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ABSTRACT 

The process of mine planning, from prospection of orebody deposits defining its extension, 

location and value, until obtaining minerals and their extraction sequence in time, requires 

mathematical optimization to determine the size and grade (grades) of the deposit and finally 

define a proper mine schedule to obtain the maximum earnings from it, at the lowest possible cost, 

in order to fulfill the business targets.  

In general, a mining project passes through a set of stages in order to evaluate its viability. One of 

these stages is the “feasibility stage” where the gathered information from mining studies is used 

to determine the economics and practical aspects of the ore deposit. This identifies, early on, 

whether further investment in estimation and engineering studies are required, and identifies areas 

for further work and development. 

The KéMag iron ore deposit owned by New Millennium Limited in northern Quebec, Canada, is 

in feasibility stage. The KéMag iron ore deposit is a taconite type, where the iron content is present 

as finely dispersed magnetite between 20 and 35 % iron (Fe) in a sedimentary rock interlayered 

with quartz, chert, and carbonate.  

Traditional mine planning uses estimation methods to model orebodies, estimate reserves, and 

optimize the mine planning, and production schedule. The result is a single estimated orebody 

model which is an input to spatially model attributes of interest. Commonly, this process ignores 

the presence of geological uncertainty causing most of the mine plans and forecasts to be biased 

and unrealistic. In many instances, the profit expectations and mine production are not met causing 

financial depletion, loss of credibility, and risking the business itself. 

In order to overcome the above-mentioned problems, geological uncertainty can be modeled, 

measured and managed through stochastic geological modelling to represent the uncertainty of the 

attributes of the orebody to quantify geological uncertainty by generating equally probable 

scenarios of the orebody (realizations).  

This thesis focuses on a set of methodologies to develop a whole process of stochastic orebody 

modelling and stochastic strategic mine planning for the KéMag deposit, aiming to generate a 
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modelling and optimization methodology that integrates geological uncertainty and manages risk 

in the mine schedule. This mathematical framework has been successfully implemented in the last 

two decades allowing modelling and integration of geological uncertainty to mine design, 

production scheduling and valuation of mining projects. From the application, several cases have 

shown an increment on the value of the production schedules up to 25%, and a reduction of 

deviation from production targets from 9% to 0.2%.  

Other case studies have also shown that stochastic pit limits can be about 15% larger adding then, 

10% to Net Present Value in comparison with the conventional framework results, suggesting that 

through the use of strategic stochastic mine a better utilization of natural resources is also achieved. 

For the KéMag deposit a set of fifteen realizations of nine lithological units (layers) were simulated 

using WAVESIM which is a multiple point simulation method combined to an image compression 

procedure to allow faster simulations. The orebody simulations obtained through WAVESIM serve 

as geological boundaries to integrate the variability of the four grades of interest using DBMAFSIM 

this method allows the simulation of correlated variables directly at block support using min/max 

autocorrelation factors MAF. The final result is a series of equally probable representations of the 

deposit that incorporate both grade and tonnage uncertainty. These simulations of the KéMag 

deposit were validated in terms of histograms, variograms (low order statistics) and high-order 

statistics through 3rd order cumulants maps for the boundary limits only.  

Geological uncertainty can then, be managed by directly incorporating stochastic simulations 

within the mine scheduling framework. To achieve this, one flexible method for long-term 

production scheduling based on Stochastic Integer Programming (SIP) was applied with an 

acceleration methodology based on a heuristic algorithm called Topological Sort Algorithm (TSA) 

to reduce the computational time required to solve the problem of production scheduling. The 

result of the stochastic mine planning framework is a single schedule robust enough to account for 

geological uncertainty of  the KéMag deposit giving valuable information for the conceptual stage 

of the project, in terms of silica content, iron production and expected cash flows per year. 
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RÉSUMÉ 

La planification minière est une procédure divisée entre la prospection du minerai, son obtention 

et sa séquence d’extraction. Elle requiert une optimisation mathématique pour déterminer la taille 

et la teneur de minerai dans un gisement, et aussi pour définir un plan d’extraction qui maximise 

les revenus et minimise les couts dans le but de satisfaire au mieux les cibles économiques. 

Généralement, un projet minier doit passer à travers d’une série d’étapes pour évaluer sa viabilité. 

Une de ces étapes est celle de préfaisabilité. À ce moment, l’information accumulée est utilisée 

pour déterminer la praticabilité et les retours économiques du gisement minier. Ceci permet 

d’identifier, aussitôt, les lieux possibles de développement, et si des investissements 

supplémentaires sont nécessaires pour effectuer des estimations et des études techniques. 

Le gisement de fer KéMag appartenant à New Millennium Ltd dans le nord du Québec au Canada 

est à une étape de préfaisabilité. Le gisement de fer KéMag est de type taconite. La taconite est un 

fer qui se présente sous forme de magnétite finement dispersée entre 20 et 35% dans une roche 

sédimentaire entrelacé de quartz, de chert et de carbonate.  

La planification minière traditionnelle utilise des méthodes d’estimation pour modéliser les 

gisements miniers, estimer les réserves et optimiser la planification et le calendrier de production. 

Le résultat est un modèle unique du gisement minier qui sert d’entrée pour un cadre technique 

servant à modéliser spatialement les attributs d’intérêt. Fréquemment, cette procédure ignore la 

présence d’incertitude géologique rendant la plupart des plans d’extraction et des prédictions peu 

réalistes et partiellement biaisés. Dans plusieurs cas, les attentes en termes de production et de 

profit monétaire ne sont pas remplies causant un épuisement financier et une perte de crédibilité 

en plus de risquer la survie de l’entreprise. 

Dans le but d’atténuer les risques mentionnés précédemment, l’incertitude géologique peut être 

modélisée, mesurée et contrôlée à travers des méthodes stochastiques géostatistiques pour 

représenter l’incertitude des attributs du gisement minier. Ainsi, il est possible de quantifier 

l’incertitude géologique en générant des scénarios équiprobables des gisements miniers 

(réalisations). Cette thèse explore une série de méthodes pour développer un modèle stochastique 

du gisement minier et de planification minière spécifiquement pour le gisement KéMag. 
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L’approche vise à générer une stratégie de modélisation et d’optimisation qui intègre l’incertitude 

géologique et la gestion du risque dans la planification minière. Ce cadre mathématique a déjà été 

implémenté avec succès dans les deux dernières décennies permettant la modélisation et 

l’intégration de l’incertitude géologique au design de mines, à la coordination de la production et 

à l’évaluation de projets miniers. Par son application, plusieurs cas ont montré une augmentation 

de la valeur de leur calendrier de production par 25% et une réduction de l’écart par rapport à leur 

cible de production entre 0.2 et 9%. 

Des études de cas démontrent que les contours finaux stochastiques des mines à ciel ouvert 

pourraient être 15% plus langé menant à une augmentation de 10% de leur valeur actuelle nette 

comparativement à ce qui est prédit par les résultats des approches conventionnelles. Cette 

constatation démontre une utilisation plus efficace des ressources naturelles par l’emploi d’une 

approche stochastique de planification minière. 

Pour le gisement minier de KéMag, une série de quinze réalisations (gisements miniers) de neuf 

unités (couches) lithologiques a été simulé en utilisant la méthode  WAVESIM. WAVESIM est une 

méthode de simulation à points multiples combinée à une procédure de compression d’image 

permettant une accélération des simulations. Les simulations de gisement minier obtenu par 

WAVESIM servent de frontières géologiques pour l’intégration de la variabilité des quatre éléments 

d’intérêt à partir de DBMAFSIM, une méthode permet la simulation de variables corrélées 

directement au support de block en utilisant des facteurs min/max d’autocorrélation(MAF).  

Le résultat final est une série de représentations équiprobable du gisement minier incluant les 

incertitudes reliées à la teneur de minerai et au tonnage. Ces simulations du gisement minier de 

KéMag ont été validées à l’aide d’histogrammes, de variogrammes (statistiques d’ordre inférieur) 

et de statistiques d’ordre supérieur à partir de cartes de cumulants d’ordre 3 pour les limites aux 

frontières.  

L’incertitude géologique peut être contrôlée en incluant directement des simulations stochastiques 

au sein du cadre de planification minière. Pour ce faire, une méthode flexible pour la planification 

de la production à long-terme basée sur la programmation stochastique en nombres entiers 

(Stochastic Integer Programming (SIP)) a été appliquée avec une méthode d’accélération 
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heuristique appelée Topological Sort Algorithm (TSA) pour réduire le temps de calcul de la 

solution. Le résultat du cadre de planification minier stochastique est une unique cédule assez 

robuste pour prendre en considération l’incertitude géologique du gisement KéMag. De plus, 

d’importantes informations pour l’étape de conception du projet sont fournies, incluant le contenu 

en silicium, la production de fer et les revenus annuels attendus.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Advanced computational technologies and data processing has been used in the mining industry 

for more than three decades to model and optimize mineral resources, in a framework known as 

“mine planning”. Mine planning is crucial to optimize mine designs and production scheduling 

aiming to maximize the economic value of the mining assets from prospection and exploration 

until the mine closure. 

Traditionally, mine planning optimizes mine design and production schedule using a single 

deterministic representation of geological model as input. This representation is considered a 

smooth representation of the reality, which is generally generated using geostatistical estimation 

methods, defining the value of a block as an average of all possible grades in different locations of 

the deposit taken separately.  

Conventional mine planning considers the economic valuation of a mined block as a linear 

function that is usually calculated prior to the mine optimization in order to define ore and waste 

blocks. Moreover, these optimization methods are based on a single deterministic orebody model 

which can produce misleading results because it does not account for the likely deviation from the 

model in reality. 

In the last decade, new methodologies and algorithms have been developed to overcome the 

shortcomings of the conventional mine planning framework. These new methodologies enable the 

explicit management of the uncertainty, through a conditional simulation orebody modelling to 

produce a set of equally probable orebody representations (simulations) that denotes the 

distribution and spatial correlations of the attributes of interest. 

With the development of simulation methods, the impact of geological uncertainty in ore reserve 

calculations, ultimate pit definition and production scheduling can be readily measured and 

managed through a set of equally probable simulations. This set of simulations is used as input for 
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the mining optimization. This procedure is developed to not only maximizing the NPV of the mine, 

but also minimizing deviations from production targets. These goals are achieved by incorporating 

grade uncertain into the mine production schedule formulation in the form of stochastic mine 

planning and production scheduling. 

1.2 Goals and objectives 

Integrating uncertainty into mine design and production scheduling is a recent framework  that has 

consistently demonstrated the ability to not only reduce the levels of risk of not meeting production 

targets, but also increases the economic value of the mining operation. 

The goal of this thesis is to show a complete stochastic orebody modelling and to develop a 

stochastic mine production schedule for an iron deposit.  To demonstrate the applicability of these 

novel methodologies for mine optimization while integrating uncertainty, using exactly the same 

input data (e.g. drillholes) as the conventional modelling and mine planning framework. By 

integrating geological uncertainty directly in the mine planning process, it is, possible to manage 

the risk related to the various products and elements in the mine production scheduling.  

In order to achieve this goal, the related objectives are outlined as follows: 

i. Review traditional deterministic or conventional mine planning frameworks, as well as 

stochastic mine planning frameworks, and outline their inherent limitations and 

applicability in the mining industry. 

ii. Review the literature on geostatistical simulations, from two-point based 

methodologies to newer approaches such as high-order simulation methods. 

iii. Review the literature on mine production scheduling, from simple mixed integer 

programing problems, to stochastic integer programing adapted to optimize mining 

complexes. 

iv. Apply the stochastic mine planning framework to the KéMag iron ore deposit in 

northern Quebec by: 

a. Modelling the iron ore deposit, firstly using multiple point simulation methods to 

simulate boundaries and volume uncertainty (lithologies) and then jointly-simulate 

directly at block support a set of correlated variables (grades). 
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b. Then, making use of the set of orebody simulations obtained in a), obtain a 

stochastic long-term production schedule applying a heuristic algorithm to solve 

the stochastic integer program model of the mine production scheduling problem. 

v. Draw conclusions from the study and recommendations for future work. 

1.3 Thesis outline 

This thesis is organized according to the following chapters: 

Chapter 1: Introduction, goals, objectives and outline of this thesis. 

Chapter 2: Compilation and review of technical literature to the state of the art related to stochastic 

orebody modelling and stochastic mine planning. 

Chapter 3: Description of the methodologies applied for i) stochastic orebody modelling using 

WAVESIM and DBMAFSIM, and ii) for stochastic mine planning of an iron deposit with an SIP 

formulation. All this aiming for the stochastic optimization of a multi-element, life-of-mine 

production schedule solved in conjunction with a heuristic algorithm to minimize risk of deviation 

from production targets and to maximize the expected discounted cash flows of the mine. 

Chapter 4: Application of the methods descripted in Chapter 4 to the KéMag iron ore deposit in 

northern Quebec. 

Chapter 5: Conclusions and future work 
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 CHAPTER 2 

LITERATURE REVIEW 

2.1  Introduction 

Mining is a production activity related to the extraction of valuable minerals from the earth 

(orebody, deposit). In general, an orebody is any single mineral or combination of minerals 

occurring in a mass, or deposit, of economic interest (CRIRSCO definitions, 2013).The economic 

valuation of orebodies is affected by factors such as geological uncertainty, mining and 

transporting methods, market price fluctuations, environmental factors among others. Mining 

companies require technologically advanced tools and methodologies to increase profits, improve 

mining methods, and enhance the use of the natural resources/reserves to meet the economic 

expectations of the stakeholders. 

Generally, the process of orebody modelling ignores the presence of geological uncertainty 

causing most of the mine plans and forecasts to be unrealistic. In many instances, the expectations 

in terms of profit and mine production are not met causing financial depletion, loss of credibility, 

among other factors risking the business itself. These unwanted factors, happen because mine 

planning process is based on inputs with an inherent uncertainty; one of the key risks in a mining 

project is geological uncertainty.  

Traditional mine planning is a step-wise framework that uses estimation methods to model 

orebodies. The result of these estimation techniques is a single model consisting of the expected 

mineral content for a block of material in the deposit which is a smooth representation of the reality 

given the average-weight nature of the estimation process. This grade averaging produces an 

unfavourable effect called “smoothing effect” (Dimitrakopoulos, 1988). Smoothing effect is 

present in any estimated orebody model, as it is in the case of a Kriged model, where geological 

uncertainty is not taken into account. 

The technical literature (Godoy, 2003; Ramazan and Dimitrakopoulos, 2007; Menabde et al., 

2007; Leite and Dimitrakopoulos, 2007; Albor and Dimitrakopoulos, 2010) has shown that the 

risk of not meeting production targets and expected Net Present Value ((NPV) - financial indicator) 

https://en.wikipedia.org/wiki/Ore


5 
 

is increased due the smoothing effect of commonly used estimation methods on a non-linear 

transfer function. Thus, a single estimated model as representation of the deposit does not provide 

means for decision making in a robust way, as is required for optimization models for mine 

planning. Therefore, the integration of the uncertainty into the mine planning process is required. 

It is important to mention that majority of the available optimization models for mine production 

scheduling are linear formulations that use a single estimated model and a fixed destination 

criterion based in the material content. The economic valuation of mineral deposits is a non-linear 

transfer function. However, conventional frameworks calculate the economic value of a block of 

material as a linear function to classify a block either ore or waste. This classification is done 

before the optimization. The most common criteria used in the mining industry is the so-called 

cut-off grade (COG). In general, a cut-off grade is defined as the minimum amount of valuable 

material that one metric ton of material must contain before this material is sent to the processing 

plant (Rendu, 2013). 

Geological uncertainty can be modeled, measured and managed and quantified through stochastic 

geostatistical methods. This is achieved by generating equally probable scenarios of the orebody 

(realizations).These scenarios are key to a better understanding of geological characteristics of ore 

deposits.  Risk can be quantified through the integration of uncertainty into the decision-making. 

This yields a mine design and production schedule with higher value and better risk management. 

Risk management ensures that the mining operation is capable of meeting production targets over 

time. (Leite, 2008, 2014; Dimitrakopulos, 2011).  

The availability of uncertainty modelling techniques leads to the development of new scheduling 

approaches integrating the modelled geological uncertainty into the mine planning process. This 

concept is expanded to even more general overview of the mining business when integrating global 

optimization of mining complexes. For this optimization important factors such as blending 

requirements, different processing streams, transportation systems, and product sales are included 

into the optimization simultaneously. (Whittle, 2010; Montiel and Dimitrakopoulos, 2014; 

Goodfellow and Dimitrakopoulos, 2014a). 
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2.2 Overview of strategic mine planning under uncertainty  

It is inarguable that there are many sources of uncertainty when dealing with orebody modelling 

and mine planning. However, among all of them geological uncertainty is seen as the main reason 

why mining projects do not meet their expectations (Vallee, 2000; Baker and Giacomo, 2001; 

Dimitrakopulos et al., 2002; Ramazan and Dimitrakopulos, 2004). The use of conditional 

simulation to generate orebody models, which can further be used to analyse risk in mining projects 

was firsts proposed by Ravenscroft (1992). In his work, the application of a probabilistic 

assessment of geological uncertainty in production scheduling uses a set of stochastic simulations. 

In this method, a production schedule is evaluated separately for each scenario, which provides a 

range of values for the quantities and qualities of mined material in each period. The methodology 

provides a better understanding of the production scheduling but does not include ore variability 

into the production scheduling optimization.  

Based on Ravenscroft’s approach, Dimitrakopoulos et al. (2002) tested the performance of a 

conventional production schedule by evaluating the schedules obtained for a set of 50 stochastic 

simulations. The results showed that the annual mine production for the given “optimal” 

production schedule was different for each one of the 50 simulations, creating a range of possible 

cash flows with only 20% of them meeting the expectations of the estimated NPV. There was also 

a 95% probability of the project to return a lower NPV than the predicted using the estimated 

orebody model. These results show that there is a low probability of the single estimation of being 

accurate. This methodology is recognized as a risk analysis of the estimated expectations of the 

project but it does not manage the risk itself. 

Later, some methods to implement strategic mine planning with stochastic schedule were 

developed to include a set of equally probable scenarios of the orebody as input for the 

optimization. The goal is not only maximizing the NPV of the project, but also minimizing 

deviations from production targets. These goals are achieved by incorporating grade uncertainty 

into the mine production schedule formulation. For example, Godoy and Dimitrakopoulos (2004) 

obtain promising results. Herein, the authors proposed a novel optimization approach to effectively 

integrate grade uncertainty into the optimization of long-term production scheduling in open pit 
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mines using a combinatorial optimization technique called “simulated annealing” proposed by 

Gemand and Gemand (1984) and based on the Metropolis (1953) algorithm.  

