vector

multiplications, which are inexpensive in terms of computation but still require point-

to-point communications of the vector entries across the cores. Furthermore, the denser

the SPAI matrix, the more communications are required for a sparse matrix-vector mul-

tiplication. Therefore, the application of the SPAI preconditioner becomes prohibitively

expensive beyond a certain density threshold. We note that the block SOR and SPAI ap-

plications are nearly equivalent in this case.

Block Jacobi combined with ILU preconditioners requires more time than block SOR

due to the additional construction cost of the local ILU factorization and the local GM-

RES solvers. Hence, an average GMRES step with block Jacobi-ILU(0) takes 70 ms which

is more than three times more expensive than a local application of the SOR precondi-

tioner. Finally, the ASM-ILU(0) preconditioning uses an overlapping domain decomposi-

tion contrary to the block Jacobi method. As a consequence, an additional communication

step is added across the processors to transfer the coefficients located in the overlapping

areas. The average time per linear iteration suffers from this cumbersome additional com-

munication.

113



In Figure 5.22, the SPAI computational cost that takes place before the Krylov method

was omitted to only compare the time spent throughout the GMRES process. In con-

trast, the SPAI computational time has been added in Figure 5.23 and divided by the total

number of linear iterations to spread its cost over the successive linear iterations. The

highest peaks correspond to a complete adaptive SPAI computation, using the adaptive

algorithm from a diagonal sparsity pattern. In these steps, the average cost per linear it-

eration is dramatically worse than the cost of the domain decomposition preconditioners

per linear iteration. On the other hand, intermediate spikes occur at Newton steps where

the SPAI preconditioner is recomputed from the latest saved sparsity pattern. A fixed

SPAI computation stands somewhere between a frozen SPAI and a full recomputation. In

this instance, it is approximately as expensive as a block Jacobi-ILU(0) in terms of average

cost per linear iteration.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Nonlinear Step

0.00

0.05

0.10

0.15

0.20

0.25

A
ve

ra
ge

 T
im

e 
of

 a
 L

in
ea

r 
It

er
at

io
n 

(s
)

Block SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI computation and application

Figure 5.23: Average time of a linear iteration along the convergence of the ONERA M6

case with a matrix-free approach.

The preceding figures show the time performance normalized by the number of linear

iterations. Therefore, they are not reflective of whether a preconditioning method entails

several or few linear iterations to achieve convergence for the linear systems. For this

purpose, the CPU time per nonlinear step is plotted in Figure 5.24.

114



0 25 50 75 100 125 150 175

Nonlinear Step

0

5

10

15

C
PU

 R
un

tim
e 

of
 th

e 
N

on
lin

ea
r 

St
ep

 (s
) Block SOR

Block Jacobi-ILU
Restricted ASM-ILU
SPAI computation and application

Figure 5.24: CPU time for the nonlinear steps for the ONERA M6 case with a matrix-free

approach.

At the beginning of the convergence on the fine mesh, the SPAI preconditioner is re-

computed at each nonlinear step. Then, since SPAI requires more linear iterations than

the block Jacobi-ILU(0) and ASM preconditioner, the SPAI cost per Newton step is mostly

higher even though the average cost of SPAI per linear iteration is cheaper. Some factors

that may hinder the SPAI application advantage over the ASM and block Jacobi-ILU(0)

preconditioners are:

• If the SPAI preconditioner requires too many linear iterations, the average time per

Newton step can become worse than that of the domain decomposition precondi-

tioners. This explains for instance why the SPAI line is above the block Jacobi-ILU(0)

line in the previous Figure 5.24, even though the SPAI application cost for a single

linear iteration is cheaper (cf. Figure 5.22).

• The cost of the SPAI computation is too expensive and does not reduce efficiently

the required number of linear iterations. This occurs at the beginning of the con-

vergence on the fine mesh where the SPAI computation undermines the cheapness

of the SPAI application. It also explains why the SPAI is quickly overtaken by the

block Jacobi-SOR preconditioned solver. Yet, the SPAI preconditioner is able to be

115



competitive near the end of the convergence, once the SPAI preconditioner is less

frequently updated.

• Within the matrix-free approach, the SPAI matrix is a sparse approximation of the

inverse of the first-order Jacobian matrix, different from the high-order Jacobian.

Because of this lack of consistency, a more accurate SPAI matrix closer to the first-

order Jacobian inverse is not necessarily a better approximation of the inverse of the

high-order Jacobian. Therefore, below a certain SPAI tolerance ε, the entries added

to the SPAI matrix not only increase the cost of applying the matrix within a Krylov

method, but also no longer provide a reduction in the number of linear iterations.

In the same way, it may be possible to freeze the SPAI preconditioner for longer

periods without seeing the number of linear iterations increase (cf. Figure 5.25).

0 20 40 60 80 100

Nonlinear Step

0

50

100

150

200

250

300

350

N
um

be
r 

of
 L

in
ea

r 
It

er
at

io
ns

SPAI, period length = 1
SPAI, period length = 5
SPAI, period length = 10

Figure 5.25: Number of linear iterations along the convergence for different period

lengths in the SPAI framework for the ONERA M6 case.

Furthermore, we could not lower the linear tolerance τlin to less than 10−1, otherwise

SPAI was not robust enough to guarantee the required convergence of the linear systems,

even with very tight tolerances ε. To this extent, the same experiment is conducted for

a relative linear tolerance τlin = 10−2. Hence, more GMRES iterations are required to

converge than with the preceding tolerance τlin = 10−1. The SPAI preconditioner was

116



able to outperform the domain decomposition preconditioners for tighter tolerances with

a first-order Jacobian as the operator (cf. Figure 5.17). In the matrix-free approach, linear

systems are more demanding and the SPAI preconditioner is inefficient in its reduction of

the number of linear iterations (cf. Figure 5.26b), yielding a very slow convergence.

0 300 600 900 1200

CPU Runtime (s)

10 5

10 4

10 3

10 2

10 1

100

N
on

lin
ea

r 
R

es
id

ua
l

Block Jacobi-ILU
Restricted ASM-ILU
SPAI

(a) Convergence history for τlin = 10−2.

0 20 40 60 80 100

Nonlinear Step

0

500

1000

1500

2000

N
um

be
r 

of
 L

in
ea

r 
It

er
at

io
ns

Block Jacobi-ILU
Restricted ASM-ILU
SPAI

(b) Number of linear iterations per nonlinear

step.

Figure 5.26: Results for the ONERA M6 case solved with a matrix-free approach for τlin =

10−2.

Finally, the CRM case is solved with the matrix-free Jacobian method on 160 cores. We

note that this mesh is less partitioned than that of the ONERA M6 wing case. Therefore,

the domain decomposition preconditioning methods yield fast convergences compared

to the SPAI preconditioner. The convergences are shown in Figure 5.27a. In this case,

block Jacobi and ASM methods require far fewer linear iterations than the SPAI method

(cf. Figure 5.27b). The study of the preconditioning application in the GMRES methods

proves once again the low cost of the SPAI application compared to the block Jacobi and

ASM methods. In Figure 5.28, the average cost of a linear iteration preconditioned with

SPAI is approximately the same as that of block SOR. However, the partitioning into a

few blocks encourages the use of domain decomposition preconditioners that entail fewer

linear iterations. In this case, SPAI preconditioning does not compete with block Jacobi

and ASM preconditioners (cf. Figure 5.29).

117



0 1000 2000 3000 4000

CPU Runtime (s)

10−5

10−4

10−3

10−2

10−1

100

N
on

lin
ea

r
R

es
id

ua
l

Block SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.3

(a) Convergence of the nonlinear residual as a

function of the CPU time.

