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ABSTRACT

Understanding the structure of the flow in shallow embayments is crucial for

quantifying mass transfer (nutrients, sediments or pollution) between the main flow

and groyne fields in rivers. Most previous research has focused on two-dimensional

flow structures in embayments. Also, the rigid-lid assumption was often employed

neglecting the effects of surface gravity waves that can occur in the embayment

as a result of resonant coupling between the natural frequency of the embayment

and the flow. In the present work a fully three-dimensional flow field and grav-

ity waves are investigated in a laboratory setting using three-dimensional particle

tracking velocimetry (3D-PTV). Three cameras were mounted above an open chan-

nel (40 cm wide) with a square embayment on its side (24x24 cm). Trajectories

of neutrally-buoyant particles (0.23 mm in diameter) used as flow tracers were si-

multaneously recorded with the cameras at a rate of 600 frames per second. Fully

three-dimensional instantaneous and time-averaged velocity and vorticity fields were

calculated from the particle tracks and surface oscillations caused by gravity waves

were approximated from the highest particle positions. 3D-PTV was performed for

the first time through the water’s free surface. Two methods were developed to as-

sess different components of the velocity error showing that accurate measurements

through a free water surface are possible when the average displacement of particles

per frame is much smaller than the wavelength of surface oscillations. The results

of the 3D-PTV measurements show a regular quasi-two-dimensional recirculating

gyre in the embayment. However, the exchange process between the embayment and

the channel flow is fully three-dimensional. It exhibits a -5/3 slope of the frequency

spectrum of velocity fluctuations and the exchange shows significant variation with

elevation above the bed. The flow enters the embayment along the bed closer to

the downstream end and leaves through the top 20% of the water depth all along
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the interface. A secondary circulation within the embayment gyre appears in the

time-averaged flow. It consists of a radial inflow along the bed towards the gyre

core, upwelling at the embayment centre and spiralling outwards closer to the sur-

face. The radial inflow is associated with the deceleration of the gyre by bottom

friction and thus has a vertical extension corresponding to the bottom boundary-

layer thickness. Görtler-like streamwise vortices were found in the boundary layer

that curves along the three side walls of the embayment. Depending on the free-

stream velocity, either one spiral structure or a pair of counter-rotating vortices on

top of each other were present. All of these three-dimensional structures can have

a significant effect on the exchange process, which therefore cannot be described by

two-dimensional models. However, parameterizations based on stability arguments

may be used in future to account for their feedback on the two-dimensional flow.

Comparing cases with different intensities of gravity waves confirmed they increase

the exchange between the embayment and the main channel, possibly due to the

induced shear-layer undulation. However, they do not affect the overall pattern of

three-dimensional structure described above. It is shown that gravity waves are

resonantly amplified at certain free-stream velocities due to resonant coupling with

the most energetic frequency of the main gyre within the embayment, contrary to

previous studies. It is hoped that understanding the resonant state of the gravity

waves may facilitate prediction of the increase in the exchange rate.
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RÉSUMÉ

Comprendre la structure du flux dans une baie peu profonde est primordial

pour quantifier le transfert de masse (nutriments, sédiments ou polluants) entre le

courant principal et les épis de rivières. La plupart des études précédentes sup-

posent un flux quasi-bidimensionnel dans les baies. Comme les ondulations de

surface étaient négligées, les ondes de gravité de surface, qui peuvent être générée

par un couplage résonant entre la baie et le courant principal, n’étaient pas prises

en compte. Dans le cadre de ce travail, nous avons étudié un champ d’écoulement

tridimensionnel en laboratoire, grâce à une méthode de vélocimétrie par suivi de

particules tridimensionnelle (3D-PTV). Trois caméras ont été installées au-dessus

d’un canal à surface libre (40 cm de largeur) avec une baie carrée sur l’un de ses

côtés (24 cm par 24 cm). Les trajectoires de particules à flottabilité neutre (0.23 mm

en diamètre), utilisées comme traceurs de l’écoulement, ont été enregistrées simul-

tanément par les caméras à une fréquence de 600 images par seconde. Les champs

tridimensionnels de vitesse et de vorticité, instantanés et moyennés dans le temps,

ont été calculés à partir des trajectoires des particules. Les oscillations de surface

dues aux ondes de gravité ont été approximées à partir des positions des particules

les plus hautes. De plus, la méthode 3D-PTV est utilisée pour la première fois à

travers la surface libre de l’eau. Deux méthodes ont été développées pour évaluer

les composantes différentes de l’erreur de vélocité qui montrent que des mesures

précises sont possibles à travers la surface libre de l’eau quand le déplacement

moyen des particules par image est beaucoup plus petit que la longueur d’onde des

oscillations de surface. Les résultats des mesures 3D-PTV montrent un tourbillon

quasi-bidimensionnel stationnaire dans la baie. Néanmoins, les mesures montrent

aussi que le processus d’échange entre la baie et l’écoulement dans le canal est to-

talement tridimensionnel. Il présente un spectre de fréquences avec une pente de
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-5/3 et varie significativement avec la profondeur du canal. L’écoulement entre dans

la baie le long du lit du canal, du côté aval, et ressort dans les 20% supérieurs de

la hauteur d’eau sur toute l’interface. Un courant secondaire apparâıt au sein du

tourbillon dans la baie lorsque le flux est moyenné temporellement. Il consiste en un

flux radial qui entre le long du lit vers le centre du tourbillon, monte au centre de la

baie et ressort en spirale en surface. Le flux radial entrant s’associe à la décélération

du tourbillon par friction de fond et connâıt donc une extension verticale correspon-

dant à l’épaisseur de la couche-limite inférieure. Des vortex de Görtler parallèles au

courant se trouvent dans la couche-limite qui longe les trois côtés de la baie. Selon

la vitesse du courant principal, se développe soit une structure en spirale soit une

paire de vortex superposés tournant dans des sens opposés. Toutes ces structures

tridimensionnelles influencent significativement le processus d’échange, qui ne peut

donc pas être décrit par des modles bidimensionnels. Cependant, des paramétrages

basés sur des arguments de stabilité pourront être utilisés pour modéliser leurs ef-

fets sur le courant bidimensionnel. La comparaison de cas avec des ondes gravité

d’intensités différentes a confirmé que les structures tridimensionnelles accroissent

notablement le taux d’échange entre la baie et l’écoulement principal, probablement

en raison de l’ondulation induite de la couche de cisaillement. Cependant elles ne

modifient pas la structure générale tridimensionnelle décrite précédemment. Nous

montrons que les ondes de gravité sont amplifiées par résonance pour certaines

vitesses du courant principal en raison d’un couplage résonant avec la fréquence de

plus haute énergie du tourbillon principal dans la baie, contrairement à ce qui a

été montré dans les études précédentes. Comprendre l’état résonant des ondes de

gravité permettra de prévoir l’augmentation du taux d’échange.
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CHAPTER 1
Introduction

1.1 Motivation

The transport of pollution and sediment by channel flows is one of the primary

problems of river engineering. Irregularity of the banks, bays, harbours, groynes

(man-made structures built to protect banks from erosion and improve navigation,

Figure 1.1a) can change considerably the spreading rates and the spatial distribu-

tion of solutes and sediments in river flows (Valentine & Wood, 1977; Booij, 1989;

Uijttewaal et al., 2001). These slow-moving regions or “dead zones” at the banks of

a channel are often generalized as embayments or cavities regardless of their origin

(Figure 1.1b). Contaminated matter can settle and accumulate there, but can also

be flushed out at a high stage (an event where the water level is high). Changes

in the main-channel flow velocities can reverse the process from sedimentation to

scouring inside the cavity. To predict this highly sensitive and variable behaviour,

it is necessary to understand the exact mechanism by which the main current is in-

teracting with the cavity and how the flow structures inside the embayment depend

on changes in the main channel.

Figure 1.1: a) Groynes in the Waal river, Rhine basin, Netherlands (Courtesy:
Mohamed F.M. Yossef). b) Schematic of a generalized embayment.
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Traditionally, embayment flows have been treated as two-dimensional prob-

lems, where all the characteristics are averaged over the flow depth (Babarutsi &

Ganoulis, 1989; Altai & Chu, 1997; Kimura & Hosoda, 1997). This approxima-

tion is not without basis, as river flows are usually shallow; that is, the flow depth

is much smaller than the width of the river and the mixing process therefore oc-

curs much faster in the vertical direction than in the horizontal plane. Thus, the

time taken for vertical mixing in many cases can be neglected, and the flow can

be treated as two-dimensional. At the same time, because the flow is shallow, one

expects large velocity gradients in the vertical direction, and therefore potential for

three-dimensionality.

The first evidence of the failure of the 2D approximation in a shallow embay-

ment was presented by Uijttewaal et al. (2001). Two experimental techniques, one

using surface velocities and the other depth-averaged characteristics, produced sig-

nificantly different results. Also, considerable differences were found between the

results of 2D Large Eddy Simulations (LES) and 3D LES of the shallow embayment

(Hinterberger et al., 2007). However, the exact reasons for these discrepancies are

still not completely understood. In this work it is hypothesised that there may be

two reasons for the poor performance of 2D models. One is the underestimation of

the effect of 3D flow structures on the 2D velocity field. Indeed, some evidence of

three-dimensionality was presented by Mizumura et al. (2003) and Constantinescu

et al. (2009), who observed the flow to penetrate embayments along the bottom

and to be ejected through the upper part of the interface. Gaskin et al. (2002)

also presented evidence of a 3D secondary circulation within the embayment flow.

The second possible reason for inaccuracy of these models is the common use of

the rigid-lid approximation (Constantinescu et al., 2009; Hinterberger et al., 2007)

which implies a flat water surface, neglecting the effects of surface gravity waves

on mixing and exchange. Indeed, it was previously shown qualitatively by Tuna

et al. (2013) that the exchange can be intensified by gravity waves in a shallow
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embayment. Also, the two reasons for poor performance of the commonly-used 2D

models, three-dimensionalization and gravity waves, may be directly related to each

other.

It is thus clear that a thorough and systematic study of the full flow structure

and surface gravity waves in an embayment is required to further confirm or refute

the validity of using 2D models to simulate the effect of “dead zones” on disper-

sion of pollutants and sediment transport in river flow. Also, it is possible that

parametrization of the feedback of 3D structures and gravity waves on the 2D flow

field can be implemented in the future. In order to do so, again, an understanding

of their underlying mechanisms is necessary.

1.2 Objectives

This work is an experimental investigation into the flow structure of a shallow

embayment. The main objective is to find the reasons for the failure of current 2D

models to simulate the exchange process between an embayment and the channel

flow. First, it is intended to verify the existence of three-dimensional flow structures,

determine their form, intensity, and ultimately, conditions for their appearance.

Second, the effect of the surface gravity waves on the exchange process will be

investigated along with the conditions where their amplitudes become large.

The flow of a river past a shallow embayment will be physically modelled in a

laboratory channel. Fully three-dimensional measurements are desired to capture

the flow structures. This will be achieved by the use of three-dimensional particle

tracking velocimetry (3D-PTV). Small neutrally buoyant particles are used as flow

tracers. Their positions are simultaneously tracked in space and time using three

cameras. Based on the 3D Lagrangian trajectories of the particles, the 3D velocity

and vorticity fields are calculated and analysed. This technique allows capturing

both time-averaged flow statistics and instantaneous turbulent characteristics of the

flow.
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Due to technical limitations 3D-PTV measurements are taken through the free

surface of the flow. It therefore became a second goal of this research to investigate

the refraction errors associated with the changing angle and position of the unsteady

interface. Analysis of the steady and unsteady components of the errors, their

differences in vertical and horizontal directions, and their spatial distribution will

be performed.

Three flow conditions were chosen to get a qualitative assessment of the de-

pendence of the turbulent structures on the free-stream velocity and on the gravity

waves. The flow discharge is varied while keeping the flow depth and channel

geometry constant. The lowest free-stream velocity has negligible gravity-wave am-

plitudes. The highest one exhibits significant surface oscillations in the transverse

direction. This will allow us to study both the 3D flow structures, including their

dependence on the free-stream velocity, and the gravity waves.

1.3 Organization of the thesis

The rest of this thesis is structured as follows. Chapter 2 reviews the literature

on the following topics: free surface embayment flows, flow instabilities character-

istic of shallow embayments, and the 3D particle tracking velocimetry technique.

Chapter 3 explains the experimental method, including a description of the ap-

paratus, the flow conditions, and the 3D-PTV method. The relations between

turbulent scales and the temporal and spatial resolution of the measurements is

also discussed. Chapter 4 is devoted to the assessment of the data quality, includ-

ing free-stream conditions of the flow in the flume, convergence of time-averaged

statistics, and finally, the error analysis, including an investigation of the velocity

and velocity-derivative errors associated with unsteady surface oscillations.

The results of the 3D-PTV measurements and their analysis are presented in

Chapter 5. The first section of this chapter introduces the general flow pattern with

the use of some basic flow statistics. Section 2 is devoted to the 3D flow structures

that were found. This includes the geometry of the exchange flow through the
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embayment opening, a 3D secondary circulation within the recirculation gyre, and

Görtler-like streamwise vortices along the side walls of the embayment. Also, the

analysis of the logarithmic slopes of the frequency spectra of velocity fluctuations at

different locations is presented with regards to the dimensionality of the flow. The

third and last section of this chapter describes the gravity waves that are present

in the current experiments. The analysis of their spectra, conditions for resonant

response in their amplitude, and their effect on the exchange process are discussed.

Chapter 6, the final chapter of this thesis, presents the conclusions. The first

section provides the summary of the error analysis and its meaning with respect

to the possibility of the optical measurements through an unsteady interface and

its limitations. Next, a summary of the results of the flow structure analysis in a

shallow embayment is presented. A short outline of the novel contributions of this

work is given in Section 3. Finally, recommendations for future work are proposed

in the last section.
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CHAPTER 2
Literature review and background

In this chapter, literature on shallow embayment flows, as well as some back-

ground on flow instabilities that can appear in a shallow embayment, such as shear

instability, Görtler Instability, centrifugal instability, and gravitational instability

are presented. Also, a review of the 3D particle tracking velocimetry technique that

is used in the current study is provided.

2.1 Free surface embayment flow

Over the years, much research has been done on embayment flows, some of

which chose to consider realistic geometry. Groyne fields in rivers often have width-

to-depth aspect ratios different from unity, the embayment region tends to be shal-

lower than the main channel, and the bed in the embayment is often inclined towards

the main channel. For example, Weitbrecht et al. (2008) studied the effects of the

embayment’s aspect ratio, groyne angles, and depth difference between the main

channel and the embayment on the exchange process. Engelhardt et al. (2004)

and Sukhodolov (2014) studied embayment flows in the field in the Elbe and Spree

rivers. Constantinescu et al. (2009) investigated the effect of a series of groynes on

the exchange process. However, in this work we chose to focus our attention on the

simplest geometry possible (square cavity, flat bed). It is argued that this simpler

flow is not completely understood, and therefore, it may be useful to reduce the

problem to identify the cause and effect relation better. Thus, in this section the

focus is on the fundamental simplified flow case.

A single recirculation region that forms in a square embayment adjacent to a

channel is investigated. The recirculating flow in an embayment is defined by three

distinct regions (Figure 2.1): i) a core region, or a “dead zone”, at the centre of
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Figure 2.1: The three flow regions in an embayment (top view)

the embayment exhibiting relatively slow-moving flow, ii) an outer region, which

is characterized by large-scale circulation or a gyre, and iii) a mixing layer, which

develops along the embayment opening, where the slower moving fluid of the gyre

meets the faster flowing fluid in the main channel; it is usually dominated by Kelvin-

Helmholtz vortical structures with a vertical axis of rotation, which are considered

to be responsible for the bulk of the exchange between the embayment and the

main stream (Babarutsi & Ganoulis, 1989; Kimura & Hosoda, 1997; Uijttewaal

et al., 2001).

Due to environmental relevance (transport of pollutants and nutrients) the ma-

jor focus of previous research was on the exchange process between the embayment

and the main channel. Valentine & Wood (1977) first suggested, for the case of

a cavity in a channel bed that the dimensionless exchange coefficient, k, is a con-

stant independent of the free-stream velocity in accordance with the “dead zone”

prediction stating that the exchange process is a first-order system. For the case of

uniform depth in the embayment, which is implied herein, k can be calculated as

k =
w

U∞T
, (2.1)

where U∞ is the free-stream velocity (flow velocity in the channel), w is the cavity

width, and T is the characteristic exchange time, which is usually obtained experi-

mentally by measuring the decay of an initial concentration difference between the

river and an embayment. However, the calculations of k in different studies yielded
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quite a spread of values. Altai & Chu (1997) found k = 0.01 − 0.02 for square

cavities. Valentine & Wood (1977) obtained values between 0.01 and 0.03. Uijtte-

waal et al. (2001) found k = 0.024, irrespective of the river flow velocity and the

cavity shape. However, Uijttewaal et al. (2001) also note that when the exchange

coefficient was measured by floating particles, it yielded a value of k that was twice

as large. Tuna et al. (2013) obtained k = 0.03 for the case of negligible gravity

waves and 0.04 for the case with gravity waves. Two major reasons for these dis-

agreements are proposed in this thesis: an underestimation of three-dimensional

effects in addition to the effect of gravity waves.

Early research on the recirculating region in embayments and groyne fields

employed the quasi-two-dimensional approximation (Babarutsi & Ganoulis, 1989;

Altai & Chu, 1997; Kimura & Hosoda, 1997). These studies measured and cal-

culated either the depth-averaged or surface characteristics of the flow and deter-

mined the retention time of dye in the recirculating region. Similarly, numerical

studies used the shallow-water equations that consist of the depth-averaged con-

tinuity and momentum equations (Abbot, 1979). As was mentioned before, this

approximation is valid since river flows are usually classified as “shallow” having

a large width-to-depth ratio. This implies that the time taken for vertical mix-

ing can be neglected, and the flow can be treated as quasi-two-dimensional. At the

same time, the shallowness of the flow suggests large vertical velocity gradients that

have a large potential for generation of three-dimensional flow structures. In par-

ticular, three-dimensionality can be expected when large vertical velocity gradients

are superimposed on strong horizontal velocity gradients. This type of problem is

generally called a shallow shear flow, which is a combination of a shear flow and

a wall-bounded flow (Figure 2.2). It was extensively studied by Chu & Babarutsi

(1988a); Chen & Jirka (1997); van Prooijen & Uijttewaal (2002). Shear flow is char-

acterized by Kelvin-Helmholtz instability, which generates vortical structures with

8



Figure 2.2: Mean flow profiles in a shallow shear layer (diagram adopted from van
Prooijen & Uijttewaal (2002)).

a vertical axis of rotation. Wall-bounded flow exhibits Tolmien-Schlichting insta-

bility which results in so-called hairpin structures with horizontal vorticity. Thus,

shallow shear flow has both, and one can expect non-linear interaction between

these structures with consequent three-dimensional instability.

In the embayment there are two distinct regions that can be classified as shal-

low shear flow: the mixing layer and the gyre (Figure 2.3). It is thus fair to expect

that a 2D model may be insufficient at providing a complete description of the flow

in both the recirculating zone and the mixing layer. Indeed, recent studies have

suggested that a two-dimensional model predicting flow patterns in an embayment

is not adequate. The first evidence of this was given by Uijttewaal et al. (2001).

The exchange rate between the main flow and the embayment was calculated using

two different laboratory techniques: measurement of depth-averaged dye concentra-

tions and tracking surface particles. The exchange rate obtained from the surface

data was twice as high as that obtained from the depth-integrated dye concentra-

tions. Discrepancies have been found in numerical simulations as well. Hinterberger

et al. (2007) showed that two-dimensional Large Eddy Simulation (2D LES) of an
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Figure 2.3: Shallow shear layers in the embayment flow.

embayment flow resulted in a mass exchange coefficient that was twice as high as

the mass exchange coefficient calculated from a 3D LES. Other evidence of three-

dimensionality of this flow was presented in Mizumura et al. (2003), Jamieson &

Gaskin (2007b), and Constantinescu et al. (2009). The authors showed that the

shear layer between the embayment and the main channel varies significantly with

depth. Particles were observed to leave the embayment along the surface, and to

enter it along the bottom. Also, Gaskin et al. (2002) presented evidence of a sec-

ondary circulation within the embayment gyre. Particles were observed to flow

directly into the centre of the embayment along the bottom and get picked up by

an upwelling motion within the gyre core.

The second factor mentioned as a possible reason for the disagreement in the

calculations of the dimensionless exchange coefficient was the gravity waves. It

was proposed that the exchange between an embayment and the channel does not

depend on the free-stream velocity. However, gravity waves directly depend on

it. Their amplitude grows discretely with the free-stream velocity in that, as one

increases it, the different gravity-wave modes resonate with some flow structures

and their amplitude increases. It was shown by Tuna et al. (2013) that the exchange
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coefficient is higher when gravity waves are strong in a shallow embayment. It is

thus evident that a study of the gravity waves, their resonance mechanism and their

effect on the flow structures and exchange, is needed. Also, a complete study of a

fully three-dimensional flow field is necessary to recognize the three-dimensional flow

structures, their origin, and the conditions for their appearance. If these goals can

be achieved it may be possible to parametrize the feedback of these 3D structures

and the gravity waves on the depth-averaged 2D fields and implement this into

current river models.

We shall therefore start with an investigation of the kind of 3D structures that

can be expected to appear in a shallow embayment. Every turbulent structure is

a result of flow instability, and a few types of instabilities can occur in a shallow

embayment: i) shear instability in the mixing-layer region, governed by the bed

friction number (the ratio of bed friction force to the turbulent shear force, Chu et al.

(1983)), ii) boundary-layer instability at the side walls of the embayment governed

by the ratio between the centrifugal force and the viscous force, iii) the breakdown

of cyclostrophic balance at the bottom boundary, also governed by the ratio of

centrifugal and viscous forces, and lastly, iv) gravitational instability, governed by

the Froude number, Fr, (the ratio of inertial to gravitational forces) (Ghidaoui &

Kolyshkin, 1999). An overview of each of these types of instabilities will now be

presented.

2.2 Instability of a shallow mixing layer

The mixing layer between the embayment and the main stream is dominated

by coherent structures generated by the horizontal shear (Brown and Roshko 1974,

Uijttewaal and Tukker 1998). They appear as a result of Kelvin-Helmholtz in-

stability whose physical mechanism has been described by Batchelor (1967). The

system of two flows of different velocities flowing parallel to each other is highly

unstable. Batchelor describes how small sinusoidal displacements of a vortex sheet

between the two flows leads to the generation of rotational motion in the shear
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layer. As a result, the sinusoidal displacement of a vortex sheet is amplified. This

leads to exponential growth of the disturbance without any change in its form, as

long as it is small enough not to affect the basic state (Drazin & Reid, 1981). In

deep flows this process leads to relatively fast lateral mixing. However, in a shallow

environment the growth of Kelvin-Helmholtz instability is suppressed. The initial

growth rate of a shallow mixing layer is the same as that of a deep one. However,

as the size of the Kelvin-Helmholtz structures becomes of the same scale as the

water depth, bottom friction becomes important and the growth rate of the mixing

layer is diminished. Thus, in shallow flows bottom friction exerts a stabilizing effect

on Kelvin-Helmholtz instability which can be estimated by the stability parameter

proposed by Chu & Babarutsi (1988b), S =
cf δŪ

2hwΔU
, where cf is a friction coefficient,

δ is the width of the mixing layer, Ū is the average velocity of the main flow, hw is

the flow depth, and ΔU is the velocity difference across the mixing layer.

