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Introduction 

The Galois theory of equations over the rational 

field oan be divided into two main parts. Firstly, there 

arises the problem of finding the group of a given equation 

and of obtaining information about the roots from proper• 

ties of the group; seoondly, there coeurs the inverse problem 

of constructing equations with given group. It is well 

known that tremendous obstacles are encountered in every 

attempt at a constructive solution of these problems. 

There are several methods for finding the group 

of an equation in particular cases; for example, the group 

of an equation of low degree can often be obtained by 

Mertens' method of fundamental modules (reference 1, pages 

189 - 199). The classioal Galois theory relates properties 

of the splitting field to properties of the Galois group 

(reference 1, ohapters III and IV). 

The inverse problem has been approaohed from 

various directions. For the symmetric group, many methods 

have been developed, including those of Bauer, Perron, and 

Sohur (reference 1, pages 390 - 398). For certain groups, 

a theorem of E. Noether (reference 2) can be used to 

solve the problem; by this method Kuyk and Mullender have 

obtained a general form for equations with given Abelian 

groups (reference 3). .v v 
The work of Safarevic in class 

field theory has shown that for any solvable group there 



exista a normal extension of the rational field, but equat

ions are not explicitly constructed (reference 4>. 

In this thesis sorne resulta are obtained in both 

parts of the theory by more elementary methods. In the 

first chapter, definitions and notations are established; 

the Galois group of an equation is defined as a permutation 

group, which can be considered as a faithful representation 

G of an abstract finite group G. For a given abstract 

group G, all auch faithful representations ~ are ob

tained; it is shown that if there 1s an equation with 

splitting field K having as group one of the representations 

G, then for any of the representations G there is an 

equation with splitting field K and group G. The proof 

is constructive, and examples are given. 

In Cbapter II, non-normal extension fields are 

discussed,and a ce.nonical form is obtained for the roots 

of non-normal irreducible equations; this form is used to 

characterize fields and equations with nilpotent groups. 

Chapter III is concerned with the inverse problem; 

two methods are given for obtaining irreducible equations 

with prescribed group. The first is for Abelian groups, 

and involves finding cyclic direct factor fields as sub

fields of appropriately chosen cyclotomie fields. The 

second method depends on a theorem of Artin, and is a 
generalization of a method developed by Young for cyclic 
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groups (reference 5). For any group the problem is reduced 
to that of solving a set of Diophantine equations; _for groups 

of low order, particular solutions can be obtained on a com-

puter. 

This thesis is original except where otherwise 

sta.ted. 
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Chapter I 

Definitions; faithful representations of a finite group by 

permutation groups; equations which have the same splitting 

field but different permutation groups, 

§ 1, Definitions 

The Galois group can be introduced in several 

different ways, We shall use the following definitions :-

Definition 1,1, Let f(x) = 0 be an equation of degree n 

with coefficients in a field F; let its roots be 

ot1 , ••• , o(n• Any equation f(ol 1 , ••• , o<n) = 0, where f 
is a rational function in n variables with coefficients 

in F, is called a relation between the roots, The Galois 

group ~(f(x)/F) is the group of all permutations of 

degree n which, when applied to the roots ot 1 , ••• , o(n 

leave inve.riant the system of' relations between them, 

Definition 1,2, Let K be a normal algebraic extension of 

a field F, The Galois group ~(K/F) is the group of all 

automorphisme of 1 which leave fixed the elements of F, 

If K is the splitting field F(~ 1 , ••• , ~n) of 

f(x), each permutation in er(f(x)/F) induces an automorph

ism in ~(K/F), and each automorphism in ~(K/F) induces 

a permutation in ~{f(x)/F); this correspondance is an 

isomorphism (Reference 1, p. 212). ~(f(x)/F) is therefore 

a faithful representation of ~(K/F) by a permutation 

group of degree n. 



We take the ground field F to be the field of 

rationals R
0

; we write fj(f(x)) for ~(f(x)/R0 ), and 

~(K) for 9<K/R0 ). 

!2. FaithfUl representations of a finite group by permut-

at ion groups. 

The theorem of this section makes it possible to 

find all faithful permutation group representations of a 

finite group by examination of its subgroups, It is a 

generalization of a theorem given in reference 6, p. 57. 

Two permutation groups are called equivalent if 

one can be obtained from the other by a re-ordering of the 

set of permuted elements; equiv~lent permutation groups of 

degree n are thus conjugate subgroups of the symmetric 

group ~. For the purposes of Galois theory, auch groups 

can be considered identical, since the roots of an equation 

can be ordered arbitrarily. We shall make no distinction 

between them. 

Theorem 2,1, Let G be a group, and let G be a falthful 

representation of G as a permutation group. Then G 

corresponds to a set H1 , ••• , Hk of subgroups of G for 

which 

Moreover to any such set of subgroups there corresponds a 



faithful representation G. 

Proof. (a) Let G be a faithful representation of 

G as a permutation group. Let the set of systeme of 

transitivity of ~ be (t11 = 1, t
12

, ••• , t 1n,) 

••• ... , Let 

be the subgroup of. G consisting of all permutations 

which leave ti1 fixed. Let gij be an element of 

carrying ti1 to tij; the re is auch an element for 

j = 1' ••• ,ni, and 

lt = Hi + g H + • • • + a Hi i2 i 0 1ni 

~ 

-S1j Hi 1s the subgroup wh1ch leaves t 1 j fixed, and so 

({ Hg1J 1s the subgroup which leaves 
j=1 1 ti1' • • •' tin 

i 

f1xed. Let N = n Hgij = n Hg ; Ni is a normal 
i j i ge.G i 

subgroup of G. 
If 

r-\ N 1s the subgroup which leaves 
1=1 1 

f1xed all digits, and so is the 1dentity. Thus 

6. 

Let H1 , ••• , Hk be the subgroups of G correspond1ng to 

... ' ~ respect1vely under the isomorphism G = G; 

then (n 
ge:G 

H~) n ••• n(~ ~) = 1. 
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(b) Let H1 ' • • •' Hk be subgroups of G auch that 

en Hf) n ••• (\(n ~) = 1 • 
' geG gE-G 

let G = Hi + gi2Hi + • • • + SiniHi (ni = (G:Hi)) • 

For g e. G' let TI<s> = 

The set gHi, ••• , gginiHi is a permutation of the set 

Hi, ••• , giniHi, and so Tf(g) is a permutation. Since 

1ï<s s'> = Tf\g) Tï<s'), Tf is a homomorphism of G, 

whose kernel consista of all elements g for which 

Tf(g) = 1, i.e. ggijHi = gijHi (all i, j}, or 

g ~ Hfij (all i, j). But 

~ H~i j = ( ~ H~1 j ) r\ • • • f\ ( ~ H=k j ) 

= ( n H~) n • • • n ( n H~) = 1 • 
ge.G \ge.G 

The kernel of 1\ is thus the identity and the homomorph

ism is an isomorphism. The group G = {.lT(g) : ge. G} 

is therefore a faithful representation of G. 

Each of the sets Hi, ••• , gi
01

H1 is a system 

of transitivity of U; if N 1 = (\ Hf , { 1f( g ) : g e. N 1 j ge. G 

1s the subgroup which leaves the system fixed, and 

~lli(g) : g E Hi} is the subgroup which leaves fixed Hi• 
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1 ) 
Corollary 1, Since each of the groups Hi corresponds 

to a system of transitivity of G, all transitive faithful 

representations of G are obtained by taking k = 1 in 

-the theorem, Thus any transitive faithful representation 

G of G corresponds to some subgroup H for which 

~Hg= 1, and to any such subgroup there corresponds 
ge G 

a representation G. The degree of G is [G:H), 

Corollary 2, If the group G is abelian, all subgroups 

are normal; thus the only subgroup for which (\ Hg = 1 
gt:.G 

is the identity. Bence by corollary 1 1 the only transitive 

faithful representation of G corresponds to H = 1; 

this is the regular representation, 

§ 3. Equations which have the same splitting field but 

different permutation groups, 

The fol1owing theorem shows that if a permutation 

representation of a group G is the Galois group of an 

equation over R0 , then every permutation representation 

G of G is the Galois group of some equation, 

Theorem 3.1. Let K be a field such that 9r(K) = G. 

Let G be any faithful representation of G as a permut

ation group; then there exista an equation f(x) = 0 with 

splitting field K and Galois group U, 

Proof, We use the notation of Theorem 2,1. Let H1 , ••• , Hk 

1) This is equivalent to Theorem 5.3.2 of reference 6. 



