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Abstract

Application programing interfaces promote reuse by facilitating interaction between

software components and/or software libraries. API code templates are parameterized API

scenarios that can be quickly instantiated by copy-and-pasting or through support from in-

tegrated development environments. They provide the skeletal structure of an API coding

scenario and let developers simply “fill in the blanks” with the details of their coding task.

Unfortunately, creating relevant API code templates requires time and experience with the

API. To address these problems we present a technique that mines API usage patterns and

transforms them into API code templates. Our intuition is that API usage patterns are a

solid basis for code templates because they are grounded by actual API usage. We eval-

uate our approach performing retroactive study on the Mammoth, ArgoUML, and Eclipse

projects to see if API code templates created from earlier versions could have been helpful

to developers in later versions. Our results show that, on average, each API code tem-

plate our technique mined could have helped developers withcreating six, nine, and twelve

newmethods in Mammoth, ArgoUML, and Eclipse, respectively. Inour evaluation, we

mined many API code templates from the three test projects that provide evidence that our

technique could have helped developers learn and use an API faster in many opportunities.
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Résumé

Les interfaces de programmation (API) encouragent la réutilisation de code en facili-

tant l’interaction entre les composantes du logiciel et seslibrairies. Les «templates» d’API

sont des scénarios d’utilisation de l’API paramétrées pourêtres rapidement instanciés par

copier-coller ou par le soutien intégré des environnementsde développement. Ils four-

nissent le squelette d’un scénario d’utilisation de l’API et laissent au développeurs la simple

tâche de «remplir les espace». Malheureusement, afin de créer des «templates» pertinents,

du temps et de l’expérience avec l’API sont nécessaires. Pour résoudre ces problèmes, nous

présentons une technique par laquelle les «templates» d’API sont découverts en analysant

des scénarios d’utilisation existants. Notre intuition est que de tels scénarios sont une base

valide pour la découverte de «templates» car ils sont une représentation existante de l’API

en action. Nous évaluons notre méthode en effectuant une étude rétroactive sur les pro-

jets Mammoth, ArgoUML, et Eclipse pour voir si les modèles créés à partir de versions

antérieures auraient été utiles aux développeurs dans les versions ultérieures. Nos résul-

tats illustrent que, en moyenne, chaque «template» d’API créé par notre technique aurait

permis aux développeurs de créer six, neuf et douze nouvelles méthodes dans les projets

Mammoth, ArgoUML, et Eclipse, respectivement. De plus, dans notre évaluation, de nom-

breux modèles de code API ont été créé à partir des ces trois projets, ainsi prouvant que

notre technique pourrait avoir aidée les développeurs à apprendre et utiliser une API plus

rapidement dans de nombreuses occasions.
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Chapter 1

Introduction

An application programming interface (API) serves as an interface between different

software components and facilitates interaction. When a project or method uses an API, it

is subscribing to the services the API provides. Another wayto refer to this relationship is

to say the project is aclient of the API.

API code templates are parameterized API scenarios that outline a protocol of neces-

sary object instantiations and method calls needed to implement functionality with an API

in a client method or project. They provide the skeletal structure and let developers cus-

tomize them with details related to their own task. To illustrate the concept of API code

templates we present Figure1.1; a code template documenting how to create a URL hy-

perlink using theorg.eclipse.swt API. All method calls and types in boldface are the

invariant points—the rest is up to the developer to customize, for example by changing the

URL or tooltip text. Figure1.1 is an example of a real-world code template. An almost

identical code snippet was posted on the StackOverflow forums in response to the question

“How can I make a hyperlink in a jFace Dialog [which also uses theorg.eclipse.swt

API] that when clicked opens the link in the default web browser”.1

The benefits API code templates provide are two-fold: They free developers from re-

membering boilerplate code and also allow them to reuse blocks of code quickly into their

program by copy-and-pasting. Some integrated developmentenvironments (IDEs), such as

Eclipse or Netbeans, even have code completion support for code templates which allow a

1http://stackoverflow.com/questions/3968620/how-can-i-add-a-hyperlink-to-a-swt-jface-dialog
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//Parent is an SWT composite

Link myLink = new Link(parent, SWT.NONE);

myLink.setText(‘‘http://www.cs.mcgill.ca/~tratch’’);

myLink.addSelectionListener(new SelectionAdapter()

{//Anonymous class implementation});

mylink.setToolTipText(‘‘Click here to visit my page’’)

GridData lCenter = new GridData(SWT.Center);

myLink.setLayoutData(lCenter);

Figure 1.1: Example API Code Template: Creating a Link in SWT

user to type the first few letters of a template (e.g. typingwhile) and activate a command

(e.g. by pressingctrl andspace) to automatically reuse the template into their code. If

the user is using Eclipse, they can also presstab to cycle through the variation points and

customize the template for their own purposes.

API code templates also make learning and using an API easierfor developers. For ex-

ample, Figure1.1 includes some non-obvious API method calls which may be overlooked

by developers who only study the API’s reference documentations (such as JavaDocs). For

instance, to centre the text a developer must create aGridData object and pass it as a

parameter tosetLayoutData() to align the text of the link. In addition, it may not be

clear to novice programmers that anEventListener needs to be added to theLink ob-

ject to interceptSelectionEvents. Therefore, it is common practise for developers of

APIs to include code templates along with their documentation to help. Apache Lucene,

a text search engine API, includes a functional “hello world” web application template,

albeit large, which allows users to immediately customize the web content and tweak their

configuration as needed.2 It is also not uncommon for users of APIs to supplement tem-

plates included by API producers by creating their own. For example,http://code.

activestate.com/ is a website that contains over 3700 code “recipes” created by de-

velopers for Python APIs. Some of the API recipes include converting a JPEG to a PDF,

downloading a YouTube video, and using RSA encryption. The underlying theme is that

2http://lucene.apache.org/java/2_4_0/demo3.html
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documenting API scenarios as code templates is a useful endeavour for API producers and

consumers alike.

Unfortunately, creating API code templates requires a timeinvestment and experience

with the API—sometimes, the API documenters are not even theones who coded it, as is

the case with some open-source project documentation teams[4]. Luckily for the developer

who posed the question to StackOverflow, another developer was able to share his or her

knowledge of theorg.eclipse.swt API. However, many forum posts go unanswered,

and documenting such API scenarios can be lengthy. In addition to the time burden, it can

be hard to gauge whether an API code template will be relevantto other developers.

Recently, there have been a number of approaches that look forAPI usage patterns

(common ways in which developers use APIs, as demonstrated by client code). Our intu-

ition is that API usage patterns represent practical API usage scenarios because they are

inferred from actual programs that use APIs. Based on this intuition, inferring API code

templates from API usage patterns will likely be useful to developers because they will be

relevant, practical, and correct. Thus, we present a technique for mining API usage patterns

and transforming them into code templates.

In fact, the code template in Figure1.1was actually found in eight different methods in

the Eclipse IDE (version 3.1) and inferred using our technique. The fact that Figure1.1 is

derived from eight different methods and is almost identical to the StackOverflow solution

is one piece of evidence to show that developers can indeed use APIs similarly. It also

that API code templates inferred from API usage patterns practical, relevant and useful to

developers learning an API because Figure1.1reveals non-obvious method call sequences.

We implemented our technique in a tool called Maui. Maui works by analyzing one

or more projects that use an API and transforming individualinstances of API usage into

regular expressions. We then use machine learning to discover patterns among the regular

expressions and transform the patterns into API code templates. We evaluate Maui by

performing a retrospective study to see if API code templates created from earlier versions

of three large Java projects could have helped developers inlater versions. Our results yield

some interesting API code templates and show evidence that our technique could have been

useful for developers in these three projects. On average, each API code template which

Maui mined could have helped developers create six, nine, and twelvenewmethods in three
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different Java projects (Mammoth, ArgoUML, and Eclipse, respectively). Considering that

we mined dozens of templates in ArgoUML and hundreds in Eclipse, there were a multitude

of opportunities in which Maui could have helped developerssave time using or learning

an API. The contributions of our approach are: A novel technique for mining API usage

patterns from multiple projects that include control flow, multiplicity of API method calls,

and interaction between multiple APIs; and a technique for transforming these API usage

patterns into API code templates in the Eclipse IDE.

We present our approach in Chapter2 by first introducing our main unit of analysis,

the regular expression, in Section2.2. In the remaining sections of Chapter2 we present

the components of our approach that find API usage patterns and transform them into API

code templates: The API Usage Extraction Phase (APUX) (Section 2.3), the Pattern Min-

ing Phase (Section2.4), and the Code Template Creation Phase (Section2.5). In Chapter3,

we describe the methodology of our evaluation (Section3.1) and present our results in Sec-

tion 3.2. Finally, we present related works in Chapter4 and our conclusions in Chapter5.
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Chapter 2

Creating API Code Templates from API

Usage Patterns

2.1 Overview

Our approach consists of three primary steps: First, abstract how a project uses an API,

second, search for patterns, and third, transform the patterns into API code templates.

The data passed between each of these steps areregular expressions. A regular expres-

sion, or Regex for short, is an expression that describes a setof strings. For example,

([0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]), where[0-9] could be any digit be-

tween zero and nine inclusively, is a regular expression describing the set of all possible

telephone numbers (ignoring area codes). With our technique, we create a Regex for each

client method in a given client project by mapping each API call the client method makes to

a unique symbol. The result is a string of symbols (API calls)that describe how a particular

client method uses an API or APIs. In other words, our technique represents instances of

API usage in a client project as Regexes.

Our technique then looks for patterns across all Regexes using a pattern mining al-

gorithm. Patterns supported by enough Regexes are transformed into code templates. The

templates our technique yields may be mined from one or more projects and include method

5



2.2. The Regex Data Structure

calls from one or more APIs. Furthermore, the order and multiplicity of the API method

calls are preserved along with any control flow structures (i.e.if-else blocks or loops).

We implement our technique as an Eclipse plug-in, called Maui for the Java program-

ming language. We explain our approach in the remainder of the chapter by explaining

Maui’s Regex data structure in Section2.2, and then detail each phase Maui performs to

create API code templates.

2.2 The Regex Data Structure

Maui abstracts how a client method uses an API or multiple APIs by creating a Regex

that describes all possible execution sequences of API calls which the client method could

make. Sometimes only a single sequence of API calls describes a method. For example, in

Figure2.1the client methodgetSin()’s usage of thejava.lang.Math API can only be

described by the execution sequence(Math.sin(),Math.round()) because ifgetSin()

is invoked, both methods are guaranteed to be called exactlyonce and according to the

order of execution.

double getSin(double pAngle)
{

double x = Math.sin(pAngle);
x = Math.round(x);
return x;

}

Source Code

Math.sin()Math.round()

Regex Form

Figure 2.1: Example of individual API calls

Maui considers the following program locations as API method calls: A super construc-

tor call when the super class is provided by a third-party library or framework; a method

call when the declared class of the method is provided by a third-party library or frame-

work; and a constructor call when the declared class is provided by a third-party library or

framework. A method in a client project that does not make anyAPI calls is not a client

method. For example, a setter that assigns a field does not contain any API calls. Strictly

6



2.2. The Regex Data Structure

speaking, non-client methods are represented by the empty set of execution sequences, but

our approach ignores this case altogether.

