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                                    Abstract 

While great efforts have been made in the electrical utility industry to engineer various 

stranded conductors with enhanced strength and vibrational characteristics, research 

devoted to understanding the complex mechanical behavior of complete conductors has 

been scarce, especially from a computational mechanics perspective. In the meanwhile, 

the long-lasting problem of conductor fretting fatigue becomes increasingly critical for 

overhead line design and maintenance, especially with the world-wide aging of electrical 

transmission grids. Aging of conductors contributes to significant degradation of their 

local fatigue strength, leading to drastic reduction of their service life.  However, the 

complex mechanical response of stranded conductors cannot be well predicted by either 

experimental testing or simplified theoretical models, owing to the physical complexity 

introduced by their multi-layer stranded geometry, nonlinear material properties, 

substantial frictions among the wires and between the wires and hardware clamping 

systems, as well as the comprehensive contact interactions amongst their components.  

Simplified beam models and coarse 3-D models of earlier computational studies also fail 

to calculate the accurate stress variations inside a conductor strand and capture the stress 

gradients near the contact interfaces. Moreover, the estimations of fretting fatigue life are 

very dependent on the high accuracy of the stress predictions in the conductor wires.  

Therefore, reliable high-fidelity computational models have been long expected for a 

better understanding of the contact damage of transmission line conductors under both 

design and fretting fatigue conditions.  Nevertheless, the practical difficulties encountered 

during solving such computationally demanding and highly nonlinear problems for a real 

conductor have made the task very challenging. 

The main objective of this thesis is to study the complex stress states and relevant 

influencing factors of stranded electrical conductors, using finite element analysis 

approaches. The research was carried out in three stages.  

First of all, a study focused on the finite element (FE) modeling of an optical ground wire 

(OPGW) cable strand for its detailed stress analysis. A refined 3-D FE model including 

all essential nonlinear characteristics was successfully constructed.  In order to obtain 

satisfactory accuracy, least computational cost, and reliable solution process, the quality 
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of the mathematical model and the involved numerical solution techniques were studied 

thoroughly, including geometric modeling, element selections, mesh design, material 

models, contact condition establishment, boundary conditions and load treatments, as 

well as the key numerical solution techniques. As a result, a high-fidelity physics-based 

macroscopic modeling methodology was developed for detailed and accurate 

computational stress analysis of stranded conductors.  

A 795 kcmil Drake ACSR conductor was then selected as a benchmark conductor to 

investigate the tensile strength and critical stress states of a complete conductor under 

extreme design conditions. The computational results under axial loading were discussed 

in detail and showed agreement with the experimental data provided by manufacturers. 

Furthermore, a sensitivity study explored the relative importance of friction effects 

among conductor wires on the mechanical response. 

A large scale 3-D FE stress analysis model with comprehensive nonlinearities was 

developed and implemented to simulate an actual ACSR fretting fatigue test. It was 

shown to be very beneficial to provide insight into better understanding of the contact 

states and the associated stress states among the helically stranded conductor wires in the 

conductor-clamp system under bending fretting fatigue amplitudes. The computational 

results showed good agreement with some experimental measurements and field 

observations reported in the open literature.  Based on the accurate stress analysis, a 

practical multi-axial fatigue lifing methodology was developed to estimate local fretting 

fatigue strength of electrical conductors.  Subsequently, a parametric study was 

performed to examine the influence of fretting amplitudes on the mechanical response of 

the conductor-clamp system. 

In conclusion, this research shows the reliability and significance of using reliable FE 

modeling in predicting the complex response of stranded conductors, which has 

contributed to fill some of the current knowledge gaps.  Furthermore, the computational 

modeling and lifing approaches developed in this thesis provide a different perspective 

from existing practices and may become a starting block of further exploration of the 

mechanisms of conductor fretting fatigue and future development of improved fatigue 

lifing methods for the increasingly aging overhead transmission line conductors. 
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                                    Résumé 

Malgré les efforts déployés par l’industrie des lignes de transport d’électricité pour la 

conception de conducteurs toronnés de haute résistance mécanique, la recherche dédiée à 

la compréhension physique du comportement mécanique des conducteurs s’est faite plus 

rare, surtout du point de vue de la mécanique computationnelle. Le problème du 

vieillissement des conducteurs de lignes aériennes à haute tension, en particulier celui de 

l’usure en fatigue des brins et torons, n’est toujours pas complètement compris ni donc 

résolu. Le vieillissement des conducteurs se manifeste par une dégradation importante de 

leur résistance locale à l’usure en fatigue, réduisant par le fait même leur vie utile et la 

robustesse mécanique de l’ensemble de la ligne. Il faut reconnaître que les études 

expérimentales et les modèles théoriques simplifiés ne peuvent pas prédire le 

comportement mécanique détaillé des conducteurs toronnés à cause de la complexité 

physique de ces câbles: torons et brins multicouches, matériaux inélastiques non-

linéaires, effets des frictions substantielles entre les brins, torons et les surfaces des 

accessoires d’attache, ainsi que les interactions de contact entre ces éléments. Les 

modèles simplifiés basés sur la théorie des poutres et les rares modèles d’éléments finis 

3-D avec maillages grossiers provenant d’études antérieures ne permettent pas de calculer 

les variations précises des états de contraintes dans les conducteurs, en particulier les 

gradients élevés dans les zones de contact. Une estimation raisonnablement précise de la 

résistance en fatigue des conducteurs dépend directement du degré de précision de 

l’analyse des contraintes dans les brins et torons. 

On a longtemps attendu des modèles computationnels de haute fidélité pour ce type de 

problème afin de mieux comprendre l’endommagement par contact et usure des câbles 

(maintes fois observé sur le terrain) et leur réponse mécanique détaillée sous les charges 

de conception. Néanmoins, ce sont les difficultés pratiques inhérentes à la solution du 

problème (modèles de grande taille exigeant beaucoup de ressources de calcul, processus 

numériques complexes dû aux non-linéarités, etc.) qui ont posé les plus grands défis dans 

les applications réelles. 
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 Le but de cette recherche est de démontrer la faisabilité d’une méthodologie de 

construction de modèles d’analyse par éléments finis pour l’étude détaillée des 

contraintes dans les conducteurs toronnés.  Les travaux rapportés dans la thèse procèdent 

en trois étapes principales, décrites ci-après. 

La première partie consiste à préparer un modèle de section de câble de garde à fibre 

optique (CGFO) de construction complexe et d’en faire l’analyse détaillée sous 

déplacement axial contrôlé. Cette étape a servi à établir les bases de la méthodologie 

proposée, lesquelles sont discutées de manière exhaustive : la modélisation géométrique 

des câbles, le choix des éléments finis, la conception du maillage, la définition des 

modèles des matériaux constitutifs, l’établissement des conditions de contact et des 

conditions frontières, l’application des charges,  ainsi que le choix et la performance des 

algorithmes numériques. Les résultats prédits par le modèle raffiné du CGFO sont une 

nette amélioration par rapport à ceux d’études antérieures et la méthodologie est ainsi 

validée. 

La deuxième partie de la recherche porte sur la modélisation raffinée du conducteur de 

ligne ACSR 795 kcmil qui porte le nom de code « Drake », sélectionné comme cas de 

référence pour étudier la résistance en traction et les états de contraintes complexes du 

conducteur sous des conditions de conception extrêmes de conception (contrôlées par 

l’allongement dans cette deuxième partie). Les résultats obtenus sont discutés en détail et 

sont en accord avec les données expérimentales fournies par les manufacturiers. Une 

étude de sensibilité a également exploré l’importance relative des effets frictionnels entre 

les brins du câble sur les contraintes calculées par le modèle. 

Finalement, un modèle détaillé  3-D est créé pour simuler les conditions précises d’un 

essai typique de fatigue en flexion pour le conducteur « Drake » jumelé à une pince de 

suspension. Le modèle retient toutes les non-linéarités du problème d’un point de vue 

mécanique. Les résultats de l’analyse apportent un éclairage nouveau qui permet une 

meilleure compréhension des interactions de contact et des états de contraintes complexes 

induits entre les brins et torons des conducteurs ACSR dans la région de contact avec la 

pince de suspension et pour un cycle complet de flexion du conducteur. Les résultats des 
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analyses computationnelles du « Drake » sont avérés en accord avec certains résultats 

d’essais et observations d’endommagement par fatigue rapportés dans la littérature. Sur la 

base des résultats détaillés rendus disponibles par l’approche computationnelle proposée 

dans cette thèse, l’auteur suggère une méthode pratique pour évaluer la résistance locale 

en fatigue multiaxiale des conducteurs du type ACSR au droit des points de contact des 

pinces de suspension. Cette méthode est relativement simple d’application (une fois les 

analyses de contraintes disponibles) et donne des résultats en accord avec les valeurs 

recommandées par les manufacturiers pour le câble « Drake ». Par la suite, une étude 

paramétrique est faite pour vérifier l’influence de l’amplitude des mouvements de 

glissement sur les états de contraintes déterminés dans le conducteur dans la région de 

contact avec la pince sous l’effet d’un cycle complet de chargement flexionnel. 

En conclusion, cette recherche démontre la faisabilité et la pertinence de l’usage des 

méthodes computationnelles avancées pour l’analyse des contraintes d’un problème 

complexe comme celui des conducteurs toronnés multicouches. La méthodologie de 

construction des modèles est une contribution scientifique importante qui permet 

d’améliorer notre compréhension du comportement mécanique des conducteurs sous 

charges extrêmes ou dans des conditions de fatigue flexionnelle. La méthode proposée 

pour l’estimation de la résistance à l’usure en fatigue est également utile pour l’industrie 

des lignes de transport et pour les manufacturiers de câbles et il est envisageable que cette 

recherche servira de tremplins à plusieurs autres études computationnelles pertinentes sur 

les conducteurs de lignes afin d’améliorer leur fiabilité et leur robustesse mécanique.  
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Originality and Contributions to Knowledge 

To the best of the author’s knowledge, this research includes the following original 

contributions: 

1. An essential improvement of existing finite element stress analysis models of 

overhead optical ground wires (OPGW) is achieved, from which a new-generation 

refined stress analysis model is created based on state-of-the-art numerical solution 

technologies. 

2. A rational and high fidelity modeling methodology is developed to address effectively 

the highly nonlinear mechanics behavior of overhead transmission line conductors 

under extreme design conditions. The same approach can also be applied generally to 

other complex stranded cable structures and wire ropes used widely in civil and 

mechanical applications. 

3. A sensitivity study is conducted to explore the effects of variations in the frictional 

coefficients among conductor wires on the mechanical response of helically stranded 

conductors under axial loading. 

4. A computational model for accurate contact stress analysis of stranded conductors 

under fretting fatigue conditions is developed. This model is capable of describing 

contact damage of helically stranded conductors with fretting fatigue amplitudes that 

simulate the effects of conductor aeolian vibration. 

5. A practical multi-axial fatigue lifing methodology is proposed to estimate the fretting 

fatigue resistance of stranded conductors. 

6. A numerical parametric study examining the influence of fretting amplitudes on 

contact damage is conducted, which provides insights into the fretting fatigue 

mechanisms of transmission line conductors. 

7. Much computation and simulation experience is gained throughout the entire research 

by solving various modeling-related issues, which may benefit other researchers and 

experts. From a numerical modeling perspective, this study enriches the knowledge of 

solving a complex nonlinear mechanics problem for cable and wire rope structures 

using finite element methods. 
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Chapter 1 

Introduction 

 
1.1  Background and Motivation 

In the transmission line industry and in collaboration with the research community, 

numerous structural dynamic studies have been carried out to investigate and predict the 

transient response of overhead lines (OHL) and their supporting towers (Figure 1.1) to 

different types of shock loads such as those induced by ice-shedding, seismic loads, 

sudden tower collapse, conductor breakages, etc. (see for example, McClure et al., 1993, 

1998, 2003, 2007, 2008).  Conductor breakage has been widely recognized as one of the 

worst types of shock loads that a line section can experience, as it directly leads to power 

disruptions and large tension imbalances that may even lead to the failure of transmission 

line supports, and possibly catastrophic cascading failures of the supports. Then, how do 

conductor ruptures happen?  As a matter of fact, the main cause of direct conductor 

ruptures under normal in-service conditions is the significant drop in local fatigue 

strength induced by fretting (Zhou et al., 1994). Therefore it is not surprising that fatigue-

weakened conductors would eventually break under conditions that create large 

overloads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Overhead transmission line with tower (http://www.eng.uwo.ca/people/esavory/tower.htm) 

http://www.eng.uwo.ca/people/esavory/tower.htm
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Fretting fatigue is widely acknowledged to significantly degrade local fatigue resistance 

by promoting the initiation of fatigue cracks and their early propagation and this has been 

identified as one of the most severe problems affecting conductor service life. Under 

normal operating conditions, transmission line conductors are frequently (not to say 

almost constantly) subjected to small amplitude aeolian vibrations; in the meanwhile they 

have to carry their own weight and mechanical tension while undergoing localized heavy 

compressions from various clamping devices, connectors and spacer hardware. Many 

laboratory observations and field experiences have shown that the most severe fretting 

damage usually occurs in suspension clamp edge regions (Figure 1.2), where conductor 

ruptures happen eventually (EPRI, 2006).                               

 

 

 

 

                      Figure 1.2  Schematic of suspension clamp and conductor               

Historically, studies on fretting damage have been mainly concentrated on aerospace 

applications (aero-engine and airframe structures) due to demanding requirements to the 

durability and integrity of those components serving in aeronautical systems.  However, 

the contact regions in transmission line multi-layered stranded conductors in their 

clamping devices are also very susceptible to fretting fatigue damage; they are also 

difficult to investigate because of the complexity of their combined material properties, 

contact geometry and loading conditions, as outlined below. 

Overhead electrical conductors are typically made of ACSR (Aluminum Conductor Steel 

Reinforced), which are comprised of outer layers of aluminum alloy strands with a 

galvanized high-strength steel core also made of stranded wires; they are common in 

North America (Figure 1.3). The role of the aluminum alloy wires is to carry the 

electrical current while the central steel core is the main supporting part due to its higher 

Critical conductor fretting damage regions 
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axial rigidity. Another type of construction is the All Aluminum Alloy Conductor 

(AAAC) where all individual strands are made of the same highly conductive material 

(Figure 1.4).  From the material perspective, aluminum is more deformable and ductile 

than titanium- and nickel-based aerospace alloy materials and fretting cracks are 

theoretically easier to initiate and propagate in aluminum strands.  In addition, aluminum 

and aluminum alloys in their clean state usually exhibit very strong adhesion when in 

self-contact or with other metallic materials. Such a state of strong adhesion could 

promote surface degradation (wear) and high friction under working conditions. 

Although the surface wear induced by fretting may be mild, the reduction in local fatigue 

life can be substantial.   Moreover, the geometric configurations of transmission line 

cable strands make their contact states much more complex than ordinary two-body or 

three-body contact in mechanical fasteners. Many “hot spots” of fretting damage can 

develop due to the extensive contact interactions among wires on a given layer, wires of 

different layers, as well as between the outer layer of the conductor and the suspension 

clamp, an example of which is shown schematically in Figures 1.5 and 1.6.   

Furthermore, the multi-axial loading environment of conductor strands not only creates a 

complex contact stress state in the suspension clamp contact region, but also causes 

severe stress gradients at the edge-of-contact that potentially foster crack nucleation and 

growth leading to strand ruptures.  Finally, it also should be noted that the local contact 

stresses under fretting conditions are very sensitive to the configuration (geometry) of the 

contact bodies, contact loads, materials, and contact surface tribology (friction).  Taken 

together, all these features make transmission line conductors especially prone to fretting 

fatigue failure, and also make the related fretting study very difficult. 

 

 

 

 

 

            Figure 1.3  ACSR conductor                          Figure 1.4  AAAC conductor 

 all aluminum alloy aluminum alloy layers 

steel core strand 
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   Figure 1.5  Suspension clamp/conductor connections and a typical clamp structure         

 

 

 

 

 

 

Figure 1.6  Cross-section of a conductor at suspension clamp center (Zhou et al., 1995) 

From a methodological perspective, in spite of the existence of abundant experimental 

studies in the area of fretting damage, which could date back to the 1920s (Tomlinson et 

al., 1927, 1939), computational approaches have not been very successful to date. Also, it 

is noteworthy that the current research and development approaches used by cable 

designers/manufacturers are almost exclusively experimental and limited to specific cable 

types. However, due to technological limitations, experimental testing alone is 

insufficient to fully characterize the mechanical response of a stranded conductor.  A 

preliminary study with a simplified and coarse numerical model (Roshan Fekr et al., 

1999) has demonstrated that three-dimensional modeling is necessary to describe the 

mechanical behavior of these cables of complex construction under a variety of loads.  

Nevertheless, the development of effective computational modeling of the contact 

core 

    clamp 
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damage of transmission line conductors has achieved limited progress afterwards, even 

for the case under design (tension) load conditions.  In the open literature, few published 

studies have addressed these topics using numerical simulations, although it has been 

widely acknowledged that computational stress analysis is of great significance in 

product design and failure investigations.  In view of such a situation, it is clear that 

simulations of contact damage (under both design conditions and fretting fatigue 

conditions) of transmission line conductors call for in-depth study, which strongly 

motivated this research. 

The study presented in this thesis is original since at present there are no detailed and 

accurate stress analysis models to describe effectively the mechanical response of 

overhead transmission line stranded conductors under both design and fretting fatigue 

conditions. It is anticipated that this research will fill the gap and lead to a better 

understanding of stranded cable mechanics, and be directly useful for the structural 

design of overhead line conductors and their suspension clamp systems. 

 

1.2  Problem Description 

As mentioned above, the complex mechanical behavior of stranded line conductors under 

both design and fretting fatigue conditions is difficult to describe and understand with 

experimental testing or simplified theoretical models. Therefore, reliable computational 

stress analysis models have been long expected.  However, complex cable strand 

geometries, nonlinear material properties, substantial friction effects, and comprehensive 

contact interactions make the numerical work very challenging.  The problem studied in 

this thesis is how to overcome the difficulties encountered during the modeling process to 

develop a rational and high fidelity modeling methodology to describe effectively the 

detailed mechanical response of each cable component.  Based on the accurate stress 

analysis models, fretting fatigue of transmission line conductors is then studied from a 

structural mechanics perspective. 
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1.3  Research Scope and Objectives 

The scope of the work presented in this thesis is on the computational prediction of the 

contact stress states and the study of their relevant influencing factors (such as frictional 

coefficient, fretting amplitude) in stranded electrical conductors under design and fretting 

fatigue conditions.  The specific objectives are: 

 To develop and validate a rational and high fidelity finite element modeling 

methodology for detailed stress analysis of overhead transmission line conductors. 

 To examine the tensile strength and the nonlinear mechanical behavior of a stranded 

conductor under extreme design conditions. 

 To explore the effects of variations in the frictional coefficients among conductor 

wires on the mechanical response of stranded conductors under axial loading. 

 To develop a finite element model for accurate stress analysis of stranded conductors 

under fretting fatigue conditions, in order to investigate the fretting contact damage of 

stranded conductors, from an applied mechanics perspective. 

 To develop a practical multi-axial fretting fatigue lifing scheme to estimate the 

fretting fatigue resistance of stranded conductors. 

 To demonstrate the influence of fretting amplitude on fretting contact states and 

fretting fatigue strength in a conductor-clamp system. 

The in-depth study of the initiation and propagation of fretting cracks is not included in 

this thesis, and will be carried out in future work.  As for the related issues of fretting 

fatigue mechanisms, fretting wear process, as well as fretting corrosion, they are beyond 

the scope of this research.  In addition, although experiments were not conducted during 

the project, the validation of the models and resulting numerical solutions is achieved by 

comparing them with experimental data provided by some cable manufacturers and in the 

open literature. 
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1.4  Thesis Organization 

This thesis is organized as follows:  Chapter 2 reviews the literature of the last few 

decades on the study of the mechanical behavior of stranded cables and electrical 

conductors, with emphasis on fretting damage related studies.  In the subsequent three 

chapters, a logical sequence is followed in the development of the numerical models to 

achieve the above stated research objectives.  In Chapter 3, a refined finite element model 

for detailed stress analysis of an optical ground wire (OPGW) strand is constructed with 

reference to a preliminary simplified coarse model prepared by Roshan Fekr (1999). 

Throughout this initial phase of work, essential analysis procedures and numerical 

solution techniques using finite element methods (FEM) are explored to overcome the 

many numerical challenges encountered during modeling such a highly nonlinear and 

large size problem. This is where the high fidelity modeling methodology is developed 

and validated.  Thereafter, in Chapter 4, a numerical model for stress analysis of an 

ACSR conductor (Drake type (26/7)) under design conditions is studied using the 

approach developed in Chapter 3 and further validation is provided.  Up to this stage, the 

modeling approach is proven and the next stage in Chapter 5 is to build a 

conductor/clamp system stress analysis model that can be used to study the contact 

damage of a stranded electrical conductor under fretting fatigue conditions. A practical 

fretting fatigue lifing methodology is also proposed to predict the local contact fatigue 

resistance of the conductor in critical suspension clamp regions. Chapter 6 summarizes 

the research and makes some suggestions for future work with great significance from 

both behavioral and design perspectives. 
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Chapter 2 

Literature Review 

This thesis relates to computational solid mechanics applied to stranded cables, and it 

encompasses several different subjects that have been studied throughout the entire 

project: finite element modeling procedures, numerical solution technologies for 

nonlinear problems, contact analysis, cable mechanics, and fretting fatigue.  Hence, 

presenting an extensive literature review of all these areas related to this work in one 

chapter would be too lengthy.  Rather, this chapter includes only a selective overview of 

the main subjects regarding the research purposes, namely the essential features of the 

mechanical behavior of electrical conductors, and especially the advances of fretting 

fatigue studies. The other aspects mentioned above are presented in the relevant 

numerical modeling chapters. 

 

2.1  Introduction to Fretting Damage 

2.1.1  What is Fretting ? 

As a matter of fact, the terminology of fretting has not been completely standardized yet, 

i.e., there is no unified definition of fretting. A number of different terminologies have 

been used widely in the literature, including fretting, fretting wear, fretting fatigue, 

fretting corrosion, rubbing fretting, impact fretting, impact-slide fretting, to name the 

most common.  In view of this situation, it has been suggested to use the term “fretting” 

only as a general term to cover all aspects of the related phenomena (Smith, 1998). 

Despite the multiformity of the definition, the fundamental characteristics of fretting are 

consistent: Fretting phenomena are induced by the minute relative movement between 

two contacting interfaces. They occur most frequently among tightly fitting contact 

surfaces that undergo minute relative movement produced by oscillating forces. The 
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amplitudes of fretting slip are usually as small as the order of m (even with sliding 

amplitudes of less than 1 m). In some cases, fretting could also be the consequence of 

the contacted members subjected to an external cyclic force or a static tensile stress while 

being under heavy transverse loads (pressure). As it will be addressed later, fretting 

phenomena in real situations are very complicated and difficult to analyse. However, 

according to the types of relative movements, there are four types of fundamental fretting 

movement modes (Zhou, 2002), as shown schematically in Figure 2.1: (a) tangential, (b) 

radial, (c) rotational, and (d) torsional fretting.  It should be noted that, although the last 

three modes also often occur in reality, most of the studies have been focused on the first 

mode so that the term “fretting” usually just refers to tangential fretting in the literature. 

In addition, little attention has been paid to more complex situations, such as two or more 

fretting movement modes mixed together, or fretting movement combined with other 

movements (e.g. impact). 

 

   

 

 

 

           Figure 2.1  Four types of fundamental fretting movement modes (Zhou, 2002) 

All failures induced by fretting can be generally called fretting damage.  As one type of 

important in-service generated structure failure, fretting damage has been discovered and 

disclosed in many industries since the beginning of the 20th century. Today, it is well 

known that fretting can lead to severe material surface wear, which is frequently 

accompanied by corrosion, thus further speeding up the wear process.  On the other hand, 

it is also widely accepted that fretting can significantly degrade local fatigue strength, 

resulting in an important reduction in high-cycle fatigue (HCF) life.  As a matter of fact, 

the extensive presence of fretting damage in a variety of mechanical and structural 
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components has become one of the major root causes of these structural failures, 

especially to those critical components in high-tech applications, such as aerospace, 

energy, and bio-medical engineering, and thus fretting damage is regarded as a “plague” 

in these industries (Zhou, 2002). Due to the growing concern about such problems, 

investigations on fretting damage have been carried out widely in industry and there has 

been a large amount of research into related areas over the past decades. 

The early history of fretting studies can be traced back to 1911 (Eden et al., 1911), 

followed by the first systematic experimental investigation of the fretting wear process 

conducted by Tomlinson (1927).  However, it was not until 1969
1
 that the first review 

appeared (Campbell, 1969). Thereafter, several review papers (Hurricks, 1970; 

Waterhouse et al., 1969, 1984, 1992) were published in the open literature, which provide 

summaries of the state of knowledge at various periods. Up to now, there are mainly two 

monographs in the English literature, exclusively addressing the fretting subject 

(Waterhouse, 1972; Hills and Nowell, 1994).  In addition, several international symposia 

were organized over the past 30 years by ESIS (European Structural Integrity Society) 

and ASTM (American Society for Testing and Materials) to summarize the advances in 

fretting research (Waterhouse et al., 1981, 1992, 1994; Hoeppner et al., 2000, 2003). 

Overall, the substantial progress of fretting studies was quite slow before the 1980s, 

mainly due to the limitations of experimental facilities and computational methods.  

Indeed, the majority of the research papers on fretting was published in the last 20 years, 

and fretting has become a very active research area in recent years.  In the next section, 

an overview of the current state of fretting studies will be presented in an attempt to show 

the “big picture” of this very broad area. 

 

 

 

                                                 
1
  Comyn, R. H. and Furlani, C. W. 1963. Fretting corrosion: A literature Survey. U.S. Army Material 

Command, Harry Diamond Laboratories, 100 p., a technical report (No. TR-1169), which was initially 

distributed only in U.S. defense research community and was not available in the open literature at the time. 
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2.1.2  Categories of Fretting Damage 

Although there are many nuances in the definitions of fretting phenomena, and no matter 

how they are labeled and whatever specific investigations were conducted, most fretting 

damage studies fall into three categories: fretting corrosion, fretting wear, and fretting 

fatigue.  In addition, it should be mentioned that, due to the close association between 

fretting wear and fretting corrosion, studies of fretting wear have traditionally been called 

“fretting corrosion”, especially in the early days of fretting studies.  Many fretting fatigue 

studies have also been frequently addressed using this terminology.   

 

 (a)  Fretting corrosion 

The concept of fretting corrosion herein has some different connotation from the 

conventional one in that a more rigorous explanation is endued.  Fretting corrosion is 

frequently associated with fretting wear.  However, among the three major categories of 

fretting damage studies, there are relatively fewer publications about “genuine” fretting 

corrosion because most investigations and reported case studies of fretting wear occur 

under strictly “clean” conditions while fretting corrosion must involve some corrosive 

agents, such as sea water, acid rain, corrosive gas, and so on. The environmental effects 

on fretting are the most significant features of fretting corrosion research, with the 

objectives to reduce the action of corrosive media on the surface of fretting components 

and to develop corrosion-resistant materials. Therefore, environmental, chemical, and 

electrochemical knowledge and approaches become crucial to study fretting corrosion; 

this is obviously beyond the scope of this thesis. 

Like other tribology phenomena, the mainstream of fretting research is from either a 

material or a structural perspective, focusing on the wear mechanisms and mechanics of 

fretting damage. Different theories and methodologies are thereby employed. Some 

significant advances in these two aspects are reviewed as below. 
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(b)  Fretting wear 

The most significant difference between fretting wear and other types of wear is that 

fretting wear always occurs on contacting (mating) surfaces that are intended to be fixed 

in relation to one another but actually undergo minute relative movement.  Historically, 

the largest body of fretting related research was focused on fretting wear. The main 

objective of this line of fretting study is to explore the mechanisms of fretting wear 

process by examining the variations of material micro-structures occurring on fretting 

contact surfaces. Almost all fretting wear investigations were conducted from the 

material and metallurgy science perspectives, mainly using experimental approaches. 

Hurricks (1970) summarized the early studies on this topic, and proposed a theory that 

explains a fretting wear process in three stages: the adhesion and transfer of contact 

surfaces in the early stage of fretting; the formation of debris and its oxidation; and the 

steady state of fretting wear. Waterhouse (1977), the leading investigator on fretting wear 

(known as “the father of fretting research”), further extended Hurricks’ findings, and 

demonstrated that the delamination theory of wear is also applicable to fretting. This 

classical “three-stage theory” has had a far-reaching influence on the subsequent studies.  

Hoeppner (2002) considered metal fretting wear mechanisms from five aspects: influence 

of surface films; adhesion of contacting surfaces; plastic deformation and smearing; 

material transfer from one surface to another; and oxide buildup. It is noted that, although 

there were many other different explanations on the mechanisms of fretting wear process 

(besides the above mentioned), the role of material oxidation was long regarded as 

essential during the early development of fretting wear theories.  However, this opinion 

has been gradually discarded due to the fact that fretting wear could also occur in some 

materials (e.g. diamond) without oxidizing environments. Waterhouse (1955) conducted 

some fretting experiments under no-oxygen conditions, showing that fretting wear could 

be induced by strictly mechanical actions. In addition, many early theories exhibited 

some evident weakness: they were not persuasive and satisfactory in explaining the 

relations between fretting wear and fretting-induced fatigue cracks.   In the past 30 years, 

some novel fretting wear theories have been developed.  An important contribution by 

Berthier, Vincent and Godet (1988) is a velocity accommodation mechanism of fretting 
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contact interfaces is proposed to address the friction properties and relative movement 

process. Furthermore, by examining the formation and evolution of wear debris, they 

proposed the notable “third-body” theory of fretting, with a focus on the load-carrying 

capacity of wear debris (the so-called “third-body”) and its positive effects on reducing 

fretting wear and fretting fatigue (Berthier et al., 1984, 1989, 1990). According to this 

theory, the formation and escape (removal) of wear debris is a dynamic process, during 

which both occur continuously and simultaneously. This theory also explains the fretting 

wear process in three stages: (a) Two-body contact stage; (b) Transition stage (transition 

from two-body contact to three-body contact); and (c) Three-body contact stage.  By this 

theory, the variation of the frictional coefficient with fretting cycles during fretting wear 

of metallic materials can be explained (Figure 2.2): At the beginning of fretting wear, the 

frictional coefficient remains low due to the influence (protection and removal) of 

contacting surface films; thereafter, it starts to increase rapidly with fretting cycles due to 

the increase of contact interaction, adhesion, local plastic deformation, as well as 

smearing. Gradually, wear debris is generated between the two contact surfaces. Wear 

debris is regarded as the “third-body”. Hence, the two-body contact is gradually 

transformed into three-body contact. Like the effects of solid lubricant, wear debris 

protects contact surfaces and restrains the contact adhesion, leading to the decrease of the 

frictional coefficient and frictional force during this second stage. When the third stage 

begins, the “third-body layer” has been established, which means the continuous 

formation and escape of wear debris reach a dynamical balance. The friction coefficient 

and frictional force thus become stable (constant), indicating that fretting wear is 

reaching a steady state. 

 

 

 

       Figure 2.2  Variation of frictional coefficient with fretting cycles during fretting wear 

of metallic materials  (Zhou et al., 2002) 
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Another very important aspect in fretting wear study is the examination of contact 

kinematics under fretting conditions, and it is in close association with fretting fatigue 

studies.  A concept of “fretting map” was introduced by Vingbo et al. (1988, 1990, 1993). 

It is a two-dimensional representation of the normal force Fn vs. fretting displacement D, 

which are both highly significant parameters to identify fretting states. The “fretting 

map” theory was further extended to two sets of more accurate descriptions: “running 

condition fretting map” (RCFM) and “material response fretting map” (MRFM) (Zhou et 

al., 1992). Using fretting maps and the so-called “friction log” (a three-dimensional 

representation of frictional force Ft vs. fretting displacement D with fretting cycles N), 

three fretting states could be identified corresponding to different characteristics of 

fretting contact kinematics (contact states), fretting wear, and fretting fatigue. (As seen 

below, these three aspects are actually related to each other). This methodology has been 

applied to experimental studies on some metallic materials to demonstrate their fretting 

wear and fatigue behavior (Zhou et al., 1992, 1993, 1995, 1997). The most important 

findings using the fretting map theory with the applications in aluminum alloys are 

reviewed below to illustrate certain points that are related to the work in this thesis. 

A complete fretting experiment can be characterized by a “friction log” composed of 

numerous Ft –D cycles (loops) that generally have different shapes. Also, the variations 

of frictional force (Ft) may fluctuate with the fretting cycles (N), as shown in Figure 2.3. 

Although the tribological characteristics of fretting are usually very complex, three main 

types of Ft –D cycles in a friction log may be identified: (i) Closed cycle, (ii) Elliptic 

cycle, and (iii) Parallelepipedic cycle. And the transitions among them could happen with 

the evolution of fretting conditions. These three types of Ft –D cycles expose different 

contact states in fretting: Closed cycles implicate that no sliding occurs at the interface, 

and the contact surfaces are mostly in the stick state (static contact).  The nonlinear 

curves of elliptic cycles represent the decrease of the rigidity of the fretting system; in the 

meanwhile, they also indicate that some small sliding (partial slip contact) occurs at the 

edge-of-contact, and severe local plastic deformations are usually accompanied.  