9. 

be the subgroups of G corresponding to the representation 

~. By the Fundamental Theorem of Galois Theory, to each of 

these subgroups Hi there corresponds an intermediate 

field Ki between K and R
0 

auch that ~(K/Ki) = Hi• 

Let Ki = R0(~ i). We have [ K:R0 (f i)] [ R0 (ft) :R0 ] = 

[K:R 0 ) = o(G) • 

:. ( R0 ( ~i) :R0 ) = .g_{_Q_L = ( G:Hi1 = ni • 
~ 

Let the minimum polynomial of f>i be fi(x), with roots 

~i = ~i 1 , ~i2 , ••• ,~in; we order the roots so that the 
i 

conjugate subgroups (j=1, ••• , ni) correspond 

respectively to the conjugate subfields R o ( ~i j ) ( j = 1 ' • • • ,ni ) • 

Any automorphism in Ni = (} H~ij leaves 
j 

fixed all the subfields R0(~ij) (j = 1, ••• ,ni) and 

bence leaves fixed their composite R 0(~i1 , ••• ,~in); 
i 

moreover any automorphism in G which leaves fixed 

R
0

{(3i1 , ••• , f3ini) leaves fixed each of R
0
{(3ij) 

(j = 1, ••• ,ni} and sois an element of Ni• Thus Ni 

corre.sponds to R
0

((3i
1

, ••• ,.fin ) , which is the splitting 
i 

field of fi(x}. 

k 
Similarly the intersection () Ni corresponds 

i=1 

to the composite of the fields R 0(~i1 , ••• ,~n ) (i = 1 , ••• ,k}; 
i 

this composite is the splitting field of f(x) = f
1 

(x} ••• fk{x}_~· 

But A Ni = ( n ~) () ... f) ( n Hg ) = 1 ; 
i=1 g e G 1 g t; G k 

the corresponding field is therefore K. f(x) thus 

has splitting field K , and so ~(f(x)) is a 



representation of G, Since f 1(x), ••• , fk(x) are 

irreducible, the representation has k systems of trans

itivity of lengths n1 , ••• , nk; the subgroup which leaves 

fixed ~i is Hi:::!. Hi' and so ~(f(x)) = G, 

Corollary 1 • We have f(x) = f 1(x) • • • fk(x), where 

deg fi (x) = [G:Hi], Thus deg f(x) = L. [ G :Hi], and so 
i 

the minimum degree for f(x) ia min f (G:Hi] over 

all possible choices of H1 , ••• , Hk, 

Corollary 2, Taking k = 1 in the theorem and in Corollary 

1, we obtain the following result :-

Let K be a field auch that ~(K) = G, Let 

G be any faithful representation of G as a transitive 

permutation gpoup; then there exista an irreducible equation 
== = f(x) = 0 with Galois group G and splitting field K, 

Since deg f{ x) = (.G :H ), the minimum degree for f( x) is 

min [G:H) over all subgroups H for which ()Hg = 1, 

Corollary -3.· Let Bi be the spli tting .field R0 (f3i1 , , • , , (3 ini) 

of f 1 (x), B1 is a normal field, and 1s the fixed field 

under the automorphisms of the normal subgroup Ni of G, 

Thus 9 (fi (x)) ~ <2J(~i) ::: G/N1 = G/( n, Hgi), 
g~G 

Corollary 4. Suppose G is a direct product 

We can take Hi= l,;r G, ; in this case 
À •il 1\. 
À J' L 

f(x) = f 1 (x) , • , fm( x), where, by Corollary 3, 

G1 x , , , x .G .. ·, 
m 
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Let Bi be the composite of the fields B1 , ••• , Bi_1 , 
N 

Bi+1' ••• , Bm; 

fixed field is 

the subgroup of 
M 

G for which Bi is the 

n Ru or 
f:"'· r ' 

Bi is the fixed field 
,.... '# c. 

_, 
und er the subgroup Hi, and so Bi A Bi is the fixed 

field un der the subgroup generated by Gi and Hi. But 
_, 

this is the wh ole group; th us Bi 1'\ Bi = R 
o' 

and 

K = fer Bi• This choice of subgroups Hi the re fore gives 
i=1 

f(x) as what could perhaps be called a direct product of 

the polynom4.als f 1{x), ••.• , fll:l.(x). 

Corollary 5. Suppose G is a semi-direct product G
1

,G
2 

where G
1 

cS G. We can take H
1 

= G
1

, H
2 

= G
2

; for 

( n Hg) n ( n Hg ) = G r\ ( {') G g) c. G Il G = 1 • 
g 6 G 1 ge G 2 1 ge G 2 - 1 2 

We then obtain f(x) = f
1

(x) f
2
(x), where 

9}(f (x)) ~ G/ ( {) Hg) = G/ ( () Gg)• 
2 . gE.G 2 geG 2 

The field K is thus the composite of the normal fields 

B 
1 

and B2 with Galois groups G
2 

respectively, It may occur that in this 
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The method of proof of Theorem 3.1 can be used 

to construct the polynomial f{x) when K is given as 
1'01 

the splitting field of some polynomial f(x), with known 
,..; . 

roots and Galois group G. The construction proceeds as 

follows :-

,.J 

Let the roots of f{x) be 0(1 ' • • •' CJ<m ; a<· 

primitive element e in the splitting field Ro{«1 , •• • ,«m) 

of f(x) oan be obtained in the form c1~1 + ••• +cm~ 

by following the method normally used to prove the Theorem 

on the Primitive Element {see, for instance, reference 1, 

p. 174- 5, or reference 8, p. 126 - ?). The procedure 

is iterative, the basic step being to construct a primitive 

element s in a field Ro(À., fA) • Let the minimum poly-

nomials of À, f-, be l{x), m{x), respectively, with 

roots À=~~ • • • J \ and f =f-1 J • • •' ~s·· Consider 

the equations 

À i + x fA j = À1 + x t' 1 
=1, ••. ,r) 
=2~ ••• , s 

• 
' 

each of them has not more than one root in R
0

• We select 

a value c in R0 different from all these roots; then 

À i + c f j 1- À1 + c f'1 (
i=1, ••• ,r), 
j = 2, ••• , s 

and we show 

that r = À+ cf is primitive in 

The greatest common divisor of l{s- ex) and 

m(x) is x - f-; for if any root other than f- of m(x) 
1 

say f j { j # 1 ) , were a root of 1 ( 5 - ex) , we would 



have ~ - c J..J.. = .À (.JSome 
1 j i 

therefore lies in R0 ({ ), 

or À. 

i), which is not so. f
and hence so does ~ - CfL 1 

Thus we can construct a primitive element ~f 
; = 2, in R0 ( ~ p-1 , otf) in the form Er + cf«.î 

taking f 1 = o( 1 • Sm can then be taken as 

:for 

e. 
••• , m, 

We require now an element ~i in R0 (B) su6h 

that R 0(~i) is the fixed field under-the automorphisms 

of the subgroup Hi; we use the method given in reference 

1, p. 211. 

Consider the expression f< k) = TT ( k - h(e}) 
hE Hi 

(k e R
0
). If under the itomorphism G ~ G, the element 

g in G corresponda to the element g in G, we have 

g(B) = g{c1ac.1 + ••• + 0 mo(m} = 0 10(g(1) + ••• + 0mo(~(m)• 

flk) can therefore be computed as a function of kj 

Any automorphism hie Hi leaves f{k) invariant; for 

hi< r< k) > = TI < k - hhi <e ) > = IT < k - h( e > > 
he. Hi he Hi 

f(k) is therefore an element of R
0
(fi)• Let 

= TI '(k - gijh(B)) 
he Hi 

we have ( j = 1 ' ••• , ni)• 

No two of these expressions are identical; :for if 



Hi there exists h' such that 

and so which is not so. A value for k 

in R
0 

can theref'ore be chosen so that the ni values 

are all diff'erenti "\J(k) then has ni, or 

different conjugates, and so is primitive in Ki 

and can be taken as fi. 

As in the proo~ of' Theorem 3.1, we have 

Examplesa 1 • Let f(x) 3 =x - r 

where w is a primitive cube root of unity. 

The discriminant of f{x) is -27r2 ; since this is not 

a square in R
0

, G is ;: 03 , the symmetric group of 

degree 3. The abstract group G 

by {a, b}, a3 = b2 = (ab)
2 = 1; 

is therefore defined 

-the representation G 

corresponds to the subgroup H = {b}. The splitting 

field K of f(x) is R0(~, w); we construct an equation 

f(x) with the same splitting field and as Galois group ~ 

the regular representation of G. 

The following table displays the corresponding 
;J 

elements of G, G, and G. 