If an API call is repeated consecutively, for example in Figure 2.2, a plus is used to

indicate that it is called one or more times. To be succinct inour diagrams, we represent

method calls as individual letters. Folding consecutive identical calls into a single letter and

indicating this case with a plus makes pattern matching mucheasier because we observed

during our early experimentation with the approach that consecutive identical calls were

rarely called with the same multiplicity. Maui allows usersto turn folding consecutive

identical calls on or off, at their discretion, but they cannot specify different folding sizes.

clientMethod()
{

a();
b();
b();
b();
c();
b();

}

Source Code

ab+cb

Regex Form

Figure 2.2: Example of consecutive identical calls representation

Client methods with control flow (i.e.if-else blocks and loops) can result in multiple

and/or mutually exclusive possible sequences of API calls;Maui uses special operators and

braces to denote these cases. The motivation for representing control flow in Regexes is

that we want to be able to capture API coding scenarios that are more complex than straight

sequences of API calls.

Representing if-else blocks

With if-else constructs, the execution of anif block is mutually exclusive from the ex-

ecution of anelse block. Maui represents this behaviour by wrapping the entireif-else

block in curly braces and separating theif block from theelse block using the‖ symbol.

The‖ symbol indicates that either theif block or theelse block will be executed exactly

7



2.2. The Regex Data Structure

once. Figure2.3 demonstrates theif-else notation by showing that the API calla() is

called before eitherb() or c(), befored() is finally called.

clientMethod(int x)
{

a();
if(x == 2)
{
b();

}
else
{
c();

}
d();

}

Source Code

a{b‖c}d

Regex Form

Figure 2.3: Example of a Condition Letter without a body

Maui does not analyze the boolean condition of anif-else block, therefore Maui will

always modelif andelse blocks as mutually exclusive even if the condition causes one

to always be executed. Maui also supports nestedif-else blocks and handlesswitch

statements by converting them into chains of nestedif-else blocks, as they would appear

in bytecode.

Maui representsif-else constructs that do not contain API calls as an empty string.

However,if-else blocks that contain only a single API call in either theif block or the

else block, but not both are still represented. For example, if Figure2.3 omitted the call

to c(), the resulting representation would bea{b‖}d.

Representing Loops

Maui represents loops in Regexes by wrapping the loop body between two square brackets

and annotating it with a∗ symbol to indicate that the body will be executed0 or more

times.1 Figure2.4 is an example how Maui represents a loop in a Regex. In Figure2.4,

1The∗ symbol is also known as a Kleene closure.
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2.2. The Regex Data Structure

a() andd() are called exactly once, whereasb() andc() may be called zero or more

times. To reiterate, since Maui does not inspect boolean conditions, it is possible that Maui

could misrepresent a loop body as executing zero or more times, even though it could

unconditionally execute zero times or unconditionally execute more than zero times. Maui

handlesdo-while loops by unrolling the first iteration of the loop body, showing that it

will be executed exactly once. For example, if Figure2.4 was instead ado-while loop,

the resulting Regex would then beabc[bc]∗d.2

clientMethod(int x)
{

a();
while(x < 10)
{
b();
c();

}
d();

}

Source Code

a[bc]∗d

Regex Form

Figure 2.4: Example of a Loop representation

Representing Control Flow Conditions

In addition toif-else blocks and loops, Maui also captures API calls made in the con-

ditions of any control flow constructs. Maui represents themby wrapping the API calls

in parentheses, separating them by commas, and prepending them to the control flow con-

struct (e.g. (hasNext())[next()]∗). Maui does not retain the order of API calls or any

boolean logic. Therefore, Maui considers(hasNext()&&isFoo())[next()]∗ and(isFoo()

‖hasNext())[next()]∗) as identical. Also, control flow constructs that only contain API

calls in their condition are represented with an empty body (e.g.(hasMoreTokens())[]∗).

The rationale for enclosing API calls found in condition statements with parenthe-

ses is to signify that they are different from regular API calls. For example, the Regex

2We could also representabc[bc]∗d asa[bc]+d, but Maui currently does not have the functionality to
represent such cases.
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2.3. API Usage Extraction (APUX)

(isStreamOpen())[foo()]∗ could also be represented asisStreamOpen()[foo()]∗. How-

ever, sinceisStreamOpen() would almost always be called in a conditional statement it

seems unnatural to treat it as a regular API call. Further, inthe case of multiple API calls

in a condition statement, the execution of all calls is not guaranteed. For example, with the

condition(hasNext()&&isFoo()), isFoo() would not be evaluated ifhasNext() evalu-

ates to false. Thus, representing them as regular API calls may cause inaccuracies in the

Regex.

2.3 API Usage Extraction (APUX)

Maui creates a Regex for each client method in a client projectin the API Usage Extraction

phase, or APUX for short. APUX creates a Regex for a client method by traversing its

control flow graph in order of execution and recording any APImethod calls found along

the way in an ordered list. When APUX reaches the end of the client method (i.e. a return

statement), the ordered list of API calls becomes the Regex for that client method. APUX

is implemented as a custom forward flow static analysis usingthe Soot Java optimization

framework [29].

A control flow graph (CFG) is a graph representation of all possible paths of execution

through a program, or part of a program (e.g. a method). A nodein a control flow graph

is called a basic block and represents a code expression. Nodes are connected by directed

edges called jump targets, which indicate the flow of execution. There are also two special

nodes to denote the entry and exit of a control flow graph (e.g.the start and end of a

method).

CFGs can be built from various representations such as Java source code to Java byte-

code. Maui specifically traverses a 3-address intermediaterepresentation of Java called

Jimple. An intermediate representation is an abstract formof a programming language de-

signed to aid the analysis of programs. A 3-address intermediate representation means that

the program is broken down into the general formresult = operand1, operator, operand2.

For Maui, this means that every basic block will contain at most one method call. Further,

since each basic block can only contain a single method call,nested expressions, such as

10



2.3. API Usage Extraction (APUX)

nested method calls, are broken down into individual basic blocks and are connected based

on the order of their execution. For example,new Point(getX(), getY()) would be

represented asgetX() → getY () → newPoint().3 Each CFG Maui traverses represents

the control flow of an individual client method.

APUX builds a Regex for a client method by sequentially visiting each basic block, in

order of execution, and passing an ordered list of API calls between basic blocks. Figure2.5

depicts how APUX flows through a statements. A basic blocks receives the ordered list

of API calls as input from its predecessorq, which is denoted by the functionin(s). If

s contains an API calll it appends the API call to the end of the list and passes it to its

successor (out(s)). When APUX reaches the end of the CFG via areturn statement the

list of recorded API calls becomes the Regex for that client method.

in(s) = out(q) | q is the direct predecessor ofs

f(out(s)) =















in(s) if s does not

contain an API call

in(s) + l if s contains the API calll.

Figure 2.5: Flow through a statements

APUX is conservative in that it makes no initial assumptionsabout the API calls in a

client method or in a given statement. Figure2.6states the Maui’s starting approximations

for a given statements. The first line states that the Regex at the beginning of a client

method is empty and the second states that APUX makes no assumptions about theout(s)

until we visit s. The⊥ symbol indicates that the initial output for any given statements is

unknown, until it is visited.

Figure 2.7 demonstrates how APUX collects API calls to build a Regex in a client

method that does not contain any control flow. We show the Regexrepresentation before

and after each basic block Figure2.7in parentheses. The CFG for Figure2.7is a sequence

of three method calls, two of which are API calls,a andc, and the other,b, is not. APUX

3This example is a simplification. In reality, there are a number of intermediate operations between each
of the method callsnew Point(getX(), getY())—for example, storing the values ofgetX()
andgetY().
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out(Entry) = ⊤ = ()

out(s) = ⊥ = Unknown

Figure 2.6: Starting approximations

visits each basic block sequentially from the beginning, with the initial Regex representa-

tion being empty (i.e.()). Sinces0 contains an API call, APUX appendsa method call

to the end of the Regex and passes it as input tos1. The basic blocks1 however, does

not contain an API call, so it will simply forward the Regex as is tos2, where APUX will

appendc. The resulting Regex for the client method in2.7 is ac.

Source Code Control Flow Graph

Figure 2.7: An example of how APUX generates a Regex for a client method that has no control

flow

2.3.1 Handling Control Flow

APUX takes special consideration for control flow constructs because they cause the CFG

to diverge into multiple branches and rejoin later at some other basic block. The basic block

where the paths rejoin is called amerge point. Since APUX builds Regexes by passing an

12
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ordered list of API calls between basic blocks, APUX needs tokeep track of all branches

and merge them appropriately to generate a single Regex representation for a client method.

Henceforth, we will refer toif and else blocks asbranches. Loops technically also

contain branches, but we distinguish them fromif-else blocks we continue to refer to

them as loops.

The core of APUX’s strategy for merging branches and loops (denoted by the⊲⊳ op-

erator) is based on the fact that up until a branch or loop head, where the CFG diverges,

the Regex representation is the same. In other words, regardless of what happens when the

CFG diverges, the Regex will still have the sameprefix, up until that point. Based upon this

fact, the general APUX strategy for handling control flow constructs is to store the Regex

built so far (the prefix-Regex), and build newinterim-Regexesfor each branch or loop body.

When the interim-Regexes meet at a merge point, APUX merges them and appends them

to the stored prefix-Regex. Our strategy is recursive and allows APUX to generate Regexes

in the face of nested control flow constructs.

There are two major challenges with this strategy: Keeping track of which prefix-

Regexes belong to which branch or loop, and knowing which interim-Regexes to merge

and when. To address this challenge, APUX uses the branch andloop heads as its main

point of reference when keeping track of different paths. When APUX reaches a branch or

loop head for the first time, it stores the Regex built so far (which we call the prefix-Regex)

in a map called the Prefix-Map, using the loop head or branch head as the key. Also, when

APUX creates the interim-Regexes, it tags them with the branch or loop head that they

were created from, to ensure that it can correctly merge the branches. To better explain the

merging process, we walk through how APUX handles branches and loops separately.

Branch Merging

An if statement in a client method will have two targets flowing from it in the CFG: One

target will point to the first basic block in theif block and the other will point to the first

basic block in theelse. The two paths will converge at the first basic block following

theif-else blocks. If theif statement does not have a correspondingelse the second

branch will also point to the first following basic block.
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When APUX reaches a branch head it stores the Regex created up until that point

(prefix-Regex) in the Prefix-Map. APUX then creates two empty interim-Regexes and

passes them as input to the two starting basic blocks within theif andelse blocks. Sepa-

rately, both interim-Regexes will append any API calls in their respective branches to their

interim-Regexes. When the two branches eventually meet, APUXmerges the Regexes of

each individual branch (the interim-Regexes) by enclosing them with braces and inserting

a‖ symbol between them to create a single representation. APUXthen appends the single

representation to the Regex stored in the Prefix-Map and continues to traverse the CFG.

