CREATING APPLICATION PROGRAMMING INTERFACE CODE
TEMPLATES FROM USAGE PATTERNS

by
Tristan Joseph Ratchford

School of Computer Science
McGill University, Montreal, Quebec

October 2011

A THESIS SUBMITTED TOMCGILL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OFSCIENCE

Copyright(© 2011 by Tristan Joseph Ratchford

Abstract

Application programing interfaces promote reuse by ftatilng interaction between
software components and/or software libraries. API cod®tates are parameterized API
scenarios that can be quickly instantiated by copy-antifgaper through support from in-
tegrated development environments. They provide the #teducture of an API coding
scenario and let developers simply “fill in the blanks” witte tdetails of their coding task.
Unfortunately, creating relevant API code templates nexguiime and experience with the
API. To address these problems we present a technique thasAPI usage patterns and
transforms them into API code templates. Our intuition &t tAPI usage patterns are a
solid basis for code templates because they are groundectig &Pl usage. We eval-
uate our approach performing retroactive study on the Mathj#rgoUML, and Eclipse
projects to see if APl code templates created from earlissiees could have been helpful
to developers in later versions. Our results show that, @mame, each API code tem-
plate our technique mined could have helped developersongtiting six, nine, and twelve
new methods in Mammoth, ArgoUML, and Eclipse, respectively.olr evaluation, we
mined many API code templates from the three test projeatspttovide evidence that our
technique could have helped developers learn and use araster in many opportunities.

Résumé

Les interfaces de programmation (API) encouragent laligation de code en facili-
tant I'interaction entre les composantes du logiciel etibesiries. Les «templates» d’API
sont des scénarios d'utilisation de I'’API paramétrées @as rapidement instanciés par
copier-coller ou par le soutien intégré des environnemdatsiéveloppement. lls four-
nissent le squelette d’'un scénario d’utilisation de I'ABlbé&ssent au développeurs la simple
tache de «remplir les espace». Malheureusement, afin dedag&templates» pertinents,
du temps et de I'expérience avec I’API sont nécessaires.rf@saudre ces problemes, nous
présentons une technique par laguelle les «templates» d@#® découverts en analysant
des scénarios d'utilisation existants. Notre intuitiohcgge de tels scénarios sont une base
valide pour la découverte de «templates» car ils sont urrégeptation existante de I'API
en action. Nous évaluons notre méthode en effectuant uie éétroactive sur les pro-
jets Mammoth, ArgoUML, et Eclipse pour voir si les modeleéas a partir de versions
antérieures auraient été utiles aux développeurs dan®ts®ns ultérieures. Nos résul-
tats illustrent que, en moyenne, chaque «template» d’Aé8 par notre technique aurait
permis aux développeurs de créer six, neuf et douze nosvekghodes dans les projets
Mammoth, ArgoUML, et Eclipse, respectivement. De plus,sdamire évaluation, de nom-
breux modéles de code API ont été créé a partir des ces t@etgrainsi prouvant que
notre technique pourrait avoir aidée les développeurs eeappe et utiliser une API plus
rapidement dans de nombreuses occasions.

Acknowledgements

| would like to personally thank my supervisor Martin Rohitlafor giving me my
chance and shaping me into the researcher and | am todayk Ybario my colleague and
friend David Kawrykow. Thank you Barthélémy Dagenais, Anviieg, and Ekwa Duala-
Ekoko, who | also consider as friends, for all the support gadiance over the years.
Further thanks to Bart and Annie for their comments and e@iliank you Laurie Hendren
for helping me create APUX and Philippe Fournier-Viger fog SPMF framework. Thank
you Yannick Thiel for the translation services. Speciah#tgeato my family for their caring
and support. And most importantly, | would like to dedicatgtimesis to Rachel Round for
all the support and love during my highest and lowest points.

Contents

Abstract

Résumé
Acknowledgements
Contents

List of Figures

List of Tables

1 Introduction

2 Creating API Code Templates from API Usage Patterns

21 OVerviewW
2.2 The RegexData Structure.
2.3 APl Usage Extraction (APUX)
2.3.1 Handling ControlFlow
2.3.2 Client Code with Exceptions.
23.3 WordTransforms
2.3.4 MethodInlining
24 PatternMining
241 Clustering
2.4.2 Sequential PatternMining

Vi

Vil

2.5 CodeTemplate Creation 25

Evaluation 27
3.1 Methodology 28
3.1.1 Dataset. 29
3.1.2 ExceptionsInClientCode 32
3.1.3 How We Match Templates Between Init and Final Versions . . 32
3.1.4 Template Quality Metrics. 34
3.2 Results e 36
3.2.1 Aggregate MatchingResults. 36
3.2.2 Individual Template SupportResults 40
3.2.3 Examples of Mined API Code Templates. 43
3.2.4 Further Qualitative Findings 44
3.3 ThreatstoValidity 45
Related Work a7
4.1 Frequent ltemset Mining Approaches 47
4.2 Sequential Pattern Mining Approaches 49
4.3 Graph-Based Approaches, 50
4.4 Regex-Like Approaches. o L oL 51
4.5 Usage Statistic Approaches. 52
4.6 Typestate. 52
Conclusion 54
9.1 Summary e e 54
5.2 Limitations and FutureWork oL 55

11

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7

List of Figures

Example APl Code Template: Creating a Linkin SWT. 2
Example of individual APIcalls. 6
Example of consecutive identical calls representation. 7
Example of a Condition Letter withoutabody. 8
Example of a Loop representation. 9
Flow through a statement. 11
Starting approximations. 12
Simple APUXRegex. i e 12
Typical branch merge scenario. 14
Typical loop merge scenaria e 16
Mutli-branch merge scenario. 17
Example of how return statements leave dangling cbibbke 19
Mammoth Initand Final Versions., 30
ArgoUML Initand Final Versions. 31
Eclipse Initand Final Versions 31
Number of client methods skipped due to checked exagptio 32
Initialization Template from ArgoUML 38
Example of a Good Code Completiontemplate 43
Example of a Template with Control Flow from ArgoUML. 43

Vi

List of Tables

3.1 Aggregated Template MatchingResults.
3.2 Template Support e
3.3 Template Length Distribution.

Vil

Chapter 1
Introduction

An application programming interface (API) serves as aarfate between different
software components and facilitates interaction. When gepror method uses an API, it
is subscribing to the services the API provides. Another teagfer to this relationship is
to say the project is elient of the API.

API code templates are parameterized API scenarios thist@at protocol of neces-
sary object instantiations and method calls needed to gt functionality with an API
in a client method or project. They provide the skeletaltrire and let developers cus-
tomize them with details related to their own task. To illagt the concept of API code
templates we present Figutel, a code template documenting how to create a URL hy-
perlink using theor g. ecl i pse. swt API. All method calls and types in boldface are the
invariant points—the rest is up to the developer to custenfar example by changing the
URL or tooltip text. Figurel.1lis an example of a real-world code template. An almost
identical code snippet was posted on the StackOverflow felinrmesponse to the question
“How can | make a hyperlink in a jFace Dialog [which also ud®sdr g. ecl i pse. swt
API] that when clicked opens the link in the default web brewd

The benefits APl code templates provide are two-fold: Theg fitevelopers from re-
membering boilerplate code and also allow them to reusekblotcode quickly into their
program by copy-and-pasting. Some integrated developereirtonments (IDES), such as
Eclipse or Netbeans, even have code completion supporotte templates which allow a

http://stackoverflow.com/questions/3968620/how-cadd-a-hyperlink-to-a-swt-jface-dialog

1

[l Parent is an SWI conposite

Li nk nyLi nk = new Li nk(parent, SW. NONE)

myLi nk. set Text (“ “http://ww. cs.ntgill.ca/~tratch’’);
myLi nk. addSel ecti onLi st ener (new Sel ecti onAdapt er ()

{/ 1 Anonynous cl ass inplenmentation});

myl i nk. set Tool Ti pText(‘ ‘' dick here to visit ny page' ')
GidData | Center = new Gi dDat a(SWI. Center);

myLi nk. set Layout Dat a(l| Center);

Figure 1.1: Example APl Code Template: Creating a Link in SWT

user to type the first few letters of a template (e.g. typaigle) and activate a command
(e.g. by pressingt r1 andspace) to automatically reuse the template into their code. If
the user is using Eclipse, they can also ptesgsto cycle through the variation points and
customize the template for their own purposes.

API code templates also make learning and using an API efasidevelopers. For ex-
ample, Figurel.1lincludes some non-obvious APl method calls which may belowked
by developers who only study the API's reference documemsi{such as JavaDocs). For
instance, to centre the text a developer must credtei dDat a object and pass it as a
parameter taet Layout Dat a() to align the text of the link. In addition, it may not be
clear to novice programmers that Bvent Li st ener needs to be added to thénk ob-
ject to interceptSel ecti onEvent s. Therefore, it is common practise for developers of
APIs to include code templates along with their documemnitatd help. Apache Lucene,
a text search engine API, includes a functional “hello wbrleb application template,
albeit large, which allows users to immediately customimeweb content and tweak their
configuration as needédlt is also not uncommon for users of APIs to supplement tem-
plates included by API producers by creating their own. B@neple,htt p: // code.
activestate. com is awebsite that contains over 3700 code “recipes” createteb
velopers for Python APIs. Some of the API recipes includeveding a JPEG to a PDF,
downloading a YouTube video, and using RSA encryption. Thaedging theme is that

2http://1 ucene. apache. org/java/2_4_0/ deno3. ht ni

http://code.activestate.com/
http://code.activestate.com/
http://lucene.apache.org/java/2_4_0/demo3.html

documenting API scenarios as code templates is a usefuheodefor API producers and
consumers alike.

Unfortunately, creating API code templates requires a imaestment and experience
with the APl—sometimes, the API documenters are not eveties who coded it, as is
the case with some open-source project documentation fenhsickily for the developer
who posed the question to StackOverflow, another developseralile to share his or her
knowledge of theor g. ecl i pse. swt API. However, many forum posts go unanswered,
and documenting such API scenarios can be lengthy. In addii the time burden, it can
be hard to gauge whether an API code template will be reldeasther developers.

Recently, there have been a number of approaches that lookFfbusage patterns
(common ways in which developers use APIs, as demonstrgtetiemt code). Our intu-
ition is that APl usage patterns represent practical APgesscenarios because they are
inferred from actual programs that use APIs. Based on thistion, inferring API code
templates from API usage patterns will likely be useful tealepers because they will be
relevant, practical, and correct. Thus, we present a tgaderfor mining APl usage patterns
and transforming them into code templates.

In fact, the code template in Figutel was actually found in eight different methods in
the Eclipse IDE (version 3.1) and inferred using our techeaidrhe fact that Figuré.1is
derived from eight different methods and is almost idehticéhe StackOverflow solution
is one piece of evidence to show that developers can indezd\Bts similarly. It also
that API code templates inferred from APl usage patternstigad, relevant and useful to
developers learning an APl because Figuttreveals non-obvious method call sequences.

We implemented our technique in a tool called Maui. Maui vgobly analyzing one
or more projects that use an API and transforming individostances of API usage into
regular expressions. We then use machine learning to dis@atterns among the regular
expressions and transform the patterns into API code taagplaWe evaluate Maui by
performing a retrospective study to see if APl code templateated from earlier versions
of three large Java projects could have helped develop&ateinversions. Our results yield
some interesting API code templates and show evidenceuh&tchnique could have been
useful for developers in these three projects. On averagd APl code template which
Maui mined could have helped developers create six, nirtetveelvenewmethods in three

3

different Java projects (Mammoth, ArgoUML, and Eclipseprectively). Considering that
we mined dozens of templates in ArgoUML and hundreds in Belithere were a multitude
of opportunities in which Maui could have helped develofgerge time using or learning
an API. The contributions of our approach are: A novel teghaifor mining APl usage
patterns from multiple projects that include control flowltiplicity of API method calls,
and interaction between multiple APIs; and a techniquertordforming these API usage
patterns into API code templates in the Eclipse IDE.

We present our approach in Chapgeby first introducing our main unit of analysis,
theregular expressionin Section2.2 In the remaining sections of Chap®ive present
the components of our approach that find API usage pattechgamsform them into API
code templates: The API Usage Extraction Phase (APUX) (@e2t3), the Pattern Min-
ing Phase (Sectio2.4), and the Code Template Creation Phase (Se&ign In Chapte3,
we describe the methodology of our evaluation (Sec3idhand present our results in Sec-
tion 3.2 Finally, we present related works in Chapdeand our conclusions in Chaptgr

Chapter 2
Creating API Code Templates from API
Usage Patterns

2.1 Overview

Our approach consists of three primary steps: First, alisti@av a project uses an API,
second, search for patterns, and third, transform the rpatiato APl code templates.
The data passed between each of these stepegutar expressionsA regular expres-
sion, or Regex for short, is an expression that describes af sttings. For example,
([0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]), where[0-9] could be any digit be-
tween zero and nine inclusively, is a regular expressiorrdesg the set of all possible
telephone numbers (ignoring area codes). With our tecleniye create a Regex for each
client method in a given client project by mapping each ARltba client method makes to
a unique symbol. The result is a string of symbols (API calia} describe how a particular
client method uses an API or APIs. In other words, our tealmiggpresents instances of
APl usage in a client project as Regexes.