...... 

e 

G 

1 

b 

a 

2 a 

ab 

a2b 

G (H = {bj) 

(
1 2 :; ) 

1 2 3 

G (H = 1) 

(

1 2 

1 2 

3 4 5 

3 4 5 :) 
(: aH a

2
H) (1 

a2H aH . == 1 : :) n b 

1 

a a2 

a2b ab a~ a
2b) = (1 2 3 4 5 

a a 2 1 6 5 4 

(:B aH a
2H '= (1 2 

a2H H ) 2 3 J c a2 ab a 
2
b) ( 1 2 3 4 5 

2 2 = 
ab a 1 a b b 3 5 4 1 6 

b a 

(

H aH 

a2H H 
a.2H) = (1 
aH 3 

2 3) 
1 2 

(: aH a.
2H) = (1 2 3) 

a2H 2 1 3 · H 

(

H aH 

a2H aH 
a2H) = (1 2 3) 
H 3 2 1 

Table 1. 

(

1 b a 

a2 a
2

b 1 

cb : ,: 

a
2 

ab a
2
b) = ( 1 2 3 4 5 

a b ab 4 6 1 3 2 

2 a ab 

a
2

b 1 

a 
2b) = ( 1 2 3 4 5 

a2 5 3 2 6 1 

(

1 b a a2 

a2b a2 ab b 
ab a2b) = (1 
a 1 6 

2 3 4 5 

4 5 2 3 

e 

:J 
:) 
;) 

~) 

~) 
..... 

\J1 
• 



We wish to construct a primitive element 8 

in K in the form 8 = o
1

/ 3 + o2wrV~ + a3~rV3• Sinoe 

R (rY3 wi/~ ,2/~) = R (rVJ wrV3) we oe.n take a3 = 0 
0 , , 0 ' J 

and c
1
= 1. 

The expressions Ài 

vl-r'l3 + xr~ · r 113 + , 
iinoe À1 + x p.1 = r 11.3 + xwr'13, the only 

16. 

ineligible values for o2 are 0, 1. We take o2 = -1, 

giving 9 = r~ - wr~. Sinoe the subgroup H oorresponding 

to G is the identity, we oan take (3 = e. The oonjug-

""' ates of e, obtained by applying the elements of G to 
,..J 

the roots of f(x), are /3 _ w2rY3 w/3 _ vl-rYa 
, J 

vfr Vô - zl3, ~3 - rY3, vfrY3- w/3 ; thus 

f{x) = (x - ry-'- wr'~3) (x - rYS - w2~3) (x - wrY3- :;./3) 
{x·- ;?.?3 - J3) (x - wrY3- ry3) (x - w2rY.3- wr~) 

[This result oan be verified independently. Let X be 

the splitting field of f(x); we have x
6 + 27r2 = 

x6 - (if; r'/3) 6 , and so X = R
0

{ 1.[3 rY3, -w), sinoe -w 

th 
is a primitive 6 root of unity. But w = 4~- 1; 

2 

henoe K = R
0
(/3, w) = K. Thus [ K:R) = 6, and so 

x6 + 27r2 is normal; its Galois group is therefore the 

regular representation G of G.] 
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2, Using that t(x) = x6 + 27r2 has group G, 

we obtain an.equation f"'(x) with the same splitting field 
.-.# 

and group G. 

x6 + 27r2 i s normal, and so we take e = rV3
- wr V~ 

The representation G corresponds to the subgroup H = tb}, -
thus t(k) = /1 (k- h(9)) = (k- t))(k- b(e)), Since 

he.{b} 

G = H + aH + a2H, we can take 

The c onjugates of ·'IJ { k) are :-

. - 2 g1 = 1, g2 =a, g3- a • 

d.J e e JI~ Il.. - -r'/:3 - w2rlj~ r ( k) = ( k - ) ( k - ll( ) ) = ( k - r 1
' - wr'.::>) ( k -, 

= k
2 

- 3krv~ + 3r 113 

a t(k) = (k - a(G))(k- ab(e)) = (k 1/3 2 '13 V3 1/3 -wr -w r )(k - wr -r ) 

= k2 - 3kw/3 + 3~r21!> 

a2 l.f'( k) = ( k -a2 ( e) )( k - a 2b( e) ) = (k ~ V3 ~ w2 Va 17.:.; - r -r (k - r -wr 

k2 2 V3 ~ 
= - 3w kr + 3wr • 

k = 0 therefore satisfies the condition that no two of 

f{k) 1 a 't {k), a
2 

f(k) be equal. The corresponding 

equation is f 1 (x) = (x - 3r~)(x - 3w2r~{x - 3wr~~ 

= x3 - 27r?- • 

[The splitting field of 

as it should be,) 

.-..J 

f' (x) 

Note, The method of Example 1 enables one to find a normal 

equation whose group is the fmll linear group of any given 

prime degree p. For any irreducible binomic equation xP - a 
,..J 

has this eroup, and can be taken as f(x). (see reference 1, 

pages 294 .. ~8) 
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Chapter II 

Non-normal field extensions; a form for the roots of non-

normal irreducible equations; application to nilpotent 

fields and equations, 

~ 1, Non-normal field extensions 

In Chapter I, the Galois group was defined only 

for a normal extension~ field; there are three different 

ways of defining a set fJCK) analogous to a Galois group 

wh en K is a non-normal extension of Ro• Let K = Ro(oc:1), 

and let the minimum polynomial of o(1 be .f(x) = 
(x - 0('1 ) ... (x - ~); let K be the splitting field of 

f(x) over R
0

• The three definitions are as follows :-.. 

a) We can de fine ~( K) to be ~(~). This is used in 1 

for instance, reference 8, p. 154. The set ~{K) is 

then a group G, but it does not satisfy the relation 

1 ~(K) 1 = [K:R 0 ) • 

b) We can take 2f(K) to be the set M of all isomorphisme 

over R
0 

(including automorphisme} from K to its con

jugate subfields in K. These isomorphisme are .induced. by 

the mappings d. ___,.. c(i ( i = 1 , ••• , n). The set M is 

not a group, since there is a rule of combination only 

between those elements which are automorphisme. However, 

the relation IMI = [K:R ] holds. This set is the Loewy 
0 

Mischgruppe; it is defined in a rather different way and 



discussed extensively in reference 9. A Galois theory 

based on this definition is given in a paper by Baer 

(reference 1 0) • 

c) ~(K) can be defined as the automorphism group S 

of K over R0 , S is clearly a subset of the set M, 

If K is a normal extension each of these 

definitions leads to the ~alois group as defined in Chapteri. 

We prove a theorem relating the group S to the 

group G; it will be used in the next section, The result 

was obtained first in a different form by Loewy (reference 9) 

but his proof is quite different from the one given here, 

Theorem 1,1, Let H be the subgroup of G which has K 

as fixed field. Then S ~ ~(H) / H, where Jta(H) is 

the normalizer of H in G, 

Proof, Let a e J(G(H); a maps ~1 into one of its 

conjugates, and so indue es an isomorphism cre. : R
0

(o(1 ) -? R~a o<..1 ). 

Since H is the subgroup of G which leaves fixed R
0
(o(t), 

aHa - 1 is the subgroup of G which leaves f'ixed R0 ( a «.
1
). 

But aHa-1 - H - ' and so by the Fundamental Taeorem of the 

Galois Theory R
0

\o<1 ) = R
0
(ao(

1
), cr-a is thus an automorphism, 

and is an element of S, The automorphisme cr;a' and 

~ cr-a, are both defined by o<.r _,. a a' (ot1 } , and so 

a ~ ()a gives a homomorphism of dla(H) into S, 



Let 6" E. S; G"" maps o(
1 

to one of its conjugates. 

All conjugates of oc1 occur as ~ for sorne g e. G; 

let be anrelement of G which carries 0(1 

and 

to \ScX.1 • 

Ro(~oe..1 ) The subgroups of G leaving 

are H and a Ha - 1 • since a-IS" ~ 

fixed 
-1 

H = aaEacs-

and so aiS"' E: "dZa. ( H). The homomorphism is therefore onto. 

The kernel of the homomorphism consista of all 

elements a ê ){G(H) for which ~ is the identity 

(i.e. those which leave fixed R0(~ 1 )); it ia therefore 

the group H, and so S ~ ~G(H) / H. 

§2. The roots of .f(x) 

Using Theorem 1.1 ~ we display the roots o.f f(~) 

in a canon1cal form. 

Since K is the splitting field of f(x}, 

9r(f(x)) ~ G. H is the subgroup of G which leaves 

fixed K, or R0(~1 ). ~(f(x)) is therefore the trans

itive representation 

'G = 
... , 

g ~ G l ... ' 
where G = H + g1H + ••• + gmH (cf. Theorem I.2.1, coroll

ary 1). The image H of H under the isomorphism G = G 
is the stability subgroup leaving fixed the first digit. 

Let S = !~1 : i = 1, ••• , s}. Since S is the 



21. 

automorphism group of R0(~1 ), cri~ is an element of 

R
0
(«.,), and oan be written sz'i(o( 1 ), where fi(x) isar. 

polynomial of degree lesa than n, the degree of f(x). 