Parallelepipedic cycles appear when complete sliding (gross slip contact) takes place on 

the contact interface. 
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           Figure 2.3  Friction log: Ft –D–N diagram in a fretting test (Zhou et al., 1992) 

Different Ft –D cycles can remain stable for a certain time during a fretting process. Such 

a stable period (fretting state) is called a “regime”. On a “running condition fretting map” 

(RCFM), three types of fretting regimes can be identified corresponding to the three types 

of Ft –D cycles: (i) Stick regime corresponds to the closed cycles. It was found that 

almost no damage (or just light damage) occurs for the stick regime; few wear debris is 

generated, and basically elastic deformations and two-body contact are present in the 

contact area; (ii) Mixed regime (also called intermediate regime) usually has elliptic 

cycles. It has been observed that the mixed regime is the most critical regime for fretting 

fatigue crack nucleation and propagation; (iii) Slip regime is associated with 

parallelepipedic cycles. Debris (the third-body) appears during the slip regime; particle 

detachment and three-body contact are the salient features. While the slip regime 

undergoes severe fretting wear, fretting fatigue cracks are shown not easy to initiate in 

this regime. Thus, corresponding to the fretting regimes in RCFM, three “fretting zones” 

could be identified in a “material response fretting map” (MRFM): (i) No Degradation 

zone (ND), (ii) Fretting Cracking zone (C), and (iii) Particle Detachment zone (PD). 

Figures 2.4 to 2.6 present the correspondences of fretting regimes and Ft–D cycles. The 

correspondences of fretting regimes and fretting zones in the two types of fretting maps 

are illustrated in Figure 2.7.  In addition, a summary table (Table 2.1) is proposed by the 

author to clarify these important corresponding relations.  It should be noted herein that, 

this table is proposed to be helpful to gain a better understanding of this subject, while it 
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is not a rigorous presentation of the correspondences among fretting contact states, 

fretting wear and fretting fatigue: A real fretting phenomenon is usually very complex so 

that drawing clear divisions among these definitions is not always attainable. In 

conclusion, from the above discussions, one can see clearly that fretting wear and fretting 

fatigue are closely related to each other, constituting the very complex tribological and 

fatigue phenomenon.  Fretting studies thus become very challenging and difficult tasks. 

 

 

 

 

                  Figure 2.4  Stick regime and Closed cycle (Zhou and Vincent, 2002) 

 

 

 

 

 

                   Figure 2.5  Mixed regime and Elliptical cycle (Zhou and Vincent, 2002) 

 

 

 

 

                   Figure 2.6  Slip regime and Parallelepipedic cycle (Zhou and Vincent, 2002) 
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Figure 2.7  Fretting regimes (RCFM) and Fretting zones (MRFM) for aluminum alloy 2091 

(Zhou et al., 1997) 

 

 Table 2.1  Correspondences among fretting wear, fretting contact and fretting fatigue 

Fretting regime Ft –D cycle Contact status 
Fretting characteristics 

(Fretting zone) 

Stick regime Closed cycle Static contact No Degradation zone 

Mixed regime Elliptical cycle Partial slip contact Fretting Cracking zone 

Slip regime Parallelepipedic cycle Gross slip contact Particle Detachment zone 

 

In addition to the investigations of wear mechanisms on fretting contact surfaces (as 

reviewed above), the effects of many influential parameters on fretting wear have been 

widely studied. The influential parameters mainly include fretting displacement 

amplitude, normal load (bearing force), pre-stress, frequency of external tangential force, 

local plastic deformation, tangential contact stiffness, contact mode, contact surface 

quality, contact temperature, geometry effects, material properties, to name the most 

important.  Meanwhile, numerous studies investigated the formation of tribological white 

layer in fretting wear (see for example Griffiths, 1985; Xu, 1995), as well as nucleation 

related issues occurring in the early stage of fretting (Sauger et al., 1997, 2000a, 2000b). 
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In summary, fretting wear is a very sophisticated subject. So far, an ideal and widely 

accepted (generally applicable) fretting wear theory that could be used to satisfactorily 

demonstrate the mechanisms of fretting wear process has not yet been well established.  

Moreover, there are still considerable controversies about the effects of various 

environmental, material and structural factors on fretting wear behavior.  Thus, many in-

depth studies are to be carried out in this area.  In addition, as stated before, fretting wear 

has been investigated primarily from the perspectives of material and metallurgy science, 

employing experimental approaches to examine the variations of micro-structures on 

fretting contact surfaces.  Computational methods are not usually used in this research 

field. 

 

(c)  Fretting fatigue 

Another and usually more damaging aspect of fretting is fretting fatigue. Numerous field 

experiences and experimental reports have disclosed that the initiation of fretting cracks 

and their rapid propagation could significantly degrade local fatigue strength, resulting in 

a severe reduction in high-cycle fatigue (HCF) life. Extensive fretting fatigue has led to 

poor performance and unreliable mechanical and structural systems in all engineering 

industries. For example, for aluminum alloy T7375, a reduction of more than 50% fatigue 

life due to fretting fatigue was reported (Foulquier, 1988), as shown in Figure 2.8.  

Therefore, from the perspective of structural durability, the danger and detrimental 

effects of fretting fatigue are much beyond the other two types of fretting damage. 

Compared with other types of fatigue, the most distinctive feature of fretting fatigue is 

the involvement of complicated tribological phenomena so that fretting fatigue 

sometimes is also called contact fatigue.  From the viewpoint of contact mechanics, 

fretting friction is much more complex than common sliding and rolling frictions due to 

the occurrences of “partial slip contact” status, accompanied by local plasticity at the 

edge-of-contact area, and the third-body layer (wear debris) between contacting surfaces.  

From the viewpoint of fatigue, as opposed to conventional low-cycle fatigue (LCF) 

failures (less than 10
5
 cycles), fretting fatigue is generally associated with high-cycle 
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fatigue (HCF) failure (greater than 10
6
 cycles), as well as LCF-HCF interactions 

(Gallagher et al., 2001).  In addition, different from fretting wear investigations, fretting 

fatigue research typically uses the approaches of applied mechanics to study the initiation 

and propagation of fretting cracks, estimate fretting fatigue life reduction, and develop 

means to mitigate fretting fatigue. In the literature in this field, there are more 

“parametric studies” than “modeling studies”.  That is to say, the majority of the literature 

addresses the effects of various factors on fretting fatigue, such as fretting slip amplitude, 

normal load, shear load, plasticity, pre-stress, external tangential force frequency, 

tangential contact stiffness, contact mode, contact surface quality, material properties, 

coefficient of friction, elevated temperature, oxidation, wear debris, stress field effects, 

geometry effects, and so on
2
. Relatively much less research has focused on the 

development of methodologies to model fretting fatigue damage. 

 

 

 

 

 

 

              

  Figure 2.8  HCF life deduction of aluminum alloy T7375 due to fretting (Foulquier, 1988) 

While a survey of fretting fatigue studies will be presented in the next section, some 

general conclusions summarized from the literature review are listed below to outline the 

most significant and distinctive features of fretting fatigue, which also expose the great 

challenges in this area of research: 

                                                 
2
  Obviously, they are also the influential factors of fretting wear. 
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(1) The initiation (nucleation) of fretting cracks and their rapid early propagation can 

significantly reduce local fatigue life of components, and is generally associated 

with high-cycle fatigue (HCF) life. 

(2) Even without external cyclic loading, fretting cracks can also be initiated and 

propagated by local contact loading in quasi-static loaded assemblies. Furthermore, 

fretting fatigue may cause failure at surprisingly low stress levels. 

(3) Fretting cracks usually occur at the edge-of-contact regions, and mostly initiate 

from contacting surfaces. This also verifies that tensile stresses on contact surfaces 

(surface tractions) play a crucial role in fretting fatigue. 

(4) Multiple different (not only one) fretting cracks may occur in fretting contact 

regions. The crack lengths may vary from the order of m (“microstructurally 

small” cracks) to the order of mm (“mechanically small” or “microstructurally 

large” cracks). The longest crack is usually called “dominant crack”. 

(5) Fretting crack behavior depends on fretting regimes (stick regime, mixed regime, 

slip regime). In effect, cracks may exhibit different patterns in different fretting 

regimes, and crack paths may be not consistent even in the same regime. Laboratory 

observations also revealed that the most severe local contact fatigue usually occurs 

in mixed regime. In addition, fretting cracks propagate three-dimensionally, and 

bifurcations might happen during their propagation. 

(6) Especially for ductile materials (e.g. aluminum alloy), material slip bands can be 

observed around fretting cracks, showing the occurrence of severe plastic 

deformation. 

(7) Similar to other types of fatigue, fretting fatigue can also be separated into two 

evolutionary stages: crack initiation and crack propagation. However, it has 

distinctive features from other fatigue phenomena:  In the first stage, fretting fatigue 

cracks initiate not from free surfaces, but from clamped, bolted or other tightly-

fitted mating surfaces suffering vibration or other forms of minor oscillatory 

loadings. Such a situation may produce significant surface degradation due to 
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fretting wear so that the small crack initiation is essentially caused by adhesive 

contact as well as plastic deformation during fretting.  At the beginning of the 

second stage, the propagation of nucleated cracks is still driven by contact stresses 

imposed by fretting, such as normal contact stress (bearing stress), tangential 

contact stress, and tensile stress on contact surfaces. The complex multi-axial stress 

states have been shown to favor or prevent the early cracking, depending on the 

contact characteristics under study.  At the late second stage, cracks may continue 

to propagate until rupture happens, while contact stresses have no longer a 

significant contribution. 

(8) The nucleation and early propagation of fretting cracks are both strongly affected 

by many mechanical and material parameters and their synergistic interactions, 

among which relative slip amplitude and normal load (bearing force) have shown 

significant effects on fretting crack behaviors. 

(9) Careful design can only reduce fretting fatigue, but cannot eliminate it completely 

in that (minute) vibration is inevitable in reality. The methods that are employed to 

mitigate fretting fatigue are highly dependent on the specific applications. Some 

methods that drastically extend fretting fatigue life in one situation could even be 

detrimental in another application. Only those methods that could increase 

“baseline” (unfretted) fatigue strength of materials, such as shot peening, are proven 

to consistently increase fretting fatigue life. 

 

Fretting studies have been outlined in this section according to three failure modes of 

fretting damage. If categorized by research methodologies applied to this subject, 

experimental methods are dominant. Theoretical studies are still far from mature. For 

example, there is clear evidence that the mechanisms of fretting wear and fretting fatigue 

have not yet been completely understood. Thus new theories and insights are proposed 

from time to time, with some conclusions proved inconsistent and even controversial.   

As seen from the above summary of fretting fatigue features, modeling of mechanical 

behavior induced by fretting has proved extremely difficult (Nicholas, 2006) and thus 
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little research has been done in this area.  However, with the increasing power of 

computing hardware and numerical solution techniques, computational modeling (mainly 

by the finite element method) is becoming one of the dominant research approaches on 

this subject, especially for fretting fatigue. 

 

2.2  Overview of Previous Studies on Fretting Fatigue 

As one of the main objectives of this thesis is to model the detailed mechanical behavior 

of stranded transmission line conductors under fretting fatigue conditions, a separate 

review of the advances of fretting fatigue studies is presented in this section.  While there 

is no attempt herein to provide a complete survey of all aspects of fretting fatigue
3
, 

selected references are chosen with a structural mechanics perspective.  It should also be 

pointed out that the study of fretting fatigue mechanisms is beyond the scope of this 

thesis since it is usually addressed from a material science perspective due to its intrinsic 

association with fretting wear. General explanations on mechanisms of fretting fatigue 

can be referred, for example, to Waterhouse (1972), Hertzberg (1996) and Suresh (1998). 

Although fretting fatigue occurs widely at various matting surfaces of mechanical 

components and structural members, such as in bolted and riveted joints, bearing 

connections, cable strands, orthopedic implants, to name a few examples, it has long been 

studied mainly for aerospace applications due to their historical importance. For example, 

from the overview of typical failure modes of jet engine components, as shown in Table 

2.2 (Mattingly et al., 2002), it can be seen that fretting fatigue is a pervasive problem for 

aerospace and defense industries. Indeed, it has brought about serious concern about 

mating surfaces of all critical aero-engine components and aircraft joints that are 

subjected to normal pressure and tangential oscillatory motions. Hence, all major 

airframe and aero-engine manufacturers, as well as some government organizations have 

been heavily involved in extensive fretting fatigue investigations since the 1960s: see 

Harris (1967, 1972); Alic and Kantimathi (1979); Smailys et al. (1987); and also 

                                                 
3
  A recent extensive review of fretting fatigue studies can be seen in Section 4.11 in “Comprehensive 

Structural Integrity”, Vol. 4, by Farris et al. (2003). 
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“Specialists meeting on fretting in aircraft system” (1974).  Over the years, the U.S. Air 

Force and NASA have played key roles to advance the state of the art in fretting fatigue 

research by launching important programs, such as “ENSIP” (1984, 2002) that have 

lasted more than 25 years and are still ongoing, as well as by persistently funding relevant 

scientific projects, for example, those conducted by Heoppner et al. (1994, 1996).  

Consequently, numerous approaches have been proposed, specific to different 

components and their operating conditions, to solve fretting and related HCF problems, 

and a large body of research papers has been published.  Today, although fretting fatigue 

investigations are being largely expanded to many other industries, the majority of 

literature in this field is still overwhelmingly for aerospace applications. Thus, it is 

inevitable to refer to those findings when studying on this subject. Moreover, those 

approaches employed in aerospace actually have brought considerable merit for 

conducting fretting fatigue research for other applications. 

        Table 2.2  Typical failure modes of aero-engine components (Mattingly et al., 2002) 

 

 

 

 

 

                        

 

As stated before, fretting fatigue is usually studied from the applied mechanics 

perspective, to investigate fretting crack behavior, and to estimate fatigue life under 

fretting conditions.  From the literature, relevant investigations are mainly carried out 

from one of the following three correlated aspects, with different emphases and 

approaches: 
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                           (a)  Estimation of fretting fatigue life; 

                           (b)  Prediction of fretting crack initiation; 

                           (c)  Examination of fretting crack growth. 

As for (a), methodologies conventionally used are mostly empirical (see for example, 

Nishioka and Hirakawa, 1969; Sato et al., 1986):  Experiments are conducted firstly; 

After acquiring large amounts of data from experiments or directly from field experiences 

and referring to the values from non-fretting conditions, modified fatigue life calculations 

(formulas) for fretting can be proposed; afterwards, these formulas are validated by 

applying them to some other similar situations. The advantage of such empirical 

approaches is that the resulting calculation methods could be convenient for design (they 

actually become design tools), while the shortcoming is that they usually lack scientific 

rigor and generality as they cannot explain the essential physical fretting behavior. That 

is, these formulas might not be applicable to different situations, and even sometimes 

they may be misleading when applied outside their range of calibration. Overall, the 

studies conducted in this line mainly fall into the domain of experimental mechanics.  In 

recent years, some high-cycle fatigue lifing methods (Gallagher et al., 2001) based on 

numerical stress analyses have been proposed and applied to fretting settings to integrate 

into experimental work to address this issue. 

Regarding (b) and (c), in parallel with experimental work, computational mechanics is 

playing an increasingly important role, especially for real industrial applications. As in 

other fields in structural and solid mechanics, it is impossible to consider modeling real 

fretting fatigue problems by anything other than numerical methods since computational 

modeling is normally the only practicable and economical way to acquire accurate and 

detailed stress and strain fields for real engineering structures. With respect to the 

numerical solution techniques for fretting contact analysis and fatigue lifing, although 

some methods such as the boundary element methods (Takahashi, 1991), the distributed 

dislocation technique (Hills et al., 1996), and the emerging meshless methods (Atluri, 

2004; Chen and Eskandarian, 2006) have received considerable attention in academia, the 

most practicable choice usually remains the finite element method (FEM), which is the 

dominant analysis tool in continuum mechanics applications.  However, as stated above, 
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fretting related computational modeling is very challenging. Hence, solving such a 

problem using FEM requires advanced modeling strategies and robust numerical solution 

schemes to achieve convergent and reliable solutions.  Over the years, some analytical 

work (theoretical and computational) has been conducted in each of fretting fatigue 

stages to study different topics. 

Obtaining accurate contact stress fields is the first and foremost step to carry out 

successful fretting fatigue studies.  As stated in Section 2.1.2 (b), partial slip appears to 

be the most critical contact mode for crack initiation.  Historically, contact stress fields 

under the “stick-slip” elastic contact condition were first explored by Mindlin (1949). 

This pioneering work is now called the classical “Mindlin’s elastic contact theory”. 

Mindlin studied the case of a rounded punch on an infinite body with flat surface and 

identical elastic materials, and considered that the elastic contact region with tangential 

force can be separated into a stick region and a slip region at the edge-of-contact, the so-

called “Partial Slip Contact State” (Figure 2.9-a). The closed-form analytical solutions 

were derived, which exhibit smoothly distributed normal contact stress but singular 

tangential contact shear stress at the boundary of stick regions (Figure 2.9-b). The tensile 

stress on the contact surface is generated due to friction, and it significantly increases 

with the increase of frictional coefficient, and reaches maximum at the edge-of-contact 

regions (Figure 2.9-c).  Surface traction is currently recognized to play a very important 

role in fretting fatigue crack initiation. 

 

 

 

 

 

             Figure 2.9  Stress fields of partial slip elastic contact in Mindlin’s theory 

                                                  (Zhou and Vincent, 2002) 



 

 

26 

Indeed, high contact adhesion occurs at the fretting interface of ductile materials, such as 

aluminum alloys, so that frictional coefficients even approaching unity (1.0) are not 

uncommon (Smith, 1998).  An elastic-plastic fretting contact model for a cylinder on flat 

infinite body contact was studied by Odfalk and Vingsbo (1992) to demonstrate that the 

singularity of the tangential shear stress disappears owing to ductility, thus the transition 

of the surface stresses between stick and slip regions is rounded (Figure 2.10). In 

addition, it was shown that plastic deformation could occur during fretting contact even 

under rather modest normal loads for most ductile metals (Vingsbo and Odfalk, 1990). 

  

 

 

 

 

               Figure 2.10  Tangential shear stress of partial slip elastic-plastic contact 

                                                 (Odfalk and Vingsbo, 1992) 

In effect, Figures 2.9 and 2.10 exhibit important features of stress fields that are also 

characteristics of fretting contact problems, thus the “cylindrical contact pad” is still 

widely used in fretting fatigue specimen tests. Certainly, other contact geometries 

(configurations), especially those in real applications, produce much more complex stress 

fields in contact regions, which can only be analysed with detailed computational models. 

To create proper criteria to predict the initiation of fretting cracks, Hamilton and 

Goodman (1966) studied this topic by considering the subsurface tensile stress field. The 

“Fretting Fatigue Damage Parameter” (FFDP) developed by Ruiz et al. (1984) was a 

widely used model to predict fretting crack initiation, but it is an empirical model, which 

has the drawback to account for the differences induced by different materials. Nowell 

and Hills (1990) included more control parameters to predict the initiation of cracks, such 
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as maximum tensile stress on contact surface, tangential contact shear stress, and 

tangential relative slip amplitude.  Maouche et al. (1997) proposed a method from a 

multi-axial fatigue viewpoint to determine the critical conditions of crack initiation. In 

addition, experimental investigations (Zhou and Vincent, 1995) have indicated that the 

mixed regime is generally avoided for brittle materials due to the rapid formation of wear 

debris and the establishment of the third body layer, thus producing mainly gross slip 

contact conditions; for ductile materials, however, there are usually longer mixed 

regimes, so the nucleation of fatigue cracks is facilitated. Furthermore, in mixed regimes 

of ductile materials, crack nucleation can quickly occur without even any additional 

external loading and thus cancel the crack initiation period, while small differences in 

some parameters have been shown to favor or prevent the early cracking.  The effects of 

various mechanical factors on fretting crack initiation, such as the applied normal and 

tangential forces, coefficient of friction, surface finish, surface plasticity, etc, are being 

investigated extensively.  In summary, so far, many criteria have been proposed to predict 

the initiation of fretting cracks, which are strongly dependent on contact configurations 

and their operating conditions. But, a unified criterion has not yet been established, and 

the investigation of the relationship between fretting crack initiation and various contact 

interface conditions remains a very active field of research. 

The propagation of fretting cracks is another very open research area. Fracture mechanics 

is still the most popular method for studying this topic (Chan et al., 2001; Nicholas, 2003, 

2006). Historically, fracture mechanics was first introduced to fretting by Endo and Goto 

(1976). Nix and Lindley (1988) demonstrated that the stress intensity factor (Opening 

mode/Mode I) of fretting cracks is different from that in the conventional crack 

situations. Later, Nowell and Hills (1990) calculated stress intensity factors of fretting 

cracks with different lengths and angles, and summarized their study on fretting cracks in 

their 1994 monograph (Hills and Nowell, 1994). In more recent years, some experimental 

work was carried out to investigate the crack propagations in aluminum alloy, and 

demonstrated that the process of crack growth in the plastic domain is fundamentally 

different from that in the elastic domain. Conventional linear elastic fracture mechanics 

criteria such as the stress intensity factor are not applicable to the ductile failure observed 

in the tested aluminum specimens.  In addition, it has been shown that the early fretting 
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crack growth (crack path and propagation rate) and the small crack region behavior both 

have their own features, and are very difficult to analyze. Hence, to gain more insight, 

fretting crack studies have also been carried out based on fracture mechanics approaches 

in combination with finite element analysis (McVeigh and Farris, 1999a, 1999b). While 

some success has been achieved in applying these approaches to simple specimens, 

practical difficulties are encountered for general applications. 

It is also noteworthy that there is much controversy in the literature about the effects of 

fretting crack behavior on resulting fatigue life,  i.e., which stage of cracking is dominant 

in fretting fatigue, crack initiation or crack propagation? For example, Faanes and 

Fernando (1994) concluded that the fretting fracture process is dominated by crack 

growth, and this conclusion was supported by Waterhouse (1992). They observed that 

fretting crack initiation could contribute only 5% or less of the total fatigue life, while in 

ordinary metal fatigue, crack initiation may even account for 90% of fatigue life.  On the 

contrary, Hills et al. (1994, 1998) and Szolwinski and Farris (1996) concluded that 

fretting fatigue is a crack initiation-controlled process, implying that crack initiation is 

the dominant part of the fatigue life.  While no definitive conclusions have been made up 

to now, it is necessary to indicate that different materials, surface qualities, and loading 

conditions may perform differently during fretting fatigue, which might lead to 

completely opposite conclusions. 

From the above overview of the current state of fretting fatigue studies, it is seen that:   

(1) Even for aerospace applications, where fretting fatigue has been investigated and 

studied extensively, computational modeling approaches are far from successful to be 

integrated into fretting fatigue failure and lifing analysis;  (2) Even if only from an 

applied mechanics perspective, fretting fatigue is still a multi-disciplinary subject. 

Contact mechanics and fatigue mechanics are two major theoretical underpinnings for 

investigating and modeling fretting fatigue failures. While FEA is becoming the 

dominant analytical tool to conduct fretting fatigue research for real-world applications, 

modeling and numerical methodologies applied to complex systems are far from mature. 
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2.3  Advances in Contact Damage of Electrical Stranded Conductors 

Structural reliability of overhead transmission line systems has long been emphasized due 

to its significant economical impacts (El-Fashny et al., 1999; Wong and Miller, 2009), 

and is regarded as a “key criterion” to design transmission line structural systems 

(Nickerson, 2006).  Because it is well known that the major causes of structural failure of 

transmission line systems are associated with natural hazard events, such as ice storms, 

hurricanes, tornadoes, earthquakes, etc., hence, a large amount of studies have been 

conducted from a structural dynamic perspective, to explain the transient response of 

transmission lines and towers to shock loads, such as gusty wind loads (Shehata and El-

Damatty, 2005; Keyhan et al., 2013), ice-shedding effects (Jamaleddine et al., 1993; 

Roshan Fekr and McClure, 1998; Anderson and Li, 2006; Kálmán et al., 2007; Keyhan et 

al., 2011), seismic loads (McClure et al., 1994, 1999, 2000), conductor breakages 

(McClure et al., 1987, 2003, 2010, 2013), and so on. While concern about various 

“global” structural failures of transmission line systems remains, “local” failures of line 

components that may trigger sudden conductor ruptures are preoccupying, especially 

with the emergence of increasingly severe aging problems of power transmission line 

systems around the world (Aggarwal et al., 2000; Azevedo et al., 2009).  In this regard, 

fatigue is an important topic since it is the dominant structural failure mode under normal 

service conditions, and it plays a role as fatigure-weakened components may trigger 

failures at higher load levels. As stated in Section 1.1, the main cause of conductor 

ruptures under normal operating conditions is induced by fretting fatigue, which usually 

occurs in suspension clamp regions. In the past decades, static strength and contact 

fatigue of electrical conductors have been studied under the framework of general wire 

ropes and stranded cable structures.  The advances of the studies in this field are outlined 

below. 

 

2.3.1  Theoretical Studies  

From a structural point of view, an overhead conductor is essentially the application of a 

stranded wire rope to the transmission line industry. For example, a typical ACSR 
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conductor can be regarded as a composite stranded cable comprised of multi-layer 

aluminum wires that are helically wrapped around a central steel core, while the steel 

core itself is also a twisted cable strand.  Therefore, the general classical theories of wire 

ropes and stranded cable structures are of relevance to gain understanding of the 

mechanical behavior of overhead electrical conductors. 

Accurate stress analysis is fundamental to further assess structural strength and predict 

fatigue life. Indeed, the majority of related theoretical studies are focused on the static 

strength of wire ropes under various loadings. 

One of the earliest investigations on the mechanical behavior of wire ropes was 

conducted by Hall (1951). Stress analysis of a wire subjected to axial load was performed 

based on three assumptions: (i) The axial load was equally distributed amongst all the 

wires of the strand; (ii) Neither friction nor bending in the wires was considered; (iii) No 

sliding among the wires was allowed, i.e., “bonded contact” was assumed. Obviously, 

considering the wire rope as a fully coupled cross section and distributing the load 

equally amongst its components cannot be realistic and subsequent studies soon revealed 

that these assumptions were not appropriate. Hruska (1951, 1952, and 1953) claimed that 

three components of forces (axial tension force, radial force and tangential force) could 

be produced in a single wire subjected to a pure axial load. He also concluded that the 

tangential forces and the resulting moments would either cause rotation of the wires in 

free-ends boundary conditions or would be the moment reactions at fixed supports. 

Leissa (1959) expended Hruska’s work to a complete wire rope and considered the 

effects of contact between the single wires.  In the same year, Starkey and Cress (1959) 

proposed a simplified theoretical model to calculate the contact stresses in a wire rope, 

and the importance of this work is the introduction of fretting in the stress analysis of 

wire ropes for the first time. Machida and Durelli (1973) used linear expressions to 

determine the external axial force, bending, torque and corresponding stresses of a strand 

made of helical wires with a central core and subjected to axial and torsional 

displacements. However, the effects of friction amongst the wires, Poisson's effect, and 

the contact pressure between the core and the wires were all neglected.  Phillips and 

Costello (1973) also calculated stresses in twisted wire cables, with fewer assumptions 
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than made in previous studies. They obtained exact solutions from six non-linear 

equations of equilibrium for each wire to evaluate all stresses (axial, bending, shear, and 

contact), but without considering the friction among the wires.  Nowadays, it has been 

realized that the theoretical analyses of wire ropes are very inaccurate if frictional forces 

are neglected. Also, the relative movements of the wires due to tension and twisting of 

the cable generate resisting forces that are closely related to the contact forces and 

stresses in the wires. Moreover, for multi-layer ropes, which are the situation in electrical 

conductors, the frictional contact among adjacent wires, as well as among adjacent layers, 

makes the stress states very complex. 

Uttings and Jones (1987a, 1987b) conducted in-depth theoretical studies on the response 

of a wire rope to axial tensile loads, and presented the first mathematical model 

considering the change of helix angle under load, Poisson's effect in the wires, and the 

effects of friction and wire flattening at the contact surfaces. However, they considered 

only one layer of helical wires with small displacements.  In addition, in the works of 

both Phillips and Costello (1973) and Uttings and Jones (1987), the cables were 

considered short and straight, which is not appropriate for transmission lines applications 

where the catenary configuration of the cable and the large displacements of the wires 

have significant effects on cable stresses. Raoof and Hobbs (1988) proposed an analytical 

model for multi-layered structural strands, where each layer of wires was ideally treated 

as a statically indeterminate orthotropic cylinder with an equivalent modulus of elasticity.  

LeClaire (1991) also developed a linear theory for wire ropes that considered individual 

wire geometry and equilibrium and included the effects of contact deformation between 

the wires. Dry friction and inter-wire slip in a cable under axial load and uniform bending 

moment were studied by Huang and Vinogradov (1992, 1994, 1996a, 1996b): Two types 

of contact modes among the helical wires were identified as “parallel contact” among 

the wires of a same layer and “cross contact” among the wires of different adjacent 

layers (Figure 2.11); The thin rod theory from Love (1944) was used for the wires; small 

deformations and elastic material behavior were assumed and only those friction forces 

between the wires and the core were considered.  Regarding the applications of wire rope 

theory to transmission lines, after delivering a comprehensive survey (Roshan Fekr, 

1998) of the previous work on stress analyses of helical wires, Roshan Fekr (1999) 
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derived the analytical solutions describing the static response of an optical ground wire 

(OPGW) under axial load, which considered the central tube geometry of the OPGW 

cable and Poisson's effect. More recently, a theoretical model for the mechanical 

response of electrical cables under bending was developed by Inagaki et al. (2007), 

taking into account the friction of the multi-order helical structures but neglecting the 

contact within the same layer. 

 

                   Figure 2.11  Two types of contact modes in a helical wire strand 

                                                   (Huang and Vinogradov, 1992) 

Finally, it should be mentioned that, up to now, several comprehensive literature surveys 

(Utting and Jones, 1984; Utting, 1994a, 1994b, 1994c) and monographs have been 

published on the theoretical mechanics of wire ropes.  Costello (1997) summarized many 

findings by his research team and presented their theoretical work on the static response 

of wire ropes subjected to axial loading, bending and torsion. Contact and friction issues 

were also discussed, but with very simplified treatments.  A large amount of theoretical 

models of wire ropes under tension and bending were compiled by Feyrer (2010), who 

summarized more than 80 years of wire rope research in Germany.  Kiessling et al. 

(2010) published a guide book that gives comprehensive descriptions of various electrical 

conductors, including their mechanical behavior from design and construction 

perspectives. This recent monograph is also largely based on many years of intensive 

research in Germany.  A small book exclusively on overhead conductors (Rawlins, 2005) 

includes many useful analytical solutions to calculate the static strength, fabrication 

stresses and residual stresses of aluminum conductors, which can be directly used for 

design purposes. 
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In summary, for all the efforts to derive analytical solutions, many assumptions and 

simplifications had to be made. Even so, due to the complexity of real wire ropes, 

developing effective theoretical models for accurate stress analysis purposes (to describe 

and predict the real mechanical response of wire ropes) has been proven very difficult, 

and even impracticable. While analytical solutions do bring about some insights into the 

nature of the subject, like in other real-world mechanics problems, direct use of those 

closed-form exact solutions can be limited and even not appropriate in the real cases of 

electrical conductors. 

 

2.3.2  Experimental Studies 

Unlike the theoretical studies, experimental studies and testing of wire ropes and 

overhead conductors have been largely related to fatigue.  Early experimental studies on 

wire ropes were summarized in two comprehensive review papers by Bahke (1985a, 

1985b), in which most studies used empirical approaches by means of laboratory tests to 

generate particular formulas to predict fatigue life of different wire ropes.  Based on a 

modified Goodman diagram, fatigue life of a wire rope was determined by introducing 

the effective stress to consider the multi-axial stress states of wire ropes (Zhang and 

Costello, 1996).  In combination with analytical formulations to get the stress states, 

Giglio and Manes (2005) studied the fatigue life of a wire rope subjected to axial and 

bending loads.  It is noteworthy that the majorities of the “fatigue strength” tests of wire 

ropes in the published literature mainly refer to “tensile fatigue” rather than “fretting 

fatigue”, and are usually for steel wire cables, for example, the structural ropes used in 

suspension bridges, instead of electrical conductors (Feyrer, 2010).  Fretting-induced 

contact damage of cable structures, including fretting wear and fretting fatigue, was well 

summarized by Waterhouse (2003), in which it also refers to steel wire cables mainly 

used as mooring ropes, haulage ropes, mining ropes, and structural ropes for bridges. 