Our technique then looks for patterns across all Regexeg @sipattern mining al-
gorithm. Patterns supported by enough Regexes are traresidnto code templates. The
templates our technique yields may be mined from one or ntojegts and include method

2.2. The Regex Data Structure

calls from one or more APIs. Furthermore, the order and plidity of the APl method
calls are preserved along with any control flow structuresi(f - el se blocks or loops).

We implement our technique as an Eclipse plug-in, callediNtauhe Java program-
ming language. We explain our approach in the remainderettapter by explaining
Maui’'s Regex data structure in Secti@r?, and then detail each phase Maui performs to
create API code templates.

2.2 The Regex Data Structure

Maui abstracts how a client method uses an APl or multiplesAB/ creating a Regex
that describes all possible execution sequences of AR walich the client method could
make. Sometimes only a single sequence of API calls descailbeethod. For example, in
Figure2.1the client methodet Si n() ’s usage of th¢ ava. | ang. Mat h API can only be
described by the execution sequetigéath.sin(), Math.round()) because ifet Si n()

is invoked, both methods are guaranteed to be called exantlg and according to the
order of execution.

doubl e get Si n(doubl e pAngl e)

{ .
doubl e x = Mat h. si n(pAngl e) : Math.sin()Math.round()
X = Mat h. round(x);

return Xx;

Source Code Regex Form

Figure 2.1: Example of individual API calls

Maui considers the following program locations as API mdtballs: A super construc-
tor call when the super class is provided by a third-partsalip or framework; a method
call when the declared class of the method is provided byrd-fiarty library or frame-
work; and a constructor call when the declared class is geavby a third-party library or
framework. A method in a client project that does not make ARy calls is not a client
method. For example, a setter that assigns a field does ntic@my API calls. Strictly

2.2. The Regex Data Structure

speaking, non-client methods are represented by the eraptf execution sequences, but
our approach ignores this case altogether.

If an API call is repeated consecutively, for example in FggR.2, a plus is used to
indicate that it is called one or more times. To be succinaundiagrams, we represent
method calls as individual letters. Folding consecutiwntdtal calls into a single letter and
indicating this case with a plus makes pattern matching neader because we observed
during our early experimentation with the approach thatsecuative identical calls were
rarely called with the same multiplicity. Maui allows useeosturn folding consecutive
identical calls on or off, at their discretion, but they canhgpecify different folding sizes.

client Met hod()
{

ab®ch

’

a()
b()
b()
b()
c()
b()

Source Code Regex Form

Figure 2.2: Example of consecutive identical calls representation

Client methods with control flow (i.€.f - el se blocks and loops) can result in multiple
and/or mutually exclusive possible sequences of API dslégji uses special operators and
braces to denote these cases. The motivation for repregesuntrol flow in Regexes is
that we want to be able to capture API coding scenarios teahare complex than straight
sequences of API calls.

Representing i f - el se blocks

Withi f - el se constructs, the execution of @&h block is mutually exclusive from the ex-
ecution of arel se block. Maui represents this behaviour by wrapping the enfir el se
block in curly braces and separating thfeblock from theel se block using the| symbol.
The || symbol indicates that either thé block or theel se block will be executed exactly

2.2. The Regex Data Structure

once. Figure.3demonstrates thief - el se notation by showing that the API call) is
called before eithels() orc(), befored() is finally called.

client Met hod(int x)
{

a
i == 2)

0);
i f(x
{ _ a{b||c}d

d();

Source Code Regex Form

Figure 2.3: Example of a Condition Letter without a body

Maui does not analyze the boolean condition of &nel se block, therefore Maui will
always model f andel se blocks as mutually exclusive even if the condition causes on
to always be executed. Maui also supports nestectl se blocks and handleswi t ch
statements by converting them into chains of nestectl| se blocks, as they would appear
in bytecode.

Maui representsf - el se constructs that do not contain API calls as an empty string.
However,i f - el se blocks that contain only a single API call in either ihfe block or the
el se block, but not both are still represented. For example,guFe2.3 omitted the call
toc(), the resulting representation would bg|| }d.

Representing Loops

Maui represents loops in Regexes by wrapping the loop bodyesst two square brackets
and annotating it with & symbol to indicate that the body will be executédr more
times! Figure2.4is an example how Maui represents a loop in a Regex. In Figue

The* symbol is also known as a Kleene closure.

2.2. The Regex Data Structure

a() andd() are called exactly once, wherelas) andc() may be called zero or more
times. To reiterate, since Maui does not inspect booleaditions, it is possible that Maui
could misrepresent a loop body as executing zero or morestigen though it could
unconditionally execute zero times or unconditionallya@ke more than zero times. Maui
handlesdo- whi | e loops by unrolling the first iteration of the loop body, shogithat it
will be executed exactly once. For example, if Fig@rd was instead ao- whi | e loop,
the resulting Regex would then béc[bc]*d.?

clientMethod(int x)
{
a();
whi |l e(x < 10)
{ albcl*d
b();
c();
}
d();
}
Source Code Regex Form

Figure 2.4: Example of a Loop representation

Representing Control Flow Conditions

In addition toi f - el se blocks and loops, Maui also captures API calls made in the con
ditions of any control flow constructs. Maui represents thsmwrapping the API calls
in parentheses, separating them by commas, and prepeheimgd the control flow con-
struct (e.g. (hasNext())[next()]*). Maui does not retain the order of API calls or any
boolean logic. Therefore, Maui considéfsis Next()&&isFoo())[next()]* and(isFoo()
|hasNext())[next()]*) as identical. Also, control flow constructs that only contaiP|
calls in their condition are represented with an empty bedy.(hasMoreTokens())[]*).
The rationale for enclosing API calls found in conditiontstaents with parenthe-
ses is to signify that they are different from regular APlIsalFor example, the Regex

2We could also represemnthc|bc]*d asalbc]*d, but Maui currently does not have the functionality to
represent such cases.

2.3. API Usage Extraction (APUX)

(isStreamOpen())[foo()]* could also be represented@streamOpen()[foo()]*. How-
ever, sincesStreamOpen() would almost always be called in a conditional statement it
seems unnatural to treat it as a regular API call. Furthehencase of multiple API calls

in a condition statement, the execution of all calls is nargateed. For example, with the
condition (hasNext()&&isFoo()), isFoo() would not be evaluated fiasNext() evalu-
ates to false. Thus, representing them as regular API calsaause inaccuracies in the
Regex.

2.3 APl Usage Extraction (APUX)

Maui creates a Regex for each client method in a client prajdbe AR Usage Exraction
phase, or APUX for short. APUX creates a Regex for a client okthy traversing its
control flow graph in order of execution and recording any Afethod calls found along
the way in an ordered list. When APUX reaches the end of thatalieethod (i.e. a return
statement), the ordered list of API calls becomes the Regeéd client method. APUX
is implemented as a custom forward flow static analysis usiagSoot Java optimization
framework 9.

A control flow graph (CFG) is a graph representation of all gmegaths of execution
through a program, or part of a program (e.g. a method). A modecontrol flow graph
is called a basic block and represents a code expressioresNwd connected by directed
edges called jump targets, which indicate the flow of execuflhere are also two special
nodes to denote the entry and exit of a control flow graph (¢hg. start and end of a
method).

CFGs can be built from various representations such as Javeescode to Java byte-
code. Maui specifically traverses a 3-address intermedggdeesentation of Java called
Jimple. An intermediate representation is an abstract fdfrenprogramming language de-
signed to aid the analysis of programs. A 3-address inteateetepresentation means that
the program is broken down into the general fownult = operand,, operator, operands.
For Maui, this means that every basic block will contain astrane method call. Further,
since each basic block can only contain a single methodreedted expressions, such as

10

2.3. API Usage Extraction (APUX)

nested method calls, are broken down into individual basickds and are connected based
on the order of their execution. For examplew Poi nt (get X(), getY()) would be
represented aget X () — getY () — newPoint().2 Each CFG Maui traverses represents
the control flow of an individual client method.

APUX builds a Regex for a client method by sequentially uigjteach basic block, in
order of execution, and passing an ordered list of API c&ta/ben basic blocks. Figues
depicts how APUX flows through a statementA basic blocks receives the ordered list
of API calls as input from its predecessgrwhich is denoted by the functioim(s). If
s contains an API call it appends the API call to the end of the list and passes itsto it
successordut(s)). When APUX reaches the end of the CFG viaea ur n statement the
list of recorded API calls becomes the Regex for that cliertwod:

in(s) = out(q) | qisthe direct predecessor of

{incs
in(s) if s does not
s f(out(s)) = contain an API call
l out(s)=F(in(s)) in(s) + 1 if s contains the API call.

Figure 2.5: Flow through a statement

APUX is conservative in that it makes no initial assumptiabsut the API calls in a
client method or in a given statement. Fig@ré states the Maui’s starting approximations
for a given statement. The first line states that the Regex at the beginning of atclien
method is empty and the second states that APUX makes no psosiabout thewt(s)
until we visits. The L symbol indicates that the initial output for any given sta¢ats is
unknown, until it is visited.

Figure 2.7 demonstrates how APUX collects API calls to build a Regex irdient
method that does not contain any control flow. We show the Reg@resentation before
and after each basic block Figu2e7 in parentheses. The CFG for Figl2&' is a sequence
of three method calls, two of which are API callsandc, and the other, is not. APUX

3This example is a simplification. In reality, there are a nemtif intermediate operations between each
of the method calliew Poi nt (get X(), get Y())—for example, storing the values gt X()
andget Y() .

11

2.3. API Usage Extraction (APUX)

out(Entry) = T =)

out(s) = L = Unknown

Figure 2.6: Starting approximations

visits each basic block sequentially from the beginninghule initial Regex representa-
tion being empty (i.e.()). Sinces0 contains an API call, APUX appendsmethod call
to the end of the Regex and passes it as inputltoThe basic blocks1 however, does
not contain an API call, so it will simply forward the Regex ago s2, where APUX will
append:. The resulting Regex for the client method !7is ac.

start

*()

. sO: a()
clientMethod()

{ v
a(); //so .. .
b(); //s1 (non-API) sl ()
c(); //s2 *(a)

}

S2: c()
*(ac}
return
Source Code Control Flow Graph

Figure 2.7: An example of how APUX generates a Regex for a client method that hasnmt

flow

2.3.1 Handling Control Flow

APUX takes special consideration for control flow constsumcause they cause the CFG
to diverge into multiple branches and rejoin later at sorheidbasic block. The basic block
where the paths rejoin is calledw@erge point Since APUX builds Regexes by passing an

12

2.3. API Usage Extraction (APUX)

ordered list of API calls between basic blocks, APUX needsetep track of all branches
and merge them appropriately to generate a single Regexsesyiation for a client method.
Henceforth, we will refer ta f andel se blocks asbranches Loops technically also
contain branches, but we distinguish them frofrel se blocks we continue to refer to
them as loops.

The core of APUX’s strategy for merging branches and loogn@ted by the< op-
erator) is based on the fact that up until a branch or loop hehdre the CFG diverges,
the Regex representation is the same. In other words, regardf what happens when the
CFG diverges, the Regex will still have the sapmefix, up until that point. Based upon this
fact, the general APUX strategy for handling control flow stacts is to store the Regex
built so far (the prefix-Regex), and build néwterim-Regexefor each branch or loop body.
When the interim-Regexes meet at a merge point, APUX merges &mel appends them
to the stored prefix-Regex. Our strategy is recursive andallPUX to generate Regexes
in the face of nested control flow constructs.

There are two major challenges with this strategy: Keepragkt of which prefix-
Regexes belong to which branch or loop, and knowing whichrimt&kegexes to merge
and when. To address this challenge, APUX uses the brancloapceads as its main
point of reference when keeping track of different paths. WABUX reaches a branch or
loop head for the first time, it stores the Regex built so fari¢Wwhve call the prefix-Regex)
in a map called the Prefix-Map, using the loop head or branal hs the key. Also, when
APUX creates the interim-Regexes, it tags them with the Wraosxdoop head that they
were created from, to ensure that it can correctly mergeréwedhes. To better explain the
merging process, we walk through how APUX handles branchésaps separately.

Branch Merging

Ani f statement in a client method will have two targets flowingrfriv in the CFG: One
target will point to the first basic block in thé block and the other will point to the first
basic block in thesl se. The two paths will converge at the first basic block follogvin
thei f - el se blocks. If thei f statement does not have a correspondinge the second
branch will also point to the first following basic block.