~i(~ 1 ) is a root of f(x); moreover any root whioh oan 

be wr1tten as a polynomial in oc:: 1 ooours in the set 

{~i (o<1 ) : i = 1, ••• , s J, sinoe suoh a root gives r1se to 

an automorphism of R0(~1 ). 

Theorem 2,1 • The roots ci
1 

, 9> 2 Co< 1 ) , •• , , ?S 
8 

(<X 
1 

) form 

a system of 1mprim1t1v1ty for ~; eaoh oonjugate system 

oan be written ~, ~2 («Jt), • •., </>
8
<«r) • 

Pro of; Let o< r 

set ;>1 (ot1 ) • 

be a root of f(x) not inoluded in the 

S1noe f(~1 (o( 1 )) = o, f(x) d1vides 

f( 9\ Lx)), and so f(cp 1 (olr)) = 0, Thus ?\ (o<r) 1s a root, 

for 1 = 1, ••• ,s. None of these roots 1s inoluded in 

the set {~1 (o< 1 )l; otherw1se we have R
0

(o(
1

) = R
0
(?1<«

1
)) = 

R0(~j(«r)) = R
0
(«r}, for sorne 1 and j

1 
and this 1s 

not so. Continuing until the roots are exhausted, we obta1n 

disjoint sets or the ~equired form, 

Let g e G; suppose g oarr1es Ji>k(o<r) to 

~k'(~r'). Then g oarr1es the field R
0

(Pk(o(r)) = R
0

(o(r) 

to the rield R0(~k'(acr')) = R0 {c(rtl. Thus 1t mus.t carry 

eaoh of the roots st>1(o(r) (1 = 1, ••• , s) to one of the 

roots s6 j{o<r,) ( j = 1 , ••• , s), and so eaoh of the set,s 

{~1(«r)} 1s a system of 1mpr1m1t1v1ty, 
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We have now shown that the roots of f{x) have 

the form • .. -
o(1 <f2 {rX. 1 ) • • • tps (o<.1 ) 

• 
• 
• 

c<m tf2 (o<m) if {« ) (sm = n) . 
•••• s m 

, 

eaoh row is a system of imprimitivity for G. The auto

morphism group S can be wri tt en {cr-i : G'i (« 1 ) = ~i {o< 1 ) } ; 

it is isomorphic to the group of functions 

{ ~i (x) mod f( x) : i = 1 , ••• , s }. 

~ 3. Application to nilpotent fields and equations 

We first define nilpotent groups, and state the 

resulta conoerning them whioh will be used subsequently, 

Definition 3.1, A group G is nilpotent if there exists 

a finite series G = such that 

( 1) A1 .S G { 1 = 1 , • , , , r) 

(11) Ai_1 / A1 is contained in the centre of G/Ai 

(i=1, ••• ,r). 

This definition is applicable to finite and infinite groups; 

for finite groups the following definition is equivalent. 

Definition 3,2. A finite group G is nilpotent if it i~ 

the direct product of its Sylow subgroups. 

We shall require the following theorems :-
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Theorem 3.3. Every proper subgroup of a nilpotent group 

is a proper subgroup of its normalizer. 

Theorem 3.4. A finite group 1s nilpotent if and only if 

its maximal subgroups are normal, 

Proofs can be found in reference 6, chapter 10. , 

We now use Theoreme 1,1 and 2,1 to characterize fields and 

equations whose Galois groups are nilpotent, 

Theorem 2.~. A normal field N is a nilpotent extension 

of Ro ( i ,e. ~ (N) is nilpotent) if and only if every 

intermediate field between N and Ro has a non-trivial 

automorphism group. 

Proof, a) Suppose that N is a nilpotent extension of 

R • Let K be any intermediate field between N and R , 
0 0 

and let K be the smallest normal extension of R con-
0 

taining K, The Galois group G of K over R is a 
0 

factor group of ~(N)' and he nee is nilpotent, Let H 

be the subgroup of G which leav::::s K fixed; since we 

take K 1 R
0

, H is a proper subgroup of G. Renee by 

Theorem 3.3, H is a proper subgroup of ~G(H), Thus if 

S is the automorphism group of K over R
0

, by Theorem 1 ,1, 

S = Pl~{H) / H 1 1 • 
Li 

b) Suppose that every intermediate field between N and 

R
0 

has a non-trivial automorphism group over R
0

, Let H 

be a maximal subgroup of Cj { N) , and let K be the fixed 

field in N under the automorphisme of H, Let K = R {lL) 
0 ' 
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and let .rCx), o.f degree'J. n, be the minimum polynomial 

o.f ~. Since K has a non-trivial automorphism group 

over R
0

, K must contain at least one o.f the conjugates 

o.f o1.. (i.e. o( is not the only root o.f .f(x) in R
0

(o<)). 

Suppose .f(x) is not normal; let s be the 

number of its roots which lie in R0(~). Then, as in 

Theorem 2.1, the roots of f(x) have the form 

••• rp (« ) 
s 

• 
• 
• 

1> (o< ) 
s m 

( sm = n , s < n ) ; 

each row is a system o.f imprimitivity .for the Galois group 

o.f f(x). 

(c €R
0
). 

f(x), f { c) 

s . 
Consider the expression f ( c) = TI ( c - ;>i (Q()) 

i=1 
Under the permutations of the Galois group of 

takes at most m different values) "Î'(c) 

therefore has degree at most m over R • 
0 

No two conjug-

ates of f(c) can be identically equal, and so we can 

choose a value for c auch that they are all di.fferent. 

f(c) then has degree m over R
0

• 

Consider the .field R
0
(f(c)); we have 

R
0

(«}.:> R
0
(f(c)) :::> R

0 
(proper inclusions). 

Let the subgroup of §' ( N) .for which R0(~( c)) is the 

fixed field be H
1

; by the Fundamental Theorem of Galois 

The ory 



{proper inclusions) • 

But this is not so, since H is maximal. f(x) is therefore 

normal, and R {~) is a normal field; H is thus a normal 
0 

subgroup of Çf{N). Renee, by Theorem 3.4, ~(N) is 

nilpotent. 

Note. N is equivalently characterized by the condition 

that every minimal intermediate field must have a non-

trivial automorphi~m group. For suppose . N satisfies 

this condition; let H be a maximal subgroup of :1{N}" 

and, as in part (b) of the preceding proof, let R (ol) 
0 

be the fixed field in N under the elements of H. Since 

H is maximal R0(~) is minimal; for if there were an 

intermediate field between R0(~) and R
0

, the subgroup 

of ~(N) leaving it fixed would be intermediate between 

H and ~(N). R
0

(o() therefore has non-trivial automorph

ism group; as before, it must then be a normal field, 

because otherwise the intermediate field R0(~(c)) could 

be constructed. H is thus a normal subgroup, and CZJ(N)~ 

nilpotent. 

Corollary, Theorem 3.5 can be stated as a characterization 

of nilpotent equations in the fol~owing way :-

An equation f{x) = 0 with roots o<1 1 • • • " o<.n 
has nilpotent Galois group G if and only if, corresponding 

to any polynomial p(ot'1 , ••• , o<n) not in R
0

, there exista 

a polynomial q(x) auch that p(o<. 1 , ••• , ~n) and 



q{p{o<.1 ~ ••• , o<:n)j are different and conjugate over R
0

• 

Proof 1 
{a) Suppose G' is nilpotent. Let ~ = p{o< 1 '• • • ,oc::n) 

,_ R • 
o' then Ro(~) is a subtield of the splitting field 

li of f{x). Si noe G is _ nf.lpotent, by Theorem 3.5 

Bo(f.') has a non-trivial autot;norphism group. Th us it 

oontaine at least one of its oonjugates over R , i.e. 
0 

there exista q{x) su oh that f and qtp>) are different 

and oonjugate over Ro• 

b) Suppose that for every polynomial p{o<1 , ••• , ci_ n) 

there exista a oorresponding polynomial q(x) with the 

required property/. Let Ro{P) be any subfield of li, 

the splitting field of f(x). Si noe ~ lies in 'K, 

(&= p(o( 1 ' • • • ' o( n) for some polynomial p. Th us [3 bas 

a conjugate q(~) 1(3, and the mapping (3 _,.. q{J3) gives 

an automorphism of R0(~). R0{~) therefore has a non

trivial automorphism group, and by Theorem 3.5, ~ is 

nilpotent. 

The condition of Theorem 3.5 is olearly satisfied 

for abelian field,. Sinoe every subgroup of an abelian 

group is normal, avery intermedie.te field between N and 

'
0 

is normal, and so cannot have a trivial automorphism 

group. 

