
Improvements and Applications of Machine

Learning Algorithms

By Thang Doan

Desautels Faculty of Management

McGill University

Montreal, Québec

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Doctor of Philosophy

c©Thang Doan, 2019

Abstract

Due to availability of copious amount of data nowadays and its potential value, de-

tecting patterns in data is a crucial task that allows one to use the insights gleaned to make

better decisions. In this context, due to its power and scalability for better leveraging data

structure and better understanding the processes that generate data, Machine Learning

(ML) algorithms have become popular among academics and practitioners. For example,

Generative Adversarial Networks (GANs) have shown impressive results in learning dis-

tributions and thereby generating realistic customers for new products [52] or real human

faces [46]. Another popular ML branch is Reinforcement Learning (RL), which is not only

successful in dealing with complexities of AlphaGo [70] game, but also provides a cogent

framework for solving decision making problems. In this dissertation, we present three

chapters that investigate various theoretical and practical issues related to the above two

techniques. Two chapters are dedicated to GANs –one to design an effective algorithm to

tackle the problem of mode collapse and the other one to show its applicability in a retail

context. The third one tackles exploration issues in continuous problems in RL, which is

a major challenge especially for deceptive reward environment domains.

The first essay tackles a well-known theoretical problem encountered in training GANs:

mode collapse. Indeed, due to the min-max optimization required in GANs, it is common

for the generator in this technique to generate only a subset of all modes, resulting in a

lack of diversity in the generated data. To overcome this issue, we use multiple discrim-

inators with increasing representational capacity. We learn a curriculum by adaptively

learning the weight assigned to each discriminator through a multi-armed bandit algo-

rithm [5]. Empirically, we show not only better performance in term of diversity of gen-

erated data but also faster convergence of our algorithm.

i

The second essay uses GANs to learn the distribution of transactional data of cus-

tomers for a drugstore chain. One can learn the purchasing patterns of individual cus-

tomers by learning their distributions, and hence can generate items that follow the same

distribution. This can then be used to predict the items that a “similar” arriving customer

is likely to buy during her/his shopping trips. This algorithm can be used for a variety

of purposes including as a recommendation system or for personalized bundle pricing.

Empirical results show that the patterns of items generated by our model overlap heavily

with real data, i.e., our model has good prediction power.

The third essay deals with exploration problems in Reinforcement Learning (RL), fo-

cusing especially on environments with deceptive rewards. Deceptive reward domains

are challenging because their reward landscape is multimodal. Additionally, large state

space makes the problem even more difficult (e.g., controlling a humanoid agent with

many degrees of freedom). A good exploration strategy should have a high coverage of

the solution space. To handle this, we adopt a multi-agent framework and design an ex-

ploration strategy wherein the agents coordinate their exploration efforts. Specifically, we

use an attraction-repulsion mechanism to preserve diversity throughout the search over

the solution space. Empirical results show that our method not only performs better in

humanoid and other high-dimensional tasks, but also converges faster.

ii

Abrégé

Aujourd’hui, l’accès à de gros volumes de données ainsi que leurs valeurs poten-

tielles étant facilités, détecter des tendances dans les données est devenue une tâche

cruciale pour collecter des informations et ainsi prendre de meilleures décisions. Dans

ce contexte, l’apprentissage machine (ML) est devenu populaire grâce à sa puissance et

sa flexibilité pour apprendre la structure des données et mieux comprendre le proces-

sus ayant généré les données. Par exemple, les modèles génératifs antagonistes (GANs)

ont montré d’impressionnants résultats pour apprendre des distributions et ainsi générer

des données de consommateurs artificielles pour un nouveau produit [52] ou encore des

photos réalistes d’êtres humains inexistants [46]. Une autre branche populaire de ML est

l’apprentissage par renforcement (RL), qui peut non seulement résoudre des problèmes

complexes comme le jeu AlphaGo [70], mais résoudre les problèmes de prise de décision.

Dans cette dissertation, nous présentons trois chapitres qui étudient théoriquement et em-

piriquement les deux précédentes méthodes. Deux chapitres sont dédiés aux GANs- dont

un qui s’attaque au problème d’effondrement des modes de la distribution et l’autre qui

est une application dans le contexte du commerce de détail. Le troisième chapitre s’attèle

au problème d’exploration des domaines continus en RL, qui est un challenge majeur,

spécialement pour les environnements à récompenses fallacieuses.

Le premier essai étudie un problème théorique bien connu rencontré dans

l’entraı̂nement des GANs: l’effondrement du nombre de modes appris. En effet, du à

l’opérateur min-max dans l’optimisation des GANs, il est très fréquent pour le modèle

de ne générer qu’un sous-ensemble du nombre de modes total, entraı̂nant une réduction

de la diversité des données générées. Pour remédier à ce problème, nous utilisons un

ensemble de discriminateurs à capacité croissante. Nous varions les poids assignés à

chaque discriminateur à l’aide d’un apprentissage progressif en utilisant un algorithme

de bandit [5]. Empiriquement, notre méthode démontre non seulement de meilleures

iii

performances en termes de diversité des données générées, mais aussi une meilleure con-

vergence.

Le deuxième essai est une application des GANs pour l’apprentissage de la

distribution des données transactionnelles des consommateurs d’une chaı̂ne de pharma-

cie. La tendance d’achat des consommateurs peut être apprise à travers leur distribution

et ainsi des données artificielles suivant cette même distribution peuvent être générées. Il

serait possible d’utiliser cette méthode pour prédire les futurs achats de consommateurs

”similaires”. Quelques applications de cet algorithme incluent les systèmes de recom-

mandation ou la personnalisation des prix. Les résultats empiriques montrent que la ten-

dance des produits artificiellement générés est très semblable aux produits réels achetés.

Notre modèle a un grand pouvoir prédictif.

Le troisième essai s’attaque aux problèmes d’explorations rencontrés dans

l’apprentissage par renforcement (RL), et spécialement dans les environnements à

récompenses fallacieuses. Ces domaines sont difficiles, car la surface de la fonction de

récompense est multimodale. De plus, les espaces d’état de grandes dimensions rendent

le problème encore plus dur (ex: contrôler un agent humanoı̈de avec plusieurs degrés

de liberté). Une bonne stratégie d’exploration doit permettre une couverture importante

de l’espace des solutions. Pour remédier à cela, nous nous plaçons dans le cadre multi-

agent et développons une stratégie d’exploration dans laquelle les agents coordonnent

leur exploration. Précisément, nous utilisons un mécanisme d’attraction et de répulsion

pour préserver une diversité dans l’espace des solutions au cours de l’entraı̂nement. Nos

résultats empiriques démontrent de meilleures performances dans les environnements

avec un grand degré de liberté, ainsi qu’une meilleure convergence.

iv

Acknowledgements

I would like to thank my advisors Professor Saibal Ray and Professor Shanling Li for

all their support and supervision during my doctoral studies. I would also like to thank

everyone at the McGill School of Computer Science. They welcomed me like as one of

their own students, provided support and treated me as a colleague. I met some won-

derful people and enjoyed productive collaborations with two chapters in the present

dissertation as a result.

Special thanks to all the doctoral students in the department, who overlapped with

me during my doctoral studies and especially my officemate with whom I faced difficult

times as well as happy ones. I would also like to thank Desautels faculty members and

staff who helped manoeuver administrative hurdles and shared helpful advice. Also, I

would like to extend a heartfelt thank you to DDSS (Desautels Doctoral Student Society)

for providing a social network that created nice work life balance. And I cannot forget

the hazelnut coffee that helped me survive through the Montreal winter.

Finally, I would like to thank my family: my parents, my girlfriend and my friends

without whom this would not have been possible. Their constant practical support and

encouragement was invaluable in helping me deal with the challenges of the PhD life.

v

Contributions of Authors

The first essay was done in collaboration with Joao Monteiro, Isabelle Albuquerque,

Bogdan Mazoure, Audrey Durand, R Devon Hjelm and Joelle Pineau. It was done un-

der the supervision of the two latter people respectively Adjunct Professor and Associate

Professor at Montreal Institute of Learning Algorithm (Mila). The algorithms and experi-

ments has been done and run by the authors of this thesis.

The second essay ”Generating Realistic Sequence of Customer-levelfor Transactions

for Retail Datasets” is a work done while interning at Rubikloud Technologies during

summer 2018. It was done in collaboration with Neil Viera, a Rubikloud intern and Brian

Keng, the Chief Data Scientist at Rubikloud. The main algorithms and experiments has

been done and run by the authors of this thesis.

The third essay is co-authored with Bogdan Mazoure (which allowed me to put it in

the present thesis) and done in collaboration with Audrey Durand, Joelle Pineau and R

Devon Hjelm. The work has been conducted under the supervision of the two latter men-

tioned people. The design of the algorithm and experiments have been done equally by

both authors.

While the essay chapter has been presented at the DMS workshop of the International

Conference on Data Mining (ICDM, 2018), the second essay has been presented at the

33rd Conference on Artificial Intelligence (AAAI, 2019). The last essay is submitted at the

8th International Conference on Learning Representations (ICLR, 2020).

vi

Table of Contents

Abstract . i

Abrégé . iii

Acknowledgements . v

Contributions of Authors . vi

List of Figures . xiii

List of Tables . xv

1 On-line Adaptative Curriculum Learning for GANs 4

1.1 Introduction . 4

1.2 Related Work . 6

1.3 Adaptative Curriculum GAN . 8

1.3.1 Mixing discriminators . 8

1.3.2 Reward shaping . 11

1.3.3 Connection to existing methods . 12

1.4 Experiments . 12

1.4.1 Retaining mode information through weaker capacity discrimina-

tors and smoothness . 12

1.4.2 Performance of acGAN against existing baselines 15

1.5 Conclusion . 21

1.6 Supplementary Material . 23

1.6.1 Effect of different nonlinear activation layer on the weak discrimi-

nator’s smoothness . 26

1.6.2 Evolution of the gradient norm during the training 27

1.6.3 Regularizing the discriminator through additive noise 28

1.6.4 Experimental parameters . 30

1.6.5 Synthetic data . 31

vii

1.6.6 CIFAR-10 . 35

1.6.7 CelebA . 41

2 Generating Realistic Sequence of Customer-level
for Transactions for Retail Datasets 48

2.1 Introduction . 48

2.2 Background and Related Work . 50

2.2.1 Transaction-Based Item and Customer Embeddings 50

2.2.2 Item Prediction and Recommendation Systems 51

2.2.3 Generative Adversarial Networks . 51

2.2.4 Simulating Customer Behaviour . 52

2.3 Methodology . 53

2.3.1 Product Representations . 53

2.3.2 Customer Representations . 54

2.3.3 Learning Product Distributions with a Conditional GAN 55

2.3.4 Generating Sequences of Products . 56

2.4 Experimental Results . 57

2.4.1 Experimental Setup . 58

2.4.2 Feature Distributions . 60

2.4.3 Sequential Pattern Mining . 63

2.4.4 Basket Distributions . 65

2.5 Conclusion . 68

3 Attraction-Repulsion Actor-Critic for Continuous Control Reinforcement Learn-

ing 69

3.1 Introduction . 69

3.2 Preliminaries . 71

3.2.1 Discovering new solutions through population-based Attraction-

Repulsion . 71

viii

3.2.2 Soft actor-critic . 73

3.2.3 Normalizing flows . 73

3.3 ARAC: Attraction-Repulsion Actor-Critic . 74

3.3.1 Enhancing diversity in the archive . 75

3.3.2 Discovering new policies through Attraction-Repulsion 76

3.4 Related Work . 77

3.5 Experiments . 78

3.5.1 Didactic example . 78

3.5.2 MuJoCo locomotion benchmarks . 78

3.6 Conclusion . 83

3.6.1 Pseudo-code for ARAC . 94

4 Conclusion 98

5 Future directions 100

ix

List of Figures

1.1 Recovering dropped modes via multiple discriminators. The weak dis-

criminator provides feedback, allowing the generator to recover forgotten

modes. The strong discriminator experiences vanishing gradient and can-

not help the generator to recover modes. 5

1.2 Proposed procedure for training the generator 9

1.3 Modes used for pretraining the generator (left) and modes recovered by

Vanilla GAN (middle) and acGAN (right). The more modes the better. . . . 13

1.4 Gradient norm of each discriminator with respect to the input. We clipped

the magnitude with respect to the weaker discriminator range. Since weaker

discriminators are smoother by construction, they help the generator to re-

cover missing modes. On the other hand, vanilla GAN can hardly recover

modes due to its vanishing gradient. 14

1.5 KDE plots of the modes recovered by each examined approach with 3 dis-

criminators. 16

1.6 Stacked-MNIST generated samples for acGAN with 3 discriminators. 17

1.7 Stacked-MNIST generated samples for acGAN with 5 discriminators. 17

1.8 Weight πi of each discriminator over the training epochs. We can see phase

switching at the beginning where each discriminator’s weight is dominat-

ing before eventually converging to a uniform distribution. 18

1.9 FID scores computed with 1,000 samples at the end of each epoch for dif-

ferent methods with 3 discriminators. acGAN outperforms the baselines

Uniform and GMAN. 20

1.10 FID curves with 5 discriminators. acGAN presented earlier convergence

and reached lower FID values. 21

x

1.11 Adding noise (bottom row) reduces gradient norm magnitude of each dis-

criminator. This increases their smoothness properties and helps recover-

ing modes of the distribution. We clipped the gradient magnitude with

respect to the corresponding discriminator corrupted with noise. 23

1.12 Probability D(x) for each discriminator without (top) and with (bottom)

white Gaussian noise. Noise tends to smooth their decision boundary and

increase their entropy. That helps to provide more informative gradient to

the generator. 24

1.13 Although Tanh (left) presents smoother partition of the subspace than LeakyReLU

(middle) and ReLU (right), it seems to have weak gradient signal (small

gradient norm magnitude). 26

1.14 Evolution of the gradient norm for each discriminator and samples gener-

ated (last column). The generator recovers modes thanks to the gradients

provided by the weak and intermediate discriminators. Each discrimina-

tor in turn evolves to learn its coarse to fine-grained representation of the

data. Note also that the strong discriminator has a good representation of

all the modes before the generator has learned them, indicating that mode

dropping in this setting is not due to those modes being absent in the dis-

criminator. We have clipped the gradient range with respect to the weak

discriminator of the corresponding row. 27

1.15 As we exponentially decay the noise, samples quality increase (2500 sam-

ples are plotted). 28

1.16 Stacked-MNIST generated samples. 34

1.17 Increasing the number of discriminators induces an earlier convergence of

FID. Moreover, lower FID values are reached. 36

1.18 Average FID score of each method for different number of discriminators.

In both plots, the acGAN algorithm presented faster convergence com-

pared to the other methods. 37

xi

1.19 acGAN with 5 discriminators shows earler convergence and better perfor-

mance than Vanilla GAN (1 Disc) and WGAN-GP. 38

1.20 CIFAR-10 generated samples (1). 39

1.21 CIFAR-10 generated samples (2). 40

1.22 CelebA generated samples (1). 42

1.23 CelebA generated samples (2). 43

1.24 Weight πi of each discriminator over the training epochs. We could see

switching phase, where one discriminator’s weight πi is dominant with

respect to the rest. After some epochs, all weights πi converge to a uniform

regime. 44

1.25 Interpolating in latent space with 3 and 5 Discriminators. 45

1.26 128x128 CelebA samples for acGAN trained for 50 epochs with 3 discrimi-

nators. 46

1.27 128x128 CelebA samples for acGAN trained for 50 epochs with 5 discrimi-

nators. 47

2.1 Embedding customers via multi-task Learning with an LSTMs. The input

is the sequence of products a customer has purchased throughout their

transactional history. After convergence, the hidden state of the LSTM will

characterize a customer’s state. 55

2.2 Basket sequence generation process using the LSTM and Generator modules. 58

2.3 Visualization of product embeddings in a 2D space (mapped using t-SNE) . 60

2.4 Product category distributions of real and generated data 61

2.5 Product brand distributions of real and generated data 62

2.6 Product price distributions of real and generated data 62

2.7 Basket size distributions of real and generated data 63

2.8 Generated pattern coverage of the top-k most common real patterns 65

2.9 Basket representations as bags-of-products vectors at the category level,

projected using t-SNE. 66

xii

2.10 Basket representations as bags-of-products vectors at the category level,

projected using PCA. 67

3.1 a) Augmenting the loss function with AR constraints allows an agent to

reach a target policy by following different paths. Attractive and Repulsive

policies represent any other agent’s policy. b) General flow of the proposed

ARAC strategy. 75

3.2 Agent trained to imitate a target while avoiding a repulsive policy using a

proactive strategy. Increasing the number of flows leads to more complex

policy’s shape. 79

3.3 Mapping in two-dimensional space (t-SNE) of agents’ actions for two arbi-

trary states. Each color represents a different agent. 80

3.4 Average return and one standard deviation on 5 random seeds across 8

MuJoCo tasks. Curves are smoothed using Savitzky-Golay filtering with

window size of 7. 81

3.5 Mapping in two-dimension space (t-SNE) of agents’ actions for two arbi-

trary states. Each color represents a different agent. 87

3.6 Comparison of ARAC agents using (1) AR with radial flows, (2) AR with

only the base (Gaussian) policy and (3) no AR with radial flows. 88

3.7 Average return and one standard deviation on 5 random seeds across 7

MuJoCo tasks for ARAC against baselines. Curves are smoothed using

Savitzky-Golay filtering with window size of 7. 89

3.8 Average return and one standard deviation on 5 random seeds across 7 Mu-

JoCo tasks for ARAC against single SAC agents (with and without NFs).

Curves are smoothed using Savitzky-Golay filtering with window size of 7. 90

3.9 Single state didactic illustration of attraction-repulsion operators. Compar-

ing behavior of NF policy against Gaussian policy with learned variance

under a repulsive constraint. 94

xiii

List of Tables

1.1 Results on the Gaussian mixture synthetic data. Our method acGAN could

cover all 25 modes. 15

1.2 Number of modes covered and Kullback-Leiber divergence between the

real and generated distributions on Stacked-MNIST. acGAN could recover

the 1000 modes. 16

1.3 Best FID scores on CIFAR-10 computed on 1,000 samples during training

time (lower is better). 21

1.4 General experimental hyperparameters. 30

1.5 Generator’s architecture. 32

1.6 Discriminator 5. 32

1.7 Discriminator 4. 33

1.8 Discriminator 3. 33

1.9 Discriminator 2. 33

1.10 Discriminator 1. 34

2.1 Statistics . 63

2.2 Discrepancies between real and generated data 63

2.3 Sequential patterns comparison between real and generated transaction data 64

2.4 Separability between real and generated baskets. 67

3.1 Maximum average return after 1M (2M for Humanoid (rllab) and 600k

for SparseHumanoid-v2) time steps 5 random seeds. Bold: best methods

when the gap is less than 100 units. See appendix for average return with

standard deviation. Environment short names: HC: HalfCheetah-v2,

Hu: Humanoid-v2, Standup: HumanoidStandup-v2 80

xiv

3.2 Maximum average return after 1M (2M for Humanoid (rllab) and 600k

for SparseHumanoid-v2) time steps ± one standard deviation on 5 ran-

dom seeds. Bold: best methods when the gap is less than 100 units.Environment

short names: HC: HalfCheetah-v2, Hu: Humanoid-v2, Standup: HumanoidStandup-v2 91

3.3 Performance after 1M (except for rllab which is 2M) timesteps on 5 seeds.

Values taken from their corresponding papers. N/A means the values were

not available in the original paper. 91

3.4 ARAC parameters. 92

xv

Introduction

Access to huge volume of data available nowadays from various sources (loyalty card

transaction, cookies, social network), makes it possible to analyze them to glean valuable

information and insights that can then be used for better decision-making. However, such

analysis requires use of sophisticated algorithms with Machine Learning (ML) techniques

being one of the most popular ones. ML techniques are able to learn data patterns and

can be used as a tool (among other things) to infer customer preferences, detect trends

and predict/model future behavior of customers. Common commercial applications of

ML include recommendation systems [87] as well as targeted advertising [61]. Other ap-

plications of ML are mainly in computer vision (facial recognition [7]) and robotics [34]

fields.