0 50 100 150 200 250 300

Nonlinear Step

0

50

100

150

200

250

300

N
um

be
r

of
Li

ne
ar

It
er

at
io

ns

Block SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.3

(b) Number of linear iterations per nonlinear

step.

Figure 5.27: Results for the CRM case solved with a matrix-free approach for τlin = 10−1.

0 25 50 75 100 125 150 175 200 225 250 275 300 325

Nonlinear Step

0.0

0.2

0.4

0.6

0.8

A
ve

ra
ge

Ti
m

e
of

a
Li

ne
ar

It
er

at
io

n
(s

)

Block SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.3

Figure 5.28: Average cost of a linear iteration along the convergence for the CRM case for

different preconditioners.

118



0 25 50 75 100 125 150 175 200 225 250 275 300 325

Nonlinear Step

0

5

10

15

20

25

30

35

C
PU

R
un

ti
m

e
of

th
e

N
on

lin
ea

r
St

ep
(s

)

Block SOR
Block Jacobi-ILU
Restricted ASM-ILU
SPAI, ε = 0.3

Figure 5.29: CPU timings to complete the nonlinear steps along the convergence for the

CRM test case with a matrix-free approach.

119



Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

The revolution in computer architectures has profoundly reshaped the way algorithms

are designed to make efficient use of available resources. It is becoming commonplace

to favor the parallel efficiency of an algorithm at the expense of its robustness to accel-

erate convergence. This paradigm is the driving force behind decomposition methods to

adapt sequential preconditioning methods on large-scale parallel computers. In accor-

dance with previous studies on SPAI preconditioning, it has been observed that SPAI is

not only more computationally expensive but also less robust than the implicit precondi-

tioning techniques, such as SOR and ILU preconditioners, on weak parallel simulations.

This observation is not an obstacle to the use of SPAI, since its main advantage comes

from its high parallelism, its low cost of application and its invariance with respect to the

number of cores.

In Section 5.1, we investigated the performance of the SPAI preconditioner in solving

highly partitioned linear systems. We have shown that the SPAI method is capable of

converging problems where domain decomposition preconditioning fails. The principal

weakness of domain decomposition preconditioners is their sensitivity to the number of

cores. They progressively lacked robustness and stalled in the convergence as the num-

ber of cells per block declined. Highly partitioned domains and deep linear convergences

are typically the conditions for which SPAI preconditioning proved to be more robust.

Later on, its integration in a finite volume solver was studied under highly parallel con-

ditions. For this purpose, we introduced a SPAI preconditioning framework to spread

the cost of the SPAI computation along the convergence. However, the partitioning was

120



not sufficient to prevent convergence with domain decomposition preconditioning for the

cases treated with FANSC in Section 5.3. As a matter of fact, the increase in the problem

size is usually accompanied with an increase in computational resources. This allows do-

main decomposition preconditioners to remain competitive. Furthermore, quasi-Newton

methods require only an approximate solution of the linear systems. Thus, a convergence

of a few orders of magnitude for the intermediate linear systems is often sufficient in the

test cases to ensure the global convergence of the nonlinear residual rnl. Consequently, a

sound parallel preconditioner to achieve deep convergence is not necessarily relevant for

Newton-Krylov flow solvers.

The difficulty in finding an appropriate a priori SPAI pattern encourages the use of

the adaptive algorithm. Nevertheless, determining appropriate SPAI parameters which

at least ensure convergence remains a challenging task. The SPAI preconditioning is not

suitable for use as a black box. Besides, it should be noted that a user usually does not

have time to adjust and test different preconditioning parameters. On the one hand, SPAI

preconditioning yielded the best results in the case of deep convergence of the linear sys-

tems, with low-order Jacobian matrices and highly partitioned domains. However, the

deep convergence of the linearized systems was not necessary because of the inaccurate

Jacobian operator. With a high-order matrix-free Jacobian, the linear systems were more

demanding to solve. The SPAI method did not appear to be robust: the linear tolerance

τlin could not be tightened too much. Otherwise, the maximum number of linear itera-

tions allowed was always reached with a SPAI preconditioner. The lack of consistency

between the low-order Jacobian matrix used to construct the SPAI preconditioner and the

high-order left-hand side operator could be the reason of this inefficiency. These conclu-

sions lead us to believe that SPAI preconditioning would be most suitable for problems

that meet the following conditions:

• The left-hand side operator used in the Newton-Krylov method is the same ma-

trix used to construct the SPAI preconditioner. In this manner, the SPAI precon-

ditioner becomes more effective in reducing the number of linear iterations in the

linear solvers.

121



• The left-hand side operator is an exact, or at least accurate, linearization of the resid-

ual R. Hence, deep convergences of the linear solvers would be effective in reducing

the overall number of nonlinear iterations. Therefore, we could take advantage of

the low application cost of the SPAI preconditioner and amortize the computational

cost of SPAI with a greater number of linear iterations.

6.2 Future Work

In closing, there are some interesting aspects that could help improve the efficiency of

SPAI preconditioning:

• In this work, the SPAI implementation assigns an MPI task to each core. Following

the hybrid memory architecture presented in Subsection 1.2, it could be advanta-

geous to use the OpenMP interface between cores belonging to the same node. In

this way, some core-to-core communications could be replaced with data retrieval.

• Secondly, the SPAI framework could be further improved with an automatic adjust-

ment of the framework parameters, in line with the convergence of the linearized

systems in Newton’s method.

• Lastly, we have only considered the use of SPAI preconditioning for multi-CPU ar-

chitectures. An implementation of SPAI on GPUs in [153] showed a substantial

acceleration in its computation to precondition a Bi-CGSTAB method. It would be

interesting to study SPAI on GPUs, as the use of GPU-accelerated parallel architec-

tures becomes an active research area in CFD [154, 155].

122



Bibliography

[1] R. Schaller. “Moore’s law: past, present and future”. IEEE Spectrum 34.6 (1997),

pp. 52–59.

[2] D. Etiemble. “45-year CPU evolution: one law and two equations” (2018).

[3] V. Eijkhout. Introduction to High Performance Scientific Computing. 2013.

[4] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Mor-

gan, D. Patterson, K. Sen, and J. Wawrzynek. “A view of the parallel computing

landscape”. Communications of the ACM 52.10 (2009), pp. 56–67.

[5] R. Duncan. “A survey of parallel computer architectures”. Computer 23.2 (1990),

pp. 5–16.

[6] F. Magoules, F.-X. Roux, and G. Houzeaux. Parallel Scientific Computing. Computer

Engineering Series. Wiley-ISTE, 2015.

[7] L. Dagum and R. Menon. “OpenMP: an industry standard API for shared-memory

programming”. IEEE Computational Science and Engineering 5.1 (1998), pp. 46–55.

[8] D. W. Walker. “The design of a standard message passing interface for distributed

memory concurrent computers”. Parallel Computing. Message Passing Interfaces

20.4 (1994), pp. 657–673.

[9] Á. Fernández-González, R. Rosillo, J. Á. Miguel-Dávila, and V. Matellán. “Histor-

ical review and future challenges in Supercomputing and Networks of Scientific

Communication”. The Journal of Supercomputing 71.12 (2015), pp. 4476–4503.

[10] A. Jameson. “Computational Aerodynamics for Aircraft Design”. Science 245.4916

(1989), pp. 361–371.

[11] J. Blazek. Computational Fluid Dynamics: Principles and Applications. Elsevier, 2015.

[12] A. Pueyo. “An efficient Newton-Krylov method for the Euler and Navier-Stokes

equations.” PhD Thesis. University of Toronto, 1998.