To generate a final optimal schedule using simulated annealing, a suboptimal configuration (i.e. 

an initial mine sequence) is continuously perturbed until it matches some pre-defined 

characteristics as coded into an objective function (Kirkpatrick et al., 1983). In mine planning, the 

objective function is usually a measure of the difference between the desired ore and waste 

production and those of a candidate mining sequence. Each perturbation is accepted or rejected 

based on whether it improves or not the value of the objective function.  

The approach by Godoy and Dimitrakopoulos (2004) was applied in a gold deposit and it returned 

a schedule with a NPV increment of 28% in comparison with the obtained using the traditional 

scheduling approach where grade uncertainty is not taken into account. The same study also shows 

that the stochastic approach leads to substantially reducing the project risk by lowering potential 

deviation from production targets in the order of 13%. 

A key contributor to these improvements is that the stochastic (risk-integrating) approach can 

discriminate the “upside potential” of the metal content and hence distinguish economic value of 

a mining block from its “downside risk”. This idea led Dimitrakopoulos et al., (2007) to introduce 

a more systematic approach to selecting an open pit mine design amongst a set of designs.  This is 

done by a quantification of the upside potential and the downside risk for key project performance 

indicators, such as the periodical discounted cash flow and the amount of ore tonnes and metal 

production. In this work, the reference point that defines upside versus downside potential is the 

Minimum Acceptable Return (MAR) of the investment, which usually differs from the “expected 

value” also known as “average value”. 

The same year, Leite and Dimitrakopoulos (2007) implemented Godoy’s methodology in a copper 

deposit. The stochastic approach generated a Life of Mine (LOM) schedule with a 26% higher  

NPV than the conventional schedule, also, in concordance with Godoy’s findings the risk analysis 

showed that the stochastic schedule has low chances to deviate from production targets. Leite’s 

work at that time did not include the definition of pit limits nor optimization of pushbacks in the 

proposed stochastic optimization approach. Then, to include uncertainty in the selection of the 
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ultimate pit, Albor (2009) extended Godoy’s work to the inclusion of an optimization for pit limits. 

One of the most important findings, after the application of this extension in a copper deposit, was 

that a set of only ten (10) schedules was needed in order to meet production targets. However, 

more than ten did not add any benefit.  

In his work, Albor (2009) also found that selecting a different ultimate pit from the available pit 

shells and using simulated annealing to schedule the material resulted in a 10% higher NPV in 

comparison with the NPV obtained from the optimized schedule for conventional pit limits. 

Thanks to these results it was confirmed that stochastic pit limits are larger than the ones obtained 

through conventional optimization. Explicitly in this case the stochastically optimized pit limits 

shown to be 17% larger in total tonnage. This means that the stochastic scheduling process can 

return mine schedules that can retrieve more metal, hence more value from the same orebody, 

improving the utilization of the mineral resource.  

The successful application of these approaches and other cases were summarized by 

Dimitrakopulos (2011). Here, the author recaps ten years of research in the integration of two 

elements: stochastic simulation and stochastic optimization. These elements provide an extended 

mathematical framework that allows modelling and direct integration of orebody uncertainty to 

mine design, production planning, and valuation of mining projects and operations.  

Stochastic mine planning workflow is graphically represented in Figure 1. It shows that, instead 

of a single orebody model as an input to the optimization for mine design and an assessment of 

individual key project indicators, a set of equally probable models of the deposit can be used. 

These orebody models are conditional to the same available data and their statistical characteristics 

are constrained to reproduce all available information, and represent equally probable models of 

the actual and unknown spatial distribution of the elements of interest. 

Godoy and Dimitrakopoulos (2011) present a framework for geological risk analysis that 

quantifies the impact of grade uncertainty in four different cases to show the availability of 

multiple equally probable models of a deposit enables the mine planning process to assess the 

sensitivity of pit design and long-term production scheduling. The results are mine sequences with 
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substantially higher NPV, larger pit limits, and longer LOM with more ore material. But the 

problem related to the a-priori destination policy of where to send a block remains. 

 

Figure 1. Traditional (deterministic or single model) view and practice versus risk-integrating 

(stochastic) approach to mine modelling, from reserves to production planning and life-of-mine 

scheduling, and assessment of key project indicators. (Dimitrakopulos, 2011). 

The formulations previously mentioned, assume a classification of ore and waste material using a 

cut-off grade (COG) policy. COG introduced by Lane (1988) is one of the most popular types of 

destination policies in the mining industry, herein the decision of where to send a block after being 

extracted is decided based on the metal content (grade) being above or below a threshold. COG is 

usually calculated by comparing cost and benefits, where a single parameter such as minimum 

metal content, is sufficient to define the cut-off grade (Rendu, 2013). 

By specifying the destination of the material a priori, this fixed ore-waste classification can result 

in low-grade material sent for processing first, thus deferring, the processing of higher-grade ore 

that may be readily available. Moreover, these models ignore the impact that the aggregate of 

blocks have on the mining capacity and in the production constraints that are imposed in the 

processing streams of the mining complex.  

Then, moving forward with the advances in stochastic mine production scheduling the models 

developed over the last years are often oversimplified. These formulations are designed to optimize 



10 
 

a single mine with a single output production stream (e.g. mill, crusher). Consequently, when a 

mine complex is considered, those methods are limited to provide only local optimum results. 

Then, a more global approach was introduced (Goodfellow and Dimitrakopoulos, 2013, 2014a, 

2014b; Montiel and Dimitrakopoulos 2014). The idea is then have the optimization guided to 

optimize entire mining complexes. This means considering not only mining and production 

scheduling, but also all the activities constituting a mining operation; including blending, several 

processing streams, transportation, product manufacture and sales, to maximize the economic 

value over the life of a resource (mineral, material) in the supply chain. 

Past attempts for global asset optimization have been studied (Whittle, 2007; Whittle, 2009). This 

optimization aims to optimize mining supply chains, starting with the decisions of what material 

extract from different mines in a given period and how efficiently use the resources of the supply 

chain to maximize the value of the extracted material. This approach ignores the inherent effect 

that geological uncertainty has on the product value and on the operational feasibility of the supply 

chain. In this approach the optimization of when (production period) and where (location), extract 

certain material and how to maximize its value is performed independently. The optimization is 

performed separately because solving them jointly often exceeds the capabilities of the currently 

available mining tools (Whittle, 2010).Therefore, when a mining complex is considered the 

obtained results applying this approach are sub-optimal solutions for the supply chain. 

Stochastic mine planning frameworks are useful tools when optimizing complex supply chains 

because it allows the dynamic evaluation (simulation) of the impact that a set of decisions have on 

a mining complex, finally, it attempts to improve these decisions through the use of a stochastic 

optimizer. Montiel and Dimitrakopoulos (2013) presented a heuristic method which is an approach 

to problem solving that employs a practical mathematical methodology that cannot guarantee 

optimal or perfect solutions, but is usually sufficient for the immediate goals. The authors applied 

a heuristic algorithm in the solution of the stochastic integer programming to generate mine 

production schedules accounting for multiple metals or attributes, multiple rock types, stockpiles 

and processing options (operating modes) for a single mine.  

The methodology mentioned above, was applied to a copper deposit. The study showed a reduction 

of the deviations from production targets from 9% to 0.2% while increasing the expected NPV by 
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30% when compared with the obtained using conventional methods. In this work, the authors also 

proved in coherence with Albor’s (2009) work, that there are not significant additional benefits 

from increasing the number of simulations used in the optimizer after 10 simulations. 

When more than a single mine is required to be optimized (e.g. multi-pit optimization) the problem 

becomes large in size and exigent in terms of computational requirements. To overcome this, 

Goodfellow and Dimitrakopoulos (2014a) proposed a two-stage stochastic mining complex 

optimization model that can accommodate non-linear aspects of the supply chain and also does 

not require simplifying assumptions to generate high-quality solutions. The first stage of the 

optimization decides the production schedules for the mines along with the destination policies. In 

the second the processing stream decisions resolve how to best use the processing streams and 

destinations in order to maximize the value of the material that has been extracted. The authors 

applied a hybrid metaheuristic comprised of particle swarm optimization and a modified simulated 

annealing optimizer, in a fashion that the particle swarm optimizes the destination policies and 

processing streams and the simulated annealing optimizes the long-term production schedule and 

processing stream flow. Goodfellow and Dimitrakopoulos (2014a) tested this methodology on a 

copper-gold mining complex and experimental results showed that a maximum of 3.5% reduction 

in risk of not meeting production targets is obtained while returning a 14.2% higher NPV in 

comparison with the conventional solution. 

Later, Montiel and Dimitrakopoulos (2015) presented a mining complex optimization approach to 

include in the optimization different features such as, multi pits, several material types, stockpiles, 

process destinations, various operating configurations of the metallurgical plant, transportation 

systems, and final products. This approach uses a heuristic algorithm based on simulated annealing 

where an initial scheduling solution is fed into a three-stage hierarchy perturbation cycles. In the 

outermost cycle, perturbations occur on the block scale, modifying the periods and destinations of 

each block. In the second level, perturbations to the operational alternatives at each given 

destination are made. In the third level, perturbations are made to the proportion of output material 

transported using the available transportation systems. 

The implementation of Montiel’s method in a multi-pit copper operation allowed the reduction of 

the average deviations from production targets from 18% to 1%. Although NPV forecasts for the 
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base case obtained through conventional methods are not considered meaningful given its large 

deviations from capacities and blending targets, the solution generated by implementing this 

method generates an increase of 5% of the project’s NPV, showing the ability of the method to 

generate a higher NPV with less risk. 

Optimization of mining complexes demonstrates that when incorporating geological uncertainty 

the solutions generated outperform solutions obtained using conventional deterministic 

approaches, which consider a single smooth representation of a deposit. These models return a 

mine schedule as a solution and destination policies that are robust enough to account for 

geological uncertainty, avoiding the use of a-priori cut-off grade policies. Also, optimization of 

mining complexes define the sequence of extraction of the mining blocks in different pits, and 

transportation systems used to transport the processed material to their final destinations. 

After this overview of strategic stochastic mine planning, the following sections describe the 

literature review first for the stochastic orebody modelling (Section 2.3) and then for the stochastic 

mine planning (Section 2.4). These elements provide a framework that allows modelling and direct 

integration of orebody uncertainty to mine design.  

2.3  Stochastic orebody simulation 

Simulation of spatially correlated categorical and continuous variables as rock types and metal 

grades of mineral deposits respectively is a challenging task. The optimization of entire mining 

complexes demonstrates the importance of modelling geological uncertainty. Spatial uncertainty 

is typically modeled by generating multiple realizations (scenarios) of a given attribute through a 

process known as geostatistical simulation. In orebody modelling, the location and the connectivity 

of the material grades, especially the high ones, must be well understood to perform a successful 

mine optimization and scheduling. This is possible through geostatistical simulation. 

2.3.1 Two point simulation methods 

The traditional geostatistical framework relies on two-point statistics in the form of a 

covariance or a variogram model to model orebodies. (Journel, 1974; David, 1977; David, 1988 ; 

Goovaerts, 1997). Two-point statistics, namely the variograms, are an important structural 
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parameter but does not contain all the structural information of the random function model. 

Therefore, second-order spatial statistical techniques are not enough to model some complex 

structures in mineral deposits as curvilinear geometries, typical in mineral deposits. It means that 

these methods are limited in their ability to describe connectivity and incorporate complex shapes 

or geometries that are inherent to mineral deposits (Journel, 2007).  

Two-point geostatistical simulation relies on the sequential simulation framework proposed by 

Rosenblatt (1952) and Kolmogorov (1956). In this approach, for each node to be simulated, a 

Conditional Cumulative Probability Function (ccdf) has to be generated considering the initial hard 

data set (e.g. drillhole database) and previously simulated nodes.  

To do that the simplest case of sequential simulation follows the following steps: 

1. Define a random path to visit the nodes to be simulated in a defined grid. 

2. Generate a ccdf for a given node. 

3. Draw a value from the ccdf in step 2. (Since the ccdf can be generated for all the nodes       

in the grid, one at a time, it is possible to randomly draw a value for each of them) 

4. Include the draw value (simulated node) as conditional data. 

5. Repeat step 2, 3, 4 until all nodes in the grid are simulated. 

6. Repeat steps 1 to 5 to generate more realizations. 

Two of the most used geostatistical simulations techniques are Sequential Gaussian Simulation 

(SGS) (Goovaerts, 1997; Isaaks, 1990) and Sequential Indicator Simulation (SIS) (Journel, 1989; 

Journel, 1994). SGS is a commonly used method requiring the ccdf to follow a Gaussian 

distribution. To achieve this, the initial data is transformed to standard normal scores. The mean 

and variance is estimated using Kriging. With these two parameters, the normal distribution is built 

to define the ccdf for any given node. The simulation is complete when all nodes are simulated, 

then the simulated values are back-transformed to the original data space. 
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An equivalent method to SGS is the simulation through Lower-Upper (LU) decomposition (Davis, 

1987). The method also follows a Gaussian distribution, both methods require computation of a 

covariance matrix, which depending on the size of the data, can be difficult to process in terms of 

computational requirements. In LU decomposition, the covariance matrix is decomposed in lower 

and upper triangular matrices using the so-called Cholesky decomposition. Afterwards, the 

realizations are generated by multiplying the lower triangular matrix with a vector of independent 

and normally distributed random numbers. In LU decomposition, each row of the resulting vector 

corresponds to one node in the simulation grid. Thus, if LU is implemented row by row the method 

is equivalent to the SGS.  

To overcome the computational requirements problems of SGS and LU decomposition 

Dimitrakopoulos and Luo (2004) proposed a Generalized Sequential Gaussian Simulation (GSGS) 

which is conceived as a hybrid of both methods stated above. GSGS preforms the simulation 

grouping nodes and simulating the groups through LU instead than simulating node by node as is 

in SGS. In this method, the random path is defined to visit a group of nodes at a time giving 

flexibility to deal with large grids in a more efficient way. 

Given that the natural distribution of geological data is unknown, the mentioned methods above 

suppose that the data follows a Gaussian distribution. To deal with this assumption, the Sequential 

Indicator Simulation SIS generates a ccdf by defining a set of threshold values using Indicator 

Kriging. In general, the simulations obtained through SIS rely on strict stationary assumptions and 

reproduce well the continuity of extreme values (that is, high grades- or-low grades). This is 

extremely important because high grades drive the profitability of mining projects, it guides the 

mining sequence in a process colloquially known as “high-grading” (Whittle and Rozman, 1991). 

Finally, SIS has as drawbacks the fact that is computationally extensive and that is challenging in 

the requirement of the interpretation of variograms at high cut offs. 

All these methods mentioned above have an additional complication related to the output files of 

the simulations. The simulations are generated at a point support but mine planning tasks such as 

resources assessment, pit optimization, and production scheduling are done at a block support, 

requiring the output of the simulations to be averaged to fit the block sizes. The block size is 

usually related to the Selective Mining Unit (SMU) (Switzer and Parker, 1975). This reblocking 
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process implies the approximation of the block values by a linear average of the contained point 

values. When the point-block relation is linear, as in the case of metal grades in a mineral deposit, 

the procedure is simple and does not require any prior assumption about the distribution of the 

block values. In general, this process works well when the process is performed over a single 

representation of the deposit. However, as was mentioned before, risk assessment applications call 

for the use of multiple equally probable realizations. Thus, under these circumstances, the 

computational performance in terms of processing time and storage becomes a limiting factor.  

Aiming to solve these limitations, Godoy (2002) introduced a simulation method which generates 

realizations directly at a block support. The method termed DBSIM works as similar as GSGS, 

herein a group of nodes is simulated using LU; then those nodes are averaged to obtain the value 

for the determined block size, and after the averaging process the nodes values are discarded, 

keeping only the block values as results of the simulation and stored for further conditioning. The 

method leads to substantial gains in computational efficiency that makes it suitable for simulating 

very large grids with up to 108 nodes (Godoy 2003). 

To compare the efficiency of the method, Benndorf and Dimitrakopoulos (2007) performed a study 

between GSGS and DBSIM in a simulation of a single variable. The former took 7% less time than 

GSGS to run, and only required 1% of the computer memory when compared with GSGS. 

Regardless the successful application of DBSIM, the methodology is limited to simulate only a 

single variable. Then, a method to simulate a set of multiple correlated variables a framework 

accounting for keeping the spatial correlation is required. To jointly simulate a set of multiple 

spatially correlated continuous variables, a viable alternative to co-simulation frameworks is to 

transform the initial set of spatially correlated attributes into a new set of uncorrelated (orthogonal) 

factors. These factors are independently modelled and simulated, and finally back-transformed to 

the original space of the multivariate dataset, aiming the reproduction of their cross correlations. 

Factor decorrelation was first introduced in multivariate geostatistics through a strategy based on 

Principal Component Analysis (PCA) (David, 1988). Although this methodology is simple, it can 

only guarantee that the factors are uncorrelated at lag (distance) zero.  
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Aiming to find factors that are uncorrelated not only for lag zero but also at any other distance. 

Desbarats and Dimitrakopoulos (2000) introduced Minimum/Maximum Autocorrelation Factors 

(MAF) (Switzer and Green, 1984) for geostatistical simulations, relying on the linear model of 

corregionalization (LMC) for the multivariate random field. Then, MAF is able to provide a set of 

factors uncorrelated at any lag. The efficiency of joint-simulation with MAF is enhanced when the 

simulations are done directly on a block support scale.  

Then, Boucher and Dimitrakopoulos (2009) introduced the concept of MAF combined with 

DBSIM for geostatistical simulations. The methodology transforms a set of correlated variables 

into uncorrelated factors which can be independently simulated and then back transformed 

preserving the original correlation of the data. The algorithm termed DBMAFSIM was successfully 

applied by Boucher and Dimitrakopoulos (2012) in an iron ore deposit in Western Australia. The 

authors demonstrate that the method is practical and able to reproduce the spatial correlations 

between multiple elements, the method also minimizes the information stored by retaining only 

the block values, a procedure that significantly speeds up the simulation process while reducing 

the size of the output files and requirements of memory allocation.  