Also, from this comprehensive review paper, it is seen that most of the investigations on 

contact damage of cables have focused on fretting wear and environmental effects, while 

the very important fretting fatigue problem has not been studied enough. 
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Furthermore, there are no adequate (standard) failure criteria available for fatigue 

strength design of cable structures.  Besides a damage criterion for transmission line 

conductors in India, the American Petroleum Institute and Post-Tensioning Institute 

provides the only specifications in North America that give simplified recommendations 

for the fatigue design of stranded cables (again, it mainly applies to suspension bridge 

strands, not to overhead conductors).  However, because the above criteria do not take the 

localized fretting contact fatigue into account, it has been shown that “the criteria give 

unsafe results” (Papanikolas, 1995) to fatigue strength of cable strands. An experimental 

study of axial fatigue for bridge steel cables with fretting considerations was thus carried 

out (Papanikolas, 1995). 

Regarding fretting damage of overhead conductors, abundant experimental work has 

been carried out since the 1960s (see for example, Fricke and Rawlins, 1968; Mocks, 

1970). Especially, great efforts were made by the “Research Group on the Mechanics of 

Electrical Conductors” at Laval University, where a series of fretting fatigue laboratory 

tests were performed to study the flexural stiffness and fretting behavior of ACSR 

conductors, particularly at the locations of suspension clamps (Cardou et al., 1985~2001). 

Their typical fretting fatigue testing rig for a conductor/clamping system is shown 

schematically in Figure 2.12. Nowadays, it has been well recognized that aeolian 

vibrations may cause fretting fatigue of individual aluminum wires in overhead 

conductors and fretting microcracks usually occur in suspension clamp regions (between 

the keeper edge (KE) and the last point contact (LPC) of the conductor at the mouth of 

the suspension clamp).  The large amount of laboratory test findings and experimental 

data on this subject (mainly for ACSR conductors) are summarized in the chapters 

authored by Rawlins et al. in the “EPRI Transmission Line Reference Book” (1979, 

2006). The evolution of fretting cracks in an ACSR conductor was explored by 

metallurgical examinations based on laboratory tests, and fracture mechanics was 

employed to calculate the stress intensity factors, which were based on simplified 

assumptions rather than detailed contact stress analysis (Ouaki et al., 2003). 
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        Figure 2.12  A typical fretting fatigue testing rig for conductor/clamping system  

Specifically, some typical features of fretting cracks that are characteristics of fretting 

fatigue of ACSR electrical conductors are summarized below and illustrated in Figures 

2.13 to 2.17.   Metallographic examinations have shown that fretting cracks may exhibit 

different cracking modes in three different “fretting regimes” of a conductor/clamping 

system (Zhou and Vincent, 2002): In the stick regime, while a fretting crack is not easily 

developed, it is still able to initiate at (or very close to) the boundary of the contact area 

with increasing fretting cycles, and it usually grows almost perpendicularly inward into 

conductor wires (Figure 2.13).  The mixed regime has been shown to be the most critical 

regime for crack nucleation and growth (Zhou and Vincent, 1995), where fretting fatigue 

microcracks often initiate in conductor/clamping edge-of-contact areas under a partial 

slip contact state, and the initial crack inclines towards the tangential fretting direction. 

Thereafter, the crack might propagate with one of the three different modes: (a) The 

crack stops growing deeper, but links up with another crack with opposite crack path, 

thus generating a large particle debris (Figure 2.14);  (b) The crack suddenly changes its 

initial direction and continues to propagate inward (nearly perpendicular to the contact 

surface), as shown in Figure 2.15; (c) Bifurcation occurs: one crack would develop 

according to the first mode, while another crack path would follow the second mode 

(Figure 2.16). In the mixed regime, the most significant factors are normal contact 

pressure (bearing force), tangential frictional force and size of contact area. The 

synergistic effects of these influential factors govern the growing path of the fretting 
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crack.  In the slip regime, the location of crack nucleation and the crack path heavily 

depend on the “competition” between fretting wear and fretting fatigue. The crack might 

occur from the edge of the fretting wear pit surface (Figure 2.17). 

 

 

 

 

 

          Figure 2.13  Fretting crack path in stick regime  (Zhou and Vincent, 2002) 

 

 

 

 

          Figure 2.14  Fretting crack path in mixed regime: mode (a)  (Zhou and Vincent, 2002) 

 

 

 

 

 

           

          Figure 2.15  Fretting crack path in mixed regime: mode (b)  (Zhou and Vincent, 2002) 
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          Figure 2.16  Fretting crack path in mixed regime: mode (c)  (Zhou and Vincent, 2002) 

 

 

 

 

 

          Figure 2.17  One type of fretting crack path in slip regime  (Zhou and Vincent, 2002) 

Furthermore, it has been shown that fretting conditions also have a crucial influence on 

fretting cracking behaviors, namely, the nucleation and propagation of fretting cracks 

strongly depend on material properties, contact geometry configurations and loading 

conditions, as well as their synergistic effects. Consequently, conductor wire ruptures 

may in effect occur on either outer layers or inner layers, making it very difficult to 

predict fretting fatigue of a conductor. The effects of many mechanical parameters, 

including fretting slip amplitude, clamp pre-stress, number of fretting cycles, frequency 

of fretting motion, performance of lubricant, and material properties were investigated 

extensively by Zhou et al. (1992-1999).   From the above discussions in this section, it 

can be concluded that fretting experimental studies are all empirical in the sense that, 

depending on particular situations (test conditions), quite different research findings have 

been reported. 
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In recent years, several field investigations of overhead conductor fretting fatigue failures 

have been reported.  For example, a failure of an all aluminum alloy conductor (AAAC) 

in a 400 kV overhead transmission line located in Touggourt Biskra (Algeria) was 

analyzed by Boniardi et al. (2007). Their investigation revealed that all the ruptured wires 

showed fretting marks associated with intense presence of aluminum oxyde (Al2O3) 

debris; broken and damaged conductors were taken as experimental samples to identify 

the root cause of the fretting fatigue failure.  Another in-depth field investigation by 

Azevedo and Cescon (2002) related to the catastrophic failure of an ACSR conductor in 

Brazil
4
. The rupture of the ACSR conductor strands (Figure 2.18) occurred just at the end 

of the clamping regions. The fracture topography distribution indicated that all the outer 

and most of the inner aluminum wires had a 45
o
 fracture surface (Figure 2.19), while 

fretting wear debris was present on the both outer and inner layer surfaces. Recently, the 

same research group designed a practical testing rig to carry out ACSR conductor fretting 

fatigue tests and performed metallographic examinations to explore the failure 

mechanisms (Azevedo et al., 2009). The rig design and the testing parameters of this 

experimental work have served as important references for the computational work done 

in this thesis. 

 

 

 

 

 

 

          Figure 2.18  General view of fretting fatigue rupture of a ACSR conductor 

                                               (Azevedo and Cescon, 2002) 

                                                 
4
  The blackout in 2002 due to the failure of 460 kV transmission line crossing of the Parana River 

seriously affected 67 million inhabitants in the southern states of Brazil. 
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Figure 2.19  ACSR conductor fretting fatigue fracture surface: (A) Outer layer 45
o
 

fracture surface; (B) Inner layer 45
o
 fracture surface with superficial fretting wear 

damage (see arrow)   (Azevedo and Cescon, 2002) 

 

2.3.3  Computational Modeling Studies 

While experimental studies on fretting damage of electrical conductors have been carried 

out extensively and some fretting fatigue testing methods have been standardized 

(Cardou et al., 1992), relatively fewer efforts were dedicated to computational modeling 

of this problem.  In effect, due to the great challenges encountered in the modeling 

process (Ouaki et al., 2003; Azevedo et al., 2009), accurate stress analysis applied to 

conductor wires and conductor/clamping systems has been a bottleneck to gain a better 

understanding of the complex strength and fatigue behavior of stranded transmission line 

conductors.  Since the 1990s, only a few related numerical studies have been conducted, 

all using finite element methods. The salient features of these studies are reviewed next. 

One of the first computational studies was reported by Abé et al. (1989), who constructed 

a 3-D finite element model of overhead ground wires with optical fibers (OPGW).  In 

fact, it modeled only the grooved aluminum spacer (slotted rod) illustrated in Figure 2.20, 

without considering the other components (the layers of wires and the optical fibers) of 

the optical fiber cable. 
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         Figure 2.20  Cross section and mesh of an aluminum spacer  (Abé et al., 1989) 

A finite element analysis of a parallel groove clamp in the bolt-type power connector was 

conducted by Luo et al. (2000) to address the failure of the connector rather than the 

conductors. The contact problem was considered in this failure analysis, but without 

considering fretting.  Another wire rope contact stress analysis model was presented to 

study the interwire motions under axial loading and bending, but with very simplified 

node-to-node contact treatments (Nawrocki and Labrosse, 2000).  Several concise finite 

element models for a short wire strand sector with very coarse mesh were also built by 

Chiang (1996) and Jiang et al. (1999a, 1999b, 2000a, 2000b, 2008) to describe the 

response of a simple strand to axial loads. Contact interactions among wires were 

considered (Figure 2.21), but it was claimed that accurate boundary conditions would be 

very difficult to apply, if not impossible. Thus, symmetric boundary conditions were 

established, which is not accurate for real overhead conductor configurations. 

 

 

 

 

          

                Figure 2.21  Concise FE model for a three-layered wire rope sector 

                                                          (Jiang et al., 2000) 
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A substantial effort was made by Roshan Fekr et al. (1999) to model a real OPGW strand 

cable, including the nonlinear material properties, large deformation and frictional 

contact effects. In that work, the first detailed 3-D finite element model was constructed 

for stress analysis of an OPGW cable subjected to a prescribed elongation. However, due 

to the limitations of computing platforms and numerical techniques for solving large 

nonlinear problems at that time, a very coarse mesh was produced and simplified solid 

geometric models were built (Figure 2.22) to reduce the model size and analysis running 

time; also contact surface plasticity was not taken into account. Even so, this work 

provided an important milestone that served as the starting-point for the computational 

modeling studies in this thesis. 

 

 

 

 

 

      Figure 2.22  A simplified OPGW stress analysis model  (Roshan Fekr et al., 1999) 

In recent years, Dastous (2005) analyzed stranded conductors using a newly developed 

beam element with variable bending stiffness based on the so-called tangent stiffness 

method from Papailiou (1997). Páczelt and Beleznai (2011) developed a p-version FE 

code to analyze a two-layered wire rope strand based on the curved beam theory. A 3-D 

finite element analysis for stress concentration at the clamping region of conductors 

under axial force was studied by Lao et al. (2009). Although contact interactions between 

the conductor and its suspension clamp were included in that model, the conductor was 

only regarded as a single elastic solid cylinder rather than a helical cable strand, thus 

ignoring the essential characteristics of real conductors. Consequently, that model was 

not able to present the proper stress distributions in the contact region of the 

conductor/clamping system.  A 3-D FE model for multi-layered wire strands under 
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tension was recently built by Stanova et al. (2011). That model considered the inter-layer 

contact, but with only elastic material behavior, and thus cannot be used to address 

fretting fatigue behavior. Another recent conductor study involving detailed 

computational modeling was carried out at the Oak Ridge National Laboratory in the 

United States (Wang et al., 2008). The objective of the research was to evaluate the 

integrity of ACSR Drake conductor full tension single-stage splice connector (SCC) 

systems and their associated effective lifetimes at high operating temperatures. In 

addition to experiments, 3-D contact stress analysis models were constructed in the 

investigation. However, coarse models had to be built because it was claimed that the fine 

meshed model of the real conductor configuration took a very long time to reach a 

convergent solution. As a result, besides a coarse meshing scheme, the 3-D FEM model 

had only a single die-set length of 1.5 inches, including the sleeve and the Drake 

conductor, for simulating the SCC crimping event (Figure 2.23). 

 

 

 

 

 

 

 Figure 2.23  ACSR Drake conductor SSC system model (Left) and crimped conductor 

section at the middle section of  the model (Right).  (Wang et al., 2008) 

 

From the selective review of this section, one can realize that effective and robust 

computational models are crucial to accurately analyze and predict the complex 

mechanical responses in transmission line conductors. 
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2.4  Summary Remarks 

The state of the art of general fretting research, fretting fatigue, as well as contact damage 

studies of electrical conductors have been reviewed in this chapter.  Numerous laboratory 

tests have been carried out to study the static strength and fretting fatigue of high voltage 

overhead electrical conductors in the past decades. The effects of a variety of physical 

parameters on fretting fatigue and fretting wear have been investigated empirically.  

Although obtaining accurate stress fields for conductor wires and especially at clamp 

mouth areas is very important for transmission line design and maintenance against 

fretting fatigue, the stress states at the contact surfaces among individual wires as well as 

between the outer wires and the clamp surface are not accessible to direct measurement. 

Meanwhile, simplified theoretical models are not capable of fully characterizing and 

explaining real-world situations. Hence, computational mechanics models are the best 

methodology to accurately and completely determine the complex states of stress and 

strain for multi-layered composite stranded conductors. However, such numerical work 

has not been fully successful to date.  With the increasing power of computing hardware 

capabilities and the availability of sophisticated numerical solution techniques, reliable 

computational models can now be developed to study this problem: this is precisely the 

scope of the present research. 
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Chapter 3 

Refined FE Modeling for Stress Analysis of an OPGW 

 

3.1  Introduction 

As stated in Chapter 1, a refined finite element model for detailed stress analysis of an 

optical ground wire (OPGW) strand is studied as the first phase of this research. The 

primary goal in this stage is to develop a high fidelity modeling methodology for reliable 

and accurate numerical stress analysis of stranded transmission line conductors. A 

particular type of optical ground wire is selected, for which a simplified coarse model of 

that OPGW was successfully built by Roshan Fekr (1999). The availability of this model 

data and its results has enabled a productive starting phase for the purpose of validation 

and verification of the newly developed finer model.  In addition to seeking to achieve 

the above goal, a significant improvement of that preliminary work had been long 

expected. 

Overhead ground wires with optical fibers (OPGW) have been used widely in high 

voltage transmission lines to replace traditional steel ground wires, for their 

telecommunication benefits in power grid control. The primary function of OPGW is to 

protect the line conductors electrically against lightning, while optical fibers incorporated 

in the core of the cable serve as telecommunication lines for automatic control of the 

transmission network. While there has been considerable interest in the power line 

industry to engineer various stranded transmission line conductors, research devoted to 

understanding the complex mechanical behavior of complete OPGWs has been scarce in 

the open literature, especially from the numerical modeling perspective.  As mentioned in 

Chapter 2, the work by Roshan Fekr (1999) produced a simplified model with very 

coarse 3-D mesh. Considering that friction and contact problems are highly dependent on 
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the geometry of the solids in contact and the problem size, a new-generation refined 

model with improved solution accuracy is thus to be developed for a better understanding 

of the detailed mechanical response of the OPGW. 

This chapter addresses the construction of a 3-dimensional elastic-plastic, large 

deformation, multi-body frictional contact finite element (FE) model for a real OPGW 

conductor. The detailed model attempts to consider all possible mechanical effects, such 

as contact, friction, elongation, torsion, and bending under maximum design conditions, 

with a view to describe clearly the detailed mechanical response of each cable 

component.  While nowadays high-end FE software has the capabilities to handle 

complex problems, this model presents practical difficulties to achieve both convergent 

and sufficiently accurate solutions due to the helically-stranded cable geometry, the 

nonlinear cable constitutive properties involving several materials, substantial friction 

effects, as well as contact interactions amongst its components (i.e., among the wires of 

different layers, the wires and the tube, and the tube and the spacer).  Many challenges 

have been encountered throughout the modeling process. For example, very fine mesh is 

imperative in the regions of the comprehensive contact interfaces of all the wires to 

capture the stress gradient and achieve converged solutions, but how fine does the mesh 

need to be?  What types of elements for contact and non-contact regions work best for 

this application?  What boundary conditions should be specified to properly simulate the 

effects of the design loads on a short cable section?  Which numerical solution techniques 

(and their combinations) are the most robust and efficient for this type of problem? In this 

chapter, all these issues are explored and discussed in detail, followed by a comparison of 

the computational results of this refined model with those obtained with two approximate 

analytical solutions and from the coarse model developed by Roshan Fekr (1999). 

 

3.2  OPGW Construction and Solid Modeling 

The OPGW modeled in this study was manufactured by Phillips-Fitel in Rimouski, 

Québec (Canada) and used by Hydro-Québec on its first high voltage overhead 

transmission lines equipped with optical technology.  Figure 3.1 shows a schematic cross- 
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section of the OPGW cable strand, and the configuration of the OPGW assembly is 

illustrated in Figure 3.2: The cable comprises two layers of helically twisted conductor 

wires, a central aluminum tube, and a spacer that houses the optical fibers in its helical 

grooves. 

 

 

 

 

 

 

            Figure 3.1  Schematic cross section of the 19-mm OPGW (Roshan Fekr, 1999) 

 

 

 

 

 

 

 

 

 

 

            Figure 3.2  The structural components of the OPGW  (Roshan Fekr, 1999) 

OPGW ComponentsOPGW Components

 Outer wires

 Inner wires

 Aluminum spacer

 Central tube
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The geometric specifications of the OPGW components are summarized in Table 3.1. 

The exact external diameter of the cable strand is 18.94 mm. The outer wire layer is made 

of 14 aluminum alloy wires, whose function is mainly to dissipate the electrical current 

generated by a lightning strike. These wires are helically twisted around the inner layer 

wires with a pitch length of 202.16 mm.  Acting as the main load-carrying component, 

the inner layer is made of 10 aluminum-clad steel wires with a pitch length of 265.16 mm 

and helically twisted in opposite direction to that of the outer wires.  The 6.5 mm external 

diameter and 0.55 mm wall-thickness central aluminum tube encloses the optical fiber 

strands that are loosely inserted in the five U-shaped grooves of a spacer.  The spacer is 

also made of aluminum alloy and is itself helically twisted along its center with 150 mm 

pitch length in the same direction as the inner wires.  As a result, the helix angles of the 

outer wires are in the opposite direction of the helix angles of the inner wires and spacer 

grooves: the outer wires have a Z-shape while the inner wires and spacer are of S-shape. 

The opposite helical directions of the inner and outer layers are designed to reduce the 

internal twisting moment of the cable about its longitudinal axis.  

                    Table 3.1  Geometric specifications of the OPGW components 

 Diameter 
(mm) 

Area 
(mm2) 

Pitch Length 
(mm) 

Helix Angle 

Outer wire 3.37 8.92 202.16    + 13.61
o 
(Z) 

Inner wire 2.85 6.38 265.16 - 6.32
o 
(S) 

Central tube 6.5 (Dext); 5.4 (Dint) 10.28 - - 

Spacer 5.15 10.17 150   - 6
o 
(S) 

FE model     External Diameter = 18.94 mm ;     Model length = 265.16 mm 

 

The main software used to build the OPGW solid model is the DesignModeler of ANSYS 

Workbench 11.0 (ANSYS Inc., 2007). The model comprises all the structural 

components of the cable strand (Figure 3.3) except the optical fibers. These fibers are 

designed to remain stress-free under normal operation loads due to their loose insertion in 

the grooves of the spacer provided by fiber over-length. The relatively larger diameter of 
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the spacer slots with respect to the diameter of the fiber strands provides space for the 

additional length of the fibers, which is also referred to as over-length.  Assuming perfect 

compatibility of strains and displacements amongst cable components, the optical fibers 

will not experience any elongation and axial stresses until the cable extension exceeds the 

fiber over-length.  The total length of the solid model is based on the longest pitch length 

among all its structural components, i.e. the inner layer pitch length of 265.16 mm 

 

 

 

 

 

                             Figure 3.3  Solid model of the OPGW - 265.16 (mm) 

In an attempt to build a precise solid model for the purpose of accurate contact analysis, 

significant improvements had to be made compared to the previous work of Roshan Fekr 

et al. (1999) to generate the solid bodies and surfaces.  The central tube is easily defined 

by extruding its circular cross-section along the longitudinal axis (z-axis).  The spacer 

(Figure 3.4) is generated using its exact cross-sectional sweep along the z-axis with 

helical twist based on its pitch length rather than its helical angle as used by Roshan Fekr 

(A helical angle is an approximate value calculated using the pitch length.), which yields 

a more accurate geometry.  

Building the inner and outer layer wire solid models involves three steps. In step one, two 

3-D helical curves are accurately created using I-DEAS software (UGS, 2006) by 

defining spline function expressions with two sets of helix algebra equations
1
, for the 

inner wire and outer wire separately. The generated helical curves are then transferred (in 

.igs neutral format) into ANSYS DesignModeler.  In step two, an inner solid wire and an 

                                                 
1
  Helix parametric algebra equations: x= r*cos ;  y=r*sin ;  z=h*/2π ;  ∈[0, 2π]   ( h= pitch length ) 
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outer solid wire can be generated separately by sweeping their circular cross sections 

along the 3-D helical curves defined in step one. In step three, 10 inner layer wires and 14 

outer layer wires are built via “circular pattern” to duplicate the helical wires created in 

the second step.  Using this approach, the generated solid wire models may have exact 

elliptical cross sections on a cutting plane defined by its normal along the z-axis. The 

geometry of the two cross sections at the fixed-end and free-end is shown on Figures 3.5 

and 3.6. 

 

 

 

 

 

                                   Figure 3.4  Solid model of the core spacer 

 

 

 

 

 

  

 

   Figure 3.5  Cross section with fixed end          Figure 3.6  Cross section with free end 
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3.3  Finite Element Modeling 

Considering the particular features of the problem and the complex interfacial contact 

geometry of the cable strand, the finite element method (FEM) is selected for detailed 

stress analysis. FEM has gained widespread acceptability in industry during the past few 

decades, and nowadays has been actually the most commonly used tool in various 

structural analysis areas. However, as mentioned before, a number of modeling 

challenges were encountered in this application. Especially, the highly nonlinear model 

exhibits very difficult convergence behavior, which requires extensive numerical 

experiments as most software-supplied default parameters for numerical solution control 

and contact settings became inadequate. Keeping in mind the two goals stated in the 

beginning of this chapter, the focus of the work presented in this section is to gain 

confidence in the modeling methodology and demonstrate the accuracy of the 

computational results. Before starting the in-depth discussion of the approaches 

employed throughout all essential procedures in the FE modeling and its implementation, 

some comments about the reliability assessment of a FE model are worthy of being 

addressed, as they provide the author’s rationale to carry out all the computational 

modeling research in this thesis. 

The reliability assessment of a numerical simulation (the modeling and its computations) 

includes two processes, the so-called validation and verification (V&V). Specifically, 

validation means the examination of the quality of a mathematical model in representing 

its physical context, and verification addresses the quality of the numerical schemes to 

solve the mathematical model (Babuška and Strouboulis, 2001). Much research is 

currently being done on the subject of V&V with the growth of computational modeling 

(see for example, Babuška et. al., 2011). 

Like any other numerical modeling technique, a FE model is essentially a mathematical 

representation (in this thesis) of a boundary value problem for a set of second-order 

partial differential equations. Since the actual physical problem to be tackled is almost 

impossible to model exactly as it is in reality, that is, the actual mathematical model that 

we seek to solve is generally intractable, and thus it always has to be replaced with a 



 

 

51 

tractable surrogate model. This implies that, even if one gets almost the right answer for 

the surrogate model, it is still the “wrong” answer for the mathematical model that 

represents the real problem. Therefore, it is very important to realize that any FE solution 

can never give more information than that contained in the solved mathematical model 

(FE model).  As any numerical model can only be an approximation to reality, which 

inevitably contains some uncertainty, a FE model thus must preserve the most important 

features of the actual physical event so that it could meet the necessary acceptance 

conditions given the specific goal of the simulation.  To answer the question of validation 

is to address whether the FE model correctly models the physical phenomenon being 

considered. Hence, an effective FE model is supposed to be the one that can yield the 

required response with sufficient accuracy and at least cost, and is considered reliable if 

the predicted response is within the accuracy of the response predicted with a “very 

comprehensive mathematical model”, which is generally a 3-D fine model including all 

essential nonlinear effects (Bathe, 1996).  To this end, an evolutionary development from 

a coarse model to a fine model is often needed as part of the validation process, which is 

called “hierarchical modeling” (see for example, Oden and Prudhomme, 2002; Bucalem 

and Bathe, 2011). 

As for verification, it essentially involves two aspects: verification of the numerical 

solution techniques and verification of the code implementing these techniques (Babuška 

et. al., 2011).  To achieve robust numerical schemes, extensive numerical experiments are 

often required for a highly nonlinear problem. However, ad hoc approaches should be 

avoided to “artificially fix” numerical deficiencies of the computational model. That is, 

the quality of the numerical schemes should be based on the rational understanding of the 

numerical solution process and the physical problem that the FE model represents.  In 

addition, error analysis (error estimation) of the FE solution is also crucial for the 

verification process.  Certainly, in engineering practice, it has been always tacitly 

assumed that round-off error is negligible by using a reliable code.  In this thesis, the 

finite element analysis commercial software ANSYS Workbench 11.0 (ANSYS Inc., 

2007) is employed to perform all the FE implementations, due to its proven high-end 

solver capabilities for large nonlinear problems. The verification aspect of the OPGW 

modeling will be mainly addressed in Section 3.4, while its validation is discussed next. 
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3.3.1  Material Properties 

All the inner and outer helical wires of the cable strand are assumed linear elastic with 

large kinematics and small strains, which is in accordance with the experimental results 

obtained from a 96-hour tension test performed at Hydro-Québec’s Research Institute 

(IREQ, 1994). Uniaxial tension tests were performed at McGill University on the central 

aluminum tube and spacer separately, to obtain their accurate stress-strain material curves 

at ambient temperature (22
o
C). These tests were justified by the significant plastic 

deformations observed in the IREQ tests. The material nonlinearities of the central tube 

and spacer are then modeled in ANSYS using multi-linear fits of their experimental 

curves. The material properties and characteristics of the OPGW components are 

illustrated on Figure 3.7 and summarized in Table 3.2, where E is Young’s modulus, Y is 

the Yield strength, and UTS stands for Ultimate Tensile Strength. 

 

 

 

 

 

 

 

 

 

                        Figure 3.7  OPGW cable strand material curves (σ in MPa) 
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           Table 3.2  Material properties and characteristics of the OPGW components 

Components Material Properties Characteristics 

Outer wires 
Aluminum 

alloy 

E = 63.77 GPa;     ν = 0.33 

Y = 204.05 MPa;  UTS = 336 MPa 
 linear elastic, 

 large kinematics, 

 small strain Inner wires 
Aluminum-

clad steel 

E = 162 GPa;        ν = 0.33 

Y = 1250 MPa;     UTS = 1474 MPa 

(main load-carrying component) 

Central 

tube 
Aluminum 

E = 61.8 GPa;       ν = 0.33 

Y = 123.61 MPa;  UTS = 146 MPa 

 linear elastic to 

multi-linear 

plastic, 

 large kinematics, 

 large strain 
Spacer 

Aluminum 

alloy 

E = 63.77 GPa;     ν = 0.33 

Y = 204.05 MPa;  UTS = 272 MPa 

 

3.3.2  Finite Element Selections and Meshing Studies 

The first step of any finite element simulation is to discretize the actual geometry of a 

structure using a collection of finite elements. Each element in the model represents a 

discrete portion of the physical structure, which is, in turn, represented by many 

interconnected elements via shared nodes.  In a displacement-based finite element stress 

analysis, the displacements of the nodes are the fundamental variables calculated during 

the analysis. Once the nodal displacements are known, stresses, strains and other physical 

variables in each element can be determined thereafter, while the displacements at any 

other point in the elements are obtained by interpolating from the nodal displacements. 

Therefore, as the fundamental component of a FE modeling, the selection of “correct” 

element formulations is vital.  In effect, the accuracy and efficiency (computational cost) 

of a stress analysis simulation depend strongly on the types of finite elements in the 

model, which essentially involve the order of the displacement interpolation functions, 

the locations of the integration points, and the accuracy of the integrations.  Among the 
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large solid element library in ANSYS 
2
, selecting the best element types for the analyses 

performed in this thesis is based on the author’s understanding and experience about the 

effects that different element qualities may have on the accuracy for a particular type of 

analysis. The basic idea is to try to avoid problematic element behavior in solid elements, 

such as shear locking, volumetric locking and hourglassing. The rationale for the element 

selections is discussed below. 

For a 3-D structural analysis, the most commonly used solid elements are tetrahedral and 

hexahedral (brick) elements with either linear or quadratic interpolation functions. 

Higher-order elements are generally not used in practice due to their unnecessary high 

computational cost for a large size real-world problem. As numerical integrations 

(commonly Gaussian quadrature for isoparametric elements) are used to calculate various 

quantities over the volume of each element, the selection of the order of integration (full 

or reduced integration) can thus have a significant effect on the accuracy of the element 

for a given problem. For hexahedral elements, either full-integration or reduced-

integration scheme can be used, while tetrahedral elements only use a full-integration 

scheme due to their “complete” polynomial shape functions (Zienkiewicz et al., 2005). 

When using full integration, the linear hexahedral element is prone to the problem of 

“shear locking” 

3
 if flexural effects dominate the response. While the fully integrated 

quadratic hexahedral element has no shear locking problem, it might still exhibit some 

“volumetric locking” 
4
 under complex stress states, especially if the element experiences 

large distortions as is the case for the problem in the thesis. Therefore, a full-integration 

scheme will not be used in this study. In effect, much experience suggests that a reduced-

integration scheme is often preferable in that it has a softening effect and therefore an 

ameliorating effect on the rather overly stiff behavior of the FE model of a structure 

                                                 
2
  In general, the continuum (solid) family of stress/displacement elements has the most comprehensive 

element library in any general-purpose commercial FE codes. 

3
  Shear locking causes the elements to be too stiff under bending. i.e., the overall deflection of the elements 

subjected to bending loads will be under-predicted, and spurious shear stresses would arise as well (see 

for example, Hughes, 2000). 

4
  Volumetric locking is another form of element over-constraint that may occurs in fully integrated 

elements. It causes overly stiff element behavior for deformations that may cause no or little element 

volumetric changes (see for example, Hughes, 2000). 
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(Shrivastava, 2005).  However, linear reduced-integration elements tend to be too flexible 

because they suffer from their own numerical problem called “hourglassing”, 

corresponding to the so-called “zero-energy mode” (see for example, Cook et al., 2001), 

and the hourglass mode may propagate in coarse meshes. Fortunately, the hourglass 

mode has been very effectively controlled (especially in a fine mesh) by some 

“hourglassing control” techniques (Flanagan and Belytschko, 1981; Belytschko et al., 

1984, 2000; Puso, 2000). As a result, these linear reduced-integration elements perform 

perfectly well under tensile and transverse shear loads, and are very tolerant of element 

distortions. Hence, it would be ideal to use a fine mesh of these elements for a large mesh 

distortion (large strain) analysis, as well as for simulations involving complex contact 

problems.  As for the quadratic reduced-integration elements, they rarely experience the 

problem of hourglassing even in a “normal” (not fine) mesh, and are not susceptible to 

any locking even when subjected to complicated states of stress. Therefore, these 

quadratic elements are usually considered the best choice for most general 3-D 

stress/displacement simulations. Nevertheless, they do not perform better than the linear 

reduced-integration elements in large-displacement simulations involving large strains 

and in contact analyses (Dassault Systèmes, 2010). Furthermore, an empirical study 

(Roshan Fekr, 1999) had indicated that, for contact analysis of a helical wire conductor 

with a coarse mesh, the increase in accuracy obtained by using higher order brick 

elements (20- and 27-node elements) compared to linear (8-node) brick elements, is not 

significant but the additional CPU running time is much longer. 

Comparing with hexahedral elements, the main and only advantage of tetrahedral 

elements (in the author’s opinion) is that they can mesh arbitrary geometries using 

automatic mesh generation supported by reliable free-meshing algorithms (see for 

example, Georg, 1991; Freitag and Knupp, 2002; Frey and Georg, 2008) that are 

available nowadays in most FE pre-processors, but the generation of a high-quality pure 

hexahedral mesh for complex geometries still relies heavily on the expertise of an 

analyst
5
.  Regarding the element quality and computational cost, tetrahedral elements are 

                                                 
5
 Despite intensive research in the past decades, to the best of the author’s knowledge, no robust and fully 

satisfactory automatic meshers are yet available to mesh arbitrary geometries completely with 

hexahedrons, at least for existing commercial FE codes and meshers. 
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overall not superior to brick elements. The running time of an analysis with tetrahedral 

elements will typically be longer than an equivalent mesh of hexahedral elements.  The 4-

node tetrahedral element is too stiff for stress calculations, and thus it has been suggested 

to be avoided in practice (Dhondt, 2004). The 10-node tetrahedral element is a very 

flexible element due to its curved shape, and its accuracy is comparable to the 20-node 

brick element. Also, it is generally well behaved with a fine mesh, especially under 

tensile and shear deformations. 

