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Introduct;on

The Galols theory of equations over the rational
field can be divided into two main parts, Firstly, there
arises the problem of finding the group of a gliven equation
and of obtaining information about the roots from proper-
ties of the group; secondly, there occurs the inverse problem
of constructing equatlions with given group, 1t is well
known that tremendous obstacles are encountered in every

attempt at a constructive solution of these problems,

There asre several methods for finding the group
of an equation in particular cases; for example, the group
of an equation of low degree can often be obtalned by
Mertens' method of fundamental modules (referencs 1, pages
189 - 199), The classical Galois theory relates properties
of the splitting field to properties of the Galois group

(reference 1, chapters III and IV),

The inverse problem has been approached from
various directions, For the symmetric group, many methods
have been developed, including those of Bauer; Perron, and
Schur (reference 1, pages 390 - 398), For certain groups,
a theorem of E, Noether (reference 2) can be used to
solve the problem; by this method Kuyk and Mullender have
obtained & general form for equatlions with given Abelian
groups (reference 3), The work of ‘Safarevié in class

field theory has shown that for any solvable group there
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exlsts a normal extension of the ratlonal fleld, but equat=-

ions are not explicitly constructed (reference L),

In this thesls some results are obtalned in both
parts of the theory by more elementary methods, In the
first chapter, definltions and notations are established;
the Galols group of an equation 1s defined as a permutation
group, which can be considered as a faithfql representation
G of an abstract finite group G, For a éiven abstract
group G, all such falthful representations G are ob-
tained; it is shown that if there is an equation with
splitting fileld KX having as group one of the representations
G, then for any of the representations G there is aﬁ

equation with splitting field K and group G. The proof

1s constructive, and examples are glven,

In Chapter II, non-normal extension flelds are
discussed,and a canonical form 1s obtained for the roots
of non-normal 1lrreducible equations; this form 1s used to

characterize flelds and equations with nilpotent groups.

Chapter III is concerned with the lnverse problem;
two methods are given for obtaining 1rreducible equations
with prescribed group. The first is for Abelian groups,
and involves finding cycllic direct factor flelds as sub-
flelds of appropriately chosen cyclotomlic fields, The
second method depends on a theorem of Artin, and 1s §

generalization of a method developed by Young for cyclic
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groups (reference 5), For any group the problem is reduced
to that of solving a set of Diophantine equations;¢for groups
of low order, particular solutions can be obtained on a com-

puter,

This thesls 1s original except where otherwlse

stated,



Chapter T

Definitlons; falthful representations of a finite group by
permutation groups; equations which have the same splitting

field but different permutation groups,

§ 1, Definitions

The Galols group can be Introduced in several

different ways, We shall use the following definitions :-

Definition 1,1, Let f(x) = O be an equation of degree n

wlth coefflclents In a fleld F; 1let its roots be
oly; eeey Ape Any equation Py, vuu,oy) =0, where ¢
is a rational function im n variables with coefficients

in F 1s called a relation between the roots, The Galols

s

group I (f(x)/F) 1s the group of all permutations of
degree n which, when applied to the roots o4, ..., o,

leave invariant the system of relations between them,

Definition 1,2, Let X be a normal algebralc extension of

a fleld F, The Galois group 9Y(K/F) 1is the group of all

automorphisms of X which leave fixed the elements of F,

If X 1is the splitting field Fley, ..., an) of
f(x), each permutation in QT(f(xz/F) induces an automorph=-
ism in EV(K/F), and each automorphism in (K/F) induces
a permutation in 9(f(x)/F); this correspondence is an
isomorphism (Reference 1, p. 212), Y(£(x)/F) 1is therefore
a faithful representation of I (K/F) by a permutation

group of degree n,
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We take the ground fleld F to be the field of
o3 We write Ey(f(x)) " for gy(f(x)/Ro), and
9(x) for Y(K/R,).

rationals R

§2. Falthful representations of a fimnite group by permut-

ation groups,

The theorem of thls sectlon msakes 1t possible to
find all feithful permutation group representations of a
finite group by examinatlon of its subgroups, It is a

generalization of a theorem given in reference 6, p. 57.

Two permutation groups are called equivalent 1f
one can be obtained from the other by & re-ordering of the
set of permuted elements; equlvglent permutation groups of
degree n are thus conjugete subgroups of the symmetric
group Zt;. For the purposes of Galols theory, such groups
can be consldered identical, since the roots of aﬁ equation
can be ordered arbitrarily, We shall make no distinction

between them,

Theorem 2,1, Let G be & group, and let G be a faithful

representation of G as a permutation group, Then G
corresponds to a set Hy, ..., H  of subgroups of G for

which

eG geG ge G

(gﬂ H%)n () 5 )n . "(ﬂ i )= 1.

Moreover to any such set of subgroups there corresponds a



faithful representation G,

Proof, (a) Let G be a faithful representation of
G as a permutation group, Let the set of systems of

t,. )

transitivity of G be (t11 =1, t12, wees Y

(t... t ) (t t, )., Let H

21°* “22° s0ey t2n2 ses k1?2 ***>» knk i

be the subgroup of . G conslsting of all permutations
which leave t,, fixed, Let g j Dbe an element of G
carrying 'ti1 to tij; there 1s such an element for

J =1, eee, ny, end

G =H + giZHi + eee + giniHi (n, = [E:Hi])‘
ﬁ?ij 1s the subgroup which lesves tij flxed, and so

ny

B 1]
g:} N 1s the subgroup which leaves t,,, ..., tini
fixed, Let N, = ﬂ 1) - ﬂ B°; ¥, is & normal

subgroup of G, [\ ﬁi 1s the subgroup which leaves
i=1

fixed all digits, and so is the identity, Thus

(/\ Hg)n n(ﬂ _g) = 1.

geG

Let H1, cees Hk

ﬁ1, ceey ﬁk respectively under the isomorphism G = G;

then (ﬂ Hf)n...n(ﬂ(} HE) = 1.

geG g€

be the subgroups of G corresponding to
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(b) Let Hy, +es, Hy be subgroups of G such that

(/’\ Hg)fw... r\(fA\ Hﬁ) = 1

geG geG
let G = Hy + geoHy + ... + gyn,Hy (ng = le:m,))
For g eG, let [|(g) =

H

<H1, g12H1,00-’ 81n1H1, Hz,..‘, g2n2H2"”’ k,ooo, gknka
&

H1 9 gg12H1 sv e ;gg1 n1 H1 ’ gHa 2000 ’gganzﬂz se0 ,ng g000 ’ggknka

The set gHy, ..., gginiH{_—is a permutation of the set
Hy, .e0, giniﬂi’ end so ||(g) 1s a permutation, Since
(g g") = Tl(g) TT(g'), TT 1s a homomorphism of G,

whose kernel consists of all elements g for which
T(g) =1, t.e. g8y 4Hy = gg4H; (a1l 1, ), or
g € H%ij (all i, 3j). But

M= (N E*I A, n(f\H%iH
13 1 3 RN

QmG )ﬂ.ntﬁ(rjlﬁ>—1.