123

http://dx.doi.org/10.1109/6.591665
http://arxiv.org/abs/1803.00254
http://books.google.com/books?vid=ISBN978-1-257-99254-6
http://dx.doi.org/https://doi.org/10.1145/1562764.1562783
http://dx.doi.org/https://doi.org/10.1145/1562764.1562783
http://dx.doi.org/10.1109/2.44900
http://dx.doi.org/10.1002/9781118761687
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1016/0167-8191(94)90033-7
http://dx.doi.org/10.1016/0167-8191(94)90033-7
http://dx.doi.org/10.1007/s11227-015-1544-3
http://dx.doi.org/10.1007/s11227-015-1544-3
http://dx.doi.org/10.1007/s11227-015-1544-3
http://dx.doi.org/10.1126/science.245.4916.361
http://dx.doi.org/10.1016/C2013-0-19038-1
http://hdl.handle.net/1807/11873
http://hdl.handle.net/1807/11873


[13] G. Birkhoff, R. S. Varga, and D. Young. “Alternating Direction Implicit Methods”.

Advances in Computers. Ed. by F. L. Alt and M. Rubinoff. Vol. 3. Elsevier, 1962,

pp. 189–273.

[14] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. “Inexact Newton Methods”. SIAM

Journal on Numerical Analysis 19.2 (1982), pp. 400–408.

[15] D. E. Keyes. “Aerodynamic applications of Newton- Krylov-Schwarz solvers”.

Fourteenth International Conference on Numerical Methods in Fluid Dynamics. Ed. by

S. M. Deshpande, S. S. Desai, and R. Narasimha. Springer Berlin Heidelberg, 1995,

pp. 1–20.

[16] X.-C. Cai, D. E. Keyes, and V. Venkatakrishnan. Newton-Krylov-Schwarz: An Implicit

Solver for CFD. Tech. rep. Hampton, VA, USA: Institute for Computer Applications

in Science and Engineering, 1995.

[17] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear

systems”. Journal of research of the National Bureau of Standards 49.6 (1952), pp. 409–

436.

[18] Y. Saad and M. H. Schultz. “GMRES: A Generalized Minimal Residual Algorithm

for Solving Nonsymmetric Linear Systems”. SIAM Journal on Scientific and Statisti-

cal Computing 7.3 (1986), pp. 856–869.

[19] H. A. van der Vorst. “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-

CG for the Solution of Nonsymmetric Linear Systems”. SIAM Journal on Scientific

and Statistical Computing 13.2 (1992), pp. 631–644.

[20] P. Birken, J. Duintjer Tebbens, A. Meister, and M. Tůma. “Preconditioner Updates

Applied to CFD Model Problems”. Applied Numerical Mathematics 58.11 (2008),

pp. 1628–1641.

[21] M. Benzi. “Preconditioning Techniques for Large Linear Systems: A Survey”. Jour-

nal of Computational Physics 182.2 (2002), pp. 418–477.

[22] Y. Saad. “Iterative methods for linear systems of equations: A brief historical jour-

ney” (2019).

[23] Å. Björck. Numerical Methods in Matrix Computations. Vol. 59. Springer, 2015.

124

http://dx.doi.org/10.1016/S0065-2458(08)60620-8
http://dx.doi.org/10.1137/0719025
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1016/j.apnum.2007.10.001
http://dx.doi.org/10.1016/j.apnum.2007.10.001
http://dx.doi.org/10.1006/jcph.2002.7176
http://arxiv.org/abs/1908.01083
http://arxiv.org/abs/1908.01083
http://books.google.com/books?vid=ISBN978-3-319-05089-8


[24] G. H. Golub and C. F. V. Loan. Matrix Computations. JHU Press, 2013.

[25] V. Puzyrev, S. Koric, and S. Wilkin. “Evaluation of Parallel Direct Sparse Linear

Solvers in Electromagnetic Geophysical Problems”. Computers & Geosciences 89

(2016), pp. 79–87.

[26] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. “Hybrid scheduling

for the parallel solution of linear systems”. Parallel Computing 32.2 (2006), pp. 136–

156.

[27] A. Kuzmin, M. Luisier, and O. Schenk. “Fast Methods for Computing Selected El-

ements of the Green’s Function in Massively Parallel Nanoelectronic Device Simu-

lations”. Euro-Par 2013 Parallel Processing. Ed. by F. Wolf, B. Mohr, and D. an Mey.

Lecture Notes in Computer Science. Springer, 2013, pp. 533–544.

[28] M. Blome, H. R. Maurer, and K. Schmidt. “Advances in three-dimensional geo-

electric forward solver techniques”. Geophysical Journal International 176.3 (2009),

pp. 740–752.

[29] R. Streich. “3D finite-difference frequency-domain modeling of controlled-source

electromagnetic data: Direct solution and optimization for high accuracy”. GEO-

PHYSICS 74.5 (2009), F95–F105.

[30] S. Operto, J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Giraud, and H. B. H. Ali. “3D

finite-difference frequency-domain modeling of visco-acoustic wave propagation

using a massively parallel direct solver: A feasibility study”. GEOPHYSICS 72.5

(2007), SM195–SM211.

[31] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. “A survey of direct meth-

ods for sparse linear systems”. Acta Numerica 25 (2016), pp. 383–566.

[32] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.

Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods. Other Titles in Applied Mathematics. Society

for Industrial and Applied Mathematics, 1994.

[33] D. M. Young. “A historical overview of iterative methods”. Computer Physics Com-

munications 53.1 (1989), pp. 1–17.

125

http://books.google.com/books?vid=ISBN978-1-4214-0794-4
http://dx.doi.org/10.1016/j.cageo.2016.01.009
http://dx.doi.org/10.1016/j.cageo.2016.01.009
http://dx.doi.org/10.1016/j.parco.2005.07.004
http://dx.doi.org/10.1016/j.parco.2005.07.004
http://dx.doi.org/10.1007/978-3-642-40047-6_54
http://dx.doi.org/10.1007/978-3-642-40047-6_54
http://dx.doi.org/10.1007/978-3-642-40047-6_54
http://dx.doi.org/10.1111/j.1365-246X.2008.04006.x
http://dx.doi.org/10.1111/j.1365-246X.2008.04006.x
http://dx.doi.org/10.1190/1.3196241
http://dx.doi.org/10.1190/1.3196241
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.1137/1.9781611971538
http://dx.doi.org/10.1137/1.9781611971538
http://dx.doi.org/10.1016/0010-4655(89)90145-8


[34] Y. Saad. Iterative Methods for Sparse Linear Systems. Other Titles in Applied Mathe-

matics. Society for Industrial and Applied Mathematics, 2003.

[35] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. 2nd ed. Texts in Ap-

plied Mathematics. Springer-Verlag, 2007.

[36] J. Liesen and Z. Strakos. Krylov Subspace Methods: Principles and Analysis. Publica-

tion Title: Krylov Subspace Methods. Oxford University Press, 2012.

[37] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge

Monographs on Applied and Computational Mathematics. Cambridge University

Press, 2003.

[38] W. Ford. Numerical Linear Algebra with Applications. Elsevier, 2015.

[39] D. P. Arbenz. “Lecture Notes on Solving Large Scale Eigenvalue Problems”. Lec-

ture notes. ETH, Zurich, Switzerland, 2012.

[40] Y. Saad and M. H. Schultz. “Conjugate gradient-like algorithms for solving non-

symmetric linear systems”. Mathematics of Computation 44.170 (1985), pp. 417–424.