Figure 2.8: Typical branch merge scenario

Figure2.8 demonstrates a typical branch merging situation of anif-else block. In

this example, the branch head iss1 and the merge point iss4. Assume that method calls

foo, bar, andbaz are all Target API calls. Initially, the branch heads1 receives the Regex

(foo) from its predecessor. APUX then stores the Regex(foo) in the Prefix-Map and uses

the the branch heads4 as the key. Then APUX creates two empty Regexes, tags them with

their origin s4, and passes them as input to the starting basic blocks in theif andelse

blocks. Finally, when the merge points4 is reached, APUX recognizes that the branches

come from the same head because they have been tagged with their origin s4. Since they

both share the same origin, APUX merges them to produce the Regex (foo{bar‖baz}),
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which is fed intos4. In the code,s4 would be the first statement that directly follows the

if-else block.

Loop Merging

With branches, the CFG diverges at a branch point and eventually rejoins at a later point.

However, with loops the diverging and converging point is the same: the loop head. The

difficulty with merging loops is knowing which control flow isoutside the loop and which

is inside. APUX differentiates control flows as internal or external to a loop by performing

a domination analysis on each basic block. In brief, a unit that dominates itself is a loop

statement. The domination analysis can also tell us which branch heads are loop heads by

looking for the first statement to dominate itself.

Another difficulty is knowingwhento merge branches because APUX visits the loop

head at least twice; the first time being when it is first encountered in the CFG and the

second time is from its loopback statement. APUX relies on the starting approximations,

stated in Figure2.6, to figure out when to merge. Recall that the initial Regex for any given

basic blocks is unknown (i.e.out(s) = ⊥). APUX will merge paths converging on a loop

heads when all converging paths contain a value (i.e. no paths output a⊥).

Figure2.9 depicts the two times APUX encounters the loop head and the result of the

merge operation.

The analysis first encounterss1 after processings4. At this point, theout(s4) is known,

but out(s3) is not known because APUX has not visited any of the loop body statements

(indicated by the⊥ symbol). APUX then pushes an empty Regex down the loop body path

to collect API calls. When APUX encounters the loop head for the second time, it now has

information about both branches and can merge them to produce in(s5). Loops are merged

by creating a loop body Regexf and appending it to the prefix-Regex before the loop. In

Figure2.9, APUX appendsout(s3) with out(s4) to get the resulting Regex(foo[bar]∗).

Handlingdo-while is simple because the CFG already unrolls the loop body once,

whereas the rest of the iterations still appear as a regular loop.
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Figure 2.9: Typical loop merge scenario when encountering a loop head for the first(left) and

second time (right)

Merging More than Two paths and Hybrid Merging

Nestedif-else blocks and/or loops can result in more than two paths converging at a

single point. Figure2.10 shows an example of a CFG that results from four paths con-

verging. The difficulty with merging paths created from nesting is knowing which paths

to merge and getting the nesting right. For example, thein(s) is four interim-Regexes.

If APUX merges the wrong two branches, the result will be mismatchingif andelse

blocks. APUX overcomes this mismatching problem by taggingeach interim-Regex with

the branch or loop head it originated from. So when more than two paths meet at a common

point, APUX can pair them off by comparing their tags to mergethem. Tagging also helps

APUX nestif-else blocks and loops correctly because a higher level control flow path

cannot be completed before a lower level path. To illustratethis point and demonstrate how

APUX merges more than two paths we walk through the process occurring in Figure2.10.

A CFG Figure2.10 results fromif-else blocks that both nest their ownif-else

blocks. When the APUX reachess1, the CFG branches into two paths representing theif

andelse logic. APUX stores the Regex created thus far in the Prefix-Map, with s1 used as
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Figure 2.10: Mutli-branch merge scenario

the key, and creates two interim-Regexes labelledr_a:s1 andr_b:s1. The labelsr_a and

r_b are unique identifiers to, and the common suffix:s1 is the tag indicating these interim-

Regexes originated froms1. Ther_a:s1 andr_b:s1 interim-Regexes travel down their

respective paths picking up API calls along the way. Whenr_a:s1 reaches the nested

branch heads2, the same process will occur withs1 : r_a:s1 will be stored in the Prefix-

Map with s2 used as the key and two new interim-Regexes will be created with s2 tags,

r_c:s2 andr_d:s2. Similarly, whenr_b:s1 reachess3, two new interim-Regexes are

created,r_e:s3 andr_f:s3. When all four interim-Regexes reachs APUX can finally

merge them all. APUX takes any given interim-Regex and finds its mate by comparing

their origin tags. Suppose APUX initially mergesr_e:s3 with r_f:s3 to createp =

{r_e : s3‖r_f : s3}. This new branch letterp encapsulates allif andelse logic related

to the branch heads3; in other words, we have captured and modelled all API calls within

one of the nestedif-else blocks. Since all paths related tos3 have been merged, we

can retrieve the prefix-Regex stored under the keys3 and appendp. Interestingly, the

prefix-Regex mapped tos3 is actuallyr_b:s1, the interim-Regex originating froms1 that

represents the highest levelelse block.
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Now APUX has three interim-Regexes to merge :r_c:s2,r_d:s2 andr_b:s1—

this is where the origin tags sort out the nesting. APUX cannot merger_b:s1 with any

other interim-Regexes because the recursive nature of APUX’s strategy prohibits merging

higher level nested statements with lower level ones. Thus,APUX will merger_c:s2 with

r_d:s2 and append the result tor_a:s1 before mergingr_a:s1 with r_b:s1.

Hybrid merging occurs when more than two paths originating from both loop and

branch heads converge. For example, hybrid merging may arise if a loop directly fol-

lows anif-else block. For the most part, the origin tags and Prefix-Map sort everything

out. However, when the merge point is a loop head, APUX performs an additional domi-

nating analysis to identify interim-Regexes internal to theloop head separately from those

external to the loop. APUX then merges all interim-Regexes from inside the loop and all

interim-Regexes from outside the loop separately, before merging their results.

Handling Multiple return Statements and Other Control Flow

APUX creates a Regex for a client method by passing an ordered list of API calls between

the basic blocks of a client method’s CFG. At the end of the CFG (e.g. areturn state-

ment) the ordered list of API calls becomes the Regex for the client method. APUX can

capture all API calls for client methods that have a singlereturn statement because all

paths have the same originating and terminating points (i.e. the beginning of the method

and the singlereturn statement, respectively). However, client methods that have mul-

tiple return statements can create situations where diverging paths never rejoin, making

it impossible to representif-else block or loops with APUX’s merging strategy. For

example, Figure2.11is an example of a CFG where diverging paths never rejoin because

of areturn statement.

Similarly, break andcontinue statements can also create situations where APUX’s

merging strategy fails because they cause the control flow tosuddenly break out of an

if-else block or loop. To handle these special control flow situations APUX replaces

all break andcontinue, andreturn statements with placeholder static method calls to

a dummy library (e.g.Dummy.RETURN) before running its Regex analysis. When APUX

eventually runs its APUX analysis, it will be on CFGs that willappear to have onereturn
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Figure 2.11: Example of how return statements leave dangling control flow

statement and no early exits fromif-else blocks or loops. APUX uses static method calls

as placeholders forreturn statements and the other control flow statements mentioned as

a way of keeping the position of the statements for possible future analysis.

Despite changing the control flow of the client methods, replacing the control flow

statements mentioned with placeholder static method calls, does not change the resulting

Regex representation in any way. For example, the Regex generated for Figure2.11would

be{. . . ‖ . . .} . . . regardless of having areturn statement or a dummy statement.

2.3.2 Client Code with Exceptions

Similar to howbreak, continue, andreturn statements create CFGs which APUX

cannot handle, APUX also cannot handle CFGs that contain checked exceptional logic

(e.g. CFGs that containtry-catch blocks orthrow statements). APUX cannot han-

dle CFGs withthrow statements because they allow a CFG to have multiple exit points,

similar to CFGs with multiplereturn statements. To overcome CFGs withthrow state-

ments, APUX also replaces allthrow statements with static calls to a dummy library (e.g.

Dummy.THROW). Replacingthrows statements with static calls to a dummy library does

not change the resulting Regex representation of the client method.

However, APUX cannot remedy client methods that contain checked exceptions (e.g.

try-catch blocks orthrows statements in the signature). Unlike CFGs that contain
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throws statements or multiplereturn statements, APUX cannot perform a simple refac-

toring —like replacing the statements with a static call to adummy library—to trans-

form the CFG into something it can handle. As a result, all client methods containing

try-catch blocks or containing athrows statement in its signature are skipped by APUX

and are not represented by a Regex. As future work, we hope to implement logic in the

core APUX algorithm to handle CFGs with exceptional logic in them.

2.3.3 Word Transforms

After APUX generates a Regex for each client method, it runs a number of transforms on

the Regex. These word transforms further generalize some Regexes to facilitate pattern

mining, while still retaining the original meaning.

Folding Multiple Identical Sequential Calls

APUX folds multiple identical sequential API calls into a single API call, with a plus indi-

cating that the client method is invoking an API method one ormore times, as demonstrated

in Figure2.2.

Flattening Redundant Branches

Someif-else blocks contain a single branch (e.g.{a}) indicating that the execution of

the nested API calls is conditional, meaning that they will be executedzero or one times.

However,if-else blocks that nest a single branch containing an additional single-branch,

for example{{a}}, do so redundantly becausea will still only be executed zero or one

times. To remove the redundancy APUX flattens such branches.For example, the word

{{a}} would become{a} since its execution is already conditional.

Merging Identical Branches

The Regexif-else representation denotes mutually exclusive API calls. However, when

API calls in bothif andelse blocks are identical (e.g.{a‖a}) their executions are no

longer mutually exclusive, but actually guaranteed. Thus,APUX transformsif-else
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blocks containing identical branches into unconditional call. For example, APUX would

transform the Regexa{b‖b}c into abc. Since APUX merges identical branches recur-

sively,a{bbb‖bb{b‖b}}c would becomea{bbb}c. APUX also merges nested branches that

both have identical conditions or no conditions at all. For example, APUX would merge

a{(x)b‖(x)b}c into a{(x)b}c, but would not mergea{(x)b‖b}c.

2.3.4 Method Inlining

Different developers will have different programming styles. Some developers may prefer

to use helper methods to encapsulate certain logic and others may prefer to keep it in the

method body. Thus, matching API usage habits of different developers becomes more

challenging if API methods are placed in helper methods on one client, but not another. To

avoid this scenario, APUX inlines helper methods that make API calls. To avoid in-lining

a large call chain—and possibly the entire project—APUX only inlines helper methods

one level away that contain API calls and no calls to other client methods. APUX does

not generate separate Regexes for inlined methods and does not consider the visibility (e.g.

public or private) of methods when inlining methods. Inlining is also an optional

feature that can be toggled on or off.