The kernel of || 1s thus the identity and the homomorph-

ism is an isomorphism, The group G = {[{(g) : ge G }

1s therefore a faithful representation of G,

Each of the sets H 1s a system

1r +ees By fy
of transitivity of T; if N, = () E§ , {Tl(g) : g ¢ N}
geG

1s the subgroup which leaves the system fixed, and
{TT(g) t g € Hi} 1s the subgroup which leaves fixed Hi‘
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Corol}arxﬁ1,1) Since each of the groups H1 corresponds
to & system of transitivity of G, all transiti%e feithful
representations of G are obtalned by teking k =1 1in

~the theorem, Thus any transitive faithful representation

G of G corresponds to some subgroup H for which

(ﬁ\ HE = 1, &and to any such subgroup there corresponds
ge G

8 representation G, The degree of G 1s [G:H],

Corollary 2, If the group G 1s abelian, all subgroups

are normal; thus the only subgroup for which /ﬁ\ H® = 1
ge G

is the identity, Hence by corollafy 1, the only transitive
falthful representation of G corresponds to H = 13

this is the regular representation,

§ 3. Equations which have the same splitting field but

different permutation groups,

The followlng theorem shows that if a permutation
representation of a group G 1s the Galols group of an
equation over R, , then every permutation representation

G of G 1s the Galols group of some equation,

Theorem 3,1, Let K be a fleld such that I(XK) =6,

Let G be any faithful representation of G as a permut-
ation group; then there exlists an equation T(x) = 0 with

splitting field K and Galois group G,

Proof, We use the notation of Theorem 2,1. Let Hyy ooy Hy

1) This is equivalent to Theorem 5,3,2 of reference 6,
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be the subgroups of G corresponding to the representation
T, By the Fundamental Theorem of Galois Theory, to each of
these subgroups H, there corresponds an intermediate

i
fleld K, between K and R such that 9(x/Ky) = Hy,
Let Ky = Ry(8y). We have [K:Ro(,‘?i)] [Ro(/Si):RO] =
[k:R_] = o(G),

e R (B, ):R = G) =|G:H = Ny
- [ o pi O) %m [ i-] i

Let the minimum polynomial of [51 be fy({x), with roots

Pi = F311, /312, cess Pini; we order the roots so that the

conjugate subgroups Hfij (§ = 1, eees ni) correspond

respectively to the conjugate subfields Ro(ﬁij) (35 = 1,...,n1).

Any sutomorphism in N, = M Hfij leaves
fixed all the subfields RO(F&j) (3 =1, ¢0s, ny) end
hence leaves fixed their composite Ro(@i1’ ,,,,}31n1);
moreover any automorphism in G which leaves fixed
RO(F&1, “"Isini) leaves fixed each of ROQBij)
(3 =1, ..., n;) and so is an element of N;. Thus N,
corresponds to Ro(ﬁ”, ""'1611'11)’ which 1s the splitting

field of f4(x),
k
Similerly the intersection /) Ni corresponds
1=1

to the composite of the fields Ro(@i1,...,ﬁgn1) (L =1,...,k);

this composite 1s the splitting fleld of T(x) = f1(x) fk(x),_.,

k
But () N1=(m Hg)n...q(ﬂ Hg)= 1;
geG 1

1=1 geG K |
the corresponding field is therefore K, f(x) thus
has splitting field K , and so Ey(?(x)) is o
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representation of G, Since f1(x), eeey T lx)  are
irreducible, the representation has k systems of trans-
itivity of lengths Dy ooy D3 the subgroup which leaves
fixed Pi is ﬁi = H,, and so 9(f(x)) =G,

Corollary 1, We have T(x) = f1(x) .o fk(x), where

deg £,(x) = [G:H,], Thus deg T(x) = ZET [e:H,], and so
the minimum degree for f(x) is min %F [GﬂHi] over
H

1, ev oy

all possible choices of H 1

Corollary 2, Taking k =1 In the theorem and in Corollary

1, we obtain the following result :-

Let K be a field such that J(X) = G, Let
G be any faithful representation of G as a transitive
permutatibn geoup; then there exists an irreducible equation
Flx) = 0 with Galols group G and splitting field K,
Since deg fix) = (G:H], the minimum degree for Tix) 1is

min [G:H] over a2ll subgroups H for which Ne® = 1,

Corollary.3, Let B, be the splitting field R°9611, ,,,,/31n1)
of f,;(x). By 1s a normel fleld, and 1s the fixed field

under the automorphisms of the normal subgroup Ni of G,

tus Glry(x) = Y8y =6y = o/((C) B ).
g e |

Corollary L, Suppose G 1s a direct product G1<x oo g'Gﬁ.

We can teke H, = Io[ G,l 3 in this case
i Al
AfL

T(x) = £,.{x) .. fulx), where, by Corollary 3,
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G (r,(x)) = G/(QG Hi>— o/Hy =G,

Let By be the composite of the flelds By, ..., Bj_4,

B B ;

m’ the subgroup of G for which Bi 1s the

i+1 9 o900y

fixed field is f\' Hy, or G,. By 1s the fixed fleld
prt |

under the subgroup H,, and so Bir\ §i 1s the fixed

field under the subgroup generated by Gi and Hi‘ But

this is the whole group; thus Bitﬁ §1 = Ro’ and

K = 1%r Bi‘ This cholice of subgroups Hi therefore glves
=1

T(x) as what could perhaps be called a direct product of

‘the polynomitls f,(x), ..., fu(x),

Corollary 5, BSuppose G 1s a semi-direct product G1.G

2

G. d G 1 = fed -
where . « We can take H1 G1, H2 GZ’ for

) (ﬂH):Gr\(m Gg)QG AG =1,
ged} 1 ge G 2 1 a
We then obtain T(x) = £, (x) fz(x), where

9(1‘ (x)) = G/<geG f): G/H, =G
9(f2(x)) = G/.( M) HS) G/(f\ Gg>

The field X 1s thus the composite of the normal fields
B, and B, with Galois groups G, and G/ g
1 2 2 geG %

respectively, It may occur that fﬂ\ Gg 5 1n this
geG

B =
case 2 K and B1C BZ‘
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The method of proof of Theorem 3.1 can be used
to construct the polynomial f(x) when K 1is given as
the splitting field of some polynomial ?(x), with known
roots and Galols group 'E; The construction proceeds sas

follows ¢~

Let the roots of T(x) be s eeey oy 3 8F
primitive element 6 1in the splitting fleld Ro(“1"“’“h)
of f(x) can be obtained in the form Cay * aae 0104
by following the method normally used to prove the Theorem
on the Primitive Element (see, for instance, reference 1,
p. 174 - 5, or reference 8, p, 126 - 7), The procedure
1s iterative, the basic step being to construct a primitive
element § 1in a field RO(A,,A). Let the minimum poly-
nomisls of A, M, be 1x), m(x), respectively, with

roots >\=/\1, ...,Xp and M=p,, coes frge Consider

the equations

0

i 1, ...’r

ALt Epy =gy (J=2

each of them has not more than one root in Ro‘ We select

“we

9 ..l’s

a value ¢ in Ro different from all these roots; then

1=1, ...’r

>‘i"'°f-‘j7£’\1+°/“'1 (j=2

that §= A+ ¢ pu s primitive in Ry(A,p).

) , and we show

3 eecey 8

The greatest common divisor of 1(¥ - ¢x) and
m(x) is x - j3 for if any root other than = of m(x)7

say My (3 #1), were a root of 1(§- cx), we would
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‘ have § - c:lu,.j =/\i (2ome 1), which is not so, s
therefore lies in Ro(g ), and hence so does § - oAk,
or A.

Thus we can construct a primitive element §l°
in R o») 1in the for + co( for Z 2, eee, M
O( gf>-1’ f © m E[" r £ f ’ s Wy
taking §, =o¢,. §, can then be taken as O,

We require now an element Fsi in R (B) such
that Ro(/gi) is the fixed fleld under the automorphisms
of the subgroup H;; we use the method given in reference
1, p. 211,

Consider the expression +(k) =TT (x-n0)

he H
1

(k € R ). If under the &Somorphism G = G, the element

’

g in G corresponds to the element § in 'G', we have
g(é) = g(c1°t1 + eee + cmdm) = c1o(§(1) ol + cmo(,g(m),

‘]b(k) can therefore be computed as & function of k/

Any sutomorphism h; € H, leaves ‘P(k) invariant; for

ny(Pk)) = TT (k- 1m0, (8)) = T (k - n@))
heHi heHi

"P(k) is therefore an element of Ro(ﬁi), Let

we have gy ,(P(k)) = ;T?; L - g4h(0)) (3 =1, ..., ny),
€81

No two of these expressions are identical; for if
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8131($«k)) = gij2(41k)) (34 # 3.,), then for any h 1in

! = o
H1 there exists h' 1in H, such that gij1h gijzh ’

and so gij1/gij2 € Hy, which is not so, A value for k

in Ro can therefore be chosen so that the ny values
gij‘P(k) are all differsnt{ Y(k) then has n,, or
[G:Hij, different conjugates, and so is primitive in X,

and can be taken as ﬁiﬂ
As in the proof of Theorem 3,1, we have

£4(x) = ﬁ: [x - & (MED], ana Fx) = £,x) ... g lx),

~ _3 Y3
Examples, 1. Let f(x)=x" -r (reR, r f R,)

(x - ®)(x - w)(x - ¥r?)

where w 1s a primitive cube root of unity,

The discriminant of f(x) 1s =-27r%; since thls 1s not

a square in Ro, E is Ezpé, the symmetric group of
degree 3, The abstract group G 1s therefore defined

by {a, b}, 8 = b2 = (ab)° = 1; the representation G
corresponds to the subgroup H = {b}, The splitting

field K of f(x) is Ro(rnﬂ w); we construct an equation
T(x) with the same splitting field and as Galols group G

the regular representation of G,

The following table displays the corresponding

~ —
elements of G, G, and G,
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We wish to construct a primitive element e

in K in the form 6 = 011:}/3 + czwryb-r c§w2ry3. Since

Ro(ry3, wrvs, wr?) = Ro(x'y3 wr'®), we can take ¢z = 0

3

and c1= 1.