One of the advantages of DBMAFSIM is that it overcomes the lack of preservation of extreme 

values connectivity because the approach does not require a reblocking post-processing. The 

simultaneous simulation of internal points of each block preserves the connectivity better than 

point-by-point approaches which usually uses a path to randomly visiting internal nodes at random 

way generating then poor relations of extreme values. Therefore, approaches such as DBMAFSIM 

provides a substantial advantage because the connectivity of high-valued blocks is important for 

the mine planning and production scheduling (Godoy, 2004). The application of DBMAFSIM in 

mineral deposits has shown to work well in reproducing the statistical, spatial continuity and cross 

continuity of multiple correlated variables as is presented in several studies (Lopez et al., 2011; 

Goodfellow et al., 2012; de Freitas and Dimitrakopoulos, 2014). 

Simulation of spatially correlated continuous and categorical variables as rock types and metal 

grades of mineral deposits is a challenging task. Limitations of variogram-based simulation 

methods as the mentioned in this literature review are discussed in Journel (2005) and Journel 

(2007). Curvilinear geometries, typical in mineral deposits are not properly modelled through these 
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methods. Two-point statistics methods are not enough to model some crucial features inherent to 

mineral deposits, such as non-linear relations and spatial connectivity of extreme values. An 

example of the mentioned limitations is presented in Figure 2. From there it can be seen that 

structures with very different spatial patterns can share very similar variograms, despite having 

different levels of connectivity. 

.  

Figure 2. Different patterns, same variograms (Journel, 2007). 

2.3.2  Multiple point simulation methods  

To address the limitations of two-point statistical techniques Journel (1989) and Guardiano 

and Srivastava (1993) introduced in the form of multiple point models, the so-called high-order 

spatial statistics for geostatistical studies. High-order statistics are functions that use the third or 

higher statistically power of a sample to capture high-order relations between points from an 

image. This image, known as Training Image (TI), is a depction of a database of geological 
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patterns, from which high-order statistics, including the variogram, can be borrowed. For 

geostatistical simulation, high-order statistics are used to generate Multiple Point Simulations 

(MPS) 

As a first approach, Guardiano and Srivastava (1993) incorporated this concept in an algorithm 

called ENESIM. In this approach, for each node to be simulated the method retrieves a conditioning 

neighbourhood considering multiple points at a once including hard data and previously simulated 

nodes. This methodology forces the whole TI to be scanned every time a node is simulated, 

requiring then potent computational resources. Because of this situation the methodology remained 

impractical for many years until Strebelle (2002) came up with the idea of computing the 

conditional probabilities before performing the simulation instead of scanning the whole TI for 

each conditioning data event. This new approach called SNESIM was also improved by the idea of 

storing all probabilities from the TI as conditional cumulative distribution function (ccdf) of the 

patterns conforming the TI in a search-tree structure. This idea allows fast retrieval of all required 

conditional probabilities. Therefore, the computational requirements are less demanding than in 

ENESIM but still big enough to be hard to implement. The main disadvantage of the SNESIM is 

that the method searches for an exact match of the conditioning data event with the TI. 

Consequently, when the probability of a data event is not found in the search-tree, the furthest 

node is dropped incurring in a loss of conditioning information. Due to this the method requires a 

training image that is large and sufficient enough to contain the majority of possible conditioning 

data events that could be found during simulation. 

To take advantage of new computer technologies, Huang and Lu (2013) and Strebelle (2014), 

implemented a parallel implementation of SNESIM. However, for large three-dimensional TI with 

intricate patterns, the improved methodology requires large storage memory. To overcome this 

problem, simulation with patterns SIMPAT (Arpat and Caers, 2007) was introduced. The algorithm 

does not search for an exact match in the pattern database, but it rather searches for the best possible 

match to the conditioning data event. SIMPAT’s major limitation is that the entire pattern database 

has to be searched to find the best match at each simulating node. Therefore, the computational 

time is extensively high.  



19 
 

Zhang et al. (2006) proposes an algorithm to treat the TI as a collection of patterns, right before 

the simulation is performed. The pattern geometry is then, defined by a template (T) containing a 

set nodes describing the information in the so-called “pattern database”. This algorithm is called 

FILTERSIM (Zhang et al., 2006; Wu et al., 2008) and treat the patterns of the database by a series 

of filters to obtain filter scores value. These values are then grouped into classes by means of a 

similarity criterion regarding their filter scores (e.g., k-means clustering). Then, the classes are 

represented by their prototype which is the average value of all patterns in a class and afterwards 

during the simulation the conditioning data event is compared with the class prototypes to find the 

closest matched class. One of the downsides of the methodology is the dependence on linear filters 

to perform the pattern classification. Different geological domains require the usage of different 

filters, because the filters to apply should be related to the structures and geometries of the patterns. 

Therefore, finding the right filters to use is not an arbitrary task.  In the other hand, one of the 

major problems of FILTERSIM as other MPS methods is that a pattern is drawn randomly from a 

class; no conditional cumulative distribution function is generated for each class like SNESIM 

does. Therefore, the pattern obtained from a “best match” class is randomly selected and not 

statistics are involved in it. 

Following the idea of FILTERSIM and to reduce the size of the pattern database and accelerate the 

pattern searching for the best matching with a data event, a method called WAVESIM based on 

wavelet analysis and pattern recognition was proposed by Chatterjee et.al (2012). The 

methodology works as similar to other MPSs. First, a complete image that represents the 

geometrical/geological features of the physical properties of interest are considered in the TI. The 

TI is scanned with a template to generate a pattern database. Then, the obtained database has its 

dimension reduced by applying a discrete wavelet transformation to obtain the approximate sub-

band image of the patterns and the related sub-band coefficients. This information is used to group 

the patterns into classes as similar as FILTERSIM does, herein the patterns are divided into classes 

using k-means clustering algorithm and finally averaged to obtain a class prototype.   

WAVESIM can be used to simulate categorical and continuous variables. For simulation of 

categorical data a ccdf of the individual class prototype is obtained using the probability of each 

individual category within the class. Then, the grid is simulated by comparing the conditioning 

data event in each node with the prototypes of the class, at that point, a random pattern is generated 
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from the developed ccdf of the “best match” class. In synthesis WAVESIM does not generate a 

random pattern from a class, but it rather generates a random pattern from a ccdf developed for 

each class. 

In terms of continuous simulations, the most challenging task is the generation of a continuous TI 

because to build it some additional information is necessary. For example in the oil-gas field they 

use sedimentation models, seismic to distinguish geometric structures as channels or streams, etc. 

(Okabe and Blunt, 2004). For the construction of the categorical TI, a wireframe is built from the 

drillhole samples and it is based on a geological interpretation which is used as additional 

information. Unfortunately, for continuous variables this extra information is not always available. 

Therefore, a continuous TI would be very subjective. Some attempts have been made to obtain a 

continuous TI through the use of low rank tensor like the work of Teixera (2014). In his work, 

WAVESIM draws the patterns randomly and not ccdf is generated, he shows that given the 

continuous character of this type of variables, a continuous TI gives very small probability to find 

a matching pattern of a certain point neighborhood in the patter database even if a large TI is used. 

Therefore, this limited number of pattern replications does not allow obtaining representative MP 

statistics (Hu et al., 2008; Hu et al., 2014).  

There are other ways to obtain information from the TI, for instance the work of Mariethoz et al. 

(2010). In their work, they propose a direct sampling (DS) method which does not count and does 

not store the configurations of the TI as SNESIM does. DS directly samples the TI in a random 

way conditioned to the data event, but in this methodology the geometry and size of the templates 

are not predefined, it rather obtains the neighbourhood information within a search radius. This 

neighbourhood defines a set of lag vectors that is used to randomly scan the TI to find similar 

patterns. A threshold is defined by the user to find the patterns whose dissimilarity falls below it; 

when a pattern is found the algorithm stop the search and the central node is simulated. If after a 

defined number of iterations a pattern is not found, the most similar pattern is selected to simulate 

the central node. To speed up the simulation process Rezaee et al. (2013) proposed an extension 

of DS to simulate a group of nodes simultaneously (patching) when the central node is simulated. 

One of the drawbacks of the method is that to perform simulations a large set of parameters has to 

be defined before the simulation in order to obtain logical realizations of the deposit. 
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Continuing with the idea of patching to obtain faster simulations with a good continuity of 

geological structures, Faucher et.al (2013) proposed a method called Patchwork Simulation 

Method (PSM). This approach has the advantage of the adjustment of the probabilities in order to 

attain the reproduction of the histogram during the simulation because from the list of most similar 

patterns to the data event, a pattern is drawn accordingly to a “transition probability”, instead of 

having each one of the candidate patterns with an equal probability of being randomly drawn.  

The concept of TI image is a subjective matter. For example, two training images with the same 

second order statistics (variograms) can have quite different connectivity properties, geological 

structures, and shapes. Therefore, is complicated the obtain of a TI that always describes the natural 

variability (uncertainty) and reproduce the spatial connectivity of extreme values, being this 

particularly important because in mining planning optimization, the geometry of the mine tends to 

extend toward the areas of highest grade and/or have a very low stripping ratio, because cash flows 

occurring early are discounted less, and thus contribute to the increase of the NPV( it pays more 

to bring income forward and to delay expenditure as long as possible). 

2.3.3 High-order spatial cumulants simulation methods  

Given the problems of working with training images and to reduce their use to obtain high-

order statistics, Mustapha and Dimitrakopoulos (2010) introduced an MPS framework based on 

spatial cumulants to model and simulate continuous variables, the authors showed that high-order 

spatial cumulants, calculated through the definition of a spatial template, can be used to capture 

complex geological features and geometrical shapes of the natural phenomena. A method based 

on spatial cumulants called HOSIM (Mustapha and Dimitrakopoulos, 2010) uses the information 

from spatial cumulants as a combination of lower or equal order spatial moments. A first moment 

is the mean of the data, the second moment is the variance of the data and any higher moment can 

be computed from these two. Here, the authors showed that HOSIM accurately reproduce many 

orders spatial statistics of a set of sparse data. The simulation using high-order spatial cumulants 

is a data driven method, as opposed to the other high-order simulation methods which are training 

image driven. This is because HOSIM quantifies spatial interactions using maps of high-order 

statistics getting first the multiple-point statistics from the data and only relying on the TI when 
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few replicates are found. Then the use of high-order maps allows the characterization of non-linear 

and non-Gaussian spatial random fields. 

2.4 Stochastic mine production scheduling  

In the past sections of this chapter, the limitations of the use of a single smoothed representation 

of a deposit into the mine planning process were stated, as well as the advantages of modelling 

geological uncertainty. Then, the efforts have focused on the development of tools to incorporate 

such modelled geological uncertainty, to not only quantify it, but also to manage the associated 

risk to obtain mine production schedules that improve the mine value and reduce the deviation 

from production targets; providing then, an optimal production schedule. In general, the optimal 

production schedule is the mine sequence that provides the maximum achievable discounted value 

of the project given operational constraints. This goal is usually accomplished through the use of 

operation research methodologies used to deal with production prediction problems including mine 

planning.  

One of these operation research techniques is the linear programming (LP) ( Johnson, 1968). 

Unfortunately, LPs do not provide a truly optimal solution since it may generates fractional blocks 

results, and returns mine sequences that extract the blocks in a way that does not respect the 

precedence constraints. It means that in the solution a block deeper in the ground can be mined 

before all its overlying blocks are mined, this is practically infeasible.  

Another operations research technique applied in mining studies is dynamic programming for 

optimising schedules and mine production with metal price uncertainty optimizing cut-off grade 

(Dowd, 1976). Cut-off grade (COG) is one of the most popular destination policies used in the 

mining industry, the destination of the blocks is bases on the metal content (grade) being above or 

below a threshold. Based on this policy, Dowd’s work shows that an increase in the COG results 

in a faster reduction of the mineral resource. Therefore, the method attempts to find a single cut-

off grade policy that balances this reduction rate accounting for uncertainty in metal prices. The 

method is limited because ignores geological uncertainty, and assume that the production of the 

mine can vary as the price of the commodity change. The method also assumes a specific, ordered 
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block extraction sequence. It means that if this sequence is altered, the cut-off grade policy needs 

to be re-optimized. 

Dynamic programming has not a standard mathematical formulation. The equations are 

specifically developed for each individual problem. Seymour (1994) attempted to optimize mine 

schedules using maximum NPVs as the optimizing criteria, but the number of variables and 

constraints that can be optimized is limited. This limitation is a big drawback given that the 

modelling problem of a real mine operation comprises a large number of variables and constraints. 

Retaking Dowd’s (1977) work, Barr (2012) proposes an alternative partial differential equation 

formulation for optimizing the dynamic cut-off grade (assigns a cut-off value to each block 

according to the status according to the stage in which it is found, each time the deposit is evaluate.) 

with commodity price uncertainty, but in this case the formulation includes the option to 

temporarily shut down the mining operation. Unfortunately, this method is limited in its ability to 

account for geological uncertainty. 

Another operations research technique applied in the solution of mine scheduling problems is 

mixed-integer programming (MIP) (Gershon, 1983). This approach is a variation of integer 

programming (IP) for problems requiring only some integer variables in the formulation. The 

remaining continuous variables are allowed to be fractional in the solution. Therefore, unlike IP, 

the formulation of the mining scheduling problem as a MIP allows partial blocks to be mined only 

if all precedent blocks have been completely removed. Still, the number of variables required to 

formulate the scheduling problem for a real mine deposit as a MIP is too large to solve the 

formulation within a reasonable time. 

Unfortunately, the mentioned approaches above do not account for geological uncertainty, and 

there has been no success in developing a scheduling method to give optimum results in 

maximising net present value of a mining project (Ramazan and Dimitrakopoulos, 2004). Aiming 

to include grade uncertainty, Smith and Dimitrakopoulos (1999) proposed an approach where for 

a set of simulations an optimal schedule was obtained. Then, the probability of a block belonging 

to certain extraction period can be retrieved. If a block was mined in the same period for all the 

different schedules it means that the block is “optimally” mined in that period because the 

probability of being extracted is 100% for that given period. Then, a block probability level can 
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be calculated and used to plan sequences on where the uncertainty is accounted, indicating the 

level of risk in not achieving yearly production targets. Following this idea, Ramazan and 

Dimitrakopoulos (2004) included the local uncertainty associated to each one of the blocks of a 

deposit to have a yearly production in between the range of the production targets. This was 

accomplished by including a set of constraints that limit the possible deviation from the desired 

production targets. In the same work a new concept related to geological risk was conceived as 

Geological Risk Discount (GRD). This GRD discount allows to put off the blocks with higher 

risks to the latest periods of the operation. The authors showed that this optimization approach 

produced a schedule with a 6% less risk of not meeting production targets when compared with 

the conventional mine schedule. Nevertheless, this approach only includes local uncertainty 

through summarized probabilities; therefore joint local uncertainty is still not included in the 

optimization process. 

Menabde et al. (2007) develop a MIP model that accounts for a variable cut-off grade (COG) 

during the LOM and handles geological uncertainty through constraints to control the mining and 

production capacity. It means that the formulation enforces the mining operation to meet the 

desired targets, but unlike Ramazan and Dimitrakopoulos’ work, this methodology does not 

minimize the deviations from production targets. Therefore, it does not return a robust mine 

schedule accounting for uncertainty. Later, Boland et al. (2008) propose a multistage model that 

simultaneously generates an adaptive production schedule and scenario-dependent cut-off grade 

decision. It means that for every orebody realization, the ore/waste classification assumes perfect 

geological knowledge and this fixed classification is not useful in another geological simulation. 

From there, the results yield an overly optimistic destination decisions, as it assumes that the grades 

of the mined materials are known at the beginning of each period and do not provide a long-term 

guide for mine operations. 

2.4.1 Stochastic integer programming. 

A more flexible approach to solving long term production scheduling is based in the so 

called Stochastic Integer Programming (SIP) (Birge and Louveaux, 1997). This type of 

mathematical programming is an extension of the mentioned MIP with uncertainty in one or more 

of the related coefficients (Escudero, 1993). SIP as a mathematical programming is able to 
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consider multiple equally probable realizations and generate an optimal solution for a set of 

defined objectives within a feasible solution space constrained by a set of restrictions.   

SIP was first introduced in mining problems by Ramazan and Dimitrakopoulos (2004). They 

presented a framework that allows the management of geological risk in terms of not meeting 

planned targets during an actual operation; unlike the results from traditional scheduling methods 

that use a single orebody model and where risk is randomly distributed between production periods 

while there is no control over the magnitude of the risks on the schedule. SIP directly maximizes 

the NPV while minimizes the deviation from production targets. In this methodology instead of 

setting hard constraints the deviations are penalized within the objective function. This concept 

gives flexibility in the solution because when a set of different objectives and constrains are 

imposed the problem can become infeasible. 

Later, Ramazan and Dimitrakopulos (2007) demonstrated the value of the stochastic solution in 

two different deposits. A 10% higher NPV was obtained when the methodology was applied to a 

gold deposit, in comparison with the conventional schedule optimization. The same good results 

were obtained when the methodology was in a copper deposit, achieving a 25% higher NPV. Both 

results have a greater chance of meeting production expectations than the mine schedule obtained 

through conventional methods. In a similar way, Leite (2008) presented the results of the 

application of the methodology in a copper deposit without the inclusion of stockpiles. The author 

reports an improvement of 29% in the NPV when compared to the results obtained with a 

conventional deterministic framework. 

As was mentioned in a previous section, Albor and Dimitrakopoulos (2010) use a SIP and a 

heuristic algorithm to find the pit limits. In their work, the problem is reduced to the decision about 

the optimal number of pushbacks and for each one of the designs, a LOM production schedule is 

obtained through SIP in a way that the design leading to the best NPV maximization and risks 

minimization trade-off is chosen. Their results returned a 15% larger pit and an increased 30% the 

NPV when compared to the results of the conventional approach. 

Dimitrakopoulos and Jewbali (2013) describe an application of a SIP model which integrates long 

and short-term mine planning. This is done in an operative gold mine in Australia where the grade 
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control data from mined areas can be obtained and analyzed in conjunction with the exploratory 

drillholes, serving as a basis for a joint-simulation to be used as future grade control data in 

unexploited areas of the deposit. The conditional simulation based on successive residuals is used 

to update existing simulations of the orebody, incorporating the future data gathered in the 

operation. Finally, the SIP approach is applied on the updated models, which now contain updated 

information available by the time of the mine operation. The case study showed an increase of 

$230M (AUD) in comparison to the values obtained through the conventional schedule obtained 

the same year. 

Leite and Dimitrakopoulos (2014) use the SIP framework in an application at a copper deposit 

achieving not only a 29% higher NPV in comparison to the one obtained with the conventional 

method, but also shortened the LOM from eight years to seven years because the conventional 

schedule is based on a single orebody model which overestimates the amount of ore above the cut-

off. Spleit (2014) applied a SIP in an Iron ore deposit showing that the expected production 

tonnages and qualities obtained using a single orebody model vary significantly when a set of 

simulation is used to quantify the uncertainty in these both items. From the application, a 5.8% 

higher NPV was obtained in comparison to the determinist model.  