Another instability that occurs in a shallow shear layer is the Tollmien-Schlichting

instability. Klebanoff et al. (1962) described the evolution of Tollmien-Schlichting

waves. Initially, they appear at the rigid boundary. They have a two-dimensional

structure, and their axis of rotation is horizontal and normal to the flow. Tollmien-

Schlichting waves progressively grow in amplitude downstream, and when they

reach a critical value they become perturbed three-dimensionally, creating turbulent

spots. Klebanoff and his colleagues interpreted the growth of three-dimensionality

as a secondary instability of the Tollmien-Schlichting wave. This three-dimensional

secondary instability has regions of swirling flow shaped like an eccentric ellipse.

It is hypothesized that the stabilizing effect of the shallowness on the growth

of the mixing layer may be due to the non-linear interaction between the two flow

instabilities. Van Prooijen & Uijttewaal (2002) argue that the different turbulent

modes hardly influence each other in a shallow shear layer. However, it is well es-

tablished that even in a deep shear layer (with no boundaries) the Kelvin-Helmholtz
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rolls experience secondary instability leading to the generation of streamwise vor-

tices (Bernal & Roshko, 1986). It is argued that the three-dimensional effects in

a shallow shear layer can only be amplified by the bottom boundary layer velocity

profile and the Tollmien-Schlichting vortical structures. Thus, one could expect to

see streamwise vorticity in the shear layer between the embayment and the main

flow, and these streamwise vortices may be responsible for the variation of the

exchange between the embayment and the main channel flow with depth.

2.3 Görtler instability

A boundary layer develops along the side walls of the embayment. It starts at

the downstream wall of the cavity, grows along the far wall and ends at the tip of

the upstream wall adjacent to the channel. This curving boundary layer, similar

to a concave side of a river bend, is subject to three-dimensional flow instability

governed by the ratio between centrifugal and viscous forces. A sufficient condition

for centrifugal instability is an outward decrease in the magnitude of the angular

velocity in some region of the flow with closed streamlines (Drazin & Reid, 1981).

When centrifugal instability occurs in a boundary layer that develops along a con-

cave wall, it is generally referred to as Görtler instability (Görtler, 1940) and it is

known to generate streamwise spiral vortices in the boundary layer. This kind of

vortex is one of the three-dimensional flow structures that may be expected along

the walls of shallow-embayment flow.

Görtler vortices were already observed in a similar but not identical flow con-

figuration generally referred to in the literature as an open cavity flow. It is usually

modelled with a flow over a groove at the channel bed that spans over its whole

width and has a square or a rectangular profile. It is made as wide as possible

to render the wall effects negligible. To compare the open cavity flow with the

current set-up, one needs to imagine the embayment being infinitely deep and the
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flow in it not being affected by either the free surface or the channel bed. Three-

dimensional instability was found in open-cavity flows. Faure et al. (2007) exper-

imentally showed the existence of pairs of streamwise vortices at the walls of the

square cavity. They suggested that these structures are the consequence of a cen-

trifugal instability related to the cavity core vortex. Brès & Colonius (2008) discuss

the properties, structure and nature of such an instability using direct numerical

simulations. They show that it is a centrifugal instability associated with the closed

streamlines inside the cavity and that the growth rate of the dominant mode is di-

rectly driven by the Reynolds number. Viscosity damps the instability, and there

is a critical Reynolds number above which the flow becomes three-dimensionally

unstable. Moreover, Faure et al. (2007) suggest that these structures are Görtler-

like vortices, governed by the Görtler number, G, defined from the curvature radius

of the boundary layer, rc, the kinematic viscosity of the fluid, ν, and the velocity

inside the cavity, Uc, outside of the boundary layer of momentum thickness δ2:

G =
Ucδ2
ν

(
δ2
rc

)1/2

. (2.2)

The wavelength of the Görtler vortices (measured as a distance between two pairs of

counter-rotating structures) was found to be 0.44L in the experiments of Faure et al.

(2007), where L is the width of the embayment (0.24 m in the present study). Citro

et al. (2015) performed a linear stability analysis on open-cavity flow and obtained a

wavelength of the unstable mode around 0.47L. Direct numerical simulation of Brès

& Colonius (2008) produced a wavelength of Görtler vortices of 0.4L. In the present

study the depth of the flow is about 0.12L, thus, one cannot expect streamwise

vorticies of the same wavelength as in the open cavity. However, an approximate

calculation of the Görtler number for the current flow results in values well above

the critical number of 0.3. Using the momentum boundary-layer thickness which

grows along the embayment walls from about 0.001 to 0.003 m (obtained from the

measurements presented in the Results chapter), the radius of curvature of 0.12 m

14



(half-width of the embayment), and the main-gyre velocity of 0.02 and 0.06 m/s

(for the lowest and highest free-stream velocity cases), we obtain G between 2 and

10 for the lowest free-stream velocity, and between 7 and 30 for the highest one. It

is important to note that in the experiments of Faure et al. (2007) G was equal to

3.8-4.2. This indicates that in the current flow the centrifugal instability is strong,

and even though the space is confined (small flow depth), one can expect streamwise

Görtler vortices to appear.

2.4 The secondary circulation within the gyre

The recirculating flow in an embayment can be modelled as a vortex with a

vertical axis above a solid horizontal boundary. This type of vortex has been studied

thoroughly by meteorologists or, more broadly by geophysical fluid dynamicists, as

it is also relevant to atmospheric flows, i.e. cyclones, storms, tornadoes (Doswell

& Burgess, 1993). In a rotating flow, the radial position of every fluid particle

is determined by cyclostrophic balance, a balance between centrifugal force and

pressure gradient:

dp

dr
=

ρu2

r
, (2.3)

where r is the radial distance from the axis of rotation, u is the radial velocity,

and p is the pressure. When this kind of vortex touches the ground, a boundary

layer develops. Deceleration of the flow near the ground results in an imbalance;

the pressure gradient becomes stronger than the centrifugal force. The flow near

the surface gets curved towards the centre of rotation and results in a radial inflow

within the boundary layer (Ekman, 1905). This process gives rise to a secondary

circulation within the vortex. By continuity, the flow drawn in at the ground level

gets lifted at the centre. In the case of an open channel flow, as it has a top

boundary, one expects the cycle to close via radial outflow along the surface, and

a subsequent descent, depicted in Figure 2.4. One of the models that could be

used to estimate the intensity of the secondary circulation is the Bödewadt vortex
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Figure 2.4: Secondary circulation within a rotating flow over a solid boundary. a)
In a schematic vortex. b) In a shallow embayment.

(Bödewadt, 1940). This model assumes solid-body rotation above a horizontal

boundary with the following boundary conditions: radial (u), tangential (v), and

vertical (w) velocities are zero at the ground (z = 0), and u = 0, v = 2πrω (where ω

is the constant angular velocity of the solid-body rotation), as z → ∞. With these

boundary conditions an exact solution to the Navier-Stokes equations provides all

three velocity components. It describes a spiral-like motion in terms of circulation

and some dimensionless parameters (Figure 2.5). However, the Bödewadt model

does not have a top boundary and therefore cannot predict the outward radial

motion in the rotating flow, as this motion is solely a result of mass conservation

in the presence of a “lid”. Therefore, we cannot expect this model to predict

accurate velocity profiles for the embayment flow, but it can nevertheless provide

an approximation of the dependence of the secondary circulation, created by the

embayment gyre, on the gyre rotation itself.
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Figure 2.5: Rotation of flow near the ground. Velocity components: u radial; v
tangential; w axial (Bödewadt, 1940). Picture taken from Schlichting (1968).

Indeed, the evidence of this circulation in a shallow embayment was provided

by Jamieson & Gaskin (2007b). They referred to it as the “tea-cup” effect (when a

cup of tea is stirred with a spoon, the tea leaves tend to accumulate in the centre

of the cup’s bottom due to the secondary circulation) and observed that near the

bottom of the bay, instead of following the regular pattern of the main gyre, particles

flow directly into the centre of the core region and settle. Tuna et al. (2013) also

reported a deflection of streamlines towards the centre of the embayment near the

bed. From the dye experiments of Jamieson & Gaskin (2007a) the general structure

of the secondary flows was observed as a radially outward flow at the surface and

a radially inward flow at the bed, with upwelling in the centre of the gyre and

downwelling at the edges (shown in Figure 2). This average large-scale structure

had contributions from intermittent events with their origins in the shear layer

structures for example in which particles that had settled in the centre of the core

were ejected upwards (Jamieson & Gaskin, 2007b). A two stage exchange process

was suggested between the core and the gyre and between the gyre and the main

flow (Jamieson & Gaskin, 2007b). However a detailed picture of this 3-D process

and its quantitative effect on the main exchange is still not known.
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2.5 Gravitational instability

Open-channel flows are subject to gravitational instability, governed by the

Froude number (Fr); the ratio of inertial to gravitational forces. However, most

studies pertaining to free-surface shallow mixing layers were performed assuming a

rigid lid (flat water surface), implying Fr = 0 (Chu & Babarutsi, 1988a; Uijttewaal

& Booij, 2000). Available experimental studies of shallow embayment flows (Booij,

1989; Altai & Chu, 1997; Uijttewaal et al., 2001; Weitbrecht et al., 2008) were

also performed neglecting the effects of surface perturbations. Numerical studies

of shallow embayment flows (Hinterberger et al., 2007; McCoy et al., 2008; Con-

stantinescu et al., 2009) have used the rigid-lid approximation as well. It is well

justified. Ghidaoui & Kolyshkin (1999) performed a linear stability analysis in a

shallow channel with a free surface and found that it worked well for low Fr. They

proved that the critical bed-friction number calculated with and without the rigid-

lid approximation changes no more than 10% for Fr < 0.7. This suggests that

for Fr < 0.7 shear instability, which is generally thought of as the main mecha-

nism of the exchange (Uijttewaal et al., 2001), is barely dependent on Fr. However,

Kimura & Hosoda (1997) and Tuna et al. (2013) showed that the effect of gravi-

tational instability on the exchange process in a shallow embayment may be more

significant than expected, and that the gravity waves cannot be ignored in certain

limits. Kimura & Hosoda (1997) observed that in the street of shear-instability

vortices there is a periodic amplification of a single vortex, and its frequency is in

agreement with the gravity-wave dispersion relation. Tuna et al. (2013) showed

that when surface gravity waves are strong, the position of the shear layer starts

undulating horizontally with their frequency. In fact, Tuna et al. (2013) argue that

it is the frequency of the “inherent” shear instability that causes gravity waves

to amplify. They state that when the frequency of the shear instability matches

the frequency of the surface gravity waves, they couple, causing a significant am-

plification of the gravity-wave amplitude. Tuna et al. (2013) also found that this
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coupling can lead to an increase in the Reynolds stresses, increased rms velocities,

and time-averaged transverse velocities across the shear layer. All these lead to in-

creased entrainment and consequently increased exchange coefficients between the

embayment and the main channel. All this information appears controversial. On

the one hand, gravitational instability was shown not to play a major role in shear

flows for low Fr. On the other hand, it appears to have a significant effect on the

exchange process. It is therefore evident that if in this work we are trying to in-

vestigate the effect of three-dimensional flow structures on the exchange process,

gravitational instability cannot be left out of the picture. Also, an investigation is

needed to establish whether there is a dependence of gravity-wave amplitudes on

some parameter accessible to 2D models or not. That is, the exact mechanism of

gravity-wave amplification is required as well as its effect on the exchange process.

All these 3D structures and the surface gravity waves will be examined in

the experiments below to identify those that have the potential for affecting the

exchange process, with the ultimate goal of parameterizing them and implementing

in the 2D models.

2.6 3D particle tracking velocimetry

Particle tracking velocimetry (PTV) is a velocity measurement technique that

is based on discrete visualization of a flow seeded with small, reflecting, neutrally-

buoyant particles that play the role of flow tracers. The particles are recorded

stereoscopically on image sequences from different viewing angles to determine 3D

positions and hence trajectories. That is, 3D-PTV is a stereoscopic method based

on the principle of triangulation. The location of a particle can be determined by

measuring the angles to it from two known points. If one can assume that the object

point, camera projective centre and image point lie on a straight line (collinearity

condition), it is then possible to determine the 3D position of a particle by taking its

pictures from two cameras, located at known positions. Taking successive images

will provide particle displacements, and hence with interpolation, the velocity field.
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This method has advantages compared to other widely-used measurement

methods such as Laser Doppler Velocimetry (LDV), hot-wire anemometry and Par-

ticle Image Velocimetry (PIV) (Maas et al., 1993). PTV is a non-intrusive method,

i.e., the measurements do not affect the flow field, unlike hot-wire anemometry. It

allows instantaneous velocities of the flow to be obtained in a relatively large volume

with sufficient precision, whereas LDV gives only point measurements rather than

field ones. Unlike PIV, PTV tracks individual particles over long times. Analysis of

particle trajectories allows for a better quality of velocity measurements. PIV uses

only 2 points to calculate the particle velocity, whereas having a particle trajectory

allows one to perform a polynomial fit to the individual trajectory and to calculate

the velocity by taking its derivative. It was also shown that PTV performs better

than PIV in calculating all three components of velocity (Bown et al., 2006), espe-

cially in near-wall regions (Kähler et al., 2012). An even more obvious advantage of

PTV over PIV measurements is that tracking particles in time, the Lagrangian ap-

proach, is more efficient than analysis of instantaneous velocity fields, the Eulerian

approach, in the identification and analysis of vortical structures.

PTV is one of the oldest flow measurement techniques. It is merely intuitive

to study fluid flow by observing trajectories of flow tracers. Nevertheless the collec-

tion of quantitative data at reasonable resolution became possible only in the last

two to three decades. The first attempts to implement this technique date back to

1956 when Chiu & Rib (1956) used a stereoscopic arrangement using 2 cameras.

To obtain 3D particle positions manual measurements of the images were required.

Jacobi (1980) also tracked one particle at a time, but he reported a first applica-

tion of photogrammetric modelling of the multimedia geometry (accounting for the

refraction at the e.g. air/water interface). Chang et al. (1985) first digitized the

film to derive particle image coordinates, and later Adamczyk & Rimai (1988) used

a system based on electronic imaging, but it was limited to only 16 simultaneous

trajectories. A considerable technical breakthrough was made by a group in Tokyo

20



(Nishino et al., 1989) who developed a 3D-PTV system that could track up to 440

particles simultaneously. However, a complete mathematical model of photogram-

metric 3D coordinate determination, taking into account the different refractive

indices in the optical path was only developed in the early 90s by a research group

in ETH Zurich (Papantoniou & Dracos, 1990; Maas et al., 1993; Malik et al., 1993).

Maas et al. (1993) also proposed an epipolar line intersection technique in which

the 3D particle positions are determined before construction of particle trajectories

(another option is to track particles on each camera’s 2D image space and then

find the 3D spatial correspondance between these 2D trajectories). The epipolar

line intersection technique is used in the current work and is described in more

detail in Section 3.3.4. After this, in the history of 3D-PTV other adjustments to

tracking algorithms were made to minimize errors and ambiguities. Willneff (2003)

introduced a spatio-temporal matching algorithm in which characteristic velocity

and Lagrangian acceleration of a particle from the previous frame are used to find

the corresponding particle in the next frame. In this method the velocity of a

particle is limited in all three components. This allows for the definition of a 3D

search volume, whose size depends on the velocity at the previous time step and

user-determined minimum and maximum velocity gradient in all three coordinate

directions. Limiting the Lagrangian acceleration of a particle defines a conic search

area. This method resulted in a considerable reduction of ambiguities and hence

longer particle trajectories (Lüthi et al., 2005). It is also taken advantage of below

and is discussed further in Section 3.3.4.
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CHAPTER 3
Experimental method

To investigate the flow structures of a shallow embayment the flow was phys-

ically modelled in a recirculating laboratory channel (flume). The experiments

described in this work were conducted in the Environmental Hydraulics Labora-

tory in the department of Civil Engineering and Applied Mechanics at McGill

University, Montréal. Fully three-dimensional measurements are desired to cap-

ture the full richness of all turbulent structures. This was achieved by the use of

three-dimensional particle tracking velocimetry (3D-PTV). The details of the ex-

perimental apparatus, flow conditions, measurement method, and data processing

are described in the following sections.

3.1 The channel flow facility

To recreate the patterns of recirculating flow, a laboratory channel (flume)

with a square embayment on one side was used. The flume had a 2 m long and 0.4

m wide straight section with a 0.24 by 0.24 m2 embayment at mid-channel and was

run with the flow depth of 0.03 m (Figure 3.1). In order to provide a uniform inflow

to the measurement section (the embayment), the flume has a transition curve

at the inlet to the channel section and calming tanks at both ends to dissipate

turbulence generated by the recirculation process. From the downstream reservoir

the water is taken to the pump and returned back to the flume through the inlet

at the bottom of the upstream tank. The inlet is made in the form of a “T” with

holes distributed uniformly over the width of the reservoir to decelerate the flow

and provide a uniform water supply over the width of the channel. Right after

the diffuser the flow enters honeycomb forms to break up large flow structures as
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Figure 3.1: Schematic of the recirculating hydraulic channel (flume). a) Plan view.
b) Side view. Dimensions are given in m. The schematic is adopted from Jamieson
(2005).

it approaches the transition curve. A valve and flow meter located at the pump’s

outlet allow control of the discharge.

To reduce turbulent disturbances and ensure the smoothest flow, the flume

was always run in a submerged state, i.e. the outlet tank had the same water level

as the channel. This condition allows to avoid unnecessary air entrainment and

turbulence generation that is common for flumes with an overflowing weir at the

downstream end.

The hydraulic channel was made out of transparent plexiglas to provide visi-

bility. However, plexiglas has a high thermal expansion coefficient. It was therefore

necessary to control the temperature of the water to avoid leakage that occurred if

cold water was put into the flume causing shrinkage. The flume was always filled

with hot water and allowed to cool to room temperature. This also avoided the

appearance of air bubbles in the flow since water has a lower solubility of gases at
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higher temperature, and when cooled down, gets further from saturation. In order

to avoid the effect of water temperature on the geometry of the embayment flow,

its walls were made out of glass.

3.2 Flow conditions

The flow conditions in the channel were chosen to match as closely as possible

the dimensionless parameters, such as Reynolds number (Re), Froude number (Fr),

and width-to-depth ratio of a small river. The Reynolds number is defined as the

ratio between inertial and viscous forces:

Re =
U∞H

ν
, (3.1)

where U∞ is the free-stream velocity, H is the water depth, and ν is the kinematic

viscosity of water. The Froude number is the ratio of momentum forces to the

gravitational force:

Fr =
U∞√
gH

, (3.2)

where g is the acceleration of gravity. Re in a typical river is of the order of 10,000

to 1,000,000. The Fr in rivers (excluding mountainous creeks) is very small, of

the order of 0.1-0.01. Both these dimensionless parameters are proportional to the

characteristic velocity of the flow, so increasing the Re of the laboratory experiment

inevitably leads to increasing Fr. Here, as in all experiments, we are facing the scal-

ing problem, where it is not possible to match both these dimensionless parameters

of the laboratory experiment to those of the prototype if the same fluid (water) is

used. Usually, this issue is resolved by finding a range of conditions where, most

importantly, the flow would be turbulent (Re > 2, 000) and subcritical (Fr < 1).

A third parameter that also has to be under consideration is the channel width-to-

depth ratio. Rivers and channels are classified as shallow flows, as their depth is

usually much smaller than their width. To replicate the shallow flow in the flume,

the channel width-to-depth ratio had to be large. Its width is not variable, so only
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the depth could be adjusted. However, it could not be too small for the viscous

effects not to become predominant (small Re).

In the current study it is intended not only to investigate the flow structures

in an embayment flow but also to check for their qualitative dependence on surface

gravity waves and different free-stream velocities. Thus, after considering all the

limiting factors, three different flow conditions were chosen (Table 3.1). The flow

depth was kept constant at 0.03 m, resulting in a width-to-depth ratio of 13 in the

main channel and 8 in the embayment. The slope of the channel bed was zero,

taking into account the very small slopes characteristic of rivers. Thus, the only

parameter varied was the free-stream velocity. The smallest free-stream velocity

case had a negligible gravity-wave amplitude. The highest one had a predominant

gravity wave mode with the frequency of 0.36 Hz, and a peak amplitude of 0.9 mm

(these data were obtained from the measurements described in the Results chapter,

Section 5.3). The chosen flow conditions had Re and Fr numbers ranging between

3900 and 5400 and from 0.24 to 0.33, respectively. The corresponding slope of the

water surface was about 0.18 to 0.38 ‰ (Table 3.1).

Table 3.1: Flow conditions

Discharge, Mean velocity in Water depth, Re Fr Water surface
m3/s the channel, U∞, m/s m U∞H/ν slope, ‰

0.0016 0.13 0.03 3900 0.24 0.18

0.0019 0.17 0.03 4800 0.29 0.31

0.0021 0.19 0.03 5400 0.33 0.38

The Re number given in the Table 3.1 is a flow-depth Re calculated using

the free-stream velocity (Equation 3.1). However, there are also other ways of

assessing the Re that could be relevant. For the characteristic velocity scale one
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could use the rotation of the embayment gyre, let’s call it Γ. For the characteristic

length scale either the water depth, H, or the horizontal scale, the embayment

width, L, could be chosen. Then ReΓ,L = 7, 000 − 17, 000 for different free-stream

velocities and ReΓ,H = 900− 2, 100. This means that the horizontal scales are fully

turbulent but in the vertical direction the viscous forces become relevant and there is

a possibility of laminarisation inside the embayment gyre. Of course, the horizontal

and vertical scales are coupled and it is not quite possible to be conclusive about

where laminarisation will occur. It is obvious that in the centre of the embayment

the velocities are extremely low resulting in a laminar flow; the Reynolds number

(ReU,H) goes down to about 50. However, even in a full-scale groyne field certain

laminarisation can occur in the “dead zone” of the embayment centre. Evidently,

in the scaled-down experimental setup the laminarisation will take place in a larger

percentage of the space. This may result in the underestimation of the turbulent

exchange, weaker small-scale structures and therefore more settling of particles in

the gyre centre. However, the overall flow configuration and the general patterns

are expected to be similar to those of a river embamyment.

Admittedly, the Re numbers of these experiments are very small compared to

those of a river. However, even though the conditions in which these experiments

were conducted were very limited, it is argued that the results of this work can still

be of use in understanding the behaviour of a general problem of a shallow flow past

an embayment, since the principal flow structures and their dependence or indepen-

dence of surface gravity waves or on the dimensionless flow parameters will remain

qualitatively similar. These experiments will not be able to provide a description

of the flow in a real river. However, the advantage of having a laboratory setting

is that one can measure the flow field with great resolution and precision, which

is impossible in the field. Providing an insight into the flow structures that can

be expected in a river embayment may also help field researchers narrow down the
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problem and focus their efforts, as they will have to check for only the dependences

that were found in the laboratory.

3.3 3D particle tracking velocimetry (3D-PTV)

In the following sections the 3D-PTV experimental set-up, camera calibration,

and data acquisition procedures will be described.

3.3.1 Experimental set-up

PTV is based on the measurement of the coordinates and tracking of individ-

ual particles seeded into the flow. This requires reliable identification, multi-image

matching, coordinate determination, and matching in time of each individual parti-

cle (see Section 3.3 for details). With a large number of particles this process leads

to ambiguities which cannot always be resolved. Therefore, a significant effort in

performing 3D-PTV must be devoted to handling them by precise modelling of the

air/water interface, the use of at least three synchronized cameras imaging the flow,

and a careful calibration of the system (Maas et al., 1993).

Three cameras were mounted above the hydraulic channel. Each captured

the embayment in its field of view from a slightly different angle (see Figure 3.2).

In this work, due to limited space below the channel, optical measurements were

taken through the free surface of the flow. The optical error due to the unsteady

interface is a minimum when the camera is pointed straight down and the light rays

are nearly perpendicular to the interface (Snell’s law). At the same time, if all the

cameras are nearly parallel to each other, the error in the third (in this case vertical)

coordinate becomes large. In order to find the optimum angle of the cameras a rough

estimation of the errors due to the interface oscillation angle and amplitude was

made (See Appendix A). Based on this analysis angles of approximately 6-8 degrees

were chosen (Figure 3.2). A thorough assessment of the errors introduced by the

surface oscillations is presented in Section 4.3.