Theorem 2.1 can be applied 6ireotly to oharaoter

ize nilpotent equations of prime degree. 
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Theorem 3.6, An irreducible equation f'{x) = 0 of prime 

degree has nilpotent Galois group if' and only if it is 

normal, and so cyclic. · 

Proof, a) Suppose f{x} has n!lpotent Galois group G, 

and i s not normal, As in Theorem 3 ,5, part (a), if o( is 

a root of f(x) there must be at least one more root of 

the form s6(o<.), G is there!'ore imprimitive, But this is 

impossible, since G is of prime degree. f(x) is therefore 

normal, and so cyclic, 

.b) If' f(x) is cyclic, it is also nilpotent, 
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Chapter III 

Two methods for constructing irreducible equations with 

given group. 

f 1. A method for c onstructing equations wi th gi ven 

Abelian grou:e 

Let A be an~ finite Abelian grou~. Then 

can be written as a direct product of cyclic groups of 

prime power order; (see, for instance, ref. 6, p. 4o>. 
! 
J..J 

Let 

where c Ot'l 
Pt" .. 

is the cyclic group of order 
o(. •• 

p '-J 
i 

prime, i = 1 .t ••• 1 k). We shall refer to the values 

as the invariants of A. 

cl•' 
Let m = p 'J • Consider the arithmetic progress-

i 

ion 1 , 1 +m, 1 + 2m, . it includes an infinite number . . . ' 
of primes. We select a prime Tf from this progression; 

similarly a value of 1T is chosen for each pair (i, j) 

in such a way that the primes 1T are all different. 

Consider the TTth cyclotomie field. Let &r 

denote a primitive 1fth root of unity; it is a primitive 

element in this field. The Galois group j(R
0

(Ew)) is 



cyclic, of order lT-1 (reference 1, p. 312). We have 

constructed 1f in auch a way that m is a factor of lr-1; 

let s = (Tr~1 )/m. The Galois group ~ (R
0

( e.Tr)) contains 

a subgroup S which is cyclic of order s, and so there 

is a subfield B of R
0

(Etr) which is the fixed field 

under the automorphisms of this group. The Galois group 

of B is then isomorphic to the factor group ~(R0(~))/S, 
and so to the cyclic group of order m. 

A primitive element in the field B caa be con-

structed as follows :-

Let the automorphism ~ ~ e~ be primitive in 

the cyclic group ~ (Ro(&tr)) (i.e. f is a primitive 

(lT-1 ) th congruence roet of 1 mod lT). Then the auto-
m 

morphism ElT --7 Ep is primitive in s. 
1T 

m 2.rn 

Let 9 ·= t:,r + · ~ + E~ + ••• + . 
1 

9 is clearly fixed under any automorphism in S. Consider 

. f 
the automorphism ~ -+ ~ , where f is not a multiple 

of m (i.e. an automorphism in ~(R0(e.1T)) but not in S). 

Und er this automorphism e becomes 

rp pf 
+ 

rf 
+ 

p<s-l)m+f 
= E'lf ET ••• + sv 

(The values of q, are the s-fold Gauss periods.) If 

e =;,, €1T" is a root of 



(s-t)m rnod TT pm mo d TT (rt~ moJ 1T 
x + x + x + ~ •• + xf . 

Pf mocl rr f>m+f mod 1T 
= x + x + ...... + 

This equation is of degree at most 

Cs-1)rrr...f modTr p x ••••••• ·• ••• 

1f-1 1 and cannet be 

1 .1 

an 

identity, since f is not a multiple of m. But the min-

imum polynomial of En is tr-1 lT-2 + 1 = 0; x +x + • • • 

equation 1.1 must therefore be this polynomial. This is 

impossible, since the powers occurring in equation 1.1 

are all different, and the coefficients are not all the 

same. Thus 9 ~ ~. 9 is therefore primitive in the 

field B. Since B is the fixed field for a normal sub

group, it is a normal field. 

For each pair (i, j) corresponding to a cyclic 

direct factor of A we now have a prime number lf and a 

field B with primitive element 9. We denote these by 

We show that the field 

bas group A. 

We use the following properties of cyclotomie 

fields :-

(a) Let (n, n 1 ) = 1; let ~n and en, be primitive 

nth and ntth roots of unity respectively. Then (En En,) 

is a primitive 

Ro{E.n, 8 n,)• 

( nn 1 )th root of unity, and R (e: ,.. , ) -o nc;.n -



(b} Under the conditions of (a), R (E. ) 1\ R { € , } = R • 
o n o n o 

The composite of the fields R (e.rr, ) 
0 ij 

{all i, j, 

except (i, j} = (1, 1)) is, by property (a}, the 
th 

n 

n Tiij. 
all i, j 

except {i,j)=(1 ,1} 

cyclotomie field, where n = 

Since the values TI;,j are all different, { n, ~ 1 ) = 1. 

This composite therefore intersecta R (~rr ) in R
0

, 
0 11 

by property ( b). Consequently the composite of the i'ields 

Bij {all i' j except ( i' j) = (1,1)) intersecta B11 

in Ro• The pair. ( 1 , 1 ) can be replaced by any one of 

the pairs (i, j), and so the direct product of the fields 

Bij can be formed; its Galois group is the direct product 

of the Galois groups of the oomponents, and so is isomorphio 

to A. 

Con aider the element 2: L e13 in lèT Bij• 
1 j 

Each element eij has olij 
pi conjugatea, and ao there 

are o(A) conjugate expressions of the form LL B~j' i j 

where E3~j is sorne conjugate of e13 • Suppose two of 

these expressions are equal; suppose 

L. :L e~ 3 i j 
(i,j)r<{1,1) 

Z L. e• = 2:. L. 
i j ij i j 

"L Z e•i3• 
i j 

( i 'j >r<< 1 '1 } 



Since all the fields are normal, the left side of the 

above equation is e.n element of B
11 

and the right èide 

an element of -r;T' Bij. The se fields intersect only 
i,j 

(i,j)_1(1 ,1) 

in R , and s o 9' - en e R 0 ; set 8 ' = 9" + r • 
0 11 11 11 11 . 

ê~1 __,. e~1 is an automorphism of s,, of some order; 

r must therefore be zero, and e' = ~n Similarly 11 u,,. 
el - 8" All the o(A) conjugate expressions are thus 
ij - .ij. 

different, and so L: has degree o(A) over R • 
o' i 

it is therefore primitive in J;fsij• 

Je) Bij is normal, and so the equation 

n(x- L ~ e~j) = 0 has group A. 
i j 

Note 1. It is not necessary to use the decomposition of 

A into cyclic direct factors of prime power order; any 

decomposition into cyclic direct factors will suffice. 

The values of m can then be taken as the orders of these 

cyclic direct factors. 

Note 2. The construction gives a field of group A as a 

subfield of -r;T R (E.'fr ) , which is the cyclotomie field 
i,j 0 ij 

of index ,-r TTij• It was proved by Kronecker that every 
i,j 

Abelian field is a subfield of some cyclotomie field; how-

ever our construction gives only those Abelian fields which 
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are subfields of cyclotomie fields of square free index. 

Twp examples of this method are given, illustrating 

two different ways of oarrying out the computation• 

Example 1 ,2, We oonstruct an equation for the group A 

with invariants 2(1 ,1) (i.e, c2- c2 the four -group). 

We require two different primes 1f1 1 and TT12 
such that 2 1 ~ 

1
-1 and 2 1 Tr12-1; we take T71 1 = 3, 

7112 = s. 

Since ~ 1 -1 = 2, in this case s = 1 and 

6
11 

= e
3

• We have (TT
12-1 )/2 = 2; here s = 2, We require 

a value for f, a primitive 4th congruence root of 1 mod s; 
f = 2 is auch a value. Thus we oan take 

The field 

(€.3 + E.2 + €.3) 
5 5 ' 

the 

equation f(x) = 

therefore has group A. 

2 On multiplying and using the relations e 3+~+1 = 0, 



e..4 + e.3 + €.2 + € 
5 5 5 5 

+ 1 = 0 1 
the equation becomes 

[This result ce.n be verified by obte.ining the oubid re

solvent (see reference 1 1 p. 252-3). The resolvent is 

x3 - 5x2 - 8x + 12, which has roots 1 1 -2, 6. f(x) 

therefore has as group the four group.) 

Example 1.3. We te.ke A~ c2 x c
3

; the invariants of A 

are 2 ( 1 ) , 3 ( 1 ) • 

(A is isomorphic to the cyolic group of order 6; 

we therefore have immediately one equation of g~oup A, 

the 7th cyclotomie equation. We construct another one.) 

We require primes TT
11 and 1T21 auch that 

21 Tr11 -1, 3 1n;1-1; we take 11; 1 =3, 1T21 =7. For 

( 1 
1 

1 ) , a = 1 and e11 = e
3

• For ( 2, 1 ) s = 2. 

be chosen as a primitive 6th congruence root·or 1 

p must 

- fm - 33 we t ake p = 3 • The n e 21 - €. 
7 

+ e 
7 

- é 7 + e. 
7 = 

The field R (e +ê +€.6) therefore has group A. Si nee 
0 3 7 7 

this field is normal, an equation of degree 6 with 

6 
{ e3 + E. + e ) as a root will have group A. 