2.4 Pattern Mining

The goal of the pattern mining phase is to find patterns among the set of Regexes APUX

extracted. In particular, the pattern mining phase looks for frequent subsequencesamong

the Regexes. In essence, a Regex is basically an ordered sequence of symbols that represent

API calls and operators containing information about the multiplicity of API calls in a client

method. Therefore, finding frequent subsequences among Regexes is equivalent to finding

common sequences of API method calls that different developers have made. The resulting

patterns are the API usage patterns that become API code templates.

Finding API usage patterns among Regexes is a two-phased process : First, Maui clus-

ters Regexes based on concept (similar groups of API calls) and then feeds each cluster to

a sequential pattern miner. The sequential pattern miner looks for frequent subsequences
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of API calls with a high support count. The support count of a subsequence is the number

of Regexes where the subsequence appears. Maui declares frequent subsequences with a

support count higher than a user-defined threshold as API usage patterns and transforms

them into API code templates. To increase the quality of the API code templates, Maui

removes uninteresting Regexes which only have a single API call before pattern mining.

2.4.1 Clustering

Maui groups Regexes based on API calls to improve the sequential pattern miner’s effec-

tiveness. If we give the pattern miner a diverse set of Regexescovering a wide variety

of API calls, the odds of finding a high-supported pattern arelow. From our prototyping

experience, only patterns containing API utility calls (e.g. print()) exist across a large

corpus of Regexes. While this result is still interesting, these API utility call patterns do

not capture the API usage scenarios that developers would probably want to encode into

templates. If the user-defined support is set too low, the patterns are too weak to be useful.

The intuition is that certain API calls are related to certain API usage scenarios. Sup-

pose we are looking for API usage patterns in a project that pertains to a GUI API. If we

feed the pattern miner a set Regexes representing every method within the project, we will

likely get patterns pertaining to the GUI, but also patternsthat could pertain to logging,

databases, etc. In addition to having unwanted patterns, the patterns may not include the

desired GUI patterns because their support values may be lower than the support values of

the utility patterns. Thus, clustering Regexes based on similar API calls is a way of loosely

partitioning them based on a higher-level concept (e.g. GUIrelated API calls vs. DB re-

lated API calls). In contrast, if we run the pattern miner on the entire corpus of Regexes, the

different API usage scenarios may interfere with each otherand impact the mining process

negatively. This phenomenon was observed by Zhong et al. [33], who originally proposed

clustering as a solution to the dilution of API calls across acorpus of client methods.

Maui clusters Regexes using a hierarchical unsupervised clustering algorithm with

method overlap as our distance measure. The distance between two Regexes,Rx andRy,
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is calculated using the Jaccard index [11] as follows :

Distance(Rx, Ry) =
|APIcalls ∈ Rx

⋂

APIcalls ∈ Ry|

|APIcalls ∈ Rx

⋃

APIcalls ∈ Ry|

A user defined distance threshold determines an instance’s membership into a cluster.

Through experimentation we found 0.35 to be the optimal threshold. In our experience,

higher thresholds generated templates consisting of ubiquitous API method calls like get-

ters and setters, whereas lower thresholds generated templates with too little support. We

chose hierarchical clustering over other clustering methods because the number of resulting

clusters does not need to be specified a priori. Instead, hierarchical clustering starts with

every Regex as its own (trivial) cluster and iteratively joins clusters until there remains

only one cluster containing all Regexes. There are several strategies for joining clusters

(for example joining two clusters with the smallest averagedistance). Through prototyping

we found Ward’s method [31] to join clusters to work the best. The Ward strategy con-

siders the union of every possible pair of clusters and combines the two clusters whose

combination results in the smallest increase in error sum ofsquares.

The result of a hierarchical clustering analysis is a dendrogram of clusters. At the

bottom of dendrogram, each cluster contains a single Regex (the trivial clusters), and at the

top of the dendrogram is a single cluster containing all clusters. The dendrogram gives a

range of sizes and relative distance between instances. Smaller clusters tend to be tighter in

terms of relative distance, whereas larger clusters tend tobe looser. Maui culls all clusters

with sizes between five and thirty to make the results of the sequential pattern mining more

meaningful (explained in Section2.4.2).

Maui performs its hierarchical clustering using a modified version of Weka’s4 imple-

mentation.

2.4.2 Sequential Pattern Mining

Maui then looks for API usage patterns among the clusters usingsequential pattern mining,

a technique commonly used in market research to discover frequent sequential patterns

among buying data with temporal or other ordering information. For example, a temporal

4http://www.cs.waikato.ac.nz/ml/weka/
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pattern may be that customers frequently purchase a computer and a monitor together and

purchase a printer at a later point.

Sequential pattern mining works by looking for common subsequences of items from

a group of sequences. Sequences are composed of ordered itemsets and represent trans-

actions in a database. In market research the items represent products, itemsets represent

purchases, and the ordering represents the temporal ordering of those purchases. In our

approach items and itemsets represent API calls and controlflow, and their ordering repre-

sents their temporal ordering in a control flow graph.

Subsequences of items are ranked by theirsupportvalue. The support of a subsequence

is equal to the number of sequences that contain the subsequence. For example, from the

sequencesabc,bc, andbcd, the subsequencebc has a support value of two, whereas the

subsequencesb andc have support values of three. A subsequence is declared apattern

if its support count is greater than or equal to a user defined threshold. This threshold is

usually defined as a percentage of the number of sequences given. For example, consider

the sequencesabc, bc, dc, andx. A threshold of 75% would mean that a subsequence would

have to be supported by at least three sequences. Thus, the subsequencec is considered a

pattern because it is supported by three sequences, butbc would not because it is only

supported by two.

Before Maui can mine for patterns by first transforming each Regex into a transaction

and inserts it into a transaction database. Maui models Regexes as transactions by rep-

resenting individual API calls as items contained in individual itemsets. Maui sequences

the itemsets according to the ordering found in the Regex (which represents their ordering

found in the CFG of the method they were taken from). For example, a methodfoo() that

makes calls to API methodsa(), thenb(), and then finallyc() would be converted into a

transactionTfoo = ({a}, {b}, {c}).

For Regexes that contain control flow, special item symbols are inserted to repre-

sent the beginning and end of control flow blocks. SymbolsIF , END_IF , ELSE,

andEND_ELSE are used to denote the beginning and ending ofif-else blocks and

LOOP andEND_LOOP symbols are used for loop blocks. For example, the the Regex

a{b‖c}d would become({a}, {IF}, {b}, {END_IF}, {ELSE}, {c}, {END_ELSE},

{d}). Control flow blocks that have API calls within their condition are inserted into the
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same itemset as the corresponding entry symbol. For example, the conditionif(buffer

.isOpen() && hasMoreTokens()) becomes the item set({IF, isOpen(), hasMore

Tokens()}). It is important to note that since the conditional API calls are placed in an

itemset the ordering information of these calls is lost, butsince the Regex model does not

retain the logical operators, losing the ordering information does take anything further away

form the approach.

API calls denoted with a plus (i.e. called one or more time) are treated as single calls

by the pattern miner. For example, the pattern miner considers abc andab+c as identical.

However, if a pattern is discovered with an API call denoted with a plus, the resulting

pattern will also contain a plus. For example, considering the Regexesabc, b+c, andbcd,

b+c could result as a possible pattern. The patternb+c shows thatb may be called one or

more times, while still accurately describing the Regexes itwas derived from.

Maui uses the BIDE [30] sequential pattern mining algorithm offered by the SPMF

pattern mining framework [6]. The advantage of using this particular algorithm is that it

minesclosedsequential patterns, meaning that subsequences that have the same support

as their super sequences are ignored. Ignoring subsequences contained in larger sequences

greatly reduces the number of results produced, helping users find more pertinent templates

faster. Mining for closed sequences also ensures that patterns that contain control flow

do not have mismatching control flow symbols because each entry symbol (e.g. IF ) is

matched with an exit symbol (e.g.END_IF ) with the same support.

2.5 Code Template Creation

Following the pattern mining phase, the user is presented with a list of patterns, derived

from each cluster, that can be made into code templates. The user manually inspects and

selects which pattern they wish to use as the basis for their code template. Currently, Maui

presents the user with the raw output from the pattern miningphase. For example,({a},

{IF}, {b}, {END_IF}, {c}) could be a pattern presented to the user, wherea, b, andc are

API calls. In the future, we would like to present to the user apreview of what the pattern

would look like as a template. Once the user has selected a pattern, Maui then creates a
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template and presents it to the user.

Given a selected pattern, Maui creates a code template by placing each API call or

control flow statement on a separate line. For each API methodcall in a chosen pattern

we create aString of the fully qualified name of the method call. Control flow items

are automatically converted into Java source code. For example, IF, . . . , END_IF is

transformed intoif(){. . .}. After Maui creates an API code template, it adds the template

to the user’s EclipseTemplateStore (a collection of templates a user may invoke in

Eclipse)) allowing the user to further customize the template by adding or removing code,

adding comments, or restructuring the template as they see fit.

Currently, Maui does not perform a data dependency analysis and cannot automatically

create code to pass data between API calls in the template. Creating variables and passing

output from API calls as input to other API calls is left to theuser. However, in our expe-

rience this process has been straight-forward. We observedthat, frequently, API calls that

have parameters receive their data from the API call directly before it. All code templates

created by Maui and presented in this paper have been createdmanually with this process

with little effort. In the future, we would use data dependency analyses similar to those

used in refactoring tools to automatically create API code templates that contain the data

relationships between objects and methods in the template.
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Evaluation

The two main use cases for Maui are from the perspective of theAPI producer and

the API consumer. The API producer would use Maui to create code templates or fill an

API code cookbook from multiple client projects; the API consumer would do these things

by mining their own project to teach or help fellow developers. For our evaluation, we

recreated the API consumer scenario because it is a greater technical challenge. Due to the

mining nature of Maui, drawing API code templates from a single project is more likely

to yield fewer templates than drawing from a corpus of projects. To recreate the scenario

and to evaluate the quality and relevance of the templates Maui creates, we conducted a

retrospective study to see if templates created from an earlier version of a client project

could have been useful to the developers who worked on a laterversion. We consider

a template identified by Maui in an earlier version to be “useful” if it is supported by

more client methods in in later versions of the project. Recall, the support value of a code

template is equal to the number of client methods that contain the same sequence of API

calls as the code template. The intuition behind our “usefulness” metric is that an API code

template with a higher support value in a later version of a project represents instances

where developers could have used the code template, createdfrom the earlier version of the

project, to implement some functionality of the API. In addition to discovering if the API

code templates Maui creates are useful we also seek to answermore research questions

(RQ) :

• [RQ1] Can Maui generate useful and relevant API code templates for developers?
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• [RQ2] Will API code templates created from one project be useful todevelopers in

another project? In other words, can API code templates be project idependent?

• [RQ3] Are API code templates created from API usage patterns stable? In other

words, if we create an API code template today, will it be still be relevant in the

future? This measures if developers change how they use an API overtime (assum-

ing the API code stays the same), due to new requirements in the client project or

changing programming styles.

• [RQ4] In what situations do Maui-generated code templates help developers the

most?

• [RQ5] How applicable is Maui for different sized projects?