Another important point is the size of the particles; particles which are too

small cannot be seen by the camera or can also evoke a so-called “peak-locking”
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Figure 3.2: Three CCD cameras mounted above the flume to capture the flow
field in the embayment. A schematic is shown above and a photograph from the
downstream end of the flume is below.
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effect, when the position of a particle “locks” onto a pixel and its displacement

becomes proportional to the integer count of pixels (Weitbrecht et al., 2002). To

avoid this Raffel et al. (2013) suggest using particles with a diameter larger than 1.5

pixels. Particles which are too big can have the problem of not following the flow

structures because of inertial forces. A compromise is given by particle dimensions

between 2 to 5 pixels. In the present application high-resolution (2016x2016 pixels)

CCD cameras were used to image a field of view of about 0.29x0.29 m2 (Figure 3.3)

which allowed to resolve particles of a relatively small diameter, about 0.23 mm.

The particles were neutrally buoyant white polyethylene microspheres 212-250 μm

in diameter (from Cospheric LLC). Every particle therefore occupied about 1.5-1.7

pixels in the image space.

In order to verify that the particles are indeed following the flow and they are

not too large for the inertial effects to become predominant, we calculate the Stokes

number, which is defined as a ratio between particles and fluid characteristic time

scales:

St =
τp
τη
, (3.3)

where τp is the particle’s time scale that can be calculated as τp =
ρpd2

18ρfν
(ρp is particle

density, d is particle diameter, ρf is fluid density, ν is kinematic viscosity) and τη

is the fluid time scale or Kolmogorov time scale (see Section 3.4). For the lower

and higher free-stream velocities the Stokes number is 0.03 and 0.07, respectively.

Both values are well below 0.1, which indicates that the tracing accuracy errors are

below 1% (Tropea et al., 2007).

The seeding density of the particles must be chosen such that their average

displacement in one frame interval is an order of magnitude less than the average

particle spacing (Malik et al., 1993). Thus the seeding density depends on the frame

rate of the cameras. Using high-speed cameras allowed to record the flow at 600 Hz,

resulting in an average particle displacement in one frame interval in the channel
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Figure 3.3: High-speed camera PCO-DIMAX. The recordings were made at the
frame rate of 600 Hz with image resolution of 2016x2016 pixels.

(the fastest part of the flow) of about 0.3 mm. Thus, the average distance between

particles, r, had to be about 3 mm. The corresponding seeding density, n, can be

found as:

n =
1

r3
, (3.4)

resulting in n = 37 particles/cm3. In the current experiments particles tended to

accumulate in the slow-moving gyre core in the centre of the embayment. Density

of the particles was on average that of water and ideally, they would follow the

fluid paths even in the region of weak flow. However, some particles were slightly

denser than water and settled in the slow-moving gyre centre. In order to be able to

resolve this region, the overall seeding density had to be considerably smaller. Ap-

proximately 15 g of particles were used in one experiment, resulting in an average

particle density of about 6 particles/cm3. In the rest of the domain the parti-

cle seeding density was quite uniform without additional efforts. It was provided

naturally by turbulent mixing.

To view the white particles, black matt vinyl was glued onto the bottom of the

channel and its walls. The studied area was illuminated by three halogen lamps. In

order to avoid reflections off the water surface, illumination was performed through

the plexiglas side of the channel instead of through the surface of the flow. The

plexiglas wall above the water level was covered, so that light could only come

through the plexiglas/water interface and that no light rays would be reflected off
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Figure 3.4: Three Halogen lamps illuminating the embayment. In order to avoid
reflections off the water surface the light rays were only allowed to come through
the thin regions below the water level indicated by the red rectangles.

the surface (Figure 3.4). Figure 3.5 shows a view of the bay from one of the cameras

during an experiment. About 9,000 particles were identified on every frame.

3.3.2 Calibration of the cameras

As was mentioned before, the optical stereo-matching technique is based on

the triangulation principle. A position of a particle in space can be determined

by measuring the angles to it from two or more known points. Thus, the exact

locations of the cameras’ optical centres (pin-holes), their viewing angles with re-

spect to the studied area along with refraction angles, lens distortion and some

other parameters that are described below, have to be determined. To this end,

the calibration of the cameras is performed. The calibration procedure consists of

finding variable parameters in the algebraic relation between positions in the image

space of the cameras and positions in real space. This relationship, proposed by

Maas et al. (1993), is described with a mathematical model based on the collinearity

condition, which states that the object point, camera projective centre and image

point lie on a straight line. However, this mathematical relation has to be extended

to describe the physical reality. It has to account for the light rays passing through

two optical media; water and air, with different refractive indices, causing the light
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Figure 3.5: View of the embayment from one of the cameras; white dots are the
polyethylene microshperes 212-250 μm in diameter.
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rays to break. Lens distortion also has to be taken into account. Altogether, the

model has 16 parameters describing the geometry of one camera:

- 6 parameters determine the camera’s position and orientation (3 coordinates and

3 angles);

- 3 model the camera’s interior orientation (the offset of the image principle point

with respect to the projective centre);

- 5 describe the radial and tangential lens distortion (Brown, 1971);

- 2 parameters are introduced to compensate for electronic influences such as image

digitization, storage, line jitter etc. (El-Hakim, 1986).

In the calibration procedure images of points with known positions are taken. Com-

paring their known coordinates with the measured ones, the 16 parameters are

optimized using a least-squares method. One of the most common calibration tech-

niques is to take a photo from each camera of a so-called calibration object placed in

the area of interest. For accurate calibration this object has to span over the whole

observation volume and contain many well-contrasted points with their positions

known with high precision that will later be used to determine the measurement

precision.

In this work, the calibration object was machined from black plastic, “Delrin”

(machine drawings of the calibration object are provided in Appendix B). In or-

der to cover the whole observation volume it was designed with many steps that

would provide data at every depth (Figure 3.6). A pattern of 0.3 mm diameter

holes was drilled with ±0.05 mm tolerance. The holes were then filled with white

silicone. To ensure that the surface of the silicone is flat (a concave shape results

in uneven lighting and hence, identification errors), a razor blade was used to take

off excess material. The calibration object was placed inside the embayment and

photographed from three cameras through the still water surface that had the same

depth as the experiments (0.03 m). An example of such a photograph from one of

the cameras is given in Figure 3.6.
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Placing the object in a known position, and given an initial guess of the camera

positions, one can predict the expected positions of the white dots of the calibration

object in each camera’s image space. Comparing the guess with the real positions

of the dots, the initial guess and all other parameters can be iteratively corrected

until they converge. Once the calibration is complete, the parameters of the relation

between the image space of the cameras and real space is determined. Thus, the

correspondence between the particles viewed from the three cameras can be estab-

lished using the epipolar-line intersection technique (see Section 3.3.4), resulting in

their 3D coordinates.

3.3.3 Data acquisition

3D-PTV measurements require simultaneous imaging from all the cameras. To

achieve synchronization between them a master-slave relationship was employed.

One camera was chosen to trigger the other two through a consequent BNC (Bayo-

net NeillConcelman) connection. As was mentioned previously, the recordings were

made at the frame rate of 600 per second. At this relatively high frame rate it is

not possible to download the pictures from the cameras at the same rate as the

recordings are made. Thus, the pictures were first saved in the cameras’ RAM and

then downloaded to the computers after the recording was finished. Because of

the limited size RAM, it was possible to run one experiment for approximately 10

seconds at 600 fps before it was full. Hence, it was necessary to run several experi-

ments to achieve data convergence. It took about 60 to 100 seconds of recordings

to obtain converged statistics (see Section 4.2).

3.3.4 Post-processing of the data

High-resolution images from the cameras each took about 4 MB of memory.

One hundred seconds of data for each of the 3 flow cases with 600 frames per second

for three cameras resulted in 540,000 images and about 2 TB of memory. In order

to process this data the images had to be transferred to a powerful computer with

24 GB RAM. The purpose of the post-processing is first, to extract the coordinates
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Figure 3.6: Calibration object: object of known geometry used to determine the
position of the cameras relative to the region-of-interest
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of the centres of the particles in the image space from every frame (particles recogni-

tion); second, establish the correspondences between particles viewed from different

cameras and thus, obtain their 3D coordinates in real space; and lastly, track the

particles in time. All these steps including the calibration of the cameras were

performed using an open-source 3D-PTV software, that was initially developed at

ETH Zurich (Willneff, 2003), and is supported today by many people around the

world (OpenPTV, 2012). The parameters that were used in all the post-processing

steps are given in the Appendix C.

Particle recognition is performed based on a grey value threshold and minimum

particle size “recognized” by the code. Every recognized particle is attributed an

ID number and the next step is to find the corresponding particles in each different

camera view. Knowing the exact position of the cameras from the calibration

procedure, we can use a so-called epipolar line intersection technique developed by

Maas et al. (1993).

A particle on one camera has two coordinates in the image space (let’s say, x

and y). As we do not know the third coordinate (z), we can say that this particle is

situated on a line of constant x and y. This line is perpendicular to the image plane

of one camera, but it appears as an “epipolar” line on the image of another camera,

that has a slightly different angle of view. By constructing this line on the second

camera image, we can narrow down the search region of the corresponding particle

to the area around this line. On the image from the third camera two epipolar

lines can be drawn, and the particle that we are looking for has to be around the

intersection of these lines. To improve the method, additional parameters are used.

Particle size, brightness, characteristic velocity, acceleration, and their directions

are employed in order to resolve the ambiguities in cases when there are several

particles that happen to be on the same epipolar line.

Once the 3D-coordinates are obtained, a tracking procedure can be performed,

where a particle is identified throughout subsequent images in time. This procedure
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is mainly based on the nearest neighbour principle. However, when there is an

ambiguous situation (i.e. crossing trajectories), additional parameters are used.

The method for solving ambiguities is based on prediction of the particle’s position.

The area in which the particle is expected to appear at the next frame is determined

based on its past movement. Both the particle’s coordinates and the predicted

area are transferred to the image from another camera. The ambiguity is then

eliminated by matching the “transferred” prediction and the one made on that

particular image. This spatio-temporal matching technique was developed by J.

Wilneff at the Swiss Federal Institute of Technology (ETH) (Willneff, 2003).

To obtain the 3D velocity and vorticity fields from the Lagrangian trajectories,

the polynomial fit method of Lüthi et al. (2005) was employed. Determining veloc-

ities and accelerations through central differences has finite accuracy and therefore,

sensitive to position errors. Thus, filtering is required. The method of Lüthi et al.

(2005) consists of fitting a polynomial to a particle trajectory, xi(t), and calculating

its velocity, vi(t), as the first derivative. The filtering is implemented as a moving

cubic spline:

x̂(i) = ci,0 + ci,1t+ ci,2t
2 + ci,3t

3, (3.5)

where i = 1, 2, 3 for the three coordinate components. The coefficients ci,j are found

by fitting the spline to 21 points of a trajectory. The filtered velocities are then

defined as

û(i) = ci,1 + 2ci,2t+ 3ci,3t
2. (3.6)

From the filtered velocities, spatial derivatives are interpolated for every particle

trajectory point. Assuming that to a good approximation the velocity field in the

proximity of x0 is linear yields

ûi(x0) = ci,0 + ci,1x1 + ci,2x2 + ci,3x3, (3.7)
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where

ci,1 =
∂ui

∂x1

, ci,2 =
∂ui

∂x2

, ci,3 =
∂ui

∂x3

. (3.8)

In principal four points are sufficient to solve (3.7) and (3.8) for ci. However, more

points are desirable to increase accuracy. The linear approximation is valid only over

the length scale for which viscous effects are dominant. This separation value was

determined empirically through the quality control built in the code of Lüthi et al.

(2005). The interpolation sphere had a radius of about 7 mm. Solving Equation

3.7 for all the particles within this sphere allows the values of spatial derivatives

for every trajectory point to be obtained. Hence, three vorticity components were

then calculated.

The resulting velocity and vorticity components determined for the Lagrangian

trajectories were interpolated onto a regular grid of 59x49x16 points with spatial

increments of 5 mm in the horizontal and 2 mm in the vertical direction. Natural

neighbour interpolation scheme was chosen for this calculation. However, it is

important to note that the linear interpolation and the nearest neighbour schemes

did not produce significantly different results. The velocity field was then averaged

over time for the period of approximately 92 seconds, that is, 55,000 time steps.

3.4 Resolution and characteristic turbulent scales

In order to obtain accurate measurements of a turbulent flow it is necessary to

assure the space and time resolutions are below the smallest turbulent length and

time scales. It is thus important to verify that the current experimental procedure

satisfies these criteria. The smallest scales in a turbulent flow are called Kolmogorov

scales and are defined as functions of kinematic viscosity of the fluid (water), ν, and

the turbulent kinetic energy dissipation rate, ε. The Kolmogorov length scale, η, is

defined as follows:

η =

(
ν3

ε

)1/4

, (3.9)
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According to Taylor (1935), the energy dissipation can be approximated as:

ε ≈ u3
rms

L
, (3.10)

where urms is the root mean square velocity of the flow fluctuations and L is the

integral length scale of the flow. The average rms velocity of the flow varies between

0.015 to 0.028 m/s, being higher for the higher free-stream velocity (the values of

the rms velocities used are calculated from the experimental results described in

Chapter 5). The integral length scale can be estimated by the depth of the flow,

0.03 m. Substituting those values we obtain η = 0.2 − 0.3 mm, depending on the

free-stream velocity (the lower Kolmogorov length scale corresponds to the higher

free-stream velocity with a higher Re). The average particle displacement varies

from about 0.06 mm inside the embayment to 0.3 mm in the channel flow. Thus,

velocity values, calculated from particle positions are equal to, or even below, the

Kolmogorov length scale. The corresponding time scale of the smallest structures

in the flow (Kolmogorov time scale) is found as:

τη =
(ν
ε

)1/2

, (3.11)

resulting in the values of 0.04 to 0.09 s for the different free-stream velocities. The

time resolution of the cameras with 600 Hz frame rate is 0.002 s, which is more

than an order of magnitude smaller than the Kolmogorov time scales. (This may

seem excessive, but as was mentioned in Section 3.3.1, it is related to the spatial

resolution.) Therefore, both time and space resolutions are high enough to perform

satisfactory measurements.

Since the seeding density of the particles in the flow is quite small, the average

particle separation is about 6 mm, the quality of the calculation of the spatial

derivative may be questioned. Indeed, a much larger spatial resolution is desired

to resolve all the turbulence scales. To this end, an error estimation based on the

calculation of the divergence (zero for incompressible flow) was performed. The
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results of this error analysis showed that, even though the spatial resolution is low,

it is still possible to obtain accurate characteristics of the large-scale structures.

The divergence calculation produced surprisingly good results which are presented

at the end of the next chapter, Section 4.3.3.
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CHAPTER 4
Flow validation and error analysis

This chapter presents the quality assessment of the experimental data obtained

in this research. The first section discusses the free-stream conditions of the flow

in the flume. The second section is a verification of the convergence of the time-

averaged statistics. The last one presents the error analysis of velocity and the

calculations of spatial velocity derivatives.

4.1 Free-stream flow conditions

Natural streams and channels are characterized by a fully-developed turbulent

boundary layer that extends all the way to the surface. It is thus required that this

condition be replicated in a laboratory flow. As the flow enters the flume, a bound-

ary layer starts to develop along the channel bed. It grows until it reaches a steady

state and its form stops changing with the downstream distance. Uijttewaal et al.

(2001) state that x/H = 50 (H is the depth) is a sufficient downstream distance to

reach a fully-developed turbulent flow in the main channel. In the current set-up

the embayment extends from x/H=32 to 40, which is smaller than the required

distance. It is thus necessary to verify that the boundary layer in the current ex-

perimental facility is fully developed. Time-averaged streamwise velocity profiles,

u(z/H), are considered at 4 points at different downstream distances, x/H=33, 35,

37, and 39; their locations relative to the embayment are indicated in Figure 4.1.

Figure 4.2 shows that the 4 profiles collapse to the same curve except for the point

near the bed. The 4 points considered here were taken from the main experimental

data. They were chosen to be as far from the embayment as possible, but some

effects from the flow around it may still be present. Acceleration of the flow along

the bed may either indicate that the boundary layer is still developing somewhat
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or it could be related to the presence of the embayment and its secondary currents.

However, considering the fact that no clear trend with the downstream distance can

be observed at all elevations z/H > 0.1, it is fair to conclude that the boundary

layer is well developed.
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Figure 4.1: Position of the velocity profiles relative to the embayment.
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Figure 4.2: Free-stream velocity profiles as a function of elevation above the bed.
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The general shape of the profile corresponds well with previous experimental

and field studies. In quasi-uniform open-channel flow the mean streamwise velocity

obeys the logarithmic law (Nezu & Onitsuka, 2002; Sukhodolov & Uijttewaal, 2010):

u

u∗ =
1

k
ln

z

z0
, (4.1)

where k is the von Kármán constant and z0 is the hydrodynamic roughness param-

eter. It was also shown that closer to the surface, z/H > 0.8, the profile system-

atically deviates from the logarithmic law (Sukhodolov, 2014). This deviation of

velocity is called the “velocity-dip” phenomenon, characterized by a deceleration of

the streamwise velocity near the surface. This phenomenon is usually attributed to

effects caused by the secondary circulation in an open channel flow (Nezu & Onit-

suka, 2002). The deceleration can be clearly observed near the surface in Figure 4.2

for z/H > 0.9, whereas for z/H < 0.9 the profiles show the usual logarithmic shape

(Figure 4.3).
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Figure 4.3: Free-stream velocity as a function of log z.
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4.2 Convergence of the data

In this work we are primarily focused on the time-averaged statistics of the

flow. To check their convergence, cumulative averages of the 3 components of

velocity, and the 3 components of vorticity were calculated for 36 positions in the

embayment. Out of 216 plots about 80-90% show very quick convergence. For the

lower free-stream velocity case (0.13 m/s), the velocity converges in 10 seconds and

the vorticity in 20 seconds (images sampled at 600 Hz), see for example Figure 4.4.

However, some points take longer to converge. At these points the cumulative

average appears to have a slight periodic undulation which may be related to low-

frequency flow structures or gravity waves, see for example the v velocity component

in Figure 4.5. Also, when the magnitude of the mean velocity is close to zero the

cumulative average is susceptible to slight drifts (e.g. u component in Figure 4.5).

However, both the drift and the undulation only happen at about 10% of the

locations and they appear to be small, less than 10% of the total variability. This

will be further confirmed below by considering total velocity and vorticity fields

averaged over different periods of time.

For the higher free-stream velocity (0.19 m/s) one could expect longer con-

vergence times, as both turbulence and gravity waves are stronger. Indeed, the

points that converged slowly in the slow flow take longer as the free-stream velocity

is increased. For example, in Figure 4.6, the u-velocity requires about 90 s to ap-

proach its final value of about -2 mm/s and the vertical component (ωz) continually

exhibits small fluctuations until its mean value is achieved after about 80 s. More

surprising is the fact that points which converged quickly for the slow flow converge

even more quickly as the free-stream velocity is increased. See, for example, Fig-

ure 4.7, where all three vorticity components are fully converged within 10 seconds

(instead of 20 s).
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As already mentioned, 80-90% of the points converge very quickly. However,

just to confirm that the other 10-20% that converged more slowly are indeed con-

verged, we will consider two examples that represent the slowest convergence that

could be found in the data: u and ωz for the higher free-stream velocity in Fig-

ure 4.6.

Figure 4.8 shows the average horizontal speed at a depth of 0.026 m (corre-

sponding to the location considered in Figure 4.6) for five averaging periods: 10.5,

31.5, 52.5, 73.5, and 94.5 seconds. The plots indicate approximate convergence of

the horizontal speed by around 70 seconds. Even though the cumulative average of

u showed a slight drift in Figure 4.6, it appears to be negligible compared to the

variability this averaged field displays in space (Figure 4.8).

Figure 4.9 shows the contour plots of vertical vorticity, ωz, in the bay at the

same depth of z = 0.026 m. Although the cumulative point-wise averages exhibited

some drift in time, all the major features of the spatial variation remain independent

of averaging period at t > 70s, and it is clear that in this sense convergence was

achieved. Lastly, we emphasize that these two examples were deliberately chosen

to represent the slowest cases of data convergence for all positions, fields and free-

stream velocities.

To conclude the discussion on the issue of convergence we plot the cumulative

average of one of the key quantities that will be presented in the Results chapter.

Figure 4.10 shows the contour plot of the horizontal vorticity, ωy, for a vertical slice

through the bay at y = 0.11 m. The graphs show the cumulative average of ωy

at the same five periods, 10.5, 31.5, 52.5, 73.5, and 94 seconds of data. As will

be discussed in more detail, the flow herein is characterized by pairs of counter-

rotating vortices situated on top of each other near the walls of the bay. The last

two plots show that these flow features are converged, i.e. they do not change with

the addition of new data, confirming the reliability of the results of this work.
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z = 0.014 m), for the lower free-stream velocity of 0.13 m/s.
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Figure 4.5: Data convergence: cumulative averages of three components of velocity
(u, v, w), and three components of vorticity (ωx, ωy, ωz) at one point in the embay-
ment situated near the downstream wall of the embayment (x = 0.2 m, y = 0.11m,
and z = 0.026 m), for the lower free-stream velocity of 0.13 m/s.
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Figure 4.6: Data convergence: cumulative averages of three components of velocity
(u, v, w), and three components of vorticity (ωx, ωy, ωz) at one point in the embay-
ment situated near the downstream wall of the embayment (x = 0.2 m, y = 0.11
m, and z = 0.026 m), for the higher free-stream velocity of 0.19 m/s.
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Figure 4.7: Data convergence: cumulative averages of three components of veloc-
ity (u, v, w), and three components of vorticity (ωx, ωy, ωz) at one point in the
embayment situated in the region of the mixing layer (x = 0.05 m, y = 0 m, and
z = 0.014 m), for the higher free-stream velocity of 0.19 m/s.
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Figure 4.9: Data convergence: contour plots of vertical vorticity, ωz, in the embay-
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slice through the embayment at y = 0.11 m, averaged over different periods of time
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4.3 Error analysis

This chapter examines the uncertainty of the statistics presented in the current

research. All laboratory measurements have sources of uncertainty and they can

generally be classified as due to either random or systematic errors. To eliminate

the random component of the error in the time-averaged measurements, one must

ensure convergence of the data (as discussed in Section 4.2). However, convergence

does not guarantee quality, as some systematic errors may be introduced during the

measurement procedure. Thus, an estimation of the systematic errors is crucial.

Nevertheless, if instantaneous data is required, for example to study turbulence,

then an analysis of the random component of the error is also necessary. This

section will present estimations of both random and systematic components of the

measurement error.

The sources of error in a multi-step procedure like 3D-PTV are numerous.

Errors can be associated with each stage of the underlying data acquisition and

analysis. The first stage is the determination of the particle position in the image

space of each camera. Uneven lighting of the particles, imperfections in their geom-

etry, digital noise in the cameras and connections, sensor noise, and discretization

noise all lead to errors in the determination of the positions of the centre of mass of a

particle. In the second stage, the determination of particle correspondences between

cameras relies on the mathematical model describing the relation between their im-

age space and real space, accounting for the position of the cameras, refraction of

the light rays going through the water surface, lens distortion, etc. (see Section 3.3).