7 7 

Let x= E3; then 2 x +x+ 1 = 0 ••••••• ( 1 ) ; 

let 6 si nee t6 + €:5 + €4 + €3 + E.2 + 1 y = E7 + ê-7; + E = 
7 7 6 7 7 7 

0 
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3 1 2 1 1 
(€ + (3) + (€ + ~) + (E + ~) + 1 = 0 

7 7 7 7 7 7 

i.e. ( y3 - 3Y) + ( y2 - 2) + y + 1 = 0 

or ••• Ji ••••••••••••••••• 

Let z =x+ y; substituting y= z- x in (2), then 

eliminating x between the resulting equation and (1), 

we have 
6 5 4 3 2 z + 5z + 8z + 3z + 3z + 30z + 13 = o. 

Since this equation is of degree 6 it has group A. 

(2). 

§ 2, A method for constructing equations with given group. 

This method is an extension of a method given in 

reference 5 for cyolic groups only. The proof given here 

of the basic theorem (Theorem 2,2) is new. 

Let K be a normal slgebraic extensionrof the 

rationals; let. i ta Galois group G be i <~"1 = 1 , <:r
2

, ••• , IS'"n}. 

Then there exista in K an element & auch thst 

form a basis for K over R • 
0 

Such a 

basis is called normal, and its existence is proved in, for 

instance, reference 11, p. 66. We consider K now as a 

hyperoomplex algebra over R0 with basis elements 

c:5'1 {8), ••• , crn (9); let Y1~ ( 1, .1, k = 1 , • , • • .nl. be the 

structure constants of this algebra, defined by 

~1 (e) .~S"j(ê) = i!_ ({ k t:S: (e) 
k=1 ij k 



[We note'that this is not the group algebra of the Galois 

group G1 The elements of G are automorphisms, and the 

group product a-1 c:rj is given by 6'"i [cr-j(e)), not by 

<li ( e ) • crj ( e) 1 ) 

Being linearly independant, cr1(e), 1 •• , ~n(e) 

are all different, and so are a complete set of conjugates; 

they are therefore the roots of an irreducible polynomial 

f(x)l This polynomial is normal, and its splitting field 

is K; its Galois group ~(f(x)) is thus the regular 

representation G<S"' of G1 

Lemma 211, e can be so chosen that the values 

the following properties :-

yk 
ij 

have 

( all 1, j , k, 1) 

( all 1, j, k) 

(all j, k) (Kronecker d) 

( all 1 , j, k, all <r- 6 G<S') 1 

Proof, Let o(i denote . . . ' n) • 

( 1 ) Since K is associative, o(i (o( jO(k) = (D(i o( j) o<k; 

, ~ ym yl th us LL 
m 1 

v-rn v-1 
0 jk "im "'1 L ~ ij mk o(l' 

m 
= 

Equating coefficients of ~l gives (1 ), 



(2) Since K is commutative «i ~j = «j Cl(i. 

Th us L L Equating coefficients 
k k 

of o<:k gives (2). 

(3) Let L o< = r; r is rational and non-zéro. The 
1 i 

set { ~ : i = 1 , ••• , n} is then also a normal ba sis 
r 

for K, and we can replace e by ~. We assume that 
r 

this has been done; i.e. e is so chos~n that 

t G"i (e) = 1. Thus f- c;(i o(j = c:l(j, giving 

L L 
1 k 

Equating c oeffic lents of D(k gives ( 3). 

(4) The relation o(i o(j = ~ ri~ D(k is a relation 
k 

between the roots of the equation f(x) = o. It is therefore 

le ft invariant by any permutation (S' in G<r• He nee 

= "&-k ' giving 

Equating coefficients of ~~ gives (4). 

When 9 is chosen as in Lemma 2.1 ,, the coefficients 



of f(x) can be expressed in terms of the values ~~· 
For let r . represent the three-dimensional array of 

n3 rational numbers "(1 ~; let err be the array obtained 

by writing Yc:rr~ <rj in place of 'ti~. For t> 6 Ger, 

r= cs-r (by <4». 

Let tf> (<X
1 

, ••• ,~) be any sym.metric polynomia.l 

in ~1 , ••• , «n. By repeated application of the multiplic

ation law, ~(Q(1 , ••• , o( ) = L ai(r ) o<
1 , where each 

n i . 

ai ( r) can be calculated as a pÇ)lynomial in. the elements 

of r. 
For any given r, there is a permutation ~r 

in Gcs- which carries 1 to r, as G<T is transitive. 

We have 

= 

Equating coefficients of cir, ar ( r ) = a
1 

{ r); 

We have chosen e so that L 
i 

t.(i = 1, giving 

p (o< 1 , ••• , o{n) = a 1 ( r ) . Thus each coefficient of ;f( x) 

can be written as a polynomial in the elements of r. 



We now show that if for a given group G we can 

find values of )(i~ satisfying conditions (1) ••• (4) 

and such that the resulting polynomial f(x) is irreducible, 

then §' ( f(x)) = G(f'. 

Theorem 2,2, Let G be a group of order n, and let its 

regular representation as a permutation group be Ger• Let 
k 

)" ij (i, j,k=1, . . . ' n) be rational numbers satisfying 

( 1 ) E )'j: 1.1 = r yi~ O:! (all i, j J k, 
m im m 

(2) yi~ = yj~ ( all 1, j, k) 

r k 
èjk ( 3) 'tij = (all j, k) 

i 

(4) 
y \'Sir 

<tl, <S"j 
= oi~ ( all i, j, k, all cr e GIS"), 

From the values a certain polynomial f(x) with 
k 

rational coefficients can be obtained; if the values r" ij 
are such that this polynomial is irreducible, its Galois 

group is Gtr'• 

Proof. Let be arbitrary symbols which are 

multiplied according to the law xi xj =~ 
k 

1) 

let A be the hypercomplex algebra over the rationals 

having these symbols as basis elements, From (1) and (2), 

A is associative and commutative. 
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As previously, let r be the three-dimensionel 

array or n3 rational numbers )(i~ {i, j, k = 1, ••• , n), 

and let p (.x1 , ••• , .x
0

} be any symmetric polynomial in 

x1 , ••• , .x
0

• As be fore, si nee from { 4) r = (Sr ( all cr é G<S'"), 

n 
Let f{.x) = llï (x- .xi); then 

i=1 

' n-1 n r ' s1 f r ){ L xi) .x + • • • + ( -1 ) sn ( )( .t.- Xi) , 
i i 

where the si ( r ) ( i = 1 ' ••• ' n) are polynomials in 

the elements of r. 

Since s, ( r )( L. xi) = ( L xi)' s ( r ) = 1. 
i i 1 

n " n-1 n r Let now f(x) =x - s
1

(, ) x + ••• + (-1) sn( ). 

From ( 3)' ( t xi) xj = L.r '\~ xk = i k 

.L ~k xk = xj; thus for a e A, a( L xi) = a, 
k i 

( L xi) is an identity ; in A. 
1 

Let R0 be the subset of A given by 

{ri: rE R
0
J. Since T is an identity, ~ ~ R

0
, 

and 

and so ~ is a field. t(x) is a polynomial over this 

field. 

Suppose f(x) is irreducible over R
0

; then 

f(x) is irreducible over R
0

• Since f(x1 ) = o, 

so 



n-1 
1, x1 , ••• , x1 forma basis for the extension field 

R
0
(x1 >. As these elements are linearly independant oy~r 

they are also l4nearly independant over R • 
0 

They 

ail belong to A, and A is of order n; hence they form 

a basis for A, and so A= ~(x1 ). As x2 , ••• , xn 

also belong to A, it is a splitting field for f(x). 

A is of order n over R
0

, and so 

1 9/( A~) 1 = n. But by (4}, any permutation c5' e Gcs 

of x1 , ••• , xn gives an automorphism of A over R0 , hence 

0('f(x) 1 lÇ) = ~{A 1 R0 ) = G~. 

Under the isomorphism R0 = R
0

, the polynomial f(x) 

is carried to f(x). Thus the splitting field of f(x) 

is isomorphic to the splitting field of f(x), the roots 

of f(x) being carried to the roots of f{xl. {See 

reference 8, p. 108.) Hence 

We note that the equation 

+ ••• + ( -1 )n s ( ,..., ) 
n 

depends only on the order of G and not on its structure; 

the si ( r ) are known polynomials in the n3 unknowns 

fi~· Also, conditions (1) 1 (2), and (3) do not in

volve the structure of G. The equation 



is therefore a general form for equations of this type 

having group of order n, provided f' is such that f(x) 

is irreducible and that conditions (1 ), (2), and (3) 

are satisfied. The structure of the group is then imposed 

on the general equation by conditiort (4). 