3.1 Methodology

For each client project we chose an API and two snapshots fromthe client’s revision history.

We carefully studied the evolution of each project (by analyzing the revision history commit

logs and comments, and reading any history documentation onthe project websites) to

appropriately select snapshots that would recreate our envisioned API consumer scenario.

The ideal initial snapshot, which will henceforth be referred to as theinit version, is one

when the API has already been adopted by the team and used in the code. We selected init

versions by considering how much time elapsed since the start of the project, the number of

commits, and details that suggest stability in the documentation. This is an ideal criterion

because the developers have already gone past the learning curve, so creating templates at

this time will be representative of how the API is actually used in the project. Choosing the

point in time where the API is first adopted may result in templates where the developers

were learning or experimenting. The later snapshot, henceforth referred to as thefinal

version, was chosen by taking the latest possible version that used the API to allow for a

long enough time span for the developers to hypothetically use the templates.

After selecting init and final versions for each project we created API code templates

from both versions and kept those that had two or more API calls and a minimum support of
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35% in the cluster that they were derived from. Recall from Section 2.4.1that we generate

patterns from clusters of size five or larger, which means that each template created in the

will be supported by a minimum of two client methods (0.35× 5 =∼ 2).

Then, we take each code template created from the init version and look for a matching

template in the final version using the matching heuristics defined in Section3.1.3. For

each init template we compare the support count and supporting methods between it and

the set of matching templates found in the final version of a project. We measure the quality

of the init template using a number of quality metrics discussed in Section3.1.4.

3.1.1 Dataset

Our dataset consisted of three Java projects: the McGill Mammoth Project, ArgoUML, and

the Eclipse IDE. We chose these three client projects based on their relative size to represent

a small (Mammoth is∼80 KLOC (Rev 3033)), medium (ArgoUML version 0.32.2 is∼560

KLOC) and large client project (Eclipse version 3.7 is∼4.3 Million LOC)1. By looking at

different sized projects we can evaluate how applicable Maui is based on the size of its

input (RQ5).

For each project we selected a single API to derive templatesfrom the init and final

versions. For all three projects we selected APIs that were graphics/GUI related. We

selected graphics/GUI APIs because often developers compose/link GUI widgets and ele-

ments; even a trivial task involves a few API method calls. Therefore, API code templates

will be a practical for GUI APIs.

We introduce each project in our evaluation and explain the rationale behind how we

selected init and final versions to create templates from:

McGill Mammoth Project (jME API)

The Mammoth2 project is a massively multi-player game research framework whose goal

is to provide an environment for experimentation in areas such as distributed systems,

1The LOC statistics for ArgoUML and Eclipse do not include blank lines or comments and were taken
from http://www.ohloh.com. Mammoth’s statistics came from the project’s lead Alexandre Denault

2http://mammoth.cs.mcgill.ca/
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fault tolerance, databases, modelling and simulation, artificial intelligence and aspect-

orientation. We chose to create templates based on its usageof the jMonkeyEngine API.

The jMonkeyEngine (jME)3 is a game engine made especially for 3D development. The

entire project is based on Java and graphics are supported through OpenGL4 via LWJGL5.

The Mammoth project is six years in development and it has been using the jME API for

roughly five years. Table3.1shows important related commits in its SVN revision history.

Mammoth began using jME in a separate branch of the project until November 2007 when

the branch was merged with the trunk (commit 1259). We decided not to make commit

1259 the init version because we estimated that the rest of the team had not enough time to

learn the jME API. Instead we chose commit 1460 as the init version because the commit

comment indicates that the team had prepared for a 3D demo, and thus we can assume that

the jME API usage is stable.

Commit # Date KLOC Note

1460 2008-02-28 ∼62 3D Demo Branch Merged

3033 2011-06-1 ∼80 Latest Version

Figure 3.1: Mammoth Init and Final Versions

ArgoUML (org.tigris.gef API)

ArgoUML is the leading open source UML modelling tool and includes support for all

standard UML 1.4 diagrams.6 We chose to create templates of ArgoUML’s use of the

org.tigris.gef API.7 The org.tigris.gef API is a Java library to help develop new applications

that involve editing diagrams and connected graphs. The org.tigris.gef API was originally

part of the ArgoUML project, but became an independent project in 2000. We chose version

0.16 as the init version of ArgoUML because the release notesindicate that both the project

3http://jmonkeyengine.com/
4http://www.opengl.org/
5http://lwjgl.org/
6http://argouml.tigris.org/
7Not to be confused with the org.eclipse.gef API
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and API stabilized as 615 issues were resolved. For the final version we took the latest

version available.

Version # Date KLOC Note

0.16.0 2004-07-19 ∼125 New version of GEF - fixing numerous bugs

0.32.2 2011-04-04 ∼560 Latest Version

Figure 3.2: ArgoUML Init and Final Versions

Eclipse IDE (org.eclipse.swt API)

Eclipse is a multi-language software development environment comprising an integrated

development environment (IDE) and an extensible plug-in system. It can be used to develop

applications in Java and, by means of various plug-ins, other programming languages.8

We created templates from Eclipse’s use of the Standard Widget Toolkit (SWT). SWT is

an open source widget toolkit for Java designed to provide efficient, portable access to

the user-interface facilities of the operating systems on which it is implemented.9 The

SWT is an Eclipse community project and was developed tightlywith Eclipse, allowing

us to choose any public version of Eclipse and have its use of the SWT be stable. To be

safe we chose version 3.1 to ensure that the API usage had stabilized because there were

significant changes between versions 2.1 and 3.0 when Eclipse made the move to the OSGI

framework.10 For the final version we took the latest release.

Version # Date KLOC Note

3.1 2005-06-28 ∼3500 Second major version

3.7 2011-06-22 ∼4300 Latest Version (Juno)

Figure 3.3: Eclipse Init and Final Versions

8Adapted fromhttp://www.eclipse.org/
9Adapted fromhttp://www.eclipse.org/swt/

10http://www.eclipse.org/equinox/documents/transition.html
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3.1.2 Exceptions In Client Code

One of Maui’s limitations (discussed in Section2.3.2) is that it cannot handle client code

that contains checked exceptions (i.e.try-catch blocks andthrows statements in the

client method signature). Currently, Maui skips all client methods containing checked

exception logic. To show that our evaluation is not skippinga significant amount of client

methods we present Table3.4, which reports the total number of client methods in each

project along with the number of client methods skipped due to exception logic.

Project # Skipped # Total (%)

Mammoth (Init) 3 92 3

Mammoth (Final) 6 100 6

ArgoUML (Init) 39 922 4

ArgoUML (Final) 46 1045 4

Eclipse (Init) 816 9566 9

Eclipse (Final) 1205 14386 8

Figure 3.4: Number of client methods skipped due to checked exceptions

3.1.3 How We Match Templates Between Init and Final Versions

We match templates generated from the init version with templates generated in the final

version by calculating a similarity measure between a templateti ∈ Tinit with tj ∈ Tfinal,

that takes into account the API calls and sequencing made by both ti and tj. Since we

only compare the API calls and their sequencing between two template we do not need to

generate complete templates, which would require some manual inspection (as described in

Section2.5). For our evaluation, we consider all patterns—detected with our pattern miner

with a minimum support value of 35%—as templates. Using the patterns output from

our pattern miner as opposed to complete code templates doesnot provide any additional

benefits or drawbacks to our evaluation.

Instead of looking for identical templates between init andfinal versions, our similarity
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measure looks at common method overlap, based on the Jaccardindex [11], to allow tem-

plates to slightly change between init and final versions. A template can change from init

to final version by introducing or omitting API calls. Observing how much an API code

template evolves also gives insight into how stable an API code template is (RQ3). Thus,

for eachti ∈ Tinit we categorize eachtj ∈ Tfinal into one of three sets based on similarity:

perfect, near, and half. A perfect match means bothti andtj have exactly the same API

calls and sequencing—they are identical. A near match between ti and tj meanstj has

75% of the same API method calls and sequencing asti A half match, means thattj has

exactly half the amount of API calls thatti has, and the same sequencing. We consider two

templates having the same sequencing if the the intersection of API calls between the two

templates have the same order. We do not consider control flowwhen comparing the order

of two templates. The exact steps of our matching scheme are as follows:

• For each project, generate two sets of templatesTinit andTfinal from the init and final

versions of a given target project and API.

• Filter out templates fromTinit andTfinal that have less than two API calls.

• For each template inti ∈ Tinit, calculate the similarity betweenti andtj ∈ Tfinal and

placetj into one of the following sets perti :

– [Perfect Matches]wheresim(ti, tj) = 100

– [Near Matches]where75 < sim(ti, tj) ≤ 100

– [Half Matches] where50 < sim(ti, tj) ≤ 75

– [Discarded]where50 < sim(ti, tj)

We calculate the similarity between two templatesti ∈ Tinit and tj ∈ Tfinal as

follows :

sim(ti, tj) =

{

0 if tj does not have the same sequencing asti
|APIcalls∈ti

⋂
APIcalls∈tj |

|APIcalls∈ti
⋃

APIcalls∈tj |
if tj does have the same sequencing asti.
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To make the results more meaningful we filter out all templates of size one because

we do not consider these to be interesting. We still considertemplates with two API calls

because we did not want to rule out templates of the form(a)b∗ (i.e. a condition check

a before successive calls tob). We speculate that these templates are good candidates for

code completion supported templates.

3.1.4 Template Quality Metrics

We measure an API code template’s usefulness (RQ1) by observing its relative support

between init version and final versions of a client project. Atemplate’s support value

is the number of client methods that contain the same sequence of API method calls as

the template. For example, given the sequencesS1 = (a, b, c), S2 = (a, b, c, b), and

S3 = (a, d, d, d, c), the templateTx = (a, b) will have a support count of two because

it is supported byS1 andS2, whereas the templateTy = (a, c) will have a support count of

three because it is supported by all three sequences.

An increase in relative support value for an API code template between init and final

versions means that there are more client methods in the finalversion that exhibit the same

API usage pattern as the API code template created in the initversion. Therefore, if we

created API code templates in the init version, a developer could have used them to create

thenewsupporting client methods in the final version. We consider this scenario a positive

result. For example, suppose an API templateT has a support value of five in the init ver-

sion and ten in the final version. A developer could have usedT to create those additional

five client methods.

A decrease in relative support indicates that creating API code templates using Maui

may not be worth the effort because any additional API usage would not have been based

on the templates. As a reminder, we ensured that both init andfinal versions used the same

target API, in order to control for API migration. We consider static support values as

neither positive nor negative; on one side they do document how a client projects uses an

API (a positive result), but on the other side it still takes time to use Maui and its not clear

how useful they would be (a negative result).

We measure an API code template’s relative support value to observe if there arenew
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client methods in the final version where a developer could use an API code template to

implement some functionality of the API. However, solely observing a template’s relative

support value may overlook situations where client methodsare refactored or restructured,

or when client methods are removed and newer ones were added,but not necessarily in the

same context. For example, suppose a template (new Button(), addEventListenter())

has a support of seven in both init and final versions, but six of the seven supporting meth-

ods exist only in the final version and not the init version. Despite having the same support

value (seven) in both versions, it is possible that one feature that used aButton was phased

out and another completely different feature that also usesButton was introduced in six

newmethods. We take this into account in addition to the relative support value as a mea-

sure of usefulness.