ML techniques can divided into three main groups: Supervised Learning, Unsuper-

vised Learning and Reinforcement Learning. Supervised learning algorithms tackle pre-

diction and classification tasks. Specifically, given a dataset and its true label, the goal is

to learn a function that maps from a given input to its corresponding label. For exam-

ple, these techniques can predict the future demand of items based on historical data in

a retail context. Classification techniques in computer vision can be used by cameras to

recognize people entering and leaving a sensitive area. In contrast, Unsupervised learn-

ing techniques leverage inherent data structures to detect trends/patterns, in absence of

any labels on the dataset. For example, clustering methods such as k-means [45] are com-

monly used in the marketing literature. Proper segmenting of customers ensure they have

relatively similar behaviour and might help in designing better strategies to target spe-

cific group of customers. Another recent application of unsupervised learning is Genera-

tive Adversarial Network (GANS [27]) that has shown tremendous potential in learning

probability densities. SUch models can generate realistic human faces [46], customers, or

1

even new apparel designs [81] by learning distributions of relevant input data. Finally,

Reinforcement Learning (RL) is a framework for optimizing decision making problems.

Based on the Markov Decision setting [77], it gives a coherent and succinct framework to

solve either continuous control problems [94] or discrete action space problems [12]. It

has gained notable popularity recently with applications in the sphere of playing compli-

cated games (e.g., AlphaGo).

In this thesis, we address both unsupervised learning and RL methods in three chap-

ters. Specifically, two chapters are dedicated to GANs and one to RL. In Chapter 2, we

first tackle a common theoretical issue met by GANs: mode collapse where the genera-

tor concentrates the density onto a subset of the total modes of the real data distribution.

This can generate loss of information. For instance, if one wants to learn the distribution

of customers that buy a specific type of item, mode collapse in GANs will result in gen-

eration of only one type of customers. This can have business consequences since other

types of potential customers will not be taken into account. To deal with that pathology,

we train a generator with a set of increasing capacity discriminators and use multi-armed

bandit to regulate the learning process. By this we are able to successfully deal with the

mode collapse problem as we demonstrate empirically. Chapter 3 is an application of

GANs in the retail context for generating realistic customer items. One can take advan-

tage of the high volume of data from loyalty cards to learn patterns in customer behavior.

In collaboration with a retail analytics company, we use GANs to model and learn about

the distribution of items users are buying during their shopping trips based on historical

transactional data. Subsequently, we are able to generate shopping baskets for future cus-

tomers containing items users could have bought that seem to closely mimic reality. This

method can serve as a basis for recommendation and personalized pricing systems.

Chapter 4 of the thesis is focused on continuous control for reinforcement learning. A

particular domain of interest are the deceptive reward environments [17]. Such environ-

2

ments are characterized by a multimodal reward landscape. To see this, imagine control-

ling a humanoid agent that learns to walk. Not only do you need to adapt the locomotion

of the legs but also balance arm movements. No natural reward exist in such case; instead,

handcrafted rewards are usually provided (like distance from starting point, alive bonus

reward, velocity etc...). This can easily trap policy in suboptimal solutions (agents trying

to fall the furthest when stuck in an unbalanced movement or learning non-viable gait)

and eventually no stable walk is learnt. One direction is to design a smart exploration

strategy. Because of the large state space (376 for humanoid agent in MuJoco [94]), we

handle this problem under the multi-agent framework and hypothesize that coordinated

exploration among our agents might be the solution for an efficient exploration mecha-

nism. We show emprical results that our algorithm is successful in this context.

In summary, this thesis contributes theoretically by developing solutions for certain

challenges faced by ML techniques and also practically by showing how ML techniques

can be used in reality to make better decisions.

3

Chapter 1

On-line Adaptative Curriculum Learning for

GANs

1.1 Introduction

Generative Adversarial Networks [27] have reshaped the state of machine learning in

tasks that involve generating data. A GAN is an unsupervised method that consists of

two neural networks, a generator and a discriminator, with opposing (or adversarial) ob-

jectives. The typical goal of the generator is to transform noise (e.g., drawn from a normal

distribution) into samples whose statistical and structural characteristics match well those

of an empirical target dataset (such as a collection of images). The discriminator, which

acts as an adversary to the generator, needs to discriminate between (or classify) samples

as coming from the real data or the generator.

While GANs can achieve impressive qualitative performance (most notably with im-

age data, e.g., see) [46, 69, 82], the most successful methods depart from the original for-

mulation to address various instabilities and other optimization difficulties [3, 4]. One

such difficulty in training GANs occurs when the generator produces samples only from

a small subset of the target distribution, a phenomenon known as missing modes(a.k.a.,

mode-dropping, e.g. see) [16]. Numerous works try to address the problem by mod-

ifying the original objective, such as unrolling [66], aggregating samples [56], stacked

architectures [43, 46], mutual information / entopy maximization [11], multiple discrimi-

nators [44, 71], or multiple generators [37, 53, 95].

In our work, we follow the intuition that missing modes in GANs are due in part to

mode-specific vanishing gradients. As a simple illustrative example which we explore in

detail in our experiments below (Fig. 1.1), consider a discriminator that is well represent-

4

Figure 1.1: Recovering dropped modes via multiple discriminators. The weak discrimi-
nator provides feedback, allowing the generator to recover forgotten modes. The strong
discriminator experiences vanishing gradient and cannot help the generator to recover
modes.

ing the target distribution and a generator that is only generating a subset of the modes in

the data. If any of the missing modes are disjoint from those represented in the generator

(i.e., are composed of sets of features with low intersection), there is no way for the gener-

ator to receive gradient signal on missing modes from the discriminator. However, if the

discriminator only represents the data approximately (in the sense that it also cannot fully

distinguish between these modes), it may be possible to recover the missing mode gradi-

ent signal. If this can be achieved by using a low capacity1 discriminator, it is ultimately

undesirable given that the end goal is to generate samples that resemble well the target

dataset. From now on, we will refer to such low capacity discriminators as weak and to

high capacity discriminators as strong. In order to ensure both high quality and mode

coverage, we consider multiple discriminators(as in [21]) with different strengths to train

1Throughout the paper, we refer to capacity as the architecture size of a given neural network in terms of
number of parameters.

5

the generator. We propose to train the generator using a curriculum based on an on-line

multi-armed bandit algorithm [28, 63], dynamically changing the weight/resources allo-

cated to each discriminator, which we show is crucial for achieving good results. Our

primary contributions are:

1. We provide important insights into the missing mode problem as demonstrated by the

gradient signal available to the generator from the discriminator.

2. As a potential solution to the missing modes problem, we introduce a new framework

based on adversarial bandits [5,24,58] resource allocation, where the generator gets its

training signal from a set of teacher networks with increasing capacity.

3. We show that the proposed approach leads to a curriculum learning characterized by

successive phases of the generator prioritizing different discriminators.

The remainder of this paper is organized as follows. Previous literature relevant to this

work is briefly reviewed on Section 1.2. The proposed approach is formally introduced in

Section 1.3, and an empirical analysis is reported in Section 1.4. Conclusions and future

directions are finally presented in Section 1.5.

1.2 Related Work

Mode coverage and data / model augmentation

The intuition that missing modes are due to vanishing gradients resonates with some suc-

cessful approaches on stabilizing and improving GAN training through data and model

augmentation. Instance noise [3] has been shown to improve stability (see also [82]),

which can be understood as smoothing the data modes in the pixel space. Progres-

sively reducing the downsampling through training (either by copying parameters or

feeding low resolution samples into a larger generator) have also been considered previ-

ously [43, 46] as solutions to increase mode overlap. This is akin to a hand-crafted cur-

6

riculum, progressively increasing the difficulty of the problem at a-priori chosen points

in the complete training procedure.

Multiple discriminators and generators

Several works have also incorporated multiple generators or discriminators in order to

improve learning. Multiple-generator methods [37,53,95] typically work by encouraging

the generators to divide the task of generating by modes in the target dataset (without ad-

ditional supervision). Using multiple discriminators [44,71], on the other hand, is known

to provide a better learning signal for the generator if said discriminators composition-

ally represent well the target datasets. Closest to our work, [21] consider discriminators

of different complexity to provide varied signal. We will show that wisely designing the

reward allows to track the progress made by the generator and encourages a curriculum

learning.

Multi-armed bandit as a curriculum learning method for GANs

Curriculum learning [14] phrases a given machine learning problem as a set of tasks of

increasing difficulty. GANs can also be said to share aspects with curriculum learning:

the discriminator defines an objective of progressive difficulty,

thus allowing the generator to gradually learn to more faithfully mimic the target

distribution. However, there is no explicit mechanism to encourage a sensible curriculum

for either model. For example, if the discriminator learns to represent disjoint modes

faster than the generator learns to cover them, this can lead to the generator missing

modes with no gradient signal to recover.

In this paper, we propose an algorithm which gives rise to a curriculum in a direct

manner. Our approach borrows from curriculum learning in multi-armed bandit set-

ting [28, 63], where learning is typically done by measuring the change in a performance

criterion of a given agent (i.e. a loss function, score or gradient norm can be used) that

appears to affect the form of the optimal policy. In our method, given a set of discrimi-

7

nators, the goal is to weight the feedback received by the generator proportionally to the

information contained in the gradients from each discriminator.

1.3 Adaptative Curriculum GAN

Here we formulate the problem and approach for training a single generator on a target

dataset using a curriculum over multiple discriminators, which we call Adaptative Cur-

riculum GAN (acGAN). First, define a generator function, G : Z 7→ X , which maps noise

from a domain Z to the domain of a target dataset, X (such as the space of images). Let

p(x) denote the target density 2, and let p(z) denote the prior density defined on Z used to

draw noise samples for input into the generator. We wish to train this generator function

using N discriminators, D = {Di : X 7→ R}Ni=1, such that on each episode t, we select the

mixture of discriminators that provides the best learning signal.

Note that, in theory, given enough capacity for the discriminator and generator, we

can have some convergence proofs and indeed some exist for this min-max problem [27]

under some mild assumptions. But in this work, we use highly non-linear functions such

as Neural Networks. This makes it analytically difficult to develop theoretical guarantees

about bounds or convergence.

1.3.1 Mixing discriminators

This mixture-of-experts problem, where each discriminator plays the role of a teacher,

can be tackled under the full-information adversarial bandit setting [5, 24, 58]. On each

episode t, a bandit player associates normalized weights Π(t) = {πi(t)}Ni=1 with dis-

criminators {Di}Ni=1. The generator is then trained based on the mixture described by

Π(t), and a reward Ri(t) is observed for each discriminator Di, characterizing the gen-

erator’s improvement with respect to Di. Let R(t) =
∑N

i=1 πiRi(t) denote the total ob-

2Here, we assume for the sake of notation that the target data admits a density.

8

Generator

fake samples

{G(z)(i)}mi=1

Evaluate
performance

of G
by observing
rewards Ri(t)

update {Di}Ni=1 with Eq. 1.4

and G with Eq. 1.5

update Qi ∀i with Eq. 1.2

and compute πi ∀i with Eq. 1.1

Figure 1.2: Proposed procedure for training the generator

served reward at time t. The goal of the player is to learn the optimal policy Π?(t) :=

argmaxΠ∈∆(N−1) EΠ(t),p(z)[R(t)] that maximizes the expected total reward3.

The Hedge algorithm [24], also known as Boltzmann or Gibbs distribution, addresses

this full-information game by maintaining probabilities

πi(t) =
expλQi(t)
N∑
j=1

expλQj(t)

, λ ≥ 0, (1.1)

for each discriminator Di, where Qi(t) estimates the gain of Di at episode t. In this case,

λ is a parameter of the distribution: λ = 0 corresponds to a uniform distribution over

all models. We found experimentally that using a moving average on previous rewards

(which also featured in [63]) stabilizes the training:

Qi(t) = αRi(t) + (1− α)Qi(t− 1), (1.2)

where α ∈ (0, 1) is the smoothing parameter.

To demonstrate how this can be used to train GANs, consider the usual value func-

tion [27]:

V (D,G) = Ep(x)[log(D(x))] + Ep(z)[log(1−D(G(z)))]. (1.3)

3∆(N − 1) denotes the standard simplex on RN .

9

On each episode t, given the mixture of discriminators Π(t), each discriminator is trained

by taking a gradient step to increase the expected value function

EΠ(t)[V (Di, G)] =
∑
j

πj(t)V (Dj, G), (1.4)

and the generator is trained by taking a gradient step to increase

EΠ(t)[Ep(z)[log(D(G(z)))]]. (1.5)

The latter corresponds to the non-saturated version of Eq. 1.4 for the generator. The intu-

ition is that training the generator with all the discriminators simultaneously (as a mixture)

should force the generator to fool all discriminators at the same time [21]. Since each dis-

criminator has an increasing level view of the modes distribution, they should have a

complementary role. While the weaker discriminator focuses on modes coverage, the

stronger discriminator ensures samples quality (showed in Section 1.4.1). This should

result into a better overall coverage of the modes in the input distribution.

Algorithm 1 describes our proposed acGAN procedure. We denote and parameterize

this algorithm as acGAN(λ, α,Rr) where λ ≥ 0, α ∈ (0, 1).

Algorithm 1 Generic acGAN algorithm

1: Given: N : number of discriminators, Tmax: time steps, Twarmup: warmup time,
α: moving average coefficient, λ: Boltzmann constant

2: Qi(0)← 0,∀i = 1, . . . , N
3: for t = 1, . . . , Tmax do
4: Update all discriminators {Di}Ni=1 using Eq. 1.4
5: Update the generator G using Eq. 1.5
6: if t ≥ Twarmup then
7: Evaluate the performance of G and observe a rewardRi(t)

for each discriminator i
8: Update all values {Qi(t)}Ni=1 according to Eq. 1.2

9: πi(t)← expλQi(t) /
N∑
j=1

expλQj(t) ∀i = 1 . . . N

10: end if
11: end for

10

Remark 1 At the beginning of the training, we define a warm-up period Twarmup, prior to which

we train Di and G with a uniform probability, i.e πi = 1
N
,∀i = 1, . . . , N . In other words, we

consider λ = 0,∀t ≤ Twarmup. This guarantees that each discriminator is updated a minimum

number of times (or provides feedback a minimum number of times to the generator) and prevents

oneDj from dominating the others (i.e, πj � πi,∀i 6= j) at the beginning of the training. Without

this safeguard, the remaining weights πi, i 6= j would hardly recover a significant probability and

the generator may never get informative gradient from the corresponding discriminator. Note that

warm-ups are not uncommon either in bandits algorithm, e.g. for adding robustness to the tails of

reward distributions [9].

1.3.2 Reward shaping

In order to provide meaningful feedback for learning efficient mixtures of discriminators,

we consider different reward functions to generateRi(t). We argue that progress (i.e., the

learning slope [28, 63]) of the generator is a more sensible way to evaluate our policy. Let

θ(t) be the generator parameters at episode t. We define the two following quantities for

measuring generator progress:

RSi (t) = Ep(z)[Di(G(z; θ(t)))

−Di(G(z; θ(t− 1)))], (1.6)

RVi (t) = Ep(z)[V (Di, G(z; θ(t)))

− V (Di, G(z; θ(t− 1)))]. (1.7)

The former measures the progress of the generator with respect to the discriminator i

score Di(·), while the latter assess the change in the loss function (Eq. 1.3). Since the

change in the quality sample (Eq .1.6) led to better performance than the change in the

loss function (Eq .1.7), all our experiments (see Section. 2.4) use Eq .1.6.

11

1.3.3 Connection to existing methods

Interestingly, some existing methods in the GAN literature can be seen as a specific case

of acGAN:

GMAN: The original GMAN [21] algorithm can be recovered by setting α = 1 and

taking the loss function to be the reward Ri(t) = V (Di, G). Note how the authors of

GMAN call their algorithm GMAN-λ, where λ is also the Boltzmann coefficient.

Uniform: The uniform case is defined by assigning a fixed uniform probability for each

discriminator Di:

πi(t) =
1

N
, ∀t ∈ N.

This corresponds to Eq. 1.1 with λ = 0.

To support the results of our theoretical work, we conducted a set of experiments

which we describe below.

1.4 Experiments

In this section, we first give an understanding of how each discriminator provides in-

formative feedback to the generator. We then compare our proposed approach (acGAN)

against existing methods from the literature.

1.4.1 Retaining mode information through weaker capacity discrimi-

nators and smoothness

We begin by analyzing the gradient norm of the discriminator networks and we show

that weak capacity discriminators are smoother than strong discriminators. This property

corresponds to a ”coarse-grained” representation of the distribution, which allows the

12

generator to recover missing modes. We further show we can increase the smoothness of

a weak discriminator by corrupting its inputs with white noise. This results in an increase

of the discriminator’s entropy (see Supplementary Material for more details) and hence

smoother gradient signal.

Weak Discriminators: a way to retain modes

We now highlight the role of weaker capacity discriminators. To this extent, we per-

formed the following experiments on the 8 Gaussian synthetic dataset:

• We pretrained the generator (with 3 dense layers of 400 units with ReLU activation

layers except for the last layer) with one discriminator on only 2 of the original 8 modes.

• We trained a (vanilla) GAN on all 8 Gaussian components, initializing with the 2-mode

generator above. The discriminator had 3 dense layers of 400 units (ReLU hidden acti-

vation layers).

• We trained acGAN with the generator initialized with the 2-mode generator (as with

vanilla GAN). We considered 3 discriminators, with 1, 2 and 3 dense layers respectively

(same activation scheme as previously applies here).

Figure 1.3: Modes used for pretraining the generator (left) and modes recovered by
Vanilla GAN (middle) and acGAN (right). The more modes the better.

13

Figure 1.4: Gradient norm of each discriminator with respect to the input. We clipped the
magnitude with respect to the weaker discriminator range. Since weaker discriminators
are smoother by construction, they help the generator to recover missing modes. On the
other hand, vanilla GAN can hardly recover modes due to its vanishing gradient.

Results (Fig. 1.3) show the Vanilla GAN could only retrieve 2 additional modes, while

acGAN recovered all (8) modes. We examined the gradients provided by the discrimina-

tors using a density plot (Fig. 1.4) of the gradient norm for each discriminator with respect

to the input, i.e., ||∇XD(X)||2 for X ∈ [−2, 2]2. Observe that there is a clear progression

from a stronger discriminator with more distinct, higher gradients to the weaker dis-

criminator smoother gradients. Additionally, note that the discriminator from the vanilla

GAN, which has very high gradient norm values, has gradients for modes not present

in the generator: the discriminator has information useful for learning about these miss-

ing modes, but the generator does not learn these modes due to vanishing gradients. Our

results support both our original hypothesis that missing modes are due to vanishing gra-

dients and that using a coarse-grain discriminator can be used to recover missing modes.

To provide further insight, we show the evolution of the gradient norm of each discrimi-

nator at training time in the Supplementary Material. We also note that the discontinuities

in the gradients is due to the ReLU activation partitioning the subspace through overlap-

ping half-planes, which contrasts the smooth decay of hyperbolic tangent and sigmoid4

nonlinearities, and we further explore the effect of different nonlinear activation layers on

the gradient norm of the weak discriminator in the Supplementary Material.