13

2.3. API Usage Extraction (APUX)

When APUX reaches a branch head it stores the Regex createdtiuphah point
(prefix-Regex) in the Prefix-Map. APUX then creates two emptgrim-Regexes and
passes them as input to the two starting basic blocks witt@nft andel se blocks. Sepa-
rately, both interim-Regexes will append any API calls inthespective branches to their
interim-Regexes. When the two branches eventually meet, ARlgi{es the Regexes of
each individual branch (the interim-Regexes) by enclosiegrt with braces and inserting
a || symbol between them to create a single representation. AfREiXappends the single
representation to the Regex stored in the Prefix-Map androgegito traverse the CFG.

lin(sl)=(foo)

sl:
out(sl)=() out(sl)=()
s2: bar() s3: baz()
out(52)=(foo\ A{ﬁ):(bar)
s4: in(s4)=out(s2) Mout(s3)

in(s4)=(foo{bar || baz})

Figure 2.8: Typical branch merge scenario

Figure 2.8 demonstrates a typical branch merging situation of fanel se block. In
this example, the branch headsis and the merge point is4. Assume that method calls
foo, bar, andbaz are all Target API calls. Initially, the branch heatdreceives the Regex
(foo) from its predecessor. APUX then stores the Reggex) in the Prefix-Map and uses
the the branch headl as the key. Then APUX creates two empty Regexes, tags them with
their origin s4, and passes them as input to the starting basic blocks inftredel se
blocks. Finally, when the merge poist is reached, APUX recognizes that the branches
come from the same head because they have been tagged witbrip@ s4. Since they
both share the same origin, APUX merges them to produce thexRggo{bar||baz}),

14

2.3. API Usage Extraction (APUX)

which is fed intos4. In the codes4 would be the first statement that directly follows the
i f-else block.

Loop Merging

With branches, the CFG diverges at a branch point and evénte@ins at a later point.
However, with loops the diverging and converging point is #ame: the loop head. The
difficulty with merging loops is knowing which control flow @utside the loop and which
is inside. APUX differentiates control flows as internal gtegnal to a loop by performing
a domination analysis on each basic block. In brief, a umit tominates itself is a loop
statement. The domination analysis can also tell us whiahdir heads are loop heads by
looking for the first statement to dominate itself.

Another difficulty is knowingwhento merge branches because APUX visits the loop
head at least twice; the first time being when it is first entenad in the CFG and the
second time is from its loopback statement. APUX relies enstiarting approximations,
stated in Figure.6, to figure out when to merge. Recall that the initial Regex forginen
basic blocks is unknown (i.eout(s) = 1). APUX will merge paths converging on a loop
heads when all converging paths contain a value (i.e. nspmaittput al).

Figure2.9 depicts the two times APUX encounters the loop head and thétref the
merge operation.

The analysis first encountes$ after processing4. At this point, theout(s4) is known,
but out(s3) is not known because APUX has not visited any of the loop bdatements
(indicated by thel. symbol). APUX then pushes an empty Regex down the loop body pat
to collect API calls. When APUX encounters the loop head ferdbcond time, it now has
information about both branches and can merge them to peadye>). Loops are merged
by creating a loop body Regekand appending it to the prefix-Regex before the loop. In
Figure2.9, APUX appendsut(s3) with out(s4) to get the resulting Rege&X oo[bar]*).

Handlingdo- whi | e is simple because the CFG already unrolls the loop body once,
whereas the rest of the iterations still appear as a reguba. |

15

2.3. API Usage Extraction (APUX)

s4:| foo() s4:| foo()
out(s4)=(foo) out(s4)=(foo)
in(s1)=out(s3) WM out(s4) in(s5)=(foo[bar]*)
s1:| while(...) s1:| while(...)
A4 l v l
s2:| bar() s5: s2:| bar() s5:
v A4
s3: s3:
I — | I — |
out(s3)=(L) out(s3)=(bar)

Figure 2.9: Typical loop merge scenario when encountering a loop head for thgléfgtand
second time (right)

Merging More than Two paths and Hybrid Merging

Nestedi f - el se blocks and/or loops can result in more than two paths convgrat a
single point. Figure2.10shows an example of a CFG that results from four paths con-
verging. The difficulty with merging paths created from mggtis knowing which paths
to merge and getting the nesting right. For example,itl{@) is four interim-Regexes.
If APUX merges the wrong two branches, the result will be n@srhingi f andel se
blocks. APUX overcomes this mismatching problem by taggagh interim-Regex with
the branch or loop head it originated from. So when more tharpaths meet at a common
point, APUX can pair them off by comparing their tags to meigem. Tagging also helps
APUX nesti f - el se blocks and loops correctly because a higher level contral flath
cannot be completed before a lower level path. To illustifatepoint and demonstrate how
APUX merges more than two paths we walk through the processroog in Figure2.10,

A CFG Figure2.10results fromi f - el se blocks that both nest their owirf - el se
blocks. When the APUX reache$, the CFG branches into two paths representing the
andel se logic. APUX stores the Regex created thus far in the PrefixsMath s1 used as

16

2.3. API Usage Extraction (APUX)

sl:

52: If Logic 53,' Else Logic
rc: sf \r_d :s2 re:s3 / \f_f :s3
If Logic Else Logic If Logic Else Logic
S:

in(s)=(r c:s2MWr d:s2) W (re:s3Wr f:s3)
in(s)= (ra:sl)M(r b:sl)

Figure 2.10: Mutli-branch merge scenario

the key, and creates two interim-Regexes labelleat s1 andr _b: s1. The labels _a and

r _b are unique identifiers to, and the common suf® is the tag indicating these interim-
Regexes originated fromil. Ther _a: s1 andr _b: s1 interim-Regexes travel down their
respective paths picking up API calls along the way. Whea: s1 reaches the nested
branch head2, the same process will occur with : r _a: s1 will be stored in the Prefix-
Map with s2 used as the key and two new interim-Regexes will be creatdds&itags,
r_c:s2 andr_d: s2. Similarly, whenr _b: s1 reaches3, two new interim-Regexes are
createdy _e: s3 andr _f: s3. When all four interim-Regexes reaslPAPUX can finally
merge them all. APUX takes any given interim-Regex and finglsniate by comparing
their origin tags. Suppose APUX initially mergese: s3 with r _f: s3 to createp =
{r_e : s3||r_f : s3}. This new branch lettey encapsulates ailf andel se logic related
to the branch heaseB; in other words, we have captured and modelled all API caillisin/
one of the nestedf - el se blocks. Since all paths related t3 have been merged, we
can retrieve the prefix-Regex stored under the k&yand appendg. Interestingly, the
prefix-Regex mapped te8 is actuallyr _b: s1, the interim-Regex originating fromil that
represents the highest lewglse block.

17

2.3. API Usage Extraction (APUX)

Now APUX has three interim-Regexes to merge :c: s2,r _d:s2 andr_b: s1—
this is where the origin tags sort out the nesting. APUX camnerger _b: s1 with any
other interim-Regexes because the recursive nature of ARElXategy prohibits merging
higher level nested statements with lower level ones. TABE/X will merger _c: s2 with
r _d: s2 and append the resultto a: s1 before merging _a: s1 withr _b: s1.

Hybrid merging occurs when more than two paths originatiraynf both loop and
branch heads converge. For example, hybrid merging mag &re loop directly fol-
lows ani f - el se block. For the most part, the origin tags and Prefix-Map seetyghing
out. However, when the merge point is a loop head, APUX peréaain additional domi-
nating analysis to identify interim-Regexes internal toltap head separately from those
external to the loop. APUX then merges all interim-Regexemfmside the loop and all
interim-Regexes from outside the loop separately, befomgimg their results.

Handling Multiple r et ur n Statements and Other Control Flow

APUX creates a Regex for a client method by passing an ordestenf IAPI calls between
the basic blocks of a client method’s CFG. At the end of the CEG. (ar et ur n state-
ment) the ordered list of API calls becomes the Regex for tlemcimethod. APUX can
capture all API calls for client methods that have a singdeur n statement because all
paths have the same originating and terminating points e beginning of the method
and the single et ur n statement, respectively). However, client methods the¢ maul-
tiple r et ur n statements can create situations where diverging patles ngoin, making
it impossible to represeritf - el se block or loops with APUX’s merging strategy. For
example, Figur@.11is an example of a CFG where diverging paths never rejoin tsecau
of ar et ur n statement.

Similarly, br eak andcont i nue statements can also create situations where APUX’s
merging strategy fails because they cause the control flosutlwenly break out of an
i f-el se block or loop. To handle these special control flow situaid®UX replaces
all br eak andcont i nue, andr et ur n statements with placeholder static method calls to
a dummy library (e.gDummy. RETURN) before running its Regex analysis. When APUX
eventually runs its APUX analysis, it will be on CFGs that aiipear to have onest ur n

18

2.3. API Usage Extraction (APUX)

return

Figure 2.11: Example of how return statements leave dangling control flow

statement and no early exits frarh- el se blocks or loops. APUX uses static method calls
as placeholders faret ur n statements and the other control flow statements mentised a
a way of keeping the position of the statements for possilila¢ analysis.

Despite changing the control flow of the client methods, aeiplg the control flow
statements mentioned with placeholder static method, @dkss not change the resulting
Regex representation in any way. For example, the Regex deddoa Figure2.11would
be{...|...}...regardless of havingret ur n statement or a dummy statement.

2.3.2 Client Code with Exceptions

Similar to howbr eak, conti nue, andr et ur n statements create CFGs which APUX
cannot handle, APUX also cannot handle CFGs that containkeldeexceptional logic
(e.g. CFGs that contaitr y- cat ch blocks ort hr ow statements). APUX cannot han-
dle CFGs witht hr ow statements because they allow a CFG to have multiple exitgoin
similar to CFGs with multiple et ur n statements. To overcome CFGs withr ow state-
ments, APUX also replaces alhr ow statements with static calls to a dummy library (e.g.
Dunmy. THROW. Replacingt hr ows statements with static calls to a dummy library does
not change the resulting Regex representation of the cliettiad.

However, APUX cannot remedy client methods that contairckee exceptions (e.g.
try-catch blocks ort hr ows statements in the signature). Unlike CFGs that contain

19

2.3. API Usage Extraction (APUX)

t hr ows statements or multipleet ur n statements, APUX cannot perform a simple refac-
toring —like replacing the statements with a static call tduammy library—to trans-
form the CFG into something it can handle. As a result, alintlimethods containing

t ry- cat ch blocks or containing ahr ows statement in its signature are skipped by APUX
and are not represented by a Regex. As future work, we hopegiernnent logic in the
core APUX algorithm to handle CFGs with exceptional logichier.

2.3.3 Word Transforms

After APUX generates a Regex for each client method, it runsmalrer of transforms on
the Regex. These word transforms further generalize somexBege facilitate pattern
mining, while still retaining the original meaning.

Folding Multiple Identical Sequential Calls

APUX folds multiple identical sequential API calls into agle API call, with a plus indi-
cating that the client method is invoking an APl method onmore times, as demonstrated
in Figure2.2

Flattening Redundant Branches

Somei f - el se blocks contain a single branch (e.fu}) indicating that the execution of
the nested API calls is conditional, meaning that they walldxecutedero or one times
However,i f - el se blocks that nest a single branch containing an additionglstbranch,
for example{{a}}, do so redundantly becausewill still only be executed zero or one
times. To remove the redundancy APUX flattens such brandhesexample, the word
{{a}} would becom€a} since its execution is already conditional.

Merging Identical Branches

The Regex f - el se representation denotes mutually exclusive API calls. Hanavhen
API calls in bothi f andel se blocks are identical (e.g{al|a}) their executions are no
longer mutually exclusive, but actually guaranteed. THABUX transformsi f - el se

20

2.4. Pattern Mining

blocks containing identical branches into unconditioradl. cFor example, APUX would
transform the Regex{b||b}c into abc. Since APUX merges identical branches recur-
sively, a{bbb||bb{b||b} }c would becomei{bbb}c. APUX also merges nested branches that
both have identical conditions or no conditions at all. Faaraple, APUX would merge
a{(x)b||(z)b}c into a{(z)b}c, but would not merge{(x)b||b}c.

2.3.4 Method Inlining

Different developers will have different programming syl Some developers may prefer
to use helper methods to encapsulate certain logic andsothay prefer to keep it in the
method body. Thus, matching API usage habits of differenelbpers becomes more
challenging if APl methods are placed in helper methods @natient, but not another. To
avoid this scenario, APUX inlines helper methods that maké @alls. To avoid in-lining

a large call chain—and possibly the entire project—APUXyanlines helper methods
one level away that contain API calls and no calls to otheantlmethods. APUX does
not generate separate Regexes for inlined methods and dogsnsadler the visibility (e.g.
publ i c or private) of methods when inlining methods. Inlining is also an op&b
feature that can be toggled on or off.