It should also be noted that in addition to the displacement-based finite elements, there 

are other two classes of elements: “incompatible mode elements” and “hybrid elements”, 

which are popular for some types of 3-D analyses. The 3-D incompatible mode elements 

have been developed since the late 1980s (Simo and Rifai, 1990; Wilson and 

Ibrahimbegovic, 1990) in the attempt to overcome the problem of shear locking in fully 

integrated, first-order elements, while limiting computational cost. However, these 

elements are often highly sensitive to mesh distortions, i.e., they can only provide high 

accuracy when the element distortions are very small. Hence, they are not suitable to be 

used in models with complex geometries and large deformations.  Hybrid elements have 

been intensively studied historically (Pian and Wu, 2005) and are still popular for some 

particular types of analysis (Zienkiewicz et al., 2005; Belytschko et al., 2000), especially 

when the material behavior is, or very close to, incompressible, i.e. the Poisson's ratio is 

close to 0.5. As for other applications, the improvement of accuracy using hybrid 

elements is not significant and mainly occurs in the case of a coarse mesh, which is not 

proper for accurate modeling. Another setback of hybrid elements is that they require 

much more CPU time than displacement-based elements because their mixed element 

formulations include additional degrees of freedom to determine stress, strain or pressure 

in the elements directly. 

Based on the above considerations, the best element choice for the problem studied in 

this thesis is the linear (8-node) reduced-integration hexahedral element, wherever 

possible, to maximize accuracy and minimize computational cost.  For the components 

with very complex geometries and much less significance (from an analysis purpose 

perspective), 10-node tetrahedral elements may be employed. Specifically, for the OPGW 
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model, the inner and outer helical wires, as well as the central aluminum tube are all 

modeled with 3-D 8-node hexahedral elements with “uniform reduced integration and 

hourglass control”. The spacer is modeled with 3-D 10-node tetrahedral elements.  It is 

also necessary to mention that, due to the thin shell geometric feature of the central tube, 

it was modeled with shell elements in the work of Roshan Fekr (1999). Thus, the 

corresponding contact interactions were formulated on the mid-surface of the shell, while 

in reality, contact occurs on the two-sided shell surfaces. Therefore, in the present study, 

solid elements are also employed for the tube.  For comparison purposes, the element 

selections for the OPGW stress analysis with the previous coarse model (Roshan Fekr, 

1999) and this refined model are summarized in Table 3.3. 

               Table 3.3  Element selections for the OPGW stress analysis FE models 

Components 
Element selections and integration schemes 

 Coarse model Refined model 

Outer wires 
3-D 8-node hexahedral element 

(full-integration scheme) 

3-D 8-node hexahedral element 

(reduced-integration scheme) 

Inner wires 
3-D 8-node hexahedral element 

(full-integration scheme) 

3-D 8-node hexahedral element 

(reduced-integration scheme) 

Central tube 
4-node thin shell element 

(full-integration scheme) 

3-D 8-node hexahedral element 

(reduced-integration scheme) 

Spacer 
3-D 8-node hexahedral element 

(full-integration scheme) 

3-D 10-node tetrahedral element 

(full-integration scheme) 

 

Designing a mesh is the second step in FE modeling work after the element types are 

selected. While coarse meshes may be adequate to predict trends of a mechanical 

response and to compare structural behavior under different loads, the magnitudes of the 

results calculated with a coarse mesh are usually not dependable, especially for a real 

structure and complex nonlinear problems. A fine mesh is certainly required for accurate 
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modeling, and mesh convergence study is often necessary to ensure the solution accuracy 

from a mesh discretization perspective. In fact, it was shown that the coarse mesh 

produced in previous work was not fully capable of presenting the subtle stress variations 

inside the OPGW cable strand and capturing the stress gradients in the regions near the 

contact interfaces, and a fine mesh is therefore imperative to obtain sufficient accuracy. 

It is well understood that the greater the mesh density, the more accurate the FE analysis 

results, which trend to converge to a unique solution. However, the structural 

characteristics and the high nonlinearities of the OPGW model complicate its mesh 

refinement.  A very fine mesh for the spacer turns out to be impracticable as the resulting 

deformed mesh under large kinematics becomes severely distorted (elements with 

negative “Jacobian”  
6
), not only deteriorating the results but also becoming a bottle-neck 

to obtain a converged solution, which implies a limit for its mesh size.  Our numerical 

experiments have also shown that very fine meshes on the inner and outer wire contact 

interfaces may reduce significantly the rate of convergence, and could even jeopardize 

convergence. Hence, the effects of mesh refinement on convergence and accuracy have to 

be investigated. 

In addition, the mesh shape has been given careful consideration. A radial mesh for the 

cable wires was designed in previous work (Figure 3.8). However, recent studies 

indicated that radial grids would not perform well in the implementation of numerical 

methods for partial differential equations (PDEs) in circular or spherical domains, in that 

the solution accuracy close to the center is poor; some numerical difficulties may also 

arise at the circular/spherical center where all the radial grid lines intersect (see for 

example, Calhoun et al., 2008).  An alternative approach that is well suited to discretizing 

such regions is to use quadrilateral grids (Topping et al., 2002; Liseikin, 2009).  

Consequently, the mesh schemes for the inner and outer conductor wires are completely 

re-designed (Figure 3.9) rather than following the same pattern as in the previous coarse 

model. 

                                                 
6
  Badly distorted element may result in the negative determinant of the element geometric transformation 

matrix, known as “Jacobian matrix”, during its volume integral, and consequently the computation will 

be terminated prematurely (Hughes, 2000). 
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       Figure 3.8  Cross-section meshing               Figure 3.9  Cross-section meshing  

                           in the coarse model                                       in the refined model 

 

Another related issue that has been studied empirically in this thesis is the error analysis 

for the mesh convergence. Error estimation from mesh discretization for a finite element 

computation is a vast and rich subject that has been extensively investigated since the 

1970s, from both the engineering mechanics and the applied mathematics perspectives 

(Szabo and Babuška, 1991, 2011). In close connection to this subject, those well-known 

“adaptive” FE technologies may immediately come to mind. In effect, performing an 

automated adaptive meshing has become nowadays a standard consideration when 

tackling the mesh convergence issue.  Despite the present popularity of adaptive mesh 

refinement (when dealing with linear problems) and the fast development of the so-called 

h-version, p-version, and hp-version (Babuška, 1988; Babuška and Suri, 1990), error-

controlled adaptive finite element mesh design for nonlinear solid and structural 

mechanics problems (especially for 3-D elasto-plasticity deformations and contact 

problems) is still very challenging (Stein, 2003; Wriggers, 2006, 2008). The construction 

of adaptive schemes for nonlinear problems and the robustness of the corresponding 

algorithms are nowadays research topics that are beyond the scope of this thesis. Of 

course, the reliable software implementations of adaptive FE methods for nonlinear 

problems in the general purpose FE codes are far from mature and need to be further 
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developed (Stein et al., 2005).  Furthermore, one great difficulty in practical applications 

is that, the execution of an adaptive method for a large size nonlinear problem with a 

complex structure (like the cases in this thesis) is not yet affordable (for practical design) 

due to the resulting extremely high numerical cost during the adaptive refinement, which 

is an iterative solution process starting from a initial “base” mesh.  And last but not least,  

for a 3-D analysis, the current adaptive techniques can perform well only with tetrahedral 

mesh shape (In ANSYS for example, an adaptive refinement starting from a hexahedral 

or hex-dominant mesh will result in re-meshing of the structure with pure tetrahedrons.), 

while adaptive mesh resizing algorithms for pure hexahedral mesh may be not only very 

slow to converge due to the larger number of re-meshing iterations that are required, 

causing an excessively expensive adaptive process, but also very prone to arise 

singularities to fail the process in achieving the target error.  In view of all the above 

considerations, adaptive meshing strategies are not employed during the FE analysis 

conducted in this thesis. Instead, the mesh convergence studies have been performed 

empirically by numerical experiments to control the mesh discretization errors. 

The “structural error” examined in this thesis is the error estimate based upon the 

difference between smoothed stresses within the domain and the stresses actually 

calculated by the FEM for each element in the mesh. The values are expressed in (strain) 

energy norm calculated for each element. In other words, using numerical experiments 

with gradually denser meshes, errors are computed in energy norm, and the “exact” 

energy norm
7
 and the finite element energy norm are compared. The relationship between 

these two energies is then considered in the light of an error theory used, and the so-

called “posteriori” error is estimated using a specific estimator, as explained later. 

In general, we do not know the exact stresses and strains of a real problem, and the 

displacement-based FE formulations yield discontinuous stress and strain fields, which 

are not true in the real physical phenomenon.  Although piecewise continuous stresses 

and strains inside the elements can be obtained from direct FE computations, they are 

generally discontinuous across the element boundaries. For a homogeneous domain, they 

                                                 
7
  “exact” energy norm means the energy norm of the continuous estimate of the exact energy of a real 

problem using some specific error estimation theory. 
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are expected to be continuous since a continuous estimate of the exact stresses and stains 

is obviously more accurate than the piecewise estimates. To this end, various methods 

have been proposed to obtain “smoothed” nodal stresses and strains that will yield a 

continuous solution over the domain. The most common approach in early FEM 

development was simply an averaging based on the number and/or size of elements 

contributing to a node. That is, the continuous nodal stresses and strains are obtained by 

averaging the values from surrounding elements. However, this simple averaging process 

does not have any mathematical foundation relative to the original problem and thus is 

not proper to construct an effective error estimator (Akin, 2005).  Many error estimation 

methods were therefore proposed in recent years.  Even though up to now there is no 

error estimator that is the “best” under all circumstances (Babuška et. al., 2011), some 

estimators have been successful in solid mechanics applications: (1) residual-based error 

estimators (Babuška and Rheinboldt, 1978; Ainsworth and Oden, 1993), which are very 

frequently used for elastic solid mechanics problems; (2) error estimators based on 

“Super-convergent Patch Recovery” (SPR) techniques developed by Zienkiewicz and 

Zhu (1987, 1990, 1992). The ZZ method shows a practical way to achieve accurate 

continuous (smooth) nodal stresses and strains, and thus it has been used in many FE 

codes; and (3) error estimators based on “dual principles” (Becker and Rannacher, 1996), 

which have been applied to contact problems (Wriggers, 2006, 2008).  All these error 

estimators were firstly developed for elasticity problems and then were extended to some 

nonlinear applications.  The essential features of the error estimation method for 3-D 

stress analysis in ANSYS (2007) that is used to perform the mesh convergence study in 

this thesis are outlined below: 

The element nodal stresses are firstly averaged based on the ZZ method. The smoothed 

nodal stresses and strains from the SPR process are denoted by {σ} and {ε}, which are 

constructed to be continuous across element boundaries. Let {σ*} and {ε*} be the nodal 

stresses and strains calculated directly from FEM, which are discontinuous across those 

boundaries. So, the stresses and strains errors at a node can be written as: 

{Δσ} ≈ {σ} - {σ*};    {Δε} ≈ {ε} - {ε*}                                          (3.1) 
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Then, returning to element level, the structural error energy norm || e ||e for each element, 

which also corresponds to the so-called L2 norm in a finite element space, is defined as:  

|| e ||e = 
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where: 

{σ} and {ε}=  smoothed stress and strain vectors at a node of an element; 

{σ*} and {ε*}= nodal stress and strain vectors calculated directly from FEM; 

{Δσ} and {Δε} = stress and strain error vectors at a node of an element; 

 [D] = stress-strain matrix; 

 Ω = volume of an element. 

So, the structural error energy norm over the entire (or a selected part of the) model is: 

 || e || = 


N

i

e
1

e                                                                      (3.6) 

where:  

 N = number of elements in the entire model or a selected part of the model 

A relative percentage structural error in energy norm against the strain energy can be 

defined as: 

eU

e


 100                                                                  (3.7) 

where:  
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   η = percentage error in energy norm; 

   U = strain energy over the entire (or a selected part of the) model.                      ■ 

 

By trial and error through many numerical experiments, an optimal fine meshing scheme 

for the OPGW model with good solution accuracy is achieved, as shown in Table 3.4 and 

Figures 3.10 and 3.11.  The global structural error over the entire OPGW model due to 

mesh discretization is well controlled to remain below 5% (based on linear elastic 

analysis). At the middle cross-section of the OPGW model, the main location of interest 

in this study, the structural error is only 1.4 % (Figure 3.12).   For comparison purposes 

to illustrate the gains in accuracy of the meshing scheme, the mesh results in the previous 

coarse model are also summarized in Table 3.5. 

             Table 3.4  An optimal meshing scheme for the 19-mm OPGW fine model 

Meshing scheme Mesh summary 

Global element size = 0.5 mm 

Total nodes  =  221,816 

Total solid elements  =  234,119 

Total contact elements = 182,340 

Total elements  =  417,059 * 

(* Including 600 spring elements to 

stabilize the nonlinear solution) 

Inner & Outer wires edge divisions = 24 each edge 

Outer wires face element size = 0.40 mm 

Inner wires face element size = 0.48 mm 

Tube edge divisions = 60;   Tube radial divisions = 3 

Longitudinal direction sweep divisions = 90  (Bias = 3) 

Spacer body element size = 1 mm 

 

             Table 3.5  Mesh summary of the 19-mm OPGW previous coarse model 

Meshing scheme Mesh summary 

Inner & Outer wires:  Total 16 elements on each wire 

                                                                 cross-section Total nodes  =  15,087 

Total solid elements  =  12,672 

Total shell elements  =  448 

Total elements  =  13,120 

Central Tube: Total 16 shell elements on cross-section 

                                        (1 element through thickness) 

Longitudinal direction sweep division = 28 
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                                           Figure 3.10  Finite element fine mesh of the 19-mm OPGW cable strand  - 265.16 (mm)           
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                    Figure 3.11  Finite element fine mesh of the aluminum spacer 

 

 

 

 

 

 

 

 

 

 

  Figure 3.12  Structural error of the OPGW refined model due to mesh discretization 

 Cross-section 



 

 

66 

3.3.3  Contact Conditions 

The comprehensive contact interactions amongst the OPGW cable components are all 

considered as “flexible-to-flexible” deformable body contact, and “surface-to-surface 

frictional” contact type is defined on all contact regions. For each contact region, a 

“contact pair” is created and composed of “contact” and “target” surfaces, which are 

discretized with many contact elements. These 3-D 8-node surface-to-surface contact 

elements (CONTA174 in ANSYS) overlie the underlying solid elements like a “skin” on 

the surfaces of the contacting regions, providing the relationship among the components. 

Gauss integration points of the contact elements are designated as contact detection 

points as they may provide more accurate results than those using the nodes themselves 

(Cescotto and Charlier, 1992; Cescotto and Zhu, 1994). The classical Coulomb isotropic 

friction model is used with static frictional coefficient =0.33 (Davis, 1994) assigned for 

all contact surfaces.  As a result, in total, 27 contact pairs (Table 3.6) and 182,340 contact 

elements are generated for the entire OPGW model. 

                   Table 3.6  Surface-to-surface contact pairs of the OPGW model 

Contact region Contact pairs  

Inner wires  &  Inner wires 10 

Outer wires &  Outer wires 14 

Inner wires  &  Outer wires 1 

Inner wires  &  Central tube 1 

Central tube  &  Spacer 1 

 

Achieving a robust converged solution to this large-size contact model with material and 

geometry nonlinearities was very challenging.  In the context of contact settings 
8
, after 

exploring all important contact properties, it was found that the “normal contact stiffness 

factor” is the most critical and sensitive contact parameter affecting both convergence 

behavior and accuracy of the calculated response, and could only be examined by 

                                                 
8
  Numerical solution strategies for this highly nonlinear large-size problem will be addressed in Section 3.4. 
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numerical experiments to obtain a set of appropriate values.  A high normal stiffness 

reduces contact penetrations physically 
9
 to yield better accuracy, but can result in ill-

conditioning of the global stiffness matrix so that many equilibrium iterations have to be 

implemented for reaching convergence of residual force and displacement increment 

10
 in 

each load incremental step, and then the numerical instability (“oscillating” convergence) 

may eventually lead to outright divergence.  Conversely, lower normal stiffness decreases 

solution accuracy, and very low convergence rate (even global divergence) may be 

caused due to excessive penetrations. (Many more iterations in each load incremental 

step are used only for “contact convergence” to within the penetration tolerances rather 

than for force and displacement convergence.)  Many computational experiments had 

been therefore conducted to obtain appropriate contact stiffness factors.  Moreover, it 

turned out that no uniform normal stiffness factor could work for the entire model, and 

different factors must be determined for each different contact region to overcome the 

convergence difficulty.  By trial-and-error, a set of good “normal contact stiffness 

factors” for the OPGW model have been obtained, as shown in Table 3.7, which yielded 

satisfying convergence rate and solution accuracy.  In addition, all normal and tangential 

contact stiffnesses are specified to be updated (raised, lowered or leave unchanged) after 

each equilibrium iteration based on the physics of the model (mean stress of the 

underlying elements, allowable penetrations, contact pressure, as well as slips). The 

benefit of updating contact stiffnesses throughout the solution is to further enhance robust 

convergence, while achieving minimal penetrations. 

 

 

 

                                                 
9
 Although contacting bodies do not interpenetrate physically, i.e. ensure the so-called “contact 

compatibility”, finite amounts of penetrations are required mathematically to generate contact forces at 

the interfaces to maintain equilibrium to implement the contact algorithm employed in the analyses. 

10
  Residual force and displacement increment are two convergence criteria employed in the solution for 

nonlinear equations, which will be addressed in Section 3.4.2. 
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                Table 3.7  Normal contact stiffness factors used in the OPGW model 

Contact region 
 Normal contact stiffness 

factor 

Resulting contact stiffness 

(N/mm
3
) 

Inner wires  &  Inner wires 0.002 3288 

Outer wires &  Outer wires 0.005 3163 

Inner wires  &  Outer wires 0.005 3162 

Inner wires  &  Central tube 0.5 3166 

Central tube  & Spacer 0.1 6350 

 

3.3.4  Displacement Boundary Conditions and Loadings 

In a static FE analysis, displacement boundary conditions (B.C.s) must be applied to 

constrain the model against rigid body motions in any direction; otherwise, unrestrained 

rigid body motions will cause the global stiffness matrix to be singular and stop the 

simulation prematurely.  Displacement B.C.s and loadings applied on the OPGW model 

are in accordance with the ones used by Roshan Fekr (1999), but different means are 

taken for more accurate treatments. 

In reality, the exact details of the attachment of a conductor to a transmission line tower 

vary with tower types.  Inasmuch as possible, the continuity of the OPGW cable is 

assured and the cable is gripped in a suspension clamp. The stress and strain states in the 

cable are very complex in the vicinity of a clamp region and require a more delicate 

modeling, which is not the purpose of the analysis presented in this chapter 
11

.  On the 

other hand, from a structural design point of view, a very important consideration for 

conductor manufacturers is the OPGW tensile strength. Hence, the OPGW cable can be 

assumed under uniform tension far from its clamped ends.  To model such a condition, 

one end of the cable segment is assumed completely fixed, i.e., at the fixed-end surfaces, 

the whole cable is fixed in all translational and rotational degrees-of-freedom (DOFs), 

while tensile loading is applied at the other end (free-end). 

                                                 
11

 Such a study has been carried out for an ACSR conductor, which will be discussed in-depth in Chapter 5. 
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From the laboratory tension test performed at Hydro-Québec’s Research Institute (IREQ, 

1994), corresponding to the maximum tension in normal operation set to 83.5 kN, the 

equivalent cable elongation of the FE model is 0.61% of the cable model length, i.e. 

1.618 mm (  mm..%.lεlΔ 618116265610  ).  In the test, it was not possible to ensure 

that the internal components of the OPGW (the inner wires, the central tube, and the 

aluminum spacer) deform the same as the external envelope (the outer wires) and the 

global cable elongation was only measured on the outer wires. However, for a short 

segment of a straight cable, the displacement compatibility can be assumed, that is, all 

components (the outer, inner wires, the tube, and the aluminum spacer) are assumed to 

stretch equally along the cable axis (z-axis). In this case, the direct “load-control” 

approach turned out to be improper. Neither a uniform distributed load on the cross 

section nor a concentrated load at the center of each component can achieve equal 

elongations due to the effects of contact, material differences, and the helical geometry.  

In other words, it would be necessary to find the exact axial forces applied to each 

component of the OPGW to generate equal stretch, which is obviously impracticable 

before the analysis. Therefore, the so-called “displacement-control” approach is used to 

apply the tensile load that ensures the displacement compatibility of the components. 

Specifically, on the model free-end surfaces, all components are assigned the same 

prescribed axial displacement, 1.618 mm, while two in-plane translational DOFs (along x 

and y axes) of the wires are fixed to prevent unwinding of the cable wires.  A distinction 

from the previous work is that the displacement is applied on the free-end surfaces of all 

cable components rather than to the interior nodes of the surfaces. Also, to circumvent the 

over-constraint due to the prescribed displacement and concurrent contact conditions on 

the perimeter nodes at the free-end cross-sections, the so-called "Remote Displacement" 

approach is used to apply the axial displacement on the entire free-end surfaces. This is a 

specific treatment in ANSYS Workbench to handle difficult B.C.s and help prevent 

convergence difficulties. It makes use of the “Multi-Point Constraint” (MPC) contact 

formulation that can override other contact settings or boundary conditions for the same 

degrees-of-freedom of selected nodes. 
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3.4  Numerical Solution Techniques 

In the preceding section, the validation aspect of the OPGW FE modeling was discussed 

in detail, including element quality, mesh design and mesh convergence study, contact 

establishment, B.C.s and loads.  In this section, the verification aspect of the numerical 

work will be addressed, i.e. the quality of the numerical strategies developed to solve this 

FE model. 

ANSYS Workbench 11.0 x64-bit version (2007) was selected as the computing platform 

for all the FE models analysed in this thesis. All computations were implemented on a 

customized high-end Dell Precision T5500 Workstation with state-of-the-art computer 

hardware techniques. It features 24GB tri-channel DDR3 1333MHz memory, and a 

Shared-Memory Parallel processing (SMP) enabled Quad-Core Intel Xeon X5570 server 

processor, operating up to 2.93GHz with a full 8MB of L3 shared cache and a 6.4GT/s 

QPI link.  Even with this powerful computing facility, solving the refined conductor FE 

models still proved very difficult and computationally demanding.  One of the essential 

requirements for the solution method of a nonlinear analysis is its capability to overcome 

the potential numerical convergence and accuracy problems associated with the nonlinear 

behavior.  Since there exists up to now no robust and efficient numerical solution method 

(solver) that can guarantee convergence and accuracy for all nonlinear solid mechanics 

problems (Wriggers, 2008), an optimal strategy may only be tailored to the physics and 

problem size of a specific application. 

The key numerical solution techniques to solve the conductor FE models in this thesis 

involve computational contact algorithms, solution of nonlinear algebraic equations and 

solution for large linear algebraic systems. No attempt is made herein to deliver 

comprehensive reviews for any of these three areas, and each of them has been well 

documented by applied mathematicians and engineering researchers in the field of 

“computational science and engineering” (refer to Strang, 1986, 2007, in particular for 

enlightening and limpid presentations). Instead, since the scope of this research is 

computational modeling of real engineering problems, our attention is mainly focused on 

the discussion of the various optional techniques available in the ANSYS code.  Indeed, 
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they are all well-established algorithms from an applied mathematics perspective, and are 

also widely coded in other leading nonlinear FE software systems, such as ADINA 

(ADINA R&D, Inc. 2008), Abaqus (Dassault Systèmes, 2010), Marc (MSC Software 

Corporation, 2010), etc., to name the most widely used in North America.  As such, the 

numerical strategies developed in this section serve essentially to form the building 

blocks of a reliable solution methodology to suit the class of problems studied in the 

thesis, no matter which FE code is chosen. Comparative studies and numerical 

experiments are conducted for the selections and configurations of a set of proper 

solution methods and their combinations for the OPGW FE model. The solution 

methodology developed successfully for the OPGW model has been applied later to other 

FE models in Chapters 4 and 5. 

 

3.4.1  Contact Algorithms 

Only a brief account of the mathematics and physics of “contact” will be presented below 

with the modest attempt to show the necessary background of “contact problems” to an 

extent that is germane to the computational implementation issues discussed in this 

section. 

A contact problem is commonly called a changing-boundary-conditions nonlinearity 

from the structural analysis point of view. It may involve specific boundary conditions 

that govern the motion of the moving interfaces and possible boundary singularities. For 

typically encountered contact phenomena in solid continuum mechanics, such conditions 

usually refer to the impenetrability constraint, the action-reaction law (Newton's third 

law), and the surface friction law (such as the classical Coulomb's law). The normal 

contact constraint prevents mutual penetration of immiscible solid media, while the 

tangent contact constraints represent friction between the contacting bodies.  It is well 

known that boundary-value problems can be formulated in differential, integral or 

variational forms. For the mathematical analysis of contact problems, the variational 

formulations, especially the formulations in terms of variational inequalities, play a 

central role (Stampacchia and Lions, 1967; Panagiotopoulos, 1985; Hlavacek et al., 1988; 
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Eterovic and Bathe, 1991). The contact boundary conditions can thus be treated as 

various constraints in the variational equations by means of Lagrange multipliers or 

penalty functions. Studies devoted to the theoretical foundations (such as existence and 

uniqueness) and mathematics of contact problems have been dealt with in depth in such 

monographs as Kikuchi and Oden (1988), Eck et al. (2005), Leine and Wouw (2008), 

Studer (2009), and Sofonea and Matei (2012). 

For the solution of contact problems, historically, there have been an overwhelming 

number of publications on analytical formulations for (elastic) contact calculations that 

could be dated back to the famous work of Hertz (1882), and several classical 

monographs have been published to summarize these important analytical studies 

(Gladwell, 1980; Johnson, 1985; Goryacheva, 1998; Galin, 2008).  As of the past half a 

century, extensive research on numerical contact analysis has been carried out around the 

world, a research domain that is currently called “computational contact mechanics” 

(Wriggers, 1999, 2006, 2008; Laursen, 1995, 2002); and this is still a very active research 

area with a great number of new numerical procedures being designed.  The numerical 

solution of a contact problem generally involves two aspects: (a) perform a contact search 

(contact detection) procedure to identify the regions that possibly can come into contact 

and (b) impose appropriate conditions to prevent the penetration and correctly calculate 

the contact interactions between the contact bodies. Up to now, these numerical 

approaches mainly include boundary element methods (Takahashi, 1991; Aliabadi and 

Brebbia, 1993; Eck et al., 1998, 1999), mathematical programming methods (Conry and 

Seireg, 1971; Klarbring, 1986, 1988; Bjorkman et al., 1995; Zhang et al., 2006), finite 

element methods (Kardestuncer and Norrie, 1987; Crisfield, 1997; Belytschko et al., 

2000; De Borst et al., 2012; Yastrebov, 2013), meshless methods (Belytschko et al., 

1994, 1996; Gunther and Liu, 1998), and more recent mortar methods (McDevitt and 

Laursen, 2000; Puso and Laursen, 2004; Yang, 2009).  Finite element contact algorithms 

play the dominant role in computational analysis of practical engineering contact 

applications. 

Since all contact algorithms virtually provide only approximate solutions, it is easy to 

understand that they may have different strengths and limitations to tackle different 
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contact situations; that is, no algorithm can solve all problems. The simultaneous 

existence of numerous contact algorithms has clearly indicated this point. Meanwhile, the 

choice of an appropriate algorithm for a specific application is important due to its effects 

on solution accuracy and computational cost. Hence, a comparative evaluation of various 

contact algorithms is necessary when conducting a contact analysis.  In effect, this turned 

out to be a critical issue in this thesis due to the physics and problem size of the 

conductor FE models.  Here again, the following discussions on the contact algorithms 

are from the “practical problem solving” perspective rather than in the form of 

computational mathematics. The performance and the salient characteristics of the 

algorithms will be discussed to present useful engineering insights based the author’s 

numerical experiences, while detailed mathematical formulations are omitted. 

For surface-to-surface static and quasi-static contact 

12
 (as described in Section 3.3.3), 

several different contact types can be defined according to the configurations of contact 

regions, as summarized in Table 3.8. Consequently, the contact solutions can be either 

linear or nonlinear. The simplest contact type is usually called “bilateral contact”, 

including “Bonded” and “No Separation” contact. For “Bonded” contact, the contact 

region is considered as bonded (“glued”) from the very beginning and throughout the 

entire analysis, so no separation and sliding between contact surfaces are allowed. “No 

Separation” contact can be considered in such cases: No separation of contact surfaces 

occurs again during the analysis once the initial gap is closed under the loads, but very 

small amounts of tangential frictionless sliding are allowed. The “bilateral contact” 

allows for a linear solution since the contact status will not change during the load 

history.  Three other contact types (“Rough”, “Frictionless”, and “Frictional”) are often 

referred to as the so-called “unilateral contact”, in which separations (gaps) could occur 

between contact bodies depending on loading and the normal contact pressure vanishes if 

separations happen. The case of “Rough” unilateral contact corresponds to the theoretical 

case of an infinite frictional coefficient (µ=∞) between the contacting bodies, so no 

sliding is allowed while separation can happen under loading.  “Frictionless” means the 

                                                 
12

  Dynamic contact problems (such as impact) are beyond the scope of this thesis. Correspondingly, the 

explicit algorithms that are usually best suited to dynamic contact will not be addressed and can be 

referred, for example, in Zhong et al. (1993, 1994).  Only implicit algorithms are discussed herein. 
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theoretical case of a zero coefficient of friction (µ=0), thus allowing free sliding. 

“Frictional” contact is the most difficult (and realistic) case: The contacting surfaces can 

carry tangential shear stresses across their interfaces, and may slide relative to each other 

with any friction coefficient.  All solutions for “unilateral contact” are nonlinear because 

the contact areas may change with the varying loads, i.e. the so-called “boundary 

nonlinearity”. In particular, three-dimensional multi-body frictional contact generally 

exhibits a very strong nonlinearity to arrive at a converged solution because both the 

normal and tangential contact stiffnesses may change significantly with the changing 

contact status, and the non-predictable sliding paths further greatly complicate the 

solution process.  Actually, by monitoring the computational implementations of the 

conductor models, it was observed that most of the computer runtime had been spent on 

the contact search and the calculations of slide directions and contact tractions (contact 

pressure and frictional stress). 

                        Table 3.8  Summary of surface-to-surface contact types 

Contact types 

Contact status under loading 

Separation 

( Gap ) 

Slide 
Contact  

solution Frictionless 
( free,  µ = 0 ) 

Frictional 
( µ ) 

Bilateral  

Contact 

Bonded x  x x  linear 

No Separation x √  x  linear 

Unilateral  

Contact 

Rough √ x x nonlinear 

Frictionless √ √ x nonlinear 

Frictional √ √ √ nonlinear 

 Note:  x: not allowed;  √: allowed. 

                     

In finite element contact analysis, contact algorithms have to be implemented within 

every incremental load step to enforce contact compatibility at the contact interfaces. 

This implementation is incorporated into the solution scheme for the nonlinear 

equilibrium equations and is of essential importance for the global convergence and 
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efficiency.  Five different implicit contact algorithms are available in ANSYS code for 

static and quasi-static contact: 

 Pure penalty method   (Kikuchi and Oden, 1988) 

 Pure Lagrange multiplier method   (Francavilla an Zienkiewicz, 1975) 

 Augmented Lagrangian method   (Simo and Laursens, 1992) 

 Normal Lagrange multiplier method   (Wriggers, 2006) 

 Multi-Point Constraint method   (Abel and Shephar, 1979) 

 

(1) Pure penalty method (PM) 

The pure penalty method is the most widely used contact algorithm (Wriggers, 2006) as it 

is coded in most commercial nonlinear finite element analysis systems. Essentially, it 

introduces penalty functions (penalty parameters) in contact variational formulations, and   

a penalty parameter behaves as a uni-directional contact "spring" to establish the 

relationship between two contact surfaces. The spring stiffness is called the contact 

stiffness. So, this method requires both normal and tangential contact stiffnesses. 

Assuming the frictional plane with normal x, the contact traction vector can be written as: 

                                          {P, τsy, τsz}
T
                                                                 (3.8) 

where:  

P = normal contact pressure, which represents the normal contact conditions 

τsy, τsz = tangential contact stress in y, z directions, which represent the frictional 

contact conditions 

The normal contact pressure is defined as: 

  P = 0              if un > 0                                                        (3.9) 

P= Kn* un       if un ≤ 0                                                     (3.10) 

where Kn is the normal contact stiffness per unit contact width, and un is the contact gap. 

The frictional contact stress in the yz plane can be defined by Coulomb's law: 

τs = Ks * us            if  τs = 
22

szsy   - μ*P < 0   (stick)                    (3.11) 

 τs = μ * Kn* un      if  τs = 
22

szsy   - μ*P = 0   (slide)                    (3.12) 
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where Ks is the tangential contact stiffness, us is the contact slip distance, and μ is the 

coefficient of friction. 

The main drawback of this method is that the amounts of penetration between two 

contact surfaces strongly depend on the contact stiffness. It is clear from equation (3.10) 

that higher normal contact stiffness values decrease the amount of penetration for a given 

contact pressure. Physically, the penetration should be zero, but then equation (3.10) 

would result in the contact stiffness being infinite. While a very small penetration is 

required mathematically to obtain the contact pressure and achieve sufficient solution 

accuracy, a too high Kn can lead to ill-conditioning of the global stiffness matrix and to 

convergence difficulty because any small variation of penetration Δun yields a very large 

change in contact pressure ΔP.  On the other hand, a too low Kn can cause an excessive 

penetration, which would not only deteriorate the contact results, but also jeopardize 

convergence as it will be difficult to meet the criterion of “contact compatibility”. In 

addition, due to the practical difficulties of iterative solvers to solve ill-conditioned 

matrices, direct solvers are recommended to be used with this method. 