In more concrete terms, we also observe the percentage of initial supporting methods

of an API code template that continue to support the same template in the final version. For

example, suppose a templateT , is supported by client methodsfoo(), bar(), andbaz()

in the init version of a project. Then suppose that in the finalversion of the projectT is now

supported byfoo(), bar(), andmoo(). Since two of the three initial supporting methods

continue to supportT , namelyfoo(), bar(), the percentage of inital client methods that

continue to supportT is ∼66% (2/3). We say that these initial supporting client methods

persistedin the final version. We use this persistence metric in conjunction with the rel-

ative support. A drop in persistence combined with a stable or increasing support count

indicate new client methods were created where a developer could have used an API code

template. A drop in relative support between init and final versions will always result in a

drop in persistence, so we continue to interpret this as a negative result. We consider stable

persistence of support methods combined with a stable relative support count as neither

positive or negative. We do not track refactorings, so if a client method was renamed we

consider deleted and added again.

Another interesting feature about measuring the persistence of supporting methods is

that it may indicate whether the API code templates Maui creates are project-independent

(RQ2). For example, a template having low persistence and the same support value be-

tween init and final versions indicates that context has changed, but the functionality it

implements is still the same. This may indicate that the functionality is componentized in
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the API code template. We postulate that if an API code template can be useful in different

situations within one project, that it may be useful in otherprojects as well.

3.2 Results

We present the results of our evaluation as follows: First, we present the aggregate results

in Section3.2.1of how we matched templates created in the init version with templates

created in the final version. Here we present the total numberof init and final templates

generated, as well as the number of perfect, near, and half matches between init and final

versions. The aggregate results tell us how many templates created from the init version

withstood the test of time and appeared in the final version. To reiterate, a template may

exist across versions, but its supporting methods may not. Then, in Section3.2.2we present

the quality of individual code templates by examining at howmany times an individual API

code template could have helped a developer, on average.

3.2.1 Aggregate Matching Results

Table3.1aggregates the results of the template matching between theinit version of each

project to the final version of each project. Table3.1also reports the number of templates

that contained control flow in the perfect and near matching categories, denoted by #CF.

Table 3.1: Aggregated Template Matching Results

Project

(API)

Init

Templates

Final

Templates

Perfect

Matches

(#)

with CF

Near

Matches

(#)

with CF

Half

Matches

Mammoth

(jME)
11 9 2 1 0 0 3

ArgoUML

(org.tigris.gef)
182 150 95 49 76 7 461

Eclipse

(org.eclipse.swt)
3065 3335 2591 451 14421 1959 227527
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Comparing the number of templates derived from the init version to the final version

for each project gives the sense of how many templates Maui yields from differently sized

projects based on KLOC. An interesting result is that the raw number of templates derived

from the init version was higher than the number of templatesderived from the final version

in the Mammoth and ArgoUML projects (from 11 to 9 in Mammoth and 182 to 150 in

ArgoUML). It is interesting because these two projects expanded in terms of KLOC, but

the decrease in code templates created may indicate that theexpansion did not add any new

coding scenarios.

Along with the total number of init and final templates are theaggregated totals of each

matching categories. In the Mammoth project, only two of theoriginal eleven (∼18%)

templates persisted between init and final versions. It turns out that these two templates are

derived from utility methods in Mammoth. The first template involved positioning a camera

in 3D space (cam.setLocation(new Vector3f(1.0,2.0,-5.0))), and the second

was related to conditionally attaching or detaching spatial nodes and then updating a geo-

metric state ({node.attachChild() || node.detachChild()} scene.update-

GeometricState()). The support values for both of these templates are ten and seven,

respectively. Both of these templates are prime candidates for code completion templates

because they are utility-related and already highly supported; other developers could bene-

fit from quickly instantiating these templates. Thus, thesetwo code templates provide some

evidence that Maui is at least capable of creating code completion type templates (related to

RQ4). After investigating the three half matches in the Mammothproject derived from the

final version, we report that they were not actually related to their matched init templates.

In ArgoUML, 95 of the original 182 templates persisted (approximately 52%), which

we feel is a considerable amount, given the seven-year span between the init and final ver-

sions. Upon inspection of the templates, we report that 17 (approximately 18%) of them

are related to initialization of API objects and changing the state of API objects, both of

which are useful in code cookbooks and code completion. For instance, Figure3.5is a tem-

plate that initializes and sets the layer of a diagram. Figure3.5is an interesting initialization

template because it contains two non-obvious API calls,setGraphNodeRenderer() and

setGraphEdgeRenderer(), which allow for custom node and edge icons. Considering

that this template is supported by six client methods, it would seem like useful information

37



3.2. Results

for a novice programmer to have the first time they create aLayerPerspectiveMutable

object rather than compiling and running their code to only find out the look and feel of

thier diagram is different from the rest of their team’s.

LayerPerspectiveMutable layer = new LayerPerspectiveMutable(...);

layer.setGraphNodeRenderer(...);

layer.setGraphEdgeRenderer(...);

diagram.setLayer(layer);

Figure 3.5: Initialization Template from ArgoUML

In contrast with the Mammoth project, ArgoUML had many more templates fall into

the near matches and half matches category, 76 and 461 respectively. We were curious

to see if the templates in the near matches category were longer or shorter than their init

counterpart, and further analysis showed that 39% had expanded and 61% had shrunk. With

a few exceptions, it appeared that most of the length change was due to the inclusion or

omission of minor API method calls like getters and setters.Added condition checks were

some of the more interesting API code template expansions because it showed that adding

control flow context to our APUX phase was relevant. For instance one template includes

an API checkisVisible() before subsequent API calls. Similar to the Mammoth project,

but in greater numbers, the half matches were tenuously related to their init counterparts.

The Eclipse project yielded a very high amount of templates in both init and final

version (3065 and 3335 respectively), as well as 2591 (84%) perfect matches between

versions. In contrast with the Mammoth and ArgoUML project,we found that the near

matches that expanded usually added meaningful API calls tothe init template, such as

a addModifyListener() or addSelectionListener(). Upon further analysis we

found the near matches did not show a particular trend for growing (∼56) and shrinking

(∼44), which agrees with the results found with ArgoUML. However, we feel that 74 half

matches per init sequence was too many, and similar to Mammoth and ArgoUML, these

matches were tenuous.
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To summarize our matching observations, in Table3.1, we report that our approach does

not seem to be as applicable for smaller scale projects (lessthan 100KLOC), as opposed

to larger projects like ArgoUML and Eclipse (RQ5). On the other hand, we consider this

result to be a positive point for Maui because it means that developers of medium and large

projects can use Maui to create a substantial number of different code templates using only

their own code base. It also implies that API producers may only need a few projects (as

opposed to dozens) to generate API code templates for their documentation.

We also report that a substantial number of API code templates created in the init ver-

sions of the ArgoUML and Eclipse projects continued to existin the final versions as well

and did not undergo any changes (Perfect Matches category).In the ArgoUML project 52%

(95/182) of the templates created from the init version remained in the final version and in

the Eclipse project 84% (2591/3065) persisted across versions. These results provide evi-

dence that a substantial number of API code templates remained stable (RQ3) over years

of developement (seven and six years between init and final versions for ArgoUML and

Eclipse respectively). This result provides evidence thatAPI code templates created from

API usage patterns can still remain applicable to developers years after they were created.

Table3.1also reports the number of perfect and near matching templates that contained

control flow constructs. We chose not to report the number of half matching templates be-

cause they are usually tenuously related to their corresponding init templates (discussed

above). Reporting the number of templates that contain control flow constructs is useful

because these results indicate how important it is to capture control flow when mining

for API code templates. In the Mammoth project one of the two (50%) perfect matching

code templates contained control flow and zero of the near matching category (since there

were zero near matches). In the ArgoUML project, 51% (49/95)of the perfect matching

templates contained control flow and 9% (7/76) of the near matching templates contained

control flow. In the Eclipse project, 17% (451/2591) of the perfecting matching templates

contained control flow and 14% (1959/14421) of the near matches contained control flow.

Considering that over 50% of the perfect matches in ArgoUML and nearly 20% of the per-

fect matches contained control flow, these results provide evidence that capturing control

flow is important because a substantial number of templates exhibit that developers use

control flow constructs in conjunction with their API calls.
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3.2.2 Individual Template Support Results

To get more insight into whether API code templates would be useful for developers (RQ1),

we present the results of our evaluation that report the average number of times an API code

template could have helped a developer implement some functionality offered by the API.

Table3.2reports the average support count of all API code templates generated from each

project. The second column (Init Templates) presents the average support count of each

code template found in the init version of each project. For example, the entry for the

Mammoth project is 4.6, meaning that on average, each template generated from the init

version of the Mammoth project was supported by roughly five client methods. The third

and fifth column, present the average support values for the perfect and near matching

templates found in the final versions of each project. From our observations in Table3.2.1

and further inspection, we decided to omit the results related to the Half Matches category

in Table3.2because the matches were too tenuous to be useful.

In Table3.2 we also report the average percentage of initial client methods that con-

tinued to support templates in the final version. Using the terminology we defined in Sec-

tion 3.1.4, we say that these supporting client methodspersistedacross versions. The fourth

and sixth columns display the average percentage of initialsupporting client methods that

continued to support the same templates in the final version of each project for the tem-

plates in the perfect and near matches categories, respectively. For example, the average

percentage of initial supporting client methods that continue to support the same template

in the final version of the Mammoth project is 57%. This means that, on average, each

template generated in the final version of the Mammoth project, and placed in the perfect

matching category, is supported by 57% of the original client methods.

In all three projects, the average support value for each template created in the final

version was higher than the support values for templates created in the init version. This

result means that on average, each code template in the perfect matching category had more

client methods exhibiting the same API functionality than templates created from the init

versions. For instance, templates created from the init version of the Eclipse project were

on average supported by approximately ten client methods. Meaning that on average, each
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Table 3.2: Results : Average Template Support and Persistence Ratio

Project

(API)

Init

Templates

Perfect

Matches

(%)

Persist

Near

Matches

(%)

Persist

Mammoth

(JMonkey)
4.6 8.5 57 N/A N/A

ArgoUML

(org.tigris.gef)
6.90 10.27 9 9.42 1

Eclipse

(org.eclipse.swt)
10.27 16.20 35 14.33 29

template created from the init version of Eclipse had approximately ten client methods dis-

playing the same functionality. In contrast, the templatesgenerated from the final version

of Eclipse, were on average supported by approximately 16 and 14 client methods for the

perfect and near matching categories, respectively.