[41] H. F. Walker. “Implementations of the GMRES method”. Computer Physics Commu-

nications 53.1 (1989), pp. 311–320.

[42] V. Frayssé, L. Giraud, S. Gratton, and J. Langou. “A Set of GMRES Routines for

Real and Complex Arithmetics” (1997).

[43] J. Gatsis. “Preconditioning Techniques for a Newton-Krylov Algorithm for the

Compressible Navier-Stokes Equations”. PhD Thesis. University of Toronto, 2014.

[44] W. Joubert. “On the convergence behavior of the restarted GMRES algorithm for

solving nonsymmetric linear systems”. Numerical Linear Algebra with Applications

1.5 (1994), pp. 427–447.

[45] M. Embree. “The Tortoise and the Hare Restart GMRES”. SIAM Review 45.2 (2003),

pp. 259–266.

[46] M. Rehman, C. Vuik, and G. Segal. Solution of the incompressible Navier Stokes equa-

tions with preconditioned Krylov subspace methods. Delft University of Technology,

2006.

126

http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1007/b98885
http://dx.doi.org/10.1093/acprof:oso/9780199655410.001.0001
http://dx.doi.org/10.1017/CBO9780511615115
http://dx.doi.org/10.1016/C2011-0-07533-6
http://dx.doi.org/10.1090/S0025-5718-1985-0777273-9
http://dx.doi.org/10.1090/S0025-5718-1985-0777273-9
http://dx.doi.org/10.1016/0010-4655(89)90168-9
http://hdl.handle.net/1807/43576
http://hdl.handle.net/1807/43576
http://dx.doi.org/10.1002/nla.1680010502
http://dx.doi.org/10.1002/nla.1680010502
http://dx.doi.org/10.1137/S003614450139961
http://resolver.tudelft.nl/uuid:0b3ab82a-eba6-4cb5-ac51-8a2580b7af4b
http://resolver.tudelft.nl/uuid:0b3ab82a-eba6-4cb5-ac51-8a2580b7af4b


[47] P. Chin and P. Forsyth. “A comparison of GMRES and CGSTAB accelerations for

incompressible Navier-Stokes problems”. Journal of Computational and Applied Math-

ematics 46.3 (1993), pp. 415–426.

[48] A. M. Bruaset. A Survey of Preconditioned Iterative Methods. CRC Press, 1995.

[49] M. Ferronato. “Preconditioning for Sparse Linear Systems at the Dawn of the 21st

Century: History, Current Developments, and Future Perspectives”. ISRN Applied

Mathematics 2012 (2012), pp. 1–49.

[50] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. San Diego, CA, USA:

Academic Press, 2001.

[51] D. Hysom and A. Pothen. “Level-based incomplete LU factorization: Graph model

and algorithms”. Lawrence Livermore National Labs, Tech. Rep (2002).

[52] M. Sedlacek. “Sparse Approximate Inverses for Preconditioning, Smoothing, and

Regularization”. PhD Thesis. Munich: Technische Universität München, 2012.

[53] Y. Saad and J. Zhang. “BILUTM: A Domain-Based Multilevel Block ILUT Precon-

ditioner for General Sparse Matrices”. SIAM Journal on Matrix Analysis and Appli-

cations 21.1 (1999), pp. 279–299.

[54] Y. Saad. “ILUT: A dual threshold incomplete LU factorization”. Numerical Linear

Algebra with Applications 1.4 (1994), pp. 387–402.

[55] M. Bollhöfer. “A robust ILU with pivoting based on monitoring the growth of the

inverse factors”. Linear Algebra and its Applications 338.1-3 (2001), pp. 201–218.

[56] J. Mayer. “A multilevel Crout ILU preconditioner with pivoting and row permu-

tation”. Numerical Linear Algebra with Applications 14.10 (2007), pp. 771–789.

[57] E. Chow and Y. Saad. “Experimental study of ILU preconditioners for indefinite

matrices”. Journal of Computational and Applied Mathematics 86.2 (1997), pp. 387–

414.

[58] W. D. Gropp and D. E. Keyes. “Domain decomposition methods in computational

fluid dynamics”. International Journal for Numerical Methods in Fluids 14.2 (1992),

pp. 147–165.

127

http://dx.doi.org/10.1016/0377-0427(93)90037-C
http://dx.doi.org/10.1016/0377-0427(93)90037-C
http://books.google.com/books?vid=ISBN978-0-582-27654-3
http://dx.doi.org/10.5402/2012/127647
http://dx.doi.org/10.5402/2012/127647
http://books.google.com/books?vid=ISBN978-0-12-701070-0
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20121002-1107998-1-2
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20121002-1107998-1-2
http://dx.doi.org/10.1137/S0895479898341268
http://dx.doi.org/10.1137/S0895479898341268
http://dx.doi.org/10.1002/nla.1680010405
http://dx.doi.org/10.1016/S0024-3795(01)00385-8
http://dx.doi.org/10.1016/S0024-3795(01)00385-8
http://dx.doi.org/10.1002/nla.554
http://dx.doi.org/10.1002/nla.554
http://dx.doi.org/10.1016/S0377-0427(97)00171-4
http://dx.doi.org/10.1016/S0377-0427(97)00171-4
http://dx.doi.org/10.1002/fld.1650140203
http://dx.doi.org/10.1002/fld.1650140203


[59] F. Chalot, G. Chevalier, Q. V. Dinh, and L. Giraud. “Some Investigations of Domain

Decomposition Techniques in Parallel CFD”. Euro-Par’99 Parallel Processing. Ed.

by P. Amestoy, P. Berger, M. Daydé, D. Ruiz, I. Duff, V. Frayssé, and L. Giraud.

Vol. 1685. Lecture Notes in Computer Science. Springer, 1999, pp. 595–602.

[60] M. J. Gander. “Schwarz Methods over the Course of Time”. Electronic Transactions

on Numerical Analysis 31 (2008), pp. 228–255.

[61] K. Nakajima and H. Okuda. “Parallel Iterative Solvers with Localized ILU Precon-

ditioning for Unstructured Grids on Workstation Clusters”. International Journal of

Computational Fluid Dynamics 12.3-4 (1999), pp. 315–322.

[62] E. Efstathiou. “Study of the Schwarz algorithms: Understanding restricted addi-

tive Schwarz”. PhD Thesis. McGill University, 2002.

[63] X.-C. Cai and M. Sarkis. “A Restricted Additive Schwarz Preconditioner for Gen-

eral Sparse Linear Systems”. SIAM Journal on Scientific Computing 21.2 (1999). Pub-

lisher: Society for Industrial and Applied Mathematics, pp. 792–797.

[64] E. Efstathiou and M. J. Gander. “Why Restricted Additive Schwarz Converges

Faster than Additive Schwarz”. BIT Numerical Mathematics 43.5 (2003), pp. 945–

959.

[65] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young. “Parallel

Newton–Krylov–Schwarz Algorithms for the Transonic Full Potential Equation”.

SIAM Journal on Scientific Computing 19.1 (1998), pp. 246–265.

[66] W. Gropp, D. E. Keyes, L. C. McInnes, and M. D. Tidriri. “Globalized Newton-

Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD”. The Interna-

tional Journal of High Performance Computing Applications 14.2 (2000), pp. 102–136.

[67] J. E. Hicken and D. W. Zingg. “Parallel Newton-Krylov Solver for the Euler equa-

tions Discretized Using Simultaneous Approximation Terms”. AIAA Journal 46.11

(2008), pp. 2773–2786.

[68] V. Dolean, P. Jolivet, and F. Nataf. An Introduction to Domain Decomposition Methods.