The expressions Ay + x My are 34 xry3,

_ R
wry3 + xry3,_ wzry3 + xry'a’,w ry3 + xwzry3, wrvs + xwzr/a,
y
w2 /34» xwarys; since /\1 + x My = rv3+ xwr'/3, the only

ineligible values for ¢ are 0, 1, We take c, = =1,

2 H
giving 0 = r*'/3 - wr‘é. Since the subgroup H corresponding

to G 1is the identity, we can take (3 = 6, The conjug-

~t

ates of ©, obtained by applying the elements of G to
the roots of T(x), are r'd- wzrya, w3 - wzrya,

Wwor’ - rya, w?® - 3 WS- wi3;  thus

’

(x - v/3 - wr'3 S R y3) (x - wr'3 - wor'3)

(x - wor - ;3) (x - wr'® - "9 (x - WZrKS— W’

T(x)

it

X+ 272

[This result can be verified independently, Let X be
the splitting field of T(x); we have x° + 27r2 =
6 - (1]3 ¥®°, and so K =R (13 5, -w), since -w
th
is a primitive 6 root of unity, But w :uﬁ -1;

6, and so

hence X = Ro(rya’, w) = K, Thus | K:R J
x6 + 271‘*2 is normal; 1ts Galols group ls therefore the

regular representation G of G, ]
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2. Using that f(x) = <+ 27r® has group G,

we obtain an.equation T'(x) with the same splitting field

o~
and group G,

! \
, x6 + 271f'2 is normal, and so we take 6= /3. wr’?

~J

The representation G corresponds to the subgroup H = {b},

————

thus Y(k) = || (x - n(®)) = (k -©)(k - b(8)). Since
he{b}

2

G=H+ aH + aH, we can take g =1, & = 8, g5 = 8.

The conjugates of ‘Y(x) are :-
Vi) = (k -0) (k -0(®) = (k - - wr® (k - 2= wPr?

= k2 - 5krv5+ 31r'2/3
BBk - wfPr")

(k¥ -wr wr °=r

K2 - Zkwr’d + 3wlr >

a (k) = (k - a(8))(k - ab(8))

(k - W2rP-rB)(k - w2rwr?)

r -wr

!
k2 - 3w2krﬁs+ 5W;Q%

82 Y(k) = (x -82(8))(k - a°b(8))

k = O therefore satisfies the condition that no two of
2

Y(x), at(kx), a ‘f(k) be equal, The corresponding

equation is T'x) = (x - 35%5(x - 5w2fa%(x - 3w5m3

x3 - 27ra.

[The splitting field of f'(x) 1is clearly Ro(ryi w),

as it should be, )

Note, The method of Example 1 enables one to find a normal
equation whose group is the full llnear group of any given
prime degree p, For any irreducible binomic equation xP = a

has this group, and can be taken as f(x), (see reference 1,

pages 294 «38)
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Chapter II

Non-normal fleld extensions; a form for the roots of non-
normal irreducible equations; application to nilpotent

flelds and equations,

é 1, Non-normal field extensions

In Chapter I, the Galols group was defined only
for a normal extension: field; there are three different
ways of defining a set 57(K) analogous to & Galols group
when X 1s a non-normal extension of Ro. Let K = Rokx1),
and let the minimum polynomial of o be £(x) =
(x - 0(1)’... (x - ,); let X be the splitting field of

f(x) over R,. The three definitions are as follows :-

[

a) We can define (X) to be &(R), This is used in,
for instance, reference 8, p, 15L. The set EV(KJ is

then a group G, but 1t does not satisfy the relation
1K) = [K:R,),

b) We can take Eﬁ(K) to be the set M of all isomorphisms
over Ro (including automorphisms) from K to its con-
jugate subfields in X, These isomorphisms are induced by
the mappings o« —» o (1 =1, ..., n). The set M 1is

not a group, since there 1s a rule of combination only
between those elements which are automorphisms, However,

the relation INM| = [K:Ro] holds, This set 1s the Loewy

Mischgruppe; it 1s defined in a rather different way and
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discussed extensively in reference 9, A Galois theory
based on this definition 1s given in & paper by Baer

(reference 10),

¢) 9(K) can be defined as the sutomorphism group S

of K over R . S 1s clearly a subset of the set M,

If K 1is a normal extension each of these

definitions leads to the (Falois group as defined in ChapterI,

We prove a theorem relating the group S to the
group Gj; it will be used iIn the next section, The result
was obtained first in a different form by Loewy (reference 9)

but his proof is quite different from the one given here,

Theorem 1,1, Let H be the subgroup of G which has K

as fixed fleld. Then S = Y (H) / H, where J{ (H) 1is

the normalizer of H iIn G, .

Proof, Let a e )ZG(H); a maps o{; into one of its

conjugates, and so induces an isomorphism o, ¢ Ryl¢y) — R{e o, ).
Since H 1is the subgroup of G which leaves fixed Ro“‘t)’

aHa™ 1 is the subgroup of G which leaves fixed Ro(ao<1).

But aHa™! = H, and so by the Fundamental Theorem of the

Galois Theory Roth) = Ro(a<x1). o, 1s thus an automorphism,

and is an element of S, The sutomorphlsms q and

aal

Sa Ot &re both deflned by —,aa'(d1), and so

a Sa
& — G, glves a homomorphism of %%(H) into 8.
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Let 6 € S; 6 maps X to one of 1ts conjugates,

All conjugates of occur as g%y for some g e G;

1

let as be an-element of G which carries %, to Gt(i.

The subgroups of G leaving fixed Ro(o&1) and RO(G’OL1)
-1 -1
are H and aga.” '; since R°Q<1) = Ro(cb<1), H = aHag

end so &g € BZG(H). The homomorphism 1s therefore onto,

The kernel of the homomorphism conslsts of all
elements a e [ (H) for which o, 1s the identity
(1.e. those which leave fixed Rgl¢,)); 1t is therefore
the group H, and so S = aﬁs(H) / H,

§ 2, The roots of f{x)

Using Theorem 1.1, we display the roots of f(x)

in a canonical form,

Since K 1is the splitting fleld of f(x),
U(f(x)) =G, H 1s the subgroup of G which leaves
fixed K, or Ro(d1). G (£(x)) 1is therefore the trans-

ltlve representation
H g.H oese g H
g, egytl, ..., &g H

where G =H + g H+ .., + g (cf, Theorem I,2,1, coroll-

oll}

ary 1), The imege H of H under the isomorphism G = G

1s the stabllity subgroup leaving fixed the first digit,

Let S = {Gi :1=1, ..., s}. Since S 1is the



21,

automorphism group of Ro(o(1), 6;% 1s an element of
R (), and can be written 5251(0(1), where fsi(x) 1s an
polynomisl of degree less than n, the degree of f(x),
¢i(o(1) 1s a root of f(x); moreover any root which can
be written as a polynomial in z><,| occurs in the set
() 21 =1, ..., 8 since such a root gives rise to
i ’ ’ ’

an esutomorphism of Ro(c(1 ).

Theorem 2,1, The roots o, Polky),y wee, ¢8(o(1) form
a system of imprimitivity for ﬁ; “each conjugate system

can be written o , ¢2(°.<g)’ coes ¢s(dr).