In the perfect matches category (column 2 of Table3.2), we report an increase of ap-

proximately four, three, and six supporting methods for each code template on average,

for the Mammoth, ArgoUML, and Eclipse projects, respectively. These increases mean

thateachAPI code template created in the init versions of the Mammoth, ArgoUML, and

Eclipse projects could have helped developers implement the same API functionality in an

additional four, three, and six instances, respectively. In the near matches category (col-

umn 4 of Table3.2) we report similar a similar increase for ArgoUML and Eclipse projects

(roughly three and four methods, respectively).

We consider these numbers to be substantial when the total number of perfect and near

matches are considered. For instance, there were total of two perfect matches between init

and final versions of Mammoth. This result translates into eight instances (4 × 2) where

an API code template could have helped a developer, which is asmall amount. However,

considering that ArgoUML had 95 perfect matches and Eclipsehad 2591, this shows that

there could have been a multitude of opportunities for Maui to help developers implement

API functionality.
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When we consider the low average percentage of initial supporting methods that per-

sisted, we see an even greater increase in the number of opportunities where Maui could

have helped developers. In the perfect matches category forArgoUML, on average only

nine percent (approximately one client method (6.9× 0.09)) of the initial supporting meth-

ods continued to support the same templates in the final version. Which means, on average

each perfect matching template generated from the final version of ArgoUML retained only

one of its original supporting client methods. Considering that each template in the perfect

matches category was supported by roughly ten client methods, this means that on average,

nine of those ten client methods did not exist in the init version of ArgoUML. In other

words, these nine client methods werenewmethods added to later versions of ArgoUML.

This translates to an average of nine opportunities per template where the developers of

ArgoUML could have had code templates at their disposal. In the perfect matches category

of Eclipse 35% of the initial supporting methods continued to support the same templates

in the final version, which translates to roughly three or four client methods (10.27× 0.35).

This result means that on average there are approximately twelve opportunities per template

where the developers of Eclipse could have benefited.

The near matches also show this trend, with an average of eight new methods in Ar-

goUML (assuming an average of one client method persisting)and eleven in Eclipse (as-

suming an average of three client methods persisting). To summarize the results found in

Table3.2: the reasonable increase in support for perfect and near matching templates gives

us reason to believe that the templates created by Maui may have been useful to developers

between init and final versions of their respective projects.

The increase in relative support of API code templates paired with the low persistence

of supporting client methods also provides evidence that API code templates are project

independent (RQ2) because the functionality found in the templates stayed the same, but

the context did not. This implies that API code templates created from one project are likely

to be useful for developers in another project. API producers especially benefit from this

result because they can create relevant API code templates using Maui for documentation

purposes.
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Button myButton = new Button(parent, SWT.NONE);

myButton.setText(‘‘Cancel’’);

Figure 3.6: Example of a Good Code Completion template

3.2.3 Examples of Mined API Code Templates

The results found in Table3.2quantitatively showed evidence that creating API code tem-

plates with Maui can be useful to developers. To qualitatively show how and why they are

useful to developers we present a few mined templates. For instance, consider the template

in Fig 3.6mined from Eclipse. Albeit short, the template in Fig3.6 is a good candidate for

a code completion template because it is highly repeatable.In the final version of Eclipse,

this template was supported by 140 new instances, on top of the 105 persisting instances

from the init version.

Another interesting template, Figure3.7, shows the ability of APUX to detect templates

with control flow. Figure3.7demonstrates how to create a new SWT table, populate it with

columns, and set the text of the columns.

Table lTable = new Table(...);

myTable.setLayoutData(new GridData(...));

myTable.setLinesVisible(...);

while(...)

{

TableColumn lCol = new TableColumn(lTable,...);

lCol.setText(...);

}

Figure 3.7: Example of a Template with Control Flow from ArgoUML

Figure 3.7 is interesting because its uses are two-fold; it could be useful as a code

completion template because in our own experiences we rarely create a table without im-

mediately populating it with multiple entries; and it couldbe useful as a code cookbook

entry because most novice programmers would expect to add the columns directly to the
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Table object via anaddColumn() method, rather than passing the parentComposite

object to the constructor of theTableColumn.

Smaller templates are better suited for code completion templates, whereas larger ones

are better for cookbook entries. To show that Maui can mine both sets (RQ4), we present

the distribution of templates lengths, which do not includecontrol flow statements, in Ta-

ble 3.3. Our initial thoughts were that the distribution would be dominated by 2-letter

templates, but Table3.3shows a reasonable spread of template lengths.

Table 3.3: Template Length Distribution

Project

(API)
Version 2-API calls 3-API calls 4-API calls ≥5-API calls

Mammoth

(JMonkey)

Init 4 1 0 6

Final 3 2 2 2

ArgoUML

(org.tigris.gef)

Init 69 45 34 34

Final 75 35 19 21

Eclipse

(org.eclipse.swt)

Init 527 401 463 1674

Final 697 537 507 1594

3.2.4 Further Qualitative Findings

Discovering Useful Infrequent Calls

From investigating the results of we observed that Maui can also spot invariants of an API

usage pattern. Some of the patterns we observed were almost identical, but varied by either

one or two API calls. Also, were surprised to find that some APIcalls and objects were not

frequent enough to be included in a template. For instance, in the Eclipse project we came

across many templates that added anEventListener (i.e.addSelectionListener()),

but only on a few occasions did a corresponding concreteEventListener appear in the

template as well. Upon further inspection we found out that each supporting client method
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would add their own customEventListener, which lowers the probability of a com-

monEventListener. Creating an accompanyingEventListener is crucial informa-

tion for developers, even if we can only tell them to create anobject of the interface type

EventListener. Therefore, some worthwhile future work could involve searching for

further commonalities between supporting methods by looking at the type hierarchies be-

tween some of their elements.

Common Template Types

From browsing the results, we noticed that a substantial number of templates are related

to creating a new API object and setting it up (e.g.setFont(), addToLayer(), and

addListener()). We believe the cause is the nature of graphics and GUI APIs because

they routinely involve creating and setting up widget-likeobjects. We conclude that if our

evaluation was performed with, say, XML editors we would seemany patterns of the form

openF ile(), [createElement(), setAttribute()]∗, closeF ile().

3.3 Threats to Validity

The biggest threat to the validity is that the results of our evaluation do not translate to

other types of APIs because graphics/GUI type APIs are highly repeatable. Since ours is a

data mining approach, we strongly depend on the frequency ofcommon API usage scenar-

ios. Other, less repeatable APIs would require many client projects to discover the same

number and quality of API usage patterns from which to createcode templates. Our results

also do not translate to framework-type APIs where common usage involves implementing

interfaces and extending classes. Currently, our approach cannot detect classes that extend

an API class or implement an API interface, but we can detect super calls.

We also discovered in our evaluation that Maui may not be as applicable to smaller-

scale projects like Mammoth (less than 100KLOC). However, small scale projects could

possibly increase the yield of templates by including another client project of the API.

Another threat to validity is that we did not control for API evolution when mining for

patterns from the init and final versions of each project. Instead, we simply assumed that
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the package names would persist between API versions. However, any changes between

versions of the API could only be detrimental to our results.

We also did not track any refactorings between the init and final versions of the client

projects. Not tracking refactorings could only affect the results related to the persistence

of initially supporting client methods of templates. If a client method was renamed, we

consider this change to be a deletion of the old method and theintroduction of the new

method, instead of a considering the two the same.
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Chapter 4

Related Work

Over the past ten years there have been numerous approaches that leverage API usage

information to accomplish a myriad of goals. These goals include: bug detection, example

(snippet) retrieval, program navigation, inferring API specifications, and documentation.

To the best of our knowledge, our approach is first to leverageAPI usage patterns to create

API code templates.

4.1 Frequent Itemset Mining Approaches

The first group of approaches use frequent itemset mining to discover common patterns

of API usage and generate association rules. An associationrule describes the conditional

probability between variables in a transactional database. Association rules were originally

developed for market research to discover regularities between products in a transaction

database [15]. For example, given a customer buys a computer and monitor they are then

also likely to buy a printer with some probability.

CodeWeb [20], was one of the earliest approaches to use association rules as a means

of finding API reuse patterns. CodeWeb specifically mined the reuse patterns between API

methods and classes being reused by a specific program. For example, one reuse pattern

CodeWeb found was that 100% of clients that overridedoIt(), also overrideundoIt().

FrUiT [3] is a framework understanding tool that refines CodeWeb’s techniques, such

as filtering spurious or uninteresting rules, to recommend relevant API elements given their

47



4.1. Frequent Itemset Mining Approaches

current coding context. For example, if a user instantiatesanIWizardPage, FrUiT would

recommend making calls to elements likeaddPage(). In another paper [2], Bruch et

al. devise three code completion systems based on differentmeasures of API usage pat-

terns; one system was based on usage frequency of API elements, another used association

rules between API elements, and the third was a novel clustering technique. The author’s

findings showed that their k-NN-inspired algorithm outperformed the other proposed code

completion systems, based on a cross-validation study oforg.eclipse.swt, but only

showed marginal improvements to the association rule technique.

PR-Miner [16] is another tool to mine API usage association rules, but which treats

these rules as implicit programming rules and violations tothese rules as possible bug lo-

cations. For example, an implicit programming rule could beto always follow a call to

lock() with a call tounlock() and a violation of this rule would be the omission of

unlock(). Indeed, Li and Zhou were able to identify 16 bugs in Linux, 6 in PostgreSQL,

and 1 in the Apache HTTP server by looking at the top 60 violations to patterns detected by

their tool. However, the authors report that even with pruning, a large number of the associ-

ation rules were false positives. DynaMine [18], like PR-Miner, looks for API association

rules and for violations, but differs in that it mines rules from software revision histories,

rather than project snapshots. DynaMine also differs in that it dynamically instruments the

patterns to look for violations. DynaMine’s evaluation also reported many false positives.

In a comparison study [14] between frequent itemset mining and sequential pattern

mining (the technique used by Maui see Section2.4.2), Kagdi et al. comment that false

positives are caused by the lack of ordering information. For example, out-of-order rules

are hard to fix because there is no information on where to insert the missing call. Gen-

erally, frequent itemset mining is much faster than sequential pattern mining, but without

ordering useful information like the multiplicity of elements, the order of the elements, and

the context information of elements is lost. Maui has an advantage over these approaches

because it retains the ordering of elements and multiplicity. Further, Maui can mine arbi-

trary regular patterns, unlike CodeWeb [20,21] or DynaMine [18].

Some approaches remedy the out-of-order problem by encoding ordering information

directly into their itemsets. For example, with the JADET tool [32] Wasylkowski et al.

mine sets of temporal properties showing how a client methoduses methods of an API.
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For example, a set of temporal properties couldP = {hasNext() ≺ next(), next() ≺

hasNext()}, wherem ≺ n means that there is a possibility of callingm before calling

n. JADET only considers a single project to mine association rules, but this approach

was extended by Gruska et al. [10] to mine from 6000 Linux projects. Gruska et al’s

intuition was that violations may not be detected in a singleproject if all sequences of

calls to the API are incorrect, but if compared against 6000 projects the violations would

surface. Alattin [27], by Thummalapenta and Xie, tries to look for frequent condition

check patterns before or after a given API method. For example, “boolean check on return

for fa beforef1” or “constant check on return forfb afterf1. Even though these rules are

unordered, the definition of the condition checks includes information about the correct

position. Combining Alattin’s approach with APUX may bolster Maui’s support of API

related conditions.