 

(2) Pure Lagrange multiplier method (PLM) 

Lagrange multipliers are used on both normal and tangent contact conditions. Instead of 

solving the contact pressure and frictional contact stress in a displacement-based manner 

as in penalty-based methods, they are treated as separate (additional) DOFs (Lagrange 

multipliers), which means that they are solved directly. The benefit of such a treatment is 

that the impenetrability condition can be satisfied without dealing with any “contact 

stiffness”: It enforces “zero penetration” when contact is closed and "zero slip" when 

sticking contact occurs. As a result, PLM does not require normal and tangential contact 

stiffnesses as control parameters, and thus the problems induced from penalty-based 

methods are bypassed.  However, “chattering”, which is defined as the effect of abrupt 

changes in the contact status, may have to be controlled. In the mathematical treatment 

with PLM, it requires two “chattering” control parameters: a maximum allowable 

penetration tolerance, e, and a maximum allowable normal contact pressure, Pmax, to 
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provide stability to the contact models.  Even so, this method might still experience 

“chattering” problems due to contact status changes between open and closed or between 

sliding and sticking.  In addition, as it adds contact traction components (i.e., Lagrange 

multipliers) to the model as additional variables for each contact element and thus 

additional iterations are required, consequently it increases the computational cost. 

Moreover, PLM introduces zero diagonal terms in the stiffness matrix, so iterative 

equation solvers cannot perform well with this method and thus only direct solvers are 

suggested to be used with this method. 

 

 (3) Augmented Lagrangian method (AL) 

The Augmented Lagrangian contact algorithm is essentially a penalty-based method with 

penetration control using Lagrange multipliers (Simo and Laursens, 1992, 1993; Laursen 

and Oancea, 1994). It uses an iterative series of penalty methods with the penalty updates 

to find the Lagrange multipliers (i.e., unknown contact tractions) to enforce contact 

compatibiltiy.  Different from the pure penalty method, the normal contact pressure can 

be defined by: 

P = 0                        if un > 0                                           (3.13) 

P= λi+1                     if un ≤ 0                                           (3.14) 

where: 

    λi+1= λi + Kn* un        if |un| > e                                         (3.15) 

 λi+1= λi                       if |un| < e                                         (3.16) 

e is the user-defined contact compatibility tolerance, and λi is the Lagrange multiplier 

component of contact pressure at equilibrium iteration i., which is computed locally (for 

each contact element) and iteratively (during each equilibrium iteration). 

From equations (3.14) ~ (3.16), if the penetration at a given equilibrium iteration exceeds 

this maximum allowable penetration tolerance (e), the contact stiffness for each contact 

element is augmented with its Lagrange multipliers for contact tractions. This process is 

repeated until the contact penetration is smaller than the allowable tolerance e. 
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As a result, the augmented Lagrangian method overcomes some of the shortcomings of 

both the pure penalty method and the pure Lagrange multiplier method.  Compared with 

the pure penalty method, AL has less degree of ill-conditioning (better conditioning) and 

less sensitivity to the magnitudes of both normal and tangential contact stiffness due to 

the improved “selection” of the contact stiffnesses for each element.  Compared with the 

pure Lagrange multiplier method, AL has less “chattering” caused by abrupt changes in 

contact status and its stiffness matrix is always positive definte, and thus both iterative 

and direct solvers can work well with this algorithm. In some cases, AL may require 

additional equilibrium iterations due to the penetration control, especially if the deformed 

mesh becomes excessively distorted. 

 

(4) Normal Lagrange multiplier method (NLM) 

This is the method that Lagrange multiplier method is applied on the normal contact 

pressure and a pure penalty method on the tangential contact stress conditions. This 

method enforces “zero penetration” when contact is closed (Normal contact stiffness is 

thus not applicable) and allows only a minute amount of slip for a sticking contact 

condition. While NLM still requires “chattering” control parameters, as well as a 

maximum allowable elastic slip parameter, usmax, it overcomes some of the “chattering” 

problems of the pure Lagrange multiplier method (i.e., has an enhanced convergence in 

tangential direction). Therefore NLM can handle frictional contact problems with small 

sliding better than the pure Lagrange method.  Compared to the Augmented Lagrange 

method, NLM often has an increased computational cost as it adds contact tractions to the 

model as additional DOFs and thus requires additional iterations to stabilize their 

associated contact conditions. Similar to PLM and PM methods, iterative equation 

solvers cannot perform well with this method and only direct solvers are suggested. 

 

 (5) Multi-Point Constraint method (MPC) 

In this method, an internal multipoint constraint algorithm based on contact kinematics is 

used to create the multipoint constraint equations to tie the contact surfaces, and the 

mk:@MSITStore:C:/PROGRA~1/ANSYSI~1/v110/COMMON~1/help/en-us/WORKBE~1.CHM::/ds_Contact_Advanced.html#ds_advanced_formulation_augmented_lagrange
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degrees of freedom of the contact surface nodes are eliminated. No normal and tangential 

contact stiffnesses are required. For small deformation problems, this represents true 

linear contact behavior and no iterations are needed to solve the system of equations.  For 

large deformation problems, the MPC equations are updated during each equilibrium 

iteration to overcome the small strain restriction. This method only works for “Bonded” 

and “No Separation” contact surface behavior, and thus is not applicable to frictional 

contact problems. 

Based on the foregoing comparative study of the pros and cons of several contact 

algorithms and on our numerical experiments using all the above available options, the 

Augmented Lagrangian method was finally selected.  The AL method proved the best 

choice to yield a stably convergent solution process with accurate results for frictional 

sliding contact analysis of the OPGW FE model, while the other options led to either 

convergence difficulties or inaccurate results. 

 

3.4.2  Solution for Nonlinear Algebraic Equations 

For a nonlinear FE computaion, the fundamental problem is to find the state of 

equilibrium of a system corresponding to the applied loads and boundary conditions.  

Assuming that the external loads are described as a function of time, the equilibrium 

conditions of the finite element model can be expressed as 

                                       
t
R – 

t
F = 0                                                           (3.17) 

where 
t
R is the vector of external nodal forces at time t, and 

t
F is the nodal stress 

resultants, i.e. the nodal forces that correspond to the element stresses. 

The equilibrium relation in equation (3.17) represents a system of nonlinear algebraic 

equations stemming from the finite element discretization. It includes all nonlinearities of 

the model and must be satisfied throughout the complete load history.  It should be noted 

that, for a static time-independent problem, time is only a convenient variable to denote 

the load and solution history (load steps) rather than an actual variable in a dynamic 
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analysis or a static time-dependent problem (such as creep) to describe the actual physical 

situations with a real time concept. The use of the time variable in a nonlinear solution 

process therefore represents a very general approach for all types of nonlinear problems. 

A nonlinear analysis is carried out using a step-by-step incremental solution process with 

a number of time steps (or load steps) to finally reach the total applied loads. The basic 

idea is to obtain the solution for discrete time t+t, while the solution for the discrete 

time t is known. t is a properly chosen time/load incremental step. Hence, equation 

(3.17) at time t+t becomes 

t+t 
R – 

t+t
F = 0                                                          (3.18) 

Since the solution is known at time t, 
t+t

F can be written as:  

t+t
F = 

t
F + F                                                            (3.19) 

where F is the incremental nodal force vector (stress resultant) that corresponds to the 

increment in element displacements and stresses from time t to t+t.  In nonlinear FE 

methods, the approximation of F can be made using a tangent stiffness matrix 
t
K, which 

encompasses the geometric, material and contact conditions of the model at time t: 

 F ≈ 
t
KU                                                               (3.20) 

where U is the incremental nodal displacement vector. 

Substituting equations (3.19) and (3.20) into (3.18): 

                          
t
KU = 

t+t 
R – 

t
F                                                      (3.21) 

and then solving for U yields an approximation of the nodal displacements at time t+t: 

 
t+t 

U ≈ 
t
U + U                                                          (3.22) 

As equation (3.20) is used, 
t+t 

U is an approximation to the exact nodal displacements at 

time t+t that correspond to the external loads 
t+t 

R. The approximated element stresses 

and resulting nodal forces at time t+t can then be evaluated before proceeding to the 
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next time step.  Obviously, the approximation errors may be significant depending on the 

time step size. Therefore, an iterative solution process is required to solve equation (3.18) 

to obtain satisfactory accuracy. 

The most commonly used iteration methods for the solution of nonlinear algebraic 

equations in a nonlinear FE analysis is the “Newton-Raphson” technique and its variants. 

Corresponding to the above formulations, the equations used in Newton-Raphson 

iterations (Bathe, 1996) can be written as follows, for iterations i = 1, 2, 3, ... 

                      R
(i-1)

 = 
t+t 

R – 
t+t

F
(i-1)

                                                 (3.23) 

                          
t+t 

K
(i-1)

 U
(i)

 = R
(i-1)

                                                 (3.24) 

 
t+t 

U
(i)

 = 
t+t 

U
(i-1)

 + U
(i)

                                               (3.25) 

with the initial conditions 

t+t 
U

(0)
 = 

t
U;   

t+t 
K

(0)
 = 

t
K;   

t+t 
F

(0)
 = 

t
F                                   (3.26) 

These equations are obtained by linearizing the response of the FE model about the 

conditions at time t+t, while the conditions at (i-1) are obtained by solving the system of 

linearized equations in (3.24). In each iteration, the residual or out-of-balance load vector 

R
(i-1)

, which expresses the system “force error” in predicting the nodal stress resultants 

(hence the nodal force imbalance), is calculated that yields a displacement increment 

U
(i)

 when solving (3.24).  If R
(i-1)

 corresponds to an external load vector 
t+t 

R that is 

not yet balanced by element stress resultants, then an increment in the nodal 

displacements is required. This updating of the nodal displacements 
t+t 

U
(i)

 in the 

iteration is continued until the out-of-balance loads and corresponding incremental 

displacements are smaller  than a predetermined error tolerance threshold. This method is 

called a “Full Newton-Raphson” scheme in the sense that the tangent stiffness matrix,  

t+t 
K

(i-1)
, is recalculated at every time step and every iteration within a time step. 

Different variants of Newton’s method have been developed (Kelley, 2003; Quarteroni 

et. al., 2007) to save computational effort in the evaluation of the tangent stiffness matrix, 

such as the “Modified Newton-Raphson method”, “Quasi-Newton method”, “Damped 
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Newton method”, etc.,  and the effectiveness of these methods depends on the degree of 

nonlinearity of specific applications and the problem size.  In our work, the “Full 

Newton-Raphson” method is chosen due to its proven robustness in terms of convergence 

(Bathe, 1996) despite its higher computational cost. 

Frictional contact yields a non-symmetric tangent stiffness matrix in the Newton-

Raphson method due to the non-associative character of the frictional constitutive 

equations (Wriggers, 2008).  In view of the fact that an unsymmetric solver is generally 

more computationally expensive than a symmetric solver, some symmetrization 

algorithms were developed, such as the famous one by Laursen and Simo (1993), so that 

a frictional contact problem can be solved still using those solvers for symmetric systems. 

However, when frictional effects are substantial, i.e. when frictional stresses have a 

significant influence on the displacement fields and the magnitude of the frictional 

stresses are highly solution-dependent, any symmetric approximation to the stiffness 

matrix may lead to a low rate of convergence.  From our numerical experiences, it turned 

out that, in the case of the OPGW FE model, the use of an unsymmetric solver proved 

more computationally efficient. 

As a result, the scheme of “Full Newton-Raphson” with support for unsymmetric 

matrix is employed for our OPGW stress analyses, in which the tangent stiffness matrix 

is updated at every equilibrium iteration. In addition, it generates and uses unsymmetric 

matrices for the frictional contact analyses. 

Another important issue related to the solution of nonlinear equations is the selection of 

realistic convergence (error tolerance) criteria in relation to the out-of-balance nodal 

forces and incremental displacements, which will have to be imposed to terminate the 

iterations.  A suitable pre-defined convergence tolerance needs to be used as a check at 

the end of each iteration to determine whether equilibrium is reached or more iterations 

are still necessary within that time step. Too loose a tolerance may result in inaccurate 

results, while a too stringent one may be very costly. Ideally, an energy-based 

convergence criterion would be the most attractive for this work, such as the one 

proposed by Bathe and Cimento (1980). In that criterion, the amount of work done by the 
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out-of-balance loads on the displacement increment is compared with the initial internal 

strain energy increment during each iteration. Unfortunately, such an option is not 

available in ANSYS, so a compromise had to be made. As a result, both force and 

displacement convergence criteria are used: The iterations within a time step will 

terminate only when both the residual force and displacement increment are smaller than 

their set tolerances. Therefore the solution must satisfy two individual criteria rather than 

a “combined” one in the form of residual strain energy. 

 

3.4.3  Solution for Large Linear Algebraic Equations 

A linear equation solver may have substantial influence on the accuracy and efficiency of 

the solution of a nonlinear finite element analysis. This is due to the fact that linearization 

is a key component in iterative solution schemes. A nonlinear iterative procedure (a series 

of iterations for the system equilibrium) is accomplished via the solutions of successive 

linear sub-problems. Specifically, for the implementation of the “Full Newton-Raphson” 

scheme, a linear equation system of full size has to be solved in each iteration step i, thus 

becoming a very time consuming part in a large nonlinear FE computation. 

Two classes of methods to solve the system of simultaneous linear algebraic equations 

are iterative methods and direct methods (not requiring iterations), and the effectiveness 

of a method depends on the character and size of the problem under consideration. The 

fundamental theories and algorithms about these linear solvers have been well established 

and thoroughly documented in many excellent numerical linear algebra textbooks, such 

as the ones by Golub and Van Loan (1996), Quarteroni and Valli (1997), Demmel 

(1997), Trefethen and Bau (1997), Strang (2005), and Watkins (2010). Therefore, only a 

brief discussion is made to explain our selection of a linear solver used for this work, and 

a numerical experiment is performed to verify our choice. 

Regarding the iterative methods, there are usually several options available in most 

commercial FE codes. The typically used ones in structural analysis are the Jacobi 

Conjugate Gradient method (JCG), Incomplete Cholesky Conjugate Gradient method 
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(ICCG), Algebraic Multi-grid method (AMG), and Pre-conditioned Conjugate Gradient 

method (PCG).  The JCG solver is mainly based on the algorithm developed by 

Mahinthakumar and Hoole (1990), which is more suitable for well-conditioned problems.  

The ICCG solver is generally more robust than the JCG method for handling ill-

conditioned matrices that are often obtained in models containing highly distorted 

elements or contact elements. The AMG solver (Saad, 2003) typically performs better 

than the ICCG and PCG solvers in a shared-memory parallel environment (such as a 

multi-processor computer) to handle indefinite matrix and ill-conditioned problems for 

nonlinear analyses. While the AMG delivers about the same level of performance for 

ordinary problems, it usually uses much more memory than other iterative solvers.  The 

Pre-conditioned Conjugate Gradient (PCG) method is nowadays the most popular 

iterative method applied in solid mechanics FE computations (Wriggers, 2008) due to its 

efficiency and reliability for most types of large linear and nonlinear problems: for 

example, contact analyses that use either penalty-based or augmented Lagrangian-based 

algorithms can work well with this method.  The PCG solver in ANSYS is valid for large 

equation systems with sparse, symmetric, definite or indefinite stiffness matrices, and it is 

usually about 4~10 times faster than the JCG solver for models with 3-D solid elements, 

and time savings tend to increase with problem size, while its memory usage is very 

affordable (roughly speaking, only 1 GB per million nodal DOFs). 

Overall, iterative solvers (such as AMG, PCG) are advantageous for solving very large 

FE equation systems because they require much less memory, less processing time (the 

total number of operations is less) and more scalable parallel performance when 

compared with direct solvers (Hackbusch, 1994; Kelley, 1995; Saad, 2003, Braess, 

2007).  However, iterative solvers are in general not as robust as direct solvers. 

Especially for problems with numerical challenges such as ill-conditioned or even nearly-

singular matrices (matrices with small pivots) or matrices that include Lagrangian 

multipliers, iterative solvers are less effective or may even fail, whereas direct solvers are 

much more reliable. 

Direct solvers refer to the numerical methods that solve linear equation systems without 

an iterative process. These algorithms are fundamentally based on “Gauss elimination” 
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(Bathe, 1996).  Comparing with iterative methods, the most attractive advantage of direct 

solvers lies in their robustness in solving very ill-conditioned and negative definite 

systems of equations (Wriggers, 2008), which are a concern in nonlinear applications. 

For a highly nonlinear problem, not only the convergence of using iterative methods is 

not guaranteed, but also the number of iterations required to obtain sufficient solution 

accuracy may be so large that direct methods become faster. In such cases, a direct solver 

may be the best choice.  On the other side, the main shortcoming of direct solvers is their 

very high requirements for large in-core memory and the number of operations. This is 

the main reason why those commonly used direct FE solvers in the last century, such as 

the “Frontal” (Wavefront) methods and the “Block elimination” methods, have been 

abandoned for large FE computations, and replaced with the modern “Sparse Direct” 

solvers developed in the 1990s (Timothy, 2006). 

Currently, sparse matrix solving technologies have advanced to a mature stage so that 

almost all commercial FE codes have added them as solution options (Nguyen, 2006). 

Specifically, the ANSYS “Sparse Direct” solver works well for large sparse symmetrical 

and unsymmetrical equation systems. It can run completely in computer in-core memory 

if sufficient memory is available (roughly, 10 GB per million nodal DOFs) and thus 

drastically increase computational efficiency. If the available memory is less than that 

required for in-core processing, this solver can still run efficiently in an optimal out-of-

core mode, while it requires large disk space to store the factorized matrix.  In addition, it 

can also be implemented in parallel computing on a shared memory architecture machine 

(like the one used in this research), which will further reduce running time. 

Based on the above considerations and the high computing capability used for this work, 

the “Sparse Direct” solver was employed for the solutions of linear systems of equations 

in each iteration step of the “Full Newton-Raphson” scheme.  To justify our selection, a 

numerical experiment was performed on a simplified OPGW 3-D elastic beam contact 

model (Figure 3.13).  Keeping the same parameters for all the other solution settings, 

PCG and Sparse Direct solvers are specified to run this model separately to compare their 

total numbers of iterations and elapsed CPU-time (Table 3.9).  It turned out that PCG, the 

most popular iterative solver for large FE problems, is much less effective than the 
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Sparse Direct solver for this application.  The Sparse Direct solver saved more than 30% 

CPU-time compared to the PCG solver, while triple memory space was used by the 

Sparse Direct solver. It is anticipated that the advantages of using the Sparse Direct 

solver will be even more significant for the refined OPGW model with a large number of 

3-D solid elements and stronger nonlinearities. 

 

 

 

 

 

 

 

                Figure 3.13  A simplified OPGW 3-D elastic beam contact model 

 

    Table 3.9  Comparison of Sparse Direct and PCG solvers for a OPGW beam model 

 Sparse Direct PCG 

Number of iterations 601 565 

Memory usage 914.4  (MB) 308.2  (MB) 

Total CPU time 43139 (sec.) --- 12.0 hours 63444 (sec.) --- 17.6 hours 

  

3.4.4  Stabilization Considerations 

During the FE implementations of the refined OPGW model, several convergence 

enhancement tools were employed within the Full Newton-Raphson iterations, including 

“automatic time stepping”, “weak spring element”, “line search” and “time step 

bisection”. These techniques were shown to be very advantageous in stabilizing the 

model by either accelerating the solution process or reducing the numerical instability. 



 

 

87 

Due to the practical difficulties for the OPGW model to reach a converged solution, the 

time step size (load incremental step) must be very small to gradually apply the loads. 

Even so, the solution process still deteriorated in some stages. Therefore, using a constant 

time step size throughout the whole load history is not practicable.  In view of this, only 

the initial (first) time step was user-specified, and then the “automatic time stepping” 

algorithm was activated to internally estimate and adjust the subsequent time step size in 

response to the out-of-balance state of the analysis (to make proper adjustments of the 

incremental loads that are to be applied).  In ANSYS, both the “minimum time step size” 

and “maximum time step size” need to be user-defined to serve as the range of values for 

which the automatic time stepping algorithm can work. Indeed, it was found that the 

“minimum time step size” was a key solution control parameter to show significant effect 

on the convergence behavior of the OPGW model. A very small limit of tmin=0.001 was 

selected to ensure a “smooth” computation; otherwise the solution process becomes 

unstable or even divergent. 

Although very small load steps had been specified, “chattering” was still encountered 

during the computations; sudden system stiffness changes deteriorated the solution 

process and led to convergence difficulty. Hence, to enhance numerical stability, some 

weak spring elements were added to the assembly with negligible assigned spring 

stiffness compared with the system stiffness to ensure that they had no effects on the 

solution accuracy. 

The “Line search” algorithm incorporated into the Newton-Raphson iterations has been 

shown to significantly improve the robustness of Newton’s method (Bonet and Wood, 

2008; Ibrahibegovic, 2009), and thus was activated in this study.  The use of “time step 

bisection” combined with the “automatic time stepping” was also beneficial: the 

calculated response was reviewed at the end of each load step to examine whether 

excessive contact penetrations, abrupt contact status changes, and overly large residual 

forces had occurred. If so, the next load incremental step would be bisected (reduced by 

half) and the iterations continued.  In effect, the “bisection” occurred several times when 

around 40% loading was applied on the OPGW model, thus showing the effectiveness of 

this technique to stabilize the solution process. 
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3.5  Computational Results and Discussion 

Using the modeling strategies developed in the preceding sections, the OPGW model was 

solved with both stable convergence and sufficient accuracy. The computational process 

is very costly due to the refined mesh (large problem size) and high nonlinearity of this 3-

D model. In total, 102 load incremental steps were applied and lead to 428 cumulative 

interations. The elapsed CPU running time for one analysis implementation (under a 

share memory parallel processing environment) was 503247 seconds (5 days, 19 hours 

and 47 minutes). 

Computational results of this refined OPGW model are presented in this section, and are 

compared with the ones obtained with the previous coarse FE model by Roshan Fekr 

(1999), as well as two approximate analytical solutions based on the work of Machida 

and Durelli (1973) and Phillips and Costello (1997).  In addition, it should be indicated 

that, most of the results discussed below refer to the cable cross section at mid-length of 

the model (z = 132.58 mm). 

 

3.5.1  Conductor Wires 

The total deformation of the OPGW model under the prescribed elongation (a simulation 

of extreme design conditions) is shown in Figure 3.14, and the overall longitudinal 

displacement field Uz (z-axis) of the conductor wires at the mid-length cross section is 

shown in Figure 3.15 (Spacer is not included herein.).  First of all, it is seen in Figure 

3.15 that all similar components have a similar response pattern and the displacement 

distributions in each wire are not uniform. Meanwhile, the displacement trends of the 

outer and inner wires are opposite due to their opposite helical angles. In addition, the 

results confirmed that the outer wires have larger axial displacements and steeper 

displacement gradients than those in the inner wires. The largest and smallest axial 

displacements both occur on the outer wires with the values 0.8299 mm and 0.8006 mm 

(Figure 3.16), while the maximum and minimum displacements calculated on the inner 
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wires are 0.818 mm and 0.810 mm, respectively (Figure 3.17).  The axial displacement of 

the central tube is uniform at 0.8204 mm. 

 

 

 

 

 

 

 

      Figure 3.14  Total deformation of the OPGW model under prescribed elongation 

 

 

 

 

 

 

 

 

 

 

 

      Figure 3.15  Axial displacement (Uz) of OPGW wires at mid-length cross section 
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Figure 3.16  Uz of OPGW outer wires                 Figure 3.17  Uz of OPGW inner wires  

The non-uniform Von-Mises stress distribution in the conductor wires (Figure 3.18) 

clearly indicates the structural role of the inner steel wires (acting as the main load-

carrying components of the cable), while the external aluminum alloy wires experience 

considerably less stress. 

 

 

 

 

 

 

 

 

 

          

               Figure 3.18  OPGW Von-Mises stress (Svon) at mid-length cross section 

Max= 0.818 mm 

Min = 0.810 mm 

Max= 0.8299 mm 

Min = 0.8006 mm 
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The maximum Von-Mises stress (1029.1 MPa) occurs on the steel inner wires (Figure 

3.19); their yield strength is defined at 1250 MPa, so they are still in the elastic range.  

The minimum Von-Mises stress (268.54 MPa) occurs in the aluminum alloy outer wires 

(Figure 3.20); their yield strength is 204 MPa, so they have entered their inelastic 

response range. 

 

 

 

 

 

 

 

                               Figure 3.19  Inner wire Von-Mises stress (Svon) 

 

 

 

 

 

 

 

 

                                Figure 3.20  Outer wire Von-Mises stress (Svon) 

Max = 363.97 MPa 

Min =  268.54 MPa 

Max =  1029.1 MPa 

Min =   907.58 MPa 



 

 

92 

The corresponding Von-Mises stain (von) distribution is similar to the stress fields for the 

elastic response of the inner wires (Figure 3.21), and the peak Von-Mises strain decreases 

by as much as 50% from the inner to the outer wires (Figures 3.22 and 3.23). 

 

 

 

 

 

 

 

 

 

               Figure 3.21  OPGW Von-Mises strain (von) at mid-length cross section 

 

 

 

 

 

 

 

                                Figure 3.22  Inner wire Von-Mises strain (von) 

Max = 0.00634 

Min = 0.00561 
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                                 Figure 3.23  Outer wire Von-Mises strain (von) 

The OPGW axial stress field (Szz) at the mid-length cross section is shown in Figure 3.24. 

The maximum Szz occurs on the inward side of the steel inner wires, and the variation of 

Szz on the inner and outer wires is presented in Figures 3.25 and 3.26. The effects of the 

friction shear stresses at the contact interfaces on the distribution of the tensile axial stress 

are clearly shown on the figures. 

 

 

 

 

 

 

 

             

                      Figure 3.24  OPGW axial stress (Szz) at mid-length cross section 

Max = 0.00569 

Min = 0.00422 
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                                           Figure 3.25  Inner wire axial stress (Szz) 

 

 

 

 

 

 

 

 

                         

                                           Figure 3.26  Outer wire axial stress (Szz) 

Max = 982.53  MPa 

Min =  871.92  MPa 

Max = 319.45  MPa 

Min =  259.27  MPa 
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The OPGW axial strain (zz) at the mid-length cross section is shown in Figure 3.27. It 

needs to be mentioned that the strain displayed on the tube is only the elastic strain and 

not the total strain. The plastic strain of the central tube will be presented later.  The 

maximum axial strain occurs in the inner wires, 0.00607; the minimum strain occurs in 

the outer wires, 0.00395, decreasing by 35%. (See also Figures 3.28 and 3.29). 

 

 

 

 

 

 

 

 

 

 

                 Figure 3.27  OPGW axial stain (zz) at mid-length cross section 
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                                    Figure 3.28  Inner wire axial stain (zz) 

 

 

 

 

 

 

 

 

 

                                    Figure 3.29  Outer wire axial stain (zz) 

 

Max = 0.00607 

Min = 0.0055 

Max = 0.00487 

Min = 0.00395 
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Tables 3.10 and 3.11 summarize the comparisons of the maximum principal stress (S1) 

and maximum shear stress (S) of the outer and inner wires at the mid length cross-

section obtained from this refined model and the ones from the previous coarse FE model 

and two analytical models, from which the refined model clearly exhibits significant 

improvements on the stress predictions.  Because the two analytical models were not able 

to consider friction, they thus overestimated the maximum principal stress, and their 

predictions of the maximum shear stress are generally larger and more uniform than those 

calculated with the two FE models that show the strong effects due to friction.  In the 

refined FE model, the maximum shear stresses of all the outer wires occur on their 

contact surfaces with the inner wires, and the maximum shear stresses of all the inner 

wires occur on their contact surfaces with the central tube.  Compared with the coarse 

model, the upper-limit values (representing the stresses without frictional effects) from 

the refined model are much closer to the resuts from the analytical models.  On the other 

hand, the much smaller lower-limit values from the coarse model indicate that it could 

not provide sufficient accuracy to present the frictional contact response. 

                  Table 3.10  Comparisons of analysis results for outer aluminum wires 

 

 

                     Table 3.11  Comparisons of analysis results for inner steel wires 

Analysis method Max. Principal Stress (MPa) Max. Shear Stress (MPa) 

Machida & Durelli  (1973) 349 - 367 175 - 183 

Phillips & Costello  (1997) 353 - 373 177 - 186 

Coarse FE model    (1999) 54 - 292 39 - 157 

Refined FE model   (2011) 240 - 339 135 - 197 

Analysis method   Max. Principal Stress (MPa)  Max. Shear Stress (MPa) 

Machida & Durelli  (1973) 969 - 984 485 - 492 

Phillips & Costello  (1997) 967 - 982 483 - 491 

Coarse FE model     (1999) 790 - 932 406 - 473 

Refined FE model   (2011) 883 - 996 461 - 527 
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3.5.2  Central Tube 

Due to the contact interactions, the stresses and strains in the central aluminum tube 

exhibit complex patterns, as shown in Figure 3.30 for the Von-Mises stress (Svon) and in 

Figure 3.31 for the axial stress (Szz). The central tube experiences significant plastic 

deformations especially in the zones close to the contact surfaces with the inner wires.  

Plasticity occurs after the maximum Von-Mises elastic strain, εvon=0.00234, is exceeded 

(Figure 3.32).  At the end of the loading phase, the tube has permanent deformations with 

a maximum equivalent plastic strain εp=0.0085, corresponding to a Von-Mises stress of 

144.77 MPa, which is clearly beyond its yield strength (123.6 MPa).  Results for the axial 

elastic strain (εzz) and equivalent plastic strain (εp) in the central tube are shown in 

Figures 3.33 and 3.34. 

 

 

 

 

 

 

 

 

 

                       Figure 3.30  Von-Mises stress (Svon) in central tube 

 

 

 

Svon of mid-length cross section 

Max = 144.77 MPa 

 Min = 130.22 MPa 
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                            Figure 3.31  Axial stress (Szz) in central tube 

 

 

 

 

 

 

 

 

 

                          Figure 3.32  Von-Mises elastic strain (εvon) in central tube 

Szz of mid-length cross section 

Max =  91.22 MPa 

  Min = -15.31 MPa 

 

εvon of mid-length cross section 

Max =  0.00234 

                  Min =  0.0021 
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                              Figure 3.33  Axial elastic strain (εzz) in central tube 

 

 

 

 

 

 

 

 

 

                           Figure 3.34  Equivalent plastic strain (εp) in central tube 

εzz of mid-length cross section 

Max =  0.00184 

  Min = 0.00055 

εP of mid-length cross section 

Max =  0.0085 

  Min = 0.0045 
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3.5.3  Aluminum Spacer 

The spacer’s Von-Mises strain (εvon), axial elastic strain (εzz), and plastic strain (εp) are 

shown in Figures 3.35~3.37. The results indicate that the aluminum spacer experiences 

no interaction with the central tube during the analysis as the initial clearance (0.125 mm) 

between them is relatively too large to produce contact under the prescribed axial 

elongation. 

At the end of the loading, however, the spacer has already experienced strong plasticity. 

Although the colour scale used in the legend of the following figures suggests some 

variations on the cross section for visulizaion purposes, the strains are quite uniform 

throughout with an axial elastic strain (εzz=0.0032) and equivalent plastic strain 

(εp=0.0031). The subtle stress and strain variations are due to the spacer's cross-sectional 

and helical configurations, and their peak values both occur at the bottom of one of the 

grooves instead of the center of the spacer. 

 

 

 

 

 

 
 

 

          Figure 3.35  Von-Mises strain (εvon) at mid-length cross section of  the spacer 

 

 

 

 

 

 

 

 

 

 

 

 
   Figure 3.36  Spacer axial elastic strain (εzz)      Figure 3.37  Spacer equivalent plastic strain (εp) 

εvon 

εzz 
εp 
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3.6  Summary Remarks 

This chapter focused on the refined FE modeling of an OPGW for its detailed stress 

analysis under design elongation conditions. The cable strand has two-layer wires with 

19-mm outer diameter, an inner tube core and spacer - a tight core OPGW construction 

typically used in overhead transmission lines.  A 3-D elastic-plastic, large deformation, 

frictional contact FE model was constructed. The model comprises all the structural 

components of the cable strand - two layers of helically-twisted wires, a central 

aluminum tube (enclosing the optical core), and a spacer that houses the optical fibers in 

its helical grooves - adding up to 221,816 nodes, 234,119 solid elements, and 182,340 

surface-to-surface contact elements. Great modeling challenges were encountered to 

arrive at converged solutions for this highly nonlinear large size model. Extensive 

numerical experiments had to be conducted to achieve an optimal solution strategy. 

All key procedures in the FE modeling and related numerical techniques were studied 

thoroughly to overcome the very difficult convergent behavior of the fine model without 

compromising its solution accuracy. Specifically, the effects of element qualities and 

mesh refinement on convergence and accuracy were investigated empirically with 

rational error estimation (control); proper treatment of boundary conditions and loads 

were carefully considered; various numerical solution techniques in the implementations 

of the nonlinear FE model were examined to develop a robust solution scheme. 