This model is not perfect and introduces bias into the calculation. Moreover, it is

built assuming a flat water-air interface. However, the present experiments are

subject to a variation in surface elevation. There is a random component of the

error produced by the gravity waves and small disturbances, and a systematic error

due to a concave water curvature generated by the recirculating gyre in the em-

bayment. This error source will be discussed in more detail later in this section.
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In the third stage, particle trajectories are reconstructed from the 3D positions of

the particles in real space at multiple times. Uncertainty in this stage occurs when

particle trajectories cross or get too close to each other. However, the algorithm

used to construct the trajectories is designed to resolve most of the uncertainties

by applying additional criteria, based on the particle’s characteristic velocity and

acceleration from previous time steps. Malik et al. (1993) state that if the ratio of

the average particle spacing to the mean particle displacement during one time step

is much greater than unity, then tracking is relatively easy and unambiguous. In the

present experiments this ratio is approximately 10 (the average distance between

the particles is ≈ 3− 4 mm, and the average particle displacement in one frame in

the main channel is about 0.3 mm). It is also important to note that the algorithm

has user-defined discontinuity parameters that determine the maximum expected

change in the velocity, acceleration, and direction of the particle in one time step.

These parameters must be adjusted based on the particular set of data to minimize

the errors. Velocities of the particles were calculated as first derivatives of a mov-

ing cubic spline fit to a particle trajectory, introducing a numerical error. Lastly,

interpolation of the velocities onto a regular grid for time-averaging purposes is the

final error source. From the above list of error sources, particular attention will

be focused on those that appear to play a key role in the measurement bias and

uncertainty, that is the quality of the camera calibration and the refraction errors

produced by surface oscillations.

The first source of error to be examined is the calibration of the cameras. The

calibration procedure consists of optimizing an algebraic relation between positions

in the image space of the cameras and positions in real space using the data points

provided by the calibration object of known geometry (see Section 3.3.2 for details).

However, this mathematical model and the optimized parameters are not perfect

and their inaccuracy introduces a systematic error. To quantify it the real positions

of points on the calibration object were compared to calculated positions. The root
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Figure 4.11: Discrete probability distributions of position-determination error in x,
y, and z-directions (plots a, b, and c respectively). The error is measured in still
water by comparing true and calculated positions of the dots on the calibration
object.

mean square (rms) of this error is equal to 0.03 mm in the x-direction, 0.03 mm

in the y-direction, and 0.20 mm in the z-direction (Figure 4.11). The vertical

uncertainty is an order of magnitude higher than the horizontal uncertainty, as is

expected as the cameras are arranged so that their axes are as close as possible to

perpendicular to the water surface in order to minimize the effects of refraction (see

Appendix A for details). It is important to note that the calibration procedure and

the consequent error check were performed in still water. Thus, these position errors

do not account for the effects of the flow, such as the curved air-water interface.

This brings us to the second major uncertainty in our measurements, which is

due to the gravity waves and the stationary curvature of the water surface. Gravity

waves appear in the channel when the natural frequency of the embayment couples

with the frequency of a flow structure (see Section 2.5 for details; also, the genesis

and the resonant mechanism of gravity waves will be discussed in the Results chap-

ter). The maximum gravity-wave amplitude for the current experiments is about 1

mm, resulting in the surface inclination of about 0.2◦. Also, the recirculating flow

in the embayment induces a stationary concave water surface due to the centrifugal
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force. Assuming solid-body rotation and given the maximum rotation rate of the

gyre for the current experiments, the angle of the surface concavity can reach about

0.1◦. Shear-layer eddies at the interface between the channel and the embayment

produce a concave water surface as well, but these disturbances are much smaller.

Statistically stationary curvature of the surface could have been theoretically ac-

counted for in the calibration procedure, but it is technically difficult to have a

calibration object that would not disturb the water flow. Consequently, calibration

was performed in still water and the error introduced by the curved water surface

has to be estimated, as well as the component of the random error generated by

gravity waves and shear-layer eddies.

Given the difficulty of estimating the contributions of every error source to the

total accuracy of the data, in addition to estimating each error independently of

the others, the calculation of the propagation of uncertainties remains extremely

complex. To circumvent this problem, the approach used herein is to run test cases

with known properties and statistics of the measured objects, which can result in

estimations of the total, cumulative error.

Two test methods were developed to assess the measurement errors that were

described above. The first method will calculate systematic and random compo-

nents of the velocity error and will determine their spatial variation. However, this

method while being very flexible does not account for the errors introduced at the

last stages of PTV, such as calculation of the trajectories. Thus, a second method

will be introduced to estimate the error more completely. However, it only allows to

calculate the average velocity error within the domain. By using the two methods

together, one can both estimate the overall error in a very robust way and get an

estimation of its components and their variation in space. For the first method a

pattern of known geometry was placed at the bottom of the embayment and pho-

tographed at the same frame rate, free-stream velocity, and all other characteristics

as in the main experiments. Velocity errors were estimated by comparing the true
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positions of the dots in the pattern with the measured ones. The second test was

performed using a “dumbbell-shaped” object. A particle was glued on each end of

a thin, black rod. This so-called “dumbbell” was moved around the measurement

volume while the water was running. The velocities of each particle were calculated

independently. The component of the obtained velocity along the vector connecting

the points should be zero, thus providing a way to measure velocity error in the

experiments. These two methods and their results are described in the following

two subsections. The last subsection is devoted to the calculation of the error in

the spatial velocity derivative by applying the continuity equation to the measured

data.

4.3.1 Velocity error test 1: stationary points in flowing water

In this test the difference between the measured and real positions of small

white dots fixed within the domain of interest will be estimated at different channel

free-stream velocities corresponding to those used in the main experiments. Velocity

errors will be calculated from the position errors. Ideally, it is desired to have the

dots equally distributed within the whole domain with their positions accurately

fixed. However, it is technically difficult to have such an arrangement without

disturbing the flow. To introduce the minimum disturbance a pattern of white

dots was printed on an extra thin pane of glass that was placed at the bottom of

the embayment. To ensure that this glass does not sag an extra rigid “Gorilla”

glass was used. The details of the procedure are given as follows. A pattern of 512

equally spaced white dots, 0.3 mm in diameter, was printed on adhesive paper using

a high quality laser printer. The paper was glued onto a 228x228 mm and 0.56 mm

thick pane of “Gorilla” glass and coated with transparent flat finish (Figure 4.12).

This glass pane with the pattern was placed on the bottom of the embayment and

fixed with thin strips of tape at its edges while dry. The channel was then run

at two free-stream velocities (U∞ = 0.13 and 0.19 m/s), matching the lowest and

the highest U∞ chosen for the main experiments. The pattern did not fully occupy
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Figure 4.12: Test pattern of white dots printed on the adhesive paper using a high-
quality laser printer. The paper was glued onto an extra thin (0.56 mm) pane of
“Gorilla” glass and coated with transparent flat finish.

the whole view, so for one of the conditions (U∞ = 0.13 m/s) several tests were

performed with the pattern placed near the downstream end of the bay, near the

upstream end of the bay, and in the region of the mixing layer. For the inside-the-

bay positions, the test was run for 10 seconds, whereas it was run for 40 seconds in

the mixing-layer region since the data converged more slowly there. From this test

it was determined that the region of highest errors is located in the mixing layer.

Thus, for the higher free-stream velocity (0.19 m/s), the test was run for only one

position in the mixing layer for a period of 30 seconds. Figure 4.13 shows the view

of the pattern from one of the cameras.

At every frame the measured positions of every dot in the pattern, rm(x, y, t),

were extracted and compared with their true position, rt(x, y). As a result, a

position error vector, Δr, associated with every dot, for every frame in the test,
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Figure 4.13: View of the error analysis pattern from one of the cameras. The
pattern was printed on adhesive paper using high quality laser printer. The paper
was then glued onto an extra thin (0.56 mm) pane of “Gorilla” glass and coated
with transparent flat finish.

was obtained:

Δr(x, y, t) = rm(x, y, t)− rt(x, y). (4.2)

The total error can be divided into systematic and random components, later re-

ferred to as ΔR and Δr′. Taking the time average of Δr(x, y, t) yields the systematic

error in position determination for every point at the bottom of the embayment,

where the pattern dots are located:

ΔR(x, y) =
1

N

N∑
i=1

Δr(x, y, ti), (4.3)
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where T = NΔt is the duration of the data set. The standard deviation of Δr(x, y, t)

quantifies the random component of the position-determination error for each point

in the pattern:

Δr′(x, y) =
√

(Δr(x, y, t)−ΔR(x, y))
2
. (4.4)

(Hereafter the overbar denotes time averaging and the angle brackets refer to

space averaging.) Figure 4.14 and 4.15 show the contour plots of the systematic

and random errors in position determination in x-, y-, and z-directions (plots a, b,

and c, respectively). It is clear from the graphs that the systematic error is largest

near the walls of the embayment, where the water surface curvature is largest. It is

also possible that capillary action is increasing the surface curvature near the walls.

The random component of the error is greatest in the region of the mixing layer,

where shear instability produces larger surface disturbances. It is important to note

that the systematic error calculation is generally less reliable as it can be affected

by imperfections of the pattern print, of the glass pane, or local flow disturbances

generated by the glass edges, whereas the random component is a fluctuation around

the mean, and hence, unaffected by these factors. For example, in Figure 4.14c one

can notice straight lines across the bay. That increase in the vertical systematic error

is most likely associated with a flow disturbance that was generated by the glass

pane (the lines correspond to the edges of the glass during different experiments).

However the magnitude of these local increases in the position error are small (< 0.2

mm) compared to the errors consistently appearing near the walls of the embayment

(up to 0.7 mm).

It is interesting to see that the random component of the error (0.01, 0.01,

and 0.07 mm in x-, y-, and z-directions, respectively) is much smaller than the

systematic error (0.11, 0.06, and 0.23 mm). Also, the systematic error calculated

in still water from the calibration-object data was 0.03, 0.03, and 0.2 mm, being

considerably larger than the random error component as well. One can therefore
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conclude that the effect of the water surface disturbance is significantly smaller than

the effects of the calibration errors and the effects of statistically stationary water

curvature. In other words, surface waves are not the most significant source of error

in our arrangment. At the same time, this raises the question of possible systematic

errors in the final measurements. It is thus necessary to estimate how these position-

determination errors propagate into the velocity calculation of a moving particle.

We will now proceed to the analysis of velocity errors.

The measured velocity of a particle, um, is roughly determined by:

um =
r2(x2)m − r1(x1)m

Δt
, (4.5)

where rm is the measured position vector, and Δt is the time between two frames.

If a measured position vector is equal to the true position vector plus the position

error:

rm = r+Δr, (4.6)

then um can be written as:

um =
(r2(x2) + Δr(x2))− (r1(x1) + Δr(x1))

Δt
= u+Δu, (4.7)

where u is the true particle velocity, and the error in velocity, δu, is therefore given

by:

δu =
Δr(x2)−Δr(x1)

Δt
. (4.8)

That is, the velocity error is determined by the difference in position error between

the starting and end points of the particle’s track between two successive frames.

Indeed, if one imagines the position error to be the same everywhere, it is clear

there will be no error produced in the velocity. Calculating the gradient in the

position error for each particle at every time step is excessive, so an estimate will
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be performed using Taylor series:

Δr(x1) = Δr(x2) +∇(Δr) · (x1 − x2) + ... (4.9)

Substituting the Taylor series expansion (4.9) into the (4.8) one obtains:

δu =
Δr(x2)− (Δr(x2) +∇(Δr(x2)) · (x1 − x2))

Δt
=

∇(Δr(x2)) · (x1 − x2))

Δt

(4.10)

Expanding yields the following vector components:

δu =
1

Δt

⎛
⎜⎜⎜⎜⎝

∂
∂x
(Δrx)(x1 − x2) +

∂
∂y
(Δrx)(y1 − y2) +

∂
∂z
(Δrx)(z1 − z2)

∂
∂x
(Δry)(x1 − x2) +

∂
∂y
(Δry)(y1 − y2) +

∂
∂z
(Δry)(z1 − z2)

∂
∂x
(Δrz)(x1 − x2) +

∂
∂y
(Δrz)(y1 − y2) +

∂
∂z
(Δrz)(z1 − z2)

⎞
⎟⎟⎟⎟⎠ . (4.11)

The error in velocity determination at a point is proportional to the gradient of

the position error and the particle displacement, divided by the time step between

the frames. The displacement of a particle per frame can be approximated by the

time-averaged flow velocity, u, resulting in the following estimate of the velocity

error:

Δu =

⎛
⎜⎜⎜⎜⎝

∂
∂x
(Δrx)ux +

∂
∂y
(Δrx)uy +

∂
∂z
(Δrx)uz

∂
∂x
(Δry)ux +

∂
∂y
(Δry)uy +

∂
∂z
(Δry)uz

∂
∂x
(Δrz)ux +

∂
∂y
(Δrz)uy +

∂
∂z
(Δrz)uz

⎞
⎟⎟⎟⎟⎠ . (4.12)

Given that the data obtained from the experiment with the glass pattern are two-

dimensional (i.e. it is only possible to take horizontal derivatives of the position

error field) the ∂
∂z
(Δr) is unknown. This means that only the horizontal variability

of the error can be accounted for in this test (a second error analysis test that will

account for the vertical variability of the error will be performed, see Section 4.3.2).

Thus, the final approximation for the velocity error is the following:

Δux = ∂
∂x
(Δrx)ux +

∂
∂y
(Δrx)uy

Δuy = ∂
∂x
(Δry)ux +

∂
∂y
(Δry)uy

Δuz = ∂
∂x
(Δrz)ux +

∂
∂y
(Δrz)uy.

(4.13)
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Performing these operations on the systematic, ΔR, and random, Δr′, com-

ponents of the position error vectors from Figures 4.14 and 4.15, one obtains the

systematic, ΔU, and random, Δu′, components of the velocity error:

ΔUx = ∂
∂x
(ΔRx)ux +

∂
∂y
(ΔRx)uy

ΔUy = ∂
∂x
(ΔRy)ux +

∂
∂y
(ΔRy)uy

ΔUz = ∂
∂x
(ΔRz)ux +

∂
∂y
(ΔRz)uy

(4.14)

Δu′
x = ∂

∂x
(Δr′x)ux +

∂
∂y
(Δr′x)uy

Δu′
y = ∂

∂x
(Δr′y)ux +

∂
∂y
(Δr′y)uy

Δu′
z = ∂

∂x
(Δr′z)ux +

∂
∂y
(Δr′z)uy.

(4.15)

The spatial derivatives of ΔR and Δr′ were approximated by the central differ-

ence scheme. As mentioned above, this analysis was performed for two free-stream

velocity cases, the lowest, and the highest (U∞ = 0.13 and 0.19 m/s). To obtain

velocity errors for these two cases the corresponding position error fields and time-

averaged velocities were used. First, the lower free-stream velocity flow case will be

discussed, then the higher one will follow.

Figure 4.16 shows the systematic velocity error in the embayment for the

(lower) free-stream velocity of 0.13 m/s. The first graph is the total velocity error

in absolute units of mm/s (denoted as norm ||ΔU|| = √
ΔU2

x +ΔU2
y +ΔU2

z ), and

the second graph is the velocity error as a percentage of the local average velocity.

It is important to note that on this graph and every other one hereafter, where the

error is expressed in terms of the percentage of the local average velocity, the ve-

locity field was filtered to avoid division by zero/very small numbers. The filtering

thresholds were chosen to be 0.4 mm/s for the lower free-stream velocity of 0.13

m/s, and 0.6 mm/s for the higher free-stream velocity of 0.19 m/s. These numbers

were chosen based on the absolute values of the velocity errors that will be shown

in this section. The fact that the velocity fields were filtered at these values means

that in the actual data, signals below these values, have to be filtered out as noise
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Figure 4.16: Contour plots of the norm of the systematic component of the velocity
error vector, ||ΔU||, for the (lower) free-stream velocity of U∞ = 0.13 m/s. a)
Absolute error. b) Error as a percentage of the local time-averaged velocity.

as well. From Figure 4.16, one observes that the regions of higher errors are the

edges of the embayment, along the walls, and the mixing layer region, where the

uncertainty varies from 0.3 mm/s to 2 mm/s. However, when divided by the local

time-averaged velocity, these errors become small (no more than 4%). One may

notice a stripe of larger error at about y = 0.18 m in Figure 4.16a. As was men-

tioned before, this line corresponds to the edge of the glass pane when it was placed

to cover the mixing layer region. The presence of this error means that there was

some disturbance generated by the glass. Thus, the overall error may be somewhat

overestimated in our analysis.

As was already clear from Figure 4.14, the uncertainty in the vertical direction

is much larger than that in the horizontal. Therefore, it is logical to expect the total

velocity error is dominated by its vertical component, so that the uncertainty in the

vertical direction must be further quantified. To this end, Figure 4.17, which plots

the vertical component of the systematic velocity error, shows that the bias can
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Figure 4.17: Contour plots of the vertical component of the systematic velocity
error ,ΔUz, for the (lower) free-stream velocity of U∞ = 0.13 m/s. a) Absolute
error. b) Error as a percentage of the local time-averaged velocity.
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Figure 4.18: Empirical cumulative density function of the vertical component of the
systematic velocity error, ΔUz, as a percentage of the local time-averaged velocity,
for the (lower) free-stream velocity of U∞ = 0.13 m/s.
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reach 1 mm/s or 20% of the local velocity in certain small regions. Those regions

primarily correspond to zones of small vertical velocity. As was previously noted,

the data on the systematic position error is less reliable than the data pertaining

to the random component of the position error. (This is due to the imperfections

of the glass pane, the printing of the pattern, and/or the disturbance of the flow at

the edges of the glass pane.) Figure 4.18 shows the empirical cumulative density

function of the vertical component of the systematic velocity error. Based on this

graph, 98% of the data has a bias of less than 10% of the local vertical velocity, and

96% of the data have a bias less than 5%. Thus, even if we assume the systematic

component of the error to be correct, it is clearly small enough to continue with

our analysis.
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Figure 4.19: Contour plots of the norm of the random component of the velocity
error vector, ||Δu′||, for the (lower) free-stream velocity of U∞ = 0.13 m/s. a)
Absolute error. b) Error as a percentage of the local time-average velocity.

The next step is the random velocity error that is primarily produced by the

water surface disturbances. Figure 4.19 shows the total random component of the

velocity error in absolute units of mm/s and as a percentage of the local average
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Figure 4.20: Contour plots of the random components of the error in horizontal
(a, b) and vertical velocity (c, d), for the (lower) free-stream velocity U∞ = 0.13
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velocity calculated using (4.15). The error in Figure 4.19-b does not exceed 0.5% of

the total velocity. Similarly to the systematic error, one can separate this error into

horizontal and vertical components as there is a danger that the vertical component

will be much larger in terms of the ratio to the local velocity. Indeed, Figure 4.20

shows that the horizontal component of the velocity error only goes up to 0.3%,

whereas vertical error reaches 20% in some points. Even though some points have

relatively large vertical velocity error, 96% of the data have an uncertainty of less

than 1%, and 98% of the data have an uncertainty of less than 2% (Figure 4.21).
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Figure 4.21: Empirical cumulative density function of the vertical component of the
random velocity error, Δu′

z, as a percentage of the local time-averaged velocity, for
the (lower) free-stream velocity of U∞ = 0.13 m/s.

The previous analysis was performed for the lower free-stream velocity (U∞ =

0.13 m/s). It is natural to expect the errors to be larger for the case of the higher

free-stream velocity, as the water surface disturbances increase, and sloshing waves

become more prominent. Indeed, we find that the absolute values of the errors

are larger for U∞ = 0.19 m/s. However the flow velocities are higher as well,

hence, the relative error does not change as much as one could expect. In fact,

the systematic velocity error did not increase at all with the increased free-stream

velocity (Figure 4.22 and 4.23). The overall average of the total systematic error

remained the same as for the lower free-stream velocity (Figure 4.22), whereas

the vertical component of the systematic velocity error decreased from 0.32 to 0.17

mm/s (Figure 4.23). This may partially be attributed to the difference in the spatial
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Figure 4.22: Contour plots of the norm of the systematic component of the velocty
error vector, ||ΔU||, for the (higher) free-stream velocity of U∞ = 0.19 m/s. a)
Absolute error. b) Error as a percentage of the local time-averaged velocity.
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Figure 4.23: Contour plots of the vertical component of the systematic velocity
error ,ΔUz, for the (higher) free-stream velocity of U∞ = 0.19 m/s. a) Absolute
error. b) Error as a percentage of the local time-averaged velocity.
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averaging area. For the lower U∞ the data is available for the whole embayment

including the regions of high error adjacent to the walls, whereas for the higher

U∞ only the data in the middle of the bay and in the shear layer are available.

However, if one compares the absolute values of the systematic velocity error in the

region that is available for both flow cases, one can see that they are very similar.

This means the statistically-stationary curvature of the water surface did not change

significantly with the increased free-stream velocity. On the other hand, the overall

average of the total random velocity error increased from 0.03 mm/s to 0.09 mm/s

(Figure 4.24). Its vertical component also increased from 0.03 mm/s to 0.08 mm/s

(Figure 4.25). However, as mentioned before, the time-averaged flow velocity also

increased, so in terms of the ratio to the local velocity, the percentage error did not

increase as much, see Figures 4.24-b and 4.25-b.

Finally, to ensure that the measurement most sensitive to error - the vertical

velocity - is still within tolerable uncertainty levels, even for the larger free-stream

velocity, we present two empirical CDFs for the systematic and random compo-

nents of the vertical velocity error. Figure 4.26 shows that 96% of the data has

a systematic velocity error less than 4%. Figure 4.27 shows that 96% of the data

have random velocity errors less than 2%.

This method of error analysis allowed the calculation of the spatial distribu-

tions of both systematic and random errors in velocity measurements. It is clear

that the regions near the walls of the bay have much larger error than the rest of

the flow. Based on this information, when presenting the results of the main exper-

iments, the data within 5 mm of the wall will be excluded. It was also clear that

the second most error-prone region is the shear layer. However, it was consistently

shown that the errors are still within acceptable limits. The relative velocity error

was calculated for the whole investigation domain by dividing the local absolute

velocity error by the local average velocity obtained from the experiments. As ex-

pected, the relative error is high when the absolute velocities go to zero. A filtering

71



x, m

y,
m

 

 

b)

0 0.05 0.1 0.15 0.2 0.25
−0.05

0

0.05

0.1

0.15

0.2

0.25

‖Δu′‖

‖u‖
,%

0 5 10 15 20

x, m

y,
m

< ‖Δu′‖ > = 0.09 mm/s

 

 

a)

0 0.05 0.1 0.15 0.2 0.25
−0.05

0

0.05

0.1

0.15

0.2

0.25

‖Δu′‖, mm/s
0 0.2 0.4 0.6 0.8 1

Figure 4.24: Contour plots of the norm of the random component of the velocty
error vector, ||Δu′||, for the (higher) free-stream velocity of U∞ = 0.19 m/s. a)
Absolute error. b) Error as a percentage of the local time-average velocity.
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procedure was applied to these data with varying cutoff values for average local

velocity until approximately 95% of the data had a velocity error below 5%. From

this, one could conclude that velocities below 0.4 and 0.6 mm/s could be consid-

ered as substantially affected by errors for free-stream velocities of 0.13 and 0.19

m/s, respectively. Based on this the final data were filtered using these thresholds.

Both systematic and random velocity errors are dominated by their vertical com-

ponents. Nevertheless, normalizing (relatively large) vertical errors with (relatively

low) vertical velocities showed that the measurements of the vertical velocity alone

are reliable. It was also interesting to find that systematic errors are playing a more

important role overall than random ones. This is somewhat surprising since non-

stationary disturbances on the water surface, and sloshing waves were expected to

pose a serious ambiguity to the measurements. It was found that calibration errors

and statistically-stationary water curvature create a significantly larger error than

the non-stationary surface disturbances. Also, the increase in the free-stream veloc-

ity did not have an effect on the systematic error. It did, however, result in higher

random velocity errors. Most importantly, it was shown that for the most difficult

case of a high free-stream velocity, where gravity waves have the largest amplitudes,

it is nevertheless possible to obtain accurate PTV measurements through the free

surface.