2.4.2 Efficient Solution Approaches for SIP 

Despite the good results obtained using SIP mentioned above, the SIP formulations for 

optimizing production scheduling are usually too large to be solved with conventional solvers like 

CPLEX –IBM, because optimization of mining deposits usually requires the optimal solution for 

thousands to several millions of blocks. Therefore, models using exact methods for integer 

programing are not the most appropriate to solve large-scale mining production schedule models 

without applying specific constraints to reduce the number of required binary variables. A way 

around this problem is to apply solution approaches based on heuristics and metaheuristics, to 

provide solution for realistic size instances in a reasonable amount of time. (Lamghari et.al 2012; 

Lamghari et.al 2014). 

Heuristic and metaheuristic algorithms can provide a faster solution than exact methods. In some 

cases, when exact methods fail to find any feasible solution, this is the only way to obtain an 
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approximate solution. To provide an efficient solution method for the mine schedule of large 

mineral deposit Lamghari and Dimitrakopoulos (2012) propose a metaheuristic method based on 

Tabu Search (TS). For the implementation of this methodology, an initial feasible solution is 

obtained by allowing a linear relaxation of binary variables associated to waste blocks to reduce 

the number of binary variables without affecting the integrality of the ore blocks. This initial 

solution is iteratively modified searching for different solutions in its neighbourhood. These new 

solutions are generated by shifting the period of some blocks, keeping the feasibility and improving 

the objective value. The TS stops, when a number of successive non-improving iterations is 

reached. After a diversification strategy is apply to generate a new set of starting solutions used 

for a further search. For the application of TS, the authors test two diversification strategies, one 

is a variable neighbourhood strategy where the best solution found so far is chosen and a period 

shifting to a set of different blocks is applied while maintaining the feasibility of the problem. The 

other one is a long-term memory diversification strategy, which moves blocks to periods that they 

have rarely been. The results show that the long-term memory diversification strategy outperforms 

the first strategy. 

Later, Lamghari et al. (2013)propose a new heuristic methodology called Variable Neighbourhood 

Decent (VND). The methodology consists in fully explore a neighborhood before starting a new 

search in another structure to scape local optima (the relative best solutions within a neighbor 

solution set). The search stops when no move in any of the three neighbourhoods improves the 

value of the objective function. This method provides fast solutions (in the order of a few hours) 

and with a small gap of 3% in between the exact solution obtained for the corresponding linear 

relaxation and the heuristic solution. 

As was mentioned in a previous section of this literature review, a more recent application of 

Heuristic algorithms in the process of solving large-scale mining production schedule models has 

been successfully applied. Explicitly using Simulated Annealing and Particle Swarm (Montiel, 

2015; Goodfellow, 2016). Finally, the most recent application of heuristics is an approach 

proposed by Rimele (2016). In his work, as similar as Ramazan and Dimitrakopoulos (2013) the 

author solves the SIP model splitting the work in two. First, finding a linear relaxation of the 

problem by relaxing binary variables associated to waste blocks to reduce the number of binary 

variables without affecting the integrality of the ore blocks; this initial solution is used for the 



28 
 

second stage of the work, where the original problem is solved to obtain a fully binary solution. In 

Rimele (2016) work, he also solves the linear relaxation of a simplified model first, but then, the 

obtained fractional schedule is used as input for a heuristic method called Topological Sorting 

Algorithm (TSA) (Chicoisne et al., 2012). The methodology was applied to an iron ore deposit 

obtaining a solution within 2% of optimality in only 12 minutes vs. 21h53m  solution time when 

a schedule close to the optimal solution with all the binary variables included is attempted. 
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CHAPTER 3 

DESCRIPTION OF THE METHODS 

Since geological uncertainty has a major impact on mine production and scheduling, this chapter 

focuses on a thorough explanation of the methodologies applied to model uncertainty through a 

set of simulations of spatially correlated categorical (e.g. rock types) and continuous variables (e.g. 

metal grades). These orebody realizations are later included for long term production scheduling. 

To optimize mine profitability, the mine planning process relies on the creation of mine plans that 

are as accurate as possible to optimize production at all stages, from the mine to the market.  From 

geological database (e.g. drillholes) a first step of the mine planning workflow is the creation of a 

representation to describe the deposit in ground as three-dimensional database, where the attributes 

of a deposit are stored in the form of a orebody model, in a way that each one of the values of 

interest is stored at the centroid of a block with the corresponding XYZ coordinate in space. 

Conventional mine planning makes use of 3D wireframes (polygons) and solids to model the limits 

of geological units inherent to an orebody. These limits (boundaries) are obtained through a 

geological interpretation of available geological data (e.g. drillholes) and some interpolation 

process. In traditional orebody modelling these boundaries are assumed to be fixed and may not 

be able to adequately model the detailed structures of geological units. To overcome this problem, 

stochastic geostatistics make use of multiple point statistics methods to characterize spatial 

relationships of spaced data that cannot be inferred from drilling data alone. 

Multiple Point Simulations MPS methods as SNESIM, FILTERSIM, and WAVESIM among others 

are options to model high-order spatial relations of categorical variables (lithological units, rock 

types). In this chapter, Section 3.1 describes in detail WAVESIM, which is used to obtain a set of 

simulations describing geological uncertainty of the boundaries describing the lithologies in the 

deposit. 

Once the lithological units are modelled, they are stored as wireframes or group of blocks defining 

the limits. Conventional orebody modelling fills these wireframes with blocks with attribute values 

as continuous variables (e.g. grades, geometallurgy properties). Usually geological deposits 
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contain several variables of interest that are spatially correlated. Therefore, the conventional 

process involves detailed variogram analysis to estimate grade (grades) and tonnage of each block 

using estimation methods as Kriging to finally obtain a single realization of the deposit (see Figure 

3) which is just a smooth representation of the reality given the average-weighting nature of the 

estimation method. 

To simulate a set of correlated continuous variables and overcome the smoothing effect of the 

grade averaging of conventional approaches. Stochastic simulation addresses the joint-simulation 

by decorrelating variables to perform an independent simulation for each one of the decorrelated 

variables. The result is a set of simulations describing the uncertainty of the attributes of the 

orebody to quantify geological uncertainty. Section 3.2 describes in detail the decorrelation 

process of the variables through Maximum/Minimum autocorrelation factor (MAF) in 

combination with Direct Block Simulation DBSIM to obtain simulations directly at block support 

with a method called DBMAFSIM. 

To obtain a realization of the deposit, each one of the simulated lithologies is used as boundaries 

to perform grade simulation. This process is done one time for each one of the elements of interest 

(see Figure 3 (right)). The process is repeated as many simulations of the boundaries are available 

usually no more than ten (Albor, 2009; Montiel, 2012).  
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Figure 3. Orebody modelling: Conventional vs. Stochastic approach 

To continue the mine planning process, conventional mine planning makes use of the single 

orebody block model obtained through conventional estimation methods to produce a production 

schedule respecting a set of mining and operational constraints. Inaccurate geological models 

introduce errors into the downstream mining plan processing, resulting in unexpected cost 

increases and revenue reductions. To overcome this problem stochastic mine planning framework 

makes use of a set of stochastically simulated orebodies to integrate geological uncertainty to the 

mine design and production planning. Section 3.3 describes in detail the mathematical model to 

mine production scheduling problem constrained to a set of operational restrictions and production 

targets. 

3.1    Simulation of categorical variables –WAVESIM 

The simulations of categorical variables as rock types, lithologies etc. can be modelled through 

MPS methods. As was described in Chapter 2, Section 2.3.2., a type of MPS based on pattern 

simulation is viewed as an image reconstruction problem (Arpat, 2004; Zhang et al., 2006; Arpat, 

2007). It generally consists in two steps, first, a pattern database is generated by scanning a TI, 

using a given template, then, the pattern providing the best match to the conditioning data is 
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searched in the pattern database. One can consider the method to be similar to solving a jig-saw 

puzzle, in the sense that the TI provides the multi-scale puzzle pieces and the algorithm put the 

pieces together in a randomized way constrained to local data. 

This section is dedicated to explaining in detail the following steps for categorical simulation with 

wavelet decomposition WAVESIM (Chatterjee et al., 2012). 

Summary of WAVESIM: 

1. Generate the pattern database by scanning the training image with a given template.  

2. Decompose the patterns using wavelet analysis.  

3. Group these patterns into classes using k-means algorithm. 

4. Calculate the prototypes of each class. 

5. Define random path visiting all nodes to be simulated.  

6. For each node to be simulated, find the neighborhood (conditional data) 

7. Compare data event to prototypes.  

8. Choose a pattern from best matched.  

9. Past it back onto simulation grid.  

10. Repeat steps 6 to 8 until all nodes are simulated.  

11. Repeat steps 5 to 9 to generate multiple realizations. 

3.1.1 Notation 

For clarity, this section introduces the required notation for explaining the WAVESIM 

algorithm. This notation is an adaptation of Arpat (2004) –Stochastic simulation with patterns. 
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3.1.1.1  Training Image 

A training image (TI) is essentially a database of geological patterns from which multiple-

point statistics (high-order statistics), and low order statistics including the variogram, can be 

borrowed. The TI can be obtained from actual data such as drilling information or other datasets 

considered representative of the area being modeled. The TI is usually discretized in a regular 

Cartesian grid 𝐺𝑇𝐼. 

Let be 𝑢 = (𝑥, 𝑦, 𝑧) ∈ 𝐺𝑇𝐼 and 𝑇𝐼(𝑢) be a value of the TI indicating a specific multiple-point event 

of values within a template 𝑇 centered at 𝑢  (see Figure 4). Then, 𝑇𝐼𝑇(𝑢) is the vector: 

𝑇𝐼𝑇(𝑢) = {𝑇𝐼(𝑢 + ℎ0), 𝑇𝐼(𝑢 + ℎ1), … , 𝑇𝐼(𝑢 + ℎ𝛼), … , 𝑇𝐼(𝑢 + ℎ𝑛𝑇−1)}                                    (1) 

where {ℎ𝛼} is a set of vectors defining the geometry of the 𝑛𝑇 nodes of the template T, and  

α = 0,..., 𝑛𝑇 − 1 . The vector ℎ0=0 identifies the central location 𝑢.  

  

  

Figure 4.Example of a Template T of 3x3. 

3.1.1.2 Patterns 

A pattern geometry is defined by a template T containing 𝒏𝑻 nodes. In any finite training 

image there is a finite maximum number of patterns that can be extracted defined over a template 

T. Then, a pattern 𝒑𝒂𝒕𝑻
𝒌 is the particular 𝒌𝒕𝒉configuration of a vector of values of the TI as 

described in (1), but now with each value now denoted by 𝒑𝒂𝒕𝑻
𝒌(𝒉𝜶). 

 𝑝𝑎𝑡𝑇
𝑘 = { 𝑝𝑎𝑡𝑇

𝑘(ℎ0),  𝑝𝑎𝑡𝑇
𝑘(ℎ1), … ,  𝑝𝑎𝑡𝑇

𝑘(ℎ𝛼), … ,  𝑝𝑎𝑡𝑇
𝑘(ℎ𝑛𝑇−1)}                                             (2) 

𝑢 + ℎ0 

𝑢 + ℎ1 

𝑢 + ℎ8 
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where 𝑘 = 0,..., 𝑛𝑝𝑎𝑡𝑇 −1 , and 𝑝𝑎𝑡𝑇 the number of total available patterns in the pattern database 

associated with the TI and ℎ𝛼 a set of vectors defining the geometry of the 𝑛𝑇 nodes of the template 

T, all 𝑛𝑝𝑎𝑡𝑇 are defined on the same template T. Note that 𝑝𝑎𝑡𝑇
𝑘(ℎ𝛼) is location –independent, 

hence the definition of a particular pattern is itself location-independent. 

3.1.1.3 Indicator variable 

The simulation of categorical variables implies the simulation of different categories at 

once. For this, the categories inside the TI have to be tagged to differentiate them during the 

simulation process. The TI is transformed in a set of “indicator training images” using indicator 

variable transformation to obtain a vector of binary values for each category.  

Let 𝑴 be the number of categories to be simulated, then the indicator variable  𝑰𝒎(𝒖) with 𝒎 =

𝟏, . . ,𝑴. This indicator is defined as: 

𝑰𝒎(𝒖) = {
𝟏, 𝐢𝐟 𝒖 𝐛𝐞𝐥𝐨𝐧𝐠𝐬 𝐭𝐨 𝐜𝐚𝐭𝐞𝐠𝐨𝐫𝐲 𝒎

𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
}                                                                        (3) 

From there each location 𝒖 is flagged by category through a vector of binary values where the  

𝒎𝒕𝒉 element is 1 if a node in certain location 𝒖 belongs to category 𝒎, or 0 otherwise. 

3.1.2 Generation of the pattern database 

As was mentioned before, the first step to perform orebody simulation through WAVESIM 

as with other MPS is the generation of the pattern database. To achieve this the Training Image 

(see Section 3.1.1.1) is “scanned” using a given template T, then a pattern is generated by centering 

T on each one of the nodes in the TI as is shown in Figure 5(a). Afterwards, the obtained patterns 

are stored in the multiple-point set of vectors in the form of a readable database; this database is 

the so called pattern database, Figure 5(b).  
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a) Training Image and Template (red rectangle)                            b) pattern database  

Figure 5. Generation of a pattern database. 

3.1.3 Dimensional reduction of the pattern database 

After the generation of the pattern database, the stored patterns need to be classified and 

then divided into classes to allow a faster simulation process (see Section 2.3.2). Aiming for 

reduction of computational requirements in terms of CPU and RAM before the classification of 

the patterns, the whole pattern database has its dimension reduced using Wavelet decomposition. 

Wavelet decomposition for image compression is a known method widely applied for image and 

data compression applied in fields like medicine where wavelet decomposition for image 

compression is used to compress electrocardiographs signals (Ramakrishnan and Saha, 1977) and 

computer science implementations where wavelet compression is the base of the popular format 

JPEG. 

Wavelet decomposition applied to image compression decomposes an image in two type of 

information. The first one, is an average type information of the nearby pixels, this produces as 

many coefficients as there are pixels in the image. The average type information is called 

approximate sub-band of the image and is the one keeping the variability of the data. The second 

type is the information of how the pixels move off from local average.  



36 
 

To classify the patterns, WAVESIM obtains a wavelet based representation of the patterns through 

Wavelet decomposition aiming to provide an approximate sub-image of the patterns for data 

compression purposes. From the Wavelet decomposition the information of the approximate sub-

band of the nearby pixels describing a pattern is used as a form of transform coding to break a 

signal (pattern information) into a number of frequency bands. Then, the signal is encoded 

independently to obtain a decomposition of an image, in this case a decomposition of the patterns. 

The approximate sub-band of an image is considered enough representation of the complete image 

because provides average type information about the patterns and preserves most its data 

variability. Then, the dimension of the pattern database can be reduced by selecting the scale of 

wavelet decomposition. (Chatterjee et al., 2012). 

 

Figure 6. 2D Wavelet decomposition, image compression. Source: One-Dimensional Selection 

of Wavelet Coefficients Using the Graphical Interface - Matlab Webserver 

(http://matlab.izmiran.ru/) 

Wavelet decomposition is effective for data compression because the dimension of the original 

image, denoted by d and the scale number in wavelet decomposition, in approximate sub-band is 

denoted by j, is 2jxd   times less in comparison with the amount of data in the training image (see 

Figure 6). 
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The decomposition of the pattern database is represented as summation from where a pattern of 

dimension: d = 𝑝 × 𝑝 can be decomposed as follows: 

 𝑝𝑎𝑡𝑇
𝑘 = ∑ 𝑎𝐽,𝑖,𝑙

𝑁𝐽−1
𝑖,𝑙=0

∅𝐽,𝑖,𝑙
𝐿𝐿 + ∑ ∑ ∑ 𝑤𝑗,𝑖,𝑙

𝐵 𝜓𝑗,𝑖,𝑙
𝐵𝑁𝐽−1

𝑖,𝑙=0
𝐽
𝑗=1𝐵∈𝐷                                                  (4) 

where:  

𝐷 = {𝐿𝐻,𝐻𝐿,𝐻𝐻}, 𝐿 = 𝐿𝑜𝑤 − 𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟, 𝐻 = 𝐻𝑖𝑔ℎ − 𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟   

𝑁𝐽−1 =
𝑁

2𝑗
, 𝐽 = Number of scales .  If 𝑝 is even 𝑁 = 𝑝 otherwise 𝑁 = (𝑝 + 1) 

∅𝑗 = scaling function 

𝜓𝑗
𝐵 = wavelet function 

𝑘 = 0,..., 𝑛𝑝𝑎𝑡𝑇 −1 , being 𝑝𝑎𝑡𝑇 the number of total available patterns in the pattern database 

associated with the TI. 

The scaling coefficient is experimentally calculated by taking inner products between a pattern 

 𝑝𝑎𝑡𝑇
𝑘  and scaling ∅𝑗 and wavelet functions 𝜓𝑗

𝐵 

 𝑎𝑗−1 = 〈 𝑝𝑎𝑡𝑇
𝑘, ∅𝑗〉                                                                                                                           (5) 

The wavelet coefficient is experimentally calculated by taking inner products 

            𝑤𝑗−1
𝐵 = 〈 𝑝𝑎𝑡𝑇

𝑘, 𝜓𝑗
𝐵〉                                                                                                           (6)     

At each node (pixel location) the template of neighborhood data values is convoluted by these 

functions to obtain the approximate template and wavelet sub-band data. 

The original length of a pattern vector is 𝑁𝑑, after the wavelet decomposition the length of the of 

the approximated sub-band is:  
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𝐿𝑁 = ((
𝑁

2𝑗
)
𝑑

)                                                                                                                                                 (7) 

where d = dimension of the image and j = number of scales     

For categorical TI, the length of the approximate sub-band for the M-categories will be: 

𝐿𝑁 = ((
𝑁

2𝑗
)
𝑑
𝑥 𝑀)        M: Number of categories                                                                        (8) 

Therefore, depending of the value of the scales, the dimension of the original pattern vector can 

be reduced. The critical step of wavelet decomposition for image compression relies on the 

selection of the optimal scale j, given that the main goal of dimensional reduction is to retain 

maximum data variability by fewer dimensions. To calculate the best scale a calculation of the 

entropy value of each pattern at scale j needs to be estimated. From there, an optimal scale is 

obtained when no more decomposition is possible. This step is out of the scope of this thesis. For 

more details, read (Chatterjee, Dimitrakopoulos, and Mustapha 2012).                                         

3.1.4 Pattern database classification 

After the reduction of the dimensionality of the patterns, they need to be classified using 

the obtained approximated sub-bands of the patterns. WAVESIM classifies the patterns into classes 

using K-means clustering technique (MacQueen, 1967; Hartigan and Wong, 1979). In this 

technique the pattern database is classified in a (k) number of clusters, in a way that within a cluster 

the variance of the clustered information is minimized. The following description of the method is 

an adaptation from (Ding and He, 2004).  