2.4 Pattern Mining

The goal of the pattern mining phase is to find patterns amoagéet of Regexes APUX
extracted. In particular, the pattern mining phase lookdreguent subsequencasmong
the Regexes. In essence, a Regex is basically an ordered seqiisgmbols that represent
API calls and operators containing information about thétiplicity of API calls in a client
method. Therefore, finding frequent subsequences among&egeequivalent to finding
common sequences of APl method calls that different deeetopave made. The resulting
patterns are the API usage patterns that become API codégatiesp

Finding API usage patterns among Regexes is a two-phaseegsro€irst, Maui clus-
ters Regexes based on concept (similar groups of API caltsjreen feeds each cluster to
a sequential pattern miner. The sequential pattern mirdsléor frequent subsequences

21

2.4. Pattern Mining

of API calls with a high support count. The support count ofilasequence is the number
of Regexes where the subsequence appears. Maui declaresrftegbsequences with a
support count higher than a user-defined threshold as ARjeusatterns and transforms
them into API code templates. To increase the quality of thé @ode templates, Maui
removes uninteresting Regexes which only have a single APbefre pattern mining.

2.4.1 Clustering

Maui groups Regexes based on API calls to improve the se@li@atitern miner’s effec-
tiveness. If we give the pattern miner a diverse set of Regeaesring a wide variety
of API calls, the odds of finding a high-supported patternlane From our prototyping
experience, only patterns containing API utility callsg(epri nt ()) exist across a large
corpus of Regexes. While this result is still interestingsth&P1 utility call patterns do
not capture the APl usage scenarios that developers woalthply want to encode into
templates. If the user-defined support is set too low, thiepet are too weak to be useful.

The intuition is that certain API calls are related to certAP| usage scenarios. Sup-
pose we are looking for APl usage patterns in a project thaaips to a GUI API. If we
feed the pattern miner a set Regexes representing every angttion the project, we will
likely get patterns pertaining to the GUI, but also pattethregt could pertain to logging,
databases, etc. In addition to having unwanted patteragydtterns may not include the
desired GUI patterns because their support values may ler kbnan the support values of
the utility patterns. Thus, clustering Regexes based onasifPI calls is a way of loosely
partitioning them based on a higher-level concept (e.g. @ldted API calls vs. DB re-
lated API calls). In contrast, if we run the pattern minerloaéntire corpus of Regexes, the
different APl usage scenarios may interfere with each ahdrimpact the mining process
negatively. This phenomenon was observed by Zhong e83l.\who originally proposed
clustering as a solution to the dilution of API calls acrog®gpus of client methods.

Maui clusters Regexes using a hierarchical unsupervisestering algorithm with
method overlap as our distance measure. The distance etwedregexeslz, and iz,

22

2.4. Pattern Mining

is calculated using the Jaccard indég][as follows :

_ |APIcalls € R, (Y APlIcalls € R,)|
~ |APIcalls € R,\JAPIcalls € R,|

Distance(R,, R,)

A user defined distance threshold determines an instanagisb@rship into a cluster.
Through experimentation we found 0.35 to be the optimalstimo&d. In our experience,
higher thresholds generated templates consisting of iibigglAPI method calls like get-
ters and setters, whereas lower thresholds generatedatesplith too little support. We
chose hierarchical clustering over other clustering masha®ecause the number of resulting
clusters does not need to be specified a priori. Insteadarcl@cal clustering starts with
every Regex as its own (trivial) cluster and iteratively pitlusters until there remains
only one cluster containing all Regexes. There are sevewdkgtes for joining clusters
(for example joining two clusters with the smallest averdigéance). Through prototyping
we found Ward’s method3[1] to join clusters to work the best. The Ward strategy con-
siders the union of every possible pair of clusters and coasbthe two clusters whose
combination results in the smallest increase in error susgoéres.

The result of a hierarchical clustering analysis is a degidnm of clusters. At the
bottom of dendrogram, each cluster contains a single Refgexr{ial clusters), and at the
top of the dendrogram is a single cluster containing allteliss The dendrogram gives a
range of sizes and relative distance between instancegdleBolasters tend to be tighter in
terms of relative distance, whereas larger clusters tebe tooser. Maui culls all clusters
with sizes between five and thirty to make the results of tig@eetial pattern mining more
meaningful (explained in Sectidh4.2.

Maui performs its hierarchical clustering using a modifiedsion of Weka’s' imple-
mentation.

2.4.2 Sequential Pattern Mining

Maui then looks for API usage patterns among the clustenggsiquential pattern mining
a technique commonly used in market research to discovguérg sequential patterns
among buying data with temporal or other ordering inforomatiFor example, a temporal

http://www.cs.waikato.ac.nz/ml/weka/

23

2.4. Pattern Mining

pattern may be that customers frequently purchase a comgnudea monitor together and
purchase a printer at a later point.

Sequential pattern mining works by looking for common sgbgaces of items from
a group of sequences. Sequences are composed of ordersdtieand represent trans-
actions in a database. In market research the items rep@®ehucts, itemsets represent
purchases, and the ordering represents the temporal mgdefrithose purchases. In our
approach items and itemsets represent API calls and cdlangland their ordering repre-
sents their temporal ordering in a control flow graph.

Subsequences of items are ranked by thaportvalue. The support of a subsequence
is equal to the number of sequences that contain the subsszjuEor example, from the
sequencesbc,be, andbed, the subsequende has a support value of two, whereas the
subsequencdsand ¢ have support values of three. A subsequence is declapadtern
if its support count is greater than or equal to a user defihnegshold. This threshold is
usually defined as a percentage of the number of sequenaas dior example, consider
the sequences, be, de, andzx. A threshold of 75% would mean that a subsequence would
have to be supported by at least three sequences. Thus bbegsence is considered a
pattern because it is supported by three sequencedchwubuld not because it is only
supported by two.

Before Maui can mine for patterns by first transforming eacheRegto a transaction
and inserts it into a transaction database. Maui models Regax transactions by rep-
resenting individual API calls as items contained in indixal itemsets. Maui sequences
the itemsets according to the ordering found in the Regexdwepresents their ordering
found in the CFG of the method they were taken from). For exapgmethod oo() that
makes calls to API methods) , thenb() , and then finallyc () would be converted into a
transactioriy,, = ({a}, {0}, {c}).

For Regexes that contain control flow, special item symbodsiaserted to repre-
sent the beginning and end of control flow blocks. Symbdis END_IF, ELSFE,
and END_FELSFE are used to denote the beginning and endingfefel se blocks and
LOOP andEND_LOOP symbols are used for loop blocks. For example, the the Regex
a{b||c}d would become({a},{IF},{b},{END_IF} {ELSE} {c},{END_ELSE},
{d}). Control flow blocks that have API calls within their conditiare inserted into the

24

2.5. Code Template Creation

same itemset as the corresponding entry symbol. For exathgleondition f (buf f er
.isOpen() && hasMoreTokens()) becomes the item sé{I [, isOpen(), hasMore
Tokens()}). It is important to note that since the conditional API sake placed in an
itemset the ordering information of these calls is lost, dinte the Regex model does not
retain the logical operators, losing the ordering infooratioes take anything further away
form the approach.

API calls denoted with a plus (i.e. called one or more time)tegated as single calls
by the pattern miner. For example, the pattern miner corside andab™c as identical.
However, if a pattern is discovered with an API call denotathva plus, the resulting
pattern will also contain a plus. For example, considerimgRegexesabc, b*c, andbed,
b*c could result as a possible pattern. The pattermshows thab may be called one or
more times, while still accurately describing the Regexasi derived from.

Maui uses the BIDE30] sequential pattern mining algorithm offered by the SPMF
pattern mining frameworkdg]. The advantage of using this particular algorithm is that i
minesclosedsequential patterns, meaning that subsequences thathegarme support
as their super sequences are ignored. Ignoring subseguentined in larger sequences
greatly reduces the number of results produced, helping fisel more pertinent templates
faster. Mining for closed sequences also ensures thatrpsitteat contain control flow
do not have mismatching control flow symbols because eacly sptnbol (e.g. [F) is
matched with an exit symbol (e.@ N D_I F) with the same support.

2.5 Code Template Creation

Following the pattern mining phase, the user is presentéd avlist of patterns, derived
from each cluster, that can be made into code templates. Jé¢remanually inspects and
selects which pattern they wish to use as the basis for thde template. Currently, Maui
presents the user with the raw output from the pattern miptmgse. For examplé{a},

{IF},{b},{END_IF},{c}) could be a pattern presented to the user, wheseandc are

API calls. In the future, we would like to present to the usereview of what the pattern
would look like as a template. Once the user has selected@paiaui then creates a

25

2.5. Code Template Creation

template and presents it to the user.

Given a selected pattern, Maui creates a code template loingl@ach API call or
control flow statement on a separate line. For each APl methtidn a chosen pattern
we create &t ri ng of the fully qualified name of the method call. Control flow item
are automatically converted into Java source code. For gleamF,..., END _IF is
transformedinto f () {...} . After Maui creates an API code template, it adds the teraplat
to the user’'s Eclips@enpl at eSt or e (a collection of templates a user may invoke in
Eclipse)) allowing the user to further customize the tergplyy adding or removing code,
adding comments, or restructuring the template as theytsee fi

Currently, Maui does not perform a data dependency analgdisannot automatically
create code to pass data between API calls in the templatati@yeariables and passing
output from API calls as input to other API calls is left to theer. However, in our expe-
rience this process has been straight-forward. We obsdnatdfrequently, API calls that
have parameters receive their data from the API call diydsfore it. All code templates
created by Maui and presented in this paper have been createcklly with this process
with little effort. In the future, we would use data dependeanalyses similar to those
used in refactoring tools to automatically create API caataglates that contain the data
relationships between objects and methods in the template.

26

Chapter 3
Evaluation

The two main use cases for Maui are from the perspective oAfleproducer and
the API consumer. The API producer would use Maui to creatk ¢cemplates or fill an
API code cookbook from multiple client projects; the APl samer would do these things
by mining their own project to teach or help fellow develapefFor our evaluation, we
recreated the API consumer scenario because it is a greal®rital challenge. Due to the
mining nature of Maui, drawing API code templates from a En@oject is more likely
to yield fewer templates than drawing from a corpus of prgjedo recreate the scenario
and to evaluate the quality and relevance of the templatas btaates, we conducted a
retrospective study to see if templates created from ameeasrsion of a client project
could have been useful to the developers who worked on a Vatsion. We consider
a template identified by Maui in an earlier version to be “ubeff it is supported by
more client methods in in later versions of the project. Retad support value of a code
template is equal to the number of client methods that corte same sequence of API
calls as the code template. The intuition behind our “usefss” metric is that an API code
template with a higher support value in a later version of ggut represents instances
where developers could have used the code template, cfeatethe earlier version of the
project, to implement some functionality of the API. In atttzh to discovering if the API
code templates Maui creates are useful we also seek to ansgverresearch questions

(RQ):

¢ [RQ1] Can Maui generate useful and relevant API code templatesf@iopers?

27

3.1. Methodology

e [RQ2] Will API code templates created from one project be usefuleeelopers in
another project? In other words, can API code templatesdjegiridependent?

e [RQ3] Are API code templates created from API usage patternsetabh other
words, if we create an API code template today, will it bel @ relevant in the
future? This measures if developers change how they use howRime (assum-
ing the API code stays the same), due to new requirementiolignt project or
changing programming styles.

e [RQ4] In what situations do Maui-generated code templates helglogers the
most?

e [RQ5] How applicable is Maui for different sized projects?

3.1 Methodology

For each client project we chose an APl and two snapshotstfrerlient’s revision history.
We carefully studied the evolution of each project (by an@lg the revision history commit
logs and comments, and reading any history documentatioheproject websites) to
appropriately select snapshots that would recreate ousiened API consumer scenario.
The ideal initial snapshot, which will henceforth be reéefrito as thenit version, is one
when the API has already been adopted by the team and useziéodl. We selected init
versions by considering how much time elapsed since thedtdre project, the number of
commits, and details that suggest stability in the docuatemt. This is an ideal criterion
because the developers have already gone past the leaumirgy so creating templates at
this time will be representative of how the API is actuallgds$n the project. Choosing the
point in time where the API is first adopted may result in tesigd where the developers
were learning or experimenting. The later snapshot, henitefeferred to as thénal
version, was chosen by taking the latest possible versianubed the API to allow for a
long enough time span for the developers to hypotheticalythe templates.

After selecting init and final versions for each project weated API code templates
from both versions and kept those that had two or more AP$ ealtl a minimum support of

28

3.1. Methodology

35% in the cluster that they were derived from. Recall fromtia.4.1that we generate
patterns from clusters of size five or larger, which meansdhah template created in the
will be supported by a minimum of two client methods36 x 5 =~ 2).

Then, we take each code template created from the init weesid look for a matching
template in the final version using the matching heuristenéd in Sectior8.1.3 For
each init template we compare the support count and suppartethods between it and
the set of matching templates found in the final version obggat. We measure the quality
of the init template using a number of quality metrics disadsin Sectior3.1.4

3.1.1 Dataset

Our dataset consisted of three Java projects: the McGill Math Project, ArgoUML, and
the Eclipse IDE. We chose these three client projects basdtea relative size to represent
a small (Mammoth is-80 KLOC (Rev 3033)), medium (ArgoUML version 0.32.24%660
KLOC) and large client project (Eclipse version 3.7i4.3 Million LOC)!. By looking at
different sized projects we can evaluate how applicableiNabased on the size of its
input (RQ5).