4σ(y) = 1/1 + e−y

14

FD Modes Quality samples
Vanilla GAN 7.28 17 88%
Uniform (3D) 6.64 20 93.4%
acGAN (3D) 6.65 25 92.9%

Table 1.1: Results on the Gaussian mixture synthetic data. Our method acGAN could
cover all 25 modes.

1.4.2 Performance of acGAN against existing baselines

In this section, we evaluate the performance of our proposed method (acGAN), on vari-

ous datasets. All experiments consider the reward shown in Eq. 1.6. We first conducted

a sanity check on 2 mode-dropping datasets: synthetic data consisting of a mixture of

25 Gaussians and Stacked-MNIST with 1000 modes. We then tested it on CIFAR10 and

finally show generated samples on celebA dataset (see Supplementary Material). We aim

to analyze specific properties such as diversity of generated samples and quality in terms

of (FID [36]) score when available, along with convergence of the method (how fast it

reaches its minimum FID score). Additionally, our results hint at the emergence of a cur-

riculum during the training process.

All parameters used to obtain the results can be found in the Supplementary Material.

We split the batch of inputs between discriminators. We abuse of language with the term

epoch, which in the context of the current paper means that the generator has been trained

on a number of iterations equivalent to an epoch. For example, CIFAR-10 has 50,000 train-

ing images and, assuming a batch size of 64, one epoch represents roughly 781 iterations

for the generator.

Synthetic Gaussian mixture dataset

The synthetic dataset is composed of 25 bivariate Gaussian mixtures arranged in a two-

dimensional grid. We launched a single run of 15 epochs for all methods with 3 dis-

criminators. We report 3 measures in Table 1.1: the Fréchet Distance (FD), the number of

recovered modes and the proportion of high quality samples (which is the proportion of

15

Figure 1.5: KDE plots of the modes recovered by each examined approach with 3 discrim-
inators.

Modes (max 1000) KL
DCGAN [79] 99.0 3.40

ALI [20] 16.0 5.40
Unrolled GAN [66] 48.7 4.32

VEEGAN [89] 150.0 2.95
PacGAN [56] 1000.0± 0.00 0.06± 1.0e−2

GAN+MINE [11] 1000.0± 0.00 0.05± 6.3e−3

acGAN (3D) 1000.0± 0.00 7.4e−2 ± 0.0
acGAN (5D) 1000.0± 0.00 9.65e−2 ± 0.0

Table 1.2: Number of modes covered and Kullback-Leiber divergence between the real
and generated distributions on Stacked-MNIST. acGAN could recover the 1000 modes.

samples covering a mode). More details on those metrics can be found in the Supplemen-

tary Material.

We compared the performance of our proposed methods to that of the Uniform algo-

rithm and of the vanilla GAN [27]. Our proposed methods could cover the 25 modes.

KDE plots for the 3 discriminators case are shown in Fig. 1.5.

16

Figure 1.6: Stacked-MNIST generated samples for acGAN with 3 discriminators.

Figure 1.7: Stacked-MNIST generated samples for acGAN with 5 discriminators.

17

Stacked-MNIST

We use the Stacked-MNIST dataset [89] to measure the mode coverage of our proposed

approach. The dataset is generated by stacking 3 randomly selected digits from the

MNIST dataset: one on each RGB channel to produce a final 28 × 28 × 3 RGB tensor.

The dataset has 128,000 training images and is assumed to have 103 modes. Results of

our experiments are shown in Table 1.2.

We report our results (averaged over 10 runs) in Table 1.2 and compare them with

other existing baselines in the literature. Our method could recover all 1000 modes like

PaCGAN [56] and MINE [11]; these two approaches either increase the dimensionality

of the generator inputs either by packing multiple samples or by adding a latent code

vector which helps overcoming mode collapse. Generated samples are shown in Fig. 1.6

and Fig. 1.7, our results further verify our hypothesis that acGAN is a sensible approach

to ensuring good mode coverage and sample quality.

2 Discriminators

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pr
ob

ab
ilit

y

Weak Disc.
Strong Disc.

3 Discriminators

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y

Weak Disc.
Intermediate Disc.
Strong Disc.

Figure 1.8: Weight πi of each discriminator over the training epochs. We can see phase
switching at the beginning where each discriminator’s weight is dominating before even-
tually converging to a uniform distribution.

18

CIFAR-10

We conducted an in-depth study of acGAN’s performance on CIFAR-10 by running ex-

periments on 5 independent seeds for 50 epochs each.

We found a particular pattern in the acGAN’s learning process: it consists of distinct

regimes where one discriminator’s weight πi dominates over the others. To illustrate this,

we averaged the sampling probability of each discriminator over every 200 iterations and

plotted results in Fig. 1.8 for 2 and 3 discriminators, respectively. The reported curves

suggest that, for N = 2 discriminators, the weakest discriminator network is often sam-

pled at the beginning until the generatorG learns enough from it, at which point it begins

to use the stronger discriminator more often. Note how the strong discriminator is sam-

pled more frequently than the weak one. In fact, because the generator needs to produce

samples of higher quality to fool the strong discriminator, training with the latter might

take longer as opposed to using weaker discriminators (which are more lenient). By the

end of training, all discriminators are being used in equal proportions, meaning that ev-

ery discriminator plays a complementary role from mode coverage to quality samples. A

similar pattern is observed for the 3-discriminators case.

To assess the quality of produced results, we report the minimum Fréchet Inception

Distance (FID [36]) (and corresponding epoch) reached in Table 1.3. The squared FID

was computed every epoch with 1,000 held-out samples at training time. As in [22], a

ResNet pre-trained on CIFAR-10 was employed to obtain representations for FID com-

putation rather than Inception V3. Proceeding this way yields a more informative score,

given that our classifier was trained on the same data as the generative models. Details

on the FID score can be found in the Supplementary Material. We compared our results

to [21]. Since the authors reported that GMAN-1 (λ = 1) had an overall better perfor-

mance, we used this version in our experiments and refer to it as GMAN. Previously,

we observed that the feedback provided to the generator is shared between all the dis-

criminators. Especially, not all gradient comes from the strong discriminator (unlike for

the Vanilla GAN). One might be concerned by a degradation of the quality samples. We

19

show that having more discriminators leads to better mode coverage and samples qual-

ity (see the FID curves for an increasing number of discriminators in the Supplementary

Material). Overall, we noticed that acGAN achieved the best FID score when compared

to the baseline as presented in Fig. 1.9 and 1.10 (plots are shown in a larger format in in

the Supplementary Material). GMAN performed worse than expected and increasing the

number of discriminators did not significantly improve its FID score. We suspect that the

original loss function of the GAN (which is equivalent to the Jensen-Shannon divergence

minimization) is not a good signal to assess the progress of G. Indeed, [4] argued and

introduced a toy example showing that this version of adversarial nets is not informative

when there is little overlap between the supports of the true and approximate distribu-

tions, as commonly seen at the beginning of the training process. Finally, not keeping a

moving average via a Q-value can lead to high variance.

0 10 20 30 40 50
Epochs

5

10

15

20

FID

Uniform
GMAN
acGAN

Figure 1.9: FID scores computed with 1,000 samples at the end of each epoch for different
methods with 3 discriminators. acGAN outperforms the baselines Uniform and GMAN.

20

0 10 20 30 40 50
Epochs

5

10

15

20

FID

Uniform
GMAN
acGAN

Figure 1.10: FID curves with 5 discriminators. acGAN presented earlier convergence and
reached lower FID values.

Best FID (epoch) Mean Best FID
Vanilla GAN 5.02 (20) - 5.28 (27) - 4.27 (30) - 4.80 (34) - 4.63 (41) 4.80
WGAN-GP5 4.29 (43) - 4.24 (28) - 3.98 (47) - 3.99 (37) - 3.93 (50) 4.08

3
D

is
c Uniform 4.18 (20) - 4.07 (39) - 4.35 (45) - 5.07 (30) - 4.39 (47) 4.41

GMAN 3.87 (43) - 4.05 (46) - 5.24 (42) - 5.71 (42) - 4.10 (22) 4.59
acGAN 3.93 (39) - 3.57 (38) - 4.25 (42) - 3.43 (40) - 3.11 (43) 3.66

5
D

is
c Uniform 3.42 (47) - 3.69 (49) - 4.37 (37) - 3.64 (37) - 3.47 (40) 3.72

GMAN 4.58 (44) - 4.40 (20) - 3.91 (47) - 4.81 (25) - 4.42 (38) 4.42
acGAN 3.62 (35) - 2.62 (49) - 4.14 (35) - 2.66 (42) - 3.67 (34) 3.34

Table 1.3: Best FID scores on CIFAR-10 computed on 1,000 samples during training time
(lower is better).

1.5 Conclusion

In this work, we model the training of the generator against discriminators of increasing

complexity within a one-student/multiple-teachers paradigm. We address this mixture-

5We replaced the batch norm layer with instance norm

21

of-experts problem under the adversarial bandit setting with full-information, where we

rely on the Hedge algorithm to learn the weights assigned to each discriminator in the

mixture. Since designing a suitable reward function is a key ingredient to control the

shape of the learned policy, we examined two sensible reward functions which relied on

sample quality and the GAN loss function. We empirically found the high quality sam-

ple reward (Eq. 1.6) to yield the best results. Keeping a moving average on the rewards

helped smoothing the weights put on discriminators and resulted in a more stable mix-

ture.

Then, we demonstrated a complementary regulation mechanism between weak and

strong discriminators. While weaker discriminators enjoy smoother properties and pro-

vide more informative feedback to the generator, stronger discriminators focus one finer

grain detail to ensure sample quality.

Finally, we conducted a series of experiments to show the emergence of a curriculum

during the training process. That is, lower-capacity discriminators have higher weights

at the beginning but, as the training progresses, higher weights are allocated to higher-

capacity discriminators. We showed how existing algorithms could be recovered from

our model via the Q-value. The performed experiments showed that our proposed ap-

proach leads to an earlier convergence and a better FID score compared to existing base-

lines in the field, i.e. Uniform and GMAN.

As a direction for future investigation, approaches not relying on the adversarial frame-

work could be investigated to model the non-stationarity of the reward distributions. For

example, finding a meaningful representation for the state of the generator could allow

the use of contextual bandits algorithms.

22

1.6 Supplementary Material

Figure 1.11: Adding noise (bottom row) reduces gradient norm magnitude of each dis-
criminator. This increases their smoothness properties and helps recovering modes of
the distribution. We clipped the gradient magnitude with respect to the corresponding
discriminator corrupted with noise.

23

Figure 1.12: Probability D(x) for each discriminator without (top) and with (bottom)
white Gaussian noise. Noise tends to smooth their decision boundary and increase their
entropy. That helps to provide more informative gradient to the generator.

24

Regularizing the discriminator through additive white noise

As was explored in [3], one way to stabilize GAN training is corrupting the input of

the network with additive white Gaussian noise of the form N(0, σ). Here, we explore

smoothing the discriminator by using the noise, We ran the following experiment in or-

der to illustrate the mechanism. We (once again) train G on the 8 Gaussian synthetic

dataset with 3 discriminators (1,2 and 3 hidden layers of 256 units) both with and without

adding independent Gaussian noise to the discriminator’s input. A noticeable downside

of feeding corrupted inputs to the network is the degradation of samples’ quality: the

so-called salt and pepper effect becomes more visible as the discriminators train. To solve

this issue, we decay the noise at time step t by a multiplicative coefficient: exp t
C

, where

C > 0 is a real constant controlling the noise reduction speed. Initial Gaussian noise was

picked to be of the formN(0, σi), with variances of σ1 = 0.06, σ2 = 0.04, σ3 = 0.02, for i = 1

being the weakest discriminator and i = 3 the strongest. Adding white noise increases the

entropy (read uncertainty) of the discriminator (a proof is shown in the Supplementary

Material) and tends to smooth its decision boundary (see the probability and gradient

norm values in Figs. 1.12 and 1.11). Fitting a discriminator to uncorrupted input is prone

to faster overfitting as opposed to training on noisy data when fixing the number of pa-

rameters, a great illustration of which is provided by [29]. Empirical results are shown in

Fig. 1.11. We see that by corrupting the real data we manage to cover all 8 modes and

the sample quality is conserved by decaying the variance of the noise. The evolution of

generated data points is shown in Fig. 1.15.

25

1.6.1 Effect of different nonlinear activation layer on the weak discrim-

inator’s smoothness

In this section, we aim to illustrate the effect of 3 nonlinear activation layers (Tanh, Leaky

RelU and ReLU) on the gradient norm of the discriminator. We ran the training of the

generator with 3 discriminator (using Soft-acGAN) on the 8 Gaussian dataset. For some

performance issue, we just replace the activation layer of the weak discriminator with

respectively the 3 above mentionned activation layers and let the other discriminator with

ReLU. Fig. 1.13 shows the gradient norm of the weak discriminator on the whole space

[−2, 2]2. We see that Tanh has a very uniform gradient norm across the space while ReLU

is the most discontinuous. Leaky ReLU has an intermediate pattern. Yet, Tanh seems to

have flat behaviour (very small magnitude), this may be due to the Tanh function that

has very low gradient signal at the extremity (indeed, we witness very poor performance

with that activation layer). Leaky ReLU is less discontinuous although it also partitions

the subspace in the same way as ReLU.

Figure 1.13: Although Tanh (left) presents smoother partition of the subspace than
LeakyReLU (middle) and ReLU (right), it seems to have weak gradient signal (small gra-
dient norm magnitude).

26

1.6.2 Evolution of the gradient norm during the training

In this section, we show the evolution of the gradient norm of each discriminator through-

out the training process (results shown in Fig. 1.14). We see at the beginning of the train-

ing (first row) as the generator has just learned the top left modes, discriminator has flat

behavior on the bottom right part of the subspace and has higher gradient norm on the

top left part. A the training process, we see that missing modes has high gradient norm

(second row third column). Finally, at the end when the generator has learned all the

modes the weak discriminator seems to have more uniform gradient norm on the space

while strong discriminator has equal gradient norm value at each modes locations.

Figure 1.14: Evolution of the gradient norm for each discriminator and samples gener-
ated (last column). The generator recovers modes thanks to the gradients provided by
the weak and intermediate discriminators. Each discriminator in turn evolves to learn its
coarse to fine-grained representation of the data. Note also that the strong discriminator
has a good representation of all the modes before the generator has learned them, indi-
cating that mode dropping in this setting is not due to those modes being absent in the
discriminator. We have clipped the gradient range with respect to the weak discriminator
of the corresponding row.

27

1.6.3 Regularizing the discriminator through additive noise

Figure 1.15: As we exponentially decay the noise, samples quality increase (2500 samples
are plotted).

Increasing entropy with additive Gaussian noise. In order to have discriminator net-

works with varying degrees of strength, we first resorted to nested architectures: for

instance, the stronger discriminator should have a more complex architecture than the

weaker. Moreover, we proceeded to corrupt the inputs with additive Gaussian white

noise. Formally, to the input matrix Xi ∈ X of the discriminator Di we added εi ∼

N (0, σ2
i), thus creating new input Yi = Xi+εi which was then fed to the discriminator. For

practical purposes, noise for image data should be on a bounded support R(εi) ⊆ R(Xi)

in order to obtain meaningful RGB values.

Letting the weaker discriminators train on inputs corrupted with a Gaussian noise with

larger variance allows the network to learn a high-level representation of the dataset,

while feeding uncorrupted inputs will let the corresponding Di to specialize. This trade-

off between sample space coverage and estimation accuracy is known as the spike-and-

slab prior and is frequently used in Bayesian variable selection methods similar to the one

proposed by [68].

Consider the following relation, known in information theory as the entropy power in-

equality (EPI). Let X be a continuous, real-valued and independent random vector on a

28

bounded support and ε ∼ N (0, σ2), both of dimension n:

e
2
n
h(X+ε) ≥ e

2
n
h(X) + e

2
n
h(ε) . (1.8)

Applying logarithm on both sides and using log(a + b) = log(a) + log(1 + b
a
), we get an

expression for the entropy of the sum X and ε:

2

n
h(X + ε) ≥ log(e

2
n
h(X) + e

2
n
h(ε))

=
2

n
h(X) + log(1 + e

2
n

(h(ε)−h(X))

≥ 2

n
h(X) + log(1 + e

2
n

(log (σ
√

2πe)−log(b−a))

≥ 2

n
h(X) + log

(
1 +

[
σ
√

2πe

(b− a)

] 2
n
)

≥ 2

n
h(X),

(1.9)

from which it follows that adding i.i.d. Gaussian noise to the inputs increases the total en-

tropy of the data. Here we used the fact that log(1 + exp(x)) ≥ 0 for all x ∈ R and that the

uniform distribution U has the maximal entropy over all continuous random variables

with bounded support R(U) = (a, b). The quantity log σ
√

2πe
(b−a)

controls the tightness of the

bound. Because Eq. 1.9 is valid for all σ, it is necessary valid for supσ>0 log σ
√

2πe
(b−a)

. Maxi-

mizing the expression shows that picking σ >> 0 increases the overall entropy h(X + ε)

and approaches the uniform distribution.

Finally, recall that the entropy h(X) = −DKL(X||U) + c where U ∼ Uniform(a, b). That is,

maximizing the entropy of a distribution is equivalent up to an additive constant to min-

imizing the Kullback-Leibler divergence between the distribution and a uniform random

variable with identical support (provided adequate restrictions on the support).

Fitting a weak discriminator to the corrupted data should increase its capacity to gener-

alize more than that of the stronger discriminator by acting as a regularization technique

and preventing the network from overfitting.

Analogous mechanisms are widely used in conjunction with other learning algorithms,

29

such as support vector machines, where adding noise to the data is equivalent to increas-

ing the classification margin as shown by [100].

As a final remark, it is important to select a proper noise distribution in order to avoid

introducing bias and respect the original structure of the data.

1.6.4 Experimental parameters

Algorithm parameters

acGAN

α 0.01

λ 15

Twarmup 15×N

N number of discriminators

Optimizer parameters

Stacked-MNIST RMSprop (α = 0.9, lr = 0.0001)

CIFAR-10 Adam (β1 = 0.5, β2 = 0.999, lr = 0.0002)

Synthetic (25 Gaussians) Adam (β1 = 0.5, β2 = 0.999, lr = 0.0002)

Synthetic (8 Gaussians) Adam (β1 = 0.5, β2 = 0.999, lr = 0.0001)

CelebA Adam (β1 = 0.5, β2 = 0.999, lr = 0.0002)

Table 1.4: General experimental hyperparameters.

30

1.6.5 Synthetic data

We utilize the 2D-ring with 8 Gaussians and the 2D-grid with 25 Gaussians [30]. Three

metrics were employed to evaluate the results:

1. % High Quality samples

2. Number of Covered modes

3. Fréchet Distance (FD)

The percentage of ”High Quality” samples is defined as the proportion of generated

samples G(z) which are within 3 standard deviation of the closest mode. The next metric

reported is the number of modes covered, i.e. the count of modes that has generated

samples closes enough (3σ). The Fréchet Distance originally from [18] is defined as:

FD = ||md −mg||2 + Tr(Cd + Cg − 2(CdCg)
1
2), (1.10)

where md, Cd and mg, Cg are first and second order moments of the real data distribu-

tions and estimates from generated data, respectively.

Architecture. The generator network’s architecture comprises 4 dense layers of 512 units

each. We used 3 discriminators with respectively 2,3 and 4 dense layers of 512 units. ReLU

activations were used in all layers, except for the last one, where a linear activation func-

tion was used for the generator and a sigmoid for the discriminator.

31

Stacked-MNIST

Architecture. We used DCGAN’s architecture [79] to create lower capacity discrimina-

tors (in terms of feature representation power). For the 3Ds case, we used discriminators

3, 4, 5 (described in the following tables). For the 5Ds case, we used discriminators 1, 2, 3,

4, 5.