First, a number of patterns represented by approximated sub-band are randomly selected from the 

compressed pattern database to represent the initial centroids. Then, each pattern is compared to 

the initial centroids to assign it to a class which has the closest distance to the centroids as shown 

in Figure 7 (left). The distance is calculated as the squared Euclidian distance between a pattern 

and the centroid of one of the classes. The goal of K-means clustering technique is to minimize 

the distance in a way that at each iteration, the objective is to minimize the following function. 
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                      𝑍 = ∑ ∑ ‖𝑇𝑖
𝑗 − 𝐶𝑗‖

2𝑛
𝑖=1

𝑘
𝑗=1                                                                                     (9) 

𝑇𝑖
𝑗 : Pattern 𝑖 classified in cluster 𝑗 

𝐶𝑗: Centroid of a class related to cluster 𝑗 

              𝑘 =  number of cluster = 𝑛 = number of classes  

‖𝑇𝑖
𝑗 − 𝐶𝑗‖

2
 is the squared Euclidean distance between 𝑇𝑖

𝑗  and 𝐶𝑗, then 𝑍  is the summing over all 

distances between the patterns and their respective class centroid. The process stops when the 

position of the centroids no longer change. Finally afterwards, the patterns are classified into 

classes. 

3.1.5 Pattern based simulation 

3.1.5.1 The concept of class prototype  

Thus WAVESIM has generated the pattern database, and then through wavelet 

decomposition the pattern database was compressed in size and classified. These steps are the 

requirements of the methodology to perform the simulation. Then, following the idea of 

FILTERSIM (Zhang, 2006) and in order to reduce the simulation time WAVESIM performs an extra 

step right before the simulation. In this step, having the pattern database classified, the prototypes 

of the classes are calculated.  The prototypes are obtained by averaging all the falling patterns in a 

particular class (see Figure 8). 

These prototypes are used during the simulation process when the similarity measure between the 

conditional data event and the patterns is calculated in a way that instead of measuring the distance 

to each one of the patterns, the measure is done only in between the data event and the prototype 

of the classes aiming to reduce the processing time of the method. 
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Figure 7. Representation of clustering classification. 

 

 

 

 

 

Figure 8. Representation of pattern averaging inside a class (prototypes). 

Patterns 

falling 

into a 

class 

Class 1 Class 2 Class n 

Class 1 Class 2 Class 3… Class 𝑛 

Prototype 1 Prototype 2 Prototype 3 … Prototype 𝑛 
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3.1.5.2 Similarity measures 

During the simulation, the similarity between the conditional data event and the 

prototypes of the class is measured by a distance function to calculate the distance from prototypes 

to the conditioning data event and choose the most similar one. The distance function used in this 

approach is L2-norm (the generalized term for the Euclidean norm).  

𝑑(𝑥, 𝑦) = ∑ 𝑤𝑖 ∗ (
1

𝑛𝑡𝑦𝑝𝑒
∑ (𝑥(𝑗) − 𝑦(𝑗))2
𝑛𝑡𝑦𝑝𝑒
𝑗=1 )3

𝑖=1                                                      (10) 

where 𝑥 is the conditioning data event, 𝑦 is the prototype of class, 𝑛𝑡𝑦𝑝𝑒  is the number of data 

from a particular data type, and 𝑤𝑖 is the weight associated with data type 𝑖. Three data types are 

considered for distance calculation 𝑖 = 1,2,3: 1= hard conditioning data, 2=previously simulated 

node inside inner patch and 3= pattern pasting node data. 

Generally, “hard conditioning” data have higher weight than other data types and “pasting node” 

data the lowest (Chatterjee et al., 2012). The sum of the weights should be equal to one. 

                                           ∑ 𝑤𝑖 = 1
3
𝑖=1                                                                                  (11) 

If all nodes in a neighborhood are informed the distance between the data event and prototypes is 

calculated based on their sub-band coefficients obtained through Wavelet decomposition. For 

these cases a modified distance function is done as follows: 

 𝑑(𝑥, 𝑦) = ∑ 𝑤𝑖 ∗ (
1

𝑛𝑎𝑝𝑝𝑟𝑜𝑥
∑ (𝑥𝑎𝑝𝑝𝑟𝑜𝑥(𝑗) − 𝑦𝑎𝑝𝑝𝑟𝑜𝑥(𝑗))2
𝑛𝑎𝑝𝑝𝑟𝑜𝑥
𝑗=1 )3

𝑖=1                      (12) 

where 𝑛𝑎𝑝𝑝𝑟𝑜𝑥 represents the number of approximate sub-band coefficients after wavelet 

decomposition, 𝑥𝑎𝑝𝑝𝑟𝑜𝑥 is an approximate sub-band coefficients of conditioning data event and 

𝑦𝑎𝑝𝑝𝑟𝑜𝑥 is an approximate sub-band coefficient of the prototype class. 

After the distance between a conditioning data event and each of the class’s prototypes is 

calculated and the class with the lowest distance value is chosen. It is important to mention that if 

there are hard data events within the conditioning data events, only equation (10) will be used. 
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For categorical simulation, a ccdf relative to the central node is built for that class. Then a Monte-

Carlo sampling is done over this ccdf  in order to choose the category of the central node. After 

this step, a pattern is randomly selected from the ones which have the central nodes belonging to 

the same category drawn in the Monte-Carlo sampling. 

3.1.5.3 Padding the grid. 

When a pattern is pasted onto the simulation grid, the user can choose to freeze an 

innermost portion (inner patch) of the pattern. This set of innermost nodes will not be visited again 

during the simulation, and only the nodes outside this innermost portion will be revisited and 

consequently, re-simulated. After pasting the drawn pattern at a simulated node, the next node is 

visited following a random path. 

There are three possible outcomes at this stage: 

 Outcome 1: No hard data near the neighborhood of the node 𝑑 (neighborhood is defined 

by template T). Then, any pattern of the pattern database works to simulate the node and 

is randomly selected. After this, each node in the in the inner patch becomes conditional 

information. 

 Outcome 2: The hard data event is at least partially informed. It means that at least a pattern 

of the pattern database returns a Euclidian distance of zero. Then, the most approximate 

template will return only the exactly match of the hard data event. In a manner that this 

information is frozen and remain untainted during the simulation. 

 Outcome 3: None of the patterns fulfill the condition. Then, the algorithm performs another 

search to find a most similar pattern to the hard data. In mining, this is not likely to happen 

because the training image, in general, reflects a geological scenario consistent with the 

hard data. The training image contains patterns that agree with the hard data patterns. 

Finally, the same distance function and the pattern drawing process is performed until all nodes 

the grid are simulated. The algorithm stops when no nodes are left unvisited.  
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3.2    Simulation of continuous variables – DBMAFSIM 

In general, a mineral deposit contains more than one element of interest. These elements are 

usually correlated to each other. Joint-geostatistical simulation techniques are thus required to 

generate models preserving the spatial relation of the elements to be simulated.  

To jointly simulate multiple variables, an effective technique is to decorrelate the variables. These 

variables are then independently simulated in a transformed space and then back-transformed after 

the simulation to the original data space, keeping the original correlations between variables. A 

decorrelation method called Maximum/Minimum Autocorrelation Factors (MAF) is an approach 

based on Principal Component Analysis (PCA), where the transformed variables are decorrelated 

at all distances. MAF avoids the tedious modelling and fitting of a linear model of 

corregionalization since the transformation is directly derived from the experimental data. 

The efficiency of joint simulation using MAF is enhanced when the simulations are done directly 

on a block support scale (DBSIM) (Godoy, 2003). To apply this method in a deposit with multiple 

correlated variables, Boucher and Dimitrakopoulos (2009) introduced the concept of MAF 

combined with DBSIM for geostatistical simulations (DBMAFSIM). The methodology transforms 

a set of correlated variables into uncorrelated factors which can be then independently simulated 

and then back transformed preserving the original correlation of the data. 

This section is dedicated to explaining in detail the following steps for continuous simulation of 

correlated variables directly at block support. 

Summary of DBMAFSIM: 

1. Transform data  𝒁(𝑢) to normal scores 𝒀(𝑢) 

2. The normal scores 𝒀(𝑢) are transformed to MAF factors 𝑴(𝑢)  

3. Define a random path visiting each block 

4. The group of N points discretizing each block are sequentially simulated with the LU 

decomposition method. 

5. The group of points for each MAF factor are averaged to obtain block support values. 

The obtained values are introduced to the data set as conditional data. 
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6. The simulated variables are back transformed from MAF-space to normal 

scores 𝑴(𝑢) →  𝒀(𝑢). 

7. Normal scores are back transformed to data space 𝒀(𝑢) →  𝒁(𝑢). 

8. Repeat steps 4-7 until all blocks are simulated. 

3.2.1 Notation 

For clarity, this section introduces the required notation for explaining the DBMAFSIM 

algorithm. 

3.2.1.1 Search neighborhood. 

In general, a search neighborhood is considered a spatial context of a grid node, generally 

characterizing its local surroundings. The term search neighbrhhod is used as a generic term that 

does not have a formal definition. 

In DBMAFSIM a search neighborhood is an ellipsoid that gathers a set of point values (drillholes) 

and preoviously simulated blocks to simutaneously simulate the points in each block (see Figure 

9). 

 

Figure 9. Search neighborhood (ellipsoid) and point values surrounding and previously 

simulated blocks (orange square). Modified from (Boucher and Dimitrakopoulos, 2009) 
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3.2.1.2 Variable decorrelation. 

Decorrelation is a general term for any process that is used to 

reduce autocorrelation within a set of data, or cross-correlation within a set of variables while 

preserving other aspects of a signal (see Figure 10). Once the variables are decorrelated are also 

referenced as orthogonal variables. 

 

 

Figure 10. Data decorrelation process. 

3.2.2 Orthogonalization with Minimum/Maximum Autocorrelation Factors MAF 

MAF performs a linear transformation of a multivariate vector to a new set of variables, 

called “factors” of the original vector. Consider the stationary vector Random Function (RF)  

𝒁(𝑢) = {𝑍1(𝑢), … , 𝑍𝑘(𝑢)} that is transformed into its Gaussian equivalent 𝒀(𝑢) =

{𝜙1(𝑍
1(𝑢)), … , 𝜙𝑘(𝑍

𝑘(𝑢))}. 

The resulting vector RF  𝑌(𝑢) is composed of 𝐾 Gaussian RFs assumed to be multi-Gaussian. 

Then the MAF of the variables are defined as a new vector RF 𝑴(𝑢) = {𝑀1(𝑢), … ,𝑀𝑘(𝑢)} where 

the  𝐾  RFs are independent and obtained from the multi-Gaussian vector RF 𝒀(𝑢)  using the co-

efficient 𝑨 such that. 

                                                       𝑴(𝑢) = 𝑨𝑇𝒀(𝑢)                                                              (13) 

Decorrelation 

 

https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Cross-correlation
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Note that MAF variables 𝑴(𝑢), are linear function of  𝒀(𝑢), which are a non-linear transformation 

of the original data 𝒁(𝑢) such that: 

                                                                   𝑴(𝑢) = 𝑨𝑇𝝓(𝒁(𝑢))                                                       (14) 

Let 𝑩 = 𝑐𝑜𝑣[𝒀(𝑢), 𝒀(𝑢)]  be the variance/covariance matrix of 𝒀(𝑢) and  𝚪𝑌(ℎ)  the variogram 

matrix at lag (distance) ℎ.  Then, the matrix of coefficients 𝑨 that are used to decorrelate 𝒀(𝑢)  and 

is generated from: 

                                                         2Γ𝑌(ℎ)𝑩
−1 = 𝑨𝑇Λ 𝑨                                                                       (15) 

                          2Γ𝑌(ℎ) =  𝑐𝑜𝑣[𝑌(𝑢) − 𝑌(𝑢 + ℎ), 𝑌(𝑢) − 𝑌(𝑢 + ℎ)]                                       (16) 

The derivation of 𝑨 is equivalent to performing two successive PCA decompositions (Desbarast 

and Dimitrakopoulos 2000; Rondon 2012). One of the advantages of working with decorrelated 

(orthogonal) variables is that only the direct covariance models 𝐶1(ℎ), … , 𝐶𝑘(ℎ) is required. It is 

even more important to recognize that the orthogonal variables can be simulated independently. 

3.2.3 Simulating variables at block support DBMAFSIM 

Once the variables are decorrelated in MAF space, is time to perform the joint-simulation 

of the variables. Stochastic conditional simulation through DBMAFSIM considers conditional data 

influencing the block simulation as the data points within a search neighborhood (see Section 

3.2.1) through LU decomposition (see Section 2.3.1): 

Consider a block at location 𝑣 discretized with a vector of 𝑁 points of the 𝑘th 

variable 𝑚𝑠
𝑘={𝑚𝑘(𝑢1), … ,𝑚

𝑘(𝑢𝑁)} with  𝑢𝑖 ⊂ 𝑣, and 𝑖 = 1, . . , 𝑘 with a neighborhood of 

conditional hard data points and previously simulated points 𝑚𝑑
𝑘. Then the vector 𝑚𝑠

𝑘 can be 

simulated through the Cholesky descomposition. 

                                            𝑚𝑠
𝑘 = 𝐶𝑠𝑑

𝑘 𝐶𝑑
𝑘−1𝑚𝑑

𝑘 + 𝐿𝑠
𝑘𝑤𝑠                                                              (17) 

where,   
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                                                  𝑚𝑑
𝑘 = [𝑚𝑝

𝑘  𝑚𝑏
𝑘]
𝑇
                                                                     (18) 

                                 [
𝐶𝑑
𝑘 𝐶𝑠𝑑

𝑘 𝑇

𝐶𝑠𝑑
𝑘 𝐶𝑠

𝑘
]=[ 

𝐿𝑑
𝑘 0

𝐿𝑠𝑑
𝑘 𝐿𝑠

𝑘
] [ 
𝐿𝑠
𝑘𝑇 𝐿𝑠𝑑

𝑘 𝑇

0 𝐿𝑠
𝑘𝑇
]                                                      (19) 

The variables 𝑚𝑝
𝑘  and 𝑚𝑏

𝑘 are respectively, the hard data and the vector of previously simulated 

blocks within the search neighborhood. 

𝐿𝑠
𝑘 and 𝑤𝑠 are vectors determined by a Cholesky decomposition using equation (19) (Boucher and 

Dimitrakopoulos, 2012).  

𝐶𝑑
𝑘 is the covariance matrix of conditioning data comprised of the hard data points (drillholes) and 

the previously simulated blocks. 

𝐶𝑠
𝑘 is the point support covariance matrix between the points discretizing the block and 𝐶𝑠𝑑

𝑘  is the 

matrix of a point and point to block covariance between the discretizing points and the hard data 

points and previously simulated blocks.  

When a block-support data is considered the submatrix of conditioning data becomes: 

                                       𝐶𝑑
𝑘 = [ 

𝐶𝑑
𝑘,𝑝𝑝

𝐶𝑑
𝑘,𝑝𝑏𝑇

𝐶𝑑
𝑘,𝑝𝑏

𝐶𝑑
𝑘,𝑏𝑏

]                                                                     (20) 

The 𝑝𝑝 index refers to the point to point covariance between hard data, 𝑝𝑏 is the point to block 

covariance between the hard data and the previously simulated blocks, and 𝑏𝑏 is the block to block 

covariance between previously simulated blocks.  

Then the submatrix of conditioning data and the vector of point-support data discretizing the block 

is: 

                                   𝐶𝑠𝑑
𝑘 = [𝐶𝑠𝑑

𝑘,𝑝𝑝
  𝐶𝑠𝑑

𝑘,𝑝𝑏
]                                                                                           (21) 
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where 𝐶𝑠𝑑
𝑘,𝑝𝑝

 and 𝐶𝑠𝑑
𝑘,𝑝𝑏

 are the covariance matrix of the discretizing points with the point scale hard 

data and with the previously simulated blocks, respectively. 

Subsequently, the simulated point values in MAF space are averaged at block support scale. These 

blocks with values in MAF space are introduced as conditioning data to the data set and used for 

further simulation, rather than using the discretized points. In the other hand, the block value to be 

outputted in original data space is obtained through a back transformation of the point support data 

and averaging them for each MAF factor using the following equation: 

                                  𝑧𝑠
𝑘 =

1

𝑁
∑ (𝜙−1(𝑨−𝑇𝑚𝑠

𝑘))𝑁                                                                         (22) 

where 𝑨  is the matrix of MAF coefficients derived with equations (15) and (16). Then equation 

(22) allows extending the direct block simulation DBSIM of Godoy (2003) to the joint direct block 

simulation with MAF. The main steps of DBMAFSIM are graphically summarized in Figure 11. 

 

Figure 11.DBMAFSIM – workflow. 
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3.3. Stochastic integer programing- SIP- for long term production scheduling 

As mentioned in previous sections a set of simulations is issued to not only quantify geological 

uncertainty but also this set of equally probable realizations is the key factor in the process of 

obtaining a mine production schedule optimized to manage geological risk.   

This section presents the model of the Open-pit Mine Planning Integer Programming (OMPSIP) 

formulation based on Ramazan and Dimitrakopoulo (2007; 2013).  

3.3.1 Notation 

For a better understanding of the descriptions of the formulations herein present, the 

following notation adapted from Rimele (2016) is used.  

𝐵 = {𝑖 = 1,… ,𝑁}  Set of blocks in the orebody, 

𝑃 = {𝑝 = 1,… , 𝑃}  Set of considered periods for the schedule, 

𝐷 = {𝑑 = 1,… , 𝐷} Set of destinations available for the blocks, 

𝑆 = {𝑠 = 1,… , 𝑆}   Set of scenarios, equiprobable orebody stochastic simulations, 

𝒞 = 𝐶1 ∪ 𝐶2           Set of block’s characteristics,  

𝒞1 = {𝐶1 = 1,… , 𝐶1} Linear metallurgical characteristics (e.g. tonnages), 

𝒞2 = {𝐶2 = 1,… , 𝐶2}   Non-linear characteristics (grades), 

𝐺(𝐵, 𝐴) Oriented graph representing the precedence relationships between blocks, (𝑎, 𝑏) ∈ 

𝐴 if 𝑎 ∈  𝐵 is a predecessor of  𝑏 ∈ 𝐵. 
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Figure 12. Precedence relationships between blocks (Rimele, 2016). 