The above error analysis, of course, does not capture all the uncertainties that

affect the quality of the data. Two main parameters that are not included are the

variability of the position error in the vertical direction, ∂
∂z
(Δr), and the errors

that appear in the later stages of the PTV analysis, such as particle tracking and

velocity calculations. To address these two issues a second method of error analysis

was developed and implemented to capture the factors that were missing above.
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Figure 4.26: Empirical cumulative density function of the vertical component of the
systematic velocity error, ΔUz, as a percentage of the local time-averaged velocity,
for the (higher) free-stream velocity of U∞ = 0.19 m/s.
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Figure 4.27: Empirical cumulative density function of the vertical component of the
random velocity error, Δu′

z, as a percentage of the local time-averaged velocity, for
the (higher) free-stream velocity of U∞ = 0.19 m/s.

74



4.3.2 Velocity error test 2: moving points in flowing water

To calculate the velocity uncertainty of a PTV (or a PIV) system it is desirable

to conduct a test in which the exact velocities of the tracking points are known.

One of the common methods is to measure the velocities of points on a rotating disk

(see, for example, Weitbrecht et al. (2002)). However, this method is not ideal for

the current set-up primarily because of the imaging through the free surface. In a

rotating-disk test the points always move on the same circular trajectories, whereas

from the previous section we know that velocity error at a point depends on the

direction in which the particle is moving. Also, the rotating disk is flat and will

again be insensitive to the vertical derivative of the position error. A 3D complex

object could have been constructed, but in that case it would have been impossible

to rotate it inside the bay without creating significant disturbances to the flow in

the embayment, including the water surface.

An alternative way of testing the quality of the velocity measurements that was

more suitable to the experimental conditions had to be developed. There exists a

well-known camera calibration technique for PTV systems called dynamic calibra-

tion or a dumbbell calibration (Gülan et al., 2012). The idea is to move two points

with a fixed distance between them within the domain of interest. Afterwards, the

calibration parameters are optimized while maintaining the detected distance of the

dumbbell points. In this study we expand on this idea, exploiting the principle that

these two points, which have a constant separation, must also have zero relative

velocity along the vector connecting them. To this end, two particles (polyethylene

microspheres 212-250 μm in diameter), identical to those used for the experiments,

were glued onto a black piece of plastic, and separated by a distance of 9.36 mm.

A thin handle was attached to the dumbbell to move the target inside the

domain of investigation (Figure 4.28). Recordings of this dumbbell-shaped target

moving around the field-of-interest were made for 3 runs (10 seconds each) for each

of two free-stream velocities (U∞ = 0.13, 0.19 m/s). After discarding the data that
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Figure 4.28: Dumbbell-shaped target with two polyethylene microspheres 212-250
μm in diameter glued onto it, with a distance 9.36 mm between them.

had obvious problems (for example when one of the points on the dumbbell was

not visible because of the wrong angle of the plastic support) 23 seconds of data for

U∞ = 0.13 m/s, and 14 seconds for U∞ = 0.19 m/s remained. It was attempted to

move the target along the streamlines with approximately the same average velocity

as the flow rotation in the embayment, to the extent possible, in order to obtain

the same type of velocity errors that occur in the experiments. An example of a

dumbbell target trajectory is given in Figure 4.29.
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Figure 4.29: Example of the trajectories of the 2 particles on the dumbbell target,
free-stream velocity of U∞ = 0.13 m/s.
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The recordings were post-processed using the same procedure as the actual

experiments: particle positions were determined using Gaussian fits, particle cor-

respondence obtained through the epipolar line intersection technique (both using

OpenPTV (2012), and the calculation of particle velocities was performed using

centred differences with low-pass filtering using a moving polynomial fitted to 21

trajectory points (Lüthi et al., 2005). The distance between two particles, d, was
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Figure 4.30: Empirical probability density functions of the time series of the distance
between two particles on the dumbbell target, d(t). a) U∞ = 0.13. b) U∞ = 0.19
m/s.

calculated as:

d =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

where x, y, and z are the coordinates of the particles. The distance between the

points is constant, so the standard deviation of the d(t) gives us an estimation of

the position error of the system.

The velocity of the two dumbbell particles toward or away from each other was

calculated as follows. If the velocity of the first particle is u1 and the velocity of
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the second particle is u2, then the velocity of particle one with respect to the other

is equal to u1 − u2. The scalar projection of the relative velocity (u1 − u2) onto

the vector connecting the two particles, k, is

u1,2 =
(u1 − u2) · k

|k| .

Ideally, this value has to be equal to zero at all times, as the particles are attached

to a solid body and are not moving toward or away from each other. The deviation

of u1,2 from zero can be used as a measure of velocity error in the experiment.

Thus, the time series of d(t) and u1,2(t) were analysed. Figure 4.30 shows the

probability density functions of d(t) for two free-stream velocities (0.13 and 0.19

m/s). The standard deviations are equal to 0.011 and 0.012 mm respectively. In

order to compare this result with the previous test (with the stationary pattern of

known geometry), we need the total position error for the two free-stream velocities.

From Figures 4.14 and 4.15 one can calculate the total position error as the square

root of the sum of the squares of the components. After that, we sum the random

and systematic parts to obtain the total position ambiguity of 0.32 mm for U∞ =

0.13 m/s. For U∞ = 0.19 m/s (the data is not shown) the same operations result in a

total position error of 0.38 mm. These values are more than an order of magnitude

larger than those obtained with the dumbbell target test. This means, that the

relative position error between points that are close together (for the dumbbell

target it is about 10 mm) is more than an order of magnitude smaller than the

absolute position error in some regions. This explains why it is possible to get quite

accurate velocity measurements even with relatively large absolute position errors

(0.32 mm and 0.38 mm).

Figure 4.31 shows the probability density functions of u1,2(t) for two free-stream

velocities (0.13 and 0.19) with standard deviation values of 0.52 and 0.76 mm/s,

respectively. These numbers are larger than the velocity errors obtained from the

previous test with the stationary pattern, in which the total velocity error (random
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Figure 4.31: Empirical probability density functions of the time series of the pro-
jection of the relative velocity on the separation vector between the two points on
the dumbbell target, u1,2. a) U∞ = 0.13. b) U∞ = 0.19 m/s.

plus systematic) was 0.16 mm/s and 0.22 mm/s for the two free-stream velocities

(0.13 and 0.19 m/s respectively). The fact that the position determination error

is so small in the dumbbell target test and the velocity error is larger means that

the error in the velocity measurements is mainly produced by the polynomial fit

procedure that was not accounted for in the previous test. If that is true, the error

will be largest at the ends of the trajectories where the quality of the fit is at its

worst. Indeed, if one filters the data from the dumbbell target test by eliminating

the first two and the last two points of each trajectory (trajectories are usually

199 points long), the rms values of the velocity errors are reduced to 0.39 and 0.68

mm/s for U∞ = 0.13 and 0.19 m/s, respectively (Figure 4.32).

The dumbbell target was moved inside the bay by hand and the trajectories

obtained were thus not especially smooth. Just a little shake of the hand could

produce micro-movements that are not characteristic of the flow. Figure 4.33 shows
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Figure 4.32: Empirical probability density functions of the time series of the projec-
tion of the relative velocity on the separation vector between the two points on the
dumbbell target, u1,2, filtered by eliminating the first two and the last two points
in every trajectory. a) U∞ = 0.13. b) U∞ = 0.19 m/s.
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Figure 4.33: Side view of the trajectories of the particles on the dumbbell target,
U∞ = 0.13 m/s.
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Figure 4.34: Side view of the trajectories of the particles, U∞ = 0.13 m/s.

an example of such trajectories of the dumbbell target for the free-stream velocity

of 0.13 m/s, and Figure 4.34 presents the particle trajectories from one of the actual

experiments for comparison. The more complex the trajectory is, the more error is

produced by the polynomial fit. It is hence argued that the values of velocity error

of 0.52 and 0.76 mm/s are somewhat overestimated. It is also recommended that a

better method for moving the dumbbell target around the investigation domain be

used in the future. This, however, was not pursued in the present work given that

the velocity errors were demonstrated to be small, less than 1 mm/s, even if they

were overestimated.

The amount of data collected in tests with the dumbbell target does not allow

one to draw conclusions about the spatial distribution of the velocity error. How-

ever, to check whether the tendencies generally correspond to the velocity error

maps obtained in the previous chapter, a contour map of (u1,2)rms for the free-

stream velocity of 0.13 m/s is presented in figure 4.35, where the rms values of u1,2
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Figure 4.35: Top view of the trajectories of the particles on the dumbbell target,
U∞ = 0.13 m/s. The labels are the rms of the velocity of the dumbbell points to-
wards or away from each other, rmsu1,2 . The statistic is calculated from trajectories
segments approximately 30 to 199 time steps long.
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are calculated for segments of trajectories from 30 to 199 time steps long. It is clear

from this graph that the error is at its minimum in the centre of the embayment

and grows towards the edges. The same tendency was observed in the previous test

with the stationary pattern.

In conclusion, the two error analysis tests assessed velocity errors in two differ-

ent ways. The test with the stationary flat pattern allowed one to construct velocity

error contour maps and identify the most problematic regions. The areas within 5

mm of the walls, having the highest velocity errors, are eliminated from the final

data. Also, thresholds were determined below which the velocities approached the

noise level and therefore had to be filtered. The second test with the dumbbell-

shaped target was designed to account for the vertical derivative of position error,

∂
∂z
(Δr), the error produced by the velocity calculation using the centred-difference

scheme, and the filtering procedure of the polynomial fit to the particle trajectories.

The dumbbell target test gave velocity errors of 0.52 and 0.76 mm/s for the two

free-stream velocities. These values are a little larger than the cutoff values of 0.4

and 0.6 mm/s obtained from the first test. However, it is argued that they are

somewhat overestimated. It was shown that a significant part of the velocity error

is produced by the polynomial fit filtering procedure at the ends of the trajectories.

Eliminating only 2 points at the beginning and end of each trajectory (which are

usually 199 points long) allows to reduce the errors to 0.39 and 0.68 mm/s, or by 10-

25%, for U∞ = 0.13 and 0.19 m/s, respectively. (This was not implemented in the

present work.) Table 4.1 and 4.2 provide a summary of all the uncertainty values

for all the position and velocity components. The absolute position determination

error is about 1-1.2% of the total depth of the flow. However, the relative position

error measured for the separation distance of 10 mm is 0.04%. This is why it was

possible to obtain accurate velocity measurements even though absolute position

error was not small. Thus, the error in total velocity determined from different tests

and free-stream velocities varies from 0.2 to 0.4% of U∞. It is hence fair to conclude
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as a result of this analysis that even for the most difficult case of a high free-stream

velocity where gravity waves have the largest amplitudes, it is nevertheless possible

to obtain accurate PTV measurements through the free surface.
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Table 4.1: Summary of the position errors obtained from two uncertainty analy-
sis experiments: i) the test with the stationary pattern of known geometry (Sec-
tion 4.3.1), and ii) the test using a dumbbell-shaped target (Section 4.3.2).

Position error, mm

Quantity U∞, m/s Stationary pattern test Dumbbell target test

Systematic Random Total Total (relative pos. er.)

x
0.13 0.11 0.01 0.12
0.19 0.07 0.03 0.10

y
0.13 0.06 0.01 0.07
0.19 0.09 0.03 0.12

z
0.13 0.23 0.07 0.30
0.19 0.16 0.18 0.34

|�r| 0.13 0.26 0.07 0.32 (1.1% of H) 0.011 (0.04% of H)
0.19 0.20 0.18 0.38 (1.2% of H) 0.012 (0.04% of H)

Table 4.2: Summary of the velocity errors obtained from two uncertainty analy-
sis experiments: i) the test with the stationary pattern of known geometry (Sec-
tion 4.3.1), and ii) the test using a dumbbell-shaped target (Section 4.3.2).

Velocity error, mm/s

Quantity U∞, m/s Stationary pattern test Dumbbell target test

Systematic Random Total Total

u
0.13 0.18 0.01 0.19
0.19 0.12 0.03 0.15

v
0.13 0.10 0.005 0.10
0.19 0.08 0.02 0.10

w
0.13 0.32 0.03 0.35
0.19 0.17 0.09 0.26

|�u| 0.13 0.38 0.03 0.41 (0.3% of U∞) 0.52 (0.4% of U∞)
0.19 0.23 0.10 0.33 (0.2% of U∞) 0.76 (0.4% of U∞)
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4.3.3 Velocity-derivative errors

In order to assess the quality of the derivative measurements by the 3D-PTV

system the continuity principle is employed. The continuity equation for an incom-

pressible fluid states that the total velocity divergence at every point in the flow is

identically zero:

∇ · u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (4.16)

Thus, velocity divergence was calculated for every point in the domain and its

deviation from zero was used as a measure of the magnitude of the error. The

relative error was assessed as the ratio between the total divergence and the vertical

derivative point by point. Taking the rms values of the time series of this value

results in the overall estimation of the error magnitude (Figure 4.36). The derivative

uncertainty appears very localized; it is negligible almost everywhere except at a

few points where it is as high as 10%. These “hot spots” may be either related

to a random event of insufficient particle seeding density in a particular region

of the flow or to a zero vertical velocity derivative at this point. However, the

probability density distributions of the relative derivative error in the whole domain

show very low rms values: 0.3, 0.7 and 1.7% for the three free-stream velocity

cases U∞ = 0.13, 0.17, and 0.19 m/s, respectively. The derivative error (as well as

the velocity error described in the previous section) is higher for the higher free-

stream velocities due to stronger surface perturbations produced by gravity waves,

which are more pronounced at higher U∞. Nevertheless, it is fair to conclude that

the quality of the derivative measurement for all flow cases is good and the data

obtained is reliable.
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Figure 4.36: Colour plots of the rms values of the relative velocity derivative error,
∇·u

∂w/∂z
, at different elevations above the bed (z/H). The three columns correspond

to cases of different free-stream velocities. a) U∞ = 0.13. b) U∞ = 0.17. c) U∞ =
0.19 m/s.
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CHAPTER 5
Results and discussion

This chapter presents the results of 3D-PTV measurements and their analysis.

First, we introduce the general flow pattern by presenting some of its basic statistics

(Section 5.1). The dependence on the free-stream velocity and some normalization

issues are briefly discussed. Second, attention is focused on the three-dimensional

features of the flow (Section 5.2). The geometry of the exchange through the inter-

face between the embayment and the main flow is shown to be a function of depth.

A “tea-cup” secondary circulation generated by the bottom boundary layer and the

main gyre is described. Production of Görtler-like vortices at the boundary layer at

the embayment side walls is also shown. Two- and three-dimensional characteristics

of the flow are discussed based on spectral analysis. Gravitational instability of the

embayment flow is addressed in Section 5.3 along with the resonant mechanism of

gravity-wave amplification. The exchange coefficient between the main channel and

the embayment is calculated and discussed in Section 5.4.

5.1 General flow pattern and free-stream velocity dependence

The general flow field observed in the current experiments corresponds well

to previous research on shallow embayments (Babarutsi & Ganoulis, 1989; Altai &

Chu, 1997; Kimura & Hosoda, 1997; Uijttewaal et al., 2001; Weitbrecht et al., 2008;

Constantinescu et al., 2009; Tuna et al., 2013) as will be shown by examining the

basic statistics of the flow. The time-averaged horizontal velocity and vorticity fields

illustrate the geometry and intensity of the large-scale circulation in the embayment.

Instantaneous vorticity fields show Kelvin-Helmholtz vortical structures in the shear

zone. Dependence on the free-stream velocity will also be discussed.
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Figure 5.1: Top view of the time-averaged horizontal velocity vectors averaged in

depth with their magnitude normalized by the free-stream velocity,

√
u2+v2

U∞ . a) U∞
= 0.13. b) U∞ = 0.17. c) U∞ = 0.19 m/s. Grid density is reduced by a factor of
two for visualization purposes.
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Figure 5.2: Top view of the depth-averaged instanteneous horizontal velocity fluc-
tuation vectors in the embayment’s shear zone, with their magnitude equal to√
(u− u)2 + (v − v)2. a) U∞ = 0.13. b) U∞ = 0.17. c) U∞ = 0.19 m/s.
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The general flow pattern in the embayment is a large gyre with a stagnation

region or “dead zone” in its centre (see Section 2.1). This is shown in the series of

normalized horizontal velocity vector plots in Figure 5.1. (Note that hereafter all

figures with three panels present three cases of different free-stream velocities, U∞

= 0.13, 0.17, 0.19 m/s.) The interface between the main flow and the embayment

is occupied by the shear region with high transverse velocity gradients. In this

region Kelvin-Helmholtz instability dominates the flow, resulting in the generation

of vortical structures with a vertical axis of rotation that are shed from the upstream

corner of the embayment, as seen in Figure 5.2, which presents the instantaneous

depth-averaged velocity fluctuations in the mixing layer. In the corners of the cavity

and at the leading (upstream) edge adjacent to the shear zone, there are also regions

of low velocity, which can sometimes form smaller recirculating zones, as seen for

example in Tuna et al. (2013).

Vertical vorticity plots (Figure 5.3) confirm the same flow structure as was

presented in Figures 5.1 and 5.2: a high positive (counterclockwise) vorticity in

the shear zone generated by Kelvin-Helmholtz instability and a less intense, but

persistent, large-scale circulation in the embayment. In the corners of the bay and

near the leading edge regions of negative vorticity indicate smaller recirculating

zones of opposite sign. Surprisingly, the shear region appears to be more intense

in the lower free-stream velocity flow. This is arguably the result of gravity waves

that are very weak for U∞ = 0.13 m/s and are quite pronounced for U∞ = 0.19

m/s. Gravity waves tend to have a stabilizing effect on shear instability, resulting

in reduced vorticity production (Balmforth, 1999; Kolyshkin & Ghidaoui, 2002).

It is common in the literature to consider the processes in the embayment as

linearly dependent on the free-stream velocity (see chapter 1.1 for details). For

example, Booij (1989) first suggested that the exchange process between a square

harbour and the main channel is governed by a single time constant of a first-

order system. Tuna et al. (2013) used a free-stream normalization in order to
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Figure 5.3: Contours of time-averaged vertical vorticity ωzL
U∞ at different elevations

above the bed (z/H). The three columns correspond to cases of different free-stream
velocities. a) U∞ = 0.13. b) U∞ = 0.17. c) U∞ = 0.19 m/s.
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Figure 5.4: Contours of time-averaged horizontal speed
√
u2+v2

U∞ at different elevations
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velocities: a) U∞ = 0.13; b) U∞ = 0.17; c) U∞ = 0.19 m/s.
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remove the dependence of the transverse velocities and turbulence characteristics

on the flow discharge. Indeed, the general flow pattern and its intensity is similar

when normalized by U∞ at all three increasing free-stream velocities (Figure 5.1).

However, at higher free-stream velocities the high-momentum fluid, deflected by

the end wall of the embayment, propagates further into the embayment as seen

in the normalized velocity contour plots of Figure 5.4. This indicates that the

strength of the gyre is not linearly dependent on the free-stream velocity. (Note

that Figure 5.4 is another style of data representation that will be used throughout

this chapter: 5 rows correspond to different elevations above the bed, z/H, and three

columns a, b, and c correspond to three cases of different free-stream velocities.)

Figure 5.3 is evidently showing the same characteristic. The (dark pink) contour line

of higher vertical vorticity is penetrating further into the embayment for the higher

free-stream velocity, even though the vorticity modulus presented on the plots is

normalized by U∞. This means, that normalization with free-stream velocity should

be used with care, noting that not every flow characteristic is linearly dependent

on it. It will be shown below (in Section 5.3) that even the exchange process shown

to be a linear function of U∞ by many researchers (Booij, 1989; Altai & Chu, 1997;

Uijttewaal et al., 2001) may drastically change in the presence of gravity waves and

therefore is not always a linear function of U∞.
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5.2 Three-dimensional flow structures

One of the main objectives of this work is to investigate whether a two-

dimensional model is a sufficient approximation of a shallow embayment flow, and

if not, whether it can be corrected to account for the feedback of the 3D effects on

the 2D fields (see Section 2.1 for details). To this end, this section is devoted to the

analysis of the flow structures that deviate from the depth-averaged field.

5.2.1 The exchange velocity at the interface

As first observed by Gaskin et al. (2002) and Mizumura et al. (2003) particles

tend to leave the embayment close to the surface and to enter it along the bed.

Furthermore, McCoy et al. (2008) presented a detailed picture of the exchange flow

for the case of a shallow embayment with a sudden increase in depth to the main

channel. They showed that, on average, the fluid leaves the embayment via the top

layer in the upstream half of the interface, and enters it mid-depth (almost over the

whole length of the embayment). McCoy et al. (2008) attributed the 3D-effects in

this flow to this geometry (a step at the channel bed), stating that in the regular

configuration with a flat bottom, the flow is generally expected to have a shear

zone dominated by large-scale quasi-two-dimensional coherent structures. In the

present experiments there is no difference in the bed elevation between the main

channel and the embayment and observations show a three-dimensional exchange

flow through the shear layer similar to the one observed by McCoy et al. (2008).

As seen in the transverse velocity plots in Figure 5.5 the exchange flow between

the embayment and the main channel is highly dependent on depth. The flow

leaves the embayment (blue) at the surface and it enters it along the bottom (red).

The flow leaving the embayment is confined in the vertical to be at z/H < 0.28,

while the flow entering the embayment occurs between z/H = 0.48 and 0.9. The

switch of the direction does not appear at the mid-depth. Instead, it happens

around z/H=0.69. Another observation from figure 5.5 is that the inflow into the

embayment is more localized in the x-direction than the outflow. For example, at
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z/H=0.48 it enters the embayment through a very small opening at the downstream

end of the interface and this opening appears smaller for a lower free-stream velocity

(a − 3) and more extended in the x-direction for the higher free-stream velocity

(c − 3). This difference may be attributed to either the effect of gravity waves

(see Section 5.3), that are more prominent for higher free-stream velocities, or to

a change in the streamwise flow structures that appear in the shear zone (see the

left-hand side of the Figure 5.16).

The next three Figures 5.6, 5.7, 5.8 present vertical slices of transverse velocity

at three positions y/L = 0.042, 0.021, and 0, respectively. At y/L = 0.042 or

10 mm into the embayment from the interface (Figure 5.6), one can observe that

the direction of flow changes from the upstream end of the embayment to the

downstream end, rather than with depth. However, the inflow along the bottom and

outflow along the surface is still noticeable. As mentioned in the previous paragraph,

the extent of the area through which the flow is entering the embayment appears

thinner and more intense for the lower free-stream velocity than for the higher

ones. Another interesting feature is the separation of the outflow velocity into two

parts; the blue region has two peaks, one near the surface and another closer to

the bottom. The bottom outflow eventually turns and continues to recirculate in

the embayment, whereas the top one leaves the bay as seen in Figures 5.7 and 5.8.

Closer to the interface at y/L = 0.021 or 5 mm into the embayment (Figure 5.7)

the distribution of the transverse velocity magnitude becomes more elongated in

the x-direction. At y/L = 0 (Figure 5.8) the outflow is mainly localized at the

surface. One also can observe a strong outflow near the downstream wall of the

embayment. However, it disappears at y/L=0.021 suggesting that it is not actually

coming from inside the bay. From visual observation it appears that the mixing

layer is deflected a little bit towards the embayment and at the downstream end its

centreline ends at the the wall, not at the corner of the embayment. This creates a

small region near the downstream corner where the flow first enters the embayment
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y/L=0.042 (or 10 mm into the embayment). a) U∞ = 0.13; b) U∞ = 0.17; c) U∞
= 0.19 m/s. d) Location of the vertical plane.