Layer Outputs Kernel size Stride BN Activation

Input: z ∼ N (0, I100)

Fully connected 2*2*512 4, 4 2, 2 Yes ReLU

Transposed convolution 4*4*256 4, 4 2, 2 Yes ReLU

Transposed convolution 8*8*128 4, 4 2, 2 Yes ReLU

Transposed convolution 14*14*64 4, 4 2, 2 Yes ReLU

Transposed convolution 28*28*3 4, 4 2, 2 No Tanh

Table 1.5: Generator’s architecture.

Layer Outputs Kernel size Stride BN Activation

Input 28*28*3

Convolution 14*14*64 4, 4 2, 2 No LeakyReLU

Convolution 7*7*128 4, 4 2, 2 Yes LeakyReLU

Convolution 4*4*256 4, 4 2, 2 Yes LeakyReLU

Convolution 2*2*512 4, 4 2, 2 Yes LeakyReLU

Convolution 1 4, 4 2, 2 No Sigmoid

Table 1.6: Discriminator 5.

32

Layer Outputs Kernel size Stride BN Activation

Input 28*28*3

Convolution 14*14*64 4, 4 2, 2 No LeakyReLU

Convolution 7*7*128 4, 4 2, 2 Yes LeakyReLU

Convolution 4*4*256 4, 4 2, 2 Yes LeakyReLU

Convolution 2*2*512 4, 4 2, 2 Yes LeakyReLU

Fully connected 1 4, 4 2, 2 No Sigmoid

Table 1.7: Discriminator 4.

Layer Outputs Kernel size Stride BN Activation

Input 28*28*3

Convolution 13*13*64 6, 6 2, 2 No LeakyReLU

Convolution 6*6*128 6, 6 2, 2 Yes LeakyReLU

Convolution 2*2*256 6, 6 2, 2 Yes LeakyReLU

Convolution 1 6, 6 2, 2 No Sigmoid

Table 1.8: Discriminator 3.

Layer Outputs Kernel size Stride BN Activation

Input 28*28*3

Convolution 13*13*64 6, 6 2, 2 No LeakyReLU

Convolution 6*6*128 6, 6 2, 2 Yes LeakyReLU

Convolution 2*2*256 6, 6 2, 2 Yes LeakyReLU

Fully connected 1 6, 6 2, 2 No Sigmoid

Table 1.9: Discriminator 2.

33

Layer Outputs Kernel size Stride BN Activation

Input 28*28*3

Convolution 12*12*64 8, 8 2, 2 No LeakyReLU

Convolution 4*4*128 8, 8 2, 2 Yes LeakyReLU

Convolution 1 8, 8 2, 2 No Sigmoid

Table 1.10: Discriminator 1.

(a) acGAN - 3 disc. (b) acGAN - 5 disc.

Figure 1.16: Stacked-MNIST generated samples.

34

1.6.6 CIFAR-10

FID score. FID scores, as introduced in [36], were computed for CIFAR-10. It is defined

as the squared Fréchet distance between the Gaussian having the first and second order

statistics matching those obtained from image features. The late layers of a pretrained

classifier are used as low dimensional representation of images for statistics estimation.

Architecture. For our strongest discriminator we use the DCGAN architecture but with

halved the number of filter, i.e. {64, 128, 256, 512}. For the 3D case, we introduced two ex-

tra discriminators with kernel sizes of 6 and 8. For the 5D case, we add two discriminators

with kernel sizes 4 and 6 respectively to the set of 3D discriminator networks. In both 3D

and 5D, we replaced the last layer from the DCGAN model with a fully connected dense

layer. The generator network was taken from the original DCGAN architecture but with

halved filter sizes too, i.e. {512, 256, 128, 64}. ReLU activation units were used for the

generator network while LeakyRelu is used for the discriminators with a coefficient of

0.2.

Influence of the number of discriminators. An important assumption in the current pa-

per is that increasing the number of discriminator networks helps the model converge

faster. To assess that, we conducted experiments with the acGAN algorithm while vary-

ing the number of discriminators for N ∈ {1, 3, 5} (N = 1 being the Vanilla GAN) and

averaging results over 5 seeds. According to Fig. 1.17, we see that a higher number of

discriminators indeed leads to earlier convergence of the FID score curve.

35

0 10 20 30 40 50
Epochs

5

10

15

20

25

FI
D

Vanilla GAN
3 Discriminators
5 Discriminators

Figure 1.17: Increasing the number of discriminators induces an earlier convergence of
FID. Moreover, lower FID values are reached.

36

0 10 20 30 40 50
Epochs

5

10

15

20

25

FID

Uniform
GMAN
acGAN

(a) 3 Discriminators

0 10 20 30 40 50
Epochs

5

10

15

20

25

FID

Uniform
GMAN
acGAN

(b) 5 Discriminators

Figure 1.18: Average FID score of each method for different number of discriminators.
In both plots, the acGAN algorithm presented faster convergence compared to the other
methods.

37

0 10 20 30 40 50
Epochs

5

10

15

20

FI
D

Vanilla GAN
WGAN-GP
acGAN (5Ds)

Figure 1.19: acGAN with 5 discriminators shows earler convergence and better perfor-
mance than Vanilla GAN (1 Disc) and WGAN-GP.

38

(a) Real Images (b) Vanilla GAN

(c) Uniform - 3 disc. (d) Uniform - 5 disc.

(e) GMAN - 3 disc. (f) GMAN - 5 disc.

Figure 1.20: CIFAR-10 generated samples (1).

39

(a) acGAN - 3 disc. (b) acGAN - 5 disc.

Figure 1.21: CIFAR-10 generated samples (2).

40

1.6.7 CelebA

For both the CelebA [60] datasets, we conducted single-run experiments of 50,000 itera-

tions each counted in generator steps (≈ 15 epochs). We downscaled the original images

to 64× 64 pixels out of practical concerns.

Results. Similarly to CIFAR-10, we observe the emergence of a curriculum in Fig. 1.24.

In particular, we note the presence of alternating phases during which a specific discrim-

inator is dominating in the 3D and 5D cases. In the end, all discriminator probabilities

converge to a stationary (i.e. long term) uniform distribution just like for previously men-

tioned datasets.

Architecture. We used the same architecture as for the CIFAR-10 experiments except

that the original numbers of filters were set to: {128, 256, 512, 1024} for the discriminators

and {1024, 512, 256, 128} for the generator.

41

(a) Real Images (b) Vanilla GAN

(c) Uniform - 3 disc. (d) Uniform - 5 disc.

Figure 1.22: CelebA generated samples (1).

42

(a) GMAN - 3 disc. (b) GMAN - 5 disc.

(c) acGAN - 3 disc. (d) acGAN - 5 disc.

Figure 1.23: CelebA generated samples (2).

43

3 discriminators

0.0

0.2

0.4

0.6

0.8

1.0
pr

ob
a

Disc. 1
Disc. 2
Disc. 3

5 discriminators

0.0

0.2

0.4

0.6

0.8

pr
ob

a

Disc. 1
Disc. 2
Disc. 3
Disc. 4
Disc. 5

Figure 1.24: Weight πi of each discriminator over the training epochs. We could see
switching phase, where one discriminator’s weight πi is dominant with respect to the
rest. After some epochs, all weights πi converge to a uniform regime.

Generating 128x128 images. In this experiment, we generated high resolution images

with 3 and 5 discriminators. A convolutional layer with 2048 feature maps was added

to both generator and discriminators architectures. The 3 discriminators settings used

a kernel size of 4,6 and 8. For the 5 discriminators case, we added a discriminator of

kernel size 4 and 6 but replaced the last layer with dense layers. The same parameters

was employed as for CelebA 64x64.

44

=0 =0.1 =0.2 =0.3 =0.4 =0.5 =0.6 =0.7 =0.8 =0.9 =1

(a) acGAN - 3 discriminators

=0 =0.1 =0.2 =0.3 =0.4 =0.5 =0.6 =0.7 =0.8 =0.9 =1

(b) acGAN - 5 discriminators

Figure 1.25: Interpolating in latent space with 3 and 5 Discriminators.

45

(a) acGAN - 3 discriminators

Figure 1.26: 128x128 CelebA samples for acGAN trained for 50 epochs with 3 discrimina-
tors.

46

(a) acGAN - 5 discriminators

Figure 1.27: 128x128 CelebA samples for acGAN trained for 50 epochs with 5 discrimina-
tors.

47

Chapter 2

Generating Realistic Sequence of Customer-level

for Transactions for Retail Datasets

2.1 Introduction

Modern retailers collect, store and utilize massive amounts of consumer behaviour data

through their customer loyalty programs. Sources such as customer-level transactional

data, customer profiles, and product attributes allow the retailer to better service their

customers by utilizing data mining techniques for customer relationship management

(CRM) and direct marketing systems [57]. Better data mining techniques for CRM databases

can allow retailers to understand their customers more effectively, leading to increased

loyalty, better service and ultimately increased sales.

Modelling customers is a complex problem with many facets. First, a retailer’s loy-

alty data provides a censored view into a customer’s behaviour because it only shows

the transactions for a single retailer, leading to noisy observations. Second, the sequen-

tial nature of consumer purchases adds additional complexity as changes in behaviour

and long term dependencies need to be taken into account. Finally, the large number

of customers (100M+) multiplied by the catalog of products (100K+) results in a vast

amount of transactional data, but it is simultaneously very sparse at the level of individ-

ual customers. These complexities make modelling customers a difficult problem even

with modern techniques.

Indirect approaches to modelling customer behaviour for specific tasks have been

widely studied. Techniques that utilize customer-level transactional data such as cus-

tomer lifetime value [15], recommendations [47, 101], and incremental sales [78], formu-

late these tasks as supervised learning problems. More direct approaches to modelling

48

customers have been through simulators. There are a wide variety of applications for

customer marketing simulators from aiding in decision support [86] to understanding

how behavioural phenomena affect consumer decisions [102]. Another notable applica-

tion of customer simulators is in the context of direct marketing activities [1, 73, 88, 93].

These methods use the customer simulator to understand individual-level interactions

between a customers and a marketing agent. Typically, the goal is to find an ideal mar-

keting policy to maximize a pre-defined reward over time. However, the primary focus

of this work has been on techniques for generating an optimal marketing policy with less

focus on generating realistic simulations of customer transactional data.

Generative modelling methods [27] have proven to be very successful in learning real-

istic distributions from the data in many different contexts. A relevant recent work by [52]

presents a technique to generate realistic orders from an e-commerce dataset. They pro-

vide a method to effectively learn the complex relationships between customer and prod-

uct to generate realistic simulations of customer orders, but do not take into account how

customer behaviour changes over time in their method.

In this work, we present a novel method to generate realistic sequences of customer-

level baskets of products over time using a customer-level retail transactions dataset. Our

technique is able to generate samples of both customers and traces of their transaction

baskets over time. This general formulation of the customer modelling problem allows

one to essentially generate new customer-level transactional datasets that retain most of

the distributional properties of the original data. This opens up possibilities for new

applications such as generating a distribution of likely products to be purchased by an

individual customer in the future to derive insights for better service, or by providing

external researchers with access to generated data for a source dataset that otherwise

would be restricted due to privacy concerns.

The proposed method uses a multi-step approach to generating customer-level trans-

actional data using using a combination of Generative Adversarial Networks (GAN) [27]

and Recurrent Neural Networks (RNN) [39]. First, we train a RNN to generate a cus-

49

tomer embedding by using a multi-task learning approach. The inputs to the RNN are

product embeddings derived from their textual descriptions. This allows one to describe

the customer state given their previous transactions. Next, to determine the number of

products in the next basket, we extract a sample based on historical basket sizes of similar

customers. A GAN trained by conditioning on a customer embedding at the current time

is used to predict the next product in a basket for a given customer. This is repeated until

all products in the basket are filled. This provides a single customer-level transaction bas-

ket. Finally, the generated products are fed back into the RNN to generate the next state

of the customer and the process repeats.

Evaluation of GANs and generative models are difficult in general [92,103] especially

for non-visual domains. We demonstrate the effectiveness of the technique via several

qualitative and quantitative metrics. We first show that the generator can reproduce

the relative frequencies of various product features including types, brands, and prices

to within a 5% difference. We further show that the generated data retains most of the

strongest sequential patterns between products in the real data set. Finally, we show that

most of the real and generated baskets are indistinguishable, with a classifier trained to

separate the two being able to achieve an accuracy of only 63% at the category level.

2.2 Background and Related Work

2.2.1 Transaction-Based Item and Customer Embeddings

Learning a representation of customers from their transactional data is a common prob-

lem in retail data mining. Borrowing inspiration from Natural Language Processing

(NLP), different methods try to embed customers into a common vector space based of

their transaction sequences. For instance, [72] and [10] learn the embeddings by adapt-

ing the Paragraph Vector-Distributed Bag-of-Words or the n-skip-gram models from [67].

The underlying idea behind these methods is that by solving an intermediate task such

as predicting the next word in a sentence or the next item a customer will purchase, one

50

can learn general–purpose features that are meaningful and have good predictive power

for a wide variety of tasks.

For example, [15] examines the lifetime value of a customer in the context of an e-

commerce website. Towards that end, they also use an n-skip-gram model to learn cus-

tomer embeddings and track its evolution over time as purchases are made. [8] uses a

stacked denoising autoencoder to learn customer embeddings for improving their cam-

paign decisions or clustering clients into classes.

2.2.2 Item Prediction and Recommendation Systems

Various techniques from recommendation systems such as collaborative filtering [47, 83]

have long been used to predict a customer’s preference for items, although usually they

are not directly predicting a customer’s next purchase.

More recent advancements in deep learning have shown to be quite practical in mod-

elling a customer’s next purchase over time. Techniques such as [99] mimic a recurrent

neural network (RNN) by feeding historical transaction data as input to a neural network

which predicts the next item. [101] and [6] both use a RNN to predict the next basket of

items to great effect.

2.2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [27] are a class of generative models aimed at

learning a distribution. The method is founded on the game theoretical concept of two-

player zero-sum games, wherein two players each try to maximize their own utility at the

expense of the other player’s utility. By formulating the distribution learning problem as

such a game, a GAN can be trained to learn good strategies for each player. A generator

G aims to produce realistic samples from this distribution while a discriminator D tries to

differentiate fake samples from real samples. By alternating optimization steps between

the two components, the generator ultimately learns the distribution of the real data.

51

In detail, the generator network G : Z → X is a mapping from a high-dimensional

noise space Z = Rdz to the input space X on which a target distribution fX is defined.

The generator’s task consists of fitting the underlying distribution of observed data fX as

closely as possible. The discriminator network D : X → R ∩ [0, 1] scores each input with

the probability that it belongs to the real data distribution fX rather than the generator G.

The classical GAN optimization algorithm minimizes the Jensen-Shannon divergence

(JS) between the real and generated distributions. However, [4] suggests replacing the

JS metric by the Wasserstein-1 or Earth-Mover divergence. We make use of an improved

version of this algorithm, the Wasserstein GAN (WGAN) with Gradient Penalty [30]. Its

objective is given below:

min
G

max
D

E
x∼fX(x)

[D(x)] + E
x∼G(z)

[−D(x)] + p(λ), (2.1)

where p(λ) = λ(||∇x̃D(x̃)|| − 1)2, x̃ = εx+ (1− ε)G(Z), ε ∼ Uniform(0, 1), and Z ∼ fZ(z).

Setting λ = 0 recovers the original WGAN objective.

2.2.4 Simulating Customer Behaviour

A customer’s state with respect to a given retailer (i.e. the types of products they are

interested in and the amount they are willing to spend) evolves over time, and there exist

a wide variety of techniques used to model this state. In marketing research, agent-based

approaches such as [86,102] have aided in building simple simulations of how customers

interact and make decisions.

Data mining and machine learning approaches to model a customer’s state in the con-

text of direct marketing activities have also been widely studied [93]. Techniques such

as [1, 73, 88] model the problem in the reinforcement learning framework by attempting

to learn the optimal marketing policy to maximize rewards over time. As part of their

work, they use various techniques to represent and simulate the customer’s state over

52

time. However, the method does not use the customer’s state to generate its future or-

ders, but rather consider it more narrowly in the context of the defined reward.

More recently, [52] was the first to generate plausible customer e-commerce orders for

a given product using a Generative Adversarial Network (GAN). Given a product em-

bedding, [52] generates a tuple containing a product embedding, customer embedding,

price, and date of purchases, which summarizes a typical order. The e-commerce GAN

has applications in providing insights into product demand, customer preferences, price

estimation and seasonal variations by simulating what are likely potential orders. How-

ever, it only generates realistic orders and does not directly model customer behaviour

over time.

2.3 Methodology

In this section, we present a novel methodology for generating realistic sequences of fu-

ture transactions for a given customer. The proposed pipeline involves a GAN module

and an LSTM module intertwined in a sequence of product generation and customer

state updating steps. The GAN is trained to generate a basket of products conditioned

on a time-sensitive customer representation, while the LSTM models the sequential na-

ture of the customer’s state as it interacts with products. Each of these components uses

semantic embeddings of customers and products for representational purposes, which

are defined in the first two subsections, while the training of the GAN and generation of

customer transactions are presented in the latter two subsections.

2.3.1 Product Representations

To capture the semantic relationships between products that exist independently of cus-

tomer interactions, we learn product representations based on their associated textual

descriptions. Specifically, a corpus is created wherein a sentence is defined for each prod-

uct as the concatenation of the product name and description. Preprocessing is applied

53

to remove stopwords and other irrelevant tokens. The resulting corpus contains 11, 443

products and a vocabulary size of 21, 894 words. The word2vec skipgram model [67]

is then trained on this corpus using a context window size of 5 and an embedding di-

mensionality of 128. Finally, each product representation is defined as the arithmetic

mean of the word embeddings in the product’s name and description. This is similar to

the common practice of representing a sentence by the mean of word vectors within the

sentence [54], and is motivated by the observation that sums of word vectors produce

semantically meaningful vectors.

2.3.2 Customer Representations

To characterize customers by their purchasing habits we learn customer embedding rep-

resentations from their transactional data. Inspired by [52], this is accomplished using a

Long-Short Term Memory (LSTM) [38] module. The LSTM takes as input a sequence of

transaction baskets for a given customer, where each transaction basket is defined by a

set of product embeddings for a week of purchase. Products within the same basket are

ordered randomly during training. The LSTM is trained to learn the customer’s sequen-

tial patterns via a multi-task optimization procedure. Specifically, the LSTM output is fed

as inputs for the following three prediction tasks:

1. Predict whether or not a product is the last product in the basket.

2. Predict the category of the next product.

3. Predict the price of the next product.

The LSTM is trained to maximize the performance of all three subtasks by randomly

and uniformly sampling a single task in each step and optimizing for this task. After con-

vergence, the hidden state of the LSTM is used to characterize a customer’s purchasing

habits, and thus a customer’s state. As a result, customers with similar behaviour will

be closer together in the resulting embedding space. Figure 2.1 illustrates the process of

learning this embedding.

54

LSTM module

End of
basket?

Next
product

cate-
gory

Next
product

price

product 1

product 2

product n

Figure 2.1: Embedding customers via multi-task Learning with an LSTMs. The input
is the sequence of products a customer has purchased throughout their transactional his-
tory. After convergence, the hidden state of the LSTM will characterize a customer’s state.

2.3.3 Learning Product Distributions with a Conditional GAN

To learn the product distributions, we use a conditional Wasserstein GAN [4]. In the

optimization process the discriminator and generator are involved in a min-max game.