For each project we selected a single API to derive templabes the init and final
versions. For all three projects we selected APIs that weaplgcs/GUI related. We
selected graphics/GUI APIs because often developers casfiptk GUI widgets and ele-
ments; even a trivial task involves a few APl method callserBfiore, API code templates
will be a practical for GUI APIs.

We introduce each project in our evaluation and explain #tiemale behind how we
selected init and final versions to create templates from:

McGill Mammoth Project (JME API)

The Mammotf project is a massively multi-player game research framkwdrose goal
is to provide an environment for experimentation in areashsas distributed systems,

1The LOC statistics for ArgoUML and Eclipse do not includeriidines or comments and were taken
fromhtt p: / / www. ohl oh. com Mammoth’s statistics came from the project’s lead Alexaridenault
2http://mamot h. cs. ncgil | . cal

29

http://www.ohloh.com
http://mammoth.cs.mcgill.ca/

3.1. Methodology

fault tolerance, databases, modelling and simulationficat intelligence and aspect-
orientation. We chose to create templates based on its wéalye jMonkeyEngine API.
The jMonkeyEngine (jJMB) is a game engine made especially for 3D development. The
entire project is based on Java and graphics are supportejthOpenGt via LWJIGL>.
The Mammoth project is six years in development and it has lbseng the JME API for
roughly five years. Tabl8.1shows important related commits in its SVN revision history
Mammoth began using JME in a separate branch of the projdgdtNovember 2007 when
the branch was merged with the trunk (commit 1259). We decid# to make commit
1259 the init version because we estimated that the resedétdm had not enough time to
learn the JME API. Instead we chose commit 1460 as the ingivarbecause the commit
comment indicates that the team had prepared for a 3D derddhas we can assume that
the J]ME API usage is stable.

Commit # Date KLOC Note
1460 2008-02-28 ~62 3D Demo Branch Merged
3033 2011-06-1 ~80 Latest Version

Figure 3.1: Mammoth Init and Final Versions

ArgoUML (org.tigris.gef API)

ArgoUML is the leading open source UML modelling tool andludes support for all
standard UML 1.4 diagranfs.We chose to create templates of ArgoUML’s use of the
org.tigris.gef AP1 The org.tigris.gef APl is a Java library to help develop n@pl&ations
that involve editing diagrams and connected graphs. Theigng.gef APl was originally
part of the ArgoUML project, but became an independent ptaje2000. We chose version
0.16 as the init version of ArgoUML because the release notiksate that both the project

Shtt p: //j nonkeyengi ne. com

“htt p: / / ww. opengl . or g/
Shttp://1wgl.org/

®http://argoun . tigris.org/

"Not to be confused with the org.eclipse.gef API

30

http://jmonkeyengine.com/
http://www.opengl.org/
http://lwjgl.org/
http://argouml.tigris.org/

3.1. Methodology

and API stabilized as 615 issues were resolved. For the faraion we took the latest
version available.

\Version # Date KLOC Note
0.16.0 2004-07-19 ~125 New version of GEF - fixing numerous bugs
0.32.2 2011-04-04 ~560 Latest Version

Figure 3.2: ArgoUML Init and Final Versions

Eclipse IDE (org.eclipse.swt API)

Eclipse is a multi-language software development envirmncomprising an integrated
development environment (IDE) and an extensible plug-stesy. It can be used to develop
applications in Java and, by means of various plug-ins,rgth@gramming languagés.
We created templates from Eclipse’s use of the Standard &Vitigplkit (SWT). SWT is
an open source widget toolkit for Java designed to provifieieft, portable access to
the user-interface facilities of the operating systems tichvit is implemented. The
SWT is an Eclipse community project and was developed tighitia Eclipse, allowing
us to choose any public version of Eclipse and have its uskeoSWT be stable. To be
safe we chose version 3.1 to ensure that the APl usage halizsthtbecause there were
significant changes between versions 2.1 and 3.0 when Ectipsle the move to the OSGI
framework!® For the final version we took the latest release.

Version # Date KLOC Note
3.1 2005-06-28 ~3500 Second major version
3.7 2011-06-22 ~4300 Latest Version (Juno)

Figure 3.3: Eclipse Init and Final Versions

8Adapted fromht t p: / / www. ecl i pse. or g/
9Adapted fromht t p: / / www. ecl i pse. or g/ swt /
POt t p: // ww. ecl i pse. or g/ equi nox/ docunent s/ transition. htm

31

http://www.eclipse.org/
http://www.eclipse.org/swt/
http://www.eclipse.org/equinox/documents/transition.html

3.1. Methodology

3.1.2 Exceptions In Client Code

One of Maui’s limitations (discussed in Secti@r8.2 is that it cannot handle client code
that contains checked exceptions (ite.y- cat ch blocks andt hr ows statements in the
client method signature). Currently, Maui skips all clienétirods containing checked
exception logic. To show that our evaluation is not skippargjgnificant amount of client
methods we present TabB4, which reports the total number of client methods in each
project along with the number of client methods skipped duextception logic.

Project # Skipped # Total (%)
Mammoth (Init) 3 92 3
Mammoth (Final) 6 100 6
ArgoUML (Init) 39 922 4
ArgoUML (Final) 46 1045 4
Eclipse (Init) 816 9566 9
Eclipse (Final) 1205 14386 8

Figure 3.4: Number of client methods skipped due to checked exceptions

3.1.3 How We Match Templates Between Init and Final Versions

We match templates generated from the init version with tetep generated in the final
version by calculating a similarity measure between a tatepl € 7;,,;; with ¢; € Tina,
that takes into account the API calls and sequencing madeottytpandt;. Since we
only compare the API calls and their sequencing betweenawmplate we do not need to
generate complete templates, which would require some ahargpection (as described in
Section2.5). For our evaluation, we consider all patterns—detectel @ur pattern miner
with a minimum support value of 35%—as templates. Using taiepns output from
our pattern miner as opposed to complete code templateshdbo@sovide any additional
benefits or drawbacks to our evaluation.

Instead of looking for identical templates between init &indl versions, our similarity

32

3.1. Methodology

measure looks at common method overlap, based on the Jaedaxd11], to allow tem-
plates to slightly change between init and final versionseglate can change from init
to final version by introducing or omitting API calls. Obseny how much an API code
template evolves also gives insight into how stable an Aldedemplate isSRQ3). Thus,
for eacht; € T,,;; we categorize eact) € T}, into one of three sets based on similarity:
perfect, near, and half. A perfect match means lpind¢; have exactly the same API
calls and sequencing—they are identical. A near match lBtweandt; meanst; has
75% of the same API method calls and sequencing ashalf match, means that has
exactly half the amount of API calls thgthas, and the same sequencing. We consider two
templates having the same sequencing if the the intersectidPI calls between the two
templates have the same order. We do not consider controiffeem comparing the order
of two templates. The exact steps of our matching schemesdatiaws:

e For each project, generate two sets of templatgsand’’;,, from the init and final
versions of a given target project and API.

o Filter out templates frorf;,,;; andT7y;,, that have less than two API calls.

e For each template ity € T},,,, calculate the similarity betweepandt; € Ty;,, and
placet; into one of the following sets pey :

— [Perfect Matches]wheresim(t;,t;) = 100

— [Near Matches]where75 < sim(t;,t;) < 100
— [Half Matches] where50 < sim(t;,t;) <75
— [Discarded]where50 < sim(t;, t;)

We calculate the similarity between two templatesc T, andt; € Ty,q as
follows :
0 if t; does not have the same sequencing as

sim(t;, t;) = { |APIcallset; () APIcallsct,|
|APIcallset; | J APIcallset;|

if ¢; does have the same sequencing;as

33

3.1. Methodology

To make the results more meaningful we filter out all temglatesize one because
we do not consider these to be interesting. We still condelaplates with two API calls
because we did not want to rule out templates of the farih* (i.e. a condition check
a before successive calls 8. We speculate that these templates are good candidates for
code completion supported templates.

3.1.4 Template Quality Metrics

We measure an API code template’s usefuln@31) by observing its relative support
between init version and final versions of a client project.tefplate’s support value
is the number of client methods that contain the same sequan&Pl method calls as
the template. For example, given the sequenges= (a,b,¢), So = (a,b,c,b), and
S3 = (a,d,d,d,c), the templatel, = (a,b) will have a support count of two because
it is supported bys; and.S,, whereas the templat€, = (a, ¢) will have a support count of
three because it is supported by all three sequences.

An increase in relative support value for an API code tenepksitween init and final
versions means that there are more client methods in thevénsibn that exhibit the same
APl usage pattern as the API code template created in thearsion. Therefore, if we
created API code templates in the init version, a developeldchave used them to create
thenewsupporting client methods in the final version. We consitlerd¢cenario a positive
result. For example, suppose an API templ&ateas a support value of five in the init ver-
sion and ten in the final version. A developer could have Uséualcreate those additional
five client methods.

A decrease in relative support indicates that creating Afdlecdemplates using Maui
may not be worth the effort because any additional API usagddwot have been based
on the templates. As a reminder, we ensured that both inifiaadversions used the same
target API, in order to control for APl migration. We congidgatic support values as
neither positive nor negative; on one side they do documentaclient projects uses an
API (a positive result), but on the other side it still takesd to use Maui and its not clear
how useful they would be (a negative result).

We measure an API code template’s relative support valubserve if there araew

34

3.1. Methodology

client methods in the final version where a developer couilars API code template to
implement some functionality of the API. However, solelyselving a template’s relative
support value may overlook situations where client mettasdgefactored or restructured,
or when client methods are removed and newer ones were dalttetht necessarily in the
same context. For example, suppose atempt&te (But t on(),addEvent Li stenter())
has a support of seven in both init and final versions, butsikeseven supporting meth-
ods exist only in the final version and not the init versionspite having the same support
value (seven) in both versions, it is possible that one fedhat used 8ut t on was phased
out and another completely different feature that also 8ses on was introduced in six
newmethods. We take this into account in addition to the redadrpport value as a mea-
sure of usefulness.

In more concrete terms, we also observe the percentagetiaf supporting methods
of an API code template that continue to support the samel&tenip the final version. For
example, suppose a templdteis supported by client methoélso() , bar (), andbaz()
in the init version of a project. Then suppose that in the fieasion of the project’ is now
supported by oo() , bar (), andnoo() . Since two of the three initial supporting methods
continue to support’, namelyf oo(), bar (), the percentage of inital client methods that
continue to support’ is ~66% (2/3). We say that these initial supporting client mdt&o
persistedin the final version. We use this persistence metric in castjon with the rel-
ative support. A drop in persistence combined with a stable@easing support count
indicate new client methods were created where a develapgd bave used an API code
template. A drop in relative support between init and finabkians will always result in a
drop in persistence, so we continue to interpret this as ativegesult. We consider stable
persistence of support methods combined with a stableuelatipport count as neither
positive or negative. We do not track refactorings, so ifiantlmethod was renamed we
consider deleted and added again.

Another interesting feature about measuring the persisten supporting methods is
that it may indicate whether the API code templates Mauitereare project-independent
(RQ2). For example, a template having low persistence and the saipport value be-
tween init and final versions indicates that context has gadnbut the functionality it
implements is still the same. This may indicate that the tionality is componentized in

35

3.2. Results

the API code template. We postulate that if an API code teteglan be useful in different
situations within one project, that it may be useful in othmjects as well.

3.2 Results

We present the results of our evaluation as follows: Firstpnesent the aggregate results
in Section3.2.10of how we matched templates created in the init version vathplates
created in the final version. Here we present the total nurobmit and final templates
generated, as well as the number of perfect, near, and hathembetween init and final
versions. The aggregate results tell us how many templageded from the init version
withstood the test of time and appeared in the final versianrefterate, a template may
exist across versions, but its supporting methods may ri@n Tin Sectior3.2.2we present
the quality of individual code templates by examining at many times an individual API
code template could have helped a developer, on average.

3.2.1 Aggregate Matching Results

Table3.1aggregates the results of the template matching betweanithversion of each
project to the final version of each project. TaBl& also reports the number of templates
that contained control flow in the perfect and near matchatggories, denoted by #CF.

Table 3.1: Aggregated Template Matching Results

Project Init Final Perfect #) Near #) Half

(API) Templates Templates Matches with CF Matches with CF Matches
Mammoth

. 9 2 1 0 0 3

(IME)
ArgoUML

o 182 150 95 49 76 7 461
(org.tigris.gef)

Eclipse

3065 3335 2591 451 14421 1959 227527

(org.eclipse.swt)

36

3.2. Results

Comparing the number of templates derived from the init werso the final version
for each project gives the sense of how many templates Maldg/from differently sized
projects based on KLOC. An interesting result is that the ramiper of templates derived
from the init version was higher than the number of templdértved from the final version
in the Mammoth and ArgoUML projects (from 11 to 9 in MammothdatB2 to 150 in
ArgoUML). It is interesting because these two projects exjaal in terms of KLOC, but
the decrease in code templates created may indicate thetpl@asion did not add any new
coding scenarios.