Proof; Let o, be & root of f(x) not included in the

set 751(ct1) . Since f(¢1(o(1)) = 0, f(x) divides

£l (x)), and so f£(#;l¢)) = 0, Thus Py(et,) 1is a root,

for 1 =1, ..., s, None of these roots is included in

the set {951(«1)}; otherwise we have R l¢,) = Ry(#;(x )) =
= R

Ro(¢j(o<r)) o(o(r), for some 1 and J, and this is

not so, Continulng until the roots are exhausted, we obtain

disjoint sets of the ®equired form,

Let ge G; suppose g carries ¢k(o(r) to
¢k.(«r,). Then g carries the fleld R (%, (« )) = R («,)
to the fileld Ro(¢k'(°(r,)) = Ryl 1), Thus it must carry
each of the roots ¢i(o(r) (1=1, ..., s8) to one of the
roots 75j(o(r,) (=1, «o., 8), and so each of the sets
{¢i(°(r)} is a system of imprimitivity,
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We have now shown that the roots of f(x) have

the form -

o« 952(«1 ) coe ¢S(o<1 )

iy ¢2(o(m) cere ¢s(°<m) (sm =n) ;

each row i1s a system of imprimitivity for E, The auto-
morphism group S can be written {Gi : Gi@i1) = 7&@&1)};
it 1s isomorphic to the group of functions

{¢&(x) mod f£(x) : 1 =1, ..., s},

§ 3, Application to nllpotent fields and equations

We first define nilpotent groups, and state the

results concerning them which will be used subsequently,

Definition 3,1, A group G 1s nilbotent if there exists

a finite seriés G = AOQ A1 b= Aa‘_a_ ces 2 Ar = 1 such that
(1) ay96 (L=1, ..., )

(11) A, 4 / &; 1s contalned in the centre of G/A;

(1 =1, ..o, 7),

This definition 1s applicable to finite and Infinite groups;

- for finite groups the following definition 1s equivalent,

Definition 3,2, A finite group G 1s nllpotent 1f it i@

the direct product of its Sylow subgroups,

We shall require the following theorems :=-
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Theorem 3,3, Every proper subgroup of a nilpotent group

is a proper subgroup of its normalizer,

Theorem 3,Li, A finite group is nilpotent if and only 1if

1ts maximal subgroups are normal,

Proofs can be found in reference 6, chapter 10,
We now use Theorems 1.1 and 2.1 to characterize fields and

equations whose Galols groups are nilpotent,

Theorem 3,5, A normal field N 1s a nilpotent extension
of R, (i,e. U (N) 1s nilpotent) 1f and only if every
intermediste fleld between N and Ro has a non-trivisl

automorphism group,

Proof, &) Suppose that N 1is a nilpotent extension of
Ro. Let K be any intermediste field between N and Ro’
and let K be the smallest normal extension of Ro con=-
taining K, The Galois group G of X over R 1sa
factor group of fﬁ(N), and hence is nilpotent, Let H

be the subgroup of G which leaves K fixed; since we
take K # Ro’ H 1s a proper subgroup of G, Hence by
Theorem 3,5, H 1s a proper subgroup of 2?G(H). Thus if

S 1s the automorphism group of K over R by Theorem 1.1,

o
S:WG(H)/H#1.

b) Suppose that every intermediate field betwsen N and
Ro has a non-trivial automorphism group over Ro' Let H
be a maximal subgroup of %I(N), and let K be the fixed

field in N under the automorphisms of H, Let K = Ro(“):
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and let f(x), of degreen n, be the minimum polynomial
of X, Since K has & non-trivial automorphism group
over R, , K must contain at least one of the conjugates

of & (i.,e. X 1s not the only root of f(x) 1in Ro@()).

Suppose f(x) 1s not normal; let s be the
number of its roots which lie in Rokx). Then, as in

Theorem 2,1, the roots of f(x) have the form

o 752(4) ces P ()

L ¢2(o(m) ces ¢s(o<m) (sm =n, s<n);
each row is s sysfem of imprimitivity for the Galols group
of f(x). Consider the expression Y (c) = 7E% (c - ¢i@())
(c € R)). Under the permutatiéns of the Galozl group of
f(x), Y(c) takes at most m different values; ¥(ec)
therefore has degree at most m over Ro. No two conjug-
ates of ‘P(c) can be ldentlcally equal, and so we can
choose & value for c¢ such that they are all different,

¥(c) then has degree m over R,e

Consider the field _Ro(?(c)); we have
R () > ROOP(C)).D R (proper inclusions).
Let the subgroup of ¢ (N) for which ROOP(c)) is the
fixed fleld be H1; by the Fundamental Theorem of Galols
Theory
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Hc Hy < G (proper inclusions) .
But this is not so, since H 1is maximal, f£(x) 1s therefore
normal, and Roht) is & normael field; H 1s thus & normal

subgroup of & (N), Hence, by Theorem 3.k, (N) is

nllpotent,
Note, N 1s equivalently chsracterized by the condition

that every minimsl intermediate field must have a non-
trivial automorphism group. For suppose N satisfies
this conditlion; let H be a maximal subgroup of Ey(N),
and, as in part (b) of the preceding proof, let Rokx)

be the fixed fleld iIn N wunder the elements of H, Since
H 1is maximal R («) 1is minimel; for if there were an
intermediate field between R (x) and R, , the subgroup
of U(N) 1leaving it fixed would be intermediate between
H and 9(N), _Rohx) therefore has non-trivial automorph-
ism group; as before, it must then be a normal fleld,
because otherwise the intermediate field ROCP(C)) could
be constructed, H 1s thus a normal subgroup, and €7(N)u

nilpotent,

Corollary, Theorem 3,5 can be stated as a characterlzatlion
of nilpotent equations in the folbdowing way -

An equation f(x) = 0 with roots Kys eeny Ky
has nilpotent Galois group G if and only if, corresponding

to eny polynomial ple,, ...,,) not in R_, there exists

8 polynomial g(x) such that p(d1, cees dn) and
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q{p(d1, ""‘*n)} are different and conjugate over Ro‘

Proof, (a) Suppose G 1is nilpotent, iet P ==;Kd1,...,dn)
¢ R ; then Ro(p) is a subfield of the splitting field

R of f(x), Since G is nilpotent, by Theorem 3,5

BO(P) ha; a non-trivial auto@orphism group., Thus it
containe at least one of its conjugates ovef Ro’ i.e,

there exists q(x) such that /8 and qVS) are different

and conjugate over Ro.

b) Suppose that for every polynomial p(d1, ,..,o(n)
there exists & corresponding polynomial g(x) with the
required property,/., Let Ro(ﬁ) be any subfleld of X,
the splitting fleld of f(x), Since 5 1ies in X,

f5= p(o(1, eees &) for some polynomial p, Thus f3 has
& conjugate q(f3) %/3, and the mapping 3 —+»q(ﬁ) glves
an automorphiém of Rc(ﬁ). Ro(ﬁ) therefore has a non-
triviael automorphism group, and by Theorem 3.5, G 1is

nilpotent,

The condition of Theorem 3,5 is clearly satisfied
for abellan fields, Since every subgroup of an abelian
group is nofmal, every Intermediate field between N and

Eo 1s normal, and so cannot have a trivial automorphism

group,

Theorem 2,1 can be applied directly to character-

1ze nillpotent equations of prime degree,
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Theorem 3,6, An irreducible equation f(x) = O of prime
degree has nlilpotent Galols group if and only if it 1is

normal, and so c¢yclle, -

Proof. a) Suppose f{x) has nilpotent Galois group E;
and is not normal, As in Theorem 3,5, part (a), if « 1is

e root of f(x) there must be at leasst one more root of

the form $(X), G 1s therefore imprimitive. But this is
impossible, since G 1is of prime degree, f(x) 1s therefore

normal, and so cycllc,

b) If f(x) 1is eyclic, it is also nilpotent,
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Chapter III

Two methods for constructing irreducible equations with

gilven group.