The computational results show agreement with the analytical solutions and significantly 

improve on a previous coarse FE model. By means of this study, a faithful physics-based 

macroscopic modeling methodology for detailed numerical stress analysis of stranded 

transmission line conductors was developed successfully, and it is essentially code-

independent. The quality of the FE model is considered to be highly satisfactory. 



 

 

103 

 

Chapter 4 

Computational Modeling for ACSR Conductor 
Strength Study 

 

4.1  Introduction 

Electrical conductors and ground wires are both essential components of overhead 

transmission lines. As already seen in Chapter 3, the complex mechanical behavior of an 

OPGW cannot be well understood by either experimental testings or theoretical models. 

In the field of general cable strand (wire ropes) modeling, many analytical models have 

been proposed, of which most are single-layered strands and are based on various 

simplifying assumptions. Several coarse numerical models have been published, but have 

limited success to describe the behavior of multi-layered strands. To the best knowledge 

of the author, detailed high-fidelity conductor computational models have not yet been 

available in the open literature. Therefore, an effort is made herein to fill this void. 

In view of the fact that the tensile strength is currently the standard structural design 

specification for electrical conductors (see for example, American Society for Testing 

and Materials (ASTM), 2004), the study carried out in this chapter aims at modeling the 

mechanical behavior of individual stranded wires under axial design load, to investigate 

the tensile response of a complete conductor. 

Aluminum alloy stranded conductors with a galvanized steel core (ACSR) have been 

extensively used worldwide on high-voltage overhead transmission lines for their many 

economical and technical advantages (EPRI, 1979, 2006). Actually, the combination of 

the light weight and efficient conductivity of aluminum with the high tensile strength and 

stiffness of steel has made ACSR conductors the most economical solution for overhead 
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power transmission lines, even under extreme weather conditions. Hence, a particular 

type of ACSR conductor is chosen to conduct this study by using the FE modeling 

methodology developed in Chapter 3. 

In addition, with a view to enrich the research effort in solving the critical conductor 

fatigue problems that continue to challenge overhead line design, this study will not only 

contribute to the understanding of the complex contact and friction mechanics of 

conductors under extreme design conditions, but also serve as a rational basis for the 

development of a practical computational approach (presented in the next chapter) to 

study the fretting fatigue of overhead line conductors. 

 

4.2  Drake Conductor Construction and Solid Modeling 

In reality, there exists a wide spectrum in each manufacturer’s ACSR product catalogue, 

offering many design configurations on the market. In this thesis, a two-layer 795 kcmil 
1
 

(26/7) “Drake” type ACSR overhead conductor is selected as the benchmark conductor 

for the modeling study due to its widespread use throughout the electrical utility industry. 

A “Drake” is a composite concentric-lay-stranded conductor, comprising a steel central 

core strand surrounded by two layers of helically wound aluminum alloy strands. The 

steel core (a 7-wire concentric helical strand) is essentially the load-carrying component 

of the conductor, and the steel wires are protected from corrosion by galvanizing (zinc 

coating). The outer two layers strands are wounded alternately in right-handed and left-

handed helices with a total of 26 individual wires made of 1350-H19 aluminum alloy (10 

inner wires and 16 outer wires). The opposite helical directions of the different layers are 

designed to reduce the internally unbalanced torque of the conductor. The exact external 

diameter of the bare conductor is 28.133 mm. Its configuration is illustrated in Figure 4.1, 

and its schematic cross section is shown in Figure 4.2. 

                                                 
1
 1 kcmil = 1000 cmil = 785.4 * 10

-6
 in

2
 = 0.5067 mm

2
. This is a measure of the aluminum alloy cross-

sectional area and is directly related to the electrical conductivity of the cable. 
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     Figure 4.1  Drake configuration               Figure 4.2  Drake schematic cross-section 

While some of the geometric specifications (overall conductor and individual wire 

diameters, strand configuration) of a Drake conductor are standard, which need to be in 

compliance with the industry standards, such as those in ASTM B232, the pitch lengths 

and thus the lay angles of the different layers may actually differ among manufacturers.  

Although lay angles are generally ignored in most theoretical models when calculating 

the bending stiffness of a conductor, they do have significant effects on the mechanical 

response of a helically stranded cable. The effects of lay angles and their design strategy 

have been discussed in-depth by Rawlins (2005). The geometry parameters (Figure 4.3) 

of a helical wire can be defined with the following relations: 

θ = arctan (π * Dmean / P) 

P = π * Dmean / tan (θ) 

L.R. = P / Dext 

where:                                                                Figure 4.3  Helical wire geometry parameters  

θ = lay angle of a given layer, being positive for right-handed helices and negative 

for left-handed helices; 

Dmean = mean diameter of a given layer (R in Figure 4.3 is the mean radius); 

P = pitch length (also called lay length) of a given layer, which means the axial 

length of one complete revolution of a helical wire; 

L.R. = “Lay Ratio”; 

Dext = external diameter of a given layer. 
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The so-called “lay ratios” rather than the lay lengths (or lay angles) are actually used by 

most manufacturers as basic measurements when designing a conductor, and they are 

specified in various “Standards” by a range of values (instead of specific values) for any 

particular conductor.  It is noted that too small a lay ratio may cause interferences among 

wires in one layer so that “a lay ratio less than 10 is prohibited” (Rawlins, 2005); on the 

other hand, too large a lay ratio would leave substantial gaps between adajacent wires 

(although small gaps are permitted in ASTM 9 and IEC 10 standards, and they may be 

inevitably generated).  In addition, the internal unbalanced torque of a conductor that is 

induced when the conductor is tensioned will be different with the different angles among 

the layers. A small increase of the angle between adjacent helical layers may result in 

large unbalanced torque, which would significantly twist the conductor even in normal 

stringing conditions.  Furthermore, from the numerical modeling perspective, a subtle lay 

angle difference may result in quite different lay lengths, which can change significantly 

the problem size of the resulting nonlinear FE model. Hence, defining a set of pitch 

length values of all the helical layers becomes crucial for the Drake FE modeling study. 

By means of several design parameters provided by General Cable (2007, 2010) and a 

combination with the data suggested by ASTM B232, a set of pitch lengths are 

determined and the geometric specifications of the Drake conductor are summarized in 

Table 4.1. 

                    Table 4.1  Geometric specifications of the Drake conductor model 

Helical Wire Wire Diameter (mm) Pitch Length (mm) Lay Angle Lay Ratio 

Outer wire 4.44246           358.14        + 11.74
o   

(Z)  12.73 

Inner wire 4.44246           274.32      - 9.62
o      

(S)  14.25 

Steel wire 3.4544           259.08      + 4.79
o     

(Z)  25  

         Drake 

Conductor 

Overall external diameter = 28.133  (mm)  

Angle between outer wires and inner wires = 11.74
o
 + 9.62

o
 = 21.36

o  
 

Angle between inner wires and steel wires  = 9.62
o
  + 4.79

o
  = 14.41

o
  

FE Model total length = 358.14  (mm) 
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Employing the same solid modeling approach as described in Chapter 3, an accurate 

Drake conductor solid model is created in DesignModeler of ANSYS Workbench 11.0 

(ANSYS Inc., 2007). The model is composed of all 33 conductor wire solid bodies 

(Figure 4.4), and its total length is based on the longest pitch length among the three 

helical layers, i.e. the outer layer pitch length of 358.14 mm. 

 

 

 

 

 

             Figure 4.4  Drake conductor solid model for strength study - 358.14 (mm) 

 

4.3  Finite Element Modeling 

In this thesis, the numerical study of the Drake ACSR strength can be regarded as an 

application of the methodologies developed in Chapter 3. That is, the same finite element 

modeling procedures are applied, and thus they will be discussed briefly, while the 

different features of this study will be addressed in detail. 

 

4.3.1  Material Properties 

Firstly, it should be indicated that high-quality material data are often difficult to obtain 

in practice, especially for complex nonlinear material properties, and in consequence the 

validity of the analysis results is certainly limited by the accuracy and extent of the 

constitutive material data.  Unlike in the OPGW study, in this Drake ACSR FE modeling 

for its strength study and subsequent fretting fatigue study (next chapter), the availability 
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of very precise material properties of the Drake individual wires are actually not 

achievable due to a lack of testing data, although the conductor overall mechanical 

properties are provided by General Cable (2010).  As a result, the open literature becomes 

the main resource, from which the published material data are reviewed and selected to 

best fit the model used in this study. 

All Drake individual wires are assumed with large kinematics and small strain under 

design conditions. The stress-strain curves used for the aluminum wires (1350-H19) and 

the galvanized steel core wires (IEC60888) at ambient temperature (20
o
C) are presented 

in Figures 4.5 and 4.6, respectively, and they were originally taken from uni-axial tensile 

experiments conducted by Alcoa Inc. (Rawlins, 2005). Table 4.2 summarizes the wire 

material properties and characteristics used in the Drake FE models. It is clear that both 

wire materials exhibit significant plasticity in the tests. The aluminum wire yields beyond 

a 0.1% axial strain, and the steel wire would not yield until 0.3%. The material 

nonlinearities of the Drake wires are then modeled using multi-linear fits of their 

experimental material curves in ANSYS to describe their inelastic constitutive behavior.  

 

 

 

 

Figure 4.5 1350-H19 Al. wire material curve     Figure 4.6 IEC60888 steel wire material curve 

                      Table 4.2  Drake wire material properties and characteristics 

Wires Material Properties Characteristics 

Outer & Inner 

layer wires 

Aluminum 

1350-H19 

E = 68.95 GPa;      ν = 0.33 

Y = 68.95 MPa;     UTS = 186.1 MPa 

 linear elastic to 

multi-linear 

plastic, 

 large kinematics, 

 small strain 

Steel core 

wires 

Steel 

IEC60888 

E = 206.84 GPa;    ν = 0.29 

Y = 620.52 MPa;   UTS = 1846 MPa 
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Finally, it is noteworthy that the conductor wire properties specified by manufacturers 

generally refer to the “apparent modulus” that is based on the force equilibrium and 

elongation compatibility of a cable segment subject to a prescribed axial elongation. 

Consequently, the wire properties obtained either from the cable experimental stress-

strain curves directly or from calculations by designated polynomial equations have 

incorporated their mechanical response as the components of a cable, rather than the 

constitutive material properties of the individual wires that may be used in the FE model. 

In this context, the stress-strain curves of the Drake wire materials, wire components, and 

overall composite cable (General Cable, 2010) are summarized in Figure 4.7. 

 

 

 

 

 

 

 

 

 

Figure 4.7  Stress-strain curves of Drake wire materials, wire components, and composite cable 

 

4.3.2  Finite Element Meshing 

For optimal solution accuracy with minimum computational cost, all Drake outer, inner, 

and steel core wires are modeled using 3-D 8-node reduced-integration hexahedral 

elements with hourglass control. By means of numerical experiments, an optimal fine 
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meshing scheme (Table 4.3) is designed for the Drake strength model to ensure stable 

convergence and sufficient accuracy. The error analysis for mesh convergence indicates 

that the global structural error due to mesh discretization of the entire Drake strength 

model is well controlled below 3% (based on linear elastic analysis). At the middle cross 

section of the model (Z = 179.07mm), which is the location of interest in this study, the 

structural error is reduced to about only 0.4 % (Figure 4.8).  Figure 4.9 shows the finite 

element mesh of the entire model as well as the mesh configuration on its cross section. 

             Table 4.3  An optimal meshing scheme for the Drake strength model 

Meshing scheme Mesh summary 

Global element size = 0.6 mm Total nodes  =  276,998 

Total solid elements  =  232,740 

Total contact elements = 263,088 

Total elements  =  496,620 * 

(* Including 792 spring elements to 

stabilize the nonlinear solution) 

Outer & Inner  wires face element size = 0.55 mm 

Outer & Inner  wires edge divisions = 22 each edge 

Steel wires face element size = 0.45 mm 

Steel wires edge divisions = 20 each edge 

Longitudinal direction sweep division = 108 (Bias = 3) 

 

 

 

 

 

 

 

 

    Figure 4.8  Structural error of the Drake strength model due to mesh discretization 
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                                               Figure 4.9  Finite element mesh of the Drake strength model - 358.14 (mm) 
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4.3.3  Contact Conditions, Boundary Conditions and Loadings 

The comprehensive contact interactions amongst the Drake wires are all considered as 

“flexible-to-flexible” deformable body contact, and “surface-to-surface frictional” 

contact types are defined on all contact regions. For each contact region, many “contact 

pairs” are created and composed of “contact” and “target” surfaces, which are discretized 

with 3-D 8-node surface-to-surface contact elements (CONTA174 in ANSYS). As a 

result, in total 35 contact pairs and 263,088 contact elements are generated for the entire 

Drake strength model. The classical Coulomb isotropic friction model is used with 

different frictional coefficients among the contact pairs (Serway, 1995; Kurtus, 2005), 

and all the assigned s are static frictional coefficients for clean, dry surfaces sliding 

against each other. Regarding the contact parameter control, normal contact stiffnesses 

are still the primary factors to control the solution convergence. Many computational 

experiments had to be conducted to obtain a set of optimal “normal contact stiffness” 

factors to overcome the convergence difficulties and to achieve high solution accuracy 

for this large-scale contact model combined with material and geometric nonlinearities. 

Table 4.4 summarizes the major contact setting parameters of the model. 

             Table 4.4  Contact settings used in the Drake strength model 

Contact region 
Contact 

pairs 

Normal contact 

stiffness factor 

Resulting contact 

stiffness  (N/mm
3
) 

Frictional 

coefficient (s) 

Steel wires  &  Steel wires                 6  0.15 2353.3 0.60 

Inner wires  &  Inner wires  10  0.50 2575.9 0.33 

Outer wires  &  Outer wires  16  0.50 2523.7 0.33 

Steel wires 1-6 & Steel wire 0 1  0.15 2356.6 0.60 

Steel wires 1-6 & Inner wires  1  0.50 2573.4 0.45 

Inner wires  &  Outer wires 1  0.50 2573.4 0.33 

 

Displacement B.C.s and loading applied to the Drake strength model are in accordance 

with the laboratory tension test performed by General Cable (2010). And subject to the 

axial design load, the Drake conductor is assumed to have uniform horizontal tension far 

from its ends. To model such a condition, the fixed-end surfaces of the conductor (at Z = 
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0) are fixed in all translational and rotational degrees-of-freedom (DOFs), while tensile 

loading is applied at the other end (free-end, Z = 358.14mm). Based on the assumption of 

displacement compatibility for a short segment of a straight cable, the same 

“displacement-control” approach as in the previous OPGW study is used to assign a 

prescribed axial displacement to all the free-end surfaces. Under ambient temperature, the 

equivalent elongation of the FE model is 0.45% of the model length, i.e. 1.61163 mm 

(  mm.%.lεlΔ 61163114.358450  ). 

 

4.4  Computational Results and Discussion 

Employing the same numerical solution strategies developed in Chapter 3 for the OPGW 

model, the Drake model was solved with both stable convergence and good accuracy. 

Certainly, the solution process is still costly due to the large contact problem size and 

strong triple (material, geometry and contact) nonlinearities of this 3-D model.  

Computational results of the Drake strength model are presented in this section, and the 

numerical results are validated through comparisons with experimental data provided by 

General Cable (2010). As in the case of the OPGW model, all stresses and strains 

discussed below refer to the cross section at mid-length of the model (Z = 179.07mm). 

The total deformation of the Drake strength model under the prescribed elongation 

(corresponding to extreme design condition) is shown in Figure 4.10.  Figures 4.11~4.13 

illustrate the longitudinal displacement field Uz (z-axis) of the wires at the mid-length 

cross section. The Uz distributions of both the outer and inner aluminum wires are 

symmetric with respect to the conductor center (z-axis). As it will be seen later, this 

observation will also apply to all stress (and strain) distributions since only tension 

loading is applied on the strength model.  In addition, all the wires in a given layer have 

the same longitudinal displacement pattern, and they are opposite between adjacent 

layers. The non-uniform displacement distributions in each wire are induced by their 

helical geometric configuration, opposite lay angles, and the resulting unbalanced torque. 

The largest axial displacement occurs on the steel helical wires and the smallest one is on 

the outer layer aluminum wires. The variations in axial displacements in each layer are 
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summarized in Table 4.5. The largest variation is obtained among the outer wires due to 

their larger helical angle (11.74
o
), while the axial displacements in the steel core wires are 

quite uniform due to their very small helical angle (4.79
o
). 

 

 

 

 

 

 

 

           Figure 4.10  Total deformation of the Drake strength model under elongation 

 

 

 

 

 

 

 

 

      Figure 4.11  Axial displacement (Uz) of Drake wires at mid-length cross section 
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      Figure 4.12  Uz of Drake outer wires           Figure 4.13  Uz of Drake inner wires 

 

   Table 4.5  Variations of axial displacement in Drake wires at mid-length cross section 

Wires  Max. Uz (mm)  Min. Uz (mm)   ΔUz (mm) 

Outer aluminum wires 0.81998 0.79582 0.02416 

Inner aluminum wires 0.81746 0.79676 0.02070 

Steel wires 0.82495 0.81609 0.00886 

 

The Von-Mises stress field of the Drake conductor at its mid-length cross section is 

shown in Figure 4.14.  It clearly indicates the structural role of the steel wires due to their 

higher axial rigidity, the steel wires carry the largest portion of the tensile loads with 

much higher stresses than in the aluminum wires. While the stresses in the steel wires are 

rather uniform (671.2 MPa ~ 682.1 MPa), the outer aluminum wires have larger stress 

gradients than the inner wires (see Figures 4.15 and 4.16).  Also, the results indicate that 

the Von-Mises stresses of both the steel and aluminum wires are far beyond their 

respective yield strengths (YSteel = 620.52 MPa; YAl=68.95 MPa), so the whole cable is 

undergoing significant inelastic deformations at the end of the loading. 

 

Max= 0.81746 mm 

Min = 0.79676 mm 

Max= 0.81998 mm 

Min = 0.79582 mm 



 

 

116 

 

 

 

 

 

 

 

 

               Figure 4.14  Drake Von-Mises stress (Svon) at mid-length cross section  

 

 

 

 

 

 

 

     Figure 4.15  Svon of Drake outer wires         Figure 4.16  Svon of Drake inner wires 

 

The Drake axial stress field (Szz) at the mid-length cross section (Figure 4.17) exhibits a 

very similar pattern to the Von-Mises stress field as only tensile loading is applied. The 

maximum Szz occurs on the steel wires, and the detailed distributions of Szz on the outer 

Max = 126.5 MPa 

Min  = 101.4 MPa 

Max = 126.4 MPa 

Min  = 109.1 MPa 
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and inner aluminum wires are presented in Figures 4.18 and 4.19, from which one can see 

the effects of friction on the tensile stresses in the vicinity of the contact surfaces. 

On a particular cross section, for those wires that do not contact with adjacent layer 

wires, under the interactions of tension and unbalanced torque, their wire cross sections 

have the same axial stress distribution: inboard is larger, outboard is smaller (i.e., stresses 

are decreasing outward).  However, once frictional contact exists, this pattern reverses. 

Actually, without any exception (during the entire loading history), the minimum axial 

stresses in the outer and inner aluminum layers, as well as the steel layer are all attributed 

to frictional contact: Tangential contact stresses (in the opposite direction) significantly 

reduce the tensile stresses in the contact regions. For the outer layer, the minimum axial 

stress occurs at the location of a contact surface between the outer and inner wires 

(Figure 4.18);  for the inner layer, the minimum axial stress occurs at the location of a 

contact surface between adjacent inner wires (Figure 4.19).  In addition, it is also 

observed that stress concentrations may occur in the steel wires at some load incremental 

steps, which increase significantly their peak axial stresses. These stress concentrations 

occur when the tangential contact stress is in the same direction as the tensile stress, 

causing a superposion of the stresses in the axial direction. 

 

 

 

 

 

 

 

 

                     Figure 4.17  Drake axial stress (Szz) at mid-length cross section 
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                                  Figure 4.18  Drake outer wire axial stress (Szz) 

 

 

 

 

 

 

 

 

                         

                                  Figure 4.19  Drake inner wire axial stress (Szz) 
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A comparison of the axial stresses of the Drake wires obtained by FEA and experimental 

data (General Cable, 2010) is illustrated in Figure 4.20, which clearly shows their overall 

agreement along the entire loading history, especially for the aluminum wires. This 

validation shows again that the conductor FE modeling methodology and related 

numerical solution strategies developed in the thesis are successful and reliable.   In the 

meanwhile, it can be noticed that, at the end of the loading, the computed stress of the 

aluminum wires is 7.2% higher than the experimental value, while the computed steel 

wire result is 12.7% lower.  Besides the assumed material properties of the computational 

model (as explained before) and the inevitable modeling errors, another important factor 

that may contribute to the stress differences between the FE model and the test data is the 

magnitudes of the static frictional coefficients among the different contact surfaces; these 

coefficients have uncertainty and thus have to be estimated in the numerical model.       

As observed earlier, the axial stress, Szz, is the combination 

2
 of the tensile stress and 

tangential contact stress, while the effects of tangential contact stress induced by friction 

are significant. Following these observations, a sensitivity study on the effects of 

frictional coefficients is motivated and the results are presented in the next section. 

 

 

 

 

 

 

 

          Figure 4.20  Comparison of Drake Szz obtained by FEA results and testing data 

                                                 
2
 Szz is not a simple algebraic superposition of tensile stress and frictional stress in that the directions of 

tangential contact stress vary at different locations due to the helical configuration of the conductor wires. 
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4.5  Sensitivity Study of Frictional Coefficients 

First of all, it is worth mentioning that the real frictional coefficient for a particular 

material combination as well as its nominal value measured by engineering laboratories is 

actually affected by the problem environment and various experimental conditions, such 

as temperature, relative humidity and the quality of the contact surfaces (surface 

roughness, surface oxidation, presence of surface films - dirt, water, grease, etc.), which 

all can dramatically change the coefficient of friction. When a metal surface is perfectly 

dry and clean, the friction is much higher than the nominal accepted value and seizure 

can easily occur. For instance, the static frictional coefficient between dry and clean steel 

surfaces may be as much as 3 times higher than that on their oxidized surfaces (Kurtus, 

2005).  In view of this, a major problem when using the values established by others, 

such as those published in the literature, is that the exact testing protocol and surface 

conditions of the tested materials are not known.  Furthermore, even for the basic dry 

Coulomb friction model, the frictional coefficients may still depend on the contact time, 

magnitude of the normal force and the sliding speed (Popov, 2010).  Therefore, although 

great care may be taken, an accurate determination of the coefficients of friction to be 

implemented in a FE model is generally very difficult if not impossible, and a range of 

realistic values might have to be considered. (This is actually a pratical challenge in the 

validation of a FE model.) 

As stated in section 4.3.3, the classical isotropic Coulomb's law of static friction is used 

in this thesis. Because the main purpose of this sensitivity study is to examine the effects 

of different frictional coefficients on the predicted stress states on the contact surfaces of 

the aluminum wires, only the frictional coefficient values among the contact pairs of 

aluminum wires are varied, while the frictional coefficients involving contact with steel 

wires are kept constant (see Table 4.6).  Based on several sources (Serway, 1995; Kurtus, 

2005; Ramsdale, 2006), the selected values of frictional coefficient for aluminum 

surfaces vary from 0 to 1.35, thus covering the entire spectrum of s from ideally 

frictionless contact to lubricated conditions, up to complete dry and clean surfaces sliding 

against each other. 
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                  Table 4.6  Frictional coefficient schemes in Drake strength model 

Contact regions (Contact Pairs)  
Frictional coefficient (s) 

Case 1 Case 2 Case 3 Case 4 Case 5 

Steel wires  &  Steel wires           (6)          0.60 0.60 0.60 0.60 0.60 

Inner wires  &  Inner wires         (10)  0 0.33 0.57 1.05 1.35 

Outer wires  &  Outer wires        (16)  0 0.33 0.57 1.05 1.35 

Steel wires 1-6 & Steel wire 0     (1) 0.60 0.60 0.60 0.60 0.60 

Steel wires 1-6 & Inner wires      (1) 0.45 0.45 0.45 0.45 0.45 

Inner wires  &  Outer wires         (1) 0 0.33 0.57 1.05 1.35 

 

The conclusions from the parametric study can be summarized as follows: 

(1) The results confirm that the frictional coefficients have no significant effects on the 

normal contact stresses since the model is under tensile loading. 

(2) The axial stresses in the inner and outer layer wires with different s are presented in 

Figures 4.21 and 4.22, respectively, confirming the significant effects of frictional 

coefficients on the conductor axial stresses.  During the entire loading process, the ideal 

frictionless contact condition generates the maximum axial stress field. Once friction is 

introduced, the axial stress field is affected (reduced) differently on the outer and inner 

wires with increased loading. 

(3) Due to their larger helical angles, the frictional effects on the outer layer wires are 

relatively higher than on the inner wires in that the increase in normal contact force is 

more important.  For the inner layer wires, the maximum axial stress difference among 

the different s values considered can reach 6.8%;  for the outer layer wires, the frictional 

contact can even contribute up to 16.2% stress reduction under the extreme design load. 

(4)  After the s value was increased above 0.57, the stress differences calculated with 

different frictional coefficients were negligible. This observation implies that the 

calculated axial stresss will remain insensitive to variations in the frictional coefficient as 
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long as the conductor aluminum wire surfaces remain in dry and clean working 

conditions. 

 

 

 

 

 

 

 

 

     Figure 4.21  Peak axial stress in Drake inner layer aluminum wires with different s 

 

 

 

 

 

 

 

 

 Figure 4.22  Peak axial stress in Drake outer layer aluminum wires with different s 
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4.6  Summary Remarks 

The study conducted in this chapter is to model the mechanical behavior of transmission 

line conductor wires under axial design load with a view to investigate the tensile 

strength of a complete conductor. The 795 kcmil Drake ACSR conductor is selected as 

the benchmark conductor for the modeling study. It is made of two conductive layers 

comprising a total of 26 aluminum wires and a structural steel core of 7 wires, for an 

overall diameter of 28.13 mm.  A 3-D elastic-plastic, large kinematics, multi-body 

frictional contact finite element model of a 358.14-mm section of this conductor was 

constructed successfully based on its nominal material properties and selected geometric 

specifications. The detailed model comprises all components of an ACSR conductor 

strand, and attempts to consider all possible mechanical effects under extreme design 

conditions.  In total the FE model is defined by 276,998 nodes, 232,740 solid elements, 

and 263,088 contact elements. 

Employing the modeling methodology and numerical strategies developed in the 

preceding chapter, good solution accuracy is obtained with stable convergence process.  

The results of the static stress analysis show agreement with the experimental data 

provided by Drake manufacturers.  Furthermore, a sensitivity study explored the effects 

of variability in the friction coefficients among the conductor aluminum wires on their 

stress response.  Again, as for the OPGW model of Chapter 3, this study demonstrates the 

capability and significance of using refined FE modeling in predicting the detailed 

mechanical response of a complex conductor cable, as well as the validity of the 

modeling approaches developed in this thesis. 
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Chapter 5 

Computational Modeling for ACSR Conductor 
Fretting Fatigue 

 

5.1  Introduction 

Up to this stage, based on the success shown in the preceding chapters in developing a 

sound modeling methodology for detailed stress analysis of electrical conductors under 

extreme design conditions, some confidence has been gained to launch a computational 

study of conductor fretting fatigue, which becomes increasingly critical for overhead line 

(OHL) design and maintenance. 

OHL conductors are exposed mainly to static or quasi-static loading in their normal 

service. The effects of these external loads are essentially to cause fluctuations in the 

cable tension. Other localized loads on the conductors are those local compressive forces 

exerted by the clamping devices of suspension clamps or other hardware components 

such as vibration dampers, spacer-dampers, etc.  During most of their lifetime, however, 

conductors are subjected to external loads that are only a fraction of their peak design 

requirements. Meanwhile localized bending effects often associated with conductor 

fatigue have been widely recognized as the most dangerous threat to the conductor’s 

mechanical reliability. Conductor fatigue can drastically reduce the conductor service 

life, especially in the presence of Aeolian vibrations that occur at high frequency. These 

oscillations generate alternating bending stresses in conductors at their junction with 

clamping systems or any hardware device that constrains the vibrations. Aeolian 

vibrations promote fretting fatigue failure of individual conductor wires in suspension 

clamp regions and may lead to entire conductor rupture (see for example, Ramey and 

Townsend, 1981; Zhou et al., 1994, 1995, 1996; Aggarwal et al., 2000).   Moreover, 
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many overhead transmission lines around the world are reaching middle age (25~40 years 

old and more) and aging conductors are showing evident signs of deterioration (Azevedo 

and Cescon, 2002). Accordingly, the structural optimization and maintenance of 

overhead conductors also depend heavily on the systematic investigation of the fretting 

fatigue mechanisms in conductor/clamping regions (Azevedo et al., 2009). 

As reviewed in Chapter 2, a large number of laboratory tests on conductor fretting fatigue 

were performed over the past decades. Although it is true that some general trends can be 

found from experimental studies, such as the ones summarized in Chapter 2, it is well 

acknowledged that, fretting fatigue behavior of conductor wires is very difficult to predict 

and characterize owing to their synthetic geometry, material and loading complexities. 

For instance, wire fractures were actually observed on either external or internal layers 

depending on different test conditions; fretting crack propagations may have quite 

different modes and different contributions to total fatigue life, and so on. 

From the structural mechanics perspective, accurate description and prediction of the 

conductor stress states at the clamp mouth regions are fundamental to provide a clear 

explanation of the mechanical behavior of stranded conductors under fretting fatigue 

conditions and to identify the fatigue damage initiation (fretting crack nucleation). 

Furthermore, even small stress variations (only by a small percentage) can make a 

significant difference in the fatigue life of overhead lines.  As we have seen from the 

work presented in Chapters 3 and 4, the complex (contact) stress states among individual 

conductor wires as well as the ones between the external wires and the clamp surfaces are 

not accessible to direct measurements, while the theoretical fatigue-life assessment 

models based on semi-empirical formulae and linear elastic hypotheses can only predict 

idealized nominal stresses (see for example, Cardou et al., 1993; Papailiou, 1995, 1997; 

Jolicoeur and Cardeau, 1996). Numerical modeling thus appears the only effective 

approach to achieve this goal although such an effort has been claimed to be a daunting 

task (Azevedo et al., 2009). 

To the author’s knowledge, no such a numerical work is available yet in the open 

literature that presents a rational mechanics-based model to describe the fretting fatigue 
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phenomena in electrical conductors. Hence, the main goal of the present study is to 

develop a faithful FE model to explore the mechanical response of a typical stranded 

conductor-clamp system under bending fretting fatigue conditions. Local stress and strain 

fields in the suspension clamp mouth regions of fretting are predicted by detailed 3-D 

elastic-plastic multi-body contact analyses with friction. Computational results are 

validated by comparing them with published experimental data. Based on the accurate 

stress analyses, a practical fatigue lifing method is proposed to asses the conductor 

service life. Thereafter, a parametric study is conducted to examine the effects of fretting 

amplitude on the fretting fatigue in this application. 

 

5.2  Assumptions for Numerical Modeling of Fretting Fatigue 

The simulations of fretting phenomena in real conductor situations are currently 

intractable. Accurate description of the mechanics states of a conductor under fretting and 

prediction of its fretting fatigue life during normal operation conditions are still beyond 

our engineering capability. As reviewed in Chapter 2, the damage mechanisms of fretting 

fatigue are complex and their description may require numerous parameters. Thus, some 

simplifying assumptions are necessary to make the numerical models manageable in size 

and complexity, while still ensuring reliable results.  It should be mentioned that this 

work should be seen as a preliminary computational study on this topic. In order to 

preserve the key features of the actual physical event rather than to expose all factors 

involved in conductor fretting failure mechanism, the following six assumptions and 

simplifications are made: 

(1) As indicated in Chapter 2, fretting debris might be generated in the “mixed regime”, 

which means that the so-called “third-body” contact might exist in some local contact 

regions, and the effects of the debris on fatigue cracks are not negligible. However, the 

extremely complicated mechanisms of the formation and evolution of fretting debris 

(involving fretting wear, tribological white layer, oxidation, etc.) and the uncertainty of 

its characterization make the simulation of the debris very difficult. Hence, in this study, 

fretting debris is not considered in the FE models. 
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(2) The forcing frequency of the external cyclic loading induced by wind and the ensuing 

fretting motion may have some effects on the initiation and propagation of fretting 

cracks, mainly owing to their influence on fretting debris (Zhou and Vincent, 2002). 

Since no debris is included in the models, the fretting frequency is not a studied 

parameter in the analyses, i.e. the models are only subjected to static loads. 

(3) In practice, some forms of lubricant (mainly lubrication grease) might be included in 

the cables to lessen fretting wear. A comprehensive experimental study of the influence 

of lubricants on conductor fretting fatigue was carried out by Zhou et al. (1992-1999).    

It was shown that the effectiveness of lubrication grease on lessening fretting fatigue is 

not significant under heavy clamping forces and minute amplitude of fretting slips.  