Along with the total number of init and final templates are diggregated totals of each
matching categories. In the Mammoth project, only two of dhniginal eleven £18%)
templates persisted between init and final versions. Istourt that these two templates are
derived from utility methods in Mammoth. The first templatealved positioning a camera
in 3D spacedam set Locati on(new Vector3f(1.0,2.0,-5.0))), and the second
was related to conditionally attaching or detaching spatdes and then updating a geo-
metric state {node. attachChild() || node.detachChild()} scene.update-
CeonetricState()). The support values for both of these templates are ten@arahs
respectively. Both of these templates are prime candidatesole completion templates
because they are utility-related and already highly suppoother developers could bene-
fit from quickly instantiating these templates. Thus, thiesecode templates provide some
evidence that Maui is at least capable of creating code cetiopltype templates (related to
RQ4). After investigating the three half matches in the Mamnmuthject derived from the
final version, we report that they were not actually relatetheir matched init templates.

In ArgoUML, 95 of the original 182 templates persisted (apgpmately 52%), which
we feel is a considerable amount, given the seven-year starebn the init and final ver-
sions. Upon inspection of the templates, we report that ppr(ximately 18%) of them
are related to initialization of APl objects and changing gtate of APl objects, both of
which are useful in code cookbooks and code completion.risbance, Figur8.5is a tem-
plate that initializes and sets the layer of a diagram. Ei§usis an interesting initialization
template because it contains two non-obvious API cais G aphNodeRender er () and
set Gr aphEdgeRender er (), which allow for custom node and edge icons. Considering
that this template is supported by six client methods, itldseem like useful information

37

3.2. Results

for a novice programmer to have the first time they creatgyaer Per spect i veMut abl e
object rather than compiling and running their code to oy fout the look and feel of
thier diagram is different from the rest of their team’s.

Layer Perspecti veMiut abl e | ayer = new Layer PerspectiveMitable(...);
| ayer. set GraphNodeRenderer(...);
| ayer. set G aphEdgeRenderer(...);

di agram set Layer (| ayer);

Figure 3.5: Initialization Template from ArgoUML

In contrast with the Mammoth project, ArgoUML had many mamplates fall into
the near matches and half matches category, 76 and 461 tigsjyecWe were curious
to see if the templates in the near matches category weredargshorter than their init
counterpart, and further analysis showed that 39% had ebgakand 61% had shrunk. With
a few exceptions, it appeared that most of the length charagedwe to the inclusion or
omission of minor API method calls like getters and settAdded condition checks were
some of the more interesting API code template expansioreuse it showed that adding
control flow context to our APUX phase was relevant. For insgaone template includes
an API check sVi si bl e() before subsequent API calls. Similar to the Mammoth project
but in greater numbers, the half matches were tenuouslietkta their init counterparts.

The Eclipse project yielded a very high amount of template®ath init and final
version (3065 and 3335 respectively), as well as 2591 (84étept matches between
versions. In contrast with the Mammoth and ArgoUML projege found that the near
matches that expanded usually added meaningful API callsetanit template, such as
aaddModi fyLi stener () or addSel ecti onLi stener (). Upon further analysis we
found the near matches did not show a particular trend fowigigp (~56) and shrinking
(~44), which agrees with the results found with ArgoUML. Howewve feel that 74 half
matches per init sequence was too many, and similar to Mamarad ArgoUML, these
matches were tenuous.

38

3.2. Results

To summarize our matching observations, in Téblewe report that our approach does
not seem to be as applicable for smaller scale projects ithess L00KLOC), as opposed
to larger projects like ArgoUML and Eclips®@Q5). On the other hand, we consider this
result to be a positive point for Maui because it means thatldpers of medium and large
projects can use Maui to create a substantial number ofeliffeode templates using only
their own code base. It also implies that API producers mdy need a few projects (as
opposed to dozens) to generate API code templates for theimdentation.

We also report that a substantial number of API code templatated in the init ver-
sions of the ArgoUML and Eclipse projects continued to exighe final versions as well
and did not undergo any changes (Perfect Matches categote ArgoUML project 52%
(95/182) of the templates created from the init version lieedhin the final version and in
the Eclipse project 84% (2591/3065) persisted acrossorgsiThese results provide evi-
dence that a substantial number of API code templates retaitable RQ3) over years
of developement (seven and six years between init and fimalores for ArgoUML and
Eclipse respectively). This result provides evidence &Rt code templates created from
API usage patterns can still remain applicable to devekpears after they were created.

Table3.1also reports the number of perfect and near matching teeglat contained
control flow constructs. We chose not to report the numbeatfrhatching templates be-
cause they are usually tenuously related to their correpgrinit templates (discussed
above). Reporting the number of templates that contain obfitw constructs is useful
because these results indicate how important it is to captantrol flow when mining
for API code templates. In the Mammoth project one of the t8@P4) perfect matching
code templates contained control flow and zero of the neachimag category (since there
were zero near matches). In the ArgoUML project, 51% (49683he perfect matching
templates contained control flow and 9% (7/76) of the neachiag) templates contained
control flow. In the Eclipse project, 17% (451/2591) of thefeeting matching templates
contained control flow and 14% (1959/14421) of the near negtclontained control flow.
Considering that over 50% of the perfect matches in ArgoUMd a@arly 20% of the per-
fect matches contained control flow, these results prowttdeace that capturing control
flow is important because a substantial number of templateibié that developers use
control flow constructs in conjunction with their API calls.

39

3.2. Results

3.2.2 Individual Template Support Results

To get more insight into whether API code templates woulddsgul for developersRQ1),
we present the results of our evaluation that report theageenumber of times an API code
template could have helped a developer implement someidunadity offered by the API.
Table3.2reports the average support count of all API code templaasmted from each
project. The second column (Init Templates) presents teeage support count of each
code template found in the init version of each project. Baneple, the entry for the
Mammoth project is 4.6, meaning that on average, each téengémnerated from the init
version of the Mammoth project was supported by roughly flient methods. The third
and fifth column, present the average support values for ¢nfegt and near matching
templates found in the final versions of each project. Fronobservations in Tabld.2.1
and further inspection, we decided to omit the results edl&b the Half Matches category
in Table3.2because the matches were too tenuous to be useful.

In Table3.2 we also report the average percentage of initial client ogghthat con-
tinued to support templates in the final version. Using theit@ology we defined in Sec-
tion 3.1.4 we say that these supporting client methpessistedacross versions. The fourth
and sixth columns display the average percentage of isigporting client methods that
continued to support the same templates in the final verdi@ach project for the tem-
plates in the perfect and near matches categories, regggcti-or example, the average
percentage of initial supporting client methods that cargito support the same template
in the final version of the Mammoth project is 57%. This medrad,ton average, each
template generated in the final version of the Mammoth ptogetd placed in the perfect
matching category, is supported by 57% of the original tlreathods.

In all three projects, the average support value for eaclplem created in the final
version was higher than the support values for templategtaxian the init version. This
result means that on average, each code template in theppmdé&ching category had more
client methods exhibiting the same API functionality themplates created from the init
versions. For instance, templates created from the ingieerof the Eclipse project were
on average supported by approximately ten client metho@sarlvhg that on average, each

40

3.2. Results

Table 3.2: Results : Average Template Support and Persistence Ratio

Project Init Perfect (%) Near (%)
(APD Templates Matches Persist Matches Persist
Mammoth
4.6 8.5 57 N/A N/A
(JMonkey)
ArgoUML
o 6.90 10.27 9 9.42 1
(org.tigris.gef)
Eclipse
10.27 16.20 35 14.33 29

(org.eclipse.swt)

template created from the init version of Eclipse had appnately ten client methods dis-
playing the same functionality. In contrast, the templaeserated from the final version
of Eclipse, were on average supported by approximately @i6ldrclient methods for the
perfect and near matching categories, respectively.

In the perfect matches category (column 2 of Teh®, we report an increase of ap-
proximately four, three, and six supporting methods forheemde template on average,
for the Mammoth, ArgoUML, and Eclipse projects, respedjivel hese increases mean
thateachAPI code template created in the init versions of the MammatgoUML, and
Eclipse projects could have helped developers implementddame API functionality in an
additional four, three, and six instances, respectivatythe near matches category (col-
umn 4 of Table3.2) we report similar a similar increase for ArgoUML and Eckgsrojects
(roughly three and four methods, respectively).

We consider these numbers to be substantial when the totéderuof perfect and near
matches are considered. For instance, there were totabgbéwfect matches between init
and final versions of Mammoth. This result translates ingheinstances4(x 2) where
an API code template could have helped a developer, whiclsimsadl amount. However,
considering that ArgoUML had 95 perfect matches and Ecligs$2591, this shows that
there could have been a multitude of opportunities for Mauiglp developers implement
API functionality.

41

3.2. Results

When we consider the low average percentage of initial suipgomethods that per-
sisted, we see an even greater increase in the number oftopjpies where Maui could
have helped developers. In the perfect matches categoArgmUML, on average only
nine percent (approximately one client meth6d (x 0.09)) of the initial supporting meth-
ods continued to support the same templates in the finalorergVhich means, on average
each perfect matching template generated from the finaloreo$ ArgoUML retained only
one of its original supporting client methods. Considerimgt each template in the perfect
matches category was supported by roughly ten client msthbig means that on average,
nine of those ten client methods did not exist in the init Mmersof ArgoUML. In other
words, these nine client methods wavmethods added to later versions of ArgoUML.
This translates to an average of nine opportunities per lEmpvhere the developers of
ArgoUML could have had code templates at their disposahérperfect matches category
of Eclipse 35% of the initial supporting methods continuedupport the same templates
in the final version, which translates to roughly three orfdient methods10.27 x 0.35).
This result means that on average there are approximatelyewpportunities per template
where the developers of Eclipse could have benefited.

The near matches also show this trend, with an average of e&yh methods in Ar-
goUML (assuming an average of one client method persiséing)eleven in Eclipse (as-
suming an average of three client methods persisting). fiovsrize the results found in
Table3.2 the reasonable increase in support for perfect and neahingttemplates gives
us reason to believe that the templates created by Maui megytdegen useful to developers
between init and final versions of their respective projects

The increase in relative support of APl code templates gair¢h the low persistence
of supporting client methods also provides evidence thdtcddEe templates are project
independentRQ2) because the functionality found in the templates stayedséme, but
the context did not. This implies that API code templatesi@é from one project are likely
to be useful for developers in another project. API prodsiespecially benefit from this
result because they can create relevant API code templsiteg Maui for documentation
purposes.

42

3.2. Results

Button myButton = new Button(parent, SW. NONE);
nmyButt on. set Text (* * Cancel ’ ") ;

Figure 3.6: Example of a Good Code Completion template

3.2.3 Examples of Mined API Code Templates

The results found in Tablg.2 quantitatively showed evidence that creating APl code tem-
plates with Maui can be useful to developers. To qualititisaow how and why they are
useful to developers we present a few mined templates. Btarioe, consider the template
in Fig 3.6 mined from Eclipse. Albeit short, the template in B is a good candidate for
a code completion template because it is highly repeataikbe final version of Eclipse,
this template was supported by 140 new instances, on topedf@b persisting instances
from the init version.

Another interesting template, Figue7, shows the ability of APUX to detect templates
with control flow. Figure3.7 demonstrates how to create a new SWT table, populate it with
columns, and set the text of the columns.

Tabl e | Tabl e = new Table(...);

myTabl e. set Layout Dat a(new GridData(...));

myTabl e. setLi nesVisible(...);

while(...)

{
Tabl eCol utm | Col = new Tabl eCol um(| Table,...);
| Col .setText(...);

Figure 3.7: Example of a Template with Control Flow from ArgoUML

Figure 3.7 is interesting because its uses are two-fold; it could bdéulises a code
completion template because in our own experiences weyrarehte a table without im-
mediately populating it with multiple entries; and it coudd useful as a code cookbook
entry because most novice programmers would expect to addolamns directly to the

43

3.2. Results

Tabl e object via anaddCol uim() method, rather than passing the paréotposi t e
object to the constructor of theabl eCol unm.

Smaller templates are better suited for code completiopliaes, whereas larger ones
are better for cookbook entries. To show that Maui can mirte bets RQ4), we present
the distribution of templates lengths, which do not incledetrol flow statements, in Ta-
ble 3.3 Our initial thoughts were that the distribution would bemdpated by 2-letter
templates, but Tabld.3shows a reasonable spread of template lengths.

Table 3.3: Template Length Distribution

Project .