§ 1, 4 method for constructing equations with given

Abelian group

Let A be any finlte Abellan groun, Then A
can be written as a direct product of cyclic groups of

prime power order; (see, for instance, ref, 6, p. 4O),

Let A =
ot C nE C o C,,:z.‘& a( ran®

. ol
where Cpa;; is the cyelic group of order pi“’

(9

kre -

o 0. 0C,
e P

(pi prime, 1 =1, ,.., k), We shall refer to the values

Pyloyg een gy )y Polpy wee o s eens PK wen B )

as the invarisnts of A,

Let m = 5?5 . GConsider the arithmetic progress-
ion 1,1 #m, 1T + 2m, ,.,; 1t includes an infinite number
of primes, We select a prime TI from this progression;
similarly a value of T 1s chosen for each pair (1, J)

in such a way thet the primes TI are all different,

Consider the TTth cyclotomic fleld, Let &
denote a primitive 1Tth root of unity; 1t is a primitive
element in this field, The Galois group 5(Ro(aw)) is
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cyclic, of order T1l-1 (reference 1, p. 312), We have
constructed 1l in such a way that m 1s a factor of =13
let s = (T=1)/m, The Galols group Q(Ro(ew)) contains

& subgroup 8 which 1s cyclic of\ order s, and so there -
is ﬁ subfield B of Ro(&F) which 1s the fixed fleld
under the automorphisms of this group, The Galols group

of B 1is then isomorphic to the factor group 9(Ro(£,“,))/8,

and so to the cyclic group of order m,

A primitive element in the field B can be con-

structed as follows :-

Let the automorphism & —> e; be primitive in
the cyclic group Q(Ro(eﬂ.)) (i,.e, £ is & primitive
(TT-1) bR congruence root of 1 mod T[). Then the auto-

m .
morphism & —> 61'; is primitive In S,

m f,?-rn (=) m
Let 9'=e.n.+~e:|. A T S 1

we

0 1s clearly fixed under any sutomorphism in S, Consider

the sutomorphism & —;egf, where f 1s not a multiple
of m (i,e. .an automorphism in 9(Ro(€.“.)) but not in 8),
Under this autor;iorphism 6 becomes

£ (s-Dm+¥

£ me+
¢=E,1Pr+€:_ +...+£P

(The values of ¢ are the s-fold Gauss periods,) If

6=¢, €r 1s a root of
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m m (8=DM AT
+ .XP mod 1T+ xf)z mod TI + x‘o ;

b4 Eee

_ XP"mod Tr + Pm*‘;mod T|'+ P(S-i)mff'modﬂ

X 3...“']( oooouoooo.o. 1.1

This equation is of degree at most T-1, and cannot be an

identity, since f 1s not a multiple of m, But the min=-

Imum polynomial of Eq 1s x° "+ x + .o+ 1 =03
equation 1,1 must therefore be thls polynomial, This 1s
impossible, since the powefs occurring in equatlon 1,1
are all different, and the coefficlents are not all the
same, Thus 6 # ¢, O 1s therefore primitive in the
field B, Since B 1is the fixed field for a normel sub-

group, it is a normal field.

For each pair (1, j) corresponding to a cyclic
direct factor of A we now have a prime number T| and a
field B with primitive element ©, We denote these by

Ty, Byys» 1. We show that the fleld RO(Zi Zj 9”)

has group A,

We use ths following properties of cyclotomic
filelds t=

(a) Let (n, n') =1; 1let &, end €, be primitive

th n'th

n and roots of unity respectively, Then (En En,)

1s & primitive (nn')*® root of unity, and Ro(snsn') =

Ro(en, Sn?)‘
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(b) Under the conditions of (a), R (e )NR (e ,) =R,
, o n o n o)

The composite of the filelds Ro(ﬁTr ) (a1 1, 3,
13

' th
except (1, j) = (1, 1)) 1is, by property (a), the n

cyclotomic field, where n = TTi .
all 1, 3 J
except (1,]3)=(1,1)

Since the values ng are all different, (n,‘ﬂ;1) =1,

This composite therefore intersects R (e ) in R_,
o T, )

by property (b), Consequently the composite of the fields

By ~(all 1, J except (1, J) =1(1,1)) intersects By,

o+ The pair. (1, 1) can be replaced by any one of

the pairs (1, i), and so the direct product of the fields

Bij can be formed; 1ts Galols group 1s the direct product

of the Galols groups of the components, and so is isomorphic

to A,

Conslider the element Z > eij in ]@|Bij'
1]

of
Each element eij has piij conjugates, and so there

are o(A) conjugate expressions of the form :Zl EZ: Bij’
1 3

where @', 1s some conjugate of Gi Suppose two of

1] 3°

these expressions are equal; suppose > Z 8! =>_ > a" .
1 3 4 T 3 1
" -t = " ,
Then 6y - 6, Zi Zj: 61 Zi % e'u‘
| | (1,3)#(1,1) (1,3)#(1,1)
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Stnce all the fields B,, are normal, the left side of the

above equation is an element of B and the right &ide

11

an element of |®4 Bij’ These fields intersect only
i
(1,3)#81,1)
1 _ N . 1 = Af
in Ro’ and so 911 911e R,; set 611 B

!

—> 9:1 is an automofphism of B of some order;

11 11
r - must therefore be zero, and 9;1 = 9:1. Similarly
9'1 = gj' A1l the o(A) conjugate expressions are thus
different, and so 2. o 911 has degree o(A) over R_;
A 1 3

it is therefore primitive in T;TBij'

I;iBij 1s normal, and so the equation

1—T(X - zz; 9 = 0 has group A,

Note 1. It is not necessary to use the decomposition of
A into cyeclic direct factors of prime power order; any
decomposition into cycllic direct factors wlll suffilce,

The values of m can then be taken as the orders of these

cyclic direct factors,
Note 2, The construction gives a field of group A as a

subfield of lal Ro(an. ), which is the cyclotomic field
i,] 1]

of index ] ] ﬂij, It was proved by Kronecker that every
1,3

Abelian fleld 1s a subfleld of some cyclotomic fleld; how-

ever our construction gives only those Abelian fields which
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are subflelds of cyclotomic flelds of square free 1index,

Twp examples of thls method are given, 1llustrating

two different ways of carrying out the computation,

Example 1,2, We construct an equation for the group A
with invariants 2(1,1) (i.e. C, ¥ C, the four - group).

We require two different primes Tﬁ1 and .H}Z
such that 2 | Tq1-1 and 2 |7T12-1; we take 'ﬂ}1 =3,

T[l2=50
Since T -1 =2, 1in this case s =1 and
611 = 83. We have (ﬂ}2-1)/2 = 2; here s =2, We require

a value for P, a primitive LY congruence root of 1 mod 53

f =2 1is such a value, Thus we can take

8 - P _ L
612 554-85 £5+£.5 .

+ sg) then has group A,

The conjugates of (53 + 65 + 6?)

(s§+a5+eé‘), (s3+s§+e§), (e§+e§+eg); the

The field R (E. + €
e fle o( 3 5

are

equetion f(x) =
{x-(s +E 4E )}{x (e2 5*Este, )}{x (e, ,so e )}{x (e el +g )} =
therefore has group A,

On multiplying and using the relations £§+Ez+1 =0

]
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8# + 83 + 82 + &€ 4+ 1 =0, the equation becomes
p) p) > 5
f(x)=x’++b,x3+5x2+2x+h.=0.