In this game the discriminator aims to maximize the following loss function:

max
D

E
x∼fX(x)

[D(x|(h,w)] + E
x∼G(z|(h,w))

[−D(x|(h,w)]

+λ(||∇x̃D(x̃|(h,w)|| − 1)2,

(2.2)

where λ is a penalty coefficient, x̃ = εx + (1 − ε)G(z|(h,w)), and ε ∼ Uniform(0, 1).

The first term is the expected score (which can be thought of as likelihood) of seeing an

product x being purchased by the given customer and week (h,w). The second term is

the score of seeing product z being purchased by that same customer and week, (h,w).

Taken together, these first two terms encourage the discriminator to maximize the ex-

55

pected score of the real products x ∼ fX(x) given the context (h,w) and minimize the

score of the generated products x ∼ G(z|(h,w)). The third term in Eq. 2.2 is a regulariza-

tion penalty to ensure that D satisfies the 1-Lipschitz conditions.

The generator is trained to minimize the following loss function:

max
G

E
x∼G(z|(h,w))

[D(x|(h,w)] (2.3)

Intuitively, this objective aims to maximize the likelihood that the generated product x ∼

G(z|(h,w)) is plausible given the context (h,w), where plausibility is determined by the

discriminatorD(x|(h,w)). With successive steps of optimization we obtain aGwhich will

generate samples that are more similar to the real data distribution.

While the generator learned from Eq. 2.3 can yield realistic product embeddings, in

practice one may wish to obtain specific instances from a database P = {pi}ni=1 of known

products. This can be useful, for instance, to obtain a product recommendation for cus-

tomer h at week w. Given a generated product embedding G(z|(h,w)), this can be accom-

plished by computing the closest product from the database according to the L2 distance

metric: p = argminpi∈P ||G(z|(h,w))−pi||22. Note that other distance metrics such as cosine

distance could also be used for this purpose.

2.3.4 Generating Sequences of Products

In this subsection we develop a pipeline to generate a sequence of baskets of products that

a customer will likely purchase over several consecutive weeks. The pipeline incorporates

the product generatorG to produce individual products in the basket as well as the LSTM

module to model the evolution of a customer’s state over a sequence of baskets.

The procedure works as follows. Given a new customer with a transaction history

B1, B2, . . . , Bi, where each Bi denotes a basket for week wi and i ≥ 1, we wish to generate

a basket Bi+1 for the following week. We extract the customer embedding at week wi, de-

noted hi, by passing the transaction sequence through the LSTM module and extracting

56

the hidden state. We then find the k most similar customers from the database of known

customers by L2 distance from hi. This is similar to the process of retrieving known prod-

ucts from a database as described in the previous section. We then determine the number

of products to generate for him/her in week wi. To accomplish this we uniformly sample

from the basket sizes of the k most similar customers’ baskets to retrieve the number of

products to generate, ni. The generator network is then used to generate ni products via

our generator, G(hi, wi).

This procedure can be extended to generate additional baskets by feeding Bi+1 back

into the LSTM, whose hidden state is updated as if the customer had purchasedBi+1. The

updated customer representation hi+1 is once again used to estimate the basket size ni+1

and fed into the generator G(hi+1, wi+1) which yields a basket of products for the week

wi+1. This cycle can be iterated multiple times to generate basket sequences of arbitrary

length, or alternatively generate multiple sequences of baskets for the same customer.

The procedure is described in detail by the pseudo-code in Algorithm 2 and illustrated

in Figure 2.2. Note that all values in Algorithm 2 are also indexed by the customer index

c which has been omitted in this discussion for the brevity. To simplify the notation, we

also use the symbol Bc
0 in Algorithm 2 to denote the entire history of customer c.

In this manner we can effectively augment a new customer’s transaction data by pre-

dicting their actions for an arbitrary amount of time. The intuition behind the approach

is that a customer’s embedding representation evolves as they purchase products, and

therefore might share some common properties with other customers through their pur-

chase experience. One can derive insights from this generated data by learning a better

characterization of their distribution of likely purchase sequences into the future.

2.4 Experimental Results

In this section we empirically demonstrate the effectiveness of the proposed methodology

by comparing the generated basket data against real customer data. Evaluation is first

57

Algorithm 2 Sequence of basket generation

Input: LSTM L, generator G, set of historical basket sequences for each customer
{Bc

0}Cc=1, hyperparameter k, number of weeks W
for c = 1, . . . , C do

Compute initial customer embedding hc0 via L(Bc
0)

for w = 1, . . . ,W do
Sample ncw via k-nearest customers of hcw
Generate basket Bc

w of ncw products from G(hcw, w)
Update the customer embedding with the LSTM: hcw+1 = L(Bc

w, h
c
w).

end for
end for

Generator

fake samples

Generated basket Bi LSTM

new customer embedding hi

k-nearest
customers

input

optimal basket

size ni

Figure 2.2: Basket sequence generation process using the LSTM and Generator modules.

performed with respect to the distributions of key metrics aggregated over the entire data

sets, including product categories, brands, prices, and basket sizes. Next we compare

sequential patterns that exist between products in both data sets, and finally we examine

the separability between the real and generated baskets with multiple different basket

representations.

2.4.1 Experimental Setup

The basket generation methodology is evaluated using a data set from an industrial part-

ner which consists of 742,686 transactions over a period of 5 weeks during the summer

of 2016. This data is composed of 174,301 customer baskets with an average size of 4.08

58

products and price of $12.2. A total of 7,722 distinct products and 66,000 distinct cus-

tomers exist across all baskets.

Figure 2.3 shows the product embedding representations extracted from textual de-

scriptions as described in Section 2.3.1 projected into a 2-dimensional space using the t-

SNE algorithm [97]. Products are classified into functional categories such as Hair Styling,

Eye Care, etc, each of which corresponds to a different color in Figure 2.3. We observe that

products from the same category tend to be clustered close together, which reflects the se-

mantic relationships between such products. At a higher level we observe that similar

product categories also occur in close proximity to one another; for example the cate-

gories of Hair Mass, Hair Styling and Hair Designer are mapped to adjacent clusters, as

are the categories of Female Fine Frag and Male Fine Frag. This property is critical to

the basket generation scheme which directly generates only product embeddings, while

instances of specific products are obtained based on their proximity to other products in

the embedding space.

The LSTM is trained on this data set with a multi-task optimization procedure as de-

scribed in section 2.3.2 (see Figure 2.1) for 25 epochs. For each customer, we obtain an

embedding from the LSTM hidden state after passing through all of their transactions.

These embeddings are then used to train the conditional GAN. The GAN was trained for

100 epochs using the Adam [50] optimizer with the hyperparameters values of α = 0.5

and β = 0.9. The discriminator is composed of two hidden layers of 256 units each with

ReLU activation functions, with the exception of the last layer which is free of activation

functions. The generator uses the same architecture except for the last layer which has a

tanh activation function. During training the discriminator is prioritized by applying five

update steps for each update step to the generator. This helps the discriminator converge

faster so as to better guide the generator.

Once the LSTM and GAN are trained we run our basket sequence generation. For

each customer, we generate 5 weeks of baskets following the procedure in Algorithm 2.

59

MALE TOILETRIES
GASTROINTESTINAL
DEODORANTS
COUGH/COLD/ALLERGY
BRUSHES & COMBS
FOOT CARE
GENERAL HEALTH
COSMETICS
FEMALE FINE FRAG
HAIR STYLING
MAKE UP ACCESSORIES
HAIR COLOURANTS
EYE CARE
FIRSTAID/ WOUND CARE
FEMALE HAIR REMOVAL
MALE FINE FRAGRANCE
HAIR MASS
BEAUTY ELECTRICALS
MALE SKINCARE
BRONZING
FACIAL TISSUES
HAIR DESIGNER
COSMETIC BAGS
DIET AND FITNESS
HOSIERY
IMPULSE
GIFTS
BRANDED GIFTS

Figure 2.3: Visualization of product embeddings in a 2D space (mapped using t-SNE)

2.4.2 Feature Distributions

Figures 2.4, 2.5, 2.6, and 2.7 compare the frequency distributions of the categories, brand,

prices, and basket sizes, respectively, between the generated and real baskets. Additional

metrics are provided in Tables 2.1 and 2.2. Note that for the brand, we restrict the his-

togram plots to include only the top 30 most frequent brands. We observe that in gen-

eral our generative model can reasonably replicate the ground-truth distribution. This

is further evidenced by Table 2.2 which indicates that the highest absolute difference in

frequency of generated brands is 5.6%. The lowest discrepancy occurs for the category

feature, where the maximum deviation is 3.2% in the generated products. In addition,

the generated basket size averages 3.85 products versus 4.08 for the real data which is

60

a difference of approximately 5%. The generated product prices are an average of $3.1

versus $3.4 for the real data (a 10% difference). This demonstrates that the generation

methodology can mimic the aggregated statistics of the real data to a reasonable degree.

Note that we should not expect the two distributions to match exactly because we are

projecting each customer’s purchases into the future, which won’t necessarily have the

same distributive properties.

0 10 20 30 40 50
product category ID

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pe
rc

en
ta

ge

Real product
Generated product

Figure 2.4: Product category distributions of real and generated data

61

0 5 10 15 20 25 30
product brand ID

0.00

0.02

0.04

0.06

0.08

0.10
Pe

rc
en

ta
ge

Real product
Generated product

Figure 2.5: Product brand distributions of real and generated data

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
product price

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rc

en
ta

ge

Real product
Generated product

Figure 2.6: Product price distributions of real and generated data

62

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
basket size

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
ta

ge

Real basket
Generated basket

Figure 2.7: Basket size distributions of real and generated data

Real Transactions Generated Transactions
Average basket size 4.08 3.85
Average basket price $3.1 $3.4

Table 2.1: Statistics

Table 2.2: Discrepancies between real and generated data

Criterion Max absolute deviation (in %)
Category 3.2%
Brand 5.6%
Price 5.2%
Basket size* 4.1%

∗ this metric only applies for basket size ≤ 20

2.4.3 Sequential Pattern Mining

Sequential pattern mining [26] (SPM) is a technique to discover statistically relevant sub-

sequences from a sequence of sets ordered by time. One frequent application of SPM is

63

Sequence Real support Generated support
Hemorrhoid relief, Skin treatment & dressings 0.045 0.098
Skin treatment & dressings, Female fine frag 0.029 0.100
Facial moisturizers, Skin treatment & dressings 0.028 0.075
Shower products, Female fine frag 0.028 0.056
Hemorrhoid relief, Female fine frag 0.028 0.093
Skin treatment & dressings, Facial moisturizers 0.027 0.076
Skin treatment & dressings, Preg test & ovulation 0.027 0.082
Shower products, Skin treatment & dressings 0.026 0.056
Hemorrhoid relief, Preg test & ovulation 0.026 0.075
Female fine frag, Preg test & ovulation 0.025 0.081
Facial moisturizers, Hemorrhoid relief 0.025 0.069
Skin treatment & dressings, Skin treatment & dressings, Hemorrhoid relief 0.007 0.014

Table 2.3: Sequential patterns comparison between real and generated transaction data

in retail transactions where we wish to determine subsequences of items across baskets

customers have bought over time. For example, given an set of baskets a customer has

purchased ordered by time: {milk, bread}, {cereal, cheese}, {bread, oatmeal, butter}, one se-

quential pattern we can derive is: {milk}, {bread, butter} because {milk} in the first basket

comes before {bread, butter} in the last basket. A pattern is typically measured by its

support, which is defined as the number of customers containing the pattern as a subse-

quence. We refer the reader to [26] for further details.

For this set of experiments, sequential pattern mining is performed on the real and

generated datasets via the SPFM [23] library using a minimum support of 1% of the total

number of customers. Figure 2.8 plots the percentage of the top-k most common real

sequential patterns that are also found in the generated data as k varies from 1 to 1000.

Here items are defined at either the category or subcategory level, so that two products

are considered equivalent if they belong to the same functional grouping. We see that for

the category-level, we can recover 98% of the top-100 patterns, while at the subcategory-

level, we can recover 63%. This demonstrates that our method is generating plausible

sequences of baskets for customers because most of the real sequential patterns show up

in the generated data. Not all patterns are found however, which might imply that the

generated data might have some drift in the sequences due to the method of projecting

customer’s purchases into the future.

64

Table 2.3 shows examples of the top sequential patterns of length 2 and 3 from the real

data at the subcategory level that also appeared in the generated transactional data. The

two right columns show the support for both the real and generated datasets, which is

normalized by dividing by the total number of customers. We can see that the generated

data has higher support for the patterns from generated data, indicating that it may have

an easier time replicating common patterns.

Figure 2.8: Generated pattern coverage of the top-k most common real patterns

2.4.4 Basket Distributions

In this section we directly compare the generated and real baskets based on the products

they contain. For each basket of products Bi = {pi,j}|Bi|
j=1 we a define a vector representa-

tion vi using a bag-of-products scheme. Let P denote the set of all known products. Then

vi is a |P |-dimensional vector with v
(j)
i = 1 if pj ∈ Bi or v(j)

i = 0 otherwise. P can be

defined at various levels of precision such as the product serial number, the brand, or the

category levels. At the category level, for instance, two products would be considered

equivalent and correspond to the same index j if they belong to the same category.

65

The resulting vectors are then projected into two dimensions using t-SNE for visu-

alization purposes. The distributions of the real and generated data are plotted in Fig-

ures 2.9. For an alternative viewpoint Figure 2.10 plots the vectors projected using Princi-

pal Component Analysis (PCA). These plots qualitatively indicate that the distributions

match quite closely.

Figure 2.9: Basket representations as bags-of-products vectors at the category level, pro-
jected using t-SNE.

This observation can be further analyzed quantitatively by training a classifier to dis-

tinguish between points from the two distributions. By measuring the prediction accu-

racy of this classifier we obtain an estimate of the degree of separability between the data

sets. For our experiments we randomly sample a subset of the generated points such that

the number of real and generated points are equal. This way a perfectly indistinguish-

able generated data set should yield a classification accuracy of 50%. We note that this

classification task is fundamentally unlike that which is performed by the discriminator

during the GAN training, as the latter operates on the embedding representation of a

single product while the former operates on the bag-of-items representation of a basket.

The results are given in Table 2.4 using a logistic regression classifier. Each row corre-

sponds to a different level of granularity in the definition of the bag-of-products represen-

66

Figure 2.10: Basket representations as bags-of-products vectors at the category level, pro-
jected using PCA.

tation, with category being the most coarse–grained and sku being the most fine–grained.

We see that the classifier performs quite poorly at the category levels, meaning that the

generated baskets of categories are quite plausible.

However, note that the bag-of-products representation does not preserve the semantic

similarity between products in that any two products with different skus are perfectly

separable even if they have very similar functions and descriptions. Therefore, we instead

define the sku level basket representation as the mean of embeddings of the products in

the basket. This is given in the last row of Table 2.4. Note that these representations

come from the embeddings of the nearest neighbor product rather than the output of

the generator. As expected, the classification accuracy is still quite low considering the

fine-grained level at which the prediction occurs.

Basket Representation Classification Accuracy
Bag-of-products category 0.634

Bag-of-products subcategory 0.663
Basket embedding sku-level 0.704

Table 2.4: Separability between real and generated baskets.

67

2.5 Conclusion

In this paper, we propose a novel method of generating sequences of realistic customer

baskets for customer-level transactional data. After learning customer embeddings with

an LSTM, we generate a product basket conditioned on the customer embedding using

the generator from the GAN. The generated basket of products is fed back into the LSTM

to generate a new customer embedding, and the process repeats. We show that the pro-

posed methods can replicate to a reasonable degree the statistics of the real data distribu-

tion (category, brand, price and basket size). As additional experiments, we verified that

common sequential patterns exist between products in the generated and real data, and

that the generated orders are difficult to distinguish from the real orders.

68

Chapter 3

Attraction-Repulsion Actor-Critic for Continuous

Control Reinforcement Learning

3.1 Introduction

Many reinforcement learning (RL) tasks such as robots and self-driving cars pose a major

challenge due to large action and state spaces [55]. In particular, environments with large

non-convex continuous action spaces are prone to deceptive rewards, i.e. local optima

[17]. Applying traditional policy optimization algorithms to these domains often leads

to locally optimal, yet globally sub-optimal policies. This implies that learning should

involve some form of exploration.

Not all RL domains that require exploration are suitable for understanding how to

train agents that are robust to deceptive rewards. For example, Montezuma Revenge, a

game in the Atari Learning Environment [12], has sparse rewards; algorithms that perform

the best on this task encourage exploration by providing learning signal to the agent [90].

On the other hand, continuous control problems, such as MuJoCo [94], already pro-

vide the agent with a dense reward signal. Yet, the high-dimensional action space induces

a multimodal (potentially deceptive) reward landscape. Such domain properties can lead

the agent to sub-optimal policies. For example, in the biped environments, coordinating

both arms and legs is crucial for performing well on even simple tasks such as forward

motion. However, simply learning to maximize the reward can be detrimental in the long

run: agents will tend to run and fall further away from the start point instead of discover-

ing a stable walking motion. Exploration in this setting serves to provide a more reliable

learning signal for the agent by covering more different types of actions during learning.

69

One way to maximize action space coverage is the maximum entropy RL framework

[104], which prevents variance collapse by adding a policy entropy auxiliary objective.

One such prominent algorithm, Soft Actor-Critic (SAC, [33]), has been shown to excel

in large continuous action spaces. To further improve on exploration properties of SAC,

one can maintain a population of agents that cover non-identical sections of the policy

space. To prevent premature convergence, a diversity-preserving mechanism is typically

put in place; balancing the objective and the diversity term becomes key to converging

to a global optimum [40]. This paper studies a particular family of population-based

exploration methods, which conduct coordinated local search in the policy space. Prior

work on population-based strategies improves performance on continuous control do-

mains through stochastic perturbation on a single actor’s parameter [76] or a set of actor’s

parameters [17,49,59]. We hypothesize that exploring directly in the policy space is more

important than perturbing the parameters of the policy, as the latter does not guarantee

diversity (i.e., different neural network parameterizations can approximately represent

the same function).

Given a population of RL agents, we enforce local exploration using an Attraction-

Repulsion (AR) mechanism. The later consists in adding an auxiliary loss to encourage

pairwise attraction or repulsion between members of a population, as measured by a di-

vergence term. We make use of the Kullback-Leibler (KL) divergence because of its desir-

able statistical properties and its easiness of computation. However, naively maximizing

the KL term between two Gaussian policies can be detrimental (e.g. drives both means

apart). As a result, we parametrize the policy with a general family of distributions called

Normalizing Flows (NF) [80]; this modification allows to improve upon AR+Gaussian

(see Appendix Figure 3.6). NFs are shown to improve the expressivity of the policies us-

ing invertible mappings while maintaining entropy guarantees [65,91]. The AR objective

blends particularly well with SAC, since computing the KL requires stochastic policies

with tractable densities for each agent.

70

3.2 Preliminaries

We first formalize the RL setting in a Markov decision process (MDP). A discrete-time,

finite-horizon, MDP [13,77] is described by a state space S, an action spaceA, a transition

function P : S ×A×S 7→ R+, and a reward function r : S ×A 7→ R.1 On each round t, an

agent interacting with this MDP observes the current state st ∈ S, selects an action at ∈ A,

and observes a reward r(st, at) ∈ R upon transitioning to a new state st+1 ∼ P(st, at). Let

γ ∈ [0, 1] be a discount factor. The goal of an agent evolving in a discounted MDP is to

learn a policy π : S × A 7→ [0, 1] such as taking action at ∼ π(·|st) would maximize the

expected sum of discounted returns,

V π(s) = Eπ
[∞∑
t=0

γtr(st, at)|s0 = s

]
.

In the following we use ρπ to denote the trajectory distribution induced by following

policy π. If S orA are vector spaces, action and space vectors are respectively denoted by

~a and ~s.