𝚪𝒊
+ = {𝒃 ∈ 𝑩; (𝒊, 𝒃) ∈ 𝑨 }  Set of direct successors of block𝒊. On Figure 12, 𝚪𝒃

+ = {𝒅, 𝒆, 𝒇}; 

𝚪𝐢
− = {𝐚 ∈ 𝐁; (𝐚, 𝐢) ∈ 𝐀 }  Set of direct predecessors of block𝑖. On Figure 12 , Γ𝑒

− = {𝑎, 𝑏, 𝑐} 

𝚪𝒊
−𝑻𝒐𝒕 Set of all the predecessors of block. 

 On Figure 12, 𝚪𝒆
−𝑻𝒐𝒕 = {𝒂, 𝒃, 𝒄} ∪  𝚪𝒂

−𝑻𝒐𝒕 ∪  𝚪𝒃
−𝑻𝒐𝒕 ∪  𝚪𝒄

−𝑻𝒐𝒕; 

𝒩(𝑖)  is a set of neighbours of block 𝑖 : typically blocks at the North, East, South and West on the 

same level and one block below. 

3.3.2 Parameters 

𝒗𝒊,𝒅,𝒔  Economic value of block 𝒊 in scenario 𝒔 if it is sent to destination 𝒅; 

This economic value depends on several parameters: 

 𝒗𝒊,𝒅,𝒔 = {
−𝑬𝒘𝒂𝒔𝒕𝒆

𝒄𝒐𝒔𝒕 ∗ 𝒕𝒊,𝒔 − 𝑻𝑯
𝒄𝒐𝒔𝒕 ∗ 𝑻𝑯𝒊,𝒅     𝐢𝐟 𝒅 = 𝟎 ⇔ 𝐰𝐚𝐬𝐭𝐞 𝐝𝐮𝐦𝐩                              

𝑹𝒊,𝒔 − 𝑷𝒄𝒐𝒏𝒄
𝒄𝒐𝒔𝒕 ∗ 𝒄𝒐𝒏𝒄𝒊,𝒔 − 𝑬𝒐𝒓𝒆

𝒄𝒐𝒔𝒕 ∗ 𝒕𝒊,𝒔 − 𝑻𝑯
𝒄𝒐𝒔𝒕 ∗ 𝑻𝑯𝒊,𝒅     𝐢𝐟 𝒅 = 𝟏 ⇔ 𝐦𝐢𝐥𝐥

 

where: 

 𝑹𝒊,𝒔  Revenue from selling the metal content of block 𝒊 in scenario 𝒔; 

 𝒄𝒐𝒏𝒄𝒊,𝒔 Concentrate tonnes of block 𝒊 in scenario 𝒔, 𝒄𝒐𝒏𝒄𝒊,𝒔 ∈ 𝓒𝟏; 

 𝒄𝒐𝒏𝒄𝒊,𝒔 = 𝒕𝒊,𝒔 ∗ 𝑹𝒆𝒄𝒊,𝒔 
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  𝑹𝒆𝒄𝒊,𝒔  Weight recovery of block 𝒊 in scenario 𝒔, obtained from the 

simulation of the    Davis Tube Weight Recovery (used in the case study); 

 𝑷𝒄𝒐𝒏𝒄
𝒄𝒐𝒔𝒕   Processing cost of concentrate material per tonne; 

 𝑬𝒐𝒓𝒆
𝒄𝒐𝒔𝒕  Extraction cost of ore material per tonne; 

 𝑬𝒘𝒂𝒔𝒕𝒆
𝒄𝒐𝒔𝒕   Extraction cost of waste material per tonne; 

 𝑻𝑯𝒊,𝒅  Truck hours needed to send block 𝒊 to destination 𝒅; 

 𝑻𝑯𝒄𝒐𝒔𝒕  Cost per truck hour; 

𝒕𝒊,𝒔  Tonnage of block 𝒊 in scenario 𝒔; 

𝒒𝒄𝟏,𝒊,𝒔  Quantity of characteristic 𝒄𝟏 of block 𝒊 in scenario 𝒔; 

𝒈𝒄𝟐,𝒊,𝒔  Grade 𝒄𝟐 of block 𝒊 in scenario 𝒔; 

𝒕𝒂𝒓𝒈𝒆𝒕𝒄,𝒑
±  Minimum (-) and maximum (+) targets of quantity or grade 𝒄 in period 𝒑; 

𝒑𝒆𝒏𝒄,𝒑
𝒅𝒆𝒗± Penalty cost of deviation from the targets of quantity or grade 𝒄 in period 𝒑 (excess 

+, shortage -); 

𝒓  Discount rate taking into account the time value of money and the uncertainty of 

the future streams of cash flows; 

𝒅𝒑 =
1

(1+𝑟)𝑝−1
  Discount factor 

3.3.3 Variables 

Binary variables:  

𝑥𝑖,𝑑,𝑝 = {
1, if block 𝑖 ∈ 𝐵 is sent to destination 𝑑 ∈ 𝐷 𝑏y period 𝑝 ∈ 𝑃  

0, O𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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To simplify the notation, 𝑥𝑖,𝑑,𝑝=0 =0, ∀𝑖 ∈ 𝐵, ∀𝑑 ∈ 𝐷 

Note that the binary value of the variable is defined by period “by period 𝑝 ∈ 𝒫” . It means that 

block 𝑖 was extracted prior period 𝑝 or exactly at that period. This definition is used to facilitate 

the branching when the model is solving (Caccetta and Hill, 2003). 

Continuous variables: 

𝑑𝑒𝑣𝑐,𝑝,𝑠
±  ∈  ℝ +    Deviation from the targets in terms of characteristics 𝑐 for scenario 𝑠 ∈ 𝑆, during 

period 𝑝 ∈ 𝑃 (excess +, shortage -). 

3.3.4 General OMPSIP 

This section describes the OMPSIP formulation which will be used in the rest of the study. 

Objective function: 

𝐦𝐚𝐱𝒁 =
𝟏

𝑺
∑ ∑ ∑ ∑ 𝒅𝒑 ∗ 𝒗𝒊,𝒅,𝒔 ∗ (𝒙𝒊,𝒅,𝒑 − 𝒙𝒊,𝒅,𝒑−𝟏)𝒔∈𝓢𝒑∈𝓟𝒅∈𝓓𝒊∈𝓑
⏞                                  

𝑷𝒂𝒓𝒕 𝟏

−

𝟏

𝑺
∑ ∑ ∑ 𝒅𝒑 ∗ (𝒑𝒆𝒏𝒄,𝒑

𝒅𝒆𝒗+ ∗ 𝒅𝒆𝒗𝒄,𝒑,𝒔
+ + 𝒑𝒆𝒏𝒄,𝒑

𝒅𝒆𝒗− ∗ 𝒅𝒆𝒗𝒄,𝒑,𝒔
− )𝒔∈𝓢𝒑∈𝓟𝒄∈𝓒

⏞                                          
𝑷𝒂𝒓𝒕 𝟐

                           (23) 

The objective function comprises two parts: 𝑃𝑎𝑟𝑡 1 aims to maximising the expected profit, 

Discounted Cash Flow (DCF), while 𝑃𝑎𝑟𝑡 2 minimizes the expecting cost of deviating from the 

production targets; that is, the risk associated with geological uncertainty. Using this formulation, 

the expected result is a schedule robust to the set of simulations (Ramazan and Dimitrakopoulos, 

2007).The application of a discount factor delays the risk and favors the extraction of the most 

valuable blocks in the early periods. This discount factor is a key point for mining companies as 

they usually expect a fast return on their investment. 
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Constraints 

 Reserve constraints 

         𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1 ≥ 0                                                  ∀𝑖 ∈ ℬ, ∀𝑑 ∈ 𝒟, ∀𝑝 ∈ 𝒫                    (24) 

        ∑ 𝑥𝑖,𝑑,𝑝𝑑∈𝒟 ≤ 1                                                             ∀𝑖 ∈ ℬ, ∀𝑝 ∈ 𝒫                               (25) 

Constraint (24) specifies that a block extracted at a certain period is also defined as already 

extracted in the following periods It means that the block is only extracted once. Constraint (25) 

states that a block can be sent to only one destination. 

 Slope constraints 

∑𝑥𝑖,𝑑,𝑝
𝑑∈𝒟

≤ ∑𝑥𝑗,𝑑,𝑝
𝑑∈𝒟

                                              ∀𝑖 ∈ ℬ, ∀𝑗 ∈ Γ𝑖
−, ∀𝑝 ∈ 𝒫                                  (26) 

A block 𝑖 is available for extraction only if all of its direct predecessors Γ𝑖
− have already been 

extracted or are extracted within the same period. This means that the block is reachable; i.e., 

without blocks above it and that the slope constraints for the stability of the walls are satisfied. 

 Quantity  constraints 

Upper bound                                                                                                                               (27) 

∑(𝑞𝑐1,𝑖,𝑠 ∗ (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

− 𝑑𝑒𝑣𝑐1,𝑝,𝑠
+  ≤ 𝑡𝑎𝑟𝑔𝑒𝑡𝑐1,𝑝

+         ∀𝑐1 ∈ 𝒞1, ∀𝑑 ∈ 𝒟, ∀𝑝 ∈ 𝒫, ∀𝑠 ∈ 𝒮 

Lower bound                                                                                                                              (28) 

∑(𝒒𝒄𝟏,𝒊,𝒔 ∗ (𝒙𝒊,𝒅,𝒑 − 𝒙𝒊,𝒅,𝒑−𝟏))

𝒊∈𝓑

+ 𝒅𝒆𝒗𝒄𝟏,𝒑,𝒔
−  ≥ 𝒕𝒂𝒓𝒈𝒆𝒕𝒄𝟏,𝒑

−         ∀𝒄𝟏 ∈ 𝓒𝟏, ∀𝒅 ∈ 𝓓, ∀𝒑 ∈ 𝓟, ∀𝒔

∈ 𝓢 
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These two sets of constraints define soft constraints for the upper and lower bound (27-28) 

respectively, on the quantities targets at each period and in each scenario.  

The variables 𝑑𝑒𝑣𝑐1,𝑝,𝑠
±  are used as buffers to allow deviations but these deviations are penalized 

in the objective function. 

 Grade quality constraints 

Upper bound (29) 

∑(𝑔𝑐2,𝑖,𝑠 ∗ 𝑡𝑖,𝑠 ∗ (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

− 𝑑𝑒𝑣𝑐2,𝑝,𝑠
+

≤ 𝑡𝑎𝑟𝑔𝑒𝑡𝑐2,𝑝
+ ∗∑(𝑡𝑖,𝑠 ∗ (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

      ∀𝑐2 ∈ 𝒞2, 𝑑 = 1, ∀𝑝 ∈ 𝒫, ∀𝑠 ∈ 𝒮 

Lower bound (30) 

∑(𝒈𝒄𝟐,𝒊,𝒔. 𝒕𝒊,𝒔 ∗ (𝒙𝒊,𝒅,𝒑 − 𝒙𝒊,𝒅,𝒑−𝟏))

𝒊∈𝓑

+ 𝒅𝒆𝒗𝒄𝟐,𝒑,𝒔
−

≥ 𝒕𝒂𝒓𝒈𝒆𝒕𝒄𝟐,𝒑
− ∗∑(𝒕𝒊,𝒔 ∗ (𝒙𝒊,𝒅,𝒑 − 𝒙𝒊,𝒅,𝒑−𝟏))

𝒊∈𝓑

      ∀𝒄𝟐 ∈ 𝓒𝟐, 𝒅 = 𝟏, ∀𝒑 ∈ 𝓟, ∀𝒔

∈ 𝓢 

Similar to the capacity constraints, constraints (29) and (30) penalize excess and shortage of the 

average grade 𝑐2 at each period and for each scenario.  

 Extraction smoothing constraints 

∑ 𝑥𝑖,𝑑,𝑝𝑑∈𝒟 ≤ ∑ 𝑥𝑗,𝑑,𝑝𝑑∈𝒟                                                            ∀𝑖 ∈ ℬ1/2, ∀𝑗 ∈ 𝒩(𝑖), ∀𝑝 ∈ 𝒫     (31) 

These operational constraints impose a continuous sequence of extraction in a way that the 

extracted blocks, at least within the same period, should be close to each other.  
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 Earliest period of extraction constraints  

𝑥𝑖,𝑑,𝑝 = 0                                                                                                                                   (32) 

∀𝑖 ∈ ℬ, ∀𝑑 ∈ 𝒟, ∀𝑝 ∈ {⋃ (𝑡 ∈ 𝒫; ∀𝑠 ∈ 𝒮, ∑ 𝑡𝑎𝑟𝑔𝑒𝑡𝑐1,𝑡′
+

𝑡

𝑡′=1

− ∆𝑐1,𝑡′ ≤ ∑ 𝑞𝑐1,𝑗,𝑠
𝑗∈Γ𝑖

−𝑇𝑜𝑡∪{𝑖}

)

𝑐1∈𝒞1

} 

These last constraints, equivalent to an earliest start of a job, are optional. They eliminate variables 

to make the model easier to solve. The idea is that to reach a block 𝑖 by period 𝑝, at least all its full 

cone of predecessors Γ𝑖
−𝑇𝑜𝑡 must be extracted. This cone plus the block 𝑖 represent a certain 

tonnage or quantity which can be compared to the sum of the quantity targets from the first period 

to period 𝑝. If this last tonnage is less than the one of the cone, it is impossible to reach 𝑖 by 𝑝, 

even in the most optimistic situation in which only the cone is mined. As a consequence, in such 

a case, the corresponding variables 𝑥𝑖,𝑑,𝑝 can be set to 0, which says that block 𝑖 will not be 

extracted at period 𝑝, without any loss of optimality and making the problem easier to solve. The 

parameters ∀𝑐1 ∈ 𝒞1, ∀𝑡
′ ∈ 𝒫, ∆𝑐1,𝑡′ ∈ ℝ

+ are used to keep the flexibility of the stochastic 

formulation which allows deviations from the production targets. Typically one can take∆𝑐1,𝑡′≅

1

4
∗ 𝑡𝑎𝑟𝑔𝑒𝑡𝑐1,𝑡′

+ . 

3.3.5  Partial Relaxation 

From the formulation presented in the last section and from Section 2.4.2. It can be seen 

that the main issue when solving this kind of OMPSIPs with commercial solvers is that the 

computational requirements are enormous. The larger the number of variables and constraints is, 

the more complicated it is to achieve an optimal solution for the model. The problem is even more 

complex to solve when is mandatory respect integrality constraints to obtain binary solutions (e.g. 

a block fully mined in a certain period 𝑝) (see Figure 13). 
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Figure 13. Loss of value in objective function due to Integrality constraints. 

 

Figure 14. Relaxed solution – reduced binary variables. 

The idea here is then; reduce the number of binary variables in order to accelerate the solution 

process. First, an initial feasible solution of the OMPSIP is obtained by allowing a linear relaxation 

of binary variables associated to waste blocks to reduce the number of binary variables without 

affecting the integrality of the ore blocks. The partial relaxation returns a fractional schedule which 

is used as an input for a heuristic algorithm to obtain a final result close to the initial formulation.  

i.e., extraction variables which must be binary (see Figure 14). 

As the work develops by Ramazan and Dimitrakopoulos (2013). This methodology solves the 

OMPSIP by splitting the procedure into two steps. The first step is to solve the non-fully binary 

(relaxed) model described in this section. This initial solution returns a fractional schedule, which 

is used for the second step where the original problem described in Section 3.3.4 is solved. 
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For the solution of the relaxed OMPSIP, additional notation for the general OMPSIP algorithm 

(Section 3.3.4) is required: 

Note 1: 𝑥𝑖,𝑑,𝑝
∗  and 𝑑𝑒𝑣𝑐1,𝑝,𝑠

∗   replace respectively 𝑥𝑖,𝑑,𝑝  and 𝑑𝑒𝑣𝑐,𝑝,𝑠
±  in the formulation stated in Section 

3.3.4. Affecting equations (23 to 31) of the general OMPSIP model. 

𝒙𝒊,𝒅,𝒑
∗   Fractional value obtained from the relaxed model representing the percentage of 

block 𝒊 ∈ 𝓑 sent to destination 𝒅 ∈ 𝓓 at period 𝒑 ∈ 𝓟 ∪ {𝟎}; 

𝒅𝒆𝒗𝒄𝟏,𝒑,𝒔
∗   Value of the deviation of 𝒄𝟏 ∈ 𝓒𝟏from the quantity target in period 𝐩 ∈ 𝓟, for 

scenario 𝒔 ∈ 𝓢, obtained from the relaxed model;   

Note 2: (𝒑𝒊, 𝒅𝒊) and 𝒓𝒄𝒂𝒑𝒄𝟏,𝒑,𝒔 are added to the general OMPSIP model. 

(𝒑𝒊, 𝒅𝒊)  Pair of variables used to store the period of extraction and destination assigned to 

 the block 𝒊 ∈ 𝓑; 

𝒓𝒄𝒂𝒑𝒄𝟏,𝒑,𝒔 Residual capacity of quantity 𝒄𝟏 ∈ 𝓒𝟏 in period 𝒑 ∈ 𝓟 for scenario 𝒔 ∈ 𝓢; i.e., the 

quantity that can still fit into period 𝒑 without exceeding the upper bound target. 

Definition of the weights 

From the relaxed or partially relaxed solution, two sets of weights {𝒘𝟏𝒊, ∀𝒊 ∈ 𝓑} and 

{𝒘𝟐𝒊,𝒅, ∀𝒊 ∈ 𝓑, ∀𝒅 ∈ 𝓓} are defined and will be used in the TopoSort algorithm. 