Other Titles in Applied Mathematics. Society for Industrial and Applied Mathe-

matics, 2015.

128

http://link.springer.com/10.1007/3-540-48311-X_84
http://link.springer.com/10.1007/3-540-48311-X_84
https://archive-ouverte.unige.ch/unige:6313
http://dx.doi.org/10.1080/10618569908940835
http://dx.doi.org/10.1080/10618569908940835
http://dx.doi.org/10.1137/S106482759732678X
http://dx.doi.org/10.1137/S106482759732678X
http://dx.doi.org/10.1023/B:BITN.0000014563.33622.1d
http://dx.doi.org/10.1023/B:BITN.0000014563.33622.1d
http://dx.doi.org/10.1137/S1064827596304046
http://dx.doi.org/10.1137/S1064827596304046
http://dx.doi.org/10.1177/109434200001400202
http://dx.doi.org/10.1177/109434200001400202
http://dx.doi.org/10.2514/1.34810
http://dx.doi.org/10.2514/1.34810
http://dx.doi.org/10.1137/1.9781611974065


[69] M. Sala. “Domain decomposition preconditioners: theoretical properties, appli-

cation to the compressible Euler equations, parallel aspects” (2003). PhD Thesis.

EPFL, p. 201.

[70] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue. “Approximating the inverse of a

matrix for use in iterative algorithms on vector processors”. Computing 22.3 (1979),

pp. 257–268.

[71] I. Ammara and C. Masson. “Development of a fully coupled control-volume finite

element method for the incompressible Navier–Stokes equations”. International

Journal for Numerical Methods in Fluids 44.6 (2004), pp. 621–644.

[72] P. R. McHugh and D. A. Knoll. “Fully Coupled Finite Volume Solutions of the

Incompressible Navier–Stokes and Energy Equations Using an Inexact Newton

Method”. International Journal for Numerical Methods in Fluids 19.5 (1994), pp. 439–

455.

[73] L. Wigton, N. Yu, and D. Young. “GMRES acceleration of computational fluid dy-

namics codes”. 7th Computational Physics Conference. Cincinnati, OH, USA: Ameri-

can Institute of Aeronautics and Astronautics, 1985.

[74] C. T. Kelley. Solving Nonlinear Equations with Newton’s Method. Fundamentals of

Algorithms. Society for Industrial and Applied Mathematics, 2003.

[75] R. P. Pawlowski, J. N. Shadid, J. P. Simonis, and H. F. Walker. “Globalization Tech-

niques for Newton–Krylov Methods and Applications to the Fully Coupled Solu-

tion of the Navier–Stokes Equations”. SIAM Review 48.4 (2006), pp. 700–721.

[76] S. C. Eisenstat and H. F. Walker. “Choosing the Forcing Terms in an Inexact New-

ton Method”. SIAM Journal on Scientific Computing 17.1 (1996), pp. 16–32.

[77] D. A. Knoll and D. E. Keyes. “Jacobian-free Newton–Krylov methods: a survey of

approaches and applications”. Journal of Computational Physics 193.2 (2004), pp. 357–

397.

[78] L. Armijo. “Minimization of functions having Lipschitz continuous first partial

derivatives”. Pacific Journal of Mathematics 16.1 (1966), pp. 1–3.

[79] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.

129

http://dx.doi.org/10.5075/epfl-thesis-2733
http://dx.doi.org/10.5075/epfl-thesis-2733
http://dx.doi.org/10.1007/BF02243566
http://dx.doi.org/10.1007/BF02243566
http://dx.doi.org/10.1002/fld.662
http://dx.doi.org/10.1002/fld.662
http://dx.doi.org/10.1002/fld.1650190506
http://dx.doi.org/10.1002/fld.1650190506
http://dx.doi.org/10.1002/fld.1650190506
http://dx.doi.org/10.2514/6.1985-1494
http://dx.doi.org/10.2514/6.1985-1494
http://dx.doi.org/10.1137/1.9780898718898
http://dx.doi.org/10.1137/S0036144504443511
http://dx.doi.org/10.1137/S0036144504443511
http://dx.doi.org/10.1137/S0036144504443511
http://dx.doi.org/10.1137/0917003
http://dx.doi.org/10.1137/0917003
http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://dx.doi.org/10.2140/pjm.1966.16.1
http://dx.doi.org/10.2140/pjm.1966.16.1
http://books.google.com/books?vid=ISBN978-1-61197-094-4


[80] J. Ortega and W. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Vari-

ables. Elsevier, 1970.

[81] D. J. Higham. “Trust Region Algorithms and Timestep Selection”. SIAM Journal on

Numerical Analysis 37.1 (1999), pp. 194–210.

[82] T. S. Coffey, C. T. Kelley, and D. E. Keyes. “Pseudotransient Continuation and

Differential-Algebraic Equations”. SIAM Journal on Scientific Computing 25.2 (2003),

pp. 553–569.

[83] D. E. Keyes, L. McInnes, and M. Tidriri. “Parallel Implicit PDE Computations: Al-

gorithms and Software” (1997).

[84] O. Reynolds. “IV. On the dynamical theory of incompressible viscous fluids and

the determination of the criterion”. Philosophical Transactions of the Royal Society of

London. (A.) 186 (1895), pp. 123–164.

[85] Z. J. Zhai, Z. Zhang, W. Zhang, and Q. Y. Chen. “Evaluation of Various Turbulence

Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD:

Part 1—Summary of Prevalent Turbulence Models”. HVAC&R Research 13.6 (2007),

pp. 853–870.

[86] P. Spalart and S. Allmaras. “A one-equation turbulence model for aerodynamic

flows”. 30th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: American In-

stitute of Aeronautics and Astronautics, 1992.

[87] A. Bouchard. “Wall Distance Evaluation Via Eikonal Solver for RANS Applica-

tions”. MA thesis. École Polytechnique de Montréal, 2017.

[88] F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in Compu-

tational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab.

Vol. 113. Fluid Mechanics and Its Applications. Cham, Switzerland: Springer In-

ternational Publishing, 2016.

[89] A. Jameson, W. Schmidt, and E. Turkel. “Numerical solution of the Euler equa-

tions by finite volume methods using Runge Kutta time stepping schemes”. 14th

Fluid and Plasma Dynamics Conference. Palo Alto, CA, USA: American Institute of

Aeronautics and Astronautics, 1981.

130

http://dx.doi.org/10.1016/C2013-0-11263-9
http://dx.doi.org/10.1016/C2013-0-11263-9
http://dx.doi.org/10.1137/S0036142998335972
http://dx.doi.org/10.1137/S106482750241044X
http://dx.doi.org/10.1137/S106482750241044X
http://dx.doi.org/10.1098/rsta.1895.0004
http://dx.doi.org/10.1098/rsta.1895.0004
http://dx.doi.org/10.1080/10789669.2007.10391459
http://dx.doi.org/10.1080/10789669.2007.10391459
http://dx.doi.org/10.1080/10789669.2007.10391459
http://dx.doi.org/10.2514/6.1992-439
http://dx.doi.org/10.2514/6.1992-439
https://publications.polymtl.ca/2825/
https://publications.polymtl.ca/2825/
http://dx.doi.org/10.1007/978-3-319-16874-6
http://dx.doi.org/10.1007/978-3-319-16874-6
http://dx.doi.org/10.2514/6.1981-1259
http://dx.doi.org/10.2514/6.1981-1259


[90] R. Swanson, R. Radespiel, and E. Turkel. “Comparison of several dissipation algo-

rithms for central difference schemes”. 13th Computational Fluid Dynamics Confer-

ence. Snowmass Village, CO, USA: American Institute of Aeronautics and Astro-

nautics, 1997.