4.2 Sequential Pattern Mining Approaches

The closest cluster of approaches to Maui are those that alsouse sequential pattern min-

ing to infer API usage patterns. Like frequent itemset mining, these approaches look for

frequent patterns in a transactional database, but differ by encoding information about the

temporal ordering and multiplicity into the itemsets.

MAPO [33], presented by Zhong et al., is a tool that leverages API usage patterns found

with sequential pattern mining for code snippet retrieval.The API usage patterns are used

as an index to match queries with code snippets. MAPO works bylooking at the sequences

of API calls a client method makes and takes a subset of sequences that cover all API calls.

The client methods are then clustered according to the API methods they invoke and by the

natural language terms found in their method name and enclosing class. Each cluster is fed

into a sequential pattern miner (BIDE [30]) that looks for frequent subsequences of API

method calls. The resulting patterns become the index for the parent cluster and are used to

recommend snippets by comparing the user’s query to the index. Using the representative

sets along with sequential pattern mining, Zhong et al.’s approach can mine patterns that

are of any length and preserve the temporal ordering of API calls. However, unlike Maui
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this scheme does not include control flow constructs or any indication of the multiplicity of

API calls, which could be useful to users creating code templates.

Some API usage approaches use sequential pattern mining to generate sequential asso-

ciation rules,X ⇒ Y , where all items in the sequenceX must come before items in the

sequenceY .

For example, an approach by Theummalapenta et al. [28] looks for sequential associ-

ation rules where the antecedent contains regular API call sequences and the consequent

contains calls that occur in exceptional cases. The authorsgenerate these rules by populat-

ing two sequence databases, one with normal execution sequences and one with exceptional

sequences, and annotate each sequence depending on which DBthey are in. These annota-

tions are used to build rules of the formFC1
c . . . FCn

c ∧FCa ⇒ FC1
e . . . FCm

e , which trans-

lates to: an API callFCa should be followed by the function-call-sequenceFC1
e . . . FCm

e

in exception paths, when preceded by the function-call sequenceFC1
c . . . FCn

c .

Kadgi et al. present an approach [13] to include syntactic context (e.g. if an API call

is in a for loop) when mining for sequential association rules. During pattern mining,

their approach inserts tags around API calls indicating that they are within a control flow

structure. For example, an API calla() inside anif statement guarded by a call tob(),

would be represented as< if_cond = ”b” > a < /if_cond = ”b” >. Maui’s Regex

model uses a similar strategy (discussed in detail in Section 2.4.2), by including tags to

represent control flow, but only includes tags at the beginning and end of an API sequence

within the control flow instead of tagging each element. The two strategies are more or

less equivalent, but Maui’s strategy results in better performance because it inserts fewer

tags into the sequences, making it easier for the pattern miner because of the reduction in

complexity.

4.3 Graph-Based Approaches

GrouMiner, presented by Nguyen et al., is another tool for extracting object usage patterns,

but uses graph-based algorithms instead of frequent itemset mining [23] to discover com-

mon usage patterns. Essentially, Grouminer creates a (directed acyclic graph) DAG called
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a groum (graph-based object usage model) to represent an object’s usage in code; nodes

represent object actions (i.e method calls or field accesses) and edges represent the order

these actions are called. GrouMiner then mines for usage patterns by looking for isomor-

phisms among groums. Nguyen et al. encode Groums into Exas vectors to facilitate finding

isomorphisms. GrouMiner also detects violations by looking for subgraphs of Groums that

have a lower frequency than a user-defined threshold.

PARSEWEB and Prospector are two graph-based API usage approaches which try to

answer call chain queries, where a user specifies asourcetype and a desireddestination

type and wishes to know the sequence of intermediate method calls to go fromsource

to destination. PARSEWEB [26], a tool by Thummalapenta and Xie, answers call chain

queries by mining for frequent method invocation sequences(MISs) from code snippets

found on Google Code search. After clustering similar MISs, PARSEWEB creates a DAG

from the source type to the destination type and returns the shortest path between the two,

since there could be multiple possible answers. Prospector[19], developed by Mandelin

et al., uses an API’s class declarations, field declarations, and method signatures to build

a signature graphto answer call-chain queries, instead of building graphs from ASTs.

In a signature graph, nodes are class types declared by the API and edges represent the

operations to go from one type to another. Like PARSEWEB, Prospector answers queries

by finding the shortest path between one API type to another. Additional information about

legal downcasts can be added to the signature graph by analyzing client code.

4.4 Regex-Like Approaches

Gabel and Su propose a Binary Decision Diagram (BDD) based approach to mine two letter

micro-patterns (for exampleab+) for API specifications. [8]. The authors later extend this

approach with a tool called Javert [7], to chain the micropatterns in to larger patterns. In

a different approach [9], the authors mine temporal properties from dynamic tracesonline

using a viewing sequences of API method calls in a sliding window and monitoring the

historical statistics of how many times a candidate patternis followed or violated. Liu

et al.’s approach [17] also mines two-letter patterns that follow three particular scenarios,
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initialization (i.e. aninit method followed by some other call), push-pop, and finalization

(i.e. an API call followed by a call to aclose() call). They generate a list of API usage

rule candidates by replacing the symbolic function names inone of the three existing rule

templates with concrete API function names. Then they feed the templates into a model

checker to see which are valid.

4.5 Usage Statistic Approaches

API usage statistic approaches study API usage by looking atthe frequency with which

each API element is used by clients as an indicator for importance. Usage statistic ap-

proaches are usually the basis for API recommendation systems to recommend interesting

or crucial parts of an API to a developer. PopCon [12], by Holmes and Walker, is a tool that

simply counts the number of times an API element is referenced based on four structural re-

lationships: method calls, field references, inheritance,and method overriding. Jadeite [25]

is another tool, by Stylos et al., that aims to improve API JavaDocs by helping direct de-

velopers’ attention to useful API elements. For example, Jadeite resizes the font of API

elements in the class and package view proportionally to thenumber of Google hits they

get. Aktari [22], by Mileva et al, looks at the popularity of different versions of an API to

help developers select the best version. Aktari works by looking at the referenced APIs for

a corpus of projects along with the version number and keeps track of the most used and

most reverted to APIs to recommend to developers.

4.6 Typestate

So far, the approaches mentioned and model API usage by looking at client code that uses

the API. These approaches can be considered aspositivebecause they describewhat is,

rather thanwhat should be, which instead would be normative. The tools that study API

usage to find bugs or defects work by finding an API’s protocol by observing popular usage

patterns and flagging anomalies as bugs. However, these bugsand defects are found after

the fact and would be cheaper to fix if they were found earlier in the development stage.
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Thus, there exist normative approaches where API designersdefine their protocol ex-

plicitly and violations can be detected statically, much like how type checking is done.

These approaches build on top of a programming language concept calledTypestate. Type-

state tracking is a compile-time program analysis technique that enhances program relia-

bility by detecting type-correct applications of operations which are “nonsensical” in their

current context [24]. The idea is that a typestate captures the notion of an object being in

an appropriate (or inappropriate) state for the application of a particular operation. For ex-

ample, invoking a method on a null object reference is legal as far as types are concerned,

but will cause an error because the object is not in an “initialized” state. An object’s type

state may change when a legal operation is invoked. So in our example, when the object’s

constructor is called, the typestate of the object now becomes “initialized” and operations

that were previously illegal can now be invoked. The typestate concept was extended to the

object

Deline and Fahndrich extend the typestate concept by proposing a statically checkable

typestate system, Fugue, to declare and verify state transitions and invariants in imperative

object-oriented programs [5]. An effect of this work is that Pre and Post annotations can re-

strict the order of methods clients can invoke on an object based on the typestate it is in. For

example, suppose callingcloseStream() causes a stream object to move into a “closed”

typestate; this restricts calls to methods that have an “open” typestate as a precondition,

such asgetData(). Thus, API builders can explicitly define and enforce a protocol at

compile time. Deline and Fahndrich’s work has been extendedby Bierhoff et al. by adding

access permissions on top of object typestates [1]. Access permissions describe the ways

in which an object can be aliased. The possible access permissions are exclusive, exclusive

modifying, read-only, immutable, and shared access.
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Chapter 5

Conclusion

5.1 Summary

Maui is a tool that automatically creates API code templatesbased on API usage patterns

from client projects. The contributions of our approach area novel technique for dis-

covering API usage patterns that include information aboutthe ordering of API calls and

multiplicity, as well as information about control flow. In aretrospective analysis with the

Mammoth, ArgoUML, and Eclipse projects, we generated API code templates from earlier

versions of the project, using Maui to see if they could have been useful to developers in

later versions. In our evaluation we found that, on average,each code template created

from the earlier version of each project could have helped developers in the later version

in at least dozens of situations. We also observed that a substantial number of API code

templates created from the earlier versions of our dataset remained identical in the final

version, which may imply that templates created with Maui could be useful to developers

years after they are created. As for the individual API code templates, we found that Maui

is capable of creating a range of differently sized API code templates that could be useful

for quick code injection or more complex scenarios. Finallywe also observed that Maui

is most applicable for medium and large sized projects (>100KLOC). While this result im-

plies that Maui is not applicable for smaller projects, it also means that API producers will

not need a large corpus of projects to create API documentation using Maui. From the
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perspective of the API user and the API developer, Maui is a useful tool for generating API

code templates.

5.2 Limitations and Future Work

Maui is currently a proof of concept and could benefit from a few improvements. The

largest limitation of Maui is the manual step which the user needs to perform to create a

functional API code template. Maui can find the invariant APImethod calls and sequence

them, but does not give much support to the user regarding howto construct the template.

In our experience, this manual step is relatively short and straight-forward, but users would

benefit more if we automated this step. As future work we plan to automate this step by

incorporating a data dependency analysis to chain the API calls together and pass necessary

data between calls. Since Maui is built on top of a static analysis framework, we could

easily extend Maui to support these additions. Additionally, we could extend Maui to

recommend objects, parameters, or boolean conditions based on information found in the

the support methods used to derive the template.

Another limitation is that Maui currently cannot generate API code templates from

client methods that contain checked exceptions because it does not have the logic to prop-

erly traverse those kinds of CFGs. This limited us from studying the JBoss project’s use of

the JDom API. For future work, we would extend APUX to handle such CFGs. Another

limitation is that Soot does not always give accurate sourceline and offset information

about Jimple statements, causing Maui to occasionally failon certain methods. We have

fixed some of the issues related to this, and submitted patches, but there is still work left to

be done.

The last and most important piece of future work that we will suggest is to devise

a filtering or recommendation system to help documenters zero in on the most pertinent

templates (especially given that Eclipse produced over 3000 candidate templates). Possible

suggestions could be based on the coder’s current programming context or perhaps an initial

seed of API method calls. It could also be based on the browsing behaviour of developers

on the API’s JavaDoc.
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