𝑬𝟏𝒊 = ∑ 𝒑 ∗ ∑ (𝒙𝒊,𝒅,𝒑
∗ − 𝒙𝒊,𝒅,𝒑−𝟏

∗ )𝒅∈𝓓𝒑∈𝓟 + (𝑷 + 𝟏)(𝟏 − ∑ 𝒙𝒊,𝒅,𝑷
∗

𝒅∈𝓓 )                ∀𝒊 ∈ 𝓑               (33) 

𝒘𝟏𝒊 = −𝑬𝟏𝒊                                                                                                                     ∀𝒊 ∈ 𝓑              (34) 

𝒘𝟐𝒊,𝒅 = ∑ (𝒙𝒊,𝒅,𝒑
∗ − 𝒙𝒊,𝒅,𝒑−𝟏

∗ )                                                                           ∀𝒊 ∈ 𝓑, ∀𝒅 ∈ 𝓓𝑷
𝒑=𝟏       (35) 

𝐸1𝑖 can be defined as the expected value of the extraction period of block 𝑖. Since the weight 𝑤1𝑖 

is the opposite of 𝐸1𝑖, the higher the weight is the sooner the block is extracted. The weight 𝑤2𝑖,𝑑 

represents the percentage of block 𝑖 sent to destination 𝑑 from which the most likely destination 
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of the block can be directly determined. The objective of both sets of weights is to give to the 

heuristic algorithm (see Section 3.3.6) an input that allows it to be as close as possible to the relaxed 

solution while respecting the various constraints. 

3.3.6 Heuristic Method 

The relaxed model with reduced binary variables provides a fractional solution. Now, the 

objective is to make this solution fully binary with the use a heuristic method that can provide a 

faster solution than exact methods. Rimele (2016) proposed the application of a heuristic method 

to solve the mine schedule problem inspired by the work developed by Chicoisne and Espinoza 

(2012).  The main idea of the algorithm called Topological Sort Algorithm (TSA) is to sort the 

blocks in a topological order based on pre-defined weights obtained from the relaxed solution as 

result of the assignment of a certain block to a certain period to obtain a fully binary solution.  

Once the relaxed OMPSIP is solved, the result is used as an initial solution to solve the general 

OMPSIP model defined in Section 3.3.4. The relaxation of the problem gives information of the 

most probable destination for every block. For each realization and each period, the initial residual 

capacity of quantity 𝑐1 is set as the upper target. Then, if for a certain period exist at least one block 

from to the list of predecessors, that has to be send to the waste dump or have a capacity of quantity 

of 𝑐1 less than the remaining capacity. The block is removed from graph 𝐺 and assigned to the 

current period. In case where no block can fit anymore in the current period, the next period is 

considered. Then, from the application of TopoSort Algorithm, a satisfactory binary schedule is 

expected to be obtained respecting the general OMPSIP model where models often require 

thousands to millions of decision variables. 
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CHAPTER 4 

CASE STUDY: APPLICATION AT AN IRON ORE DEPOSIT IN 

NORTHERN QUEBEC, CANADA 

The methods for strategic mine planning described in chapter  3, were applied to the KéMag iron 

deposit a property of New Millennium Iron Corp (NML). The deposit is located on the extreme 

western margin of the Labrador Trough (see Figure 15). The Trough, known as the Labrador-

Québec Fold Belt extends for more than 1,000 km along the eastern margin of the Superior craton 

from Ungava Bay to Lac Pletipi, Québec. The belt is about 100 km wide in its central part and 

narrows considerably towards the north and south. 

The KéMag deposit is an iron formation of the Lake Superior type, consisting of banded 

sedimentary rocks composed principally of bands of iron oxides, magnetite and hematite within 

quartz (chert)-rich rock with variable amounts of silicate, carbonate and sulphide lithofacies. 

Lithofacies that are not highly metamorphosed or altered by weathering are referred as “Taconite”. 

These type of deposits are suitable to produce fine iron concentrate which is pelletized. The selling 

price of iron pellets is higher compared to the selling price of iron concentrate. 

4.1 Study area and data 

The simulation of the KéMag deposit is perform conditioned to a set of information provided by 

NML, consisting of the drilling data from a total of 264 drillholes that constitutes 6,295 assays, 

later composited over every 15m and discretized into nine (9) different lithologies within an 

extension of 14.5 km long, 8.5 km wide and 480m in vertical depth. The average drill spacing is 

300m which is quite sparse, but common for taconite orebodies given its inherent low variability 

over large distances. Each drillhole log consists of a set of intervals coded by lithology and with 

associated qualities (laboratory determined). 

Table 1 shows the categorical codification of the iron formation. The lithological code represents 

the seam or strata intersected by the drillholes. The economic lithologies comprise of strata 3 to 9 

and are identified on the basis of chert colour and oxide texture. These are the lithologies that are 

simulated using WAVESIM method. 
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Table 1. Codes by lithology. 

Strata Lithology Code Iron Formation 

1 Overburden OB N/A 

2 Menihek Shale MS N/A 

3 Lean Chert LC Upper 

4 Jaspen Upper Iron 

Formation  

JUIF 

5 Green Chert  GC 

6 Upper Red Cherty URC Middle 

7 Pink-Grey Cherty PGC 

8 Lower Red Cherty LRC 

9 Lower Red-Green Cherty LRGC 

4.1.1 Notes on the data  

The KéMag deposit for mine production is under “Feasibility stage”, it means that the 

project is being evaluated in terms of its practical and financial viability. Given this early stage of 

the project, not much information about the deposit is available. NML is the owner of another iron 

ore deposit in the same area where KéMag is located. This deposit is called LabMag and is located 

18km to the south of the KéMag deposit. Both deposits share practically the same geology, this 

assumption is confirmed by the fact that the drilling has intersected the same iron formations in 

both deposits. Therefore, the KéMag deposit is interpreted as being identical to the LabMag 

deposit. Also, geological interpretation of the KéMag deposit relies on the knowledge gained in 

the exploration of the neighboring LabMag deposit, since most of the areas of the KéMag deposit 

only contain 1 drillhole, and only a limited area where a cross-section contains 4 drillholes allowed 

for a detailed interpretation of the seams, confirming a general dip of 6° to the southeast, just like 

the LabMag deposit. This level of geological knowledge is considered sufficient to classify the 

mineral resources to the Indicated level. 
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Figure 15. Iron Range- New Millennium Limited. 

The KéMag deposit has four highly correlated qualities of interest: Head iron grade (FeH), The 

Davis Tube Weight Recovery (DTWR), The David Tube concentrate grade (FeC), and the Davis 

Tube concentrate silica grade (SiO2); disseminated over 7 stratigraphic units of magnetite, plus 

two overlying waste-type units. 

The geological unit of the deposit that contains the highest consistent concentration of magnetite 

is PGC. In the other hand, LC and JUIF also contain high concentrations of magnetite, while 



62 
 

hematite is most common in LRC, URC, and JUIF units. Silicate iron minerals are most prevalent 

in LIF and LC, just beneath the Menihek formation. 

The planned mining method for the project is open pit mining with 15 meter bench height and 

operated with the conventional truck and shovel combination.  The financial model (costs) used 

for this case study are the same set of costs estimated by NML for the operation of LabMag deposit. 

Given confidentiality agreements, this information is not disclosed in this thesis. 

In terms of operational constraints, to solve the mathematical model of the mine production 

scheduling only two continuous variables are considered to control the production process: the 

average DTWR grade and the average silica per period. Silica concentration in the input feed 

material represents the main pollutant for iron ore processing and is crucial for maintaining the 

quality of the metal production. The lower the silica the better the selling price of the pellets in the 

market. The production scheduling is done over a Life of Mine (LOM) of 10 years and only two 

destinations are considered: the “mill” for processing the ore and the “waste dump” for disposal 

of waste material.  

4.2 Stochastic mine planning of the KéMag deposit 

As was outlined in chapter 3, the stochastic mine planning workflow starts with generating a set 

of orebody realizations that captures geological uncertainty of the limits of the nine geological 

units (lithologies) of the KéMag deposit. In this thesis, a set of 15 realizations is generated using 

WAVESIM (see Section 3.1). Afterwards the boundaries of the lithologies described by the 15 

realizations of categorical variables (lithologies) are used as limits for the simulation of the jointly-

correlated continuous variables (grades). The simulation of the grades is performed using 

DBMAFSIM (see Section 3.2). Here, the four grades of the KéMag deposit (DTWR, FeC, FeH, 

and SiO2) are decorrelated first and then, fifteen (15) simulated realizations of continuous 

variables are generated directly at block support scale. 

Finally, the set of generated simulations were used in the general Open-pit Mine Planning 

Stochastic Integer Programming (OMPSIP) (see Section 3.3). The OMPSIP allows the integration 

of geological uncertainty in the mine design and production scheduling process. However, 

considering the computationally expensive nature of such integer programming models an 
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application of an acceleration method is also applied to reduce the solution time for the 

optimization model.  

4.2.1 Simulation of lithological units using WAVESIM  

To simulate the boundaries of the lithologies, the main goal is to simulate the geometry of 

each stratigraphic layer in order to capture their spatial uncertainty. From the initial information 

outlined in Section 4.1.1. A Training Image (TI) (see Figure 16) is created through a geological 

interpretation using a set of wireframes provided by NML. The wireframes are discretized in a 

Cartesian grid of 70x100x26 with cell size of 100mx100x15m. From there, a total of 182,000 

nodes are used to perform the simulation of ore lithologies (see Section 3.1.1). 

 

  

 

 

For the simulation of the waste lithologies, a different process is perform taking advantage of the 

fact that in the KéMag deposit these lithologies are not correlated with the ore layers. The 

simulation of these layers is complex because the waste layers are extremely thin (less than 7m) 

Wireframe and drillholes 

describing lithologies 

Training Image  

(grid’s depiction) 

Figure 16. KéMag deposit Training Image. 
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in some regions of the deposit, recall that the block discretization in this study is of size 

100mx100x15m. Therefore, its thickness is extremely thin to be modelled in conjunction with the 

seven ore lithologies. Thus, in order to save time and computational resources, waste layers were 

simulated separately. 

The waste lithologies (MS and OB), need to be simulated because they are required for the 

OMPSIP model outlined in Section 3.3.  To simulate them, the MS lithology was simulated 

through WAVESIM using as hard data each one of the obtained simulations of the ore lithologies 

and a very simple 3D training image. On the other hand, the OB lithology is simply overburden, 

thus, its volume was obtained by intersecting the topographic surface with the contact of the layers 

for each simulation obtained using WAVESIM. It is important to note that these 2 layers are 

considered waste therefore have no iron content and were not included for generating simulation 

of continuous variables ( grades).  

4.2.2 WAVESIM Parameters 

One of the advantages of the WAVESIM is that the set of input parameters required to 

perform simulation is reduced to only three main factors: Template size, Inner patch and Number 

of clusters. All of them are defined in Section 3.1.  

The number of clusters and template size are defined through trial and error approach. Hence, the 

values in table 2 are the ones showing the best trade-off between quality of the results and 

computational time for the simulation of 7 ore lithologies. 

Table 2. WAVESIM parameters. 

Parameter: Value: 

Template size 13x13x5 

Inner Patch 9x9x3 

Number of Clusters 30 
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4.2.3 Validation of the simulated boundaries 

The obtained simulations are validated in terms of histograms, variograms, and high-order 

statistics compared to the training image and the hard data (e.g. drillholes). High-order statistics 

are validated through High-Order Spatial Cumulants (HOSC) (Dimitrakopoulos et. al., 2010) (see 

Section 2.3.3). Spatial cumulants are an extension of the covariance function, and it is able to 

describe non-Gaussian stationary and ergodic random fields since they can capture complex spatial 

patterns and their connectivity in geological fields (De Iaco and Maggio, 2011).  

4.2.3.1 Visual inspection of the simulation of the boundaries 

Figure 17 shows the results obtained from simulation of the KéMag’s lithological 

boundaries. The training image (left) and two simulations randomly selected from the fifteen 

available (right). From the comparison of the sections of the training image and simulations, it can 

be clearly perceived that the simulations respect the same spatial configuration, as the TI, given 

that each lithology tends to appear in the same region. However, as expected, the simulated 

realizations are “patchy” and present more variable patterns in comparison to the TI. 
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Figure 17. Cross sections (right Training Image, left simulations). 

4.2.3.2 Histogram of the simulations 

In addition to visual inspection, the simulations are subsequently validated by histogram 

comparison between data and simulated values. Figure 18 shows that the fifteen simulations 

reproduce relatively well the proportion of the ore deposit when compared with the TI and the hard 

data (HD).  

Lithology 3 –LC and Lithology 9-LRGC (see table 1), are the lithologies with higher proportions 

in volume for the KéMag deposit. The reason why the proportions of the simulations for lithology 

3-LC are bigger than the TI and HD proportions is due to the fact that WAVESIM reproduces the 

simulation in a cubic 3D grid. Thus, as lithology 3–LC is closer to the surface, has more “empty 

space” in the cubic grid to paste patterns belonging to this category, some post-processing 

methodologies can be applied to constraint the simulation grid and avoid this situations, however, 

this post-processing is out of the scope of this thesis. In the other hand Lithologies 4 to 9 

proportions are perfectly in between the hard data and training image proportions. 
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Figure 18. Histogram of categorical simulations compared to hard data and training image. 

4.2.3.3 Variograms of the simulations 

In geostatistics it is common to plot a variogram in a specific direction, to this, the distance 

relaxation and angular tolerance are necessary to account for the samples that are not regularly 

spaced when calculating the variograms for different directions. 

Given the numerical difference of the codes describing the lithologies, an indicator variogram for 

each lithology was obtained. Indicators are binary transforms of a variable, having values of either 

1 or 0. Indicator variograms can be used for a similar range of geostatistical estimation techniques 

as standard variograms. (Western and Blöschl, 1998).  

Figure 19 and 20, shows the indicator variogram for lithology 03-LC and 09-JUIF respectively in 

two directions for the 15 simulations along with, HD and TI. The variograms are obtained using 

a distance (lag) separation of 150m and a tolerance of 100m. All the results suggest a reasonable 

reproduction of the variogram for the simulations compared to the training image and hard data. 

Also the cross-variogram from Figure 21, between the two main ore layers shows that the 

simulations are following the same behavior and relation as the HD and TI.  
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Figure 19. Variogram of categorical simulation for lithology 3-LC in two different 

directions, compared to hard data and Training Image  
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Figure 20.Variogram of categorical simulations for lithology 9-LRGC in two different 

directions, compared to hard data and Training Image. 
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Figure 21. Cross-variogram of categorical simulations for 2 different lithologies in two different 

directions, compared to hard data and Training Image. 
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4.2.3.4 High-Order cumulant maps of the simulations 

Given that WAVESIM is a multiple-point simulation method, the high-order relations 

should also be reproduced by the simulations. Therefore, validations are also performed in terms 

of high-order statistics, which are obtained through cumulant maps. In order to calculate the 

cumulant describing the cumulant map, spatial templates have to be defined, an L-Shape template 

was used to calculate the 3rd order cumulant as {(1, 0, 0) ;( 0, 1, 0)}. 

Figure 22 shows the cumulant map calculated for a single material type 03 –LC for the TI and the 

two randomly selected simulations. From the figure it can be seen that the cumulant map of the 

simulations shows a similar pattern as the TI for the first 2 km in north direction and the first 500 

m along east direction. The lithologies have a strong correlation in this area as represented by the 

highest absolute values (red area in Figure 22). Also, as the orebody has high north-south strike 

length, thus the high cumulant values show more correlation in north-south direction. It can be 

also seen that the extension of the orebody in the north-south direction is well reproduced by the 

simulations in terms of their cumulant maps. However, after 500m, the north direction shows 

smaller correlations. This is related to the sparse location of the drillholes.  

Recall that WAVESIM retrieves statistics from the TI and the hard data (drillholes), and as was 

mentioned in the beginning of this section, the distance in between drillholes for KéMag deposit 

is large and have sparse drillhole density thus, this it was impossible to obtain a cumulant map for 

the hard data. 
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Figure 22.Third-order cumulant map for Training Image and simulations. 

Results for validation of the lithological boundaries simulation in terms of low-order statistics 

(histogram and variograms) and high-order statistics (cumulant maps), indicates that in general, 

all fifteen simulations reproduce the spatial features of the drillhole information and training image 

very well. 

4.3 Simulation of continuous variables (grades) 

4.3.1 Data  

Having defined the lithological boundaries through multiple point simulation (WAVESIM). 

The grades attributes of interest: Head iron grade (FeH), The Davis Tube Weight Recovery 

(DTWR), The David Tube concentrate grade (FeC), and the Davis Tube concentrate silica grade 

(SiO2), were simulated within these boundaries using Gaussian conditional simulation method 

called DBMAFSIM that generates the simulations directly at the block support scale, which for the 

present case study was 100mx100mx15m (same discretization for categorical simulation).  

To evaluate the degree of correlation between different grade attributes (DTWR, FeC, FeH and 

SiO2), some correlation coefficient denoted by ρ or r, are used. The most common correlation 

coefficient is the so-called Pearson’s correlation coefficient, which is only sensitive to a linear 

relationship between two variables (which may exist even for non-linearly correlated variables). 

The Pearson’s correlation coefficient ranges from −1 to 1. A value of 1 implies positive linear 
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correlation, a value of −1 implies negative correlation and a value of 0 implies no linear correlation 

between the variables. 

Other correlation coefficient for a more robust measurement of the degree of correlation is the 

Spearman’s correlation. This correlation coefficient is more sensitive to non-linear relationships. 

Spearman’s correlation is a rank correlation, which is important because the normal score 

transformation is foremost requirement to perform DBMAFSIM (see Section 3.2) which only 

preserve the rank correlation. Spearman's coefficient is appropriate for 

both categorical and continuous variables and is considered a non-parametric factor. 

A Spearman’s correlation of zero indicates that there is no correlation between variables. If the 

variables are perfectly monotonically related, the Spearman’s correlation coefficient is equal to 1. 

The sign of the Spearman correlation indicates the direction of the association between variables; 

it means that positive correlations are indicated by a positive Spearman’s correlation coefficient. 

Both correlation measurement criteria are used to evaluate the correlation of the four variables in 

the drillholes database: DTWR,Feh,FeC and SiO2. Table 3 and Table 4 indicate the Pearson’s and 

Spearman’s correlations coefficient for the drillhole information for different grade attributes 

respectively. 

Table 3. Pearson’s correlation for different grade attributes. 

 FeH DTWR FeC SiO2 

FeH 1.00 0.53 0.52 -0.13 

DTWR 0.53 1.00 0.44 0.10 

FeC 0.52 0.44 1.00 -0.09 

SiO2 -0.13 0.10 -0.09 1.00 

 

 

https://en.wikipedia.org/wiki/Robust_statistics
https://en.wikipedia.org/wiki/Continuous_variable
https://en.wikipedia.org/wiki/Discrete_variable
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Table 4. Spearman’s correlation for different grade attributes 

 FeH DTWR FeC SiO2 

FeH 1.00 0.40 0.41 -0.23 

DTWR 0.40 1.00 0.04 0.16 

FeC 0.41 0.04 1.00 -0.77 

SiO2 -0.23 0.16 -0.77 1.00 

From table 3, it can be seen that SiO2  has a negative correlation with FeC and FeH, however are 

not strongly correlated since the Pearson’s correlation coefficients are close to zero, and a similar  

weak positive relation could be observed  between Silica and DTWR. 