3.2.1 Discovering new solutions through population-based Attraction-

Repulsion

Consider evolving a population of M agents, also called individuals, {πθm}Mm=1, each agent

corresponding to a policy with its own parameters. In order to discover new solutions, we

aim to generate agents that can mimic some target policy while following a path different

from those of other policies.

Let G denote an archive of policies encountered in previous generations of the popula-

tion. A natural way of enforcing π to be different from or similar to the policies contained

1A and S can be either discrete or continuous.

71

in G is by augmenting the loss of the agent with an Attraction-Repulsion (AR) term:

LAR = − E
π′∼G

[
βπ′DKL[π||π′]

]
, (3.1)

where π′ is an archived policy and βπ′ is a coefficient weighting the relative importance

of the Kullback-Leibler (KL) divergence between π and π′ which we will choose to be

a function of the average reward (see Sec. 3.3.2 below). Intuitively, Eq. 3.1 adds to the

agent objective the average distance between the current and the archived policies. For

βπ′ ≥ 0, the agent tends to move away from the archived policy’s behavior (i.e. repulsion,

see Figure 3.1) a). On the other hand, βπ′ < 0 encourages the agent π to imitate π′ (i.e.

attraction).

Requirements for AR In order for agents within a population to be trained using the

proposed AR-based loss (Eq. 3.1), we have the following requirements:

1. Their policies should be stochastic, so that the KL-divergence between two policies

is well-defined.

2. Their policies should have tractable distributions, so that the KL-divergence can be

computed easily, either with closed-form solution or Monte Carlo estimation.

Several RL algorithms enjoy such properties [33, 84, 85]. In particular, the soft actor-

critic [33] is a straightforward choice, as it currently outperforms other candidates and

is off-policy, thus maintains a single critic shared among all agents (instead of one critic

per agent), which reduces computation costs.

72

3.2.2 Soft actor-critic

SAC [33] is an off-policy learning algorithm which finds the information projection of the

Boltzmann Q-function onto the set of diagonal Gaussian policies Π:

π = argmin
π′∈Π

DKL

(
π′(.|~st)

∥∥∥∥exp (1
α
Qπold(~st, .))

Zπold(~st)

)
,

where α ∈ (0, 1) controls the temperature, i.e. the peakedness of the distribution. The

policy π, critic Q, and value function V are optimized according to the following loss

functions:

Lπ,SAC = E~st∼B[E~at∼π[α log π(~at|~st)−Q(~st,~at)]] (3.2)

LQ = E
(s,a,r,s′)∼B

[
{Q(s, a)− (r + γV π

ν (s′))}2
]

(3.3)

LV = E~st∼D
[

1

2

{
V π
ν (~st)− E~at∼π[Q(~st,~at)− α log π(~at|~st)]

}2
]
, (3.4)

where B is the replay buffer. The policy used in SAC as introduced in [33] is Gaus-

sian, which is both stochastic and tractable, thus compatible with our AR loss function

in Eq. 3.1. Together with the AR loss in Eq. 3.1, the final policy loss becomes:

Lπ = Lπ,SAC + LAR (3.5)

However, Gaussian policies are arguably of limited expressibility; we can improve on

the family of policy distributions without sacrificing qualities necessary for AR or SAC

by using Normalizing Flows [80].

3.2.3 Normalizing flows

NFs [80] were introduced as a means of transforming simple distributions into more com-

plex distributions using learnable and invertible functions. Given a random variable ~z0

73

with density q0, they define a set of differentiable and invertible functions, {fi}Ni=1, which

generate a sequence of d-dimensional random variables, {~zi}Ni=1.

Because SAC uses explicit, yet simple parametric policies, NFs can be used to trans-

form the SAC policy into a richer one (e.g., multimodal) without risk loss of information.

For example, [65] enhanced SAC using a family of radial contractions around a point

~z0 ∈ Rd,

f(~z) = ~z +
β

α + ||~z − ~z0||2
(~z − ~z0) (3.6)

for α ∈ R+ and β ∈ R. This results in a rich set of policies comprised of an initial noise

sample ~a0, a state-noise embedding hθ(~a0, ~st), and a flow {fφi}Ni=1 of arbitrary length N ,

parameterized by φ = {~φi}Ni=1. Sampling from the policy πφ,θ(~at|~st) can be described by

the following set of equations:

~a0 ∼ N (0, I);

~z = hθ(~a0, ~st);

~at = fφN ◦ fφN−1
◦ ... ◦ fφ1(~z),

(3.7)

where hθ = ~a0~σI+µ(~st) depends on the state and the noise variance σ > 0. Different SAC

policies can thus be crafted by parameterizing their NFs layers.

3.3 ARAC: Attraction-Repulsion Actor-Critic

We now detail the general procedure for training a population of agents using the pro-

posed diversity-seeking AR mechanism. More specifically, we consider here SAC agents

enhanced with NFs [65]. Figure 3.1 displays the general flow of the procedure. Algo-

rithm 3 (Appendix.) provides the pseudo-code of the proposed ARAC strategy, where

sub-procedures for rollout and archive update can be found in the Appendix.

74

Figure 3.1: a) Augmenting the loss function with AR constraints allows an agent to reach
a target policy by following different paths. Attractive and Repulsive policies represent
any other agent’s policy. b) General flow of the proposed ARAC strategy.

Overview ARAC works by evolving a population of M SAC agents {πmφ,θ}Mm=1 with ra-

dial NFs policies (Eq. 3.7) and shared critic Qω, and by maintaining an archive of poli-

cies encountered in previous generations of the population. After performing T steps

per agent on the environment (Alg. 3 L8-12), individuals are evaluated by performing

R rollouts2 on the environment (Alg. 3 L26-28). This allows to identify the top-K best

agents (Alg. 3 L29), also called elites, which will be used to update the critic as they pro-

vide the most meaningful feedback (Alg. 3 L13-17). The archive is finally updated in a

diversity-seeking fashion using the current population (Alg. 3 L30).

The core component of the proposed approach lies within the update of the agents

(Alg. 3 L18-25). During this phase, elite individuals are updated using AR operations

w.r.t. policies sampled from the archive (Eq. 3.5), whereas non-elites are updated regu-

larly (Eq. 3.2).

3.3.1 Enhancing diversity in the archive

Throughout the training process, we maintain an archive G of maximum capacity G,

which contains some previously encountered policies. The process goes as follow: un-

2These steps can be performed in parallel.

75

til reaching full capacity, the archive saves a copy of the parameters of every individual

in the population after the evaluation step. However, by naively adding all individuals

as if the archive were just a heap, the archive could end up filled with policies leading

to similar rewards, which would result in a loss of diversity [64]. We mitigate this is-

sue by keeping track of two fitness clusters (low and high) using the partition formed by

running a k-means algorithm on the fitness value. Hence, when |G| = G is reached and

a new individual is added to the archive, it randomly replaces an archived policy from

its respective cluster. This approach, also known as niching, has proved itself effective at

maintaining high diversity levels [32, 62].

3.3.2 Discovering new policies through Attraction-Repulsion

The crux of this work lies in the explicit search for diversity in the policy space achieved

using the AR mechanism. Since the KL between two base policies (i.e. input of the first

flow layer) can be trivially maximized by driving their means apart, we apply attraction-

repulsion only on the flow layers, while holding the mean of the base policy constant.

This ensures that the KL term doesn’t depend on the difference in means and hence con-

trols the magnitude of the AR mechanism. Every time the AR operator is applied (Alg. 3

L20-21), n policies are sampled from the archive and are used for estimating the AR loss

(Eq. 3.1). As in [40], we consider two possible strategies to dictate the value of βπ′ coeffi-

cients for policies π′ ∼ G:

βπ′ = −
[
2

(
f(π′)− fmin
fmax − fmin

− 1

)]
(proactive) (3.8)

βπ′ = 1− f(π′)− fmin
fmax − fmin

(reactive) (3.9)

where f(π)3 represents the fitness function of policy π (average reward in our case), and

fmin and fmax are estimated based on the n sampled archived policies. The proactive strat-

egy aims to mimic high reward archived policies, while the reactive strategy is more cau-

3We overload our notation f for both the normalizing flow and the fitness depending on the context

76

tious, only repulsing away the current policy from low fitness archived policies. Using

this approach, the current agent policy will be attracted to some sampled policies (βπ′ < 0)

and will be repulsed from others (βπ′ ≥ 0) in a more or less aggressive way, depending on

the strategy.

Unlike [40] who applied proactive and reactive strategies on policies up to 5 timesteps

back, we maintain an archive consisting of two clusters seen so far: policies with low

and high fitness, respectively. Having this cluster allows to attract/repulse from a set

of diverse agents, replacing high-reward policies by policies with similar performance.

Indeed, without this process, elements of the archive would collapse on the most frequent

policy, from which all agents would attract/repulse. To avoid performing AR against a

single ”average policy” , we separate low-reward and high-reward agents via clustering.

3.4 Related Work

The challenges of exploration are well studied in the RL literature. Previously proposed

approaches for overcoming hard exploration domains tend to either increase the capac-

ity of the state-action value function [25, 35] or the policy expressivity [65, 91, 96]. This

work rather tackles exploration from a diverse multi-agent perspective. Unlike prior

population-based approaches for exploration [17, 49, 76], which seek diversity through

the parameters space, we directly promote diversity in the policy space.

The current work was inspired by [40], who relied on the KL divergence to attract

and repulse from a set of previous policies to discover new solutions. However, in their

work, the archive is time-based (they restrict themselves to the 5 most recent policies),

while our archive is built following a diversity-seeking strategy (i.e., niching and policies

come from multiple agents). Notably, ARAC is different of previously discussed works in

that it explores the action space in multiple regions simultaneously, a property enforced

through the AR mechanism.

77

The proposed approach bears some resemblance with [59], who took advantage of a

multi-agent framework in order to perform repulsion operations among agents using of

similarity kernels between parameters of the agents. The AR mechanism gives rise to

exploration through structured policy rather than randomized policy. This strategy has

also been employed in multi-task learning [31], where experience on previous tasks was

used to explore on new tasks.

3.5 Experiments

3.5.1 Didactic example

Consider a 2-dimensional multi-armed bandit problem where the actions lie in the real

square [−6, 6]2. We illustrate the example of using a proactive strategy where a SAC

agent with radial flows policy imitates a desirable (expert) policy while simultaneously

repelling from a less desirable policy. The task consists in matching the expert’s policy

(blue density) while avoiding taking actions from a repulsive policy π′ (red). We illustrate

the properties of radial flows in Figure 3.2 by increasing the number of flows (where 0

flow corresponds to a Gaussian distribution).

We observe that increasing the number of flows (bottom to top) leads to more com-

plex policy’s shapes and multimodality unlike the Gaussian policy which has its variance

shrinked (indeed, the KL divergence is proportional to the ratio of the two variances,

hence maximizing it can lead to a reduction in the variance which can be detrimental for

exploration purpose). Details are provided in Supplementary Material.

3.5.2 MuJoCo locomotion benchmarks

We now compare ARAC against the CEM-TD3 [76], ERL [49] and CERL [48] baselines on

seven continuous control tasks from the MuJoco suite [19]: Ant-v2, HalfCheetah-v2,

Humanoid-v2, HumanoidStandup-v2, Hopper-v2, Walker2d-v2 and

78

Figure 3.2: Agent trained to imitate a target while avoiding a repulsive policy using a
proactive strategy. Increasing the number of flows leads to more complex policy’s shape.

Humanoid (rllab). We also designed a sparse reward environment

SparseHumanoid-v2. All algorithms are run over 1M time steps on each environment,

except Humanoid (rllab) which gets 2M time steps and SparseHumanoid-v2 on

0.6M time steps.

ARAC performs R = 10 rollouts for evaluation steps every 10, 000 interaction steps

with the environment. We consider a small population of N = 5 individuals with K = 2

as elites. Every SAC agent has one feedforward hidden layer of 256 units acting as state

embedding, followed by a radial flow of length ∈ {3, 4}. A temperature of α = 0.05 or 0.2

is used across all the environments (See appendix for more details). AR operations are

carried out by sampling uniformly n = 5 archived policies from G. Parameters details are

provided in the Appendix (Table 3.4). All networks are trained with Adam optimizer [50]

79

Figure 3.3: Mapping in two-dimensional space (t-SNE) of agents’ actions for two arbitrary
states. Each color represents a different agent.

using a learning rate of 3E−4. Baselines CEM-TD34, ERL5, CERL6 use the code contained

in their respective repositories.

ARAC CEM-TD3 CERL ERL SAC - NF SAC TD3
Ant 6044 4239 1639 1442 4912 4370 4372
HC 10 264 10 659 5703 6746 8429 11 900 9543

Hopper 3587 3655 2970 1149 3538 2794 3564
Hu 5965 212 4756 551 5506 5504 71

Standup 175 000 29 000 117 000 12 900 116 000 149 000 54 000
Hu (rllab) 14 230 1334 3340 57 5531 1963 286
Walker2d 4704 4710 4386 1107 5196 3783 4682

Hu (Sparse) 816 0 1.32 8.65 547 88 0

Table 3.1: Maximum average return after 1M (2M for Humanoid (rllab) and 600k
for SparseHumanoid-v2) time steps 5 random seeds. Bold: best methods when
the gap is less than 100 units. See appendix for average return with standard devia-
tion. Environment short names: HC: HalfCheetah-v2, Hu: Humanoid-v2, Standup:
HumanoidStandup-v2

Figure 3.4 displays the performance of all algorithms on three environments over time

steps (see Appendix Figure 3.7 for all environments). Results are averaged over 5 random

seeds. Table 3.1 reports the best observed reward for each method.

4https://github.com/apourchot/CEM-RL
5https://github.com/ShawK91/erl_paper_nips18
6https://github.com/IntelAI/cerl

80

https://github.com/apourchot/CEM-RL
https://github.com/ShawK91/erl_paper_nips18
https://github.com/IntelAI/cerl

Figure 3.4: Average return and one standard deviation on 5 random seeds across 8 Mu-
JoCo tasks. Curves are smoothed using Savitzky-Golay filtering with window size of 7.

Small state space environments HalfCheetah-v2, Hopper-v2, and Walker2d-v2

are low-dimensional state space environments (d ≤ 17). Except for HalfCheetah-v2,

the proposed approach shows comparable results with its concurrent. Those results meet

the findings of [75] that some environments with well-structured dynamics require little

exploration. Full learning curves can be found in the Supplementary Material.

Deceptive reward and Large state space environments Humanoid-v2,

HumanoidStandup-v2 and Humanoid (rllab) belong to bipedal environments

with high-dimensional state space (d = 376 and d = 147), and are known to trap algo-

rithms into suboptimal solutions. Indeed, in addition to the legs, the agent also needs

to control the arms, which may influence the walking way and hence induce deceptive

rewards [17]. Figure 3.4 shows the learning curves on MuJoCo tasks. We observe that

ARAC beats both baselines in performance as well as in convergence rate.

Ant-v2 is another high-dimensional state space environment (d ≥ 100). In an unsta-

ble setup, a naive algorithm implementing an unbalanced fast walk could still generate

high reward, the reward taking into account the distance from start, instead of learning

to stand, stabilize, and walk (as expected).

81

Sparse reward environment To test ARAC in a sparse reward environment, we created

SparseHumanoid-v2. The dynamic is the same as Humanoid-v2 but rewards of +1

is granted only given is the center of mass of the agent is above a threshold (set to 0.6

unit in our case). The challenge not only lies in the sparse reward property but also on

the complex body dynamic that can make the agent falling down and terminating the

episode. As shown in Figure 3.4, ARAC is the only method that can achieve non zero

performance. A comparison against single agent methods in the Appendix also shows

better performance for ARAC.

Sample efficiency compared with single agent methods Figure 3.8 (in Supplementary

Material) also shows that the sample efficiency of the population-based ARAC compares

to a single SAC agent (with and without NFs) and other baselines methods (SAC, TD3).

Indeed on Humanoid-v2 and Ant-v2 ARAC converges faster, reaching the 6k (4k, re-

spectively) milestone performance after only 1M steps, while a single SAC agent requires

4M (3M, respectively) steps according to [33]. In general, ARAC achieves competitive

results (no flat curves) and makes the most difference (faster convergence and better per-

formance) in the biped environments.

Attraction-repulsion ablation study To illustrate the impact of repulsive forces, we in-

troduce a hyperparameter λ in the overall loss (Eq. 3.5):

Lθ,φ,λ = Lθ,φ,SAC + λLφ,AR (3.10)

We ran an ablation analysis on Humanoid-v2 by varying that coefficient. For two

random states, we sampled 500 actions from all agents and mapped these actions onto

a two-dimensional space (via t-SNE). Figure 3.3 shows that without repulsion (λ = 0),

actions from all agents are entangled, while repulsion (λ > 0) forces agents to behave

differently and hence explore different regions of the action space.

82

The second ablation study is dedicated to highlight the differences between a Gaussian

(like in [40] and a NF policy under AR operators. As one can observe in Figure 3.6, using a

Gaussian policy deteriorates the solution as the repulsive KL term drives apart the means

of agents and blows up/ shrinks the variance of the Gaussian policy. On the other side,

applying the AR term on the NF layers maximizes the KL conditioned on the mean and

variance of both base policies, resulting in a solution which allows sufficient exploration.

More details are provided in the Appendix.

Also, through a toy example, under a repulsive term, we characterize the policy’s

shape when increasing the number of our radial flow policy in Figure 3.2 (Also show in

Appendix). Unlike the diagonal Gaussian policy (SAC) that has symmetry constraint,

increasing the number of flows allow radial policy to adopt more complex shape (from

bottom to top).

3.6 Conclusion

In this paper, we introduced a population-based approach for structured exploration

leveraging distributional properties of normalizing flows. Our method performs local

search by means of Attraction-Repulsion strategies. Performing these operations with

NF policies allowed a better handle over local solutions. The AR is done with respect to

diverse ancestors across all training steps which are sampled from a bi-modal archive.

Empirical results on the MuJoCo suite demonstrate high performance of the proposed

method in most settings. Moreover, in biped environments that are known to trap al-

gorithms into suboptimal solutions, ARAC enjoys higher sample efficiency and better

performance compare to its competitors. As future steps, borrowing from multi-objective

optimization literature methods could allow one to combine other diversity metrics with

the performance objective, to in turn improve the coverage of the solution space among

the individuals by working with the corresponding Pareto front [41].

83

Appendix

Reproducibility Checklist

We follow the reproducibility checklist [74] and point to relevant sections explaining them

here.

For all algorithms presented, check if you include:

• A clear description of the algorithm, see main paper and included codebase.

The proposed approach is completely described by Alg. 3 (main paper), 4 (Ap-

pendix), and 5 (Appendix). The proposed population-based method uses attraction-

repulsion operators in order to enforce a better policy space coverage by different

agents.

• An analysis of the complexity (time, space, sample size) of the algorithm. See

Appendix Figure 3.7 and 3.8. Experimentally, we demonstrate improvement in

sample complexity as discussed in our main paper. In term of computation time,

the proposed method scales linearly with the population size if agents are evalu-

ated sequentially (as presented in Alg. 3 for clarity). However, this as mentioned in

the paper, can be parallelized. All our results are obtained using M small network

architectures with 1 × 256-units hidden layer followed by f layers of |A| + 2 units

each (f being the number of radial flows and |A| being the action space dimension).

• A link to a downloadable source code, including all dependencies. The code is

included with Supplemental Material as a zip file; all dependencies can be installed

using Python’s package manager. Upon publication, the code would be available

on Github.

For all figures and tables that present empirical results, check if you include:

84

• A complete description of the data collection process, including sample size. We

use standard benchmarks provided in OpenAI Gym (Brockman et al., 2016).