98



x, m

z,
 m

U∞ =0.13 m/s

At y/L = 0.021

Upstream Downstreama)

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

x, m

z,
 m

U∞ =0.17 m/sb)

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

x, m

z,
 m

U∞ =0.19 m/sc)

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

v/U∞

−0.14−0.12 −0.1 −0.08−0.06−0.04−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

d)

Figure 5.7: Contours of time-averaged transverse velocity v
U∞ at a vertical plane at

y/L=0.021 (or 5 mm into the embayment). a) U∞ = 0.13; b) U∞ = 0.17; c) U∞ =
0.19 m/s. d) Location of the vertical plane.
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Figure 5.8: Contours of time-averaged transverse velocity v
U∞ at a vertical plane at

y/L=0.0 (at the interface between the main flow and the embayment). a) U∞ =
0.13; b) U∞ = 0.17; c) U∞ = 0.19 m/s. d) Location of the vertical plane.
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region and then gets ejected (Figure 5.9) creating an impression of an outflow from

the embayment.

In summary, the observations show that the exchange between the embayment

and the main channel is highly three-dimensional even in an embayment with a

uniform bed. The flow is penetrates the bay along the bed closer to the downstream

end of the interface. As it enters, it rapidly occupies the whole depth. It then

circulates around in the large-scale gyre, rising closer to the surface. The flow then

separates and the top layer leaves the embayment, whereas the rest continues to

circulate. The area through which the water is leaving the embayment is confined to

less than 20% of its depth. It leaves predominantly along the surface, whereas the

inflow is mostly coming along the bed but is more concentrated near the downstream

end of the interface.

Figure 5.9: Schematic of the origin of the strong outflow region at the doswnstream
wall of the embayment.
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5.2.2 Secondary circulation in the main gyre

The first evidence of three-dimensional secondary circulation within the em-

bayment was presented by Gaskin et al. (2002). As was described in Section 2.4,

it originates in the deceleration of the main gyre by bottom friction, where the

centrifugal force cannot balance the pressure gradient, resulting in radial inflow

towards the centre of the embayment (Schlichting, 1968). It was observed that in

a shallow embayment particles are sometimes drawn into the gyre core along the

bottom and settle. They were also observed to be sporadically picked up from the

bed (Jamieson & Gaskin, 2007b). However, if this process has a significant effect

on time-averaged statistics is still unclear. Also, the exact shape and strength of

this circulation is not well defined.

To learn more about this phenomenon streamlines were plotted from the time-

averaged velocity field (Figure 5.10). They were calculated as lines tangent to

the horizontal time-averaged velocity vectors starting at arbitrary points within

the embayment organized in a regular grid (indicated by black dots). The three-

dimensional secondary circulation can be clearly observed in these plots (Figure 5.10).

Everywhere above z/H = 0.48 the streamlines spiral outwards. In other words, the

flow rotates in a counterclockwise fashion with increasing radius of rotation. The

radial inflow changes sign at its inflection point, which occurs between z/H = 0.1

and 0.4, where the streamlines are closed and the flow does not change radius of

curvature (Figure 5.10 row 4). An intense counterclockwise inward spiralling can

be seen at z/H = 0.07 (Figure 5.10 row 5), where the streamlines originating at the

walls spiral into the core region after only two full turns around the embayment.

In order to show the three-dimensional effect more clearly we will now subtract the

depth average from the flow field. Figure 5.11 shows the streamlines of the flow

that deviates from the depth average. The inflow near the bottom appears intense

and uniform (Figure 5.11 bottom row). The outflow at z/H > 0.48 is less well

defined. Sometimes the maximum divergence appears to be a point (for example,
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Figure 5.10: Streamlines of the time-averaged horizontal velocity field at different
elevations above the bed (z/H). The starting locations of the streamlines are
indicated with black dots. The three columns correspond to cases of different free-
stream velocities. a) U∞ = 0.13. b) U∞ = 0.17. c) U∞ = 0.19 m/s.
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Figure 5.11: Time-averaged streamlines of the 3D mode of the velocity field (the
depth-averaged component is subtracted from every point) at different elevations
above the bed (z/H). The starting locations of the streamlines are indicated with
black dots. The three columns correspond to cases of different free-stream velocities:
a) U∞ = 0.13; b) U∞ = 0.17; c) U∞ = 0.19 m/s.
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Figure 5.12: Time-averaged streamlines of the 3D mode of the velocity field (the
depth-averaged component is subtracted from every point) at different elevations
above the bed (z/H) around the inflection depth of the radial velocity. The starting
locations of the streamlines are indicated with black dots. The three columns
correspond to cases of different free-stream velocities: a) U∞ = 0.13; b) U∞ = 0.17;
c) U∞ = 0.19 m/s.
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panel a-3), and sometimes it looks like a line (panel a-2 or c-1). At the depth of

the inflection of the radial velocity, the streamlines of the secondary circulation are

characterized by a dipole-like structure (Figure 5.11 a-4, b-4 or Figure 5.12 a-1, b-2,

c-2 showing more plots around the inflection point). The origin of this structure

still remains unclear.

The inflection point of the radial velocity appears around z/H = 0.21 to 0.28

(Figure 5.12). An interesting question is “what determines this depth?”. Since the

radial inflow is caused by the deceleration of the vortex near the bottom bound-

ary, it is logical to assume that the inflection depth is associated with the bottom

boundary-layer thickness. Figure 5.13 shows the vertical profiles of the intensity

of the main gyre rotation at 3 positions indicated at panel d. Depending on the

point, either ±u or ±v velocity was chosen to represent the tangential velocity of

the gyre. From these plots it is clear there is a boundary layer developing along the

bed of the embayment. It’s thickness varies for U∞=0.13, 0.17, and 0.19 from z/H

= 0.27 to 0.22, and 0.17, respectively. Lower free-stream velocities have thicker

boundary layer (Blasius, 1913). The inflection point for the lower free-stream also

appears higher than for the higher free-stream velocities (Figure 5.12). From the

summary in Table 5.1 it is clear the inflection point of the radial velocity indeed

appears approximately at the depth of the boundary layer thickness.

Table 5.1: Approximate values of the depth of the inflection point of the radial
velocity compared to the bottom boundary-layer thickness.

U∞, m/s Boundary-layer thickness Inflection depth

0.13 0.27 H 0.28 H

0.17 0.22 H 0.21-0.26 H

0.19 0.17 H 0.21 H
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Figure 5.13: Vertical profiles of time-averaged main gyre circulation velocity. a)
U∞ = 0.13. b) U∞ = 0.17; c) U∞ = 0.19 m/s. d) Position of the vertical profiles.
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According to the Bödewadt (1940) model (see Section 2.4), the secondary cir-

culation is directly proportional to the angular velocity of the gyre rotation. Indeed,

in Figure 5.10 it can be observed that the intensity of spiral motion is weaker on

a-5 than on c-5. It takes the particles about one full turn around the embayment

to reach the centre for the lower free-stream velocity (a-5) and for the higher one

they go directly into the core (c-5).

By continuity, flow towards the centre along the bed and outward closer to the

surface will result in upwelling in the centre of the embayment. Figure 5.14 shows

a colour plot of the time-averaged vertical velocity. Red represents upwelling, and

blue downwelling. It is evident that at every depth in the centre region of the bay

there is an upward motion, whereas near the walls, there are regions of downwelling.

One can also notice the presence of more localized elongated structures along the

walls. These structures will be addressed in the next section.

To conclude this discussion, the “tea-cup”-like secondary circulation is present

in the time-averaged flow field in the shallow embayment. The flow spirals inwards

near the bed, rises in the centre and spirals outwards closer to the surface. The

inward spiralling is a relatively intense flow that occupies the bottom 20-30% of

the flow depth, corresponding to the thickness of the bottom boundary layer. The

outward motion is less well defined spatially. The repelling point, from which

streamlines originate, appears to change its position with depth and the mean-

stream velocity. It also changes form, sometimes appearing as a line. It is possible

that the position of the maximum divergence wanders around the embayment with

time and if it converges at all, only slowly. Using the Bödewadt model or a similar

one it may be possible in the future to determine the relationship between the

angular velocity of the gyre and the secondary circulation. Knowing the intensity

of the radial inflow at the bottom of the embayment allows for the calculation of

the shear stresses and therefore the critical size of the sediments which will either

settle or be picked up and re-entrained into the circulation.
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vations above the bed (z/H). The three columns correspond to cases of different
free-stream velocities. a) U∞ = 0.13. b) U∞ = 0.17. c) U∞ = 0.19 m/s.
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5.2.3 Görtler vortices

In the previous section the effect of the bottom boundary layer on the flow was

discussed. This section is devoted to the effects of the boundary layer at the side

walls of the embayment. It will be shown that there are Görtler-like streamwise

vortices that appear there.

One can notice in Figure 5.14 that there is a strong vertical flow with alter-

nating direction all around the walls of the embayment. Streaks of upwelling and

downwelling are situated side by side suggesting a non-zero horizontal vorticity

at the edges of the gyre. For the lower free-stream velocity the direction of the

vertical flow does not change with depth. For example, at the upstream end of

the bay (left-hand side of graphs) one can see an upwelling region (red) near the

wall and a downwelling region beside it (blue) at all elevations (a-1 to a-5) with

a maximum at mid-depth. For the highest free-stream velocity, near the surface

there is also an upwelling region near the upstream wall and a downwelling region

beside it (c-2). However, on panel c-5 one can see that the direction of the vertical

motion has switched; near the upstream wall there is a downwelling region (blue)

and an upwelling region beside it (red). z/H = 0.28 appears to be transitional; the

upwelling and downwelling streaks at the upstream wall appear discontinuous at

this elevation (panels b-4 and c-4).

Streamwise vortices located near the walls of the embayment are shown in Fig-

ures 5.15 and 5.16. Figure 5.15 presents contour plots of time-averaged transverse

vorticity at a vertical plane y = 0.11 m (or y/L = 0.46) for three free-stream veloc-

ities. For the highest U∞ (panel c) both near the upstream and downstream walls,

there is a pair of counter-rotating vortices located one above the other, explaining

the alternation of upwelling and downwelling regions with depth in Figure 5.14-c.

On panel b the downstream end has a pair of vortices, but at the upstream end they

are not as pronounced. For the lowest U∞ (Figure 5.15-a) at the downstream wall
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there is only one streamwise vortex occupying the whole depth. Its counterpart

appears to be beside it instead of underneath.

Figure 5.16 presents contour plots of streamwise vorticity at another vertical

plane, which now is perpendicular to the channel flow, x = 0.11 m (or x/L = 0.46).

The distribution of the vorticity with depth near the far wall of the embayment is

similar to the previous figure. For the higher free-stream velocity (panels b and c)

there is a pair of counter-rotating vortices on top of each other. For the lower U∞ one

vortex is occupying the whole depth of the flow. This principle difference in the flow

structure for different free-stream velocities can be very important for prediction of

the exchange between the main flow and the embayment or the scouring process

near the walls. It is thus crucial that conditions determining the shape of these

vortices be identified.

Judging from figure 5.14 (vertical velocity) the streamwise vortices are present

along the whole circumference of the embayment along the walls. To see if this is

indeed the case, one would need to plot the vorticity component perpendicular to

the plotting plane at every angle through the centre of the recirculating gyre, which

is both technically difficult and ambiguous since the gyre is not completely axisym-

metric. However, another way to reveal the existence of a streamwise component of

vorticity is through calculation of helicity. Helicity, h, is defined as the scalar prod-

uct of velocity and vorticity vectors. If the two vectors are parallel, helicity is large.

If the vorticity vector is perpendicular to the velocity, helicity is zero. Figure 5.17

presents the colour plot of relative helicity, H (h normalized by the magnitudes of

velocity and vorticity point by point:

H =
u · ω
|u||ω| . (5.1)

Hence, H varies from -1 to +1 indicating the relative importance of streamwise

vorticity at that location. From Figure 5.17 it is clear that everywhere around the

walls of the embayment streamwise spiral vortices are more important than the main
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Figure 5.17: Colour plots of time-averaged relative helicity, u ·ω, normalized point-
wise by the magnitudes of velocity, u, and vorticity, ω. a) U∞ = 0.13 m/s. b) U∞
= 0.17 m/s. c) U∞ = 0.19 m/s.
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gyre circulation that has a vorticity component perpendicular to the flow. One can

also see that there are regions of positive and negative helicity situated on top of each

other for the highest U∞ (panel c). Red regions are located near the bottom. They

indicate that vectors of vorticity and velocity are pointing in the same direction.

Hence, the vortex is producing inflow towards the centre of the embayment along the

bottom, which is consistent with the vorticity plots (Figures 5.15 and 5.16). Near

the surface, the direction of rotation changes (blue). These vortices produce surface

inflow towards the centre of the bay. For the intermediate main-stream velocity

(Figure 5.17-b), one can notice that near the far wall, a counterclockwise vortex

(red) occupies most of the depth. However, near the upstream wall it divides into

two counter-rotating structures. For the lowest free-stream velocity (Figure 5.17-a),

all walls are dominated by a counterclockwise longitudinal vortex with a trace of its

counterpart near the upstream wall. This suggests that for the higher free-stream

velocity, 3D instability is more likely to appear, and that the flow tends to be more

heterogeneous with respect to flow depth for the higher free-stream velocity.

As discussed in Section 2.3, similar streamwise vortex pairs were observed

before in a different flow configuration called an open-cavity flow, which can be

described as the embayment herein but infinitely deep such that the effect of the

bottom or top boundary (free surface) is rendered negligible. Open-cavity flow

is generally considered two-dimensional, but recent studies discovered 2D flow to

be unstable (Citro et al., 2015). Faure et al. (2007) showed experimentally the

existence of pairs of streamwise Görtler-like vortices at the walls of a square open

cavity. However, it is now an open question whether the vortices observed in the

current experiments are indeed these Görtler-like vortices. According to Görtler

(1940), longitudinal vortices appear in the boundary layer of a concave wall, which

means that the location of the observed streamwise structures should correspond to

the thickness of the boundary layer at the side walls of the embayment. The side

boundary-layer in the embayment grows from about 1.5 to 2.5 cm for U∞ = 0.13
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m/s and from 1 to 2 cm for U∞ = 0.19 m/s as can be seen in Figure 5.18 showing

the depth- and time-averaged profiles of velocity from the centre of the gyre to the

three walls of the embayment. (The boundary-layer thickness was determined as

the distance to the peak in the velocity profile.) According to Figure 5.15 the cores

of the longitudinal vortices are located at about 1 to 3 cm from the walls, indicating

that their location indeed corresponds to the side boundary layer in the embayment,

and therefore the origin of these vortices can be explained by the Görtler instability.

The wavelength of the Görtler vortices in open-cavity flow, measured as a

distance between two pairs of counter-rotating structures, is about 0.4L, where

L is the width of the embayment (0.24 m in the present study) (Faure et al.,

2007; Citro et al., 2015; Brès & Colonius, 2008). This wavelength is considerably

larger than observed in the present experiments. Here, the wavelength of the pair

of vortices for the shallow embayment is basically the flow depth, as the pair of

longitudinal vortices occupies the entire height. The depth of the flow is 0.12L,

thus, the wavelength of the Görtler vortices is 3-4 times smaller than that observed

in open-cavity flow. This difference is likely to be the result of the limited space

formed by the two boundaries; channel bed and free-surface, that are confining the

structures. The Görtler number, G, calculated in Section 2.3 grows with boundary-

layer thickness as the flow passes the three embayment walls. For the lower free-

stream velocity it grows from 2 to 10, and for the higher one from 7 to 30, whereas

the critical G is equal to 0.3. In the experiments of Faure et al. (2007) G ≈ 4. This

means the three-dimensional instability in the shallow embayment is much stronger

in the current experiments than in those of open-cavity flow, and even the confined

space and friction forces from both boundaries are not strong enough to stabilize

the 2D flow in the shallow embayment.
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5.2.4 Turbulence spectra and dimensionality of the flow

In this section the question of the sufficiency of a two-dimensional model to

describe a shallow-embayment flow will be addressed. One of the ways to distinguish

between a fully three-dimensional and a quasi-two-dimensional turbulent flow is

spectral analysis. It will be shown in this section that in the region of the shear

layer u, v, and w components of velocity exhibit fully 3D behaviour, whereas inside

the embayment the spectra of u and v velocity fluctuations may indicate quasi-two-

dimensional flow dynamics.

According to Kolmogorov’s theory, based on the idea of local isotropy of turbu-

lence statistics for large enough Re and negligible viscosity, there exists an inertial

range of scales where a universal law of downscale energy cascade can be applied.

In this range the turbulence energy spectrum depends solely on the dissipation

rate of turbulent kinetic energy and has a logarithmic slope of -5/3 (Kolmogorov,

1941; Monin & Yaglom, 1971). However, two-dimensional flow dynamics exhibit

very different properties. 2D flows are characterized by an inverse energy cascade,

and a downscale enstrophy cascade in which turbulent structures tend to merge

and grow in size, forming a turbulence spectra that has a subrange with -3 log-

arithmic slope (Kraichnan, 1971). It was also shown that a -3 slope appears in

quasi-two-dimensional flows where the large scales have strong 2D properties and a

-3 slope, and the small scales exhibit a -5/3 slope. For example, Uijttewaal & Booij

(2000) show inertial subranges (with a -3 and -5/3 slopes) for a shallow shear layer

dominated by quasi-two-dimensional large-scale structures.

Engelhardt et al. (2004) measured the spectra of the fluctuations of the three

velocity components in two groynes on the Elbe river. They found that the velocity

spectra for 5 points within the embayment collapse on each other and that the u

and w components have a -5/3 slope, and the transverse velocity component, v,

exhibits a -3 subrange. Also, the energy spectrum was measured by McCoy et al.
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(2008) in an embayment with a sudden increase in the flow depth at the embayment-

channel interface. They found that the transverse velocity-fluctuation spectra in

the mixing layer has a -5/3 slope, whereas in the embayment it is -3. It is logical to

expect a -3 subrange within the shear zone, similar to Uijttewaal & Booij (2000),

as the shear layer is dominated by quasi-two-dimensional Kelvin-Helmholtz vortical

structures. Thus, McCoy et al. (2008) attribute the -5/3 spectra in the shear layer

to the non-uniform depth in their experimental set-up (a step at the entrance to the

bay), which exhibits three-dimensional effects. In the present experiments there is

a uniform bottom in the channel and in the embayment. In order to identify regions

dominated by fully 3D turbulence and regions possessing 2D flow characteristics in

the current geometry, frequency spectra of velocity fluctuations at different points

in the embayment are employed.

Let us define ûi as the Fourier transform of velocity fluctuations ui, where

ui = [u, v, w]. The discrete Fourier transform is then

ûi(fk) =
1

N

N−1∑
j=0

ui(tj)e
−2πifktj , (5.2)

where k = −N/2, ...,−1, 0, 1, ...N/2, fk = k
T
, tj = jΔt = j T

N
, N is the number of

points in the data set (6298) and T is the length of the data series in seconds (10.2

s). The energy spectrum is then defined as 1
2
ûû∗, where û∗ is a complex conjugate of

û. The energy spectrum was averaged over 9 experimental runs each one of which

is 10.2 s long.

Spectral densities in the region of the mixing layer for the streamwise velocity

component, u (Figure 5.19), indicate Kolmogorov’s -5/3 inertial range associated

with energy cascade from large- to small-scale turbulent structures (Kolmogorov,

1941). Spectral densities inside the embayment display a steeper slope, close to -3,

indicating a possibility of 2D flow dynamics (Kraichnan, 1971). (Note that the peaks

at 0.37 and 0.81 Hz is the response to the gravity waves that will be discussed in the
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Figure 5.19: Energy spectra of streamwise velocity fluctuations measured at 5 po-
sitions within the embayment (indicated on panel f) at z/L=0.6. The three colours
represent the three different free-stream velocities.
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Figure 5.20: Energy spectra of transverse velocity fluctuations measured at 5 posi-
tions within the embayment (indicated on panel f) at z/L=0.6. The three colours
represent the three different free-stream velocities.
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Figure 5.21: Energy spectra of vertical velocity fluctuations measured at 5 posi-
tions within the embayment (indicated on panel f) at z/L=0.6. The three colours
represent the three different free-stream velocities.
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Section 5.3.) The transverse velocity component, v, indicates a similar tendency

(Figure 5.20), where the shear zone has a -5/3 spectral slope, and a steeper spectra

inside the embayment. The vertical component of the velocity fluctuations, w,

however, show a different behaviour (Figure 5.21), having an approximately -5/3

slope everywhere. (A peak in the spectra at about 20 Hz is a response to external

vibrations in the laboratory.) One can also notice that the vertical energy spectra

have lower energy at large scales than the horizontal ones. This is expected as the

vertical fluctuations are confined by the water depth and therefore cannot contain

energy in modes slower than approximately H/W , where H is the water depth, and

W is the characteristic vertical velocity.

It is thus fair to conclude that in spite of the fact that one could expect a

quasi-two-dimensional behaviour in the shear zone that is dominated by large-scale

Kelvin-Helmholtz structure, a -5/3 slope appearing in the spectra of all three veloc-

ity components, shows fully three-dimensional dynamics. Inside the embayment,

the slopes of the spectra are steeper. Engelhardt et al. (2004) showed that only

the transverse component had a -3 sub-range, whereas in the current experiments

both, u and v components indicate a possible quasi-two-dimensional behaviour. In

Section 5.2.1 it was shown that the exchange process between the embayment and

the main channel is highly dependent on depth. The -5/3 spectral slope in the shear

zone supports this conclusion, showing that the flow in this region is fully three-

dimensional. The - 3 spectral slope inside the embayment indicates that this flow

may be treated with a quasi-two-dimensional approximation. However, we would

like to note that the interpretation of frequency spectra in low-Reynolds number

flows must be done with care. All theoretical results of Kolmogorov and Kraichnan

pertaining to the spectral slopes were obtained for the two-point correlation wave

number spectra. In laboratory experiments it is difficult to obtain data that would

allow one to calculate a two-point correlation function. It is hence common to use
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Figure 5.22: Colour plots of the ratio between horizontal time-averaged velocity and
its rms at different elevations above the bed (z/H). The three columns correspond
to cases of different free-stream velocities: a) U∞ = 0.13; b) U∞ = 0.17; c) U∞ =
0.19 m/s.
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an analogy between the wave number spectrum and the Eulerian frequency spec-

trum. However, this analogy holds only when there is a sufficiently strong mean

flow or large-scale structures advect the small-scales past the probe. In the limit

where the mean flow is infinitely fast, Eulerian measurements can mimic two-point

correlation measurements. This analogy is called Taylor’s hypothesis or the “Frozen

turbulence” approximation, which was shown to hold for urms 	 u in grid turbu-

lence, but was also shown to introduce a bias in free-shear flows (Lumley, 1965;

Tong & Warhaft, 1995). It is thus important to use this analogy with care and at

least verify that the advection time-scale is much larger than the rms velocity at

the point of interest. Figure 5.22 shows the ratio between the mean flow and the

rms velocities at every point in the embayment. It is evident that in the channel

outside of the bay the mean velocity is much larger than the fluctuations for all

water depths and free-stream velocities. The spectra in this region show a -5/3

slope. However, in most regions within the embayment Taylors approximation is

not valid as the mean flow is of the same order as the rms velocities, especially near

the walls and in the core of the gyre. This is particularly evident at higher free-

stream velocities, where the intensity of the turbulent fluctuations increase faster

with Re than the mean flow. It is thus an open question as to whether a steeper

slope within the embayment, for this work and for the work of Engelhardt et al.

(2004) and McCoy et al. (2008), is indeed an indication of 2D flow dynamics, or

is purely an effect of insufficient advection velocity. Two-point correlation spectra

are needed to resolve this issue. Obtaining this statistic from the current data is

arguably possible but not straightforward, mainly because the interpretation of the

spatial correlation function in a non-homogeneous flow is a challenge.