[This result can be verified by obtaining the cublc re-
solvent (see reference 1, p, 252-3), The resolvent is
x - Sxa - 8x + 12, which has roots 1, -2, 6, f(x)

therefore has as group the four group,l

Example 1,3, We tske A 2.02 x C3; the invariants of A
are 2(1), 3(1),

(A 1s isomorphic to the cyeclic group of order 6;
we therefore have lmmediately one equation of group A,

the 7th cyclotomic equation, We construct another one,)

We require primes Tﬂ1 and 'ﬂé1 such that
2 1 M1, 3 |Tl'21-1; we takg TT11 =3, Tr21 =7, For

(1, 1), s=1 &and €, =¢ For (2,1) s =2, P must

, 3°
be chosen as a primitive eth congruence root of 1 mod 7;
m 3 6
we take =3, Then 6 =g, + eP = &_ + 53 = E&E_ + &
p=3 21~ &7 * &7 (O i L

The fleld Ro(&:3 + 87 + 6?) therefore has group A, Since
this field is normal, an equation of degree 6 with

6
(83 + £7 + &7) as a root will have group A,

Let X = £ then X2+X+1 =0 secsoece (1);

35

let y= ¢, + eg; since 86 + 55 + gLL + g3 + 52 + £ +1 =

7 T 7 6 1 7 7

o)
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(e3 ’1"') (82 1_2') (e 1_) 1=0
+ e3) + + ¢2) + +¢ )+ 1=
(S

.. (Y5-3y)+(y2-2)+y+1=o
or y5+y2 -2y =1 =0 teeseveenssesssscanas (2)4

Let z = x4+ y; substituting y =2z - x 1in (2), then
eliminating x between the resulting equation and (1),
we have

26 + 525 + 8zu + 323 + 522 + 30z + 13 = O,

Since this equation is of degree 6 1t has group A,

§ 2, A method for constructing equations with glven group,

o

This method 1s an extension of a method given in
reference 5 for cyclic groups only, The proof given here

of the basic theorem (Theorem 2.,2) is new,

Let K ©Dbe a normal slgebraic extension:of the
rationals; let its Galols group G be {c} = 1; S5 cees Gh}’
Then there exists in K an element & sudh that
Ga(e), ee.s 5,(6) form a basis for K over R . Such e
basis is called normal, and its exlstence 1s proved in, for
instance, reference 11, p. 66, We consider K now as s
hypercomplex algebra over Ro with baslis elements
s (8), .., o, (8); 1let YE (1, 3, k=1, ..., n). be the

1]
structure constants of this algebra, defined by

n y
0‘1(9).s'j(9) =2 ]

k
> q—k(e) (Yij €R_).
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[ We note that this is not the group algebra of the Galois
group G, The elements of G are automorphisms,.and the
group product o, G,

1 1s glven by o, [G}(e)], not by
(). sy(0).])

Belng lineerly independent, o,(8), ..., s,(8)
are all different, and so are a complete set of conjugates;
they asre therefore the roots of an irreducible polynomisl
f(x), This polynomiel is normal, and its splitting field
1s K; 1its Galols group 9(f(x)) 1is thus the regular

representation Gg of G,

k
Lemma 2,1, O can be so chosen that the values X;j have

the following propertles -

m 1 m 1
(02 ¥y Y = 2 Yy Yy 1141k 1)

k k -
(2) Yij = in (11 1, 3, k)

(3) Z;_ X;? ' ‘%k (a1 j, k) (Kronecker )

D A

Gi,dj

k
Xij (a1l 1, j, k, all & e GJ).

Proof, Let & denote «,(8) (1=1, .,.,n),

(1) Since K is assoclative, o(i(o(juk) = (o(io(j)o(k;
thus > > ¥ Vi< = Y S ¥ oyl
= G ke “im 1 — 3 1] ‘mk T1°

Equating coefficlients of ‘%1 gives (1),
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(2) Since K 1s commutative oy £j = &4 4.

Thus 2 Xikx = 5 Yk
K J

ient
K - 31 o(k, Equating coefficients

of «, glves (2).
(3) Let > X, =T T 1s rational and non-zéro, The
i
set {f_i_ 1 =1, a0, n} is then also & normal basis
r
]

for K, and we can replace © by 6., We assume that
r

thls has been done; 1.e. 6 1is so chosen that

Z G,(6) =1, Thus Z L, L, = «,, glving
1 1 T 17 J |
k
S 2 ¥C « = «,.
1 Kk 13 k J
Equating coefficlents of «, gives (3),
(L) The relation o« o( Z X K, 1is a relation

between the roots of the equation f(x) = 0., It is therefore

left invariant by any permutation & in Gg., Hence

A 1 %oy = % Yij % » &lving

sk k
2 Yd‘i,cj T Zk Yij X ke

k

Equating coefficients of «  glves (L),

When © 1s chosen as in Lemma 2,1,.the coefficlents
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k
of f(x) can be expressed in terms of the values Y.

1]

For let | represent the three-dimensional array of

n? rational numbers .X;§; let cf" be the array obtained
. Y sk k c e
by writing o1, 6] in place of X;j' For Gge ,

M= T (vy (1)),

Let ¢(d1, ...,dn)‘ be any symmetric polynomial
in d1, coes K By repeated application of the multiplic=-
ation law, 95(0(1, cees o(n) = > ay(T" ) o, s where each

i "

a4(") cean be calculated as a polynomisl in the elements

of Fﬂ

For any given r, there 1s a permutation o,

In G, which carries 1 to r, as Gg 1ls transitive,

-
We have
oay(T) dy = Py, e, y) = Bl 15wy Ag p)

2oailel) Lo, = 5 el gy

Equating coefficients of o« , e (') = a1(r1);

this is true for all r, and so B(«y,... e ) = a(l") Zi <y o

We have chosen 6 so that Z: o«

n 1 = 1, giying

¢(d1, cees drﬁ = a1(f’). Thus each coefficient of f(x)

can be wrltten as a polynomial in the elements of f‘,

Let flx) = x™ - so([M) 2™+ (.o # (-1)7s (),
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We now show that 1f for a given group G we can
f£ind velues of ‘Vlg satisfying conditions (1) ... (L)

1
and such that the resulting polynomial f(x) is irreducible,

then J(£(x)) = Gg.

Theorem 2,2, Let G be a group of order n, and let its

regular representation as a permutation group be G, Let
k ' :
7{15 (1, j, k=1, ..., n) be rational numbers satisfying

m ~<y1 m 1l
(1) % Xjk ¥ = }r; Yy X (all 1, J, k, 1)

mk

(2) 7/11; = ;; (a1l 1, j, k)

I
(3) Zi- Xij = Sjk (a1l j, k)

ok k
() 7/6_1’0,:1 = Xij (el 1, j, k, ell o e Gg),

From the values V. a certain polynomial f(x) with

i

k
J K
ratlional coefficients can be obtained; 1f the values X;j

are such that thils polynomial 1is irreducilble, 1ts Galols

group is Gg,

Proof, Let Xys sees X, be arbitrary symbols which a#e

' > Yk
multiplied accordling to the law x, x, = X
173 " 1 "k
let A be the hypercomplex algebra over the rationals

having these symbols as basis elements, From (1) and (2),

A 1is associative and commutative,
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As previously, let [ be the three-dimensional
k
array of n5 rational numbers yij

end let P(xq, ..., xn) be any symmetric polynomial in

(i: J, k=1, <., n):

X4, eesy Xpo As before, since from () = sV (al11 o e Gl

we have ¢(x1, ceey X ) = }1: as (M) x4 = a1(r') Zi Xy
n

Let f(x) =T (x - xi); then
{=1

Tx) = x0 - s 0PN x) 20+ s+ (e (MU x),
1 i

where the si(r') (1 =1, ..., n) are polynomials in
the elements of [,
Since s1(|—')(z xi)=(z xi), s (M) =1,
1 1 1
Let now £(x) = x® - 5, (") =" + ...+ (-1)% s ("),

From (3), (% xy) x =2 > Ukx =

§k: éjk X = X435 thus for a e A, a(%-. x4) = a, and so
(2 xy) 1s an ldentity T in A4,
i

Let R—o be the subset of A given by

{rT :reR1, Since T 1s an identity, R_ = R,

end so R, is a fleld., T(x) is a polynomial over this
field,

Suppose f(x) 1s irreducible over R _;

o} then

T(x) 1s irreducible over R—o. Since ?(x1) =0

3
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n-1
3 Xys eees Xy form a basls for the extension fleld