[91] T. Coffey, R. J. McMullan, C. T. Kelley, and D. S. McRae. “Globally convergent algo-

rithms for nonsmooth nonlinear equations in computational fluid dynamics”. Jour-

nal of Computational and Applied Mathematics. Proceedings of the International Con-

ference on Recent Advances in Computational Mathematics 152.1 (2003), pp. 69–

81.

[92] P. Deuflhard. “Adaptive Pseudo-transient Continuation for Nonlinear Steady State

Problems” (2002).

[93] C. T. Kelley and D. E. Keyes. “Convergence Analysis of Pseudo-Transient Contin-

uation”. SIAM Journal on Numerical Analysis 35.2 (1998), pp. 508–523.

[94] C.-H. Tai, J.-H. Sheu, and P.-Y. Tzeng. “Improvement of explicit multistage schemes

for central spatial discretization”. AIAA Journal 34.1 (1996), pp. 185–188.

[95] N. Y. Gnedin, V. A. Semenov, and A. V. Kravtsov. “Enforcing the Courant-Friedrichs-

Lewy Condition in Explicitly Conservative Local Time Stepping Schemes”. Journal

of Computational Physics 359 (2018), pp. 93–105.

[96] P. Eliasson, P. Weinerfelt, and J. Nordström. “Application of a Line-Implicit Scheme

on Stretched Unstructured Grids”. 2009.

[97] T. Pulliam. “Time accuracy and the use of implicit methods”. 11th Computational

Fluid Dynamics Conference. Orlando, FL, USA: American Institute of Aeronautics

and Astronautics, 1993.

[98] D. E. Keyes and V. Venkatakrishnan. “Newton-Krylov-Schwarz Methods: Interfac-

ing Sparse Linear Solvers with Nonlinear Applications”. Journal of Applied Mathe-

matics and Mechanics 76 (1996), pp. 147–150.

[99] J. S. Cagnone, K. Sermeus, S. K. Nadarajah, and E. Laurendeau. “Implicit multi-

grid schemes for challenging aerodynamic simulations on block-structured grids”.

Computers & Fluids 44.1 (2011), pp. 314–327.

131

http://dx.doi.org/10.2514/6.1997-1945
http://dx.doi.org/10.2514/6.1997-1945
http://dx.doi.org/10.1016/S0377-0427(02)00697-0
http://dx.doi.org/10.1016/S0377-0427(02)00697-0
https://nbn-resolving.de/urn:nbn:de:0297-zib-6814
https://nbn-resolving.de/urn:nbn:de:0297-zib-6814
http://dx.doi.org/10.1137/S0036142996304796
http://dx.doi.org/10.1137/S0036142996304796
http://dx.doi.org/10.2514/3.13039
http://dx.doi.org/10.2514/3.13039
http://dx.doi.org/10.1016/j.jcp.2018.01.008
http://dx.doi.org/10.1016/j.jcp.2018.01.008
http://dx.doi.org/10.2514/6.2009-163
http://dx.doi.org/10.2514/6.2009-163
http://dx.doi.org/10.2514/6.1993-3360
http://dx.doi.org/10.1016/j.compfluid.2011.01.014
http://dx.doi.org/10.1016/j.compfluid.2011.01.014


[100] T. H. Pulliam and J. L. Steger. “Implicit Finite-Difference Simulations of Three-

Dimensional Compressible Flow”. AIAA Journal 18.2 (1980), pp. 159–167.

[101] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization

and Nonlinear Equations. Classics in Applied Mathematics. Society for Industrial

and Applied Mathematics, 1996.

[102] J. Hales, S. Novascone, R. Williamson, D. Gaston, and M. Tonks. “Solving Non-

linear Solid Mechanics Problems with the Jacobian-Free Newton Krylov Method”.

Computer Modeling in Engineering and Sciences 84.2 (2012), pp. 123–154.

[103] P. Orkwis and K. Vanden. “On the accuracy of numerical versus analytical Jaco-

bians”. 32nd Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: American In-

stitute of Aeronautics and Astronautics, 1994.

[104] H.-B. An, J. Wen, and T. Feng. “On finite difference approximation of a matrix-

vector product in the Jacobian-free Newton–Krylov method”. Journal of Computa-

tional and Applied Mathematics 236.6 (2011), pp. 1399–1409.

[105] J. K. Cullum and M. Tůma. “Matrix-free preconditioning using partial matrix esti-

mation”. BIT Numerical Mathematics 46.4 (2006), pp. 711–729.

[106] J. M. Donato. A comparison of iterative methods for a model coupled system of elliptic

equations. Tech. rep. ORNL/TM-12447. Oak Ridge National Lab., TN, USA, 1993.

[107] F. Pacull, S. Aubert, and M. Buisson. “A Study of ILU Factorization for Schwarz

Preconditioners with Application to Computational Fluid Dynamics”. Stirling-

shire, UK: Civil-Comp Press, 2011.

[108] K. Mohamed, K. Sermeus, E. Laurendeau, and S. Nadarajah. “Implementation and

Validation of Detached Eddy Simulation in the Bombardier Navier-Stokes Flow

Solver” (2009).

[109] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May,

L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini,

H. Zhang, and H. Zhang. PETSc Users Manual. Tech. rep. ANL-95/11 - Revision

3.11. Argonne National Laboratory, 2019.

132

http://dx.doi.org/10.2514/3.50745
http://dx.doi.org/10.2514/3.50745
http://dx.doi.org/10.1137/1.9781611971200
http://dx.doi.org/10.1137/1.9781611971200
http://dx.doi.org/10.3970/cmes.2012.084.123
http://dx.doi.org/10.3970/cmes.2012.084.123
http://dx.doi.org/10.2514/6.1994-176
http://dx.doi.org/10.2514/6.1994-176
http://dx.doi.org/10.1016/j.cam.2011.09.003
http://dx.doi.org/10.1016/j.cam.2011.09.003
http://dx.doi.org/10.1007/s10543-006-0094-8
http://dx.doi.org/10.1007/s10543-006-0094-8
http://dx.doi.org/10.2172/10180753
http://dx.doi.org/10.2172/10180753
http://dx.doi.org/10.4203/ccp.95.39
http://dx.doi.org/10.4203/ccp.95.39


[110] A. Rebaine, F. Fortin, and A. Benmeddour. “Parallelization of a finite volume CFD

code”. Workshops on Mobile and Wireless Networking/High Performance Scientific, En-

gineering Computing/Network Design and Architecture/Optical Networks Control and

Management/Ad Hoc and Sensor Networks/Compile and Run Time Techniques for Paral-

lel Computing ICPP 2004. Montreal, QC, Canada: IEEE, 2004, pp. 207–213.

[111] K. Sermeus, E. Laurendeau, and F. Parpia. “Parallelization and Performance Op-

timization of Bombardier Multiblock Structured Navier-Stokes Solver on IBM Es-

erver Cluster 1600”. 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV,

USA: American Institute of Aeronautics and Astronautics, 2007.

[112] E. de Sturler. “Incomplete block LU preconditioners on slightly overlapping sub-

domains for a massively parallel computer”. Applied Numerical Mathematics. Spe-

cial Issue on Massively Parallel Computing and Applications 19.1 (1995), pp. 129–

146.

[113] G. Alléon, M. Benzi, and L. Giraud. “Sparse approximate inverse preconditioning

for dense linear systems arising in computational electromagnetics”. Numerical Al-

gorithms 16.1 (1997), pp. 1–15.