5.3 Gravity waves

Open-channel flows are subject to surface gravity waves. Most of the previous

research neglected their potential effect on the flow in a shallow embayment. How-

ever, the recent study of Tuna et al. (2013) showed that gravity waves can have
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a significant effect on the exchange process between the embayment and the main

flow. They also argue that gravity waves are amplified when the natural frequency

of the embayment “couples” with an “inherent” frequency of the shear layer (see

Section2.5 for details). It is therefore clear that in order to have a complete un-

derstanding of the exchange process, it is also necessary to consider the effect of

gravity waves. They will be quantified in the current experiments in terms of their

amplitude and frequency. It will be shown that the three cases of different free-

stream velocities have significant differences in terms of the surface perturbation.

The lower free-stream velocity case has negligible gravitational instability, whereas

the highest free-stream velocity flow is subject to high-amplitude surface waves.

The reasons pertaining to this difference are discussed. It will be shown that the

possible source of the resonant response to the gravitational instability is coupling

with the most energetic mode within the main gyre circulation. The effect of gravity

waves on the exchange will be addressed in the next section.

Figure 5.23: Five locations at which free-surface elevation was measured. For each
2x2 cm water column, for each time step, z-positions of the highest particle within
the column represents the position of the free surface.

In order to measure free-surface oscillations, the maximum particle elevations

were extracted from the main experimental data. Five vertical water columns, 2

126



by 2 cm each, were chosen inside the measurement volume (Figure 5.23). The

elevation of the top particle at every time step was obtained from each column. On

the longer time scale this position is argued to be representative of the free-surface

elevation. This method of measuring the surface level produces a lot of noise, as

the top particle in the column may happen to be quite far from the free surface

for a particular time step. Therefore, these data cannot be used for analysis of

small-scale perturbations. However, the slower modes of the gravity waves appear

well-defined in the time series. Panels a, b, and c in Figure 5.24 show the time

series of the surface elevation and their amplitude spectra for location 1, situated

near the downstream wall of the embayment (Figure 5.23), for three free-stream

velocities U∞ = 0.13, 0.17, 0.19 m/s, respectively. The amplitude spectrum was

plotted (i.e. the square root of the usual power spectrum,
√
zz∗) in order to display

the amplitudes of the waves. It is evident from the spectra on this figure that for

the lower free-stream velocity (U∞=0.13 m/s) the gravity waves are very weak; the

amplitude does not exceed 0.2 mm. The amplitude of the peak increases to 0.3

mm for the U∞=0.16 m/s, but for the highest free-stream velocity, the amplitude

increases to 0.9 mm at a frequency of 0.36 Hz. The peaks at the same frequency

of 0.36 Hz are pronounced at the lower free-stream velocity cases as well, but they

are not as energetic (the labelled peaks will be discussed later in this section).

In the works of Tuna et al. (2013) and Kimura & Hosoda (1997) one kind

of gravity wave was observed in the shallow embayment flow. It takes a form of

longitudinal sloshing. Its first mode produces high-amplitude surface oscillations

up against the upstream and downstream walls of the embayment and has a node

in the centre of the bay. Kimura & Hosoda (1997) showed that this gravity wave

in a shallow embayment is of the seiche kind or in other words, a non-dispersive

shallow-water wave. Thus, its frequency is given by:

f(n) =
n
√
gH

2L
, (5.3)
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Figure 5.24: Time series of the free-surface oscillations and their amplitude spectra
at the downstream end of the embayment (location 1 at the schematic in Fig-
ure 5.23). a) U∞ = 0.13 m/s. b) U∞ = 0.17 m/s. c) U∞ = 0.19 m/s.
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where f(n) is the frequency of the gravity wave, n is the mode of oscillation (n =

1, 2, 3...), g the acceleration of gravity, H the depth of the flow, and L is the cavity

width (Méhauté, 1976).

If this type of wave produces the high-amplitude spectral peak at U∞ = 0.19

m/s, then one should see a phase shift of half the period of the oscillation between

two locations; the upstream and downstream ends of the embayment. Figure 5.25

presents the time series and amplitude spectra for the free-stream velocity U∞ =

0.19 m/s at four locations (downstream end, upstream end, centre of the embay-

ment, and the shear zone - a, b, c, and d plots, respectively). From these it appears

that at all four strongest oscillations (period of about 2.7 s) are almost perfectly in

phase with each other, with a slight shift for the shear-layer zone. This indicates

that it is not longitudinal sloshing inside the bay that is dominating the flow, but

a transverse wave that goes across the channel.

The longitudinal wave does appear in the spectrum, though. Based on equation

(5.3), the frequency of the first mode of the longitudinal seiche is equal to fl(n =

1) = 1.11 Hz. In the Figures 5.25 a and c (downstream and upstream ends of

the embayment, where one expects to see high-amplitude sloshing) there are peaks

of about 0.2 mm at frequency of 1.1 Hz. At that same frequency there are no

peaks present in the centre of the embayment (Figure 5.25 b) or in the shear zone

(Figure 5.25 d).

One could also notice peaks at even lower frequency of about 0.08 Hz for the

lower free-stream velocities and 0.15-0.2 Hz for the higher one (Figure 5.24). These

peaks are most likely associated with the first and second harmonics of a gravity

wave travelling over the whole flume length (for the length of 2.9 m equation (5.3)

gives f(1)=0.09 Hz and f(2)=0.18 Hz).

It is, however, clear that the transverse wave has the highest amplitude and

therefore is likely to be playing the most important role in the flow. Judging from

the data, it is logical to assume that the transverse gravity wave is bounded by the
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b) Centre of the embayment, location 2
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ẑ
∗
,
m
m

0 2 4 6 8 10
−2

−1

0

1

2
Time series

time, s

z,
m
m

c) Upstream end of the embayment, location 3
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d) Shear layer, location 5
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Figure 5.25: Time series of the free-surface oscillations and their amplitude spectra
at four locations indicated on the schematic in Figure 5.23. a) Location 1, down-
stream end of the embayment. b) Location 2, centre of the embayment. c) Location
3, upstream end of the embayment. d) Location 5, shear layer.
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Figure 5.26: Transverse (T-T) and longitudinal (L-L) profiles of the water levels in
the channel, showing the first modes of longitudinal and transverse gravity waves.

Table 5.2: Measured and calculated frequencies of transverse and longitudinal grav-
ity waves.

Transverse Longitudinal
Mode gravity-wave frequency, Hz gravity-wave frequency, Hz

Calculated Measured Calculated Measured

1 0.42 0.37 1.11 1.10
2 0.83 0.81 2.22 2.34
3 1.25 1.17
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channel wall on one side and the far embayment wall on the other, such that its first

mode has a length of twice the width of the channel plus the width of the bay, 2(0.24

m +0.40 m) = 1.28 m (see the scheme on Figure 5.26). If we assume this oscillation

is also of a seiche kind (as did Nezu & Onitsuka (2002)), then the frequencies of

the first, second and third modes are 0.42, 0.83, and 1.25 Hz, correspondingly. The

assumption of this wave being a non-dispersive shallow-water wave is reasonable, as

the degree of “shallowness”, measured in the width-to-depth ratio, is even larger for

this region across the channel than for the embayment itself. In Figure 5.24 c-2 the

measured frequencies of the peaks for the high free-stream velocity are indicated as

ft(1), ft(2), and ft(3), which are equal to 0.37, 0.81, and 1.17 Hz, corresponding to

the first three modes of transverse gravity waves. Table 5.2 presents a summary of

measured and calculated gravity-wave frequencies.

The transverse gravity wave in a shallow channel with a pair of consecutive em-

bayments was observed and described in Tuna & Rockwell (2014). To calculate the

frequency of the transverse gravity wave, the authors used the following equation:

f(n) =
n
√
gH

4W
, (5.4)

where W is the width of the cavity. It is assumed that the wave-length of the

transverse gravity wave is equal to 4 times the cavity width. If this formulation is

adopted for the current set-up, the wave-length of the first mode of the transverse

gravity wave would be equal to 4 × 0.24 m = 0.96 m. Hence the frequency of the

first mode instead of 0.42 Hz, as before, would become 0.56 Hz. The measured

frequency of the peak in the spectrum is 0.36 Hz, and at a frequency of 0.56 Hz,

there is a low-amplitude region for all locations inside the embayment (Figure 5.25).

It is interesting to observe how fast the amplitude of the gravity wave grows

when the free-stream velocity in the channel is gradually increased. The peak am-

plitude goes from 0.2 to 0.3, and then to 0.9 mm with the free-stream velocity

changing from 0.13 to 0.17, and then to 0.19 m/s (Figure 5.24). Tuna et al. (2013)
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Figure 5.27: Contour plots of the instantaneous vertical vorticity, ωz, in the shear
zone of the embayment at the elevation of z/H=0.62. a) U∞ = 0.13 m/s. b) U∞ =
0.17 m/s. c) U∞ = 0.19 m/s. Contours of ωz = ±0.36 Hz are indicated with black
solid and dashed lines.
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and Wolfinger et al. (2012) argue that the rapid growth of the gravity wave ampli-

tude is caused by the coupling between the gravity wave and the shear instability.

However, it is not quite clear what the frequency of the shear layer is and how to

determine it. Thus, it is fair to assume from the rapid growth of the peak ampli-

tude, that some sort of resonance occurs. As to what causes it, it is argued to still

be an open question. In the present study it was attempted to find the frequency

that resonates with the gravity-wave frequency, generating an enhanced response,

and its source.

The frequency of the gravity wave at which the response is amplified in the

current experiments is the first mode of the transverse gravity wave, ft(1) = 0.36

Hz (Figure 5.25). It will now be attempted to find another process with a matching

frequency of 0.36 Hz. Figure 5.27 shows a contour plot of the instantaneous vertical

vorticity, ωz, for the three free-stream velocities (panels a,b, and c correspond to

U∞ = 0.13, 0.17, and 0.19 m/s, respectively) at z/H=0.62. From this figure it is

evident that the frequency of the rolls in the shear zone is about 6-14 Hz, which is

an order of magnitude faster than the gravity wave frequency (0.36 Hz). On figure

5.27 contours of vertical vorticity equal to ft(1), ωz = ±0.36, are indicated with

thick solid and dashed lines. The signal at this frequency is weak and spatially

disorganized, leading to the conclusion that ωz in the shear zone is not the source

of the resonance. The frequency of the vortex generation at the upstream corner of

the embayment also appears to be much faster than the resonant frequency. The

spacing between the vortices in figure 5.27 is 1.8-2.4 cm, and approximate velocity

in the shear zone is 0.04-0.11 m/s, resulting in a vortex generation frequency of 3-4

Hz, which is again an order of magnitude larger than ft(1) = 0.36 Hz. This is also

consistent with the numerical results of Kimura & Hosoda (1997), which showed

the period of vortex generation caused by shear-layer instability is shorter than the

period of the seiche.
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Tuna et al. (2013) presented the evidence that when the gravity waves are

strong, the shear layer in an embayment starts undulating with the frequency of

the gravity wave. Indeed, if the phase average of the vertical vorticity is calculated,

the undulation of the shear layer with the gravity-wave frequency is evident. Figure

5.28 presents the vertical vorticity averaged for each of the 9 phases Φ = 0 to 360◦

with a 45◦ step. The averaging was performed over 1 run of 10.2 seconds. Hence,

with the period of the gravity wave being 2.7 s (1/0.36 Hz), every graph in Figure

5.28 is an average of 3 to 4 frames. From the graph it can be seen that the shear

layer exhibits undulations with exactly the frequency of the gravity wave. For

comparison, on figure 5.29 the same quantity (phase averaged ωz) is presented for

the lower free-stream velocity of U∞ = 0.13 m/s, where the gravity waves are weak.

No undulations in the shear layer can be observed in this figure.

The frequency of the shear-layer oscillation is the same as the frequency of

the first mode of the transverse gravity wave that produces high-amplitude surface

elevations. This supports the idea of Tuna et al. (2013) that the frequency of the

shear instability couples with the gravity-wave frequency. However, it is still not

clear what is the cause and what is the effect; whether the undulation is a result

of the strong gravity wave that came into resonance with some other frequency, or

actually the undulation appeared first and triggered the resonant response of the

gravity wave. This question is difficult to answer. Especially because in a physical

system it is frequently a non-linear two-way relationship that is present.

Nevertheless, since the question is still open, the search for the resonant fre-

quency was continued. All frequencies in the shear zone appeared to be too large to

match that of the gravity wave. Slower modes focus attention on the embayment

itself. What is the frequency of the main-gyre rotation and can it resonate with the

gravity wave? At every radial distance the embayment gyre has a different rotation

period, hence it is not obvious how to determine its overall frequency. However,

not all frequencies are of interest, but it is the most energetic one that would drive
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Figure 5.28: Contour plots of the phase averaged vertical vorticity, ωz, at z/L =
0.62 for U∞ = 0.19 m/s. Φ is the phase of the first mode of the transverse gravity
wave, which has a period of 2.7 s (or a frequency of 0.36 Hz. Φ changes from 0◦ to
360◦ with a step of 45◦, corresponding to 9 panels.
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Figure 5.29: Contour plots of the phase averaged vertical vorticity, ωz, at z/L =
0.62 for U∞ = 0.13 m/s. Φ is the phase of the first mode of the transverse gravity
wave, which has a period of 2.7 s (or a frequency of 0.36 Hz. Φ changes from 0◦ to
360◦ with a step of 45◦, corresponding to 9 panels.
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Figure 5.30: Colour plots of the mean kinetic energy of the horizontal flow at the
elevation of z/H=0.83. Black thick contour indicates the position of the vertical
vorticity, ωz, equal to the frequency of the first mode of the transverse gravity wave
(0.36 Hz). a) U∞ = 0.13 m/s. b) U∞ = 0.17 m/s. c) U∞ = 0.19 m/s.
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the flow. In Figure 5.30 colour plots of horizontal kinetic energy (KE) in the em-

bayment are shown. On top of the KE plots there is a contour of vertical vorticity,

ωz, equal to the gravity wave frequency, ft(1) = 0.36 Hz. For the case of the lower

free-stream velocity (panel a) the ωz contour does not follow the flow pattern. The

line is not smooth and it crosses the stream lines. For the higher free stream ve-

locity (panel b), the vorticity line follows the high kinetic energy region, but near

the upstream wall of the embayment it is deflected inwards leaving the high KE

zone. The highest free-stream velocity case (panel c) has the strongest correspon-

dence between the the line of largest KE and the vertical vorticity contour of 0.36

Hz. This observation means the amplification of the gravity-wave amplitude in the

embayment flow is possibly caused by resonant coupling with the most energetic

mode in the recirculation gyre. The intensified gravity wave is forcing the shear

layer to undulate with the same frequency, enhancing exchange between the main

channel and the cavity.
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5.4 The exchange between the main flow and the cavity

Recent papers by Rockwell and his research group (Wolfinger et al., 2012;

Tuna et al., 2013; Tuna & Rockwell, 2014) show the amplified gravity waves in a

shallow embayment lead to an increase in the Reynolds stresses, the rms velocities,

and time-averaged transverse velocities across the shear layer. All these lead to

increased exchange coefficients between the embayment and the main channel. In

this section it will be confirmed that gravity waves are increasing the entrainment.

The exchange coefficients will be also quantified.

Following the papers of the Rockwell group, in order to compare the turbulent

exchange between the cases with weak and strong gravity waves, the horizontal

Reynolds stress (Figure 5.31) and transverse rms velocity (Figure 5.32) are con-

sidered. From both figures it is evident that the case of U∞ = 0.19 m/s, where

gravity waves are intensified, has considerably larger Reynolds stresses and trans-

verse velocity fluctuations. However, from Figure 5.32 it is also clear that there is

a significant difference between the two cases of lower free-stream velocities. The

amplitude of the gravity wave between U∞ = 0.13 and U∞ = 0.17 m/s is only 0.1

mm different, but the transverse fluctuations are significantly larger for U∞ = 0.17

m/s. This may be attributed either to the gravity wave, that even with a slight

increase in the amplitude can significantly change the flow, or, as mentioned before,

to the fact that normalization by the free-stream velocity is not an effective way to

remove the effect of changing discharge.

To quantify the mixing between the main channel and the embayment, the

exchange coefficient will be calculated as proposed by Weitbrecht et al. (2008). The

instantaneous exchange velocity, E(t), spatially averaged over the main stream-

cavity interface, is defined as:

E(t) =
1

L

∫ L

0

|v(t)|dx, (5.5)
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Figure 5.31: Contour plots of the horizontal Reynolds stress, u′v′
U∞ , at different ele-

vations above the bed, z/H. a) U∞ = 0.13 m/s. b) U∞ = 0.17 m/s. c) U∞ = 0.19
m/s.
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Figure 5.32: Contour plots of the transverse rms velocity, vrms

U∞ , at different elevations
above the bed, z/H. a) U∞ = 0.13 m/s. b) U∞ = 0.17 m/s. c) U∞ = 0.19 m/s.
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where v(t) is the transverse component of velocity at the main stream-cavity inter-

face, L is the width of the embayment. The mass exchange coefficient, k, is then

defined as

k =
E(t)

2U∞
, (5.6)

where E(t) is the time-average of the exchange velocity (Weitbrecht et al., 2008;

Tuna et al., 2013).
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Figure 5.33: Vertical profiles of the exchange coefficient, k, between the main chan-
nel and the embayment for the three free-stream velocities, U∞.

The exchange coefficient between a cavity and an embayment has been con-

sidered to be a constant value is around 0.01-0.03 (Altai & Chu, 1997; Valentine

& Wood, 1977). Uijttewaal et al. (2001) obtained a constant value of k=0.024,

irrespective of the river flow velocity and the cavity shape. However, Uijttewaal

et al. (2001) also note that when the exchange coefficient was measured by floating

particles, it yielded a k that was twice as large. Tuna et al. (2013) obtained k=0.03

for the case of negligible gravity waves and 0.04 for the case with gravity waves.

Figure 5.33 presents the vertical profiles of the exchange coefficient for the

three free-stream velocities. For the two cases of weak gravity waves (U∞ = 0.13
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and 0.19 m/s) the exchange coefficient is similar and equals about 0.034 and 0.036,

respectively. In the case with a strong gravity wave, k = 0.052. This value is

considerably larger than the exchange coefficient obtained by Tuna et al. (2013) for

the case of intense gravity waves, even though the amplitude of the wave in their

work is 0.08 of the flow depth, and in the present work it is only 0.03. Hence, one

could expect a stronger influence of gravity waves on the flow and hence a larger k

in their work. The reason the exchange coefficient is so much larger in the current

experiments may be that the dominant gravity wave in this study is a transverse

gravity wave, whereas in Tuna et al. (2013) it is longitudinal one. In a recent paper

Tuna & Rockwell (2014) present results of two sets of experiments with transverse

and longitudinal gravity waves dominating the flow. Judging from Figure 12 of their

paper (transverse velocity magnitude across the interface) it appears plausible that

transverse gravity waves enhances mixing more efficiently than longitudinal ones.

In Figure 5.33 the exchange is stronger at middle depth than at the surface

which appears to contradict the findings of Uijttewaal et al. (2001) where the float-

ing particles measurements resulted in the higher exchange. The reason for this

contradiction is not completely clear. However, this may be associated with the

fact that in the current calculation of the exchange we account for the region at

the downstream end where the exchange appears to be strong, but in reality the

flow enters the embayment to leave it immediately (see Figure 5.9). Another rea-

son may be associated with the experimental errors of the measurement techniques

used in Uijttewaal et al. (2001), where the floating particles overestimate the local

exchange or the integration of the dye concentration over the depth results in the

lower exchange values.

To conclude the discussion of gravity waves, it is fair to state that they can

considerably affect the flow in a shallow embayment. The exchange coefficient was

observed to increase by nearly a factor of two for the case where gravity waves

were present. It is important to note that considering gravitational instability
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initially was not with the scope of the present investigation. Thus, when choosing

the flow conditions, it was attempted to minimize gravity waves appearing in the

channel, but it was found that even relatively small gravity waves can change the

flow considerably. It is hence important to recognize the resonant conditions under

which gravity waves rapidly increase in amplitude. It was shown in the present work

that a resonance may be occurring between the first mode of transverse gravity

waves and the most energetic mode of the main gyre circulation.

It was fairly noted by the external reviewer of this thesis, Dr. Uijttewaal,

that the method used here to calculate the exchange rate does not eliminate the

direct effect of the surface gravity waves. Averaged over the wave period, the net

exchange may remain unchanged, but the exchange velocity can be overestimated.

The authors agree with this statement and wish to thank Dr. Uijttewaal for point-

ing it out. Indeed, one way to recalculate the exchange would be to set a region

through which the flow has to go through before being counted as “entered” or

“left” the embayment instead of the current method where an arbitrary surface was

set as the limit that has to be crossed. Setting a region that has to be transpassed

would allow to eliminate wave-induced oscillations that do not contribute to the

net exchange as long as this region is wider than the amplitude of the oscillation.

The authors believe that this recalculation will result in better accuracy. However,

the overall conclusions on the gravity waves increasing the exchange rate will likely

remain unchanged. It is quite clearly seen from visual observations or, for example,

Figure 5.28 that the induced oscillations not only produce the flow to ondulate but

also result in stronger mixing.
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CHAPTER 6
Conclusions

The following chapter presents the conclusions pertaining to the present work

and is divided into four sections. The first reviews two topics related to experimental

aspects of this work: the possibility of optical measurements through a free interface

and its limitations, and two error-analysis techniques that were developed in the

course of this study. The results of their application to the current experiments

are also discussed. Section 6.2 summarizes the contributions of this work to the

understanding of shallow embayment flows. A short summary of these original

contributions is given in Section 6.3. Finally, suggestions for future work are made

in Section 6.4.

6.1 Experimental aspects

6.1.1 Free-surface 3D-PTV

To the author’s knowledge, prior to this work 3D particle tracking velocimetry

(3D-PTV) through a free water surface had never been performed. The reason

being that one would expect large errors to be produced by the varying refraction

angles of the unsteady curved surface through which particle positions are tracked.

In this work it was shown that even when gravity waves are present, producing

surface slopes of up to 0.2◦, and changes in surface elevation of up to 3% of the

water depth, the uncertainty in velocity measurements was less than 0.4% of the

free-stream velocity. This result may be surprising as the overall absolute position

errors produced are not at all small. They were as large as 1.2% of the water

depth, H. However, variation of the error field in space is very gradual. The

gravity waves are slow and have a large wavelength. The errors produced by the

calibration procedure are also slowly varying. As a result, the relative position
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error is very small. The relative position error measured for two points with 10 mm

(H/3) separation is less than 0.04%H. It is thus clear that when the characteristic

length and period of surface perturbations are much larger than the characteristic

displacement of a particle per frame and the data sampling period, it is relatively

straightforward to obtain accurate velocity measurements. It is also possible to

obtain accurate measurements of the spatial derivatives of the velocity field through

an open surface if the particle seeding density is such that the average distance

between particles is much smaller than the wavelength of surface perturbations.

These results are not only applicable to open-channel measurements, but could also

be useful for experimentalists dealing with any kind of fluid interface. For example,

optical measurements in a stratified medium can be performed through an interface

that exhibits some perturbations on its surface, as long as the waves are relatively

long.

6.1.2 Error analysis techniques

Two novel techniques were developed to assess the uncertainty in open-surface

3D-PTV measurements. Moreover these techniques can be applied to any optical

flow measurements that employ flow tracers. “Regular” 2D- or 3D-PTV, without

any open surface, can use these techniques to quantify the error in the velocimetry.

They can also be adapted to PIV experiments.

The first technique evaluates the positions of dots arranged in a regular pattern

on the bottom of the flow. The difference between the real and measured positions

of each dot results in a map of the error distribution within the domain of interest.