Hence, only unlubricated, clean and dry contact surfaces of the conductor are assumed in 

the fretting models. 

(4) The frictional coefficient does vary with the number of fretting cycles (refer to Figure 

2.2), which is mainly due to the dynamical process of the formation and escape of fretting 

debris. In addition, fretting displacement amplitude, normal load (clamping force), and 

other factors may also significantly affect the magnitude of the frictional coefficient. 

Nevertheless, due to the limited availability of relevant data, the frictional coefficients 

among the conductor components are considered to remain constant during the entire 

loading history. 

(5) The tangential contact stiffness (Ks) is an important factor in fretting, and it is 

determined by both the material properties and the size of the contact areas. It may also 

vary with the number of fretting cycles. From some experimental observations (Zhou and 

Vincent, 2002), the variation of Ks with fretting amplitude is practically negligible under 

low fretting cycles (N usually <10
5
, i.e., within the stage of fretting crack nucleation). 

Thus, the initial Ks is assumed to remain constant during the parametric study of the 

effects of fretting amplitude. 

(6) The conductor sag angle (usually about 10 degrees) in conductor/clamp systems is 

ignored in the numerical models. Comparing with the real testing conditions, this is the 

only geometric approximation in the 3-D solid modeling. 
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5.3  Drake Fretting Fatigue Solid Model Construction 

Even if considered in a controlled laboratory testing environment, different fretting 

conditions may have crucial influence on the conductor fretting cracking behavior; the 

nucleation and propagation of local fretting cracks strongly depend on the material 

properties, contact geometry configurations and loading conditions, as well as their 

synergistic effects. Accordingly, for the purpose of developing a modeling methodology, 

the FE model needs to correspond to a particular conductor-clamp system. 

In practice, to hang electrical conductors to insulator strings or hang the ground wires to 

tower arms/peaks through link fittings, “suspension clamps” have been used. A 

suspension clamp assembly (see Figure 5.1) includes typically a lower clamp body with a 

lengthwise groove for receiving the lower side of a conductor, an elongated upper keeper 

to apply to the upper side of the conductor, as well as two U-bolts and nuts that connect 

the clamped conductor assembly. The suspension clamp is a critical line hardware 

component because of its paramount function of connecting the conductor to the tower 

supports, and it must be designed carefully to avoid damaging the conductor by 

premature wear, fretting, etc. 

 

  

 

 

       

        Figure 5.1  Suspension clamp and conductor installation (Azevedo et al., 2009) 

Similar to the situation for conductor design, although the general shapes of suspension 

clamps are quite standard, different manufacturers have their own types, configurations 

and materials to design a suspension clamp assembly for different types of conductors, 

and the dimensions of a suspension clamp may vary with the conductor diameter, leading 



 

 

129 

to numerous commercial suspension clamp products on the market (see for example, 

Liling Orient Power Co., Ltd., 2009). Therefore, a set of definite specifications has to be 

determined for a specific suspension clamp assembly to be used in this study. 

First of all, the common “envelope type” suspension clamp is chosen, which is actually 

also the one used in most transmission line fretting fatigue lab tests. To build the 

suspension clamp 3-D model, the shape of the lower clamp body is defined according to 

the design data available from EMI Transmission Ltd. (2007), Preformed Line Products 

Ltd. (2009) and Liling Orient Power Co., Ltd. (2009). The profile of the upper keeper is 

also referred to an early invention by Eddens and Reed (United States Patent No. 

3602956) with improved grooved shape to prevent cable fretting fatigue breakage. In 

addition, from a fretting fatigue point of view, the critical zone of a suspension clamp is 

located between the keeper edge (KE) and the last point of contact (LPC) of the clamp 

body, and thus the lengths of the clamp body and the keeper are the most important 

geometric parameters to affect contact stresses, fretting regions and crack initiation. In 

accordance with the experimental work reported in the literature that will be used for 

model validation, these two key dimensions are those used in the DRAKE conductor 

fretting fatigue tests performed by Zhou et al. (1994, 1995), as schematized in Figure 5.2. 

 

 

 

 

 

            Figure 5.2  Key dimensions of the clamp body and keeper (Zhou et al., 1994) 

As a result, a generic “envelope type” suspension clamp assembly is designed, shown in 

Figures 5.3 and 5.4.  It is a 216 mm clamp with a 124 mm keeper that are both made of 

permanent mould-cast aluminum. The upper keeper is pressed on a conductor with two 

stainless steel U-bolts and nuts. 
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The “Drake” conductor is selected because it is widely used worldwide and extensive 

fretting fatigue testing data is available in the open literature for this conductor. 

Accordingly, the same 795 kcmil “Drake” type ACSR described in Chapter 4 is used for 

the fretting fatigue study. The conductor cross section with numbered wires in each layer 

referring to the suspension clamp center (SCC) is shown in Figure 5.5. 

 

 

 

 

 

 

 

                         Figure 5.3  The suspension clamp lower body solid model 

 

 

 

 

 

 

 

                  

                         Figure 5.4  The suspension clamp assembly solid model 
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 Figure 5.5  Drake cross-section with wire numbering for bending fretting fatigue study 

The experimental setup for a bending fretting fatigue test of a conductor-clamp system 

has been standardized in the IEEE standard (1966) and the EPRI Transmission Line 

Reference Book (1979, 2006). Two very similar testing benches are typically used (see 

for example, Zhou et al., 1996; Ouaki et al., 2003), one of which is shown schematically 

in Figure 5.6, while another may be found in Figure 2.12 of Chapter 2. These test set-ups 

share the same principle of operation that can be described herein: 

 

 

 

 

 

 

    Figure 5.6  Schematic of conductor bending fretting fatigue test bench (Zhou et al., 1996) 

Inner 

wires 

 Steel  

 wires 

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 1 

 2 

 3 

 4 

5 

6 

 7 

 8 

9 

 10 

 1 

 2 

 3 

 4 

 5  6 

 7 

8 

 9 

 10 

 11 

 12 

 13  14 

 15 

 16 

Fretting 

Amplitude 

Outer 

 wires 

Lower Half-Section 

Upper Half-Section 

Neutral Axis 



 

 

132 

In compliance with the above standards, the imposed transverse peak-to-peak relative 

fretting amplitude (Yb) needs to be measured at a distance of 89mm (3.5 inches) from the 

last point of contact (LPC) between the conductor and the suspension clamp. This 

bending amplitude is imposed on the conductor specimen via an adjustable slider-crank 

mechanism where the suspension clamp is attached to the slider. The up-and-down 

motion of the clamp induces a slight variation of the conductor angle at the clamp mouth. 

For a given location on the conductor axis, this motion corresponds to the bending 

amplitude with respect to the clamp, where the clamp can be considered as fixed. To be 

accurate, two adjustable blocks located on both sides of the clamp can be moved 

horizontally, vertically and angularly to obtain the desired relative amplitude. Both ends 

of the conductor specimen are fixed to a tensioning system in order to maintain a constant 

tensile pre-load during the entire test period, which is usually taken as 18% ~ 25% of the 

conductor “Rated Tensile Strength” (RTS). The cycling frequency is typically limited to 

10 Hz in order to avoid undesirable dynamic effects. This forcing frequency is also 

representative of field conditions in the lower frequency range. The tests can be run from 

0 (static test) up to about 2 x 10
7
 cycles (over 23 days at 10 Hz). 

Recently, a practical and proven effective bending fretting fatigue testing rig for overhead 

conductors was designed by Azevedo et al. (2009) with the same operational principle as 

described above. The test is controlled by a prescribed vertical fretting displacement 

measured by a laser sensor positioned at 89 mm from the LPC between the conductor 

and the clamp, as illustrated in Figure 5.7. This rig design and some of the testing 

parameters in this experimental work are adopted in the present numerical modeling.  As 

stated before, the axial position of KE is located at 62 mm from the clamp transverse 

symmetry plane (i.e. suspension clamp center, SCC) that is defined as the origin of the 

model. The LPC is positioned at 95 mm from the origin. 
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Figure 5.7  Schematic of conductor bending fretting fatigue model (Azevedo et al., 2009) 

The 3-D Drake conductor fretting fatigue solid model assembly is also built using 

DesignModeler of ANSYS Workbench 11.0. Due to the symmetric configuration in the 

test, only half of the assembly is used for the FE model, as shown in Figure 5.8. The 

model is comprised of a total 36 solid bodies: 33 conductor wires, the suspending clamp 

body, the upper keeper and the U-bolt. The total conductor length in the model is the half 

length of the suspension clamp up to the LPC, 95 mm, plus the measurement distance at 

fretting amplitude, 89 mm.  That is, the total model length is: L = 95 + 89 = 184 (mm). 

 

 

 

 

 

 

 

 

Figure 5.8  Drake conductor-clamp solid model for fretting fatigue study (184 mm) 
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5.4  Finite Element Modeling 

While some of the methodologies developed in the preceding chapters are proven still 

effective for this study, new challenges are encountered due to the unique features of the 

problem.  The detailed FE modeling procedures are summarized in this section. 

 

5.4.1  Material Properties 

Certainly, the Drake conductor wire material properties are the same as the ones used in 

Chapter 4: all individual wires are assumed elastic-plastic, with large kinematics and 

small strain under fretting fatigue loading. 

As for the clamping device, the suspension clamp lower body and upper keeper are both 

made of common aluminum alloy and U-bolt is made of galvanized stainless steel. Their 

elastic properties can be easily available from the open literature. Although some 

experimental tests exposed that plastic deformations were observed on the clamps, we 

will focus only on the conductor wires instead of the clamping devices in this study, and 

thus the plastic material properties of the clamping device are not considered.  Indeed, 

comparing with all previous work on this topic, modeling the clamping devices as elastic 

contact deformable bodies is already a big step forward since previous theoretical studies 

(without exceptions) always regarded the suspension clamp body, upper keeper and bolts 

as perfect rigid bodies.  For completeness, the material properties and characteristics for 

the Drake fatigue model are summarized in Table 5.1. 
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        Table 5.1  Drake conductor-clamp system material properties and characteristics 

Component Material Properties Characteristics 

Outer & Inner 

layer wires 

Aluminum 

1350-H19 

E = 68.95 GPa;      ν = 0.33 

Y = 68.95 MPa;     UTS = 186.1 MPa 
 linear elastic to 

multi-linear plastic, 

 large kinematics, 

 small strain Core steel wires 
Steel 

IEC60888 

E = 206.84 GPa;    ν = 0.29 

Y = 620.52 MPa;   UTS = 1846 MPa 

Clamp body       

&  Keeper  

Aluminum 

135-T6 

E = 72.40 GPa;       ν = 0.33 

Y = 179  MPa 
 linear elastic, 

 small deformation, 

 small strain U-Bolt 
Galvanized 

Steel 

E = 206.84 GPa;     ν = 0.29 

Y = 620.52 MPa 

 

5.4.2  Mesh Refinement 

Regarding the element selection, for the best solution accuracy with minimum 

computational cost, all components in the entire assembly are discretized using only 8-

node reduced-integration hexahedral solid elements with hourglass control. 

The fine meshing scheme designed for the Drake conductor strength model in Chapter 4 

was initially adopted. While a converged solution could be obtained for the fatigue model, 

its solution accuracy in the critical fretting contact regions was much below expectations. 

Due to quite small fretting amplitudes, a very fine mesh is shown to be required near the 

contact interfaces in the clamp mouth regions to capture the stress gradients in the 

conductor radial directions. In addition, referring to the author’s past research experience 

(Qi et al., 2000, 2001), four layers of elements near the contact surfaces are suggested to 

obtain accurate results for the purpose of a FE-based fatigue analysis. However, after the 

mesh was further refined, this FE model experienced high difficulty to converge due to 

excessive element distortions and inadequate contact control settings. 

A number of numerical experiments were then conducted and the trial-and-error process 

was very time-consuming since each trial had to perform a large-size nonlinear solution 

for the entire model. As a result, an optimal refined meshing scheme was finally achieved, 
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leading to a much larger computational size than the initial model – adding up to 323,731 

nodes, 309,805 solid elements and 274,478 contact elements. This very fine model will 

ensure sufficient solution accuracy while maintaining stable convergent behavior 

provided that robust solution control and contact control settings are determined carefully.      

The comparison of the two meshing schemes for the Drake wires is summarized in Table 

5.2., seen also in Figures 5.9 and 5.10 about the cross-sectional meshes.  The finite 

element mesh of the entire conductor-clamp fretting fatigue model is presented in Figure 

5.11. 

 

              Table 5.2  Two meshing schemes for the Drake fretting fatigue model 

Drake conductor fatigue model meshing scheme Initial Final 

Outer & Inner wires edge divisions for each edge 22 36 

Outer & Inner wires face element size  (mm) 0.55 0.26 

Steel wires edge divisions for each edge 20 20 

Steel wires face element size (mm) 0.45 0.45 

Conductor longitudinal sweep length divisions 60 66 

Number of element layers near Al. wire contact surfaces 1 4 

Computational size for 

entire assembly model 

Total nodes 169,161 323,731 

Total solid elements 167,185 309,805 

Total contact elements 183,166 274,478 

Total elements* 351,215 585,147 

  (* Including 864 spring elements to stabilize the nonlinear solution process) 
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Figure 5.9  Initial mesh scheme of Drake conductor fretting fatigue model 

 

 

 

 

 

 

 

 

 

Figure 5.10  Final refined mesh scheme of Drake conductor fretting fatigue model 
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   Figure 5.11  Finite element mesh of the Drake conductor-clamp assembly fretting fatigue model  (184 mm)  
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5.4.3  Contact Conditions 

The comprehensive contact interactions amongst the entire assembly model are all 

considered as “flexible-to-flexible” deformable body contact, and “surface-to-surface 

frictional” contact types are defined on most contact regions except between the Upper 

Keeper and U-Bolt. The so-called “bonded contact” type is defined for this contact region 

to facilitate the computations. That is, no separation and no sliding are allowed for the 

interaction between the Upper Keeper and U-Bolt, which is realistic. For each contact 

region, many “contact pairs” are created and composed of “contact” and “target” 

surfaces that are discretized using 3-D 8-node surface-to-surface contact elements 

(CONTA174 in ANSYS). As a result, in total 38 contact pairs and 274,478 contact 

elements are generated for the entire model. The classical Coulomb isotropic friction 

model is used with different frictional coefficients among the contact pairs, and all the s 

are static frictional coefficients for clean, dry surfaces sliding against each other. It is 

noted that s=1.05 is assigned for all conductor aluminum wires contact in this study.  

The same numerical solution strategies developed in Section 3.4 of Chapter 3 are 

inherited in this study.  Due to the critical effects of a contact algorithm on the accuracy 

and convergence for a complex contact analysis, an effort was made to empirically 

compare and evaluate the available contact algorithms applied to this model. It was 

confirmed that the “Augmented Lagrangian” method is still the most robust contact 

formulation for this application, while other options either significantly increase the 

convergence difficulties or cause inaccurate results. 

As mentioned before, this model exhibits difficult convergent behavior with the increase 

of its mesh density. Actually, the final fine mesh model experienced divergence if 

applying the same contact control parameters used in the initial model. Moreover, 

different convergent issues were experienced in different loading stages, while only “one-

time” contact control parameters can be set up for the whole load history. Especially, it 

was observed that the numerical performance (stability and accuracy) of the model was 

very sensitive to variations of the prescribed normal contact stiffness factors. Therefore, 

designing a fine mesh (as discussed before) and configuring a proper set of contact 
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parameters as well as the solution control settings are three interdependent aspects that 

have to be considered together to ensure a successful solution.  Such an endeavor reflects 

essentially the nature of the so-called “hierarchical modeling process” (Bathe et al., 

1990, 2011) for solving a complex nonlinear problem, during which the mathematical 

model that represents the physical event is from simple to complex in order to gain more 

benefits (engineering insights), and meanwhile developing a reliable analysis approach as 

well as robust modeling procedures becomes increasingly difficult. As such, “To perform 

an effective analysis is an art”. (Bucalem and Bathe, 2011) 

Many numerical experiments were conducted by monitoring the computational processes 

and adjusting the schemes accordingly based on the same approach used in the "Drake 

strength model".  Eventually, a good solution scheme with a set of optimal normal 

contact stiffness factors was obtained, which overcame the convergence difficulty and 

achieved high solution accuracy. Table 5.3 summarizes the key contact setting 

parameters for the Drake fatigue model. 

Table 5.3  Contact settings used in the Drake fretting fatigue model 

Contact regions 
Contact 

pairs 

Frictional 

coefficient (s) 

Normal contact 

stiffness factor 

Resulting initial 

contact stiffness  
(N/mm

3
) 

Steel wires  &  Steel wires 6 0.60 0.15 2558.4 

Inner wires  &  Inner wires 10 1.05 0.50 2861.3 

Outer wires  &  Outer wires 16 1.05 0.50 2845.6 

Steel wires 1-6  &  Steel wire 0 1 0.60 0.20 3422.7 

Steel wires 1-6  &  Inner wires 1 0.45 0.40 2288.8 

Inner wires  &  Outer wires 1 1.05 0.40 2288.8 

Outer wires  &  Upper Keeper 1 1.05 0.25 1422.7 

Outer wires  &  Clamp body 1 1.05 0.2 1138.1 

Upper Keeper  &  U-Bolt 1 “Bonded” 0.042 11378.0 

* Contact algorithm:  “Augmented Lagrangian” method 
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5.4.4  Multi-Step Loading Process 

The loads applied to the model are in compliance with the bending fretting fatigue 

laboratory tests performed by Zhou et al. (1994, 1996), leading to a multiple load stepped 

analysis implemented sequentially to complete the entire load history for one bending 

fretting cycle.  In ANSYS, a load case is defined as a “Step”, which refers to a set of 

loads and boundary conditions corresponding to a particular loading condition.  In this 

study, the complete load history consists of four load cases, i.e. four load “Steps”: (1) 

clamping pressure from U-bolt, (2) pre-tension of the conductor, ((1) and (2) constitute 

the pre-stressed state of the fretting test.) (3) fretting amplitude is imposed, and (4) return 

to pre-stressed loading condition. 

In the first step, a symmetric displacement B.C. is applied on the clamp transverse 

symmetry plane (SCC) and a fixed displacement B.C. is applied on the clamp fastener 

hole bottom surface to remove the rigid body motions of the system. (These B.C.s will 

propagate to the following three load steps.) In the meanwhile, a constant clamping 

pressure is maintained on the Drake conductor during the test by applying a torque 47 

Nm (35 lbf  ft) each to the two nuts that are attached to the pair of U-bolts (Zhou et al., 

1994). This tightening torque will generate a bolt preload Fi  19.6 (kN) 

1
 to lock the 

conductor/clamp system. In the model, Fi is applied on each of the two bottom surfaces 

of the U-bolt. 

In the second step, the pre-tension of the conductor is defined. During the whole period 

of the test, the axial tensile load on the conductor is maintained at 25% Rated Tensile 

Strength 
2
 (RTS) of the conductor. According to General Cable (2008), the RTS for the 

795 kcmil Drake ACSR is 295.77 MPa, corresponding to a rated tensile load 138.6 (kN). 

So, the resulting static tensile force applied on the conductor: T=138.6*0.25=34.65 (kN). 

Using the same “displacement-control” approach as in the preceding chapters, an 

equivalent elongation can be calculated as l = 0.2484 (mm), which is applied as the 

                                                 
1
 This bolt pre-tension force is calculated using the torque formulae referred to several Handbooks 

(Avallone et al., 1997; Kutz, 1986; Oberg et al., 1996; Shigley, 1972). 
2
 Rated Tensile Strength is usually regarded as a mechanical property of a cable, which is some value 

obtained from test, and usually between cable Yield strength and Ultimate Tensile Strength. 
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prescribed axial displacement on all the free-end surfaces of the conductor. This 

elongation corresponds to an overall axial strain of 0.135%.  So, this implies that, under 

the 25% RTS pre-load tension, the conductor aluminum wires have already entered into 

their inelastic range. 

The third step simulates the imposed bending fretting amplitude induced by Aeolian 

vibrations. A vertical displacement (Yb = 1.3 mm 
3
) is gradually imposed to the free-end 

surfaces of the conductor.  The fourth (last) step is a process of reducing the fretting 

amplitude to zero. That is, the conductor returns to the pre-stressed state (at the end of the 

Step 2) to complete the entire fretting cycle.  The entire loading history is summarized in 

Table 5.4. 

Table 5.4  Multiple-Step loading process for the Drake fretting fatigue model 

Loading history Bolt preload 

(Fi,  kN) 

Conductor static 

pre-tension 

25% RTS (l,  mm) 

Bending fretting 

amplitude 

(Yb,  mm) 

Step 1  19.6 - - 

Step 2  19.6 0.2484 - 

Step 3  19.6 0.2484  0  1.3 

Step 4 19.6 0.2484 1.3  0 

 

Each “load step” analysis is implemented within a period of “time,” for which the 

response of the model to the specified loads and boundary conditions is calculated.  As 

stated in Section 3.4.2, unlike in a dynamic analysis where “time” represents actual, 

chronological time concept, “time” is simply used as a tracking parameter in this analysis 

to identify a loading history, as well as the load incremental steps within each loading 

period.  In detail, each (time) step corresponds to a different load scenario, and each time 

sub-step corresponds to an increment of load, during which a series of equilibrium 

iterations (and contact states related computations) are carried out to arrive at a 

converged solution for that intermediate load values. 

                                                 
3
 A parametric study about some effects of different fretting amplitudes will be discussed in Section 5.7. 
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It is worth to note that the time increments in this model must be set very small to avoid 

abrupt changes in the load increments; otherwise, either the normal contact forces 

undergo large oscillations or large contact penetrations are experienced, which could 

jeopardize the solution quality. In effect, it was shown that time sub-step was a very 

sensitive solution control parameter to help maintain a stable convergence process and it 

also significantly influenced the computational cost, and it needs to be adjusted at each 

different load step.  By numerical experiments, a set of optimal time sub-step control 

settings are obtained (Table 5.5) that make the computations very stable and efficient for 

every load incremental step.  Even so, the total running time for one fretting cycle is still 

about 85 hours (3.5 days), clearly indicating the high computational scale and complexity 

of this fretting fatigue model. 

Table 5.5  Time step settings in the Drake fretting fatigue model 

Load Step Initial time step Min. time step Max. time step 

Step 1  (0s ~ 1s) 0.01 0.001 0.02 

Step 2  (1s ~ 2s) 0.01 0.005 0.03 

Step 3  (2s ~ 3s) 0.01 0.01 0.05 

Step 4  (3s ~ 4s) 0.01 0.01 0.1 

 

 

5.5  Stress Analysis Results and Discussion 

Selective results of the Drake conductor/clamp fretting fatigue model under fretting 

amplitude 1.3mm will be reported.  First of all, it should be noted that the purpose of the 

presentation in this section is to expose the local stress-strain states to gain a clear 

understanding of the mechanics behavior of the conductor under fretting fatigue 

conditions, as well as to show the validation of the FE model through comparisons with 

published experimental data.  As for the stress results that are used for the conductor 

fatigue lifing analysis, they will be discussed in Section 5.6.2.  In addition, since the 

critical zone for conductor fretting crack initiation is located between the keeper edge 
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(KE) and the last point of contact (LPC) with the clamp, the discussion will mainly focus 

on this region. Furthermore, the most severe mechanical response of the conductor is 

clearly shown (as expected) occurring at the end of Step 3, when the fretting amplitude 

being fully applied. Therefore, most of the results presented will refer to at this “time 

point” unless otherwise indicated. 

The total deformation of the Drake conductor under fretting condition is shown in Figure 

5.12. The maximum deformation is 1.324 mm, which occurs at the end surface of the 

transverse bending amplitude being applied.  At the cross section of LPC, the conductor 

total deformation and bending deflection exhibit similar displacement distributions and 

very close peak values (Figures 5.13 and 5.14). This indicates that bending dominates the 

mechanical response under the fretting condition. In addition, the maximum bending 

deflection (0.413mm) that occurs on the outer layer aluminum wire does deviate from the 

top center line of the cross section due to the wire helical configuration and multi-body 

contact interactions. 

 

 

 

 

 

 

 

 

 

 

Figure 5.12  Total deformation of Drake conductor under bending fretting condition 
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Figure 5.13  Total deformation of Drake conductor at LPC cross section 

 

 

 

 

 

 

 

 

 

Figure 5.14  Bending deflection of Drake conductor at LPC cross section 

  Max. = 0.465 mm 

  Min. = - 0.413 mm 
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The contact kinematics states in the conductor fretting region show overall good 

agreement with the experimental and field observations, as explained below: 

Three characteristic fretting contact states (referring to “fretting map” theory described in 

Chapter 2) can be identified by the relative sliding on the wire contacting surfaces:  In the 

section from SCC to the bolt, there are basically no relative slips on both outer and inner 

layers due to the large clamping force and high friction. The conductor wire mating 

surfaces exhibit very good adhesion when they are in contact, which indicates that they 

are mostly in the stick state. In the meanwhile, the slip state has been predicted outside 

the clamping region (beyond the LPC) because global relative slips take place among the 

corresponding contact interfaces.  Mixed regimes are clearly exposed in the clamp mouth 

area on both the outer and inner layers as some very small and localized relative sliding 

occurs, which exhibits the occurrences of the “partial slip contact” state (See Figures 5.15 

and 5.16). 

Furthermore, the numerical results show that the partial slip contact state may be 

accompanied by local plasticity on the fretting contact surfaces, as evidenced by the 

fretting marks in Figures 5.17 and 5.18.  As stated in Chapter 2, there are two types of 

contact modes among the conductor helical wires: cross contact and parallel contact.  In 

the mixed regime, the cross contact between the inner and outer layers generates elliptical 

fretting marks due to the opposite lay angles of the contacting layers; these elliptical 

marks are much more critical than the very narrow-banded fretting marks resulting from 

the parallel contact among the wires of the same layers.  These fretting mark distributions 

are also consistent with those in the “fretting chart” based on experimental observations 

(Zhou et al., 1994, 1996). The majority of the fretting marks (indicating inelastic 

deformations) spread between SCC and KE, and the peak plastic strain of the outer layer 

occurs on the mating surface with the upper keeper and is very close to the KE.  In 

particular, the elliptical plastic marks on the inner layer exhibit a very similar pattern to 

the one reported in an ACSR field failure analysis (see Figure 5.19 that is extracted from 

Azevedo et al., 2009). 
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Figure 5.15  Partial slip contact state on the outer layer (between SCC and LPC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16  Partial slip contact state on the inner layer (between SCC and LPC) 
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    Figure 5.17  Equivalent plastic strain (εp) on the outer layer (between SCC and LPC) 

 

 

 

 

 

 

 

 

 

       Figure 5.18  Equivalent plastic strain (εp) on the inner layer (between SCC and LPC) 
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          Figure 5.19  ACSR plastic fretting marks on inner layer (Azevedo et al., 2009) 

The Von-Mises stress distribution of the Drake conductor at the cross sections of LPC 

and KE are shown in Figures 5.20 and 5.21, respectively. As expected, the core steel 

wires have much higher stresses (230 MPa ~ 380 MPa) than the aluminum wires as they 

are the main load-carrying structure of the conductor. The aluminum wires at KE exhibits 

much more complex stress states with higher peak values than at LPC owing to the more 

severe multiaxial loading provided by the suspension clamp. 

 

 

 

 

 

 

 

 

                      Figure 5.20  Drake conductor Von-Mises stress (Svon) at LPC 

  On aluminum layers: Svon,max = 112.6 MPa 

 Max. 
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                       Figure 5.21  Drake conductor Von-Mises stress (Svon) at KE 

Mainly occurring in the “Upper Half-Section”, plasticity is present on the contact 

surfaces of some wires on both the outer and inner layers, while the outer layer carries a 

higher peak stress and stress gradient than the inner layer (Figures 5.22 and 5.23). 

 

 

 

 

 

 

 

     Figure 5.22  Svon of outer layer at KE            Figure 5.23  Svon of inner layer at KE 

Max = 138.3 MPa Max = 121.4 MPa 

  Max. 

  Max. 
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The maximum (S1) and minimum (S3) principal stress fields of the conductor aluminum 

layers at the KE and LPC cross sections are presented in Figures 5.24 ~ 5.27. The same 

observations as for the Von-Mises stress fields apply:  All peak values of S1 and S3 on 

both the outer and inner layers occur on contact surfaces. Again, the outer layer exhibits 

higher peak stress and steeper stress gradient than the inner layer. The vicinity of KE 

appears more critical than LPC as summarized in Table 5.6, where Δ represents the 

difference between S1 and S3. 

Table 5.6  Peak maximum and minimum principal stresses at KE and LPC in MPa 

Aluminum layer KE cross section LPC cross section 

Outer Layer 
S1 113.67 ∆ = 

365.74 

112.86 ∆ = 
257.76 S3 -252.07 -144.9 

Inner Layer 
S1 108.06 ∆ = 

283.89 

94.91 ∆ = 
166.35 S3 -175.83 -71.44 

 

 

 

 

 

 

 

 

 

 

Figure 5.24  Drake conductor Al. wires maximum principal stress (S1) at LPC 
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Figure 5.25  Drake conductor minimum principal stress (S3) at LPC 

 

 

 

 

 

 

 

 

 

Figure 5.26  Drake conductor Al. wires maximum principal stress (S1) at KE 
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Figure 5.27  Drake conductor Minimum Principal Stress (S3) at KE 

 

The conductor longitudinal (axial) stress Szz is resulting from the combination of normal 

stresses due to bending, tension, friction as well as the unbalanced internal torque.  From 

Figure 5.28, it is clearly demonstrated that the calculated Szz stress field can be well 

validated by experimental tests and field observations: The critical zone for conductor 

fretting fatigue is located in the suspension clamp mouth region between KE and LPC, 

and the fretting micro cracks mostly initiate from contacting surfaces under partial slip 

contact state (i.e. mixed regime), during which the axial stress plays an essential role. 

At both the KE and LPC cross sections, the peak axial stresses (max. and min.) occur on 

the outer layer, as shown in Figure 5.29.  The minimum axial stress does happen on the 

contact surfaces, demonstrating the significant effect of high interfacial friction (high 

tangential contact stress) and the resulting steep stress gradients.  Under the 25% RTS 

prescribed (constant) tension, the nominal average axial stress of the aluminum wires is 

about 59 MPa (Zhou et al., 1994, 1996), but with the occurrence of fretting, very high 

local stress concentrations are predicted (Table 5.7). 
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Table 5.7  Peak values of axial stress Szz at KE and LPC in MPa 

Aluminum layer KE cross section LPC cross section 

Outer Layer 
Max. 109.46 108.82 

Min. -173.53 -128.59 

Inner Layer 
Max. 101.08 92.08 

Min. -96.07 -70.2 

 

 

 

 

 

 

 

 

Figure 5.28  Szz of Drake conductor under bending fretting condition 

 

 

 

 

 

 

             Figure 5.29  Szz of Drake conductor aluminum wires at KE and LPC 

LPC  KE SCC 

 LPC  KE 

Max. 

 Max. 

 Min. 

 Min. 
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5.6  Conductor Fretting Fatigue Lifing 

Metal fatigue analysis (also called “lifing” in practice) has been studied extensively for 

over 150 years, during which a very large amount of literature has been accumulated. For 

example, the state of the art of metal fatigue up to early the 1970s was summarized by 

Frost et al. (2011); Broad historical reviews of this subject can be found in Schütz (1996) 

and Paris (1998), and can be also referred to the authoritative general survey by Suresh 

(1998). A recent 10-volume comprehensive compilation on structural integrity (Milne et 

al., 2003) provides a definitive reference for metal fatigue researchers. Therefore, only a 

brief overview of metallic lifing methods is presented in this section without great rigor 

and by no means meant to be complete. Instead, the author’s intention is to provide 

general background and help to justify the rationale of the method employed in the 

present study. After that, a practical multiaxial lifing scheme is proposed to estimate 

fretting fatigue life of overhead line conductors. 

 

5.6.1  Selective Overview of Metal Fatigue Lifing Methods 

Research on metal fatigue has been from both the metallurgical and mechanical 

perspectives. While metallurgical descriptions focus on fatigue mechanisms, mechanical 

descriptions draw much larger industrial interest in that they emphasize the mechanical 

response of the materials and structures under fatigue loading conditions and the 

prediction of their service lives to avoid catastrophic fatigue failures, which are more 

practical from an engineering point of view. 

Historically, the majority of the studies on metal fatigue analysis are experimental as it is 

largely a descriptive subject. Based on laboratory results, numerous empirical models 

have been developed to predict material and structure fatigue lives, although some of 

them are seriously misleading due to the lack of an appropriate applied mechanics and 

mathematics framework (Schütz, 1996; Pook, 2007).  In the past four decades, more and 

more fatigue analyses have been conducted effectively using numerical techniques 

(largely by FEM) with the increasing power of computers so that some metal fatigue 



 

 

155 

lifing approaches have become established engineering tools in many applications, 

especially for aerospace and automotive industries.  Over many years, various lifing 

methods have fallen into three primary groups: stress-based methods, strain-based 

methods, and fracture mechanics-based methods (they are essentially energy-based 

methods). Correspondingly, a large number of uniaxial and multiaxial metal fatigue 

criteria (models) have been developed in both the low- and high-cycle fatigue regimes. 