• A link to downloadable version of the dataset or simulation environment. See:

https://github.com/

• An explanation of how samples were allocated for training / validation / testing.

We do not use a training-validation-test split, but instead report the mean perfor-

mance (and one standard deviation) of the policy at evaluation time, openai/gym

for OpenAI Gym benchmarks and https://www.roboti.us/index.html for MuJoCo

suite. obtained with 5 random seeds.

• An explanation of any data that were excluded. We did not compare on easy envi-

ronments (e.g. Reacher-v2) because all existing methods perform well on them.

In that case, the improvement of our method upon baselines is incremental and not

worth mentioning.

• The exact number of evaluation runs. 5 seeds for MuJoCo experiments, 1M, 2M or

3M environment steps depending on the domain.

• A description of how experiments were run. See Section 3.5 in the main paper and

didactic example details in Appendix.

• A clear definition of the specific measure or statistics used to report results. Undis-

counted returns across the whole episode are reported, and in turn averaged across

5 seeds.

• Clearly defined error bars. Confidence intervals and table values are always mean±

1 standard deviation over 5 seeds.

• A description of results with central tendency (e.g. mean) and variation (e.g.

stddev). All results use the mean and standard deviation.

85

• A description of the computing infrastructure used. All runs used 1 CPU for all

experiments (toy and MuJoCo) with 8Gb of memory.

86

Impact of repulsive force

Figure 3.5: Mapping in two-dimension space (t-SNE) of agents’ actions for two arbitrary
states. Each color represents a different agent.

To illustrate the impact of the repulsive force coefficient λ, we ran an ablation analysis

by varying that coefficient (recall that the overall loss function is Lπ = Lπ,SAC + λLAR

where λ = 1 in our experiment).

For two random states, we sampled 500 actions from all agents and mapped theses

actions in a common 2-dimensional space (t-SNE).

As shown in the Figure 3.5, policies trained without AR (λ = 0) result in entangled

actions, while increasing the repulsive coefficient λ forces agents to have different actions

and hence explore different regions of the policy space. Note that due to the specific

nature of t-SNE , the policies are shown as Gaussians in a lower-dimensional embedding,

while it is not necessarily the case in the true space.

87

Stabilizing Attraction-Repulsion with Normalizing Flow

In this section, we illustrate the consequence of the AR operators with a Gaussian policy

(as in [40]) and our Normalizing flow policy for Ant-v2, Humanoid-v2 and HalfCheetah-v2.

As shown in the figure below, AR with Gaussian policies yield worse results. One reason

is that the KL term drives apart the mean and variance of the Gaussian policy which de-

teriorates the main objective of maximizing the reward. On the other side, our method

applies the AR only on the NF layers allows enough exploration by deviating sufficiently

from the main objective function.

Figure 3.6: Comparison of ARAC agents using (1) AR with radial flows, (2) AR with only
the base (Gaussian) policy and (3) no AR with radial flows.

88

Comparing ARAC against baselines on Mujoco tasks

Figure 3.7 shows the performance of ARAC and baselines (CEM-TD3, CERL and ERL)

over time steps. Learning curves are averaged over 5 random seeds and displayed with

one standard deviation. Evaluation is done every 10, 000 environment steps using 10

rollouts per agent. Overall, ARAC has reasonable performance on all tasks (no flat curves)

and demonstrates high performance, especially in humanoid tasks.

Figure 3.7: Average return and one standard deviation on 5 random seeds across 7 Mu-
JoCo tasks for ARAC against baselines. Curves are smoothed using Savitzky-Golay fil-
tering with window size of 7.

89

Benefits of population-based strategies: ARAC against single agents

In this section, we highlight the benefits of the proposed population-based strategy by

comparing with single agents. Figure 3.8 shows the performance of ARAC against a sin-

gle SAC agent (with and without normalizing flows). Learning curves are averaged over

5 random seeds and displayed with one standard deviation. Evaluation is done every

10, 000 environment steps using 10 rollouts per agent. We observe a high beneficial im-

pact on the convergence rate as well as on the performance. ARAC outperforms single

agents in almost all tasks (except for HalfCheetah-v2 and Walker-v2) with large im-

provement. Note the high sample efficiency on humanoid environments (Humanoid-v2

and Humanoid (rllab)), where it shows faster convergence in addition to better per-

formance. Indeed, on Humanoid (rllab) a single SAC agent reaches the 4k milestone

after 4M steps [33] while ARAC achieves this performance in less than 2M steps. Also,

in SparseHumanoid-v2, due to its better coordinated exploration, ARAC could find a

good solution faster than SAC-NF.

Figure 3.8: Average return and one standard deviation on 5 random seeds across 7 Mu-
JoCo tasks for ARAC against single SAC agents (with and without NFs). Curves are
smoothed using Savitzky-Golay filtering with window size of 7.

90

Overall performances on Mujoco tasks

ARAC CEM-TD3 CERL ERL
Ant 6,044 ± 216 4, 239± 1, 048 1, 639± 564 1, 442± 819
HC 10, 264± 271 10,659 ± 1,473 5, 703± 831 6, 746± 295

Hopper 3,587 ± 65 3,655 ± 82 2, 970± 341 1, 149± 3
Hu 5,965 ± 51 212± 1 4, 756± 454 551± 60

Standup 175k ± 38k 29k ± 4k 117k ± 8k 129k ± 4k
Hu (rllab) 14,234 ± 7251 1, 334± 551 3, 340± 3, 340 57± 17
Walker2d 4,704 ± 261 4,710 ± 320 4,3860 ± 615 1, 107± 60
SparseHu 816 ± 20 0± 0 1.32± 2.64 8.65± 15.90

SAC - NF SAC TD3
Ant 4, 912± 954 4, 370± 173 4, 372± 900
HC 8, 429± 818 11,896 ± 574 9, 543± 978

Hopper 3, 538± 108 2, 794± 729 3, 564± 114
Hu 5, 506± 147 5, 504± 116 71± 10

Standup 116k ± 9k 149k ± 7k 54k ± 24k
Hu (rllab) 5, 531± 4, 435 1, 963± 1, 384 286± 151
Walker2d 5,196 ± 527 3,783 ± 366 4,682 ± 539
SparseHu 547 ± 268 88 ± 159 0± 0

Table 3.2: Maximum average return after 1M (2M for Humanoid (rllab) and 600k
for SparseHumanoid-v2) time steps ± one standard deviation on 5 random seeds.
Bold: best methods when the gap is less than 100 units.Environment short names: HC:
HalfCheetah-v2, Hu: Humanoid-v2, Standup: HumanoidStandup-v2

CLEAR TRPO PPO Trust-PCL [75] [96] [40]
HalfCheetah-v2 10,264 −15 2, 600 2, 200 5, 000 7, 700 4, 200

Walker-v2 4,764 2, 400 4, 050 400 850 500 N/A
Hopper-v2 3,588 600 3, 150 280 2, 500 400 N/A

Ant-v2 6,044 −76 1, 000 1, 500 N/A N/A N/A
Humanoid-v2 5,939 400 400 N/A N/A N/A 1, 250

HumanoidStandup-v2 163,884 80, 000 N/A N/A N/A N/A N/A
Humanoid (rllab) 4,117 23 200 N/A N/A N/A N/A

Table 3.3: Performance after 1M (except for rllab which is 2M) timesteps on 5 seeds.
Values taken from their corresponding papers. N/A means the values were not available
in the original paper.

91

Experimental parameters

Table 3.4 provides the hyperparameters of ARAC used to obtain results in the MuJoCo

domains. The noise input for normalizing flows in SAC policies (see Sec. 3.2.3) is sampled

from N (0, σ), where the variance σ is a function of the state (either fixed at a given value

or learned).

ARAC parameters

flows σ G p alpha strategy

Ant-v2 3 0.2 10 1 0.2 proactive

HalfCheetah-v2 4 0.4 20 2 0.2 proactive

Hopper-v2 4 0.8 20 1 0.05 proactive

Walker2d-v2 4 0.6 10 3 0.05 proactive

Humanoid-v2 3 0.6 10 1 0.05 reactive

HumanoidStandup-v2 3 σ 20 1 0.2 reactive

Humanoid (rllab) 3 σ 10 1 0.05 proactive

SparseHumanoid-v2 2 0.6 20 1 0.2 proactive

Adam Optimizer parameters

αγ 3.10−4

αω 3.10−4

αθ 3.10−4

αφ 3.10−4

Algorithm parameters

Batch size m 256

Buffer size B 106

Archive sample size n 5

Table 3.4: ARAC parameters.

92

Impact of number of flows on the policy shape

We used a single SAC agent with different radial flows numbers and randomly initialized

weights, starting with actions centered at (0, 0). All flow parameters are `1 regularized

with hyperparameter 2. The agent is trained with the classical evidence lower bound

(ELBO) objective augmented with the AR loss (Eq. 3.1), where the coefficient of the repul-

sive policy π′ is given by βt = 10
t+1

. Fig. 3.9 shows how both the NF and learned variance

Gaussian policies manage to recover the target policy. We see that NF takes advantage of

its flexible parametrization to adjust its density and can show asymmetric properties un-

like the Gaussian distribution. This indeed can have advantage in some non symmetric

environment where the Gaussian policy would be trapped into a suboptimal behavior.

Finally, increasing the number of flows (from bottom to top) can lead to more complex

policy’s shape.

93

Figure 3.9: Single state didactic illustration of attraction-repulsion operators. Comparing
behavior of NF policy against Gaussian policy with learned variance under a repulsive
constraint.

3.6.1 Pseudo-code for ARAC

94

Algorithm 3 ARAC: Attraction-Repulsion Actor-Critic

1: Input: population size M ; number of elites K; maximum archive capacity G; archive
sample size n; number of evaluation rollouts R; actor coefficient p; strategy (either
proactive or reactive).

2: Initialize value function network Vν and critic network Qω

3: Initialize population of policy networks {πmφ,θ}Mm=1

4: Initialize empty archive G and randomly assign K individuals to top-K

5: total step← 0
6: while total step ≤ max step do
7: step← 0

8: for agent m = 1 . . .M do
9: (, step s)← rollout(πm,with noise, over 1 episode)

10: step← step + s
11: total step← total step + s
12: end for

13: C = step/K
14: for policy πe in top-K do
15: Update critic with πe for C mini-batches (Eq. 3.3)
16: Update value function (Eq. 3.4)
17: end for

18: for agent m = 1 . . .M do
19: if policy πm is in top-K then
20: Sample n archived policies uniformly from G
21: Update actor πm for step

M
.p mini-batches (Eq. 3.5 and 3.8 or 3.9)

22: else
23: Update actor πm for step

M
.p mini-batches (Eq. 3.2)

24: end if
25: end for

26: for agent m = 1 . . .M do
27: (Fitnessm,)← rollout(πm,without noise, over R episodes)
28: end for
29: Rank population {πmφ,θ}Mm=1 and identify top-K
30: update archive(G, {πmφ,θ}Mm=1, G)
31: end while

Collect samples

Update critic

Update actors

Evaluate actors

95

Complementary pseudo-code for ARAC

Algorithms 4 and 5 respectively provide the pseudo-code of functions rollout and

update archive used in Algorithm 3.

Algorithm 4 rollout

Input: actor π; noise status; number of episodes E; replay buffer B;

Fitness← 0

for episode = 1, . . . , E do

~s← Initial state ~s0 from the environment

for step t = 0 . . . termination do

if with noise then

Sample noise z

else

Set z ← 0

end if

~at ∼ π(.|~st, z)

Observe ~st+1 ∼ P (·|~st,~at) and obtain reward rt

Fitness← Fitness + rt

Store transition (~st,~at,rt,~st+1) in B

end for

end for

Fitness← Fitness/E

return Average fitness per episode and number of steps performed

96

Algorithm 5 update archive

Input: archive G; population of size M ; maximal archive capacity G.

if |G| < G then

Add all agents of current population to G

else

c1, c2 ← 2-means(fitness of individuals in G)

for agent m = 1, . . . ,M do

Assign agent m to closest cluster c ∈ {c1, c2} based on its fitness

Sample an archived agent j ∼ Uniform(c)

Replace archived individual j by m

end for

end if

return Updated archive G

97

Chapter 4

Conclusion

This thesis deals with three theoretical and applied problems faced by machine learn-

ing algorithms – two of them related to unsupervised learning, specifically GANs, and

one to reinforcement learning. Our first essay in Chapter 2 tackles a pathology GANs [27]

often suffer from: mode collapse. This results in the GAN learning only a subset of modes

of the original data distribution. This results in a loss of information if one wants to

learn certain particular distribution, e.g., demand distribution for a given product in a

retail context. To handle this problem, we designed a set of discriminators with increas-

ing capacity that can be used to train the generator, with each discriminator assigned a

different weight. We then used a multi-armed bandit algorithm to adaptatively learn

those weights, resulting in a curriculum learning. While weaker discriminators have

smoother gradients and hence provide a better learning signal to help recover missing

modes, stronger discriminators focus on finer-grain detail to ensure sample quality. This

process eventually creates a trade-off between mode coverage and sample quality. Empir-

ical results on synthetic data showed that our model achieves better FID scores, indicating

the generation of more realistic data.

The second essay in Chapter 3 is dedicated to an application of GANs. We learn the

distribution of items that a customer buys during a shopping trip based on the transac-

tional data from a drugstore chain. Preliminary work consisted of learning an embedding

of customer’s purchases (hidden layer of an LSTM) and of items via their description (us-

ing word2vec [67] embedding). Equipped with the latter information, we use a GAN to

generate coordinates in the item embedding space. These are then mapped to real items

using Euclidian distance. Results showed that our model yielded good results, generat-

ing baskets of items with similar price and number of items as the real data, as well as

98

similar proportions of items from each category. Moreover, using a classifier to discrimi-

nate items generated from the GAN and from real data, showed good accuracy assuming

relative importance of noise contained in the real data.

The last essay in Chapter 4 deals with the exploration problem in continuous con-

trol for reinforcement learning. When attempting to solve the complex biped/humanoid

agent task, reinforcement learning algorithms often get trapped in sub-optimal solutions

because the task’s reward landscape is multimodal. We tackle this problem by perform-

ing exploration under a multi-agent framework. We designed an algorithm that performs

search over local solutions, and employs an Attraction-Repulsion (AR) mechanism (with

respect to past solutions, stored in an archive) to maintain diversity of solutions through-

out the search. The AR mechanism is enhanced by the use of normalizing flows which

allows efficient Attraction-Repulsion compared to the usual diagonal Gaussian distribu-

tion because of the properties of multimodality and flexibility. Empirical results showed

that our methods enjoys faster convergence and better performance, especially on the

high-dimensional humanoid tasks.

99

Chapter 5

Future directions

As for future opportunities of research, an in-depth investigation of other normaliz-

ing flow properties (such as Inverse Autoregressive Flow [51] or Neural Autoregressive

Flows [42]) can help tackling exploration problems in reinforcement learning domains.

Leveraging this knowledge provides one with a better understanding to design well-

suited algorithms that can handle environments-specific traps. Not only is the use of

normalizing flows a simple (not costly computation-wise) addition of invertible layers,

but it also allows one to benefit from a highly expressive distribution (multimodality).

For this purpose, we believe that it can be a good add-on for vanilla algorithms such as

Trust-Region Policy Optimization [84], Proximal Policy Optimisation [85] and can be used

as a base for future methods.

Another promising direction would be to take advantage of invertible and monotonic

mappings of normalizing flows to handle the non-linear Bellman equation [98]. If one can

guarantee Lipschitz conditions, the latter trick can have nice properties such as reducing

overestimation bias and variance, both of which affect Deep Q-learning [2, 70]. As a re-

sult, the accumulated overestimation error can be reduced and one can safely rely on the

critic to take actions.

100

Bibliography

[1] ABE, N., VERMA, N., APTE, C., AND SCHROKO, R. Cross channel optimized mar-

keting by reinforcement learning. Proceedings of the 2004 ACM SIGKDD international

conference on Knowledge discovery and data mining - KDD ’04 (2004), 767.

[2] ANSCHEL, O., BARAM, N., AND SHIMKIN, N. Deep reinforcement learning with

averaged target DQN. CoRR abs/1611.01929 (2016).

[3] ARJOVSKY, M., AND BOTTOU, L. Towards principled methods for training gen-

erative adversarial networks. In International Conference on Learning Representations

(2017).

[4] ARJOVSKY, M., CHINTALA, S., AND BOTTOU, L. Wasserstein GAN. ArXiv e-prints,

arXiv:1701.07875 (Jan. 2017).

[5] AUER, P., CESA-BIANCHI, N., FREUND, Y., AND SCHAPIRE, R. E. Gambling in a

rigged casino: The adversarial multi-armed bandit problem. In IEEE Annual Sym-

posium on Foundations of Computer Science (FOCS) (1995), p. 322.

[6] BAI, T., NIE, J.-Y., ZHAO, W. X., ZHU, Y., DU, P., AND WEN, J.-R. An attribute-

aware neural attentive model for next basket recommendation. In The 41st Interna-

tional ACM SIGIR Conference on Research & Development in Information Retrieval

(New York, NY, USA, 2018), SIGIR ’18, ACM, pp. 1201–1204.

[7] BALABAN, S. Deep learning and face recognition: the state of the art. CoRR

abs/1902.03524 (2019).

[8] BALDASSINI, L., AND RODRÍGUEZ SERRANO, J. A. client2vec: Towards Systematic

Baselines for Banking Applications. ArXiv e-prints, arXiv:1802.04198 (Feb. 2018).

101

[9] BARANSI, A., MAILLARD, O.-A., AND MANNOR, S. Sub-sampling for multi-armed

bandits. In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases (2014), Springer, pp. 115–131.

[10] BARKAN, O., AND KOENIGSTEIN, N. Item2vec: Neural item embedding for collab-

orative filtering. CoRR abs/1603.04259 (2016).

[11] BELGHAZI, I., RAJESWAR, S., BARATIN, A., HJELM, R. D., AND COURVILLE, A. C.

MINE: mutual information neural estimation. CoRR abs/1801.04062 (2018).

[12] BELLEMARE, M. G., NADDAF, Y., VENESS, J., AND BOWLING, M. The arcade learn-

ing environment: An evaluation platform for general agents. Journal of Artificial

Intelligence Research 47 (2013), 253–279.

[13] BELLMAN, R. A markovian decision process. Journal of Mathematics and Mechanics

(1957), 679–684.

[14] BENGIO, Y., LOURADOUR, J., COLLOBERT, R., AND WESTON, J. Curriculum learn-

ing. In Proceedings of the 26th Annual International Conference on Machine Learning

(New York, NY, USA, 2009), ICML ’09, ACM, pp. 41–48.

[15] CHAMBERLAIN, B. P., CARDOSO, Â., LIU, C. H. B., PAGLIARI, R., AND DEISEN-

ROTH, M. P. Customer life time value prediction using embeddings. CoRR

abs/1703.02596 (2017).

[16] CHE, T., LI, Y., JACOB, A. P., BENGIO, Y., AND LI, W. Mode regularized generative

adversarial networks. arXiv preprint arXiv:1612.02136 (2016).

[17] CONTI, E., MADHAVAN, V., SUCH, F. P., LEHMAN, J., STANLEY, K., AND CLUNE,

J. Improving exploration in evolution strategies for deep reinforcement learning via

a population of novelty-seeking agents. In Advances in Neural Information Processing

Systems (NeurIPS) (2018), pp. 5027–5038.

102

[18] DOWSON, D. C., AND LANDAU, B. V. The fréchet distance between multivariate

normal distributions. Journal of Multivariate Analysis 12, 3 (1982), 450–455.