2.3 Matrix formulation of the conditions on r. 

u = [uij] be the (n x n) matrix with uij = 1 (all i, j), 

and u.k [ui~J be the (n x n) matrix with 
.k 

= uij = 

sjk (all 1}. Let p($"" be the ( n x n) matrix obtained 

by applying the permutation <J to the columns of the 

identity matrix. (Premultiplication by P~ and postmul-

tiplication by P' 
() 

effect the permutation & on the 

rows and columns respectively.) 

( 1 ) 

Conditions (1) - (4) can now be written 

(all i, k) 

(Condition (1) can only be written in this way if 

condition (2) is already satisfied.) 

(2) ck is symmetric (all k} 

(all k) 
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or, equivalently, P ..... r P' = r 
~ i (J <:ri 

(all 

We show that these conditions are equivalent to 

the following :-

(a) c1 is symmetric 

{b) u c = u 
1 .1 

{d) 

Clearly { 1 ) J ( 2)' (3), <4> imply (a), (b), (c), (d). 

Assuming {a)' {b), (c), {d) we prove {1), (2), (3), (4). 
Sin ce GtS"' is transitive, for any r there is an element 

ar in G 
{$' 

which carries 1 to r. 

By {c)' ci = PIS" c p:r • 
1 1 i 

. ct = p<S" c' pt = p c pl (by (a)) .. 
i i 1 ~1 <5! 1 (Ji 

• • • • • • • • • • • • • • • • • • • • • • • • • • (2) 

U C = U P c
1 

P 1 = U C P' = U P' 
k cs-k \Tk 1 <S""k • 1 <S"'k 

( by ( b)) 

=0(5'1{ 

= u 
.k • • • • • • • • • • • • • • • • • • • • • • • ( 3) 

• • • • • • • • • • • • • • • • • • • • • • • • • • • 
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P P 1 = 1; 
~k (Jk 

but p p ,...._1 = 1 , 
()k uk 

and so pl = p ,.._1. 
(f'k "'k 

Th us (from the equivalent 

form of (4)) 

= p r P' 1 p r P' pt P' 
c.'5"k 1 <fi{ <ri 1 <Ti <S'ïë1 <:rk 

;: P~ (P.&---1.- r 1 P!.-1 ...... ) .t(" P 1 by (d) 
k Qk vi ~k vi 1 ~k 

= P_ r1 P' p r pt 
"i (Ji (S'k 1 (S"k 

= 

The final condition on r is that it must lead 

to an irreducible polynomial f(x). 

If values Oi~ satisfying conditions ( 1) ••• (4) 

are known, the coefficients 

from r; as follows :-

s of f(x) 
r 

can be computed 

Let ~ xr = ~ = s T ( S rational, aince 
i i r r r 

r 2: xi is symmetric). Then from the isomorphism between 
i 

A and the spl1tt1ng field of f(x} we have Ld-..r = S • 
1 1 r 

We obtain expressions for the values s . 
r' 

sr are then g~ven by Nèwton's equations. 

the values of 

By repeated application of the multiplication law, 
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xr can be obtained as 
i 

the values 
(r) (r) 

mi 1 ' • • •' min depend on 

x = xt 

• 
• 
• 
x n 

' 
-(r) 

and mi 
(r) 

= mi1 

• 
• 
• 

. , th en 

r. 
x 1 n 

Let 

where 

( ) r (-mi( r ) ) ' xi = x. 

Hence (xi) r+1 = (-(r))'( -)- {-(r))' [rk1-- (-(r))' r -mi xi x - mi ijJX - mi i x. 

Th us ( m~ r+1 ) )' 

(m~1 ) ) ' ( ri ) r ' 

= Cm< r > P r = (mc r-1 >) 'C r >2 = 
i i i . 1 ' 

and Ciii~r)>' = Ciii~ 1 )>'< ri>r-1 • 

••• = 

But ri = p r P!- , 
<r"i 1 "i 

and p ( r )r-1 pl ; 
O"i 1 \Ti 

also (-m~ 1 ) ) 1 1 1 b ( 1 ) r s g ven y m1 j = o1 j. 

We have Ciii
1
{

1 )l' P = Cm( 1)>' P.!..-1 = [1,o, ••• ,o1; 
cri 1 vi 

(-mi( r})' bence is the result of applying the permutation 

( r 1 
) r-1 • ~i to the f1rst row of 

Now s T = L. xri = L (m{
1
r))' x; equating 

r 1 i 

coefficients of x , S = ~ m{r) 
1 r · 1 11 • 

Let ( r1 )r-1 
= [c(~-1 )]; then mi~)= 

,j 

(r-1) 
c 1 -1 , 

'~i 1 



and ' (r-1) 
S = L c -1 • 

r i 1 ,cri 1 
As 

also runs over 1 to n; 

i runs over 

thus s = L. 
r 1 

1 to n, 

(r-1) 
c 

1 ,i 

-1 
cri 1 

i.e. S is the sum of the elements in the first row of 
r 

( r ).r-1 
1 . • 

2.4 Application. 

Theorem 2.2 reduces the proglem of finding an 

equation with given Galois group to that of solving equations 

{1) ••• {4) R in auch a way that the resulting poly-
o 

nomial f(x) is irreducible, or, equivalently, of finding 

a symmetric matrix c 
1 

satisfying conditions (b), (c), (d), 

for which f(x) is irreducible. The entries in c
1 

can 

be taken as in{n+1) unknowns in R
0

, and the conditions 

can be expressed as Diophantine equations in these unknowns. 

For obtaining the equations, the following procedure is 

c onvenient :-

( 1) Write down 01 in terms of 1 2n(n+1) unknowns • 

n 1 
(11) Write the conditions 2: o;_j = 6j1 (n linear 

1=1 

equations) • 

(iii) Obtain the matrices ck, 

{iv) Write down the matrices 

uaing ck = p 01 pt 
cr.• crk 

r has for its 
1 

k 

jth column the ith column of cj • 



(v) Write down the conditions L. 
m 

L. 
m rl 

yij tor 1 = k+1, ... , n-1; 
mk m 

k = 1 , ••• , n-2; 

( ( n-1 )2 ( n-2) quadratic equations·} • 
2 

1 

m 1 
'tjk '(im = 

j :;:: 1 , . . . , n-1; 

:;:: 1 

We show that if the n equations (ii) hold, 

and if condition (v) is satisfied for the stated values 

of 1, j, k, 1, then it is satisfied for all 1, j, k, 1. 

Assume (11) and (v) are satisfied; let the 

relation 2: 'tj: yl = L '(1~ yl be denoted by 
m im m mk 

(1, j' k' 1). Since 
k 

yij = 
k 

)'ji' (1, j, k, 1) implies 

(k, j, 1, 1) (all j' 1). •••••••••••• { 1 ) 

{1, j, k, 1) is therefore true also for 

1 = 1 , ••• , ( n-2·); j = 1, . . . ' ( n-1 ) ; 

k == ( i+1 ) , • •• , ( n-1 } ; 1 = 1 • 

Moreover it is trivially true for 1 = k 

thus it is true for 1 = 1 , 
k = 1' 

••• J 

. . . , 
( n-1 ) ; 

( n-1 ) ; 

•••••••• 02}; 

j :;:: 1 , . . . ' ( n-1 ) ; 

1 = 1 • 

Summing (1, j, k, 1) over 1 = 1, ••• , n-1, we have 

n-1 

~~ 
n-1 
L.L. 
1=1 m 
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~ 
m n-1 

)',l>=):d'l (r: )'~j) i.e. )'jk ( F:, im mk i=1 m 

n 
tf1= 

&ml' But 2:" 
i=1 im 

n-1 
similarly I: yi~= 

Th us 

. 
•• 

. .. 

i=1 

{n, j, k, 1) 

m 

n-1 
and so L: 

i=1 

J)jm - yn~• 

is true • 

0:1= 
im s -ml 

tl· 
nm' 

'( 1 ym 
mk nj 

Henoe by {1) {i, j, il, 1) is tïTl'lle, and by {2) (n, j, n, 1) 

is true. Similarly, summing {i, j, k, 1) over j = 1, ••• , n-1, 

it oan be shown that (i, n, k, 1) is true. 

Sinoe 0 k = '{ csk {i, j, k, 1) implies 
,,iJ ai ,aj' 

, {cri, c:rj, c:rk, cs-1). Th us ( i' j, k' 1 j implies 

(\Si! , <5'"1 j , <rlk' <:5"11 = 1). But as 1, j, k run over 

1 ' . . . ' n, ao do ali, G"lj' <Tlk. 

. {i, j, k, 1 ) {all 1, j, k) it9ply ( i' j, k, 1) .. 
(all i, j, k, 1). {i, j, k~ 1) is therefore true for all 

i, j, k, l. 