[114] B. Carpentieri, I. S. Duff, L. Giraud, and M. M. m. Made. “Sparse symmetric pre-

conditioners for dense linear systems in electromagnetism”. Numerical Linear Al-

gebra with Applications 11.8-9 (2004), pp. 753–771.

[115] M. Bhuruth, M. K. Jain, and A. Gopaul. “Preconditioned iterative methods for the

nine-point approximation to the convection–diffusion equation”. Journal of Com-

putational and Applied Mathematics 138.1 (2002), pp. 73–92.

[116] G. Larrazábal, J. M. Cela, G. An, and L. Abal. “Study Of SPAI Preconditioners For

Convective Problems” (1999).

[117] M. Benzi and M. Tůma. “A comparative study of sparse approximate inverse pre-

conditioners”. Applied Numerical Mathematics 30.2-3 (1999), pp. 305–340.

[118] M. J. Grote and T. Huckle. “Parallel Preconditioning with Sparse Approximate

Inverses”. SIAM Journal on Scientific Computing 18.3 (1997), pp. 838–853.

133

http://dx.doi.org/10.1109/ICPPW.2004.1328019
http://dx.doi.org/10.1109/ICPPW.2004.1328019
http://dx.doi.org/10.2514/6.2007-1109
http://dx.doi.org/10.2514/6.2007-1109
http://dx.doi.org/10.2514/6.2007-1109
http://dx.doi.org/10.1016/0168-9274(95)00077-8
http://dx.doi.org/10.1016/0168-9274(95)00077-8
http://dx.doi.org/10.1023/A:1019170609950
http://dx.doi.org/10.1023/A:1019170609950
http://dx.doi.org/10.1002/nla.345
http://dx.doi.org/10.1002/nla.345
http://dx.doi.org/10.1016/S0377-0427(01)00362-4
http://dx.doi.org/10.1016/S0377-0427(01)00362-4
http://dx.doi.org/10.1016/S0168-9274(98)00118-4
http://dx.doi.org/10.1016/S0168-9274(98)00118-4
http://dx.doi.org/10.1137/S1064827594276552
http://dx.doi.org/10.1137/S1064827594276552


[119] P. O. Frederickson. Fast approximate inversion of large sparse linear systems. Lakehead

University, Department of Mathematical Sciences, 1975.

[120] M. Benson, J. Krettmann, and M. Wright. “Parallel algorithms for the solution of

certain large sparse linear systems”. International Journal of Computer Mathematics

16.4 (1984), pp. 245–260.

[121] J. D. F. Cosgrove, J. C. Díaz, and A. Griewank. “Approximate inverse precondi-

tionings for sparse linear systems”. International Journal of Computer Mathematics

44.1-4 (1992), pp. 91–110.

[122] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. “Optimization

of sparse matrix-vector multiplication on emerging multicore platforms”. SC ’07:

Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. 2007, pp. 1–12.

[123] E. Chow. “A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Pre-

conditioners”. SIAM Journal on Scientific Computing 21.5 (2000), pp. 1804–1822.

[124] K. Wang, S. Kim, and J. Zhang. “A Comparative Study on Dynamic and Static

Sparsity Patterns in Parallel Sparse Approximate Inverse Preconditioning”. Journal

of Mathematical Modelling and Algorithms 2.3 (2003), pp. 203–215.

[125] S. T. Barnard, L. M. Bernardo, and H. D. Simon. “An MPI Implementation of the

SPAI Preconditioner on the T3E:” The International Journal of High Performance Com-

puting Applications (1999).

[126] N. I. M. Gould and J. A. Scott. “Sparse Approximate-Inverse Preconditioners Us-

ing Norm-Minimization Techniques”. SIAM Journal on Scientific Computing 19.2

(1998), pp. 605–625.

[127] S. T. Barnard and M. J. Grote. “A Block Version of the SPAI Preconditioner.” PPSC.

1999.

[128] S. T. Barnard, R. L. Clay, and M. K. Chancellor. “A portable MPI implementation

of the SPAI preconditioner in ISIS++”. Minneapolis, MN, USA, 1997.

[129] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Tech. rep. 1990.

134

http://dx.doi.org/10.1080/00207168408803441
http://dx.doi.org/10.1080/00207168408803441
http://dx.doi.org/10.1080/00207169208804097
http://dx.doi.org/10.1080/00207169208804097
http://dx.doi.org/10.1145/1362622.1362674
http://dx.doi.org/10.1145/1362622.1362674
http://dx.doi.org/10.1137/S106482759833913X
http://dx.doi.org/10.1137/S106482759833913X
http://dx.doi.org/10.1023/B:JMMA.0000015831.64190.1e
http://dx.doi.org/10.1023/B:JMMA.0000015831.64190.1e
http://dx.doi.org/10.1177/109434209901300202
http://dx.doi.org/10.1177/109434209901300202
http://dx.doi.org/10.1137/S1064827595288425
http://dx.doi.org/10.1137/S1064827595288425
https://ntrs.nasa.gov/search.jsp?R=19910023551


[130] N. Goharian, A. Jain, and Q. Sun. “Comparative Analysis of Sparse Matrix Algo-

rithms for Information Retrieval”. Journal of Systemics, Cybernetics and Informatics 1

(2003).

[131] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson. “Parallel sparse

matrix-vector and matrix-transpose-vector multiplication using compressed sparse

blocks”. Proceedings of the twenty-first annual symposium on Parallelism in algorithms

and architectures - SPAA ’09. Calgary, AB, Canada: ACM Press, 2009, p. 233.

[132] T. Huckle, A. Kallischko, and M. Sedlacek. MSPAI - TUM. URL: https://www5.

in.tum.de/wiki/index.php/MSPAI (visited on 06/12/2020).

[133] S. Booth and E. Mourao. “Single sided MPI implementations for SUN MPI”. SC

’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing. 2000, pp. 2–2.

[134] MPI Forum. URL: https://www.mpi-forum.org (visited on 07/01/2020).

[135] T. A. Davis and Y. Hu. “The university of Florida sparse matrix collection”. ACM

Transactions on Mathematical Software 38.1 (2011), pp. 1–25.

[136] V. Deshpande, M. J. Grote, P. Messmer, and W. Sawyer. “Parallel implementation

of a sparse approximate inverse preconditioner”. Parallel Algorithms for Irregularly

Structured Problems. Lecture Notes in Computer Science. Springer, 1996, pp. 63–74.

[137] R. Nabben. “Decay Rates of the Inverse of Nonsymmetric Tridiagonal and Band

Matrices”. SIAM Journal on Matrix Analysis and Applications 20.3 (1999), pp. 820–

837.

[138] W. Briggs, V. Henson, and S. McCormick. A Multigrid Tutorial, Second Edition. Other

Titles in Applied Mathematics. Society for Industrial and Applied Mathematics,

2000.

[139] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri. “Newton-Krylov-Schwarz

Methods in CFD”. Numerical methods for the Navier-Stokes equations: Proceedings of

the International Workshop Held at Heidelberg, October 25–28, 1993. Notes on Numer-

ical Fluid Mechanics (NNFM). Wiesbaden, 1994, pp. 17–30.

[140] Cedar - Compute Canada Doc. URL: https://docs.computecanada.ca/wiki/

Cedar (visited on 07/06/2020).