-

(x1). As these elements are linearly independent over

" o7

0! they are also linearly independent over Ro' They
81l belong to A, and A 1s of order n; hence they form

e basis for A, and so A = ﬁ;(x1). As x X

2, '..’ n
also belong to A, it is a splitting fileld for f(x),

A 1is of order n over R_, and so

|f7(A/ﬁ;)| =n, But by (4), any permutstion & e Gg

of Kyy oees Xp glves an automorphism of A over ﬁ;, hence
I(Fx) /R = g4/ Ry) = s,

Under the 1somorphism R, = R_, the polynomial £(x)

is carried to f(x). Thus the splitting fleld of f(x)
1s isomorphic to the splitting field of T(x), the roots
of f(x) being carried to the roots of Tf(x), (See

reference 8, p. 108,) Hence
F(e(x) / R)) = Y(F(x) / R)) =G,
We note that the equation
f(x) =x - 31(fﬁ) I U D L s, (T7)

depends only on the order of G and not on its structure;
the si(r’) are known polynomisls in the n’ unknowns
X}E, Also, conditions (1), (2), and (3) do not in-

volve the structure of G, The equation

£x) = x® - 8 ([) 2" 4 e (1) s, (T) = 0



La,
is therefore a general form for equatlions of this type
having group of order n, provided F’ is such that f(x)
is irreducible and that conditions (1), (2), and (3)

are satisfied, The structure of the group 1s then imposed

on the general equation by condition (L),

2,5 Matrix formulatlion of the conditions on r1.
I X
L = C. = . Let
et g [Z;j]a k [X;j e
U= [uij] be the (nxn) matrix with uyy =1 (el1 1, 3),
= [u®] ve the (nxn) matrix with u'" =
1] 1]
§,, (811 1), Let P_ be the (nxn) matrix obtained

Jk
by applying the permutation ¢ to the columns of the

and U.k

identity matrix, (Premultiplication by Py and postiul-
tiplication by B! effect the permutation o on the

rows end columns respectively.)
Conditions (1) - (4) can now be written
(1) B, =0 7 (11 1, k)

(Condition (1) can only be written in this way if

condition (2) 1s already satisfied,)

(2) ¢ 1is symmetric (a1l k)

k
(3) U ck = U.k (al11 k)
(L) PgC PL=0C,  (all k, all o e G,)



3.
or, equivalently, F_ fﬁi Pé_: r;i (211 i, all o e G,),

We show that these conditions are equivalent to

the followlng :-

(a) C, 1is symmetric

(b) UC =10

= 1
(¢) ¢ =P .C, PL (ell & & Gg)

1
(a) M(rs Ty BQ) = (P 17 Pg) T, (all o e G5,

Clearly (1), (2), (3), (4) imply (a), (b), (c), (d).
Assuming (a), (b), (e¢), (d) we prove (1), (2), (3), (L),
Since Gg 1is transitive, for eny r there 1s an element

oL, in G¢ which carries 1 to r.

B ' c, =P_ C P!,
y (e), N s %1 Py
s C'=P_ C'PL =P ¢ P! (by (a))
1 S 1S 5 1 93 v
= C

i S 6 & 0 ¢ 5 0 685 0 8 008 O0P OO O O OSPR e (2)

UC =UP_ ¢ P! =UC P' =U _ P! (by (b))
k %k 1 Sy 1 Sy gy
=U.k L3N BN BN B BN BN B BN BN BN BN RN BN N NN NN NN N NN W) (3)

P_C P =P P_C P' P'=P C

‘ P! =C

sk P00 es 000 scssesRees et sROORS (Ll-)



=1 and so P! =P

% O S o'’ S S
= 1 : f t
Thus [ r} Psk r’1 Pck Pgi M : 2@1 (from the equivalen
form of (lt))
=P [ Bhq®. [ BL P, P
s 10! oy S3 O %

=P_ [ (P__ , P! ) B!
s, 1 eptay 1 Tegpley” TSy

k1]
g

(Peq i Pl )lr" P' by (d)
Sy S Sy 1SS 1 '

=P°— P1 r'1 G.k= ri l—'k seee (1)0

The final condition on | 1is that it must lead

to an irreducible polynomial f(x),

k
If values Z;j satisfying conditions (1) ... (4)
are known, the coefficients s of f(x) can be computed

from r; as follows :=-

r -
Let 2 x, =8 =85 T (S rational, since
i r r r

5 x,

L is symmetric), Then from the isomorphism between
i

A and the splitting field of f(x) we have Zo(_z =
| 1

We obtain expressions for the values Sr; the values of

s, &rs then given by Newton's equations,

By repeated application of the multiplication law,



s,

‘ x. can be obtained as (r) + .. + m'T) , Wwhere

i 11 ¥ in n
the values §1), ceey m§r) depend on M. Let
-— [~ T . —\T -
x=|x, |, and mir) 1gr) ; then (xi)r = (mi ))' X e

o)
_xn_ | in |

Hence (xi)r+1 = (—(r))'(x x) = (m(r))' [Z'k._ = -E§r)), T} X,

mus (57 = @) = @ ) % =

‘“))'(P) ,ema @)= @)t

But |y = P r" PL, and (r )r-1 =P_ ([ y*1 pr
1 oy’ 1 1

(t—ngﬂ), (1) _5

i1s given by my 13

also

We have (E§1)

—(r)

hence (mi

' = —(1) ! pt . = .
)v Po__i (mi ) Po—;1 [,1 ’0,000’01’

)! 1s the result of applying the permutation

-1
sy to the first row of Fy)r .

- r —(r),, —
— ' .
Now S j _ 2; x, = % (mi )!' x; equating

coefficlents of x , S = ZE: (r).
r-=1 _ [ (r-1)7. (r) _ (r—1)
® Let ()77 = [o 1, 5 eren "7 Prele



(r=1) -1
and S = 2 c -1, « #8 1 runs over 1 to n, o, 1
r 1 1 ,G'i 1

r-1
also runs over 1 to nj; thus S_= :E: c( )
‘ r T 1,1

i.e. Sr is the sum of the elements in the first row of
-
() .
1
2,4 Application,

Theorem 2,2 reduces the problem of findlng an
equation with gilven Galois group to that of solving equations
(1) oo (4) 1n Ro in such a way that the resulting poly-
nomlial f(x) 1is irreducible, or, equivalently, of finding
a symmetric matrix C, satisfying conditions (b), (), (a),
for which f(x) 1s irreducible, The entries in C, can
be teken as %n(n+1) unknowns in R_, and the conditions
can be expressed as Dlophantine equations in these unknowns,

For obtainling the equations, the following procedure is

convenlent -

(i) Write down C1 in terms of -;-n(n+1) unknowns .

S {n 1linear

n 1
(11) Write the conditions H Y 41

=

equations) ,

' = !
(111) Obtain the matrices C,, using C, = g‘k G, Pck.

(iv) Write down the matrices [

g3
jth 18 column of C

r& has for 1ts

column the

j.



(v) Write down the conditions EE: X}E x; =
m

_ ; L | |
D Yy Vg for 1=kA, o, msty 3=1, L, et
m .
k=1, ,4e, n=2; 1 =1
( 1_-1)2 (n-2) quadratic equations},

2

We show that 1f the n equations (1i) hold,
and 1f condition (v) 1is satisfied for the stated values

of i, j, k, 1, then it 1s satisfied for all 1, J, k, 1,
Assume (11) and (v) are satisfied; let the
relation Z Ym )/1 = Z 1 “ )/ 1 be denoted by
: - Jk Tim o 1j "mk

(1, 3, k, 1), Since 7

1? = Y5 (1,3, k, 1) implies

b
(k) J! 1’ 1) (all j, 1)0 [ F R KN NN W NN N (1)
(1, j, k, 1) 1s therefore true also for

i=1, eeo vy (n-a); 321, seey (n-1);
k

H

(1#1), oo, (n-1); 1 =1,

Moreover it 1s trivially true for 1 = k sesecsse 02);

il

thus it 1s true for 1 =1, ..., (n=1); =1, ..., (n-1);

k=1, ooy (n-1); 1=1Q
Summing (1, j, k, 1) over 1 =1, ..., n-1, we have

n-1 m 1 _ n=1 5 m 1

im - J Tk



m n-=1 1 '1 n-1 m
i.e. ( )
oo 3 Yt V) =2 Yy (2 Uiy
But > ¥.t= & d nZ_1 1= § YL
4 = "im Tml’ anc 8o = im - “ml " “nw’

1
-

v L m m
slmilarly %;; 13 = éﬁm - ‘X;j'

mus 5 Ve (a1 = o) = 2 Y (g - 60D

nm - Jjm

) 1 m 1 1 1 m
" Xjk-z Y Som = Xjk_ % ¥ i );1,1

m n

& (n, j, k, 1) 1is true,

Hence by (1) (i, j, n, 1) 1is trwe, and by (2) (n, j, n, 1)
b4

is true, Similarly, summing (1, j, k, 1) over jJ =1, ,.., n-1

1t can be shown that (i, n, k, 1) 1is true,

¥ k - Sk '
stnce ¥, 7{;1,63’ (1, 3, k, 1) 1implies
(o1, vj,sk, s1), Thus (1, 3, k, 1) 1implies

(5'11, Glj, d‘lk, 6-11 = 1), But as 1, j, k run over

1, see3 n, sodo o1, 3, Gik.