This method is especially useful for studies in complicated geometries as it allows

distinct estimates of the errors in different regions. It permits analysis of random

and systematic components of the errors separately, which is important if one wishes

to consider not only time-averaged statistics, but also instantaneous velocity or

vorticity fields. However, the dot pattern that was used is flat and was positioned

at the bottom of the channel. This means that only the horizontal variability of
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the error is accounted for. In the present flow, this is beneficial as gravity waves are

moving in the horizontal direction and the vertical error is largest at the bottom

of the channel (Snell’s law), as that is the furthest from the cameras. It should

also be noted that this method neglects all the error sources that are introduced

into the data after the determination of the particle positions. For example, finite

differencing and interpolation errors associated with the velocity calculation. This

brings us to the second error analysis technique that was developed to account for

the error sources that were neglected in the first one.

The second technique of error analysis is based on the principle that two points

on a solid body have constant distance between each other. A dumbbell-shaped

object (a thin black rod with the particle glued onto it at each end, see Figure

4.28) was moved around the domain of interest. The recordings of the tracks of

the two particles were then processed. This method estimated the velocity error

of the 3D-PTV method by calculating the velocity of the two particles along the

vector connecting them, which should be zero. Thus, the rms of the deviation of

this value from zero results in the magnitude of the velocity error. The advantage

of this method is that it accounts for all the sources of error in all the multiple

steps of the PTV procedure, including construction of particle tracks, calculation

of velocity with the centred difference scheme, and the filtering procedure that

performs a polynomial fit between successive particle positions. It also accounts

for the variation of position error with depth, which was neglected in the previous

technique. The disadvantage of this method compared to the previous one is that it

does not readily lend itself to an estimate of the spatial distribution of the velocity

error. Thus, if some local disturbances are present in the flow they are more likely

to be captured by the stationary dot pattern method.

These two error analysis techniques were successfully applied to the open-

surface 3D-PTV system that was used for the current experiments. The stationary

pattern test resulted in a velocity error of 0.3% and 0.2% (of U∞) for the free-stream
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velocity cases of 0.13 and 0.19 m/s (the lowest and highest in the experiments). The

dumbbell target test gave a velocity error of 0.4% of U∞ for the same two free-stream

velocities. The higher error value in the dumbbell target test is associated with a

more complete account of error sources.

The stationary pattern test also allowed a detailed analysis of the error sources

and their behaviour. It was found that the vertical position and velocity errors

are 2-3 times larger than the horizontal ones. This was expected, as all three

cameras are mounted above the channel, and the angle between them was chosen

to be relatively small (Appendix A). Since the vertical velocity is also generally the

smallest in a shallow flow, the resulting relative error in the vertical direction was

the most significant one. Areas of high vertical velocity errors were identified, and

the regions within 5 mm of the embayment walls were found not to provide reliable

PTV measurements, as the systematic error there can locally reach 20% of the

vertical velocity. It was also found that the systematic component of the velocity

error was considerably larger than the random component, sometimes by an order

of magnitude. For example, for the lowest free-stream velocity, the systematic error

is about 0.3% of U∞, and the random error is 0.03%. This means that errors

produced by the non-stationary waves on the water surface are much smaller than

those produced by the stationary water curvature or by the measurement procedure

itself. The weakest point of the measurement procedure was the calibration of the

cameras. A test was performed to determine the position errors in still water. This

quantified the errors associated with the algorithm and the calibration method,

resulting in vertical position errors of 0.2 mm (with its maximum at the edges of

the domain, near the embayment walls), whereas the vertical position error in the

stationary-pattern test with running water gave an error of 0.30 and 0.34 mm for

the two flow cases (U∞ =0.13 and 0.19 m/s). It is thus fair to conclude that the

imperfections of the calibration procedure are responsible for more than half of the

error produced in the experiments. At the same time, waves on the surface did
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not have a significant effect on data quality. This again confirms that optical data

acquisition here through a non-stationary interface is not only possible but also

relatively straightforward for the flow conditions studied herein.

6.2 Shallow embayment flow

3D-PTV measurements were performed in a shallow embayment flow, which

was modelled in a laboratory flume with a square embayment 0.24 by 0.24 m2 at

mid-channel. The bed was flat and the water depth was about 0.03 m. Experiments

were performed for three different free-stream velocities, U∞, equal to 0.13, 0.17,

and 0.19 m/s, resulting in water-depth Reynolds numbers (Re) in the channel of

3900, 4800, and 5400, respectively. The Froude numbers varied accordingly from

0.24 to 0.33.

Instantaneous and time-averaged 3D velocity and vorticity fields were obtained

for the entire embayment and the shear zone for each of the flow cases. Given that

one of the important questions pertaining to shallow flows and shallow embayments

is whether two-dimensional models are an appropriate approximation for the flow

therein, three-dimensional PTV experiments were undertaken to quantify the three-

dimensional features of the flow, with the ultimate goal of their parametrization,

or at least the definition of the parameter regime in which two-dimensional models

are appropriate. The results of the 3D-PTV measurements discussed in this thesis

are summarized below.

The exchange process between the embayment and the main channel was shown

to be fully three-dimensional. The flow enters the embayment along the bed closer

to the downstream end of the interface. As it enters, it rapidly occupies the whole

depth and then circulates in the large gyre. When it returns near the interface

with the main channel flow, it separates, and the top layer leaves the embayment,

whereas the rest continues to circulate inside the embayment. The area through

which the water is leaving the embayment is confined to the top 20% of the water
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depth. The inflow is mostly coming along the bed, but it is more concentrated at

the downstream end.

A secondary circulation inside the main gyre in the embayment was shown to

exist in the time-averaged flow field. The flow spirals inwards near the bed, rises in

the centre and spirals outward closer to the surface. The “tea-cup” like mechanism

was proposed by Gaskin et al. (2002) for this secondary circulation. Its mechanism

is based on a balance between the pressure-gradient and centrifugal forces within

the main gyre. Near the bottom the flow is decelerated by bed friction, and the

centrifugal force cannot balance the pressure gradient. Consequently, the flow is

drawn into the core of the gyre. It was shown that the radial inflow occupies only

the bottom 20-30% of the flow depth, which corresponds to the thickness of the

bottom boundary layer, confirming that this inflow is generated by the deceleration

of the flow near the bed. The inward spiralling is a relatively intense confined flow,

whereas the outward motion is spatially less defined and more difficult to capture.

The streamlines of the radial outflow have a complicated shape. The point from

which streamlines originate appears to change its position with depth and mean-

stream velocity. It also changes form, sometimes appearing as a line. It is possible

that the position of the maximum divergence wanders around the embayment with

time and converges slowly, if at all.

Görtler-like vortices were discovered in the boundary layer developing along

the side walls of the shallow embayment. For the highest free-stream velocity there

is a pair of counter-rotating streamwise vortices situated on top of each other. This

vortex pair exists along all three side walls of the embayment. They bend, following

the main gyre curvature. The vortex near the bed has positive helicity (vorticity

and velocity vectors are aligned) and produces a radial inflow near the bed, reinforc-

ing the “tea-cup” secondary circulation. The second vortex has negative helicity

(vorticity and velocity vectors have opposite directions), and it produces the radial
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inflow near the surface, weakening the secondary circulation. In the case of the low-

est free-stream velocity, there is only one streamwise Görtler-like vortex instead of

a pair, although some traces of its counterpart appear. It has positive helicity and

occupies almost the whole flow depth, producing radial inflow near the bottom and

radial outflow near the surface, both reinforcing the secondary circulation. The

case of the intermediate free-stream velocity appears to be transitional with one

streamwise vortex at the far wall of the embayment and a counter-rotating pair at

the upstream wall. This was found to be analogous to results in open-cavity flows

in which Görtler vortices were also observed. To compare with the present ones,

one could imagine the embayment being infinitely deep, and the flow in it not being

affected by either free-surface or the channel bed. In that flow (unbounded open

cavity) the wavelength of the Görtler vortices (measured as a distance between two

pairs of the counter-rotating structures) was found to be about 0.4L (Faure et al.,

2007; Citro et al., 2015; Brès & Colonius, 2008), where L is the width of the em-

bayment. In the shallow embayment, the corresponding wavelength of the Görtler

vortices is 0.12L-0.24L depending on the free-stream velocity. The wavelength, be-

ing considerably smaller than that in the open-cavity flow, is likely to be a result

of the confined space formed by the two boundaries, channel bed and free-surface.

These streamwise Görtler-like vortices are likely to play an important role in the

exchange between the embayment and the main flow and in the scouring and sed-

imentation process. It is thus important to recognize the conditions in which they

may appear. This can be accomplished with a linear stability analysis and more

experimental data with varying free-stream velocity.

The frequency spectra of the velocity fluctuations at different points within the

domain showed that the shear zone exhibits a -5/3 spectral slope and the points

within the embayment exhibit steeper slopes, close to -3, suggesting that the large-

scale structures within the embayment may possess two-dimensional characteristics,
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whereas the shear zone is dominated by fully three-dimensional turbulent struc-

tures. It is also noted that the frequency spectra inside the embayment should be

interpreted with care. The theoretical results of Kolmogorov (1941) and Kraichnan

(1971) concerning slopes of turbulence spectra were obtained using two-point cor-

relation functions. The analogy between the two-point correlation spectrum and

the frequency spectrum can be made only when the Taylor “Frozen turbulence”

approximation is valid. This requires a strong mean flow or a high enough Re,

which assures large separation of scales and therefore small scales being advected

past the probe by the large scales. In the main channel, the mean flow is an order of

magnitude stronger than the rms velocities. However, inside the embayment this is

not always true. Hence, the steeper slopes of the spectra inside the embayment may

be associated with the breakdown of the Taylor approximation due to insufficient

advection velocity.

Free-surface oscillations were inferred from the time series of the vertical posi-

tion of the particle closest to the water surface in 2x2 cm columns. Two types of

gravity waves were observed: a longitudinal wave with a wavelength of twice the

size of the embayment, and transverse one with a wavelength of twice the channel

width plus the embayment width. In the case of the lowest free-stream velocity,

the gravity waves have negligible amplitudes. For the intermediate free-stream ve-

locity, the first mode of the transverse gravity wave starts to be more pronounced.

The highest free-stream velocity exhibits a 1 mm peak of the amplitude of the first

mode of the transverse gravity wave (or 0.03H, where H is the water depth). The

increase in the gravity-wave amplitude with the free-stream velocity is attributed

to a resonant response. The sources of the resonant frequency were investigated.

The coupling of gravity waves with the frequency of the inherent shear instability

suggested by Tuna et al. (2013) was not confirmed. It is instead suggested that the

first mode of the transverse gravity wave resonates with the most energetic mode

of the large-scale gyre within the embayment.
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Consistent with the results of Tuna et al. (2013) it was confirmed that gravity

waves in a shallow embayment significantly increase the transverse rms velocities

and the Reynolds stress at the interface between the embayment and the main

flow. Consequently the exchange between the embayment and the channel flow

intensified. The exchange coefficient, k, calculated for the low free-stream velocity

case with negligible gravity-wave amplitude was found to be about 0.034. This value

of k is in agreement with those measured by Altai & Chu (1997); Valentine & Wood

(1977); Uijttewaal et al. (2001). These authors suggest k is a constant between 0.01

to 0.03 independent of the free-stream velocity. However, the higher free-stream

velocity flow with high-amplitude gravity waves produced an exchange coefficient

of 0.052. It is thus fair to conclude that the exchange coefficient, k, may not be

constant for shallow flows where gravity waves are significant. Another interesting

observation is that Tuna et al. (2013) found an exchange coefficient of 0.04 for the

case with high-amplitude gravity waves, which is somewhat smaller than the one

obtained in the present experiments (0.052), even though the amplitude of their

gravity waves was much larger (0.08H as opposed to our 0.03H). This difference

is attributed to the different gravity-wave modes that are dominant in these two

experiments. For the present case it is the transverse gravity wave, whereas in Tuna

et al. (2013) it was the longitudinal one. This suggests that the transverse gravity

wave has a stronger effect on the exchange process than the longitudinal one.

6.3 Original contribution of this study

In this work contributions were made both to the measurement techniques,

and to the physical understanding of a shallow embayment flow. It was first shown

that it is possible to obtain accurate particle velocities and their spatial derivatives

through an open water surface. When the average displacement of the particles per

frame is much smaller than the wavelength of the surface waves, the errors in velocity

measurements produced by the surface oscillations are small. Two error analysis

techniques were developed to assess the systematic and random components of the
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errors, their spatial distribution, and their possible sources. The two methods were

applied to the current experimental set-up and it was found that the contribution

of the unsteady surface oscillations to the velocity error are smaller than those of

the 3D-PTV method itself in still water.

The second major contribution of this work is the analysis of the flow field in a

shallow embayment. The exchange process between the embayment and the main

flow was shown to be fully three-dimensional with significant variations in depth.

A secondary circulation inside the main gyre in the embayment was shown to exist

in the time-averaged flow field and associated with the bottom boundary layer.

Görtler-like vortices were discovered in the boundary layer that curves along the

sides of the embayment. Frequency spectra of the velocity fluctuations exhibited a

-5/3 slope inside the shear layer and a -3 slope inside the embayment, suggesting

that the large-scale structures within the embayment may possess two-dimensional

characteristics, but not within the shear layer. Gravity waves were confirmed to

significantly increase the exchange between the embayment and the main flow. A

frequency of a closed streamline inside the recirculation gyre was proposed to be a

source of gravity-wave amplification. It is suggested the gravity wave mode couples

with the most energetic mode of the gyre resulting in a resonant response in the

form of high-amplitude gravity waves.

6.4 Future work

The exchange coefficient, k, is the most important parameter for shallow em-

bayment flows from the practical point of view. It is the parameter that is required

by current operational numerical models, predicting pollution dispersion in rivers

with groyne fields and bays. Many researchers have attempted to calculate k, and

it is argued in the literature that k is a constant independent of free-stream velocity

or geometry of the embayment. Yet we observed it to be non-constant and it was

suggested, and confirmed in this thesis, that this could be attributed to the pres-

ence of gravity waves. Thus, it is necessary to identify the conditions under which
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gravity waves are amplified. It was suggested in this work that the they resonate

with the most energetic mode in the main gyre circulation. It is thus necessary

to establish a relation between the free-stream velocity and the gyre intensity. If

such a relation is established it will be possible to predict the resonant state of

gravity waves and consequently, the variation in the exchange coefficient. If gyre

circulation can be predicted, several other problems will also be solved. The occur-

rence of Görtler vortices depends on the ratio between the boundary-layer curvature

and its velocity. Knowing the main gyre intensity will allow for stability analysis

and determination of the parameter regime in which streamwise vortices appear

on the side boundaries. The “tea-cup” secondary circulation is also dependant on

the ratio between viscous forces in the boundary-layer and the intensity of the gyre

circulation. Knowing the gyre circulation will allow prediction of the intensity of

the secondary circulation. This goal of determining the dependence of the gyre

circulation on free-stream velocity is a relatively simple but labour-intensive task.

It will involve a large number of laboratory experiments with varying discharges.

However, it is believed that it would be very beneficial.
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APPENDIX A
Choosing the angle of the cameras

There are two major factors that have to be taken into account when choosing

the viewing angles of the cameras. Assume the air/water interface through which

the images are taken is horizontal, and the camera angle is measured from vertical

(cameras perpendicular to the interface have viewing angle zero). Then, one can

say that

• The larger the angle of the camera is the larger the errors produced by the

unsteady surface oscillations become.

• However, when the cameras angle is too small, the relative vertical error of a

PTV system becomes much larger than the horizontal one.

Thus, to choose the cameras angle properly, it is necessary to assess both factors

and find the right balance between them.

In the PTV model, we assume that the imaging interface is flat and has a given

elevation. Thus, the error produced by the surface perturbations consists of two

components, the error due to the changing slope of the interface and the error due

to its changing elevation. First, let’s consider the effect of the slope of the water

surface. Using Snell’s law we can relate the angle of incidence, θ1, and the angle

of refraction, θ2, of the light rays travelling from a particle to one of the cameras

(Figure A.1):

sin θ1
sin θ2

=
nair

nwater

= c (A.1)

θ1 = sin−1(c sin θ2), (A.2)

where n is the refractive index of the respective medium. However, if the water

surface is tilted by an angle β, there will be an error in predicted θ1 (Figure A.1).
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Figure A.1: Schematic of the horizontal position error produced by the tilted water
surface.

The real angle will be equal to:

θ1,real = sin−1[c sin(θ2 − β)] + β, (A.3)

and the angular error produced by the surface tilt, Δθ, can be written as following:

Δθ = θ1 − θ1,real = sin−1(c sin θ2)− sin−1[c sin(θ2 − β)] + β (A.4)

The error in position determination resulting from the angular error is proportional

to the distance of a particle from the interface. The maximum error will occur for

the particles at the bottom of the embayment. Thus, to calculate the maximum

position error,Eβ, we will use the distance H, the flow depth:

Eβ = H(tan θ1 − tan θ1,real), (A.5)

Figure A.2 shows the dependence of the error from the surface slope and the

cameras viewing angle, in degrees (a) and in mm (b). It is evident that at relatively
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Figure A.2: Error due to the slope of the water surface. a) in degrees. b) in mm
calculated for the flow depth H = 0.03.
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small camera angles (θ2 < 20◦) the error is almost independent of θ2 and grows

linearly with β.

Figure A.3: Schematic of the horizontal position error, EΔz, produced by elevated
water surface.

Next, let’s consider the changing elevation of the surface. Figure A.3 shows

a schematic of the light rays going through the interface elevated by distance Δz.

Simple trigonometry leads to the following expression for the resulting position

error, EΔz:

EΔz = Δz[tan θ2 − tan θ1]. (A.6)

Unlike Eβ, the error EΔz grows both with the camera viewing angle and with the

elevation of the surface (Figure A.4). The total error, E, produced by the surface

perturbations

E =
√

E2
β + E2

Δz (A.7)

grows with the camera viewing angle. Hence, to minimize the error one would want

to make the camera angles as small as possible. However, as was mentioned before,

161



Surface elevation, Δz, mm

C
a
m
er
a
a
n
g
le
,
θ
2
,
◦

0.05

0.05

0.05

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.6

 

 

0 1 2 3 4 5
0

5

10

15

20

25

Error due to the surface elevation, EΔz, mm
0 0.1 0.2 0.3 0.4 0.5 0.6

Figure A.4: Horizontal position determination error due to the surface elevation.

if the angle of the cameras is too small the vertical error becomes large. The relation

between the vertical and horizontal errors can be estimated as E
tan θ2

(Figure A.5).

Figure A.5: Schematic of the relation between the vertical and horizontal uncer-
tainties.

All these relations can be used in the future to find the appropriate camera

angles for the surface perturbations characteristic of a particular flow. For the
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present work the maximum elevation of the surface produced by the gravity waves

is about 1 mm and the resulting surface angle is approximately 0.2◦. FigureA.6

presents the horizontal (a) and vertical (b) errors as functions of the camera angle

for the particular case of these surface disturbances. The vertical error grows rapidly

with decreasing camera angle, θ2, for θ2 < 5◦. However, increasing the angle beyond

10◦ does not improve the vertical accuracy. The horizontal error increases with θ2,

slowly before 5◦ and faster after. Thus, to choose the appropriate camera angle one

should consider making it as small as possible to minimize the horizontal error but

not go below 6−7◦ to keep the vertical error small as well. In the experimental setup

herein the precision with which the camera angles could be adjusted was limited.

The resulting angles measured from the calibration procedure ranged between 6◦

and 8◦ for the three cameras. The corresponding position errors for these angles are

about 0.04 mm in the horizontal direction and 0.3 mm in vertical, which corresponds

well with the position errors obtained in the Error Analysis Section (see Table 4.1),

0.1 and 0.3 mm, respectively. It is relevant to note that this result corresponds

well with the recent work of Elsinga & Orlicz (2015) who assessed the errors in

the particle-based velocimetry techniques produced by a density jump in a shock

wave. They also found that the best way to treat these errors is to put a camera

as perpendicular to the flow as possible. Five degrees was found to be optimal.
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Figure A.6: Total error produced by the surface oscillations in the present study,
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APPENDIX B
Drawings of the calibration object
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APPENDIX C
Parameters in the PTV post-processing

There are three groups of parameters in the PTV software (OpenPTV, 2012):

main, calibration, and tracking parameters. In the main parameters the general

information about the data files and the experimental set-up should be provided:

• the number of cameras and the path to the image files;

• the refractive indices of the media through which the images are taken;

• the grey value thresholds for particle recognition;

• the size of the domain; and

• the parameters for correpondance between the particles seen from different

cameras.

In the calibration parameters window one has to specify:

• the path to the calibration images;

• the grey value thresholds for the recognition of the calibration object dots;

• the points for manual pre-orientation of the cameras (preferably should be at

the four corners of the domain);

• whether to use additional parameters for the calibration procedure (in this

work the use of additional parameters such as lens distortion and affin trans-

formation did not result in a better quality of the calibration);

• dumbbell calibration parameters (used when instead of the calibration object

a dumbbell-shaped object is employed for calibration, this was not imple-

mented herein);

• the shaking parameters (to avoid local minima during the calibration opti-

mization procedure).
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Tracking parameters should be chosen based on the characteristic velocities and

acceleration of the flow. After making an initial guess based on the flow character-

istics it is recommended to “play” with them to optimize the result. The goal is to

have as many long trajectories as possible, which is usually achieved by increasing

the maximum velocities and acceleration allowing for a wider search area. However,

if the search area is too big, the code will start to connect different particles into

trajectories having big jumps in the paths. Thus, it is important to choose these

parameters carefully such that the total number of established trajectories is maxi-

mized while still being below the limit beyond which the connections established are

spurious. To performs the parameter search one proceeds as follows: i) change the

tracking parameters, ii) specify a 20-30 frame period in “Parameters for sequence

processing”, iii) run the code, iv) use “tracking tab” → “show trajectories” to see

whether the connections within trajectories are reasonable, v) note the number of

tracks that were lost (displayed in the terminal), vi) repeat the procedure.

All parameters used in the post-processing in this work are presented below.

The last image shows the parameters in the code of Lüthi et al. (2005) which calcu-

lates velocities and velocity derivatives of particles based on their tracks obtained

through the OpenPTV software. More information on the usage of the OpenPTV

and of the subsequent post-processing codes can be found at

• http://alexlib.github.io/docs/intro.html

• http://3dptv.github.io/.
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APPENDIX D
Convergence of turbulent fluctuations

In this work the primary focus was on the time-averaged statistics of the flow.

Their convergence was shown in Section 4.2. However, as some turbulence statistics

were used in the course of this research (for example, the Reynolds stresses in

Figure 5.31), it is necessary to check their convergence. Root mean square (rms)

values of turbulent velocity fluctuations were calculated based on different time

periods (with one time step increments) for 36 positions in the embayment. At most

of the points the rms values converge in 10 seconds, as in Figure D.1. However,

some of the others take longer; up to 70 seconds, as in Figure D.2. It is therefore

evident that the 90 seconds of data used in this study is sufficient to obtain not

only converged mean values but also rms velocity statistics. It is also important

to note that the magnitude of the velocity fluctuations is on average an order of

magnitude larger than the that of the velocity us calculated in Section 4.3. The rms

velocities vary between 2-4% of the free-stream velocity in the shear zone and up to

30% of U∞ near the walls, whereas the magnitude of the velocity error is 0.2-0.4%

of U∞, indicating that the rms values obtained are the true velocity fluctuations of

the flow.
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Figure D.1: Cumulative root mean square values of three components of velocity
fluctuations (u′, v′, w′) at one point in the embayment x = 0.05 m, y = 0 m, and
z = 0.014 m for the higher free-stream velocity of 0.19 m/s.
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Figure D.2: Cumulative root mean square values of three components of velocity
fluctuations (u′, v′, w′) at one point in the embayment x = 0.2 m, y = 0.11 m, and
z = 0.026 m for the higher free-stream velocity of 0.19 m/s.
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