(AP) Version 2-API calls 3-API calls 4-APl calls >5-API calls
Mammoth Init 4 1 0 6
(JMonkey) Final 3
ArgoUML Init 69 45 34 34

(org.tigris.gef) Final 75 35 19 21
Eclipse Init 527 401 463 1674
(org.eclipse.swt) Final 697 537 507 1594

3.2.4 Further Qualitative Findings
Discovering Useful Infrequent Calls

From investigating the results of we observed that Maui ¢sm spot invariants of an API
usage pattern. Some of the patterns we observed were abheasital, but varied by either
one or two API calls. Also, were surprised to find that some édflls and objects were not
frequent enough to be included in a template. For instandigi Eclipse project we came
across many templates that addedtaent Li st ener (i.e.addSel ecti onLi st ener()),
but only on a few occasions did a corresponding condfeéat Li st ener appear in the
template as well. Upon further inspection we found out tla@hesupporting client method

44

3.3. Threats to Validity

would add their own custorgvent Li st ener, which lowers the probability of a com-
mon Event Li st ener . Creating an accompanyirigyent Li st ener is crucial informa-
tion for developers, even if we can only tell them to creat®bject of the interface type
Event Li st ener. Therefore, some worthwhile future work could involve sddamg for
further commonalities between supporting methods by loplat the type hierarchies be-
tween some of their elements.

Common Template Types

From browsing the results, we noticed that a substantialbeurof templates are related
to creating a new API object and setting it up (eget Font (), addToLayer (), and
addLi st ener ()). We believe the cause is the nature of graphics and GUI A€dalrse
they routinely involve creating and setting up widget-lidgects. We conclude that if our
evaluation was performed with, say, XML editors we would seay patterns of the form
openkFile(), [createElement(), set Attribute()|*, closeFiile().

3.3 Threats to Validity

The biggest threat to the validity is that the results of owal@ation do not translate to
other types of APIs because graphics/GUI type APIs are higdgeatable. Since ours is a
data mining approach, we strongly depend on the frequencgramon API usage scenar-
ios. Other, less repeatable APIs would require many clienjepts to discover the same
number and quality of API usage patterns from which to creatke templates. Our results
also do not translate to framework-type APIs where commageisnvolves implementing
interfaces and extending classes. Currently, our appraaumot detect classes that extend
an API class or implement an API interface, but we can detgmtiscalls.

We also discovered in our evaluation that Maui may not be aéicgble to smaller-
scale projects like Mammoth (less than 100KLOC). Howevemlkstale projects could
possibly increase the yield of templates by including aeotfient project of the API.

Another threat to validity is that we did not control for ARIcdution when mining for
patterns from the init and final versions of each projectidad, we simply assumed that

45

3.3. Threats to Validity

the package names would persist between API versions. Howawy changes between
versions of the API could only be detrimental to our results.

We also did not track any refactorings between the init aral frarsions of the client
projects. Not tracking refactorings could only affect tlesults related to the persistence
of initially supporting client methods of templates. If aetit method was renamed, we
consider this change to be a deletion of the old method anéhtheduction of the new
method, instead of a considering the two the same.

46

Chapter 4
Related Work

Over the past ten years there have been numerous approbhah&s/erage APl usage
information to accomplish a myriad of goals. These goalkiohe: bug detection, example
(snippet) retrieval, program navigation, inferring APksgications, and documentation.
To the best of our knowledge, our approach is first to levefdgleusage patterns to create
API code templates.

4.1 Frequent Itemset Mining Approaches

The first group of approaches use frequent itemset miningsiwoder common patterns
of APl usage and generate association rules. An associatienlescribes the conditional
probability between variables in a transactional datab@ssociation rules were originally
developed for market research to discover regularitiegdx products in a transaction
databasel5]. For example, given a customer buys a computer and mothieyr @re then
also likely to buy a printer with some probability.

CodeWeb 20], was one of the earliest approaches to use associationasla means
of finding API reuse patterns. CodeWeb specifically mined ¢use patterns between API
methods and classes being reused by a specific program. &oipéx one reuse pattern
CodeWeb found was that 100% of clients that overddet () , also overridaindol t () .

FrUuiT [3]is a framework understanding tool that refines CodeWeblsrtiegies, such
as filtering spurious or uninteresting rules, to recommetel/ant API elements given their

47

4.1. Frequent Itemset Mining Approaches

current coding context. For example, if a user instantiatesn’ zar dPage, FrUiT would
recommend making calls to elements likeédPage(). In another paper 2], Bruch et
al. devise three code completion systems based on diffeneasures of APl usage pat-
terns; one system was based on usage frequency of API elgraeonther used association
rules between API elements, and the third was a novel clagtégchnique. The author’s
findings showed that their k-NN-inspired algorithm outpenfied the other proposed code
completion systems, based on a cross-validation study gf ecl i pse. swt, but only
showed marginal improvements to the association rule tqakn

PR-Miner [16] is another tool to mine APl usage association rules, butivtieats
these rules as implicit programming rules and violationth&se rules as possible bug lo-
cations. For example, an implicit programming rule couldtdealways follow a call to
I ock() with a call tounl ock() and a violation of this rule would be the omission of
unl ock() . Indeed, Li and Zhou were able to identify 16 bugs in Linuxn®pstgreSQL,
and 1 in the Apache HTTP server by looking at the top 60 viotetito patterns detected by
their tool. However, the authors report that even with pmgna large number of the associ-
ation rules were false positives. DynaMing&g], like PR-Miner, looks for APl association
rules and for violations, but differs in that it mines rulesrh software revision histories,
rather than project snapshots. DynaMine also differs ihititynamically instruments the
patterns to look for violations. DynaMine’s evaluationaigported many false positives.

In a comparison studylf] between frequent itemset mining and sequential pattern
mining (the technique used by Maui see Sectofh.2), Kagdi et al. comment that false
positives are caused by the lack of ordering informatiorn. éxample, out-of-order rules
are hard to fix because there is no information on where tatitise missing call. Gen-
erally, frequent itemset mining is much faster than sedqakpattern mining, but without
ordering useful information like the multiplicity of elemts, the order of the elements, and
the context information of elements is lost. Maui has an athge over these approaches
because it retains the ordering of elements and multipliéitrther, Maui can mine arbi-
trary regular patterns, unlike CodeWe&t[21] or DynaMine [1§].

Some approaches remedy the out-of-order problem by engaddering information
directly into their itemsets. For example, with the JADE®Itd 32 Wasylkowski et al.
mine sets of temporal properties showing how a client mets®s methods of an API.

48

4.2. Sequential Pattern Mining Approaches

For example, a set of temporal properties coBld= {hasNext() < next(),next() <
hasNext()}, wherem < n means that there is a possibility of calling before calling
n. JADET only considers a single project to mine associatides; but this approach
was extended by Gruska et al(] to mine from 6000 Linux projects. Gruska et al's
intuition was that violations may not be detected in a simgigect if all sequences of
calls to the API are incorrect, but if compared against 60@Jegts the violations would
surface. Alattin 27], by Thummalapenta and Xie, tries to look for frequent ctindi
check patterns before or after a given APl method. For exefipbolean check on return
for f, beforef,” or “constant check on return fof, after f;. Even though these rules are
unordered, the definition of the condition checks includ#germation about the correct
position. Combining Alattin’s approach with APUX may bolstdaui’'s support of API
related conditions.

4.2 Sequential Pattern Mining Approaches

The closest cluster of approaches to Maui are those thatugkssequential pattern min-
ing to infer API usage patterns. Like frequent itemset ngnithese approaches look for
frequent patterns in a transactional database, but diffenisoding information about the
temporal ordering and multiplicity into the itemsets.

MAPO [33], presented by Zhong et al., is a tool that leverages APlaipatierns found
with sequential pattern mining for code snippet retriedde API usage patterns are used
as an index to match queries with code snippets. MAPO worksding at the sequences
of API calls a client method makes and takes a subset of segadimat cover all API calls.
The client methods are then clustered according to the ABiads they invoke and by the
natural language terms found in their method name and englokass. Each cluster is fed
into a sequential pattern miner (BIDB()]) that looks for frequent subsequences of API
method calls. The resulting patterns become the index éop#nent cluster and are used to
recommend snippets by comparing the user’s query to theindsing the representative
sets along with sequential pattern mining, Zhong et al {gr@@ch can mine patterns that
are of any length and preserve the temporal ordering of AR.chowever, unlike Maui

49

4.3. Graph-Based Approaches

this scheme does not include control flow constructs or agigation of the multiplicity of
API calls, which could be useful to users creating code tetepl

Some API usage approaches use sequential pattern miniegéoage sequential asso-
ciation rules,X = Y, where all items in the sequenéé must come before items in the
sequence’.

For example, an approach by Theummalapenta e28l.I¢oks for sequential associ-
ation rules where the antecedent contains regular API egliences and the consequent
contains calls that occur in exceptional cases. The autfersrate these rules by populat-
ing two sequence databases, one with normal executionseggiand one with exceptional
sequences, and annotate each sequence depending on whilcby2Be in. These annota-
tions are used to build rules of the foftC! ... FC"AFC, = FC! ... FC™, which trans-
lates to: an API calF'C,, should be followed by the function-call-sequeric€’ ... FC™
in exception paths, when preceded by the function-calleecgr'C! ... FC™.

Kadgi et al. present an approad8] to include syntactic context (e.g. if an API call
is in a for loop) when mining for sequential association suledDuring pattern mining,
their approach inserts tags around API calls indicating ttney are within a control flow
structure. For example, an API call) inside ani f statement guarded by a calltg) ,
would be represented as if_cond = 70" > a < /[if_cond = 7b" >. Maui's Regex
model uses a similar strategy (discussed in detail in Se@i.?, by including tags to
represent control flow, but only includes tags at the begimaind end of an API sequence
within the control flow instead of tagging each element. TWwe strategies are more or
less equivalent, but Maui’s strategy results in betterqrerince because it inserts fewer
tags into the sequences, making it easier for the patterarmbiecause of the reduction in
complexity.

4.3 Graph-Based Approaches

GrouMiner, presented by Nguyen et al., is another tool ftraexing object usage patterns,
but uses graph-based algorithms instead of frequent itemiséng [23] to discover com-
mon usage patterns. Essentially, Grouminer creates &{git@acyclic graph) DAG called

50

4.4. Regex-Like Approaches

a groum (graph-based object usage model) to represent an objeetigeun code; nodes
represent object actions (i.e method calls or field accgssesedges represent the order
these actions are called. GrouMiner then mines for usaderpatby looking for isomor-
phisms among groums. Nguyen et al. encode Groums into Extsrseo facilitate finding
isomorphisms. GrouMiner also detects violations by logkr subgraphs of Groums that
have a lower frequency than a user-defined threshold.

PARSEWEB and Prospector are two graph-based APl usage appsoatiich try to
answer call chain queries, where a user specifissusicetype and a desiredestination
type and wishes to know the sequence of intermediate metaliglto go fromsource
to destination PARSEWEB R6], a tool by Thummalapenta and Xie, answers call chain
gueries by mining for frequent method invocation sequeribiSs) from code snippets
found on Google Code search. After clustering similar MISS(RBEWEB creates a DAG
from the source type to the destination type and returnshbeest path between the two,
since there could be multiple possible answers. Prospddi@y developed by Mandelin
et al., uses an API’s class declarations, field declaratiamd method signatures to build
a signature graphto answer call-chain queries, instead of building grapbsfiASTs.

In a signature graph, nodes are class types declared by thamiiPedges represent the
operations to go from one type to another. Like PARSEWEB, Prispanswers queries
by finding the shortest path between one API type to anothddlit®nal information about
legal downcasts can be added to the signature graph by argabtent code.

4.4 Regex-Like Approaches

Gabel and Su propose a Binary Decision Diagram (BDD) baseaappto mine two letter
micro-patterns (for examplé ™) for API specifications. §]. The authors later extend this
approach with a tool called Javeif][to chain the micropatterns in to larger patterns. In
a different approactf)], the authors mine temporal properties from dynamic tracgisie
using a viewing sequences of APl method calls in a slidingdevm and monitoring the
historical statistics of how many times a candidate patierfollowed or violated. Liu

et al.’s approachl[7] also mines two-letter patterns that follow three parécidcenarios,

51

4.5. Usage Statistic Approaches

initialization (i.e. an ni t method followed by some other call), push-pop, and finabrat

(i.e. an API call followed by a call to al ose() call). They generate a list of APl usage
rule candidates by replacing the symbolic function namesmof the three existing rule
templates with concrete API function names. Then they feedemplates into a model
checker to see which are valid.

4.5 Usage Statistic Approaches

API usage statistic approaches study APl usage by lookinlgeatrequency with which
each API element is used by clients as an indicator for ingpoe. Usage statistic ap-
proaches are usually the basis for API recommendationregstie recommend interesting
or crucial parts of an API to a developer. PopCb# [by Holmes and Walker, is a tool that
simply counts the number of times an APl element is refer@besed on four structural re-
lationships: method calls, field references, inheritanod,method overriding. Jadeit2q

is another tool, by Stylos et al., that aims to improve APlalzocs by helping direct de-
velopers’ attention to useful API elements. For exampldeila resizes the font of API
elements in the class and package view proportionally tatheber of Google hits they
get. Aktari [22], by Mileva et al, looks at the popularity of different vesas of an API to
help developers select the best version. Aktari works bigifapat the referenced APIs for
a corpus of projects along with the version number and kerp& bf the most used and
most reverted to APIs to recommend to developers.