S (1, 3, k, 1) (a1l 4, 3, k) imgply (4, 3, k, 1)
(a1l 1, 3, k, 1), (1, j, k, 1) 1is therefore true for all

1, 3§, k, 1,

In reference 5, Young obtained general solutions
of these Diophantine equations for the cyclic groups of

orders 3, li, and 5, and also obtained conditions for



L9,

the resulting polynomials to be lrreduclble; lengthy com-

putations are involved,

Particular solutions for C1 corresponding to a
glven group can be obtained; if solutions exist, by pro-
gramming the Diophantine equations for a computer; f(x)
cen then be calculated, and the reducliblility examined by

Kronecker's method,

The discussion preceeding Theorem 2,2 shows that
for any group which can be a Galols group over Ro’ there
1s a solution for ‘r1, end so for C1, satisfylng the
required conditions, Thus, for instance, from the work of

gafarevi& (reference i) for any solvable group the method

should yield irreducible polynomials f(x), It also shows
that for a given group G, every field K for which
QKK) = G occurs as a splitting fileld of an irreducible

polynomial f(x) arising from some solution for 'C1,

2.5 Example,

We take as group G the four group. The regular

fepresentation s o =1, 0, = (12)(34), S5 = (13)(2h),
S) = (1&)(23).
Let C1 = [a b ¢ d_; the conditions % Xi1j= Sj1
b ¢ f g
c f h
|4 g 1 L

glve:



We obtain
C.= [
5 e
b
Thus
j‘;=
M =
3
Sufficient
k=1, 1=
J =
1 =

»
e A M
Q

r
o,
e

e

values for

2,3
1" 2’ 3
1

.
2

b+c+d4d =1

e+ f+g=0

f4+*+h+3i=20

g+i1+ j=0

C§ = [n 1

h|

¢ d

[T &

- , r12=
d |

i ’ r)_‘_=
va

1, 3, k, 1

k=2,1=3

Ci=1,

=1.

1

uThe‘quadratic equations are therefore :

50,
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(211
(2
(2
(3
(3
(3
(3
(3
(3

- W N
- e

W M = W
AV I VIR | ¢ e

vlinear

1)
1)
1)
1)
1)
1)
1)

1)

L 1)

bb
cb

.

ac

*.

be

cc

L 1)

be

(1]

ec

fc

.

ab

+

ee
be
ge
el
bf
gf
bf
af
arf

+

hf
ir
cf
hh
ih
ch
ih
jh
dh

+

je
ig
g8
31
11
gi
i1

hi

1

ba
ea

fa

ca.

fa
ha
chb
b
hb

+

bb
ab
db
gb
db
Jb
ge
de

Je

+

51,

lc + 1d
je + hd
de + fd
cc + gd
de + fd
ac + ed
cf + gg
ar + fg

afl + eg,

The nine quadratic equationé and the last three

ones were programmed for a computer, to glve integral

solutions for the 10 variables

a, se ey jo

This work was

. done by Professor W,D, Thorpe, Director of the McGill

Computing Centre,

A large number of solutlons was obtained,

We give a typical solution, obyain the function

r(x) from it, and verify its irreducibility,

f

A solutidn is

=‘-5’

g =2

h

For these values

L

5,

a+b+c+ds= -h;‘

a s 2

i

to obtein

a solution satisfylng ail the equations, we therefore

divide each value by

We have

M =

‘h»o

h

1 5 =2
2 L 4
2 - 2
5 5 bl
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2 i ]
th = 1 -6 2 18
us ‘ﬂ1 1 L L
| * [ ] .J
and F?:_%E_—é o 4 18] [2 1 5 -2

il
-l
|
1
U
1Y)
'
I~
(@)
1
=
o

{We note that, as we require only the elements of the flrst
row of r1:-1, it 1s necessary only to find the first row

of the product at each stage,)

Sr' is the sum of the elements 1In the first row

r-1, _.3 5 -5 = 11 '
of I"1 ; thus 5, = -2, s,=2, 5 =4, aleo

Newton's equations give

S,s,-8
S_ = + =0 : = =
oS8, %28, =12 ﬁ
S,=5,8,+5, s =0 oz s, =53758%88, - T

-38 s
3 7271 172 773 5 2 ly

_Q _ - -5) +8,8,=8,85,+8.8, _ 19
S),~858,45,3,-5, sa+hsh_-0 it 1& 28p+5182 = Era

(£}
=
1]

Thus f(x) = Al - x> + E x2 -‘E x + %2 , or, with integral
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coefficlents, 16 f(x) = 161{"L - 16x5 + 20x2 - 28x + 19,
Writing x =<, PF(y) = 16 £(x) = yh - 2y3 + 5?2 - by + 19;

we verify the irreducibility of F(y) by Kronecker's

method (see, for example, reference 8),

By Gauss' Theorem, 'if F(y) has factors, then
1t has factors with integral coefficients, All possible
linear factors with Integral coefficients are y - 1,
y+1, y-19, y+ 19, We have F(+1) =9, F(-1) =l1,
F(#19) > 0, F(-19) > 0; thus there are no linear factors

with integral coefficlents,

Suppose gly) 1is a quadratic factor with integral
coefficients, We have F(1) =9, F(-1) = L1, F(0) = 19;
thus g(1) can take values #1, +3, + 9, &l-1) can

take values +1, #41, and g(0) ‘can take values +1, #19,

Let gly) =y° +ay+b; gl1) =1+ a+b,
gl=-1) =1 - 2a+ b,
g(0) = b,

sogly) = y2 + g(1) 5 gl-1) + glo),

We need consider only the values +t for g(0); for 1if
there is & factor with g(0) = #19, there 1s also a

factor with g(0) = +1,

We have F(2) = 11; we tabulate the function

gly) for g(1) =21, 23, #9, gl-1) =41, 1, glo) = +1,



+1

+1

yo+1
gl2)=5

y2+y+1
gl2)=T7

y&-20y+1
gl2)=-37

yo4+21y+1
gl2)=U7

-1

y2~y+1
gl2)=3

yo4+
g(2)=5

y2-21y+1

g(2)=-39

y2+20y+1
gl2)=l5

y ;y+1
gl2)=7

y2+2y+1 :

gl2)=9

yZ-19y+1

gl2)=-33

yo+22y+1
gl2)=l9

Table 2.

’ y2-2y+1

gl2)=1

y2=y+1

gl2)=3

y2-22y+1
gl2)=-l41

y2+19y+1
g(2}=h5

+9

y2+hy+1
gl2)=13

yo#5y+1
gl2)=15

y2-16y+1
gl2)==-27

y2+25y+1
g(2)=55

y2—5y+1
gl2)=-5

Ya-hy+1
gl2)==-3

y2-25y+1
gl2)=-L5

yo+16y4+1
g(2)=37

»
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and obtain the corresponding values of g(2) (Table 2),
Vdlues of g(2) for g(0) = -1 are smaller by +2 than

the corresponding values for g(0) = 41,

For gly) to be a factor of F(y), g(2) must
divide 11, All possible factors are therefors y2-2y+1,

2
y2~y-1, vy +hy-1, y2-2y-1.

We have F(3) = L49; the values of the four possible
factors at y =3 eare L, 5, 20, 2, None of them cgn there=-

fore be factors, and so F(y) 1is irreducible,

By Theorem 2,2, flx) = 16:(J'L - 16x3 + 20x2 - 28x + 19

therefore has Galols group the four group,

[We verify this by obtaining the cublc resolvent of f(x)

(see reference 1, p, 252 - 2), This resolvent is
x3 - % x° - 3x + %% , Wwhlcn has roots _ 3, 1, E o Since
‘ 2 2

these are ratlional, f(x) has Galois group the four group,]
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