135

http://dx.doi.org/10.1145/1583991.1584053
http://dx.doi.org/10.1145/1583991.1584053
http://dx.doi.org/10.1145/1583991.1584053
https://www5.in.tum.de/wiki/index.php/MSPAI
https://www5.in.tum.de/wiki/index.php/MSPAI
https://www5.in.tum.de/wiki/index.php/MSPAI
http://dx.doi.org/10.1109/SC.2000.10022
https://www.mpi-forum.org
https://www.mpi-forum.org
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1007/BFb0030097
http://dx.doi.org/10.1007/BFb0030097
http://dx.doi.org/10.1137/S0895479897317259
http://dx.doi.org/10.1137/S0895479897317259
http://dx.doi.org/10.1137/1.9780898719505
http://dx.doi.org/10.1007/978-3-663-14007-8_3
http://dx.doi.org/10.1007/978-3-663-14007-8_3
https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Cedar


[141] Béluga - Compute Canada Doc. URL: https://docs.computecanada.ca/wiki/

B%C3%A9luga/en (visited on 06/21/2020).

[142] A. Kashi. FVENS, Finite volume Euler/Navier-Stokes solver. URL: https://github.

com/Slaedr/FVENS (visited on 06/25/2020).

[143] J. Rivera Jose, B. Dansberry, R. Bennett, M. Durham, and W. Silva. “NACA 0012

benchmark model experimental flutter results with unsteadypressure distribu-

tions”. 33rd Structures, Structural Dynamics and Materials Conference. Structures,

Structural Dynamics, and Materials and Co-located Conferences. American Insti-

tute of Aeronautics and Astronautics, 1992.

[144] P. L. Roe. “Approximate Riemann solvers, parameter vectors, and difference schemes”.

Journal of Computational Physics 43.2 (1981), pp. 357–372.

[145] C. Ansorge. Analyses of Turbulence in the Neutrally and Stably Stratified Planetary

Boundary Layer. Springer, 2016.

[146] F. Magoulès, F.-X. Roux, and G. Houzeaux. “Computer Architectures”. Parallel Sci-

entific Computing. John Wiley & Sons, Ltd, 2015.

[147] J. Erhel. “A parallel GMRES version for general sparse matrices”. ETNA. Electronic

Transactions on Numerical Analysis 3 (1995), pp. 160–176.

[148] R. D. da Cunha and T. Hopkins. “A parallel implementation of the restarted GM-

RES iterative algorithm for nonsymmetric systems of linear equations”. Advances

in Computational Mathematics 2.3 (1994), pp. 261–277.

[149] Y. Saad. Krylov Subspace Methods in Distributed Computing Environments. Army High

Performance Computing Research Center, 1992.

[150] H. Shoukourian, T. Wilde, A. Auweter, and A. Bode. “Predicting the energy and

power consumption of strong and weak scaling HPC applications”. Supercomput-

ing Frontiers and Innovations 1.2 (2014), pp. 20–41.

[151] B. Eisfeld. “ONERA M6 wing”. FLOMANIA — A European Initiative on Flow Physics

Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design.

Springer, 2006, pp. 219–224.

136

https://docs.computecanada.ca/wiki/B%C3%A9luga/en
https://docs.computecanada.ca/wiki/B%C3%A9luga/en
https://docs.computecanada.ca/wiki/B%C3%A9luga/en
https://github.com/Slaedr/FVENS
https://github.com/Slaedr/FVENS
https://github.com/Slaedr/FVENS
http://dx.doi.org/10.2514/6.1992-2396
http://dx.doi.org/10.2514/6.1992-2396
http://dx.doi.org/10.2514/6.1992-2396
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://books.google.com/books?vid=ISBN978-3-319-45044-5
http://books.google.com/books?vid=ISBN978-3-319-45044-5
https://doi.org/10.1002/9781118761687.ch1
http://dx.doi.org/10.1007/BF02521112
http://dx.doi.org/10.1007/BF02521112
http://dx.doi.org/10.14529/jsfi140202
http://dx.doi.org/10.14529/jsfi140202
http://dx.doi.org/10.1007/978-3-540-39507-2_28


[152] J. Vassberg, M. Dehaan, M. Rivers, and R. Wahls. “Development of a Common

Research Model for Applied CFD Validation Studies”. 26th AIAA Applied Aerody-

namics Conference. Honolulu, Hawaii, USA: American Institute of Aeronautics and

Astronautics, 2008.

[153] M. Lukash, K. Rupp, and S. Selberherr. “Sparse Approximate Inverse Precondi-

tioners for Iterative Solvers on GPUs”. Proceedings of the 2012 Symposium on High

Performance Computing. HPC ’12. Orlando, Florida. San Diego, CA, USA: Society

for Computer Simulation International, 2012.

[154] X. Liu, Z. Zhong, and K. Xu. “A hybrid solution method for CFD applications on

GPU-accelerated hybrid HPC platforms”. Future Generation Computer Systems 56

(2016), pp. 759–765.

[155] Y. Xiang, B. Yu, Q. Yuan, and D. Sun. “GPU Acceleration of CFD Algorithm: HS-

MAC and SIMPLE”. Procedia Computer Science. International Conference on Com-

putational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland 108 (2017),

pp. 1982–1989.

137

http://dx.doi.org/10.2514/6.2008-6919
http://dx.doi.org/10.2514/6.2008-6919
http://books.google.com/books?vid=ISBN978-1-61839-788-1
http://books.google.com/books?vid=ISBN978-1-61839-788-1
http://dx.doi.org/10.1016/j.future.2015.08.002
http://dx.doi.org/10.1016/j.future.2015.08.002
http://dx.doi.org/10.1016/j.procs.2017.05.124
http://dx.doi.org/10.1016/j.procs.2017.05.124

	List of Figures
	List of Tables
	Abstract
	Abrégé
	Acknowledgements
	Contributions
	Nomenclature
	Introduction
	Motivation
	Parallel Computing
	Review of Solution Methods in Flow Solvers
	Organization of the Thesis

	Methods for Solving Systems of Linear and Nonlinear Equations
	Solving Linear Systems
	Stationary Methods
	Krylov Subspace Methods

	Preconditioning
	Splitting-Based Preconditioners
	Incomplete Factorization Preconditioners
	Domain Decomposition Preconditioners
	Sparse Approximate Inverse Preconditioners

	Solving Nonlinear Equations
	Newton's Method
	Newton-Krylov Methods
	Globalization of Newton's Method


	Governing Equations and Flow Solver
	Governing Equations
	Turbulence Model
	Spatial Discretization
	Time Integration
	Pseudo-Transient Continuation
	Left-Hand Side Operator

	Properties of the Implicit Operator
	Structure of the Jacobian Matrix
	Poor Conditioning

	Flow Solver
	Parallelism in the CFD Code

	Parallel Preconditioning with the Sparse Approximate Inverse
	Sparse Approximate Inverse (SPAI) Preconditioning
	Algorithm
	Adaptive Strategy
	Block Generalization of the SPAI Algorithm
	Implementation of the SPAI Algorithm
	Numerical Result of the Preconditioning Methods

	SPAI Preconditioning Strategy in the Newton-Krylov Framework
	Reusing the SPAI Pattern
	SPAI Strategy in Newton's Method


	Results
	Parallel Scaling of SPAI and Domain Decomposition Preconditioners
	Comparison of SPAI Preconditioning Variants
	Study of the Adaptive SPAI Preconditioning
	Comparison with Domain Decomposition Preconditioners
	Strong and Weak Scaling

	Test Cases for the Euler and Navier-Stokes Equations
	Test Cases
	Methodology for Comparing Algorithms

	Reynolds-Averaged Navier-Stokes Results and Discussion
	Optimization of the SPAI Preconditioning Strategy
	Comparison with Domain Decomposition Preconditioners


	Conclusion and Future Work
	Concluding Remarks
	Future Work

	Bibliography