4.6 Typestate

So far, the approaches mentioned and model API usage bynlpakiclient code that uses
the API. These approaches can be considergubagivebecause they descrilvéhat is
rather tharwhat should bewhich instead would be normative. The tools that study API
usage to find bugs or defects work by finding an API’s protogadlbserving popular usage
patterns and flagging anomalies as bugs. However, theseabdgdefects are found after
the fact and would be cheaper to fix if they were found eanighe development stage.

52

4.6. Typestate

Thus, there exist normative approaches where API desigledirse their protocol ex-
plicitly and violations can be detected statically, mudtelhow type checking is done.
These approaches build on top of a programming languagepboalledTypestate Type-
state tracking is a compile-time program analysis techmitpat enhances program relia-
bility by detecting type-correct applications of operasavhich are “nonsensical” in their
current context24]. The idea is that a typestate captures the notion of an bbgng in
an appropriate (or inappropriate) state for the applicadioa particular operation. For ex-
ample, invoking a method on a null object reference is legdanas types are concerned,
but will cause an error because the object is not in an “iiEgd” state. An object’s type
state may change when a legal operation is invoked. So inxamgle, when the object’s
constructor is called, the typestate of the object now besofimitialized” and operations
that were previously illegal can now be invoked. The typestancept was extended to the
object

Deline and Fahndrich extend the typestate concept by progasstatically checkable
typestate system, Fugue, to declare and verify state tiamsiand invariants in imperative
object-oriented program$]. An effect of this work is that Pre and Post annotations ean r
strict the order of methods clients can invoke on an objesttan the typestateitisin. For
example, suppose calling oseSt r ean() causes a stream object to move into a “closed”
typestate; this restricts calls to methods that have anrf'bpgestate as a precondition,
such agyet Dat a() . Thus, API builders can explicitly define and enforce a protat
compile time. Deline and Fahndrich’s work has been extehgdsierhoff et al. by adding
access permissions on top of object typestatpsAccess permissions describe the ways
in which an object can be aliased. The possible access momssare exclusive, exclusive
modifying, read-only, immutable, and shared access.

53

Chapter 5
Conclusion

5.1 Summary

Maui is a tool that automatically creates API code templatesed on APl usage patterns
from client projects. The contributions of our approach areovel technique for dis-
covering API usage patterns that include information alteeitordering of API calls and
multiplicity, as well as information about control flow. Inretrospective analysis with the
Mammoth, ArgoUML, and Eclipse projects, we generated ARllecemplates from earlier
versions of the project, using Maui to see if they could haserbuseful to developers in
later versions. In our evaluation we found that, on averageh code template created
from the earlier version of each project could have helpectidpers in the later version
in at least dozens of situations. We also observed that d@amilzd number of API code
templates created from the earlier versions of our dat&seained identical in the final
version, which may imply that templates created with Mauildde useful to developers
years after they are created. As for the individual API categlates, we found that Maui
is capable of creating a range of differently sized API caaplates that could be useful
for quick code injection or more complex scenarios. Finallyalso observed that Maui
is most applicable for medium and large sized projects (KL@XC). While this result im-
plies that Maui is not applicable for smaller projects, #gameans that API producers will
not need a large corpus of projects to create APl documentaing Maui. From the

54

5.2. Limitations and Future Work

perspective of the APl user and the API developer, Maui issdulisool for generating API
code templates.

5.2 Limitations and Future Work

Maui is currently a proof of concept and could benefit from & fenprovements. The
largest limitation of Maui is the manual step which the useeds to perform to create a
functional API code template. Maui can find the invariant ARdthod calls and sequence
them, but does not give much support to the user regardingb@enstruct the template.
In our experience, this manual step is relatively short aradght-forward, but users would
benefit more if we automated this step. As future work we ptaautomate this step by
incorporating a data dependency analysis to chain the ABItogether and pass necessary
data between calls. Since Maui is built on top of a static y@islframework, we could
easily extend Maui to support these additions. Additignalle could extend Maui to
recommend objects, parameters, or boolean conditionsl lmasanformation found in the
the support methods used to derive the template.

Another limitation is that Maui currently cannot generatBlAcode templates from
client methods that contain checked exceptions becausedt bt have the logic to prop-
erly traverse those kinds of CFGs. This limited us from stagyhe JBoss project’s use of
the JDom API. For future work, we would extend APUX to handiels CFGs. Another
limitation is that Soot does not always give accurate solineeand offset information
about Jimple statements, causing Maui to occasionallyofaitertain methods. We have
fixed some of the issues related to this, and submitted pstbéthere is still work left to
be done.

The last and most important piece of future work that we wiljgest is to devise
a filtering or recommendation system to help documenters ireon the most pertinent
templates (especially given that Eclipse produced ove® 8ad@didate templates). Possible
suggestions could be based on the coder’s current progragroontext or perhaps an initial
seed of APl method calls. It could also be based on the brgwsahaviour of developers
on the API's JavaDoc.

55

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical APbpocol checking with ac-
cess permissions. Iroceedings of the 23rd AITO European Conference on Object-
Oriented Programmingpages 195-219, 2009.

M. Bruch, M. Monperrus, and M. Mezini. Learning from exal@gto improve code
completion systems. IRroceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on timel&oons of
Software Engineeringpages 213-222, 2009.

M. Bruch, T. Schafer, and M. Mezini. FrUIT: IDE support firamework under-
standing. InProceedings of the 21st ACM SIGPLAN OOPSLA Eclipse Techyolog
eXchangepages 55-59, 2006.

B. Dagenais and M. P. Robillard. Creating and evolving dgwet documentation:
Understanding the decisions of open source contributorBrdceedings of the 18th
ACM SIGSOFT International Symposium on the Foundations fhiv8e@ Engineer-
ing, pages 127-136, November 2010.

R. Deline and M. Fahndrich. Typestates for objectsPiaceedings of the 18th AITO
European Conference on Object-Oriented Programmpages 465-490, 2004.

P. Fournier-Viger. Spmf : A sequential pattern miningrfrework.ht t p: / / www.
phi | i ppe-fournier-viger.com spnf/,2011.

56

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

Bibliography

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Gabel and Z. Su. Javert: Fully automatic mining of geth@éemporal proper-
ties from dynamic traces. IRroceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineegipages 339—-349, 2008.

M. Gabel and Z. Su. Symbolic mining of temporal specifizas. InProceedings of
the 30th ACM/IEEE International Conference on Software Ergging, pages 51-60,
2008.

M. Gabel and Z. Su. Online inference and enforcementropieral properties. IRro-
ceedings of the 32nd ACM/IEEE International Conference otw&oé Engineering
pages 15-24, 2010.

N. Gruska, A. Wasylkowski, and A. Zeller. Learning fro®000 projects:
Lightweight cross-project anomaly detection. Rroceedings of the 19th ACM In-
ternational Symposium on Software Testing and Analpsiges 119-130, 2010.

L. Hamers, Y. Hemeryck, G. Herweyers, M. Janssen, HekgtR. Rousseau, and
A. Vanhoutte. Similarity measures in scientometric resleai he Jaccard index ver-
sus Salton’s cosine formulanformation Processing and Managemge?$:315-318,
May 1989.

R. Holmes and R. J. Walker. Informing eclipse API prodaiectand consumption. In
Proceedings of the 2007 OOPSLA Workshop on Eclipse teajelichangepage
70-74, 2007.

H. Kagdi, M. L. Collard, and J. I. Maletic. An approach tanimg call-usage pat-
terns with syntactic context. IRroceedings of the 22nd ACM/IEEE International
Conference on Automated Software Engineenpages 457-460, 2007.

H. Kagdi, M. L. Collard, and J. I. Maletic. Comparing appohes to mining source
code for call-usage patterns.Pnoceedings of the 4th ACM/IEEE International Work-
shop on Mining Software Repositorjgmges 20—, 2007.

W. Kldsgen and J. M. Zytkow, editorsHandbook of data mining and knowledge
discovery Oxford University Press, Inc., New York, NY, USA, 2002.

57

Bibliography

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Z. Liand Y. Zhou. PR-Miner: Automatically extracting phicit programming rules
and detecting violations in large software codePhmceedings of the 10th European
Software Engineering Conference held jointly with the 13th ACGIS®FT Interna-
tional Symposium on Foundations of Software engineepages 306—315, 2005.

C. Liu, E. Ye, and D. J. Richardson. LtRules: An automatdtixse library usage
rule extraction tool. IrProceedings of the 28th ACM/IEEE International Conference
on Software Engineeringage 823—-826, 2006.

B. Livshits and T. Zimmermann. DynaMine: Finding comneamor patterns by min-
ing software revision histories. IRAroceedings of the 10th European software engi-
neering conference held jointly with 13th ACM SIGSOFT Intéomal Symposium
on Foundations of Software Engineerjqmages 296—305, 2005.

D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid rimg: helping to navi-
gate the API jungle. IfProceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementatipage 48-61, 2005.

A. Michail. Data mining library reuse patterns in usetected applications. IRro-
ceedings of the 14th IEEE International Conference on Autech&oftware Engi-
neering pages 24-33, 1999.

A. Michail. Data mining library reuse patterns usingngealized association rules. In
Proceedings of the 22nd ACM/IEEE International Conferenc&aoitware Engineer-
ing, pages 167-176, 2000.

Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller. Ming trends of library usage.
In Proceedings of the Joint International and annual ERCIM \Wbadps on Principles
of Software Evolutionand Software Evolution Worksh@ages 57-62, 2009.

T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,cf. N. Nguyen. Graph-
based mining of multiple object usage patterns.Ptoceedings of the the 7th Joint
Meeting of the European Software engineering conferencetlaad®CM SIGSOFT
Symposium on the Foundations of Software Enginegpages 383-392, 2009.

58

Bibliography

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

R. E. Strom and S. Yemini. Typestate: A programming larggiconcept for enhanc-
ing software reliability. IEEE Transactions on Software Engineerjri@:157-171,
January 1986.

J. Stylos, A. Faulring, Z. Yang, and B. A. Myers. Improgi®\Pl documentation
using APl usage information. IRroceedings of the 2009 IEEE Symposium on Visual
Languages and Human-Centric Computipgge 119-126, 2009.

S. Thummalapenta and T. Xie. Parseweb: A programmestass for reusing open
source code on the web. Rroceedings of the 22nd ACM/IEEE International Con-
ference on Automated Software Engineeripage 204-213, 2007.

S. Thummalapenta and T. Xie. Alattin: Mining alternatipatterns for detecting
neglected conditions. IRroceedings of the 24th ACM/IEEE International Conference
on Automated Software Engineerjmage 283—-294, 2009.

S. Thummalapenta and T. Xie. Mining exception-hargliinles as sequence asso-
ciation rules. InProceedings of the 31st ACM/IEEE International Conference on
Software Engineeringpages 496-506, 2009.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and Yid&tesan. Soot - a
Java bytecode optimization framework.Rroceedings of the 1999 Conference of the
Centre for Advanced Studies on Collaborative Resegragjes 13—, 1999.

J. Wang and J. Han. Bide: Efficient mining of frequent eldsequences. IRro-
ceedings of the 20th IEEE International Conference on Datgiigering pages 79—,
2004.

J. H. Ward. Hierarchical grouping to optimize an objeetfunction. Journal of the
American Statistical Associatiph8(301):236—244, 1963.

A. Wasylkowski, A. Zeller, and C. Lindig. Detecting olojeusage anomalies. In
Proceedings of the 6th Joint Meeting of the European SoftEagineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of &oEngineering
pages 35-44, 2007.

59

Bibliography

[33] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO: Migiand recommending
APl usage patterns. lBroceedings of the 23rd AITO European Conference on Object-
Oriented Programmingpages 318-343, 2009.

60

	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Creating API Code Templates from API Usage Patterns
	Overview
	The Regex Data Structure
	API Usage Extraction (APUX)
	Handling Control Flow
	Client Code with Exceptions
	Word Transforms
	Method Inlining

	Pattern Mining
	Clustering
	Sequential Pattern Mining

	Code Template Creation

	Evaluation
	Methodology
	Dataset
	Exceptions In Client Code
	How We Match Templates Between Init and Final Versions
	Template Quality Metrics

	Results
	Aggregate Matching Results
	Individual Template Support Results
	Examples of Mined API Code Templates
	Further Qualitative Findings

	Threats to Validity

	Related Work
	Frequent Itemset Mining Approaches
	Sequential Pattern Mining Approaches
	Graph-Based Approaches
	Regex-Like Approaches
	Usage Statistic Approaches
	Typestate

	Conclusion
	Summary
	Limitations and Future Work