From table 4, it can be seen that the Spearman’s correlation between DTWR and FeC is close to 

zero, which indicates no correlation between the variables. From this table, it can also be confirmed 

that the correlation between SiO2  and FeC, SiO2 and FeH is negative. Also, from tables 3 and 4 

can be deducted that strong correlations exist between some of the grade attributes; this rationalizes 

the need to keep their correlations in the simulated realizations for the grade attributes. 

4.3.2 Minimum and maximum autocorrelation factors (MAF) 

Since, the simulated lithologies serve as boundaries or domains for the simulations of the 

grades attributed. It was noted that not all of them are sufficiently thick to perform individual 

variogram analysis. DBMAFSIM utilizes the variogram information for generating the simulations. 

Therefore, for this case study it is more appropriate to model the spatial continuity using a on one 

structure variogram model. The variograms that need to be modeled are based on the MAF factors. 

The modelled variograms for each one of the four grades in the form of MAF factors are then used 

to simulate the grades inside each lithology. Only the composites of the drillholes belonging to 

each respective lithology are used during the simulation. 

As mentioned in Section 3.2, each of the simulated variables modeled herein needs first be 

transformed to normal scores and then using a lag distance of 150m in Eq. (15) to define the matrix 

of MAF factors. Specified lag distance is derived by trial and error technique to ensure suitable 

decorrelation of the MAF factors given the uneven spacing between drillholes. 
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After the data decorrelation is performed, a cross-variogram is generated to ensure the 

orthogonality of the different variables. Figure 23, describes the cross-variogram of the variables 

after MAF. It shows that there are no spatial cross-correlations between the four different factors 

for different lithologies, suggesting that variables are successfully decorrelated using MAF 

technique. The decorrelated variables are termed as MAF factors for further references. 

I, the Pearson’s and Spearman’s correlation coefficients were calculated for the MAF factors. The 

results are presented in tables 5 and 6 respectively. Both correlation coefficients tends to zero (ρ ~ 

0), (r ~ 0) for all the MAF factors, confirming that the MAF factors were successfully decorrelated. 

 

Figure 23.Correlogram between MAF factors– Major direction. 

Table 5. Pearson’s correlation coefficient for the MAF factors. 

 FeH DTWR FeC SiO2 

FeH 1.00 0.00 0.00 0.00 

DTWR 0.00 1.00 0.00 0.00 

FeC 0.00 0.00 1.00 0.01 

SiO2 0.00 0.00 0.01 1.00 
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Table 6. Spearman’s correlation coefficient for the MAF factors. 

 FeH DTWR FeC SiO2 

FeH 1.00 0.00 0.00 0.00 

DTWR 0.00 1.00 0.00 0.00 

FeC 0.00 0.00 1.00 -0.009 

SiO2 0.00 0.00 -0.009 1.00 

4.3.3 Conditional simulation of MAF factors 

Further, after decorrelation of the variables, conditional simulations for different MAF 

factors within different lithologies (simulated previously) can be performed independently using 

Eq. (17) and averaged into blocks using Eq. (22). 

Fifteen simulations are generated for each lithology (total of 15 x 7 = 105 simulations) using blocks 

of 100mx100mx15m discretized by 5x5x2 points per block. The modelled area of the deposit is 

70 by 100 by 26 blocks along strike, dip and vertical direction that constitutes a total of 182,000 

blocks. 

4.3.4 Validation of the simulated grades  

For validation of simulation generated using DBMAFSIM, the point-scale simulated values 

for some simulations in all the lithologies are retrieved and validated in data space. 
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4.3.4.1 Visual inspection of the simulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 24.Plan view of hard data (drillholes) and some simulations for each grade simulated. 
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Figure 24 shows the plan view of the four simulated elements within simulated boundaries of the 

lithologies, highlighting that despite presenting different boundaries (because they are simulated 

inside different categorical orebody simulations) the simulations of grade attributes tend to 

reproduce the same spatial pattern of the drillhole information i.e. coinciding high grade and low 

grade areas between simulations. 

4.3.4.2 Histograms of the simulations 

The results of two lithologies 9LRGC and 5GC lithology are posted in Figures 25 and 26. 

Lithology 9LRGC is the one containing more hematite, and although lithology 5GC is not 

considered important because its iron content is low, this lithology is one of the thinnest layers of 

the set of lithologies. Therefore, this lithologies were chosen to represent the results in this thesis, 

but the validation is done for all of them. Figures 25 and 26 show that the distribution of each 

simulated attribute within one of the lithologies, and honours the declustered statistics inferred 

from the hard data. 
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Figure 25. DTWR and FeC histogram for a single lithology 5-GC. 
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Figure 26. FeH AND SiO2 histogram for a single lithology 5-GC. 
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4.3.4.3 Variograms of the simulations 

Figures 27, 28, 29, 30 and 31 show some variograms and cross-variograms for the hard 

data and the simulations in point support scale, within lithology 5GC and 9LRGC respectively for 

validations purposes. Overall, the simulations reproduce the spatial features of the hard data. The 

simulation variograms are reasonably consistent with the hard data for a range of 2km. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Variogram of DTWR and FeC in lithology 5-GC (point support scale). 
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Figure 28. Variogram of FeH and SiO2 in lithology 5-GC (point support scale). 
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Figure 29. Variogram of DTWR and FeC in lithology 9-LRGC (point support scale). 
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From Figure 31, the cross-variogram for Fe-SiO2 within lithology 9-LRGC, shows that the 

simulations respect and emulate the trends of the hard data in MAF space and data space. 

Indicating that DBMAFSIM keeps the spatial relations, given its ability to generate simulations 

directly at block support scale thus, preserves better the connectivity of the extreme values 

compared to other Gaussian simulation method that generates simulations in point support scale.  

The arguments can be further justified with the explanations that DBMAFSIM method averages 

the points to generate block values and uses the block values as conditional information for further 

Figure 30. Variogram of FeH and SiO2 in lithology 9-LRGC (point support scale). 
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simulation. Considering that profitability of mining projects is driven by high grade values, the 

importance of connectivity of extreme values is further emphasized and outlines the significance 

of DBMAFSIM method which preserves such connectivity of high grade values 

 

 

 

 

 

 

Validation of the simulated grade attributes generated using DBMAFSIM suggest that the 

simulations are following the same trend and behaviour as the hard data information (data space). 

  

Figure 31. Cross-Variogram for simulation of two grades in a single lithology in MAF space 

(upper graph) and Data Space (lower graph), compared to hard data (green dots). 
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4.4 SIP-mining schedule: quantification of variability 

In chapter 3 it was outlined that a realistic forecast of the long term mine production scheduling, 

is obtained using stochastic integer programming (SIP).The  intensive investments associated with 

iron projects highlights the importance of assessing the risk, which can be modelled through the 

use of the jointly simulated geological scenarios in order to ensure the viability of the project. 

As mentioned in Section 4.1, the deposit considered in this case study does not s have strictly 

defined information regarding the mining and production rates, owing to the feasibility stage of 

the project. Therefore, for the purposes of this thesis and viability of the application, most of the 

constraints for the SIP model are procured from the production estimations for the LabMag 

deposit, also a property of NML (Spleit, 2014; Rimele, 2016). 

For taconite deposits, a control of FeC and, SiO2 the only deleterious material is required. The 

production of fine iron concentrate is generated through beneficiation and can be sold as a final 

product. However, due to the characteristics of the deposit, the extracted material is preferably 

pelletized because the selling price of iron pellets is higher in comparison to the selling price of 

iron concentrate. 

For the purposes of this thesis a 10 years mine production schedule is generated, with a yearly 

production target of 10 Mt of iron ore concentrate. To produce pellets, LabMag’s metallurgical 

plant was designed and optimized for a concentrator with an average input of a DTWR of 27%. 

The performance of the metallurgical plant might be affected by the silica content which for this 

kind of operation is expected to be in between 2.3% and 2.9%.The above parameters were 

originally designed form LabMag deposit, and are the parameters used to define the constraints of 

the SIP model for the KéMag deposit. 

4.4.1 Stochastic mine production scheduling 

The results of the stochastic mine production scheduling using the 15 simulations obtained 

through the processes described in Sections 3.1 and 3.2 are shown in Figures 32 to 36. Note that 

the presented results represents the fully binary solution of the relaxed model obtained through the 

use of a Topological Search Algorithm (TSA) (see Section 3.3.6). 
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Figure 32 shows the obtained mine and destination schedule per block, we can see that the areas 

(destination and production period) are well defined describing a practical mining sequence 

considering the layered strata type nature of the deposit and the size of the blocks. This is the result 

of the implementation of the smoothing constraints (eq. (31)) in the general OMPSIP. The plan 

view of Figure 32 also shows that the first period is where the waste lithologies (layers) are 

extracted, this is due to the fact the waste lithologies (OB and MS) are mostly overlying the ore 

material. It can be also appreciated that some artifacts still exists as isolated blocks to be mined in 

some periods. This can be further improved using some pre-processing algorithms. However, is 

not discussed in the current work and it is out of the scope of this thesis. 

 

Figure 32. Destination (right) and Mine schedule (left) plan view 

As was outlined in Section 3.3.5, solution of the relaxed model is considered as the upper 

theoretical limit for the solution of the general OMPSIP model. The tonnage, and qualities for each 

period are evaluated for each simulation in order to analyze the variability per period in terms of 

tonnage and quality targets for a LOM of ten years. From Figure 33 we can see that the estimated 
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target production of 10 million tonnes per year is hardly achieved over all simulations and even 

the expected (average type) realization fails to achieve the concentrate target.  

The run of mine (material sent to the mill), which was not constrained, is plotted in figure it can 

be seen that the differences between scenarios are not significant. This is important in terms of 

mine equipment selection (trucks and shovels). However the implications related to the ROM are 

out of the scope of this thesis and are not considerable given the early stage of the project. 

In terms of production, achieving the targeted concentrate tonnage is usually one of the main goals 

of the production scheduling. Nevertheless, from Figure 36, a steady behaviour of DTWR 

production can be seen, varying within the expected ranges and averagely around 27% as is desired 

for the concentrator. It is important to mention that the annual fluctuations of concentrate 

production are balanced by the DTWR production. For instance a year with less concentrate 

production has a greater average weight recovery implying that less ore must be mined to produce 

the same tonnage of concentrate. 

On the other hand from Figure 35, it can be seen that Silica production deviates from production 

targets in the last periods. The average amount of Silica must be kept beneath a certain level when 

pellet production is desired, given that Silica is considered as an impurity and affects the selling 

price. 

This is definitely not bad news for the project, given the key production targets and project 

indicators used to obtain the mine sequence are borrowed from another deposit of similar 

conditions, thus the results are not the finest. This project is under feasibility stage it means that 

the project is being evaluated in terms of its practical and financial viability. Then, these results 

are useful for the company and provide valuable information such as planed concentrate iron 

production of 10 Million tonnes per year might not be achievable in KéMag and that the average 

% SiO2 is higher in KéMag than in LabMag deposit. Therefore, controlling the silica production 

becomes a new target for subsequent optimizations, since a consistent silica blend is desired across 

all periods. Changes in the input parameters and production targets for the SIP model can be 

studied and could result in better solutions but are outside of the scope of this thesis. 
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Figure 33. Yearly iron ore concentrate tonnes. 

Figure 34.Yearly ROM 
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Figure 35. Yearly Silica production  

 

Figure 36. Yearly DTWR% production  
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Figure 37.Yearly discounted cash flow (DCF %). 

Figure 37 shows the DCF profiles for all the scenarios and their average. It can be observed that 

the scenarios do not present significant deviations from the average, except for period 6 and 7 

where the DCF deviates in the order of 4%. This is because when the SiO2 % goes higher in these 

periods (see Figure 35) the penalties applied over deviation from production target affects the 

revenue. This result might be considered acceptable because the risk is deffered to later periods 

with the applied risk discounting factor and is same as the economic discount factor. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This thesis addresses a complete stochastic mine planning framework in an application at an iron 

ore deposit in feasibility stage. In this stage of a project it is crucial to have mine plans and 

production schedules that provide a high degree of profitability and an overall understanding of all 

risks involved in the development of the project. The deposit used in this case study is the KéMag 

iron ore deposit, property of New Millennium Iron Corp (NML) and the full case study comprises 

the generation of a set of equally probable realizations of the deposit and the optimization of long 

term mine production schedule while considering the inherent geological uncertainty of the 

deposit.  

Methods for stochastic geological simulation of categorical and continuous variables were 

described in the technical literature review. From the application of WAVESIM and DBMAFSIM 

in the KéMag deposit, a set of equally probable geological scenarios which capture the inherent 

uncertainty of the deposit were generated and then, used as input to stochastically optimize the 

mine production schedule in order to manage risk while seeking for a better revenue. 

For this case study WAVESIM was chosen to model uncertainty of the seven iron –bearing layers 

and two overlying layers considered as waste material. This method was chosen because 

WAVESIM is a multiple point simulation method that captures the high-order statistics from 

training image and hard data. For the simulation of continuous variables, given the correlation of 

the grades in the KéMag deposit, a method called DBMAFSIM which is a combination of Direct 

Block Simulation method (DBSIM) and Minimum/Maximum Autocorrelation Factor (MAF), was 

chosen to model the grade uncertainty concurrently keeping the original correlation of the variables 

of interest. In this case study head iron, Davis Tube weight recovery, Davis Tube concentrate iron 

and silica grade were successfully modelled. 

The generated set of simulations (realizations) were validated in terms of lower order statistics 

(variograms and histograms) and also for the simulations of the iron layers a third order cumulants 
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map was built to validate that the high-order relations were reproduced in the simulations. The 

statistics of the realizations were compared to both training images and drillhole samples statistics. 

This comparison showed as was mentioned in the literature review that all multiple point 

simulation methods are training image driven. It means that the statistics of the realizations tend 

to be in between the statistics of the training image and of the hard data. Thus, the training image 

has to be a representative of the deposit in order to obtain valid simulations. 

Further, the validated simulations of the KéMag deposit were used as input for the stochastic 

optimization of the production schedule through a SIP framework coupled with a heuristic solution 

technique in order to acquire fast and efficient solution to the production scheduling problem that 

maximizes the expected value of the discounted cash flows by managing geological risk. 

Geological risk management for the outlined production schedule problem was incorporated by 

strictly reducing risk in the earlier years i.e., minimizing the risk of deviation from concentrate 

tonnage targets and produced silica target. It was shown that realized production tonnages and 

grade qualities could significantly vary (mostly for the last years of the life of mine, specifically 

for the Silica production) compared to the planned targets for quality and quantity attributes. In a 

sense, this was expected because given the feasibility stage of the KéMag mine project, the ideal 

operational parameters are not available yet. Therefore, for the purpose of the work presented in 

this thesis, the parameters modelled for other deposit of similar characteristics were utilized. 

5.2 Recommendations  

For multiple point simulation methods one of the challenges associated with their practical 

application is related to their lack of mathematical formality and their inability to guarantee that 

lower order statistics from the drillholes (hard data) information are reproduced during the 

simulation procedure. Multiple point simulation methods often tend to treat any point within a data 

event with equal importance and given that the TI contains more data points than the hard data, 

the simulations tends to reproduce more the statistics of the TI, rather than the statistics of the hard 

data. Given that MPS methods rely on scanning a training image to obtain a set of patterns, if there 

is a difference between the hard data information coming from the drillholes and the patterns in 

the training image any MPS method will tend to reproduce the statistics of the training image better 

than of the hard data. Therefore the results of the simulations tend to be training-image driven. The 
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argument was confirmed when the histogram and variograms of the simulations of the geological 

lithologies of the KéMag deposit where compared to the statistics of the drillholes and Training 

Image. 

Thus, new methodologies to obtain data-driven high-order characterization of spatial uncertainty 

of lithological units, material types, and multi-element deposit simulations are required. Hopefully, 

a general framework for simulation of both categorical and continuous variables will be formulated 

in the future. Development of high-order approaches to simulate multiple correlated elements is 

also required. The data-driven spatial simulation of correlated random fields can be approached 

through a decorrelation framework, similar to past work for multivariate Gaussian random fields 

as shown for Minimum/Maximum Autocorrelation Factors. Utilizing the MAF technique, each 

one of the uncorrelated factors can be simulated independently using high-order simulation 

methods on the basis of high-order spatial cumulants. 

In the last years, some high-order sequential simulation techniques for non-Gaussian spatially 

distributed variables has been developed based on concepts of high-order spatial cumulants. 

Limitations of this work include the case-dependent numerical instabilities in the approximation 

of probability density functions during the sequential simulation process. Moreover, high-order 

spatial statistics techniques are computationally demanding. 

The extension of the KéMag deposit comprises a vast area of 14.5 km long and 8.5 km wide, 

therefore, a small block discretization might result in a huge amount of binary variables for the 

mathematical model limiting the use of conventional solvers like CPLEX –IBM. The block size 

for the geological simulations in this study was 100 m x 100m x 15 m in order to compare with a 

future conventional schedule that NML is preparing using this same level of selectivity. This block 

size is appropriate for an estimated model but for simulations, a smaller block size could be 

potentially important for capturing variability at the scale of equipment selectivity (SMU) and 

other features of interest. 

The selected block size for simulation of continuous variables of interest (grades) seems to produce 

good results in terms of histogram and variogram reproduction. Also, it is worth to mention that 

the selected block size results in fewer binary variables for the SIP model and thus faster solution 
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can be acquired given that the amount of blocks to be processed is considerably less than using a 

smaller SMU.  

The stochastic models described in the previous sections are characterized by a large number of 

binary variables and non-linear constraints and are required to simultaneously optimize the 

different components of the downstream process of the mineral value chain. Use of heuristics and 

metaheuristics algorithms combined with recent developments in open pit production scheduling 

is prevailing to obtain a “near-optimal” solution considering the large size of the problem for 

mineral value chain optimization which simultaneously optimizes the extraction sequencing, 

destination policies and processing stream decisions. 

Finally, an optimization strategy can be applied to the KéMag deposit, aiming to optimize multiple 

aspects of the mining project. This could include managing (but not limited) the tonnage and 

qualities of ore, control of silica production, inclusion of a variable processing cost dependant on 

the quality of the ore being processed, as well as the inclusion of variable plant efficiency and  the 

use of different operating modes. 
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