[19] DUAN, Y., CHEN, X., HOUTHOOFT, R., SCHULMAN, J., AND ABBEEL, P. Bench-

marking deep reinforcement learning for continuous control. In International Con-

ference on Machine Learning (ICML) (2016), pp. 1329–1338.

[20] DUMOULIN, V., BELGHAZI, I., POOLE, B., MASTROPIETRO, O., LAMB, A., AR-

JOVSKY, M., AND COURVILLE, A. Adversarially Learned Inference. ArXiv e-prints

(June 2016).

[21] DURUGKAR, I. P., GEMP, I., AND MAHADEVAN, S. Generative multi-adversarial

networks. CoRR abs/1611.01673 (2016).

[22] FEDUS, W., ROSCA, M., LAKSHMINARAYANAN, B., DAI, A. M., MOHAMED, S.,

AND GOODFELLOW, I. Many paths to equilibrium: Gans do not need to decrease

adivergence at every step. arXiv preprint arXiv:1710.08446 (2017).

[23] FOURNIER-VIGER, P., LIN, J. C.-W., GOMARIZ, A., GUENICHE, T., SOLTANI, A.,

DENG, Z., AND LAM, H. T. The spmf open-source data mining library version 2.

In Machine Learning and Knowledge Discovery in Databases (Cham, 2016), B. Berendt,

B. Bringmann, É. Fromont, G. Garriga, P. Miettinen, N. Tatti, and V. Tresp, Eds.,

Springer International Publishing, pp. 36–40.

[24] FREUND, Y., AND SCHAPIRE, R. E. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of computer and system sciences 55, 1

(1997), 119–139.

[25] GAL, Y., AND GHAHRAMANI, Z. Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning. In International conference on machine

learning (ICML) (2016), pp. 1050–1059.

103

[26] GAN, W., LIN, J. C., FOURNIER-VIGER, P., CHAO, H., AND YU, P. S. A survey of

parallel sequential pattern mining. CoRR abs/1805.10515 (2018).

[27] GOODFELLOW, I. J., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D.,

OZAIR, S., COURVILLE, A., AND BENGIO, Y. Generative Adversarial Networks.

ArXiv e-prints, arXiv:1406.2661 (June 2014).

[28] GRAVES, A., BELLEMARE, M. G., MENICK, J., MUNOS, R., AND KAVUKCUOGLU,

K. Automated curriculum learning for neural networks. CoRR abs/1704.03003

(2017).

[29] GU, C. Smoothing noisy data via regularization: statistical perspectives. Inverse

Problems 24, 3 (2008), 034002.

[30] GULRAJANI, I., AHMED, F., ARJOVSKY, M., DUMOULIN, V., AND COURVILLE,

A. C. Improved training of wasserstein gans. CoRR abs/1704.00028 (2017).

[31] GUPTA, A., MENDONCA, R., LIU, Y., ABBEEL, P., AND LEVINE, S. Meta-

reinforcement learning of structured exploration strategies. In Advances in Neural

Information Processing Systems (NeurIPS) (2018), pp. 5302–5311.

[32] GUPTA, D., AND GHAFIR, S. An overview of methods maintaining diversity in ge-

netic algorithms. International journal of emerging technology and advanced engineering

2, 5 (2012), 56–60.

[33] HAARNOJA, T., ZHOU, A., ABBEEL, P., AND LEVINE, S. Soft Actor-Critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic actor. In

International Conference on Machine Learning (ICML) (2018), pp. 1856–1865.

[34] HAARNOJA, T., ZHOU, A., HARTIKAINEN, K., TUCKER, G., HA, S., TAN, J., KU-

MAR, V., ZHU, H., GUPTA, A., ABBEEL, P., AND LEVINE, S. Soft actor-critic algo-

rithms and applications. CoRR abs/1812.05905 (2018).

104

[35] HENDERSON, P., DOAN, T., ISLAM, R., AND MEGER, D. Bayesian policy gradi-

ents via alpha divergence dropout inference. NIPS Bayesian Deep Learning Workshop

(2017).

[36] HEUSEL, M., RAMSAUER, H., UNTERTHINER, T., NESSLER, B., KLAMBAUER, G.,

AND HOCHREITER, S. Gans trained by a two time-scale update rule converge to a

nash equilibrium. CoRR abs/1706.08500 (2017).

[37] HOANG, Q., NGUYEN, T. D., LE, T., AND PHUNG, D. Q. Multi-generator genera-

tive adversarial nets. CoRR abs/1708.02556 (2017).

[38] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural Comput.

9, 8 (Nov. 1997), 1735–1780.

[39] HOCHREITER, S., AND URGEN SCHMIDHUBER, J. Long Short-Term Memory. Neu-

ral Computation 9, 8 (1997), 1735–1780.

[40] HONG, Z.-W., SHANN, T.-Y., SU, S.-Y., CHANG, Y.-H., FU, T.-J., AND LEE, C.-Y.

Diversity-driven exploration strategy for deep reinforcement learning. In Advances

in Neural Information Processing Systems (NeurIPS) (2018), pp. 10489–10500.

[41] HORN, J., NAFPLIOTIS, N., AND GOLDBERG, D. E. A niched pareto genetic algo-

rithm for multiobjective optimization. In Proceedings of the 1st IEEE Conference on

Evolutionary Computation, IEEE World Congress on Computational Intelligence (1994),

pp. 82–87.

[42] HUANG, C.-W., KRUEGER, D., LACOSTE, A., AND COURVILLE, A. Neural autore-

gressive flows. In International Conference on Machine Learning (2018), pp. 2083–2092.

[43] HUANG, X., LI, Y., POURSAEED, O., HOPCROFT, J. E., AND BELONGIE, S. J.

Stacked generative adversarial networks. CoRR abs/1612.04357 (2016).

[44] JUEFEI-XU, F., BODDETI, V. N., AND SAVVIDES, M. Gang of gans: Generative

adversarial networks with maximum margin ranking. CoRR abs/1704.04865 (2017).

105

[45] KANUNGO, T., MOUNT, D. M., NETANYAHU, N. S., PIATKO, C., SILVERMAN, R.,

AND WU, A. Y. An efficient k-means clustering algorithm: Analysis and imple-

mentation, 2000.

[46] KARRAS, T., AILA, T., LAINE, S., AND LEHTINEN, J. Progressive growing of gans

for improved quality, stability, and variation. CoRR abs/1710.10196 (2017).

[47] KAWASAKI, M., AND HASUIKE, T. A recommendation system by collaborative

filtering including information and characteristics on users and items. In 2017

IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings (2 2018),

vol. 2018-January, Institute of Electrical and Electronics Engineers Inc., pp. 1–8.

[48] KHADKA, S., MAJUMDAR, S., NASSAR, T., DWIEL, Z., TUMER, E., MIRET, S.,

LIU, Y., AND TUMER, K. Collaborative evolutionary reinforcement learning. CoRR

abs/1905.00976 (2019).

[49] KHADKA, S., AND TUMER, K. Evolution-guided policy gradient in reinforcement

learning. In Advances in Neural Information Processing Systems (NeurIPS) (2018),

pp. 1188–1200.

[50] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. CoRR

abs/1412.6980 (2014).

[51] KINGMA, D. P., SALIMANS, T., JOZEFOWICZ, R., CHEN, X., SUTSKEVER, I., AND

WELLING, M. Improved variational inference with inverse autoregressive flow. In

Advances in neural information processing systems (NeurIPS) (2016), pp. 4743–4751.

[52] KUMAR, A., BISWAS, A., AND SANYAL, S. ecommercegan : A generative adversar-

ial network for e-commerce. CoRR abs/1801.03244 (2018).

[53] KWAK, H., AND ZHANG, B. Generating images part by part with composite gen-

erative adversarial networks. CoRR abs/1607.05387 (2016).

106

[54] LE, Q., AND MIKOLOV, T. Distributed representations of sentences and documents.

In International Conference on Machine Learning (2014), pp. 1188–1196.

[55] LEE, K., KIM, S.-A., CHOI, J., AND LEE, S.-W. Deep reinforcement learning in con-

tinuous action spaces: a case study in the game of simulated curling. In International

Conference on Machine Learning (2018), pp. 2943–2952.

[56] LIN, Z., KHETAN, A., FANTI, G. C., AND OH, S. Pacgan: The power of two samples

in generative adversarial networks. CoRR abs/1712.04086 (2017).

[57] LINOFF, G. S., AND BERRY, M. J. A. Data Mining Techniques: For Marketing, Sales,

and Customer Relationship Management, 3rd ed. Wiley Publishing, 2011.

[58] LITTLESTONE, N., AND WARMUTH, M. K. The weighted majority algorithm. In-

formation and computation 108, 2 (1994), 212–261.

[59] LIU, Y., RAMACHANDRAN, P., LIU, Q., AND PENG, J. Stein variational policy

gradient. In Conference on Uncertainty in Artificla Intelligence (UAI) (2017).

[60] LIU, Z., LUO, P., WANG, X., AND TANG, X. Deep learning face attributes in the

wild. In Proceedings of International Conference on Computer Vision (ICCV) (12 2015).

[61] LU, T., PÁL, D., AND PÁL, M. Showing relevant ads via lipschitz context multi-

armed bandits. In Thirteenth International Conference on Artificial Intelligence and

Statistics (2010).

[62] MAHFOUD, S. W. Niching methods for genetic algorithms. PhD thesis, University of

Illinois at Urbana-Champaign Champaign, USA, 1995.

[63] MATIISEN, T., OLIVER, A., COHEN, T., AND SCHULMAN, J. Teacher-student cur-

riculum learning. CoRR abs/1707.00183 (2017).

[64] MAULDIN, M. L. Maintaining diversity in genetic search. In AAAI Conference on

Artificial Intelligence (AAAI) (1984), pp. 247–250.

107

[65] MAZOURE, B., DOAN, T., DURAND, A., HJELM, R. D., AND PINEAU, J. Leveraging

exploration in off-policy algorithms via normalizing flows. Proceedings of the 3rd

Conference on Robot Learning (CoRL 2019) (2019).

[66] METZ, L., POOLE, B., PFAU, D., AND SOHL-DICKSTEIN, J. Unrolled generative

adversarial networks. CoRR abs/1611.02163 (2016).

[67] MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. S., AND DEAN, J. Dis-

tributed representations of words and phrases and their compositionality. In Ad-

vances in neural information processing systems (2013), pp. 3111–3119.

[68] MITCHELL, T. J., AND BEAUCHAMP, J. J. Bayesian variable selection in linear re-

gression. Journal of the American Statistical Association 83, 404 (1988), 1023–1032.

[69] MIYATO, T., KATAOKA, T., KOYAMA, M., AND YOSHIDA, Y. Spectral normalization

for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018).

[70] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A., ANTONOGLOU, I., WIER-

STRA, D., AND RIEDMILLER, M. A. Playing atari with deep reinforcement learning.

CoRR abs/1312.5602 (2013).

[71] NEYSHABUR, B., BHOJANAPALLI, S., AND CHAKRABARTI, A. Stabilizing GAN

training with multiple random projections. CoRR abs/1705.07831 (2017).

[72] NGUYEN, D., NGUYEN, T. D., LUO, W., AND VENKATESH, S. Trans2vec: Learning

transaction embedding via items and frequent itemsets. In PAKDD (2018).

[73] PEDNAULT, E., ABE, N., AND ZADROZNY, B. Sequential cost-sensitive decision

making with reinforcement learning. Proceedings of the eighth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining - KDD ’02 (2002), 259.

[74] PINEAU, J. The machine learning reproducibility checklist.

108

[75] PLAPPERT, M., HOUTHOOFT, R., DHARIWAL, P., SIDOR, S., CHEN, R. Y., CHEN,

X., ASFOUR, T., ABBEEL, P., AND ANDRYCHOWICZ, M. Parameter space noise for

exploration. In International Conference on Learning Representations (ICLR) (2018).

[76] POURCHOT, A., AND SIGAUD, O. CEM-RL: Combining evolutionary and gradient-

based methods for policy search. In International Conference on Learning Representa-

tions (ICLR) (2019).

[77] PUTERMAN, M. L. Markov decision processes: discrete stochastic dynamic programming.

John Wiley & Sons, 2014.

[78] RADCLIFFE, N., AND SURRY, P. Real-world uplift modelling with significance-

based uplift trees. White Paper TR-2011-1, Stochastic . . . , section 6 (2011), 1–33.

[79] RADFORD, A., METZ, L., AND CHINTALA, S. Unsupervised representation learn-

ing with deep convolutional generative adversarial networks. CoRR abs/1511.06434

(2015).

[80] REZENDE, D. J., AND MOHAMED, S. Variational inference with normalizing flows.

In International Conference on Machine Learning (ICML) (2015), pp. 1530–1538.

[81] ROSTAMZADEH, N., HOSSEINI, S., BOQUET, T., STOKOWIEC, W., ZHANG, Y., JAU-

VIN, C., AND PAL, C. Fashion-gen: The generative fashion dataset and challenge.

arXiv preprint arXiv:1806.08317 (2018).

[82] ROTH, K., LUCCHI, A., NOWOZIN, S., AND HOFMANN, T. Stabilizing training

of generative adversarial networks through regularization. CoRR abs/1705.09367

(2017).

[83] SARWAR, B., KARYPIS, G., KONSTAN, J., AND RIEDL, J. Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th International Confer-

ence on World Wide Web (New York, NY, USA, 2001), WWW ’01, ACM, pp. 285–295.

109

[84] SCHULMAN, J., LEVINE, S., ABBEEL, P., JORDAN, M., AND MORITZ, P. Trust region

policy optimization. In International Conference on Machine Learning (ICML) (2015),

pp. 1889–1897.

[85] SCHULMAN, J., WOLSKI, F., DHARIWAL, P., RADFORD, A., AND KLIMOV, O. Prox-

imal policy optimization algorithms. arXiv preprint: 1707.06347 (2017).

[86] SCHWAIGER, A., AND STAHMER, B. Simmarket: Multiagent-based customer simu-

lation and decision support for category management. Multiagent System Technolo-

gies (2003).

[87] SHANI, G., AND GUNAWARDANA, A. Evaluating recommendation systems. In

Recommender systems handbook. Springer, 2011, pp. 257–297.

[88] SILVER, D., NEWNHAM, L., BARKER, D., WELLER, S., AND MCFALL, J. Concurrent

Reinforcement Learning from Customer Interactions. Icml (3) (2013), 924–932.

[89] SRIVASTAVA, A., VALKOV, L., RUSSELL, C., GUTMANN, M. U., AND SUTTON, C.

Veegan: Reducing mode collapse in gans using implicit variational learning. ArXiv

e-prints (May 2017).

[90] TANG, H., HOUTHOOFT, R., FOOTE, D., STOOKE, A., CHEN, O. X., DUAN, Y.,

SCHULMAN, J., DETURCK, F., AND ABBEEL, P. # Exploration: A study of count-

based exploration for deep reinforcement learning. In Advances in neural information

processing systems (NeurIPS) (2017), pp. 2753–2762.

[91] TANG, Y., AND AGRAWAL, S. Boosting trust region policy optimization by normal-

izing flows policy. arXiv preprint: 1809.10326 (2018).

[92] THEIS, L., VAN DEN OORD, A., AND BETHGE, M. A note on the evaluation of

generative models. ArXiv e-prints, arXiv1511.01844 (Nov. 2015).

110

[93] TKACHENKO, Y., KOCHENDERFER, M. J., AND KLUZA, K. Customer simulation

for direct marketing experiments. Proceedings - 3rd IEEE International Conference on

Data Science and Advanced Analytics, DSAA 2016 (2016), 478–487.

[94] TODOROV, E., EREZ, T., AND TASSA, Y. Mujoco: A physics engine for model-based

control. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(2012), IEEE, pp. 5026–5033.

[95] TOLSTIKHIN, I. O., GELLY, S., BOUSQUET, O., SIMON-GABRIEL, C.-J., AND

SCHÖLKOPF, B. Adagan: Boosting generative models. In Advances in Neural In-

formation Processing Systems (2017), pp. 5424–5433.

[96] TOUATI, A., SATIJA, H., ROMOFF, J., PINEAU, J., AND VINCENT, P. Randomized

value functions via multiplicative normalizing flows. arXiv preprint: 1806.02315

(2018).

[97] VAN DER MAATEN, L., AND HINTON, G. Visualizing data using t-SNE. Journal of

Machine Learning Research 9 (2008), 2579–2605.

[98] VAN HASSELT, H., QUAN, J., HESSEL, M., XU, Z., BORSA, D., AND BARRETO, A.

General non-linear bellman equations. CoRR abs/1907.03687 (2019).

[99] WAN, S., LAN, Y., WANG, P., GUO, J., XU, J., AND CHENG, X. Next basket rec-

ommendation with neural networks. In Poster Proceedings of the 9th ACM Conference

on Recommender Systems, RecSys 2015, Vienna, Austria, September 16, 2015. (2015),

P. Castells, Ed., vol. 1441 of CEUR Workshop Proceedings, CEUR-WS.org.

[100] XU, H., CARAMANIS, C., AND MANNOR, S. Robustness and regularization of

support vector machines. Journal of Machine Learning Research 10, Jul (2009), 1485–

1510.

[101] YU, F., LIU, Q., WU, S., WANG, L., AND TAN, T. A dynamic recurrent model

for next basket recommendation. In Proceedings of the 39th International ACM SIGIR

111

Conference on Research and Development in Information Retrieval (New York, NY, USA,

2016), SIGIR ’16, ACM, pp. 729–732.

[102] ZHANG, T., AND ZHANG, D. Agent-based simulation of consumer purchase

decision-making and the decoy effect. Journal of Business Research 60, 8 (2007), 912–

922.

[103] ZHAO, J., MATHIEU, M., AND LECUN, Y. A Quantitative Measure of Generative

Adversarial Network Distributions. International Conference on Learning Representa-

tions (2016).

[104] ZIEBART, B. D. Modeling purposeful adaptive behavior with the principle of maximum

causal entropy. PhD thesis, figshare, 2010.

112

	Abstract
	Abrégé
	Acknowledgements
	Contributions of Authors
	List of Figures
	List of Tables
	On-line Adaptative Curriculum Learning for GANs
	Introduction
	Related Work
	Adaptative Curriculum GAN
	Mixing discriminators
	Reward shaping
	Connection to existing methods

	Experiments
	Retaining mode information through weaker capacity discriminators and smoothness
	Performance of acGAN against existing baselines

	Conclusion
	Supplementary Material
	Effect of different nonlinear activation layer on the weak discriminator's smoothness
	Evolution of the gradient norm during the training
	Regularizing the discriminator through additive noise
	Experimental parameters
	Synthetic data
	CIFAR-10
	CelebA

	Generating Realistic Sequence of Customer-level [-5pt] for Transactions for Retail Datasets
	Introduction
	Background and Related Work
	Transaction-Based Item and Customer Embeddings
	Item Prediction and Recommendation Systems
	Generative Adversarial Networks
	Simulating Customer Behaviour

	Methodology
	Product Representations
	Customer Representations
	Learning Product Distributions with a Conditional GAN
	Generating Sequences of Products

	Experimental Results
	Experimental Setup
	Feature Distributions
	Sequential Pattern Mining
	Basket Distributions

	Conclusion

	Attraction-Repulsion Actor-Critic for Continuous Control Reinforcement Learning
	Introduction
	Preliminaries
	Discovering new solutions through population-based Attraction-Repulsion
	Soft actor-critic
	Normalizing flows

	ARAC: Attraction-Repulsion Actor-Critic
	Enhancing diversity in the archive
	Discovering new policies through Attraction-Repulsion

	Related Work
	Experiments
	Didactic example
	MuJoCo locomotion benchmarks

	Conclusion
	Pseudo-code for ARAC

	Conclusion
	Future directions