The stress-life methods are the most classical methods, which can be traced back to the 

pioneering work of August Wöhler on railway axle failures (in 1867). They are typically 

presented as S-N curves (also known as Wöhler curves). These are plots of alternating 

stress (Sa) versus number of load cycles (Nf) to failure, with appropriate curves fitted 

through the individual experimental data points. Nf is called fatigue life. Among the 

effects of many factors on metal fatigue, the effect of mean stress (Sm) has drawn 

especially great interest and was thus studied thoroughly. It is well understood nowadays 

that, in general, the fatigue strength expressed in terms of alternating stress would 

decrease as the tensile mean stress is increased. Many efforts have been made to establish 

the relationship between mean stress and alternating stress, such as the diagrams by 

Gerber (1874), Goodman (1899), Soderberg (1930), Morrow (1960), Heywood (1962), 

and so on.  In practice, the Goodman diagram is the most widely used relationship for 

fatigue strengths at given endurance limits in that it is a simplified, conservative and 

meanwhile reasonable approach and most experimental fatigue data of metallic materials 

lie just above the Goodman line.  Other influences, such as surface finish and treatments, 

temperature, environment, have also been investigated empirically and quantified as 

various modification factors applied to the baseline S-N curves (see for example, 

Bannantine et al., 1990; Stephens et al., 2001.) 

In general, stress-life methods are best suited for long life applications, i.e. high cycle 

fatigue (HCF) situations, and the stresses and strains need to be predominantly within 

elastic range. As these methods do not distinguish between fatigue crack initiation and 

crack propagation, but directly deal with “total life” (the life up to final failure), and are 

simple to use compared with the other two types of methods, they have become the most 

preferred approaches in engineering design.  The fundamental weakness of stress-life 
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methods is that they are basically empirical (The models are derived from the curve fits 

of particular tests.) and lack the physical insights into the mechanisms of fatigue and 

damage (Bannantine et al., 1990). 

Strain-life methods were first formulated by Coffin (1954) and Manson (1953) when they 

worked independently on thermal fatigue problems, and the Coffin-Manson (power law) 

relationship formed the basis for characterizing fatigue life based on plastic strain 

amplitude. Strain-life methods take into account the actual stress-strain response of the 

materials, and thus can model more accurately the plastic strains that lead to crack 

initiation. Nowadays, strain-life methods have gained definitive acceptance by ASTM 

(1996, 2002) and SAE (Rice, 1997) in low cycle fatigue (LCF) analysis and to deal with 

local fatigue for notched components, where local stress levels are high, causing 

appreciable plastic strains. However, they generally have no advantages over the stress-

life methods for HCF problems, and have no capability to predict crack propagation life. 

In addition, they often involve more complicated analyses, mainly due to the use of 

power law relationships in the strain-life calculations and the determination of the 

associated material fatigue property constants in the strain-life models being still very 

empirical.  While strain-life methods may be mainly appropriate to determine crack 

initiation life (or crack initiation-dominated total fatigue life) because crack growth is not 

explicitly accounted for in their models, linear elastic fracture mechanics (LEFM) 

methods can be employed to predict crack growth until eventual fracture. 

Starting from the groundwork of Irwin (1957) by introducing the stress intensity factor, 

which is now commonly accepted as the basis of LEFM lifing methods (see for example, 

Broek, 1982, 1988; Anderson, 2005; Gdoutos, 2005), LEFM has been well developed to 

estimate fatigue crack propagation life from a known or assumed initial crack size up to 

some specified length or final failure, typically using the famous Paris’ law (1961, 1963). 

It is worth noting that LEFM methods are currently the only means with the capability to 

deal directly with the propagation of fatigue cracks. However, due to the assumptions of 

LEFM, they often have difficulties to estimate the initial crack size in situations where 

there are no pre-existing crack flaws. It is now understood that in many cases the initial 

crack size might have a significant influence on total fatigue life.  As such, LEFM 
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methods used alone are best in crack propagation-dominated fatigue life situations, such 

as on the large structures in aerospace and nuclear industries. Therefore, LEFM methods 

sometimes need to be used in conjunction with strain-life methods to predict a total 

initiation-propagation life, by either simple sum of these two estimates or some combined 

approaches, for example the ones proposed by Dowling and Socie (2006), among others 

(Ellyin, 1996; Dowling, 2006). 

The majority of fatigue research, especially in the early years of metal fatigue study, has 

been carried out under uniaxial loading conditions. In contrast, almost all in-service 

engineering components are subjected to complex stress-strain states due to multiaxial 

loadings, particular geometries, as well as contact with adjacent components.  Many 

multiaxial fatigue criteria have been reported in the past decades. The reviews and 

comparisons of existing multiaxial fatigue models can be found elsewhere (see for 

example, Garud, 1981; McDowell and Ellis, 1993; You and Lee, 1996; Wang and Yao, 

2004; Sonsino and Zenner, 2004).  In general, the stress-based multiaxial fatigue criteria 

can be divided into three categories: (i) Equivalent stress or stress invariants approaches; 

(ii) Critical plane approaches;  (iii) Dang Van’s multiscale approach. 

The fundamental philosophy of the equivalent stress approaches, such as the “equivalent 

von Mises criterion” suggested by ASME (1979) and the stress invariants approach by 

Sines (1959), is to reduce the complex multiaxial stress states to an equivalent uniaxial 

stress state. Thus, they are essentially the extensions of static yield theories to fatigue 

conditions. The most significant advantages of these approaches are their simplicity and 

their correlation to uniaxial fatigue cases, for which a large amount of existing uniaxial 

fatigue data is available. Accordingly, the equivalent stress approaches often have a high 

level of acceptance in design practice. Of course, they lack insights into fatigue crack 

path and crack propagation rate as they just “average” the stresses with no regard to crack 

growth direction.  Pook (2007) states that these methods have good agreement with some 

experimental data on metallic materials in crack initiation-dominated fatigue situations. 

But some researchers have claimed that these criteria might cause non-conservative and 

unsatisfactory predictions (Miller, 1982; Brown, 1983), and they are often not applicable 

for non-proportional fatigue loadings (Suresh, 1998; Zenner, 2004). 



 

 

158 

The critical plane approaches were first postulated by Findley (1959) and then Brown and 

Miller (1973, 1985), and further developed with various variants for different materials 

and loading modes (see for example, Kussmaul et al., 1991; McDiarmid, 1994; Macha et 

al., 1999). These are the fatigue criteria based on cracking observations and the 

recognition that multiaxial fatigue damage is essentially a directional process: cracking 

usually takes place initially on a particular plane, i.e. “critical plane”, with certain critical 

combination of shear stress and normal stress acting on it. Obviously, the major 

advantage of the critical plane approaches is their ability of physical interpretation of the 

fatigue cracking behavior under multiaxial loadings. In light of this, active studies are 

still focusing on this direction (Liu and Mahadevan, 2005). The main drawback of these 

approaches is that the proposed models show a lack of a wide applicability as they are 

restricted to specific materials or loading conditions, and thus different models define 

different critical planes (Pook, 2007). 

Dang Van’s multiscale approach has gained popularity recent years for the HCF regime, 

and has been used successfully in predicting some fretting fatigue failures that occurred 

in aerospace and automotive industries (Petiot et al., 1995; Arrieta et al., 2003).  Dang 

Van initially formulated this approach in his PhD thesis in 1973 with later refinements 

with his co-workers to make it easier to use and provide better correlation (Dang Van et 

al., 1989~2003). These fatigue limit criteria are classified as multiscale methods because 

the material description at the mesoscopic scale (i.e. the scale of the metal grains of a 

metallic aggregate) is introduced in addition to the usual macroscopic scale of continuum 

mechanics. The methodology is based on the assumption that a structure will not have 

fatigue fracture if a stabilized “elastic shakedown” state is reached at both scales under 

HCF loading. Its detailed mechanical and mathematical formulations can be found in 

Dang Van (2003).  In practice, in order to implement these criteria on a structure, 

different steps and algorithms have to be performed with an iterative computational 

process, and thus require a reliable numerical fatigue analysis computing code (Ballard et 

al., 1995; Maitournam, 2003). 

In conclusion, to the author’s knowledge, in spite of the extensive research carried out in 

recent decades, it is so far not yet possible to make definitive statements on which 
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multiaxial fatigue criteria are the most appropriate in particular circumstances, let alone 

their general application. Thus, this subject is still a widely open and rapidly developing 

research area, with theories continuing to be developed, tested and modified. 

 

5.6.2  Fretting Fatigue Lifing Approach for Conductors 

Fretting fatigue of overhead line conductors in their service environment is among the 

most difficult fatigue phenomena to describe as it involves a large number of interactive 

factors with variable amplitudes and complex stress-strain states. In particular, the 

mechanics behavior at the edge of the clamp mouth contact region is highly multiaxial 

with steep stress gradients, as presented in Section 5.5.  Our goal herein is to develop a 

lifing methodology that is able to capture the key features of conductor fretting fatigue, 

but yet is simple enough to be incorporated in a practical design. 

Before presenting the detailed approach, it should be noted that an important simplified 

treatment for lifing is made in the present study: Like other types of metal fatigue, 

fretting fatigue damage may also accumulate under variable amplitude fatigue loads, 

leading to the so-called cumulative fatigue damage (Frost et al., 2011), and many efforts 

have been made to tackle this problem, such as the simplest and most widely used linear 

damage Miner’s rule (1945), nonlinear damage theories (Collins, 1981), and the 

associated loading cycle identification (cycle counting) techniques based on highly-

controlled tests, statistics and random process theory (Stephens et al., 2001; Schijve, 

2009).  As a preliminary study under the scope of this thesis, a fretting fatigue life model 

for the Drake conductor is proposed based on constant-amplitude fatigue loads. 

As stated above, there is presently no existing lifing criterion that is universally accepted. 

Each technique has its own strengths and limitations and thus a selection needs to be 

tailored to particular applications. Actually, the uses of all three types of multiaxial lifing 

methods in different fretting fatigue cases were reported in the literature (Farris et al., 

2003; Nicholas, 2006).  In this section, a practical scheme is proposed in an attempt to 

bridge the technology gap between academia and industry practice to reasonably estimate 
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fretting fatigue life of overhead line conductors, and to be cost-effective to implement 

within a conductor design cycle.  Of course, for a FEA-based conductor fretting fatigue 

lifing, a reliable computational modeling for accurate evaluation of the local stress-strain 

states is the key requirement and may be a major technical challenge, which has been 

overcome in the preceding sections. The following discussions present the author’s 

approach in the selection of an appropriate fatigue lifing criterion. 

In view of the nature of  fretting fatigue mainly associated with HCF, and the fact that the 

fretting fatigue mechanism of conductors is not fully understood yet, and the effects and 

contributions of fretting crack behavior (crack nucleation and crack growth) on total 

fatigue life still generate considerable controversy (Nicholas, 2006), a stress-based 

method is thus preferred.   Another practical consideration for this selection is also due to 

many years of experience in the industry with stress-life methods, thus leading to much 

higher degree of confidence, while those sophisticated approaches may very possibly 

decrease the level of acceptance to keep them from design practice. 

Encouraged by the success in predicting fretting crack nucleation for titanium alloys 

using an “equivalent stress” method developed for General Electric Aircraft Engines 

(Anton, 1999), the same type of multiaxial lifing approach is employed here for the 

Drake conductor, but the fatigue criterion equations are taken from Stephens et al. (2001).  

A significant advantage of this approach is that the conductor fretting fatigue life can be 

predicted only with knowledge of the contact stress states, and the calculations are 

independent of the coordinate system and with straightforward formulations. No further 

information is required, which vastly simplifies the procedures and thus benefit the 

design community to apply it as an efficient tool for a fatigue life prediction. 

After the determination of a selective criterion, the most expeditious means of 

accomplishing this goal of lifing relies on how to employ the stress results from FE 

analysis to implement the fatigue model effectively to calculate the most damaging stress 

state at the contact regions and relate it to available uniaxial testing data.   An analysis 

strategy is proposed by the author and the detailed scheme is outlined below. 
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Firstly, we need to determine which stress variables are supposed to be included in the 

fatigue calculations. Although the precise nature of the most damaging stress is still 

under debate in fretting community, “alternating stress” (also called “stress amplitude”, 

Sa= (Smax - Smin)/2) remains the decisive quantity for fatigue failure in a general fatigue 

case, and the fatigue crack typically propagates normal to the maximum principal stress 

(Schütz, 1996). Consequently, principal stresses have been used widely in many 

multiaxial fatigue cases, for example, the aircraft fatigue lifing practiced in Boeing 

(Farahmand, 2001). Moreover, some empirical efforts at United Technologies have 

shown that the principal stresses can be reasonably assumed as the most damaging 

stresses to drive fretting damage (Anton, 1999).  Accordingly, principal stresses are also 

chosen in the present work for conductor lifing calculations. 

Secondly, the detailed formulations employed in the Drake conductor lifing are 

summarized herein.  An equivalent von Mises alternating stress, Sqa, can be defined as: 

Sqa = 
2

1a3a
2

3a2a
2

2a1a )S(S)S(S)S(S
2

1
                            (5.1) 

where S1a, S2a, and S3a are alternating principal stresses, i.e. 

         S1a = (S1,max – S1,min)/2;  S2a = (S2,max – S2,min)/2;  S3a = (S3,max – S3,min)/2          (5.2) 

An equivalent mean stress, Sqm, can be given by the sum of the mean principal stresses: 

Sqm = S1m + S2m + S3m                                                                         (5.3) 

where S1m,  S2m, and S3m, are mean principal stresses, i.e. 

  S1m = (S1,max + S1,min)/2;  S2m = (S2,max + S2,min)/2;  S3m = (S3,max + S3,min)/2       (5.4) 

Once the equivalent alternating stress (Sqa) and mean stress (Sqm) are obtained, the 

multiaxial stress state is “reduced” to an equivalent uniaxial stress state, and thus uniaxial 

S-N equations can be used for the fatigue calculations. The popular finite life “modified 

Goodman” equation (Stephens et al., 2001) was chosen to estimate the fatigue strength: 

1
S

S

S

S

u

qm

Nf

qa
                                                                   (5.5) 

where Su is ultimate tensile strength  (UTS) of the material;  SNf is the endurance limit. 
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In addition, after obtaining the alternating stress (Sqa), the so-called Cigré Safe Border 

Line (SBL) method (Cigré, 1979~1995) for multilayer ACSR conductors can be used to 

estimate the fatigue life (Nf) by the approximate equations:  

-0.20
fqa N*450S      for N ≤ 1.56 * 10

7
 cycles                                 (5.6) 

  
-0.17

fqa N*263S        for N > 1.56 * 10
7
 cycles                                (5.7) 

The empirical Cigré SBL equations are derived from S-N curves obtained by a number of 

experimental data sets with multilayer ACSR conductors mounted on various types of 

clamps, and thus they are usually regarded as the conservative lower limit for a conductor 

fatigue life (Azevedo et al., 2009). 

Last, but not the least, it is necessary to interpret the approach used to extract stress 

results from the FE analyses.  Generally, in academic/research laboratory environment, 

material fatigue data are obtained using standard specimens under either uniaxial or 

multiaxial load conditions.  In industry practice, fatigue analyses are applied to various 

real structures, but engineers mostly tend to use uniaxial testing data and criteria to 

determine individual component fatigue life due to the simplicity in calculations. That is, 

local stresses or strains in the critical locations of the component are used in its life 

estimate by correlating with uniaxial specimen life.   As known already, multiaxial lifing 

is conducted in the present work. Furthermore, in light of the fact that an electrical 

conductor is essentially a multi-component assembly with all aluminum wires having the 

same material properties (in conductor fretting fatigue analyses, we only focus on 

aluminum wires and thus there is no necessity to consider the steel core.), the proposed 

lifing methodology is thus developed at an integrated assembly level to estimate the 

fatigue life of the conductor aluminum wires as an overall structure, instead of individual 

wires or layers.  Without an attempt for great rigor, Table 5.8 presents the distinctions of 

the methodologies employed in academia, industry and current work.  In addition, since 

the aluminum wires exhibit their highest peak stresses and steepest stress gradient at KE, 

only the results on this cross section are used in fatigue analysis. That is, the peak values 

(maximum and minimum) of the three principal stresses calculated during one entire 

fretting cycle on both the outer and inner layers at KE are extracted, as summarized in 

Table 5.9 (for Yb =1.3mm). 
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                       Table 5.8  Stress-based lifing methodologies in HCF regime 

 Object Fatigue model 

Traditional  specimen uniaxial fatigue criteria 

Academic (modern)  specimen multiaxial fatigue criteria 

Industry practice 
 

component uniaxial fatigue criteria 

Current work 
 

assembly multiaxial fatigue criteria 

 

     Table 5.9  Peak values of principal stresses at KE during entire fretting cycle (Yb =1.3mm) 

Principal stresses 
Peak values 

(MPa) 
Location Time 

Maximum Principal  (S1) 
Max. 113.67 Outer layer t = 3s 

Min. -120.57 Outer layer t = 1s 

Intermediate Principal (S2) 
Max. 38.82 Outer layer t = 3s 

Min. -173.16 Outer layer t = 1s 

Minimum Principal  (S3) 
Max. 1.63 Inner layer t = 1s 

Min. -252.07 Outer layer t = 1s 

 

Using formulas (5.1) ~ (5.5), the calculated alternating stress, Sqa = 18.08 MPa, and the 

fatigue strength, SNf = 8.81 MPa are obtained.  These values are in agreement with the 

minimum value from Drake ACSR fretting fatigue test at the first wire break, Sa ≈ 19 

MPa (EPRI, 2006) and the suggested value of endurance limit, 8.5 MPa, for multilayer 

ACSR conductors (EPRI, 2006).   Additionally, it has been identified by FE analysis that 

the prime critical zone, where dominant fretting cracks are most likely to initiate, is 

located at KE, and the wire breakage locations are mainly at the “Upper Half-Section” of 

the conductor, between the outer and inner layers. The next critical zone is in the wires of 

the outer layer in the vicinity of the LPC. These numerical findings are also consistent 
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with the ones observed from the tests (Zhou et al., 1994).  Certainly, it needs to be 

mentioned that, in reality, the particular location of a conductor wire failure associated 

with fretting fatigue depends also on many other factors, such as fretting amplitude. 

In conclusion, fretting fatigue of overhead line conductors is primarily a HCF problem 

with complex multiaxial stress state in the suspension clamp mouth contact region. A 

FEA-based and design-oriented multiaxial fretting fatigue lifing scheme is developed 

successfully in this section.  Not only is it efficient (easy to implement) to be suited to the 

conductor design environment, but also it predicts conductor fretting fatigue life at an 

integrated assembly level, which is of higher practical value for conductor fatigue design. 

 

5.7  Parametric Study on Fretting Amplitude 

As indicated in Chapter 2, various parameters may play important roles in the fretting 

fatigue performance of a transmission line conductor. In this thesis, only the effects of 

fretting amplitude, one of the primary factors, will be examined numerically.  By means 

of experimental “fretting charts” and the “fretting map” theory, the effects of bending 

fretting amplitude on conductor fretting were investigated in-depth (Zhou et al., 1994, 

1996).  Using the simulation approach to address this topic will be obviously an essential 

supplement. 

A parametric study is conducted by selecting several imposed bending fretting 

amplitudes, ranging from 0.43 to 1.3 mm based on available testing data in the open 

literature, while all other aspects in the Drake fatigue FE model are kept the same. Some 

computational results and conclusions are summarized as below. (The detailed results 

from Yb=1.3mm have been discussed in the previous two sections.) 
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Drake conductor fretting contact behavior and its fretting fatigue strength are very 

sensitive to the imposed fretting amplitudes: 

(1) It has been found that contact kinematics states in the clamp mouth fretting region 

vary with the increase of fretting amplitudes, and agree well with experimental 

observations. 

(i) The size of the critical fretting fatigue zone is affected strongly by fretting 

amplitudes. As stated before, a fretting zone may be revealed via the longitudinal 

stress field (Szz) on contacting surfaces. Figures 5.30~5.32 exhibit distinctly the 

impact of Yb on the size of the conductor fretting zone. When Yb increases, the 

conductor fretting fatigue zone enlarges significantly. 

(ii) Fretting contact states on the inner layer of aluminum wires can be changed 

drastically by a slight variation in fretting amplitude. At low amplitude, the inner 

aluminum layer and steel core behave much like one composite solid with 

unperceivable relative slips. With the increase of Yb, the partial slip contact regime 

expands gradually on the inner layer with increasing relative slips, and the stick 

regime reduces correspondingly, as shown in Figures 5.33~5.35. 

(iii) An increase in fretting amplitude may also affect the fretting marks among wire 

contact surfaces. The size and number of fretting marks on the inner layer are larger 

at higher bending amplitude (Figures 5.36~5.38), while the differences on the outer 

layer are negligible. 

(iv) For the contact states between the outer layer of wires and the suspension clamp 

body, the effects of fretting amplitude are not significant. This can be attributed 

mainly to the large clamping force acting directly on the mating surfaces. 

(2) The conductor fretting fatigue strength decreases with the increase of fretting 

amplitudes. The lifing results under different Yb using the approach in the preceding 

section are presented in Table 5.10 and Figure 5.39. 
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                                                                                     Figure 5.30  Szz of  

  Drake conductor 

(Yb = 0.43mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                         Figure 5.31  Szz of  

  Drake conductor 

(Yb = 0.9mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                         Figure 5.32  Szz of  

  Drake conductor 

(Yb = 1.3mm) 
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                                                                                         Figure 5.33  Fretting 

                                                                                                      contact state on inner 

layer (Yb=0.43 mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                         Figure 5.34  Fretting 

                                                                                                      contact state on inner 

layer (Yb=0.9 mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                         Figure 5.35  Fretting 

                                                                                                      contact state on inner 

layer (Yb=1.3 mm) 
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                                                                                         Figure 5.36  Fretting 

                                                                                                      marks on inner layer 

(Yb = 0.43 mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                         Figure 5.37  Fretting 

                                                                                                      marks on inner layer 

(Yb = 0.9 mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                         Figure 5.38  Fretting 

                                                                                                      marks on inner layer 

(Yb= 1.3 mm) 
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            Table 5.10  Drake conductor fretting fatigue strength under different Yb 

Fretting amplitude 

(Yb, mm) 

Alternating stress   

(Sqa, MPa ) 

Endurance limit 

(SNf, MPa) 

0.43 32.25 16.58 

0.6 28.22 14.13 

0.8 23.73 11.69 

0.9 20.38 9.92 

1.3 18.08 8.81 

 

 

 

 

 

 

            Figure 5.39   Drake conductor fretting fatigue strength under different Yb 

 

5.8  Summary Remarks 

Continuing the journey of detailed conductor stress analysis, this long chapter has 

focused on the computational modeling of contact damage of electrical conductors under 

fretting fatigue conditions. The “Drake” ACSR fatigue FE model has much larger 

computational size (274,478 contact elements and multi-stepped loadings), higher 

nonlinearities and uncertainties than its strength model, bringing about many realistic 

challenges to overcome.  This study provides an accurate and clearer insight of the 
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contact states and the associated stress states among the conductor wires in the 

conductor-clamp system under the bending fretting fatigue conditions.  Based on high 

accuracy of the stress analysis, a practical multi-axial fretting fatigue lifing scheme is 

suggested.  The numerical fatigue results, including the calculated endurance limit and 

the findings about the critical locations for conductor wire failure, are in excellent 

agreement with experimental measurements and field observations in the open literature. 

These validations demonstrate again that the transmission line conductor FE modeling 

and lifing methodologies developed in this thesis are accurate, successful and 

dependable. 
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Chapter 6 

Conclusions 

 

6.1  Summary of Research Findings 

The main goal of this thesis was to study the complex stress states and relevant 

influencing factors of stranded electrical conductors, using finite element analysis 

approaches, in order to accurately capture the detailed mechanical response of conductors 

under design and fretting fatigue conditions.  All these objectives have been achieved.  

The main research activities and their conclusions are summarized as below: 

 The first effort in this research was to largely improve a coarse stress analysis model 

for optical ground wires (OPGW) that are typically used in overhead high-voltage 

transmission lines. With the aim to predict the cable mechanical response with 

satisfactory accuracy, least computational cost, and a reliable solution process, a 

detailed and refined 3-D FE stress analysis model was constructed, which included all 

the essential nonlinear characteristics of the problem. The stress analysis procedures 

were presented in detail, and the quality of the mathematical model and the involved 

numerical solution techniques were studied thoroughly. Specifically, element 

performance, mesh design, contact condition establishment, boundary conditions and 

load treatments were examined carefully. The key numerical solution techniques, 

including computational contact algorithms, solution schemes for nonlinear algebraic 

equations and for large linear algebraic systems, were assessed empirically (with 

numerical experiments) to develop a robust solution methodology. The numerical 

results of the OPGW case study show agreement with the analytical solutions and 

significantly improve on a previous coarse model, demonstrating the high quality of 

the refined FE model.  By means of this study, a new-generation, high-fidelity FE 

modeling methodology was developed for reliable and accurate computational stress 
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analysis of stranded transmission line conductors. This analysis methodology can also 

be generalized to other complex stranded cable structures and wire ropes used widely 

in civil works and mechanical applications. 

 A 795 kcmil Drake (28.13-mm outer diameter) ACSR overhead conductor was 

selected as a benchmark conductor to investigate the tensile strength and stress states 

of a complete conductor under extreme design conditions. A large-size 3-D elastic-

plastic, large kinematics, multi-body frictional contact FE model of this conductor was 

constructed. Good solution accuracy was obtained with stable convergence. This study 

demonstrated again the capability and significance of using refined FE modeling to 

achieve a clear understanding of the highly nonlinear mechanics behavior of 

transmission line conductor cables, as well as the validity of the modeling approach 

developed in this thesis. 

 It was found that, under design conditions, the longitudinal stresses in the Drake 

conductor wires are contributed from the combined tensile stresses and tangential 

contact stresses, while the effects of tangential contact stresses induced by friction 

may be significant. A sensitivity study was thus conducted to examine the effects of 

the magnitude of the frictional coefficient among conductor wires on the mechanical 

response of helically stranded electrical conductors under axial loading. It was shown 

that the effects of the frictional coefficient (s) on the conductor axial stresses are 

evident under low friction. But, the stress variations with different frictional 

coefficients are negligible when s increases to above 0.57. This conclusion implies 

that the frictional coefficients will become insensitive to the stress states as long as the 

conductor wire surfaces are kept in dry and clean operational conditions. However, 

after years of service, the aging conductors may not be so clean in polluted areas, and 

the effects of the magnitude of the frictional coefficient may be perceptible. 

 The author is using a computational applied mechanics perspective to investigate 

fretting fatigue of transmission line stranded conductors. A large 3-D FE stress 

analysis model with comprehensive nonlinearities was developed and implemented to 

simulate the actual fretting fatigue test of an ACSR conductor-clamp system. The 
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model comprised all structural components of the conductor-clamp system - adding up 

to 323,731 nodes, 309,805 solid finite elements and 274,478 contact elements. A 

hierarchical modeling approach was applied during modeling and analysis to 

overcome the many challenges encountered to effectively solve such a highly 

nonlinear and computationally demanding problem. This study provides accurate and 

clear insight into the contact states and the associated stress states among the helically 

stranded conductor wires in the conductor-clamp system under bending fretting 

fatigue amplitudes (such fretting is typically resulting from aeolian vibrations). The 

numerical results clearly demonstrate that the critical zone for conductor fretting 

fatigue failure is located in the suspension clamp mouth region between the keeper 

edge (KE) and the last point of contact (LPC), and the fretting micro cracks mostly 

initiate from contacting surfaces under partial slip contact state (i.e. mixed regimes), 

during which the axial stress plays an essential role.   The agreement between the 

predictions of the numerical models and the experimental data is considered to be 

highly satisfactory. 

 A practical (design-oriented) multi-axial fatigue lifing methodology was developed to 

estimate the local fretting fatigue strength of overhead stranded electrical conductors. 

The proposed lifing scheme recognized the complexity of conductor fretting fatigue 

but used realistic simplifications to incorporate its essence without overburdening 

designers to have to perform complex fatigue analysis. Thus, it may have the practical 

value to guide a more reliable and cost-effective OHL conductor design. 

 A parametric study was performed to examine the influence of fretting amplitudes on 

the mechanical response of conductor-clamp system. As expected, it has been found 

that contact kinematics states in the clamp mouth fretting region vary with the increase 

of fretting amplitudes, and the conductor fretting fatigue strength reduces with the 

increase of fretting amplitudes. 

 Based on the refined stress and fatigue analyses, a practical simplified procedure was 

proposed for design practice: A fretting fatigue knock-down factor (KDF) is necessary 

to be taken into account when a transmission line conductor is designed. Waterhouse 
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(1972) once pointed out that the “Strength Reduction Factor” due to fretting for 

aluminum alloys may be between 1.59~2.79. Later, Cowles (1996) and Hoeppner et 

al. (2000) claimed that the HCF strength reduction for fretting fatigue should be 

around 30%~50%. This computational research verifies that the stresses may be 

reduced by about half in the ACSR conductor critical regions susceptible to fretting 

fatigue. That is, KDF=0.5 is thus suggested for a transmission line aluminum 

conductor design in order to ensure that the component will not fail prematurely due to 

fretting fatigue. In other words, the strength allowable of the aluminum wires used for 

electrical conductor design should be set as 50% of the aluminum alloy material 

strength limit. 

 Finally, it should be noted that, although experiments were not conducted as part of 

this this research, the validations of all the computational models and related 

numerical observations in this thesis had been achieved by comparing with 

experimental data provided by several manufacturers and some from the open 

literature. 

 

6.2  Recommendations for Future Research 

Although the mechanical behavior of stranded conductors is very complex and fretting 

fatigue is not a problem that can be eliminated completely from any mechanical and 

structural systems, numerical modeling approaches targeted to better understand the 

progressive damage mechanisms associated with partial slip contact states, as the work 

done in this thesis, are much beneficial to gain insights into managing and minimizing the 

effects of fretting fatigue on the degradation of product durability. Of course, such a 

research effort may have significant implications for conductor design improvements and 

manufacturing processes. Therefore, the author is strongly convinced that this is a very 

promising direction that is worthy of continued exploration. Some recommendations for 

future research from the computational modeling perspective are listed as below: 
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(1) The assumptions and simplifications in Chapter 5 for the fretting fatigue modeling 

already imply some improvement for the future work. In particular, the variation of 

frictional coefficients is significant with fretting cycles and is affected by many 

factors, and thus it needs to be included in future models provided that reliable 

experimental data are available.  Fretting debris is also to be taken into account in the 

future macroscopic level modeling as the effects of the debris on contact stresses and 

fretting cracking behavior are actually not negligible. 

(2) It is well known that the suspension clamping force is one of the two leading factors 

that have great influences on the conductor fretting contact states and fretting 

cracking behaviors. Thus, a parametric study to quantify its effects will be very 

meaningful. 

(3) The impact and variations of various fretting damage parameters in the conductor 

fretting fatigue mechanisms are to be studied extensively. That is, developing 

quantifiable relationships between the fretting contact parameters and fretting fatigue 

crack behavior is expected. To this end, accurate highly-localized numerical models 

of the fretting contact surfaces are to be established and validated by a series of well-

characterized experiments. Accounting for variability in the physics-based FE models 

faces tremendous challenges that have not been fully dealt with to date. This is a very 

open area of substantial scientific endeavor for future research. 

(4) In-depth numerical study of the propagation of fretting cracks is to be carried out. For 

example, the development of a reliable 3-D fretting crack growth law to predict the 

cracking behavior has great significance. Many fretting fatigue crack analyses have 

been conducted on aerospace materials, such as Ti-6Al-4V, based on fracture 

mechanics methodology. For OHL conductors, Ouaki et al. (2003) initiated such an 

effort with simplified 2-D crack hypothesis. The relevant research is far from mature, 

and further study is certainly to be encouraged. 

(5) Applying continuum damage mechanics with finite element methods to fretting 

damage may break new ground in terms of research methodology in this subject. 

Fracture mechanics is based on the analysis of existing cracks. But for fretting, 
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studying the evolution of internal damage/subsurface damage (before macro-cracks 

become evident) might be more important. Because once macro-cracks occur, it 

might be too late to stop a final rupture. Damage mechanics has the focus on such a 

“precursory state” of cracks, and it has matured to such a status for real applications.  

(6) Further development of improved fretting fatigue lifing methods for various 

conductor types is of course another long term goal that needs to be pursued. 

(7) Room temperature fretting fatigue of conductors is investigated in this thesis, while 

the author has realized that the fretting fatigue strength and fatigue life at high 

temperature may reduce significantly comparing with the ones under ambient 

temperature conditions. Actually, this issue, as well as the related topic of a 

composite conductor response to high temperature loads, is an increasingly arisen 

concern in the transmission line industry and research community. The strong 

thermal-mechanical coupling and highly nonlinear material creep behavior will 

increase drastically the difficulties for faithful numerical simulations, and thus must 

bring about greater challenges for any such a future research. 
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