In reference 5, Young obtained general solutions 

of these Diophantine equations for the cyolic groups of 

orders 3, 4, and 5, and also obtained conditions for 



the resulting polynomiale to be irreducible; lengthy com-

putations are involved. 

Particular solutions for C corresponding to a 
1 

given group can be obtained, if solutions exist, by pro-

gramming the Diophantine equations for a computer; f{x) 

can then be calculated, and the reducibility examined by 

Kronecker's method. 

The discussion preceeding Theorem 2.2 shows that 

for any group which can be a Galois group over R , 
0 

the re 

is a solution for r , e.nd so for c1 ' satisfying the 

required conditions. Thus, for instance, from the work of 

Safarevi~ {reference 4> for any solvable group the method 

should yield irreducible polynomials f(x). It also shows 

that for a given group G, every field K for which 

~(K) = G occurs as a splitting field of an irreducible 

polynomial f(x) arising from some solution for c
1

• 

2.5 Example. 

We take as group G the four group. The regular 

representation is cr- = 1 1 , ~2 =(12H34>, cs-
3 

=(13H24), 

o--4 = (14H23). 

Let c1 - a b c d . the conditions L ri~ = gj1 ' i 
b c f g 

c f h i 

d g i j 

give; 
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a+ b + c + d = 1 

b + e + f + g = 0 

c + f + h + i = 0 

d + g + i + j = o. 

We obtain 

c2 = e b g f c3 = h i c f c4 = j i g d , , 
b a d c 1 j d g 1 h f c 

g d j 1 c d a b g f e b 

f c 1 h f g b e d c b a • 

Th us 

~ = a e h j rz = b b 1 1 , 
' 

b b 1 1 e a j h 

c· g c g f d d f 

d f f d g c g c 

r3 - c g c g 
' r4 = d f f d 

f d d f g c g c 

h j a e i 1 b b 

i i b b j h e a • 

Sufficient values for i, j, k, 1 are . 
• 

k = 1' i = 2, 3 . k = 2 1 = 3 , 
' 

j = 1 , 2, 3 ' j = 1 , 2, 3 

1 = 1 1 = 1 • 

The quadrat1c equations are therefore . . -



• 

{2 1 11) : ab+ ee +hf+ jg =ba+ bb + ic +id 

(2 2 ·1 1 ) : bb + be + if + ig = ea + ab + je + hd 

(2 3 1 1 ) : cb + ge + cf + gg = fa + db + de + fd 

(3 1 11) : ac+ ef + hh +ji= ca+ gb +cc+ gd 

(3 2 1 1) : be+ bf + ih +ii= fa+ db+ do+ fd 

(3 3 1 1} : cc+ gf +ch+ gi =ha+ jb +ac+ ed 

(3 1 2 1) : be+ bf + ih +ii= cb +ge+ cf+ gg 

(3 2 2 1 ) : ec + af + jh + hi = fb + de + df + fg 

(3 3 2 1) : fe + df + dh + fi = hb + je + ar + eg. 

The nine quadratic equations and the last three 

linear ones were programmed for a computer, to give integral 

solutions for the 10 variables a, ••• , j. This work was 

done by Professer W.D •. Thorpe, Director of the McGill 

Computing Centre. A large number of solutions was obtained. 

We give a. typical solution, objain the f'unction 

f(x) from it, and verity· its irreducibility. 

A solution is : a '2, b = 2, c = -4, d = -4, 
e = 1 ~· f = -5, g = 2~ h = 5 ~ i = 4, j = -2. 

For these values a + b + c + d = -4; to obtain 

a solution satisfying all the equations, we therefore 

divide each value by -4. 

We have r; = a e h j = 1 2 1 5 -2 -4 
b b i i 2 2 4 4 
c g c g -4 2 -4 2 

'tL f f d -4 -5 -5 -4 . 
' 



52. 

th us r2 = 1 -6 24 4 18 
1 1b 

• • • • 
• • • • 
• • • • 

and r' = 1 -6 24 4 18 2 1 5 -2 
1 -~ 

• • • • 2 2 4 4 

• • • • -4 2 -4 2 

• • • • -4 -5 -5 -4 

= 1 -52 -40 -4o 44 
-64 

• • • • 
• • • • 
• • • • • 

~We note that, as we require only the elements of the first 

r r-1 row of 
1 

, it is necessary only to find the firwt row 

of the product at each stage.) 

sr is the sum of the elements in the first row 

of rr-1. thus s2 = _2. s, =i s - 11 Also 
1 ' 2' 2' 4- a· 

s, = s, = 1. 

Newton's equations give 

s2-s s +2s = o . 
82 = s1 s~-s2 = * • 1 1 2 

s
3-s2 s1+s1 s2

-3s
3 

= o . s, ::: s~-s2 s1 +s1 s2 = 1 • 
3 4 

s4-s
3

s1+s2 s2-s1s
3

+4s4=o • s4 = -S~+S~s,-~sz+S1s2 - 19 .. -- • 4 16 

or, with integral 
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coefficients, 16 f(x) = 16x4 - 16x3 + 20x2 - 28x + 19. 

Writing x = ~, 
. 4 
F(y) = 16 f(x) = y - 2~ + 5Y

2 
- 14y + 19; 

we verity the irreducibility of F{y) by Kronecker's 

method (see, for example, reference 8). 

By Gauss' Theorem, if F(y) has factors, then 

it has factors with integral coefficients. All possible 

linear factors with integral coefficients are y- 1, 

y+ 1; y - 19
1 y+ 19. We have F(+1) = 9, F(-1) = 41 1 

F(+19) > 0, F(-19) > 0; thus there are no linear factors 

with integral coefficients. 

Suppose g(y) is a quadratic factor with integral 

coefficients. We have F(1) = 9, F(-1) = 41 1 F(O) = 19; 

thus g(1) can take values !1 1 !3, ~ 9, g(-1) can 

take values ±1, ±41, and g(O) ·can take values f1, !19. 

Let 2 g(y} = y + ay + b; 

. 2 s~ 1 > - s< -1 ) .. g(y} = y + 
2 

We need consider only the values :.!:1 

g(1) = 1 +a+ b, 

g(-1) = 1 -a+ b, 

g(O) = b. 

+ g( O) • 

for g(O); for if 

there is a factor with g(O) = .:t19, there is also a 

factor with g{O) = +1 - . 
We have F(2) = 11; we tabulate the function 

g(y) for g(1) = :.!:1, !3, ±9 1 g{-1) = :.!:1 1 ±41, g(O) = +1, 



e 

+1 

-1 

g{ -1) 

+41 

-41 

+1 

y2+1 

g(2)=5 

y2+y+1 

c;(2)=7 

y2 -20y+1 

g(2)=-37 

y2+21 y+1 

g(2)=47 

-1 

2 y -y+1 

g(2)=3 

y2+1 

g(2)=5 

y2 -21 y+1 

g(2 )=-39 

y2+20y+1 

g(2)=45 

ii1l 

'+3 

y2+y+1 

g(2)=7 

y2+2y+1 

g(2)=9 

y2 -19y+1 

g(2)=-33 

y2+22y+1 

g(2)=49 

Table 2. 

-3 

2 
y -2y+1 

g(2)=1 

y2-y+1 

g(2)=3 

2 
y ... 22y+1 

g(2)=-41 

y2+19y+1 

g(2)=43 

+9 

y2+4y+1 

g(2)=13 

,-2+5y+1 

g(2)=15 

2 
y -16y+1 

g(2)=-27 

y2+25y+1 

g(2)=55 

e 

-9 

2 y -5y+1 

g(2)=-5 

y2 -4y+1 

g(2 )=-3 

y2-25y+1 

g(2)=-45 

y2+16y+1 

g(2)=37 

VI 
~ ... 
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and obtain the corresponding values of g{2) {Table 2). 

Vàlues of g(2) for g(O) = -1 are smaller by +2 than 

the corresponding Y,alues for g(O) = +1. 

For g{ y) to be a factor of F( y), g(2) must 

divide 11. All possible factors are therefore 

y2-y-1, y
2
+4y-1, y2-2y-1. 

2 y -2y+1 , 

We have F(3) = 49; the values of the four possible 

factors at y= 3 are 4, 5, 20, 2. None of them c~n there

fore be factors, and so F{y) is irreducible. 

By Theorem 2.2, f(x) = 16x4 - 16x3 + 20x2 - 28x + 19 

therefore has Galois group the four group. 

[We verify this by obtaining the cubic resolvent of f(x) 

{ see reference 1, p. 252 - 3). This resolvent is 

x3 - 2
4 

x2 • 3x + gi which has roots t6 , - .2, 1, .2 • 
2 2 4 

Si nee 

these are rational, f(x) has Galois group the four group.] 
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